
Monographs in Computer Science

Editors

David Gries
Fred B. Schneider

Advisory Board
F.L. Bauer

S.D. Brookes
C.E. Leiserson

M. Sipser

Janusz A. Brzozowski
Carl-Johan H. Seger

Asynchronous Circuits

With 212 Figures

With a Foreword by Charles E. Molnar

Springer-Verlag
New York Berlin Heidelberg London Paris

Tokyo Hong Kong Barcelona Budapest

Janusz A. Brzozowski
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

Series Editors:
David Gries
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Carl.Johan H. Seger
Department of Computer Science
University of British Columbia
Vancouver, British Columbia V6T 1Z4
CANADA

Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Library of Congress Cataloging·in·Publication Data
Brzozowski, Janusz A.

Asynchronous circuits I Janusz A. Brzozowski, Carl.Johan H. Seger.
p. cm. - (Monographs in computer science)

Includes bibliographical references and index.
ISBN-13: 978-1-4612-8698-1
1. Asynchronous circuits. I. Seger, Carl.Johan H. II. Title.

III. Series.
TK7868.A79B79 1994
621.39' 5-dc20 9442873

Printed on acid·free paper.

© 1995 Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 1 st Edition 1995

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer·Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or here
after developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Production managed by Natalie Johnson; manufacturing supervised by Genieve Shaw.
Photocomposed using the authors' LaTEX files.

987654321

ISBN-13: 978-1-4612-8698-1 e-ISBN: 978-1-4612-4210-9

DOl: 10.1007/978-1-4612-4210-9

To Graiyna and Sheila

Foreword

The dramatic surge of academic and industrial interest in asynchronous
design over the past decade has engaged workers with diverse talents using
ideas from disciplines such as programming theory, process algebras, ad
vanced silicon technology, system theory, and classical digital circuit theory.
Spanning these ideas presents a serious difficulty to those new to the area,
and to those more experienced workers who wish to broaden the ideas and
skills that they can bring to bear on the many difficult problems that need
to be solved if asynchronous circuits are to become a major new frontier of
computer design.

Brzozowski and Seger have made a Herculean effort to collect and orga
nize a uniquely broad yet thorough and rigorous collection of basic ideas,
mathematical models, and techniques within a consistent analytical theme.
Their approach, while rooted in classical switching theory, begins by ex
posing and explaining the limitations and inadequacies of classical methods
in the face of modern design needs, and extends and refines the classical
approaches using modern concepts and models drawn from other areas.
A major strength of their treatment is that it provides a firm foundation
for understanding the behavior of asynchronous circuits from the bottom
up, rather than focusing on a narrower approach to the specification and
synthesis of particular classes of circuits. In this sense this book is comple
mentary to other recent treatments; thus its message seems likely to prove
enduring as design methods and styles rapidly evolve.

Charles E. Molnar
Washington University

St. Louis, Missouri, USA

Preface
An asynchronous circuit is a digital circuit in which each component reacts
to changes on its inputs as these changes arrive, and produces changes
on its outputs when it concludes its computation. In essence, all digital
circuits can be viewed as being asynchronous. A "synchronous" circuit is
simply one designed according to special design rules and operated under
special assumptions about its environment. In particular, in a synchronous
circuit one or more signals are designated as "clocks." The structure of a
synchronous circuit must be such that every closed path contains a "state
holding" element (latch or flip-flop) controlled by the clock; thus the circuit
consists of combinational circuits alternating with state-holding elements.
Restrictions are placed on the circuit inputs, including the clocks, and on
the delays of the combinational parts. For example, the combinational logic
must be stable for some time (the "setup" time) before a clock change, and
for some time (the "hold" time) after the clock change. Not surprisingly,
these severe restrictions make synchronous circuits easy to understand and
to design. It should be noted, however, that a synchronous circuit operating
in an environment that violates some of the design assumptions must be
treated as asynchronous.

Although asynchronous circuits date back to the early 1950s, most of the
digital circuits in use today are synchronous, except for some small asyn
chronous interface parts. Traditionally, asynchronous circuits have been
viewed as difficult to understand and design. Consequently, the design of
interface circuits has become almost an art, learned on the job through
trial and error.

Recently, there has been a great surge of interest in asynchronous circuits.
This interest stems partly from an increase in (asynchronous) communica
tion activity in digital circuits, and partly from a desire to achieve higher
performance with lower energy consumption and design cost. Also, the de
velopment of several new asynchronous design methodologies has made the
design of much larger and more complex circuits possible.

Asynchronous design presents a serious challenge to the designer. On the
one hand, it has (among other advantages) the following potential benefits: l

• Increased speed: Each computation is completed in the time needed
for that particular computation, and not for the worst case .

• Reduced power consumption: In synchronous circuits, clock lines

1 A comprehensive discussion of the pros and cons of asynchronous design is
given in Chapter 15.

x Preface

have to be toggled and circuit nodes have to be precharged and dis
charged, even in parts unused in the current computation. Transitions
in asynchronous circuits need occur only in parts involved in the cur
rent computation.

• Manageability of metastable phenomena: Elements that guar
antee mutual exclusion or synchronize external signals with a clock
are subject to metastability-an unstable equilibrium in which a cir
cuit can remain for an unbounded amount of time. Since all the el
ements in synchronous circuits must have bounded response times,
occasional failures caused by metastability are unavoidable. Asyn
chronous circuits can wait until the mutual exclusion element leaves
the metastable state.

On the other hand, the potential advantages above have remained by and
large potential. Asynchronous circuits are more difficult to design in an ad
hoc fashion than are synchronous circuits. Asynchronous communication
protocols increase the computation time, and involve additional circuitry.
The existing computer-aided design tools and implementation alternatives
available for synchronous circuits either cannot be used at all in asyn
chronous design or require extensive modifications.

Recently, the above-mentioned state of affairs has begun to change with
the development of new synthesis approaches that make design of asyn
chronous circuits less of an art and more of an algorithm. Also significant
new insight has been gained into the theory of asynchronous circuits. In
view of these developments, there is considerable reason for optimism that
asynchronous design will be able to achieve many of its potential advan
tages.

This book provides a comprehensive theory of asynchronous circuits, in
cluding modeling, analysis, simulation, specification, verification, and an
introduction to design. It is intended as a reference for computer scientists
and engineers involved in research and development of asynchronous de
signs. It is also suitable as a text for a graduate course in asynchronous cir
cuits, and has been used in courses at the Universities of British Columbia,
Waterloo, and Western Ontario. Except for requiring some mathemati
cal maturity and some basic knowledge of logic design, the book is self
contained.

The book is organized as follows: After an introductory first chapter
intended to motivate the reader to study asynchronous phenomena, we
give some mathematical background material in Chapter 2. Because delays
playa crucial role in digital circuits, they are discussed next, in Chapter 3.
Chapter 4 reviews the basic properties of gate circuits and describes our
mathematical model of gate circuits, along with several "network" models
used for deriving circuit behaviors. MOS transistor circuits are treated in a
similar way in Chapter 5, where several switch-level models are described.

Preface xi

Chapter 6 contains a formalization of the classical binary analysis meth
ods used to detect races and hazards in digital circuits. These methods are
based on the assumption that component delays are inertial and bounded
only from above. Chapter 7 describes ternary simulation, which efficiently
provides some of the results of binary analysis. Chapter 8 presents analy
sis methods based on the realistic assumption that component delays are
bounded from below as well as from above. The computational complexity
of various analysis methods is discussed in Chapter 9. Chapter 10 provides
the background material on finite automata and regular languages that
is necessary for the specification of asynchronous behaviors. Mathematical
definitions of specifications and implementations of asynchronous behaviors
are discussed in Chapters 11 and 12. Chapter 13 discusses the limitations of
the models that use delays bounded only from above. Chapter 14 describes
symbolic methods, which provide efficient analysis and verification tools for
asynchronous circuits. Finally, Chapter 15 contains a comprehensive survey
of asynchronous design methods.

Much of the material in this book has appeared previously only in tech
nical journals, conferences, or theses, but has not been treated in a coherent
formalism in any book. Moreover, several results have never been published
before, having been developed especially for this book.

Acknowledgments

The authors wish to express their gratitude to many people whose support
made this book possible and whose comments led to significant improve
ments.

To begin with, we thank Martin Rem for suggesting that this material
deserved to be presented in the form of a book, and Grzegorz Rosenberg
for encouraging us to write a survey article on this topic for the Bulletin
of the European Association for Theoretical Computer Science. Without
these encouragements, we would not have undertaken this task.

We sincerely thank Scott Hauck for permitting us to use his survey pa
per [59] as a basis for Chapter 15. Although we have considerably modified
the survey in order to incorporate it into our book, we found it very con
venient to have a single source with an overview of many papers on asyn
chronous design. We also thank Scott for useful comments on our adapta
tion of his paper.

A number of people provided technical criticisms of early versions of the
book. Among them, Charles Molnar has played a very major role. He has
provided us with insightful, constructive comments that helped us to solve a
number of technical, stylistic, and notational problems. We are most grate
ful for his very professional advice, and for his continued interest in our
work. We thank Jo Ebergen for his contributions to, among other things,
the technical development of network models and a better definition of

xii Preface

"outcome" of a transition, and for his numerous suggestions for improve
ments. We acknowledge many fruitful discussions regarding symbolic verifi
cation techniques and symbolic timing analysis with Mark Greenstreet. We
are indebted to Tom Verhoef! for detailed technical comments concerning
our model of asynchronous behaviors.

We thank Helmut Jurgensen for his comments on several chapters. We
also thank Bill Coates, Luigi Logrippo, Huub Schols, and Michael Yoeli for
their comments on our work on behaviors, and Steve Burns and Ting Fang
for comments on Chapter 15.

We wish to express our gratitude to several graduate students from the
Maveric Group at the University of Waterloo and from the Integrated Sys
tems Design Laboratory at the University of British Columbia. Radu Neg
ulescu made valuable technical contributions to a number of problems, es
pecially those regarding Chapter 11, as well as providing useful comments
on motivation, style, and presentation. Robert Black contributed extensive
improvements to the book, and corrected many errors. Sylvain Gingras
provided much of the material on the analysis of networks using the ideal
delay model. Igor Benko, Robert Berks, Robert Black, Radu Negulescu,
and Richard C.-J. Shi frequently acted as a critical audience when the first
author presented early versions of new definitions and results. Scott Hazel
hurst and Andrew Martin served as constructive readers as well as critical
sounding boards for many of the original ideas of Chapter 14.

The second author would like to acknowledge the stimulating, and of
ten challenging, work environment provided by the faculty and students
in the Integrated Systems Design Laboratory at the University of British
Columbia.

The authors gratefully acknowledge the financial support of the research
related to this book provided by a grant from the Information Technology
Research Centre of Ontario, a fellowship from the British Columbia Ad
vanced Systems Institute, and grants OGP0000871 and OGP0109688 from
the Natural Sciences and Engineering Research Council of Canada.

J. A. Brzozowski
Waterloo, Ontario, Canada

C-J. H. Seger
Vancouver, British Columbia, Canada

Contents
Foreword

Preface

1 Introductory Examples
1.1 Logic Gates
1.2 Performance Estimation
1.3 RS Flip-Flop
1.4 Dynamic CMOS Logic
1.5 Divide-by-2 Counter
1.6 Summary.......

2 Mathematical Background
2.1 Sets and Relations
2.2
2.3
2.4

Boolean Algebra
Ternary Algebra
Directed Graphs

3 Delay Models
3.1 Environment Modes
3.2 Gates with Delays
3.3 Ideal Delays . .
3.4 Inertial Delays

4 Gate Circuits
4.1 Properties of Gates
4.2 Classes of Gate Circuits
4.3 The Circuit Graph . . .
4.4 Network Models.
4.5 Models of More Complex Gates

5 CMOS Transistor Circuits
5.1 CMOS Cells
5.2 Combinational CMOS Circuits
5.3 General CMOS Circuits ..
5.4 Node Excitation Functions.
5.5 Path Strength Models . . .
5.6 Capacitance Effects
5.7 Network Model of CMOS Circuits

vii

ix

1
2
3
8

10
16
21

23
23
25
28
32

35
35
36
38
40

45
45
47
50
53
57

61
61
67
69
71
73
75
79

xiv Contents

6 Up-Bounded-Delay Race Models
6.1 The General Multiple-Winner Model
6.2 GMW Analysis and urN Delays ...
6.3 The Outcome in GMW Analysis ..
6.4 Stable States and Feedback-State Networks
6.5 GMW Analysis and Network Models
6.6 The Extended GMW Model
6.7 Single-Winner Race Models
6.8 Up-Bounded Ideal Delays .
6.9 Proofs

6.9.1 Proofs for Section 6.2
6.9.2 Proofs for Section 6.3

7 Ternary Simulation
7.1 Introductory Examples.
7.2 Algorithm A
7.3 Algorithm B
7.4 Feedback-Delay Models
7.5 Hazards

7.5.1 Static Hazards .
7.5.2 Dynamic Hazards.

7.6 Ternary Simulation and the GSW Model.
7.7 Ternary Simulation and the XMW Model
7.8 Proofs of Main Results

8 Bi-Bounded Delay Models
8.1 Discrete Binary Models
8.2 Continuous Binary Model
8.3 Algorithms for Continuous Binary Analysis
8.4 Continuous Ternary Model.
8.5 Discrete Ternary Model

9 Complexity of Race Analysis
9.1 Stable-State Reachability
9.2 Limited Reachability . . .

10 Regular Languages and Finite Automata
10.1 Regular Languages

10.1.1 Semigroups
10.1.2 Languages
10.1.3 Regular Languages
10.1.4 Quotients of Languages

10.2 Regular Expressions
10.2.1 Extended Regular Expressions
10.2.2 Quotients of Regular Expressions

83
84
92
95
97
99

101
102
103
107
107
110

113
113
118
121
123
127
127
129
129
131
132

143
144
148
152
156
162

167
167
181

187
187
187
188
189
190
192
192
193

10.3 Quotient Equations ..
10.4 Finite Automata ...

10.4.1 Basic Concepts
10.4.2 Recognizable Languages

10.5 Equivalence and Reduction of Automata .
10.6 Nondeterministic Automata
10.7 Expression Automata.

Contents xv

198
202
202
204
205
207
209

11 Behaviors and Realizations 213
11.1 Motivation...................... 214
11.2 Behaviors . 215
11.3 Projections of Implementations to Specifications 220
11.4 Relevant Words. 223

11.4.1 Same Input and Output Alphabets. . 223
11.4.2 Different Input and Output Alphabets 224

11.5 Proper Behaviors 225
11.6 Realization 229

11.7
11.8

11.6.1 Safety and Capability 229
11.6.2 Deadlock 230
11.6.3 Livelock 232
11.6.4 Definition of Realization 234
Behavior Schemas. .
Concluding Remarks

235
240

12 Types of Behaviors 241
241
244
246
249
251

12.1 Introductory Examples
12.2 Fundamental-Mode Specifications
12.3 Fundamental-Mode Network Behaviors.
12.4 Direct Behaviors
12.5 Serial Behaviors

13 Limitations of Up-Bounded Delay Models 255
13.1 Delay-Insensitivity in Fundamental Mode 256
13.2 Composite Functions 258
13.3 Main Theorem for Fundamental Mode . . 259
13.4 Delay-Insensitivity in Input/Output Mode 263

13.4.1 The Main Lemma 263
13.4.2 Some Behaviors Without DI Realizations 269
13.4.3 Nontrivial Sequential Behaviors. 270

13.5 Concluding Remarks 272

14 Symbolic Analysis 275
14.1 Representing Boolean Functions. 276
14.2 Symbolic Representations 279

14.2.1 Finite Domains 279

xvi Contents

14.2.2 Sets . . .
14.2.3 Relations
14.2.4 Behaviors

14.3 Deriving Symbolic Behaviors
14.4 Symbolic Race Analysis ...

14.4.1 Symbolic Ternary Simulation
14.4.2 Symbolic Bounded-Delay Analysis

14.5 Symbolic Verification of Realization.
14.6 Symbolic Model Checking

15 Design of Asynchronous Circuits
15.1 Introduction
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15

Fundamental-Mode Huffman Circuits .
Hollaar Circuits
Burst-Mode Circuits
Module Synthesis Using I-Nets
Signal Transition Graphs .
Change Diagrams
Protocols in DI Circuits
Ebergen's Trace Theory Method
Compilation of Communicating Processes
Handshake Circuits
Module-Based Compilation Systems .
DCVSL and Interconnection Modules.
Micropipelines. . . .
Concluding Remarks

Bibliography

List of Figures

List of Tables

List of Mathematical Concepts

Index

280
281
283
284
288
289
290
297
303

313
315
318
320
321
325
331
339
341
343
348
357
360
361
363
366

367

379

385

387

391

Chapter 1

Introductory Examples
Digital circuits are normally designed as networks of interconnected compo
nents. There are two basic approaches to the coordination of the activities
of such components: synchronous and asynchronous.

In a synchronous circuit the "state-holding" components operate under
the control of a common periodic signal, called "clock." All the operations
must take place at the correct time within each clock cycle. Thus, for
example, certain data is required to be ready for some minimum amount of
time (the "setup" time) before the clock becomes active, and should be held
constant for some minimum amount of time (the "hold" time) while the
clock is active, in order to be properly interpreted. The synchronous mode
of operation greatly simplifies circuit design. Consequently, most digital
circuits are synchronous. As designs grow larger and larger, however, it
becomes increasingly more difficult to distribute the clock to all the parts
of the system at the same time.

In contrast with the clocked operation of a synchronous circuit, asyn
chronous coordination of activity is performed through some kind of "hand
shaking" protocol among the communicating components. These commu
nications take place only when required by the current computation. Here
lies both the strength and the weakness of asynchronous design: On the
one hand, there is a potential for increasing the average speed of the com
putations and lowering the power consumption. On the other hand, there
is a considerable overhead associated with the handshaking protocols.

To ensure the correct setup and hold times in synchronous circuits,
the designer must make certain assumptions about the delays of the vari
ous components and interconnecting wires. Synchronous design textbooks
rarely stress the importance of these assumptions. In contrast to this, in
asynchronous circuits, the absence of a clock makes the designer much more
aware of the presence and importance of the various circuit delays. In this
chapter we present four introductory examples, the main point of which
is to demonstrate the important role of delays in various synchronous and
asynchronous digital circuits, and the serious consequences that may arise
if delays are not properly taken into account. Much of this book is devoted
to the study of the effects of delays on circuit operation, and we will re
visit in later chapters many of the phenomena that are discussed in these
examples.

2 Chapter 1. Introductory Examples

The first example illustrates the difficulty of computing the maximum
delay of a combinational gate circuit. In the second example, we analyze a
well-known clocked gate circuit, that of an RS flip-flop. We show that the
circuit may function improperly if a gate delay is too large. Our third exam
ple considers a combinational dynamic CMOS circuit, which operates under
the control of a clock. This circuit functions properly under the assumption
that the components have some specific delay values, but malfunctions if
the actual delay magnitudes deviate slightly from their nominal ones. The
final example describes the design-with the aid of classical techniques-of
a commonly used asynchronous divide-by-two counter. An analysis of the
resulting circuit shows that it may not behave as desired, unless one im
poses some restrictions on the relative sizes of the delays of the gates in the
circuit. This points out a flaw in the classical, and still commonly taught,
design techniques.

How To Read This Chapter

Each example begins with a short motivating paragraph and ends with a
short concluding paragraph. The reader who is an experienced logic de
signer is quite likely to have seen such examples before. For such a reader
it may suffice to look at the motivating and concluding paragraphs of most
of the examples, for the amount of detail provided would likely be found
boring. The reader who is not an expert in logic design, but who has had an
introductory course in logic design (or equivalent experience), is not likely
to have seen these examples. We provide enough detail to permit such a
reader to follow the arguments presented. The CMOS example requires
some knowledge of transistor circuits; the reader unfamiliar with such cir
cuits should read Section 5.1 first. Finally, the reader who has no familiarity
with logic design is advised to omit this chapter on first reading. Instead,
that reader should first invest some time and effort in Chapter 2 for some
mathematical background, Chapter 3 for an introduction to properties of
delays, Chapter 4 for an introduction to gate circuits, and Chapter 5 for an
introduction to transistor circuits. When some of that material is absorbed,
the examples of Chapter 1 may be better appreciated.

1.1 Logic Gates

Before proceeding to the examples, we briefly define some notation and
terminology used in connection with gates. The reader interested in more
details concerning basic aspects of logic design may wish to consult an
introductory text like [25, 77, 88, 94].

The two logic values are denoted by ° and 1. A Boolean function of
n variables is any mapping f of {O,l}n into {O,l}. A gate is a physical
device intended to implement a Boolean function. Some commonly used

Section 1.2. Performance Estimation 3

TABLE 1.1. Common Boolean functions.

X I X 2 ID NOT OR NOR AND NAND XOR

00 0 1 0 1 0 1 0
o 1 0 1 1 0 0 1 1
10 1 0 1 0 0 1 1
1 1 1 0 1 0 1 0 0

Xl Xl Xl +X2 Xl +X2 X I *X2 X I *X2 X I EBX2

one- and two-input Boolean functions are defined in Table 1.1. The name
of the function is given above its column vector of values, and a Boolean
expression corresponding to the function is given below the column vector.

Gate symbols corresponding to the functions of Table 1.1 are given in
Figure 1.1. The identity function ID can be realized by a wire connecting
the input to the output; hence, there is no special gate symbol for this
function.

X --{>o-y XI=D-X 2 y XI=D-X 2 Y

y=X Y = Xl +X2 Y = X I *X2

~~=JD-Y Xl=[>-X 2 Y XID-X 2 Y

Y = Xl EB X 2 Y = (Xl +X2) Y = (X I *X2)

FIGURE 1.1. One- and two-input gates.

1.2 Performance Estimation

Motivation Our first example considers the common problem of finding
an upper bound D on the delay of a combinational gate circuit. One
approach to this problem is to assume an upper bound on the delay
of each gate in the circuit, and to add up all these bounds in every
input-to-output path. The largest such sum is then taken as the upper
bound D. Our example shows that this approach may overestimate
D in case the path with the largest sum is a "false path." A second
approach is to simulate the circuit using some nominal values for
the gate delays. Our example demonstrates that this method may
underestimate D if some of the gate delays deviate slightly from their
nominal values.

4 Chapter 1. Introductory Examples

Inputs
Combinational

Outputs

Logic
~ ~

Latches

t

FIGURE 1.2. Generic synchronous circuit.

