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PREFACE

This book deals with methods of analysis that may be use-
ful in design of pile foundations. Many excellent text-
_books are concerned with the more practical aspects of pile
foundations, such as the factors influencing the selection of
the type of pile, the techniques of installation, and practical
details of construction and maintenance of piles. No
attempt has been made to duplicate this type of inform-
tion. The aims of the present book are to:

1. Present a consistent theoretical approach to the predic-

tion of pile deformation and load capacity.

2. Present parametric solutions for a wide range of cases.
3. Demonstrate how such solutions can be used for design
purposes.

4. Review the applicability of these approaches to practi-
cal problems.

In any theory, a certain amount of idealization is neces-
sary to obtain a tractable mathematical solution; this is
especially so when dealing with problems involving soil. In
dealing with the deformations of pile foundations ir this
book, we have generally considered the soil as an elastic
material, with allowances made for pile-soil slip and soil
yield where appropriate. Although real soils possess few, if
any, of the attractive attributes of an ideal homogeneous
isotropic elastic material, they nevertheless can often be
treated as elastic over a limited range of stress, provided
that the “elastic” parameters are determined for this stress
range. When used in this manner, with due discretion and a
measure of engineering judgment, elastic-based theory has
had considerable success in predicting the deformation of
both shallow and deep foundations. Although other simple
soil models have also been successfully used for various
. aspects of pile analysis (for example, the theory of subgrade
reaction as applied to laterally loaded piles), elastic theory
provides a unified basis for the analysis of all types of
foundation; it also makes possible identification of the
parameters that exercise a significant influence on pile
performance. Since elastic theory allows consideration of
stress transmission through a mass, it can be used to analyze

the interaction between two or more piles and, therefore,
to examine the behavior of groups of piles.

The material contained in this book is organized as
follows:

1. The behavior of piles under vertical loads (Chapters
2 to 6).

2. The behavior of piles under lateral loading (Chapters 7
and 8) and under combined vertical and lateral loading
(Chapter 9).

3. The behavior of piled rafts (Chapter 10).

4. Piles subjected to vertical or lateral soil movements
(Chapters 11 to 13).

5. Miscellaneous topics such as pile buckling, dynamic
loading, and pile load tests (Chapters 14 to 16).

Although the text deals with a relatively wide range of
topics, it is by no means exhaustive. Furthermore, since
geotechnical analysis is advancing at a very rapid rate, there
may well be cases in which the analytical techniques we
describe may have been superseded by more versatile
methods capable of modeling real soil behavior more
realistically. Nevertheless, we feel that the techniques and
solutions presented in this book can be usefully applied to
most practical problems and provide a basic series of results
against which the results of more sophisticated analyses
may be checked.

Some worked examples are given to illustrate the appli-
cation of the solutions to practical problems. Because units
are by no means standardized as yet, some of the examples
are worked iniSI units, some in British units, and a few in
the Continental metric system.

We thank the- many people who have contributed to
this book and in particular Dr. N. S. Mattes, of the Elec-
tricity Commission of New South Wales, who obtained a
considerable number of the elastic solutions presented, Dr.
J. R. Booker and Dr. P. T. Brown of the University of
Sydney, who provided a great deal of assistance with
various aspects of the theoretical analyses, Mr. P. J. N, Pells
who provided valuable information on the subject of piles
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to rock, and Dr. T. J. Wiesner, who obtained some of the
solutions presented in Chapter 10. The Civil Engineering
Graduates- Association of the University of Sydney gave
financial support for the post-graduate .course on pile
foundations that formed the basis of this book. Grateful
acknowledgement is given to Professor J. W. Roderick,
former Head of the Department of Civil Engineering, who

made the facilities of the Department available to us, to

C. J. Peiti, B. Crook, J. Kilpatrick, S. Picken, J. Knight and

B. Rocke who undertook the typing and assembly of the

manuscript, and R. Brew and H. Papallo who prepared
many of the diagrams.

H. G. Poulos

E. H. Davis
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GENERAL PRINCIPLES

1.1 INTRODUCTION

The use of piles is man’s oldest method of overcoming the
difficulties of founding on soft soils. Although it dates back
to prehistoric lake villages, until the late nineteenth cen-
tury, the design of pile foundations was based entirely on
experience, or even divine providence. Modern literature on
piles can be said to date from the publication of Piles and
Pile Driving, edited by Wellington of the Engineering News
(later to become the Engineering News-Record) in 1893,
in which the widely known Engineering News pile-driving
formula was proposed. Since this first attempt at a theoret-
ical assessment of the capacity of a pile, a great volume of
field experience and empirical data on the performance of
pile foundations has been published. In recent years, the
increasing demand on the foundation engineer to predict
reliably the behavior of his pile designs has stimulated
more-sophisticated theoretical research into the interaction
between a pile or piles and the embedding soil, so that a
large volume of empirical knowledge is now balanced by
a comparable theoretical understanding.

This balance between empiricism and theory is a com-
mon feature of progress in many engineering fields. Any
engineering design or solution to a practical problem can
be imperfect in two ways. It can be imperfect because it is
inadequate: that is, parts of the structure fail or deform

excessively; in the present context, the design involves
too few, too-slender, or too-short piles. But it can also be
imperfect because it is more than adequate (too many,
too-long, or too-substantial piles) and therefore is an
excessively costly design. Design based on empiricism alone
tends to focus attention on the former, because recorded
experience generally only distinguishes between unsatis-
factory and trouble-free performance and rarely between
economical and uneconomical design. Only by under-
standing the behavior of the engineering structure in an’
analytical as well as empirical sense can engineers reason-
ably expect to achieve designs that are neither inadequate
nor overadequate. In other words, to obtain the full benefit
of experience of actual engineering behavior, it is important
to have a sound theoretical understanding of the problem.
Of course, it is equally important that engineering theory
should be based initially on experience and extended or
modified in the light of further experience.

1.2 STRUCTURAL APPROACH

It is only too convenient to divide the design of major
buildings into two components: the design of the structure
and the design of the foundations. The structure for its own

1



2 GENERAL PRINCIPLES

reasons alone is assumed to produce certain column Joads,
and tne foundations are merely required to carry these
predete. mined loads. In reality, for complicated structures,
the load: on the foundations determine their movement,
but this mcvement affects the loads imposed by the struc-
ture; there is 1nev1’tably interaction between structure and
foundation. i fact ‘the whole complex of structural frame,
foundation components (footings, piles, pile caps, raft,
etc.), and soil or rock forming the founding material,
together comprise one interacting structural system. The
interaction between a pile and its embedding soil, and that
between one pile and another pile, provide subsets of the
larger set of all interacting structural components.

If an overall structural approach is to be successful,
we need to know much more about a particular pile than
that it can be classified as, say, a 50-ton pile. We need to
know its load-settlement behavior up to failure, possibly
its behavior under lateral load and moment, and how its
behavior is modified by adjacent piles. This is analogous
to saying that we need the complete load-deformation
characteristics of beams and columns, not just their load
capacities, before we can analyze complete structural
frameworks.

Most of this book is concerned with bringing the ana-

- lytical treatment of the load-deformation and the failure
behavior of pile foundation systems to the same level of
sophistication as similar analytical treatments available for
systems of structural frames. With this achieved, it is a
relatively simple matter with modern computer programs
to combine the structural and foundation systems into
_one—but that matter is outside the scope of this book.

1.3 BASIC THEORY REQUIRED

Piles embeded in soil provide a reinforcement to the soil,
increasing its load capacity and modifying its deformation
behavior in much the same way as the steel reinforces the
concrete in reinforced or prestressed concrete members.
Unfortunately, although a sufficiently accurate analysis
of the effects of reinforcement in concrete members can
usually be obtained by adaptation of the simple theory
of bending, the extended-continuum nature of the embed-
ding soil around piles makes the corresponding analysis
of the reinforcement effect of piles much more difficult.

1.3.1 Failure Theory

In the present state of knowledge, it is generally only
possible to consider failure as something that ogcurs mainly
at the interface between the sides of the pile and the soil,
ignoring the details of failure within the soil, although for

the pile base, ordinary bearing-capacity theories may be
applicable. Thus for vertical failure, the shear stress at the

_shaft-soil interface attains a limiting value (possibly varying

with depth and soil type), and for horizontal failure result-
ing from lateral load or moment, the normal stress at the
interface attains a limiting value (again, possibly varying
with depth). In such a simplified approach, any reduction
in failure load for a particular pile because of the presence
of a nearby pile cannot be taken into account, except
that the failure load for a group of closely spaced piles
can sometimes be calculated from bearing-capacity theory
for buried footings on the assumption that the piles and soil
between them act as one solid block. This load can be
taken as the answer if it is less than the sum of the failure
loads for the piles, calculated individually.

1.3.2 Elastic Theory

Soil and rock are not ideal elastic materials in that stress
and strain are not linearly related, strains are not fully
recoverable on reduction in stress, and strains are not
independent of time. However, at least it can be said that
strains in soil increase as stresses increase. Furthermore,
the assumption of anything more complicated than a
linearly elastic material for the soil in the pile-soil contin-
uum situation would generally lead to unduly complicated
theory lacking useful generality. The use of linear elastic
theory is therefore expedient and should be sufficiently
accurate for engineering purposes, provided that elastic
“constants” are employed that are appropriate to the
particular problem. That is, they have either been back-
figured from field tests on piles in similar situations, or
determined from laboratory tests employing stress changes
similar to the average changes in the soil mass in the partic-
ular case.

The basic elastic response of the soil from which the
solutions for elastic piles in elastic soil can be derived is
given by Mindlin’s set of equations for the stresses and
displacements throughout an elastic half-space resulting
from horizontal or vertical point load applied at a point
beneath the surface. As will be explained in subsequent
chapters, this basic -response can be integrated to give the
pile-soil interface stresses in such a way that the displace-
ments of the pile and soil are compatible. Modifications
to take account of failure at some parts of the interface
are then relatively easy to make.

Alternatively, the elastic response can be assumed to
be that of a series of unconnected springs, that is, a Winkler
medium or the subgrade reaction assumption. In spite of
what is said by some of the protagonists of this approach,
it must fundamentally be inferior to the elastic continuum
apprbach of the Mindlin equations, since it ignores the



very real interconnection among elements throughout the
soil mass. However, it does have the advantages of com-
putational simplicity and perhaps more-ready adaptation
to complications such as change in soil type. On the other
hand, it can never take into account the important matter
of interaction between adjacent piles.

1.3.3 Changes in Soil Type

Appropriate idealization of actual subsurfade conditions
frequently involves consideration of one or more distinct
layers of material of different properties. Piles in soft
clay are often driven to a stiffer stratum of sand, which
may in turn overlie a different clay before encountering
bedrock. Both the failure theory and the deformation
theory should therefore be capable of coping with such
changes in properties from layer to layer. The modification
of the failure theory for this matter presents little diffi-
culty, but the modification of the deformation theory may
require a number of simplifying assumptions.

1.3.4 The Role of Idealization

Engineering theory can only give the behavior in an ideal
situation. It must start from assumptions with regard to
the properties of the materials and their disposition. In
complicated problems such as that of pile behavior, the
engineering theory itself is often not fully rigorous, since
approximations have to be made to obtain numerical
answers even for the ideal situation. Thus, there is a judge-
ment to make about the extent to which a particular set
of numerical answers is an accurate enough answer to the
ideal problem. This judgement is largely the job of the
research engineer. There is also a judgement to be made on
the practical side, of the accuracy with which the idealized
situation fits the real situation. This judgement is largely
the job of the practicing engineer. It is important that the
difference between these judgements should be recognized
and that they should never be made as one. For example,
the fact that predicted behavior is not verified by subse-

quent observation can mean either that the prediction was’

based on inaccurate theory, or that it was based on an
unrealistic idealization, or even both.

1.4 EXAMPLES OF THEORETICAL
PILE CALCULATIONS

As a foretaste of the types of prediction possible from the
theory to be given in subsequent chapters, the results of
calculations are given for different-example pile founda-
tions, and for comparison, a surface pad footing.
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Working Loads

1340kips 1340 Kips l340kips |340kips '
L] ‘
SN
15 square
square
5'dia. 1-5'dia 1-5'dia.
—d —— —of = e
Soft clay "'i |_£5
¢y = O-5ksf
E, = 100kst 75
E' =80 ksf
v =03
(a)Pad Footing (b) Single (c) Pile (d) 4 Pile
Pile plus Pad Group

FIGURE 1.1 Example 1. Foundations on deep clay.

1.4.1 Vertically Loaded Foundations on Deep Clay

The foundations considered are shown in Fig. 1.1. All
carry the same load and have the same factor of safety

TABLE 1.1 BEHAVIOR OF
EXAMPLE FOUNDATIONS ON DEEP CLAY®

1z 15 lc 1d
Pad Single Pile+ 4-Pile
Example footing Pile pad Group
Factar of Safety 2 2 2 2
Percent of Pad or cap 100 - 73 14
Failure load  Shaft - 87 26 83
taken by: Pile base - 13 1 3
Percentof  Pad or cap 100 - 45 5
working Shaft - 92 53 93
load taken Pile base - 8 2 2
by
Settlements Immediate 41in. 09in?23in. 08in°
at Percent of 56% 0% 36% 0%
working immed. resulting
load from yield
Consolidation 1.2in.  0.1in. 04in. 0.2in.
Total final 53in. 1.0in 2.7in. 1.0in.
% See Fig. 1.1.

Elastic shortening of pile as a column = 0.04 in.
¢ Elastic shortening of pite group as columns = 0.11 in.
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against ultimate failure. The calculated behavior is given in
Table 1.1, from which it can be seen that the surface pad
footing, an unlikely choice for a comparatively heavy load
on a soft clay, settles what would probably be an excessive
amount. Furthermore, a high proportion of the settlement
is irrecoverable, so that variations in load might produce
further settlement. The single large-diameter pile and the
four-pile group have similar behaviors and may even involve
settlements that are more than satisfactorily small. The
case of a pad with one small-diameter pile is unusual but
represents an interesting intermediate case between pad
only and piles only. At the working load, the pile is
carrying its full failure-load but nevertheless succeeds in
reducing the settlement well below that of the pad on its
own.

1.4.2 Vertically Loaded Foundations on Clay over Gravel

The cases of a surface pad footing and a pile driven to a
stiff gravel base under the soft clay are illustrated in Fig.
1.2. Again, each foundation carries the same load and has
the same factor of safety. The results of calculation are
given in Table 1.2. The behavior of the pad footing is
unaffected by the gravel, since the clay has a depth of
five times the footing breadth. The pile, being “end-
bearing,” can be of smaller diameter than before; in fact,

TABLE 1.2 BEHAVIOR OF EXAMPLE
FOUNDATIONS ON CLAY OVER GRAVEL?

2a 2b
Example Pad footing  “End-bearing” Pile
Factor of Safety 2 2 (concrete strength
governs)

Percent Pad 100 -
FFailure load  Shaft - 13
taken by: Pile base - 87
Percent Pad 100 -
working Shaft - 33
load taken Pile base - 67
by:
Settlements  Immediate 4.1 in. 0.5% in.
at Percent immed. 56% 0
working resulting
load from yield

Consol. 1.2 in. 0

Total final 5.3 in. 0.5 in.

¢ See Fig. 1.2.

Elastic shortening of pile as a column = 0.25 in.

Working Loads

l 340 kips 1 340 kips
15
square
2 dia
Soft Clay -
cy = 05 ksf
Ey = 100 ksf )
5
E' - 80 kst &
v 2 0.3
(a) Pad Footing (0) "End Bearing’
pile
R N I D AR N N ST e Tt
‘(/\4\ (O»‘ﬁ\h Q,Lf-\)_‘\ L:p PR a/~l«LL-\\'4 oot
h Gravel E = 10,000 k.sf.
¢'= a0°

FIGURE 1.2 Example 2. Foundations on clay over gravel.

it is the strength of the concrete of the pile which deter-
mines its diameter, rather than soil properties. The settle-
ment of the pile is now even smaller, as would be expected,
although still greater than the straight column compression.
It is interesting to note that although the pile is classified
as “end-bearing,” a third of the load is in fact taken by
side shear on the shaft. For more slender piles, the pro-
portion of the load taken by the shaft can be even higher.
The fact that “end-bearing” piles are far from 100 percent
end-bearing has been verified in the field in several instances.

1.4.3 Foundations subject to Rotation

For the same vertical load as in the previous examples,
but also with a horizontal load and 4 moment applied,
a pad and pier are compared in the third example (Fig.
1.3). The results of calculations are given in Table 1.3.
In order to carry even a relatively small moment, the pad
footing has had to be enlarged to an inordinate size, and
in view of the movements and rotations at the working
loads, it would unlikely to be considered a satisfactory
solution. The length and diameter of the pier have been
selected so that the factor of safety against failure resulting
from the vertical load is the same as that against failure

resulting from the horizontal load and moment.



Working Loads

340 kips 340 kips
1700 kip ft 1700 kip ft.
/
’\8' . 81 kips
——Y B8] kips
. 24
square
(a) Pad Footing —d74ia
Soft Clay 50
¢y = O-5 ksf
u = ( f
€y = 10D Ks (b) Pier
£ = 80 ksf
v = 03
i S

FIGURE 1.3 Foundations subject to rotation.
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TABLE 1.3 BEHAVIOR OF EXAMPLE
FOUNDATIONS SUBJECT TO ROTATION?

3a 3b
Example Pad Footing Single Pier
Factor of Safety 2 2
Settlement Immediate 2.7 in. 1.0 in.
Consol. 0.6 in. 0.2 in.
Total final 3.3 in. 1.2 in.
Horizontal Immediate 1.4 in. 0.8 in.
displacement Consol. 0.3 in. 0.2 in.
Total final 1.7 in. 1.0 in.
Rotation Immediate 0.45° 0.16°
Consol. 0.10° 0.04°
Total final 0.55° 0.20°
Percent immediate movement 56% 0

resulting from local yield

4 See Fig. 1.3.



EFFECTS OF INSTALLATION OF PILES

2.1 INTRODUCTION

Piles may be classified in a number of ways, the common
. methods being

(a) By the material of which they are formed.
(b) By the method of installation.

The commonly used materials for piles are concrete, steel,
and timber; discussions- on the relative practical merits of
each type of pile for various applications may be found
in many references, for example, Chellis (1962), Tomlinson
(1975), Bowles (1977), and Whitaker (1970). In terms of
installation method, piles may be classified as

(a) Driven piles.

(b) Bored or cast-in-situ piles.
(c) Driven and cast-in-situ piles.
(d) Screw piles.

Detailed descrintions of these methods and equipment
used in installation may also be found in the above four
references.

The method of installation of a pile may have a pro-
found effects on its behavior  under load. It may also
determine the severity of effect on nearby structures,

including undesirable movements, vibrations, or even
structural damage. Much of the available data on installa-
tion effects is concerned with driven piles, since pile driving
generally creates more disturbance than other methods.
Relatively little is known of the effects of constructing
bored piles.

In this chapter, the effects of pile driving in clays are
examined, with particular emphasis on the pore pressures
developed around the pile and the resulting influence on
the surrounding soil. Piles driven into sand are then con-
sidered, and finally, a brief review, largely qualitative,
of the effects of installing bored piles is given.

It should be emphasized that this chapter is concerned
with "the extent to which installation changes the proper-
ties of the soil surrounding piles from those existing prior
to installation, which are presumably determinable by
normal methods of site investigation, sampling, and labora-
tory or in-situ testing. Furthermore, it is concerned with
the manner in which such changes, at least with clays,
may subsequently become modified the longer the loading
of the installed pile is delayed. The change in bearing
capacity of a loaded pile as a clay consolidates under the
stresses produced by the load on the pile is not dealt with
here, but is considered in Chapter 3. It is important to
maintain a clear distinction between these two matters.



2.2 EFFECTS OF PILE DRIVING IN CLAYS

The effects of pile driving in clays have been classified
. into four major categories by de Mello (1969):

‘(a) Remolding or partial structural alteration of the soil
surrounding the pile.

" (b) Alteration of the stress state in the soil in the vicinity
" of the pile.

(c) Dissipation of the excess pore pressures developed

around the pile.
"(d) Long-term phenomena of strength-regain in the soil.

Some data is available on all the above effects, although the
state of knowledge, particularly in relation to (d), is gener-
ally limited.

2.2.1 Influence on Soil Shear Strength and Pile Capacity

Early investigations into the effects of pile driving on the
properties of clays were made by Housel and Burkey
(1948) and Cummings, Kerkhoff, and Peck (1950). Based
on the evidence from load tests to failure carried out on
piles at different times after their installation, it can be
inferred that the undrained strength of a clay is initially
decreased considerably because of driving, but that signif-
icant regain of strength occurs with elapsed time between
driving and pile testing. Generally, it may be expected that
the driving of piles into clay will initially cause some (or
even considerable) loss in undrained strength of the clay
because of remolding at constant water content. Subse-
quently, the strength will usually increase because of a
combination of two factors: thixotropic regain of un-
drained strength as the structural bonds destroyed by
remolding are at least partially restored, and increase
resulting from local consolidation of the clay produced
by dissipation of excess pore-water pressures that arise
from the increase in stress in the soil surrounding the
pile. Conceivably, there would be situations in which
the consolidation was negative (ie., a swelling with time),
thus producing a weakening in addition to that caused by
remolding—for example, for stiff, overconsolidated clays.
Although investigations into the extent of the dis-
turbance around a pile caused by driving have produced
somewhat conflicting results, the available evidence (de
Mello, 1969) suggests that immediately after driving, the
amount of remolding decreased from about 100% at the
pile-soil interface to virtually zero at about 1.5 to 2.0
diameters from the pile surface. Investigations by Orrje

and Broms (1967) of concrete piles in a sensitive clay .
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FIGURE 2.1 Increase of load capacity with time (Soderberg,
1962).
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showed that the undrained strength had almost returned
to its original value after nine months, except when piles
were spaced at less than about 4.0 diameters, in which
case little strength-regain (and in some cases a further
loss) was noted with time.

Other than for thixotropic regain, the rate of increase
of soil strength subsequent to pile driving is related to the
rate of dissipation of excess pore pressure, Data presented
by Soderberg (1962) showed that the increase in ultimate
load capacity of a pile (and hence, shear strength of the
soil) was very similar in character to the rate of dissipation
of excess pore pressure with time (see Fig. 2.1). Some
estimate of the “set-up” time m.y be obtained from a
knowledge of the excess pore pressures developed around
the pile, and the rate of dissipation of these pore pressures.

2.2.2 Pore Pressures Developed during Driving

A number of measurements of the excess pore pressure
developed in a soil because of pile driving have been made;
for example, Bjerrum et al. (1958), Bjerrum and Johannessen
(1960), Milligan et al. (1962), Lambe.and Horn (1965),
Lo and Stermac (1965), Orrje and Broms (1967), Hanna
(1967), Koizumi and Ito (1967), D’Appolonia and Lambe
(1971). Results of measurements of pore pressure at the
pile face in many of these papers have revealed that the
excess pore pressures may become equal to or even greater
than the effective overburden stress. However, the induced -
excess pore pressures decrease rapidly with distance from
the pile and generally dissipate very rapidly.

A summary of some measurements of the variation with
radial distance of the excess pore pressures around a single
driven pile are given in Fig. 2.2. The excess pore pressure
Au is expressed dimensionlessly as Au/d’,,, where o'yq is
the vertical effective stress in-situ prior to driving, while.
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Legend:

O Wallaceburg (Lo and Stermac, 1965}

A Ghost River {Lo and Stermac, 1965)

O Wabi River (Lo and Stermac, 1965)—(29 ft depth)

® Wabi Riber (Lo and Stermac, 1965)--(37 ft depth)

x Marine Clay {Bjerrum and Johannessen, 1960)—(7.5 m depth)
A Marine Clay (Bjerrim and Johannessen, 1960)— {10 m depth)
v Firm Clay {Airhart et al., 1969)— (40 ft depth)

+ Boston Blue Clay (D' Appolonia and Lambe, 1970)

® Varved Clay [Soderman and Milligan, 1961}—(20 ft depth)

¥ Varved Clay (Soderman and Milligan, 1961)—(25 ft depth)

O Varved Clay {Soderman and Milligan, 1961}—(30 ft depth].
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FIGURE 2.2 Summary of measured pore pressures.

the radial distance r from the pile is expressed in terms of
the pile radius a. There is a considerable scatter in the
points in this figure resulting largely from differences in
soil type, the larger pore pressures being associated with
the more sensitive soils.

In the vicin‘cy of the pile, very high excess pore pres-
sures are deveioped, in some cases approaching 1.5 to 2.0
times the in-situ vertical effective stress. Data presented
by Airhart et al. (1969) suggests that near the pile tip,
even greater pore pressures may be developed, amounting
to 3 to 4 times the in-situ vertical effective stress.

Beyond r/a of about 4 for normal clays, and about 8
for sensitive clays, a rapid decrease in pore pressure with
distance occurs, and beyond r/fz = 30 the excess pore
pressures are virtually negligible.

A further consequence of the development of pore
pressures around a pile during driving has been reported
by Fellenius and Broms (1969), who found that signif-
icant negative friction and downdrag forces were induced
in a pile because of reconsolidation of the soil around the
pile. This aspect is discussed further in Chapter 11.

Estimation of Pore Pressures

A number of methods have been developed to predict
the excess-pore-pressure distribution around a driven pile.
For cases in which it is sufficient to estimate only the

maximum pore pressure developed near the pile surface,
Lo and Stermac (1965) derived an expression from the
consideration of failure of a radial zone of soil around the
pile. D’Appolonia and Lambe (1971) derived an alternative
form of Lo and Stermac’s equation, namely,

Bt [ ﬁ}
0o = LK)+ 7y 2.1

where

Au,, = maximum excess pore pressure

K, = in-situ coefficient of earth pressure at rest
s, = undrained shear strength

Ay = pore-pressure coefficient 4 at failure

0y, = initial vertical effective stress in soil

Comparisons, reported by Lo and Stermac (1965) and
Lo (1968), between measured pore pressures and those
calculated from Eq. (2.1}, showed generally good agree-
ment. Within the failure zone of the soil surrounding the
pile, the pore pressures were a maximum and constant,
and driving of adjacent piles only increased the pore pres-
sure slightly. Outside the failure zone, the pore pressure
decreased rapidly with distance and was negligible at a
radial distance of about 16 diameters from the pile (see
Fig. 2.2). Driving of adjacent piles developed pore pressures
in this outer zone that added up directly until the maxi-
mum value was reached. Thus, the maximum pore pressures
induced by driving a number of piles in a pile foundation
may be predicted simply as the value of Aup, from equa-
tion (2.1). The data presented by Lo and Stermac (1965)
suggests a radius of the failure zone of about 4-pile radii,
which is consistent with the extent of remolding around
the pile, discussed in the previous section.

Theoretical methods of estimating the distribution of
excess pore pressure with distance from-the pile have been
developed by Nishida (1962) and Ladanyi (1963). The
former method is based on an elastoplastic analysis, while
the latter is an adaption of the theory of expansion of a
cylindrical cavity in a mass for use with the measured -
undrained stress-strain behavior of a soil. Although the
latter method is versatile and relates to real soil behavior,
it requires considerable computation. Furthermore, it relies
on the details of laboratory stress-strain curve, the accuracy
of which is liable to be affected by such factors as sampling
disturbance and the initial stress condition of the sample.

As a rapid, practical means of estimating the excess-
pore-pressure  distribution, the following procedure is
suggested:



(a) The Lo and Stermac expression (Eq. 2.1) is used to
obtain the maximum pore pressure Au,,, from the face
of the pile to a distance R from the face. On the basis
of Fig. 2.2 and also the analysis of Nishida (1962), R
varies from 3u to 4a for insensitive clays, to 8a for sensitive
clays. _

(b) Beyond the distance R, the excess pore pressure is
assumed to vary inversely as the square of the distance r
from the pile, that'is,

Au = Auy, /(é)2

The inverse variation is predicted from elastic theory,
as utilized by Ladanyi (1963) and Nishida (1962).

(c) For pile groups, the pore pressure distributions around
individual piles may be superposed, except that the pore
pressure cannot exceed Au,,, as found by Lo and Stermac
(1965).

(2.2)

The excess pore pressures around a pile in sensitive
clay as calculated by the above procedure, agree well with
the average observed curve in Fig. 2.2.

2.2.3 Dissipation of Excess Pore Pressures

A relatively simple solution for the rate of dissipation
of excess pore pressures around a driven pile has been pro-
posed by Soderberg (1962a). It is assumed that dissipation
occurs radially only, the vertical dissipation that may occur
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near the top and tip of the pile being ignored. The relevant
equation of consolidation is then

ol )
ot h ar? r ar

where

(23)

cp is the two-dimensional coefficient of consolidation
for horizontal drainage
u IS excess pore pressure

The above equation may readily be written in finite
difference form (e.g., see Gibson and Lumb, 1953), and
solved for the appropriate drainage condition at the pile
and initial pore-pressure distribution. Solutions for the
excess pore-pressure dissipation at the pile face, for an
impermeable pile, were obtained by Soderberg, who found
that the form of the initial pore-pressure distribution had
a relatively small influence on this solution,

A reasonable measure of the rate of strength or adhe-
sion-regain after driving appears to be to consider the rate
of consolidation within a limited area in the vicinity of the
pile. Such solutions are shown in Fig. 2.3, assuming an
initial excess pore-pressure distribution as suggested in
Section 2.2.2 and a failure zone having ratios of radius
R to pile radius ¢ of 3 and S. The degree of consolidation
within a radius ~f R is shown for both a permeable and an
impermeable pile.

[t is interesting to compare these theoretical solutions
with -an empirical relationship suggested by Radugin (1969).
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FIGURE. 2.3 Theoretical solutions for rate of consolidation near z driven pile.
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FIGURE 2.4 Cn.)mparison between empirical and theoretical solutions for rate of adhesion increase.

Assuming R/z = 5, ¢ = 0.04 sq in./min (typical of a
medium clay), and a permeable concrete pile of 6-in.
radius, Fig. 2.4 compares the theoretical degree of consoli-
dation versus time curve and Radugin’s empirical curve,
assuming the rate of consolidation is the same as the rate
of adhesion increase in Radugin’s relationship. There is
some difference between the shape of the curves, but
they are generally in sufficient agreement to suggest that
the simple consolidation analysis provides a reasonable
estimate of the rate of increase of load capacity.

From a practical point of view, solutions such as those
in Fig. 2.3 are of most use in giving an estimate of the time
that should elapse after driving before a load test is carried
out, if a reliable estimate of the ultimate undrained load
capacity and load-settlement ‘behavior is to be obtained.

A more rigorous analysis of the stress changes, excess
pore pressures, and subsequent consolidation around a
driven pile in clay has been presented by Wroth et al.
(1979). The pile-driving process is modeled as the creation
of a Jong cylindrical cavity by radial soil movement. Values
of stress and pore-pressure change have been obtained
using a finite-element analysis incorporating a work-
hardening soil model (the Cam-clay model). It is concluded

“that the total and effective stresses ddjacent to the pile
just after driving may be related directly to the original
undrained strength of the soil, and are essentially indepen-
dent of the overconsolidation ratio. The final stress state
after consolidation is similar to that in an oedometer
(K,) test, except that the radial stress is now the major
principal stress.

2.2.4 Displacement Caused by Driving

Pile driving generally causes a heave of the clay surrounding
the pile, followed by consolidation of the clay. This move-
ment caused by pile driving may have a significant effect
on adjacent structures and may also cause the piles driven
earlier in a multiple-pile installation to rise during the
driving of the later piles. Under these circumstances,
redriving of the earlier piles is often considered necessary,
or may lead to a decision to use bored rather than driven
piles. The limited data available on the magnitude of the
heave is rather conflicting, although much of the conflict
may arise from differences in soil types in the various
investigations. The ratio of the total volume of initial
heave to the total volume of driven piles within a founda-
tion has been found to be about 100% by Adams and
Hanna (1970) for steel H-piles in a firm till, 50% for piles
in clay by Hagerty and Peck (1971), 60% by Avery and
Wilson (1950), and 30% by Orrje and Broms (1967) for
precast concrete piles in a soft, sensitive, silty clay. The
latter investigators found that the heave near the edge of
the foundation was about 40% of the value at the center.
Outside the edge of the group, only very small heaves
were noted by Adams and Hanna, and Orrje and Broms.
Adams and Hanna measured radial and tangential move-
ments as well as vertical heave, and found that the maxi-
mum radial movement was about 1.5 in., and the maximum
tangential displacement about 0.4 in.—both these values
being considerably less than the average vertical heave of



about 4.5 in. As with vertical heave, very small lateral
movements occurred beyond the edge of the group.

Measurements of the-movement of an existing building
as a result of driving of piles for the foundations of a
new building were reported by Lambe and Horn (1965).
It was found that, at the near corners of the existing
building, a heave of about 0.3 in. occurred during driving,
but that by the end of construction, a net settlement of
about 0.35 in. had occurred. Despite the fact that the
piles were preaugered to within about 30 ft of their final
elevation, high excess pore-pressures (maximum of about
40 ft of water) were measured near the corner of the
existing building, even before a substantial building load
was carried by the piles.

Figure 2.5 shows some measurements of heave and
settlement of buildings caused by pile driving, as reported
by D’Appolonia and Lambe (1971). The settlement data
plotted are for net settlement one to three years after the
end of construction. Larger movements than those mea-
sured by Lambe and Horn were found, although the piles
were again preaugered to within 20 to 30 ft of the final
tip elevation. '

From measurements of displacements resulting from
pile driving in clays, Hagerty and Peck (1971) concluded
that the soil displacements are less for piles driven in
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sensitive clays than for corresponding piles in insensitive
clays, and that when piles penetrate alternating strata of
fine-grained soil and granular materials, the observed
surface-heave may be much less than that which would
have occurred in insensitive clay soils. It was also found
that if the sequence of pile driving involved driving piles
first along the perimeter of the foundation, the heave of
the soil surface in the central area of the foundation is
increased and that of the surrounding area correspondingly
decreased.. Observations also were made of lateral move-
ments, and it was found that driven piles tended to be
displaced away from subsequent driving, with movements
continuing for a considerable length of time after com-
pletion of driving. Where large differences in elevation
existed within the foundation area, pile driving often
displaced the soil preferentially toward the areas in which
the lower elevations occurred.

Estimation of Displacements

Lambe and Horn (1965) proposed a method of estimating
the heave and subsequent settlement of the surface of soil
near a pile resulting from driving of the pile. Although
the method was found to predict movements considerably
larger than those measured, it appears to be a logical pro-
cedure and worthy of further application. The method
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FIGURE 2.5 Movements of nearby buildings caused by piledriving operations (D’Appolonia and Lambe, 1971).
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FIGURE 2.6 Test procedure for displacement calculation (Lambe
and Horn, 1965). (© Canada, 1965 by University of Toronto Press.)

is based on the stress-path approach advocated by Lambe
(1964). 1t consists of estimating the effective stress-path
for an “‘average” element in the compressible soil layer,
running a laboratory test on a sample of this soil such that
the loading follows the stress path estimated for the field
element, and using the laboratory-measured value of
vertical strain to estimate the building heave and settle-
ment.

There are essentially three steps in the procedure,
which is shown diagrammatically in Fig. 2.6:

I. Consolidation of the sample (usually under K, con-
ditions) to the in-situ stresses in the layer prior to pile
driving. Where the element under consideration is beneath
an existing building, as it was in the case described by
Lambe and Horn, this first stage mvolves simulation of the
undrained loading caused by construction of the building
followed by consolidation, after initial X, consolidation
of the element to the field stress state.

2. Increasing the total lateral stress at constant total
vertical stress until the pore pressure in the element equals
that measured by the field piezometers or that calculated
on the basis of Section 2.2.2. The vertical strain measured
during this stage allows the heave to be computed.

3. Dissipation of the pore pressures developed by the
pile driving, that is, consolidation of the sample. Lambe
and Horn suggest that this process might take place under
conditions of no lateral strain, but this suggestion appears
questionable. The movement measured in this stage will
enable the total consolidation, subsequent to the heave,
to be computed.

The choice of a single “average” element, however,
appears to be a difficult task. Obviously, a more satis-
factory procedure, although it involves considerably more
testing, is to divide the soil into a number of layers, test
samples from each of these layers, and add up the resulting
displacements computed for each layer to obtain the overall
displacement.

Of course, the movement of the surface of the soil,
discussed above, is not necessarily the same as the move-
ment of the top of an existing pile caused by the installa-
tion of an adjacent pile. A very simple approximate pro-
cedure for estimating the heave of an existing pile was
proposed by Hagerty and Peck (1971). This procedurey
was based on the concept that inextensible vertical piles
embedded in the clay would be lifted by the relative rise
of the soil along the upper part of the pile, but that along
the lower part of the pile, a downward force would act,
tending to reduce the total uplift of the pile (Fig. 2.7).
A surface a-a can be found af which the relative movement
between soil and pile is zero. The pile heave is considered
to be approximately equal to the heave of the soil, on the
assumption that no heave takes place below a-z; that is,

L-d
Pile heave = [ T n/

(Soil heave) (2.4)
The depth, dj, is estimated by balancing the potential
upward and downward adhesive forces on the upper and
lower parts of the pile.

For simple distributions of pile-soil adhesion, dj

" may be calculated directly (for ‘example, for uniform

adhesion, dy = 0.5L), so that the pile heave would be
estimated as one half of the soil heave; while for linearly
increasing adhesion, from zero at the surface, dp = 0.67L,
and the pile heave is estimated as one third of the soil
heave.

Hagerty and Peck found good agreement between
observed pile heave and estimates based on the above sim-
ple approach.
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FIGURE 2.7 Balance of forcés along driven pile (Hagerty and Pecl
1971).



A more refined analysis of pile movement caused by
adjacent pile-driving may be made using the approach
described in Chapter 12 for piles in swelling or shrinking
soils.

2.3 EFFECTS OF PILE DRIVING IN SANDS
2.3.1 Single Piles

When a pile is driven into sands and cohesionless soils,
the soil is usually compacted by displacement and vibra-
tion, resulting in permanent rearrangement and  some
crushing of the particles. Thus, in loose soils, the load
capacity of a pile is increased as a result of the increase in
relative density caused by the driving, and installation by
driving rather than boring has distinct advantages. Detailed
investigations of the extent of compaction of sand and the
increase in relative density around the pile have been
carried out by Meyerhof (1959) and Robinsky and Morrison
(1964).

Robinsky and Morrison conducted a careful series of
model-pile tests in sand in which the displacement and com-
paction around the piles was studied by means of radio-
graphy techniques. It was found that in an initially very
loose sand (relative density D, = 17%), soil movement
extended 3 to 4 pile diameters from the side of the pile and
2.5 to 3.5 diameters below the pile tip. In a medium dense
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sand (D, = 35%), the extent of movement was somewhat
larger, extending 4.5 to 5.5 diameters from the side and
3.0 to 4.5 diameters below .the tip. These figures are in
broad agreement with those found by Meyerhof (1959).
The tests of Robinsky and Morrison also showed that
the process of sand displacement and compaction below .
a pile tip is followed by sand movements adjacent to the
pile sides. These movements tend to decrease the sand
density. in the immediate vicinity of the sides and thus
nullify some of the benefits gained by the primary com-
paction. The pattern of displacements around a typical
pile, as found from the radiographs, is shown in Fig. 2.8,
while the strain pattern deduced from these displacements
is shown in Fig. 2.9 (Vesic, 1967). The decrease in density
occurring above the tip is clearly reflected in the tensile
strains, which amount to about half of the maximum
compressive strains below the tip. The above remarks
apply to a straight-sided pile, but Robinsky and Morrison
found that the same process occurs with a tapered pile.
Their tests did not indicate that the loosening effect was
markedly compensated by the wedging action of the pile-
taper compacting the surrounding sand. The higher load
capacity of a tapered pile can probably be attributed
mainly to the greater normal stresses developed between
the pile and the soil when loaded by the foundation. '
On the basis of an empirical correlation among density,
penetration resistance, and friction angle, Meyerhof (1959)
devised a method of estimating the extent of the zones of
increased density, and hence increased friction angle,

FIGURE 2.8 Displacements around driven pile in sand (after
Robinsky and Morrison, 1964). (Reproduced by permission of the
National Research Council of Canada from the Canadian Geo-
technical Journal, Vol. 1, 1964, p. 81.)
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FIGURE 2.9 Strains around driven pile in sand (after Robinsky
and Morrison, 1964). (Reproduced by permission of the National
Research Council of Canada from the Canadian Geotechnical Jout-
nal, Vol. 1, 1964, p. 81.)
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FIGURE 2.10 Observed vs. computed compaction of sand near
pile (after Meyerhof, 1959).

around a pile driven in sand; a typical result compared with
observdtions is shown in Fig. 2.10. These results are in
broad agreement with those of Robinsky and Morrison
(1964), but according to Meyerhof, the amount of com-
paction near the tip is greater, and that near the top of the
shaft is less.

A simpler method of estimating the effects of driving
a pile in loose sand in the vicinity of the tip is that pro-
posed by Kishida (1967). On the basis of field and model
test-resujts, he assumes that the diameter of the compacted
zone around a pile is 7d. Within this zone, he further
assumes that the angle of friction ¢’ changes linearly with
distance from the original value of ¢ at a radius r = 3.54
to a maximum value of ¢, at the pile tip, as shown in Fig.
2.11.

The relationship between ¢, and ¢, is taken to be

o =& 2.400 @)
3
|
|
[ -
|
T T
e

FIGURE 2.11 Effect of driving on ¢ (Kishida, 1967).

When ¢} = 40° in Eq. (2.6), there is no change in relative
density due to pile driving.

2.3.2 Pile Groups

When groups of piles are driven into a loose sand, the soil
around and between the piles becomes highly compacted,
and if the pile spacing is sufficiently close (less than about
six diameters), the ultimate load capacity of the group
may be greater than the sum of the capacities of the indi-
vidual piles—that is, the efficiency of the group is greater
than 1. On the other hand, if the sand is so dense that
pile driving causes loosening rather than compaction, the
group efficiency may be less than 1. :

An estimate of the effects of driving a group of piles
into loose sand may be made by application of the
approach suggested by Kishida (1967) for single piles,
assuming that superposition of the effects of single piles
is applicable. In applying Eq. (2.6), the value of ¢} is the
changed value caused by previous piles. By application of
this approdch, a rough estimate may be made of the effect
on ultimate load capacity of the order of installation of
the piles. It has been found in practice that piles driven
later have a greater load capacity than those driven earlier.

Some field measurements of the amount of compac-
tion caused by the driving of a group in a granular seil, in
which standard penetration tests have been carried out
before and after driving of groups have been reported by
Philcox (1962). The test results are shown in Fig. 2.12. In
case (a), the standard penetration number, N, near the
center of a four-pile group, was more than doubled by
driving. In case (b), the increase in N for a point a little
away from the center of a nine-pile group shows a relatively
smaller increase (average about 75%). Cases (c) and (d)
show that the increase in NV becomes less as the point
considered becomes more distant from the center of the .
group. Another point apparent from Figs. 2.12b and 2.12¢
is that the effect on driving on &V, and hence on soil density,
is greater below the tip than along the shaft.

In order to relate the increase in V to the increase in
¢, Kishida (1967) suggests that ¢) and N may be related
by the following expressmn

8y = V20N +15 2.7)

The differences between the degree of densification
at various points within a group, as shown in Fig. 2.12,
suggest that the load capacity of piles near the center of
the group may be greater than those near the edge of the
group, and that the load dlstrlbutlon even at working
loads, may be nonuniform, with larger loads being carried
by the center piles—as predicted by Kishida’s approach.
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This behavior, which is in contrast to that usually observed
for groups in clay, has been observed in tests carried out by
Hanna (1963) and Beredugo (1966). As suggested by
Kishida (1967), the effects of differing compaction may
also explain the dependence of pile-load distribution on
the order of driving piles in sand.

2.4 EFFECTS OF INSTALLING BORED PILES
2.4.1 Clay Soils

The effects of installing bored piles in clay have been stud-
ied largely in relation to the adhesion between the pile and -
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piles (Philcox, 1962). (Reproduced by permission of the Institution of

the soil. The adhesion has been found to be less than the:
undrained cohesion before installation, mainly 'ecause of
softening of the clay immediately adjacent tc the soil
surface. This softening may arise from three causes:

(a) ‘Absorption of moisture from the wet concrete.

(b) Migration of the water from the body of the clay
toward the less highly-stressed zone around the borehole.
(c) Water poured into the boring to facilitate operation
of the cutting tool.

Factor (c) may be eliminated by good drilling technique,
and (b) can be minimized by carrying out the drifling and
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FIGURE 2.13 Relation between shear strength and water content for London clay (Liguid Limit, 70—85) (Skempton, 1959).

concreting operations as rapidly as possible. Some effects
from factors (a) and (b) are considered to be inevitable by
Skempton (1959), but their seriousness will depend largely
on the technique employed, whether or not casing or
drilling fluid is used to support the walls during construc-
tion, and the time taken for construction of the pile.
Palmer and Holland (1966) contend that softening in over-
consolidated London clay is minimized if drilling and con-
creting is carried out within one or two hours.

Meyerhof and Murdock (1953) measured the water
contents of the clay immediately adjacent to the shaft of
a bored pile in London clay and found an increase of
nearly 4% at the contact surface, although at a distance of
3 in. from the shaft, the water contents had not altered.
This increase should be a maximum value, as the hole was
drilled by hand and took two to three days to complete.
An estimate of the effect of the increase in water content
can be made if information is available on the relation
between shear strength and water content. Such a relation-
ship for London clay has been presented by Skempton
(1959) and is reproduced in Fig. 2.13. These results show
that an increase in water content of only 1% results in a
20% change in the ratio c¢;/c,, of undrained adhesion
¢g to original undrained strength ¢, , while for a 4% increase
in water content, c,/c, is reduced to about 0.3. Values
of ¢g/c, for bored piles are discussed in detail in Section
3.2.

A further effect of installing a bored pile is that the
clay just beneath the pile base may be disturbed and
softened by the action of the boring tools. The effects of
this disturbance may result in increased settlements, espe-
cially for belled piers, in which the base carries a major
proportion of the load; hence, it is important to clean out
the base thoroughly. However, as stated by Skempton
(1959), base disturbance and softening should have a
negligible effect on the ultimate bearing capacity of the
base because of the comparatively large mass of clay
involved when the base penetrates the clay. In contrast,
the shearing process developed in the clay along the pile
shaft is probably restricted to the narrow softened zone.

Construction problems may also ariss with bored
piles, and a number of these have been described by Pandey

" (1967) in relation to the foundations for a heavy industrial

building, including the following:

(a) Caving of the borehole, resulting in necking or misalign-
ment of the pile.

(b) Aggregate separation within the pile.

(¢) Buckling of the pile reinforcement.

Such structural defects may be difficult to detect, since a
load test may not reveal any abnormal behavior, especially
if the load is only taken to the design load.

Barker and Reese (1970) investigated the influence of
drilling fluids on the performance of bored piers. They



concluded that when proper construction techniques are
employed, drilling mud has no detrimental effects on the
load-carrying characteristics of a borgd shaft. The con-
crete properties and the concrete-placement procedure
are the two most critical factors involved in the construc-
tion process. Elimination of the effects of the drilling
mud is accomplished when it is completely displaced by
the concrete, resulting in a vigorous scouring of the bore-
hole wall by the rising concrete. Should drilling mud be
trapped between the concrete and borehole wall, it would
virtually eliminate the development of any shear-load
transfer in the vicinity of the trapped drilling mud. The
use of casing in placing the concrete involves a greater risk
of trapping drilling mud than does the procedure of placing
the concrete under the drilling mud by the use of a tremie
or concrete pump. Barket and Reese suggested that reduc-
tion factors of 0.6 for clay and 0.8 for sand and silts should
be applied to the shear strength in the design of drilled
shafts. However, no reliance should be placed on load
transfer developing within three shaft diameters of the
surface or one diameter of the base.

2.4.2 Sands

There is relatively little quantitative information on the
effects of installing bored piles in sands or cohesionless
soils. Such piles usually require casing or drilling fluid
to support the walls of the hole and sinking of the hole,
and subsequent withdrawal of the casing while concreting
the shaft is likely to disturb and loosen the soil to some
extent. Also, some loosening is liable to occur at the
bottom of the pile as a result of baling or “shelling-out”
the hole, and when this is done under water, the upward
surge on withdrawal of the baler or shell can loosen the
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soil for several feet below and around the pile. Thus, in -
calculating the load capacity of a bored pile in sand,
Tomlinson (1975) suggests that the ultimate value of
angle of shearing resistance ¢ should be used, unless the
pile is formed in a dense gravel when the “surging” effect
may not take place. If heavy compaction can be given to
the concrete at the base of the piles, then the disturbed
and loosenéd soil may be recompacted and the value of
¢ for the dense state used. K However, if the shaft is
obstructed by the reinforcing cage, such compaction may
not be possible.

Tests on bored piles in sand have been reported by
Touma and Reese (1974) and Clemence and Brumund
(1975). Touma and Reese found evidence of the arching
that occurs around the pile with driven piles (see section
3.2) and that results in the development of limiting values
of skin friction and base resistance at depth. It was also
found that the skin resistance, for piles penetrating less
than 25 ft, could be correlated with the integral around the
pile periphery of o, tan ¢' (where oy, = effective over-
burden pressure), using a reduction factor of about 0.7.
There were indications that smaller reduction-factors are
appropriate for greater penetrations. From a large-scale
test on a bored pier in sand bearing on a simulated rock
base, Clemence and Brumund (1975) found that 20 to 30%
of the design axial load in “end-bearing” drilled piers was
carried by the pile skin. A roughly linear increase in skin
friction with depth was measured, except near the lower
part of the pier, where a sharp increase in skin friction was
noted, presumably because of the confining effect of the
rock base. It was found possible to use the results of direct
shear tests for the soil-pier interface materials to predict
the limiting skin friction, except near the tip, where the
calculated skin friction was lower than that measured.



ULTIMATE LOAD CAPACITY OF PILES

3.1 INTRODUCTION

There are two usual approaches to the calculation of.the
ultimate load capacity of piles: the *‘static” approach,
which uses the normal soil-mechanics method to calculate
the load capacity from measured soil properties; and the
“dynamic” approach, which estimates the load capacity
of driven piles from analysis of pile-driving data. The
first approach will be described in detail in this chapter,
and the second in Chapter 4.

In this chapter, a general expression for the ultimate
load capacity of a single pile is given and its application to
piles in"clay and sand is described. Approaches for groups
of piles in clay and sand will then be outlined. Other topics
include the design of piles to rock, the use of in-situ tests
such as the standard penetration test and the static cone
‘to estimate pile-load capacity, the calculation of uplift
resistance of piles and groups, and the load capacity of
bent piles.

3.2 ULTIMATE LOAD CAPACITY OF SINGLE P{LES

3.2.1 General Expression

The net ultimate load capacity, £,, of a. single pile is
generally accepted to be equal to the sum of the ultimate
18 :

shaft and base resistances, less the weight of the pile; that
is,

Py = Py +Ppy -W ,(3-1)*

where

Pg, = ultimate shaft resistance
Py, = ultimate base resistance
W = weight of pile

P, can be evaluated by integration of the pile-soil
shear strength 7, over the surface area of the shaft. 7,
is given by the Coulomb expression

Ty = Cgt 0, tan ¢, (3.2)
where
7, = pile-soil shear strength

¢, = adhesion
on = normal stress between pile and soil
¢, = angle of friction between pile and soil

* It is an implicit assumption of Eq. 3.1 that shaft and base
resistance are not interdependent. This assumption cannot be
strictly correct, but there is little doubt that it is correct enough
for practical purposes for all normal-proportion piles and piers.



o, is in turn frequently refated to the vertical stress oy,
as

on = Ks 0y 3.3)
where

K, = coefficient of lateral pressure

}

Thus,
T, = ¢g + 0,Kg tan ¢, (34)
and
Py = f’(; Crodz
= _fé Clc, + 0y K tan ¢,)dz (3.5)
where

C = pile perimeter
L = length of pile shaft

It is usually accepted that the ultimate resistance Py,
can be evaluated from bearing-capacity theory as

Pyy = Ap(cNe + aypNy +0.5vdN,) (3.6)
where

Ap ) = area of pile base

c = cohesion of soil

ayp = vertical stress in soil at level of pile base

Y = unit weight of soil

d = pile diameter

Ne, Ng, Ny = bearing capacity of factors, which are
primarily functions of the angle of
internal friction ¢ of the soil, the relative
compressibility of the soil and the pile
geometry

Rigorous solutions for the bearing capacity of surface
footings using the methods of classical plasticity are now
well-established (Prandtl, 1923, Sokolovskii, 1965; Cox,
1962; Lundgren and Mortensen, 1953; Davis and Booker,
1971), and the only doubts regarding the practical validity
of these solutions lie in the possible effects of the differ-
ences between the behavior of real soil and that of the ideal
material assumed in the theory. At the present time, there
are few if any classical plasticity solutions that are relevant
to a buried footing, and therefore, for the calculation of
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base resistance of piles, reliance has to be placed on approx-
imate theoretical or semiempirical methods. With regard
to' sands, these methods have been reviewed by Vesic
(1967), who found that the solution of Berezantzev et al.
(1961) generally fitted experimental results best.

From Egs. (3.1), (3.5), and (3.6),

P, = J‘(l)’ Clcy + 0,K tan ¢,) dz
+ Ap(cN; + aypNy +0.5vdN,) - W (3.7)

Equation (3.7) is a general expression for the ultimate
load capacity of a single pile. If the undrained or short-
term ultimate load capacity is to be computed, the soil
parameters ¢, ¢, ¢;, and v should be values appropriate
to undrained conditions, and ¢, and oy, should be the
total stresses. If the long-term ultimate load capacity of
piles in sand is required, the soil parameters should be
drained values, and o), and oy, the effective vertical
stresses. The vertical stresses are usually taken to be the
overburden stresses, and for clays, this is probably true
enough, even close to the piles. However, for sands, there is
now clear evidence implying that the vertical stress near the
pile may be less than the overburden. This matter is dis-
cussed in greater detail in Section 3.2.3.

For steel H-piles, two modes of failure of the shaft
are possible: (a) the development of the limiting pile-
soil shear strength along the entire surface area of the
pile; and (b) the development of the limiting pile-soil
shear strength along the outer parts of the flanges, plus
the development of the full shear strength of the soil along
the plane joining the tips of the flanges—that is, the soil
within the outer boundaries of the pile effectively forms
part of the pile shaft. Therefore, when using Eq. (3.7),
the ultimate skin resistance, Py, , should be taken as the
lesser of the two values.

3.2.2 Piles in Clay

.3.2.2.1 UNDRAINED LOAD CAPACITY

For piles in clay, the undrained load capacity is generally
taken to be the critical value unless the clay is highly
overconsolidated. (Burland, 1973, contends, however,
that an effective stress-drained analysis is more appropriate,
as the rate of pore-pressure dissipation is so rapid that
for normal rates of load application, drained conditions
generally prevail in the soil near the pile shaft.) If the clay
is sat\irated, the ur_xdrained angle of friction ¢, is zero,
and ¢, may also be taken as zero. In addition, Ny = 1
and N, = 0 for ¢ = 0, so that Eq. (3.7) reduces to-



20 ULTIMATE LOAD CAPACITY OF PILES

L §
Py= [ Cegdz + Ap(cuNe + oyp) - W (3.9)
where
¢, = undrained cohesion of soil at level of pile base

¢, = undrained pile-soil adhesion

Further simplification is possible in many cases, since
for .piles without an enlarged base, Apo,p =~ W, in which
case

P, = J“'OJ Cegdz + ApeyN, (3.10)

Undrained Pile-Soil Adhesion c,
The undrained pile-soil adhesion ¢, varies considerably
with many factors, including pile type, soil type, and
method of installation. Ideally, ¢, for a given pile at a
given site should be determined from a pile-loading test,
but since this is not always possible, resort must often be
made to empirical values of ¢,. Many attempts have been
made to correlate ¢, with undrained cohesion c,, notably
Tomlinson (1957, 1970), Peck (1958), Woodward et al.
(1961), Coyle and Reese (1966), Vesic (1967), Morgan
and Poulos (1968), McClelland et al. (1969), McClelland
(1972), and McClelland (1974).

For driven piles, typical relationships between c,/c,
and ¢, based on the summary provided by McClelland

(1974), are shown in Fig. 3.1. It is generally agreed that
for soft clays (¢, < 24 kPa), ca/c, is 1 (or even greater*);
however, for driven piles in stiff clays, a wide scatter of

TABLE 3.1 DESIGN VALUES OF ADHESION FACTORS
FOR PILES DRIVEN INTO STIFF COHESIVE SOJLS4

Penetration
Case Soil Conditions Ratiob caley
I Sands or sandy soils <20 1.25
overlying stiff
cohesive soils >20 See Fig. 3.2
II Soft clays or silts <20 (>8) 0.40
overlying stiff
cohesive soils >20 0.70
111 Stiff cohesive soils <20 (>8) 040
without overlying
strata »>20 See Fig. 3.3

@ After Tomlinson (1970).
Depth of penetration in stiff clay
Pile diameter
NOTE 1. Adhesion factors not applicable to H-section piles.

NOTE 2: Shaft adhesion in overburden soil for cases I and
IT must be calculated separately.

b Penetration ratio =

* For driven piles, the rapid dissipation of excess pore pressures
due to driving may result in a locally overconsolidated condition,
and hence a value of ¢, even greater than ¢, for the unaffected soil.
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FIGURE 3.1 Adhesion factors for driven piles in clay (after McClelland, 1974).
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FIGURE 3.2 Adhesion factors for case I (sands and gravels overlying stiff to very stiff cohesive soils) (Tomlinson, 1970).
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FIGURE 3.3 Adhesion factors for case HI (stiff to very stiff clays without overlying strata) (Tomlinson, 1970).

values of ca/c, is evident. This scatter is often attributed

to the effects of “whip” during driving. A more complete -

investigation of adhesion for driven piles in stiff clay has
been made by Tomlinson (1970), who found that ca/c,
may be markedly influenced by the soil strata overlying

the clay, as well as by the value of ¢,. Tomlinson has sug-

gested the adhesion factors shown in Table 3.1 and Figs.
3.2 and 3.3 for ¢, = 1000 lb/sq ft (48 kPa). The most
notable feature of Tomlinson’s results are the high values
of cafc, for case I, where sand or sandy gravel overlies
the clay, because of the “carrying down” of a skin of the
overlying soil into the clay by the pile. There appears to

be little data on appropriate values of ¢, for driven piles
founded in very sensitive clays, and the extent to which
“set-up” compensates for remoldirg can at present only
be determined by a load test. .

For bored piles, the available data on ca/c, is not a
extensive as for driven piles, and much of the data that is
available is related to London clay. Table 3.2 gives a sum-
mary of adhesion factors, one of which is expressed in
terms of remolded strength, c,, as well as the undisturbed
undrained strength, ¢,. Results obtained by Skempton
(1959) and Meyerhof and Murdock (1953) suggest that
an upper limit of ¢, is 2000 Ib/sq ft (96 kPa).
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TABLE 3.2 ADHESION FACTORS FOR BORED PILES IN CLAY

A somewhat different approach. to the calculation of
“the ultimate shaft capacity Py, has been adopted by Vijay-

Adhesion vergiya and Focht (1972) for steel-pipe piles. From an
Soil Type Factor Value Reference examination of a number of loading tests on such piles,
they concluded that Py, can be expressed as follows:
London clay caley 0.25-0.7  Golder and Leonard
Average (1954) '
&% L0 . = + 3.10q
0.45 Tomlinson (1957) Pou = Mom +20m) As (3.10a)
Skempton (1959)
where
Sensitive clay cqle, 1 Golder (1957)
) 0,, = mean effective vertical ‘stress between ground
Highly expansive  c¢g/cy, 0.5 Mohan and Chandra o
surface and pile tip
clay (1961) . . .
¢y, = average undrained shear strength along pile.
A
0.1 0.2 0.3 0.4 05
0 T T T T
*
L 2 4
e ¢ A
25 ® —
a
[0
50 Af A -
Py [ - Pw/
o. o (g, t2e01A,
L]
75 X X 9 —
o .
.
= 100 va -
E
E od o Location Symbol  Source
5 2
; Detrait 9 ¢ Housel
@ ] [} Morganza *  Mansur
a 125 o Cleveland o Peck -
Drayton X Peck
North Sea Iay Fox
, Lemoore o Woodward
Stanmore ¢ Tomlinson
150 < New Orleans & Blessey —
Venice 8 McCleltand
8] o Alliance < McCleliand
Donaldsonvilie ¥  Darragh
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175 o San Francisco *  Seed _
h : British Columbia o McCammon
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FIGURE 3.4 Frictional capacity coefficient A vs

. pile penetration (Vijayvergiya and Focht, 1972).



Bearing capacity factor, N,
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FIGURE 3.5 Bearing-capacity factors for foundations in clay (¢ =
0) (after Skempton, 1951).

As = pile surface area
A = dimensionless coefficient

In effect, the average pile-soil adhesion factor is then

.

@ -+

o (3.100)
X was found to be a function of pile penetration and is
plotted in Fig. 3.4.

Equation (3.102) has been used extensively to predict
the shaft capacity of heavily loaded pipe-piles for offshore
structures.

Bearing Capacity Factor N,

The value of &V, usually used in design is that proposed by
Skempton (1951) for a circular area, which increases from
6.14 for a surface foundation to a limiting value of 9 for
length = 4 diameters (Fig. 3.5). The latter value of N,
= 9 has been confirmed in tests in London clay (Skempton,
1959) and has been widely accepted in practice. However,
differing values have been found by other investigators;
for example, Sowers {1961) has found 5 < N, < 8 for
mode] tests, and Mohan (1961) has found 5.7 < N, <
8.2 for expansive clays. The variations in the value of
N, may well be associated with the influence of the stress-
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strain behavior of the soil. From an analysis of the expan-
sion of a cavity in a mass, Ladanyi (1963) found that
for insensitive clays, 7.4 < N, < 9.3, depending on the
stress-strain  behavior of the soil. This analysis broadly
confirmed the earlier analysis of Bishop et al. (1945), which
gave the following result for a circular base (as quoted by
Ladanyi).

e dlien(®)
Ne=1+3|1+ (3

3.2.2.2 DRAINED LOAD CAPACITY

311

For piles in stiff, overconsolidated clays, the drained load
capacity, rather than the undrained, may be the critical
value, and Vesic (1967, 1969) and Chandler (1966, 1968)
have advocated an effective-stress approach in such cases.
If the simplifying assumption is made that the drained
pile-soil adhesion ¢} is zero and that the terms in Eq.
(3.7) involving the bearing capacity factors N, and N,
can be ignored, the drained ultimate load capacity from Eq.
(3.7) may be expressed as

L .., , N
P, = _[0 Co,K, tan ¢, dz (3.123
+ ApoypNg - W

where

"

ay effective vertical stress at depth z
ayp = effective vertical stress at level of pile base
ba drained angle of friction between pile and soii

Burland (1973) discusses appropriate values of the
combined parameter § = K, tan ¢, and demonstrates that
a lower limit for this factor for normally consolidated clay
can be given as

g = (l-sing)tan¢ (3.13)

where
@' = effective stress friction angle for the clay

For values of ¢' in the range of 20 to 30 degrees, Eq.
(3.13) shows that § varies only between 0.24 and 0.29.
This range of values is consistent with values of § = K
tan ¢, deduced from measurements of negative friction
on piles in soft clay (see Figs. 11.26 and 11.27). Meyerhof
(1976) also presents data that suggests similar values of
B; Liowever, there is some data to suggest that § decreases
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FIGURE 3.6 Variation of skin resistance with pile length (Vesic,
1967).
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with increasing pile length, and that for long piles (in
excess of about 60 m), § could be aslow as 0.15.

For piles in stiff clays, Burland suggests that taking
Ks; = K, and ¢, = the remolded friction angle, gives an
upper limit to the skin friction for bored piles and a lower
limit for driven piles. Meyerhof (1976) presents data
indicating that K, for driven piles in stiff clay is about
1.5 times K,, while K for bored piles is about half the
value for driven piles. For overconsolidated soils, X,
can be approximately estimated as

K, = (1-sin ¢')\/OCR (3.19)
where :
OCR = overconsolidation ratio

It is inferred that ¢/ can be taken as ¢', the drained fric-
tion angle of the clay.

In the absence of contrary data, o, and oy, may be
taken as the effective vertical overburden stresses. Values
of Ny may be taken to be the same as for piles in sand;
these values are plotted in Fig. 3.11.

3.2.3 Piles in Sand

Conventional methods of calculation of the ultimate load -
\ capacity of piles in sand (Broms, 1966; Nordlund, 1963)

Point resistance {Ib/in.?)
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FIGURE 3.7 Variation of point resistance with pile length (Vesic, 1967).



assume that the vertical stresses o, and v, in Eq. (3.7)
are the effective vertical stresses caused by overburden.
However, extensive research by Vesic (1967) and Kerisel
(1961) has revealed that the unit shaft and base resistances
of a pile do not necessarily increase linearly with depth,
but instead reach almost constant values beyond a certain
depth (Figs. 3.6 and 3.7). These characteristics have been
confirmed by subsequent research (e.g,, BCP Comm.,
1971; Hanna and Tan, 1973). Vesic also found that the
ratio of the limiting unit point and shaft resistances, f3/fs,
of a pile at depth in a homogeneous soil-mass appears to
be independent of pile size, and is a function of relative
density of the sand and method of installation of the
piles. Relationships between f3/f; and angle of internal
friction (¢"), obtained by Vesic, are shown in Fig. 3.8.
The above research indicates that the vertical effective
stress adjacent to the pile is not necessarily equal to the
effective overburden pressure, but reaches a limiting
value at depth. This phenomenon was attributed by Vesic
to arching and is similar to that considered by Terzaghi
(1943) in relation to tunnels. There are however other
hypotheses, such as arching in a horizontal plane, which
might explain the phenomena shown in Figs. 3.6 and 3.7,
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FIGURE 3.8 Variation of fj/f; with ¢ (Vesic, 1967).
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FIGURE 3.9 Simplified distribution of vertical stress adjacent to
pile in sand.

Some design approaches have effectively incorporated
Vesic’s findings by specifying an upper limit to the shaft
and base resistances. Eor example, McClelland et al. (1969)
have suggested, for medium-dense clean sand the following
design parameters: ¢, = 30°; K, = 0.7 (compression loads)
or 0.5 (tension loads), with a maximum value of shaft
resistance f; of 1 ton/ft* (9€ kN/m?); and N, = 41, with
a maximum base resistance fj of 100 ton/ft* (9.6 MN/m?).
However, such approaches take little account of the nature
of the sand and may not accurately reflect the variation
of pile capacity with pile penetration, as the limiting
resistances generally will only become operative at relative-
ly large penetrations (of the order of 30 to 40 m).

In order to develop a method of ultimate load pre-
diction that better represents the physical reality than
the conventional approaches, and yet is not excessively
complicated, an idealized distribution of effective vertical
stress ¢, with depth adjacent to a pile is shown in Fig.
3.9. ¢y, is assumed to be equal to the overburden pressure
to some critical depth z,, beyond which ¢, remains con-
stant. The use of this idealized distribution, although
simplified, leads to the two main characteristics of behavior
observed by Vesic: namely, that the average uitimate skin
resistance and the ultimate base resistance become con-
stant beyond a certain depth of penetration.

If the pile-soil adhesion ¢, and the term ¢/, are taken
as zero in Eq. (3.7), and the term 0.5yd N, is neglected as
being small in relation to the term involving N, , the ulti-
mate load capacity of a single pile in sand may be expressed
as follows:

P, = _féFwCo;,KS tan ¢p.dz + ApoypN, - W (3.15)

where
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o, = effective vertical stress along shaft
= effective overburden stress for z <z, or limit-
ing value g, forz >z,
oy, = effective vertical stress at level of pile base
F., = correction factor for tapered pile (= 1 for

uniform diameter pile)

On the basis of the test results of Vesic (1967), values
of Ky tan ¢4 and the dimensionless critical depth z./d
have been evaluated. Vesic’s results are presented in terms
of the relative density D, of the sand, but the results may
also be expressed in terms of the angle of internal friction
¢', by using a relationship such as that suggested by Meyer-
hof (1956):

¢ =28 + 15D, (3.16)
Relationships between K tan ¢, and ¢', and Z¢/q and
¢', are shown in Fig. 3.10. In a layered-soil profile, the
critical depth z, refers to the position of the pile embedded
-in the sand. It should be emphasized that these relation-
ships may be subject to amendment in the light of further
test results. For example, at present, the dependence of
Kgtan ¢, on the pile material is not defined. Vesic’s tests
were carried out on steel tube piles, but the values of K
tan ¢, derived from these tests appear to be applicable to
other pile materials. However, in the light of future test

results, it may be possible to derive different relationships
for different pile materials.

For bored or jacked piles, the values of K tan ¢, in
Fig. 3.10b are considered to be far too large, and it is sug-
gested that values derived from the data of Meyerhof
(1976) are more appropriate for design. These values are
shown in Fig. 3.10c, and have been obtained by assuming
¢, = 0.75¢'. The values for bored piles are reasonably
consistent with, although more conservative than, those
recommended by Reese, Touma, and O’Neill (1976).
Also shown are values of K tan ¢, for driven piles, derived
from Meyerhof’s data; these latter values are considerably
smaller (typically about one half) of the values given in
Fig. 3.10b. Some of this difference may lie in the method
of interpretation of the data of Vesic and others by Meyer-
hof, which leads to smaller values of K tan ¢, associated
with larger values of z,./d.

The bearing capacity factor V, is piotted against ¢
in Fig. 3.11, these values being based on those derived by
Berezantzev et al. (1961). Vesic (1267) has pointed out
that there is a great variation in theoretical values of N
derived by different investigators, but the values of
Berezantzev et al. appear to fit the available test data best.

The solutions given by Berezantzev et al. indicate only
a small effect of relative embedment depth L/d, and the
curve in Fig. 3.11 represents an average of this small range.
The curves given by Meyerhof (1976) show a larger effect

3
' For driven piles @ =74 @,+10 (Fig.3.10qa,Fig.3.10b)

For bored piles, @ =@ -3 (Fig.3.10a),

@-9; (Fig 3.10c)

where @,= angle of internal friction prior to
installation of pile
(a)z./dvs @ (b) Kgtan @y vs @ (c) Values of Kgtan @ Based
(Driven Piles) on Meyerhof (1976)
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FIGURE 3.10 Values of z./d and K tan ¢}, for piles in sand.
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FIGURE 3.11 Relationship between Ng and ¢ (after Berezantzey
et al., 1961).

of L/d; however, the curve of Fig. 3.11 also lies near the
middle of Meyerhof’s range.