Synchronous circuits are often depicted as in Figure 1.2. Determining the
delay through the combinational logic is a common requirement in de
signing such circuits. Since the maximum delay of the logic directly de
termines the maximum clock frequency-and thus the maximum speed of
the complete circuit-it is important to compute this delay as accurately
as possible. Furthermore, in some technologies [50] the smallest latch is
of a "pass-through" type, i.e., when the clock is high the latch is trans
parent and its output immediately reflects its input. Here the minimum
delay through the combinational logic is also of vital importance, since it
determines the maximum width of the clock pulse for correct operation.

a
b

c

d
e

f
9
h

FIGURE 1.3. Combinational circuit containing false paths.

The running example in this subsection is the combinational circuit of
Figure 1.3. The question we pose is the following: Assume that the circuit
is in a stable state and some of the inputs change. What is the minimum
amount of time we must wait until we can guarantee that the outputs (Y8,
Yu, and Y14) have reached their final values? For simplicity, assume that
all the gates have the same delay, say 5 ns. For convenience, we refer to
"gate with output y/' simply as Yi.

Section 1.2. Performance Estimation 5

There are two basic approaches to determining the maximum delay
through combinational logic [95]: path analysis and simulation. In standard
path analysis the functionality of the combinational logic is completely ig
nored and only its topology is considered. Hence, the maximum delay is
determined from the longest path from an input to an output. In the circuit
of Figure 1.3, it is easy to verify that the longest path involves eight gates.
Hence, this simple version of path analysis indicates that the maximum
delay of the circuit in Figure 1.3 is 40 ns.

Ignoring the functionality of the circuit may result in what is usually
called the "false path" problem. A path is said to be false if no input
change can propagate through it. To illustrate the concept, consider the
path Yl, Y2, Y4, YlO, Yll, Y12, Y13, Y14, which is the longest path in the
circuit of Figure 1.3. Note that a change in input e propagates through
this path to the output only if it goes through both Yll and Y14. For such
a change to propagate through Yll, gate Y9 must be high. For the same
change to propagate through Y14, however, Y9 must be low. Since Y9 will
be stable by the time a change of e has propagated through Yl, Y2, Y4, and
YlO, it follows that the change will be stopped either in Yll or in Y14. Hence,
this topologically long path does not determine the maximum delay of the
circuit. In summary, false paths may make path analysis overly pessimistic.

Simulation-based approaches encounter different problems. Here, the first
difficulty is to know what to simulate. Unless sophisticated techniques, like
symbolic simulation (see Chapter 14), are applied, exhaustive simulation is
often not feasible. Thus only some small "representative" sample of all in
put changes can be simulated. If the input change that exhibits the longest
delay is not simulated, we will underestimate the maximum delay of the
combinational circuit. However, even if we do simulate the worst-case input
change (through luck, insight, or intelligent choice of input patterns), we
might still not compute an accurate estimate of the maximum delay. To
illustrate this problem, consider the circuit of Figure 1.3 again. Since there
are only eight inputs and the circuit is quite small, exhaustive simulation
is feasible. In fact, exhaustive simulation of all present/next input pairs re
quires only 65,532 input patterns-a relatively small number in the context
of circuit simulation. If we simulate all these patterns, we will discover that
all the outputs are stable within five gate delays, i.e., within 25 ns.

To explain why 25 ns is the maximum delay according to a simulator,
consider the different paths in the circuit. From the false path discussion
above, we know that no input change can propagate through both Yu and
Y14. Hence, a change in Y14 must originate in a or in b. Since the longest
path from a or b to Y14 has five gates, Y14 will be stable after at most 25 ns.
Also, since the longest path from any input to output Yll has five gates, Yu
will be stable after 25 ns. Finally, consider Ys. There are some paths from
inputs d and e to Ys with more than five gates. However, all these paths
go through Y2 and Y5. In other words, for a change in d or e to propagate
to Ys, there must be a change on Y2 followed later by a change on Y5. This

6 Chapter 1. Introductory Examples

implies that the change must propagate through Y3 or Y4. There are three
cases to consider: the change propagates only through Y3, only through Y4,
or through both Y3 and Y4. First, if it propagates through Y3 but not Y4,
then c must be high and Y4 must be low. Consequently, one of the inputs
to Y5 will be low, stopping the change from propagating. Similarly, if the
change propagates through Y4 but not Y3, then Y3 must be low and, again,
one of the inputs to Y5 will be low. In the remaining case, the input change
propagates through both Y3 and Y4. Since the circuit is started in a stable
state, however, and the delays in Y3 and Y4 are identical, it follows that one
of Y3 and Y4 will change from high to low and the other will change from
low to high. As before, one of the inputs to Y5 will be low. Consequently
the paths from d and e to Ys with more than five gates cannot propagate
any input changes.

We have seen that the answer obtained by path analysis is overly pes
simistic. Is the simulation-based answer correct? If we assume that the de
lays of the circuits are exactly as given, i.e., exactly 5 ns each, then 25 ns is
indeed the correct delay value. But what if the delay values are not exactly
known? In particular, what if we know only that 5 ns is an upper bound on
each gate delay? Will this change the answer? Intuitively, it would appear
safe to conclude that speeding up some gates cannot slow down the com
plete circuit, but here our intuition leads us astray. Consider the case when
the delays of Y3 and Y5 are reduced to 2.5 ns. In Figure 1.4 we show the
sequence of states that results in this modified circuit when it is started in
the stable state l ab ... h·YlY2 ... Y14 = 10010110·10011010001101, and the
input e changes to 1. The states in Figure 1.4(a)-(i) are reached at times
0, 5, 10, 12.5, 15, 20, 25, 30, and 35, respectively. Clearly, the output Ys is
not stable until 35 ns-significantly later than predicted by the simulation
based maximum delay analysis carried out above! This can be explained as
follows. Consider Figure 1.4(c); here, Y3 and Y4 are both unstable, and Y5
is stable. Since Y3 is faster than Y4, Y5 becomes unstable and will change.
This results in changes in Y6, Y7, and Ys; this sequence was impossible if
all the gates had the same delay. The complete new sequence of events
is longer than the longest sequence encountered under the assumption of
equal delays.

Conclusions Estimating the maximum delay of a combinational gate cir
cuit is a difficult problem. False paths may overestimate this delay,
and simulation methods based on nominal values may underestimate
it. Variations in delays may cause significant differences in the max
imum delay. The problem here is quite subtle, because a decrease in
some gate delays may cause the overall circuit delay to increase!

lTo simplify notation, we write tuples without parentheses and commas. The
centered dot . is used as a separator to divide the input-state component from
the internal-state component of the total state.

Section 1.2.

1 ------;.><iO------,
0-------
0------1'
1
I """"'."...., ... J.

l----iJ
1 ---------'
O----------~

(a) t = 0

l----~~----~
o-------+-~

0----

i ,...-""'--'
1---
J--------'
o----------~

(c) t = 10

1------~~~----__,
O-------+-~f~

o -----{""'
1 ----'-....
J

l----L.J
1 -------.-1
o---------~

{e)t=15

1 -----{:;>ol
0------
n -----{"""\

1 ,-""" "'"
1 -----t .. j
1 -----------'

o----------~

(g) t = 25

()----\-'"

1 '~""'....J
1 ~---L..J
1 ----------'

1
0

I}

1
1
1
1
0

1
n

0

1.
1
[)

1
I}

0

1
1
1
1
0

1
n

() _________J

(1) t= 35

Performance Estimation

(b) t = 5

(d) t = 12.5

(f) t = 20

(h) t = 30

FIGURE 1.4. Speeding up some gates can slow down the circuit.

7

8 Chapter 1. Introductory Examples

1.3 RS Flip-Flop

Motivation The purpose of this example is to illustrate how a clocked
circuit may malfunction if, because of a slow inverter, a change in
the clock reaches one of the components later than it reaches another
component.

The circuit shown in Figure 1.5 is a master-slave reset/set (RS) flip-flop.
We first describe a transition of this flip-flop assuming that the inverter
delay is the same as the delay of the NAND gates. We demonstrate that
the flip-flop behaves as expected under this assumption. Next, we assume
that the inverter is considerably slower, and show that the behavior may
no longer be correct.

FIGURE 1.5. Master-slave RS flip-flop.

The circuit of Figure 1.5 has data inputs S ("set") and R ("reset") which
have the constant values S = 1 and R = 0 for the purpose of this example.
The third input, ¢, is the clock which is a periodic binary signal. The
internal state of the circuit is represented by the 9-tuple of values of the
gate variables Yl, ... , Y9. Gates Y3 and Y4 constitute the master latch of
the flip-flop, and Y7 and Y8 constitute the slave latch. The value stored
in the master latch is Y3, and the complement of that value is stored in
Y4 under stable conditions. Similarly, the value stored in the slave latch
is Y7, with Y8 storing the complementary value. We begin with an initial
stable total state in which ¢ = o. In such a state, the inputs Yl and Y2 to
the master latch both have the value 1. Assuming that the master latch
contains the values Y3Y4 = 01 (or 10), we see that its state cannot change
when YIY2 = 11; we say that the master latch is "logically isolated." The
reader will verify that the values 01 (respectively 10) on Y3Y4 force Y5Y6 to
become 10 (respectively 01) when ¢ is 0, and, consequently, Y9 is 1. This,
in turn, forces Y7Y8 to become 01 (respectively 10). Thus, it is seen that
the slave follows the master.

Consider the transition from stable total state ¢·YIY2 Y3Y4 Y5Y6 Y7Y8 Y9 =
0·11 0110 011, where a small space has been inserted between consecutive
pairs of Y values in order to improve readability. Suppose now that the clock
changes to 1. The situation is then as shown in Figure 1.6(a). Both gate Yl

Section 1.3. RS Flip-Flop 9

FIGURE 1.6. Sequence of states after clock rises.

and the inverter Y9 are unstable. If they change at the same time, the state
of Figure 1.6(b) results, where gates Y3 and Y6 are unstable. When gate Y6
changes to 1, the slave becomes isolated; under these conditions, the state
Y7Y8 of the slave cannot change. If Y3 and Y6 change at the same time,
we reach the state shown in Figure 1.6(c). Here, only gate Y4 is unstable.
When that gate changes, we reach the stable state 1·0110 11 01 0 shown in
Figure 1.6(d), where the master has now been set but the slave retains the
old reset value. This is as it should be.

We now reanalyze the transition from state 0·11 0110 011 caused by the
change of the clock, but this time we assume that the inverter is slow. The
initial state is repeated in Figure 1.7(a). Suppose Yl changes first, and then
Y3-as shown in Figure 1. 7(b) and (c)-while the inverter still retains its
old value. Gates Y4 and Y5, as well as the inverter, are now unstable; if all
three change together, we reach the state of Figure 1.7(d). This time Y5,Y6
and Y7 are unstable; changing these gates leads to state Figure 1. 7(e). In
that state both gates of the slave latch are unstable. If Y8 changes first,
we reach the stable state of Figure 1. 7(f), where the slave, as well as the
master, has changed.

The sequence of events described above happens if the inverter delay is
at least as large as the sum of the delays in gates Yl, Y3, and Y5. While this
may not be very likely, the designer should be aware of such possibilities.
In Chapter 7 we develop efficient methods for detecting problems that may
be caused by gate and wire delays.

10 Chapter 1. Introductory Examples

(b)

1

FIGURE 1.7. Possible flip-flop transition with slow inverter.

Conclusions The RS flip-flop uses the clock signal with its master latch
and the inverted clock signal with its slave latch. It is the intention
that changes in these two signals should take place approximately at
the same time. This assumption is violated if the delay of the inverter
is too large; then the flip-flop will not operate correctly.

1.4 Dynamic CMOS Logic

Motivation Our third example deals with timing problems in modern
VLSI circuits. The example is a dynamic CMOS circuit using the
normal precharge/evaluate clock cycle. It is intended to be a com
binational circuit implementing a simple Boolean function. We show
that it works well with nominal delay values, but fails if some delays
deviate from their nominal values, even if the deviation is only 10%.

Section 1.4. Dynamic CMOS Logic 11

Figure 1.8 shows a simple dynamic CMOS circuit. The circuit operates
under the control of a clock ¢. The phase of the clock with ¢ = 0 is called
the "precharge" phase, and the phase with ¢ = 1 is the "evaluate" phase.
Assume that only nodes 0:, (3",8, and Out have any significant capacitance
associated with them. The circuit is intended to work as follows: When the
clock signal ¢ is low, nodes 0:, (3, and 8 are all connected through a closed P
transistor to the high voltage Vdd, but are isolated from ground by an open
N-transistor. Note that this is independent of the values on a, b, c, d, and
e. As a result, 0:, (3, and 8 will be precharged to Vdd . This will cause the N
transistors connected to nodes, and Out to be closed and the P-transistors
connected to these nodes to be open. As a result, the voltage on both, and
Out will be low. This sequence of events should occur, irrespective of the
previous state of the nodes, as long as ¢ is held low long enough to permit
nodes 0:, (3, and 8 to be precharged. In other words, ¢ = 0 is a "forcing"
signal.

Out

a-j

f-e

FIGURE 1.8. Dynamic CMOS circuit with timing problem.

In the evaluation phase, the clock signal ¢ becomes high. The behavior
of the circuit, and consequently the final value on node Out, depends on
the values on the input nodes a, b, c, d, and e. Consider first node 8. If at
least one of c, d, and e is high, then 8 will be connected through a path of
closed N-transistors to ground; consequently, the charge stored on 8 will be
removed. Thus, only if all of c, d, and e are low will 8 remain high. If the
charge on 8 is removed-and thus the voltage becomes low-the voltage on
node, will subsequently become high. Using the same type of argument
as for node 8, the reader can verify that node 0: will remain high only if at
least one of a and b is low. Node (3 will remain isolated-and thus at a high
voltag~nly if at least one of 0: and, is low. Finally, Out will become

12 Chapter 1. Introductory Examples

high only if (3 becomes low. In summary,

Out = 73 = (H , = (a * b) * "8 = (a * b) * (c + d + e).

Thus when the clock signal becomes high, the circuit should stabilize with
the value of Out determined by the Boolean expression (a * b) * (c + d + e).

To determine whether the circuit behaves as above under various delay
distributions, we need to know the rise and fall delays of the nodes of the
circuit. In general, determining the delay of a node is a difficult problem
since that delay depends on many factors such as the layout of the transis
tors around the node, the fan-out of the node, the wiring and layout of the
transistors loading the node, and manufacturing parameters and defects.
For a more complete discussion of the problem of determining circuit de
lays, the reader is referred to [30, 119]. We simply assume that the delays
are given. In particular, suppose that the rise and fall delays of nodes O!,

(3, " 8, and Out are as given (in nanoseconds) in Table 1.2.

TABLE 1.2. Nominal node delays in the dynamic CMOS circuit.

Node Rise delay Fall delay
O! 5 14
(3 5 4 , 4 3
8 5 9

Out 8 6

Consider first the precharge phase, i.e., the interval when ¢ = O. For the
circuit to be properly precharged, we must keep ¢ low at least long enough
for O!, (3, and 8 to become high. For correct operation, however, that is
not sufficient. We must also wait until , becomes low before we raise cp.
Otherwise, the charge stored at (3 could be prematurely discharged if cp
becomes high while, is still high. We must also wait for Out to become
low. In summary, ¢ must be kept low for at least max{5, (5+3), (5+6)} = 11
ns in order to ensure proper precharging and initialization.

Now turn to the evaluation phase. Since cp is kept high during that entire
phase, it follows that a precharged node will either stay charged (stay high)
or be discharged (change to low). Thus, no precharged node can change
more than once during the evaluation phase.

To determine whether the circuit computes the Boolean function (a * b) *
(c+d+e), we carry out an exhaustive case analysis. Because of symmetry,
it suffices to consider the following three cases:

1. Inputs c, d, and e are all low,

2. At least one of c, d, and e is high, and at least one of a and b is low,

3. At least one of c, d, and e is high, and a and b are both high.

Section 1.4. Dynamic CMOS Logic 13

'~~!'l t-=--~
l-.Jr'
~I.,

1

I

-1,.1
1 1 I.,

1
I

I.,~I.,~I.,~
1 1 1 1 1 1 r' ,..' ,..'

l--~rl 1-1
~I.,

~

1 1 1 L _____ + _____ .J

(a) t = 0

I.,~
1 1 ,.1

1

"*"

'4~krou,
1-1r~ ! 1 .,. P-1 I I

1 1

l~r' ., 1 0
---"'" r'

1 I
I 1
~ ~,..I

l---if 1---,1 ..
" 1

"*" "*"
(c) t = 13

~1

(b) t = 9

(d)t=14

FIGURE 1.9. State sequence of dynamic CMOS circuit.

~1

First, if c, d, and e are all low, it follows that 8 remains high; consequently,
'Y remains low. Hence, f3 will not be connected to ground regardless of the
value on ll. Thus, f3 remains high, forcing Out to remain low. Therefore the
circuit behaves correctly in this case.

Now consider Case 2. Since one of a and b is low, node II remains high
throughout the evaluation phase. Because one of c, d, and e is assumed to
be high, 8 will be discharged. This will cause 'Y to become high. When this
occurs f3 will become low, causing Out to become high. The circuit is now
stable. Hence, if at least one of a and b is low and at least one of c, d, and
e is high, Out will become high, as required.

Finally, if a, b, and at least one of c, d, and e is high, the circuit will
go through the sequence of states shown in Figure 1.9, where c, d, and e
are high. We have used the convention that an unstable node's value is
underlined and at least one of the closed paths making that node unstable
is dashed. Suppose the clock becomes high at time t = 0; then II and 8
are unstable (Figure 1. 9(a)). Since the fall delay of 8 (9 ns) is significantly
smaller than the fall delay of II (14 ns), the circuit reaches the state shown

14 Chapter 1. Introductory Examples

in Figure 1.9(b) at t = 9, and "(becomes unstable. Since the rise delay of
"(is only 4 ns, "(will change (at t = 13) before a, despite the fact that
it became unstable 9 ns after a. At this point, f3 is starting to discharge
through the closed path to ground, as illustrated in Figure 1.9(c). However,
a changes to low at t = 14; consequently, f3 is unstable for only 1 ns. Since
the fall delay of f3 is 4 ns, f3 remains high. Hence, node Out remains low as
desired.

Since the circuit produces the expected result for all possible input com
binations, we might be tempted to label it "correct." We show, however,
that a malfunction may occur if the delays of the nodes depart slightly
from the nominal delays of Table 1.2. Since dynamic properties-like tem
perature, age, and previous values assigned to a node-all affect the delay
of a node, a circuit should be robust to changing delay values, in the sense
that relatively small changes in the delays should not affect the basic func
tionality of the circuit.

To illustrate the problem with the circuit of Figure 1.8, consider the case
when the delays vary within ±1O% of the nominal delay values. In such a
situation, the delay values may be as shown in Table 1.3. Note that the
delays of some nodes are larger than before, whereas the delays of other
nodes are smaller. In Figure 1.10 we show the sequence of states that would

TABLE 1.3. Possible delay assignment with less than 10% deviation.

Node Rise delay Fall delay
a 5 15.3
f3 5 3.6
"(3.6 3
0 5 8.1

Out 8 6

result when a, b, c, d, and e are all high. If we assume ¢ becomes high at
time 0, the states shown in Figure 1.1O(b), (c), (d), and (e) are reached
at times 8.1, 11.7, 15.3, and 23.3, respectively. Node 0 falls at t = 8.1 ns
(Figure 1.10(b)). Next, "(rises at time t = 8.1 + 3.6 = 11.7 ns, and f3
becomes unstable (Figure 1.10(c)). All this time node a is unstable, but it
does not change because of its large fall delay. This gives f3 enough time to
discharge at t = 11.7+ 3.6 = 15.3 ns. At the same time, a finally discharges
(Figure 1.10(d)), but it is now too late, and Out gets the incorrect value 1
at t = 15.3 + 8 = 23.3 ns (Figure 1.1O(e)). This malfunction is caused by
the fact that the transitions of 0 and "I happen to be faster than expected,
whereas the transition of a is slower than expected.

Conclusions This examples illustrates, once again, the danger of consid
ering only nominal delay values in analyzing the behavior of a circuit.
In this case, however, the context is switch-level analysis of dynamic
CMOS circuits.

Section 1.4. Dynamic CMOS Logic 15

(b)t=8.1

(c) t = 11.7 (d) t = 15.3

(d)t=23.3

FIGURE 1.10. Timing error in dynamic CMOS circuit.

16 Chapter 1. Introductory Examples

1.5 Divide-by-2 Counter

Motivation This example illustrates a flaw in the classical design tech
niques for asynchronous circuits. A circuit designed with these tech
niques may not function properly under all delay distributions. Thus
an analysis is required after a design. We stress this point because
many texts in logic design do not mention these difficulties.

Our final example illustrates the classical method of designing asynchronous
sequential circuits [66, 67, 135]. We wish to implement a "divide-by-2"
counter to operate as follows. The counter is to have one binary input
X and one binary output z. In the initial state of the counter, we have
X = z = O. As the input X changes from 0 to 1 to 0, repeatedly, the circuit
should produce one output change for every two input changes, as shown

X

z ____ --'

A B :0 D A :B C D A B

FIGURE 1.11. Waveforms for divide-by-2 counter.

in Figure 1.11. The input is permitted to change at any time, except for
the restriction that each new input value lasts long enough for the circuit
to stabilize. Also we assume that the rise and fall times in each waveform,
as well as delays between input and output changes, are negligible; conse
quently, they are shown as zero in the figure. If the input waveform were
periodic, then the output waveform would also be periodic, but would have
twice the period of the input waveform-or half the frequency. For this
reason, the circuit is called a divide-by-2 counter.

When we examine the input/output waveforms in Figure 1.11, we see
that the circuit goes through four distinct input/output combinations,
namely 0/0, 1/0, 0/1, and 1/1; this pattern (ABeD) then repeats. The
behavior of the circuit can also be described by a "flow table," which speci
fies how the circuit's states change. Such a flow table is shown in Figure 1.12
and its interpretation is as follows. The column label specifies the present
value of the input X, whereas the row label denotes the present "internal
state" p of the circuit. The pair (X,p) is the "total state" of the circuit.
The entry (q, z) corresponding to total state (X, p) specifies the next in
ternal state q and the output z. In some states the value of the output is
optional, i.e., it is a "don't care." For such states, we leave z unspecified
and indicate this by -.