Values of the taper correction factor ¥, are plotted
against ¢ in Fig. 3.12 and have been derived from the re-
sults of the analysis developed by Nordlund (1963).

In applying the results in Fig. 3.10 to Fig. 3.12, it is
suggested that the following values of ¢ be used to allow
for the effects of pile installation.

5 T T T
e
Fw —
1 ! ! !
0 05 1.0 15 20

Pile taper angle w°®

FIGURE 3.12 Pile taper factor Fw'(after Nordlund, 1963).
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{a) Driven Piles

(2) For the determination of &V,, the values of ¢ beneath
the pile top should be taken as the final value subsequent to
driving, as given by Kishida (1967):

¢t + 40

¢ =+ (3.17)

where

o1 = angle of internal friction prior to installation of
the pile

(b) For the determination of Ky tan ¢, and z./d, the
value of ¢ along the pile shaft should be taken as the mean
of the values prior to, and subsequent to, driving; that is,

¢ =731¢’1 + 10 (3.18)

(b) Bored Piles

(a) For the determination of Ny and z./d, it is suggested
that the value of ¢ be taken as ¢ - 3, to allow for the
possible loosening effect of installation (see Section 2.4).
(b) For K, tan ¢, Fig. 3.10c¢ should be used, taking the
value of ¢, directly.

The above suggestions may also require modification
in the light of future investigations. Furthermore, if jetting
is used in conjunction with driving, the shaft resistance may
decrease dramatically and be even less than the value for
a corresponding bored pile.

McClelland (1974) has reported tests in whiclt the use
of jetting with external return flow followed by driving
reduced the ultimate shaft capacity by about 50%, while
installation by jetting alone reduced the ultimate shaft
capacity to only about 10% of the value for a pile installed
by driving only.

Another case in which caution should be exercised is
when piles are to be installed in calcareous sands. Such
sands may show friction angles of 35° or more, but have
been found to provide vastly inferior support for driven
piles than normal silica sands. In such cases, McClelland
(1974) suggests limiting the skin resistance to 0.2 tons/ft?
(19 kN/m?) and base resistance to 50 tons/ft? (4800
kN/m?). In such circumstances, drilled and grouted piles
may provide a more satisfactory solution than wholly
driven piles.

In many practical cases, only standard penetration-
test data may be available. The value of ¢ may be esti-
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3
For driven piles,d = /A(Z);HO

where,@%:cngle of internal friction
prior to instaliation of pile
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FIGURE 3.13 Dimensionless ultimate shaft-load capacity for pile
in uniform sand.

mated from a correlation such as that given by Peck,
Hansen, and Thorburn (1974), or by the following em-
pirical relationship suggested by Kishida (1967):

¢y = 20N + 15° (3.19)

where
N = standard penetration number

A more detailed discussion of the relationship between
¢ and N, and also ¢ and relative density D,, is given
by de Mello (1971).

For the case of a driven pile in a uniform layer of
sand, dimensionless values of the ultimate shaft load and
ultimate base load may be derived using Eq. (3.15) and
Figs. 3.10, 3.11, and 3.12. In Fig. 3.13, the dimensionless
ultimate shaft load Py, [yd® is plotted against ¢ for various
values of L/d; ¥ is the effective unit weight of the soil
above the critical depth z.. The marked increase in ultimate
shaft load with increasing L/d and ¢ is clearly shown. The
dimensionless ultimate base load Pp,[ydA4 is plotted

P4+ 40
>
For bored piles, © =@ -3

For driven piles, @ =

where @, =angle of internal friction
prior to installation of pile
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FIGURE 3.14 Dimensionless ultimate baseload capacity for pile
in uniform sand.

against ¢ in Fig. 3.14. The value of L/d does not generally
have a marked effect on the ultimate base load unless
¢ is relatively large, that is, for dense sands.

The use of a high value of ¢ for very dense sands (say,
¢ > 40°) simultaneously for the shaft and the base, should
also be treated with caution, since the full base resistance
may well only be mobilized after a movement sufficient
for the operative value of ¢ along the shaft to be signifi-
cantly less than the peak.

If the pile is founded in a relatively thin, firm stratum
underlain by a weaker layer, the ultimate base load may
be governed by the resistance of the pile to punching into
the weaker soll. Meyerhof (1976) shows that if the weaker
layer is situated less than about 10 base diameters below
the base, a reduction in base capacity can be expected;
he suggests that in such cases, the ultimate point resistance
can be taken to decrease linearly from the value at 10d,
above the weaker layer to the value at the surface of the
weaker layer.

The suggested approach of ultimate load calculation
has been applied to 43 reported load-tests on driven piles.
The details of the parameters chosen for the calculations
are given in Table 3.3, and the comparison between cal-
culated and measured ultimate loads is shown in Fig. 3.15,
The mean ratio of calculated to observed ultimate loads is
0.98, with a standard deviation of 0.21. It should be
pointed out that the ultimate load of all piles considered
in the comparison is less than 300 tons. The use of this
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approach for piles of much larger capacity—those used
for offshore structures for example—should be treated
with caution. Indeed, for relatively short, larger-diameter
piles, the average values of shaft resistance given by this
approach are considerably larger than those normally
adopted for design purposes (for example, the values sug-
gested by McClelland et al., 1969). These high values
arise because of the combination of high values of K
tan ¢, (Fig. 3.10b) with a relatively large critical depth.
In such cases, a more conservative estimate of shaft resis-
tance may be desirable for design, based on the values of
Ks tan ¢, derived from Meyerhof (1976) and shown in
Fig. 3.10c.

To illustrate the application of the suggested method
of calculation, the following example details calculations
for two of the pile tests reported by Nordlund (1963).

Illustrative Example

The piles considered are Piles B and A from the Power
Plant Site, Area I, Helena, Ark. Pile B was a closed-end
steel-pipe pile, 24.4 m long and 0.32 m in diameter, driven
into fine sand grading to coarse and having an average
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TABLE 3.3 SUMMARY OF COMPARISONS
BETWEEN CALCULATED AND OBSERVED LOAD
CAPACITY OF PILES IN-SAND

Reference

Case

Remarks

Nordlund (1963)

Power Plant
Site-Areas

1 &11
Mojave River
Bridge

Port Mann

Buffalo Bayou

Interchange

O Street
Viaduct

Values of ¢} suggested
by Nordlund used

Upper 14 ft of sand
assumed to have lower
¢ (38%) than lower
depths (¢ = 40°)
because of jetting
during installation
Values of ¢} suggested
by Nordlund used
Values of ¢} suggested
by Nordlund used
Vertical stress due to
soil above excavation
level ignored

As above; H-pile treated
as a square pile

Vesic (1967)

Piles H11-
H16 & H2

From reported M values,
following values of ¢
chosen: 0-12 ft, ¢} =
33°,12-30 ft, ¢ = 38°;
30+ ft, ¢, = 42°

Desai (1973)

Piles 2,3,10

¢, assumed to be 33°,
constant with depth

Tavenas (1971)

Piles H2-6,
J2-6

¢, assumed to be 33°,
constant with depth

standard penetration value, V, of about 16. The water table
was 3.4 m below the surface. On the basis of the available
data, the following values were adopted:

(a) Bulk unit weight above water table = 17.3 kN/m>.
(b) Submerged unit weight below water table = -7.8

kN/m?

(c) Angle of internal friction angle prior to installation:

nono

RSN = SRS

25°(0-2.4m)
32°(2.4-18.3m)
30° (18.3-20.8 m)
33° (> 208 m)

Considering first the ultimate skin resistance, the
values of ¢ given by Eq. (3.18) are as follows:

¢
¢

28.75° (0—2.4 m)
34° (2.4-18.3 m)
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¢ = 325°(18.3-20.8m)
) 34.75° (> 20.8 m)

From Fig. 3.10b, the values of Ktan¢, are 1.00 (0-2.4
m), 1.30 (2.4-18.3 m), 1.18 (18.3-20.8 m), 1.35 (20.8 m).
If it is assumed that the critical depth is less than 2.4 m
below the surface, then for ¢ = 28.75°, z,/d = 5.0, from
Fig. 3.10a; that is, z, = 5.0 X 0.32 = 1.56 m. Thus, the
assumption is justified.

At the critical depth, the effective overburden stress
is

Oy = 1.56 X 17.3 = 26.99 kN/m?

Because the pile has uniform diameter, £, = 1.

For the ultimate base resistance, the value of ¢ given
by Egq. (3.17) is 36.5°. From Fig. 3.11, the value of N,
is 98.

Substituting into Eq. (3.13),

. +26.
Poe oax 0.32{&9-——67-19) X 1.56+2699 X

(2.4»].56)] X 1.00 +26.99 X (18.3 - 2.4)
X 1.30 +26.99 X (20.8 - 18.3)
X 1.18 +26.99 X (24.4 - 20.8) X 1.35}

32°

+26.99 X WX%'— X 98

= 816 + 213
= 1029 kN (115.6 1)

This compares with the measured value of 1112 kN (125 t).

Pile A was a Raymond Standard pile, 10 m long, with
a head diameter of 0.55 m and a tip diameter of 0.20 m.
The pile taper w is 1°. From Fig. 3.12, for w = 1%, F,
=335(0-24m) and F, = 4.1 (2.4—18.3 m). The values
of A tanzzﬁgi are as for pile B. Assuming again that the
critical depth is above 2.4 m, z./d = 5.0 as before, and
taking an average value of d of 0.51,z, = 2.55 m, that is,
greater than 2.4 m. However, the difference .is negligible
and hence z, will be taken as 2.55 m. At this level,

Oue = 2.55%173 = 4412 kN/m?
At 2.4 m,
g, = 24X173 = 41.52 kN/m?

Since the pile tip is founded in the second stratum,
¢ from Bq. (3.17) is 36° and the corresponding value of
N, is 88.

Substituting into Eq. (3.15) and using, for simplicity,
the mean diameter of the pile in the upper 2.4 m and tiie
lower 7.6 m,

0+41.52
b, - (2245

>X7r)< 0.51X335X1.00X 2.4

[(41 .52+44.12)

> X 0.15+44.12X (10-2.55)]

2
X7X033X4.1X130+44,12X X 020

X 88
= 2243 kN {252.2¢1)

The measured ultimate load for this pile was 2400 kN
(270 1).

3.3 PILE GROUPS

In examining the behavior of pile groups, it is necessary
to distinguish between two types of group:

(a) A free-standing group, in which the pile cap is not
in contact with the underlying soil.

(b) A “piled foundation,” in which the pile cap is in con-
tact with the underlying soil.

For both types, it is customary to relate the ultimate load
capacity of the group to the load capacity of a single pile -
through an efficiency factor n, where

_ ultimate load capacity of group
™ Sim of ultimate load capacities (3'2(.))

of individual piles

3.3.1 Pile Groups in Clay

3.3.1.1 FREE-STANDING GROUPS

For free-standing groups of friction or floating piles in clay,
the efficiency is unity at relatively large spacings, but
decreases as the spacing decreases. For point-bearing piles,
the efficiency is usually considered to be unity for all
spacings—that is, grouping has no effect on load capacity,
although in theory the efficiency could be greater than
unity for closely-spaced piles that are point-bearing, for
example, in dense gravel. For piles that derive their load
capacity from both side-adhesion and end-bearing, Chellis
(1962) recommends that the group effect be taken into
consideration for the side-adhesion component only.

Several empirical efficiency formulas have been used to
try and relate group efficiency to pile spacings, among
which are the following:



(2) Converse-Labarre formula,

n=1-¢ [(n-l)m+(m-l)n] /‘90

mn (3.21)

where

t

m = number of rows

number of piles in a row

arctan d/s, in degrees

pile diameter

center-to-center spacing of piles

I

L Qv
1]

(b) Feld’s rule, which reduces the calculated load capacity
of each pile in a group by 1/16 for each adjacent pile, that
is, no account is taken of the pile spacing.

(c) A rule of uncertain origin, in which the calculated load
capacity of each pile is reduced by a proportion 7 for each
adjacent pile where

L
I=gds (3.22)

A comparison made by Chellis (1962), between these
and other empirical formulas shows a considerable variation
in values of n for a given group, and since there appears to
be little field evidence to support the consistent use of aiy
empirical formula, an alternative means of estimating
group efficiency is desirable. :

One of the most widely used means of estimating
group-load capacity is that given by Terzaghi and Peck
(1948), whereby the group capacity is the lesser of (a) The
sum of the ultimate capacities of the individual piles in the
group; or (b) the bearing capacity for block failure of the
group, that is, for a rectangular block B, X L,,

o
[

= BL,cNy + 2B, + L) LT (3.23)

[}
It

undrained cohesion at base of group

L = length of piles

= bearing capacity factor corresponding to depth
- L (see Fig. 3.5)

average cohesion between surface and depth L.

=
I

of
]

Model tests on free-standing groups carried out by Whitaker
(1957) confirmed the existence of the above two types of
failure. For a given length and number of piles in a group,
there was a critical value of spacing at which the mechanism
of failure changed from block failure to individual pile
failure. For spacings closer than the critical value, failure
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was accompanied by the formation of vertical slip planes
joining the perimeter piles, the block of clay enclosed by
the slip planes sinking with the pile relative to the general
surface of the clay. For wider spacings, the piles penetrated
individually into the clay.The critical spacing was found to
increase as the number of piles in the group increased.

Although Whitaker’s tests confirmed the existence of
the above two types of failure, the transition between the
ultimate group capacity as given by individual pile failure
and that given by block failure was not as abrupt as the
Terzaghi and Peck approach suggests. In order to obtain
a more realistic estimate of the ultimate load capacity of
a group, the following empirical relationship is suggested:

Clay
¢, = 50 kPa L=20m d=03m

T I
Limit for block failure
30 I’_ I
— - Isolated / 1
é single pile /
-~ faiture /
7
& 20} / 8
a
g /
S /
: T ) .
5
10 I~ .
0 L ]
0 5 10 15

V/No. of pites

FIGURE 3.16 Example of relationship between number of piles
and ultimate load capacity of group.



32 ULTIMATE LOAD CAPACITY OF PILES

1 i {
L S C. W )
Pu2 ”21)% PBZ (3 24)
where
P, = uliimate load capacity of group
P, = ultimate load capacity of single pile
n = number of piles in group
Pp = ultimate load capacity of block (Eq. 3.23)-
Eq. (3.24) may be reexpressed as follows:
L, n’P}
5= Lt 3.25
n Pg~ ( )
where

n = group efficiency

Figure 3.16 illustrates an example of the relationship
between the ultimate load capacity of a group of specified
dimensions and the number of piles in the group, cal-
culated using Eq. (3.24). This figure shows the transition
between single-pile failure and block failure as the number
. of piles increases. In the design of such a group, it is

1.0

obvious that virtually no advantage is gained by using more
piles than is required to cause failure of the group as a
block; in the example in Fig. 3.16, increasing the number of
piles beyond about 80 produces very little increase in ulti-
mate load capacity. ’

A considerable number of model tests have been carried
out to determine group efficiency factors in homogeneous
clay—for example, Whitaker (1957), Saffery and Tate
{1961), and Sowers et al. (1961). A summary of some of
these tests has been presented by de Mello (1969) and is
reproduced in Fig. 3.17. From thls summary, it may be
seen that higher effi¢iency factors occur for

(2) Piles having smaller length-to-diameter ratios.
(b) Larger spacings.
(c¢) Smaller numbers of piles in the group.

For spacings commonly used in practice (2.5d to 4d),
n is on the order of 0.7 to 0.85, and little increase in 7
occurs beyond these spacings, except for large groups of
relatively long i les.

Figures 3.18 and 3.19 show comparisons between the
measured efficiency-spacing relationships from the tests
~f Whitaker (1957) and those calculated from Eq. (3.25).
The agreement is generally quite good and the method of

32 x 12 d(ST)

2 x 12 d{SF)

32 x 30 d(ST)

52 x 24 d (W)

™ 97 x 24 d(W)

d = diameter

W = Whitaker (1957)
ST = Saffery—Tate {1961)
SF = Sowers—Fausold (1961)

F
g 06 /Lw{ _
E / / 7<77x24d\W)
£ R
kF/
/
0.4 £
0.2
1 -2

3 4

Spacing/diameter

FIGURE 3.17 Relationships far freestanding groups of 2? to 9’§1piles of lengths 124 to 48d, from model tests (after de Mello, 1969).
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FIGURE 3.178 Experimental and calculated group efficiency, effect of group size.

calculation appears to predict with reasonable accuracy
the effects of group size, pile spacing, and pile length.

It has often been assumed that all piles in a group are
equally loaded. However, if the group supports a rigid
cap, the load distribution within the group is generally
not uniform, the outer piles tending to be more heavily-
loaded than the piles near the center. Whitaker (1957)

1.0 T T 1.0 T T
_10/’f o

] | | i 1 |
0.5 0.5
0 2 4 6 8 0 2 4 6 8
s S
(a) d (b) d
L_ L
i 12 d- 24
10 T ] 10 I B
| Q, o ] | —
- — - fe) —
n © n (o}
o / _ - R
— -— }_‘ —
05 | | 0.5 ] | ]
0 2 4 6 8 0 2 4 6 8
s 5
d d
(c) L (d) L
i 36 i 48
© Measured (Whitaker, 1957)

— Calculated

FIGURE 3.19 Effect of pile length on group efficiency.

has measured the load carried by the piles in model free-
standing groups in clay by introducing a small load gauge
at the head of each pile. The results for a 3% group of piles
at three different spacings are shown in Fig. 3.20, in which
the average percentage of load taken by each pile is plotted
against the group load as a percentage of the group load at
failure. At spacings of 2d and 4d, the corner piles take the
greatest load (about 13 to 25% more than the average
load) while the center pile takes the least (about 18 to 35%
less than the average). At a spacing of 84, virtually no
group action was observed and the load distribution was
uniform. The load distribution for a 5% group, at a spacing
of 2d, is shown in Fig. 3.21. The corner piles reached their
maximum load at about 80% of the ultimate group load,
and carried a constant load thereafter. At failure, the corner
piles carried about 28% more than the average load, while
the center and lightest-loaded pile carried about 44%
less. Therefore, there appears to be a tendency for the load
distribution to become increasingly nonuniform as the
number of piles in the group increases. A theoretical
method for calculating the load distribution prior to
ultimate failure is described in Chapter 6, and this method
also confirms the trends displayed by Whitaker’s tests.

3.3.1.2 PILED FOUNDATIONS

The ultimate load capacity of a piled foundation (i.e., a pile
group having a cap cast on or beneath the surface of the
soil) may be taken as the lesser of the following two values:

(a) The ultimate load capacity of a block containing the
piles (Eq. 3.23) plus the. ultimate load capacity -of that
portion of the cap outside the perimeter of the block.
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FIGURE 3.21 Load distribution in 52 pile group at 2d spacing

(Whitaker, 1970).

at failure

=—— = ——  Average of piles A

—— ——— Average of piles B

Centre pile

(b) The sum of the-ultimate load capacity of cap and the
piles, acting individually, that is, for group of n piles of
diameter d and length L, supported by a rectangular cap of
dimensions B, X L,

Py = nfGgAs t Ap cp Ne) + Necee -
(BoLc - nndl4)

(3.26)

where
¢; = average adhesion along pile
¢p = undrained cohesion at level cy pile tip
¢. = undrained cohesion beneath pile cap
N, = bearing capacity factor for pile (see Fig. 3.5)

N¢. = bearing capacity factor for rectangular cap B, X

Le(Le>Be)=5.14(1+0.2B./L,) (Skempton
1951)

The first value will apply for close pile-spacings while the
second will apply at wider spacings when individual action
can occur.

Whitaker (1960) carried out tests on model piled foun-
dations in clay and found that at close spacings, block fail-
ure occurred, and that when the cap did not extend beyond
the perimeter of the group, it added nothing to the efficien-
cy of the group. At greater spacings, the efficiency-versus-
spacing relationship was found to be an extension of the
relationship for block failure, with the efficiency exceeding
unity because of the effect of the cap. Good agreement was
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FIGURE 3.22 Efficiency of piled groups (Whitaker, 1970).

obtained between the model test results and the predicted
efficiency from the block failure equation (Fig. 3.22).

"The load-settlement behavior of piled foundations
containing a relatively small number of piles to reduce
settlement is considered in detail in Chapter 10.

3.3.1.3 ECCENTRIC LOADING

Model tests on groups with small eccentricities of load have
been carried out by Saffery and Tate (1961), who found
that for eccentricities up to two thirds of the spacing,
the group efficiency is not noticeably affected. Meyerhof
(1963) also reported that model tests on piled foundations
showed that the load eccentricity had no effect on load
capacity for eccentricities up to half the group width.
This behavior is explained by the fact that the reduced
base resistance is offset by mobilization of lateral resis-
tance. The group capacity can therefore be calculated as
for symmetrical veriical loading, except that for groups
whose width is on the same order as the pile length, Meyer-
hof (1963) suggests that the shaft resistance can be ignored
and the base resistance calculated in a fashion similar to
eccentrically-loaded spread foundations, that is, using a
reduced effective base area.
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3.3.2 Pile Groups in Sand

3.3.2.1 FREESTANDING GROUPS

There is less information on pile groups in sand than on
groups in clay, but it has been fairly well estabiished that
group efficiencies in sand may- often be greater than |I.
A summary of some of the available data on larger piles
is given in Table 3 .4.

A summary of some tests on model piles, presented
by Lo (1967), is reproduced in Fig. 3.23. The data shown
in this figure are reasonably consistent with the data in
Table 3.4. Results of tests on somewhat larger model
piles, in groups of four and nine, carried out by Vesic
(1969), are shown in Fig. 3.24. Vesic measured the point
load separately from the shaft resistance, and in the light
of his measureménts, he concluded that when the efficiency
of closely spaced piles was greater than unity, this increase
was in the shaft rather than the point resistance.

The broad conclusion to be drawn from the above
data is that unless the sand is very dense or the piles are
Widely spaced, the overall efficiency is likely to be greater
than 1.-The maximum efficiency is reached at a spacing of
2 to 3 diameters and generally rarges between 1.3 and 2.

3.3.2.2 INFLUENCE OF PILE CAPS

As can be seen in Fig. 3.24, the pile cap can contribute
significantly to the load capacity of the group, particularly
in the case of the smaller four-pile groups. However, it
seems likely that mobilization of the bearing capacity of
the full area of the cap requires considerably greater move-
ment than that required to micbilize the capacity of the
piles themselves. This is the implication of tests by Vesic,
and for practical purposes, the contribution of the cap
can be taken to be the bearing capacity of a strip footing
of half-width equal to the distance from the edge of the
cap to tlie outside of the pile.

3.3.2.3 ECCENTRIC LOADING

The influence of eccentric loading on the load capacity
of pile groups in sand has been studied by Kishida and
Meyerhof (1965) in a series of model tests. These tests
showed that small eccentricities of load have no signif-
icant influence on the bearing capacity of freestanding
groups and piled groups because the applied moment is
resisted mainly by the earth pressure moment on the
sides of the group. At larger eccentricities, the load capa-
city decreases rapidly because of smaller point resistance
of the group by a reduction of the effective base area.

In estimating load capacity, Kishida and Jeyerhof
suggest that the moment caused by a load V at eccentricity
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FIGURE 3.25 Bearing capacity of model pile groups under eccentric load in sand: (a) freestanding pile grbups; (b) piled foundations
(Kishida and Meyerhof, 1965). (Copyright Canada, 1965 by University of Toronto Press.)

e is balanced by the moment caused by lateral forces on
the sides cf the group until it reaches the maximum value
-corresponding to the coefficient of passive earth pressure,
Within this limit, the eccentricity of load is assumed to
have no effect on the point resistance. When the moment
Ve is greater than can be resisted by side pressure on the
outer piles, the extra is considered to be taken by an
eccentric base resistance for the case of block failure;
or, for individual pile failure, by the development of uplift
resistance of some piles. The total bearing capacity then
decreases with further increase in eccentricity.

Comparisons between the theoretical and measured
effect of load eccentricity on load capacity are shown in
Fig. 3.25 for the tests carried out by Kishida and Meyerhof
(1965), and there is fair agreement for tests in both loose
and dense sands.

3.3.2.4 LOAD DISTRIBUTION IN GROUP

The most detailed data available on load distribution
within groups in sand is that reported by Vesic (1969),
who made axial load measurements in individual piles
during group placement, as well as during loading tests.
For the four-pile groups tested, the measured load distri-
bution was slmost uniform, as expected; the maximum
deviation from the average was 3 to 7%. For the nine-
pile groups, significant nonuniformity of load was mea-
sured. The center pile carried about 36% more load than
the average, while the corner piles carried about 12%
less and the edge piles 3% more. Other tests on similar
groups showed a similar trend, with the center piles carry-

ing between 20% and 50% more than the average. Thesc
results are in contrast to the load distribution in groups in
clay, where the center pile carries the least load and the
corner piles the most. ;

The influence of the order of driving piles in a group
on the load distribution has been studied by Beredugo
(1966) and Kishida (1967). They found that when the
load on the group was relatively small, piles that had been
installed earlier carried less load than those that have been
installed later; but when the failure load of the group was
approached, the influence of driving order diminished,
and the position of the pile in the group became the domi-
nant factor. At this stage, the piles near the center took
the most load and the corner piles the least, as in Vesic’s
experiments.

Beredugo also investigated the effects of repeated
loading and found that there was a progressive reduction

of the influence of driving order, and that for the third

and subsequent loadings, the pile position was the domi-
nant factor at all loads up to the ultimate of the group.

3.4 PILES TO ROCK

3.4.1 Point-Bearing Capacity

There are a number of possibl approaches to the estima-
tion of point-bearing capacity. of piles to rock, including:



(a) The use of bearing-capacity theories to calculate the
ultimate point-bearing capacity ps, .

(b) The use of empirical data to determine the allowable
point pressure pp,. ‘

(c) The use of in-situ tests to estimate either ultimate
point capacity pp,, or allowable point pressure pp, .

Bearing-Capacity Theories
Pells (1977) has classified theoretical approaches into three
categories:

1. Methods that essentially assumie rock failure to be
“plastic” and either use soil mechanics-type bearing-
capacity analyses or modifications thereof to account for
the curved nature of the peak faiiure envelope of rock.

2. Methods that idealize the zones of failure beneath a
footing in a form that allows either the brittleness-strength
ratio or the brittlenesss-modular ratio to be taken into
account.

3. Methods based on limiting the maximum stress beneath
the loaded area to a value less than required to initiate
fracture. These methods assume essentially tifat once the
maximum strength is exceeded at any point in a brittle
material. total collapse occurs.

For a typical sandstone having an effective friction

angle ¢’ in excess of 45°, effective cohesion ¢’ of about .

one-tenth of the uniaxial strength, g, , and a ratio of
Young’s modulus-to-uniaxial strength of about 200, Pells
shows that the various theories predict an ultimate point-
bearing capacity ranging between 4.9q,,, (incipient failure
theory based on the modified Griffith theory) to 56q,;,
(classical plasticity theory). Various model tests on intact
rock carried out by Pells and others indicate ultimate
capacities ranging between 4 and 11 times qu.,. Pells

TABLE 3.5 TYPICAL PROPERTIES OF ROCK (PECK, 1969)
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draws attention to the fact that the load-penetration curve
for rocks of medium strength or less (< 100 MPa) has a
large “plastic” component, despite the brittle nature of
the rock. The curve divides into two portions, with what
appears to be a change of slope associated with the forma-
tion of a crushed zone beneath the footing. The displace-
ments required to mobilize the full bearing capacity of
such rocks are very large, and it seems that a factor of
safety of 3 to 4 is required to limit the displacements to less
than 2% of the footing diameter. Very brittle rocks (g,
> 150 MPa), do not exhibit this “plastic’’ load-penetration
curve.

The presence of jointing in the rock will tend to reduce
the ultimate bearing capacity. The presence of closely-
spaced continuous tight joints may not reduce the bearing
capacity much below that for the intact rock material. If
thege are open vertical joints with a spacing less than tne
width or diameter of the pile point, the point is essentially
supported by unconfined rock columns and the bearing
capacity may be expected to be stightly less than the aver-
age uniaxial strength of the rock. If the joint spacing is
much wider than the footing width, Meyerhof (1953) sug-
gests that the crushed zone beneath the footing splits the
block of rock formed by the joints. Sowers and Sowers
(1970) present a theory for this case that gensrally indi-
cates a bearing capacity slightly greater than the uniaxial
strength. Thus, in summary, theoretical considerations sug-
gest that the ultimate bearing capacity is unlikely to be re-
duced much below the uniaxial strengtn of the intact rock,
even if open vertical joints are present.

Use of Empirical Data

Allowable bearing pressures on rock have often been
specified by various building codes and authorities, either
based on a description of the rock, or in terms of the

[
.

I 0 ey

Rock Compressive Shear E(1U°ps1) Poisson’s Ratio

Type Strength q,,,, Strength

’ (psi) (psi) Field Lab. Field Lab.
Basalt 28,000-67,000 0.8-3.5 3.6- 5.9 0.30-0.32 0.26-0.28
Granite 10,000-38,700 20004260 5.6~11.6 5.4-11.8 (.25-0.27 0.17-0.29
Quartzite 16,000-44,800 3.1- 8.5 3.6-12.5 0.25-0.30 0.07-0.17
Limestone 2450-28,400 1200-2980 3.3-11.9 0.24-0.27
Marble 7900-27,000 1280-6530

Sandstore 4900-20,000 284-2990 1.3- 5.6 1.0- 9.0 0.28-0.30 0.07-0.17
Slate 6950-31,000 1990-3550 1.0- 25 5.3- 84 0.30-0.32 0.24-0.25
Shale 5006500 0.26-0.27 0.20-0.25
Concrete 400-1000 2.5- 4.0 25-4.0 0.15 0.15

2000-5000
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FIGURE 3.26 Achieved end-bearing pressures in field tests on piles to rock (Thorne, 1977).

uniaxial compressive strength g,,. Some typical values
of qum and other rock properties are summarized in
Table 3.5. Typically, allowable pressures, bba, ranging
between 0.2 and 0.5 times g,,, have been stipulated. An
example of stipulated bearing pressures related to rock
types is provide by Ordinance No. 70 in New South Wales,
Australia, in which values of pp, range between 430 kN/m?
for soft shale to 3210 kN/m? for hard sandstone free from
defects to a depth of 900 mm.

Thorne (1977) has collected data on recorded values
of bearing capacity, as shown in Fig. 3.26. These values
vary from 0.3g,,, to about 4q,,,, and most cases do not
involve failure. The few recorded failures are in swelling
shales and in fractured rocks, it is clear from these results
that the fracture spacing has an effect on the bearing capa-
city, - although the data is insufficient to quantify this
effect.

On the basis of the available data, an allowable point-
bearing pressure on the order of 0.3g,,, would appear to
be quite conservative for all but swelling shales. Reference
to the theoretical solutions shows that such values generally
imply a factor of safety of at least 3 in fractured or closely-
jointed rocks and 12 or more for intact rocks.

The Use of In-Situ Tests
A number of methods of in-situ testing of rock have been
deweloped in recent years. Plate-load tests have frequently

been used but may be expensive if the rock is strong and
large loads are required. Freeman et al. {1972) have
described the use of the Ménard Pressuremeter to estimate

" the allowable point-bearing capacity, ppq, of piles in rock,

and suggest that pp, may be taken as the value where the
pressure-versus-volume relationship starts to become
nonlinear. Satisfactory designs of caissons in sound shale
bedrock using the above approach have been reported by

. Freeman et al., and design pressures considerably larger

than those specified by empirical relationships or building
codes have been used.

3.4.2 Pile-Rock Adhesion

When piles are socketed or driven into rock, some load
transfer to the embedded portion of the shaft will usually
occur. Theoretical solutions for load transfer are discussed
in Section 5.3, and also by Ladanyi (1977). The distribu-
tion of applied load between side-adhesion and end-bearing
at working loads, as given by theory, has been supported
by in-situ measurements at a number of sites (Pells, 1977).
There is not a great amount of data on ultimate values of
pile-rock adhesion, but Thorne (1977) has summarized
some of the available data, and this summary is reproduced
in Fig. 3.27. These results show that a number of failures
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FIGURE 3.27 Adhesion attained in field tests on piles in rock (Thorne, 1977).

have occurred, even in relatively unjointed rocks, at values
on the order of 0.1q,,,. It should be noted that in many
instances, concrete strength will be the limiting factor,
and in the few instances in which information is available
on concrete strengths, failure has occurred at an average
shear-stress of between 0.05 to 0.2 times the ultimate com-
pressure strength of concrete, fi.. However, the tests of.
Jaspar and Shtenko (1969) indicated that considerable

- caution must be exercised with piles in expansive shales
that are likely to be affected by water; an adhesion of
only about 11 psi (75 kPa) was measured in these tests.
Freeman et al. (1972) suggest a design value of allowable
pile-rock adhesion of 100 to 150 psi (700 to 1000 kPa),
depending on the quality of the rock. With such a value,
they recommended that the full calculated end-bearing
capacity be added to obtain the total design-load capacity.

On the basis of the limited information available,

it would appear reasonable to use as a design value an allow-
able adhesion of 0.05f. or 0.05qy,, whichever is the
lesser value. These values should not be applied to highly
fractured rocks, for which values of adhesion between 75
and 150 kPa may be more appropriate. It must be empha-
sized that care should be exercised to remove all remolded
soil from the socket zone. Furthermore, for uplift loads,
a reduction of the above loads (e g., by about 30%) appears -
to be desirable.

3.5 USE OF IN-SITU TESTS

3.5.1 Static Cone Penetrometer

The basis of the test is the measurement of the resistance
to penetration of a 60° cone with a base area of 10 sq
cm. Two types of cone are commonly used; the standard
point, with which only point resistance can be measured;
and the frictionjacket point, which allows both point
resistance and local skin resistance to be measured (Bege-
mann, 1953 and 1965). _

In purely cohesive soils, it is generally accepted that the
cone-point resistance, Cy 4, is related to the undrained cohe-
sion, ¢, as )

Crd = culV, (3.27)

As discussed in the previous section, the factor N, may
vary widely both theoretically and in practice, and values
of N, ranging from 10 to 30 have been suggested. The -
major causes of this variation are the sensitivity of the soil,
the relative compressibility of the soil, and the occurrence
of adhesion on the side of the cone. The variation in the
rate of strain between the cone test and other testing
methods also has an effect on the deduced value of N,
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but the use of a constant-penetration rate minimizes
variations from this cause. For design purposes, a value of
N, = 15 to 18 appears reasonable (Begemann, 1965;
Thomas, 1965, Blight, 1967; Thorne and Burman, 1968).

" Van der Veen (1957) suggested that the ultimate resis-
tance of a pile point, of diameter dy, could be derived from
the corresponding cone-penetration curve by taking the
average cone resistance over a distance bdp below the
pile point and adp above the point. Average values of
a=3.75 and b = 1 were suggested by Van der Veen.

The adhesion measured by the friction jacket may
safely be taken as the skin friction for driven piles in clays
(Begemann, 1965). Alternatively, but less desirably, the
cohesion may be estimated from the point resistance and
an appropriate reduction made to obtain the pile-soil
adhesion (see Section 3.2.1).

For piles in sand, various attempts have been made to
relate the cone-point resistance to the angle of friction
and relative de’{lsity of the sand (Meyerhof, 1956; Shultze
and Mezler, 1965; Plantema, 1957), but it has been found
that cone resistance is very sensitive to changes in density.
For p}actical use, the previously mentioned suggestion of
Van der Veen (1957) may be adopted; namely, that the
ultimate point resistance of the pile be taken as the average

Cone and pile point resistance

fy, = Ciq (ton/ft?)

50 100 150

cone resistance Crgz within a distance 3.75 dp above and
dp below the pile tip, where dp is the diameter of the
pile tip.

Full-scale tests carried out by Vesic (1967) showed
that the point resistance of the piles tested is comparable
with that of the penetrometer, but the shaft resistance of
the piles was approximately double that measured by the
penetrometer. Thus, the ultimate load capacity is given by

Py = CraAp + 2fcAq (3.28)

where

Crg = measured cone-point resistance at base
fo = average shaft friction along pile, as measured
on the friction jacket

For driven steel H-piles, Meyerhof (1956) suggested that
the above shaft resistance should be halved.

A comparison between the pile and penetrometer
resistances for the tests reported by Vesic (1967) is shown
in Fig. 3.28. The upper and lower limits of the penetro-
meter values are shown. Correlation with static cone tests

Pile skin resistance and
doubled cone shaft resistance

f, = 2f (ton/ft?)

200 0.4 0.g 1.2

Depth below ground surface {ft)

Y ==

L)

o——g—e Measured values

Shaded area—values calc. from static cone results

“URE 3.28 Variation of point and skin resistances with depth (Vesic, 1967).



was found by Vesic to be better than with the results of
standard penetration tests (see below).

For cases in which separate measurements of friction-
jacket resistances are not made, Meyerhof (1956) suggested
that for driven concrete or timber piles, the ultimate skin
friction f; could be estimated from the cone point resis-
tance Cig as follows:

fs = 0.005Ckq (3.29)
For driven steel H-piles, Meyerhof suggested that the
above value be halved. Some comparisons (Mohan et al.,
1963; Thorne and Burman, 1968) indicate that Eq. (3.29)
underestimates the skin friction by a factor of about
2 if Cpq is less than about 35 kgf/em?.

Iu sands, it is necessary to make a distinction between
the skin friction for downward and upward loading. Modi-
fications for uplift resistance are discussed in Section 3.7.

3.5.2 Standard Penetration Test

Meyerhof (1956) has correlated the shaft and base resis-
tances of a pile with the results of a standard penetration
test. For displacement piles in saturated sand, the ultimate
load, in U.S. tons, is given by

NA
Py = 4NpAp + 5= (3.30)
where

Np = standard penetration number, MV, at pile base
N average value of V along pile shaft

For small displacement piles (e.g., steel H-piles),

P, = 4N N 331
u = ANpAp *+ T8 (3.31)
where

Ap = net sectional area of toe (sq ft)

gross surface area of shaft (sq ft) (area of all sur-
faces of flanges and web for H-piles)

LS
Py
1

In Eq. (3.30), the recommended upper limit of the unit
shaft resistance (V/S0) is 1 ton/ft* and in Eq. (3.31),
0.5 ton/ft2.

The above equations have also been used with some
success in stiff clays (Bromham and Styles, 1971).
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3.5.3 Pressuremeter Test

The use of the pressuremeter in foundation design has been
developed extensively in France in recent years. Its appli-
cation to the estimation of pile load capacity has been
summarizéd by Baguelin et al (1978) who present curves
relating ultimate base capacity to the pressuremeter limit
pressure, for both driven and cast-in-situ piles. Relation-
ships are also presented between ultimate skin resistance
and limit pressure for steel or concrete piles in granular and
cohesive soils, and for cast-in-situ piles in weathered rock.
The following upper limits on the ultimate skin resistance
are suggested by Baguelin et al for pressuremeter limit
pressures in excess of 1500 kPa;

concrete displacement piles in

granular soil 122 kPa
concrete displacement piles in

cohesive soil, or steel displace-

ment piles in granular soil 82 kPa
steel displacement piles in

cohesive soil 62 kPa
non-displacement piles in

any soil 40 kPa

3.6 SPECIAL TYPES OF PILE

3.6.1 Large Bored Piers

Large-diameter bored piles have come into increasing use
in recent years as an alternative to pile groups. They have
been constructed up to 10 ft in diameter and in lengths
exceeding 100 ft, often with an underreamed or belled
base. Such piles have found extensive use in London clay,
and much of the research on large bored piers is based on
their behavior in London clay. Empirical methods of
design have been developed on the basis of extensive expe-
rience and research. Gne of the earliest investigations was
in model tests on piles with enlarged bases, reported by
Cooke and Whitaker (1961). These tests revealed that,
whereas settlements on the order of 10 to 15% of the base
diameter were required to develop the ultimate base capa-
city, the full shaft resistance was developed at very small
settlements, on the order of 0.5 to 1.0% of the shaft
diameter. (The theory given in Chapter 5 supports these
findings.) A considerable amount of field-test evidence has
subsequently been obtained (Whitaker and Cooke, 1966;
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Burland et al., 1966), and the behavior of full-scale large
bored piers has been found to be similar to that of the
model piles.

Because of the different degrees of shaft-and base-
load mobilization at a given pier settlement, it may be
advisable to determine the working load on a large pier
by applying separate factors to the ultimate shaft and base
resistances; for example, Skempton (1966) suggested.a
safety factor of 1.5 for shaft resistance and 3.0 for base
resistance, for piers with an enlarged base of diameter
6 ft or less..In many cases, the working load for bored
piers, especially those with enlarged bases, will be deter-
mined by settlement considerations rather than ultimate
capacity (Whitaker and Cooke, 1966; Burland et al., 1966).
Settlement theory is discussed in Chapter 5. -

3.6.2 Underreamed Bored Piles

Underreamed piles have been extensively used in India,
both as load-bearing and anchor piles in expansive clays.
For anchor piles, a single enlarged bulb is often used,
while for load-bearing, one or more bulbs may be used.
A single underreamed pile can be treated in a similar man-
ner to a pile with an enlarged base, except that the bulb
may be situated above the base of the pile. Mohan et al.
(1967) suggest that the base and shaft resistance be added

to give the ultimate load capacity. Thus, referring to Fig.

3.29, for a pile in clay,

nd®
Py = cpds + 2 cpNep (3.32)
+7_T(d 2 d2) N
4 0 ColN o
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d d
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(a) Single underrcamed (2) Douile underreamed
pile pile

FIGURE 3.29 Underreamed piles.

v where

cp = cohesion at pile base
¢o = cohesion at level of base of bulb

N,p = value of N, at pile-base level

N¢p = value of N, at level of base of bulb
¢, = average pile-soil adhesion

Ag = surface area of pile shaft

dp = bulb diameter

Values of ¢;, N.p, and Ny can be obtained from Section
3.2.

For double or multiple underreamed piles with the
bulbs suitably spaced, the soil between the bulbs tends to
act as part of the pile, so that the full resistance of the soil
can be developed on the surface 4-4’ of a cylinder with a
diameter equal to that of the bulbs and height equal to
their spacing. Model tests carried out by Mohan et al.
{1967) have confirmed this behavior. Mohan et al. (1969)
have suggested two methods for estimating the load capa-
city of multiple underreamed piles:

1. Summation of the frictional resistance along the shaft
above and below the bulbs, shearing resistance of the
cylinder circumscribing the bulbs, and the bearing capacity
of the bottom bulb and base.

2. Summation of the frictional resistance along the shaft
above the top bulb and below the bottom bulb, and the
bearing capacity of all the bulbs and the base.

It was found that for a typical example of a pile in London
clay, these methods give almost identical results. For other
cases, the lesser of the two capacities given by the equations
should be taken.

Mohan et al. (1967) suggest that the optimum spacing
of the bulbs in a multiple underreamed pile lies between
1.25 and 1.5 times the bulb diameter for maximum effi-
ciency. As an example of the economy in material that may
be obtained by using underreamed piles, they calculated
that a multiple underreamed pile in London clay can
develop the same load capacity as a uniform pﬂe of about
four times the volume.

3.6.3 Screw Piles

Screw piles have been used in several countries for mast
and tower foundations and for underpinning work. Load
tests on model and full-scale screw piles have been reported
by Wilson (1950) and by Trofimenkov and Mariupolskii
(1965). Wilson (1950) developed a method of analysis
of the load capacity of screw piles in both sand and clay,



FIGURE 3.30 idealized screw pile.

based on the use of elastic theory. In a relatively simple
analysis for screw piles in clay proposed by Skempton
(1950), the load capacity is taken to be the sum.of the
bearing capacity of the screw and the side resistance along
the shaft, assuming no skin friction to be mobilized for a
distance above the screw equal to its diameter. Thus,
referring to Fig. 3.30.
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The remolded strength of the soil is used because the clay
adjacent to the shaft is likely to be almost fully remolded
by the passage of the screw and by the lateral displacement
caused by the cylinder.

A comparison made by Skempton between measured
and predicted load capacities by the above method showed
that the predicted ultimate loads were within 15% of the
measured values, although always greater. Trofimenkov
and Mariupolskii (1965) employed the same basis of cal-
culation as the above and also obtained good agreement
between measured and calculated load capacity.

3.7 UPLIFT RESISTANCE
3.7.1 Single Piles

Piles may be required to resist uplift forces—for example,
in foundations of structures subjected to large overturning
moments such as tall chimneys, transmission towers, or
jetty structures. Methods of calculating the adhesion to
resist uplift are the same as those used for bearing piles.

For a uniform pile in clay, the ultimate uplift resis-

P, = N.cpdp + ¢,nd(L-dg) (3.33) .
tance, Py, is
where —
_ Puy = cqAdst Wp (3.34)
¢ = average remolded shear strength along the shaft
in the length (L -dp) where
¢p = average of undisturbed and remolded shear
strength of soil beneath the screw Wp = weight of pile
Ap = area of screw ¢, = average adhesion along pile shaft
1.25 [
° Source of data r l
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FIGURE 3.31 ! ationship between c,/c,, and undrained shear strength for pulling tests (Sowa, 1970). (Reproduced by permission of the
National Research Council of Canada from the Canadian Geotechnical Journal, Vol. 7, 1970, pp. 482-493))
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Relatively few pulling tests on piles have been reported
in the literature. A summary of some of the available results
is given by Sowa (1970), who has found that the values of
cofcy agree reasonably well with the values for piles sub-
jected to downward loading (Fig. 3.31).

For piles of uniform diameter in sand, the ultimate
uplift capacity may be calculated as the sum of the shaft
resistance plus the weight of the pile. There is, however,
little data available on the skin friction for upward loading,
and the available data is to some extent conflicting. For
example, tests rzported by Ireland (1957) on piles driven
into fine sand supgest that the average skin friction for
uplift loading is equal to that for downward loading, but
data summarized by Sowa (1970) and Downs and Chieurzzi
(1966) indicates considerable variatiens in average skin
friction between different tests, although there is a ten-
dency for the values to be lower than for downward load-
ing, especially for cast-in-situ piles. In the absence of other
information, a reduction to two thirds of the calculated
shaft resistance for downward loading is recommended.
However, a reliable estimate is best determined by carrying
out a pulling test in-situ.

If static-core-penetration tests are used as a basis for
estimating ultimate uplift skin resistance, Begemann (1965)
suggests that the calculated skin resistance for downward
loading be adjusted by a reduction factor dependent on
the soil and pite type. He also suggesis reduced values of
skin resistance be used if the uplift load is oscillating.
Begemann’s suggestions, however, should be viewed with
considerable caution, as they are based on limited data.

Additional uplift resistance may be obtained by under-
reaming or enjarging the base of the pile, and in such
cases, the pile shaft may have little or no influence on the
uplift capacity. Traditional methods of cesign assume the
resistance of the enlarged base to be the weight of a cone
of earth having sides that rise either vertically or at 30°
from the vertical. Neither of these- methods has proved
reliable in practice, however. The 30°-cone method is
usually conservative at shallow depths but tan give a con-
siderable overestimate of uplift capacity at large depths
(Turner, 1962). Parr and Varner (1962) showed that the
vertical-failure-surface approach did not apply to piles in
clay, although it could apply to backfilled footings. Alter-
native theories for uplift resistance of enlarged bases have
been proposed by Balla (1961), MacDonald (1963), and
Spence (1965)--these theories differing in the assump-
tions regarding the shape of the failure surface.

Meyerhof and Adams (1968) have developed an approx-
imate approach ‘based on observations made in laboratory
model tests. They suggest that the short-term uplift capa-
city of a pile in clay (under undrained conditions) is given
by the lesser of

(a) The shear resistance of a vertical cylinder above the
base, multiplied by a factor &, plus the weight of soil and
pile, W, above the base.

(b) The uplift capacity of the base plus W, that is,

_(dp? -d?)

Puy = T Nyt W (3.34)

where

Ny = uplift coefficient
= N, for downward load

Examination of the results of model and field tests led
Meyerhof and Adams to suggest the following values of
k:

Soft clays k= 1-1.25
Medium clays k=07
Siiff clays k=205
Stiff fissured clays k& = 0.25

The low values of k in the stiffer clays are partly attributed
by Meyerhof and Adams to the influence of tension cracks
arising from premature tension-failure in the clay.

It has been found that negative pore pressures may
occur in clays during uplift, particularly with shallow
embedment depths. The uplift capacity under sustained
loading may therefore be less than the short-term or un-
drained capacity, because the clay tends to soften with
time as the negative pore pressures dissipate. The long-term
uplift capacity can be estimated from the theory for a
material with both friction and cohesion, using the drained
paranieters ¢z and cg of the clay.

For a soil with both cohesion and friction, the follow-
ing expressions were obtained by Meyerhof and Adams
for the ultimate load capacity, P, of a circular base:

(a) Shallow depths (L.< dp):

Puu = ncdbL + sgwaZKu tang + W (3.35)
(b) Great depths{L > H):

Puw = medpH + s%ydb(ﬂ -H)HK;,-tang*) FWo(3.36)

where

v = soil unit weight*
shape factor

[
1



i1

1+ mL/dp, with a maximum value of

1+ mH/d),

Ky = earth-pressure coefficient (approximately 0.9 -
0.95 for ¢ values between 25° and 40°)

= coefficient depending on ¢

limiting height of failure surface above base

weight of soil and pile in cylinder above base*

m
H
%

The upper limit of the uplift capacity is the sum of the net
bearing-capacity of the base, the side adhesion of the shaft,
and the weight of the pile, that is,

7T !
Pupy o = 4 (dp® -d?) (N, + 0y5Ng) (3.37)
tAf + W
where
N¢, Nq = bearing-capacity factors
fs " = ultimate shaft-shear resistance _
oy = effective vertical stress at level of pile base

Meyerhof and Adams suggest that the values of N,
and N, for downward load can be used in this context,
but theoretically this is incorrect, and somewhat lower

* Broyant or total, as appropriate.
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values may be appropriate to upward loading. However,
the theory for failure of anchor piles with enjarged bases,
or of anchor plates more generally, has yet to be fully
developed. '

For use in Eqgs. (3.35) and (3.36), values of H/dy,
s, and m, obtained from tests results by Meyerhof and
Adams, are shown in Table 3.6: The ultimate uplift capa- .
city should be taken as the lesser value of that given by
Eq. (3.37) and the appropriate equations 3.35 or 3.36.

The results of model tests in clays, reported by Meyer-
hof and Adams (1968), are shown in Fig. 3.32. Both the
undrained and long-term pullout loads are shown, and the

TABLE 3.6 FACTORS FOR UPLIFT ANALYSIS?

¢° 20 25 30 35 40 45 48

Hjdy, 25 3 4 5 7 9 11
m 005 0.1 015 025 035 05 0.6
s 1.12 130 160 225 345 550  7.60

2 From Meyerhof and Adams (1968). (Reproduced by permission
of the National Research Council of Canada from the Canadian
Geotechnical Journal, Vol. 5, 1968, pp. 225-244.)
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FIGURE 3.32 Comparison of short-term and long-term pull-out tests in clay (Meyerhof and Adams, 1968). (Reproduced by permission of the -
National Research Council of Canada from the Canadian Geotechnical Journal, Vol. 5, 1968, pp. 225-244.)
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considerable reduction in load capacity with time can
clearly be seen, The extent of the load-capacity decrease
becomes greater as the soil becomes stiffer. The predicted
long-term capacities of the piles show reasonable agree-
ment with the measured values. ,

The above theory can also be used to estimate the
uplift capacity of piles in sand. Meyerhof and Adams have
compared predicted and measured uplift capacities for
buried footings in sand and have found fair agreement,
although there is a relatively wide scatter of points.

3.7.2 Pile Groups

Meyerhof and Adams (1968) suggest that the ultimate
uplift load of a group be calculated as the lesser of

(a) The sum of the uplift of the individual footings.

_(b) The uplift load of an equivalent pier foundation
consisting of the footings and enclosed soil mass.

Meyerhof and Adams (1968) have presented some
data on the uplift efficiency of groups of two and four
model circular footings in clay. The results indicate that
the uplift efficiency increases with the spacing of the foot-
ings or bases and as the depth of embedment decreases,
but decreases as the number of footings or bases in the
group increases. The uplift efficiencies are found to be
in good agreement with those found by Whitaker (1957)
for freestanding groups with downward loads.

For uplift loading on pile groups in sand, there appears
to be little data from full-scale field tests. However, Meyer-
hof and Adams (1968) have carried out tests on small
groups of circular footings and rough circular shafts, and
have analyzed the group efficiencies. For a given sand
density, the uplift efficiencies of the groups increase
roughly linearly with the spacing of the footings or shafts,

TABLE 3.7 SUMMARY OF REPORTED PILE-BENDING MEASUREMENTS

) Out-of-
P"‘? Alignment
Reference Pile Type Length Soil Type at Tip Type of Bend
Parsons and Composite: lower 140 ft 20 ft fill, layers of 4.4 ft Gentle sweep over
Wilson 85 ft, 10%-in. pipe, organic silt, medium lower length
(1954) top 55 ft, sand, fine sand, silt
corrugated pipe with clay layers,
gravel, bedrock
Bjerrum Steel H-section 30 ft Clay 1.2 ft Gentle sweep
(1957)
Johnson Composite: lower 40 ft 20 ft silt overlying 8 ft Gentle sweep over
(1962) 40 ft, 10% in. medium sand lower length
upper S0 ft,
corrugated taper pipe
Mohr (1963) 10%-in. pipe 85 ft 80 ft soft silt, 10.25 ft Gentle sweep
stiff sand r:lay‘,
medium dense sand
National Precast hexagonal, 60m 50m soft clay, 10m 1lm Gentle
Swedish Hercules jointed clay, silt, sand,
Council rock at 70m
(1964)
Hanna (1967) Steel H-section 140 ft 34 ft stiff clay, 50 ft 3.0 ft Triple curvature.
14 BP73 soft clay, 64 ft stiff relatively sharp
clay, shale direction changes
Steel H-section 138 ft 6.0 ft Double curvature,

14 BP 89

relatively sharp
direction changes




and increase as the depth of embedment becomes smaller,
The uplift efficiency decreases as the number of footings or
shafts in the group increases and as the sand density in-
creases. )

3.8 LOAD CAPACITY OF BENT PILES

A number of cases have been reported in which long,
slender piles have become bent during driving. A summary
of these measurements is shown in Table 3.7. For con-
crete-filled steel shell piles, load tests indicated that the
piles could tolerate significant out-of-verticality and still
carry their design load with safety. This, however, may
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largely be caused by the neglect of the structural strength
of the pile shell in the design. Long, precast, hexagonal
test piles have also been found to perform satisfactorily,
but Hanna (1967) has found that for steel H-piles, large
stresses are induced because of bending during driving. Pile
bending is attributed by Hanna to the development of asym-
metrical stresses in the pile as a result of the eccentric pile-
tip reaction and eccentric driving inherent in all pile-driving
work. These eccentric stresses are considered-to be suffi-
cient to initiate bending, which causes the pile to drive off
vertical. Reverse curvature of the pile may subsequently oc-
cur, and this is believed to result primarily from the verti-
cal-weight component of the inclined pile forcing the pile
to bend.
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FIGURE 3.34 Driven position of pile tips (Hanna, 1968). (Reproduced by permission of the National Research Council of Canada from' the

Canadian Geotechnical Journal, Vol. 5, 1968, pp. 150-172.)

Typical deflection profiles,-reported by Hanna (1967),
are shown in Fig. 3.33. These profiles have been obtained
from measurements on an inclinometer installed within the
H-piles. The as-driven positions of the pile tips for every
20 ft of depth are shown in Fig. 3.34. For the two piles
considered, minimum computed radii of curvature were on
the order of 170 ft and 190 ft at depths of 100 ft and 70
ft; these values are about six times less than the suggested
safe minimum value for steel H-piles of 1200 ft (Bjerrum,
1957).

Methods of estimating the stresses in a pile due to non-
verticality have been proposed by Johnson (1962), Broms
(1963), Parsons and Wilson (1954), and Madhav and Rao
(1975). Typical of these methods is that of Broms, who by
expressing the deflected shape of the pile as a Fourier sine
series and assuming the soil to be a Winkler medium, was
able to derive a simple approximate equation for the buck-
ling load on the pile (the subject of buckling is discussed
more fully in Chapter 14). Provided that some information
of the departure from straightness of the actual piles is
available, the maximum soil pressure along the pile and the
maximum bending moment can then be calculated. As de-
sign criteria, Broms suggested that

(a) The calcuiated maximum soil pressure along the pile
should not exceed one third of the ultimate value.

(b) The maximum stress (axial plus bending) in the pile
should be less than the allowable value.

The first criterion leads to an allowable load P given by

Py
p = Fmaxfer (3.38)

komax t Pmax

where

Pmax = maximum allowable soil pressure
P, = buckling load of pile
k = modulus of subgrade reaction
Pmax = maximum lateral deflection (deviation of the
center line of the pile from a straight line con-
necting the pile tip and the point at which
curvature of the pile begins)

For the second criterion to be satisfied, the aliowable load
Pis

P =05(b-b-4c) (3.39).
where
b = Pop+ Aopux
AELT
= il
¢ = A0max 7R (3.39)

P, = pile-buckling load

A = area of pile

Omax = allowable maximum stress in pile
E, = Young’s modulus of pile

Iy = moment of inertia of pile

Zz = pile section-modulus

Rimin = minimum radius of curvature along pile

From Eq. (3.39), it may be deduced that the load-
carrying capacity will be reduced to zero if ¢ < O, that is, if

Byl
n < 220 .
Rmin Zore (3.40)
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For a typical steel H-pile section in clay, the allowable
loads from Egs. (3.38) and (3.39) are plotted in Fig. 3.35.
For the limiting-soil-pressure criterion, the allowable load
increases as the stiffness of the soil increases (K=kd = 33
‘times the cohesion, has been assumed) but.is almost inde-
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ULTIMATE LOAD CAPACITY OF PILES 51

600
Upper limit for steel stress
b
400 -~
Stiff soil (K = 1 ksf)
200 |-
Soft soil KA Medium soil
{K = 0.1 ksf) {K = 0.33 ksf)
ot i ! 1
0 20 40 60

Maxmmum deflection {in.)

(b) On basis of soil pressure

pendent of pile length. For the limiting steel-stress criter-
jon, an allowable steel stress of 18 kips/sq ft has been
adopted. The allowable load is insensitive to change in soil
subgrade-reaction modulus or pile lergth.



LOAD CAPACITY BY DYNAMIC

METHODS

4.1 INTRODUCTION

Perhaps the oldest and most frequently used method of
estimating the load capacity of driven piles is to use a
driving formula, or dynamic formula. All such formulas re-
late ultimate load capacity to pile set (the vertical move-
ment per blow of the driving hammer) and assume that the
driving resistance is equal to the load capacity of the pile
under static loading. They are based on an idealized repre-
sentation of the action of the hammer on the pile in the
last stage of its embedment. There are a great number of
driving formulas available, of varying degrees of reliability.
Smith (1960) states that the editors of the Engineering New
Record have on file 450 such formulas. In Section 4.2, a
summary of the most common formulas is given and their
reliability is discussed. The derivation of most of these for-
mulas is discussed by Whitaker (1970), while details of
some of the parameters required are available in Chellis
(1961).

The primary objectives in using a pile-driving formula
are usually either to establish a safe working load for a pile
by using the driving record of the pile, or to determine the
driving requirements for a required working load. The work-
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ing load is usually determined by applying a suitable safety
factor to the ultimate load calculated by the formula. This
safety_factor, however, varies considerably,.depending on
the_formula.used and the type of pile being driven. Also,
because pile driving formulas take no account of the nature
of the soil, the appropriate safety factor may vary from one
site to another.

A relatively recent improvement in the estimation of
load capacity by dynamic methods has resulted from the
use of the wave equation to examine the transmission of
compression waves down the pile, rather than assuming that
a force is generated instantly throughout the pile, as is done
in deriving driving formulas. The main objective in using the
wave-equation approach is to obtain a better relationship
between ultimate pile-load and pile-set than can be obtained
from a simple driving formula. As well as providing a2 means
of load capacity estimation, this relationship allows an
assessment to be made of the driveability of a pile with a
particular set of equipment. Moreover, this approach also
enables a rational analysis to be made of the stresses in the
pile during driving and can therefore be useful in the struc-
tural design of the pile. The application of this technique is
described in Section 4.3.
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FIGURE 4.1 Assumed load-settlement curve for pile.

4.2 PILE-DRIVING FORMULAS

4.2.1 Derivation of General Formula

Pile-driving  formulas attempt to relate the dynamic to
the static resistance of a pile, and have been established on
an empirical or a theoretical basis. Several of the latter are
based on Negwton’s law of impact, modified in some cases
for energy losses during impact and stress propagation.

- The assumed relationship between pile resistance and
~downward movement of the pile is shown in Fig. 4.1. The
materials of the pile and the driving cushion are assumed to
be perfectly elastic, and inertia forces in the soil and ener-
gy losses stemming from irreversible deformations (except
of the soil) are disregarded.

The derivation of a general pile-driving formula has been
given by Taylor (1948) and quoted by Flaate (1964). This
derivation will be reproduced below and the various ver-
sions of this general formula will be discussed subsequently.
The following symbols are used in the derivation: '

S = pile penetration for last blow, or “set”
AS,, = plastic deformation of pile
AS,, = elastic deformation of pile
AS,s = elastic deformation of soil
So = S- ASy,
W = Weight of hammer
f = drop of hammer
ef = efficiency factor for hammer
ey = efficiency factor for impact
Wp = weight of pile
A = cross-section of pile
L = pile length -
Ep = modulus of elasticity of pile
v = hammer velocity before impact
u = hammer velocity after impact
vp = pile velocity before impact ¢
up = pile velocity after impact

LOAD CAPACITY BY DYNAMIC METHOD 53

BW-H
Hl erW-H
.__"ﬂ - es e, W-H
s JW
S0t ASpp* ASep+ASes
PO A ,S=S°~ASPD
T T T T Asept OSes
e Zan bea wod 7
o AT T TR S
Sgt ASes T “ASes

FIGURE 4.2 Transfer of energy and penetration of pile during one
blow of the pile-driving hammer.

g = gravitational accelerzltionv
R, = load capacity of pile (just after driving)
E, = energy reaching pile
E, energy left after impact.

The process of energy transfer and pile penetrétion
during one blow of the hammer is shown in Fig. 4.2. The
energy reaching the pile is

2
E\ = efiVH = % (4.1)

The efficiency of impact is

(Wag* + (Wp/20)u,>  Ey

= — 4.2)
(W/2gw* + (Wp/2Wp*  E,
The law of impulse gives:
W 7 '
-é—-(v -u) = —?p (vp - up)- 4.3)
The coefficient of elastic restitution, n, is
n=tp % (4.4)
vy,
Assuming v, = 0, and eliminating u, up,and v,
W+n*w
e = p 4.
YW W, 43)
The energy left after impact is
b o Wi - <W+ n? wp>
2 T efey = efWH T Wy (4.6)
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The work done during impact is approximately
E; = Ry(S+ ASp, +1£AS,p) 4.7)

Neglecting the elastic deformation of the soil, and intro-
ducing Hooke’s Law for the pile,

(4.8)

where

C = ratio between actual displacement at pile top and
that given by Hooke’s Law

From Egs. (4.6), (4.7), and (4.8), the following equation is
obtained:

_ E?f WH
S+ (CR,L)(2AEp) + AS,

Li“_-l- r12Wp
W+ Wy

R, 4.9)

' 4.2.2 Practical Driving Formulas

Although the above general formula takes most practical
factors into account, the validity of the law of impact is
very questionable, since the pile is by no means the free
body that the law of impact assumes. As pointed out by
Terzaghi (1943), “Newton himself warned against the appli-
cation of his theory to problems involving for instance the
impact produced by ‘the stroke of a hammer.”” In addition
to this basic criticism, the general formula is not readily
applicable in practice, since many of the quantities are ex-

tremely difficult to measure or estimate reliably. Conse- "

quently, most practicai pile-driving: formulas are simplifi-
cations of the general equation, often incorporating em-
pirical “constants” and coefficients. Most of these for-
mulas can be expressed in the following form:

2
RiLY g g
/

AE

eperWH = 5‘; <
L
where

ey = efficiency of impact

er = efficiency of hammer blow

¢ = factor allowing for elastic compression
of soil and driving cushion

(4.10)

The left-hand side of Eq. (4.10) represents the energy of
the hammer blow, the first term on the right-hand side is
the energy consumed by the elastic compression of the pile,
computed as a static compression under the force R,,, and
he second term is the energy absorbed by the plastic de-
formation of the soil.

A summary of various practical formulas is given in
Table 4.1. Tables 4.2, 4.3, and 4.4 give typical values of var-
ious quantities required for these formulas.

4.3.2 Reliability of Dynamic Formulas

Several investigations have been carried out to determine
the reliability of the various pile-driving formulas by com-
paring the load capacity computed from the appropriate
formula with the measured capacity from a pile loading
test. Some of the most comprehensive investigations have
been reported by Sorensen and Hansen (1957), Agerschou
(1962), Flaate (1964), Housel (1966), and Olsen and
Flaate (1967).

Sorensen and Hansen used data from 78 load tests on
concrete, steel, and wooden piles, most of these having
their points bearing on sand (a few were founded on hard
moraine clay). The results of their comparisons are shown
in Fig. 4.3, in which the ratio, u, of the measured to the
computed load-capacity is plotted against the percentage
of load tests smaller than u. This plot is a probability plot,
and a straight line on this plot represents a normal or
Gaussian distribution of results. Figure 4.3 shows that all-
the formulas considered, with the exception of the Eytel-
wein formula, follow approximately a Gaussian distribu-
tion. There is very little difference in the accuracy of the
Danish, Hiley, and Janbu formulas, and the theoretical

T T T T T m T
o8 ® Jonbu formula ——— f B
o Hiley formulg = =——-— .
3 90} x Eytelwein formulg -—~-~ /]
c & Danish formuta /CJ
70 e w ion —--— ‘
E ave equotion " /)
= 50} , -
"9 30F '
§ T
“%
-2 10 x /{{ ’
3 z
3+ 2 Z, .
P <A o ]
! 1 1 1 1 1 I
-08 -06 -04 -02 0O 02 04
log p

FIGURE 4.3 Statistical distribution of load test results (Sorensen
and Hansen, 1957). (This figure is reproduced from the proceedings
of the [ourth International Conference on Soil Mechanics and
Foundation Engineering. Butterworths, London, 1957.)
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Formula Equétion for Ry, Remarks
Sanders l%}i
, . WH L

Engineering Y C = 1.0 in. for drop hammer
News 0.1 in. for steam hammer

0.1 Wp/W in. for steam hammer

on very heavy piles
Eytelwein _W_[! W
(Dutch) S Wi,
2
Weisbach _ SAE, / (2WHAE£ SAE,
L L

Hiley eWH W+n'W, See Tables 4.2, 4.3 and 4.4 for values

STR(C,+C,+C) W+w,

ofef, C,,C,,Cy,and n.

fanbu <_1_> (yg) Ky = Call +/TFe/Cy)
kS Cq = 0.75+0.15 Wp/W
xe = WHL/AES?
. ef WH .
Danish - See Table 4.2 for ervalues.
S+ (2e WHLIAE )"
5.6 \/mogm (10/8) Units are inches and tons (short).
Gates
4.0 \JeWHlog,, (25/S) Units are metric tons (1000 kg)
and centimeters.
TABLE 4.2 VALUES OF curves derived from the wave equation (see Section 4.3),
HAMMER EFFICIENCY, ef” but the Eytelwein formula is very inaccurate.
Agerschou’s investigation concentrated on the Engi-
heering News formula but also broadly confirmed the con-
Hammer Type r clusions of Sorensen and Hansen regarding the Hiley,
Janbu, and Danish formulas. Agerschou showed that des-
Drop hammer released by trigger 1.00 pite its popularity, the Engineering News formula is unre-
Dro&?i’:;n;ri;;uated by rope and 0.75 liable. It has the highest standard deviation, and 96% of the
McKiernan-Terry single-acting hammers 0.85 allowable loads determined by this formula will have actual
Warrington-Vulcan single-acting hammers 0.75 safety factors ranging between 1.1 and 30.0. Flaate (1964)
Differential-acting hammers 0.75 investigated the accuracy of the Janbu, Hiley, and Engineer-
McKiernan-Terry, Industrial Brownhoist, ing News formulas for 116 tests on timber, concrete, and
_ National & Union doubic-acting hammers 085 steel piles in sand. The conclusions reached by Agerschou
Diesel hammers 1.00 ;

a

From Pile Foundations by R. D. Chellis. © 1961
McGraw-Hill Book Company, Inc. Used with permission ”

of McGraw-Hill Book Company.

regarding the unreliability of the Engineering News formula
are reinforced by Flaate’s results, There is relatively little
difference between the Janbu and Hiley formulas, although
the former is perhaps the more reliable overall and gives
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TABLE 43 VALUES OF C,, C,, C, FOR HILEY FORMULA®

(a) Values of C,

Temporary Compression Allowance C, for Pile Head and Cap

Material to Which Easy Driving:

Medium Driving:

Hard Driving:* Very Hard Driving:

Blow Is Applied P, =500 psi P, = 1000 psi P, =1500 P, = 2000 psion
on Cushion on Head or Cap psi on Head Head or Cap
or Pile Butt (in.) or Cap (in.) (in.)
1f No Cushion
(in.)

Head of timber pile 0.05 0.10 0.15 0.20

3—4 in, packing inside

cap on head of precast :

concrete pile 0.05+0.07° 0.10+0.15% 0.15+0.22° 0.20+0.30°

1/2—-1 in. mat pad only

on head of precast

concrete pile 0.025 0.05 0.075 0.10

Steel-covered cap, con-

“taining wood packing,

for steel piling or pipe 0.04 0.08 0.12 0.16

3/16—in. red electrical

fiber disk between two

3/8—in. steel plates,

for use with severe

driving on Monotube

pile 0.02 - 0.04 0.06 0.08

Head of steel piling

or pipe 0 0 0

(b) Value of C, C, = R,,L/AEp

(Include additional value for followers.)

(c) Values of C,

C, is temporary compression allowance for quake of ground.

Nominal value = 0.1 inches
Range = 0.2 for resilient soils to 0 for hardpan

b The first figure represents the compression of the cap and wood dolly or packing above the cap, whereas the second
figure represents the compression of the wood packing between the cap and the pile head.

From Pile Foundations, by R. D. Chellis, ® 1961 McGraw-Hill Book Company, Inc. Used with permission of

a

McGraw-Hill Book Company.

good results for timber and concrete piles. Hiley’s formula
is also reasonable for timber piles.

The tests undertaken by the Michigan Department of
State Highways at Belleville, and reported by Housel
(1966), are compared in Table 4.5 with predictions from a
large number of pile-driving formula. The Engineering News
formula gives predictions of ultimate load of between 2 and
6 times the measured values, the Hiley formula gives 7 to
30 times the measured values, and the Eytelwein formula
gives 5 to 25 times the measured values. In comparison with
the previous comparisons, the spread of results of the Hiley

formula is greater and that of the Engineering News for-
mula is less. This difference may well stem from the fact
that the results in Table 4.5 are predominantly for piles in
sand, whereas the Belleville site consists largely of clay.’
Consequently, the reliability of pile-driving formulas at this
site is likely to be poor, as significant frictional resistance
may be mobilized along the pile, whereas this resistance is
not directly considered in the formulas. It is also interesting
to note that the Belleville results are consistent with the
analyseé performed by Forehand and Reese (1964), which
suggest that the Engineering News formula may be less un-



TABLE 4.4 VALUES OF COEFFICIENT OF RESTITUTION, nt

Head Condition

Pile Type ‘Drop, Single-  Double-
acting, or acting
Diesel . Hammers
Hammers

Reinforced Helmet with composiie

concrete plastic or greenheart

dolly and packing on

top of pile 0.4 0.5

Helmet with timber

dolly, and packing on

top of pile 0.25 0.4

Hammer direct on pile

with pad only — 0.5
Steel Driving cap with

standard plastic or

greenheart dolly 0.5 0.5

Driving cap with timber

dolly 0.3 0.3

Hammer direct on pile - 0.5
Timber Hammer direct on pile 0.25 0.4

4 After Whitaker (1970).

TABLE 4.5 SUMMARY OF SAFETY-FACTOR RANGE FOR
EQUATIONS USED IN THE MICHIGAN PILE-TEST PROGRAM?

Formula Upper and Lower Limits of Nominal
SF = R,/R4® Safety
Range of R, kips: Factor
0-200 200-400 400-700

Engineering News  1.1-2.4 0.9- 2.1 1.2- 27 6

Hiley 1.14.2 3.0- 6.5 40-96 3

Pacific Coast 2.7-5.3 4.3- 9.7 8.8-16.5 - 4

Uniform Building

Code

Redtenbacher 1.7-3.6 28— 6.5 6.0-10.9 3

Eytelwein 1.0-2.4 1.0—- 3.8 22- 41 6

Navy-McKay 0.8-3.0 0.2—- 25 0.2- 3.0 6

Rankine 0.9-1.7 1.3- 2.7 23-51 3

Canadian National 3.2-6.0 5.1-11.1  10.1-199 3

Building Code

Modified 1.7-4.4 1.6- 5.2 2.7-53 6

Engineering News _

Gates 1.8-3.0 25— 4.6 3.8-73 3

Rabe 1.0-4.8 2.4-17.0 3.2- 80 2

4 After Housel (1966).
R, = ultimate test load :
R4 = design capacity, using the nominal safety factor recom-
mended for the equation
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reliable for cases in which considerable side friction occurs
(e.g., piles in soft clay) than for point-bearing piles.

Olsen and Flaate (1967) extended the comparisons re-
ported by Flaate (1964) and examined the reliability of
various pile-driving formulas for the timber, concrete, and
steel friction piles in sand considered by Flaate. It was con-
cluded that Janbu’s formula was the most accurate for tim-
ber and steel piles, although none of the formulas was
clearly best for the precast concrete piles. The three for-
mulas that yielded the highest average correlation coeffi-
cients were the Danish, Janbu, and Gates formulas. The
Engineering News formula was found to be quite unsatis-
factory. As a rapid and accurate means of estimation of
load capacity, Olsen and Flaate suggested the following
adjusted versions of the Gates formula:

Timber piles:

Ry = 7.2vefWH (4.110)
X log,o(10/S) - 17
Precast concrete piles:
Ry = 9.0vVeWH (4.11b)
X logie (10/8) - 27
Steel piles:
Ry, = 13.0verWH (4.11¢)

X log, (10/5) - 83

where R, and W are in tons, and / and § are in inches.

A summary of the statistical analyses of Flaate, Ager-
schou, Olsen and Flaate, and Sorensen and Hansen is given
in Table 4.6. This table contains standard deviations for
different formulas, the standard deviation being defined as
the difference between the values of log u corresponding to
83.5% and 16.5% on the curve. The nominal safety factor
is the value to be applied to each formula if only 2% of the
formula loads are allowed to have an actual safety factor
less than 1.0, and is equal to 1 divided by the value of u
corresponding to 2%. The upper limit of the safety factor
for 96% of the formula loads, also included in Table 4.6, is
calculated as the u value for 96% multiplied by the nominal
safety factor. The reliability of the various formulas can
best be judged from the upper limit of the safety factor for
96% safety; the higher this value, the less reliable is the for-
mula (higher values of this quantity are also associated with
higher standard deviations). It is obvious from Table 4.6
that for the formulas considered, the most religble are the
Janbu and the Danish formulas.
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TABLE 4.6 SUMMARY OF STATISTICAL ANALYSES

Formula Standard Upper Limit Nominal Number of
Deviation  of 96% Safety  Safety Load Tests
on if Lower Factor

Limit 1s 1.0

Engineering A 0.78" 26.0 0.86 171

News F 0.70 17.5 5.8 116

Hiley S&H 0.27 3.8 1.4 S0

F 0.37 10.1 24 116

Janbu S&H 0.25 3.6 2.3 78

F 0.22 3.2 2.0 116
Danish S&H 0.26 3.8 2.0 78
O&F 0.28° 4.1 3.0 55
A 0.30 42 2.3 123

Eytelwein S&H 0.57 17.0 7.1 78

Weisbach A 0.36 6.0 2.6 123

Gates O&F 0.35 5.1 2.3 55

Legend: S & H = Sorensen and Hansen (1957)
A = Agerschou (1962)
F = Flaate (1964)
O & F .= Olsen and Flaate (1967) (steel piles in sand)
u = ratio of measured to computed load capacity

The overall conclusions from the above comparisons are
that, if driving formulas are to be used, those which involve
the least uncertainty are the Janbu, Danish and Hiley for-
mulas, while the most uncertain is the Engineering News
formula.

In conclusion, it is interesting to note the remarks made
by Terzaghi (1943): “In spite of their obvious deficiencies
and their unreliability, the pile formulas still enjoy a great
popularity among practicing engineers, because the use of
these formulas reduces the design of pile foundations to a
very simple procedure. The price one pays for this artificial
simplification is very high. In some cases the factor of safe-
ty of foundations designed on the basis of the results ob-
tained by means of pile formulas is excessive and in other
cases significant settléments have been experienced. On ac-
count of their inherent defects all the existing pile formulas

“are utterly misleading as- to the influence of vital condi-

tions, such as the ratio between the weight of the pile and -

the hammer, on the result of the pile driving operations. In
order to obtain reliable information concerning the effect
of the impact of the hammer on the penetration of the piles

it is necessary to take into consideration the vibrations
which are produced by the impact.”

4.3 PILE-DRIVING ANALYSIS BY THE WAVE EQUA-
TION

The realization that pile driving could not accurately be
analyzed by rigid-body mechanics led to the development
of an analysis that utilizes wave theory. This analysis takes
account of the fact that each hammer-blow produces a
stress wave that moves down the length of the pile at the
speed of sound, so that the entire length of the pile is not
stressed simultaneously, as assumed in the conventional
dynamic formulas, .

As previously stated, the wave-equation approach is
primarily used to yield a relationship between ultimate pile
load and pile set, although the stresses set up in the pile
during driving are also calculated. In addition, this approach
enables a rational analysis to be made of the effects of var-



ious factors in the driving process, such as pile characteris-
tics, hammer characteristics, and cushion stiffness. It there-
fore provides a convenient and logical means of determin-
ing the suitability of a given driving system for driving a
given pile, and of choosing an optimum system to obtain
a desired load capacity without damaging the pile. It has
been widely used for piles supporting offshore structures
(McClelland et al., 1969; McClelland, 1974).

Although the safe working load of the pile is again
determined by applying a safety factor to the calculated
ultimate-load capacity, the fact that some account is taken
of the soil characteristics removes at least part of the uncer-
tainty in ascribing a suitable safety factor to a particular
site. '

The method of solution of the wave equation to obtain
the ultimate load versus set relationship is described below,
and typical values of the requisite soil-data input are dis-
cussed. Some solutions from the wave-equation approach
showing the effect of various factors are given in Section
4.4, and a discussion of the reliability of the wave equation
is given in Section 4.5.

The use of the wave equation was considered by Isaacs
(1931) and Glanville et al. (1938), but it was not until the
work of Smith (1960) that the method was fully developed.
Considerable refinements of Smith’s analysis have been
made, notably by Samson, Hirsch and Lowery (1963), and
Forehand and Reese (1964). Scanlan and Tomko (1969)
have also applied wave theory, in a somewhat different ap-
proach, to estimate pile capacity. In the development of the
method described below, the nomenclature and notation of
Samson et al. (1963) and Lowery et al. (1969) will gener-
ally be employed.

i -
RNt

4.3.1 The Wave Equation

The wave equation may be derived from consideration of
the internal forces and motion produced on a segment of a
freely-suspended prismatic bar subjected to an impact at
one end. The resulting equation is

3:D _ (FE\ /3D

3z \—5 Er (4.12)
where

D = longitudinal displacement of a point of

the bar from its original position
modulus of elasticity of bar
density of bar material

time

direction of longitudinal axis

non

1

% ~ v My
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For a pile, the 1esistance of the surrounding soil must also
be considered; in which case, Eq. (4.12) becomes '

32D _ (E\ (9°D

2o (5)(Z8) = @y
where

R = soil-resistance term.

Equation (4.13) may be solved, for the appropriate initial

and boundary Yonditions, to determine the relationship

among displacement, time, and position in the pile, from

which the stress variation in the pile may be determined.
Because of the complications involved in practical piling

problems, analytical solutions to Eq. (4.13) generally are

not feasible, and resort must be made to numerical means

of solution. A convenient numerical method has been des-

cribed by Smith (1960). A simple computer program is

listed in Bowles (1977).

4.3.2 Smith’s Idealization

The method developed by Smith is a finite-difference meth-
od in which the wave equation is used to determine the pile-
set for a given ultimate pile load. The pile system is ideal-
ized as shown in Fig. 4.4, and consists of

1. A ram, to which an initial velocity is imparted by the
pile driver.

_Ram_
Cap Block K1)
Pile Cap
Cushion Block
"and First Pil K(2)
Segment
K(3) TR(3)
K R{4)
Pile K(5) R(5)
K R®) | side Frictional
Resistance *
K R{7)
N R(9)
Point
R(10
1o Resistance

(@) Actual Pile (b) Idealised Pile

FIGURE 4.4 Idealization of pile.
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Load Load 8]

A €
ol.VB

Deformation € Deformation

—

(a) No Internal Damping
Pile Elements.

(b) Internal Damping Cap
Block and Cushion Block

FIGURE 4.5 load-deformation relations.hips for internal springs.

2. A capblock (cushioning material).

3. A pile cap.

4. A cushion block (cushioning material).
5. The pile.

6. The supporting soil.

The ram, capblock, pile cap, cushion block, and pile are
represented by appropriate discrete weights and springs.
The frictional resistance on the side of the pile is représent-
ed by a system of springs and dashpots (see Fig. 4.6), while
the point resistance is represented by a single spring and
dashpot. The characteristics of the components are consi-
-“dered subsequently. If the actual situation differs from that
shown in Fig. 4.4—that is, if the cushion block is not used
or if an anvil is placed between the ram and capblock—the
idealization of the system can of course be modified.

Load
O(m
A B
—
Ry(m)
(O] /’G C
F
Ry(m)
1
E D

(a) Static. Loading

Friction link
limits spring._
load

Spring
constant K’

FIGURE 4.6 Load-deformation relationships for soil.

Deformation

Pile Model—Internal Springs

The ram, capblock, pile cap, and cushion block mdy be
considered to consist of internal springs, although the ram
and pile cap can often be treated as rigid bodies. The load-
deformation behavior of these €lements is most simply
taken to be linear (Fig. 4.5¢) although internal damping
may also be considered (e.g., as shown in Fig. 4.5b), for
components such as the capblock and the cushion block. It
should be noted that the spring K(2) in Fig. 4.4 represents
both the cushion block and the top element of the pile, and
its stiffness may be obtained from Kirchoff’s equation as

L. 1 I .
ITz) K(2)0u§1ion+K(2)pﬂe . (4'14)

Soil Model—External Springs

Smith’s model of the load-deformation characteristics of
the soil, represented as external springs, subjected to sta-
tic loading, is shown in Fig. 4.6. The path OABCDEFG re-
presents loading and unloading in side friction. For the
point, only compressive loading is considered and the load-
ing and unloading path is O4ABCF. The quantities defining
this static behavior are  and R,, where

Q = “quake,” the maximum soil deformation that
may occur elastically
R, = ultimate static soil-resistance
Load A
(e ~~
R m)JV(mt)
B
SRS NS, 1

Ry(m)

Deformation

Ry(m)

(b) Dynamic Loading

Displacement D

(C) Equivalent
Rheological
Model of Soil.

Damping
constant J,



A load-deformation diagram such as Fig. 4.6 may be esta-
blished separately for each spring, so that

R, (m)
Q (m)

K (m) = (4.15)

where K' (m) is the spring constant during elastic deforma-
tion for external spring m.

To allow for the effects of dynamic loading during
driving in increasing the instantaneous resistance of the soil,
the dynamic load-settlement behavior ‘of the soil is taken
to be that shown in Fig. 4.6b, which as pointed out by
Lowery et al. (1969), corresponds to a Kelvin rheological
model. This dynamic behavior is characterized by a further
parameter J, the damping constant. The dashpot in the mo-
dei produces an additional resisting force proportional to
the velocity of loading (V).

4.3.3 Basic Equations

In solving the wave equation numerically, Eq. (4.13) could
be expressed in finite-difference form for each element,and
then the resulting equations, incorporating the appropriate
boundary conditions, could be solved simultaneously for
each time-interval considered. This method is the conven-
tional method of solving such equations and has been sug-
gested for this problem by Soderberg (1962b); it may also
be applied to problems involving periodic dynamic loading
of the pile. However, it has been shown by Smith (1960)
that the finite-difference form of the wave equation may
be replaced by a system of five simpler equations, and this
form of expression of the wave equation has generally been
adopted for pile-driving analysis. The basic equations are
as follows:

D(m, t) = D(m, t- 1)+ At V(m, t- 1) (4.16)
Clm, t) = D(m,t) -~ D(m+1,t) (4.17).
F(m, t) = C(m, ty- K(m) (4.18)
R(m, 1) = [D(m, 1) - D' (m, 1) (4.19)
<K' (m) - [1+J(m) - V(m, t- 1)]

Vim,t) = V(im, t- 1)+ [Fin-1,1) (4.20)
+ W(m) -~ F(m, t) - R(m, )] i—,"(‘T[n—)

where
m = element number

t = time
At time interval
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C(m, t) = compression of internal spring m at time ¢
D(m, t) = displacement of element m at time ¢
D' (m, t) = plastic displacement of external spring
at time ¢
F(m, t) = force in internal spring m at time ¢
g = acceleration caused by gravity
J(m) = soil-damping constant at element m
K(m) = spring constant for internal spring m
K’ (m) = spring constant for external spring m
R(m, t) = force exterted by external spring » on
element m at time ¢
V(m, t) = velocity of element m at time ¢
W(m) = weight of element m

Equation (4.18) applies for the elastic pile elements for
which internal damping is ignored. For elements such as the
capblock and the cushion block, in which internal damping
should be considered, the following equation should be
used instead of Eq. (4.18):

- K(m)
Fim, t) = <y C(m, 1) 4.21
(m, 1) o ( (4.21)
1
- -1 - “iC(m, t
{[e(m)]z } K(m) \C(W, )max
where
e(m) = coefficient of restitution of internal
spring m
C(m, Dmax = temporary maximum value of C(m,t)

The above equation characterizes the path OABCDEQ
shown in Fig. 4.5b. For a pile cap or cushion block, no ten-
sile forces can exist and hence only this part of the diagram
applies. Intermittent unioading-loading is typified by path
ABC, established by control of C(m, t);max in Eq. (4.17).
The slope of lines 4B, BC, and DE depends on the value of
e(m).

Smith (1960) notes that Eq. (4.19) produces no damp-
ing when D(m, t) - D' (m, t) becomes zero, and suggests an
alternate equation to be used after D(m, ) first becomes
equal to Q(m), where Q(mm) is the “quake” for element m:

R(m, t) = [D(m, t)- D' (m, D] K" (m) (4.22)
+J(m) + R, (m) - V(m, t - 1)
where R,,(m) is the ultimate static soil-resistance of element
m.

Equations (4.16) to (4:22) are solved for each of the
pile elements involved, m =1 to m = p (point), for a succes-
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sion of time intervals starting when the hammer [W(1)]
travelling with known velocity touches the first spring. The
solution of these equations continues until the permanent
set or plastic displacement of the soil at the point D’ (p, )
is a maximum.

Before commencing the computations, the following
values must be determined:

1. The initial velocity of the ram at initial impact, v,,
which can be calculated as

[
v = wﬁrEthh | (4.23)

where
E, = manufacturer’s hammer-energy rating
Ej; = pile-driver hammer efficiency
Wy, = weight of hammer

2. Values of the internal spring constants, K(m), of the
pile and other elements, where

K(m) = 5=

where
A = cross-sectional area of element m

E = Young’s modulus of element m
AL = length of element m

it

3. Values of the external spring constants, K' (), of the
soil. This necessitates the assumption of a total pile resis-
tance R, , the percentage of pile resistance to be used as side
resistance, and the distribution of side resistance along the
pile. If known, the soil strength and adhesion properties
may provide a guide to the selection of the above quanti-
ties (see Chapter 3).

If it is assumed that the proportion of load carried by .

the pile point is ¢, then the internal spring constant, K(p),
for the pile tip is
= (Ry
Qp)
s

i

K(p)

where Q(p) = quake at the pile point. Also, if, for exam-
ple, the shaft resistance is assumed to be distributed uni-
formly along the shaft, the external spring constant, K(m),
at the element m is

(4.25) -

(1- )Ry
K(m) = ——=+~ (4.26
) )
where
Q(m) = quake at element m
n = number of elements along the pile

4. Values of the quakes Q(m) and Q(p) and the damping
factors J(m) and J(p). These quantities are discussed in Sec-
tion 4.3.4.

In performing the computations, the following sequence
of operations is carried out:

1. The initial velocity, v,, is calculated from Eq. (4.23).
Other time-dependent quantities are initialized at zero or to
produce equilibrium of forces under gravity.

2. The displacements D(m,¢) are calculated from Eq.(4.16)
where for the first time-step, ¥(1, 0) is the initial velocity of
the ram. ' '

3. The total plastic deformation of the soil, D' (m, f), re-
mains constant [starting at D' (in, f) = 0] unless it is
changed by the following condition (see Fig. 4.7a):

D' (m, 1)< D(m, £) - Q(m)
D' (m, ) ¥ D(m, )+ Q(m)

(4.27q)
(4.27b)

These comparisons are made in each time-interval, At, and
D’ (m, 1) is adjusted accordingly.

4. The plastic deformation” of the pile tip, D' (p, ), re-
mains constant, starting at zero, unless changed by the con-
dition (see Fig. 4.7b)

o}

'Displacement

(@) Pile Shaft

9} Time

~C )
\v Dpt) } Permanent Set, S

Displacement

{

(b) Pile Point

FIGURE 4.7 Displacements of pile vs. time.



D' (p, ) < D(p, 1)~ Qp) (4.28)

This comparison is made at each time-interval and D' (p, t)
is adjusted accordingly.

5. The soil resistances R(m, t) for m = 3 to p are calculated
from Eq. (4.19). If desired, when D(m, t) - D' (m, t) first
becomes zero, Eq. (4.22) may be used.

6. The spring compressions C(m, ¢) form =1top- 1 are
calculated from Eq. (4.17).

7. The forces in the pile elements, F(rm, t), are calculated
from Eq. (4.18) for the pile elements in which no internal
damping occurs, or from Eq. (4.21) for the capblock and
cushion block (m = 1 and 2). For the capblock, which is
not attached to the pile, F(1, r) can never be lessthan zero.
For the pile cap, two cases are possible:

(a) F(2, 1) > 0 if cap is not properly attached.
(b) F(2, 1) can be negative if cap is attached to pile.

Case (2) or (b) must be specified at the start of the prob-
lem.

8. The velocity ¥(m, 1) is calculated for m = 1 top from
Eq. (4.20).

9. The cycle is repeated for successive time-intervals until
the pile segments reach their maximum downward move-

ment and rebound upward. Unless Eq. (4.22) is used for

R(m, t), the computation can be terminated when

@D (ptH-D(pt-1)=0.

(b) ¥(1, ) to V(p, t) are all simultaneously negative or zero.

The permanent set of the pile tip as a result of the ram blow
is the maximum value of D' (p, 1).

10. If the relationship between permanent set (or its reci-
procal, the blow count), and the ultimate resistance R, of
the pile is required,; various values of R, -are chosen and the
procedure repeated. A plot of R, versus permanent set (ot
blow count) may thus be obtained.

It is obvious that the above procedure requires the use
of a computer for practical problems. A simple computer
program has been given by Bowles(1977).

In employing the numerical procedure described above,
the accuracy of the resulting solution will depend on the
values of Ar and AL chosen. It has been shown that for
free longitudinal vibrations in a continuous elastic bar, the
discrete element solution is an exact solution of the partial
differential equation when

At = — (4.29)

VETp '
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Because inelastic springs and material of different densities
and elastic moduli are usually involved in practical prob-
lems, Samson et al. (1963) recommended a value of Az of
about half the value given by Eq. (4.29). The accuracy of
the solution is more sensitive to the choice of At if the pile
is divided into only a few elements. The solutions of Sam-
son et al. suggest that AL = L/10 is generally a reasonable
division'of the pile. Smith’s original suggestions on Ar and
AL were 1/4000 sec. and 8 to 10 ft, respectively, for most
practical piles, which are consistent with the values recom-
mended above.

Modification for Effect of Gravity

Smith’s original procedure does not account for the static
weight of-the pile since all springs, internal and external,
are assumed to exert zero force at ¢ = 0: that is, F(m, 0) =
R(m, 0) = 0. If the effect of gravity is to be included, these
forces must be given initial values to reproduce equilibrium
of the system; in fact, these initial values should be those
in effect as a result of the previous blow, but this refine-
ment appears unjustified (Samson et al., 1963).

Studies by Samson et al. (1963) indicate that the gra-
vity effect is relatively small, and in a typical case, the effect
of gravity was to increase the permanent set by about 10%.
For practical purposes, it does not appear necessary to in-
clude the effect of gravity in the wave-equation analysis.

4.3.4 Values of Soil Parameters

The soil parameters required for the wave-equation analysis
are the ultimate soil resistance, R, ; quake, Q; and damping
factor, J.

Ultimate soil resistance, R, _
Various values of R, are input into the computer program
and the corresponding permanent set determined. The main
problem with R,, is to determine the relative proportions of
shaft and base resistance. A reasonable estimate of these
proportions may be made by estimating the static shaft and
base resistances from the known or assumed soil properties,
as described in Chapter 3. A typical example of the effect
of varying the proportions of shaft and base resistance is
shown in Fig. 4.8. A somewhat higher ultimate resistance
for a given driving resistance is obtained if some shaft resis-
tance is considered, rather than only end-bearing. As a
rough guide where other information is not available, values
of the percentage of shaft resistance suggested by Forehand
and Reese (1964) are sHown in Table 4.7.
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FIGURE 4.8 Resistance vs.
1964).

set curves for 36-in.-diameter prestressed concrete Pile. Effect of percentage point load (Forehand and Reese,

TABLE 4.7 EMPIRICAL VALUES

OF Q, J, AND PERCENT SIDE ADHESIO_N‘z

soil-resistance curves employed .by Seed and Reese (1957)
and Coyle and Reese (1966).
An example of the effect of varying Q on the R, ver-’

Side sus driving-resistance curve is shown in Fig. 4.9. The curves
0 J(p) Adhesion have been obtained by Hirsch et al. (1969) for a steel-pipe
Soil (in.) (sec/ft) (% of Ry) pile in a layered-soil profile consisting mainly of clays. Ry,
tends to decrease as Q increases.
Coarse sand 0.10 0.15 35 ]
i itr
Sand and clay or ’ ' Empirical correlations between J and soil type obtained by
loam, at least 50% 0.20 0.20 25 Forehand and Reese (1964) are shown in Table 4.7. The
of pile in sand values in this table are for the pile point [i.e., J(»)]. The
Silt and fine sand average value for the sides of the pile J(rm) have been found
underlain by hard 0.20 0.20 40
strata
Sand and gravel
underlain by hard 0.15 0.15 25 350
strata M
, 300 QePE" 5 08
@ After Forehand and Reese (1964) 2 /0'\0997/’ »
er Forehan . ~ 250
g =
Quake, Q g eor
. s g
Values of Q have been obtained empirically to date, and 2 150 R
the single empirical values of Q for all elements of the pile K4
suggested by Forehand and Reese (1964) are shown in 3 004
Table 4.7. It is, however, also possible to derive values of 7 oL/
Q theoretically from pile-setilement theory if the ‘“elastic” { ,
soil parameters are known (see Chapter 5). On the basis of o b e 50 555 300 3%0
this theory, the value of Q varies along the pile, with the Blows Per Foot

value at the pile tip being greater than the values along the
shaft. Alternatively, Q could also be estimated from the

FIGURE 4.9 Effect of varying Qgge (Hirsch et al., 1969).
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FIGURE 4.10 Effect of J (Hirsch et al.,. 1969). Arkansas load test,
pile 4.

to be less than J(p), and for practical purposes, it has been
suggested that

Jm) = %—J(p) (4.30)
A typical example of the effect of J(p) [J(m) = %J(p)]

is shown in Fig. 4.10 for a pipe pile in a relatively dense
medium to fine sand with some thin seams of clay (Arkan-
sas Test Piles, Hirsch et al., 1970). For a given blow count,
R, decreases as J(p) increases.

Various attempts have also been mace to measure J(p)
from static and dynamic tests on triaxial specimens (Coyle
and Gibson, 1970). It has been found, however, that J(p)
is dependent on the velocity of deformation for both sands
and clays, decreasing as velocity increases. Coyle and Gibson

10+
Ottoawa Sand
O-BF
[ONT o
Jip) --Victoria Sand
oal -Arkansas
Sand
O2r
0 L 1 1 1 1
0 10 20 30 40 50

@ < Degrees)

FIGURE 4.11 Effective angle of internal shearing resistance vs.
damping constant for sand (Coyle and Gibson; 1970).
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FIGURE 4.12 Liquidity index vs. damping constant for clays
(Coyle and Gibson, 1970).

suggest that this problem can be overcome by rewriting
Smith’s original Eq. (4.19) as follows:

R(m, 1)y = [D(m, t) - D' (m, )]
XK' (m) {1 +Jy(m) [V(m, - D]N}

4.31)

where J,(m) is a modified damping factor and the exponent
Nis less than 1.

The most suitable values were found to be

N = 0.20 for sands
N = 0.18 for clays

On the basis of the above modified equation, Coyle and
Gibson found J,(p) to be almost independent of velocity,
and reasonable correlations between J,(p) and soil pro-
perties could be obtained. The relationship between J,(p)
and ¢’ for sands is shown in Fig. 4.11, while the relation-
ship between J,(p) and the liquidity index for clays is
shown in Fig. 4.12.

4.3.5 The Effect of “Set-Up”

As described in Chapter 2, driving a pile into normally con-
solidated clay results in the creation of‘excess pore pres-
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FIGURE 4.13 Effect of pile characteristics (McClelland et al.. 1969).

sures and subsequent consolidation and possible regain in
soil strength and pile-soil adhesion. As shown in Fig. 4.13a
(McClelland et al., 1969), under these circumstances, a pile
hammer with a driving limit less than design capacity may
successfully drive a pile to design penetration. A prediction
of the pile capacity on the basis of the wave equation, how-
ever, will only give the pile capacity immediately after

- driving; thus, if the pile capacity some time after driving is
required, some knowledge of the amount of “set-up” (i.e.,
increase in soil strength and adhesion with time) is required.
If the “set-up” factor (the ratio of soil strength a consider-
able time after driving to that immediately after driving)
can be estimated, the final load capacity, Ry, can be cal-
culated as follows:

I
Rup = >, AR;sk; (4.32)
=1
where

AR; = immediate soil resistance in soil type i, as calcu-
lated from the wave equation
sk; = set-up factor for soil type i
! = number of soil layers through which the pile is
driven

Lowery et al. (1969) tentatively suggest that a set-up factor
of 3 might be appropriate for soft clays, 2 for firm and stiff
clays, and 1 for other soils.

McClelland et al. (1969), on the other hand, consider
that for piles driven into hard clay or sand, a decrease of
soil strength and adhesion with time could occur. The final
static resistance of the pile would then be less than the re-

sistance during driving (see Fig. 4.13b), and under these cir-
cumstances, the driving limit of the hammer may be reached
before design penetration is reached.

4.4 TYPICAL SOLUTIONS FROM WAVE-EQUATION
ANALYSIS

4.4.1 Resistance versus Set Curves

Effects of Pile Characteristics _

Typical solutions showing the effect of various pile charac-
teristics on the resistance versus set curves have been pre-
sented by McClelland et al. (1969). The problem considered
is shown in Fig. 4.14, together with the effects of pile
length above the ground, embedded length, distribution of
soil resistance, and pile wall thickness. The effects of the
first two factors are relatively small, while as previously in-
dicated in Fig. 4.8, the ultimate resistance increases as the
proportion of load taken by the pile point decreases. The .
effect of pile wall thickness is quite marked, with the ulti-
mate resistance increasing as the wall thickness increases.
Bender, Lyons, and Lowery (1969) have found that a pile
having a varying wall thickness along its length may be ade-
quately replaced by a pile of equivalent uniform thickness.

Effect of Hammer Characteristics . . .
For the same problem shown in Fig. 4.14, the effect of the
hammer energy is shown in Fig. 4.15. The resistance in-
. creases as the hammer energy increases, but doubling the
energy leads only to an increase of about 28% in this case.
For the 60,000—ft-lb hammer, which is widely used in the
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FIGURE 4.14 Effect of pile characteristics (McClelland et al.; 1969).

United States, the maximum pile-load capacity for the pile
considered is on the order of 1200 tons for a practical driv-
ing limit of 40 blows per in. For offshore pile installations,
capacities in excess of 2000 tons may be required, and
under these circumstances, using a large blow count or in-
creasing the energy rating of the hammer are not efficient
solutions. As shown in Fig. 4.14, increasing the pile wall
thickness may be effective. Alternatively, McClelland et al.
(1969) suggest four possible solutions:

(a) Driving an insert pile through an initially installed, larg-
er pile.
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FIGURE 4.15 Effect of hammer energy (McClelland et al., 1969).

(b) Grouting a pile into an oversized hole.

(c) Driving a pile concentrically with an undersized pilot
hole.

(d) Driving a pile with the aid of uncontrolled drilling or
jetting.

These four procedures are illustrated in Fig. 4.16.

The effect of ram shape and hammer efficiency has
been examined by Bender, Lyons, and Lowery (1969). For
a given ram weight and fall, a longer ram was found to be
slightly more effective than a shorter one, although the

i

|3

7/ S
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Insert pile Controlled Uncontrolled
(driven) pile drilling drilling
(re-driven) (re-driven)
(@) (b) (c) (¢)

FIGURE 4.16 Installation procedures currently in use for piles that
cannot be installed by driving alone (McClelland et al., 1969).
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presence of a cushion tended to reduce the effect of ham-
mer shape. A reduction in hammer efficiency was found to
result in considerably more blows being required to drive
to a given resistance when the resistance is high. At lower
resistances, this effect is not as pronounced; however,
the net increasé in total driving time per pile can be quite
significant, and the possibility of not being able to drive the
pile to design penetration must be considered. Thus, neglect
of hammer maintenance can seriously reduce hammer capa-
bilities.

The effects of both hammer and pile characteristics on
the resistance versus set curves have also been examined by
Mosley and Raamot (1970), who give a series of solutions
for various sizes of steel and concrete piles driven by two
different hammers.

Effect of Cushion Stiffness
An example of the effect of cushion stiffness is shown in
Fig. 4.17 (Bender, Lyons, and Lowery, 1969). As the cush-
ion stiffness decreases, the ability to drive against soil resis-
tance decreases. Figure 4.17 suggests that there is an opti-
mum cushion stiffness that can provide adequate protection
for the hammer and pile while not seriously affecting the
driving capability of the system. For example, increasing
- the cushion stiffness above about 1000 kip/in. when driving
against, 800-kips resistance does not lower the number of
blows per foot and will lead to higher driving stresses with
no gain in driveability. It is clear that in practice the cushion
should be inspected at regular intervals, so that a deterio-
rated cushion, which might adversely affect the driving pro-
cess, may be detected and replaced.

Effect of Soil Characteristics
The effects of varying the quake Q and damping factor J
have been shown previously, in Figs. 4.9 and 4.10, while
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FIGURE 4.17 Effect of cushion stiffness (Bender et al., 1969).

the effect of relative shaft and point resistances has been
shown in Figs. 4.8 and 4.14.

4.4.2 Pile Stresses

Effect of Pile Characteristics

For typical cases involving prestressed concrete piles, Sam-
son et al. (1963) have investigated the influence of the
Young’s modulus of the pile and the stiffness of the cush-
ion block on the maximum tensile &rid compressive stresses
in the pile. Higher compressive and tensile stresses are de-
veloped for higher values of pile modulus or increasing stiff-
ness of the cushion block. The high tensile stresses are of
considerable interest, especially for a prestressed concrete
pile, and could significantly influence the design of the pile
and the specification of driving conditions. Samson et al.
(1963) have noted that the time for a tensile wave to be
reflected back along a typical pile is less than 0.02 sec,
whereas the time interval between successive blows, for a
typical rate of 105 blows per min, is 0.57 sec—that is, about
28 times greater than the time for tensile-wave reflection.
Thus, successive blows cannot be relied upon to reduce ten-
sile stresses. '

Effect of Hammer Characteristics

Samson et al. {1963) have also investigated the effects on
pile stresses of ram velocity and weight, and of explosive
pressure {as might be encountered in certain types of diesel
hammers). The ram velocity is of primary importance, the
stresses increasing with increasing velocity. However, the
effects of ram weight and explosive pressure are relatively
minor.

Effect of Soil Characteristics -

From Figs. 4.9 and 4.10, it will be seen that an increase in
both quake Q and damping J lead to a decrease in R, and
hence to lower driving stresses in a given pile.

4.5 RELIABILITY OF WAVE EQUATION

Investigations of the reliability of the wave equation in pre-
dicting ultimate resistance have been made by Sorensen and
Hansen (1957) and Lowery et al. (1969). A statistical ana-
lysis of the above comparisons is summarized in Table 4.8.
Despite differences in application of the wave equation in
the two cases, the results are reasonably consistent and in- .
dicate that the wave equation is at least as good as the best
of the pile-driving formulas (see Section 4.2). Lowery et al.



TABLE 4.8 STATISTICAL ANALYSES
OF WAVE-LQUATION RELIABILITY

Reference Standard Upper Limit for Nominal Number
Deviation 96% Safety if Safety of Load
on u Lower Limit Is  Factor Tests

1.0

Hansen &

Sorensen 0.23 4.0 2.7 78

(1957) :

Lowery et al.

(1969) 0.26 3.4 2.0 31

u = ratio of measured to computed load capacity

(1969) consider that load capacity is predicted by the wave
equation to an accuracy as follows:

Piles in sand: = 25%
Piles in clay: = 40%
Piles in sand & clay: + 15%

Some comparisens have also been made between mea-
sured and predicted stresses in the pile during driving, a de-
tail that cannot be predicted by conventional pile-driving
formulas. A typical comparison made by Samson et al.
(1963) is shown in Fig. 4.18 for a point 9.5 ft below the
pile head. Fair agreement is found when internal damping
is considered.
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FIGURE 4.18 Comparison of theoretical and test results: pile IV
(Samson et al., 1963).
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Despite the above comparisons, care should. be taken
when attempting to use any dynamic approach, whether
it be a pile-driving formula or the wave equation, for esti-
mating the static bearing capacity of a pile, since such ap-
proaches strictly only predict the pile capacity just after
driving. In soft clays, “set-up” can greatly affect the load
capacity of a pile subsequent to driving, as described in Sec-
tion 4.3.5, and unless an appropriate allowance is made,
serious errors in predicted capacity could result. Also, if
piles are driven thrbugh a compressible soil that may conso-
lidate under its own weight or may be subjected to fill or
embankment loading, a downdrag force is transmitted to
the pile by “negative friction” acting on the pile surface.
In considering the safe load that can be applied to such
piles, account should be taken of this downdrag force,
which may in some cases be a significant part of the ulti-
mate load capacity of the pile. The calculation of down-
drag forces caused by negative friction is treated in detail
in Chapter 11. '

4.6 PILE IMPEDANCE

Parola (1970) used the concept of impedance to motion
to examine energy transmission from the ram to the pile,
as a function of system impedance. His simplified analy-
sis simulated ram-drive head impact and energy transmission
to an infinite elastic rod. From a series of analyses employ-
ing a rarge of hammer-cushion-pile properties commonly
used in practice, Parola found that a range of pile/hammer
impédance values would assure at least 90% efficient ener-
gy-transfer to the pile, this range being expressed as:

pcA = (0.6 to 1.10) /ii;im_(K) (4.33)

where

= mass density of pile

= wave velocity in pile =vE/p

= Young’s modulus of pile
cross-sectional area of pile

am = ram weight

= axial stiffness of pile cushion

= acceleration as a result of gravity

N T AMmO®
I

The quantity pcd is defined as the pile impedance, apd the

term /EE“(K) represents the driving impedance.
g
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The implications of this concept are as follows. Too
stiff a pile, and hence too large a pile impedance, will cause
the ram to rebound, reflecting input energy. Piles having
too low an impedance absorb only a portion of the ram
energy, as the ram will follow the pile and retain energy.
Either condition causes inefficient driving and may cause
pile damage. Pile impedance also has a significant influence
on peak driving stresses. Higher impedance piling (heavier
and/or stiffer sections) induces higher peak stresses and
shorter impact durations under otherwise similar conditions.

Along with matching the impedance of the pile and
driving system, consideration must also be given to the
shape of the transmitted stress wave in order to ensure the
most efficient driving system. Parola found that pile drive-
ability is directly influenced by stress-wave shape, For easy
driving conditions (low resistance to penetration), it was

found that longer impact duration (longer stress-wave.

length) was more effective in increasing penetration per
blow than was the magnitude of the impact stress. Con-
versely, for hard driving conditions, pile penetration was in-
creased more effectively by increased stress amplitude than
by increased impact duration. Thus, in the latter case, use
of a lighter ram at higher impact velocity, a stiffer cushion,
and a higher impedance pile all tend to produce a higher
stress-wave of shorter duration, and this stress-wave shape
will drive piling more efficiently under hard driving condi-
tions. Under easy driving conditions, the selection of the
opposite trend in any of the above variables will produce
more penetration per blow. The judicious selection of a
compatible hammer-pile-soil system may therefore optimize
driveability and minimize installation cost. It is in pursuing
this aim that the wave-equation analysis probably enjoys its
greatest success.



SETTLEMENT ANALYSIS

OF SINGLE PILES

5. IMTROL .. ON

Traditional methods of calculating the settlement of a pile
rely on either an arbitrary assumption of the stress distri-
bution along the pile and the use of conventional one-
dimensional theory (Terzaghi, 1943), or on empirical cor-
relations. Typical of these correlations are those proposed
by Meyerhof {(1959) for piles in sand and Focht (1967)
for piles in ciay. From an analysis of a number of load tests,
Meyerhof has suggested that at loads less than about one
third of the ultimate, the settlement of p of a pile could be
estimated as follows (provided that no softer layers exist
beneath the pile):

dp
= e 5.1
P =R (5.1
where

dp = diameter of pile base

F = factor of safety (>3) on ultimate load

Focht (1967) has examined data from a number of load
tests and has related the observed settlement, p, at the
working 1nad to the computed column deformation pq at
the working load. Facht Has defined a “movement ratio”” as

p/Peol, and has found that for relatively long highly-stressed
piles having p.o > 8 mm, the movement ratio is on the
order of 0.5, whereas for relatively rigid piles, having p.o <
8 mm, the movement ratio is larger, on the order of 1.0.
With the advent of computers, more-sophisticated
methods of analysis have been developed to predict the
settlement and load distribution in a single pile. Such
methods may be classified into three broad categories:

1. “Load-transfer’ methods, which use measured relation-
ships between pile résistance and pile movement at various
points along the pile.

2. Methods based on the: theory of elasticity that employ
the equations of Mindlin (1936) for subsurface loading
within a semi-infinite mass. '

3. Numerical methods; and in particular, the finite-
element method.

" This chapter describes these methods and discusses their.
advantages and limitations. Attention is then concentrated
on solutions obtained .from the elastic-based analysis and
their use in predicting the load-settlement behavior of piles.
The estimation of the required soil parameters is then -dis-
cussed, and finally, some comparisons between observed
and theoretical pile behavior are presented.

71
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5.2 -THEORETICAL METHODS OF ANALYSIS
5.2.1 Load-Transfer Method

This method, proposed by Coyle and Reese (1966), utilizes
soil data measured from field tests on instrumented piles
and laboratory tests on model piles. The relevant soil
data required in this method are curves relating the ratio
of the adhesion (or load transfer) and the soil shear strength
to the pile movement. Such curves were first developed by
Seed and Reese (1957), and a typical relationship is shown
in Fig. 5.1. In actual problems, a number of such relation-
ships may be required to describe the load transfer along
the whole length of the pile.

The load-transfer method may be summarized as
follows:
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FIGURE 5.1a Typical shear stress vs. pile movement curve (after
Coyle and Reese, 1966).

Pile
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FIGURE 5.1b Load-transfer analysis (after Coyle and Reese, 1966)

1. The pile is divided into a number of segments (for sim-
plicity, three segments are shown in Fig. 5.1b).

2. A small tip movement, p;, is assumed (zero may be
selected, but generally the tip undergoessome movement,
except for end-bearing piles on rock).

3. The point resistance, P;, caused by this movement is
calculated. This may be done approximately by assuming
the pile tip to be a rigid circular area and employing the
Boussinesq theory:

2dEp,

Pe= oy

(5-2)

where

E, v are- the average deformation parameters of the
material beneath the tip, estimated from triaxial tests
or other data

" 4. A movement, ps, in the bottom segment at midheight

is assumed (for the first trial, assume p3 = p;).

5. Using the estimated p3, the appropriate curve of load-
transfer/soil-shear-strength versus pile movement (e.g., as
in Fig. 5.1) is used to find the appropriate ratio.

6. From a curve of shear-strength versus depth, the
strength of the soil at the depth of the segment is obtained.

7. The load transfer or adhesion is then calculated as 7, =
(ratio X shear strength). The load @3 on the top of segment
3 can then be calculated as

O3 = P + 7,L3P; - (5.3)

where

L3 = length of segment 3
P, = average perimeter of segment 3

8. The elastic deformation at the midpoint of the pile seg-
ment (assuming a linear variation of load in the segiment) is
calculated as

Om +Pt>< L >
A’ = < 54
P3 5 2A3Ep ( )
where
+ P
Om = Q'_‘“3 2—t

A5 = area of segment 3
E}, = pile modulus

9. The new midheight movement is then given by
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FIGURE 5.2 Design load-transfer curves for pipe piles in clay
(Coyle and Reese, 1966).

Py = p¢ + Aph (5.5)

10. p} is compared with the estimated value of p; from step
4).

11. If the computed movement p3 does not agree with p3
within a specified tolerance, steps (2) to (10) are repeated
and a new midpoint movement calculated.

12. When convergence is achieved, the next segment up is
considered, and so on, until a value of load (Qo) and dis-
placement (p,) for the top of the pile are obtained.

The procedure is then repeated using different assumed
tip movements until a series of values of Qg and po are

Arkansas test piles 1, 2, and 10
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obtained. These values can then be used to plot a computed
load-settlement curve.

On the basis of field data on instrumented piles and
laboratory tests on model piles, Coyle and Reese derived a
series of three average curves of load transfer, shear-strength
versus pile-movement curves for various depths, which are
shown in Fig. 5.2. The interpretation of the tests on in-
strumented piles to obtain these curves is described in
detail by Coyle and Reese (1966). The curves in Fig. 5.2
are limited to the case of steel-pipe friction piles in a clay
soil with an embedded depth not exceeding 100 ft, and the
soil shear strengths in these curves have been obtained from
unconfined compression tests.

From a series of tests on instrumented pile in sand,
Coyle and Sulaiman (1967) have presented data on the
load-transfer-versus-movement characteristics for steel piles
in saturated sand, a summary of which is shown in Fig. 5.3.
This data suggests that for depths of O to 20 ft, curve A4,
with an upper limit of skin friction of twice the shear
strength, can be used (considerably higher values were
obtained at shallow depths). For depths greater than 20 ft,
the measured relationships approach curve B, with an upper
limit of skin friction of 0.5 times the shear strength.

Reese et al. (1969) carried out load tests to study the
load transfer along bored piles in clay. On the basis of a
curve-fitting analysis of these test results, the following
refationship between .load transfer (adhesion) and pile
movement was developed: ,

e = Tamax-[z.o \/g - (%)] (5.6)
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FIGURE 5.3 Design load-transfer curves for piles in sand (after Coyle and Sulaiman, 1967).
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where

74z = adhesion at depth z (tons/ft?)
Tamax = Maximum adhesion that can occur at any

depth (tons/ft?) -
p = downward movement of pile at depth z (in.) '
so = 2de (in.)

d = pile diameter .

€ = average failure strain, in percent, obtained
from stress-strain curves for unconfined com-
pression tests run on soil samples near the pile

tip

Although the load-transfer method has gained quite
wide acceptance, the following theoretical and practical
. limitations should be recognized:

(a) In using the load-transfer curves, it is inherently as-
sumed that the movement of the pile at any point is related
only to the shear stress at that point and is independent of
the stresses elsewhere on the pile. This inherent assumption
is equivalent to that made when the theory of subgrade
reaction is used to analyze laterally loaded piles. Thus, no
proper account is taken of the continuity of the soil mass.
(b) The load-transfer method, because of its inherent dis-
regard for continuity of the soil, is not suitable for analyz-
ing load-settlement characteristics of pile groups..

(c) In order to obtain load-transfer curves at a site, con-
siderably more instrumentation is required on a pile than
for a normal pile-load test. Extrapolation of test data from
one site to another may not always be entirely successful.

5.2.2. Analysis Based on Elastic Theory

Flastic-based analyses have been employed by several
investigators: for example, D’Appolonia and Romualdi
(1963), Thurman and D‘Appolonia (1965), Salas and Bel-
zunce (1965), Nair (1967), Poulos and Davis (1968), Mattes
and Poulos (1969), Poulos and Mattes (1969a), Butter-
field and Banerjee (1971a, 19715), Banerjee and Davies
(1977), Randolph and Wroth (1978). In most of these ap-
proaches; the pile is divided into a number of uniformly-
loaded elements, and a solution is obtained by imposing
compatibility between the displacements of the pile and the
adjacent soil for each element .of the pile. The displace-
ments of-the pile are obtained by considering the compres-
sibility of the pile under axial loading. The soil displace-

ments are obtained in most cases by using Mindlin’s equa-
tions for-the displacements within a soil mass caused by
loadifig within the mass. ’

The main difference between the various methods liesin
the assumptions made regarding the distribution of shear
stress along the pile. D’Appolonia and Romualdi, Thurman
and D’Appolonia, and Salas and Belzunce assume the
shear stress at each element to be represented by a single-
point load acting on the axis at the center of each element.
Nair assumes a uniformly-loaded circular area at the center
of each element. Poulos and Davis, Mattes and Poulos,
and Poulos and Mattes consider a shear stress distributed
uniformly around the circumference of the pile. The latter
appears to be the most satisfactory of those mentioned,
especially for shorter piles. However, for relatively slender
piles, there is very little difference between solutions
based on the three above representations of shear stress.
In the derivations described below, the method of Poulos
and Davis (1968), among others, is followed. The basic
problems of a floating or friction pile in a semi-infinite mass
and an end-bearing pile are considered in detail and modifi-
cations to these analyses are described.

5.2.2.1 BASIC ANALYSIS FOR SINGLE FLOATING PILE

The pile is considered to be a cylinder, of length L, shaft
diameter d, and base diameter dp, and loaded with an
axial force P at the ground surface. For the purposes of the
analysis, the pile is acted upon by a system of uniform
vertical shear stresses p around the periphery, and the base
is acted upon by a uniform vertical stress pp, as shown in
Fig. 5.4. The sides of the pile are assumed to be rough. The
soil is initially considered to be an ideal homogeneous iso-
tropic elastic half-space, having elastic parameters E and v,

that are not influenced by the presence of the pile. Modifi-
cations. for more realistic representation of soil behavior
will be discussed later. Unless otherwise stated, dp will be
taken to be equal to d. l
As in almost all methods of pile-settlement analysis,
it is assumed, that the pile and soil are initially stress-free,
and that no residual stresses exist in the pile resulting from
its installation. Holloway et al. (1975) emphasize the im-
portance of residual pile-soil stresses on pile behavior and
on the interpretation of pile-load tests, and suggest a meth-
od for evaluating such stresses. However, in order to reduce
the complexity of the’analysis here, the assumption of an
initially stress-free pile is adopted; as subsequently will be
demonstrated for predicting pile settlements, the influence
of the residual stresses may be adequately taken into
account by choosing appropriate values of the soil modulus.
If conditions at the pile-soil interface remain elastic
and no slip occurs, the movements of the pile and the
adjacent soil must be equal. The correct values of the stress
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system p* and base stress pp, will be those that satisfy this
condition of displacement compatibility. Ideally, consider-
ation should be given to compatibility of both vertical and
radial displacements, and a normal stress system o should
also then be imposed on the pile elements. However, as will
be discussed, this more-complete analysis gives solutions
that are generally almost identical with those from a sim-
pler analysis that considers only vertical displacement com-
patibility: therefore, only the simpler analysis is described
in detail. Details of the more complete analysis are given by
Butterfield and Banerjee (1971) and by Mattes (1972). It
has also been shown by Mattes (1972) that an even more
refined analysis, one recognizing the difference between the
fictitious and the real stress-systems, gives for piles and

* The shear stresses (p) are fictitious in that they represent trac-
tions applied to the boundaries of the imaginary surface in the half-
space representing the pile surface, and are not necessarily the actual
stresses acting on the real-pile surfaces. Once the. values of p are
determined, the actual stresses and displaceme#ts they produce
anywhere in the half-space, including the real-pile boundaries, may
be calculated.

P
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(d) Pile etement
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(e) Stresses on pile

piers of normal proportions very similar solutions to those
from the simple analysis described below.

In order to obtain a solution for the values of p, pp, and
the displacement of the pile, it is necessary to obtain ex-
pressions for the vertical displacement of the pile and the
soil at each element.in terms of the unknown stresses on
the pile, impose the compatibility condition, and solve the
resulting equations.

Soil Displacement Equations

Considering a typical element i in Fig. 5.4, the vertical
displacement of the soil adjacent to the pile at i resulting
from the stress p; on an element j can be expressed as

. _d :
LY = g P (5.7
where
Iy = vertical-displacement factor for element i due to

shear stress at element ;
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As a result of all n elements and the base, the soil dis-
placement at 7 is

d dp .
sPi =E—E(1¢'P;) + <—11b> Pb (5.8)
$ =) Es

where

Iy = vertical displacement factor for element i due to
uniform stress on the base

A similar expression may be written for the base; and

for all elements on the pile, the soil displacements may be
written as

(9} = £ 1) 1) (59)

{sP} = soil-displacement vector
{p} = pile stress vector
[/s] = n+ 1 square matrix of soil-displacement factors

factors i
_f dp
[Is] = 1112 llnllb'F
d
IEYR Y 12n12b'7b
d
In1In Innlnb'Fb
d
Ip1Ip2 Tpn Ipp* Fb
L .

Evaluation of the elements of /g is most conveniently car-
ried out by integration of the Mindlin equations (Mindlin,
1936) for the displacement caused by a point load within
a semi-infinite mass. Details of the relevant integration
are given in Appendix A.

Pile Displacement Equations
The pile material is assumed to have a constant Young’s
modulus £, and area of pile section Aj. It is convenient to
define the area ratio, R 4, as

A
7d? (4
ratio of area of pile section A, to area bounded
by outer circumference of pile

Ry = (5.10)

For a solid pile, R4 = 1.

In calculating the displacement of the pile elements,
only the axial compression of the pile is considered. Refer-

ring to Fig. 5.4d, consideration of vertical equilibrium of a
small cylindrical pile element yields

do _ -4p

9z Ryd ¢.11)
where

o = axial stress in pile (average over the cross section)

p = shear stress on pile surface

The axial strain of this element is

*

%’-Z‘l - % (5.12)
where
‘pp = displacement of pile
From Eq. (5.11) and (5.12),
%e . <4£>< L > (5.13)
922 d EpR 4

This equation can be written in finite-difference form
and applied to the points i = 1 to n. Equation (5.11) may
sindilarly be applied to the top of the pile, where ¢ =
P[4, and Eq. (§.12) to the base of the pile, where o =
Py The following relationship is then obtained for the pile
displacements (Mattes and Poulos, 1969):

d o
{p} = 257 EpRallpHpr} + 1Y} (5.14)
where
{p} = n+1 shear-stress vector
{pp} = n+1 pile-displacement vector
" [4,] = pile-action matrix, (n+1) by (n+1)
=|-1 1 00 «vr+roeeess 00 0 O

1-2 10 sceeree 00 0 O
01 21 c-ccecocses 00 0O O
0 O 00 -vvvocoons 01-2 1
O 0 00 .......... 2 2 -—5 32
0 Q0 QQceovemronss 0_—?12f_i32—f

* This equation involves the approximating assumption that the
pile is undergoing pure compression under 2 uniform axial stress o,
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Displacement Compatability

When purely elastic conditions prevail at the pile-soil inter-
face (i.e., no slip), the displacements of adjacent points
along the interface are equal, that is,

{pp} = {spt (5.15)

Equations (5.9), (5.14), and (5.15) give

) = [m - (;1(,/—5> (K[Ip])([fs])]_l -{Y} (5.16)

where [I] = unit matrix of order (n+1).

K = ﬁ;ﬁ (5.17)
s
= pile stiffness factor

K is a measure of the relative compressibility of the pile and
the soil. The more relatively compressible the pile, the
smaller the value of X.

Approximate Treatment for Nonuniform Soil

The foregbing analysis assumes constant soil-deformation
parameters at all points within the soil. An approximate
allowance may be made for the effects of varying soil-de-
formation moduli along the length of the pile by assuming
that the stress distribution within the soil remains the same
as if the soil were homogeneous, but that the soil displace-
ment at a point adjacent to the pile is a function of the soil-
deformation moduli at that point. With this assumption,
the soil-displacement equation (5.9) is modified as follows:

o) = a{ £} 12} (519)
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where

AN vector of reciprocal values of soil Young’s mod-
J ulus along the pile '
For a point i, the elements of [[;] are calculated for the

value of vy at i.

The pile-displacement equation (5.14) remains un-
changed, so that combining of Egs. (5.18) and (5.14) yields
the analogous equation to (5.16), which may be solved for
stresses and displacements along the pile. '

Although the above approach is only approximate, it
should give sufficiently accurate solutions for practical
purposes, unless sudden large variations in soil moduli occur
along the pile length. In such cases, a better solution is
obtained if the soil modulus £ is taken as the mean of
the value at point i and the influencing element j. This pro-

‘cedure leads to lower settlements that are in reasonable

agreement with finite-elernent solutions (Poulos, 1979).

Approximate Treatment for Finite Layer Depth

The elements of [[;] calculated as previously described ap-
ply only for a soil mass of inifinite depth. For soil layers of
finite depth, the elements of /; may be obtained approxi-
mately by employing -the Steinbrenner approximation
(Steinbrenner, 1934). For a point i in a layer of depth A,
the displacement-influence factor Jjp) is then

Tijm) = L) = 1hj) (5.19)
where

ljj») = displacement-influence factor for i caused
by stress on element j, in a semi-infinite
mass

Tpj(e) = displacement-influence factor for a point
within the semi-infinite mass directly be-
neath 7, at a depth h below the surface,
caused by stress on element j

Using these adjusted elements of [/], Eq. (5.16) may be
solved for the stress and displacement distributions along
the pile.

‘For the case of # = L—that is, an end-bearing pile
resting on a rigid or stiffer stratum—an alternative, and
probably more reliable approach is described below.

5.2.2.2 PILE RESTING ON A STIFFER STRATUM

A great number of piles are installed such that the tip bears
on to a stratum that is stiffer than the soil along the shaft
of the pile. Such piles are often designated as “‘end-bearing”
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or ‘2p0int-vbearing,” but the results of several analyses and
field and laboratory measurements have shown that a signi-
ficant proportion of the load may be transferred from the
pile shaft to the surrounding soil.

To analyze the behavior of such piles, the analysis de-
scribed in the preceding section, for a floating pile, must be
modified to allow for the effect of the stiffer bearing-stra-
tum. The same assumptions are again made for the pile and
soil behavior, but in addition the bearing stratum is as-
sumed to be an ideal elastic half-space with constant para-
meters £}, and vp,. The problem is defined in Fig. 5.54. To
obtain the solution for the unknown stresses on the pile
shaft and tip, and the corresponding pile movements, com-
patibility of the vertical displacements of the pile and adja-
cent soil are’ again considered.

|-e—T0

Soil Displacement Equations

To properly determine the displacement in the soil sur-
rounding the pile, it would be necessary to use equations
for loading within a two-layer elastic system. Since suitable
analytical solutions to this problem are not available, Mind-
lin’s equations for displacements caused by loading within a
half-space may be utilized in an approximate manner. To
allow for the reduction in soil displacements because of
the presence of the bearing stratum, a method is used that
is an extension of the “mirror-image” approximation sug-
gested by D’Appolonia and Romualdi (1963) for piles
bearing on rock. Referring to Fig.’5.5b, pile element j is
mirrored in the soil-bearing stratum interface by an imagi-
nary pile element j','which is acted on by stress kp; in the
opposite direction to the stress p; on the real element j. The

Pile - L
Young's modulus Eg
— —d
) L
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Young's modulus Eg
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- ¢ 9 '—‘!‘
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FIGURE 5.5 Analysis of end-bearing pile.



limiting values of k are k= O for a floating pile where E},
= FYy, in which case the stratum has no effect on soil dis-
placements; and k = 1 for a pile resting on a rigid bearing-
stratum (£ = °°), in which case the condition of zero
tip-displacement is satisfied. In general, & must be deter-
mined as part of the analysis, and it is one of the assump-
tions of the analysis that it has the same value for all
imaginary elements.

Taking downward displacements of the soil as positive,
the displacement o7 of the soil at i because of the stress on
the real element j and the imaginary element ;| is

d :
spy = iy~ el ) (5.20)

where

I; = vertical displacement factor for i due to shear
stress on element j, as before

1,} = vertical displacement factor for 7 due to shear
stress on imaginary element j' (cajculated for a
distance L +h; from the imaginary soil surface)

If we make the simplifying assumption that the influence
of the stress on the pile tip has a negligible effect on the
soil displacement at 7, ;p;, then

) <E%>é<p’(1" oM ;f)> (s21)

and for all n elements along the pile shaft (not including the
pile tip),

(w0} = £-UUs - Lo} 52
where

{sp}and {p} = vectors of soil-displacement and shear-
_ stress, respectively (of order n)
[Is - k5] = nX nmatrix of values of [ - kI

Equation (5.22) is analogous to Eq. (5.9) for a floating
pile.

The soil displacement at the pile tip will be consi-
dered subsequently when dealing with compatability re-
quirements.

The values of /; and 1,'7 are evaluated from the Mindlin
equation as described in the previous section. '

Pile Displacement Equation
The displacement of each element of the pile itself may be
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divided into three components: displacement caused by
shear stresses along the pile, displacement caused by applied
axial load P, and displacement caused by the finite com--
pressibility of the bearing stratum. Again assuming only
axial compression of the pile, it may be shown (Poulos and
Mattes, 1969z) that the dlsplacement vector {,p} for the
n elements along the shaft is

{pp} = ‘{E—~pRA [Dp] (5.23)

i <1T(—1_$2>< >< >m} Ny el
@) @)

where

{Dp] = n X n matrix of pile displacement factors, with

Dpj = 48hjd fori<j
or
Dpj = 48hidfori>j -
= Lin
hi,h; = distances from bearing stratum to points / and

j (see Fig. 5.5¢)
{h} = n column vector of values of 4;
[X] = n X n matrix, every term of which is unity
{p}"= n column vector of p; values
{W} = n column vector of values of unity
R,4 = area ratio of pile (Eq. 5.10)

Displacement Compatibility
Assuming again no slip at the pile-soil interface, {,0} =
{0}, so that from Eqgs. (5.22) and (5.23),

1 m(1-vp>) /L
[ gaton + 2 (-

- Ll - aswd

Es
E) [X] (5.24)

+ [I-kf]] )

*(Z)(5) ]

where
= pile-stiffness factor, as defined in Eq. (5.17)

For a chosen initial value of k, Eq. (5.24) may be solved
to give the n unknown stresses p;. The stress acting on the
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pile base may then be evaluated from the equilibrium equa-
tion

(5.25)

Having obtained the solutions for the chosen value of
k, a closer estimate of & for the particular pile, soil, and
base parameters being considered may be obtained by ex-
amining compatibility between the displacements of the
soil and the bearing stratum at the pile base. The soil dis-
placement at the pile base is, from Eq. (5.24),

d -
0 = <j§s—>]§ (piIs; -~ kI'bj) (5.26)

where

ij,lf,j = vertical-displacement factors for the center
of the pile base.

However, from symmetry, /p; = 1},]-, so that

i(1-k :
0 = [C(E )]FEI (vilL)

N

5.27)

Making the simplifying assumption that, as far as the

bearing stratum is concerned, the displacement at the pile
base is caused by the base stress pp alone and is given by
the Boussinesq equation for the vertical displacement of a
rigid circular disc on a half space, it then follows that

b = ﬁzfpb)(jgi(l ) (5.28)

Thus, by equating Egs. (5.27) and (5.28), the next
approximation for the value cf « is as follows:

RCCE

J=1

(5.29)

Equations (5.24) and (5.25) may. now be solved again,
using this new value of k, and the process repeated until
convergence in the value of k is obtained. The soil and
bearing stratum-displacements along the pile may then be
calculated from Eqgs. (5.22) or (5.23). It has been found
that in many cases, only two or three iteration cycles give
adequate convergence of k.

5.2.2.3 MODIFICATION TO BASIC ANALYSES FOR SINGLE
PILE

Pile-Soil Slip

The analyses described above require that no slip occurs at
the pile-soil interface. However, since real soils have a finite
shear strength and the pile-soil interface has a finite adhe-
sive strength, slip or local yield will occur when the shear
stress reaches the adhesive (or yield) strength. By use of a
method similar to that described by D’Appolonia and
Romualdi (1963), Salas (1965), and Poulos and Davis
(1968), the elastic analyses can be modified to take ac-

-count of possible slip, provided that the following assump- -

tions are made:

1. Local yield or slip occurs at the pile-soil interface
when the average shear stréss on any pile element, calcu-
lated from the elastic analysis, reaches the limiting value
T4. . : '

2. Although compatibility of pile and soil displacements
at a yielded gjement is no longer possible, displacements
anywhere in the soil caused by the limiting stress 7, are
still given by elastic theory.

3. Failure of the tip or base of the pile occurs when the
base pressure reaches the ultimate bearing capacity of the
base, the displacements of the soil elsewhere resulting from
this pressure still being given by elastic theory.

In carrying out the modified analysis, it is convenient to
restate the elastic equation governing pile behavior in terms
of displacement rather than shear stress. Thus, using the
floating pile analysis as an example, Eq. (5.16), in terms of
the shear-stress vector { p}, alters to the following form in
terms of the displacement vector { p }:

2,2
Elug - () u]wr -1 3w
or
d
[2]-4p} = £V} (5.300)
where

21 = v - (5E0,)

The analysis is carried out incrementally, increasing the
applied load P successively. For any stage of loading, Eq.
(5.30b) is solved on the assumption that all elements are



elastic. From the resulting solution for {p}, the shear-stress
vector { p} is calculated from Eq. (5.14) or Eq. (5.9). These
shear stresses are then compared with the specified limiting
stresses 7,. At an element where the computed stress ex-
ceeds 7, the displacement-comnpatibility equation for that
element (i.e., the appropriate row of the matrix [Z] in Eq.
5.30b) is replaced by the pile-displacement equation for
that element (i.e., the appropriate row of the matrix in
equation 5.14), putting the shear stress at that element
equal to r,. For example, if an element i has slipped, the
elements Zj in row 7 of the matrix Z in Eq. (5.30b) are re-

placed by the elements ,/; of matrix ,/, while the element
2

d , : 4L
Yy, ioht. ; 1 (.
E, Y; on the right-hand side is replaced by R4 an (74

- Y;), where 7, is the value of 7, at element 1.

The modified system of equations is now resolved and
the procedure is repeated ‘until the computed values of
shear stress do not exceed the limiting values 7,.

By successively increasing the applied load P until all
elernents have failed, a load-settlement curve to failure may
be obtained.

Analyses taking account of pile-soil slip along the shaft
have revealed that for normal piles having length-to-dia-
meter ratios greater than about 20 and for constant 7., the
load-settlement curve is substantially linear until a load of
at least 50% of the failure load is reached. For the predic-

“tion of settlement at working loads for such piles, a linear-

elastic analysis is therefore adequate. For larger-diameter
piles or piers, full shaft slip may occur at relatively low
loads. For such cases, a simplified procedure for obtaining
the load-settlement curve, described in' Section 5.4., has
been developed.

Other Modifications

The basic analyses have been formulated in terms of a uni-
form pile with provision for a thin enlarged base. However,
extensions may readily be made to allow for cases in which
the shaft is not of uniform diameter or in which the pile is
attached to a pile cap resting on the soil surface.

For piles having nonuniform shaft diameter, the relative
diameters of the various shaft elements are considered when
calculating the pile and soil displacements. In those cases
where the shaft diameter of an element is less'than that of
the element above it, the stress on the annular area at the
junction of the two elements must be included as an addi-
tional unknown. Examples of the analysis of underreamed
and step-taper piles using the above approach have been

given by Poulos (1969). For piles with an énlarged base of

relatively large volume, the shaft elements near the base can
be considered to have an increased diameter; this approach
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is more accurate than considering only a thin, enlarged
base.

For the case of a pile with a rigid cap resting on the soil
surface, uniformly loaded anrular elements are included in
the analysis, to represent the pile cap. Compatibility of pile
and soil displacements is considered at these cap elements,
as well along the pile. Details of such an analysis are given
by Poulos (19685) and Butterfield and Banerjee (19715).
The effects are discussed later in this chapter and again in
Chapter 10.

5.2.2.4 ACCURACY OF ELASTIC SINGLE-PILE SOLUTIONS

Investigations into the sensitivity of the solutions on the
number of elements used in the analysis have shown that
the use of 10 elements. to_divide the pile shaft leads to
answers of acceptable accuracy unless the pile is relatively
long (L/d>50) or very compressible (K< 100), in which
case 15 or 20 elements may be desirable. For short, stiff.
piles, even the use of 5 elements gives accurate solutions.
The use of a single base element and the application of a ri-
gidity-correction factor (see Appendix A) also appears to
be quite satisfactory, as the solutions are almost identical
with those obtained by the use of 5 annular elements to
divide the base.

Complete solutions for the settlement of a pile, in
which both vertical and radial displacement compatibility
are considered, have been presented by Butterfield and
Banerjee (19714), and Mattes (1969; 1972). Comparisons
between the complete solutions and solutions in which
only vertical-displacement compatibility is considered,
are shown in Fig. 5.6 for the shear stress along the pile
{Mattes, 1969) and in Table 5.1 for the top displacement
of the pile (Mattes, 1972). Only for relatively short piles
(L/d<25) does the inclusion of radial-displacement com-
patibility have any effect on the solutions, and even in such
cases, the effect is unimportant from a practical point of
view. It therefore appears quite adequate to employ ana-
lyses in which only compatibility of vertical displacements
is considered.

Although the analysis described in Section 52.2.2 is
primarily developed for end-bearing piles, it may be used
to obtain solutions for a floating pile in a uniform mass
by putting E/E; = 1. The possible errors involved in the
analysis are a maximum for Ep/Es = 1, so that by com-
paring this solution with the corresponding solution from
the floating-pile analysis described in Section 5.2.2.1, an
estimate may be made of the maximum error of the end-
bearing pile analysis. Comparisons of the settlements of
the top and tip of a pile obtained from the two solutions
have been made by Poulos and Mattes (19694), and rela-
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TABLE 5.1 EFFECT ON PILE DISPLACEMENT OF
CONSIDERING RADIAL DISPLACEMENT COMPATABILITY

Lig K Top Displacement Influence Factor,/,
Vertical Displacement Vertical and Radial
Compatability Only Displacement Compatability
10 100 1.793 1.782
1000 1.378 1.448
25 100 3.559 3.542
1000 3.181 3.160
100 100 10,670 10.488
1000 5.220 5.140
20,000 2.758 2.712

P
Displacement p = — [
P LE, P



tively close agreement has been found (see Figs. 5.24 and
5.25). The end-bearing analysis, when applied to the
floating pile, results in a slight underestimate of settlement
(maximum effect about 10%) and a slight overestimate of
the amount of load in the pile. From a practical point of
view, the errors involved in the end-bearing pile analysis are
unlikely to be significant, especially for £ /E; > 1.