Section 1.5. Divide-by-2 Counter 17

x
p ° 1

A @,O B, °
B C ,- ®,O
C ©,1 D,l

D A,- @,1

q, Z

FIGURE 1.12. Flow table for counter.

When the present input is ° and the present internal state is A, the circuit
is in its initial total state (0, A). The entry corresponding to this total state
indicates that the next internal state is also A and that the output is 0.
Whenever the present internal state and the next internal state are the
same, we say that the total state of the circuit is "stable," meaning that no
internal state change will take place unless the input changes. Stable states
are circled in the flow table. Suppose now that the circuit starts in the total
state (0, A) and the input changes (to 1). The new total state is (1, A). The
next-state entry in column 1, row A is B; this shows that the total state is
unstable and the next internal state will become B, provided the input X
is kept constant at its new value (1) long enough to permit the circuit to
"stabilize." According to the waveforms for the counter, the output in total
state (1, B) should still be 0. We also want to avoid any output changes
during the time when the circuit is in transition from stable state (0, A)
to stable state (1, B); for this reason, the output entry for unstable total
state (1, A) is also 0.

Next, consider an input change from stable state (1, B). The circuit will
eventually reach stable state (0, C) which has output 1. Thus, during the
transition from stable state (1, B) to stable state (0, C), the output should
change from ° to 1. The output entry in unstable total state is left unspeci
fied. This entry will be replaced eventually by either a ° or a 1 in the circuit
that realizes the flow table, but it is best not to introduce any unnecessary
constraints too early.

The reader can follow the remaining input changes from stable state
(0, C) to stable state (1, D), and from (1, D) back to (0, A); they are similar
to the changes just described.

In the next step of the design procedure, we replace the abstract states
A, B, C and D by tuples of values of binary "state variables," so that we can
implement the circuit with binary logic gates. Two variables are sufficient,
and we choose the assignment A f-+ 00, B f-+ 01, C f-+ 11, D f-+ 10. Notice
that this assignment implies that, in every state transition, only one vari
able is required to change. This avoids situations called "races," in which

18 Chapter 1. Introductory Examples

several variables are unstable at the same time. Since delays associated with
the racing variables are not known in general, it is not possible to predict
which variables will "win" the race by changing first. Because the subse
quent circuit behavior may depend on the choice of the winning variables,
many classical design techniques are based on race-free assignments.

When the assignment of state variables is made in the flow table of
Figure 1.12, we obtain the table of Figure 1.13. This table is called the
"excitation table" because it shows whether or not the state variables are
"excited" to change (Le., are unstable) in any given total state. The output
entries are also shown in the excitation table, for convenience. Note that
the comma between the state variables and the output separates the two
types of variables. The present values of state variables are denoted by Yl
and Y2, whereas the excitations of these variables are Y1 and Y2.

x
Yl Y2 0 1

00 (@, 0 01,0

01 11, - ®,O
11 @,1 10,1

10 00, - @,1

Y1Y2 , z

FIGURE 1.13. Excitation table for counter.

The excitation table leads directly to a circuit, as we now show. The
excitations Y1 and Y2 are Boolean functions of the input X and the state
variables Yl and Y2. Using standard methods [135], we find the following
expressions for the excitations and the output:

Y1 : X *Y2 + Yl *Y2 + X *Yl,
Y2 : X *Y2 + Yl *Y2 + X *Yl,
z: Yl.

For the output, the "don't care" conditions were assigned binary values so
as to simplify the resulting Boolean expression. The product Yl *Y2 in the
expression for Y1 is redundant from the logic point of view, but is included
for the following reason: When the internal state is 11, the excitation Y1 is 1
for both values of the input. When the input changes from 0 to 1, however, it
is possible for Y1 to become temporarily OJ this is called a "static hazard."
This hazard can be avoided if the redundant product Yl *Y2 is included
in the expression for Y1 . The expression for excitation Y2 has been given
a similar redundant product Yl *Y2. More will be said about hazards in
Chapter 7j for now it suffices to point out that the use of hazard-free
circuits is required in the classical design methods.

Section 1.5. Divide-by-2 Counter 19

z

x

FIGURE 1.14. Gate circuit for counter.

The excitation expressions above are next implemented by two-level
AND/OR circuits as shown in Figure 1.14. The variables Yl and Y2 are iden
tified with Y1 and Y2 , respectively, and are associated with the same node
in the circuit. The interpretation is that Yi is the present state of a node
and Yi is its excitation, for i = 1,2.

The following analysis of the circuit just designed shows that, for some
gate delay distributions, it does not behave as intended. Consider the initial
stable total state X = 0, Yl = 0, Y2 = 0, and suppose the input changes
to 1. The situation is as shown in Figure 1.15(a). Two gates, Ul and V5

(shaded in the figure), are unstable in this state. We will assume that the
inverter Ul is very slow; then V5 changes first, and the new state is as
shown in Figure 1.15(b). Next, gate Y2 changes, and we reach the state
in Figure 1.15(c). Changing V3 leads to Figure 1.15(d), and Yl can change
next (along with Ul and V4), as shown in Figure 1.15(e). In summary, if the
inverter Ul is slow, the following sequence of signal changes can take place:
V5, Y2 , V3, Yl. This violates the specification given in the flow table, for the
output z was not supposed to change during the transition from (0, A) to
(1, B). This sequence of events will take place if the delay of inverter Ul

exceeds the sum of the delays of gates V5, Y2, V3, and Yl.
One can verify (with some additional work) that, under the stipulated

delay conditions, the circuit may eventually reach stable total state X =
1, Yl = 1, Y2 = 0, in which case the final state and output are also incorrect.

Conclusions As our example has shown, one cannot rely on the correct-
ness of a circuit designed using classical methods without performing
an elaborate analysis of the effects of the various circuit delays.

20 Chapter 1. Introductory Examples

(0)

fe) (d)

(e)

FIGURE 1.15. Possible state sequence for counter.

Section 1.6. Summary 21

1.6 Summary

The four examples in this chapter illustrate the importance of delays in
synchronous and asynchronous circuits. Various aspects of this topic are
treated in greater detail as described below. To begin with, precise mathe
matical models of delays are introduced in Chapter 3. Similarly, in Chapters
4 and 5 we formalize our models of gate and transistor circuits, respectively.

The issues of performance estimation (as in our first example) and de
tection of timing problems (as in our CMOS example) are dealt with in
Chapters 8 and 14. The techniques developed in these chapters allow us
to analyze a circuit assuming that its component delays are bounded by
minimum and maximum values, but can take on any value between these
bounds. In particular, we show that the circuit of Figure 1.3 will always
reach a stable output state within 35 time units, if the delay of each gate
is bounded between 1 and 5 time units.

The detection of timing problems in synchronous and asynchronous cir
cuits (as in the examples of the RS flip-flop and the divide-by-2 counter)
is dealt with in Chapters 6, 7, and 8. The inherent complexity of these
problems is examined in Chapter 9, where the intractability of computing
the exact solutions is demonstrated.

The design issues raised by the last example (the divide-by-2 counter)
are discussed in Chapters 11-13, and 15. In particular, Chapters 11 and 12
formalize the notion of specification and realization of asynchronous behav
iors. In Chapter 13 we show that certain specifications are not realizable
unless assumptions about the relative sizes of component delays are made.
Finally, modern methods for asynchronous circuit design are surveyed in
Chapter 15.

Chapter 2

Mathematical Background
Our goal in this chapter is to establish a mathematical foundation for
the following chapters. We provide here brief introductions to set theory,
Boolean algebra, ternary algebra, and directed graph theory. The material
is presented rather concisely, and the reader may wish to refer to some
introductory texts for additional explanations [5, 6, 25, 115]. We point out
that, while most of the material in this chapter appears frequently in basic
texts on discrete mathematics, this is not the case for the section on ternary
algebra.

2.1 Sets and Relations

We use calligraphic letters A, B, . .. to denote sets and lower case letters
a, b, . .. to denote individual elements of sets. Table 2.1 gives the terminol
ogy and notation pertaining to sets.

A mapping f of a set A to a set B is called a function from A to B,
written f: A --+ B, if for every element a E A, there exists a unique element
bE B such that f(a) = b. A is called the domain of f and B its codomain.
Let

B' ~f {b E Bib = f(a) for some a E A},

where ~f means "is defined to be." Then B' is the image of A under f. In
case B = B', we say that f is surjective (or that f is a function from A
onto B, or that f is onto). Also, f is said to be injective (or one-to-one) if,
for every at, a2 E A, al =f. a2 implies f(al) =f. f(a2). Finally, f is said to be
bijective if f is surjective and injective.

By an n-tuple, n ~ 2, we mean an ordered sequence of n elements (not
necessarily distinct). The n-tuple with ai as its ith element (i = 1, ... , n)
is written (al, . .. ,an) or (at, . .. ,an). An ordered pair is a 2-tuple.

The Cartesian product A x B of two sets A and B is the set of all ordered
pairs (a, b), where a E A and b E B. The Cartesian product of n sets
At, ... ,An is defined similarly.

A unary operation on a set A is a function from A to A. A binary
operation on A is a function from A x A to A. If 0 denotes an arbitrary
binary operation on A, we usually write aD b for D((a,b)).

A binary relation R from set A to set B is any subset of Ax B. If
(a, b) E R, we write aRb and say that a is related by R to b. A binary
relation on A is a binary relation from A to itself.

24 Chapter 2. Mathematical Background

TABLE 2.1. Terminology for sets.

Symbol
aEA
a~A
{a E A I a has property P}

A=8
A~8or8 2A
A c 8 or 8:J A
o
An8
AU8
A-8

An8=0
P(A)

IAI

Meaning
a is an element of A
a is not an element of A
the set of all elements of A

that have property P
sets A and B are equal
A is a subset of 8
A is a proper subset of 8
the empty set
the intersection of A and 8
the union of A and 8
the difference of A and 8

A - 8 ~f {a I a E A and a ~ 8}
the symmetric difference of A and 8

A~8 ~f (A - 8) U (8 - A)
A and 8 are disjoint
the power set of A, i.e., the set

of all subsets of A
the cardinality of A, i.e., the

number of elements in A

Given any binary relation R on A, the composition of R with R, written
RR or R2, is defined as

{(a, c) E A x A I aRb and bRc for some bE A}.

Furthermore, let Rl ~f Rand Rn+l ~f RRn, for n ~ 1. The tmnsitive
closure R+ of R is defined to be

{(a, b) I aRh b for some positive integer h}.

The reflexive and tmnsitive closure R* of R is defined as

{(a,a) I a E A}UR+.

Let R be a binary relation on A, i.e., R ~ A x A

I. R is reflexive if aRa for all a E A.

2. R is symmetric if aRb implies bRa for all a, b E A.

3. R is antisymmetric if aRb and bRa implies a = b for all a, b E A.

4. R is tmnsitive if aRb and bRc implies aRc for all a, b, c E A.

Section 2.2. Boolean Algebra 25

A binary relation on A which is reflexive, symmetric, and transitive is called
an equivalence relation on A. A binary relation on A which is reflexive,
antisymmetric, and transitive is called a partial order on A.

A poset (partially ordered set) is an ordered pair (A, ::;), where A is a set
and S is a partial order on A. If (A, ::;) is a poset, B is a nonempty subset
of A, and a E A, then a is an upper bound of B if s ::; a for all s E B. An
upper bound a of B is called least upper bound of B, written lub B, if a S b
for every upper bound b of B. Clearly, if lub B exists, it is unique.

To illustrate the definitions above, consider the poset ({O, <1'>, I}, ~),
where the "uncertainty" partial order ~ on the set {O, <1'>, I} is defined
as follows:

O~O, 1~1, <1'>~<1'>, 0~<1'>, and1~<1'>,

and no other pairs are related by ~. Here, the value <1'> is used to denote
"lack of information" or "uncertainty." On the other hand, both 0 and 1 are
"certain" values, and neither of them contains more information than the
other one. Thus, for s, t E {O, <1'>, I}, the statement s ~ t can be interpreted
as t "has at least as much uncertainty" as s. When s ~ t, we say that s is
covered by t or that t covers s. It is easy to convince oneself that lub{O} = 0,
lub{l} = 1, and that the lub of every other nonempty subset of {O, <1'>, I} is
equal to <1'>.

2.2 Boolean Algebra

An algebraic system is a set A together with one or more operations on
A which satisfy specific axioms. A Boolean algebra is an algebraic system
B = (A, +, *, -, 0,1), where A is a set, + and *1 are binary operations on
A, - is a unary operation on A, and 0 and 1 are two distinct elements of A
such that all the axioms of Table 2.2 are satisfied.2 The elements 0 and 1
are called the universal bounds of B. Note that, except for B8, the axioms
are listed in pairs; one axiom in a pair can be obtained from the other by
interchanging 0 and 1, and addition and multiplication. This property of
Boolean algebra is called duality. Axiom B8 is self-dual, since it does not
involve 0, 1, addition, or multiplication.

The smallest Boolean algebra is Bo = ({0,1},+,*,-,0,1), where the
underlying set has only two elements, and the operations +, *, and - are
the OR, AND, and NOT (complement) operations as defined in Table 2.3.

A Boolean function of n variables is any function f from {O, l}n to {O, I},
for n ;::: O. To each n-tuple a = (al, ... ,an) E {O, l}n, the function f assigns

lWe often represent the multiplication operator by juxtaposition, i.e., we write
ab rather than a*b.

2There are several sets of axioms that can be used to define a Boolean algebra.
The one shown in Table 2.2 is chosen for convenience.

26 Chapter 2. Mathematical Background

TABLE 2.2. Axioms of Boolean algebra.

For all a, b, and c in A, we have:

Bl a+a = a Bl' a*a = a
B2 a+b = b+a B2' a*b = b*a
B3 a+(b+c) = (a+b)+c B3' a*(b*c) = (a*b)*c
B4 a+(a*b) = a B4' a*(a+b) = a
B5 a+O = a B5' a*l = a
B6 a+l = 1 B6' a*O = 0
B7 a+a= 1 B7' a*a = 0
B8 (a) = a
B9 a+(b*c) = (a+b)*(a+c) B9' a*(b+c) = (a*b)+(a*c)
BI0 (a+b) = a*b BI0' (a*b) = a+b

TABLE 2.3. The operations +, *, and in Bo.

al a2 al+a2
0 0 0
0 1 1

al a2 al *a2
000
o 1 0

~I~
1 0

1 0 1 1 0 0
1 1 1 1 1 1

a unique value f(a) E {O, I}. It is easy to verify that there are 22n distinct
Boolean functions of n variables.

Given Boolean functions f: {O, l}n --+ {O, I} and g: {O, l}n --+ {O, I},
define, for each n-tuple a = (aI, ... , an) E {O, l}n,

(f+g)(a) ~f f(a)+g(a),

(f*g)(a) ~f f(a)*g(a),

](a) ~f (f(a)),

where on the right-hand side of each equation the addition, multiplica
tion, and complementation are the operations of Bo. These operations are
applicable since, for each a, the values of f(a) and g(a) are elements of
{O, I}. Now introduce two special functions 101 and 111 as follows: For all

a E {O, l}n, 101(a) ~ 0, and 111(a) ~f 1. It is now straightforward to prove
the following theorem:

Theorem 2.1 Let Bn be the set of all Boolean functions of n variables.
Then (Bn, +, *, -,101,111), is a Boolean algebra where the operations +, *,
and - are the operations on Boolean functions defined above.

Section 2.2. Boolean Algebra 27

Proof: We need to verify that the operations on functions as given above
satisfy the axioms of Boolean algebra. This is quite straightforward, and
we refer the interested reader to [25, 58J. D

We conclude this section by introducing Boolean expressions and relating
them to Boolean functions. Let 0, 1, Xl, ... ,xn be distinct symbols. A
Boolean expression over Xl, .•. , Xn is defined inductively:

1. 0, 1, X I, ... , Xn are Boolean expressions.

2. If E and F are Boolean expressions, then so are (E+F), (E*F), and
E.

3. Any Boolean expression can be obtained by a finite number of appli
cations of Rules 1 and 2.

To simplify notation we assume that * has precedence over +; this allows us
to omit some parentheses. Note that, so far, Boolean expressions represent
an infinite set of well-formed strings of symbols. Their relation with Boolean
functions has not yet been established. To do this, let En denote the set of
all Boolean expressions over n variables. Define a mapping I I: En - Bn as
follows:

1. The expressions 0, 1, Xl,"" Xn are mapped to the functions 101, 111,
IXII,· .. , IXnl, respectively, where IXil is defined by

Thus the function IXil selects the ith component of its argument n
tuple.

2. I(E+F)I d~f (IEI+IFI),

The mapping II assigns to each expression E E En a unique Boolean
function lEI E Bn. However, there is an infinite number of expressions de
noting a given function. This can be seen as follows. First, every Boolean
function has a canonical sum-of-products expression, in which each prod
uct is a product of complemented and uncomplemented variables [25, 58J.
That expression is 0 if the function is identically zero; otherwise, it has a
product corresponding to every binary n-tuple of variable values for which
the function has the value 1. Once we have one expression, we can triv
ially obtain infinitely many others by using such axioms as lEI = I(E+E)I
arbitrarily many times.

28 Chapter 2. Mathematical Background

2.3 Ternary Algebra

In analyzing the behavior of asynchronous circuits, it is often convenient
to work in ternary, rather than Boolean, algebra [25, 26, 105]. We use 0
and 1 for the two Boolean values, and a third value <P, which represents an
"uncertain value" that is neither 0 nor 1. More will be said about this later.
To improve readability, names of ternary variables will be set in boldface
type.

A ternary algebra is an algebraic system T = (A, +, *, -, 0, <P, 1), where
A is a set, + and * are binary operations on A, - is a unary operation on
A, and 0, 1 and <P are three distinct elements of A such that all the axioms
of Table 2.4 are satisfied. Note the duality of the axioms.

TABLE 2.4. Axioms of ternary algebra.

For all a, b, and c in A, we have:

Tl a+a=a Tl' a*a= a
T2 a+b = b+a T2' a*b= b*a
T3 a+(b+c) = (a+b)+c T3' a*(b*c) = (a*b)*c
T4 a+(a*b) = a T4' a*(a+b) = a
T5 a+O=a T5' a*1 = a
T6 a+l = 1 T6' a*O = 0
T7 (a) = a
T8 a+(b*c) = (a+b)*(a+c) T8' a*(b+c) = (a*b)+(a*c)
T9 (a+b) = a*1) T9' (Mb) = a+1)
TI0 (a+a)+<p = a+a TlO' (a*a)*<p = a*a
Tll <P=~

It should be emphasized that, although algebra T is very similar to a
Boolean algebra, it is not a Boolean algebra. In particular, the two axioms
concerning complements in a Boolean algebra, a+a = 1 and aa = 0, do
not hold when a = a = <P.

As in the case of Boolean algebra, there are many axiom sets defining
ternary algebra. For example, it can be shown that axioms TlO and TI0'
can be replaced by

T'lO (a+a)+(b*1)) = a+a T'10' (a*a)*(b+1)) = a*a

The smallest ternary algebra is To =({O, <P, I}, +, *, -, 0, <P, 1), where the
set has only three elements, and +, *, and - are the ternary OR, AND, and
NOT operations as defined in Table 2.5.3

3We use the same symbols for the ternary AND, OR, and NOT as we do for the
binary functions. The context determines which functions are intended.

Section 2.3. Ternary Algebra 29

TABLE 2.5. The operations +, *, and in To.

a2 a2
al+a2 ° <f> 1 al*a2 ° <f> 1

tit ° ° <f> 1 ° ° ° ° al <f> <f> <f> 1 al <f> ° <f> <f> <f> <f>
1 1 1 1 1 ° <f> 1 1 °

A ternary function of n variables is any function f from {O, <f>, l}n to
{0,<f>,1}, for n 2': 0. To each n-tuple a = (aI, ... ,an) E {o,<f>,l}n, the
function f assigns a unique value f(a) E {a, <f>, I}. It is easy to verify that
there are 33n distinct ternary functions of n variables.

Given ternary functions f, g: {a, <f>, l}n ----+ {O, <f>, I} define ternary func
tions f+g, f*g, and f, as follows. For each n-tuple a = (al, ... , an) E
{o,<f>,l}n,

(f+g)(a) ~f f(a)+g(a),

(f*g)(a) ~f f(a)*g(a),

f(a) ~f (f(a)),

where on the right-hand side of each equation the addition, multiplica
tion, and complementation are the operations of To. These operations are
applicable since, for each a, the values of f(a) and g(a) are elements of
{0,<f>,1}. Now introduce three special functions 101, 1<f>1 and 111 as follows:

For all a E {O,<f>,l}n, 101(a) ~f 0, 1<f>I(a) ~ <f>, and 111(a) ~f 1. It is now
straightforward to prove the following theorem.

Theorem 2.2 Let Tn be the set of all ternary functions of n variables.
Then Tn is a ternary algebra under the operations defined in Table 2.5
with 101, 1<f>1, and 111 acting as 0, <f>, and l.

Proof: We need to verify that the operations on functions as given above
satisfy the axioms of Table 2.4. This is straightforward, and we leave the
details to the interested reader. 0

Paralleling the development in the previous section, we now introduce
ternary expressions and relate them to ternary functions. Let 0, cf>, 1,
Xl, ... ,Xn be distinct symbols. A ternary expression over XI, ... ,Xn is de
fined inductively:

1. 0, cf>, 1, XI, ... , Xn are ternary expressions.

2. If E and F are ternary expressions, then so are (E+F), (E*F), and E.

3. Any ternary expression can be obtained by a finite number of applica
tions of Rules 1 and 2.

30 Chapter 2. Mathematical Background

Now, let Fn denote the set of all ternary expressions over n variables.
Define a mapping I I: F n ---; Tn as follows:

1. The expressions 0, <I> , 1, Xl, ... ,Xn are mapped to the functions 101,
I<I>I, 111, IX11,···, IXnl, respectively, where IXil is defined by

2. I(E+F)I ~f (IEI+IFI),

The mapping I I assigns to each expression E E F n a unique ternary func
tion lEI E Tn. It is interesting to note that not all ternary functions have
corresponding ternary expressions, as we shall see later. If a function does
have such an expression, however, then it has an infinite number of distinct
ternary expressions.

We are now ready to consider the relation between Boolean and ternary
functions. We need the following definitions. Define the uncertainty partial
order [:;;; on {O, <I> , I} as at the end of Section 2.1. We write a C b if a [:;;; b
and a =I- b.