5.2.3 Finite-Element Analysis

Detailed descriptions of the finite€lement method have
been given by Zienkiewicz (1971) and Desai and Abel
(1972), and its use in geotechnical problems is discussed
comprehensively in Desai and Christian (1977). The appli-
cation of finite-element analysis to pile foundations has
been described by several investigators. Ellison et al. (1971)
have considered_a multilinear soil stress-strain curve and
have introduced special joint elements at the pile interface
to allow for slip. Desai (1974) has considered a pile in sand
with a hyperbolic stress-strain response and has also used
special elements for the pile-soil interface. Hyperbolic
stress-strain behavior lias also been used by Esu and Otta-
viani (1975) for analyzing a pile in clay. A very interesting
result of their analysis is that the load-settlement behavior
of a pile is substantially 'inear to a load well beyond half
the failure load, despite the fact that the soil stress-strain
response is nonlinear. This fact suggests that elastic theory,
modified for slip as previously suggested, should provide an
adequate basis for load-settlement prediction, provided
appropriate values of soil modulus are used.

Lee (1973) and Valliappan et al. (1974) have done elas-
tic parametric studies of the influence of soil layering on
settlement behavior. The superior accuracy of isoparametric
elements over conventional elements is also demonstrated.

Balaam et al. (1975, 1976) have used a different type of
analysis, in which the finite-element method is used to ana-
lyze the pile and soil mass separately and then compatibi-
lity conditions are imposed to determine the nodal forces
and deflections. This approach is thus a generalization of
the elastic approaches described earlier in this chapter. The
possibility of slip at the pile-soil interface is allowed for by
specifying a limiting pile-soil shear strength, from which
limiting values of nodal force can be calculated. Possible
failure within the soil mass itself is allowed for by consi-
dering the soil as a bilinear elastic or elastic-plastic material.
This type of approach appears to hold some advantage over
the use of joint elements in that the rate of convergence of

the solution is much meore rapid when pile-soil slip or soil-,

yield has occurred. It also overcomes problems that may
arise when there are extreme differences between the mo-
duli of the pile and the soil. Balaam et al. (1975) used this
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analysis to investigate the effects on settlement of non-
homogeneity of the soil that might arise during installation
of the pile. In a further application, Balaam et al. (1976)
have used this approach to analyze the behavior of piles
composed of gravel. ’

5.2.4. Comparisons between Solutions from
Mindlin Approach and Finite-Element Analysis

Balaam et al. (1975) obtained elastic solutions for the case
L/d =10, K = 1000, h/L = 2, and vg = 0.45. Twénty trian-
gular elements were used for the pile and 160 triangular
elements for the soil. A free outer boundary was assumed
at 35 pile-diameters from the pile axis, the base underlying
the soil was assumed at 35 pile-diameters from the pile
axis, and the base underlying the soil was assumed to be
rough and rigid. The settlement at the top of the pile was
found to be only 2.0% less than that given by the previous
analysis utilizing Mindlin’s equations. Furthermore, the
finite-element sclution was identical with the conventional
elastic-finite-element solution in which the pile and soil are
analyzed together as a single mass, Decreasing the number
of pile elements to 10 and the soil elements to 120 in-
creases the discrepancy between the finiteelement solution
and the elastic solution to 3.5%. In-a parametric study of
the settlement of a pile presented by Lee (1973), the salu-
tions are obtained from a finite-element analysis. Table 5.2
shows a comparison between Lee’s solutions for a floating
pile in a uniform mass and the corresponding solutions
from the elastic analysis presented herein. In this case, the
finite-element solutions are slightly greater, but generally
there is close agreement between the two series of solutions
and such difference as does exist may well arise from
numerical inaccuracies in one or both of the solutions.

"A further comparison with Lee’s solutions is shown
in Table 5.2, this time for a pile bearing on a stiffer stra-
tum. The agreement is again reasonable, and these compari-

* sons suggest that the analysis based on the Mindlin equation

should give results of adequate accuracy for practical pur-
poses, provided that severe variations in subsoil conditions
do not occur along the pile (see Section 5.3.3 for further
discussion of the effects of soil layering).

A comparison between computed load-settlement
curves to failure for a pile in a purely cohesive soil is shown
in Fig. 5.7 (P, is the ultimate load capacity). The agree-
ment is generally reasonable, but at loads approaching the
ultimate, the settlements given by the finite-element analy-
sis are greater than those from the “elastic™ approach, pro-
bably because the latter uses elastic theory to calculate soil

_deflections after pile soil-slip has commenced.
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TABLE 5.2 COMPARISONS BETWEEN ELASTIC- AND
FINITE-ELEMENT SOLUTIONS FOR PILE SETTLEMENT
K = 1000 vs = 0.4

(a) Floating Pile in Semi-infinite Mass

Ip
Lig
Finite Element®  Elastic Mindlin
Approach
3.5 0.267 0.258
5.0 0.211 0.205
10.5 0.115 0.112
15.0 0.103 0.100
19.5 0.094 0.092
a Lee (1973).
(b) End-Bearing Pile
Ip
L/d ‘Eb/E.r
Finite Element”  Elastic Mindlin
Approach
5 10 0.078 0.075
100 0.014 0.016
15 100 0.020 0.020
4 Lee (1973).
P
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FIGURE 5.7 Comparison between load-settlement curves to failure.

5.3 THEORETICAL SOLUTIONS FOR
SETTLEMENT AND LOAD DISTRIBUTION

To enable rapid practical estimates of pile-settlement be-
havior, it is extremely useful to have available dimension-
less parametric solutions from which the effects of varia-
tions in pile and soil properties can readily be determined.
In this section, a series of solutions is presented for the
stress and load distribution in a pile, and for the settlement
of a single pile. The soil is assumed to be homogeneous,
having constant Young’s modulus and Poisson’s ratio. How-
ever, the influence of nonhomogeneity and soil layéring is
also discussed. The solutions described have been obtained
from the analyses based on Mindlin’s equations, and in
most cases, 10 elements have been used to divide the pile
shaft.

5.3.1 Stress and Load Distribution in Pile

For a floating pile in a uniform soil, the distribution of
shear stress along the shaft is shown in Fig. 5.8 for L/d =25.
For K =5000, the pile is almost incompressible and the
shear stresses are relatively uniform, but for K =50 (a very
compressible pile), high shear-stresses occur near the top of
the pile. Poisson’s ratio of the soil, vg, has little influence on
the shear stresses.

For a pile bearing on a stiffer stratum, the distribution
of load in the pile is shown in Fig. 5.9 for various values of

o2t
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osl
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FIGURE 5.8 Distribution of shear stress along compressible pile.
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Ep/E;. Load transfer along the pile increases as the relative
modulus of the bearing stratum decreases. Load transfer
also increases as the pile-stiffness factor K decreases or as
the length-to-diameter ratio L/d increases.

An example of the effect of pile-soil slip on the stress
distribution along a floating pile is shown in Fig. 5.10. A
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FIGURE 5.10 Influence of local yield on stress distribution along
" floating pile.
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constant pile-scil adhesion of ¢; = ¢, (undrained cohesion)
and a point resistance of 9¢,, is assumed in this case. The
progressive slip along the shaft with increasing load is clear-
ly shown.

The effect of nonhomogeneity of the soil on the stress
distribution is discussed by Randolph and Wroth (1978)
and Poulos (1978). For a soil whose modulus increases
linearly with depth from zero at the surface, the shear
stresses increase approximately linearly with depth also.

5.3.2. Load Transferred to Pile Tip

In a simplified presentation given by Poulos (1972d), the
proportion of load transferred to the pile tip, 8, is expressed
in terms of the value B, for an incompressible floating pile
in a semi-finite mass, multiplied by correction factors to
take account of pile compressibility and the relative stiff-

- ness of the bearing stratum.

a) Floating Pile

8 = BoCkCy (531

where

§ = Py/P = proportion of applied load transferred to
pile tip

Bo = tip-load proportion for incompressible pile

in uniform half-space (Poisson’s ratio =

0.5)
Ck = correction factor for pile compressibility
C, = correction factor for Poisson’s ratio of soil

Values of f4, Ck, and C, are plotted in Figs. 5.11, 5.12,
and 5.13 for a wide range of parameters. The effect of pile
compressibility is to decrease the amount of load trans-
ferred to the tip—that is, Cx isless than 1. The presence of
an enlarged base increases § significantly. §§ is not signifi-
cantly affected if the pile is situated in a finite layer rather
than a half-space, provided the hard base of the layer is
more than 0.2L below the bottom of the pile.

b) End-Bearing Pile on Stiffer Stratum

"B = BeCkChCy (5.32)

where

B, Bo Ck, and C, are defined as above and to suffi-

cient accuracy, may be assumed to take their previous

values

Cp = correction factor for stiffness of bearing stra-
tum
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FIGURE 5.11 Proportion of base load, 8,.

Values of Cp are plotted in Fig. 5.14. The load at the pile
tip increases as the relative modulus of the bearing stratum,
Ey[Es, increases. The effects of the bearing stratum are
more pronounced as K or L/d increase.

The tip load may also be affected by other factors,
such as the presence of enlarged bulbs along the pile, taper-
ing of the pile. or the presence of a pile cap resting on the
soil surface. For an incompressible floating pile in a homo-

O/Vél }L’——vmvg
oo | -

06
Ck
04 values of & |
| d
|
0-2 J‘v\——T————
. ]
1000 104 10°

K
FIGURE 5.12 Compressibility correction factor for base load, Ck.
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FIGURE 5.13 Poisson's ratio correction factor for base load, Cy,.

geneous remi-infinite mass, the effect of these factors is
shown in Figs. 5.15, 5.16, and 5.17. These figures may be
used approximately to estimate the effects on tip load for
compressible piles. '

5.3.3 Settlement of Pile

As with the tip load on a pile, the settlement of the top of
the pile may be expressed, to sufficient accuracy, in terms
of the settlement of an incompressible pile in a half-space,
with correction factors for the effects of pile compressibi-
lity, and so on. It is again convenient to consider two cases
for a homogeneous scil mass having constant Young’s mo-
dulus £ and Poisson’s ratio vy:

a) Floating Pile

A -
o= Fd (5.33)

where

I = I,RgRyR,

p = settlement of pile head

P = applied axial load

Iy = settlement-influence factor for incompressible
pile in semi-infinite mass, for p; = 0.5.

Rg = correction factor for pile compressibility

(5.33a)
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FIGURE 5.14 (continued).

Ry = correction factor for finite depth of layer on a
rigid base

R, = correction for soil Poisson’s ratio vg

h = total depth of soil layer

Values of Iy, Rx, Ry, and R, are plotted in Figs. 5.18,
5.19, 5.20, and 5.21. Figure 5.18 shows the decrease in
settlement of a pile of constant diameter as the length in-

- creases. The presence of an enlarged base also decreases set-
tlement, although the effect is only significant for relatively
short piles. Pile compressibility increases settlement, espe-
cially for slender piles (Fig. 5.19), while the effect of having
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FIGURE 5.15 Influence of pile cap on tip load. Incompressible

floating pile.
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FIGURE 5.16 Inﬂuenvce of underreaming on tip load (incompress-
ible floating pile with single central bulb, 0.2L long).

a finite layer is to decrease settlement (Fig. 5.20). [If the
hard base is level with the pile tip, case (b) should be used.]

A decrease in Poisson’s ratio, vy, while maintaining E; con-
stant leads to a decrease in settlement, as shown in Fig.
5.21, although the effect is relatively small.

b) End-Bearing Pile on Stiffer Stratum

Pl .
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FIGURE 5.17 Influence of tapered or step-tapered pile on tip load
(incompressible floating pile, top diameter = d).
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where
I = I,RkR,R, (5.34a)
(o, Ry, R, are defined as for Eq. 5.33 and take
the same values to sufficient accuracy)
Ry = correction factor for stiffness of bearing stratum

Values of Ry are plotted in Fig. 5.22. The effect of the
bearing stratum is to decrease settlement, the effect being
most pronounced for relatively short or stiff piles on a stiff
bearing-stratum.

For very slender piles (L/d = 100), the properties of the
bearing stratum have little effect on settlement (ie., Rp
= 1) for most practical values of pile stiffness factor K .

It should be emphasized that the expressions for settle-
ment in Egs. (5.33) and (5.34) are only approximate be-
cause except where taken into account, some of the effects
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are assumed to be mutually independent; for example, the Mg Settlement of pile (5.35)

effect of finite layer depth is assumed to be independent of
pile stiffness factor K. While this may not be strictly cor-
rect, the use of the correction factor allows a convenient
parametric presentation of results and should be of ade-
quate accuracy for practical purposes.

5.3.3.1 MOVEMENT RATIOS

For some applications, it may be usefu] to reexpress the set-
tlement of a pile bearing on a stiffer stratum in terms of the
movement ratio Mg , where

~ Elastic shortening of pile

Theoretical values of Mg are shown in Fig. 5.23 for a pile
on a rigid bearing-stratum and in Fig. 5.24 for a 25-dia-
meter pile resting on a nonrigid stratum. The pile-head set-
tlement is calculated as

o <MR> <E:jp>

Focht (1967) has observed from actual tests that the ratio

(5.36)
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Mp lies within the range 0.5 to 2 for most practical pile di-
mensions and this observation can be said to generally agree
with the theoretical results in Figs. 5.23 and 5.24.

A plot of the theoretical movement ratio for the pile
tip, MRy, is shown in Fig. 5.25.
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5.3.3.2 EFFECT OF PILE-SOIL SLIP

For a floating pile in a purely cohesive homogeneous soil,
with constant adhesion ¢, along the shaft, the influence of
slip on settlement is shown in Figs. 5.26 and 527, in terms
of plots of a slip factor M; and the factor of safety against
undrained failure, where

_ Elastic settlement of pile
Actual settlement of pile

M, (537)

By first calculating the elastic settlement of the pile
(Eq. 5.33), the actual settlement of the pile, including the

y \
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FIGURE 5.26 Settlement modification factor M for slip. Effect of
L/d and adhesion factor. '



92 SETTLEMENT ANALYSIS OF SINGLE PILES

1-0 -
\l 1 3%0
| 10
iy —
Values of K \
Mg !
0-4 |

C
i 25 “

Vg = 05 |
02— Cu/C,e! \

|

I
4 3 2 4
Factor of Safety

FIGURE 5.27 Settlement modification factor M, for slip. Effect of
K.

effects of slip, may be estimated from Figs. 5.26 and 5.27.
The following observations can be made from these figures:

1. The effect of L/d is not very significant, provided that

L/d > 25 (i.e., provided that the pile is relatively slender).
2. The effect of slip on settlement becomes more pro-

nounced as ¢,/c, decreases.

3. For very low values of pile-stiffness factor X, small val-

ues of My can occur, indicating the very pronounced effect

of slip.
" 4. Except for low values of X, slip has little or no effect
on settlement at normal working loads. While this conclu-
sion applies strictly only to piles in an ideal soil with a con-
stant soil modulus, it has also been found to apply closely
for soils with linearly-increasing modulus and strength with
depth, and confirmation of this observation has been found
in a considerable number of load-test results.

For piles bearing on a stiffer stratum, the effect of slip
is generally less than that shown in Figs. 5.26 and 5.27. For
the extreme case of a rigid bearing-stratum, computations
by Poulos and Mattes (1969a) show that unless the pile is
very compressible (K less than about 200), the load-settle-
ment curve remains substantially linear up to full slip along
the shaft. Beyond full shaft-slip, the load-settlement beha-
vior of the pile depends on the elastic properties of the
bearing stratum.

The above remarks apply for a uniform distribution of
adhesion along the pile shaft. If the adhesion or skin fric-
tion increases linearly with depth, the effect of slip is more
significant and the load-settlement curve prior to full shaft-
slip departs from the purely elastic relationship at some-
what lower loads. Nevertheless, the effect of slip on settle-

ment is relatively smeli in many cases, and it is therefore
convenient to igncre the effects of shaft slip and assume
that the relationship between shaft load and shaft settle-
ment is linear. This assumption leads to a convenient meth-
od of predicting the load-settlement behavior of piles or
piers in which a significant amount of base resistance is de-
veloped. This method will be discussed in detail in Section
54.

5333 LA YERING AND NONHOMOGENEITY OF SOIL
ALONG PILE

As previously mentioned, in Section 5.2.2, an approximate
analysis of the behavior of a pile in alayered or nonhomo-
geneous soil may be carried out by using the Mindlin
equations for a uniform mass but employing the appro-
priate value of Young’s modulus and Poisson’s ratio at
various points along the pile. For a pile in soil whose modu-
lus increases linearly with depth, detailed solutions for
settlement are given by Randolph and Wroth (1978),
Poulos (1979) and Banerjee and Davies (1977). Considera-
tion will be given here to ways of utilizing the solutions for
a homogeneous soil to obtain approximate solutions for
non-homogeneous soil profiles.

A number of solutions have been obtained from this
approximate analysis (which will be referred to here as the
approximate computer analysis) for an incompressible pile

—— Approximate ‘computer solution

— — Approximate solution using Eav
o Solutions for point bearing piles.
A Finite element solutions ( Vallioppon

et al,1974)
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FIGURE 5.28 Settlement of pile in layered soil.



in a two-ayer sol, the upper layer being of depth hy (h,
< L) and the lower layer being of infinite extent. These
approximate computer solutions for pile settlement are
shown in Fig. 5.28 for L/d = 25. Also shown are the solu-
tions for a point-bearing pile (h; = L) for £,/F; =2 and 5,
obtained from the analysis described in Section 5.2.2, and
finite element sclutions from Valliappan et al. (1974).
Finally, approximate solutions are shown that use the dis-
placement-influence factor for a homogeneous soil and an
average modulus, 17, , as follows:

~ Evhy + Ey(L-hy)
L

Fa

(5.38)

Figure 5.28 shows that at least for £, > E|, the approx-
imate computer solution for 4, = L overestimates the set-
tlement somewhat, as compared with the point-bearing pile
analysis, but the e-ror is not great. Furthermore, the simple
solutions employirg the average modulus £, are in reason-
able agreement with the approximate computer solutions
and in some cases are in fact in closer agreement with both
the solutions for a point-bearing pile, and the finite-element
solutions.

On the basis of the above evidence, it is suggested that
where the soil mcdulus varies along the length of the pile
(e.g., where a nurrber of layers occur), and where the mo-
dulus variation between successive layers is not large, the
settlement may bz calculated from the expressions for a
pile in uniform so:l (Eq. 5.33 or Eq. 5.34) using an average
soil modulus £, as follows:

il
'y
Fa = T>]f; Eih;

where

(5.39)

FE; = modulus of layer {
h; = thickness of layer i
# number of different soil layers along pile length

Because the pile displacement is only slightly dependent
on Poisson’s ratic [vg) of the soil, variations of v; along the
pile length may be ignored.

For the impor-ant case of a soil in which the modulus
increases linearly with depth (a “Gibson soil””), comparisons
between the solutions of Banerjee and Davies (1977) and
the settlement calculated by using the average modulus to-
gether with the uniform soil solutions indicate that the
errors involved in the latter approach are on the order of
10 to 15%."
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In cases where the pile passes through distinct layers of
soil, having large differences in soil modulus, the uniform
soil solutions may be utilized in an alternative approximate
fashion. For example, for the simple case of a pile penetrat-
ing one layer and founded in a second layer, the séttlement
may be estimated by treating the portion of the pile in the
first layer as an end-bearing pile and determining the settle-
ment of this portion and the amount of load in the pile at
the interface of the two layers (say, P,). The settlement is
added to the previously calculated settlement of the upper
portion to obtain the overall settlement of the pile head.
Comparisons with the finite element solutions of Lee
(1973) indicate that this approximate approach gives a
settlement within 20% of the finite-element solution, the
accuracy increasing as the modulus of the bearing stratum
increases relative to that of the overlying soil.

Despite the apparent success with which the settlement
of a pile in a nonhomogeneous soil may be estimated by
approximate methods, it must be borne in mind that such
methods will probably not give an accurate picture of the
distribution of load and settlement along the length of pile;
a more refined analysis is warranted and necessary it such a
picture is required.

5.3.3.4 OTHER EFFECTS

The effects on settlement of enlarged bulbs, tapering of the
pile and of a pile cap resting on the soil surface have been
investigated for an incompressible pile in a semi-infinite
mass (Poulos, 1968a; 1969). These effects are shown in
Figs. 5.29, 5.30, and 5.31 in terms of the settiement of a
uniform-diameter freestanding pile. The presence of en-
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Settlement of Uniform Diameter Pile

(@]
~

(@]
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FIGURE 5.29 Influence of underreaming on pile settlement (in-
compressible pile in half-spacs; single central bulb, length L,, dia-
meter d,).
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1-3

* larged bulbs along the pile shaft decreases settlemant, as
does a pile cap resting on the soil surface, but the effect is
generally only significant for relatively short piles (e.g. L/d
2 10). The position of an enlarged bulb has some influence
on seitlement, with the maximum effect being obtained
when the bulb is near the pile tip. Tapering or step-tapering

of a pile increases settlement as compared with a uniform
pile of equal head diameter. However, the settlement of a
step-taper or tapered pile may be closely approximated by
the settlement of a uniform pile of diameter equal to the
mean diameter. Poulos (1969) has shown that for a given
volume and length of pile, an underreamed pile settles less
than a uniform-diameter pile, which in turn settles less than
a tapered or step-tapered pile. Although Figs. 5.29, 5.30,
and 5.31 apply to incompressible piles, they may be used
to give an indication of the likely effects on the settlement
of compressible piles.

5.3.4 Settlements in a Soil Mass Resulting From a Pile

Once the stress distribution along a pile is known, the ver-
tical displacement of any point within the soil mass may be
determined by integrating the appropriate Mindlin equation
around the various elements of the pile and the pile base.
Results of such computations for a uniform semi-infinite
soil mass have been presented by Poulos and Mattes
(1971a) and Poulos and Davis (1974) for various values of
L/d and K. Typical solutions for one value of X are shown
in Figs. 5.32, 5.33, and 5.34 as a function of the dimension-
less depth of a point below the surface, H/L, and the di-
mensionless distance from the pile axis, /. The displace-
ment at any point in the mass is given by

P

p = IE'[P (5.40)
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FIGURE 5.31 Effect of pile cap on settlement. Incompressible pile in half-space, rigid cap, diameter d.
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where

I, = displacement-influence factor

Although /7, is only plotted for vs = 0.5, v has relatively
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little influence. If desired, Fig. 5.21 may be used to obtain
a correction for other values of vg. Settlements near the pile
are considerably influenced by the pile stiffness factor K
(see Poulos and Davis, 1974), but at points remote from the
pile (e.g., H/L > 1.75 or r/L >> 0.4), settlements are almost
independent of K. For points remote from the axis, the pile
may be replaced by a point load of magnitude equal to the
load on the pile, and acting at a depth 2L/3 below the sur-
face.

The solutions shown in Figs. 5.32, 5.33, and 5.34 may
be used in the following ways:

(2) For calculating the settlements in the soil surrounding a
single pile.

(b) For calculating the settlement of a pile resulting from
underlying soil layers (see below).

(c) For calculating the settlements around and beneath a
pile group (see Chapter 6, Section 6 4).

5.3.4.1 SETTLEMENT OF A PILE RESULTING FROM
UNDERLYING SOIL LAYERS :

The solutions for settlements within a uniform semi-infinite
soil mass caused by a pile, described in the preceding sec-
tion, may be used to estirate the settlement of a pile
founded within the first layer of a system of m layers of
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different soils. If the first layer is of depth 4, (h; > L), the
settlement p of the pile is given approximately as:

Pri m-1 I - I .
p=pot I_[E%I + (= ﬂ (5.41)

2\ Ey
where

po = settlement of a pile in a layer of depth h = h|,
obtained from Eq. (5.33)

/j = displacement influence faceor 7, on the pils axis
at the level of the top of layer;

Eg = Young’s modulus of Jayer j

The first term of the above equation is the settlement .

of the pile in the founding layer (depth h;, modulus E;;)
and the second term represents the summation of the dis-
placements of the underlying layers caused by the pile. It
should be noted that the value of (/j~ I;;) calculated for
layer j should be that for a value of K corresponding to a
soil modulus Fg, although for deeper layers, the value of
K used has almost no influence on the calculations.

For application of Eq. (5.41), it is convenient to have
values of the influence factor /,, on the axis plotted against
" depth, and such a plot is shown in Fig. 5.35 for three values
of L/d and for vg = 0.5. The effect of L/d becomes insigni-
ficant for H/; > 1.75. The influence factors then become
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FIGURE 5.35 Influence factors for settlement beneath center of a
pier.

identical with those given by the Mindlin equation for a
point-load acting at a depth of 2L/3 below the surface, that
is

)

_ () [Q-w) | 20-w)
2 2ﬂbwa[«—va € +2/3) (5.42)
N_ &
+(3>(§+2/n3}
where
¢ = HJL.

Equation (5.41) is similar to that suggested by Nair (1967)
for piles and that used by Egorov, Kuzmin, and Popov
(1957) for surface foundations, and makes use of the Stein-
brenner approximation that the stresses in a layered system
are the same as those in a uniform mass. The use of this
equation will generally lead to an overestimate cf the settle-
ment caused by the underlying {ayers if the modulus of the
layers decreases with depth, but Poulos and Mattes (1971b)
estimate that this error is not serious unless the modulus of
successive layers varies by more than a factor of 10. If
softer layers overlie stiffer layers, little error is involved in
using . . (5.41).

For cases in which layering occurs along the pile as well
as beneath the pile, an average value of Eyy should be esti-
mated from Eq. (5.39).

5.3.5 Immediate and Final Settlements

For piles in sand or unsaturated soils, the final settlement
(excluding possible creep movements) may be considered to
occur immediately on application of the load, so that the
values of £y and vg used in calculating the settlement of the
pile should be the drained values, that is, the moduli of the
soil skeleton, £y and vy. On the other hand, for piles in satu-
rated clay, an immediate settlement, p;, occurs under un-
drained conditions followed by a time-dependent consoli-
dation settlement. After dissipation of the excess pore
pressures resulting from loading of the pile is complete, the
total settlement of the pile is prr (o1 = pi + pcr, where
pcr = final consolidation settlement). The immediate set-
tlement p; is calculated from the theoretical solutions by
using the- undrained Young’s modulus of the soil, £, and
the undrained Poisson’s ratio, »,, which is 0.5 for a satu- -
rated spil. The final settlement pg is calculated by using
the drained Young modulus of the soil skeleton, £, and the
drained Poisson’s ratio vg.

7 .
: i
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FIGURE 5.36¢ The relative importance of immediate settlement for an incompressible pile in a semi-infinire mass.

5.3.5.1 RELATIVE IMPORTANCE OF IMMEDIATE
SETTLEMENT

It is possible to examine the relative magnitudes of the
immediate and final settlements of a pile if the soil is as-
sumed to be an ideal two-phase elastic homogeneous isotro-
pic material. For such a material, the undrained and drained
moduli may be shown to be related as follows:

3!

E, = 5(—1—;;;—)" (5.43)

The ratio p;/pr of immediate to final settlement can then
be calculated as

pi _ 21tv)  Ios
PTF 3 I,

(5.44)

I35 = displacement-influence factor forv=v, =0.5
I, = displacement-influence factor for v = vy’

Figure 5.3¢ shows values of p;/pre calculated by
Poulos and Davs (1968) for an incompressible pile for var-
ious values of L/d and vg. This figure shows that for a prac-
tical range of values of L/d, the immediate settlement con-
tributes the major part of the final settlement, even for
vg = 0. For example, for vy = 0.2 and L/d = 25, p;/p7F =
0.89, or in other words, 89% of the final settlement occurs
immediately on application of the load, and only the re-
maining 11% is time-dependent consolidation settlement.
Similar computations have been made by Mattes and Poulos
(1969) for a compressible pile and Poulos and Mattes
(1969a) for an end-bearing pile. The effect of pile compres-
sibility on p;/pyp for a floating pile is shown in Fig. 537
for L/d = 25. The proportion of immediate settlement

tends to decrease with increasing pile compressibility (ie.,
decreasing K), but it still remains the most significant part
of the final settlement. For end-bearing piles, virtually the
entire settlement of the pile head is immediate settlement;
only for compressible slender piles (L/d > 50, K < 500)
does the consolidation movemnent exceed 10% of the total
final movement.

Confirmation of the predominance of immediate settle-
ment may be obtained from a considerable number of pub-
lished results of maintained load tests on piles (e.g.,
Whitaker and Cooke, 1966) that show that at loads well
below the ultimate, there is only a relatively small amount

1.0
vi=0:5 «lj
|
v\ 7ZCFZZL - I
//
- T
1 //
b2
P, / N
- > =
p TF / /‘
/10 '
e / A
% =25
r——-/ D
0743 0o 1000 10000 =
K

FIGURE 5.37 Relative importance of immediate settlement {com-
pressible floating pile).
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FIGURE 5.38 Approximate solutions for the rate of settlement of a single pile (Poulos and Davis, 1968).

of time-dependent settlernent. At higher load levels, how-
ever, significant time-dependent settlements occur, primar-
ily as a result of the effects of shear creep.

Figures 5.36 and 5.37 imply that in contrast to su:face
foundations, the consideration of the rate of settlement of
a pile is of relatively minor importance. Figures 5.36 and
5.37 also show the fallacy of calculating settlements of sin-
gle piles by using one-dimensional consolidation theory.

 However, it should be emphasized that consolidation settle-
ment becomes more important for pile groups. A further
implication in regard to pile-loading tests, is that sufficient
information on the settlement behavior of a pile at normal
working loads may be obtained from a constant-ratz-of-
penetration test, as suggested by Whitaker and Cooke
(1966) (see Chapter 16).

Although the rate of consolidation for piles is generally
not of great importance, some approximate solutions for
the rate of consolidation settlement of an incompressible
pile have nevertheless been obtained by Poulos and Davis
(1968) and are shown in Figs. 5.38 and 5.39. For a given
diameter, the rate of settlement decreases as L increases.

5.3.5.2 CREFEP SETTLEMENTS

A number of long-duration pile tests have revealed that at

loads above about one third of the ultimate, the settlement
tends to increase with time, long after consolidation should
have finished (e.g., Murayama and Shibata, 1960; Sharrnan,
1961; Yamagata, 1963; Cambefort and Chadeisson, 1961;
Bromham and Styles, 1971). In several cases, it has been
observed that the settlement appears to increase linearly
with the logarithm of tine, and consequently, some in-
vestigators have proposed empirical equations relating
settlement and time (e.g., Cambefort and Chadeisson,
i961).

Theoretical analyses of a pile in a viscoelastic soil have
been described by Booker and Poulos (1976a; 1976b). In
the case of soil whose creep-response varies linearly with
log time, it has been shown that the logarithmic creep rate
C, (the slope of the settlement-versus-log-time relationship)
is given by

:
C." - d

(5.45)

where

P = applied load

I, = displacement-influence factor from elastic theory
(Eqs. 5.33a or 5.34a)

B = parameter in the creep function J(¢) of the soil,
in which

J(t) = 4 +Blog (1 +a1) (5.46)
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FIGURE 5.39 Comparison between rate of settlement of a pile and
a surface footing (Poulos and Davis, 1968).



A, B, and « are experimentally determined parameters
of the soil, and J(t) is, in effect, an inverse Young’s modu-
lus that is time dependent. 4 is the inverse of the drained
Young's modulus £ of the soil and the parameter B reflects
the rate of decrease of modulus [or increase in J(¢)] with
log time. There is little available data on values of B, but
from one test reported by Cambefort and Chadeisson
(1961), backfigured values of B/A were found to increase
very markedly with increasing load-level, from a value of
about 0.3 at a load of about 30% of the ultimate to about
2.7 at a load of about 80% of the ultimate. Provided that
an appropriate value of B can be established, the logarith-
mic creep rate can readily be estimated from Eq. 5.45,
using the elastic solutions for /, from Figs. 5.18, 5.19,
5.20,5.21,and 5.22.

5.4 SIMPLIFIED METHOD FOR CONSTRUCTING
LOAD-SETTLEMENT CURVE TO FAILURE

Analyses taking account of pile-soil slip along the shaft have
revealed that for normal piles having a length-to-diameter
ratio 1./4, greater than about 20, the load-settlement curve
is substantially linear until a load of about 50 to 70% of the
failure load is reached. For the prediction of the settlement
at working loads for such piles, a linear elastic analysis is
therefore adequate. However, for large-diameter piles or
piers, piles with an enlarged base, or some pile groups, full
shaft slip may occur at a relatively low load (less than the
working load), so that some account should then be taken
of the effects of shaft slip on load-settlement behavior.

A simplified method of constructing the load-settle-
ment curve for such cases has been described by Poulos
(1972d) and is similar in principle to the methods suggested
by Whitaker and Cooke (1966) and Burland et al. (1966).
The overall load-settlement curve is constructed as a combi-
nation of the relationships between shaft load and settle-
ment and base load and settlement, which are assumed to
be linear up to failure of the shaft and the base, respec-
tively. However, in contrast to the methods of Burlan‘i et
al. and Whitaker and Cooke, which rely almost entirely on
the use of empirical data to construct the shaft-load-ver-
sus-settlement and base-load-versus-settlement curves, the
proposed method utilizes the elastic solutions described in
this chapter. Consideration will be given first to the esti-
mation of lodd-versus-immediate-settlement curves for
piles in clay or load-versus-total-settlement curves for piles
in sand. Consolidation settlements in clay will be consider-
ed subsequently.
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Shaft Load versus Settlement
The amount of the load carried by the shaft, Py, is related
to the total applied load P as

Py =P(1-0) (5.47)
where

g = proportion of load carried by base, obtained from
elastic theory, Eq. (5.31) or (5.32)

-Assuming a linear shaft-load-versus-settlement relation-
ship up to failure of the shaft, the relationship between
settlement of the pile head p and Py, up to the ultimate
shaft resistance, Pg,, can be expressed as

! Py
== 5.48
° T Ed (-9 48
where
[ = displacement-influence factor for pile, obtained

from Eq. (5.33) or (5.34)
Es = average soil modulus along the pile shaft.

Base Load versus Settlement
The load carried by the base, Py, is related to the total load
Pas

Py = gpP (5.49)

Assuming a linear relationship between base load and
settlement up to failure of the base, the relationship be-
tween settlement and base lcad is

_ 1 B
p = Fd B (5.50)

where
E¢ = average soil modulus along the pile shaft

To the settlement in Eq. (5.50) should be added the
compression of the pile shaft which occurs subsequent to
the development of the ultirnate shaft resistance.

Assuming that the pile material remains perfectly
elastic, the additional compression of the shaft, Ap, is

[, PuB| L
Ap = [Pb d-p A-pEIJ (5.51)

Fa
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The base-load-versus-settlement relationship is there-
fore

IR

It should be noted that the effect of having a modulus
at the pile tip, F'p, greater than the average value along the
shaft, E, is taken into ezccount in determining the szttle-
ment-influence factor /, and not by using the value of Fy
for E in the denominator of Eq. (5.52).

(5.52)

Overall Load versus Sertlement

The overall load-settlement curve can be constructed by
superposition of the shaft-load-versus-settlement and base-
load-versus-settlement curves. If only the overall curve is
required, it can readily be constructed as two linear por-
tions (see Fig. 5.40):

1. The first extends from the origin to the load Py,
corresponding to full shaft yield, where

Py = -5 (5.53)
the settlemert, p,; ,at this load being given by

N
= 5) ()

2. The second extends from the latter point to the ul-
timate bearing capacity of the pile, P, = Py, + Pp,, at
which the settlement, p,, , is given as

(5.54)

I Pry; P L .
w= (3 (—b—“- + Py - 22 (5.55)
Fd) \ B, (1-8)14pEp
Pk
Overall 1oad-settlement
Shaft compression
- 1 b ofter full siip.
Pou [ <
Snatt locd 7
Load Ry [ vs settlement.
Py I 7 b //
/] <
- .
/Bose load vs. settlement
L 1
0 py Py
Settiement

FIGURE 5.40 Construction of lcad-settlement curve.

The ultimate shaft and base resistances may be cal-
culated from the methods described in Chapter 3.

Consolidation Settlement

To calculate consolidation settlements for piies in clay,
it is convenient to assume that the consolidation process
is entirely elastic, even if some yielding or slip has occurred
under undrained conditions. A similar assumption is made
in Chapter 10 in relation to pile-raft systems. Referring to
Fig. 5.41, the final consolidation settlement, p~g, is given
by :

PCF = PCFE) = PTEE) ~ PilE) (5.56)

where

PTFE) = total final settlement for the reguired work-
ing load, calculated on a purely elastic basis
(no yield), and similarly for p;; and popye)

If values of undrained Young’s modulus, kg, and
drained modulus, £5, of the soil are available, pcp can be
calculated as follows:

oo bw f_10.5]
C il )

(5.57)

where

P, = working load on pile
I' = displacement-influence factor for the drained
Poisson’s ratio, vg

Elastic immediate

settlement. Eiastic total

/‘/final settlement
/ // -~
/
iy "4
Load / /

/ “Load vs immedlate setiement.

~

“.Lload vs total
final settlement

Per= Pepelas.

0 Settlement

FIGURE 5.41 Suggested method of estimating consolidation settle-
ment.



lys = displacement-influence factor for the undrained
Poisson’s ratio (0.5 for saturated clay)

If no data is available on the drained modulus £%, a
rough estimate of the consolidation settlement may be ob-
tained from the ratios of immediate to total-final settle-
meni plotted in Figs. 5.36 and 5.37 for an ideal elastic two-
phase soil. On this basis,

) 1
OCF = PifE) [m)- - l] (5.58)

The total final settlement is obtained by adding the
consolidation settlement, taken from either Eq. (5.57) or
Eq. (5.58), to the immediate settlement calculated from the
procedure previously described.

Hlustrative Example

To illustrate the use of the simplified procedure described
above, the case of a large bored pile in clay will be consi-
dered. The pile has been tested by Whitaker and Coocke
(1966) and is denoted as Pile F. The pile details are as fol-
lows:

L =399 ft(12.2 m) [shaft length = 36.5 ft (11.1 m)]

d =20ft(0.61m)

dy, = 4.0ft(1.2m)

L, = 3.0 X 10° 1b/sq in. (19.3 X 10* tons/sq ft, 20.67
X 10°% kN/m?)

The soil details are as follows:

Along shaft, ¢, = 1.2 tons/sq ft (129 kN/m?)
Atbase, ¢, = 1.4 tons/sq ft (150 kN/m?)
Average £ along shaft = 10,500 1b/sq in (675 tons/sq
ft, 72,400 kN/m?)— see Sec
tion 5-5-3
vy = 0.5 (assumed undrained conditions)

From the above data,

Lid = 19.5,dp/d = 2.0
K = 3X10°1.05X% 10 = 285

Determination of [ and f3 )

From Fig. 5.18, Iy = 0.085 (for L/d = 19.5 and dpld =
. 2.0)

From Fig. 5.19, Rg = 1.35 (for K = 285)

From Fig. 5.21,R, 1.0

Treating the pile as a floating pile in a deep soil layer, Ry,
=1.0

From Eq. (5.33a),7 = 0.085X 1.35X 1.0X 1.0=0.115
From Fig. 5.11,8, = 0.215
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From Fig. 5.12,
13

Cr = 0.76
From Fig. 5.13,C

= 1.0
0.215X0.76 X 1=0.164

3

v
B
Determination of Ultimate Shaft and Base Resistance
Assuming ¢, /¢, = 0.33,

Pg, = mX20X365X1.2X0.33
92 tons (920 kN)

9.0X 1.4X 126
158 tons (1580 kN)

Pbu

Determination of Overall Load-Settlement Curve .
From Eq. (5.53), total load at ultimate shaft yield is

vy = ——— = 1100 kN
Py, 0836 110 tons (1100 kN)

From Eq. (5.54), settlement at ultimate shaft yield is

_ 011X 110X 12
PYL = T3 0X 675
0.112 in. (2.8 mm)

From Eq. (5.55), settlement at ultimate failure of pile
[P, =92+ 158 =250tons (2500 kN)] is

0.115 158
= X 12 + -
Pu= 50X 675 ~ 0.165 (158 92
W 0.165) w 395 X 12
0835/ " 3.14 X 193 X 10

= 1.088 in. (27.6 mm)

The load-settlement curve is thus drawn as two
straight lines, the first joining the origin to the point
P = 110 tons, p = 0.112 in., and the second joining the
latter point to the point P = 250 tons, p = 1.088 in.
This computed curve is compared with the measured
curve in Fig. 5.46c¢.

5.5 DETERMINATION OF SOIL PARAMETERS

The application of the theoretical solutions described in
this chapter to practical problems generally requires a
knowledge of representative values of thé deformation
parameters E,, g and vg of the soil and of the soil sheat
strength and the pile-soil adhesion. Methods of determining
soil shear strength are well-established, and some data on
the relationship between shear strength and pile-soil adhe-
sion are given in Chapter 3. However; methods for deter-
mining the soil deformation parameters are not so well esta-
blished. There appear to be three means of obtaining these
parameters:
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(a) From laboratory triaxial tests.

(b) From pile-loading tests.

(c) From empirical correlations based on previous exper-
ience.

VA

5.5.1 Laboratory Triaxial Tests

The use of such tests for settlement predictions of pad
foundations has been described by Davis and Poulos
(1963), Lambe (1964), and Kerisel and Quatre (1966). In
all cases, the stress paths of typical elements in the field are
reproduced in the laboratory test and the resulting strains
measured.'However, for a pile foundation, such tests are
complicated by the difficulty of determining the appro-
priate stress path, both during installation of the pile and
resulting from the applied load on the pile.

Conventional types of triaxial tests such as those used
for settlement prediction of shallow foundations (Davis and
Poulos, 1963; 1968) have been found to give values of Ey
that are much too low for piles. For example, Bromham
and Styles (1971) obtained a value only about one third of
that backfigured from a field-loading test, while Mattes
(1972) obtained a value of only about one eighth of the
backfigured value from a field-loading test. Attempts
(Mattes, 1972) to simulate more closely the stress path of a
soil element near a driven pile by failing the specimen in ex-
tension, allowing consolidation and then testing for the de-
formation parameters, led to higher values of E, but still
lower than the backfigured values from model-pile tests.
The conclusion, then, is that it is not possible to measure
accurately the value of £ appropriate to a pile in a conven-
tional triaxial test, even with relatively refined testing pro-
cedures, At the present time, poessibilities of other, more
appropriate forms of laboratory testing remain to be
explored.

5.5.2 Pile-Loading Tests

Because many uncertainties may be associated with small-
scale laboratory tests, it is desirable where possible to de-
duce the deformation and strength parameters from a full-
scale pile-loading test. Such factors as the method of in-
stallation of the pile and layering of the soil profile are then
largely taken into account. In order to determine all three
required deformation parameters from full-scale pile tests,
it is theoretically necessary to carry out loading tests on
two piles of different proportions and to use the appro-
priate theoretical solutions to backfigure these parameters.
However, it is probably sufficient either to estimate the
value of vy or to determine it from a laboratory triaxial

test (e.g., as described by Davis and Poulos, 1963, for pad
footings). At low load levels (about one third cf the ulti-
mate), where little time-dependent settlements may occur,
it mzy be possible to use a constant-rate-of-penetration
(C.RP.) test rather than a maintained loading test, and ob-
tain a single value of soil modulus. The interpretation of a
pile-loading test to obtain the deformation parameters is
considered in detail in Chapter 16.

If the load test is carried to failure, the field value of
pile-soil adhesion may also be determined, provided that
the strength parameters can be estimated independently.
Thus, a single pile-loading test may provide sufficient data
to enable both the deformation and the strength parameters
to be estimated.

5.5.3 Empirical Correlations

In order to provide some information on values of F; for
situations in which pile-loading test data are not available,
a number of published pile-test results have been analyzed
and values of E; determined.

5.5.3.1 PILESIN CLAY

Where possible, the calculated values of FEg have been
correlated with reported values of the undrained cohesion,
¢y, of the clay, and these are plotted in Fig. 5.4Z. Mean re-
lationships between Ej and ¢, are plotted for bored and
driven piles for which two trends can be observed:

1. For soft to medium clays [c, < 17 1b/sq in. (120 kPa)],
L, for driven piles is greater than for bored piles, but for
stronger clays, F for bored piles becomes greater. The first
effect may be attributed to the higher excess pore pressures
and greater subsequent reconsolidation for the driven piles
in soft clay, while the second may be attributed to the ef-
fects of “whip” in the driving of piles in stiff clay.

2. For stiff clays, £y appears to reach a limiting value—
about 6000 Ib/sq in. (40 MPa) for driven piles, and 12,000
1b/sq in. (80 MPa) for bored piles—although some tests on
bored piles in London clay gave considerably higher values.

In many of the {ests, it is not possible to determine
whether the value of E is the undrained or the drained val-
ue. It is possibly reasonable to consider the values of E in
Fig. 5.42 as drained values, E, and in the absence of other
informaticn, the undrained modulus £}, may be estimated
from the following relationship for an ideal isotropic elas-
tic two-phase soil:

3Eg

Ty (5.59) .
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FIGURE 5.42 Backfigured soil modulus £ for piles in clay.

Tte reliability of this relationship when applied to real
soils is somewhat dubious; in relation to shallow founda-
tions, it has been found to be reasonable for a remolded
kaolin (Davis and Poulos, 1963) and a silty clay (Moore and
Spencer, 1969) but to be most unreliable for Boston blue
clay, probably because of anisotropy of the soil.

From a number of triaxial tests on various types of
clay, the following typical ranges of values of vj have been
encountered (suggested average values are shown in brac-
kets):

Stiff overconsolidated clays: 0.1 -02(0.15) -
Medium clays: 0.2 -035(0.3)
Soft normally consolidated clays: 0.35-0.45 (0.4)

5.5.3.2 PILES IN SAND

In analyzing the results of pile tests in sand, E has been

calculated on the assumption that the soil moduli remain
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constant with depth although tne assumption of E varying
linearly with depth might have been more appropriate.
Most of the tests considered are for driven piles, and the
suggested ranges of average values of E for such piles are
summarized in Table 5.3.

TABLE 5.3 SUGGESTED AVERAGE
VALUES OF £, FOR DRIVEN PILES IN SAND

Range of Relative Range of

Sand Density  Density, D, Eg

(Ibs/sq in.) (MN/m?)
Loose <04 4000-8000 27.5--55
Medium 04-0.6 3000—10,000 55 70
Dense > 0.6 10,000-16,000 70 -110

Values of Poisson’s ratio, v, obtained from triaxial tests
generally lie between 0.25 and 0.35 at relatively low stress
levels. An average value of 0.30 is reasonable when no test
data are available.

While the use of a constant average modulus with depth
of the sand may provide satisfactory settlement predictions
for relatively slender piles in which only a small proportion
of the load is taken by the base, it may lead to inaccuracy
in load-settlement predictions for shorter piles or piers, as
the soil modulus near the tip tends to be considerably
greater than the average modulus along the shaft. A more
detailed analysis of Vesic’s tests together with an examina-
tion of the tests by Meyerhof (1959)—see Chapter 2—sug-
gests that the soil modulus beneath the pile tip, £}, is of
the order of 5 to 10 times the average value along the shaft,
Es. The use of sich a value of Fp/E (rather than assuming
Ep/Es; = 1) leads to more satisfactory agreement between
measured - and predicted load-settlement behavior from
Vesic’s tests (Poulos, 19724d).

- It is therefore suggested that for the prediction of load-
settlement behavior of piles in sand, the value of. the aver-
age soil modulus along the shaft, £, be estimated from
Table 5.3 and that the ratio of £p/Es be taken between 5
and 10, the higher value being used for driven piles in dense
sand and the lower value for bored piles in loose sand.

5.5.4 Typical Values of K Tl ST J S

On the basis of the preceding values of soil modulus, aver-
age values of pile-stiffness factor K, calculated for various
types of pile and soil, are given in Table 5 .4.
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TABLE 54 AVERAGE VALUES
OF K FOR SOLID PILES

Soil Pile Material
Type
Steel?  Concrete  Timber

Soft clay 60,000 6000 3000
Medium clay 20,000 2000 1000
Stiff clay 2000 300 150
Loose sand 15,000 1500 750
Dense sand 5000 500 250

a.. . .
For hollow or H-piles, multiply these
vialues by area ratio R 4.

5.6 SOME COMPARISONS BETWEEN OBSERVED
AND PREDICTED PILE SETTLEMENTS

Although the majority of published pile-loading test results
are concerned primarily with ultimate load capacity, some
tests are sufficiently well-documented to allow the settle-
ment behavior to be analyzed and compared with that pre-
dicted from pile-settlement theory. A number of these :ases
are described below.

Tests by Darragh and Bell (1969 )

Mattes (1972) has analyzed an interesting series of pile tests
carried out by Darragh and Bell (1969) at the site of Gulf
Oil Corporation’s Faustina Works, on the banks of the Miss-
issippi River. Brief details of the piles driven and of site sub-

surface conditions are given in Fig. 5.43. The site involved
about 120 ft of natural levee and back-swamp deposits con-
sisting of layers and laminations of clays, silts, and fine
sands, which overlay a 70-ft deep layer of fine silt grading
to sandy gravel with-depth. Two pairs of step-taper piles
and one pair of steel-tube piles were driven: step-taper piles
"IB and 3 were friction piles driven to within 20 ft of the
sandy stratum, step-taper piles 2A and 4 were end-bearing
in the sandy stratum, tube pile 9 was a floating pile
founded at a similar depth to 1B and 3, and tube pile 10
was end-bearing in the sand. Piles 1B and 3 gave very,similar
load-test results, and were analyzed as floating piles in a fi-
nite layer to derive a backfigured soil modulus for the back-
swamp deposits. The relevant details of these piles are as
follows: ‘

Pile length, L: 108 ft
Average diameter, d: 13 in.

Lld: 100 (approx.)
Depth of founding layer, h: 120 ft

h/L: 1.1 (approx.)
Ultimate load: 160 tons
Settlement at 80 tons: 0.12 in.

Soil modulus £ (backfigured): 6500 psi

Pile stiffness factor, K: 460-500

For the purpose of predicting the performance of the
end-bearing piles 2A, 4, and 10, it was assumed that the
base-soil modular ratio, £ /Es, was 2.

In Table 5.5, the observed settlements of piles 2, 4A,9,
and 10 are compared with those predicted by the elastic
theory, using the soil modulus derived from the floating-

Pu2 3 B 2A 4 9 10 (ft)
] %
natural
levee (C;= 55 p.sa.)
, 30 {
[~ ~—— _///'4
M ] A
Step |Taper ~ Tube
- gol ™ backswamp
deposits (C,: 6 -13 psi)
AN
I 30
U
120}
. , . g o . dense sand
length 96, 08, 126, 134, 100 , 120, N =32 _ 154
Top diem.17% 174 7%, 7%, 12% 1234 o
Base ' 9 1034" 103, 103 123" 123,150l

FIGURE 5.43 Details of tests by Darragh and Bell (1969).



TABLE 5.5 PREDICTED PILE PERFORMANCE-TESTS BY DARRAGH & BELL (1969)

Pile Number 2A 4 9 10
Floating or End-bearing End-bearing Floating End-bearing
end-bearing
Length (ft) 126 132 100 120
Length/diameter 120 120 80 95
(approx.)
Pile type Steel step- Steel step- Closed Closed
taper (closed) taper (closed) Steel tube Steel tube
© 0.188-in wail 0.188-in. wall
E (psi) 6500 6500 6500 6500
EplEg 2 2 1 2
K 500 500 270 270
Applied load 120 120 40 80
(tons)
Predicted top 0.25 0.25 0.09 0.16
settlement (in.)
Measured top 0.20 0.24 0.10 0.17
settlement (in.)
Predicted base 0.05 0.05 0.01 0.016
settlement (in.)
Measured base 0.04 0.06 0.015 0.02
scttlement (in.) .
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Settlement (in) : Settlement (in) Settlement (in) Settlement (in.)
Shaft Load vs. Settlement. Base Load vs. Settlement Shaft Load vs. Settkement Base Load vs. Settlement
(b) Pile H (b) Pik L (Eniorged Base)
Predicted

[} Measured

.FIGURE 5.44 Comparisons between predicted and observed beha-

vior. Tests of Whitaker and Cooke (1966).

Predicted
o Measured

FIGURE 5.45 Comparisons between predicted and observed beha-
vior. Tests of Whitaker and Cooke (1966).
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FIGURE 5.46 Comparisons between observed and predicted load-
settlernent curves. Tests of Whitaker and Cooke (1966).
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FIGURE 5.47 Comparisons between observed and predicted toad-
settlement curves. Tests of Burland et al. (1966).

pile tests 1B and 3, and it can be seen that the settlement
performance of both the floating and end-bearing piles has
been closely predicted.

Large Bored Piers
For some of the tests reported by Whitaker and Cooke
(1966) and Burland et al. (1966) on bored piers in London
clay, comparisons are shown in Figs. 5.44 and 5.45 between
measured and. predicted shaft load versus settlement, and
base load versus settlement. The values of £ in these com-
parisons have been obtained from the mean curve.in Fig.
5.42. The agreement is generally reasonable and the lineari-
ty assumption of these relationships appears justified, at
least over the range of load employed in these tests.
Comparisons of overall behavior are shown in Figs. 5.46
and 5.47 for the tests of Whitaker and Cooke (1966) and
tests reported by Burland et al. (1966). Reasonable agree-
ment again is found, and at least part of the discrepancy
that exists can be attributed to the selection of Ey from the
average curve in Fig. 542, rather than from the actual
backcalculated value of FE; for the particular test. Also
shown in Fig. 5.46 are the curves for piles and predicted
by Ellison et al. (1971) from a finite-element analysis using
a trilinear stress-strain curve for the London clay. These
predicted curves agree well with the measured curves and
are in reasonable agreement with those predicted by the
approximate approach described herein.

Tests by Mansur and Kaufman (1956)

Six instrumented piles were driven into a fairly deep-lay-
ered system of silts, sandy silts, and silty sands with inter-
spersed clay strata, underlain by a deep layer of dense, fine
sand. All except pile number 5, a floating pile, were dri-
ven to end-bearing in the dense, fine sand. One of the end-
bearing piles (pile 3) was an H-pile with a rectangular base-
plate attached, and because of the disturbing effect of this
plate during driving, pile 3 will not be considered further.
The test results were analyzed as follows:

1. Using the theory for a floating pile in a finite layer
(Section 5.2.2), a soil modulus, £, of 10,000 psi was back-
figured from the test results for pile S.

2. From the SP.T. blow counts for the silty soils and the
dense, fine sand, it was deduced that a ratio of bearing-
stratum to soil moduli, £ /F, of about 3 would be appli-
cable for the end-bearing piles.

3. The analysis for a pile resting on a stiffer stratum (Sec-
tion 5.2.2) was used to evaluate the load-distribution along
and settlement of piles 1, 2, 4, and 6. In Table 5.6, the de-
tails of pile properties, settlements, and settlement predic-
tions are given, while in Figs. 5.48a to 5.48e the predicted
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FIGURE 5.48 Comparisons between predicted and observed load
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TABLE 5.6 TESTS BY MANSUR AND KAUFMAN (1956)

Pile number 1 2 4 5 6
Pile type 14-in. 214in.  17-in.  17-in. 19-in.
H-beam pipe  pipe  pipe pipe
Pile length (ft) 81 65 66 45 65
Lid 70 37 47 32 41
K 470 250 350 350 350
End-bearing (E.B.) EB. EB. E.B. F E.B.
or floating (F)
Ep/E; 3 3 3 1 3
Load (tons) 125 125 125 75 125
i‘:&it(m.) 0.13 03 016 010 0.3
f:tt;‘l:t (in.) 0.144 0130 0.142 (0.100) 0.150

Predicted/ 1.10 1.00 0.89

observed settlement

(1.00) 1.15

NOTE: Soil type: alternating strata of silts, silty sands, sandy
silts, with interspersed clay strata,
Bearing Stratum: Dense fine sand.
Pile 5 (floating) used as control pile for predictions.

and measured load-distributions along the piles are com-
pared.

~ Figure 5.48 and Table 5.6 show that quite low values of -
K are possible when steel tubes or H-sections are used as

piles. In such cases, it is likely that very little load does in

fact reach the pile base, even in nominally end-bearing piles.

In the case described here, the results of a floating-pile test,

when combined with the results of a routine borehole test,

have allowed the accurate prediction of the load distribu-

tion along and settlement of end-bearing piles on the same

site.

Test by Mohan, Jain, and Kumar (1963)

A 14-in.-diameter cast in-situ pile of L/d = 33 was placed
through a layered system of fill, medium sand, and silt to
end-bearing on a bed of dense, fine sand. No satisfactory
soil data were available in the test report, and so a value for
K of 300 was assumed, based on an F| value from Table
5.3, and a ratio of bearing stratum to soil modulus of 2 was
adopted. The observed and calculated load-distributions
shown in Fig. 5.48f reveal good agreement.

Tests by D’Appolonia and Romualdi (1963)

Tests on two instrumented H-piles were reported; the piles
were about 45 ft long, and passed through layers of fill,
sandy silt, sand and gravel, fine to medium sand, sand and
gravel, and sandy silt, to end-bearing in shale. No satisfac-
tory soil data was available, so a K value for solid steel piles
of 3000 was adopted, based on an F value from Table 5.3.
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FIGURE 5.49 Comparison between measured and predicted settle-
ments (Mattes and Poulos, 1971).

TABLE 5.7 TESTS BY
D’APPOLONIA AND ROMUALDI (1963)

Pile number 1 2
Pile type 14 BP 89 14 BP 119
. (Hpile) (Hpile)
Length (ft) 44 45
Assumed L/d 33 34
Assumed area 0.143 0.186
ratio (R 4)
K 430 560
EplEg ” =
Load (tons) 75 100
Observed
in. 0.07 0.11

settlement (in.)
Predicted

i in. 0.0 0.09
settlement (in) 6
Predicted/observed settlement  0.86 0.82

NQTE: Soil: layers of fill, sandy silt, sand and gravel,
fine to medium sand, sand and gravel,
and sandy silt.

Bearing stratuni: shale.

The bearing stratum was assumed to be rigid. In Table 5.7,
the pile properties and settlement details are listed, and
comparisons based on the assumed soil properties are made.
In Figs. 5.48¢ and 5.48h, the load distributions within the
piles are compared with the calculated distributions. In
each case, quite reasonable agreement between prediction
and observation is obtained, although .better agreernent
could possibly have been obtained if the soil had been con-
sidered to have a modulus that increased with depth.
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0 L
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FIGURE 5.50 Comparison between observed and predicted ratio
pilprr (Mattes and Poulos, 1971).

Model Tests

A series of carefully controlled model tests on piles in nor-
mally consolidated clay has been carried out by Mattes and
Poulos (1971) in order to examine the effects on settlement
of length-to-diameter ratio and pile compressibility, and the
relative proportions of immediate and final settlement. Fig-
ure 5.49 shows the ratio of predicted to observed settle-
ments for piles of various L/d, using brass piles having L /d
= 25 as control piles and backfiguring the undrained and
drained Young’s moduli £y, and £, from the measured set-
tlements of these piles. The agreement between predicted
and measured settlements for Lj/d = 10 and 4G is reason-
ably good, indicating that the theory predicts with ade-
quate accuracy the effects of pile length on settlement.
Also shown are comparisons for plastic piles, of about ten
times the compressibility of the brass piles, having L/d =
40. Again, the good agreement indicates that the theory
gives a good prediction of the effects of pile compressi-
bility.

Figure 5.50 shows a comparison between measured and
predicted ratios of immediate to final settlement of the mo-
del piles, and reveals fair agreement. The test results con-
firm the conclusion reached from the theory that the major
part of the settlement of a pile occurs as immediate settle-
ment and that consolidation settlement is relatively unim-
portant at normal working loads.



SETTLEMENT OF PILE GROUPS

6.1 INTRODUCTION -

Until relatively recently, estimates of the settlement of pile
groups were based either on empirical data or on simplified
approaches based on one-dimensional consolidation theory.
Among the empirical approaches are those for groups in
sand devised by Skempton (1953), who on the basis of a
limited number of field observations, suggested the follow-
ing relationship between the settlement, p¢;, of a group and
the settlement, p,, of a single pile-

, 4B + 9)? -
PGgiPL ~ EBJr_——TZ%T (6.1)

where
B = width of pile group in feet

For driven piles and displacement caissons in sand, Meyer-
hof (1959) suggested the following relationship for a square
group:

s(5 - 5/3)

pG/pl = (1+ l/r)z (62)

where

N
r

ratio of spacing to pile-diameter

number of rows for square group

Among the simplified approaches based on one-dimensional
theory is that in which the group is replaced by a flexible
footing acting at the level of the pile tips, or more conser-
vatively, at two thirds the depth of the pile. Bjerrum et al.
(1957) compared these two approximations and found that
both underestimated the settlement of a bridge foundation,
although the second gave closer agreement. However, the
comparison was complicated by an appreciable amount of
settlement arising from secondary consolidation in the
field. .

More recently, analytical methods based on the theory
of elasticity have been employed with some success. These
analyses are extensions of those for a single pile (see chap-
ter 5). Such analyses have been described by Pichumani
and D’Appolonia (1967), Poulos (19685), and Poulos and
Mattes (19715). Attention will be concentrated on the
method in the latter two papers, which although similar in
principle to that of Pichumani and D’Appolonia, is amen-
able to hand computation, In this chapter, the piles will be
assumed to be freestanding. Thus, a pile cap will only in-
fluence the behavior of a group by controlling differential
settlement between different piles in the group. The effect
of contact between cap and soil is included in the analysis
given in Chapter 10.

109
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6.2 ANALYSIS OF GROUP SETTLEMENT

6.2.1 Two-Pile Interaction Analysis

The method described here is that described by Poulos
(1968b) and Poulos and Mattes (19715) for floating and
end-bearing pile groups. A group of two identical, equally-
loaded piles is considered, as shown in Fig. 6.1, and as with
the single-pile analysis, each pile is divided into # cylindral
elements and a uniformly-loaded circular base. If conditions
remain purely elastic within the soil and no slip or yield
oceurs at the pile-soil interface, the pile and soil displace-
ments at the center of cach element may be equated. The
equations for the pile displacement are identical with those
for the single pile: that is, Eq. (5.14) for a fully floating
pile, or Eq. (5.23) for a pile bearing on a stiffer stratum.
The soil displacements for a floating pile may be written
as follows: ‘

y ;
{0l = L0+ aIlp) 63
{sp} = vector of soil displacement
{p) = vector of shear stresses
5 ]
P P
1
| _—
2
Lt R
. ]
L] I
¢
-
ot H
Py Po
Pile 1 Pile 2

Stresses acting on piles
FIGURE 6.1 Group of twc floating piles.

B,

1t

[i7+-11 = (n+1) by (n+1) matrix of displacement-

influence factors, containing elements

11if+21ffs where

11,21y = displacement-influence factors at element
i on pile 1 caused by shear stress on ele-

ment j of pile 1 and pile 2, respectively

The values of i and ,[;; may be obtained by integration
of the Mindlin equation for the vertical displacement in
a semi-infinite mass resulting from interior vertical loading.
In the case of end-bearing piles, an allowance may be made
for the effect of the stiffer underlying stratum, as outlined
in Section 5.2.2.

The soil displacements, thus obtained may be equated
to the pile displacements and the resulting system of
equations solved, to obtain the unknown shear-stresses
and displacements along the piles. The analysis of a two-
pile group is therefore identical with that of a single pile,
except that the soil-displacement-influence matrix includes
contributions from the second pile.

The results of the above analysis may be conveniently
expressed in terms of an “interaction factor” a, where

_ Additiona] settlement caused by adjacent pile
Settlement of pile under its own load

(6.4)

where the pile and the adjacent pile carry the same load.
Solutions for o as a function of several variables are de-
scribed below. The use of interaction factors to analyze
the settlement of general pile groups is described in Sec-
tion 6.2.3.

6.2.2 Interaction Factors

6.2.2.1 FLOATING PILES

Interaction factors ay-, for two floating piles in a homo-
geneous semi-infinite mass v =0.5) have been obtained by
Poulos and Mattes (19715) and are shown, as a function of
dimensionless pile spacing s/d, in Figures 6.2 to 6.5 for
various values of £/d and K. The decreasing interaction
with increasing spacing is clearly shown. Interaction in-
creases as L/d increases and K increases, that is, as piles be-
comes more slender or stiffer.

Effect of Finite Layer

Solutions for the interaction facter for two incompressible
piles in a finite layer have been "obtained by Poulos
(19685b). On the basis of these solutions, correction factors
Ny to the interaction factors for piles in a semi-infinite
mass are shown in Fig 6.6. The actual interaction factor
o is then



SETTLEMENT OF PILE GROUPS 111

1-0 \\\ ‘ [ [ [ ] [
ook l e -
) Vs2 05

N
\\ N
N
N AN Values! of K
06 — \

O
o
w
N S
w

S/d 0-2

L
FIGURE 6.2 Interaction factors for floating piles,g= 10.

o = apVy, (6.5)
where

g = interaction factor for semi-infinite mass
While the values of N, in Fig. 6.6 are for the case L/d

= 25 and K = oo they may be applied approximately to
other values of L/d and K, bearing in mind that

1. AsL/d decreases, the value of Ny decreases.
2. As K decreases, the value of Ny increases.

As examples of the effect of L/d and K on Ny, for s/d =
S and A/L = 2, a decrease to L/d = 15 results in a 10%
decrease in Ny, whereas for L/d = 50, Ny, is increased by
22% compared with the value for 2/d = 25. If K is de-
creased to 1000, the value of Ny for L/d = 25, h/L = 2,
and s/d =S is decreased by 8%.
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FIGURE 6.3 Interaction factors for floating piles,; =25.
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FIGURE 6.4 Intcraction factors for floating piles, %: 50.
Effect of Enlarged Pile Base ) ap = interaction factor for dp/d = 1, for relative
Correction factors, Ngp, to the interaction factors for spacing s/d

uniform-diameter floating piles are shown in Fig. 67
for values of dp/d of 2 and 3. The interaction factor for

e Interaction increases as the base diameter increases, this
wo enlarged-base piles is then

effect being most pronounced for relatively short piles.

o - Ngpog (6.6) The values of Ngp in Fig. 6.7 are for incompressible piles
, (K = o); for relatively compressible piles, the effect of the
¢/ where " enlarged base is less, so that Mgy, is less than in Fig. 6.7.
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FIGURE 6.5 Interaction factors for floating piles,—d =100.
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Effect of Poisson’s Ratio
The effect of Poisson’s ratio, vy, of the soil"is indicated in
Fig. 6.8, where for L/d = 50 and K = 1000, a correction

H

db»‘ i "&"'\ 1 F’d“_

a=Ng " aq

I
where a = intern factor for required dq

. ) L5 . Gy
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FIGURE 6.7 Correction factors Ngp to interaction factors, for ef- -

fect of finite layer depth.
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FIGURE 6.8 Correction factor V,, for effect of Poisson’s ratio.

factor N, is plotted for floating piles. The interaction fac-
tor for any vatue of vy is given by

a = Nyags (6.7)

where

@y s = interaction factor for vy = 0.5

Ny, and hence interaction, increases as the value of v
decreases, this effect becoming more marked as the spacing
increases.

Effect of Nonuniform Soil Modulus

The preceding solutions for interaction factors all assurhe
a uniform soil-modulus along the pile shaft. In many cases,
a closer approximation to reality is to consider the soil
modulus as increasing lineaily with depth. A typical inter-
action curve for this case is shown in Fig. 6.9, where it
is compared with the corresponding curve for a uniform
soil with the same average modulus. THhe value of « for the
nonhomogeneous soil is 20 to 25% smaller than for the
homogeneous soil at any given spacing. Thus, the use of
interaction factors for a homogeneous soil may overesti-
mate the settlement somewhat for cases in which the modu-
lus increases with depth.
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Effect of Slip

As pointed cut in Chapter 5, slip at the interface between
the pile shafi and the soil plays a negligible role in the
settlement behavior of single piles of normal proportions
at the working load, but for piers having low values of
L/d and for piles with enlarged bases, slip has some signif-

icance, However, extension of the above interaction-
analysis to incorporate a moderate degree of slip shows
that the value of ax is not significantly changed.

6.2.2.2 END-BEARING PILES ON RIGID STRATUM

Interaction factors ap for end-bearing piles on a rigid
stratum are shown in Figs. 6.10 to 6.13 (Poulos and Mattes,
19715). As s/d increases, ap decreases, but in contrast
to the floating piles, ag generally decreases as K increases,
and for K = == (incompressible piles), no interaction occurs,
since the entire load is transferred to the rigid bhasé. Also,
ap decreases as L/d decreases, since less load-transfer then
occurs. The effect of Poisson’s ratio, v, is again small
in relation to the effects of /d and K.

Effect of Finite Compressibility of Bearing Stratum
Interaction factors for a pile resting on a compressible
stratum will lie between those for a floating pile in a
homogeneous mass, ay, and those for a pile resting on a
rigid base, &y, and may be expressed as

a = ap-Fg(ap-agp) (6.8)
where
Fr is a factor depending on K, L/d, and £ /E.

Values of Fg for four values of L/d are shown in Fig. 6.14,
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FIGURE 6.10- Interaction factors for end-bearing piles,—& =10.
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which shows the transition from end-bearing to floating
interact.on with £} /E; and K. The smaller the value of K
or the larger the value of L/d, the smaller the value of
Ep/E, for which Fg tends to 1 (ie., the interaction factor
tends to the rigid base value). Although the curves shown
are for s/d = 5, they apply approximately for other values
of s/d.

6.2.2.3 INTERACTION BETWEEN PILES OF DIFFERENT SIZE

For two piles— and j in Fig. 6.15— of different size, it

is reasonable to calculate the increase in settlement of pile
i caused by pilej, Apj;, approximately as
(6.9)

A,O,'/' = pp ot Gy

where

p; = settlement of pile; under its own load

a; = interaction factor corresponding to the spacing
between piles i and j, and for the geometrical
parameters (i.e., length and diameter) of pile j
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FIGURE. 6.12 Interaction factors for end-bearing piles,—d =50.
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Stmilarly, the increase in settlement of pile j causzd by

pile I, Apjq, is
Apji = pit Qi

where

il

P
a‘,- i

It

settlement of pile 7 under its own load
interaction factor corresponding to the spacing
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FIGURE 6.14a Interaction reduction factor Fg.

(6.10)

between piles i and j, and for the geometrical
parameters of pile 7.

In general, for equal loads on piles i and j, Ap;; # Ap;j.
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FIGURE 6.15 Interaction between two piles of different size.