For n ;::: 1, let {O, <I> , l}n denote the set of all possible n-tuples of ternary
values. The partial order [:;;; is extended to {O, <I>, l}n in the natural way:

a [:;;; b if and only if ai [:;;; bi for all i, 1 ~ i ~ n,

where a = (al, ... , an) and b = (bl , ... , b n), are any two elements of
{O,<I>,l}n. Thus, for example,4 o <I> 10 c o <I> 1 <I> , but 0<I>1 and 1<I>1 are not
related by [:;;;.

In the partially ordered set ({ 0, <I>, I}, [:;;;), we define the concept of least
upper bound as in Section 2.1. The definition is also extended to {O, <I> , l}n
to be the component-by-component least upper bound. For example,

lub{ <I>0101, 11101,01001} = <I><I><I>01.

From the definition of the partial order !:, one easily verifies the follow
ing property of least upper bound:

Proposition 2.1 For any two ternary variables a and b in {O, <I> , I},

lub{a, b} = Mb + (a + b)*<I>.

4 As in Chapter 1, we usually omit parentheses and commas in n-tuples of
binary or ternary symbols, e.g., we write 1011> rather than (1,0,1,1».

Section 2.3. Ternary Algebra 31

For any Boolean function f: {a, l}n ---+ {a, I}, we can define its ternary
extension f: {a, <1>,l}n ---+ {a, <1>, I} as

f(a) = lub{f(t) It E {a, l}n and t ~a},

for all a E {a, <1>, l}n. Note that any Boolean function f agrees with its
ternary extension f when the argument a is binary.

To illustrate the definition above, we let f be the two-argument OR func
tion; then

f(O, <1» = lub{f(O,O),f(O, I)} = lub{O, I} = <1>, and

f(l, <1» = lub{f(1, 0), f(l, I)} = lub{l, I} = 1.

The reader can verify that the functions defined in Table 2.5 are the
ternary extensions of the Boolean functions OR, AND, and NOT.

The following important property, the monotonicity property, is easily
verified to hold for the ternary extension f of any Boolean function f:

a~b implies f(a)~f(b),

for all a, b E {O, <P, l}n. This property is interpreted as follows: If input
vector b is at least as uncertain as input vector a, then gate output f(b) is
at least as uncertain as f(a) .

In the case of Boolean algebra, every Boolean function can be repre
sented by a Boolean expression. However, not every ternary function can
be represented by a ternary expression. For example, it can be shown that
the one-variable function that is <1> when the variable is 1 and is ° other
wise cannot be represented by any ternary expression. In fact, the ternary
functions that can be described by ternary expressions are precisely those
that are monotonic, i.e., that satisfy the monotonicity property above, as
the following theorem [105] shows.

Theorem 2.3 A ternary function f is monotonic if and only if there exists
a ternary expression F such that IFI = f.

Proof: We only sketch the proof here; for further details see [105]. Suppose
that the ternary function fis denoted by the ternary expression F, i.e., that
f = IFI. It is easily seen that the functions denoted by the expressions 0,
1, <1>, Xl, ... ,Xn are all monotonic. One then verifies that f is monotonic
if and only if f is. Next, from the definition of the operation +, it is easy
to show that this operation is monotonic, i.e., that a ~ a' and b ~ b' imply
a+b ~ a' +b'. Similarly, * is also monotonic. It then follows by induction
on the number of operators C, +, and *) in the ternary expression F that
f = IFI is monotonic.

Conversely, suppose f: {a, <1>,l}n ---+ {O, <1>, I} is monotonic. Consider the
set r 1 (1), i.e., the set of all ternary n-tuples a such that f(a) = 1. Select all
the maximal n-tuples (under the partial order ~) of rl(l). For each such
n-tuple a construct a product P of variables and complemented variables

32 Chapter 2. Mathematical Background

as follows. If ~ = 0, include Xi as a factor in P. If ai = 1, include Xi as
a factor in P. Finally, if ~ = ~, include 1 as a factor. It is clear that the
product P accounts for all the I's in fthat are due to all the n-tuples below
or equal to the maximal n-tuple being considered. Since f is monotonic, it
follows that all such n-tuples are indeed in the set rl(I). Denote the sum
of all such products derived from maximal n-tuples of rl(I) by Fl. In a
similar way, derive a sum of products Fo for the set rl(O). This accounts
for all the D's of the function. Noticing that f must be ~ if it is not 0 or 1,
we obtain the ternary expression F = Fl + ~*(Fo + Fl), which denotes f.

o
The expression derived in the proof of the theorem can be simplified to

F = Fl + ~*Fo as the following proposition shows.

Proposition 2.2 If a and b are arbitmry ternary values, then

a+IP*(b+a) = a+b*q>.

Proof: This can be seen as follows:

a + q>*(b + a) = a + ~*b*a = (a+a)*(a+~*b)
= (a+a+~)*(a+~*b)

= a+(a+~)*~*b = a+IP*b*a+~*b
= a+q>*b
= a+b*q>.

2.4 Directed Graphs

o

For several topics in this book it is convenient to represent certain concepts
graphically. For this reason, we provide a very brief introduction to the
theory of directed graphs.

A directed gmph or digmph G is an ordered pair (V, e), where V is a
set of elements called vertices and e ~ V x V is a set of edges. An edge
e = (v, v') is said to be from v to v'; v is the tail of e, while v'is its head.
Note that there can be at most one edge from one vertex to another. If
(v, v') or (v', v) is an edge in a digraph, then the vertices v and v' are said
to be adjacent. There may be an edge from a vertex to itself; such an edge
is called a loop or self-loop. The indegree of a vertex v is the number of
edges with v as the head. The outdegree of a vertex v is the number of
edges with v as the tail.

To illustrate the definitions above, consider G = (V, e), where V =
{I, 2, 3, 4} and e = {(I, 1), (1, 2), (1,3), (2,3), (3, I)}. It is customary to rep
resent digraphs as diagrams in which vertices are small circles and edges are
lines with arrowheads. The digraph G above is represented in Figure 2.1.
Node 3 has indegree 2 and out degree 1. Node 1 has a loop.

Section 2.4. Directed Graphs 33

FIGURE 2.1. Digraph G.

A walk is a sequence of edges (el, ... ,ep), such that ei = (Vi-bVi), i.e.,
the head of ei is the same as the tail of ei+1, for all i = 1, ... ,p - l.
The number p of edges in a walk is its length. A walk can also be uniquely
specified by the sequence Vo, ... , vp of vertices encountered during the walk.
If the edges of a walk are all distinct, it is called a trail. For example, the
vertex sequence (1,2,3,1,3,1) in G, which describes a walk of length 5,
is not a trail because the edge (3,1) appears twice. If all the vertices of a
walk, except possibly the first and the last, are distinct, it is called a path.
Thus (2,3,1,3) is a trail of G, but it is not a path. A walk, trail, or path is
closed if it has positive length and its initial vertex is the same as its final
vertex. A cycle is another name for a closed path. A digraph is acyclic if it
has no cycles.

A digraph G = (V, £) is said to be bipartite if its vertices can be parti
tioned into two disjoint sets VI and V2 , such that no two vertices in the
same set are adjacent.

A subset !C of V is called a feedback vertex set if every cycle of G contains
at least one vertex from !C. Thus, if all the vertices in !C are removed from
the graph along with all their incident edges, the remaining digraph is
acyclic. For the digraph G of Figure 2.1 the sets {l, 3} and {I} are feedback
vertex sets.

Chapter 3

Delay Models
The customary model of a logic gate is its Boolean function. It should
be clear that this model does not take into account all of the properties
of a physical gate. For example, physical gates have delays associated with
their operation. Thus, if an input of a gate changes at some time, its output
will respond to this change only at some later time, whereas the Boolean
function model treats the response as instantaneous. In this chapter we
consider the basic properties of delays, and introduce a number of mathe
matical models of delays. First, however, we discuss the possible behaviors
of the environment of a circuit.

3.1 Environment Modes

In modeling a physical system we usually select a number of system vari
ables to represent an abstraction of the system. We call these variables the
state variables of the system. If the knowledge of the chosen variables is
adequate to describe the aspects of the system behavior that are of interest
to us, then we have an adequate model. Otherwise the set of variables must
be augmented.

Every circuit operates in some environment that provides inputs to the
circuit. The concept of a change in the input state is a very basic one, and
one that we will use frequently in this book. This concept is formalized as
follows: A variable v(t) taking its values from a finite domain is said to
change at time r if v (r) = {3, and there exists a 8 > 0 such that v (t) = 0: i
{3, for r - 8 :::; t < r. In other words, v must have the new value at time
r and it must have had the old value for an interval just before, but not
including, r.

The environment may change the circuit inputs at any time, without
paying any attention to the state of the circuit; such a mode of operation
might be called the completely unrestricted mode. But a circuit might fail to
operate correctly, if its inputs are changed too quickly or at the wrong time.
Even if we ignore circuits entirely, a completely unrestricted environment
might lead to some serious difficulties. For example, consider a signal that
changes at the following times: 0,1/2,3/4,7/8, Such a signal would
have an infinite number of changes in the finite interval of one time unit.

36 Chapter 3. Delay Models

Because the completely unrestricted mode cannot arise in practice and
leads to considerable mathematical difficulties, we assume from now on
that every environment satisfies the following:

• Finiteness Condition: Only a finite, but possibly unbounded, num
ber of signal changes can occur in any finite interval.

An environment satisfying only the finiteness condition is called unre
stricted.

We distinguish two restricted modes of operation: the fundamental mode
and the input-output mode. The fundamental mode of operation assumes
that the circuit starts in some stable total state, i.e., in a state in which
its inputs, internal signals, and outputs all have fixed values and have no
tendency to change. (More will be said about these concepts later; for the
time being we appeal to the reader's intuition.) By definition, a stable total
state persists permanently, unless the circuit inputs change. In such a stable
state, the environment is permitted to change the circuit inputs. After that,
however, the environment is not allowed to change the inputs again until
the entire circuit stabilizes. Note that this assumes that the circuit does
indeed stabilize; this assumption holds in most circuits of interest. The
fundamental mode of operation has been used since the introduction of
asynchronous circuits [66, 67, 93, 135]. In practice, this mode is realized
as follows. One estimates the time required for a circuit to stabilize in the
worst case, and then makes sure that the inputs remain constant for at
least that amount of time. Note that the definition of the fundamental
mode makes sense only if one assumes that the circuit delays are bounded
from above.

More recent asynchronous design techniques use the input-output mode
of operation [18, 19, 103, 147]. As before, the starting point is a stable total
state of the circuit. Here, the environment is allowed to change the circuit
inputs. The environment may change the inputs again only after the circuit
has responded by producing an output change, or if no output response is
expected. Note that this does not imply that the entire circuit must be
stable, for some internal signals may still be changing.

We shall return to fundamental mode and input-output mode operations
later and make these concepts more precise. For the present chapter we
assume that the environment is using a mode that satisfies the finiteness
condition but is otherwise unrestricted.

3.2 Gates with Delays

To motivate the body of this chapter we give a brief introduction to the
problems one encounters when dealing with physical components such as
gates. To keep the discussion simple, we consider an inverter. Our first
model of an inverter represents it simply as the Boolean complement func-

Section 3.2. Gates with Delays 37

tion. To obtain a more accurate model, we represent the physical inverter
as an ideal inverter (Le., the Boolean complement function) in series with a
delay element. Figure 3.1 shows an ideal inverter with input X and output
Y in series with a delay element with input Y and output y. The signals X
and yare intended to represent the input and output signals of the physical
inverter. The fictitious signal Y is called the "excitation" of the physical
inverter; this represents the value toward which the inverter output is being
driven.

X
y

FIGURE 3.1. Model of physical inverter.

Figure 3.2 shows some waveforms of the signals associated with an in
verter modeled as an ideal inverter in series with a delay element. The

X(t) n IlJ

Y(t) U LJl
: D:

y(t) U rL

y(t)

FIGURE 3.2. Waveforms for inverter with delay.

input signal X(t) varies with time. It is assumed to be binary and capable
of instantaneous changes from 0 to 1 and from 1 to o. These changes may
occur at any time and may result in wide or narrow "pulses," i.e., intervals
during which the signal has a constant value. Thus we are assuming the
environment is unrestricted except that it satisfies the finiteness condition.
The signal Y is assumed to be the complemented version of the input X at
all times; however, the physical inverter output y follows the changes occur
ring in the signal Y only after some delay D. If the delay were constant and
ideal, the output would appear as shown by the waveform y(t). The actual
output, shown as y(t), is similar to y(t), except that short pulses occurring
in y do not occur in y. This reflects the inertial nature of physical delays.
In the following sections we consider a number of possible models for delay
elements.

38 Chapter 3. Delay Models

3.3 Ideal Delays

A delay is a "black box" that has one input and one output (see Figure 3.3)
and an input/output behavior that is governed by a delay model. To sim
plify the discussion, assume that X (t) = x(t) = {3 E {O, I} for t < o. This
assumption allows us to establish a well-defined starting point.

X(t).IL-. __ 8(_t)_--,1 x(t).

FIGURE 3.3. Delay component.

The concept of ideal delay was introduced informally in Figure 3.2. We
would like to make precise the notion that a delay is ideal in that it is
not inertial, i.e., does not "lose any pulses." There are several possible
variations for such a definition, as we now show. In the fixed ideal delay
(FID) model, the delay's behavior is specified by the following rule:

x(t) = X(t - d),

where the delay d > 0 is a fixed constant. Thus the output is an exact
replica of the input but shifted to the future d units of time. An example
of the response of an ideal delay (d = 1) to an input signal is shown in
Figure 3.4.

X(t) ~ '----------'nL...-_1lJ
x(t)

I • o 5 10 15

FIGURE 3.4. Ideal delay response.

In a physical circuit, we normally do not know the exact size of a delay;
at best, we might have an estimate. Also, delays are normally not constant,
but might vary with temperature or change with age. Moreover, the delay
of a component might depend on its previous history. For example, a gate
that has just changed from 0 to 1 might have a shorter delay for changing
back to 0 than it would have, had it had the value 1 for a long time. To
model such properties, we allow delays to vary in time, but only within
some bounds.

In analyzing circuits, it turns out that it is not so much the absolute mag
nitude of a delay that is of importance, but rather the delay ratios. Suppose

Section 3.3. Ideal Delays 39

delay dl is fixed, but another delay d2 can be arbitrarily large. Then the
ratio d2 /dl can also be arbitrarily large. To represent physical components
realistically, we assume that every delay is bounded from above. Note that
this assumption does not prevent the ratio d2/ dl from being arbitrarily
large, if dl is permitted to be arbitrarily close to zero. Consequently, al
though every physical delay is bounded from below by zero, we do not
consider zero to be a proper lower bound. This kind of reasoning leads to
the terminology introduced below.

We distinguish between two types of assumptions about delay bounds.
First, we might assume the delays are bounded both from below and from
above (by nonzero constants). We say such delays are bi-bounded. Delays
that are only bounded from above will be called up-bounded. Since we al
ways assume that each delay is bounded from above, i.e., either up-bounded
or bi-bounded, there is no need for the concept of "down-bounded" delays.

A bi-bounded ideal delay (BID) is defined as follows. Recall that we are
assuming that the input and the output of the delay component have the
same value initially and that the signals are binary. Under these special
circumstances, we may represent the input waveform as a (finite or in
finite) sequence (tl, t2"") of increasing real numbers, where each real
number ti represents an instant at which the input signal changes. Thus
the input waveform in Figure 3.4 could be represented by the sequence
(0,2,5,5.5,8,10,10.5,13), together with the initial value O. In a similar
way, we represent the output waveform of a delay component by the se
quence (t~, t;, ...) of increasing real numbers. In the BID model, we have
the following rules:

1. There is a one-to-one correspondence ti f--.+ t~ between the sets of
instants in the input and output waveforms.

2. There exist constants d > 0 and D > d, such that

for all i = 1,2,

The reader should observe the following difference between the nature
of the definitions of the FID and BID models. In the FID model, given an
input waveform, one may predict uniquely the output waveform. This is
not possible in the BID model. Here, given an input waveform and a cor
responding candidate for an output waveform, we can only decide whether
or not the given output waveform is consistent with the BID model, i.e.,
whether it could occur as a response to the given input waveform. Thus, to
each input waveform there corresponds an infinite family of possible output
waveforms.

It is also useful to have the concept of an up-bounded ideal delay. For
mally, the input and output waveforms of an up-bounded ideal delay (UID)

40 Chapter 3. Delay Models

with upper bound D satisfy the following conditions: Let (tl' t2, ...) and
(ti, t~, . ..) be input and output sequences (respectively) of increasing real
numbers. Then

1. there is a one-to-one correspondence ti I-t t~ between the sets of
instants in the input and output waveforms;

2. ti < t~ < ti + D, for all i = 1,2,

Thus any UID delay is strictly greater than 0 and strictly less than D.

3.4 Inertial Delays

The ideal delay model is often not realistic, since it fails to capture the fact
that many physical delays ignore very short pulses, i.e., tend to "smooth
out" fast varying signals. For this reason we consider several types of inertial
delays [100, 135). Our approach follows that of [23, 24, 122).

The first delay model we consider is the fixed inertial (FIN) delay model.
The delay 8(t) is constant in time, i.e., 8(t) = d > O. The behavior is defined
by the following two rules:

1. If x(t) changes from 0: to Q at time T, then we must have had X (t) = Q
for T - d ~ t < T.

2. If X(t) changes from 0: to Q at time T and X(T) = 0:, then either (a)
x(t) changes to Q at time T + d or (b) X (t) changes back to 0: before
T + d.

In Figure 3.5 we show how a fixed inertial delay (d = 1) would react to the
same input signal as in Figure 3.4.

X(t) ~ n IlJ

x(t) n
I I I I •
0 5 10 15

FIGURE 3.5. Fixed inertial delay response.

We next define bi-bounded inertial delays satisfying

0< d ~ 8(t) < D,

where d and D are positive real numbers. In the bi-bounded inertial (BIN)
delay model the input/output behavior must obey the following two rules:

Section 3.4. Inertial Delays 41

1. If x(t) changes from a to a at time 1", then we must have had X (t) = a
for T - d :s: t < 1".

2. If X(t) = a for T :s: t < T + D, then there must exist a time T,
T :s: T < T + D, such that x(t) = a for T :s: t < T + D.

The first rule deals with the minimum delay of the delay element. It states
that the element must be unstable for at least d units of time in order to
change. The second rule deals with the maximum delay possible; note that
we have a strict inequality here, i.e., a delay element cannot be unstable
for D units of time without changing. In Figure 3.6, we show two possible
responses to the input waveform of Figure 3.4, when the delay is bounded
by 1 :s: t5(t) < 2.

X(t) ~ '--_--'nL-_--'

x'(t) n
x(t)

I
0 5

FIGURE 3.6. Possible bi-bounded inertial delay responses.

We can also define an up-bounded inertial (UIN) delay model, which
must satisfy the following two properties:

1. If x(t) changes from a to a at time T, then there exists t5 > 0 such
that X(t) = a for T - t5 :s: t < T.

2. If X(t) = a for T :s: t < 1" + D, then there exists a time T, T :s: T <
T + D such that x(t) = a for T :s: t < T + D.

Note that Property 2 implies that the t5 in Property 1 must be less than D.
In the delay models above, we have assumed that all the signals are

binary, and that changes from 0 to 1 or from 1 to 0 are instantaneous. This
is clearly an idealized assumption. In a physical circuit, there is usually a
voltage range, below the minimum voltage for 1 but above the maximum
voltage for 0, in which the logical value of the node is indeterminate. To
capture the fact that changing signals must be in this indeterminate voltage
range for a nonnegligible amount of time, we force all changing values to
go via II>, i.e., x(t) can only change from a binary value to II> or from II> to
a binary value, but never directly from 0 to 1 or from 1 to O. Using this
approach, we define extended inertial delay models of the bi-bounded and

42 Chapter 3. Delay Models

X(t) ~ n U
x(t) ~ ~ L

I I I I •
0 5 10 15

FIGURE 3.7. Possible XBIN delay response to binary input.

X(t)

x'(t) _----l~'--__ ______'~

x(t) ...--__ -111'-_---,
'--____ --' L--

I • o 5 10 15

FIGURE 3.8. Possible XBIN delay responses to ternary input.

up-bounded types. Let 0 < d < D; the extended bi-bounded inertial (XBIN)
delay model satisfies the rules:

1. (a) If x(t) changes from a binary value 0: to IP at some time T, then
we must have had X(t) =I- 0: for T - d ~ t < T.

(b) If x(t) changes from IP to a binary value 0: at some time T, then
we must have had X(t) = 0: for T - d ~ t < T.

2. (a) If X(t) = {3 E {a, IP, 1} for T ~ t < T + D, then there must exist
a f, f < T + D, such that x(t) = (3 for f ~ t < T + D.

(b) If X(t) =I- 0: E {O, 1} for T ~ t < T + D, then there must exist a
f, f < T + D, such that x(t) =I- 0: for f ~ t < T + D.

We restrict Rule 2(b) to binary values in order to allow the output to be
IP when the input is oscillating between ° and 1 (assuming each period of
o (1) is strictly less than D, of course).

In Figure 3.7, we show a possible response of an XBIN delay with d = 1
and D = 2 to the same binary input signal as in Figure 3.4. However, the
response of an XBIN to a signal containing IPs is more interesting. Two
possible responses to such an input signal are shown in Figure 3.8. Note
that the XBIN can both increase and decrease the duration of IP periods.

Section 3.4. Inertial Delays 43

The latter effect can occur, for example, when the delay element changes
more slowly from 0 to ~ than from ~ to 1.

The extended up-bounded inertial (XUIN) delay model satisfies the rules:

1. (a) If x(t) changes from a binary value a to ~ at some time T, then
there exists 0 > 0 such that X(t) f:; a for T - 0 :::; t < T.

(b) If x(t) changes from ~ to a binary value a at some time T, then
there exists 0 > 0 such that X(t) = a for T - 0:::; t < T.

2. (a) If X(t) = f3 E {O,~, I} for T :::; t < T + D, then there must exist
a f, f < T + D, such that x(t) = f3 for f :::; t < T + D.

(b) If X(t) f:; a E {O, I} for T :::; t < T + D, then there must exist a
f, f < T + D, such that x(t) f:; a for f < t < f + D.

We will return to inertial delays in Chapter 6.

Chapter 4

Gate Circuits
Gate circuits have been in use for a number of years, are generally well
known, and are relatively easy to model mathematically. In this chapter we
define several gate circuit classes, some reflecting topological properties and
others arising from behavioral characteristics. We show how gate circuits
can be modeled in a very general, mathematically precise, framework. In
the next chapter we show how modern MOS circuits can also be modeled
in our framework; this enables us later to derive a theory applicable to
gates as well as MOS circuits. For additional information concerning gate
circuits the reader should refer to a basic text on logic design, for example
[25, 77, 88, 94].

How To Read This Chapter

Section 4.5 can be omitted on first reading. The following comments clarify
our terminology in this chapter. By the term gate we mean our model of a
physical circuit that implements a Boolean function. Thus our gate is more
of a mathematical object that a physical circuit. As we have mentioned
in Chapter 3, a gate is represented by a Boolean function together with a
delay element of some type. For some purposes, the delay is assumed to be
zero; then the Boolean function alone suffices. Also, the input signals to
our gates are idealized binary or ternary signals.

We talk about "structure" and "behavior" of a gate circuit rather in
formally. The structure of a gate circuit includes a list of gates contained
in the circuit, the Boolean functions associated with these gates, and the
wire connections among the gates. The notion of behavior is defined more
precisely in Chapters 6, 11 and 12; for now it suffices to think of behavior as
describing what will happen, i.e., how various signals in the circuit evolve
with time.

4.1 Properties of Gates

A gate has one or more distinct inputs and one or more distinct outputs.
There is a direction, from input to output, that is implicitly associated
with each gate. Although some families of gates have multiple outputs,

46 Chapter 4. Gate Circuits

most gates have only a single output. In this book we restrict ourselves to
single-output gates. A list of commonly used one- and two-input Boolean
functions and a list of gate symbols corresponding to these functions were
given in Chapter 1, Table 1.1 and Figure 1.1.

If we apply binary signals at the inputs Xl, ... , Xn of a gate, the resulting
output value is determined by the gate type. In this book we assume that
the binary values are realized by voltage levels. In fact, we use "positive"
logic, where 0 is represented by a low voltage and 1 by a high voltage. In
reality, since transitions are not instantaneous and voltage levels fluctuate
slightly, any voltage below a certain threshold voltage VL represents 0 and
any voltage above a threshold voltage VH represents 1. Obviously, VH > VL.
If the voltage of at some node (point in the circuit) is above VL, but below
V H, we consider the value of the node to be undefined. We return to this
later in this chapter.

An input to a gate may be a constant (i.e., 0 or 1) or a binary variable
Xi. The number of inputs to a gate is the fan-in of the gate. The fan-in of
gates in most circuit families varies from one to eight.

The output of a gate can be connected to one or more inputs of other
gates. Sometimes the output of a gate can be connected to the gate's own
input(s), although in practical designs this is relatively uncommon. In this
book we use several such circuits, mainly to reduce the size of examples.

If a gate forms a part of a larger circuit, the number of gate inputs
connected to the output of a given gate is said to be the fan-out of that gate.
Virtually all circuit families impose restrictions on the maximum fan-out.
Even if no such restrictions are imposed, limiting the fan-out is desirable,
since the delay of a gate usually increases with the fan-out.

Normally, the output of a gate cannot be connected to the output of
another gate. Such a connection would result in an ill-defined value if the
computed outputs of the two gates disagreed. In some gate implementa
tions, however, the outputs of several gates can be connected together.
Depending on the technology, the result is a wired-OR or a wired-AND con
nection. In a wired-OR technology, the value on the connection point is the
logical OR of the output values the connected gates would have if the gates
had not been wired together. A wired-AND connection works in a similar
manner. Our approach to wired-OR (AND) connections is to introduce a
virtual OR (AND) gate instead of the connection.

In certain technologies gates can have tri-state outputs. Here, the output
of a gate can be electrically isolated. When this occurs, the output is said to
be "floating." A floating output has no effect on any wire to which it may
be connected. Thus, if the designer makes sure that only one of the several
gates with connected outputs is in its "nonfloating" (also called "driven")
state, then that single gate determines the value of the connection point.
This type of connection is very common in bus-based designs, where more
than one sender can supply the value to be sent on the bus. We return to
these gate types later in this chapter.

Section 4.2. Classes of Gate Circuits 47

4.2 Classes of Gate Circuits

Given a set of basic gates, we can implement more complex, arbitrary
Boolean functions by connecting a number of gates together. For example,
the circuit of Figure 4.1 corresponds to the expression l

y = (Xl X2 + X 2 X 3 + Xl X3)

and implements the "minority" function, which has the value 1 if a minority
(i.e., one or zero) of its three inputs are 1.

Xl ---+-----1

y

FIGURE 4.1. Feedback-free gate circuit.

We say that a gate circuit is feedback-free, if, starting at any point in the
circuit and proceeding via connections through gates in the direction input
to-output, it is not possible to reach the same point twice. For example, the
circuit of Figure 4.1 is feedback-free. A gate circuit that is not feedback-free
is said to contain feedback.

In feedback-free circuits we define the concept of level of a gate induc
tively as follows. A gate with only external inputs is said to be at level 1.
Inductively, if the inputs to a gate i are either external inputs or outputs
of gates of level less than k, and at least one input is the output of a gate
of level k - 1, then gate i is of level k. A feedback-free circuit is a level-k
circuit if k is the maximum of the levels of its gates.

It is well known that every Boolean function can be implemented by a
feedback-free circuit. Conversely, if we are given a feedback-free gate circuit
to analyze, we can use the Boolean function model to represent both the
individual gates and also the entire circuit.

A circuit in which the outputs are uniquely determined (after some delay)
by the input combination is called combinational. In contrast, if a circuit
output is not uniquely determined by the present input combination, then
it must depend also on previous inputs, i.e., on the input sequence; such
a circuit is called sequential. We will consider combinational circuits as
special cases of sequential circuits.

lUnless there is a danger of ambiguity, we omit the Boolean multiplication
symbol * from Boolean expressions.

48 Chapter 4. Gate Circuits

Xl------------e---------------~

FIGURE 4.2. Combinational gate circuit with feedback.

Clearly, every feedback-free circuit is combinational. As our next example
[74) shows, however, the converse does not hold. Consider the gate circuit
of Figure 4.2. Suppose the inputs Xl, X 2 , and X3 are held constant for
a sufficiently long time that the circuit reaches a stable state, if such a
state exists. Assume first that Xl = o. After some time, determined by the
delays of the gates with outputs YI and Y3, these outputs will be 1, since
Xl = 0 uniquely determines the output of the inverter as well as the NAND
gate. Once Y3 becomes 1, Y4 will become (after some delay) (lX3) = X 3·

This will eventually cause the output of Y5 to become (lX3) = X 3 . Finally,
Y2 will become (X2X 3). Note that the gate circuit is now stable, i.e., the
output of every gate has the value computed by the gate from the current
input values. In summary, we have just shown that any input state of the
form X = (0, X 2 , X 3) (which represents the four 3-tuples 000, 001, 010,
and 011) forces the gate circuit to a corresponding unique internal state of
the form Y = (Yl, ... ,Y5) = (1, (X2 X 3), 1, X 3, X 3). Note that this analysis
is completely independent of the initial state of the gate circuit.

A similar analysis takes care of the remaining input alternatives. Let X =
(1, X 2 , X3). After some delay, YI will become O. This will force Y5 to become
1, which, in turn, will cause Y2 to become (X21) = Yz. Consequently, gates
Y3 and Y4 will eventually have the values X 2 and (X2X 3), respectively. The
circuit will then be stable. In summary, the input X = (1, X 2 , X 3) forces
the circuit to a unique internal state Y = (0, X 2 , X 2 , (X2 X 3), 1). Again, the
analysis is completely independent of the initial state of the gate circuit.

We can now combine the two cases above as follows:

YI = 1 when Xl = 0

and

YI = 0 when Xl = 1.

Thus YI = Z. Furthermore,

Y2 = (X2X 3) when Xl = 0

and

Y2 = X 2 when Xl = 1.

Section 4.2. Classes of Gate Circuits 49

Consequently,

Y2 = Xl (X2X 3)+XI X 2 = ... = X2+XI X 3 ·

Similarly,

Y3 XI +X2 ,

Y4 = XI X2+X3 ,

Y5 = XI +X3 .

Since, after a certain delay, all the gate outputs are uniquely determined
by the external inputs, the gate circuit is combinational, despite the fact
that it contains feedback.

It should be clear that the Boolean function model does not take into
account all of the properties of a physical gate. For example, physical gates
have delays associated with their operation. However, in traditional analysis
of combinational circuits, delay effects are usually considered secondary
to the basic operation of the gate. In summary, for combinational circuit
design, a gate is usually adequately described by the very simple Boolean
function model. In fact, Boolean algebra has been a very effective tool for
the analysis and design of combinational circuits over the years.

In contrast to the example of Figure 4.2, our next example shows a circuit
that has feedback and is not combinational. For such a circuit, Boolean
functions alone do not suffice, as we now show. Consider the circuit of
Figure 4.3, which is a NOR latch that we use as a frequent example. If

FIGURE 4.3. NOR latch circuit.

we try to analyze this circuit without introducing any delays, we run into
difficulties. Using the Boolean approach we conclude that the output y of
the second NOR gate depends on the input X 2 and the output of the first
NOR gate. The latter signal depends on Xl and on y. But then the output y

depends on itself, for y = ((Xl + y) + X 2) = (Xl + y)X2 • If Xl = X2 = 0,
then the equation reduces to y = y. The latter equation has two solutions,
y = 0 and y = 1. Since y is not uniquely determined by the inputs, this
circuit is not combinational. To analyze its behavior properly, we must
be able to explain how its state can change as a result of an input change,
taking into account the present output value. Such reasoning is not possible
if we represent each gate as a Boolean function. In fact, an analysis only
becomes possible if delays are considered. For example, if a delay is added
somewhere in the feedback loop of Figure 4.3, say as shown in Figure 4.4,

50 Chapter 4. Gate Circuits

then we can talk about the old value of the output as stored at the output
Y of the delay and the new value of the output as it appears at the input
Y of the delay.

FIGURE 4.4. NOR latch with feedback delay.

Two questions need to be addressed before an analysis of a gate circuit
is possible in the Boolean function/delay model. First, what type of delays
should we use in our model? We normally use an inertial delay model, since
it is appropriate in many cases and the classical analysis methods are based
on that model. We also briefly consider analysis using ideal delays. Second,
where in the circuit should the presence of delays be assumed, so that the
results of the analysis are sufficiently realistic? Should one associate a delay
with every gate? Would a model that associates a delay with every gate
and every wire be more "accurate" in some sense? Is a model in which
two delays are associated with each wire still more accurate than the one
with a single delay per wire? We will be able to answer these questions in
Chapters 6 and 7, but only after a considerable amount of theory has been
established.

4.3 The Circuit Graph

We now formulate a mathematical model for gate circuits. The first part of
this model describes the structural properties, concerning the gates, gate
types, and connections. Formally, these structural properties are captured
by the "circuit graph." Behavioral properties are treated later.

A circuit graph is a 5-tuple G = (X,I, g, W, E), where

• X is a set of input vertices, labeled Xl, X 2 , • •• , X n ,

• I is a set of input-delay vertices, labeled Xl, X2, ... , X n ,

• 9 is a set of gate vertices, labeled Yl, Y2, ... , Yr,

• W is a set of wire vertices, labeled ZI, Z2, . .. ,zP' and

• £ ~ (X X I) U ((I U Q) x W) U (W x g) is a set of edges.

All input vertices have indegree 0 and all wire vertices have indegree and
outdegree 1. The directed graph defined by ((X uIu 9 u W),£) must be

Section 4.3. The Circuit Graph 51

bipartite with vertex classes I U 9 and Xu W. In other words, there is no
edge between any two vertices in I U g, nor is there any edge between two
vertices in X U W. Note that self-loops (edges of the form (v, v)) are also
excluded.

One of the purposes of the circuit graph is to identify all those points in
the circuit with which one might want to associate a state variable. Thus
we might wish to associate state variables with input delays, gates, and
wires. More is said about this in Section 4.4.

We now describe the construction of a circuit graph from a gate circuit.
The reader may wish to refer to the circuit of Figure 4.5 and to Figure 4.6,
which illustrates this construction. In the circuit graph we have X = {Xl},
I = {Xl}, 9 = {YI, Y2, Y3, Y4}, and W = {Zl, Z2, Z3, Z4, Z5, Z6, Z7}.

Z3D a~ t;;{>Jy, z,: :., @?, Fur"'-
FIGURE 4.5. Gate circuit C4.5.

In general, given a gate circuit, we obtain its circuit graph as follows.
First, there is an input vertex Xi for every external input, and a gate
vertex for every gate. For every input vertex Xi there is an input-delay
vertex2 Xi and an edge from Xi to Xi. For every input i of every gate g in
the circuit there is a wire vertex z. There is an edge from the wire vertex Z

to the gate vertex corresponding to the gate g. If the input i is connected
to an external input Xj, there is an edge from the input-delay vertex Xj

to the wire vertex z. Otherwise, if the input i is connected to the output
of gate g', there is an edge from the gate vertex corresponding to g' to the
wire vertex z.

A circuit graph is a convenient and precise notation for describing how
the gates of the circuit are connected. It is not sufficient, however, to also
describe the behavior of the circuit; for that one needs to answer the follow
ing questions: What is the domain, Le., the set of values that the vertices
can take? What determines the behavior of an individual vertex? Which
vertices have delays associated with them? What type of delays are as
sumed? What is the collective behavior of the whole graph? We next focus
on the first two questions; we return to the remaining issues later.

In this book the domain V of a circuit graph is usually {O, I}, but the
ternary domain {O, 1, cp} is used when we wish to represent a gate output
state that is neither 0 nor 1.

2The input delay is introduced for somewhat technical reasons that will be
come clear in Chapter 7. We could use wire delays instead; however, the intro
duction of an input delay is more convenient.

52 Chapter 4. Gate Circuits

FIGURE 4.6. Circuit graph corresponding to gate circuit C4.5.

The behavior of a vertex is governed by a function called the vertex
function that we now define. The vertex function Y; of a gate vertex Yi

maps a wire-vertex state to V, i.e., Y;: VIWI --+ V. This is the Boolean
function of the gate corresponding to the gate vertex. For a wire vertex Zi,

the vertex function Zi, Zi: VII I+191 --+ V, provides the value of the input
delay or gate vertex connected to the incoming edge of the wire vertex. For
an input-delay vertex Xi, the vertex function is Xi. For an input vertex, the
vertex function maps a state of the environment to the vertex domain V.
This function is called Xi. We may think of Xi as the input value provided
by the environment; how the environment determines this value is of no
interest to us.

To illustrate the concepts introduced so far, consider again the circuit
shown in Figure 4.5 with circuit graph shown in Figure 4.6. Assume first
that the value domain is {O, I}. Since we do not know anything about
the environment, we simply write the input-delay vertex function as Xl.
The vertex functions for the gate vertices correspond directly to the gate
functions,

Y1 = Zl, Y 2 = Z2Z3, Y3 = Z4 + Z5, Y4 = Z6Ef)z7·

The wire vertices have the very simple vertex functions,

ZI=XI, Z2=Y1, Z3=X1, Z4=Y2, Z5=Y3, Z6=Y3, Z7=Y3.

Finally, the input-delay vertex function is X 1. Since the domain is {O, I},
the expressions above are all Boolean expressions. On the other hand, had
the domain been {O, IP, I}, the expressions would have been ternary expres
sions representing ternary extensions of the gate functions.

In summary, we use the terms binary (ternary) circuit graph to mean a
circuit graph together with a binary (ternary) domain and a set of Boolean
(ternary) vertex functions, as specified above.

Section 4.4. Network Models 53

4.4 Network Models

The vertex functions defined in the previous section introduce a distinction
between the present value of a vertex variable and the present value of the
"excitation" of that vertex variable, i.e., the value computed by the vertex
function. This permits us to associate a delay with every input, every gate,
and every wire in the circuit.

To represent the state of the entire circuit, we need to select a set of state
variables. Clearly, the circuit graph model easily permits us to select all of
the vertex variables as state variables. We may think of such a model as
the input-, gate-, and wire-state model. As we shall see, this model is too
detailed for some applications, and simpler models may be preferred.

By changing the set of state variables, we effectively change the location
of the assumed delays in the circuit. Although many different choices of
state variables are possible, only some are meaningful. In general, a min
imum requirement for a set of state variables is that at least one state
variable should appear in every cycle of the circuit graph.

At this point, we are unable to decide which set of vertices should be
chosen to represent the state, but an answer to this question is given in
Chapters 6 and 7. For now, we only assume that the state variables are
selected in such a way that they form a feedback vertex set in the circuit
graph. This implies that, if all these vertices were "cut," no feedback would
remain in the graph.

Having selected a set of vertices from the circuit graph to act as state
variables, we associate with each such vertex two distinct items: the vertex
variable and its "excitation function." The excitation function of a vertex
in the state variable set is defined as follows. We start with the vertex
function. We then repeatedly remove all dependencies on vertices that have
not been chosen as state variables, by using functional composition of the
vertex functions.

Once the state variables have been selected and the excitation functions
derived, it is convenient to draw a graph showing the new functional de
pendencies. This graph, called the network, has two sets of vertices: input
excitation vertices and state vertices. There is one input excitation vertex
for every external input, and one state vertex for every state variable. There
is an edge from vertex i to vertex j if the excitation function of vertex j
depends3 on the variable associated with vertex i.

We view a network as a model of the circuit graph. In general, the net
work model contains fewer variables than the circuit graph. After we ana
lyze the network in terms of the chosen state variables we may wish to know

3By "depends" we mean here the usual notion of functional dependence: A
function f of n variables Xl, ... , Xn depends on Xi if there exist two input n
tuples a = (al, ... ,ai-l,ai,ai+l, ... ,an) and a' = (al, ... ,ai-l,a:,ai+l, ... ,an)

such that f(a) =f:. f(a').

54 Chapter 4. Gate Circuits

some or all of the other vertex variable values in the original circuit graph
in this circuit model. Since these variables are not state variables, they have
no delays associated with them. In other words, the value of such a variable
in the network model is always equal to the value of its excitation. Because
we assume that the state variables constitute a feedback-vertex set, the
values of all the variables in the circuit graph are uniquely determined by
the values of the external inputs and of the state variables. This depen
dence of a variable that is not a state variable on the inputs and the state
variables is described with the aid of the circuit equations. The examples
given below clarify these ideas.

To illustrate the concept of network, we show three different sets of
state variables-leading to the "gate-state network," the "wire-state net
work," and an "input- and feedback-state network" -for the circuit graph
in Figure 4.6. The domain associated with each network may be binary or
ternary.

In the gate-state network, only gates are assumed to have delays. Con
sequently, there is one state variable associated with each gate. In our
example, the state variables are Yl, Y2, Y3, and Y4. The excitation functions
are obtained as follows:

and

Yl = Zl = Zl = Xl = Xl,

Y2 = Z2 Z3 = Z2 Z3 = YlXl = ylXl ,

Y3 = Z4 + Z5 = Z4 + Z5 = Y2 + Y3,

Y4 = Z6EBZ7 = Z6EBZ7 = Y3EBY3 = 0,

where the last step is a simplification of the Boolean expression Y3EBY3.
From this we can derive the network graph shown in Figure 4.7. Note

that vertex Y4 has indegree zero, because Y4 is a constant. We also obtain
the following circuit equations from the circuit graph:

Xl = Xl,

Yl = Yl, Y2 = Y2, Y3 = Y3, Y4 = Y4,

In other words, the circuit equations are

Yl = Yl, Y2 = Y2, Y3 = Y3, Y4 = Y4,

Section 4.4. Network Models 55

FIGURE 4.7. Binary gate-state network for circuit graph 04.6.

On the other hand, if the domain is {O, <I>,l}, the gate-state network has
the following excitation functions:

and

Y I = Zl = Zl = Xl = Xl,

Y2 = Z2 Z3 = Z2 Z 3 = YIXI = yIXI ,

Y 3 = Z4 + Z5 = Z4 + Z5 = Y2 + Y3'

Y 4 = z6EBz 7 = Z6EBZ 7 = Y3 EBY3 = Y3Y3,

where the operators are ternary and the last step is a simplification of
the ternary expression Y 3 EBy 3' Note that Y 4 is not identical to 0 in ternary
algebra. Consequently, the network graph for this model is slightly different,
as is shown in Figure 4.8. The circuit equations are the same as above,
except that they are ternary.

FIGURE 4.8. Ternary gate-state network for circuit graph 04.6.

In the Vlire-state network, only wires have delays. Thus, there is one
state variable associated with each wire vertex. In our example, the state
variables are Zl, Z2, ... , Z7. We obtain the excitation functions as follows:

Zl = Z3 = Xl = Xl,

Z2 = YI = YI = Zl,

56 Chapter 4. Gate Circuits

The binary network graph for this model is shown in Figure 4.9. The circuit
equations are

Xl = XI,

FIGURE 4.9. Binary wire-state network for circuit graph C4.6·

Our final example of a choice of state variables gives a ternary input
and feedback-state network. Here the domain is {O, <1>, I}, and a delay is
associated with each input vertex and with a set of feedback vertices. In
our example we use the feedback vertex set {Y3}. We obtain the excitation
functions Xl and

Y3 = Z4 + Z5 = Z4 + Z5 = Y2 + Y3 = Y 2 + Y3 = Z2 Z3 + Y3

Note that Y 3 is not equal to Y3, since the domain is {O, <1>, I}. The network
graph corresponding to these functions is shown in Figure 4.10. The circuit
equations are

FIGURE 4.10. Ternary input- and feedback-state network for circuit graph C4.6.

Section 4.5. Models of More Complex Gates 57

In summary, a network is a 5-tuple

N= (V,X,S,e,F),

where V is the domain, X is the set of input excitation vertices labeled
Xl, .. ' ,Xn , S is the set of state vertices with two sets of labels: state
variable labels (81, ... , 8 m) and the corresponding excitation function labels
(Sl, ... ,Sm), £ is the set of edges, and F is the vector of circuit equations.

4.5 Models of More Complex Gates

As mentioned in Section 4.1, in some technologies the output of a gate
can be made electrically isolated, or floating. Consequently, several such
gates can have their outputs connected together. If this is the case, the
voltage level on the connection point is a function of all the inputs to these
gates. In general, there are two ways of modeling this kind of gate in our
framework. We can leave the individual gates unaltered and introduce a
new "virtual" gate that determines the logic level on the connection point,
or we can merge all of the connected gates into one "super-gate," which
computes the resulting value for every input combination. In this section
we illustrate both approaches.