6.2.3 Analysis of General Groups

The analysis for a two-pile group can be extended to any
number of piles, provided that all piles in the group behave
identically: that is, the piles are spaced equally around the
circumference of a circle and each displaces equally and
carries equal load (a “symmetrical group”). Solutions for
such groups have revealed that the additional settlement of
each pile in the group caused by the other piles is almost
exactly equal to the sum of the displacement increases
caused by each of the other piles in turn—that is, the indi-
vidual interaction factors may be superposed*. Thus, for
a group of three equally-loaded viles arranged in an equi-
lateral triangle, the increase in group settlement over that
of a single pile is twice that for a group of two piles at the
same spacing, while for a square group of four piles, at a
spacing of s diameters, the group displacement, p;, is given
by

pG = Pypy (1420 tay) (6.11)
where

P, = load in each pile

py = displacement of single pile under unit load

a; = interaction factor for spacing s * d

@, = interaction factor for spacing /2s  d

Although pile displacement increases can be superposed,
it should be noted that the shear-stress distribution is
slightly altered by interaction and the proportion of the
load taken by the base increases as the number of piles in
the group increases (Poulos, 19685).

The applicability of the superposition principle to
symmetrical groups suggests that it may be applied to
general pile groups. Thus, for a group of n identical piles,
the settlement p; of any pile k in the group is given by
superposition, as

* It should be noted that superposition cannot be rigorously
correct because the addition of a pile involves a change in the overall
elastic system as well as an additional load.
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n
Pk T P 2:1(1’/ * o))+ piPr (6:12)
j#k
where

o1 displacement of single pile under unit load

F; = load in pile;

ay; = interaction factor for spacing between piles
kandj

For groups containing piles of different size or geometry,
following upon Eq. (6.8) and (6.9), Eq. (6.11) may be
expressed as

n

Pk = 2 (rjFj ag)+pik Pk (6.13)
j=1
jEx
where
pi; = displacement of single pile / under unit load

ay; = interaction factor for spacing between piles
k and j, and for the geometrical parameters of
of pile j

Equations (6.12) or (6.13) may be written for all piles in
the group, giving n displacement equations. Alsc, for
vertical load equilibrium,

Pe =P (6.14)

where
P¢ = total group load

The n+1 equations thus obtained may be solved for two
simple conditions:

- 1. Equal load (or known load) on all piles, corresponding
to loading over a flexible pile cap. »

2. Equal settlement of all piles, corresponding to 1 per-
fectly rigid cap on the piles.

For case 1, P; = P /n, and Eq. (6.12) may be used directly
to calculate the settlement of each pile in the group and
hence the differential settlement between the piles. For
case 2, the settlements from the n equations (6.12) are

equated, which together with Eq. (6.14) give n+1 simul-
taneous equations that can be solved for the unknown
loads in the group and the group settlement. Frequently,
in practice, the number of equations is reduced by the
symmetry of the pile arrangement.

For most practical purposes, the proper consideration
of a group with a rigid cap, as outlined above, is not neces-
sary if the group settlement only is required. As in the
example below, the average settlement of a group with
equally loaded piles is approximately equal to that of a
group with a rigid cap. Thus, the assumption of equal
loading should be adequate in most cases, and it may be
adequate if the settlement is calculated at a representative
pile that is neither at the center nor at the comer of the
group.

The above analysis of any general pile group therefore
requires only a knowledge of the relationship between
a and pile spacing for two-pile groups (see Section 6.2.2)
and the settlement of a single pile. The results of this
analysis for the group settlement can be expressed con-
veniently in two ways:

1. In terms of the settlement ratio R, where

R. = Average group settlement
$ Settlement of single pile at same average
load as a pile in the group

(6.15)

2. In terms of the group reduction factor R¢;, where

- Average group settlement
Settlement of single pile at same fotal (6.16)
load as the group

Rg

R is strictly meaningful only for an elastic soil, where
there is a linear relationship between load and settlement
and failure of the single pile under the group load does
not develop.

The settlement ratio Ry is the more useful and familiar
quantity for practical problems, but there is some advan-
tage to using the gi - p-reduction factor R for examining
the comparative behavior of pile groups, since Rg in
fact represents the settlement of a group if the settlement
of the corresponding single pile is unity, Thus, Rg gives
a direct measure of the relative settlement of groups con-
taining -different numbers of piles and subjected to the
same total load. R¢; lies in the range 1/n <Rg <1,andis
related simply to R as follows: '

R; = nRg (6.17)



Once E; or R has been determined from the analysis,
the group settlement, p¢ ., is then given by

PG = RePaypi (6.18)

or
pG = RGPgp (6.19)

where

P, = average load on a pile in the group
Py = total group load

It should be emphasized that the above analysis does
not directly consider the influence of softer compressible
-layers which may lie beneath the piles unless the interaction
factors and single pile settlement are computed to allow for
such layers. A simple extension of the analysis to cover this
problern is described in Section 6.4.

To illustrate the use of the superposition principle
for calculating the settlement of a pile group, an example
is described below. Solutions for square groups of piles are
described in Section 6.3.

HMustrative Example
A freestanding group of six 12-in-diameter concrete piles
is driven into a deep layer of medium clay, and is to be
subjected to a load of 300 tons (see Fig. 6.16). A test on
a single pile gives a final settlement of 0.60 in. under a
load of 50 tons. Determine the final settlement of the
six-pile group. )

From Table 5.4, the value of K is about 2000, Piles
1, 3, 4, and 6 behave identically and will be called type
A, while piles 2 and 5 will be called type B. The loads on
types A and B are P4 and Pg, respectively. From Fig.
6.4 for L/d = 25, the interaction factors may be inter-
polated for K = 2000. The factors are tabulated in Table
6.1. '

TABLE €.1
Pile 1 (Type 4) Pile 2 (Type B)

. Pilej s/d @ s/d o
1 0 - 5 0.42
2 5 0.42 0 —
3 10 0.27 5 0.42
4 5 0.42 7.07 0.35
5 7.07 0.35 5 0.42
6 11.2 0.25 1.07 0.35
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FIGURE 6.16 Pile group configuration in example.

The settlement of pile 1 (and all type A piles) is given
by Eq. (6.12) as

Py = pl{PA (0.27+042+ 025)+ PB (0.42+0.35) +1’A}

or, -

Py = 1.94P,4 +0.77 Pg
1

(6.20)

where p; is the settlement of a single pile under unit load.
Similarly, for pile 2 (and all type B piles), )

pg = py {P4(0.42+0.42+035+0.35)+
Pp (0.42) + Pg}

or,
PB
_p— = 1.54P, +1.42Pp (6.21)
1
Also, from equilibrium,
4P +2Pg = 300 (6.22)

For arigid cap,py = pB
The solving of Egs. (6.20), (6.21), and (6.22) for this
case yields the following solutions:
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Py = 57.4 tons
Py = 352 tons
P P
LA LB L 344
P P

From the pile-load test,

. 060
T
= 0.012 in./ton
Therefore

04 = pp = 1.66in.

Settlement ratio
R, = ——= = 2.77
5T 060
Group-reduction factor
Rg = Ryn = 046

If the pile cap is sufficiently flexible and the lcad is
uniformly distributed so that all piles are equally loaded,
- then

P/«l = P[,f = 50 tons
P4 =50 X 271 X p; = 1.62in.
pg = 50 X 296 X p, = 1.77 in.

6.3 THEORETICAL SOLUTIONS FOR FREESTANDING
GROUPS

6.3.1 Settlement of Floating and End-Bearing Groups

Theoretical values of settlement ratio R;, determined from
the analysis described above, are shown in Table 6.2 for
floating-pile groups in a deep layer of uniform soil, and in
Table 6.3 for pile groups bearing on a rigid stratum. These
values apply to square groups of piles with a rigid cap in
which the center-to-center spacing between adjacent piles
in a row is s, and the length and diameter of each pile are L
and d, respectively. The pile stiffness factor is K. In all cases,
R increases as the spacing decreases and the number of
piles increases. For floating groups, an increase in pile-
stiffness factor K leads to an increase in R, whereas for the
end-bearing groups, R, decreases as K increases. The exact

configuration of the piles in a group does not significantly -

influence Ry, so that values for other numbers of piles may

be interpolated from Tables 6.2 and 6.3. For groups con-
taining more than 16 piles, it has been found that R varies
approximately linearly with the square root of the number
of piles in the group. Thus, for a given value of pile spacing,
K and L/d, Ry may be extrapolated from the values for a
16-pile group and a 25-pile group as follows: ’

Ry = (Ras - Ry} =5) + Rys (6.23)

where
R,s = value of R for 25-pile group

Ry = value of R for 16-pile group
number of piles in group

n

Figure 6.17 shows the group reduction factor, Ry,
plotied against s/d for various groups. R, and hence group
settlement, decreases as the number of piles increases. How-
ever, at relatively close spacings, the use of more piles to
decrease settlement becomes increasingly ineffective if the
same spacing between the piles is retained.

In general, it is found that the settlement of a group of
piles in a relatively uniform stratum depends primarily on
the breadth or width of the group; hence, within a group of
given breadth or width, increasing the number of piles
beyond a certain number will only marginally improve the
settlement performance of the group, unless the original
spacing within the group is greater than abour six dia-
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FIGURE 6.17 Influence of .type of group on settlement—groups
with rigid cap. )
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FIGURE 6.18 Settlement against breadth of group—rigid pile cap.

meters. This point is illustrated in Figs. 6.18 and 6.19, in
which the group reduction factor, R, is plotted against to-
tal group breadth. These figures show that for larger groups,
R does not vary greatly with the number of piles in the
group. For groups containing more than 25 piles, it appears
that a common limiting curve of R¢g versus group breadth,
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coincident with the curve for the 5% group, can be used
over a practical range of group breadths. The dependence of
settlement on group width rather than number of piles has
been confirmed in full-scale tests by Berezantzev et al.
(1961), and from data collected by Skempton (1953) for
driven piles in sand. The relationship suggested by Skemp-
ton (Eq. 6.1) between settlement ratio and group breadth,
as reexpressed in terms of Rg and plotted in Fig. 6.18,
agrees quite well with the theoretical curves. These results
suggest, therefore, that if settlement is the sole criterion, it
is more economical to use a smaller number c¢f piles at a
relatively large spacing, rather than a large number of piles
at closer spacings.

6.3.1.1 EFFECT OF FINITE LAYER DEPTH

For floating-pile groups, the presence of an underlying
figid base below the soil layer tends to reduce the settle-
ment ratio Rg. An indication of the extent of this decrease
is given in Fig. 6.20, in which, for typical groups, a reduc-
tion coefficient, £y, is plotted against the ratio of layer-
depth h to pile-length L, &, being defined as

: R, for finite layer of depth h
h =

R, for infinitely deep layer (6.24)

Thus, &, is a factor by which the values of R for an infi-
nitely deep layer in Table 6.2 are multiplied to obtain Ry
for a finite layer. Figure 6.20 shows that as would be ex-
pected, £, decreases as h/L decreases, and that the effect of

1-0 [ ‘ )
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FIGURE 6.19 R; vs. group breadth—Floating Groups.
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the finite layer is more pronounced as the size of the group
increases.” £, increases as the pile-stiffness factor K de-
creases. As L/d increases, the effect of the finite laver
becomes less significant.
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FIGURE, 6.21 Reduction coefficient tp for effect of bearing
stratum.

6.3.1.2 EFFECT OF COMPRESSIBILITY OF BEARING
STRATUM

An example of the influence of the stiffness of the bear-
ing stratum on R; is shown in Fig. 6.21 for the particular
case of a 3% group with a pile spacing of four diameters, A
reduction coefficient, £p, is plotted against the ratio of the
modulus £y of the bearing stratum to the soil modulus £

£p being defined as

R, for group resting on bearing stratum (6.25)

& = R, for floating group on infinitely deep

layer
The following points are apparent from Fig. 6.21:

1. &, and hence settlement ratio Ry, decreases as the rela-

tive stiffness of the bearing stratum, £} /E;, increases, this
effect being most pronounced for shorter, stiffer piles.

2. For slender piles (e.g., L/d = 100), unless the piles are
quite stiff, the bearing stratum has little effect on settle-
ments, because very little load reaches the pile tip under
normal working-load conditions.

1.05 - - \

1.0 ‘
0 0.1 0.2 0.3 04 Q.5

vy

FIGURE 6.22 Correction factor &, for effect of vg.




As E /E, approaches infinity, £ approaches the ratio of R
for the end-bearing group on a rigid base (Table 6.3) to the
corresponding value for the floating group in a deep layer.

6.3.1.5 EFFECT OF POISSON'S RATIO, vg
The effect of vy on Ry is shown in Fig. 6.22, in which fac-
tor £, is plotted for a typical case, £, being defined as

_ Ry for specified value of vg
& R forv; =05 (6.26)

£, increases as vy decreases, and this implies that as con-
solidation proceeds and vy decreases from the undrained
value (0.5 for a saturated clay) to the drained value, the
value of R; will increase. The effect of vy becomes more
pronounced as the number of piles in the group increases.

6.3.1.4 EFFECT OF SOIL-MODULUS DISTRIBUTION

Figure 623 shows the effect of the distribution of soil-
modulus on R for a typical case. Two cases have been
considered: a deep soillayer having constant Ej, with
depth; and a soil in which £ varies linearly along the pile
shaft, with the value at middepth of the pile being equal
to the constant value in the first case. As expected from
Fig. 6.9, larger values of Ry occur for the uniform soil,
the difference becoming greater as the number of piles
increases.

6.3.1.5 RATIO OF IMMEDIATE TO FINAL SETTLEMENT .

For a pile group in an ideal, saturated, two-phase elastic
soil mass, it is possible to calculate the ratio of immediate
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settlement to total final settlement, p;/prF, as described
in Section 5.3.5. For various groups of incomnpressible
floating piles, the ratio p;/prpr is shown in Fig. 6.24.
Poisson’s ratio vy of the soil skeleton has beer. taken as
zero, so that Fig. 6.24 can be considered as representing
the theoretical minimum relative importance of immediate
settlement. As with a single pile, the predominant part
of the total final settlement occurs as immediate settle-
ment, although the time-dependent settlement does in-
crease as the number of piles in the group incrzases. Pile
compressibility has little influence on the ratio p;/p7y.

For end-bearing groups, the relative amount of imme-
diate settlement is even greater than for floating groups,
and in most cases likely to be met in practice, the consoli-
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FIGURE 6.24 Relative importance of immediate settlement—pile groups with rigid cap.
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dation settlement theoretically comprises less than 10%
of the total tinal movement.

6.3.2 Load Distribution in Groups with Rigid Cap

For a wide range of values of L/d, s/d, K, and group size,
load distributions within a floating-pile group are given in
Tables 6.4 and b, the pile load being expressed as a frac-
tion of the average load in the group. The key for identi-
fication of the piles in each group is shown in Fig. 6.25.
The greatest loads occur at the corner piles, and the least
at the center piles. The load distribution tends to become

less uniform as the pile spacing decreases, the number of
piles increases, L/d increases, or K increases. The load dis-
tribution is also influenced by the existence of a layer of
finite depth, a typical example for a 32 group being shown
in Fig. 6.26.

For pile groups bearing on a rigid stratum, load
distributions are given in Tables 6.5a and b, while typical
distributions for a 32 group are shown in Fig. 6.27. As
with the floating groups, the load distribution generally
becomes ~ less uniform as L/d increases and spacing
decreases, but in contrast to the corresponding floating
groups, increasing the pile stiffness factor K causes the
load distribution to become more uniform.

TABLE 6.4 LOAD DISTRIBUTIONS WITHIN 3* AND

4* FLOATING-PILE GROUPS: VALUES OF P{P,,

Pile 1 Pile 2 Pile 3
Lid K 100 1000 o 100 1000 = 100 1000 o
s/d

3% group 10 2 1.28.  1.47 1.56 0.84 0.75 0.72 0.52 0.16 -0.15
5 1.20 1.25 1.26 0.91 0.88 0.88 0.57 0.47 0.45
10 1.10 1.13 1.14 0.95 0.94 0.94 0.78 0.73 0.70
20 1.04 1.05 1.06 0.98 0.97 0.97 0.91 0.88 0.88
25 2 1.18 1.38 1.50 0.89 0.79 0.65 0.71 0.32 -0.35
5 1.17 1.29 1.32 0.92 0.87 0.84 0.63 0.38 0.34
10 1.11 1.18 1.21 0.95 091 0.89 0.77 0.61 0.55
20 1.06 1.11 1.12 0.97 0.95 0.94 0.87 0.77 0.73
100 2 1.24 1.11 1.70 0.86 0.93 0.66 0.58 0.84 —0.45
5 1.22 1.17 1.37 0.90 0.92 0.81 0.53 061 0.24
10 1.14 1.15 1.28 0.94 0.93 0.86 0.70 0.68 042
20 1.07 1.10 1.21 0.97 0.95 0.90 0.86 0.79 0.55
42 group 10 2 1.68 2.00 2.14 0.97 0.95 0.95 0.38 0.09 -0.04
5 142 1.1 1.52 1.01 1.00 1.00 0.56 0.48 0.47
10 1.21 1.25 128" 1.01 1.00 1.00 0.77 0.73 0.70
20 1.10 1.13 1.12 1.00 1.00 1.00 0.89 0.86 0.86
25 2 1.50 1.87 2.25 0.97 0.95 0.89 0.54 0.23 -0.05
5 140 1.62 1.70 1.01 1.01 0.99 0.59 0.36 0.30
10 1.25 1.41 1.48 1.00 1.01 1.00 0.74 0.57 0.50
20 1.14 1.23 1.26 1.00 1.00 1.00 0.85 0.76 0.72
100 2 156 135 230 096 097 101 052 070 .-0.15
5 1.50 1.45 1.84 1.02 1.01 0.98 047 0.52 018
10 1.29 1.35 1.65. 1.00 1.00 1.00 0.70 0.63 0.34
20 1.15 1.24 1.42 1.00 1.01 1.00 0.83 0.75 0.56
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FlGU]iE 6.27 Load distributions in 3? end-bearing group.

Figure 6.28 shows a typical variation of pile loads
within a 3% group with varying relative bearing-stratum

modulus £p/Es. The load distribution becomes more

uniform as £ /E increases.

6.3.3 Groups with Equally Loaded Piles

For groups with equally loaded piles, the maximum settle-
ment occurs at the center pile or piles, while the minimum
settlement occurs at the corner piles. For some typical
groups of incompressible floating piles, the ratio of the
maximum settlement, pn.x, to the settlement of the
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FIGURE 6.28 Influence of bearing stratum on load distribution in
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TABLE 6.5¢ LOAD DISTRIBUTIONS WITHIN 3* AND 4* END-BEARING PILE GROUPS

VALUES OF /P,

SETTLEMENT OF PILE GROUPS

Pile 2

100 1000 100 1000 100 1000
d
Lf s/d

3? group 10 2 0.98 0.92 0.99 1.01 111 1.20
5 1.02 1.00 0.99 1.00 0.94 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
25 2 1.07 0.95 0.94 1.00 0.93 1.17
5 1.11 1.02 0.94 0.99 0.76 0.96
10 1.05 1.01 0.98 0.99 0.88 0.97
20 1.02 1.00 1.00 1.00 0.97 1.00
100 2 1.22 1.02 0.87 0.97 0.65 1.04
5 1.21 1.13 0.90 0.94 0.53 0.73
10 1.12 1.10 0.94 0.95 0.71 0.78
20 1.0¢ 1.06 0.97 0.97 0.88 0.87
4% group 10 2 1.04 0.88 0.98 0.98 1.00 1.17
5 1.0¢ 1.00 1.00 1.00 0.94 1.00
10 1.00 1.00 1.00 1.00 0.99 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
25 2 1.26 0.95 0.98 0.98 . 0.77 1.10
5 1.23 1.05 1.01 1.00 0.75 0.94
10 1.10 1.02 1.00 1.00 0.88 0.98
20 1.02 1.00 1.00 1.00 0.98 1.00
100 2 1.61 1.19 0.97 0.98 0.44 0.86
5 1.43 1.33 1.00 1.00 051 0.65
10 1.27 1.23 1.00 1.00 0.72 0.75
20 1.14 1.13 1.00 1.00 0.85 0.84

corresponding group with a rigid cap, pg, is given in Table
6.6. The ratio ppnax/pR increases with increasing number
of piles in the group, but is almost independent of spacing
for a practical range of spacings. The value of K has little
effect on pmax/oR -

For groups of end-bearing piles on a rigid base, values
of pmax/Pr are shown in Table 6.7, for L/d =25 and K =
100. For such groups, pmax/or decreases rapidly as K
increases and is unity for K > 2000, since no interaction
then occurs.

The ratio pg/pmax, of the maximum differential szttle-
ment to the maximum settlement, is shown in Fig. 6.29
for incompressible floating piles in a semi-infinite mass.
This ratio increases with increasing spacing but decreases
if the layer depth is decreased or L/d increased. The value
of K has relatively little influence.

For typical groups of end-bearing piles on ¢ rigid base,
values of py/pmax are shown in Fig. 6.30 for K = 100,
For such compressible piles, relatively large differential
settlements may occur, expecially for large groups of
slender piles. However, the relative differential settlement
decreases rapidly with increasing K and is ze o for piles
that can be considered as incompressible.

6.3.4 Approximation of Group as a Single Pier

For calculations relating to large structures supported by
a number of pile groups, it may often be useful to replace
each pile group by an equivalent single pier that settles
an equal amount. Such an approximation is useful, for
example, if an analysis of intergroup interaction is desired,
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TABLE 6.56 LOAD DISTRIBUTIONS WITHIN 5? END-BEARING PILE GROUPS VALUES OF P/P,,

Pile 1 Pile 2 Pile 3 Pile 4 Pile 5 Pile 6
K 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000
Lid ——ro
sid
52 group 10 2 1.11 0.86 1.02 094 095 0.95 0.99 1.13 0.90 1.14 0.81 1.18
5 1.06 1.01 1.02 1.00 1.01 1.00 0.96 1.00 095 1.00 0.94 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00
25 2 1.55 0.99 1.12 0.99 0.99 0.96 0.77 1.07 0.59 1.03 044 099
5 1.37 1.09 1.09 1.03 1.04 1.00 0.77 095 0.72 0.92 0.67 0.87
10 1.15 1.03 1.04 1,01 1.02 1.01 0.90 0.98 0.88 0.97 0.86 0.97
20 1.02 1.00 1.00 1.00 1.00 1.00 0.98 1.00 098 1.00 098 1.00
100 2 2.08 1.48 1.20 1.11 1.01 096 048 0.83 0.25 0.63 0.36 0.44
5 175 1.55 1.16 1.13 1.08 1.04 0.53 0.68 0.46 0.58 0.39 047
10 142 1.39 1.08 1.09 1.04 1.04 0.73 0.77 0.70 0.71 0.67 0.65
20 121 1.22 1.05 1.05 1.01 1.01 0.883 0.87 0.83 0.82 079 0.78

TABLE 6.6 VALUES OF ppy/og FOR FLOATING-PILE
GROUPS IN FINITE LAYER. L/d = 25;v5=0.5.

Group 3? 4? 52
N 15 12 e 5. 12 = 15 12
s/d

1 1.13 1.15 1.15 1.13 1.17 1.18 1.18 1.25 1.26

2.5 1.13 1.17 1.16 1.14 1.20 1.17 1.19 1.30 1.24
5 1.13 1.18 1.13 1.15 1.20 1.15 1.21 1.30 1.23
10 1.14 1.15 1.10 - 1.16 1.16 1.11 1.24 1.20 1.11
20 1.14 1.05 1.01 1.13 1.05 1.01 1.18 1.04 1.02
40 1.03 1.00 1.00 1.06 1.00 1.00 1.17 1.00 1.00

TABLE 6.7 VALUES OF pux/pg FOR
END-BEARING PILE GROUPS. L/d = 25,
K =100, v = 0.5.

Group
31 42 51
sid
~

2 1.04 1.08 1.17

5 1.19 1.14 1.21
10 1.09 1.10 1.13
20 1.03 1.02 1.02
40 1.00 1.00 1.00

~or if settlements caused by underlying compressible strata

are to be estimated (see Section 6.4). Two types of approxi-
mation may be useful:

1. An equivalent single pier of ‘the same circumscribed
plan area as the group and of some equivalent length,
L,.

2. An equivalent single pier of the same length, £ as
the piles, but having an equivalent diameter, d,.

For incompressible floating groups, values of L,/L
for the first approximation, obtained by Poulos (19685),
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FIGURE 6.29 Diffcrential seltlement in floating pile groups with
equally loaded piles.

are shown in Fig. 6.31. L,/L depends both on spacing and
L/d, but is virtually independent of the number of piles
in the group. For most practical cases, L./L lies between
0.9 and 0.6.
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The second approxirnation is more appropriate when
the piles pass through layered soils or are founded on very
different material. Relationships between d./B and s/d
are plotted in Fig. 6.32 for floating piles, where d, =
equivalent diameter of single pier of lenéth L, and B
average width of group (i.e., the square root of the gross
plan area of the group). Like L./L, d,/B is almost indepen-
dent of the group’s size, but it does depend on L/d. The
effect of the pile-stiffness factor K, also shown in Fig.
6.32, is considerable, especially for slender piles. The ratio
de/B tends to decrease with increasing pile compressibility .
It should be noted that the equivalent pier in Fig. 6.32
lhas the same value of K as the pile in the group.

Similar calculations could be done for end-bearing
piles. For the limiting case of incompressible piles bearing
on a rigid stratum, one obtains, by either method, an
equivalent pier that has the same total area and the same
length as the original piles. For compressible piles on a
nonrigid base, the equivalent pier will be intermediate
between this limiting case and that for the fully floating
situation.

6.4 SETTLEMENT OF GROUPS CAUSED BY
COMPRESSIBLE UNDERLYING STRATA

In practical cases in which the soil profile is layered and
compressible strata are present below the piles, the settle-
ment caused by these strata must be considered in calcu-
lating the overall settlement of the group. A method for
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FIGURE 6.32 Diameter of equivalent pier to represent pilq group.

calculating the settlement of single piles resulting from
compressible strata has been described in Section 5.3.4.
This method may be extended to a pile group by calculat-
ing the settlement of the group as the sum of the settle-
ment of the group in the founding layer and the contribu-
tions to settlement of the underlying layers caused by all
piles in the group (Poulos and Mattes, 197 1a).

Poulos and Mattes found that little error results in
assuming that the load distribution in the group is uniform,
rather than considering the nonuniform distribution of
load. Moreover, it was found that the replacement of the
pile group by an equivalent pier (see Section 6.3.4 above)
also leads to very similar answers. Thus, in practical cal-
culations, it is convenient to employ the latter approach
and. calculate the settlement of the group as the sum of
the settlement pgp in the founding layer and the settle-
ment caused by the underlying layers, using Eq. 541
and Fig. 5.35.

Ilustrative Example

To demonstrate the application of this method to a prac-
tical case, the example shown in Fig. 6.33 will be con-
sidered. A 3? group of concrete piles with a rigid cap is
founded in a clay layer underlain by two further layers, -
which are in turn underlain by rock. It is assumed that
only a limited amount of soil data is available from the
results of undrained triaxial tests and oedometer tests,

P=45MN
- ]
32 group, driven
concrete pites
20 m
Layer 1
30m Medium clay
k c, = 60 kPa
Y U U —tl<—g=04m
2m - 2m
Layer 2
6m . 2
Medium soft clay, m, = 0,15 m“/MN
Layer 3
10m : . 2
Medium clay, m, = 0.05 m“/MN

FIGURE 6.33 Illustrative example.



as indicated in Fig. 6.33. An estimate is required of the
total final settlement of the pile group.

The first step is to estimate the drained Young’s mod-
ulus and Poisson’s ratio of each layer. For the first layer
in which the piles are situated, interpolation from Fig.
5.42 for ¢, = 60 kPa gives E; = 17.0 MPa. v; is assumed
to be 0.35. For the second and third layers, v is assumed
to be 0.35 and 0.3, respectively. Using the specified values
of m,, and the following theoretical relationship between
h'; and m,,

1- 2wg)(1 + v5)
T 627)
(1-vy)my,
the values of Eg for layers 2 and 3 are 4.2 MPa and 14.9
MPa, respectively.

Assuming Young’s modulus of the concrete to be
17,000 MPa,

Pile-stiffness factor

17,000 X 1.0

K =
17

= 1000

The settlement of a single pile in the first layer may now be
calculated, the relevant dimensionless parameters being
Lid = 20{/0.4 = 50, K = 1000, vy = 0.35, h/L = 30/20 =
"1.5. Using Eq. 5.33a¢, the single-pile influence factor [
is found to be 0.046, and for the average pile load of
4.5/9 = 0.5 MN, the single-pile settlement is

0.5
2 = Pvr * = . 4
Play av " P1 04X 17.0 X 0.046
= 0034 m
= 3.4 mm

The settlement ratio must now be determined. From
Table 6.2, for a 3% group in a deep layer, with s/d = 2/0.4
=5, K = 1000, and v; = 0.5, R¢ = 3.51. Making allowance
for the effect of the finite layer from Fig. 6.20 and for the
effect of vy being 0.35 rather than 0.5 (Fig. 6.22), the
required value of Ry is estimated to be 2.63. The settlement

of the group in the founding layer, p;p, is then given by
Eq. (6.18) as

Pcp T 263 X34
8.9 mm

The settlement contritution from the ilnderlying layers
must now be calculated. From Fig. 6.31, using the equiva-
lent-length approach to represent the group, L, is about
09L, or, L, = 0.9 X 20 = 18 m. The plan area of the
group is 4.4 X 4.4 = 19.36 m*, and hence the diameter
of the equivalent pier is d, = 4.96 m—say, 5 m. Thus, for
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TABLE 6.8 CALCULATION OF ADDITIONAL
SETTLEMENT CAUSED BY UNDERLYING LAYERS

Layer H;® b

b
He 1" Hiper lisr” Eg Iy~ Insy
® I - MN/mY) L
2 1.67 0428 2.0 0.308 4.2 0.0279
3 2.0 0.308 2.55 0.230 149 0.0052
ng = 18 m. 3 = 0.0331
From Fig. 5.35. 4.5
.~ Settlement caused by layers 2 and 3 = 18.0 X 0.7331
= 0083 m
= 8.3 mm

the equivalent pier, L,/d, = 18/5 = 3.6. The calculations
to evaluate the settlement of layers 2 and 3, using Eq.
(5.41), are tabulated in Table 6.8. It is assumed that the
rock beneath layer 3 is rigid. From Table 6.8, the settle-
ment caused by the underlying layers is 8.3 mm, so that
the estimated final settlement of the group is

©
I

8.9+8.3
17.2 mm

il

If the equivalent-diameter approach is used, the settle-
ment caused by the underlying layers is calculated to be
9.7 mm, compared with the above value of 8.3 mm.

6.5 PREPARATION AND USE OF DESIGN CHARTS

The theoretical solutions presented in this chapter can be
used to prepare design charts to assist in the s:zlection of
the necessary number and spacing of piles to support a
given load with a specified maximum settlement and
factor of safety against failure. The procedure is best
described with reference to the following simple example.
A load of 5 MN is to be supported on a deep layer of
clay having the following average properties: ¢, = 50
kPa, pile-soil adhesion ¢, = 45 kPa, E' = 15 MPa, v' =
0.3. It is proposed to use driven 20-m-long concrete piles,
0.4 m in diameter, for which £, = 15,000 MPa. It is re-
quired to examine the combinations of number and spacing
of piles that satisfy the criterion of a factor of safety of
2.5 against failure and a maximum final settlement of 15
mm, : :
Considering first the settlement criterion, the results
for R, in Table 6.2, together with the solutions for single-
pile settlement (Chapter 5) may be used to prepare plots-

_of settlement, S, versus number of piles, n, for various
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FIGURE 6.34 Design chart for settiement of pile groups in
example.

pile spacings, s. The resulting plot is shown in Fig. 6.34.
From this plot, the values of s and » that satisfy the cri-
terion of 15-mm settlement may be obtained and replotted
as curve 1 on Fig. 6.36. Combinations of s and n to the
right of curve 1 will give settlements less than 15 mm,
while those to the left will give greater settlements. If
desired, a. series of such curves could be constructed for

W T T T TTTT] P
5 |- 4
) —> FS =25 —
2 2 b Values of spacing, ]
z
“; 0.8
S 7]
g 7
3 .
014 | Lot bl | Lol
1 2 5 10 20 50 100

No. of piles, n

FIGURE 6.35 Design chart for factor of safety of pile groups in
example.

different allowable settlements. It is assumed here that
as previously mentioned, the settlement is dependent
almost entirely on the number and-spacing of piles and not
on the exact group configuration.

A similar plot to Fig. 6.34 may be made of factor of
safety, FS, versus n for various values of pile spacing. In ob-
taining these curves, the relationship in Eq. (3.22) for ulti-
mate group-load capacity has been used.

The resulting curves of FS versus n for three values of
spacing s are shown in Fig. 6.35. From Fig. 6.35, the values
of s and n giving the required value of FS = 2.5 have been
plotted as cuive 2 in Fig. 6.36. Again, combinations of s
and n to the right of curve 2 have a factor of safety greater
than 2.5, while combinations to the left have FS less than
2.5. The minimum combination that satisfies both the set-
tlement and the factor-of-safety criteria is given by the in-
tersection of curves 1 and 2—in this case, n = 12 piles at
about 2.8-m spacing.

Of course, other requirements may dictate the final
design—for example, requiréments for design of the pile
cap, or limits on the area of the group. In such cases, Fig.
6.36 gives a rapid appreciation of the consequences of other
constraints; for example, if the spacing had to be no greater
than 1 m, a total of about 38 piles would be required to
satisfy the settlement criterion, whereas 16 would be ade-
quate for bearing-capacity’ purposes.

The use of design charts such as Figs. 6.34, 6.35, and
6.36 can therefore give a ready appreciation of the effects
on group settlement and safety factor of changes in spac-
ing, number of piles, pile length, and soil and pile proper-
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FIGURE 6.36 Composite design chart for pile group example.



ties. It is the simplicity and rapidity of construction of
such charts—as compared with, say, a “one-off” finite-ele-
- ment solution—that make the elastic parametric solutions
so useful in designing pile groups.

6.6 SURFACE SETTLEMENTS AROUND A GROUP

The preceding sections have dealt with the settlements di-
rectly beneath the pile group. In some cases, it may also be
of interest to estimate the settlement of the ground surface
at some distance away from the group—for example, in
determining the additional settlement of an existing build-
ing caused by a new structure. Such an estimate may be
obtained by using the sclutions in Figs. 532, 5.33, and
5.34 for the settlement distribution around a pile. As with
the calculation of settlements caused by compressible
underlying strata, it is convenient to consider the group
either as having a uniform load distribution among the
piles, or as an equivalent single pier. An example of the sur-
face-displacement profile caused by a 3? group with a tigid
cap in a uniform semi-infinite mass, as given by Poulos and
Mattes (1971«), is shown in Fig. 637. Profiles were ob-
tained by considering:

1. The correct distribution of pile loads P;.
2. A uniform distribution of loads ;.
3. A single equivalent pier.
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There is close correspondence between all three settlement
profiles, except in the immediate vicinity of the groups, in
which case the ¢ nsideration of a uniform pile-oad distri-
bution leads to nonuniform settlement of the group. The
satisfactory nature of the equivalent-pier approximation is
evident from Fig. 6.37.

Further examples showing the effects of pile-stiffness
factor K, length-to-diameter ratio L/d, and relative layer-
depth h/L, on the surface-displacement profiles surrounding
a 22 group, are shown in Figs. 6.38,6.39, and 6.49.

6.7 OBSERVED AND THEORETICAL GROUP
BEHAVIOR

6.7.1 Settlements

A number of comparisons between measured and theoreti-
cal values of settlement ratio for floating-pile groups were
made by Poulos and Mattes (1971b). A summary of the
cases considered is given in Table 6.9, and the ccmparisons
are shown in Fig. 641, In all cases, the load level corre-
sponds to a factor of safety of at least 2 against ultimate
failure of the group. With the exception of the model tests
by Hanna (1963} in loose sand, the agreement is generally
satisfactory for both large and small values of K. The poor
agreement for the tests in loose sand may be attributed to

\ 32 Group
- L
1-5 5 25
S .5
d
v, =05
K

T (Uniform load distribution)

— — — Group considered as equivalent

Group with Rigid Cap
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FIGURE 6.37 Comparison between correct and approximate surface-displacement profiles.
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FIGURE 6.38 Influcnce of K on surface-displacement profiles.

FIGURE 6.40 Influence of layer depth on surface-displacement
profiles.

the effects of the greater densification of the loose sand by
the pile group, as compared with the single pile. These com-
parisons, therefore, indicate that the theoretical approach
should be satisfactory in practical cases, except for pile
groups in loose sand.
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‘FIGURE 6.39 Influence ofyon surface-displacement profiles.
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TABLE 6.9 SUMMARY OF DATA ON FLOATING-PILE GROUP TESTS
Assumed Parameters
Pile . for Comparisons
e . Soil Type ks
Test Material yp Remarks
Lid K Layer Depth/L
Whitaker Brass Remolded 24 oa 2 Model tests
(1957) London
clay

Saffery and Stainless Remolded 20 o 2 Model tests

Tate (1961) steel clay

Sowersetal. 'Aluminium Remolded 24 2000 2 Model tests

(1961) tube bentonite -

Berezantzev ‘Concrete Dense sand 20 1000 = Field tests.

et al. (1961) K estimated

for quoted
values of E.
Hanna (1963) Wood Dense sand 33 100 2 Model tests.
Hanna (1963) Wood Loose sand 33 1000 2 K estimated

from Table 5.4
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FIGURE 6.42 Theoretical and measured settlement-ratios. (Barden and Monckton, 1970).

Further evidence of the applicability of the theorztical
approach can be found in the comparisons between theory
and the data collected by Skempton, 1953 (Fig. 6.18) and
Barden and Monckton, 1970 (Fig. 6.42). With the excep-
tion of the 3% groups in soft clay, the results of Barden and
Monckton are in fair agreement with theory.

For two buildings at M.I.T., founded on end-bearing
piles passing through a deep deposit of clay and bearing on

rock, comparisons between measured and theoretical settle-
ments have been made by Poulos (19725). A typical soil
profile is shown in Fig. 6.43. The calculated values were
based on a value of modulus backfigured from the resulis of
pile-loadirg tests, and a typical load-test result is shown in
Fig. 6.44. For each building, the foundation consisted of a
number of pile groups, so that in obtaining the theoretical
settlement ratios, both the interaction between the piles of
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FIGURE 6.43 Typical scil profile, MIT buildings. (After D’Appolonia and Lambe, 1971).
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an individual group and the intergroup interaction have
been considered. Comparisons between measured and calcu-
lated settlements, shown in Figs. 6.45 and 6 46, reveal rea-
sonable overall agreement. The discrepancies that occur at
some columns possibly result from neglect of the structural
rigidity in estimating the column loads, and errors in assess-
ing the settlements that occurred prior to commencement
of the settlement measurements—especially in the case of
the eastern (right-hand) side of the Space Center Building.
Poulos (1972b) presented a further comparison be-
tween predicted and observed settlements by com paring the
theoretical relationship between settiement and number of
piles in the group with' measured values reported by
D’Appolonia and Lambe (1971) for four buildings on the
M.LT. campus. An average pile length of 100 ft was as-
sumed in deriving the -theoretical relationship, which is
virtually linear and is an fair agreement with the observed
relationship. This comparison is reproduced in Fig. 6.47.

6.7.2 Load Distribution

Comparisons between measured and theoretical ‘oad-distri-
butions within a model pile group with a rigic cap have
been made by Poulos (1968b). These are shown in Figs.
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5 B -48) -45) -48)
37 32 -40
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36 40 46
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E

Measured column settlements in inches , Nov. 1969

Predicted

final column settiements in brackets.

FIGURE 6.45 Comparison between predicted and observed column settlements, Materials Science Building.
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FIGURE 6.46 Comparisons between predicted and observed column settlements, Space Center.
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an individual group and the intergroup interaction have
been considered. Comparisons between measured and calcu-
lated settlements, shown in Figs. 6.45 and 6 46, reveal rea-
sonable  overall agreement. The discrepancies that occur at
some columns possibly result from neglect of the structural
rigidity in estimating the column loads, and errors in assess-
ing the settlements that occurred prior to commencement
of the settlement measurements—especially in the case of
the eastern (right-hand) side of the Space Center Building.
Poulos (1972b) presented a further comparison be-
tween predicted and observed settlements by comparing. the
theoretical relationship between settiement and number of
piles in the group with' measured values reported by
D’Appolonia and Lambe (1971) for four buildings on the
M.LT. campus. An average pile length of 100 ft was as-
sumed in deriving the -theoretical relationship, which is
virtually linear and is an fair agreement with the observed
relationship. This comparison is reproduced in Fig. 6.47.

6.7.2 Load Distribution

Comparisons between measured and theoretical load-distri-
butions within a model pile group with a rigid cap have
been made by Poulos (1968b). These are shown in Figs.
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FIGURE 6.45 Comparison between predicted and observed column settlements, Materials Science Building.
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but nevertheless exhibits similar trends. For the 5% group,
both the magnitude of the loads, and their variation with
spacing, are predicted mare closely by the theory.

6.7.3 Group Behavior Predicted from Single-Pile Test
Results

Tests by Koizumi and [o (1967)

A series of full-scale tests by Koizumi and Ito (1967) offers
an excellent opportunity to study the prediction of pile-
group performance from the results of a single-pile test. A
single floating-pile and a nine-pile rigid-capped group of
similar piles were founded in a thick uniform layer of silty
clay overlain by a thin layer of sandy silt. The piles were
closed-end steel tubes instrumented to allow pile loads,
earth pressures, and pore pressures to be measured. Provi-
sion was also made for measuring displacements ard
pressures in the soil remote from the piles. Details of the
foundations and site conditions are given inFig. 6.50.

By using the single-pile load-test results, a soil modulus
of 2500 psi was backfigured, corresponding to a pile-stiff-
ness factor of 500, at a load factor against failure of ap-
proximately 2.5. From the theoretical solutions presented
in this chapter, the settlement of the rigid<apped group (at
the same load factor) was calculated and compared with the
measured settlement, as follows:
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Group load, Pg 90 tons
Group-reduction factor,Rg 0.40

Single pile settlement at 0.20 mm/ton
unit load, p,

Predicted settlement of 7.2 mm
group, P01 Rg

Measured settlement of 7.1 mm

group

Although the cap of this group was in contact witt. the soil,
the effect of the cap on group settlement calculated on the
basis of the analysis in Chapter 10 is in this case nzgligible.
It will be seen that there is excellent agreement between
predicted and measured group settlement. The measured
and theoretically-predicted load distributions within the
group also agree well, as’is showr in Table 6.10.

Soil displacements near the group were recorded mainly

TABLE 6.10 THEORETICAL AND MEAS-
URED LOAD DISTRIBUTION TESTS OIF
KOIZUMI AND ITO (1967)

Pile Load/Average Pile Load

Pile Location

Theoretical Measured?
Centre 0.35 0.46
Mid-Side 0.82 0.86
Corner 1.35 1.20

a Group load 120 tons.

Group 32, floating, rigid cap
Lld 18.5 (individual piles)
Spacing 3 pile diameters center-to-
center
[
PILE DETAILS
Length 5.5m
Diarmeter 30 em
Wall 0.32em
Material steel .

FIGURE 6.50 Pile group test (Koizumi and Ito, 1967).
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in connection with ultimate-bearing-capacity investigations
and at working loads, are considerably smaller than those
predicted theoretically.

Model-Group Tests by Mattes and Poulos (1971 )
Tests were carried out on 3 X 3 and 6 X 1 floating pile

groups with piles of L/d = 25, at a pile spacing of two dia-
meters. In Table 6.11, the measured settlements are com-
pared with those predicted from the results of single-pile
tests carried out under the same conditions, and it can be
seen that there is good agreement between observed and
predicted settlements.

TABLE 6.11 MODEL PILE GROUP TESTS?

Group size 3x3 6% 1
Total group load {b) 50 40
Theoretical group settlement 4.77 3.24
ratioRg
Settlement of single pile at - Immediate 3.82 441
average pile load (predicted
from average soil modulus
backfigured from single pile
tests) (in. X 107) Final 498 5.56
Predicted 182 143
Observed 15.3 15.0
Immediate settlement of group
(in. X 107*)
Ratio of
predicted to 1.19 0.95
observed
settlement
Predicted 234 180
Observed 242 20.0
Final settlement of group
(in. X 107*)
Ratio of
predicted to 0.98 0.90
observed
settlement

@ After Mattes and Poulos (1971).
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ULTIMATE LATERAL RESISTANCE

OF PILES

7.1 INTRODUCTION

Piles are frequently subjected to lateral forces and mo-
ments: for example, in quay and harbor structures, where

" horizontal forces are caused by the impact of ships during

berthing and wave action; in offshore structures subjected
to wind and wave action; in pile-supported earth-retaining
structures; in lock structures; in transmission-tower foun-
dations, where high-wind forces may act; and in structures
constructed in earthquake areas such as Japan or the West
Coast of the United States, where some building codes spec-
ify that piles supporting such structures should have_the
ability to resist a lateral force of 10% of the applied axial
load. In the design of such pile foundations, two criteria
must be satisfied: first, an adequate factor of safety aguinst
ultimate failure; and second, an acceptable deflection at
working loads. As in other fields of soil mechanics, these
two criteria are generally treated separately, and the design
is arranged to provide the required safety margins indepen-
dently.

In this chapter, methods of estimating the ultimate la-
teral resistance of single piles and pile groups are described.
In many practical cases, the design of piles for lateral load-

ing will be dependent on satisfying a limiting lateral-deflec- '

tion requirement that may result in the specificiation of
allowable lateral loads much less than the ultimate lateral
capacity of the piles. For such cases, the estimation of la-

teral deflections caused by lateral loads is discussed in '
Chapter 8, while the general problem of a pile or pile-group
subjected to both axial and lateral loading is considered in
Chapter 9. Consideration in the present chapter will be con-
fined to situations where the lateral deflection is not an im-
portant consideration. It must, however, be emphasized
that in many cases, the ultimate load will be reached at very
large deflections, especially in the case of relatively flexible
piles. For such cases, it may be desirable to carry out a
complete elastoplastic analysis, as outlined in Section 8.3.
However, for relatively rigid piles, the method described
herein will generally be applicable. The chapter concludes
with a brief consideration of the effects of piles on slope
stability, and of methods of increasing lateral load capacity.

7.2 SINGLE PILES

In this section, methods of estimating the ultimate lateral
resistance of relatively-slender vertical floating piles having
negligible base resistance are considered first, and a number
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of possible approaches are described. The effects of soc-
keting the tip and of pile-batter are then discussed, and
the ““thin-pile” analysis is extended to piers with significant
base resistance.

7.2.1 Conventional Statical Approach

The simplest method of estimating the ultimate lateral resis-
tance of a floating pile is to consider the statics of a pile, as
shown in Fig. 7.1 for a pile with an unrestrained (or *‘free”)
head. The pile is subjected to a horizontal force H and a
moment M, and the ultimate soil pressure at any depth z
below the soil surface is p, . The limiting combination of H
and M, H, and My, to cause failure—that is, toimobilize
the ultimate soil resistance along the pile, assuming the pile
to be rigid—may be obtained by considering equilibrium of
horizontal forces and moments, and solving the resulting
simultaneous equations for the unknown depth of rotation,
z,, and the ultimate horizontal load H,, (taking the moment
M, as He, where e = eccentricity of loading). Treating the
pile as a thin strip of diameter or width d, these equations,
in general form, are

Z L
Hy, = fpuddz - f puddz (7.1)
0 Zy
Zr
M, = Hye = - f Dy dzdz (7.2)
0
L
+ fpudzdz

N
~

In the case of a uniform distribution of soil resistance
with depth along the whole length of the pile—that is, p,

LY e :
Xl

FIGURE 7.1 Unrestrained laterally-loaded pile.

Pile diameter=d

= p; = p,—the above equations yield the following solu-
tions for the depth of rotation, z,, and the ultimate lateral
load Hy,:

1./ H, : :
o L Hy |
7= 5 (pu y L> ) (7.3)
M, Hye _ 1 2H
—_— = u = = _. u
pudl?  p,dl* 4 [1 <PudL> (74)

Hu_ 22 B 22 .
B JCT (03 o

is plotted against e/ in Fig. 7.2.

Hy
pudL
For the case of a linear variation of soil resistance with
depth, from p, at the ground surface to py at the pile tip,
the following equations may be derived:

F) - W] oo
) 6 &) e

\PL "~ Po

06
05 o —
Uniform p
04 Dnitribution )
pu= pu
Hu (ORI} L
B,dL N\

N \
N
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01 Varying py
Distribution - zefro at
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FIGURE 7.2 Ultimate lateral resistance of unrestrained rigid piles.
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is plotted against e/L in Fig. 7.2 for the case py = 0.
prdl

General solutions for fajlure load and moment combina-
tions are shown in Fig. 7.3.

For any general distribution of soil resistance with
depth, it is convenient to employ the procedure recom-
mended by Brinch Hansen (1961). In this procedure, the
center of rotation is determined by trial and error, such
that the resulting moment, taken about the point of appli-
cation of the load, is zero. When the center of rotation’is
determined, the ultimate lateral resistance can be obtained
from the horizontal-equilibrium equation.

An extension of the above analysis for the case of a
pilg near a slope has been described by Poules (1976).

Nonrigid Piles

The above derivations assumed that the pile is sufficiently
rigid that failure of the soil will occur before failure of
the pile itself. However, for relatively long piles, the ulti-
mate lateral resistance may be determined by the yield mo-
ment of the pile, which may be reached before full mobili-
zation of the ultimate soil resistance. In such cases, the
maximum moment (occurring at the point of zero shear for a
free-head pile) should be calculated, as described above,
assuming full mobilization of the soil resistance above this
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. point. Since this maximum moment cannot exceed the

yield moment of the pile section, the ultimate lateral
resistance is the lesser of:

1. The horizontal load required to cause failure of the soil
along the whole length of the pile (i.e., the pile then is
essentially rigid and its capacity is governed by the soil
resistance).

2. The horizontal load required to produce a maximum
moment equal to the yield moment of the pile section
(i.e., the lateral capacity of the pile is governed primarily
by the pile characteristics).

A more detailed consideration of the ultimate resistance
of both rigid and nonrigid free-head piles is given in
Section 7.2.2, together with consideration of the load
capacity of piles having a restrained head.

Ultimate Soil Resistance

For a purely cohesive soil, the ultimate lateral resistance
py increases from the surface down to a depth of about
three pile diameters and remains constant for greater
depths. This is shown diagrammatically in Fig. 7.4. When
Dy becomes constant, lateral failure involves plastic flow of
the soil around the pile in the horizontal plane only and the
value of p, can be determined by plasticity theory. The
value of the lateral resistance factor K, (p, = K.¢) depends
on the ratio of pile adhesion to cohesion ¢,/c and on the
shape of the pile section, the most significant property of
the shape being the aspect ratio d/b. The influence of the
aspect ratio on the value of K, is shown in Fig. 7.5 for

| I
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FIGURE 7.3 Ultimate lateral resistance of unrestrained rigid piles.
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(a) Deflections (b)Probabie Distribution
of Soil Reactions

FIGURE 7.4 Distribution of lateral resistance.

cafc = 1 and ¢;/c = 0 and, to sufficient accuracy, the
solution for any intermediate value of ¢;/c can be obtained
by lirear interpolation. The curves in Fig. 7.5 have been ob-
tained by plasticity theory using limit analysis. (The upper
bound obtained in this analysis generally only exceeded the
lower bound by 10 to 15% and the curves are for the aver-
age of the two bounds). The analysis assumed the pile sec-
tion to be a rhomb and may be slightly conservative for
other convex shapes of the same aspect ratio. Elsewhere in
this chapter the lateral resistance at depth in purely cohe-
sive soil is usually taken as 9c, whatever the shape of the
pile and value of ¢,/c, see for example Brom’s approach to
ultimate pile capacity detailed in 7.2.2.1 below. Fig. 7.5
confirms the reasonableness of this simple assumption.

For the more general case of a ¢ - ¢ soil, an alternative
derivation of the ultimate lateral soil resistance, based
essentially on earth-pressure theory, has been given by
Brinch Hansen (1961), who also considers the variation
of resistance with depth along the pile. The ultimate resist-
ance at any depth, z, below the surface is expressed as

Pu = K4 + oK, (7.8)
where
q = vertical overburden pressure
¢ = cohesion
K¢, K4 = factors that are a function of ¢ and z/d

K. and K, are plotted in Fig. 7.6, while the limiting values
for the ground surface and for infinite depth are plotted in
Fig.7.7. ”

7.2.2 Broms’s Theory

The theory developed by Broms (19644 and b) is essentially
the same as that described in the preceding section, except
that simplifications are made to-the ultimate soil-resist-
ance distribution along the pile and also that full consider-
ation is given to restrained or fixed-head piles as well as
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FIGURE 7.5 Effect of aspect ratio and adhesion ratio on lateral resistance for purely cohesive soil.
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(b)

FIGURE 7.6 Lateral resistance factors K and K¢ (Brinch Hansen, 1961).

unrestrained or free-head piles. For convenience, piles in
purely cohesive soils and in purely frictional soils will be
considered separately.

A2.2.1 PILES IN COHESIVE SOILS

As discussed previously (Fig. 7.4), the ultimate soil
resistance for piles in purely cohesive soils increases with
depth from 2¢, at the surface (¢, = undrained shear-
strength) to 8 to 12 ¢, at a depth of about three pile-
diameters (3d) below the surface. Broms (1964a) suggested
a simplified distribution of soil resistance as being zero
from the ground surface to a depth of 1.5d and a constant
value of 9¢, below this depth. This assumes also that pile
movements will be sufficient to generate this reaction in
the critical zones, the location of which will depend on the
failure mechanism.

FIGURE 7.7 Lateral resistance factors at ground surface (O) and at

© great depth (=) (Brinch Hansen, 1961).

Unrestrained or Free-Head Piles

Possible failure mechanisms for unrestrained piles are shown
for “short™ and “long” piles in Fig. 7.8, together with the
soil-reaction distributions. “Short” piles (termed rigid piles
in the preceding sections) are those in which the lateral
capacity is dependent wholly on the soil resistance, while
“long” piles are those whose lateral capacity is primarily
dependent on the yield moment of the pile itself. In Fig.
7.8, f defines the location of the maximum moment, and
since the shear there is zero,
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FIGURE 7.8 Failure mechanisms for piles in cohesive soil (Broms,
1964a).



148 ULTIMATE LATERAL RESISTANCE OF PILES

Hl,l ’
f = 7.9)
Sc,d

Also, taking moments about the maximum moment location,

Mpax = Hy (e + 1.5d + OSf) (710(1)

also,

Myax = 2.25dgcy (7.108)
Since L = 1.5d + f + g, Egs. (7.9) and (7.10) can be solved
for the ultimate lateral load, 4. The solution is plotted in
Fig. 7.9a in terms of dimensionless parameters L/d and
Hu/c,d?, and applies for short piles in which the yield
moment My > M.y, the inequality being checked by using
Egs. (7.9) and (7.10a).

For long piles, Eq. (7.106) no longer holds, and ), is
obtained from Egs. (7.9) and (7.102) by setting M pax
equal to the known value of yield moment, Mj. This
solution is plotted in Fig. 7.9b in terms of dimensionless
parameters Hy/c,d* and My/c,d’. It should be noted that
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FIGURE 7.9 Ultimate lateral resistance in cohesive soils: (a) short
piles; (b) lon piles (Broms, 1964a).

Broms’s solution for short piles can easily be recovered
from the simple statical solution for uniform scil described
in Section 7.2, by using an equivalent length of pile equal
to L - 1.5d, and an equivalent eccentricity of lcading equal
toe+1.5d.

Restrained or Fixed-Headed Piles

Possible failure mechanisms for restrained piles are shown in
Fig. 7.10, together with the assumed distributions of soil
reaction, and moments. The changeover .points from one
failure-mode to another depend again on the yizld moment
of the pile. It is assumed that moment-restraint equal to the
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FIGURE 7.10 Restrained piles, in cohesive soil: (a) short; (b) inter-
mediate; (c) long (after Broms, 1964a).



moment in the pile just below the cap is available*. In
Fig. 7.10a, the following rzlationships hold for “short” piles:

Hy = cnd (L - 1.5d) (7.11)
Muax = Hy (0.50 + 0.75d) (7.12)

Solutions in dimensionless terms are shown in Fig. 7.9a.

For “intermediate” piles (i.e., first yield of npile
occurs at the head) in Fig. 7.10b, Eq. (7.9) holds, and
taking moments about the surface,

My = 225 c,dg* - 9¢,df(1.5d + 0.5f) (7.13)

This equation, together with the relationship L. = 1.5d + f + g,
may be solved for H,. It is necessary to check that the
maximum positive moment, at depth f + 1.5d, is less than
My, otherwise, the failure mechanism for “long” piles
illustrated in Fig. 7.10¢ holds. For the latter mechanism,
the following relationship applies:

My

Hu=05a+ 05p

(7.14)

Dimensionless solutions are shown in Fig. 7.9b.

7.2.2.2 PILES IN COHESIONLESS SOILS

The following assumptions are made in the analysis by
Broms (1964b):

1. The active earth-pressure acting on the back of the pile
is neglected.

2. The distribution of passive pressure along the front of the
pile is equal to three times the Rankine passive pressure.
3. The shape of the pile section has no influence on the
distribution of ultimate soil pressure or the ultimate lateral
resistance.

4. The full lateral resistance is mobilized at the movement
considered.

The simplified assumption of an ultimate soil resist-
ance, Py, equal to three times the Rankine passive pressure
is based on limited empirical evidence from comparisons
between predicted and observed ultimate loads made by
Broms; these comparisons suggest that the assumed factors
of 3 may in some cases be conservative, as the average ratio

* If only limited head-restraint is available, solutions may be
obtained by application of statical considerations similar to those
described in this and the previous section.
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of predicted to measured ultimate loads is about two
thirds. The distribution of soil resistance is

Py = 3ULKp (7.15)

where

0, = effective vertical overburden pressure
Kp = (1 +sin ¢)/(1 - sin ¢')
¢' = angle of internal friction (effective stress)

The analysis resulting from the assumption of the above
factor of 3 is much simpler than that which would follow
using Brinch Hansen’s variable factor K4 (Fig. 7.6).
Broms’s approach is equivalent to assuming that Brinch
Hansen’s K45 = 3K, for all depths. From Fig. 7.7, it can be
seen that for values of ¢ likely to obtain in sands, 3K,

lies between Brinch Hansen’s surface and deep values of
K,.
q

Unrestrained or Free-Head Piles

Possible failure-modes, soil-resistance distributions, and
bending-moment distributions for “long” and “short”
piles are shown in Fig. 7.11 (for constant soil unit weight -y
along the pile). As before, the pile will act as a “short”
pile if the maximum momnent is less than the yield moment
of the section. In Fig. 7.11a, the rotation is assumed to be
about a point close to the tip, and the high pressures acting
near this point are replaced by a single concentrated force
at the tip. Taking moments about the toe,

3
_ 0.57dL’K,

7.16
" T (7.16)

This relationship is plotted in Fig, 7.12a using the dimension-
less parameters L/d and H,/Kpyd®>. The maximum moment
occurs at a distance f below the surface, where

H, = %’ydefl (7.17)
that is,
Hy
=082 \@:’)
The maximum moment is
Muax = Huy <e + _§-f> (7.18)

If after use of Eq. (7.16), the calculated value of H
results in Mpax > My, (Mpax from Eq. 7.18), then the pile
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FIGURE 7.11 Free-head piles in a cohesionless soil: (a) short, (b) long (after Broms, 19645).

will act as a “long” pile, and H,, may then be calculated
from Egs. (7.17) and (7.18), putting M., = My. The
solutions for H,, for “long” piles are plotted in Fig. 7.125,
in terms of H,/K,yd> and My/d*yKp.

~ For short piles, comparisons reveal that Broms's as-
sumptions lead to-higher values of ultimate load than the
simple analysis given in Section 7.2. For example, for L/d
= 20 and e/l. = 0, Broms’s solution gives a load 33% more
than that derived from the simple statical analysis.

Restrained or Fixed-Head Piles

The assumption of an available moment-resistance at the
top cap of at least My is again made. Possible failure
modes for “short,” “intermediate,” and “long” piles are
shown in Fig. 7.13. For a “short” pile (Fig. 7.13a),

horizontal equilibrium gives

H, = 1.5yL%dK, (7.19)
This solution is plotted in dimensionless form in Fig. 7.12a.
The maximum moment is

2H,L

Mmax = 3 (7.20)

If Mmax exceeds My, then the failure mode in Fig. 7.135 is
relevant. From Fig. 7.13b, for horizontal equilibrium:

3
F= <§7sz1<,> - H, (7.21)

Taking moments about the top of the pile, and substituiing
for F from Eq. (7.21): :
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y = (0.5vd L*Kp) - H,L (7.22)

Hence, A,, may be obtained.
This equation only holds if the maximum moment at depth f
is less than My, the distance f being calculated from Eq.
(7.17).

For the situation shown in Fig. 7.13c, where the
maximum moment reaches | y at two locations, it is
readily found that

Hu(e + %f>=

(7.23)

Dimensionless solutions from this equation are shown in
Fig. 7.12b.

Comparisons have been made by Broms between
maximum bending moments calculated from the above
approach and values determined experimentaily in a con-
siderable number of tests reported in the literature. For
cohesive soils, the ratio of calculated to observed moment
ranged between 0.88 and 1.19, with an average value of
1.06. For cohesionless soils, this ratio ranged between
0.54 and 1.61, with an average value of 0.93. While good
agreement was obtained, it was pointed out by Broms that
the calculated maximum moment is not sensitive to small
variations in the assumed soil-resistance distribution.
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7.2.3 Plane Strain Solutions

Solutions for a perfectly-rigid free-head plate in a purely-
cohesive weightless soil have been obtained by Davis
(1961) for plane-strain conditions. If it is assumed that
there can be no tension between the soil and plate and that
the plate is smooth, the soil pressure will act normally
over the right-hand side of a portion AB of the plate, and
over the left-hand side of BC, as shown in Fig. 7.14.

H M
A
e — ¢=O
po— Y=0
e
—
L t:
—-fe
—-.-*
—-
. —
C

FIGURE 7.14 Plasticity analysis for laterally loaded plate.

Solutions for the failure of a strip footing n2ar a vertical
edge are then utilized. At failure, the pressure on AB is
2¢, while that on BC is given by the solution for a strip of
width BC, distant AB from a vertical edge (Davis and
Booker, 1973). Upper- and lower-bound solut:ons obtained
in this way are shown in Fig. 7.15, and for oractical pur-
poses, these upper and lower bounds coincide or are only a
slight distance apart. A similar approach can be employed
in the case of a rough plate, by considering a rough footing
under various inclinations of load (it is still assumed there is
no tension between soil and plate.) A lower-bound solution
for the rough-plate case is also shown in Fig. 7.15. The
roughness of the plate only has an appreciable effect over
alimited range of moment and load combinations. It should
be emphasized that the solutions in Fig. 7.15 are for a
weightless soil and will tend to be conservative for soil
having appreciable weight. Also, plane-strain conditions are
assumed with failure occurring in a vertical plane in con-
trast to failure in a horizontal plane in the analysis in Fig.
7.5. Model tests (Douglas, 1958) show satisfactory confir-
mation of the theory. '
Comparisons between the solutions in Fig. 7.15 and

those obtained from Broms’s theory (Fig. 7.9) show that the

ultimate lateral resistance calculated from plasticity theoryis
much less than that from Broms’s theory--for example,
for L/d = 12 and e/L = 0, the calculated ultimate loads
differ by a factor of 3. This difference arises largely from
the lower ultimate-soil-resistances used in the plasticity
approach (a value of 2¢, for the portion 4B and a maxi-
mum value of 5.14¢, for portion BC, as against Broms’s
value of 9c¢,), as a consequence of the assumption of
plane-strain conditions.

The plasticity solutions in Fig. 7.15, while unduly
conservative for normial proportions of pile, are relevant
to the case of shallowly-embedded sheet piling and may be
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relevant to a group of piles closely spaced in a single long
row. For the latter, the plane-strain plasticity analysis
plays an analogous role for the loadings considered in this
chapter to the role played by the block-bearing-capacity
analysis in consideration of groups of piles subject to
vertical load (Chapter 3).

7.2.4 Piles with Significant Base Resistance

Satisfactory theoretical solutions to this problem have not
yet been obtained. For relatively long piles, it may be
adequate, if conservative, to add the shearing resistance of
the base of the .pile to the ultimate lateral resistance of the
pile calculated from the pre'ceding sections. For relatively
short piers, the base may provide significant moment-
resistance, and this can be estimated from bearing-capacity
theory for eccentric and inclined loading (e.g., Meyerhof,
1953). As the length-to-diameter ratio decreases, the
center of rotation moves downward toward the base of the
pile and may even be located outside the pile. In such cases,
it may be desirable to consider alternative failure-mechan-
isms and adopt the one giving the minimum ultimate-
lateral-resistance of the pier.

A reasonable engineering approach has been suggested by
Roscoe (1957), who considers the presence of a horizontal
shear-resistance at the interface between the base and the
soil and ine effect of an eccentric vertical reaction acting
on the base. This reaction is balanced by the applied

vertical load, the pile weight, and the vertical component of
the lateral forces on the front and back of the pile.
Consideration of these forces, together with those acting
on the front and back of the pile, leads to a quartic
expression for the position of the center of rotation.
Solution of this equation enables the ultimate lateral load
to be calculated. Roscoe also describes a similar analysis
for tied piers, restrained to rotate about the center of the
pile at the ground surface. In both analyses, however, it-was
assumed that the ultimate lateral pressure on the pile was
the difference between the Ranking passive and active
pressures; this assumption may be conservative unless the
pile or pier is shallow.

7.2.5 Socketed Piles

For piles that are socketed into rock or whose tip is
embedded in a firmer stratum, a modification of the
preceding analyses for floating piles is necessary. A typical
case is illustrated in Fig. 7.16, for a free-head. pile. Here,
assurmed failure-modes and moment-distributions are shown
together with an arbitrary distribution of ultimate soil
resistance, p,. The actual distribution of p, may be
estimated from the theories described in Section 7.2.1. It is
again assumed that the effect of the high pressures near the
tip may be replaced by a single force, since the center of
rotation is obviously close to the tip. Considering *“‘short”
piles first: Taking moments about the tip gives
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. Ly
d - ; .
H, = _(_E+]‘) <‘! Purzdz (7.24)
L+ L,
+ f Pus? dz)
Ly

where

pPur = ultimate lateral resistance of stiffer stratum
pus = ultimate lateral resistance of soil
z = vertical distance, measured upward from the tip

For the value of Ay, thus calculated sthe maximum moment,
Mmax. must be checked. If Myax < My, the pile will fail
as a short pile. If My > M, then the pile will fail asalong
pile, and M, must be equal to My,. The position of My«
(distance f below the surface) may be determined by the
condition of zero shear there; that is, when

;
Hy = d | (pus + o)z (7.25)
0

where

z = vertical distance, measiared downward from the sur-
face

The bracketed term Pur), in Eq. (7.25) applies only if f
extends below the top of the stiffer stratum. The maximum
moment is then

f

Mupax =My = d f (Pus + (Pup)zdz (7.26)
0

H, may then be determined from Egs. (7.25) and (7.26).

For piles with a restrained o: fixed head, similar analyses
may be carried out; these cases may be treated as extensions
of the restrained-pile analyses of Broms, 1964q and &
(Section 7.2.2).

7.2.6 Piles Subjected to Inclined Loading

The ultimate load capacity in this case is a function of both
the lateral resistance and thie vertical load capacity of the
pile. When the applied load deviates only slightly from the



axial direction, failure will occur essentially by axial slip
(and also bearing failure of the tip for downward loading).
Lateral failure will occur when the inclination of the applied
load is large, that is, as the load becomes perpendicular to
the pile axis. The above two modes of failure will occur as
follows:

1. Axial failure will occur when the ultimate lateral
capacity exceeds the horizontal component of the ultimate
inclined load: that is, when

Hy > Qyusin 6,
or

Hy, > Py tan 6 (7.27)
where

0, = ultimate inclined-load capacity of pile
H, = ultimate lateral capacity of pile (calculated as
described carlier in this chapter)
P, = ultimate axdal-load capacity of pile (see Chapter 3)
& = angle of inclination of load from vertical

2. Lateral failure will occur when the ultimate lateral

capacity is less than the horizontal component of the
ultimate inclined load: that is, when

'Hu < P, tan 8

For cohesive soils, it is reasonable to assume that the
ultimate axial capacity of the pile is independent of the
lateral component of load and that the lateral load capacity
isindependent of the axial component of load. The inclined-
load capacity, @y, can then be calculated as the lesser of
the following two values:

1. For axial failure,

Qu = P, secs (7.29)

2. For lateral failure,
Q, = H, cosecd

For a typical example involving a bored pier in a
medium clay, the variation of ultimate load capacity with
inclination of load is shown in Fig. 7.17.

7.2.6.1 COHESIONLESS SOILS

Yoshimi (1964) has employed the same approach as
described above for cohesive soils. However, Broms (1965)
has extended this approach to consider the influence of the
lateral component of load on the axial load capacity. In
Broms’s method, the two modes of failure, axial failure and
lateral failure, are again considered.
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Axial Failure

In a cohesionless soil, the lateral component of load will
influence the axial load capacity of a pile. An illustration
of the change in lateral pressure caused by inclination of
the applied load is given in Fig. 7.182. When the inclination
is small, the increases in lateral pressure are small, the largest
increases occurring near the top and tip of the pile. The
lateral pressure is assumed to increase linearly near the
surface as failure in the soil occurs, and is three to nine
times the Rankine passive pressure. An idealized distribution
of this change in earth pressure is shown in Fig. 7.185b. It is
assumed by Broms that the high lateral-earth-pressure near
the pile tip can be replaced by a concentrated load, and that
the ultimate soil resistance is equal to five times the Rankine
passive value to a depth g telow the ground surface. This
assumption is less conservative than Broms’s earlier assumpt-
ion of three times the Rankine passive value in deriving
solutions for laterally-loadec vertical piles in cohesionless
soils (see Section 7.2.2).

The axial load capacity, Py, can be calculated as

Py = Py t AP, (7.31)

where
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Deflection

P,p = axial capacity when the applied load acts along
the pile axis

increase in pullout resistance caused by the two
lateral forces, 7 and R, in Fig. 7.18b

AP,

The ultimate inclined-load capacity is then
Qu = P, secé (7.32)

Consideration of the statics of the pressure distribution in
Fig. 7.13b enables AP, and hence Q,, to be determined.
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FIGURE 7.18¢ Earth-pressure distribution for oblique pull (Broms, 1965).