There are basically three types of gates whose output can be electrically
isolated: gates with wired-AND outputs, gates with wired-oR outputs, and
gates with tri-state outputs. The output of a wired-AND gate is either low or
floating. By itself, such a gate cannot drive its output high. Some external
component, usually a resistor, must be used to ensure that the output is
properly pulled high when the gate is not pulling it low. If several wired
AND gates have their outputs connected together and one (or more) of them
is pulling its output low, the voltage on the connection point will be low.
Only if all of them have floating outputs, will the voltage on the connection
point be high. In effect, the resulting voltage on the connection point is the
AND of the computed values on the gates.

A wired-OR gate functions similarly, except it can only pull its output
high. Consequently, if the outputs of several wired-OR gates are connected
together, the resulting voltage on the connection point is the OR of the
computed values on the gates.

It is straightforward to model a wired-AND or wired-OR connection in our
general framework. We introduce a virtual gate to model the connection
point. To illustrate the process, consider the gate circuit in Figure 4.11,
where the two NAND gates are assumed to have wired-AND outputs. 4 In
Figure 4.11 we have also indicated the names of the existing wires. In

4We do not show the external pull-up circuit, but the reader can imagine that
there is a resistor between the output of, say, Yi and the power supply.

58 Chapter 4. Gate Circuits

Zl
Xl------t

Z2
X 2 -----I

YI

FIGURE 4.11. Circuit with two NAND gates with wired-AND outputs.

Figure 4.12 we illustrate how a "virtual" AND gate is added. Thus, in form
ing the circuit graph, we add a new "gate" vertex, Y3, with vertex function
corresponding to the wired-AND function. To keep the circuit graph bipar
tite, we also add two new wire vertices, Z6 and Z7. We obtain the circuit
graph shown in Figure 4.13 with input-delay vertex functions

Xl> X 2 , X 3 , X 4 ,

gate vertex functions

YI = ZIZ2, Y2 = Z3 Z4, Y3 = Z6Z7,

and wire vertex functions

Zl = Xl, Z2 = X2, Z3 = X3, Z4 = X4, Z5 = Y3, Z6 = YI, Z7 = Y2·

The dashed box in Figure 4.13 contains the added wire vertices and the
new gate vertex. In effect, the connection point in the original circuit is
translated into the vertices inside the box. Once the circuit graph has been
obtained, a network can be derived in the usual fashion.

FIGURE 4.12. Virtual AND gate added to Figure 4.11.

Tri-state gates are slightly more complicated than wired-AND gates. When
a tri-state gate is enabled, it is actively pulling its output to either high
or low. The question arises: What happens if several tri-state gates, con
nected together, are enabled at the same time? If all of them agree on the

Section 4.5. Models of More Complex Gates 59

r-----------..,
I I

L ___________ ...J

FIGURE 4.13. Circuit graph for circuit in Figure 4.11.

value, there is no problem. However, if some try to drive the output high
at the same time as others try to drive it low, the resulting voltage level
on the connection point is not well defined. Normally, the intention is not
to have more than one gate driving the connection point. However, due to
design errors-possibly caused by timing problems-we must be prepared
to handle the situation with more than one driver. Our approach is to use
the ternary domain and use the value <1> to indicate an undefined voltage
level.

We model tri-state gates by merging connected tri-state gates into "super
gates." Each such super-gate has to incorporate all the functionality of the
tri-state gates that are connected together. More specifically, assume that
r tri-state gates have their outputs connected. Assume further that we can
associate an enable function Ti with each gate. When Ti is low, the output
of gate i is not driving the output (the gate is floating), and when Ti is
high, the gate drives the gate output toward the value G i . In general, both
Ti and G i are functions of the inputs to the tri-state gate i.

For a circuit with some tri-state gates connected together, the corre
sponding circuit graph has only one gate vertex representing all of the
tri-state gates that are connected together. The (ternary) gate function of
this super-gate is

One verifies that this ternary function is 1 if at least one gate is driving
the output high and no gate is driving it low. Similarly, the output will be
low when at least one gate is driving the output low and no gate is driving
it high. In all other cases the gate function will take on the value <1>.

60 Chapter 4. Gate Circuits

X5 Z5

Xl
Zl

YI

X 2
Z2

Z7

X6 Z6

X3
Z3

X 4
Z4

Y2

FIGURE 4.14. Circuit with two tri-state gates.

FIGURE 4.15. Circuit graph for circuit in Figure 4.14.

To illustrate how tri-state gates can be modeled, consider the gate circuit
in Figure 4.14, where the T and G functions are

TI = Z5, T2 = Z6, G I = ZIZ2, G 2 = Z3 + Z4·

We obtain the circuit graph shown in Figure 4.15 with input-delay vertex
functions Xl, X 2 , X3 , X4 , X5 , X6 , gate vertex function

y = ((ZlZ2 Z5 + Z6(Z3 + Z4)) (Z5(ZlZ2) + Z6(Z3 + Z4)))

+ ((Z5(ZlZ2) + Z6(Z3 + Z4)) (ZIZ2Z5 + Z6(Z3 + Z4)))<t>,

and wire vertex functions

Zl = Xl, Z2 = X2, Z3 = X3, Z4 = X4, Z5 = X5, Z6 = X6, Z7 = y.

Once the circuit graph has been obtained, a network can be derived in the
usual fashion.

Chapter 5

CMOS Transistor Circuits
The theory that has been developed so far has been presented in terms of
gates, albeit very general gates, i.e., components capable of realizing arbi
trary Boolean functions. In practice, most VLSI circuits are implemented
with MOS transistors as basic building blocks. Unfortunately, the theory
developed for gates is not adequate for many MOS transistor circuits. In
this chapter we show how these circuits can be modeled in our general
framework.

How To Read This Chapter

In Sections 5.1 to 5.4 we introduce a basic switch-level model. Sections 5.5
and 5.6 refine this basic model to handle more complex circuit designs and
can be omitted on first reading. Finally, in Section 5.7 we show how these
switch-level models can be used to derive network models similar to the
ones we described in Chapter 4.

5.1 CMOS Cells

In this section, we show how certain Boolean functions can be implemented
by CMOS circuits called "cells"; more general circuits are considered later.

The fundamental components used in MOS (metal-oxide semiconduc
tor) VLSI (very large scale integration) circuits are the "N-channel and
P-channel field effect transistors"; we refer to them simply as N-transistors
and P-transistors. These two types of transistors are used in the CMOS
(complementary metal-oxide semiconductor) technology. Although the phys
ical and electronic theory of such devices is quite involved [141), it is possible
to use relatively simple mathematical models [10, 22, 27, 122] to capture
the basic logical properties of circuits constructed with such components.

An N-tmnsistor is a three-terminal device, which is represented by the
diagram of Figure 5.1. The terminals tl and t2 are called the channel ter
minals of the transistor and constitute the switch of the transistor. The
state of the switch is controlled by the signal present at the so-called gate
terminal X. When the voltage on X is low, no channel exists and the switch
between hand t2 is open. When the voltage on X is high, a channel exists
between tl and t2, i.e., the switch is closed. If tl is connected to a low
voltage, the signal at t2 also becomes low. In case tl is connected to a high
voltage, the signal at t2 is also high, but is not as "strong" as the signal at
tl. The reason for this is that the voltage at h will not be the same as that

62 Chapter 5. CMOS Transistor Circuits

N-transistor P -transistor Vdd (1) ground (0)

tl tl T ~

X-1~ X-4~
-;-

t2 t2

FIGURE 5.1. Transistor symbols.

at tl, but rather VT volts lower, where VT, called the threshold voltage, is a
parameter determined by the process technology and is typically between
0.5 V and 1.5 V. Hence, if a high voltage is connected through several
closed N-transistors, the resulting output voltage may not have sufficient
magnitude to be treated as high. In summary, when X = 0, an N-transistor
is an open switch; when X = 1, it is a closed switch that transmits O's well
and 1 's poorly.

Figure 5.1 also shows the symbol of a P-transistor. The small circle at
the gate terminal denotes complementation. When X = 1, a P-transistor
is an open switch; when X = 0, it is a closed switch that transmits 1 's well
and O's poorly.

Finally, Figure 5.1 also shows our symbol for the supply voltage Vdd

(logical 1), and ground (logical 0).
We define a CMOS cell [27] to be any circuit of N- and P-transistors

with the properties below. We use the example of Figure 5.2 to illustrate
the details of the definition.

The channel terminals of all the transistors are first (conceptually) con
nected to each other in any fashion. For example, in Figure 5.2(a) we have
connected six transistors. The connection points so formed, and the re
maining unconnected channel terminals, are called the nodes of the cell. In
the example of Figure 5.2(a), we have formed five nodes labeled A, ... ,E.

In the second (conceptual) step of constructing the cell, one of the nodes
is connected to the constant input 0 (i.e., ground, as shown in Figure 5.1)
and another to the constant input 1 (i.e., Vdd, as shown in Figure 5.1); these
nodes are called the supply nodes. Suppose there are n external (variable)
inputs. Some k ::; n nodes (which are not supply nodes) are next chosen,
and each of them is connected to a distinct external variable input Xi, 1 :::;
i ::; n; these nodes are called input nodes. One of the remaining nodes
is selected to be the output node. In the example, Figure 5.2(b), node D
has been connected to Vdd , node E to ground, and node A to the external
input X 2• Node B has been chosen as the output node; this is shown by
the outgoing arrow. Nodes that are not supply, input, or output nodes are
called internal. In the example, only node C is internal.

Section 5.1. CMOS Cells 63

D D

1 1 5p- 1 1 5p-
1 2

A B C X 2 A B C

3 4 3 4

T T 6~ T T
E

~

(a) (b)

Xl

A
X 2 C

y
(c)

FIGURE 5.2. Illustrating the definition of a cell.

The gate terminal of each transistor is connected to exactly one input
Xi. This means that if a node labeled Xi exists in the cell, then all the
gate terminals that are to be controlled by Xi are connected to that node.
However, if no input node labeled Xi exists, the gate terminals of all tran
sistors that are to be controlled by Xi are connected to the input Xi, but
this input does not constitute a node of the cell. The connections of inputs
to gate terminals are shown in Figure 5.2(c) for our example.

It should be noted that the definition of a cell involves implicitly some
assumptions about delays, namely, that the delays in the wires connecting
several gate terminals to the same input are approximately the same and
very small compared to other delays. Of course, when we later allow the
inputs to a cell to be the outputs of other cells, the delays in the wires
connecting cells can have delays associated with them. However, the "local"
wiring is assumed to be essentially delay-free. This assumption follows the

64 Chapter 5. CMOS Transistor Circuits

one made in [10], where a cell is called a channel-connected subnetwork.
We follow this approach here to simplify our discussion. Conceptually, it
is easy to extend the ideas presented in this chapter to include local wire
delays.

In drawing circuit diagrams, it is sometimes convenient not to show all
the connections, in order to improve the clarity of the diagram. Thus, we
may show two terminals labeled 0 or three terminals labeled Xi' It is then
understood that the common label implies the existence of a connection.

We begin by considering static CMOS circuits; other types of CMOS
circuits are mentioned later. Static CMOS circuits use N-transistors to
transmit O's and P-transistors to transmit 1 's. An example of such a circuit
is shown in Figure 5.3. An intuitive explanation for the working of the cell
is as follows: The inputs are Xl and X 2 and the output is the signal at
node y. When either Xl or X 2 or both are 1, y is not connected to 1 (Vdd),
because at least one of the P-transistors is an open switch; however, y is
connected to 0 (ground) through one or both of the N-transistors. Thus y

becomes O. In case Xl and X 2 are both 0, y is connected to 1 through the
two P-transistors in series, and it is not connected to O. Hence y becomes
1. Altogether, the circuit performs the NOR function.

Xl---_--a

FIGURE 5.3. CMOS NOR gate.

A binary input state is a binary vector of length n. It follows that, for
each binary input state, each transistor is either a closed or an open switch,
i.e., the state of each transistor is well defined. A path in a transistor circuit
is a sequence of connected transistor switches that does not go through a
supply node. Note that paths can start and/or end in supply nodes, but the
intermediate nodes in a path must be either internal or output nodes. An
N-path is any path of N-transistor switches that are closed, i.e., any path
of N-transistors with a 1 on their gate terminals. A P-path is any path of
P-transistor switches that are closed, i.e., any path of P-transistors with a
o on their gate terminals. Finally, an M-path (M for "mixed") is any path
of N- or P-transistor switches that are closed.

Section 5.1. CMOS Cells 65

For the cell output y, the following Boolean functions ofthe circuit inputs
are defined in terms of paths. (The symbol g is used for "good" paths and
m for "mixed" paths.)

go = 1 if and only if there is an N-path from y to an input or supply node
with value 0, i.e., if and only if there is good path to 0;

g1 = 1 if and only if there is a P-path from y to an input or supply node
with value 1, i.e., if and only if there is a good path to 1;

mo = 1 if and only if there is an M-path from y to an input or supply
node with value 0, i.e., if and only if there is a path to 0;

m1 = 1 if and only if there is an M-path from y to an input or supply
node with value 1, i.e., if and only if there is a path to 1.

In a general CMOS cell, we distinguish the following three cases for the
output y

y = 0 if and only if go = 1 and m1 = 0, i.e., if and only if there is a good
path to 0 and no path to 1;

y = 1 if and only if g1 = 1 and mo = 0, i.e, if and only if there is a good
path to 1 but no path to 0;

y = ~, otherwise.

The significance of the three output values above is explained with the
aid of several examples. The circuit of Figure 5.3 is a cell in which the
output can only be 0 or 1 for every binary input state; such cells are called
Boolean. A more complex Boolean cell is shown in Figure 5.4. Here go =
mo = X 1X 2 + X 3(X1 + X 2) and g1 = m1 = X 1(X2 + X 3) + X 2 X 3 . One
verifies that go = mo = g1 = m1, and that the cell is indeed Boolean.

The value y = ~ covers a number of cases. First, if y is connected neither
to 0 nor to 1, it is said to be floating. Because of capacitance, such a floating
node "remembers" its previous state by charge storage. With time, however,
the stored charge may "leak out," leading to an uncertain signal value. Thus
we assign ~ to such a node. Second, if y is connected to 1 only through
"mixed" paths containing both N- and P-transistors and is not connected
to 0, the output value is a "weak" 1. Hence the output is classified as CP.
A similar situation exists if the output is connected to 0 through mixed
paths only and is not connected to 1. Finally, suppose that y is connected
to both 0 and 1 at the same time; this condition is sometimes called a fight.
In practice, transistors are not ideal switches but have some resistance.
Therefore the output voltage will have a value intermediate between those
corresponding to 0 and 1. This is also considered undesirable from the
logical point of view, and we assign cP to y. This approach represents a

66 Chapter 5. CMOS Transistor Circuits

p..- X 3

.---~--------~--~y

~Xl

FIGURE 5.4. Cell for minority function.

rather strict set of design rules. Other, less stringent, sets of rules are also
in use; we consider such variations in Sections 5.3-5.6.

A cell is said to be redundant if it has a node that can be removed without
affecting the output value, or if it has a transistor that can be replaced by
either an open or a short circuit without affecting the cell output. A cell
that is not redundant is called irredundant.

A Boolean function f is said to be positive if there is a sum of products
of uncomplemented variables that denotes f. For example, the majority
function of three variables is positive because it can be denoted by X 1X 2 +
X 2X 3 + X 3X 1 , whereas the XOR function is not positive. A function is
negative if its complement is positive. One can verify that a function is
negative if and only if there is a sum of products of complemented variables
that denotes it. Note that a function may be neither positive nor negative;
for example, the XOR function is neither positive nor negative.

In Figure 5.5 the P-part is any network consisting entirely ofP-transistors.
The N-part is defined similarly. A cell is said to be separated if it has the
form shown in Figure 5.5, where there are no input nodes (thus the inputs
can only be connected to gate terminals of transistors); otherwise, it is non
separated. Note that go = rno and gl = rnl in a separated cell. A separated
cell is Boolean if and only if go = gl.

Several basic properties of Boolean cells are stated below without proof.
The reader may construct the proofs as an exercise or see [27].

Proposition 5.1 If an irredundant cell is Boolean, then it has no input
nodes.

Proposition 5.2 If a cell is Boolean, then go is positive and gl is negative.

Section 5.2. Combinational CMOS Circuits 67

T
· P-Part · ·

Y

· N-Part · ·
..l

FIGURE 5.5. Form of separated cell.

Proposition 5.3 Every negative Boolean function can be implemented by
a separated cell that has as lew transistors as any minimal nonseparated
cell realizing the function.

In summary, every Boolean cell implements a negative function and ev
ery negative function can be implemented by a separated cell, as shown
in Figure 5.5, with the minimal number of transistors and with no input
nodes.

5.2 Combinational CMOS Circuits

In this section we briefly discuss the realization of arbitrary Boolean func
tions by a CMOS circuit with several CMOS cells [27]. We have seen that
any negative function can be realized by a single cell. I

It is well known that any Boolean function can be realized using inverters
to produce complemented inputs, and two levels of NAND gates to imple
ment a sum-of-products expression for the function. For example, consider
the XOR function. We have I = XI X2 + XI X2• Let YI = Xl and Y2 = X 2 ;

these functions can be realized by two CMOS inverters with two transistors
each. Now let Y3 = (y IX 2) and Y4 = (XIY2); the Y3 and Y4 functions can be
realized by two CMOS NAND gates with four transistors each. Finally the
function I can be realized by another two-input CMOS NAND gate, since
1= Y3 + Y4 = (Y3Y4). Altogether, we have the circuit of Figure 5.6 with a
total of 16 transistors.

IThis is true in principle; in practice, if the cell is too large, it may have to be
decomposed into smaller cells for performance reasons. However, such topics are
outside the scope of this book.

68 Chapter 5. CMOS Transistor Circuits

X,-C Yl X 2 -4

"7
Y3 Y4

X,-C Y2
"7

"7

FIGURE 5.6. A CMOS circuit for XOR.

The number of transistors in a circuit is a very rough indication of the
area that the circuit will occupy on a chip, because wires and empty space
usually take much more room than the transistors themselves. Neverthe
less, the number of transistors does give some indication of the complexity
of a circuit. A realization of the XOR function with 10 transistors can be
obtained from a different decomposition of the function into negative func
tions, namely f = (X1X2 + y), where y = (Xl + X 2).

A still more economical (in terms of transistors) implementation of the
XOR function can be obtained using so-called transmission gates [27, 88,
94, 141]. A transmission gate controlled by X consists of an N-transistor

Xl

A
x'-C Y X2 f

~ Y
y ~

FIGURE 5.7. XOR with transmission gates.

Section 5.3. General CMOS Circuits 69

controlled by X in parallel with a P-transistor controlled by X. Figure 5.7
shows a circuit with two transmission gates. The left cell is an inverter
producing y = Xl' The right cell is not Boolean for, when Xl = X2 =
Y = 1, there is a path from f to both a and 1. However, when the two cells
operate together, this condition can only arise as a transient condition, and
the circuit does realize the XOR function properly.

Our first two examples of CMOS implementations of the XOR function
have direct analogies to gate circuits, whereas the third one does not. For
a more detailed discussion of combinational CMOS circuits see [27]. In the
next section we generalize the concept of CMOS cell in such a way that it
also includes sequential circuits.

5.3 General CMOS Circuits

We now consider general CMOS circuits and their corresponding models
in which transistors are considered as controlled switches. The first formal
"switch-level" model was introduced by Bryant [10] and such models were
further studied in [12, 13]. The use of ternary methods for the detection of
timing problems in CMOS circuits was considered in [8, 22, 27, 83, 122].
We follow here the approach of [22, 122].

A general CMOS circuit is defined like a CMOS cell, except that any
transistor gate terminal may be connected either to an external input or
to an internal node. An internal node that is connected to the gate of one
or more transistors is called a key internal node. Internal and key internal
nodes are labeled with internal and key internal variables.

To illustrate the definition above, consider the circuit of Figure 5.8. The
circuit has supply nodes a and l-connections should be supplied between
different versions of the same node in the diagram-and it has no input
nodes. It is convenient to number the ground node 0, the supply node
(Vdd) 1, and the remaining nodes 2,3, Thus the three internal nodes
are labeled Y2, Y3, and Y4. Nodes Y2 and Y4 are key internal nodes, because
each controls the gate terminals of two transistors; node Y3 is not a key
internal node.

We now define several CMOS models, each reflecting different types of
design rules and accuracy requirements. Consider a circuit with n input
variables and m internal variables, of which k are key internal variables.
A ternary input-key state is a length-(n + k) vector of a's, 1's, and c}'s,
associating a value with each input node and each key internal node. A
ternary total state is a length-(n+m) vector of a's, 1's, and c}'s, associating
a value with each input node and each internal node. N-, P-, and M-paths
are defined as in Section 5.1. An N~ -path is a path of N-transistors that
is not an N-path and in which each gate terminal has either a 1 or a c}
associated with it. Thus each transistor in an N~ -path is either closed or

70 Chapter 5. CMOS Transistor Circuits

x

FIGURE 5.8. Circuit 0 5.8.

its state is uncertain because of a <I> on its gate terminal, and there is at
least one transistor with such an uncertain state. p<l> -paths and M<I> -paths
are defined similarly.

We use the convention that nodes in circuits are labeled with symbols
in italics (e.g., X, Y2, etc.). In the corresponding ternary model, however,
the same vertices are shown in bold face (e.g., X, Y2' etc.) to stress their
ternary domain. Given these conventions, for any pair of nodes i and j,
i ¥- j, we define the following ternary path functions, which depend on the
current input and key internal node values:

{
I if there is a P-path from i to j,

Pij = <I> if there is no P-path but a p<I>-path from ito j,

o if there is no P-path or p<I>-path from i to j;

{
I if there is an N-path from ito j,

nij <I> if there is no N-path but an N<I>-path from ito j,

o ifthere is no N-path or N<I>-path from i to j;

{
I if there is an M-path from ito j,

mij <I> if there is no M-path but an M<I> -path from i to j,

o ifthere is no M-path or M<I>-path from ito j.

It is convenient to extend this definition by postulating that Pii = nii =
mii = 1, for every node i. It should be noted that all path functions are
symmetric, i.e., Pij = Pji for every node i and j.