Lateral Failure
If it is assumed that the vertical component of load does not
affect the lateral resistance of thz pile, then

Qu = Hy, cosecd (7.33)
where
H, = ultimate lateral resistance for horizontal loading

The actual load capacity is then the lesser of the values
calculated for axial and lateral failure.

For piles with a restrained head, or “long” piles (which
may fail by failure of the pile itself), the approach outlined
above may be extended in a similar manner to that described
in Section 7.2.2.

Broms (1965) has compared predicted ultimate load
capacities with those measured in the tests by Yoshimi
(1964) and found reasonably good agreement. An example s
shown in Fig. 7.19 for an 18-in.-long model pile in sand
subjected to a load inclined at an angle of 30° to the

~vertical, the pile being battered at an angle §f to the vertical

(the pile is treated as a vertical pile loaded at an angle.
8 + 30° to the vertical—see next section). Also shown is the
predicted ultimate load if no allowance is made for the
increase in uplift capacity caused by lateral load. The latter
prediction is obviously very conservative.

7.2.7 Battered Piles

The geometry of the problem is illustrated in Fig. 7.20a.
For the normal range of pile batters employed in practice,
it is reasonable to assume that the ultimate axial and normal
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loads are not seriously affected because of the inclination of
the soil surface relative to the pile axis, so that the battered
pile may be considered as an equivalent vertical pile
subjected to inclined loading (Fig. 7.206). The angle of
inclination, 8, of the load to the vertical, as defined in
Fig. 7.17, is then

§ =90° + Y (7.34)
The ultimate load capacity, Q,, of a battered pile can then
be calculated in exactly the same manner as described in
the previous section for vertical piles subjected to inclined
loading.

Model tests to determine the effect of pile batter on
pile-load capacity have been reported by Tschebotarioff
(1953), Yoshimi (1964), and Awad and Petrasovits (1968).
The similarity between thez behavior of a battered pile
subjected to a vertical load and a vertical pile subjected
to an inclined load, as demonstrated by the latter investi-
gators, is shown in Fig. 7.21

7.3 PILE GROUPS

.7.3.1 Groups of Vertical Pil=s

In estimating the lateral load capacity of a pile group, an
approach similar to that adopted for the calculation of
vertical load capacity can be taken. The group capacity
for a group of n piles is, ther, the lesser of
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1. n times the lateral load capacity of a single pile.

2. The lateral load capacity of an equivalent single block
containing the piles in the group and the soil between
them.

The first value, representing individual pile failure, can be
obtained by the methods described in Section 7.2. The
second value, representing block failure and occurring at
relatively close spacings, can be obtained as described in
Section 7.2.4 for an equivalent single pile of diameter or
width equal to the breadth of the group perpendicular to
the direction of loading. However, in using Broms’s
theory for a pile group in clay, it is clearly absurd to allow
a ““dead” zone of zero soil-reaction of 1.5 times the group
breadth, while ignoring such a zone may be unduly
optimistic. A reasonable comprommise is to use a “dead”
zone of the lesser of 1.5d (d = individual pile diameter) or
0.1 (I. = embedded length of piles). Results of a limited
series of model tests suggest that the above procedure gives
a reasonable estimate of the group capacity at close spac-
ings. 1t the group is relatively narrow, and loaded perpen-
dicular to the longer direction, the ultimate lateral load
for block failure may be estimated from the plasticity
solutions in Fig. 7.15. For a group of fixed-head piles,

with the head embedded in a massive cap, the ultimate .

load for block failure can be calculated as the sum of the
resistance of a short restrained pile (e.g., see Fig. 7.9 and
7.12) and the shear resistance of the base. Some allowance
may also be made for side shear resistance of the block.

The concept of a group efficiency for lateral loading,
17, can be employed as with group efficiency for vertical
loading, where for a group of n piles,

_ Ultimate lateral-load capacity of group
ML n X ultimate lateral Inad capacity of
single pile

(7.35)

A relatively small amount of data is available for values of
nr . A series of tests on model pile groups in clay was carried
out by Prakash and Saran (1967) while Oteo (1972) carried
out similar tests in sand; the values of n; derived from these
test results are shown in Fig. 7.22. ny decreases with
increasing nurnbers of piles in a group or with decreasing
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{(Prakosh and Saran {1967}

~=—Model piles in sand %:27.5
(Otec (1972})

FIGURE 7.22 Lateral group efficiency from model tests.



spacing. Comparison with the efficiency values.(n) for
axially loaded groups shows that 1; <7, or in other words,
that groups are less efficient under lateral loading than
under axial loading. Model tests on three- and seven-pile
dolphins embedded in sand over.ying silty clay have been
described by Tschebotarioff (1953). For the three-pile
group (a central vertical pile and two outer battered at
10°), and efficiency n; of 0.77 was calculated, the pile
spacing at the ground line being about nine diameters.
For the seven-pile dolphin, containing a central vertical
pile surrounded by piles battered at 5°, with a spacing at
the ground line of about three diameters, n; = 0.52.
Because of the effects of pile batter and the layered soil
profile, direct comparison between Tschebotarioff’s results
and those shown in Fig. 7.22 is not possible; nevertheless,
the values of 77 in the two series of tests appear to be
reasonably consistent.

Finite-clement analyses provide a means of theoretically
estimating the lateral efficiency of a pile group. By
carrying out a plane-strain analvsis of the pile group in
plan, and employing a nonlinear stress-strain relationship
for the soil, a load-deflection curve may be obtained for
the pile group (on the assumption that the piles are infinitely
long). By comparing the maximum load capacity from this
analysis with tiie corresponding value for a single pile, an
estimate of the group lateral efficiency may be made.
Analyses of this type have been performed by Yegian and
Wright (1973) and Moser (1973). The solutions obtained by
Yegian and Wright show that the efficiency of two or more
piles in a row is considerably ‘ess when the horizontal
loading is in a direction parallel to the line joining the piles
than when it is perpendicular. For example, for two piles at
center-to-center spacing of two diameters, the efficiency is
about 0.72 for loading parallel to the piles, but 0.90 for
loading perpendicular to the piles.

In designing the individual piles in the group, it is
desirable to determine the loac¢ distribution within the
group. Methods for such determinations are described in
Chapter 9 for groups subjected to a general system of loading,
and although these methods are strictly valid only for
working-load conditions, they probably give a reasonable
estimate of the failure load distribution. In practice, a
widely used and relatively simple design-method of determin-
ing the load distribution in a group with a rigid.cap is to
assume that the piles in the group carry equal proportions
of the applied horizontal and vertical load, together with
additional vertical loads that are proportional to the dis-
tances of the piles from the group’s center of gravity and
thereby balance the applied moment. This approach ignores
the effect of the soil and considers ti.~ pile group simply as
a structural system.
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7.3.2 Groups Containing Battered Piles

As with' groups of vertical piles, the ultimate lateral-
load capacity of groups conta:ning battered piles may be
taken as the lesser of

1. The sum of the lateral lcad capacities the individual
piles in the group.

2. The load capacity of the group acting as a single
block.

The first value can be estimated from Section 7.2.1 or
Section 7.2.2 for vertical piles and Section 7.2.4 for
battered piles. The second value can be estimated in a
similar fashion to that described for vertical groups, but
now allowing for the battered piles. If an analysis of the
type described by Roscoe (1957) is employed, such allow-
ance may be made by considering the resultant forces on
the front and back of the group to act on inclined surfaces,
if the front and back piles aie battered. The base shear-
resistance may also be assumed to act over the plan area
of the group at the level of the pile tips. Alternatively,
and more simply, an equivalent block with vertical sides

may be considered. Both of these approaches imply that
if the group fails as a single block, the ultimate laterai-
load capacity of the group depends on the batter of the
outer piles only, and not on the batter of interior piles.
Some confirmation that this iraplication is reasonable may
be seen from the results of model-pile tests in clay carried
out by Simek (1966), who found that little benefit was

H
i
Lw[c
L

-

FIGURE 7.23 Model groups tested by Simek (1966).
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derived by having battered piles additional to those at the
end of the group. The benefits of having the end piles
battered were found to be particularly marked when the
piles were embedded in the soil for only a relatively small
disitance. Four group-configurations were tested by Simek,
as shown in Fig. 7.23, and the results of these tests are
summarized in Table 7.1. The ultimate lateral load capacity,
Hy,, is expressed as a percentage of the total weight, W, of
the group, and it is seen from Table 7.1 that H,/W in-

TABLE 7.1 SUMMARY OF
MODEL GROUP TESTS OF SIMEK (1966)

Relative

Relative Relative Lateral
Embedded Load Movement at
Length, Capacity, Failure,

Group LIL +e) H, /W ©/5)%
0.25 0.42 3.5

A 0.50 1.90 5.0
0.75 5.70 7.0
0.25 0.98 5.0

B 0.50 2.02 6.0
0.75 5.62 7.0
0.25 1.09 5.0

C 0.50 2.10 6.0
0.75 5.55 7.0
0.25 1.10 5.0

D 0.50 2.58 6.0
0.75" 5.10 7.0

[~
/

™~

creases significantly with increasing embedded length.
Also, as indicated above, the effect of batter in increasing
lateral-load capacity decreases as the embedded length
increases, and for 75% embedment, has virtually no
effect. .

7.4 USE OF PILES TO INCREASE SLOPE STABILITY

Broms (1972) describes the use of inclined timber piles to
increase the slope stability of very soft clays, while large-
diameter cast-in-place piles have been used in the United
States to stabilize active landslide areas in stiff clays and
shales through dowel action. The diameter of these piles
varies between 1.0 and 1.5 m. In Japan, 300-mm-diameter
steel-pipe piles reinforced with steel H-piles have been used
for the same purpose. The piles are generally placed in
predrilled holes close to the bottom of the slope, wheie
the shear deformations in the soil are largest. Fukuoka
(1977) describes further uses of piles to stabilize land-
slides and presents a method for analyzing the resulting
moments and deflections in the pile. The possibilities of
a finite-element analysis of this form of stabilization have
been discussed by Rowe and Poulos (1979), who have
employed the technique for analyzing soil-structure inter-
action described by Rowe et al., (1978).

In order to make an approximate estimate of the
influence of piles on the factor of saftety against slope
failure, the theory for ultimzte lateral resistance presented
in this chapter may be utilized. Referring to Fig. 7.24, if

™~
R
~
~
~
~
~
~
v =
/ /
/ / Critical failure surface
/ // / {e.q., circular surface)
/ ’ J
/ . /
/ e/ Disturbing force on pit2, P
/ /ﬁ 6 Resisting force developed
A % —_ . by pile, H, (H,= P}
_-"TAMoment = H,e
~ R — - —t
Ly
Additional resisting
moment = H,R + H,e
A7

FIGURE 7.24 Analysis of effect of pile on slope stability.




a pile is installed in the slope, the portion of the pile
(length £,) above the assumed failure surface will be
subjected to an inclined disturbing force P at some
eccentricity e above this surfice. Ignoring any axial
resistance for simplicity, this disturbing force can be con-
sidered to be resisted by the lower portion of the pile
(length L,) below the critical failure surface. The maxi-
mum value of this resisting force, H,,, is given by the least
of the following four values:

1. The ultimate lateral resistance of a ‘“‘short” pile of.
length £, loaded at an eccentricity e.

2. The ultimate laterabresistance of a “long” pile loaded
at an eccentricity e {(this value will depend on the yield
moment of the pile).

3. The ultimate load that can be developed along the upper
part (length L, ) of the pile if the soil flows past the pile and
the ultimate pile-soil pressure is developed along this portion
of the pile.

4. The shear resistance of the pile section itself.

The values in 1, 2,and 3 may be obtained from the analysis

presented in Section 7.2, once the ultimate pile-soil pressure

H——2= r— H-——>
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distribution has been determired. Approximate allowance:
can be made for ths inclinat.on, as outlined in Section
7.2.6. The eccentricity e can, as a first approximation, be
estimated by assum'ng full mobilization of the pile-soil
pressure above the assumed failare surface.

Once the value of H, has been thus determined, the
additional resisting moment c¢r force caused by the pile
can be detetmined, and hence tae effect on the safety factor
can be evaluated (see Fig. 7.24). The procedure must be
repeated for a series of trial failure surfaces to find the one
with the lowest safety factor. Consideration should also be
given to a surface that passes below the pile tips.

With groups of piles, adjustments can be made to the
ultimate pile-soil pressures to allow for group effects, and
the influence of each pile can be added up to determine the
effect of the group on slope stability.

7.5 METHODS FOR INCREASING THE LATERAL RE-
SISTANCE OF PILES

Broms (1972) has discussed some methods of increasing the
lateral resistance of piles. As shown in Fig. 7.25, most of
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or mortar Plar

Prefabricated
concrete pile

: )

(d)

(2)
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FIGURE 7.25 Methods used to increase the lateral resistance of piles.
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these methods rely on increasing the dimensions and/or
stiffness of the piles near the ground surface. The use of a
sand or gravel fill placed around a pile (Fig. 7.25q) is
very effective for soft clays when the piles ars subijected to

cyclic loads. The fill gradually works itself down into the
clay and increases the effective diameter of the piles. The
height of the fill around the piles is limited, however, by
the bearing capacity of the uncerlying soil.



LOAD-DEFLECTION PREDICTION
FOR LATERALLY LOADED PILES

8.1 INTRODUCTION

In designing pile foundations to resist lateral loads, the
criterion for design in the majority of cases is not the
ultimate lateral capacity of the piles, but _the maximum
deflection of the piles.” The allowable deflection may be
relatively large for temporary structures or tied retaining
walls, but only small movements can be tolerated in such
structures as tied abutments to bridges, or in the foundat-
ions of tall structures. Design practice in the past has
frequently made use of empirical information for pile
design; for example, that provided by McNulty (1956) from
full-scale lateral-load tests, as shown in Table 8.1. In recent
years, however, theoretical approaches for predicting lateral
movements have been developed extensively. Two approach-
es have generally been employed:

1. The subgrade-reaction approach, in which the continuous
nature of the soil medium is ignored and the pile reaction at
a point is simply related to the deflection at that point,
2. The elastic approach, which assumes the soil to be an

ideal elastic continuum.

TABLE 8.1 SUGGESTED SAFE ALLOWABLE LATERAL
FORCES? ON VERTICAL PILES, KIPS (MCNULTY, 1956)

Medium Fine Medium

Pile Type Sand Clay Clay
Free-head timber,

12-in. dia. 1.5 1.5 1.5
Fixed-head timber,

12-in. dia. 0 4.5 4.0
Free-head concrete,

16-in. dia. 7.0 5.5 5.0
Fixed-head concretz,

16-in. dia. "0 5.5 5.0

9 Based on a safety factor ¢f 3 applied to the load required for
0.25-in, deflection.

The subgrade-reaction model of soil behavior, which was
originally proposed by Wiakler in 1867, characterizes the
soil as a series of unconnzcted linearly-elastic springs, so
that deformation occurs only where loading exists. The
obvious disadvantage of this soil model is the lack of
continuity; real soil is at least to some exient continuous,

163
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since the displacements at a point are influenced by stresses
and forces at other points within the soil. A further dis-
advantage is that the spring.modulus of the model (the
modutus of subgrade reaction) is.dependent on the size of
the foundation. In spite of these drawbacks, the subgrade-
reaction approach has been widely employed in foundation
practice because it provides a relatively simple means of
analysis and enables factors such as nonlinearity, variation
of soil stiffness with depth, and layering of the soil profile
to be taken into account readily, if only approximately. In
addition, despite the many difficulties in determining the
modulus of subgrade reaction of real soil, a considerable
amount of experience has been gained in applying the
theory to practical problems, and a number of empirical
correlations are available for determining the modulus.

From a theoretical point of view, the representation of
the soil as an elastic continuum is more satisfactory, as
account :s then taken of the continuous nature of soil. The
use of this model for the analysis of the settlement of
piles and pile groups, as described in Chapters S and 6, has
been found to provide a convenient and relatively reliable
means of describing pile behavior under axial loading.
While the elastic model is an idealized representation of
real soil, it can be modified to make allowance for soil

- yield and can also be used to give approximate solutions for
varying modulus with depth and for layered systems. In
addition, it has the important advantage over the subgrade-
reaction approach of enabling analysis to be made of
group action of piles under lateral loads; also, it provides a
means of analyzing the behavior of battered piles subjected
to a general system of loading (Chapter 9). A further
advantage of the elastic model is that it enables consistent
analysis of both immediate movements and total final
movements. The major drawback to the application of the
elastic method to practical problems is the difficulty of
determining the appropriate soil moduli; however, this
difficulty also exists to a certain extent with the subgrade-
reaction method.

The exact solution of the problem of a laterally loaded
flexible pile in an elasto-plastic soil mass is a complicated
and difficult one in three-dimensional continuum mecha-
nics and does not appear to have been satisfactorily solved
at present. Some attempts include two-dimensional finite
element treatments in the horizontal plane (Yegian and
Wright, 1973; Baguelin and Frank, 1979; Rowe and
Poulos, 1979); a special finite element technique which is
capable of dealing with general three-dimensional loading
for axi-symmetric geometries, but only for elastic condi-
tions (Randolph, 1977; Banerjee and Davies, 1978); and
general three-dimensional elastic finite element analysis but
with allowance for axial slip via the use of joint elements
(Desai and Appel, 1976). Such analyses are too restrictive

(for example only elastic), or too time consuming, or too
uncertain with regard to accuracy to be entirely suitable
for parametric studies.

In this chapter, the application of both the subgrade-
reaction and elastic approaches to the analysis of a single
pile is described in detail, and in each case, the available data
on the relevant soil parameters is reviewed. The extension
of the elastic approach to the estimation of group move-
ments is then described.

8.2 SUBGRADE-REACTION ANALYSIS

8.2.1 Basic Theory

In the Winkler soil model, the pressure p and deflection p
at a point are assumed to be related through a modulus of
subgrade reaction, which for horizontal loading, is denoted
as kj,. Thus,

p = kpp (8.1)
where kj has the units of force/length®. Equation (8.1) has

been restated frequently (e.g., Reese and Matlock, 1956;
Davisson and Gill, 1963) as ‘

w = Kp (8.12)

where

w = soil reaction per unit-length of pile

K = subgrade-reaction modulus, in units of force/
length? (K = kpd)

d = diameter or width of pile

The pile is usually assumed to act as a thin strip whose
behavior is governed by the beam equation
dp .
Eply —— = -pd 8.2
pip qu ( )

where

E;, = modulus of elasticity of pile

I, = moment of inertia of pi.e section
depth in soil

= width or diameter of pile

2N
n

As in the simple theory of bending of beams, the
effect of axial load in the pile is ignored. (The effect of
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axial load in relation to buckling is discussed in Chapter 14.)
From Egs. (8.1) and (8.2), the governing equation for the
deflection of a laterally loaded pile is

4
Eplp .d_f"_ + kpdp = 0 (8.3)
dz

Solutions to the above equation may be obtained either
analytically or numerically Analytical solutions are only
available in convenient f 1 for the case of constant ky
along the pile. For other aistributions of kp, solutions are
most conveniently obtained by a numerical finite-difference
method (Palmer and Thompson, 1948 Gleser, 1953).

In this method, the basic differential equatiof (8.3) is
written in finite-difference torm; for a typical point 7, this
equation is (referring to Fig. 8.1)

Eol, (:Pi-z ~4pi t 68/:,' ~4pgy t o "{ (5.4)
+ (kdp;) = 0

that is,
P2~ 4pp tap, - dpivy T oy = 0 (8.4a)

where

Ground surface

\ biv2

, :
| i Pile tip
JUN S Inf‘|.éf"

InTZ
n+3

FIGURE 8.1 Finite-difference analysis of laterally loaded piles.

kil*d

-y
Epipn

a,-=6+

n = number of intervals along pile
ki = modulus of subgrade reaction ky at/

Equation (8.42) may be applied to points 2. to » to give
- | equations.

Four further equations may be obtained from the boun-
dary conditions at the top znd tip of the pile. At the top
of the pile, two conditions may be. considered;

1. A free-head pile, for whicn

. 3 .
shear = b,,[,,(zi?f) =

that is,
1L? ‘
Pt 2oy - 2ty T 0 (8.5)
Eplyn
2
and moment = £,/p <i-';> =M
. S
that is,
ML?
P2~ 20 tpy 5 ——sy (8.6)
1:,;1[,)1

2. A fixed-head pile, for which Eq. (8.5) still applies, and
also,

o dp
rotation = F,,,IL‘E =0
that is,
pr=py =0 (8.7)

At the tip of the pile, assuming a [loating pite with a tree
tip

shear = Epl, glﬁﬁ =0

that is,
“Pnpy t 200 = 20040 T ppry = 0 (8.8)

d2
and moment = £,/ ap . 0
14 szz
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that;is,
Pn = 2Pn+1 tPps2 = 0 (8.9)

The final two equations required come from equilibrium
of horizontal forces and moments. A system of n + §
simultaneous equations is obtained for the n + 5§ unknown
displacements (those at points -2, -1, n+ 2, and n + 3 are
of course fictitious). :

As an alternative to the above procedure, the shear
equations at the top and tip of the pile (Egs. 8.5 and 3.8)
may be omitied, thus omitting the unknown displacements
at peints -2 and » + 3. In this case, only n + 3 equations are
solved. This procedure has been found to give almost
identical solutions to the previous procedure.

By using the finjte-difference method, any variations
of k;, with depth may be considered. Distributions of k
relevant to various types of soil are discussed below.
Soluzions for various linear distributions of kj are described
in Section 8.2.2.

82.1.1 ‘(.‘OEFFICIENT OF SUBGRADE REACTION, kyp

The analysis of pile behavior using the subgrade-reaction
approach requires a knowledge of the variation of &, along
the pile. Several distributions of &; have been employed,
the most widely used being that developed by Palmer and
Thompson (1948), which is of the form

by = k (/2>” (8.10)
o= kgl .
1 \1

where

k. = value of ky; at the piletip (z =)
n = an empirical index equal to or greater than zero

The most common assumptions are that n = 0 for clay—
that is, that the modulus is constant with depth—and that
n =1 for granular soils—that is, that the modulus increases
linearly with depth. i

Davisson and Prakash (1963) sugpest, however, that
n=0.15 is a more realistic value for clays (presumably under
undrained conditions), as this has the effect of including
some allowance for plastic soil behavier at the surface.

As an alternative to using #n = 0.15 for clays, Davisson
(1970) suggests that an equivalent solution may be obtained
by considering the soil as a two-layer system, the upper
layer having a value of kj of 0.5 times the value for the
lower layer, and a thickness equal to 0.4R, where R =
(Epl,,/kod)l’/‘, ko being the coefficient of subgrade reaction
for the lower layer.

For the case n = 1, it is convenient to reexpress the
variation of k as follows:

Z
kyp = np <7>

where

(8.11)

ny = coefficient of subgrade reaction (units of force/
length?)

depth below surface

pile width or diameter

z
d

For real soils, the relationship between soil pressure p
and deflection p is nonlinear, with the soil pressure reaching
a limiting value when the deflection is sufficiently large
(in some cases, “‘strain-softening” may subsequently occur).
The most satisfactory approach to deflection prediction is
to carry out a nonlinear analysis of the type described in
Section 8.2.4. However, if linear theory is to be used, it is
necessary to choose appropriate secant values of the sub-
grade modulus. Reese and Matlock (1956) argue that the
adoption of a linearly increzsing modulus of subgradé
reaction with depth takes some account of soil yield and
nonlinearity, as values of the secant modulus near the top
of the pile are likely to be very small, but will increase with
depth because of both a higher soil strength and lower
levels of deflection. Reese and Matlock’s argument is most
relevant to piles in sand and soft clay. In some cases—for
example, relatively stiff piles in overconsolidated clay at
relatively low load-levels—the assumption of a constant
subgrade modulus with depth may be more appropriate.

Solutions for the simple cases of constant subgrade
modulus with depth, and linearly increasing modulus with
depth, are described below.

8.2.2 Solutions to Linear Theory

82.2.1 CONSTANT kjy WITH DEFTH

Solutions to Eq. (8.3) in closed form have been obtained by
Hetenyi (1946). For horizontal load A applied at ground
level to a free-head or unrestrained pile of length L, the
following solutions are given by Hetenyi for horizontal
displacement p, slope 8, moment M, and shear Q at a depth
z below the surface:

208

p = /-Ch_d X (8-12)r

fsinh BL cos fz cosh B(L - z) - sinBl. cosh Bz cos B(L. - z)]
L sinh® BL - sin BL
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2HB
knd

ZHﬁz)< 1 >
g = X 8.13
<khd sinh?BL - sin? BL. ®.13)

(sinh BL [sin Bz cosh B(L - z) + cos Bz sinh S(L - z}]

* Koy (8.12q)

+ sin L [sinh fz cos §(L - z) + cosh fz sin B(L - z)]>

_ A
" Tr  Kow

_ [
M= <]3’> X (8.14)

[sinh 3L sin Bz sinh B(L - z) - sin L sinh Bz sin B(L. - z) jl
sinh?gL - sin? L

(8.13a)

H

Sy R (8.14a)

H
= N\ ooz \sinh L e 8.15
¢ <sir1h2 L - sin? 51:) (sm BL[cos Bz (8.15)

sinh B(L — z) -~ sin fz cosh B(L — z)] - sin L [cosh 3z
sin 8(L, - z) - sinh Bz cos B(L - z)])
= -H- Koy (8.15a)

where

B = (knpd/4Enl,)" (8.16)

The corresponding expressions for moment loading Mo
applied at the ground surface are :

2M o3 1 > <
p = sinh gL
kpd <sir1}126L - sin® AL

[cosh B(L. - z) sin Bz - sink B(L - z) cos fz] + sinfL

(8.17)

[sinh Bz cos B(L - z) - cosh Bz sin B(z - 1)]>

2M of? .

= Fnd * Kom (8.17a)
4M B>

o = od X (8.18)
7 /

[sinh BL cosh (L - z) cos Bz + sin L cosh Bz cos B(L - z)]
sinh?BL - sin® BL

Mo

- Ko (8.184)

M, /
M=—————— [sinh 8L [sinh §(L - z 8.19
sinh?BL - sin? BL (\ [ ‘ ) @19

cos Bz + cosh B(L - z) sin fz] - sin 8L [sinh Bz cos
B(L ~ z) + cosh Bz sin B(L - Z)]>

=M, Kuy (8.19a)

L[ [sin L sin (L ~z)  (8.20)
= .. SIn Vi .
sinh? L - sin?gL.

sin fz + sin L sinh Bz sin §(L ~ z)]

= -2Mf KQM (8.20(1)
Solutions for the case of a fixed-head or restrained pile may
be obtained from the above solutions for a free-head pile
by adding to the solutions for horizontal loading H, the
solutions for an apptied moraent of

- () [fere:)

(This is the apptied moment required to produce zero slope
at the pile head--i.e., the fixing mornent).

1,000,000 /
100,000 lf/ { " A
lpF/ fom lon Lose
10,000 /
1,000 / / /
I/ /
100 / L

For rigid pile
’ 1 4 L [2 Jg P

10 100 1,000

Flexibility ratio, k,dL*/Eplp

10,000 100,000
Deflact on and slope factors
FIGURE 8.2 Top deflection and rotation for lateral loads on ver-

tical piles for constant kj (after Barber, 1953). (Reprinted by per-
mission of the American Society for Testing and Materials, © 1953.)
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Values for the dimenSionless coefficients Ko, Kop,
and so on, are given in Table 8.2. For deflections and
rotations at the soil surface, convenient plots presented by
Barber (1953) are shown in Fig. 8.2. For a free-head or un-
restrained pile,

A

\
2> oy (8.22)

H
. + —_—
Lot kndL

deflection, p = <m>
h

. H M
rotation, § = <m‘z—2> gy t+ <;h.d—l—,§> *Lom (8-23)

For a fixed-head pile, which is free to translate, but not to
rotate,

H

deflection, p = T (8.24)
h

Lok

In Egs. (8.23) and (8.24),

H = applied horizontal force at
ground leve]
M = moment at ground level
d = pile diameter
[. = pile length
Tottr Toms loni. Jop, I, 5= deflection- and  rotation-in-

fluence factorsin Fig. 8.2 (by
the reciprocal theorem, lpy =

LoM)-

For a free-head pile, of embedded length L, subjected to
a- horizontal load H at an eccentricity e above the ground
surface, the following limiting solutions apply for horizon-
tal displacement and rotation at the ground line:

TABLE 8.2 INFLUENCE FACTORS FOR CONSTANT &y,

1. Rigid pile (holds if BL < 1.5):

4H(1 + 1.5¢/L)

T T kpdl (8.25)
6H(L +2¢/L)
0 “"~+khdL (8.26)
2. Infinitely long pile (holds if 5L > 2.5):
_ 2Hp(ef + 1)
p Tkd (8.27)
_ 2HB(1 + 2ef) :
T R (8.28)
For a fixed-head pile, the limiting solutions are
1. Rigid pile (BL <10.5)
S (8.2
0 Todl (8.29)
2. Infinitely long pile (8L > 1.5):
- HB
p = nd (8.30)

8.2.2.2 SOLUTIONS FOR LINEARLY VARYING ky WITH
DEPTH

Convenient closed-form solutions are not available for this
case, but the following limiting-solutions apply for free-
head piles (Barber, 1953):

BL z/L Kot Ko Kymy Ko KoM Kom Kmm Kom
2.0 0. 1.1376 1.1341 0. 1.0000 ~1.0762 1.0762 1.0000 0.

2.0 0.0625 0.9964 1.1200 0.1080 0.7333 -0.8807 0.9519 0.9836 0.1256
2.0 0.1250 0.8586 1.0828 0.1848 0.5015 -0.6579 0.8314 0.9397 0.2214
2.0 0.1875 0.7264 1.0298 0.2347 0.3035 -0.4644 0.7178 0.8751 0.2913
2.0 0.2500 0.6015 0.9673 0.2620 0.1377 -0.2982 0.6133 0.7959 0.3387
2.0 0.3125 0.4848 0.9004 0.2704 0.0021 -0.1569 0.5192 0.7073 0.3669
2.0 0.3750 0.3764 0.8333 0.2637 -0.1054 -0.0376 0.4366 0.6138 0.3788
2.0 0.4375 0.2763 0.7695 0.2452 -0.1868 0.0624 0.3658 0.5191 0.3771
2.0 0.5000 0.1838 0.7115 0.2180 ~0.2442 0.1463 0.3068 0.4262 0.3639
2.0 0.5625 0.0981 0.6610 0.1851 -0.2793 0.2168 0.2591 0.3379 0.3411
2. 0.6250 0.0182 0.6192 0.149] -0.2937 0.2767 0.2220 0.2564 0.3101
2.0 0.6875 -0.0571 0.5865 0.1125 -0.2887 0.3286 0.1946 0.1834 0.2722
2.0 0.7500 -0.1288 0.5628 0.0776 -0.2654 0.3747 0.1757 0.1208 0.2282
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TABLE 8.2 Continued

Bl z/L KoH Kex Kpe KoH KoM Kom Kmm Kom
2.0 0.8125 -0.1981 0.5474 0.0468 ~0.2245 0.4171 0.1640 0.0698 0.1787
2.0 0.8750 ~0.2659 0.5389 0.0222 -0.1665 0.4572 0.1578 0.0318 0.1241
2.0 0.9375 -0.3330 0.5356 0.0059 -0.0916 0.4953 0.15%4 0.0082 0.0645
2.00 1.0000 ~0.3999 0.5351 0. -0.0000 0.5351 0.1541 0.0000 0.

3.0 0. 1.0066 1.0004 0. 1.0000 -1.0004 1.0C°8 1.0000 0.

3.0 0.0625 0.8210 0.9695 0.1543 0.6575 ~0.6589 0.8183 0.9690 0.1545
3.0 0.1250 0.6459 0.8919 0.2508 0.3829 -0.3854 0.6433 0.8913 0.2514
3.0 0.1875 0.4852 0.7870 0.3018 0.1709 -0.1743 0.4857 0.7862 0.3029
3.0 0.2500 0.3515 0.6698 0.3184 0.0141 -0.0184 0.3493 0.6684 0.3202
3.0 0.3125 0.2371 0.5514 0.3101 -0.0956 0.0905 0.2342 0.5491 0.3127
3.0 0.3750 0.1444 0.4394 0.2850 -0.1664 0.1607 0.1429 0.4360 0.2887
3.0 0.4375 . 0.0716 0.3389 0.2496 -0.2063 0.2002 0.0710 0.3339 0.2544
3.0 0.5000 0.0164 0.2528 0.2091 -0.2223 0.2162 0.0168 0.2458 0.2150
3.0 0.5625 -0.0242 0.1823 0.1673 ~0.2205 0.2147 -0.0222 0.1728 0.1744
3.0 0.6250 -0.0529 0.1271 0.1272 -0.2057 0.2011 -0.0489 0.1148 0.1353
3.0 0.6875 -0.0727 0.0864 0.0908 ~0.1819 0.1793 ~0.0661 0.0709 0 7995
3.0 0.7500 ~0.0861 0.0584 0.0594 -0.1519 0.1524 -0.0763 0.0396 0.0684
3.0 0.8125 -0.0953 0.0411 0.0340 -0.1178 0.1227 -0.0816 0.0189 0.0426
3.0 0.8750 -0.1021 0.0321 0.0154 -0.0807 0.0916 ~0.0839 0.0069 0.0225
3.0 0.9375 -0.1077 0.0287 0.0039 ~0.0414 0.0599 -0.0846 0.0014 0.0083
3.0 1.0000 -0.1130 0.0282 0. -0.0000 0.0282 ~0.0847 0.0000 0.

4.0 0. 1.0008 1.0015 0. 1.0000 -1.0015 1.0021 1.0000 0.

4.0 0.0625 0.7550 0.9488 0.1926 0.5616 -0.5624 0.7567 0.9472 0.1929
4.0 0.1250 0.5323 0.8247 0.2907 0.2411 -0.2409 0.5344 0.8229 0.2910
4.0 0.1875 0.3452 0.6693 0.3218 0.0234 -0.0220 0.3478 0.6673 0.3219
4.0 0.2500 0.1979 0.5101 0.3093 ~0.1108 0.1136 0.2010 0.5082 0.3090
4.0 0.3125 0.0890 0.3641 0.2717 ~0.1810 0.1855 0.0926 0.3626 0.2705
4.0 0.3750 0.0140 0.2403 0.2226 -0.2055 0.2118 0.0178 0.2397 0.220¢
4.0 0.4375 -0.0332 0.1419 0.171¢ ~0.1996 0.2079 -0.0255 0.1430 0.1671
4.0 0.5000 ~0.0590 0.0682 0.1243 -0.1758 0.1858 ~0.0558 0.0720 0.1176
4.0 0.5625 -0.0692 0.0163 0.0843 -0.1432 0.1545 -0.0674 0.0242 0.0749
4.0 0.6250 -0.0687 -0.0176 0.0529 ~0.1084 0.1200 -0.0696 -0.0043 0.0406
4.0 0.6875 -0.0615 -0.0379 0.0299 -0.0756 0.0858 -0.0665 ~0.0178 0.0149
4.0 0.7500 -0.0505 ~0.0488 0.0147 -0.0475 0.0538 -0.0616 -~0.0206 -0.0025
4.0 0.8125 -0.0376 ~0.0536 0.0057 ~0.0255 0.0242 -0.0568 -0.0166 -0.0122
4.0 0.8750 -0.0239 -0.0552 0.0014 -0.0101 -0.0033 -0.0535 -0.0096 -0.0148
4.0 0.9375 -0.0101 -0.0555 0.0001 -0.0016 ~0.0296 -0.0520 -0.0029 ~0.0106
4.0 1.0000 0.0038 ~0.0555 -0. 0.0000 -0.0555 ~0.0517 -0.0000 -0.

5.0 0. 1.0003 1.0003 0. 1.0000 ~1.0003 1.00C2 1.0000 0.

5.0 0.0625 0.6964 0.9214 0.2249 0.4711 -0.4715 0.6964 0.9211 0.2250
5.0 0.1250 0.4342 0.7476 0.3131 0.1206 -0.1210 0.4343 0.7472 0.3133
5.0 0.1875 0.2317 0.5479 0.3155 -0.0842 0.0840 0.2320 0.5472 0.3158
5.0 0.2500 0.0901 0.3628 0.2716 -0.1817 0.1818 0.09C7 0.3620 0.2720
5.0 0.3125 0.0013 0.2121 0.2093 -0.2079 0.2084 0.0022 0.2111 0.2095
5.0 0.3750 -0.0466 0.1013 0.1461 -0.1919 0.1930 -0.0455 0.1002 0.1461
5.0 0.4375 -0.0659 0.0277 0.0915 -0.1556 0.1575 ~0.0644 0.0267 0.0910
5.0 0.5000 -0.0671 -0.0157 0.0494 -0.1133 0.1163 -0.0654 -0.0161 0.0482
5.0 0.5625 ~0.0584 -0.0368 0.0203 -0.0738 0.0778 -0.0567 -0.0361 0.0180
5.0 0.6250 ~0.0456 -0.0435 0.0026 -0.0412 0.0461 -0.0444 -~0.0409 -0.0012
5.0 0.6875 -0.0321 -0.0419 -0.0063 -0.0169 0.0223 -0.0321 -0.0365 -0.0117
5.0 0.7500 -0.0197 -0.0369 -0.0088 -0.0008 0.0055 -0.0221 -0.0276 -0.0159°
5.0 0.8125 -0.0090 -0.0317 -0.0075 0.0081 -0.0059 -0.0150 -0.0175 -0.0157
5.0 0.8750 0.0002 -0.0279 ~0.0044 0.0108 -0.0139 -0.0110 -0.0086 -0.0125
5.0 0.9375 0.0086 -0.0261 -0.0014 0.0079 -0.0201 -0.0094 -0.0023 -0.0072

5.0 1.0000 0.0167 -0.0259 -~ —0. 0.0000 -0.0259 -0.0091 -0.0000 -0.
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PR 7

1. Rigid pile (Zmax < 2.0):

18H(1 + 1.33¢/L)

= 8.31
p I (8.31)
g - 24H(1 + 1.5¢/L) (8.32)
L3np
2. Infinitely long pile (Z .,y > 4.0):
240 1.60fe
p = — - = (8.33)
(”h)3/5([3p1p)2/5 (”h)z/s(bp]p)3/“~
1.60H 1.74 e )
= - - (8.34)
)5 E 1) () B (Eplp)
For fixed-head piles:
1. Rigid pile:
2H .
= (8.35)
L?ny,
2. Infinitely long pile (£ max ~ 4.0):
0.93H .
pF ey (8.36)
- () (bp]p)“
For the above equations, Z 5 is defined as
Zoax = LIT (8.37)
where
PN
T = <—”5’ > (8.38)
ny
and

e = eccentricity of applied load H, (i.e., He = applied
moment)

Solutions for pile-head deflection and slope, obtained
by Barber (1953), are plotted in Fig. 8.3. The actual
deflection and slope are given by Egs. (8.22), (8.23), and
(8.24), except that kyd is now replaced by npl in the
denominator of these equations.

A comprehensive series of solutions for deflection,
rotation, moment, shear, and pressure along a pile have
been presented by Reese and Matlock (1956). For the case

T V7

100,000 / /1M Y
‘ /'”;*{M —
%

/ ]

©
i
©
I

10,000

1,000 /
100 // /
10 -
24
|
2 18] {36 Ferrigid pile
1

10 10C 1,000 10,000 100,000

Flexibility ratio, ny L®/E 1,

Deflection and stope factors

FIGURE 8.3 Top deflection and rotation for lateral loads on verti-
cal piles for kj proportional to depth (after Barber, 1953). (Re-
printed by permission of the American Socicty for Testing and Ma-
terials, © 1953)

of very long piles (i.e., Zmax > 4.0), Matlock and Reese
(1961) give the following solutions for deflection p and
moment M, along the pile:

HT?

p = C; — (839)
Y Epl,

M, = Cy - AT (8.40)

Values of Cy and C), are plotted in Figs. 8.4 and 8.5
for various values of M/HT, where M = applied moment, H =
applied load, and T is defined in Eq. (8.38). The depth
coefficient, Z, is

(8.41)
where
z = distance below ground surface

Depending on the angular restraint provided by the .
cap, values of M/HT will range from zero for a free-head
case to -0.93 for the case where the cap prevents any
rotation of the pile head—in other words, the fixed-head
case. Davisson (1970) suggests that the degree of fixity that
can usually be developed is M/HT = -0.4 to -0.5; for this
case, the positive and negative moments in the pile are
approximately equal.
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FIGURE 8.4 Curves of deflection coefficient Cy for long piles (after Matlock and Resse, 1961).

8.2.2.3 GENERAL DISTRIBUTION OF ky WITH DEPTH

Cases involving a general distribution of &y with depth, of

the form kj, = npz"/d or kpd = ko + kyz + kq2”, have been

considered by Matlock and Reese (1960). Larger deflections

and moments are associated with larger values of n.

Matlock and Reese also give solutions for the case kjd =

ko + k,z. Both deflections and moments decrease as &
increases.

8224 LAYERED SOILS

Solutions for pilesin a two-layer system have been presented
by Davisson and Gill (1963) and Reddy and Valsangkar
(1968). The influence of the upper layer on the deflection -

factors Ipp, fopr, and I,p for uniform & is shown in Figs.
8.6, 8.7, and 8.8 as a function of the ratio of thickness of
upper layer, %, to length £, and the ratio of modulus of
upper layer, k, to that of the lower layer, k. These results
have been derived from those of Davisson and Gill (1963)
and apply to a pile of intermediate flexibility (kdl.*/Eplp =
256); they may be used as factors to correct the uniform
layer influence factors in Fig. &.2,

The results of Davisson and Gill’s analysis may be
summarized as follows:

1. With respect to reducing surface deflection and maxi-
mum moment, there is little benefit to be gained from a
stiff surface layer exceeding a cepth of 0.2R (a depth of the
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FIGURE 8.5 Curves of moment coefficient C,, for long piles (Matlock and Reese, 1961).

order of a few pile-diameters) or from a modulus ratio
exceeding 5, where

R = [Eply/kd] '/*

2. The soil from the ground surface to depths of 0.2R to
0.4R exerts a controlling influence on pile behavior, so
that investigations to determine &5 should be most thorough
in this area. In addition, seasonal variations in moisture
content may affect the upper part of the soil profile and
hence influence the pile behavior.

3. Use of analytical results for a constant kj with depth
may lead to underestimates of moment and deflection by
a factor of 2. ’

A further analysis of pile behavior in a layered system
has been made by Reddy and Valsangkar (1968), who

consider a distribution of k; in each layer of the form
kpd = ko + kyz + k2. The conclusions from this analysis
are identical with those of Davisson and Gill.

8.2.3. Modulus of §ubgrade Reaction

Determination of the modulus of subgrade reaction is gener-
ally carried out by one of the following methods:

1. Full-scale lateral-loading test on a pile.
2. Plate-loading tests.
3. Empirical correlations with other soil properties.

The most direct means of using pile-loading tests is to
instrument the pile so that the soil pressures and pile
deflections along the piie can be measured directly: This
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FIGURE 8.6 Effect of layered soil on deflection-influence factor
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FIGURE 8.8 Effect of layered soil on deflection-influence factor
Ipp (after Davisson and Gill, 1963).

method has been used for a number of piles (eg.,
Matlock and Ripperberger, 1958) but is time-consuming,
requires care, and is relatively expensive. A more convenient
procedure is to measure the ground-line deflection and/or
rotation and to backfigure the value of kj, assuming an
appropriate distribution with depth. Reese and Cox (1969)
describe the interpretation of tests in which both deflection
and rotation is measured. -

The use of plate-loading tests has been discussed by
Terzaghi (1955) and Broms (1964). The main problem with
this approach is the extrapolation of the results for a plate
to a pile. Terzaghi (1955) considered that for clays, the
modulus of subgrade reaction is essentially the same both
horizontally and vertically and is independent of depth, and
he suggested the following conservative relationship for
kp:

(8.42)

modulus for horizontal square plate, 1 ft wide

=

B

2
i

breadth or diameter in feet

au
I

Typical values of;sl for overconsolidated clays, suggest-
ed by Terzaghi, are shown in Table 8.3.
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TABLE 8.3 VALUES OF k;; TONS/FT* FOR SQUARE
PLATES, 1 X 1 FT, ON OVERCONSOLIDATED CLAY*?

TABLE 8.4 TYPICAL VALUES OF ny, FOR COHESIVE SOILS

nh
Consistency of Clay Stiff Very Stiff Hard Soil Type (Ib/in.?) Reference
Undrained shear 0.5-1 12 5 Soft N/C clay 0.6-12.7 Reese and Matlock, 1956
strength ¢y ton/ft? e i 1.0-2.0 Davisson and Prakash, 1963
Range for kg 50-100 100-200 200 N/C organic clay 0.4-1.0 Peck and Davisson, 1962
0.4-3.0 Davisson, 1970
Propcsed values of 75 100 300
%Sl Peat . 0.2 Davisson, 1970
p 0.1-0.4 Wilson and Hilts, 1967
After Terzaghi (1955). \
Loess 29-40 Bowles, 1968

Vesic (1961) analyzed an infinite horizontal beam on
an elastic foundation and by comparing the results with
those obtained by the use of‘subgrade-reaction theory,
related the modulus of subgrade reaction k to the elastic
pararneters Es and v; of the mass, as follows:

’ 12 2 .
' - (().65) [ Esd (bs >
d /) Eply \1- 5

wher2

(8.43)

Epl, = pile stiffness
d = pile diameter

The application of pressuremeter test results to the
determination of kj has been summarized by Baguelin et al
(1978). ky, is related to the pressuremeter modulus and a
factor dependent on the soil type.

A number of empirical correlations for kj are available.
For clays, assuming a constant kp with depth, Broms
(19644) has related ky to the secant modulus FEgo at
half the ultimate stress in an undrained test as

ki = 1.67Esold (8.44)

Using a value of £y equal to 50 to 200 times the undrained
shear strength ¢, (Skempton, 1951),
kp = (80~ 320)¢,/d (8.45)

Davisson (1970) suggests a more conservative value of

ky = 67 cy/d (8.46)

For softer cohesive soils, it is usually assumed that kp
increases linearly with depth, that is, ky = ny * z/d. Typical
values of ny, for such soils are shown in Table 8.4.

For piles in sand, assuming that the modulus of elasticity
depends only on the overburden pressure and the density of
the sand, Terzaghi (1955) showed that

Ay

- 3
A= 13% (tons/ft’)

(8.47)

Typical values of the factor A4 and ny are shown in
Table 8.5. For comparison, values of nj of 2.5 tons/ft?
and 1.5 tons/ft® (cyclic loading) for loose, dry sand, and
79 tons/ft® and 86 tons/ft® for dense, dry sand, have been
reported by Rowe (1956) and Davisson and Prakash
(1963).

TABLE 8.5 VALUESWOF np (TON/IFT*) FOR SAND?

Relative Density Loose Medium Dense
Range of values of 4 100-300 300-1000 1000-2000
Adopted values of 4 200 - 600 1500

np, dry or moist sand 7 21 56

np, submerged sand 4 14 34

4 After Terzaghi, 1955.

8.2.3.1 EFFECT OF PILE DEFLECTION

Because of the nonlinearity of observed horizontal load-
deflection curves for laterally-loaded piles, resulting from
local yielding of the soil long before ultimate failure occurs,
the overall modulus of subgrade reaction depends largely on
the deflection of the pile, or the applied load level. An
example of the variation of ny with deflection fot piles in
sand is shown in Fig. 8.9, where the value of np, expressed
as a fraction of ny for a dimensionless pile displacement
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FIGURE 8.9 Effect of pile displacement on subgrade modulus ny,
for piles in sand.

p/d of 0.005, is plotted against p/d. Data from full-scale
tests reported by Alizadeh and Davisson (1970) and model
tests by Awad and Petrasovits (1968) are plotted, and the
rapid variation of sy within the range p/d = 0.003 to
0.015 is clearly shown. Similar variations in kp are found for
piles in clay. Figure 8.9 therefore provides an approximate
basis for taking account of the nonlinearity of soil
behavior.

82.3.2 GROUP EFFECTS AND REPEATED LOADING

When using subgrade-reaction theory to predict group
movenents, an empirical correction must be made to the
value of k; used in the analysis. Davisson (1970) states
that the spacing in the direction of the load is'of primary
importance, and that at a center-to-center spacing of 84 or
more, there is essentially no influence of one pile on
another, provided that the spacing normal to the load
direction is at least 2.5d. When the spacing parallel to
loading is less than 84, the effective value of kp (keg) is
less than for an isolated pile, and from model tests on piles

in sanc (Prakash, 1962) k. was found to be about 0.25k,
at a spacing of 3d. Jampel (1949) obtained expressions

relating &y, to Young’s modulus of the soil, E;, for a single .

pile and a pile group. On the basis of these expressions, the
following values of k¢ge/kp, are suggested for normal spacings:

Two piles: kege/kp, = 0.5.
Three or four piles: ker/ky = 0.33.
Five or more piles: kegr/kp = 0.25.

Repeated loading causes some deterioration of the soil
resistance, effectively reducing kj. Davisson (1970) states
that the net effect is that the deflection observed under
first application of a load is essentially doubled if the load
is cycled 50 times or morz. Moments are also” increased
and occur over an increased depth of embedment. Re-
peated loading has the effect of reducing & to approxi-
mately 30% of the value app:icable to initial loading.

The combination of group effects and repeated loading
can reduce kepr to a value as low as 10% of that applicable
to initial loading of an isolated pile (Prakash, 1962).

Further information on the effects of repeated loading
is summarized by Reese (1975) in relation to the nonlinear
“p-y” analysis (see Section §-2-4).

8.2.3.3 EFFECT OF CONSOLIDATION AND CREEP

As a result of consolidation and creep of the soil surround-
ing a laterally loaded pile, an increase of the lateral
deflections and a redistribution of soil reactions will
occur with time. Only a small amount of data is available
on the consequent reduction in the value of ky,.but Broms
(19644) tentatively suggests values of kop/ky of 1/2 to
1/4 for stiff to very stiff clays, and 1/3 0 1/6 for soft and
very soft clays. For sands, keit/kp may be taken as 1.

A more satisfactory assessment of the effects of
consolidation is possible with the use of elastic theory
(Section 8.3).

8.2.3.4 EFFECT OF BATTERED PILES

All the preceding values of ky and nj have been obtained
for vertical piles. The effect of pile batter on pile deflections,
and hence the effective values of 4&; and ny, has been
investigated by Kubo (1965) for model piles in clay and
Awad and Petrasovits (1968) for model piles in sand.
Deflection decreases for positive batter (i.e., batter in the
direction of load) and increases for negative batter. More
detailed consideration of the behavior of batter piles is
given in Chapter 9.

8.2.4 Nonlinear Analysis
As discussed previously, the relationship between pressure

and deflection at any point along a pile is nonlinear. Several
approaches have been developed to account for this non-
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h'nezirity. Madhav et al. (1971) have employed an elasto-
plastic Winkler model, while Kubo (1965) has employed
the following nonlinear relationships beétween pressure p,
deflection p, and depth z:

p = kz™p" (8.48)

where
k, m, n = experimentally determined coefficients

However, the most widely-employed approach appears to
be the so-called “p-y”” approach developed by Reese and
his coworkers (here, p = pressure, y = deflection). In this
method, a finite-difference solution is obtained to the
following equation:

o

d*p
p V22 =
dz +(P2) dz? p 0

(8.49)

where

p = deflection
M = moment at depth z in pile
z = depth
F. = axial load on pile at depth z
p = soil-reaction per unit length (ie., p here is, in
effect, an equivalent line loading)

This zquation is a more general form of Eq. (8.3), in which
the effects of axial load and variations of pile stiffness with
depth can be incorporated. Equation (8.49) can be written
in finite-difference form, and a full description of the
resulling equations are given by Reese (1977), who also
describes a computer program that solves these equations.
The equations are a generalized version of those given in
Section 8.2.1.

The solution requires input of a series of “p-y” curves
(in the present notation of this book, p-p curves) for various
points along the pile. Such a set is illustrated diagrammati-
cally in Fig. 8.10. As in the normal subgrade-reaction
approach, the curves shown in Fig. 8.10 imply that the
behavior of the soil at a particular depth is independent of
the soil behavior at other locations. While not strictly
true, Reese states that experiments indicate that this
assumption is sufficiently true for practical purposes. Since
there is no restriction on the shape of the p-p curves, an
iterative solution of the finite difference equations is
necessary in order to obtain compatible values of p and p
at all points along the pile.

Design procedures for constructing p-p relationships
based on the results of field measurements on’ full-size
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FIGURE 8.10 Concept of p — p curves.

instrumented piles, have been developed by Matlock (1970)
for saturated soft clays subjected to either short-term
static loading or cyclic loading. O:her cases have subsequently
been treated by Reese and his co-workers and are summa-
rized by Reese (1975). As an example of these procedures,
the case of soft saturated clays is outlined below.

1. Short-term static loading.

(a) Values are obtained for the variation of shear strength
and effective unitweight with dapth, together witha value
of €59, the strain corresponding to one half the maximum
principal stress difference. (Values of €5 typically range
from 0.005 for stiff clays to 0.02 for soft clays.)

(b) The ultimate soil resistance per unit length of shaft,
Pu, is computed, using the lesser of the following values:

pu = (B +vyz/ey, +0.52/d)c,d (8.500)
or
pu = 9cud (8.50p)
where
v = average effective unit weight from ground surface

to the required depth z
¢, = undrained shear-strength at depth z
d = width or diameter of pile

The value of p, is computed at each depth fof which a p-p
curve is required.



LOAD-DEFLECTION PREDICTION FOR LATERALLY LOADED PILES 177

(c) The deflection, pso, at one half the ultimate soil
resistance is calculated as

Psy = 2.565()(] (851)

(d) Finally, points describing the p-p curve are computed
from the following relationship:

p/o, = 0.5 (p/pso)3 (8.52)

The value of p is taken to remain constant beyond p =
8ps0-

2. Cyclic loading.

« (a) The p-p curve is constructed in the same manner as for
short-term static loading, for values of p less than 0.72p,,.
(b) Equations (8.50a) and (8.50b) are solved simultaneously
to find the transition depth, z,. For constant unit weight
and shear strength in the upper zone,

6c,d

T (3d +0.5¢,) (8.53)
(c) 1f the depth of the point in question is greater than or
equal to z,, then p is equal to 0.72p, for all values of p
greater than 3ps,. -
(d) If the depth is less than z,, then the value of p decreases
from (.72p,, at p = 3pso to the value given by the expression
below at p = 13ps0:

p = 0.72p,(z/z,) (8.54)

The value of p remains constant beyond p = 1505,.
Other cases for which p-p curve-construction procedures
have been recommended are:

1. Stiff clays above the water table (Reese and Welch,
1675)
2. Stiff clays below the water table (Reese et al., 1975).

3. Sands, short-term and cyclic loading (Reese et al., 1974).

A unified approach for constructing p-p curves for piles
‘in clav has been developed by Sullivan et al (1979).

A alternative and perhaps more generally applicable
approach to determining p-p curves was described by
Frydman et al. (1975), who made use of pressuremeter
test results. The p-p curves were obtained by assuming that if
the sume pressure is applied to the soil by the pressure-
meter and a pile, the ratio between the lateral movement of
the scil next to the pile to that next to the pressuremeter
is equal to the ratio of their diameters, or widths. The
lateral movement of the soil next to the pressuremeter is

equal to the increase in radius of the pressuremeter and is
obtained from the volume change measurements. Using

- this approach, Frydman et al. were able to reproduce with

quite good accuracy the measured deflection profiles of
two prestressed-concrete test piles. Baguelin et al (1977)
also discuss the use of pressuremeter test results to obtain
p-p curves and describe a number of reasonably successful
applications of this techniquz to instrumented piles.

8.3 ELASTIC ANALYSIS FOR SINGLE PILES
8.3.1 Basic Theory

Analyses in which the soil has been considered as an
elastic continuum have bezn described by Douglas and
Davis (1964); Spillers and Stoll (1964); Lenci, Maurice,
and Madignier (1968); Matthewson (1969); Banerjee
(1978); Banerjee and Davies (1978); and Poulos (1971a,
1972). All these analyses are similar in principle, the
differences arising largely from details in the assumptions
regarding the pile action. The analyses of Poulos (1971a)
for a floating pile and Poulos (1972) for a socketted pile
are described below.

8.3.1.1 FLOATING PILES

Referring to Fig. 8.11, the pile is assumed to be a thin
rectangular vertical strip of width &, length L, and constant
flexibility £,1, (in applying the results of the analysis to
a circular pile, d can be taken as the pile diameter). To
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FIGURE 8.11 Floating pile. Stresses acting on (a¢) pile; (b) soil
adjacent to pile.
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simplify the initial analysis, possible horizontal shear-
stresses developed between the soil and the sides of the pile
are not taken into account. The pile is divided into n + 1
elements, all being of length & except those at the top and
tip, which are of length §/2. Each element is acted upon
by a uniform horizontal stress p, which is assumed constant
across the width of the pile. The soil is assumed to be an
ideal, homogeneous, isotropic, semi-infinite elastic material,
having Young’s modulus, £, and Poisson’s ratio, vy, which
are unaffected by the presence of the pile. It is also assum-
ed that the soil at the back of the pile near the surface
adheres to the pile. This assumption is discussed further in
this section, when an approximate method of allowing for
pile-soil separation is outlined.

If purely elastic conditions prevail within the soil, the
horizontal displacements of the soil and the pile are equal.
In this analysis, these displacements are equated at the
element centers, except for the two extreme elements, for
which displacements are calculated at the top and the tip
of the pile (i.e., the collocation points are equally spaced).
The scil displacements for all points along the pile may
be expressed as

Lo} = ;’— UsTip} (8.55)

where {;p}, {p} are the n +1 column vectors of horizontal
soil displacement and horizontal loading between soil and
pile. (The stress. between pile and soil caused by external
loads on the pile is p/2 compression on one side and p/2 ten-
sion orn the other side.) [/;] is the n + 1 by n + 1 matrix of
soil-displacement-influence factors.

Elements 7;; of [/;] are evaluated by integration over a
rectangular area of the Mindlin equation for the horizontal
displacement of a point within a semi-infinite mass caused
by horizontal point-load within the mass. This integration is
dascribed by Douglas and Davis (1964), and their solution
is reproduced in Appendix B. Although Eq. (8.55) is for a
soil with uniform Ej, the case of a varying £ along the pile
{e.g., for a pile in sand) may also be considered by assuming
that the soil deflection at a point is given by the Mindlin
equation and using the value of £ at that point.

In determining the pile displacements, use is made of
the differential equation for bending of a thin beam
(Eq. 8.2). This equation can be written in finite-difference
form, for the points 2 to n, and by using the appropriate
boundary conditions at the top and tip of the pile to
eliminate fictitious displacements at points outside the
pile, the following equations may be derived for the cases
of a free-head pile and a fixed-head pile:

a) Free-Head or Unrestrained Pile

o) = Ep pn

e [P Hpp} + — {A}

(8.56)

where

{pp}is the n - 1 column vector of pile displacements

(D]

n- 1 by n+ 1 matrix of finite difference coeffi-

cients. _
= 1-25-4100....00 000
1-4 6-4 10....0 0 0 0 O

000O0O00....1-4 6-4 1
000O0O0C0....0 1-4 5-2
{A} = (_]l_l._liW)
n*Eplp
0
0

) o D

1

Equating the soil and pile displacements from Egs. (8.55)
and (8.56)—that is, putting ;0 = pp,

[[1] + Kgn* [D] - Us]] -{p} = {B} (8.57)

where
8y = [-mn?]

dL?
0
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TABLE 8.5 TYPICAL VALUES OF PILE FLEXIBILITY FACTOR Kg FOR VARIOQUS SOILS

Soft Clay Medium Clay Stiff Clay Loose Sand Dense Sand
Pile type Pile Length (ft)
20 50 20 50 20 50 20 50 20 50
1-ft diam.
_concrete 62X 107 1.6x10° 3.1x10% 80X 10° 1.2Xx10° 31X 10 3.7x10® 9.5x 1C* 92X 107 24x 107
3-ft diam.
concrete S.0X 10™ 1.3X 107 25X 10" 64X 107 94X 107 24x 102 3.0Xx 10 7.7x 10 7.5x 10 1.9x 107
1-ft (average)
diam. tirber 3.1 X 10 7.9X 10 1.5x 10° 3.8x10° 60x 10 1.5x 10 1.8x 102 4.6x 10 47x 10* 1.Zx 107
14-in. X 14-in.
X 1171b steet
H-pile 27x 107 6.9x 107 13x 107 34x10* 50X 107 13x10® 16x10? 41x 10™ 40x10° 1.0x 107

NOTE: Abhove values of Kp are derived from secant values of E¢at normal working loads.

[/} = unit matrix (n - 1 by n +1)
Epl
L pip
K LIS
R EL®

the pile-flexiblity factor

1]

Kpg is a dimensionless measure of the flexibility of the pile
relative to the soil and has limiting values of = for an infinite-
ly rigid pile and zero for an infinitely long pile. As a rough
guide to practical values of Kg, Table 8.6 gives typical
values for various types of piles and soils. These have been
derived using secant values of £ (see Section 8.5) and-
should be -egarded as approximate only and applicable when
a purely clastic analysis is used (lower values of Kg may
be relevant when an elastoplastic analysis is employed).

The horizontal-load and moment-equilibrium equations
provide the remaining two equations required for the
analysis, and these may be written as

nl, H

(B =7 3 (8.58)
where
{E}isann + 1 row vector,
with
Ep = 1for1 <j<n+]l
Ef = 05forj = L,n+tl
{F} - (p} = —n2<§ Lﬂﬂ (8.59)

where

{FYisann + 1 row vector,

with
Fr=7-1forl <j<n+l
F, =0.125
F,+1 =05n - 0125

Equations (8.57), (8.58), and (8.59) may be solved for
then + 1 unknown stresses, wheteby the displacements may
be calculated from Eq. (8.55). The rotations, moments, and
shears can subsequently be evaluated.

(b) Fixed-Head or Restrained Pile
The analogous equation to Eq. (8.56) is now

[+ Ken* (D1 U ] ) = 0 (8.60)
where
[Di] =n-1 by n+1 matrix of finite-difference
coefficients

- -
-4 7-4 10....0 0 0 00
1-4 6-41....0 0 0 00

00000....1-4 6-41
| 0 0 000....0 1-4 52
. . -

The horizontal-equilibrium equation is identical with that
for the free-head pile (Eq. 8.58), but the moment equation ,
must be altered to take account of the fixing moment at
the pile head. This equation then becomes
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G} ipy = 0 (8.61)

where
{G}isan n + | row vector,

with
Gy = kot <§KRH4> -1y + 13)
and

£ is defined in Eq. (8.59)

Equations (8.60), (8.58), and (8.61) may again be solved
for the pressures, displacements, and so on.

Solutions obtained from the above analyses are given
in the following sections (8.3.2 and 8.3.3). For these
solutions, 21 elements were used to divide the pile. This
number was generally found to give results of adequate
accuracy, except for very slender or flexible piles, in which
case. deflections and rotations may be underestimated.
Evangelista and Viggiani. (1976) and Poulos and Adlér
(1978) have examined the accuracy of such solutions and
conclude that greater accuracy and economy may be
achieved by formulating the beam equation for pile bending
in terms of unequal spacings between adjacent nodes.
This leads to different matrices (D] and [D,] in Egs.
(8.56) and (8.60). Smaller elements can be used near the
top of the pile, where displacement, pressure, and moment
gradients are steep, and larger elements used along the
- lower part of the pile.

An alternative formulation of the analysis, using a finite
element discretization of the pile, is described by Poulos
and Adler (1978). Non-uniform pile sections are readily-
handled with this analysis.

The extension of the analyses to cover the case of
yield of the soil is described later in this section. Modi-
fications for battered piles are discussed in Chapter 9.

8312 SOCKETED PILES

The assumptions made regarding pile and soil behavior are
similar to those made in relation to floating piles, but
the soil is now assumed to be underlain by a rough, rigid
bearing stratum, and a fprce Hy and a tip momerit Mf act
at the tip, which is restrained from moving horizontally.
The solution for the case of purely-elastic soil behavior is
again obtained by equating pile and soil displacements at the
node points. The pile displacements are again obtained by

expressing the beam equation in finite-difference form,
which yields the following equation (for points 2 to n):

E In?
{p} ={C} + de4 [D:1{p0} (8.62)

where

{p},{pp} are'n - 1 column vectors for loading and pile
displacement
[D,] isann - 1 by n.+ | matrix of finite-difference
coefficients
{C} isann - 1 column vector

The elements of [D,] and {C} depend on the head and
tip boundary conditions. The following conditions are
considered:

Free-head: moment at head = applied moment M
Fixed-head: head rotation 0
Pinned-tip: tip displacement = 0
tip moment, My = 0
Fixed-tip: tip displacement = 0
tip rotation =0

The boundary conditions may be expressed in finite-
difference form and the first and last rows of [D,] and
{C} may be determined. The inner rows are identical with
those of [D] and [D,] for the floating pile.

The soil displacements at all elements along the pile may
be written as

4

{sp}.= E, UsHp} (8.63)

where

{sp} = then+1 column vector of soil displacements
[l;] = the n.+ 1 by n + 1 matrix of soil-displacement-
influence factors

In evaluating the elements of [/;], allowance should be

~made for the effect of the rigid base in reducing soil

movements, and a convenient approximate means of
making this allowance is to introduce a fictitious “mirror
image” of the pile, loaded by equal and opposite horizontal
stresses (see Fig. 8.12). This procedure is analogous to that
used in the analysis of axially-loadéd end-bearing piles
(Chapter 5). The displacements at all points along the pile,
resulting from both the real and imaginary elements, are
again evaluated from the expressions derived by Douglas
and Davis (1964).
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FIGURE 8.12 Socketed pile.

&

The pile and soil displacements from Egs. (8.62) and
(8.63) can be equated, and the resulting equations, to-
gether with the appropriate equilibrium equations, solved
for the unknown pressures and displacements as well as the
tip force Hrand tip moment My.

Solitions from the above analysis are given in Section_
8.3.4, while the extension of the elastic analysis to account
for locel yield of the soil is described below.

ro_
1/
83.1.3 ANALYSIS FOR LOCAL YIELD OF SOIL L)

Because the elastic analysis shows that high pressures are
developed near the top of the pile, real soils are likely to
yield ai relatively low loads, and consequently, increased
displacements will occur. Modifications of the elastic
analysis to take account of soil yield have been described
by Spillers and Stoll (1964) and Poulos (1971a). For a
specified load and moment, a solution is first obtained
assumir g the soil to be elastic, and the soil pressures thus
obtained are compared with the specified yield (ultimate
lateral) pressures, p,,, at each point (see Chapter 7 for a dis-
cussion of values of p),, denoted as p,, therein). At elements
where the elastic pressure exceeds py, the displacement-
compatibility equation is replaced by the condition that
the pressure equals p),. The solution is then recycled and
the procedure repeated until the yield pressures are
nowheie exceeded along the pile. Then by increasing the

= Surface

i e pi

ZZ 7

Imaginary
elements

loads and moments, the entire load-deflection curve for the
pile may be obtained. This analysis assumes that at
elements at which the soil has not yielded, the soil dis-
placement caused by elements that have yielded is still
given by elastic theory. This assumption should not involve
serious error when only a few elements have yielded, but is
likely to lead to inaccuracy in the load-deflection curve as
the ultimate load or moment is approached.

The above analysis is best carried out by reexpressing
the equations in terms of the unknown deflections rather
than the unknown pressures, so that difficulties regarding
displacements at yielded elements are eliminated.

8.3.1.4 ANALYSIS OF PILE-SOIL, SEPARATION NEAR SURFACE

The elastic analysis assumes that the soil behind the pile
adheres to the pile at all times. However, because soil has
limited ability to take tension, it is likely that separation
will occur near the top of the pile, where large stresses,
compressive in front of thé pile and tensile behind the pile,
are developed. This separation and loca!l yield are the main
causes of the marked nonlinearity in load-deflection be-
havior that is observed in lateral loading tests, even at low
load levels. Douglas and Davis (1964) state that this effect
could lead to an increase in displacements and rotations of
100% in the extreme case, but in practical cases involving
stiff piles, an increase of 30 to 40% appears to be a more
reasonable allowance,
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Approximate allowance for the effects of separation may
be made in the elastic analysis in the following manner:

1. From the initial elastic analysis, the stresses along the
pile are obtained. Assuming in-situ horizontal stress to be
K0,, where o, is the vertical overburden stress and K; isa
coelficient of horizontal pressure (see Chapters 2 and 3),
the elements at which the resulting stress at the back of the
pile, K0, - 0.5 py, is negative (i.e., tensile) are determined
(the factor of 0.5 arises because half the total force on a
pile element is compressive at the front of the element and
half is tensile at the back of the pile).

2. Assuming the soil to have zero tensile strength (if
justifiable, a certain small tensile strength could be consider-
ed), separation is assumed to occur at these elements and the
displacements caused by these elements are recalculated,
assuming these displacements to be twice the values given
by the Mindlin equations. The factor of 2 is correct for
loading in an infinite mass, and at the soil surface (pro-
vided that vy = 0.5).

3. A new solution is obtained, and the procedure repeated
until no resulting net-tensile stresses exist at the back of
the pile.

- Solutions showing the effect of separation are discussed in
Section 8.3.2.

This procedure may also be combined with the analysis
for local yield of the soil to obtain a more accurate load-
deflection relationship to failure for a laterally-loaded
pile.

83.1.5 RELATIONSHIP BETWEEN ELASTIC AND SUBGRADE-
REACTION ANALYSES

Having completed the description of the elastic method, it
is now possible to consider its relationship to the subgrade-
reaction analysis. Considering first the linear analyses,
comparison between Egs. (8.1) and (8.55) reveals that the
subgratle-reaction method can be formulated in precisely
the same manner as the elastic method; however, the off-
diagonal components of the soil-influence-factor matrix
[/s] are all zero in the subgrade-reaction analysis, and the

. d
diagonal components in the elastic theory (E—,jll-,- for an
st

element i) are replaced by 1/k;. The presence of the off-dia-
gonal elements of [/;] in the elastic theory is caused by the
ability of an elastic material to transmit stress, in contrast
to a Winkler material. '

The elastic analysis modified for local yield is equival-
ent to a nonlinear subgrade-reaction analysis in which the p-p
curves are linear up to the yield pressure p,,, but in which

the linear portion of these curves depends on the pressures
on all the elements rather than on the pressure at one
element only. It should be noted that it would be possible
to use other types of p-p relationships in conjunction with
elastic theory, although it is doubtful whether the added
complications in such an analysis would be justified in
view of the approximations involved in using the Mindlin
equations.

8.3.2 Solutions for Floating Pile in Uniform Soil

83.2.1 DISPLACEMENT AND RGTATION

Solutions have been obtained for the case of a free-head
floating pile, loaded by a horizontal force H acting at an
eccentricity e above the ground line. A soil having a uni-
form modulus £, and limiting pressure pj is considered;
such an idealization is generally considered to be appli-
cable to piles in overconsolidated clay. In the solutions,
the influence of local yield of the soil adjacent to the pile
is taken into account, but no allowance is made for the
effects of pile-soil separation. A value of vg of 0.5 has been
chosen; however, v; has relat.vely little influence on the
solutions.

The ground-line displacement, p, and rotation, 8, for a
free-head pile may be expressed as follows (Poulos, 1973):

H e .

p = E—Sz(IpH tr lom)/IEs (8.64)
- H e ) .
= gp Ve * 3 Toan)lEy (8.65)
where

H = applied horizontal load

e = eccentricity of load = M/

M = applied moment at ground line
Iom, Iop = elasticinfluence factors for displacement

caused by horizontal load and moment,
respectively, for constant £

Ty, Igpy = elastic influence factors for rotation caused
by horizontal load and moment, respective-
ly, for constant £5 (lyy = Ippy from the
reciprocal theorem)

F, = yield-displacemant factor = ratio of pile
displacement in elastic soil to pile displace-
ment in yielding soil, for constant £ and
Dy
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FIGURE ¢.13 Values of [,_,H'ffree-head floating pile, constant soil
modulus.

7y = yield-rotation factor = ratio of pile rotation
in elastic soil to pile rotation in yielding
soil, for constant £ and p)

py = limiting soil pressure (also termed ‘yield
pressure’ or ‘ultimate lateral pressure’ else-
where in this book)
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FIGURE £.14 Values of Ipp and Igpy—free-head floating pile, con-
stant soil riodulus.
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FIGURE 8.15 Values of [yps~-free-head floating pile, constant soil
modulus.

The elastic influence factors [y, oy (= lop), and
Igpr have been given by Poulos (19714) and are reproduced
in Figs. 8.13, 8.14, and 8.15. Because of the limited num-
ber of elements used, the solutions may be somewhat
inaccurate for piles that are very slender or very flexible,
and may lead to underestimates of deflection and rotation.
The yield factors F,, and Fy are functions primarily of the
relative eccentricity of the loac, e/L, the pile-flexibility
factor, Kg, and the applied load level, which may be
conveniently expressed dimensionlessly as H/H,, where
Hy is the ultimate lateral-load capacity of the pile if
failure occurs by failure of the soil (re., if the pile is
rigid). Values of £, and £y are shown in Figs. 8.16 and
8.17 as functions of e/L, Kr, and H/H,,, for Ljd = 50.
Both F, and F, decrease (ie.. the effect of soil yield
increases) as H/H, increases or as Kg decreases. However,
for relatively rigid piles (Kg >> 107?), the effect of soil
yield is not great at ordinary working loads. An indication
of the effect of L/d for one valuz of Kz and fore/L =0is
given in Fig. 8.18. F, decreases as L/d decreases.

The values of F, and Fp in Figs. 8.16 and 8.17 are for
¢/L > 0O—that is, moment and load acting in the same
direction. Values could also be derived for the case where

moment and load act in opposite directions—that is,
e/L <0.
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H, may be obtained from statical considerations, and
it is shown as a function of ¢/L in Fig. 7.2. It should be
emphasized that the presentation of the theoretical results
in terms of [/, does not necessarily imply that the actual
ultimate load could reach H,,, since for very flexible piles
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(i.e., small Kg values), a pile may deflect excessively or fail
by yielding of the pile before this value of H, can be
developed.

For a purely elastic soil the displacement p and the
rotation 6 at the ground line inay be expressed as follows:

H M
p = [pH <EE'> + IpM <ESL7>

H M’
6 = lpy <E——1 z\ + Ion <E_1_3>
§ 7 §4 4

(8.66)

(8.67)

where M is the applied moment at ground line. In applying
the above equations to practical problems, the value of Ej
to be used should be a secant value appropriate to the work-
ing load level. However, the expression of the results as-in
Egs. (8.64) and (8.65) enables a more rational account to
be taken of the effects of soil yielding and allows the use
of a single tangent value of Ej, irrespective of the load
level. The relationship between solutions from the above
two approaches is discussed later in this section. Appro-
priate values of £ are discussed in Section 8.5. '

For a fixed-head pile subjected to a lateral load H, the
ground-line displacement can be expressed as

/ H
p = Ir <EZ> [Fof

where

(8.68)
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FIGURE 8.21 Typical displacement profiles along pile.

displacement-influence factor for horizontal load
on fixed-head pile
Fyp = yield-rotation factor for fixed-head pile

IoF

< Values of [,r and F,r are plotted in Figs. 8.19 and 8.20.

For this case, the ultimate load, /,,, is defined as

H, = pydl (8.69)

Typical displacement profiles along a pile showing the
effects of L/d and Kg are shown in Fig. 8.21 for the case
of a purely elastic soil.

An example of the effects of pile lerigth and soil modulus
on the horizontal movement is shown in Fig. 8.22 for a
free-head concrete pile 1 fr in diameter, in a purely
efastic soil and subjected to horizontal load only. For the
soft soil, a rapid reduction in displacement occurs as pile
length increases, up to a length of about 30 ft. Further
increasing the length results in little or no reduction in
djsplacement, a result that is consistent with the concept of
effective length frequently employed in subgrade-reaction
analysis. Similar characteristics are shown by the piles in
stiffer soils, except that the relative reduction in displace-
ment with increasing pile length becomes less as £ in-
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FIGURE 8.22 Influence of pile length and soil modulus on pile dis-

placement.

creases. Figure 8.22 also gives some indication of the
possible order of error in predicted movements caused by
errors in estimating £Ej.

For relatively short and rigid free-head plates, Douglas
and Davis (1964) have presented corresponding elastic-
displacement and rotation-influence factors. These factors,
which are shown in Fig. 8.23, should be more accurate than
the corresponding values for short, rigid piles in Figures
8.13, 8.14, and 8.15, because the transverse distribution of
pressure is not assumed to be constant across the width,
as is the case with the present analysis. For L/d > 15, the
difference between the two sets of solutions is negligible.
By the reciprocal theorem, /g7 = I pr. The small discrepancy
in Fig. 8.23 results from mincr inaccuracy in the numerical
analysis. Because the pile is idealized as a thin strip, these
solutions will tend to overestimate deflections and rotations
for a pile of finite thickness. The errors involved in the
‘thin-strip’ idealization are discussed by Randolph (1977),
and are generally less than 15%.

The elastic analysis enables determination of the
relative amounts of undrained movement p; and final
movement prgr of the pile. p; is calculated by using £ =

25 ) ' ' l
M
— H / //7-
/
2.0 p— //
L v =05
- —
i

Influence coefficient, |

1.0 /
- M H
// = == 2 M Iy
/ E.dL E,d
] [
4 / | T
M _H
om Hm PEE L oM TEG T o
05
lon
0
0.1 0.2 0.5 10 2.0 5.0

d/L

FIGURE 8.23 Influence coefficients for rotation and translation of rigid plate (Douglas & Davis, 1964).
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E,, the undrained Young’s modulus of the soil, and the
influence factors for »; = 0.5 (the undrained Poisson’s ratio
of the saturated soil); pyrp is calculated by using £y =
E’, the crained modulus of the soil, and the influence factors
for v; = vy (the drained Poisson’s ratio). For an ideal
two-phase soil, £, = 3E£7/2(1 + V'), and ratios of p;/po7F are
shown in Fig. 8.24 as a function of Kg, for v; = 0. For
practica: values of L/d and Kg, p;/prF is considerably
greater *han 0.5. Furthermore, for most soils, vy is likely
to be significantly greater than zero, and thus p;/prp
may be 0.7 ot more. It can therefore be concluded that, as
with axially loaded piles, the time-dependent displacement
is not likely to be of major importance. Some confirmation
of the above conclusion is provided by the model pile
tests reported by Prakash and Saran (1967),in which a ratio
of pi/pyp of about 0.75 was obtained for a relatively stiff
piie having L/d = 32. This conclusion applies only at
relativelv-low load levels, since time-dependent movements
caused by creep may become significant at loads approach-
ing failure.

In addition to the displacement and rotation of the pile
at the ground surface, the solutions presented may be used
to calculate the displacement of a pile at a point above the
level of the ground surface. For example, for a free-head
pile subsected to load H at a distance e above the surface,
the displacement at the point of application of the load is
given by

H e ° v
o = (gr) (o ) 870
He3

He e
+ — — ! —
<ESLZ> <[0H I [6M> o SEplp

For the case of a pile projecting a distance ¢ above the
ground surface and having a fixed head, an equation may
be derived for the fixing moment M, at the pile head by
obtaining an expression for the pile-head rotation in terms
of M, and the applied lateral load H. and equating this
expression to zero. Knowing M,, the pile-head deflection
can be calculated. Further consideration is given to this
case in Section 9.3.3.

8.3.2.2 FFFECT OF PILE-SOIL SEPARATION

An example of the effects of pile-soil separation is shown
in Fig. 8.25. The ratio p./p of the displacement from a
purely elastic analysis to the displacement including separat-
ion effects is plotted against dimensionless horizontal
load H/yL’. Even at relatively low loads, p,/p is less than
one: that is, displacements are uffected by separation, this
effect being generally more pronounced for more flexible
piles. For normal working loads. the analysis indicates that
separation occurs to a depth of about 0.20 for flexible
piles and up to 0.4/ for rigid piles. Figure 8.25 indicates
that for practical purposes, the effect of separation is to

0.9 -
~ ]
i
—| Ground-line moment only
___ __ | Ground-line horizontal load only
¢ vi=10
0.8 i~ Values of L ——
d
P 100
//
A / e —y
Pre 0.7 1— P - = 25
/1 - /
~ A
/ ’zé -
=z P 2
/P
/
0.6 Y.
~ /
)
___/ /
0.5
1 1w 107t 107t 1077 07! 1 10
Kr
FIGURE 8.24 Theoretical ratio of immediate to total-final

displacemsnt.
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FIGURE 8.25 Example of effect of pile-soil separation on head
movement.
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FIGURE 8.26 Typical moment distributions.

virtually double the deflection of the pile head under
elastic conditions. This effect may also be considered as
approximately equivalent to reducing the soil modulus by
a factor of about 2.

8.3.2.3 MOMENTS IN PILE

Typical moment distributions along a pile in a purely elastic
soil are shown in Fig. 8.26. The variation with Kg and L/d
of the maximum moment in a free-head pile in an elastic
soil subjected to horizontal load is shown in Fig. 8.27. This
maximum moment typically occurs at a depth of between
0.1L and 0.4L below the surface, the larger depths occurr

ing for stiffer piles. For moment-loading only, the maxi-
mum moment always occurs at the surface and equals the
applied moment.

For a fixed-head pile, unless the pile is very flexible
(Kr <107), the maximum moment occurs at the pile head
where the restraint is provided. The variation of this
restraining moment with Kz and L/d is shown in Fig. 8.28
for the case of an elastic soil.

An example of the influence of local yield on the
moments in a pile is shown in Fig. 8.29. At failure, the
maximum value of dimensiorless moment M,/HL in this
case is about twice the elastic value (i.e., that for H/H, <
0.38). It should be noted that the elastic distribution of
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FIGURE 8.27 Maximum moment in free-head pile. -

moment is largely dependent on the pile flexibility, Kg,
whereas the distribution at failure is independent of Kg.
It therefore follows that the largest increases in moment
during Incal yielding may occur in relatively flexible piles
in which the moments under elastic conditions are small.

8.3.2.4 COMPARISONS WITH SUBGRADE-REACTION THEORY

To compare solutions from elastic theory with those from
subgrade-reaction theory, it is necessary to establish a

—0.6

Fixing moment at head of
fixed-head pile

Y/
My N Values of & " // /
/4

0% 10 107t 107 102 107 10
Kgr

FIGURE §.28 Fixing moment at head of fixed-head pile.
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0 | T
0.2 + .M
0.4 /
z /
E ’
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0.8 }— -

(b} Moment Joading oniy

FIGURE 8.29 Influence of local yield on moments in pile.

relationship between Young’s modulus, £, and the modulus
of subgrade reaction, ky. The most reasonable method
appears to be to equate the elastic and subgrade-reaction
solutions for the displacement of a stiff fixed-head pile.
Assuming v = 0.5 and using values of /,r from Fig. 8.19,
for L/d =25, ky, = 0.82 Ey/d.

Comparisons between the elastic and subgrade-reaction
solutions for displacement and rotation factors are shown
in Fig. 8.30 for L/d = 25. In all cases, the values from
subgrade-reaction theory are greater than those from elastic
theory. For L/d < 25, the difference between the two
theories is greater than that shown in Fig. 8.30. Thus,
subgrade-reaction theory tends to overestimate displace-
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FIGURE 8.30 Comparison of elastic and subgrade-reaction solutions for displacements ard rotations, constant £.

ments and rotations if k5 and £ are related as described
above. The discrepancy between the two theories will
be decreased if the relationship between kp and £ is

varied as the relative flexibility of the pile vares, as

suggested by Vesic (1961) for strip foundations.
Comparisons between elastic and subgrade-reaction so-
lutions for moments are shown in Fig. 8.31. The largest
difference again occurs for relatively flexible piles, for
which subgrade-reaction theory overestimates the moments.
However, the two solutions are in reasonable agreement for

stiffer piles and the overall agieement is better than for
displacements and rotations.

8.3.2.5 COMPARISONS WITH SOLUTIONS FROM A “SECANT
MODULUS” APPROACH

In practical predictions of lateral deflection of piles, it has
been customary practice to use the selutions obtained from
an analysis in which no scil yield is assumed to occur,
together with an appropriately-chosen secant modulus of
the soil. It is obvious that in such an approach, the secant
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FIGURE 8.32b Comparisons between solutions with soil yield and secant-elastic solutions, H/H,, = 0.6.

modulus (whether it be a modulus of subgrade reaction or
an elastic modulus) will decrease as the load on the pile

increases. It is of some interest now to examine the relation-

ship between solutions for pile behavior obtained from this
“secant clastic approach” with those obtained from the
analysis incorporating the effects of pile-soil yield, as
described above.

Comparisons are shown in Figs. 8.32a,8.326 and 8.32¢
for a typical floating pile in a uniform soil, subjected to a

lateral force H at the ground line. Solutions are expressed -

in dimensionless form, £ being the original “‘true” elastic
modulus of the soil. The secant-elastic modulus for each
load level has been obtained by fitting the elastic and yield
solution for ground-line deflection of the pile, and deter-
mining the equivalent soil modulus, as described in Section
8.5. Figure 8.32 shows that the solutions, although generally
similar, do differ significantly as the applied force approach-
es the ultimate. The main differences are that the secant-
elastic approach underestimates the ground-line rotation
and the maximum bending inoment. However, at normal
working-load levels (e.g., H/H,, = 0.4), the differences are

not great, and it would appear that the secant-elastic
approach will not be in serious error unless a significant
amount of local yield occurs along the pile.

8.3.3 Solutions for Floating Pile in Soil with Linearly
Increasing Modulus

For sands and soft normally consolidated clays solutions
for linearly increasing soil modulus with depth are required
since the assumption of one constant modulus may lead to
solutions of unacceptable inaccuracy. As previously men-
tioned the Mindlin equation can still be used when the mo-
dulus is not constant although the resulting solutions will
only’ be approximate, and will tend to over-estimate
groundline deflections and rotations somewhat (Banerjee
and Davies, 1978). In the solutions described below, the
soil modulus Ej is assumed to increase linearly with depth,
from zero at the ground surface, so that at any depth z,
the modulus is
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Es = Npz (8.71)
where

Np = rate of increase of E; with depth
Np is analogous to ny, (Eq. 8.11) in subgrade-reaction theory,

and if E; and ky are assumed to increase with depth at the
same rate, then

Np = np (8.72)
The pile-flexibility factor is now defined as
Epl
pip
= - 8.73
NN (®.73)

The soil-yield strength, py, is also assumed to vary linearly
with depth, from zero at the surface to a value of p; at
the level of the pile tip.

8.3.3.1 DISPLACEMENT AND ROTATION

The ground-line displacement, p, and rotation, 0, of a
free-head pile may be expressed as follows:

. H e )
p = NhL2 <[IpH + a . IIpAM> /Fp (8.74)
H e ’
= + .
6 L’ <fef1 7 faM> /Fe (8.75)
where
pr,I'pM = elastic-influence factors for displacement

caused by horizontal load and moment,
respectively, for linearly varying E;, and
similarly for [yg and Igpy

F,, = yield-displacement-factor = ratio of pile
displacement in elastic soil to pile displace-
ment in yielding soil, for linearly increasing
Eg and p),, and similarly for Fy.
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The elastic influence factors Iy, etc., are given in Figs.

8.33, 8.34, and 8.35. The yield factors £, and Fj are,

again, functions primarily of e/L, Ky, and H/H,,; they are
shown in Figs. 8.36 and 8.37. H,,, which in this case, may
again be obtained from statical considerations, is shown in
dimensionless form in Fig. 7.2 as a function of e/L.

For a fixed-head pile, the ground-line deflection is
given by I

H

o N/zLill‘fF / F'?F (8.76)

The elastic influence factor I,z is plotted in Fig. 8.38,
while the yield-displacement factor F,z is plotted in Fig.
8.39. In the latter figure, A, is given by 0.5p; dL.

Hlustrative Example of Construction of Load-Deflection
Curve for Single Pile

The application of the theory is illustrated in the following
example. The case considered is a free-head steel-tube pile,
40-cm O.D. and 2-cm wall thickness, situated in a medium-
dense sand. The pile is 14-m long, embedded 10 m in the
sand, and loaded at the top—-that is, at an eccentricity of
4 m above the ground surface. The sand js assumed to have
strength parameters ¢'=0 and qb’ = 340, a saturated unit
weight of 1,91 X_ 1073 lgg[gmé_, and a Young’s modulus that
varies linearly with depth. From Terzaghi’s correlation
(Table 8.5), the coefficient of subgrade reaction, ny, is
0.5 kg/cm3 and the rate of increase of Young’s modulus
with dzpth, ¥y, will be taken as equal to ny.

The relationship between applied horizontal load and

\ 1071 —

AN
AN

For 01 N

N
Values of Ky 1078
0.001 1

0 0.2 0.4 0.6 0.8 10

FIGURE 8.39 Yield-displacement factor Fj,p—fixed-head floating
pile, linearly-varying £ and Py.
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ground-line deflection will be computed. For the pile, then
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Eply = 4.78 X 10'° kg/cm? ‘ = 0.518H/F, cm (H in tonnes) 8.77)
Ky = Eply _ 478 X 10'° = 956 X 107 The ultimate load, Hy, for failure of the soil will now be
’ NyL®  0.57X 1000° computed. From Fig. 7.2,
Now,. Hy
p = 0.169
L/d = 1000/40 = 25 pydL
e/l = 4/10 = 04 In this case, Ey is the yield pressure halfway along the
' embedded part of the pile. It will be assumed, as suggested
- = 4 !
From Figs. 8.33 and 8.34, by Broms, that p, = 3pp = 3Kpay
Py = 3 X tan® (45 + 34/2) X 500 X (1.91 - 1.00}
oy = 101 i ( 2) ( |
X 10
Toy = 395
= 4.83 kgjcm?
Ground-line deflection from Eq. (8.74) is H, = 0.169 X 4.83 X 40 X 1000
pr = 32,600 kg

€ !
o= Try v er ] F
NpL? [ oH T M / g = 32.6 tonnes
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FIGURE 8.40 Maximum moment in free-head pile-linearly-varying soil modulus.
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The subsequent calculations for the load-deflection curve are
tabulated in Table 8.7.

TABLE 8.7

H H Fp p (cm)

(tonnes) Hy (Fig. 8.36) (Eq. 8.77)
S 0.152 0.76 34

10 0.304 0.44 11.8

15 0.456 0.305 25.5

20 0.608 0.23 45.0

25 0.760 0.18 72.0

30 0.912 0.155 100.3

5.3.3.2 MOMENTS IN PILE

For f{ree-head piles, the maximum moment caused by
horizon:al load only is shown in Fig. 8.40 as a function of

L/d and of the pile flexibility factor, K. These moments
are greater than for a uniform E; with depth (Fig. 8.27),
and occur typically at depths ¢f 0.11 to 0.45L below the
surface, the larger depths being for stiff piles.

The fixing moment at the head of a fixed-head pile is
plotted as a function of Ky in Fig. 8.41. Comparison with
Fig. 8.28 shows that larger moments are again developed
for a linearly-increasing soil modulus.

8.3.3.3 COMPARISONS WITH SUBGRADE-REACTION THEORY

In relating elastic and subgrade-reaction theories, Ny and
np have been equated. For the displacement factors /.y,
comparisons shown in Fig. 8.42 reveal somewhat closer
agreement than with the case of constant modulus.
Similar comparisons are found for the other influence
factors. The subgrade-reaction solution does not directly
take account of the effect of L/d, but in fact corresponds
relatively closely to the elastic solutions for L/d = 25.

M, /HL

102 107 1 10

Eplp
NhL>

FIGURE 8.41 Fixing moment in fixed-head pile—linearly-varying soil modulus.
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Elastic solution

~ «— — Subgrade-reaction
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Ky = —2e.
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FIGURE 8.42 Comparison between elastic and subgrade-reaction
solutions -free-head pile.
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8.3.4 Solutions for Socketed Piles

8.3.4.1 DISPLACEMENTS AND ROTATIONS

For a socketed pile in a uniform soil, subjected to a hori-
zontal force H at an eccentricity e above the surface, the
displacement and rotation at the ground line may be
calculated from the same expressions as for a floating pile
(Eqgs. 8.64 and 8.65, or Eqs. 8.66 and 8.67); but now,
different elastic-influence factors, lpp, I,p, fop, and
Igpr, are used. These factors are plotted in Figs. 8.43,
8.44, and 8.45 for both a pirned tip and a fixed tip. The
tip boundary condition has virtually no effect on these
factors unless the pile is relatively stiff (Kg > 107).
For smaller, values of Kg, the displacement- and rotation-
influence factors are almost identical with those for a
floating pile. Similarly, for a given load H, the yield
factors F, and Fy for a floating pile may be applied to a
socketed pile if Kg is less than 107. For larger values of
Kpg, the effects of local yield at normal working loads are
very small, and F,, and Fp may be taken as unity.

100 — -
- Values of c% _
Q\\I‘IOO
-——\\ 50

25
10 \-&
= R
o N
B 5 \\\. -
\ T
S\ -
N
| N\
oH N\
= AN ]
- W —]
[ N _]
A
=~ Pinned tip \
1
0.1 | == = = Fixed tip; =
0.01;
107° 1078 107° 1073 1072 107! 1 10
E,l
Kg =~
E,L

FIGURE 843 Influence factors Iy for free-head socketed piles in uniform soil.
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FIGURE 8.48 Values of I)p and Iy —free-head socketed piles, linearly varying E.

For a fixed-head socketed pile, the groundline displace-
ment is given by Eq. (8.68), and the elastic influence
factor /,f is plotted in Fig. 8.46.

For the case of piles in a soil with a linearly increasing
modulus with depth, the displacement and rotation is
given by Egs. (8.74), (8.75), and (8.76), as for floating
piles. The elastic-influence factors (I'pp, etc.) are plotted in
Figs. 8.47 to 8.50. As with the case of a soil with uniform
modulus, the yield factors F), Fy, and Fyp for floating
piles may be applied to socketed piles at the same load A,
provided that the flexibility factor Kp is less than about
1072,

An example of the effect of pile length, end conditions,
and soil modulus on pile-head movement is shown in Fig.
8.51 for a 1-ft-diameter concrete pile. The soil is elastic and
has a uniform modulus £y with depth. As the soil modulus
decreases, the pile movement increases until the limiting
displacement for an unsupported pile is reached; this
limiting value is finite for all cases except the free-head,
pinned-tip case. For the pile considered, the tip boundary
condition only affects movement if the soil has a modulus
less than about 40 1b/in.? —that is, an extremely soft soil.
The increase in the effective length of the pile with decreas-
ing modulus is shown in Fig. 8.515.
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FIGURE 8.50 Values of I',r—fixed-head socketed pile, linearly varying £y.
83.4.2 MOMENTS IN PILE 8343 HORIZONTAL FORCE AT PILE TIP
A summary of the moments developed in a socketed pile For L/d = 10 and L/d = 100, and an elastic soil having
in a uniform elastic soil is given in Figs. 8.52, 8.53, and uniform Ey with depth, the horizontal force developed at

8.54 for L/d = 10 and L/d = 100. These figures show, asa the pile tip is shown in Fig. 8.55 for free-head piles and in
function of Kg, the moment at the head of a fixed-head Fig. 8.56 for fixed-head piles. This force is generally very

pile, at the tip of a fixed-tip pile, and the maximum moment small for Kg < 107, but increases rapidly in the range
in a free-head pile subjected to horizontal load only. As Kg =107 to 107, and generally is a maximum value for a
with displacements, the tip boundary condition only stiff pile (Kg = 1)~the exception is moment-loading on

influences the moment if K is greater than about 107, free-head, fixed-tip piles.
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8.3.4.{ TIP ROTATION OF PINNED TIP PILES HTZ II !
. . . . . . . 0.2 41
It is of interest to consider the tip rotation of pinned-tip ,’/
piles, especially in relation to assessing the effectiveness of 0 p— =<3 —7}‘
nominally fixed-tip piles. For a uniform elastic soil, 02 SNy LA
influence factors Ty, Tyar, and Ty for the tip rotation, )
0;, are given in Figs. 8.57, 8.58, and 8.59, where 8; for —04l— - - - :
free-head piles is given,as w10 10 10 10 ! 10
KR‘
H (b) Resulting from moment
6; = cTog + &3 * Tom (8.78) FIGURE 8.53 Fixing moment at pile tip—socketed pile in uniform

Egl? El Soil.
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FIGURE 8.54 Maximum moment in free-head socketed piles (hori-
zontal load only)—uniform soil.

or for fixed-head piles,

H
EsL?

8 = - Tor (8.79)

For the free-head piles, the rapid changes in tip-
rotation factor with increasing Kz reflect the change in
deflected shape of the lower portion of the pile. For
relatively stiff piles, the tip-rotation factors are identical
with the corresponding values for head rotation. For
fixed-head piles, the maximum value of Tgr occurs for
Kgr =0.02; Tgr tends to zero for a stiff pile.

83.4.5 EFFECTIVENESS OF A “FIXED-TIP” PILE

Because the bearing stratum has a finite modulus, some
rotation of a nominally fixed-tip pile will inevitably occur.

1.0 T T I
—— Free-head, pinned-tip {
— =" Free-head, fixed-tip Lo
| = =100
0.5 | J
-
-
1‘ j/lo
H, Z TN
i X
| 3
A\
! \\
10
-05 } N\
i N
1 100\ \
~
W o
105 w* 1 w? g 1 10
Kg
(a) Horizonzal Load Only
15 T ;
Ei =100
| s 0
10— ,_4‘,“*‘;*[’._ _\\_4,, _L ]
| / { !
L / |
H, !
W 05— *‘/6/
L/
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o o~ A/
2
o I I
0® 1% 1w 1w’

FIGURE 8.55 Tip force—free-head socketed piles in uniform soil.
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FIGURE 8.56 Tip force—fixed-head socketed piles in uniform soil.
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FIGURE 8.57 Influence factor Tgpy for tip rotation of free-head,
pinned-tip socketed pile in uniform soil.
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FIGURE 8.58 Influence factor Tgpy for tip rotation of free-head,
pinned-tip socketed pile in uniform soil.
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FIGURE 8.59 Influence factor 7gg for laterally-loaded fixed-head,
pinned-tip socketed pile in uniform soil.

For a given depth of embedment, L., of the tip in the
bearing stratum, this rotatiori may be estimated by assum-
ing the tip to be a floating pile of length L, and diameter 4,
situated in a uniform semi-infinite elastic mass of the
bearing-stratum material having moduli £p and vy. The tip
is acted upon by a horizontal force Hy and a moment My,
which may be determined from Figs. 8.52 to 8.56. From
Eg. (8.67), for a uniform elastic soil, the actual tip rotation,
ﬁf, is

_ A
EbLe2

My
Toy +Bﬂl-e—3 *Teym (880)

Or
where
Top, Iopr are obtained from Figs. 8.14 and 8.15

for

Eplp
EbLe4

Kg =

Alternatively, the solutions of Douglas and Davis (1964)
may be used (Fig. 8.23) if Kg of the tip is greater than
about 0.5. This procedure will tend to be conservative,
overestimating the tip rotation, as no account is taken of
the resistance of the pile base to rotation. A further approxi-
mation is involved in the above procedure, since any
rotation of the tip will influence the load and moment
there. While an iterative procedure could be devised to take
this into account, this appears unnecessary, as only the order
of the tip rotation is required.
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‘A reasonable criterion for judging whether or not the tip
rotation 0y is satisfactorily small, is to compare it with the
tip rotation 8; of the corresponding pinned-tip pile
(Eq. 8.78 or Eq. 8.79). For satisfactory performance as a
fixed tip, 0 should be only a small fraction of 0, (e.g.,
5%, although this figure will generally depend on engineer-
ing judgement in relation to the case being examined). If
B¢ is found to be unacceptably large, the embedment depth,
Le, should be increased until 8y is acceptably small.

As mentioned previously, the above procedure will only
be necessary for stiff piles (Kg = 107?) since only then
does socketing the tip influence pile behavior. An example
illustrating the above procedure is described below.

Nlustrative Example

The case considered is that of a 20-ft-long free-head con-
crete pier, 3 ft in diameter, loaded by a horizontal force
of 50 kips applied at an eccentricity of 2 ft above the soil
surface. The pier is situated-in a 20-ft layer of soft alluvial
silt, having an average ¢, of 2.5 1b/in.?, undrained Young’s
moduus, £y, of 100 Ib/in.2 (14.4 kip/ft?), and underlain
by sandstone. The average properties of the sandstone near
the rock surface are £p = 1.5 X 10° 1b/in.%, ¢p = 5000
ibjin.?

In this example, an examination will be made of the
relative merits of having a pinned tip to the pier and of
having a fixed tip, socketed into the underlying sandstone.

Considering the pile-flexibility factor, Kg, it is found
that J,, = 82,700 in.?, and assuming Ep=3X 10° 1v/in 2,

X 10° X 82,70
Kg = 10 i : O - 0747
100 X (240)

Also,
Lid = 20/3 = 6.67

. The case of a pinned tip and a fixed tip will be consider-
ed in furn.

a) Pirnned-Tip Pile

From Figs. 8.43 and 8.44, the displacement-influence
factors may be determined. For the relevant values of
Ljd and Kp,

2.4

IpH
oy = 2.4
Because the value of K g is so high, the yield factor, F,, may

be taken as unity. Therefore, under the working load
(from Eq. 8.64),

/ 50 2
p = l\14.4 v 20) (2.4 + % X 2.4)/1.0

= 046 ft = 5.5in.

From Fig. 8.55, the horizontal force, Hy, developed
at the pile tip may be determined.

From Fig. 8.55a: Hf/H = 0.50
From Fig. 8.55b: HeL/M = 146
i 100
= 0. + 14 -
Hp = 0.50 X 50 + 146 X =3
= 32.3 kips
(Mf = 0)

Now, assuming that this force has to be resisted by
embedment of the pile into the rock (i.e., neglecting
adhesion between the pile base and the rock), it is found
that for a factor of safety of 3 and assuming the ultimate
pressure of the rock near the surface to be 2¢p, the required
embeddment depth is only 0.5 in. .

Finally, considering the tip rotation of the pinned-
tip pile (from Figs. 8.57 and 8.58),

Tog = 2.4
TBM =24

Therefore, from Eq. (8.78),

50 X 2.4 L 24 X 100
14.4 X 20° 144 X 20°

I

Tip rotation, 6,

il

0.0229 radians

b) Fixed-Tip Pile
From Figs. 8.43 and 8.44, the displacement-influence
factors are

Ly = 044
Iy = 068
50 2
= A + =
P = a0 (044t 55 X 068)/10

1

= 0.088 ft. = 1.05in. .

This is considerably less than the 5.5 in. for the pinned-tip
case.

Considering now the horizontal force and the moment
developed at the pile tip, from Fig. 8.55,

Hf/H = -0.75
HiL/M = 080

From Figs. 8.532 and 8.530,

Mf/HL = 0.80
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Mg/M = 0.5

bt 100

Hf = -0.75 X 50 + 0.30 X e -36.0 kips

My =080 X 50 X 20 + 0.75 X 100 = 875 kip ft.

Assuming again a factor of safety of 2 applied to the
load and moment and an ultimate rock pressure of 2¢, it is
found by statical considerations that the required embedded
depth of the pile into the sandstone is 1.25 ft = 15 in.

An estimate must now be made for the actual rotation
of this *“fixed” tip to determine whether it is sufficiently
small for the tip to be effectively fixed. For the embedded
portion of the tip,

Lo/d

1.25/3 = 042

3 X 10% X 82700
Kg = 0 8 = 328

1.5 X 10® X 15°

For this value of Kp, the tip is rigid, and herice use may be
made of the solutions of Douglas and Davis (1964) for the
rotation of rigid plates. Using these solutions, it is found
that

0.92

Loy
0.53

Topr
~-(36.0 X 0.92)

. f “fixed” ti = 3
rotation of “fixed” tip 216,000 X 1.257

875 X 1.53
216,000 X 1.25°

It

3.08 X 107 radians

This is about 14% of the tip rotation of the pinned-tip
pile, so that the embedment of the tip 15 in. into the sand-
stone is unlikely to be sufficient for the fixed-tip condition
to be achieved. Increasing the embedment depth to 24 in.
reduces the rotation to 7.5 X 10™ radians, or about 3.3%
of the rotation of the pinned-tip pile, which should be
satisfactory.

The above example indicates the advantage that may be
gained by socketing the tip to obtain fixed-tip conditions,
if the pile is relatively stiff. In socketing the pile 24 in.
into rock rather than 0.5 in., a reduction in displacement
at the ground line from 5.5 in. to 1.0S in. is obtained.
However, it must be emphasized again that-for piles that

are more flexible and have a value of K of less than about
" 107, no benefit is achieved at working loads by attempting
to “fix”.the pile tip.

8.4 ANALYSIS OF PILE GROUPS

8.4.1 Introduction

Many published methods of analyzing the behavior of pile
groups subjected to horizontal load and moment make use
of the theory of subgrade reaction, and have the advantage
that groups containing battered piles and subjected to
various types of loading can be readily considered. How-
ever, because the subgrade-reaction model is not con-
tinuous, the effects of interaction between piles cannot
properly be considered. The consideration of the soil as an
elastic material provides a convenient means of examining
group effects for laterally loaded piles.

The following analysis has been described by Poulos
(1971b). It parallels the analysis of axially-loaded piles,
in that interaction between two identical piles is examined
first, and the analysis is then extended to general pile
groups. A simple approach is subsequently described for
utilizing the solutions for single piles to obtain approxi-
mate load-deflection curves to failure for pile groups.

8.4.2 Elastic Analysis of Interaction between Two Piles

Two identical, equally-loaded piles are considered, each
pile being divided into a number of elements, as for the
single pile. The center-to-center pile-spacing is s, and the
angle between the line joining the pile centers and the
direction of loading is §, termed the departure angle (see
Fig. 8.60). While elastic conditions prevail within the soil,

- the horizontal displacements of the soil and pile at each

element may be equated, and together with the relevant
equilibdum equations, solved for the unknown pressures.
In the analysis that follows, the only interaction effect that
is considered is the horizontal movement of one pile that
results from loading on another pile, the loading and
movement being in the same lorizontal direction. A more
general analysis along the lines of the present analysis would
be possible but would not be of frequent practical import-
ance,

The soil deflections along pile 1 may be expressed as

Lo} = -Ei LI+ 20 {p}

(8.81)

where

[ + 21} = the (n+1) by (n+1) matrix of influence
factors I, where /j and l; are the
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FIGURE 8.60 Two laterally loaded piles.

influence factors for horizontal displace-
ment at i caused by stress on element j
of pile 1 and pile 2, respectively

The influence factors 1Jjj are obtained as for the single
pile (Section 8.3.1). Values of ,/; are most conveniently

obtained by assuming the uniform pressures on each element
of pile 2 to be replaced by an equivalént point-load acting
at the center of the element. This procedure is justified in
view of the resulting simplification in evaluation of I and
is unlikely to be seriously inaccurate except for extremely
close spacings.
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FIGURE 8.61 Typical variation of interaction factor with depas-
ture angle.

The displacements of the pile may be expressed in an
identical manner to that for a single pile. For the free-head
case, Eq. (8.56) is relevant, while for the fixed-head case,
the relevant equation is (8.60).

Equating soil displacements from Eq. (8.81) and pile
displacements from Eq. (8.56) or Eq. (8.60), solutions may
be obtained for the influence of the second pile on the

displacements and rotations of the first pile, for various

spacings and values of the departure angle f.
It is convenient to express the additional displacement

and rotation at the pile head in terms of interaction factors

a, and oy, where

&
_into 21 elements, and purely elastic conditions are assum-~

Additional displacement caused by adjacent pile
P Displacement of pile caused by its own loading

(8.82)

w = Additional rotation caused by adjacent pile
% ~ Rotation of pile due caused by own loading

(8.83)

The values of &, and g for various conditions of loading
and head fixity are denoted as follows:

QpH, Qg va'ues of dp and ag for a free-head pile sub-
jected to horizental load only. f -

Qpp, @gp: vaiues of a, and oy for a free-head pile sub-
jected to moment only (from the reciprocal
theorem, appyr = Qo).

agr: value of a, for fixed-head pile.

In the solutions described, the piles have bi@n,ﬁﬂdjd
ed to exist within the soil.
8.4.3 Solutions for Two-Pile Interaction
An example of the variation of the inter.action factors with
departure angle 8 is shown in Fig. 8.61, where a,f is

plotted against 8 for two particular spacings for both a stiff
pile (Kg = 10) and a flexible pile (Kg = 107). It will be
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seen that the variation of a,p with §is sufficiently close to
linear to be considered as such for practical problems, (a
more accurate assumption is that a,p varies linearly with
sin? f; however, this refinement is probably unwarranted
for practical problems). The variation of other interaction
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factors is similarly close to lincar. For convenience, a linear
variation of all values of a with f will be subsequently
assumed, so that only values of a for § = 0° and 90° then
need be computed.

Interaction factors for displacement and rotation of
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the pile at the ground surface are shown in Figs. 8.62 to The following characteristics of behavior may be seen:
8.77, for values of L/d of 10, 25, and 100. Four values of
KR ranging between 107 and 10 are considered. In all
cases, vy = 0.5, but since v has relatively little influence on 1. All a values decrease with increasing spacing and are
the interaction factors, the values for v; = 0.5 can be used greater for = 0° than for §=90°.
with little error for all values of v;. 2. All a values increase with increasing L/d.
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3. All o values generally increase with increasing pile-
stiffness factor Kg.

4. For a free-head pile, the interaction factors for moment
are less than those for horizontal loading.
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5. For a free-head pile, the deflection-interaction factors
are greater than the corresponding rotation factors.

6. For horizontal loading only, values of o, g are greater
than the corresponding values for a free-head pile, .
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The influence of a linearly increasing modulus with constant modulus, although the effect is small for §=90°.
depth on the interaction between two piles in a typical For practical problems, the values of « for constant modulus
case is shown in Fig. 8.78. The interaction factor tends to in Figs. 8.62 to 8.77 may thus be used, assuming that K =
be less for the linearly increasing modulus than for the Ky ; their use will generally overestimate interaction and

will thus be conservative.
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8.4.4 Elastic Analysis of General Pile Groups

An extension of the analysis for two piles to the case of a
four-pile group has revealed that the principle of super-
position, as described in Section 6.2.3 for axially-loaded
groups, also applies to the laterally-loaded group. It
therefore appears reasonable to extend the use of the super-
position principle to the analysis of the displacement and
rotation of any general pile group subjected to lateral load
and moment.

Consideration may then be given to the calculation of
lateral displacements and rotations at the ground surface
for the following types of groups:

1. A free-head group in which each pile displaces equally.
2. A free-head group in which an equal (or known) hori-
zontal load and/or moment acts on each pile of the group.
3. A fixed-head group in which each pile displaces equally.

For example, for a group of  free-head piles subjected
to horizontal load only, the displacement of a pile k in the
group is, by superposition,

n
Pk = PH [2 <”/ ' %Hk/> + Hk]

J=1
J*k

(8.84)

where
py = the unit reference displacement, that is, the
displacement of a single free-head pile under
unit horizontal load
H; = the load on pile j
aphkj = the value of o, for two piles, corresponding
to the spacing between piles k and j and the
angle § between the direction of loading and
the line joining the centers of piles k and ;.

If the total load on the group is H¢, then

n_
Hg = D H; - (8.85)
1

In the case of equal displacements, the n equations for
pile displacements from Eq. (8.84) and the equilibrium
equation (8.85) may be solved for the unknown loads and
the group displacement.

In the case of equal loads in all piles, H; = Hg/n, and
the displacement of each pile may therefore be calculated
directly from Eq. (8.84). "

The analysis described above applies to cases involving
horizontal loadings on a group of piles having their heads

pinned to the pile cap. It may also be applied to fixed-
head piles by using the appropriate unit-reference displace-
ment and interaction factors. Where moment loading is
applied to the group, axial forces will be developed in the
piles and thus consideration of both axial and lateral
interaction is necessary. This more general analysis is dis-
cussed in Chapter 9.

While direct consideration is given only to calculating
the displacements at the ground surface, the movement at
the top of a group loaded above the ground surface may
readily be evaluated. To the calculated surface displacement
is added the additional displacement caused by the rotation
6 at the ground surface and the elastic deflection of the
pile at the point of load application.

The group displacement ray be conveniently expressed
in terms of a displacement ratio R, which is the ratio of
the group displacement to the displacement of a single
pile carrying the same average load or moment as a pile
in the group, and is analogous to the settlement ratio R;
for axially loaded groups. Alternatively, the displacement
may be expressed as a group reduction factor R, defined
as the ratio of the group displacement to the displacement
of a single pile carrying the same total load or moment as
the group, and is analogous to the group reduction factor
R for axially loaded groups.

Rpg is calculated as follows:

PG
Hgp

RR (8.86)

where p is the appropriate unit-reference displacement and
p¢ is the group displacement. While elastic conditions pre-
vail in the soil, Rg and R, are related simply as follows:

R, = Rgn (8.87)
where 7 is the number of pilesin the group.

In practical problems, R, is the more useful quantity;
but in examining the behavior of various groups theoreti-
cally, the use of Rg has some advantage, since as with
R¢, Rg always lies within the range 1 to 1/n.

Various values of Rg may be determined, depending
on the type of loading, pilehead condition, and whether
deflection or rotation is considered. These values will be
denoted as follows:

RpRpH = group-reduction factor for deflection caused
by horizontal load.

RRpm = group-reduction factor for deflection caused
by applied moment.

RRrem = group-reduction factor for rotation caused by
horizontal load (= Rgas)
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Rpgrgsm = group-reduction factor for rotation caused
by applied moment.
RRpr = group-reduction factor for fixed-head pile.

8.4.5 Elastic Solutions for Square Groups

For 22, 3%, 4%, and 5% groups in a uniform soil, the variat-
ion of the group-reduction factor Rp,p with pile spacing
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is shown in Fig. 8.79 for twc -alues of K and for a fixed-
head group. At any spacing, . is considerably greater
for the stiffer piles. For a group of free-head piles, Rg o is
found to be smaller than Rp,r for fixed-head piles (Fig.
8.80). Also, R F increases as L/d increases (Fig. 8.81).

For a given total load, the displacement of a group
decreases as the number of piles in the group increases. If,
however, the displacement of the groups is plotted against
the total group breadth, it is found that the value of the
group reduction factor Rp,r is almost independent of the
number of piles in the group. Typical plots of Rp ,f versus
group breadth are shown in Figs. 8.82 and 8.83. With the
exception of the four-pile ard nine-pile groups, for which
RRpr tends to limiting values of 0.25 and 0.11, respective-
ly, at relatively small breadths, the points lie closely on a
single curve. Only for large breadths do the points for indi-
vidual groups tend to diverge from the common curve, as
RpoF tends to the limiting value of 1/n, where n is the
number of piles in the group. The dependence of Rg . on
breadth rather than number of piles in the group parallels
the similar dependence on breadth-only of axially-loaded
groups.

Figure 8.84 shows the ratio p;/pyr of immediate to
total-final movement for piles with L/d = 25 in an ideal
elastic two-phase soil. This ratio depends primarily on the
drained Poisson’s ratio, vy and is almost independent of
factors such as the number of piles in the group, Kg, and
the pile spacing. Even for the extreme case of v’y = 0,
pilprr = 0.72, and, for more practical values of v'y, is of
the order of 0.8 to 0.9: in other words, the major part of
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4. The nonuniformity of load distribution generally be-

The problem shown in Fig. §.89 involves the calculation
of the distribution of horizontal load and the horizontal
displacement at the ground line of a six-pile group of 1-ft-
diameter concrete piles situated in a uniform medium
clay. It is assumed that the top of each pile is rigidly
attached to a massive pile cap, so that the top of each pile
is fixed and cach displaces equally. The value of kg
shown in Fig. 8.90 is .thie value (assumed constant with
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FIGURE 8.82 Rz ,f vs. group breadth - Kp =107
the movement (excluding creep) of a laterally-loaded pile :
group cccurs immediately on loading. comes more pronounced as Kg and L/d increase.
For groups situated in a uniform soil and in which all
piles d:sptace equally, typical distributions of lorizontal )
load within 32 and 4? groups are shown in Figs. 8.85 to fllustrative Example
8.88. These figures show that:
1. The outer piles carry the greatest load and the center
piles the Jeast.
2. The load distribution becomes more uniform as spacing
increases.
3. The relative maximum load in the group increases as.
the number of piles in the group increases.
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depth) for the soil skeleton, so that the displacement calculat-
ed will be the total final displacement. The soil will be
assumed to remain elastic.

Because of symmetry, there are only two unknown
horizontal loads in the group. The load in piles |, 3, 4, and
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FIGURE 8.85 Typical‘ horizontal load distributions in fixed-head
pile group.
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FIGURE 8.86 Typical horizontal load distributions in fixed-head
pile group.

6 is H,, and that in piles 2 and 5 is H,. For piles 1, 3, 4,
and 6, the displacement at the ground line is given by

pr = [Hi(1 + app13 + Gpp1a + %pp16)

+ Hy (app12 + apF15)ER
where

ayp13 = interaction factor for deflection at pile |
caused by load on pile 3, and similarly for
other « values.
OF = displacement of a single fixed-head pile under
unit load

A similar-expression may be written for the displacement
p, at piles 2 and 5.

For the condition of equal displacement of all piles,
p1 = pq = p. Also, from equilibrium,

Hg = 4H, + 2H,

where H( is the total applied load.
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FIGURE. 8.87 Typical horizontal load distributions in fixed-head
pile group.

Thus, three equations are obtained for the unknowns H,
H,, and p.
From the given data,

Kr = =74 X 10

From Fig. 8.19, the unit displacement pg for a single pile
may be calculated. For L/d =25 and Kg = 7.4 X 107,

Lp = 4.7
Hence,
- 47 e
= 2314 X 107 in/k
PF = 300 X 0.500 in./kip

It is sufficiently accurate to use the interaction factors
for Kp = 107 and the relevant interaction factors,
tabulated in Table 8.8, are obtained for the appropriate
values of § and s/d and for L/d = 25, from Fig. 8.75.

Substituting the appropriate interaction factors for the
displacement of piles 1, 3, 4, and 6,

p = [H, (I + 036 + 035 + 0.28) + H,(0.50
+ 0.38)] X 314 X 107

that is,
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FIGURE 8.88 Typical horizontal load distributions in fixed-head
pile group.

10%p = 62.5H, + 27.6 H,.
Similarly, for piles 2 and 5, it may be shown that

10%p = 55.2H, + 42.4H,

TABLE 8.8

Pile Influence on Pile 1 Liifiuence on Pile 2

No (Also Piles 3, 4, and 6) (Also Pile 5)

@ S/d . aa QpHi S/d 60 CpH2j
1 — — - 3 0 0.50
2 3 0 0.50 - - -

3 6 0 0.36 3 0 0.50
4 3 90 0.35 4.24 45 0.38
5 4.24 45 0.38 3 S0 0.35
6 6.71 20.3 0.28 4,24 45 0.38
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The equilibrium equation is
4H, + 2H, = 100

Solution of the above equations gives

H, = 20.1 kips
Hy, = 9.8Kips
p = 1.53in.
- 1 1 1 T
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-
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FIGURE 8.90a Method of backfiguring modulus from load test.
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Under the average pile load of 16.67 kips, a single pile
would deflect 16.67 X 31.4 X 102 = 0.52 in. Thus, the
group-displacement ratio R, = 1.53/0.52 = 2.94. The
group-reduction factor RRpp = R, /6 = 0.49.

8.4.6 Approximate Prediction of Load-Deflection Curve
for a Group

In developing a simple practical procedure for load-deflect-
ion prediction of pile groups, the following assumptions are
made:

1. The group reduction factors Rg remain constant for
all loads up to the failure, although they are calculated from
elastic theory.

2. The reduction in ultimate lateral-load capacity of the
piles resulting from group effects is calculated by applying
a lateral efficiency factor, n;, to the ultimate lateral load
capacity, H,,, of a single pile, and n; applies equally to all
piles in the group, so that the reduced ultimate lateral-load
capacity, Hy,,, of each pile is

Hy = npHy (8.88)

3. All piles in the group deflect equally, so that the load-
deflection curve for the group is obtained by computing
the curve for a single pile having an ultimate load H,,,, and
then multiplying the ordinates of this curve by the number
of piles in the group.

With these assumptions the following expression may
be derived for the ground-line deflection, pg . of a free-
head pile group in a soil with constant E:
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Hg e
e = L—E;(RRpHIpH + Z—RRpM[pﬁ{)/Fp (8.89)

where

Hg = total load on group
Rg,p = group-reduction factor for deflection caused
by horizontal load
Rppp = group-reduction factor for deflection caused

by moment
F, = yield-displacement factor for a single pile, for
Moo HG  being given by Eq. (8.88
Ho = ity Tur being given by q. (8.88).
Lo fopr = single-pile elastic-influence factors (see Eq.
8.64).

Similar expressions may be derived for the rotation and
deflection of a pile with varying £ and for fixed-head piles.

If the deflection of the group at the point of load
application, p¢,, is required, the additional deflection
caused by rotation is added to the ground-line deflection.
Neglecting the deflection of the piles caused by bending of
the freestanding portion, pg, is given by

Hg
PG = T35 L2RRotilotr + eLRRoplIom)IF,  (8.90)

+ (eLRpottorr + *Rpomlom)/ o)
where

Rropm = group-reduction factor for rotation caused by
moment,
ot Igps = single-pile elastic influence factors
and the symbols are as defined for Eq. (8.89).

A similar expression is obtained for soil with linearly
varying £, and in Eq. (8.90), £ is replaced by NyL; I,q,
Iopr, and Igpy are replaced by I’y g7, [ppr, and I'gpp; and F
Fy are replaced by F',, Fg.

The use of Eq. (8.89) or Eq. (8.90) eribles the overall
load-deflection behavior of the group to bz calculated, and
an example illustrating the application of this method is
given below.

Focht and Koch (1973) developed a similar type of
apprcach to the calculation of load-deflection behavior of
groups, by combining a nonlinear subgrade-reaction analysis
for a single pile with the elastic analysis for pile interaction.
This approach also enables nonlinear load-deflection relat-
ionships to be obtained and has been applied to the pre-
diction of deflections of offshore pile groups.

Mlustrative Example

The problem considered willi be one of the model tests
reported by Oteo (1972), which is discussed in Section 8.6.
Aluminium piles 8 mm in diameter with an embedded
length of 220 mm were tested, with an eccentricity of
loading of 55 mm above the ground surface. The group
considered was a nine-pile square group with a center-to-
center spacing of four diameters, in sand having an initial
density of 1.80 t/m>. The deflection of the group at the -
point of load application will be.calculated for various
loads.

From a single-pile test, the value of Ny was found to be
4.0 kg/em® (39.23 MN/m?), and hence the dimensionless
pile-flexibility factor, Ky = Eplp/NpL®, is found to be

6.8 X 107

The deflection of the group at the point of load
application is given by Eq. (8.90), modified for linearly
varying E:

Hg
PGa = N [(LZRRpHIIpH + "LRRpMIJpM)/F'p
h

+ (eLRpoploy + ¢’ Rromlom)/Fg)

Values of the interaction factors gy, and so on, for
a soil with constant modulus are now used to calculate
RRoH, and so on (see Section 8.4.3). Assuming Kg equal
to Ky, the following values are obtained:

RRon = 0.322
Rrom = Rgrey = 0.203
Rproym = 0.149

For Ky =6.83 X 107, Iy =49, Ippr = Tgg = 128, Ipp=570.

Sukbstitution of the above values into the above equation

gives
w [G2) + (7))

where pG, is in mm and H is in kgf.

From the single-pile test, the ultimate lateral load is
2.7 kef (at a deflection of 0.5 pile-diameters). Referring to
Fig. 7.22, the group lateral-efficiency factor 7mg, is 0.60.
The estimated reduced ultimate lateral-load of a pile in
the group H,, is therefore 0.60 X 2.7 = 1.62 kgf, and the
group ultimate lateral-load capacity is 9 X 1.62 = 14.58 kgf.
Values of F'p and F'e may now be determined from Figs.
8.36 and 8.37 for ¢/L = 55/220 = 0.25 2ud Ky = 6.8 X
107, The calculations are tabulated in Table 8.9, and the

PGa =

" load-deflection curve thus derived is plotted in Fig. 8.100,

together with the measured curve.
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TABLE 8.9 CALCULATION OF LOAD-DEFLECTION CURVE
FOR GROUP

Hg Hg PGa
(kgf) nHy Fy Fg (mm)
1.46 0.1 1.0 1.0 n.26
2.92 0.2 0.90 1.0 0.55
5.84 0.4 0.68 0.88 1.39
8.76 0.6 0.55 0.72 2.57
11.66 0.8 0.40 0.56 4.63
13.14 0.9 0.36 0.52 5.74

8.5 DETERMINATION OF SOIL MODULUS

A number of methods may be employed to estimate the
Young’s modulus of the soil for use in the theoretical
solutions given in the preceding sections. Among these are:

1. Laboratory tests in which the stress path of typical
elements of soil along the pile are simulated.

2. Plate-bearing tests, preferably on vertical plates, at
various depths.

3. Pressuremeter tests.

4, The use of full-scale loading tests to backfigure the
modulus.

5. Empirical correlations with other properties.

Little evidence is available at present to indicate whether
the first approach yields satisfactory values of modulus,
although the simulation of the correct stress path caused
by loading of the pile is easier in this case than for an
axially-loaded pile. Nevertheless, the problems associated
with the simulation of the effects of installation of the pile
remain. ‘

Siniilarly, little information is available on whether the
use of values of modulus determined from plate-loading
tests at various depths gives satisfactory load-deflection
predictions for piles, although the use of such data gave
reasonable predictions in one series of full-scale tests, as
described in Section 8.6.

The use of pressuremeter tests by Frydman et al. (1975)
and Baguelin et al (1978) has already been mentioned in
Section 8.2.4, in relation to the determination of p-p
curves, and such tests can also be interpreted, in terms of
elastic theory, to give values of Young’s modulus at various
depths. The pile-soil yield pressure, Py, may also be esti-
mated from the limit pressure measured by the pressure-
meter. This procedure has been applied to the pile test
reported by Frydman et al. and has produced very pro-
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mising agreement between the calculated and measnred
behavior.

Full-scale loading ‘tests are probably the most saiis-
factory means of determining the soil modulus, since such
-factors as the effects of installation and pile-soil separation
are taken into account automatically and reflected in the
backfigured moduli. There appears to be two possible
means of interpreting pile-load results:

1. To use the ground-line deflection at the working load
to backfigure a secant value of soil modulus, which may be
used with elastic theory to predict deflections at the
working load (ignoring the effects of local yield and soil-
pile separation).

2. To use the linear portion of the load-deflection curve to
backfigure a rangent value of soil modulus, which may then
be used with the theory (including the effects of local
yield) to predict the load-deflection curve to failure.

The latter procedure would appear to be preferable, as a
more relevant value of the pile-flexibility factor may be
obtained. However, in some cases, the use of the first
procedure may be more expedient if piles similar to the
test pile are to be used in the foundation, and as shewn in
Section 8.3.2, the use of a secant modulus with purely
elastic theory should give results of adequate accuracy at
normal working loads. In either case, the principle of
interpretation of the load test is the same. Considering
first the case of E constant with depth and a free-head
pile, the ground-line deflection for an elastic soil is, from
Eq.(8.66)

p Aoy t “Aom (8.91)

= _M__.
EL EgL?

By substituting the measured values of p, H, and M in
this equation, Es may be expressed as a function of /g and
Iop. For various values of Kg, I,z and I,y may be
obtained from the theoretical curves in Figs. 8.13 and 8.14,
and hence a relationship between £ and Kz is obtidined
from the definition Kg = Eplp/EsL*. Simultaneous solut-
ion (e.g., by graphical means) of these two relationships
gives the values of E; and Kg for the pile. Because the
theoretical-influence factors are insensitive to the value of
Poisson’s ratio of soil, vg, the value chosen for this quantity
is of secondary importance. The above procedure may
similarly be applied to fixed-head piles or to the case of a
linearly increasing modulus with depth, for which relation-
ships between Vy and K would be derived.

A more complete definition of the soil modulus
can be obtained if tests on piles of different proportions
are made or if the ground-line rotation as well as the
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deflection of a pile is measured. The case that best fits the
data (constant £y or linearly-increasing £¢) may then be
determined. This procedure is analogous to the procedure for
deterrnining the subgrade-reaction modulas described by
Reese and Cox (1969).

As an example of the application of the above procedure,
the results of the test on Pile 1-B described by Alizadeh
(1969) are analyzed. This pile was a Class B timber pile,
of embedded length about 37 ft and situated in a soil
profile consisting of 4 ft of sand and gravel underlain by
clay and silt strata. The consistency of the clays ranged
from soft to medium, with an average shear-strength of
about 600 1b/{t>. The pile was loaded at the ground line
by jacking against an adjacent pile (Pile 1-4). At a load
of 10 kips, for the first load cycle, a deflection of 0.80
in. and a slope of 0.012 radians were measured at the
ground line.

Cousidering, first, the case of a soil modulus assumed
to be constant with depth. The deflection and rotation 8
may be expressed as in Eqs. (8.66) and (8.67). Substitut-
ing the appropriate values in these expressions, one obtains

Eg = 4051,y kips/ft?, from the deflection measure-
ments

i
{

= 0.608/5p kips/ft?, from the slope measurements

From Figs. 8.13 and 8.14, values of /,y and Iyy may be
obtained for various values of pile-stiffness factor Kp.
Hence, two plots of K versus Kg may be obtained (shown
as curves 1 and 2 in Fig. 8.90a). A further relationship may
be obtained from the definition of Kg = Eplp/EL*?, which
upon substitution of the appropriate quantities, gives

Ey = 0.00949/Kg

This relationship is plotted as curve 3 in Fig. 8.90a. The
backfigured E; from the deflection measurement is given
by the intersection of curves 1 and 3, while from the slope
measurement, it is given by the intersection of curves 2
and 3. These values are, respectively, 44 kips/ft? and 26
kips/f:?. 1f the assumption of constant soil modulus was
valid, these two values should have been the same.

Now considering the case of a linearly varying modulus
with depth, the deflection and slope may be expressed from
Egs. (8.74) and (8.75). As in the case of constant modulus,
two relationships between Ny and Ky may be plotted;
these are shown as curves 1 and 2 in Fig. 8.90b. Also, Ky =
Eplp/NpL®, so that another Nj-versus-K v relationship may

be plotted; this is shown as curve 3 in Fig. 8.90b. The -

intersection of curves 1 and 3, giving the backfigured
modulus from the deflection measurement, gives Ny =
28 kips/ft®, while the value backfigured from the slope
measurement (intersection of curves 2 and 3), gives N =
23 kips/ft®. The closer agreemant between these two values
of Ny indicates that the assumption of a linearly varying
modulus is a better approximation than a constant modulus.
It is interesting to note that the value of the modulus of
subgrade-reaction ny, backfigured by Alizadeh from sub-
grade-reaction theory is about 30 kips/ft®, which is in
reasonable correspondence with the backfigured values of
Np.

Empirical Correlations

From a number of published load-deflection measurements
on full-scale piles, Poulos (1971a) backfigured secant values
of E, at working-load levels on the assumption that £y is
constant with depth. For cohesive soils, the values of £ so
deduced varied widely, lying within the range

(secant) £ = 15¢, to 95¢, (8.92)

with an average value of 40 c¢,, where ¢, = undrained
shear-strength of clay. The lower values tended to be
associated with very soft clays and the higher values with
stiff clays. Banerjee and Davies (1978) backfigured values
of E; of between 100c, and 180c,. All these values are
lower than values normally associated with surface founda-
tions or axially loaded piles, and this can be attributed to
the effects of local yielding of the soil and pile-soil separa-
tion near the top of the pile (soil anisotropy may also have
contributed slightly.) The scatter of the backfigured results
also reflects the effects of local yielding, since more local
yield may have occurred in the softer soils at working toads
than in stiffer clays.

In order to obtain more-satisfactory correlations, values
of the tangent modulus should be determined from the
initial linear portions of the measured load-deflection curves.
Although only a limited number of tangent values of
modulus have been determined and related to ¢, the
correlation appears to be more consistent and to suggest
values of £ in the range

(tangent) £y = 250¢, to 400c, (8.93)
These values are about one half of those normally associat-
ed with surface foundations (D’Appolonia et al., 1971)
and may reflect the effects of soil anisotropy and pile-soil
separation, as described in Section 8.3.2.

The use of the correlation given by Eq. (8.93) rather
than Eq. (8.92) enables a more logical prediction of the
load-deflection relationship, since the effects of local yield
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may be taken into account by determining the appropriate
value of the yield-deflection factor, £, (Eq. 8.64).

As indicated in the discussion of subgrade-reaction
theory and from the example of pile-loading test interpretat-
ion described earlier, the assumption of a linearly varying
modulus with depth may often by more satisfactory than a
constant modulus, especially for soft clays and cohesionless
soils. In these cases, it is reasonable to assume that the rate
of modulus increase, Ny, is approximately equal to the
modulus of subgrade reaction, ny. Approximate ranges of
values of ny are discussed in Section 8.2.3. Banerjee and
Davies (1978) found that a value of NV, of about 40 Ib/in?
fitted a number of experimental results.

At the present time, it has not been possible to dis-
tinguish between values of undrained moduli and drained
moduli; however, most tests were probably carried out
relatively rapidly so that the correlations quoted are best
considered as being applicable to the undrained modulus.
Also there is insufficient data for any distinction to be made
between values of soil modulus for various installation
methods. ’

Repeated-Loading and Cyclic-Loading Effects

The increased movement associated with repeated or cyclic
loading can be taken into account in a crude manner by
adopting a reduced modulus, as discussed in Sections 8.2.3
‘and 8.2.4 in relation to the subgrade-reaction approach.
The apparent reduction in modulus found experimentally
may arise from the cumulative effects of soil-pile separation
as well as a genuine change in the soil properties with re-
peated loading. The analysis for a single-load application,
outlined in Section 8.3.1, could be extended to take into
account repeated loading, but as pointed out by Matlock
(1970), the most feasible approach appears to be to seek a
quasi-static approximation to the response of a pile to cy-
clic loading. Most of the current design procedures for this
approach have been developed by Reese, Matlock and their
co-workers on the basis of field and model tests, and are
presented in terms of p-p (“p-y’") curves (see Section 8.2.4).
It is also possible to interpret some of their design re-
commendations in terms of the elastic-based theory. Cyclic
or repeated loading influences both the soil modulus £ and
the pile-soil yield pressure p,. For piles in soft clay, E
appears to be unaffected by cyclic loading, but py is
reduced as follows:

(a) for depth z <z, where z, = transition depth (Eq. 8.53),
the static value of p, is multiplied by 0.72 z/z,

(b) for depth z > z,, the static value of p), is multiplied by
0.72.

For stift clays, the static value of £ is multiplied by 0.4,
while the static value of p), is multiplied by 0.24.

For sand, no reduction tc the static value of £ appears
to be necessary, but the static value of p,, is multiplied by a
factor which increases from about 0.25 at the surface to 1.0
or so at a depth of 3 diameters or greater.

The reduction in modulus and lateral resistance is
likely to arise from one or both of two main causes:

(1) Build-up of excess pore pressure (mainly with clays).
(2) Actual degradation of particles at their contacts
(mainly with granular materials, particularly calcareous
sands).

It should be recognized that, in predicting the behavior
of a prototype from small-scale tests, the significance of
the first cause will be affected by the dependence of pore
pressure dissipation on scale and period of cyclic loading.

8.6 COMPARISONS BETWEEN OBSERVED AND THEOR-
ETICAL LOAD-DEFLECTION BEHAVIOR

Tests of Mohan and Shrivastava (1971)

A series of field tests on steel pile piles was reported by
Mohan and Shrivastava (1971). The load-deflection behavior
was measured for seven piles, cne of which was instrumented
to record bending moments. A summary of the piles
tested is given in Table 8.10. The soil profile, the results of
standard penetration, and static and dynamic cone tests are
shown in Fig. 8.91. In add:tion, plate-bearing tests wcre
carried out at three depths, and the results of these tests
were used to calculate values of E; and ¢, on the assumpt-
ion that the soil was purely cohesive. The values obtained
are shown in Table 8.11.

Comparisons between the measured load-deflection
curves and those predicted from the nonlinear analysis
are shown in Fig. 8.92. The values of py, input into the
analysis were obtained from: the values of ¢, calculated
from the plate-bearing tests, assuming p, = 9¢,. Below
200-cm depth, a constant value of p, of 1.3 kg/fcm® was
assumed. A uniform value of £ of 35 kg/cm? was assumed
for all piles except the shorter piles N/ and N2, for which a
constant value of 50 kg/cm? was used. '

"The agreement between predicted and observed load-
deflection curves is reasonable for piles N2, N3, N6, and
IN1, but the theory underpredicts movements for N1 and
overpredicts for ¥4 and N5. Better agreement could have
been obtained for these cases by varying the input para-
meters. Nevertheless, the comparisons generally suggest
that the theory, together with values of £ and p,, obtained
from plate-loading tests, may be capable of giving fair load-
deflection predictions for piles.
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FIGURE 8.92b Comparison beétween observed and computed load- deflection curves (tests of Mohan and Shrivastava, 1971).

TABLE 8.10 SUMMARY OF PILES? TESTED BY MOHAN AND
SHRIVASTAVA (1971).

Pile
Pile Dia. Embedded Stiffness,

Test (cm) Length (cm) Eplp(kg cm?)
N1 10 200 6.22x 10°
N2 10 300 6.22x 10°
N3 10 400 6.22x 10°
N4 10 500 6.22 X 10°
NS 3.8 525 0.316 x 10*
N6 b 7.6 525 246 x 10®
IN1 10 525 3.20 % 10°

2 All piles are steel pipe.
Instrumented pile.

TABLE 8.11 CALCULATED VALUES OF py AND Es; FROM
PLATE-BEARING TESTS? BY MOHAN AND SHRIVASTAVA
(1971)

Depth Below Dirn. of £y Py
Surface (¢cm) Loading (kg/cm?) (kg/em?)
50 Vertical 121 4.2
50 Horizontal 82 3.1
100 Vertical 220 8.0
150 Vertical 35 1.8

TAll tests on 30-cm square plate,

For the instrumented pile /V1, comparisons between
the observed and theoretical distributions of deflection,
slope, and moment with depth are given in Fig. 8.93.
-Again, the agreement is reascnable, and is at least as good
as that reported by Mohan and Shrivastava, using Kubo’s
(1965) modified subgrade-reaction approach.

Similar agreement has been found by Poulos (1971a)
betwee; theoretical behavior and that reported by Kerisel -
and Adam (1967) from full-scale pile tests in clay.

Tests of Gleser (1953)

Gleser (1953) reported measurements of deflection and
moment along a fixed-head pile in sand. In order to
compare the measured distributions with the theory, the
theoretical and measured pile-head deflections were equated
and the soil modulus backfigured. The test was interpreted
in two ways: first, as the case of a pile ina soil having con-
stant soil-modulus £; with depth; and second, as a pile in a
soil whose m‘odul'us increases with depth. The calculated
deflection and moment profiles are compared with the
measured values in Fig. 8.94. As might be expected for a
nile in sand, the calculated profiles for linearly varying Ej
are in much closer agreement with the measurements than
are the profiles for constant Eg.
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Model Tests of Prakash and Saran (1967)

A series of tests on groups of model piles in clay was
reported by Prakash and Saran (1967). Tests, involving
horizontal load near ground level, were carried out on
free-head single piles and groups of four and nine piles,

which may be considered as effectively free-headed, since-

significant rotations occurred at the pile caps. Compari-
sons between the measured and theoretical ratio-of group
displacement to single-pile displacement, for a load equal
to the average load in the groups, are shown in Fig. 8.95.
The average pile-load considered is well below the ul-
timate value for the single pile. Figure 8.95 shows reason-
able agreement between theory and observation, although
the theoretical displacement ratio is smaller at close spacings
and larger at greater spacings.

Comparisons between the observed and predicted load-
deflection behavior of two of the tests are shown in Fig.

8.96. In obtaining the predictions, values of £ and p), were
backfigured from the reported single-pile test, and the
group-efficiency factor was taken to be the value observed
in the tests. In both cases, the agreement between the
theoretical and predicted load-deflection curves is good.

Model Pile Tests of Druery and Ferguson {1969)

A series of free head tests on model brass piles in kaolin
was carried out to obtain load-deflection curves to failure.
A typical deflection-time relationship for a load increment
is shown in Fig. 8.97. It is interesting to note that a con-
siderable amount of the deflection occurs immediately on
application of the load, as the theory predicts for an
ideal two-phase elastic soil (Poulos, 1971a). For the case
shown, the measured ratio of immediate to final deflection
is 0.56, whereas the theory predicts a somewhat higher
ratio of 0.73.