Section 5.4. Node Excitation Functions 71

To illustrate the concepts of path functions, consider the the example of
Figure 5.8. It is straightforward to verify the following path functions:

n20 = XY4, P20 = 0, m20 = XY4'

n21 = 0, P21 = X + Y4, m2l = X + Y4'

n23 = X, P23 = 0, m23 = X,

n30 = Y4, P30 = 0, m30 = Y4,

n31 = 0, P31 = 0, m3l = X(X + Y4)'

and

5.4 Node Excitation Functions

Given the basic path functions derived in the previous section, we can
define a variety of different types of models applicable to CMOS circuits,
depending on the details of the CMOS technology used and also on the
design philosophy. We start by deriving some very simple models and then
gradually expand these basic ideas.

The strictest set of CMOS design rules corresponds to the following def
inition of an (internal) node excitation function: Given an input-key state
or a total state, a node excitation is declared to be 0 (1) if and only if that
node is connected to 0 (1) through an N-path (P-path) and is not con
nected to 1 (0); in all other cases, the excitation is declared to be <II, which
represents an undefined signal. Using the ternary algebra of Section 2.3, we
can denote the excitation function by the expression

Y i = PilmiO + (Pil m iO + niomid<ll,

i.e., the node i is excited to 1 if there is a good connection (P-path) to
node 1 (corresponding to Vdd) and no path to node 0 (corresponding to
ground); it is excited to 0 if there is a good connection (N-path) to 0 and
no connection to 1; and it is excited to <II if it is not the case that it is excited
to either 0 or 1. The reader should verify that the expression above does
indeed correspond to the desired function. According to Proposition 2.2, it
is possible to simplify this expression to

Y i = PilmiO + (niOmil)<II.

72 Chapter 5. CMOS Transistor Circuits

For the example of Figure 5.8, we find the following excitation functions:

Y2 = P2l m 20 + (n20m21)~

= (X + Y4)(XY4) + (XY4(X + Y4))~

= X+Y4'

Y3 = P31 m30 + (n30m 31)~

= OY4 + (Y4(X(X + Y4)))~
= (XX + Y4)~ = XX + Y4~'

and

Y4 P4l m 40 + (n40m41)~

= Y2 Y2 + (Y2Y2)~ = Y2·

Note that the node excitation defined above can be written in the form
Ui + (Ui + Zi)~' or simplified to Ui + Zi ~, for some functions Ui (for unity)
and Zi (for zero). Here, Ui denotes the conditions under which Y i is 1, and
Zi gives the conditions under which Y i is O. We can now generalize the
model above and define four different basic models:

Modell Y i = PilmiO + (niOmi1)~'

Model 2 Y i = PilniO + (niOPil)~'
Model 3 Y i = milmiO + (miOmi1)~'
Model 4 Y i = PilniO + milmiO + (niOPil + miOmi1)~.

Modell is the one we introduced above. It was originally introduced in
[27]. Model 2 assumes that a P-path to 1 (a "good" path) is stronger than
any path to 0 containing at least one P-transistor (a "bad" path) (and
vice versa for N-paths). We get Y i = 1 (O) as long as there is at least one
good path to 1 (0), but no good path to 0 (1). Hence, a fight between a
good path and a bad path is resolved in favor of the good path. This is
a substantially more liberal rule, but may be necessary to explain certain
very tricky designs [27]. Model 3 is more traditional and corresponds to a
special case of the model in [10]. Here there is no distinction at all between
P- and N-paths, and we have Y i = 1 (0) if and only if there is some mixed
path to 1 (0) but no mixed path to 0 (1). Model 4 is a combination of
Models 2 and 3. Here the rules are: good paths override bad paths; if there
are no good paths, the bad paths determine the output.

To illustrate these four basic models, consider again the circuit of Figure
5.8. It is easy to convince oneself that Y 2 = X + Y4 and that Y 4 = Y2 for
every model. However, for node Y 3' Models 1-4 yield the following node
excitation functions:

Section 5.5. Path Strength Models 73

Modell: Y3 = P3l m 30 + (n30m 31)<P =

= (XX + Y4)<P ,

Model 2: Y 3 = P3l n 30 + (n30P31)<P =
= y4<P,

Model 3: Y 3 = m3l m 30 + (m30m 3d<P =

= XY4 + (XX + Y4)<P,

Model 4: Y 3 = P3l n 30 + m3l m 30 + (n30P31 + m30 m 3t}<P =

= XY4 +y4<P·

5.5 Path Strength Models

So far we have assumed that all the transistors have the same conductance
(except that the conductance for transmitting a 1 may be different from the
conductance for transmitting a 0). Sometimes it is useful to use transistors
with significantly different conductances. We can represent this in a switch
level model by assuming that the transistors have different "strengths." We
assume that there is a finite number of strengths denoted by the integers
1, ... ,q. A transistor of strength r has a conductance that is an order of
magnitude higher than that of a transistor of strength p if and only if r > p.
We also need to add the notion of strength to the path functions. A path
is of strength s if all the transistors in the path have strength ~ s. Let
pij' nij' and mij denote the path functions of strength s. A signal from a
strong path overrides a signal from a weaker path. Modell, extended to
handle the different transistor strengths, gives the following functions:

Ui = (mio)(pil + (miol)(pi;l + ... + (m;o)(ph)" .))

and

Zi = (mil)(nio + (mJ;I)(nJo- I + ... + (m}l)(n}O)" .)).

To illustrate these ideas, consider the CMOS circuit of Figure 5.9. The
circuit is designed in a slight variation of the domino style [141]. Instead
of relying on charge storage, a "weak" inverter provides feedback for the
circuit so that it exhibits the appropriate behavior. The transistors have
been assigned strengths as shown in Figure 5.9. Using this refined model,
after simplifications, we get the following functions for the key internal
nodes Y2 and Y5:

U2 = (m~O)(p~1 + (m~O)(p~l)) = Xl + (X2 + X 3)Y5'

74 Chapter 5. CMOS Transistor Circuits

FIGURE 5.9. CMOS domino gate with "staticizer."

Z5 (m~l)(n~O + (m~l)(n~O)) = Y2'

which yield the node excitation functions

Y2 = U2 + Z2<P = Xl + (X2 + X3)Y5'

Y5 = U5+ Z5<P=Y2·

The model above is often sufficient for CMOS circuits with more than one
transistor strength, but it is sometimes overly pessimistic. In the CMOS
circuit in Figure 5.10 every path to node 3 is of strength 1. Consider the

L--·Y3

FIGURE 5.10. Illustration of path blocking.

Section 5.6. Capacitance Effects 75

situation when Xl = 0, X 2 = 1, and X3 = o. There is a P-path of strength
1 to the power supply, but also a mixed path of strength 1 to ground.
Using the definition above, we conclude that Y 3 = iI>. At the same time, the
excitation of node Y2 is 1, because the strong path through the P-transistor
overrides the weak path through the N-transistor. If we reexamine the path
functions used in calculating the excitation of Y3' we notice that they all
go through node 2. From an electrical point of view, it is now reasonable
to say that the path from ground to node 3 is blocked by the strong path
from node 2 to supply node 1. This observation, that some weak paths
can be blocked by stronger paths "along the way," can be formalized and
incorporated in the excitation functions. We refer the interested reader to
[12, 13J where not only is such a model defined, but very efficient methods
for deriving the excitation functions are also given.

5.6 Capacitance Effects

The node excitation functions derived in the previous section fail to capture
the fact that there is a certain amount of capacitance in CMOS circuits.
In particular, the key internal nodes have a capacitance associated with
them; hence there is some "memory" in each such node. The case when
there is only one key internal node in every cell can be handled in a very
straightforward way. Here we make two assumptions: 1) The capacitance of
a key internal node is much larger than the capacitance of any other node
in the cell. 2) A 1 (0) stored on a key internal node can only determine the
excitation of that node if the node is completely isolated from the supply
nodes. One can verify that the following modifications to Models 1-4 take
this into account:

Modell M Y i = (Pi I + Yi)miO + ((lliO + Yi)mil)iI>,

Model2M Y i = PillliO + YimiO + (lliOPil + Yi midiI>,

Model3M Y i = milmiO + YimiO + (miOmil + Yi midiI>,

Model4M Y i = Pil lliO + milmiO + YimiO,

+ (lliOPil + miOmil + Yi midiI>·
For example, using model 1M , Y is 1 if there is a good path to 1 and no

path to 0, or if the previous value was 1 and there is no path to O. A dual
situation holds for Y = o.

To illustrate the idea above, consider the CMOS circuit of Figure 5.11.
The circuit is a two-input AND gate implemented in (simple) domino CMOS
technology [141J. A domino CMOS circuit works as follows. There are two
phases, a precharge phase and an evaluation phase. In the precharge phase,
the clock signal (called Xl in our example) is set to 0 causing the high
capacitance node Y2 to be driven to a high voltage through the P-transistor.

76 Chapter 5. CMOS Transistor Circuits

Xl --<i
Y2

X 2 ---1
Y3

X3 ---1 -;-

Y4

Xl ---1

FIGURE 5.11. A two-input AND gate in CMOS domino style.

Note that this happens irrespective of the values of X2 and X3 because
the bottommost N-transistor is not conducting. In the second phase, the
evaluation phase, the clock signal is switched to 1. Node Y2 will keep its
high value unless it is connected to ground. That will happen only if X 2

and X3 are both high. Our first model for this circuit assumes that node Y 2

has a capacitance that is an order of magnitude larger than those of nodes
Y 3 and Y 4· Using model 1 M we get the following node excitation functions
for the key internal nodes Y 2 and Y 5:

Y2 = (P21 + Y2)m20 + ((n20 + Y2)m21)!l>

= ... = Xl + Y2(X2 + X 3),

... =Y2·

Note that, for a binary input-Key state, the excitations of the key internal
nodes are binary. We can generalize the concept of a Boolean cell from
Section 5.1 to general CMOS circuits by defining a circuit to be Boolean if
and only if, for every binary input-key state, the excitations can only be 0
or 1.

When there is more than one key internal node in each cell, a more com
plicated node excitation function must be used, because charge can "spill
over" from one node to another causing the excitation to become unde-

Section 5.6. Capacitance Effects 77

fined. From here on, we assume that charge sharing comes into effect only
when the nodes are isolated from the supply nodes. This is a reasonable as
sumption since paths connected to the supply nodes can provide essentially
infinite amounts of charge. Below, we give the definitions of the functions
Ui and Zi for the excitation function Yi = Ui + zicfl. Let Ci denote the set
of key internal nodes in the cell containing node i. Modell, extended to
handle the case of multiple key internal nodes, gives the following functions

PilmiO+miO (II(Yj+mij))
JECi

PilmiO + mioYi II (Yj + mij),
jECi

niOmil + mil (II (y j + m ij))
JEC i

niOmil + milYi II (Yj + mij).
jECi

(LYjPij)
jECi

The basic idea is as follows. We only discuss the Ui function, but the
arguments can be trivially extended to the Zi function. First, charge sharing
comes into effect only when there are no paths to ground, i.e., miO = O.
Second, if a node i is disconnected from the supply nodes, then all the key
internal nodes connected via some path to i must have the value 1 in order
to cause the excitation of i to be 1. This is captured in the second half of
the formula. Either the value of a key internal node j must be 1 or node
j must be disconnected from node i. Moreover, at least one of the nodes
must be 1 and must be connected to i by a P-path in order to get Ui = l.
(In the formulas above we assumed that Yi is a key internal node; hence
mii = Pii = nii = 1, and the last equalities in the formulas follow.)

Node excitation functions for the other basic CMOS models are derived
similarly. For example, for Ui in a model based on Model 2, one replaces
Pil miO by Pil niO·

In the discussion above only the key internal nodes were assumed to have
memory. Furthermore, it was postulated that all the key internal nodes
have the same "size." A common technique in CMOS circuits is the use
of precharged lines, where certain nodes are designed with a substantially
higher capacitance than that of all the other nodes. This can be modeled
as if these nodes had "greater size" than normal nodes. To describe such
excitation functions, we need the following notation. Let q, 1 :::; s :::; q, be
the set of all nodes of size s in the cell that contains node i. Assume further
that the sizes are totally ordered, so that a node in Cf is substantially
bigger (has a substantially higher capacitance) than a node in C~ if and

78 Chapter 5. CMOS Transistor Circuits

only if p > r. Modell, extended to handle multiple key internal nodes and
different node sizes, gives the following functions

Ui PilmiO + miO (II (Yj + mij) (L YjPij
jECf jECf

+ II (Yj + mij) (L YjPij
jECf-1 jECf-1

+ ...

+ II (Yj +mij) (LYjPij) ...)))
JEC; JEC;

and

Zi lliOmil +mil (II (Yj +mij) (LYjllij
jECf jECf

+ II (Yj + mij) (L Yjllij
jECf-1 jECf- 1

+ ...

+ II (Yj + mij) (L Yjllij) ...)))
JECi JECi

where we have used the convention that I1jECr ... is equal to 1 if Ci = 0
and similarly that LjEC: ... is equal to 0 if C[= 0.

Once again, the basic idea is quite simple. First, the node must be isolated
from the supply nodes before charge sharing effects should be considered.
Furthermore, for a node of strength r with value 1 to be relevant to the
node i, either every stronger node must be isolated from i or the stronger
nodes that are connected to i must have the value 1 (thus making the value
of the node of strength r irrelevant anyway).

It should be pointed out that the models above constitute only a few of
the very many possibilities. For example, we required that a stored 1 on a
node must drive the output node through a P-path in order to transmit a
1 properly. In some cases it may be appropriate to relax this condition and
allow any kind of path. The derivation of such a model is left as an exercise
for the interested reader.

Finally, it is possible now to combine the models of the previous section
with the models in this section and obtain a "universal" model that cap
tures path blocking, different transistor strengths, and node sizes. Again,
we refer the interested reader to [12, 13].

Section 5.7. Network Model of CMOS Circuits 79

5.7 Network Model of CMOS Circuits

The previous sections have shown how to derive ternary node excitation
functions for general CMOS circuits. Given that there are many possible
switch-level models to use in deriving the node excitation functions, there
are many circuit graphs possible for any given CMOS circuit. Following our
treatment of gate circuits in Chapter 4 we define the circuit graph to reflect
the circuit topology. The network models reflect the behavioral properties
of the circuit.

Given a CMOS circuit, the corresponding circuit graph is a 5-tuple G =
(X,I, T,N,£), where

• X is a set of input vertices, labeled Xl, X2 , ..• , X n ,

• I is a set of input-delay vertices, labeled Xl, X2,· .. , X n ,

• T is a set of transistor vertices, labeled t l , t2,"" tp,

• N is a set of node vertices, labeled Y 2' Y 3' ... , Y m ,

• e ~ (X x I) u ((IUN) x (TuN)) u (T x N) is a set of edges.

All input vertices have indegree 0, all input-delay vertices have indegree
and out degree 1, and all the transistor vertices have indegree l.

Given a CMOS circuit, we obtain its circuit graph as follows. First, there
is an input vertex Xi for every external input Xi, a transistor vertex ti for
every transistor, and a node vertex Yi for every node in the circuit except
for the supply nodes. For every input vertex Xi there is an input-delay
vertex Xi and an edge from Xi to Xi. There is an edge from every node
vertex Y to every node vertex Y' in the same cell. Note that this includes
an edge from Y to y. There is an edge from the transistor vertex t to every
node vertex in the cell that contains t. There is also an edge from input
delay or node vertex i to transistor t if the gate terminal of the transistor
is connected to this input delay or node.

We illustrate the concept of a circuit graph using the CMOS circuit of
Figure 5.12. The corresponding circuit graph, with X = {Xl}, I = {xd,
N = {Y2'Y3'Y4}' and T = {tl, t2, t3, t4, t5, t6}, is shown in Figure 5.13.

As for gate circuits, a circuit graph is a convenient and precise notation
for describing how the components of a CMOS circuit are connected-it is
a structural representation of the circuit. To study its behavior, we need to
add a domain. The domain for CMOS circuits is always the ternary domain,
{O, 1, q>}, because CMOS circuits often have undefined node excitations
for certain (usually transient) binary input values. Hence, even for binary
circuits, we must be prepared to handle excitations that are q>.

For an input-delay vertex X, the vertex function maps a state of the
(undefined) environment to the vertex domain V. This function is called

80 Chapter 5. CMOS Transistor Circuits

FIGURE 5.12. CMOS circuit C.

FIGURE 5.13. Circuit graph of CMOS circuit in Figure 5.12.

X. As in gate circuits, X is the input value provided by the environment,
and the variable x holds the input value "seen" by the circuit.

For a transistor vertex, there are two cases. If the transistor is of the N
type, the vertex function T: VIII+INI -> V is the value of the input or com
ponent vertex connected to the gate terminal of the transistor. On the other

hand, if the transistor is of P-type, the vertex function T: VIII+INI -> V is
the complement of the value of the input or component vertex connected
to the gate terminal of the transistor.

For a node vertex, the vertex function Y maps a transistor-vertex state
to V, i.e., Y: VITI+INI -> V. The actual function here is determined from
the topology of the cell containing the vertex as well as from the switch
level model used, as discussed in the previous section. This function is used

Section 5.7. Network Model of CMOS Circuits 81

to represent the behavior of the collection of transistors in the cell and
can be quite complex. However, by Theorem 2.3, it always satisfies the
monotonicity property

8 ~ t implies f(8) ~ f(t),

for all ternary 8, t.
To illustrate the concepts introduced so far, consider again the circuit

shown in Figure 5.12 with circuit graph shown in Figure 5.13. The input
delay vertex function is Xl' The transistor vertex functions are

TI = Xl, T2 = Xl, T3 = Y4' T4 = Y4' T5 = Y2' T6 = Y2'

Assuming we use the strict CMOS Modell from Section 5.4, we obtain the
node vertex functions

and

y 2 = (tl + t3)(t; + t4) + (t2t4tl t3)<I>,

Y3 = (t4(t2 + t l t 3))<I>,

Y4 = t5t6 + (t5t 6)<I>.

As in gate circuits, the vertex functions defined above introduce a dis
tinction between the present value of a vertex variable and the present
value of the "excitation" of that vertex variable, i.e., the value computed
by the vertex function. This permits us to associate a delay with every
input, every transistor, and every node in the circuit.

To represent the state of the entire circuit, we need to select a set of
state variables. As for gate circuits, by changing the set of state variables,
we effectively change the locations of the assumed delays in the circuit.
Clearly, the circuit graph model easily permits us to select all of the vertex
variables as state variables. We may think of such a model as the input-,
transistor-, and node-state model. As we shall see, this model is too detailed
for many applications, and simpler models are often preferred. In particular,
we often use an input- and key-state model.

As for gate circuits, having selected a set of vertices from the circuit graph
to act as state variables, we associate with each such vertex two distinct
items: the vertex variable and its "excitation function." The excitation
function of a vertex in the state variable set is obtained as follows. We start
with the vertex function. We then repeatedly remove all dependencies on
vertices that have not been chosen as state variables, by using functional
composition of the vertex functions.

Chapter 6

U p-Bounded-Delay Race Models

In this chapter we describe a formal model for the analysis of the behavior of
asynchronous circuits modeled by networks in which the delays are inertial
and have only upper bounds. The analysis is limited to a single transition:
Suppose the network is in a given state and the input is kept constant. We
would like to know what is the "outcome" of the transition, i.e., what are
the possible states of the network a "long" time after the input change, i.e.,
after the "transients have died down." The analysis of the circuit behavior
in response to a sequence of input changes can then be carried out as a series
of such transition analyses. We postpone the discussion of the response to
an input sequence until Chapters 11-13.

Our basic analysis model corresponds to the classical binary "race analy
sis," that has been in use for many years [66, 67, 135]. These methods were
originally rather informal, but were formalized in 1979 in [26] as the "gen
eral multiple-winner" (GMW) model. In particular, the concept of outcome
was formally defined there. We describe the GMW model in some detail in
this chapter.

Next, we begin studying how the analysis is affected by the choice of state
variables or, equivalently, of the delay locations in the network model. We
show in Section 6.4 that any set of feedback variables is sufficient for the
purpose of calculating the stable total states of a network. In Section 6.5,
however, we demonstrate with the aid of several examples that the outcome
of a transition depends on the choice of the state variables.

We also consider several variations of the basic model. First, we ex
tend the GMW model to the ternary domain, thus obtaining the extended
multiple-winner (XMW) model. Second, we briefly mention "single-winner"
models in which only one state variable can change at a time. Third, we
briefly discuss an ideal-delay model.

The models mentioned above are intuitively appealing, but computa
tionally intractable for large circuits. In Chapter 7 we describe efficient
algorithms that produce most of the results of interest obtainable from the
binary race models.

84 Chapter 6. Up-Bounded-Delay Race Models

How To Read This Chapter

There are several results in this chapter with rather technical proofs. These
proofs have been grouped together as Section 6.9, and can be omitted on
first reading.

6.1 The General Multiple-Winner Model

When gates are implemented by physical circuits, it is not possible to guar
antee that the delays of two gates of the same type are exactly the same,
even if it is the designer's intention to make them the same. Moreover, if
one succeeded in producing two equal delays, they could become unequal
as a result of such factors as aging, radiation, changes in temperature, etc.
The behavior of a well-designed circuit should not change if the delay of one
of its components deviates slightly from its nominal value. Thus, we have to
accept the possibility that gate delays may be unequal. It is impractical to
try to measure all the gate delays in a large circuit; consequently, we need
an analysis model in which the exact delay values are not known. Similar
remarks apply to wire delays. These considerations lead us to an analysis
technique that examines all the possible relative delay values.

This section, which represents a formalization of the methods used earlier
by many researchers (e.g., [66, 67, 135]), is based on [23, 25, 26]. For our
present purposes, we do not refer to the circuit from which the network
model has been derived, for we develop methods for the analysis of the
network itself. Recall that a network has the form

N= (D,X,S,£,F),

where D is the domain, X is the set of input excitation vertices labeled
Xl"'" X n , S is the set of state vertices with two sets of labels: state vari
able labels (Sl,"" sm) and the corresponding excitation functions (81 , ... ,

8m), £ is the set of edges, and F is a vector of circuit equations that, given
a state of the network, compute the implied values of all the components
in the original circuit.

A total state c = a·b is an (n + m)-tuple of values from D, the first
n values (the n-tuple a) being the values of the input excitations, and
the remaining m values (the m-tuple b) being the values of the variables
Sl,"" Sm, which we refer to as (internal) state variables. Given the total
state a·b of a network, the circuit state consists of the values computed by
the circuit equations for this total state.

In any total state c = a·b, we define the set of unstable state variables as

U(a·b) = {Si I bi :f 8 i (a·b)}.

Thus state c is stable if and only if U(c) = 0.