Load-deflection predictions were made assuming a
uniform Eg and a constant value of py, of 9 ¢, along the
pile. Two values of E; werz considered, 2500 Ib/in.?
(175 kg/cm?) and 1000 Ib/in.” (70 kg/cm?), corresponding.
to values of £;/c, of approximately 450 and 180.

Comparisons between the two predicted load-deflection
curves and the observed curves are shown in Fig. 898 for
four of the tests. Final deflections (measured values after 90
min) are considered. The agreement is generally satisfactory,
and with the exception of test 1, the predicted curve for
E, = 2500 Ib/in.? agrees more closely with the observed
curve, This value of Ej is of the same order as the value of
about 500 to 1000 ¢, generally applicable to surface
foundations (D’Appolonia et al., 1971)—allowing for re-
duction resulting from the effects of pile-soil separation, as
previously mentioned—and is much higher than the average
secant value of 40c, backfigirsd from reported field tests
(see previous section). It is interesting to observe that the
difference between the predictions for £ = 1000 1b/in.? and
E, = 2500 Ib/in.? is much less than the factor of 2.5
between the £ values themselves. In fact, it is found that
the predictions are as sensitive to the value of pj, as to the
value of £y, '

Comparisons between measured and predicted values of
ultimate load H,, are shown in Fig. 8.99. Predicted values

-are given for both the simple statical theory, assuming a

constant value of p), of 9¢, along the whole length of the
pile, and the modified approach of Broms (1964a) who
assumes the same py, distribution, except that p,, is taken as
zero from the surface to a depth of 1.5d (see Section 7.2).
The predicted values from both methods lie within 25%
of the measured values, but the simple statical theory tends
to overestimate f,, whereas Broms’s approach tends to
underestimate /,, and therefore is more conservative.
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Model Pile Tests of Oteo (1972) 1.8 t/m*, comparisons between the measured and predicted
Oteo (1972) carried out tests on aluminium-tube piles in load-deflection curves, shown in Fig. 8.100, reveal close
sand. The piles were 8 mm in diameter, with an embedded agreement. The basis of the prediction is discussed in the
length of 220 mm, and various initial densities of the sand example given in Section 8.4.6. The results of a single-pile
were used. Both single piles and pile groups were tested. For test were. used to backfigure the rate of increase of Young’s

nine-pile groups -tested in sand with an initial density of modulus with depth, Ny,.
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GENERAL ANALYSIS OF PILE GROUPS

9.1 INTRODUCTION

In previous chapters, the behavior of vertical pile groups
under axial loading or lateral loading has been considered.
In general, a pile group may contain battered piles and may
be subjected to simultaneous axial load, lateral load, mo-
ment, and possibly, torsional load. Methods of analyzing
this general problem may be broken down into three cate-
gories:

1. Simple statical methods that ignore the presence of the
soil and consider the pile group as a purely structural
system.

2. Methods that reduce the pile group to a structural
system but that take some account of the effect of the soil
by determining equivalent free-standing lengths of the piles.

The theory of subgrade reaction is generally used to deter-

mine these equivalent lengths. Typical of these methods are
those described by Hrennikoff (1950), Priddle (1963),
Francis (1964), Kocsis (1968) and Nair et al. (1969). This
type of approach will be termed the ‘‘equivalent bent
method,” following Kocsis (1968).

3. A method in which the soil is assumed to be an elastic
continuum and interaction between piles can be fully
considered.

The first two methods can only consider interaction

“between the piles through the pile cap and not interaction

through the soil as well. Therefore, they assume that once
the loads on any pile are known, the deflections of that pile
may be calculated from these loads alone. The third
method removes this limitation and allows consideration of
pile interaction through the soil; the deflections of a pile
are therefore not only a function of the load in that pile
but also of the loads in all the piles in the group.

In this chapter, the three approaches mentioned above
will be described, with emphasis being placed on the third
method, that employing elastic theory. An example will be
presented to compare the solutions from each approach.

9.2 SIMPLE STATICAL ANALYSIS

Traditional design methods have relied on the consideration
of the pile group as a simple statically-determinate system,
ignoring the effect of the soil. One such method, which
may be employed either graphically or analytically, is illus-
trated in Fig. 9.1. Considering, for simplicity, loads and
batter in the x, z plane only and piles having a pinned head,
the steps in this method are as follows:
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FIGURE 9.1 Simple statical method for determination of group
load distribution.

1. Assuming each pile to take an equal share of the verti-
cal load on the cap and assuming the vertical load in a pile,
caused by moment in the cap, to be proportional to the
distance x, the vertical pile loads.are calculated as

V MX,'
—_—F
n

> %)
j=1

Vi = 9.1)

2. If the solution is done graphically, the forces V and H
are plotted on a force polygon. The vertical pile forces, V;,
from Eq. (9.1) are then set off.

3. The force polygon is then completed by drawing lines
paralle] to the pile directions. The axial force, P;, in each
pile may thus be obtained. There is then a residual horizon-
tal force, H,, which is assumed to be equally distributed be-
tween each pile in the group.

4, If desired, the design of the group may be amended and
the pile batters adjusted to give H, = O—that is no horizon-
tal load in the piles, so that each pile is axially loaded.

It should be noted that this method cannot take into
account different conditions of fixity at the pile head, and
always assumes zero moment at the head of each pile. Al-
though methods such as that described above are widely
used in design, little is known as to their reiiability, al-
though it cannot be expected to be high in view of the
simplicity of the assumptions. A comparison between this
method and other methods will be given in Section 9.4 4.

9.3 EQUIVALENT-BENT METHOD

9.3.1 Principle of Method

The principle of this method is illustrated in Fig. 9.2 fora
planar group. The actual group, shown in Fig. 9.2a, is acted
upon by vertical and horizontal forces and a moment. The
equivalent bent, shown in Fig. 9.24, consists of the pile cap
supported by fixed-end freestanding columns or cantilevers
of equivalent lengths L., L., and L,3, and equivalent
cross-sectional areas 4,1, A¢2 and A,3. There are a number
of ways of converting the actual lengths and cross-sectional
areas of the piles to equivalent values for the columns and
these are discussed in 9.3.2 below. Once the equivalent
lengths and areas have been detzrmined, the equivalent bent
may be analyzed by standard structural analysis techniques
to determine the deflections, rotations, and pile loads in the
system.

In order to simplify the structural analysis, the pile cap
is frequently assumed to be rigid and the piles assumed to
behave elastically. Saul (1968) and Reese et al. {1970) have
presented matrix analyses in which the above assumptions
are made, and in the former paper, torsional loading and
dynamic forces may also be incorporated. However, if hand
computation is contemplated, the method described by
Nair et al. (1969) is more convenient. Their analytical pro-
cedure is as follows:

1. Through the rigid pile cap, arbitrary horizontal and
vertical displacements, n and &, and an arbitrary rotation, 8,
are imposed. Thus, axial and lateral forces and moments
will be introduced in the pile heads—these being a function
of n, 8, and 8 and of the arrangement and characteristics of
the equivalent cantilevers, which reflect pile and soil prop-
erties. Expressions for these forces and moments can be
determined from standard structural analysis, and are given
in the original paper.

2. The moments and forces in the pilé heads are added to-
gether in the various coordinate directions and equated to
the external applied forces and moments. This will give
three equations in three unknowns, §,n, and 4.
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FIGURE 9.2 Principle of equivalent-bent approach.

3. These equations are solved for §, n,and 9.

4. The mcments and forces at each pile head are then-

determined using the expressions derived in step 1. The
necessary information for the design of the group is thus
obtained.

9.3.2 Determination of Equivalent Bent

In published methods using the above approach, the equiva-
lent lengths of the piles are almost invariably determined
from a subgrade-reaction analysis. The normal deflection
(or rotation) of a pile subjected to normal load (or mo-
ment) is calculated and equated to the normal deflection
{or rotation) of a cantilever under the same load (or mo-
ment), the cantilever having the same moment of inertia as
the pile. The required equivalent length can then be deter-
mined (e.g., Francis, 1964; Kocsis, 1968; Nair et al., 1969).
The equivalent area of each cantilever is commonly
assumed to be that which gives the same axial deformation
as the actual pile when considered as a column, the effect
of side shear from the soil thus being neglected.

The equivalent lengths and areas of the-cantilevers in
the equivalent-bent method may also be determined by use

of the solutions given in previous chapters for vertical and .
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lateral loading of piles. Using this approach, some allowance
can be made for side shear and for group effects as de-
scribed below. - '

a) Equivajent Length of Piles
The equivalent length will depend on the boundary condi-
tion ‘at the pile head and on the type of loading assumed to
act. A number of cases have been considered, as illustrated
in Fig. 9.3, and the solutions derived for the equivalent
cantilever lengths are summarized in Table 9.1. The group
effect has again been taken into account approximately by
applying the group displacernent and rotation ratios to the
single-pile movement (see Section 8.4).

The various ratios referred to in Table 9.1 are as fol-
lows:

group-displacement ratio for free-head piles sub-
jected to horizontal load, obtained by super-
position of values of a,g.

group-displacement ratio for free-head piles sub-

RpH

Rom
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jected to moment, obtained by superposition of

values of appy.

group-rotation ratio for free-head piles sub-

jected to horizontal load, obtained by super-

position of agg values (Rgg = Rp1)

Rgar = group-rotation ratio for free-head piles sub-
jected to moment, obtained by superposition of
agps values.

Rort

oF = group-displacement ratio for fixed-head piles
subjected to horizontal load, obtained by super-
position of a, g values.

R

Table 9.1 gives directly the equivalent lengths for constant
Young’s modulus, £, with depth; corresponding solutions
for linearly increasing £5 may be obtained by replacing Kg
by Kn (Eq. 8.73), and the influence factors /g, and so on,
by Iz, and so on.

TABLE 9.1 EXPRESSIONS FOR EQUIVALENT CANTILEVER
LENGTHS?

Case Equivalent Length

a Leti = L 3/3uKRR 11

b Lew = LK rRoni

c Lep= LYKo

d&e L, is the solution to the equation.

L"3+15ML"’2—3KQQ I +M1 R >
L “HIN L RACPHIH ™y “oMT oM

Forcased, (Lo =Le) M= He
IFor case e, (Lg = Lgp)
lg K +1/6(e/L)?
o =y |loHKRR o1 ‘1/ L, e
lomKrRom* 1

%The cantilever is assumed to have the same elastic modulus and
moment of interia as the pile it replaces.

1t should be noted that for case e, the first term of the
expression for M represents the fixing moment developed at
the pile head. If fixity is not considered to be fully effec-
tive, a reduction factor, ranging between 1 and O, can be
applied to this first term. In the limit, if no fixity is devel-
oped, case e then reduces to case d.

Table 9.2 gives an example of the difference between
the equivalent lengths L,y and L,y obtained, assuming
lateral load only and moment only to act, respectively. A
single free-head pile only is considered so that R g =
Rom = L. For flexible piles, the equivalent length, Ly, is
greater, but for rigid piles (Kg > 107), Loy becomes
slightly greater. For most calculations, it would appear rea-

sonable to take either the average of L.y and L,y as the
equivalent length, or, conservatively, adopt L.x.

TABLE 9.2 EQUIVALENT LENGTHS Ly AND Ly (L/d =50,
vg = 0.5, single pile, constant £Y)

Kgr Lo¢ 107 10" 10 10? 107!

Ley/L 0.0406 0.0818 0.157 0.293 0.551 1.123

Lep/L 0.0251 0.0614 0.127 0.224 0.446 1.154

The derivation of the equivalent bent, as described
above, assumes linear elastic soil response. As shown in
Chapter 8, this may not be a good assumption for latera]
loading. If desired, an'iterative approach can be adopted, in
which a nonlinear load-deflection curve is specified for each
pile and the solution from the analysis of the equivalent
bent is recycled, using successively corrected values of the
equivalent cantilever length, until the load and deflection of
each pile are compatible.

b) Equivalent Area

For a fully-embedded pile, the axial movement is given by
Eq. (5.33). In order to make soine allowance, albeit approx-
imate, for the interaction of the piles through the soil, the
single-pile axial movement should be multiplied by the
settlement ratio R, (Eq. 6.15) for the group. In other
words, the settlement of a pile in the group is given (ap-
proximately) by

A
o= (7g)0Rs 9.2)
where I is defined in Eq. (5.334) and (5.34a).

The value of settlement ratio R may be estimated from
the solutions presented in Section 6.3. For estimating R;
when the group contains battered piles, the battered piles
can as a first approximation be considered as vertical piles
located at the midpoint of the embedded part of the pile.

The equivalent cantilever will have a length L., which
will be determined as described above (Table 9.1) for la-
teral-deflection equivalence. The axial deflection of this
equivalent cantilever is

PL,
Epd,

p = 9.3)

where



E, = Young’s modulus of pile and cantilever

A, = equivalent area of cantilever

From Egs. (9.2) and (9.3),

(Y

For a pile having an unsupported length e above the
ground surface, the axial deflection of this length must ‘be
added to that for the embedded portion. The corresponding
expression for 4, is then

e Lete (9.5)

RNEN AN
_d—/><l:'s A

If an equivalent length L', is required, rather than 4.,

(9.6)

The above expressions for 4, and L', should apply for
battered piles as well as vertical piles since, as shown in
Table 9.3, the axial movement of a pile due to axial load is
not significantly influenced by its inclination.

9.3.3 Torsional Response of Piles

In the preceding sections, only axial, lateral, and moment
loading have been considered, but in some cases, a further
component of loading, torsional moment, may be present
(e.g., because of eccentric lateral loading). Relatively little
work has been carried out on the torsional response of
piles, but Poulos (19755) has obtained elastic solutions for
the rotation of a single pile subjected to torsion. The cases
of a soil with uniform shear-modulus with depth and linear-
ly varying shear-modulus have been considered. The
principle of the analysis is similar to that of the settlement
or lateral-load analyses in that expressions are derived for
the rotation of the pile at various points along the pile, and
of the rotation of the adjacent soil, using Mindlin’s equa-
tions to evaluate the latter rotations. Imposition of rota-
tional compatibility yields a series of equations that to-
gether with the equilibrium equation, can be solved for the
shear stresses and rotations along the pile.

The solutions for single-pile rotation are shown in Figs.
9.4 and 9.5 as a function of a dimensionless torsional stiff-
ness of the pile, K7. In Fig. 9 4, for the case of constant soil
medulus with depth, K7 = GpJp/Ggd®, where Gp = shear
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modulus of pile, Jp = polar moment of inertia of pile sec-
tion, Gg = shear modulus of soil, and d = pile diameter. For
the case of a linearly-increasing soil modulus with depth
(Fig. 9.5), K1 = GpJp/Ngd®, where N = rate of increase
of soil shear modulus with depth. Rotation increases as
torsional stiffness decreases and as length-to-diameter ratio
(L/d) decreases. The effect of L/d becomes less as the pile
becomes less stiff, and for very flexible piles (small values
of K7), the rotation is independent of L/d.

Although no solutions have yet been obtained for tor-
sional interaction of piles, it is likely that such interaction
is small. Figures 9.4 and 9.5 provide a basis for évaluating
the response of a pile in a group to torsion. They can also
be used to evaluate the results of torsional pile-load tests
(see Chapter 16). When incorporating torsionai movements
into an equivalent-bent analysis, it appears most convenient,
to determine an equivalent torsional stiffness, GpJp, of the
cantilever such that the actual pile and the cantilever of
equivalent length and area, deduced from Section 9.3.2,
will have the same rotation. The structural analysis of the'
equivalent bent may then proceed.

9.4 ELASTIC CONTINUUM ANALYSIS OF PILE
BEHAVIOR -

The elastic analyses described in previous chapters for pile

movements under axial and lateral loads may be extended
to cover piles and pile groups subjected to combined loads.

9.4.1 Analysis of Single Battered Pile

In order to take account of groups containing battered

piles, the behavior of a single battered pile is considered
first, and the analysis is then extended to pile groups. The
analyses described in the following sections have been
presented by Poulos and Madhay (1971). The effect of
torsional loading is not considered.

The analysis is considered in two stages:

1. A battered pile subjec.ed to an axial ioad.
2. A battered pile subjected to a normal load and a
moment.

In both cases, the soil is assumed to be an ideal elastic
material with parameters F; and »g that are constant
throughout the mass.

9.4.1.1 BATTERED PILE SUBJECTED TO AXIAL LOAD

The analysis follows directly from that of a vertical pile (see
Section 5.2). The pile is of diameter ¢ and length L, and the
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Stresses on pile Stresses on soil
(a) Axially loaded pile
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Y
Stresses on pile Stresses on soil
(b) Normally loaded pile
Y+ ve anticlackwise
— ve clockwise
FIGURE 9.6 Analysis of battered pile.
axial force is considered to mobilize only shear stresses on stresses and displacements. In evaluating the soil displace-
the periphery and a uniform normal stress on the base of ments, the unknown force on each element is resolved into
the pile. The pile (Fig. 9.6) is divided into 7 elements of vertical and horizontal components, and vertical and hori-
equal length and the axial displacements of the soil at the zontal dlsplacements caused by each of these components
center of each element are evaluated and equated, the re- are calculated using Mindlin’s equations. These displace-
sulting equations being solved to obtain the unknown ments are then combined to give the axial displacements.
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9.4.1.2 BATTERED PILE SUBJECTED TO NORMAL LOAD AND
MOMENT

The analysis in this case follows closely that described in
Section 8.3. It is assumed that only stresses normal to the
pile are mobilized in the soil by the applied load and
moment, and that the plane of the batter and of the
loading are identical. The pile is divided into elements, as
‘shown in Fig. 9.6, and the soil and pile displacements are
evaluated at each element and equated, the resulting equa-
tions being solved for the unknown normal stresses and dis-
placements. The soil displacements are evaluated in a
similar manner to the axially-loaded pile.

Typical results for battered pile-displacements are given
in Table 9.3z for axial load and in Table 9.3 for normal
load and moment. In each case, the appropriate displace-
ment-coefficient is given for piles with a batter angle, ¥, of
0° (a vertical pile) and 30°. It should be noted that the
solutions for positive and negative batter-angles are identi-
cal.

It is significant that both the axial and normal displace-
ments are almost unaffected by the batter of the pile; the
maximum effect for a batter angle of 30° is approximately
only 4%. The virtual independence of the normal displace-

TABLE 9.3 SOLUTIONS FOR DISPLACEMENTS OF BATTERED PILE
(a) Axial Displacement due to Axial Load Incompressibie Pile

ment on batter angle appears to be unaffected by the pile-
flexibility factor, Kz, and the boundary condition at the
pile head.

9.4.1.3 BATTERED PILE SUBJECTED TO VERTICAL AND
HORIZONTAL LOADS

The fact that the axial and no:mal displacements of a pile
are almost independent of the pile batter means that solu-
tions previously obtained for vertical and horizontal dis-
placements of vertical piles may be applied to calculate the
axial and normal displacements of battered piles. This, in
turn, leads to a relatively simple method of calculating the
horizontal and vertical displacements of a battered pile sub-
jected to vertical and horizontal loads and moments. The
vertical and horizontal loads V and H are first resolved into
axial and normal components P and Q, as follows:

P=Vcosy + Hsiny (CH]

Q =Hcosy - Vsiny (9.8)

The axial and normal displacernents, p, and pj, may then
be calculated and resolved into vertical and horizontal com-

vg = 0.5
100
Lid v =0 ¥ = 30
10 1.415 1.382
25 1.860 1.859
100 2.542 2.538
Pa = o " TE
(b) Normal Displacement Caused by Normal Load and Moment
vg = 0.5
Ion Iom Ir
Kp 0.0001 10 0.0001 10 0.0001 10
Lld e 0 +30 0 +30 0 +30 0 +30 0 +30 0 +30
“10 7.29 7.35 3.22 3.37 39.89 39.78 3.90 4.05 5.81 5.92 1.04 1.09
25 9.75 9.84 3.98 4.13 54.68 54.65 499 5.15 7.27 7.40 1.23 1.28
100 12.21 12.33 4.79 495 68.28 68.32 6.16 6.33 8.67 8.82 1.44 1.49

1 M
Free-head pile: oy = H <1pN <0+ Iy Z>

Fixed-head pile: pp = E_:I Upr* 0)



ponents. To simplify the analysis, it is assumed that lateral
loads do not influence axial displacements and that axial
loads do not affect lateral displacements. Tests reported by
Evans (1954) show that ‘this assumption is conservative in
that the lateral deflection of a pile subjected to axial and
lateral loads is less than that of the pile subjected to lateral
load only. The following expressions are then obtained for
the battered pile, for the case of constant £ with depth:
Vertical displacement:

| M
by = = (V-IVV v H Ly +f-1vM) (99)

o5}

L
where

Ly = Iy cos® § + I,y sin® ¢

Iy = Upa — Ipy)sin g cosy

Iy = ~Loprsin

5, = axial displacement-influence factor for axial load

I,n = normal displacement-influence factor for normal
load

I,pr = normal displacement-influence factor for mo-
ment loading

Horizontal displacement of free-head pile:

-1 M
Ph 7L <V-1,,V + H Ly +T'1”M> (9.10)

where

Ipy = Upg — fpy)sinycosy = Ly
Ing = lpgsin®  + Iy cos®
IhM = Ip]w £os l[/

Rotation of free-head pile:

6 = EI—L—2<V-19V +H Ly +4L1-18M> (9.11)

§

where

loy = ~Igysin

log = loy cos ¥ = Ipy

Ign = rotation-influence factor for normal load
Igp = rotation-influence factor for moment loading

Horizontal displacement of fixed-head pile:

1

prr = g (Ve Ippy + H* Ipry) (9.120)
.

where
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Ippy = Upg — Ipp)sin cos
Inpy = 1o sin? v+ I cos?
I,r = normal displacement-influence factor for fixed-
head pile

Vertical displacement of fixed-head pile:

1 .
PyF = E_L(V' Lpy + H - lpg) (9.12h)
5

where

Lpy = Ipg cos* y + Iopsin? §
IVFH = (Ipa - IpF) Sin\[/COSl[/ = IhFV

Since, as found above, the influence factors for axial
and normal displacement and rotation of a battered pile are
almost identical with those for the vertical and horizontal
displacement and rotation of a vertical pile, /,, may be
taken as /L/d, where [ is evaluated as described in Sec-
tion 5.3, while I,n, Iopm, {oF. fon, and Igy may be ob-
tained from Figs. 8.13, 8.14, 3.15 and 8.19 as I,g, Iy,
L5, dop, and Igps, respectively.

For a soil with £ increasingly linearly with depth from
zero at the surface, the above theory can be employed by
substituting Ny L cos y for £ and using the / values in Figs.
8.33,8.34,8.35, and 8.38.

Although the above analysis is limited strictly to a pile
in which the plane of the batter coincides with the plane of
the horizontal loading, the general case of horizontal
loading out of the batter plane could be analyzed approxi-
mately by resolving the horizontal load into an in-plane
component and a component normal to this. If the horizon-
tal load A is inclined at an angle w to the plane of batter,
the horizontal displacement caused by the in-plane com-
ponent A cos w may then be calculated as described above,
while the displacement in the Cirection normal to this may
be calculated as the horizontal displacement of a vertical
pile of length equal to the projected length of the pile, L
cos Y, and subjected to a load A sin w. The resultant mag-
nitude and direction of the horizontal displacement may
thus be calculated from these two components.

lllustrative Example

To illustrate the effect of batter on pile displacements, the
numerical example shown in Fig. 9.7 has been evaluated.
The case considered corresporids to a concrete pile in a
medium-stiff soil. The vertical and horizontal displacement,
py and py, and the rotation € of the pile head are plotted
against batter angle Y for -30° > ¢ > +30°. The effect of
a positive batter in reducing py and 8 is clearly shown. All
displacements are significantly larger if a negative batter is
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FIGURE 9.7 Typical example of effect of batter on pile move-
ments and rotation.

employed. The vertical displacement, p,, is a minimum for
a batter angle of about +15°, and this characteristic is also
somewhat similar to that found from experiments on model
piles in sand reported by Awad and Petrasovits (1968).

9.4.2 Analysis of Pile Groups

Analyses of groups of vertical piles given in Chapters 6 and
8 were based on the use of “interaction factors,” which
express the increase in movement of a pile caused by an
adjacent loaded pile, and which are functions of the pile
spacing, relative stiffness, and geometry; and for horizontal
loads, of the direction of loading. By summation of the
interaction factors for each pile in a group resulting from all
the other piles in the group, the displacement of each pile
may be written in terms of the loads on each pile-in the
group.

A similar approach can be adopted for groups con-
tainiag battered piles. The first case considered will be that
of :. group in which all the piles are battered in the same
plane and on which the horizontal load acts in the same
plane. In the interaction analysis for vertical piles, it is
implicit that normal forces produce only normal deflections
and that axial forces produce only axial deflections. Thus,
considering two battered piles i and j in a group, it is
assurned that an axial load on pile j will cause a deflection
of pile 7 that is in the axial direction of pile #, and equal to

the axial deflection of pile j under this axial load, multi-
plied by an interaction factor for axial loading. Similarly,
it is assumed that a normal load on pile / will cause a de-
flection of pile i that is in the normal direction of pile i and
equal to the normal deflection of pile / under this normal
load, multiplied by an interaction factor for normal loading.
Poulos (1974) has made the alternative assumptions that
axial load on pile j causes a deflection of pile i that is in the
axial direction of pile j; and similarly, that normal load on
pile j causes a deflection of pile i that is in the normal
direction of pile j. These assumptions, although apparently
more logical, lead to solutions that do not satisfy the reci-
procal theorem unless all piles are vertical or battered at
equal angles. It will be assumed for simplicity that the inter-
action factors for two battered piles are identical with those
for vertical piles at some equivalent spacing s.. Calculations
suggest that for practical ranges of pile flexibility, s, is
approximately the center-to-center distance between the
piles one third of the vertical depth of the pile for lateral
loading, and somewhat greate: for axial loading. However,
for convenience, the same equivalent spacing will be as-
sumed for both axial and lateral loading (see Fig. 9.8). It
is further assumed that the interaction factor for axial dis-
placement caused by axial loads equals that for vertical dis-
placement caused by vertical load on a vertical pile, and the
rotation and normal-displacement interaction factors
caused by normal load and moment are identical with those
for rotation and horizontal displacement caused by hori-
zontal load and moment on a vertical pile.

On the basis of the abovs assumptions, the resulting
equations for vertical and horizontal displacement and rota-
tion may be written convenieatly in matrix form, as fol-
lows:

A, B, G| 4 Py
Ay By Gy Hit = {exn (9.13)
Ay By Cp M 0

— —\»- —— I

lL/B Se
- P

1

Two battered piles Vertical piles at

Equivalent Spacing

FIGURE 9.8 Equivalent spacing of battered piles.



where the coefficients of the sub-matrices are as follows:
Ay = pareyy cos Yj cos Y T pNg 1@y Sin Yy sin Y;
Byj =\pa10y €O Yy sin i = pyo 1 Cppy SIn Y cOs ;
Coj = pymIoppy sin Y
Apg = pgray sin y;cos Yy - pyg1appy cos Y sin §;
Bpj = pgyroysin Y sin ¥; + pyp1@op; COS Y cos g
PNM 1% COS Vi
_HNIQOHI'j sin L}//
By = 012905 cOS Yj
Coy = Opr 19057
pgy = axial deflection of single pile caused by unit
axial load
pno1 = normal deflection of single pile caused by unit
normal load
ponm1 = normal deflection of single pile caused by unit
morment
01 = rotation of single pile caused by unit normal
load
G171 = rotation of single pile caused by unit moment

The above-mentioned unit deflections and rotations
may be calculated from the theoretical relationships in
Chapters 5 and 8 if values of the soil moduli can be esti-
mated, or if pile-load test data are available, from the pile

deflections at the working loads. The interaction factors a

may be found in Figs. 6.2 to 6.5 while values of the inter-
action factors a,g, a,p, and agys are given in Figs. 8.62 to
8.77.

The submatrices 4,, B,, and so on, are of ordern X n,
while the vectors ¥, p,,, and so on are of order n. Equation
(9.13) together with the three equations expressing vertical
and horizontal load-equilibrium and moment-equilibrium,
may be solved to obtain the 37 + 3 unknown vertical and
horizontal loads, moments, displacements, and rotations,
for the desired boundary conditions at the pile heads.

A number of cases may be considered, including

1. A rigid pile-cap rigidly attached to the piles, so that the
rotation and horizontal displacement of all piles are equal
and the vertical displacement of a pile is related to its
position in the group and the rotation. ‘ '
2. Piles pinned to a rigid pile-cap, which is similar to case 1
except that the pile head moments are zero.

3. Piles attached to a massive cap, in which case horizontal
and vertical displacements are equal but all pile-head rota-
tions are zero.

4. Piles attached to a relatively flexible pile cap, so that
each pile-is subjected to known loads and moments.

No account is taken in the above analysis of the hori-

zontal shear and rotational resistance of the cap, although -
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the analysis could be extended to take these into account.
For example, the influence of the cap on vertical move-
ments may be allowed for as described in Chapter 10.

Groups in which piles are battered in different direc-
tions can be treated approximately by resolving the hori-
zontal load into two components and calculating the in-line
horizontal displacements caused by each component, using
as the length of a pile its prejected length in the plane of
loading. The resultant horizontal displacement can then be
calculated from these displacement ccmponents.

A more complete analysis which avoids mapy of the
assumptions made above has been described by Banerjee
and Driscoll (1976). However, because it does not employ
interaction factors, a complete re-analysis is necessary for
each group configuration, whereas the present analysis
allows any group configuration to be rapidly analyzed once
values of the interaction factors and single-pile responses
have been evaluated.

9.4.3 Parametric Studies of Pile Groups
9.4.3.1 EFFECT OF PILE STIFFNESS AND BATTER ANGLE

The effects of pile stiffness and batter angle on the deflec-
tion and load distribution within a pile group are illustrated
in Figs. 9.10 to 9.14 for a typical case of a group of six
piles, as shown in Fig. 9.9. The pile cap is assumed to be
rigid, and rigidly attached to piles in an elastic soil whose
modulus is constant with depth. Three values of pile-stiff-
ness factor K are considered: K = 100 (corresponding to
concrete piles in a stiff soil), K = 1000 (corresponding to

—:__:—'_42?1 R J‘EF:—o—‘:::

—_—S e ——1

FIGURE 9.9 Pile group considered in parametric study of spacing
and batter angle.
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FIGURE 9.10 Effect of batter angle and relative stiffness on deflec-
tion and rotation coefficients: six-pile group, L/d = 25, ve =0.5;
sid = 3.

concrete piles in a medium-stiff soil), and K = 10,000 (cor-
responding to concrete piles in a soft soil). For each value
of K, the value of pile-flexibility factor Kg is related as
follows:

. KI
Kr = o 9.14)

where

/ = moment of inertia of pile section
R4 = arearatio, defined in Eq. (5.17)
L = pile length

The vertical deflection of the center of the pile cap, p,,
the horizontal deflection, pj, and the rotation, 8, for a
general loading system are given as follows:

vV H M
= . + —_— + —_—
Py [;yd [VV E‘Sd [V[{ Esd2 [VM (915)

V H M
= o . + —— + —
Pn Ed 1% E.d Iny Ed Inym (9.16)

vV H M
) = — . — . —_—
¢ Ed gy + Ea log + Fd Iopr (9.17)

where

V = vertical load on group
H = horizontal load on group
M = moment on group
Iy, Iy, etc. = dimensionless deflection and rotation
influence coefficients evaluated from
the analysis

For the symmetrical group considered here, Iy = Iy =
Iy = I,m = 0, or in other words, the horizontal deflection
and rotation caused by unit vertical load are zero. Since p,,,
on and 0 define the rigid body displacement of the cap, to
which the piles are assumed to rigidly attached, the dis-
placements and rotation of any individual pile are readily
calculated.

For a center-to-center spacing of 3d at the pile cap, Fig.
9.10 shows the effect on the deflection and rotation co-
efficients of the relative pile stiffness and the angle of
batter of the outer piles. The coefficients are not greatly
affected by pile batter, but the pile-stiffness factor, K, has
a significant effect.

Corresponding solutions for the loads and moment on
the front piles (type 3) of the group are given in Figs. 9.11
and 9.12. The actual vertical load V5, horizontal load H;,
and moment M, in each pile arz given by:

Vy = VCyy + HCyy + MCypy/d (9.18)

Hy = VCyy + HChyy + MCypy/d (9.19)

My = VdCpyy + HdCyy + MCypy (9.20)
where

V,H M = the applied loads and moment on
the group, as before
load and moment coefficients

Cyv, Cyy,etc.

Figure 9.11 shows that most load and moment coeffi-
cients are markedly influenced by pile batter and pile-stiff-
ness factor K. However, the vertical pile load caused by
vertical load on the ‘group and the horizontal pile load
caused by horizontal load on the group (coefficients C, )
and Cyy) are almost independent of both factors.

9.4.3.2 EFFECT OF PILE SPACING

The influence of pile spacing on the load and moment co-
efficients is shown in Fig. 9.12. Again, an increase in the
spacing generally reduces the coefficients.
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FIGURE 9.11 Effect of batter angle and relative pile stiffness on load and moment coefficient for pile No. 3: six-pile group; L/d = 25;v¢ =

0.5;5/d = 3.

The effect of pile spacing on the deflection and rotation
coefficients for the center of the cap of a six-pile group
(Fig. 9.9) is shown in Fig. 9.13 for a batter angle of 15°.
Almost all coefficients decrease with increasing spacing, as
would be anticipated.

9.4.3.3 EFFECT OF NUMBER OF PILES IN GROUP

The effect of the number of piles in the group on the de-
flection and rotation coefficients for the center of the pile
cap is shown in Fig. 9.14. A four-pile group and a six-pile
group are compared for K = 1000 and a pile spacing of
three diameters. As would be expected, deflection and rota-
tion coefficients are greater for the four-pile group, and the
rotation coefficients are most affected because of the closer

spacing between the outer piles. The pile loads and mo-
ments are correspondingly greater in the four-pile group.

9.4.3.4 EFFECT OF PILE CONFIGURATION

In order to examine the effect of pile configuration on
group rotation and deflections, the six groups shown in Fig.
9.15 have been analyzed. Group A is the one shown in Fig.
9.9, while group B is the same group except that the center
two piles are removed. The other four groups have different
piles battered. In all cases, the batter angle of any battered
piles is 15°.

The deflection coefficients for the leading piles of each
group are shown in Table 9.4. The following observations
may be made:
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TABLE 9.4 EFFECT Ol

 PILE CONFIGURATION ON DEFLECTION AND ROTATION COEFFICIENTS?

~~_ Group
Coefficient? A B c D E F
Ly 0.0391 0.0432 0.0609 0.0548 0.0451 0.0476
Iy 0.0136 0.0121 0.0262 ~0.00346 0.00495 0.00569
Iy 0.00615 0.00671 0.00666 0.00463 0.00486 0.00571
Iy 0 0 0.0148 ~0.0148 ~0.00733 -0.00677
Iy 0.1006 0.1010 0.1093 - 0.1093 0.1026 0.1025
Iy 0.00453 0.00403 0.00380 0.00380 0.00409 0.00416
Iy 0 0 0.00102 -0.00102 -0.000818 0.000011
Ton 0.00453 0.00403 0.00380 0.00380 0.00409 0.00416
Tom 0.00205 0.00224 0.00188 0.00188 0.00189 0.00190

ZSe(: Fig. 9.15 for details

of pile groups.

Coefficients are for the leading piles of the group.
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tion coefficients: L/d = 25;v;=0.5; K = 1000;s/d = 3.
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K 1000
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FIGURE 9.15 Groups considered in parametric study of effect of
pile configuration.

1. The behavior of group 4 is very similar to that of group
B--that is, the center piles in group 4 have little influence
on the deflection and rotation coefficients.

2. The advantages of group D over group C arise primarily
from the negative horizontal-deflection and rotation devel-
oped under vertical load.

3. Groups £ and F behave similarly -that is, battering the
center piles has a relatively small influence on the group
deflection.

In order to gain a better appreciation of the relative
merits of the six groups considered, a numerical example
has been taken in which L = 10 m,d = 04 m, £5 = 7000
kN/m?, ¥V = 1200 kN, H = 400 kN, and M = 600 kNm. The
resulting deflections and rotations for the center of the pile
cap, calculated from Egs. (9.15),(9.16), and (9.17) and the
coefficients in Table 9.4, are shown in Table 9.5. As might
be expected intuitively, group C is the least satisfactory.
Groups 4 and B behave quite similarly, and from an econo-
mical viewpoint, group B would give satisfactory perform-
ance, previded that vertical and lateral stability are
adequate.
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TABLE 9.5 COMPARISON OF GROUP PERFORMANCE
V = 1200 kN,H = 400kN,M = 600 kN m

L =10m d=04m Eg;= 7000 kN/m?
Group
Quan-
tity A B D ) E F
py (mm)* 16.8 18.5 27.4 22.1 18.9 19.4
pp (mm) 16.8 16.6 T 240 11.3 13.7 14.0
i 0.00436 0.00444 0.00497 0.00278 0.00312 0.00404

I¥or center of rigid pile cap.

TABLE 9.6 EFFECT OF BOUNDARY
CONDITIONS AT TOP OF PILE: GROUP A4 IN FIG. 9.15

Piles Rigidly
Attached to
Massive Cap-No

Piles Rigidly
Attached but Cap Piles Pinned

Coefficient Can Rotate to Cap Top Rotation
1% 0.0391 0.0396 0.0391
Ing 0.1006 0.1338 0.0906
Tnng = Igy 0.00453 -0.00220 0
Tom 0.00205 0.00345 0
TABLE 9.7 COMPARISON OF GROUP
WITH VARIOUS BOUNDARY CONDITIONS
V = 1200 kN,H = 400 kN,M = 600 kN/m
L =10m, d=04m, E;= 7000kN/m?
Piles Rigidly
Piles Rigidly Attached to
Attached but Cap Piles Pinned  Massive Cap—No
Quantity Can Rotate to Cap Top Rotation
pl,(mm)L7 16 .8 17.0 16.8
pp (mm) 16.8 18.0 13.0
0 0.00437 0.00384 0

a,. - .
For centér of cap.

9.4.3.5 EFFECT OF BOUNDARY CONDITIONS AT TOP OF
PILE

For group 4 in Fig. 9.15, the deflection and rotation coef-
ficients for the center of the pile cap for various boundary
conditions at the junction of the pile top and pile cap are
shown in Table 9.6. A larger horizontal deflection occurs if
the piles are pinned, but the presence of a massive cap ap-
pears to have relatively little influence. The vertical move-
ment caused by vertical load is unaffected by the boundary.
conditions. Considering the same numerical values as used
in Table 9.5, the resulting deflections and rotation are
shown in Table 9.7. Under this loading system, the lateral

deflection of the group with »ninned piles is larger than in
the first, but the rotation is less. The group with a massive
cap sustains the smallest movements.

9.5 COMPARISON OF METHODS OF PILE-GROUP
ANALYSIS

To compare the three methods of analysis described in this
chapter, two simple planar pile-groups have been analyzed.
As shown in Fig. 9.16, each zroup has three piles. In the
first, all piles are vertical, while in the second, the outer
piles are battered. In applying the equivalent-bent method,
the equivalent length of each member has been taken as the
mean of L.y and Lgyr (Table 9.1). A computer program
(Harrison, 1973) was used to evaluate the solution. For the
elastic continuum analysis, the single-pile vertical and hori-
zontal responses have been obtained from the theoretical
solutions in Chapters 5 and 8, while the corresponding
group effects have been determined from Chapters 6 and 8.
The piles are assumed to be rigidly attached to a rigid
cap in both cases. The loads, moments, and deflections
from each method of analysis are summarized in Table 9 8.
The main points of interest from this table are:

V= 600kN V=60CkKN
M=300kNm M =300 kNm
H = 200kN H = 200kN
13-2rpfi 3-2m remli1-2my
10m 1 2 3 1 2] 3 10m
J}.O4m _J19-4m
-~ u u . —
E.z 7000kPa IO 0
Ep= 21x 10%kPa
Group A Group B

FIGURE 9.16 Pile groups considered in comparison of methods.



TABLE 9.8 COMPARISON OF
METHODS OF GROUP ANALYSIS

Simple Equivalent-  Elastic
Statical Bent Continuum

Quantity Analysis Analysis Analysis
Group 4 V, (kN) 75 67.2 505

V, (kN) 200 200.0 163.4

Vy (kV) 325 3328 386.1

H, (kN) 66.7 66.6 759

H, kN) 66.7 ] 66.7 48.2

H, kN) 66.7 66.6 75.9

M, (kN m) 0 -6.2 -39.6

M, (kN m) 0 -6.2 =235

M, (kN m) 0 -6.2 -39.6

Oy, (mm) 17.5 14.8

pp (mm) 8.9 11.8

] 0.00581 0.002438
Group B V, (kN) 75 593 65.4

V, (kN) 200 200.3 174.8

V, kN) 325 3296 359.8

H, kN) 520 76.7 20.3

H, (kN) 52.0 755 26.3

H, &N) 52.0 478 1533

M, (kN m) 0 -43.3 ~-6.4

M, (kN m) 0 -26.9 -5.1

M, (kN m) 0 66.9 ~41.8

Fu, (mm) 16.4 129

pp (mm) 8.2 104

6 0.00490 0.00233

1. The vertical pile loads from the three methods are of
the same order, although the elastic continuum analysis
tends to predict a higher maximum load.

2. There is a considerable discrepancy between the
computed pile moments from the equivalent bent and
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elastic continuum analysis. The simple statical analysis
assumes zero moment in all piles. '

3. The equivalent-bent approach predicts a considerably
larger rotation than the elastic continuum analysis and a
slightly larger vertical deflection of the leading pile, but a
smaller horizontal deflection.

It should be noted that the computed rotation and hori-
zontal deflection in the equivalent-bent method are sensi-
tive to the equivalent length of the piles. For example, for
Group A, if the equivalent length was taken as Lgps (= 1.96
m) instead of the mean of Ly and Ley (X 2.24 m), the
vertical and horizontal deflections and rotation would be
16.8 mm, 6.7 mm, and 0.00521, compared with 17.5 mm,
8.9 mm; and 0.00581 in Table 9.8. On the other hand, if
Loy (=2.52 m) is used, the corresponding values are 18.2
mm, 11.4 mm, and 0.00639. The latter value of horizontal
deflection corresponds more closely to that from the elagtic
continuum analysis in this case.

A more detailed comparison of the computed deflec-
tion and rotation under the individual components of load
reveals that the vertical movements caused by vertical load
as given by the equivalent-bent method and the elastic
continuum method agree closely, but that the computed ro-
tation caused by both horizontal load and moment is consi-
derably greater in the equivalent-bent method. The equiva-
lent-bent method also gives a larger horizontal deflection
caused by moment, but a sraaller horizontal deflection
caused by horizontal load.

The above comparisons, therefore, highlight the dif-
ficulty of attempting to characterize a complex pile-soil
system by a structural frame. Because it is of a more ration-
al nature, the elastic continuum analysis should give more
reliable deflection predictions.



PILE-RAFT SYSTEMS

10.1 INTRODUCTION

In the design of the foundation for a large building on a
deep deposit of clay, it may be found that a raft founda-
tion would have an adequate factor of safety against ulti-
mate bearing-capacity failure, but that the settlements
would be excessive. Traditional practice (assumirig the addi-
tion of basements to produce a floating foundation is
unacceptable) would then be to pile the foundation, and to
choose the number of piles to give an adequate factor of
safety against individual pile failure, assuming the piles take
all the load. However, it is clearly illogical to desigrf the
piles on an ultimate-load basis when they have only been in-
troduced in order to reduce the settlement of an otherwise
satisfactory raft.

Pile-raft foundations have been successfully used in
Mexico City (Zeevaert, 1957) and more recently in London
(Hooper, 1973). In the latter case, the finiteelement meth-
od has been employed to analyze the behavior of the foun-
dation and compare it with the measured behavior. In a
method of designing a pile-raft system proposed by Davis
and Poulos (1972b), the number of piles required to re-
duce the settlement to the desired amount is determined
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without the need to resort to computer analysis. The Davis
and Poulos method of analysis and design will be described
in this chapter. Some alternative approaches to pile-raft
analysis will also be mentioned.

10.2 ANALYSIS

The basis of the analysis is similar to that employed for
freestanding groups (Chapter 6}, except now the basic unit
to be considered is a single piie with an attached circular
cap resting on the soil surface, instead of the previous unit
of a single freestanding pile. The interaction of pile-cap
units can be considered in a “ashion similar to that des-
cribed in Section 6.2 for freestanding piles. The settlement
interaction between two identical, equally-loaded units can
again be expressed in terms of an interaction factor, o,
where

_ Additional settlement caused by adjacent unit
Settlement of single unit

Qr

(10.1)

Curves relating «, to dimensionless pile spacing s/d are
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L
FIGURE 10.1 Interaction factors for pileraft units,—g: 10.

shown for various values of d./d (d, = cap diameter) in
Figs. 10.1, 10.2, and 10.3 for three values of L/d. In all
cases, vs = 0.5, the piles are incompressible (K = =}, the pile
cap is rigid, and the units are situated in a semi-infinite
mass. Interaction increases as d./d increases, but the effect
of d./d becomes smaller for larger L/d.

Corresponding curves for vg = 0 are shown in Fig. 10.4
for L/d = 25. A comparison between these curves and those
for vy = 0.5 shows that for d./d < 10, greater interaction

occurs for vy = 0 than for vg = 0.5, but that for d./d > 10,
v, has little influence on interaction.

The curves in Figs. 10.1 tc 10.4 may be used to analyze
piled foundations or pile-raft systems by considering them
to consist of several pile-cap units, each having an equiva-
lent value of d./d such that the area occupied by the unit is
the same as that occupied by a typical portion of the cap in
the group. For example, for @ square arrangement of piles
in the group,

s
d

L
FIGURE 10.2 Interaction factors for pile-raft units,; =25.
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equivalent d.fd = \/—:j sfd

It has been found that superposition can be applied to
symmetrical arrangements of pile<cap units in a similar fash-

(10.2)

If a system consists of a total of # units, the settlement
of a typical unit i is then given as

n
pi = 0| 2 @ary) + Py (10.3)

ion to the freestanding piles in Section 6.2. Therefore, it is =1
again reasonable to extend the use of superposition to the J#
analysis of any general configuration of pile<ap units com-
prising a pile-raft system. where
1-0
L - —
525
o sb V= (6] i
Values of dd_c
0-6f .
3
N
Qr \20 ~
04t IR .
~_ N\
N x +
0
o] 2 4 [ 8 10
01 008 006 0 04 002 o]

3
d

FIGURE 10.4 Interaction factors for pileraft units, vg = 0,
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ayj = the value of a,, for the equivalent value of d./d
of unit j, corresponding to the spacing between
units / and j

= load on unit

= the settlement of a single pile-cap unit under
unit load

T

From Section 5.3.2, 7, can be expressed as

B = Reepy (10.4)
where

p, = settlement of freestanding pile under unit load

R, = ratio of settlement of pile<cap unit to settlement

of freestanding pile (Fig. §.31)

As before, n equations may be obtained from Eq.
(10.3) for the n piles in the group; together with the equi-
librium equation

n
PG = O P (10.5)
Jj=1

they may be solved for two limiting cases:

1. Equal displacement of each umit (corresponding to a
rigid raft).
2. Equal load (or known loads) on each unit.

This latter case approximates the case of a uniformly-
loaded, perfectly-flexible raft. However, it must be borne in
mind that each pile-cap unit displaces vertically as a rigid
unit, so the displacement of adjacent units will not in gen-
eral be compatible. Thus, instead of continuously varying,
the displacement varies in “steps” from one unit to the
next. Hence, the use of the case of equal load in each unit
can at best only be an approximation. This approximation
will become more satisfactory as the pile spacing decreases.

The results of such an analysis may then be expressed
either in terms of a settlement ratio ﬁs, where

~ _ _ Average settlement of system
Rs = Settlement of single unit carrying (106)

same average load

or

5 _ __ Average settlement of system
“ * Settlement of single unit carrying
same total load

(10.7)
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These are related as

Rs = nRg {10.8)
For practical use, since pile tests are normally carried out
on a single freestanding pile, it may be more convenient to
gxpress the settlements in terms of the settlement of a sin-
gle freestanding pile—that is, :n terms of Rg and Rg (Sec-
tion 6.2). Thus, '

Rs = Rq*Rg (10.9)
and

Rg = R, -EG ' (10.10)
The settlement, p, of the system is thus given by

p = Rg -%G_-pl (10.11)
or

p =RgPg+p; (10.12)

For immediate settlements, p, is the immediate settle-
ment, per unit load, of a single pile at the average load of
a pile in the group; and for total final settlements, p, is the
corresponding total final settlement per unit load.

10.3 ELASTIC SOLUTIONS FOR SQUARE GROUPS

Values of the group reduction factor R are plotted against
dimensionless group breadth B/d in Figs. 105, 10.6, and
to 10.7 for 22, 3% 42 and 5” groups for a rigid raft and for
vg = 0.50. The piles are incompressible and are embedded in
a semi-infinite mass. Also shown are the values of Ry for
the rigid raft only and for a rigid block (corresponding to
an infinite number of piles).

For a given group breadth, R¢; decreases as the number
of piles increases. For large breadths, the effect of the
number of piles becomes small, especially for piles having
small L/d. As L/d increases, the influence of the number of
piles becomes more marked and extends over a wider range
of breadth.

A comparison between the values of R for a 32 free-
standing group and for a 3* pile-raft system is shown in
Fig. 10.8. At relatively close spacings, R¢ is almost the
same for both cases, indicating that the pile cap or raft
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FIGURE 10.7 R vs. breadth, rigid raft, = 100.

has virtually no influence on the settlement of the piles.
As the spacing increases, the effect of the raft becomes
more pronounced. The spacing, s/d, at which the raft
begins to influence the settlement, increases as L/d in-
creases and also as the number of piles in the group in-
creases.

Typical curves of R versus B/d for the case of uniform
loading are shown in Fig. 10.9 for the center of the system
and in Fig. 10.10 for the corner. For the center, there
appears to be a single mean curve for all groups between
2% and 62. For the corner, R decreases as the number of
piles increases, up to a 6% group. Thus, at least up to a
62 group, the differential settlement will tend to increase
as the number of piles increases.

As previously mentioned, the curves in Figs. 10.9 and
10.10 provide an approximate means of considering a per-
fectly flexible raft only for systems in which the pile
spacing is not excessive or the number of piles too small.
The general case of a raft of any flexibility could also be
considered approximately by means of the interaction
analysis described herein, but a more satisfactory analysis
requires a new approach involving consideration of the
overall action of the raft (see Section 10.5).
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FIGURE 10.8 Comparisons between settlement of freestanding
group and pile-raft system.
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10.3.1 Influerice of Poisson’s ratio, v,.

The influence of vg on R¢ is shown in Fig. 10.11, in which
for I/d = 25 and 100, the ratio of R for vy =0 (Rgq) to
R¢ forvg=0.5 (Rgos) is plotted against group breadth for
various rigid square systems. Rgq is generally greater than
Rgos, the difference being greatest for the raft only and
least for the rigid block. It has been found that the varia-
tion of R¢ with vy is reasonably linear, so that the values of
Rgo/Rgos in Fig. 10.11 may be used to interpolate linearly
for other values of v;. Thus, for any value of g, the values
of R, may be estimated as

Ry (Rco ' > ( v >
- =1+ - 1 -5
Rgos Rgos ! 05

(10.13)
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For the given group breadth and value of L/d, the value
of Rgo/RGos may be interpolated from Fig. 10.11, and Eq.
(10.13) then used to estimate the required value of R¢,,.

The use of the above approximation will be described
subsequently in relation to the calculation of consolidation
settlements of the system.

10.3.2 Influence of Pile Arrangement

The foregoing solutions have only applied to square groups
of piles. Solutions have also been obtained for rectangular
groups having different numbers of piles in the two direc-
tions. It has been found that the settlement of a system de-
pends primarily on the number of piles in the group, and
not on the arrangement of the piles. A typical example
showing the group-reduction factor R for vg = 0.5 plotted
against the number of piles is shown in Fig. 10.12 for a
spacing of 8.86d. It will be seen that, apart from groups
containing small numbers of piles, Rg is almost indepen-
dent of the arrangement of the piles. For small numbers of
piles {e.g., four), less settlement occurs if the piles are
placed in a row (i.e., 4 X 1) than if a square group (27) is
used.

10.3.3 Systems Containing Large Numbers of Piles

For large systems containing a considerable number of
piles, the value of B/d may be very large and that of R¢
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very small, so that the use of the curves in Figs. 10.5,10.6,

and 10.7 may lead to inaccurate answers. It is then con-
venient to consider the piles as a number of small groups of

piles within the system and to replace each small group by
an equivalent single pile or pier. This equivalent pile should
have the same area as the gross plan area of the small group
and an equivalent length L,/L (see Fig. 6.31). The system
is thus replaced by a smaller number of shorter, larger-
diameter piles. As an example, a system 40-ft square com-
prising an 8 X 8 group of 1-{ft-diameter, 100-ft-long piles,
each spaced at 5 ft, may be replaced by a system of 4 X 4

piles, each of equivalent diameter d, = 5\/%—= 5.65 ft, and

now at a spacing of 10 ft. From Fig. 6.31, the equivalent
length of each pile is (for L/d = 100 and s/d = 5), L, =
0.921. = 92 ft. Thus, the reference pile for the equivalent
system is one having L, = 92 ft and d, = 5.65 ft, or L,/d, =
16.3. In terms of this reference pile, the group breadth is
now 40/5.65 = 7.1 diameters, rather than the original
group breadth of 40 diameters.

[t has been found that the settlement of the system cal-
culated for this equivalent system agrees with that of the
original system to within about 2%.

10.3.4 Effect of Pile Compressibility and Raft Flexibility

1t is obvious that finite compressibility of the piles in a
pile-raft system will lead to increased settlement as com-
pared with the case of rigid piles.

For a rigid raft, the previous solutions for a rigid pile
may be utilized approximately for piles of finite compres-
sibility by considering the compressible piles to be rigid
piles of an equivalent length such that the settlement of the
pile heads are equal. This equivalent length may be deter-
mined from the parametric solutions for a single pile given
in Chapter 5.

No extensive parametric studies of the effects of raft
flexibility or pile compressibility have yet been made. How-
ever, some indication of these effects may be inferred from
results of elastic solutions for a piled strip obtained by
Wiesrier and Brown (1975) and Brown and Wiesner (1975).
In the case of a long strip with a single pile, the width of
the strip being 5 pile-diameters and the pile length 50 dia-
meters, solutions for the ratio of the settlement of pile and
strip to settlement of strip only are given in Fig. 10.13.
These solutions depend on the pile-stiffness factor, K =
FEpR4/E,, and a dimensionless strip-flexibility factor, F, =
EdEd?, where £, [, is the raft stiffness, £ is Young’s
modulus of soil, and d is pile dia.neter. Figure 10.13 shows
that the effect of pile compressibility becomes more pro-
nounced as the raft stiffness (i.e., the factor F,) decreases.
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FIGURE 10.13 Effect of strip flexibility and pile compressibilit
on settlement (Wiesner and Brown, 1975).

|

L/d=50
vg =05

100 T T T T T T T
Values of Pile Stiffness

Factor K

80 10000

O

60

40

20

Percentage of Load Taken by Pile

o1 1 10 10
Strip Flexibiiity Factor Fp=EI./E d?
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The use of even a very compressible pile beneath the very
flexible strip (F,=10) causes a significant settlement-
reduction as compared with the case of a strip only, and the
use of an almost rigid pile reduces the settiement by almost
75%.

However, for a stiff strip (F, = 10%), compressible piles
have virtually no influence on settlement, and even a rigid
pile only reduces settlement by less than 20%.

The percentage £; of the applied load taken by the
pile beneath the strip of 5-diameter width is plotted in Fig.
10.14. This percentage decreases as the piles become more
compressible or the strip becomes more rigid. For other
values of strip width b, the percentage of load &, is given
approximately by

Eb = E:’, - 23 logm (b/Sd) (10v14)
i g o
P W (P (P |P
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FIGURE 10.15 Typical solutions for strip with five piles (Wiesner
and Brown, 1975).
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A further example of the effect of strip flexibility is
shown in Fig. 10.15 for a szrip with five piles, and equal
concentrated loads above each pile. Distributions of dimen-
sionless contact pressure, settlement, and bending moment
in the strip are given for three values of strip stiffness.
The strip and pile lengths are 50 pile diameters, and the
strip width is 5 diameters. Figure 10.15 shows that as the
strip flexibility decreases, the contact pressures near the
piles decrease while the settlernents near the piles increase,
The magnitude of the bending moments increases as the
strip becomes stiffer.

Although the results presented in Figs. 10.13, 10.14,
and to 10.15 are only indicztive, they may be useful in
suggesting orders of correction to be applied to the solu-
tions for a rigid raft and rigid piles.

10.4 SIMPLIFIED ANALYSIS FOR LOAD-
SETTLEMENT CURVE TO FAILURE

A simplified method of obtaining the load-settlement curve
to failure for a piled foundation or pile-raft system has been
described by Davis and Poulos (1972b). The method is
similar in principle to that zmployed for large-diameter
piles in Section 5.4, and assumes that for loading under un-
drained conditions, purely elastic conditions prevail up to
the load at which the piles would fail if no cap were pre-
sent. Thereafter, it is assumed that any additional load is
taken entirely by the raft or cap and that the additional
settlement of the system is then given by the settlement of
the raft only. Thus, referring to Fig. 10.16, the undrained
load-settlement curve of the pile-raft system consists of
two linear sections:

P —————— === U B
e
Paf—————> ¢
Load I
Pa F—~7A
; I !
|
o
|
L
|
L |
@] Sa Sw

Undrained or Immediate Settlement

FIGURE 10.16 Simplified approach for calculation of undrained
{oad-settlement curves.
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1. The line 04, from zero load to the ultimate load P4 of
the piles alone, the settlement being calculated from Eq.
(10.11) or Eq. (10.12).

2. The line AB, from the load P4 to the tltimate load Pg
of the whole system (piles plus raft), the settlement being
calculated from the equation for the settlement of the
raft acting alone without the piles. For example, for a
square rigid raft B X B with m piles, the overall undrained
settlernent at a working load Py, is given by ’

0947 (P,,-P4)1-v3)

Pw ~ PARGO.Spl + BEu (1015)

where the first term represents the settlement of the pile-
raft system, calculated on an elastic basis for vy = 0.5, and
the second term represents the settlement of the raft acting
alone. This second term will only be operative if P, > P4,
that is, if the failure load of the piles is exceeded.

It should be emphasized that the above basis of cal-
culating the ultimate load Pg of the system as the sum of
the capacities of the piles and the raft is only valid where
relatively few piles are added to the cap or raft (i.e., where
the pile-cap units are sufficiently widely-spaced to act
- individually). If the pile spacing is sufficiently close for
block failure to occur rather than individual-unit failure,
the ultimate load of the group should be calculated on this
basis. 1t should also be mentioned that the simplified
approach discussed above does not consider the effects of
local slip along the piles or of local yield of the cap as the
load increases toward failure.

In calculating consolidation settlements, it is again
assumed that the consolidation process is not affected by
any local yielding occurring under undrained conditions, so
that the consolidation settlement, pcy, is

PCF = PTFe = Pie (10.16)

where prpe, pe are the total-final and immediate settle-
ments of the system from a purely elastic analysis. The

above procedure will yicld the correct value of pcp for the

limiting cases of the raft only and of the rigid block and for
those systems in which the failure load of the piles is not
reached. It is therefore reasonable to assume that it will
give satisfactory results for other cases involving piles that
have slipped.

At the working load P,

Prre = PuwRgy p1TF (10.17)
and

Pie = PuRgosp1i (10.18)

Regos = the elastic value of R for the pile-raft system
forvy=v, =05
Rg, = the elastic value of R for vg = vg
pirF = total final settlement of a single pile under
unit load
p1; = immediate settlement of a single pile under

unit load

~ocr = Puw(Reypirr - Reosei) (10.19)
Both pj7z and py; may be obtained either from a pile-
loading test (the settlement per unit-load, at the working
load) or from the theoretical relationships described in
Chapter 5.

The total final settlement of the system is then the sum
of the immediate settlement (taking account of possible
pile slip) and pcF, or

071(P,-P
prr = PaRgGospl t+ (L_gj t+
BE,

(10.20)
P,(RgyP1iTF — RGose1i)

The value of R¢;,y may be estimated from Eq. (10.13).
If only a few piles are add:d to the raft or cap, the
failure Joad of these piles may well be far exceeded at the
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FIGURE 10.17 Concept of pile-raft system.



working load of the whole system. Despite the fact®that
these piles may have failed, they are nevertheless effective
in reducing the settlement of the system, as is shown dia-
grammatically in Fig. 10.17. The validity of the above
approach is dependent on, among other factors, the raft
maintaining contact with the underlying soil. It is con-
ceivable that with a relatively large number of piles, and
with relatively soft clay directly beneath the raft, the raft
could be “held up” by the piles because of the effects of
negative friction and lose contact with the soil, thus effec-
tively reducing the system to a freestanding group. This
situation will probably only occur when the piles are suf-
ficiently closely-spaced to act as a block, in which case the
raft would be ineffective, even if contact were maintained.
However, where only a small number of piles are present
in the system, and these piles are overloaded at the working
load of the system, continuous contact between the raft
and soil should be maintained. This latter case is the one
being primarily considered here.

The use of the simplified approach described above is
demonstrated in the example of the design of a pile-raft
system, given below.

Hllustrative Example

The case of a square, rigid raft 50 ft on a side, resting on a

deep deposit of soft clay, will be considered. The total
- working load on the raft is 3500 tons. The relevant average

parameters of the clay are as follows: '

¢, = 0.69 tons/ft?
¢y =0

E, = 70 tons/ft?
£ = 63 tons/ft?

!

v = 0235

It is specified that the maximum total final settlement
of the raft must not exceed 6 in.

The problem is to investigate the adequacy of the raft
alone, both in regard to ultimate bearing-capacity and set-
tlement; and if the raft alone is found to be inadequate, to
determine the number of piles that must be added to the
raft to satisfy design requirements.

Considering first the ultimate bearing-capacity of the
raft alone, and considering undrained conditions: the
average ultimate pressure is q, = 5.69¢, (Cox, Eason, and
Hopkins; 1961). Therefore,

P, = B%q, = 2500 X 5.69 X 0.69
= 9830 toi.-

This gives a factor of safety against undrained bearing-

. 9830
ity fail f—]:—' . ich i .
capacity failure of 5= 2.81, which is adequate
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Considering now the settlement of the raft alone. For
a rigid, square raft on a semi-infinite mass,

P (1-~v§):]
=, 4 —_— —_
p 9 73[ 7

Considering the total final settlement under the working
load of 3500 tons,

3500 o (1 - 0.35%)
pre = 947 X =5= X ——3

0.925 ft

t

This settlement is excessive, and hence piles must be
added to the raft to reduce the settlement.

Calculations will be detailed for 1-ft diameter, 100-ft-
long piles. Results for other types of piles will be sum-
marized.

Immediate Settlements

Considering undrained conditions first: The bearing ca-
pacity of a single pile, assuming (possibly rather conserva-
tively) that c,/c, = 2/3, is found to be 145.5. tons. The
undrained settlement of a single pile under unit load is

“(from Eq. 5.33)

I

Pi1i = Eu

For this case, L/d = 100 and [ = 0.0254 for vg = 0.5. There-
fore,

p1;i = 0.000354 ft/ton

Thus, from Eq. (10.15), the immediate settlement ot
the pile-raft system may be written as

p; = 0.000354RcosP4 + [0.000203 (3500-P4)] ft

The calculation of p; for various numbers of piles is shown
in Table 10.1. The values of K ;g5 are obtained from Fig.
10.7 for L/d = 100 and for B/d = 50/1 = 50.

Consolidation Settlements _
These are calculated as the difference between the elastic
values of p; and prg for the svstem: The total final settle-
ment of a single pile under unit load is

I
Pitr = E;

For L/d = 100 and for vg = 0.35, I is found to be 0.0242.
Hence,

P\TF = 0.000384 ft/tOIl

From the previous calculations,
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FIGURE 10.18 Immediate settlement vs. number of piles—illustra-
tive example. ’

£:i = 000354 ft/ton
Therefore, from Eq. (10.19),

por = 3500 X (R;,0.000384- R ;0 50.000354)
= 1.343 RGV - 1.240RG0.5“

Values of peop are shown in Table 10.1, together with the
total settlement (p; + pcp).

The variation of p; and pgp with the number of piles
in the system is shown in Figs. 10.18 and 10.19. It will be
seen that in order to satisfy the specified settlement crite-
rion, only 16 of the 1-ft-diameter, 100-ft-long piles are
requirecd. The undrained bearing-capacity of this system is
12,100 tons. The traditional design procedure, which deter-
mines the number of piles solely on the basis of ultimate
bearing-capacity with no allowance made for the raft, gives
the required number of piles as 68 (to give the same load
capacity as the raft, i.e., 9830 tons). Thus, a very consider-
able economy in design is effected. Furthermore, the use of
68 piles rather than 16 leads to a further reduction in settle-
ment of only 0.1 ft.

(O~}

08 251t piles, 11t dia. p

04r \ 4

FIGURE 10.19 Total-final settlement vs. number of piles—illustra-
tive example.

Also shown in Figs. 10.18 and 10.19 are the relation-
ships between settlement and number of piles for two
other, different types of piles. It is notable that the shorter
50-ft piles, even though they are of larger diameter, are not
as efficient in reducing settlement as the I-ft-diameter, 100-
ft-long piles. The settlement criterion cannot be satisfied by
using 1-ft-diameter, 25-ft-long piles, regardless of the num-
ber used. It is interesting to note that for such piles, the
normal design procedure would require the use of 246
such piles to satisfy bearing-capacity requirements.

10.5 OTHER ANALYTICAL APPROACHES

In addition to the method described in detail in this chap-
ter, a number of alternative approaches to analyzing pile-
raft systems can be contemplated. Those described by
Brown et al. (1975) are listed below:

1. Strip-superposition method, in which solutions for
pilesstrip footings (Brown and Wiesner, 1975) are super-
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TABLE 10.1
No. of Load Capacity Rgo.s Ay Rgo RGo.35 Rey, 35 PCE PTF
Piles of Piles (from (fr) Rgo s Rgos (Eq. (¢2)]
P4 (Tons) Fig. (from (Eq. 10.19)
Fig. 10.13) )
10.7) 10.11)
0 0 0.710 0.215 0.925
1 145.5 0.474 0.704 1.39 1.12 0.530 0.126 0.830
4 291 0.373 0.689 1.24 1.07 0.399 0.074 0.763
9 1310 0.338 0.602 1.24 1.07 0.362 0.067 0.669
16 2330 0.325 0.429 1.24 1.07 0.348 0.065 0.494
25 3640 : 0.310 0.384 1.24 1.07 0.332 0.062 0.446
36 52490 0.295 0.366 1.24 1.07 0.316 0.059 0.425
49 7130 0.285 0.353 1.23 1.07 0.305 0.057 0.410
64 9310 0.275 0.341 1.23 1.07 0.294 0.054 0.395
= (block) 28,400 0.247 0.306 1.20 1.06 0.262 0.049 0.355

posed to obtain the settlement of the raft. This method
does not require the use of a computer but is limited to
giving settlements only.

2. “Plate on springs” analysis, in which the raft is analyzed
as a plate using the finite-element method, with the piles
being replaced by springs located at appropriate nodes. The
stiffness of these springs can be estimated from the elastic
solutions for a pile (allowing for interaction effects) or
from the pile-raft analysis described earlier in this chapter.

3. “Plate on springs and continuum’ method. Here the
raft is again treated as a plate and the piles are replaced by
springs, as in the method above; but in addition, the soil is
treated as an elastic continuum as far as support to the
raft itself is concerned.

4. “Plate on piles and continum” method. This approach
has been described by Hain (1975). It gives a closer repre-
sentation of the real problem by treating the pile as in the
normal pile-settlement analysis (Chapter 5), the raft as a
plate, and the soil as an elastic continuum. Interaction
among the piles, raft, and soil is then taken into account in
a logical manner. Hain and Lee (1978) have used this ana-
lysis to successfully predict the load and settlement distri-
bution for two pile-raft systems, one in Mexico City (the
La Azteca building) and the other in London (Hyde Park
Cavalry Barracks).

5. Simplified finite-element analyses; Hooper (1973) and
Desai, Johnson, and Hargett (1974) have described finite-
element analyses of piled-foundation problems in which the
foundation, the piles, and the soil are represented by finite
elements, without performing a full three-dimensional
analysis. The case Hooper described was approximately

axially-symmetric, and each concentric ring of piles was

simulted by a continuous annulus with an overall stiffness
equal to the sum of the stiffnesses of the individual piles. -
The treatment used by Desai 2t al. was similar, exce  that

- rows of piles were simulated by a continuous strip. .vhile
such approaches offer flexibility in being capable of taking
into account such factors as soil inhomogeneity, they
suffer from the fact that a considerable volume of data
is required, and there will be difficulties in choosing an
appropriate stiffness for the ring or strip simulating the
piles, and in dealing with pile slip.

These last four approaches require the use of a com-
puter but have the advantage that distributions of settle-
ment, pile load, and raft-bending moment can be obtained.

The results of analyses based on five methods (the first
four approaches, 1 to 4, above, plus the method described
in detail in this chapter) were compared by Brown et al.
(1975). They analyzed two relatively simple problems, one
involving concentrated loads acting at the location of the
piles, and the other being a raft-pile system subjected to
uniform loading over the whole area; in each case, both
a stiff raft and ‘a relatively flexible raft were considered.
The plate-on-piles and continaum method (4 above) was
assumed to give the reference solutions, as it involved the
least approximation. From the point of view of settlement,
the most satisfactory of the other four methods was found
to be the elastic-based analysis described in this chapter.
The method of strip superpesition overestimated settle-
memts, while the plate-on-spriags and continuum method
consistently underestimated settlement, presumably be-
cause it ignores the downward movenient of the continuum
arising from the settlement of the piles. The settlements
given by the plate-on-springs method were generally too
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large, although the error depended on the basis adopted for
the se_ection of spring stiffnesses.

From the point of view of bending moments in the raft,
none of the simple methods gave accurate results when
compared with the values from the plate-on-piles and con-
tinuurn analysis. (It should be noted that the method of
this chapter does not predict bending moments in the raft.)

In summary, if only the settlement of the pile-raft
system is required, the elastic-based