Section 6.1. The General Multiple-Winner Model 85

Until further notice, we use the binary domain in all the networks. We
wish to know how the circuit behavior will evolve when it is started in a
given initial state and the input is kept constant. For this purpose we define
a binary relation Ra on the set {O, l}m of internal states of N for every
input vector a E {O, 1 }n:

For any b E {O,l}m,

bRab, if U(a·b) = 0, i.e., the total state a·b is stable,

bRabIC, if U(a·b) :f:. 0, and JC is any nonempty subset of U(a·b),

where by bIC we mean b with all the variables in JC complemented. No other
pairs of states are related by Ra. The relation Ra is called the geneml
multiple-winner (CMW) relation for the reasons explained below.

An internal state in which more that one state variable is unstable is
called a mce. In any race the GMW model permits any nonempty subset
of unstable variables to change at the same time; thus there are "mul
tiple winners" possible. Also, the relation is called "general" because no
assumptions are made about the relative values of the delays (although we
do assume that all the delays are up-bounded).

We frequently depict Ra by a directed graph, drawing an edge from b to
b' if bRab'. Such an edge indicates that b' is a possible immediate successor
of b. A loop from b to b indicates that the total state a·b is stable. The
graph is then a description of the possible network behaviors under the
assumption that the input excitation remains constant at the value a.

A number of different types of phenomena are possible, as we now show.
We denote by Ra(b) that portion of the graph of the relation Ra that
contains only the states reachable from b.

Race-free transition to a unique stable state

To tie together a number of concepts, we now present a complete
example of analysis. We begin with the NOR latch of Figure 6.1. Its
circuit graph is shown in Figure 6.2. For this example, we associate
delays only with the two gates; the gate-state network obtained from

FIGURE 6.1. NOR latch.

86 Chapter 6. Up-Bounded-Delay Race Models

FIGURE 6.2. Circuit graph for NOR latch.

FIGURE 6.3. Gate-state network for NOR latch.

Figure 6.2 is shown in Figure 6.3, where 81 = Y1 and 82 = Y2. The
excitation functions are

The graph of the GMW relation RlO(lO) is shown in Figure 6.4. Un
stable variables are underlined in such figures. Here, in each unstable
state there is only one unstable variable; thus there are no races. The
unstable variable must eventually change in each case, since the de
lays are assumed to be finite. Furthermore, a unique stable state is
reached. Hence this type of behavior presents no difficulties if we as
sume that our objective is to design a circuit that changes from one
stable state to another as a result of an input change.

10

t
OQ

t
01

o
FIGURE 6.4. A race-free transition.

Section 6.l. The General Multiple-Winner Model 87

Noncritical race

Consider the circuit shown in Figure 6.5. In the gate-state network,
we have the excitation functions 8 1 = X and 8 2 = X. In total state
1·11 there is a race. However, the final outcome of this race is always
the same, namely the stable state 1·00. The graph of R1 (11) is shown
in Figure 6.6. This race is noncritical, because its outcome is the
same for all possible distributions of delays. Such a race corresponds
to acceptable behavior, if we are only interested in the final stable
state.

X--+---l

FIGURE 6.5. A circuit with a noncritical race.

11

01 10

\/
00

o
FIGURE 6.6. A noncritical race.

Critical race

Let us return to the latch of Figure 6.1 as represented by the gate
state model of Figure 6.3. In the total state 00·00, both gates are
unstable (see Figure 6.7). This is a race, the final outcome of which
depends on the relative values of the two delays; such a race is called
critical. Let us consider this in more detail. Suppose the delays of the
two gates are 81 and 82 . If gate 1 is faster than gate 2, i.e., if 81 < 82 ,

then gate 1 wins the race and the network reaches the internal state
10. The total state 00·10 is stable. The instability of gate 2 that was
present in state 00·00 has been removed because the output of gate 1
changed. Gate 2 has been excited for time 81 , a time that is shorter

88 Chapter 6. Up-Bounded-Delay Race Models

QQ

/~
01 10

o 0
FIGURE 6.7. A critical race.

than its delay 02, and it has lost the race. The fact that gate 2 has
not reacted to the short pulse of excitation reflects the inertial nature
of its delay. Similar remarks apply if 01 > 02.

Race-free oscillation

Consider the network of Figure 6.8, which uses the gate-state model.
The excitation function is S = (X *s). The graph of R1(0) is shown in
Figure 6.9. Here, the network never reaches a stable state, but goes
through a periodic succession of unstable states. Such a cycle of states
is called an oscillation. Note, however, that there are no races; in each
unstable state exactly one variable is unstable.

X ...--_...,D..--s---,
FIGURE 6.8. A circuit with an oscillation.

Q

o
1

FIGURE 6.9. A race-free oscillation.

Match-dependent oscillation

Yet another phenomenon occurs in the NOR latch model in the gate
state network if one allows for the possibility that both delays are
exactly equal. Starting in the total state 00·00, the network then
moves to state 00·11. If we repeat the analysis from this state, we

Section 6.1. The General Multiple-Winner Model 89

11

FIGURE 6.10. A match-dependent oscillation.

obtain the graph of Figure 6.10. The cycle consisting of the two states
00 and 11 is an oscillation. Oscillations may occur in physical circuits,
but, of course, they will not have this idealized binary nature that is
described by our very simple model. The following phenomenon also
occurs in physical circuits: In the transition from state 00·00, the
circuit may enter a metastable state in which the two outputs have
an intermediate voltage value, between the voltages corresponding to
the logical 0 and 1 signals [31]. Although the metastable state does not
persist indefinitely, it is impossible to bound its duration. In a way,
the oscillation shown above has similar properties. For the oscillation
to continue, one would have to have perfectly matched delays at all
times. This is highly unlikely. It is plausible that such a perfect match
could exist for several cycles, and it would be difficult to predict how
long the oscillation would last. We call this type of oscillation match
dependent. In a crude way it models the metastability phenomenon.

Transient oscillation

Figure 6.12 shows the graph of R 1 (011) for the gate-state network
derived from the circuit of Figure 6.11. The excitation functions are
8 1 = X +81, 8 2 = 81, and 83 = (X *82*83). There are two oscillations,
(011,010) and (111,110). Each of these two cycles has the property
that there is a variable that is unstable in both states of the cycle
and has the same value in those states. In cycle (011,010), 81 is the
unstable variable in question. Since the delay of 81 is assumed to

X----·t-----------------------,

r D" J [>0 " F-1JJ
FIGURE 6.11. A circuit with transient oscillations.

90 Chapter 6. Up-Bounded-Delay Race Models

x

FIGURE 6.12. Illustrating transient oscillations.

be bounded from above, say by D, this oscillation cannot persist; 81

will eventually change, causing the network to leave the cycle. We
call such oscillations "transient." It is clear from Figure 6.12 that
the network eventually reaches stable state 101; hence this behavior
is acceptable, if one is only interested in the final stable state. In
fact, from Figure 6.12 and the assumption that the delay of each
component is bounded from above by D, it follows that the circuit is
guaranteed to be in the state 101 after at most 3D time units.

From the example above, we may be tempted to say that transient
cycles can always be disregarded if we are only interested in the out
come of a transition. But suppose the circuit first enters a nontran
sient cycle-where, by definition, it can stay for an arbitrarily long
time- and then leaves this cycle and enters a transient cycle. Con
sider the circuit of Figure 6.13 started in stable state 1·00011 when
the input changes to o. In Figure 6.14 we show the graph Ro(OOOll).
Note that there are five cycles in the graph: two self-loops for stable

D'3~

FIGURE 6.13. A circuit with transient states in the outcome.

Section 6.1. The General Multiple-Winner Model 91

QQ011

1®1l ==== () ==== OlQIl

11011

10101 01101

o o
FIGURE 6.14. Transient cycles reachable from a nontransient cycle.

states 10101 and 01101, a nontransient cycle (00011, 11011), and two
transient cycles (10111, 10110) and (01111, 01110). The circuit can
stay in nontransient cycle (00011,11011) for an arbitrarily long time,
without violating any delay bounds. It can then move to state 10011
and later enter transient cycle (10111,10110). This shows that it is
possible for a circuit to enter a transient cycle after an arbitrarily
long time. Such a transient cycle cannot be disregarded, and will be
included in the definition of outcome of a transition.

Overlapping oscillations

The network of Figure 6.15 has the GMW behavior shown in Figure
6.16. To simplify the graph of Figure 6.16, we have used one edge

FIGURE 6.15. Two oscillators.

with two arrowheads between two states s and s' to represent an
edge from s to s' and an edge from s' to s. Note that there are
several transient oscillations, for example, (00,01) and (10,11). Note
also that all four states take part in several nontransient oscillations,
for example, (00,01,11,10). This example illustrates the fact that two

92 Chapter 6. Up-Bounded-Delay Race Models

QQ ~---I~~ Ql

lQ _---I~~ 11

FIGURE 6.16. GMW behavior of two oscillators.

transient oscillations may be connected to each other, i.e., that it is
possible for a network to be in one transient cycle for a while, then
switch to a second transient cycle, then return to the first cycle, etc.

This concludes our series of examples of possible behaviors. We now for
malize several concepts, so that we can treat the network analysis problem
more precisely.

6.2 GMW Analysis and UIN Delays

In this section we state the result that the general multiple-winner race
model captures exactly the behavior of a network under the assumption
that each state variable Sj corresponds to an ideal, delay-free "gate" with
excitation function Sj(X(t)·s(t)) in series with an up-bounded inertial
(UIN) delay. Throughout this chapter we assume that each delay bi in
a network is a UIN delay bounded from above by some constant D i , i.e.,
that 0 :s; bi < D i . The maximum value of all the Di in the network can be
used as an upper bound for all the delays in the network.

Recall that a binary variable v(t) is said to change at time T if it was
previously 0 and is Q: at time T, i.e., if V(T) = Q:, and there exists a b > 0
such that v(t) = 0, for T - b :s; t < To Recall also that an up-bounded
inertial delay with input S and output s must satisfy the following two
properties:

1. If s changes, then it must have been unstable.
Formally, if s(t) changes from Q: to 0 at time T, then there exists
b > 0 such that S(t) = 0 for T - b :s; t < T.

2. s cannot be unstable for D units of time without changing.
Formally, if S(t) = Q: for T :s; t < T + D, then there exists a time r,
T :s; r < T + D such that s(t) = Q: for r :s; t < T + D.

We want to show that the up-bounded inertial delay model and the
GMW race model are mutually consistent. We describe this consistency

Section 6.2. GMW Analysis and UIN Delays 93

intuitively first. Suppose that, for each state variable Sj in the network,
we have an input/output waveform Sj(t)/Sj(t), where Sj(t) is the state
of the variable at time t and Sj(t) = Sj(X(t)·s(t)) is the corresponding
excitation at time t, computed from the total state X(t)·s(t) at time t.
Suppose further that each such waveform obeys Properties 1 and 2 of UIN
delays. Then we demonstrate that the state sequence obtained from the
waveforms corresponds to the GMW analysis of the network. Before we
can prove this claim, however, we need to define precisely the waveforms
mentioned above; these waveforms are called a UlNa-history.

Informally, a UlNa-history of a network is a set of waveforms beginning
at time to. The input excitation vector X is kept constant at the value a.
The real numbers ti represent the time instants at which the state vector
S changes. The state is constant in any interval between ti and ti+1. The
number of state changes can be either finite or infinite. If it is finite, then
the last state reached must be stable. If it is infinite, then we allow only a
finite number of state changes in any finite interval.

X--·T~~~Sl __ ~[]rS_l __ ~~~S_2 __ ~~

FIGURE 6.17. Network N.

The network of Figure 6.17 illustrates the concepts above. Suppose the
two delays Ih and 82 are up-bounded inertial delays with upper bounds
Dl = 4 and D2 = 2, respectively. In Figure 6.18 we show some waveforms

X~

Sl~~ __ __

S2 ______________ --' L
trl +-rl +I~I +1-1r+1~+I~Ir+I~I~I~I~I~I-+I~I-+I~I-+141-+1 ••

o 1 234

FIGURE 6.18. A UIN1-history for N.

94 Chapter 6. Up-Bounded-Delay Race Models

for the state variables Sl and S2 of N, along with those of the excitations
8 1 and 82 • One easily verifies that these waveforms are consistent with
the assumptions that b1 and b2 are inertial delays satisfying 0 ::; b1 <
4 and 0 ::; b2 < 2. The corresponding UlNa-history 11- includes (a) the
sequence e = (to, t1, t2, t3) = (0,1.2,3.6,4.2), of consecutive instants of
time at which some state change takes place; (b) the waveform of the
input X, assumed to be constant for t ~ to; and (c) the waveforms of the
state variables Si. Each UlNa-history 11- determines a sequence of states. In
our example, we have the sequence "((11-) = (10,11,01,00). It is clear that
the waveforms can be uniquely reconstructed from the value a of X, the
sequence e of time instants, and the state sequence "((11-); note that the
waveforms are of no interest before time to.

Formally, a UlNa-history of a network N for some a E {O,l}n is an or
dered triple 11- = (6, X(t), s(t)), where e is a strictly increasing sequence
e = (to, tl, ...) of real numbers, and X(t) and s(t) are functions, X map
ping real numbers to {O, l}n and s mapping real numbers to {O, l}m. These
functions satisfy the following properties.

I. (a) X(t) = a for all t ~ to.

(b) s(t) = bi for ti ::; t < ti+1' where bi E {O, l}m, for all i ~ O.

(c) s(ti-d =FS(ti), for each i ~ 1, i.e., s(t) changes at each ti.

(d) If the sequence (to, h, ... , tr) is finite, then for all t ~ tr we have
s(t) = br, for some br E {O, I} m such that a·br is a stable total
state of N.

(e) If the sequence (to, tl, ...) is infinite, then for every t > 0, there
exists an i such that ti ~ t. Note that this requirement implies
that there is only a finite number of state changes in any finite
time interval.

II. For each variable Sj, the input/output waveform 8j (X(t)·s(t))/Sj(t)
is consistent with the assumption that variable Sj is represented by
the delay-free excitation function 8j in series with an up-bounded
inertial delay. In other words, the input/output waveform satisfies
Properties 1 and 2 of up-bounded inertial delays.

The state sequence "((11-) corresponding to a UlNa-history 11- is defined to
be the sequence (s(to), s(td, .. .).

Next, we formalize the concept of a sequence of states derivable from
a GMW analysis of a network. A sequence "(= (SO, Sl, ...) of states (i.e.,
binary m-tuples) is called an Ra-sequence for some a E {O, l}n if and only
if Si =F si+1, si Rasi+1 for i ~ 0, and either the sequence is infinite or the
last state is stable. An infinite Ra-sequence is said to be transient if and
only if there exists a state variable Sj and an integer r ~ 0 such that,
for i ~ r, sj = a E {O, I} and 8j (a·s i) = a. Thus a transient sequence

Section 6.3. The Outcome in GMW Analysis 95

contains a variable that, from some point in time, has the same value and
is unstable. Such a situation can exist only if the delay of that variable is
infinite. An Ra-sequence that is finite, or infinite but not transient, is said
to be non transient. Since we assume that all the circuit delays are bounded
from above, we consider only nontransient Ra-sequences.

Continuing with our example, Figure 6.19 shows the graph of the rela
tion R1(1O) for the network of Figure 6.17. It is seen that the sequence
(10,11,01,00) is a nontransient R1-sequence.

lQ

11 OO~

\/
01

FIGURE 6.19. GMW relation Rl(lO) for N.

We now claim that for each UlNa-history there is a corresponding non
transient Ra-sequence and vice versa.

Theorem 6.1 There is a one-to-one correspondence between nontransient
Ra -sequences and UlNa -histories. In other words, the GMW analysis of a
network is consistent with the up-bounded inertial delay model.

Proof: See Section 6.9. The proof involves two lemmas. The first lemma
shows that the state sequence 'Y(f.l-) corresponding to any UlNa-history
is always a nontransient Ra-sequence. The second lemma shows that for
every Ra-sequence 'Y there is time sequence e such that the waveforms f.l-b)
corresponding to 'Y and e constitute a UlNa-history. 0

6.3 The Outcome in GMW Analysis

As has been mentioned above, in many applications we are only inter
ested in the "nontransient" states reached from a given state after an input
change. We have called this as-yet-undefined set of states the outcome of a
transition. We give a precise definition of outcome in this section.

It is not entirely clear at first glance how outcome should be defined.
Since every graph of Ra(b) is finite, every path from b must eventually

96 Chapter 6. Up-Bounded-Delay Race Models

reach a cycle. (A stable state is a cycle oflength one.) One may be tempted,
therefore, to say that the network has reached its outcome when a cycle in
the graph has been reached. This may not be the case, however, if the cycle
is transient, as has been illustrated in the transient oscillation example and
as is formally defined below.

A cycle in the relation diagram of Ra(b) is transient if there exists a
state variable Si that has the same value in all the states of the cycle and
is unstable in each state of the cycle. Let D be the maximum value of all
the network delays. A network cannot stay in a given transient cycle for
more than D units of time. Let the set of cyclic states reachable from b in
the relation diagram of Ra (b) be

cycl(Ra(b)) = {s E {o,l}m I bR:s and sR~s},

where R+ is the transitive closure of R, and R* is the reflexive and transitive
closure of R. Next, define the set of nontransient cyclic states to be

cycLnontrans(Ra(b)) = {s I s appears in a nontransient cycle}.

The outcome of the transition from b under input a is the set of all the
states that appear in at least one nontransient cycle or are reachable from
a state in a nontransient cycle. Mathematically, we have

out(Ra(b)) = {s I bR:c and cR:s, where c E cycLnontrans(Ra(b))}.

The reason for this definition will become clearer soon. We define a state
d to be transient if it is reachable from b (i.e., if bR~d) but is not in the
outcome out(Ra(b)), and to be nontransient if it is in out(Ra(b)).

Our analysis problem can now be formalized as follows: Given a total
state a·b, find out(Ra(b)). Note that this problem, as stated, is of expo
nential complexity because out(Ra(b)) can contain as many as 2m states.
However, we are able to show later that a "summarized version" of out can
be efficiently computed. This will be done with the aid of ternary simula
tion, which is the topic of Chapter 7.

Before we proceed, we want to compare the outcome with the conse
quences of the assumption that all delays are up-bounded and inertial.
Consider a network N in which all the delays are bounded by D. Let N be
started in state b with the input held constant at a. A state c is said to be
D-transient with limit T for a·b if it is reachable from b and there exists a
real number T > 0 such that in every UlNa-history jL, the condition t ::::: T

implies s(t) i=- c. This definition means that, as long as every delay in the
network is less than D, after a certain time limit T the network cannot be
in a D-transient state. D-transient states are related to the transient states
by the following result.

Proposition 6.1 Under the conditions defined above, a state is transient
if and only if it is D-transient.

Section 6.4. Stable States and Feedback-State Networks 97

Proof: See Section 6.9. D

Recall that the fundamental mode requires a network to be in a stable
state before an input change can be made. This implies that, after every
input change, the environment must wait "long enough" for the network to
stabilize. The next result makes precise the concept of fundamental mode
operation of a network, by specifying how long is long enough.

Theorem 6.2 Let N be any network with m up-bounded delays with upper
bound D. Suppose N is in state b at time 0 and the input is held constant
from time a until time t ?: (2m - 2)D. Then the state of the network at
time t is in out(Ra(b)).

Proof: See Section 6.9. D

Note that the theorem applies in particular when state a·b is stable;
consequently, this result gives a bound on the duration of constant-input
intervals required for fundamental mode operation.

For every network with delays up-bounded by D, one can calculate a
constant T(D) that is less than or equal to (2m - 2)D. If we start in state b
and keep the input constant at a for time T(D), we are guaranteed that the
network will reach some state in out(Ra (b)). If out(Ra (b)) consists of a single
stable state, we know that this stable state has been reached after time
T(D). The environment may then change the input, and a new transition
begins.

6.4 Stable States and Feedback-State Networks

The first model for sequential circuit analysis was introduced by Huffman
in 1954 [66, 67]. In his model, delays are associated only with a set of
"feedback wires" -with the property that cutting all these wires results
in the removal of all the feedback loops from the circuit. In terms of our
network model, Huffman's model is a feedback-state network of Section 4.4.

FIGURE 6.20. Input-, gate-, and wire-state network.

A feedback-state network properly describes the stable states of a circuit,
as we illustrate with the example of Figure 6.1. The input-, gate-, and wire
state network is repeated in Figure 6.20. Suppose that the network is in

98 Chapter 6. Up-Bounded-Delay Race Models

total state X·xyz = 00·00010001; one verifies that this state is stable.
Suppose further that we select {Z4} as the feedback vertex set, i.e., as the
state set. Then, the input and feedback variable values uniquely determine
all the other variable values in the circuit. This is true because, in any stable
state, each excitation function has the same value as the corresponding
vertex variable. In our example we have the following circuit equations,
(leaving out the equation for Z4):

Thus, under the assumption that the network is stable, we have expressed
all the vertex variables in terms of the input excitations and the feed
back variables. This is always possible because, by definition, "cutting" the
feedback vertices results in a feedback-free graph that corresponds to a
combinational circuit. Hence, if we know the input values and the values at
all the feedback vertices, we can reconstruct the rest of the vertex values.

Recall that by a circuit state we mean the vector of all the vertex variables
in the circuit graph.

Proposition 6.2 The set of stable circuit states computed using a feedback
vertex set is independent of the choice of the feedback vertex set.

Proof: Suppose a circuit state X·s = a·b is stable. Let f and g be the
vectors of values of two distinct feedback vertex sets F and g in this state.
The values a together with the values f uniquely determine the values of all
the variables in the circuit graph, and the result is circuit state X·s = a·b.
Similarly, the values a together with the values g uniquely determine the
rest of the variables, and this also results in state X·s = a·b. Hence, if a
circuit state is found using the feedback vertex set F, then it is also found
using g. D

We illustrate the computation of the stable states of the network of
Figure 6.20 using the feedback vertex set {Z4}. The excitation function for

the single feedback variable is Z4 = (X2 + (Xl + Z4)). We find the stable
states (X·z4) of the feedback-state network to be 00·0,00·1,01·0,10·1, and
11·0. The stable states of the input-, gate-, and wire-state network can now
be computed using the circuit equations. These states are

00·00010001, 00·00100010, 01·0110 0110, 10·10 011001,

and

11·11 00 1100.

Section 6.5. GMW Analysis and Network Models 99

6.5 GMW Analysis and Network Models

In this section we illustrate how the results of a G MW analysis differ as
we vary the network model. Although feedback variables suffice for stable
state calculations, this is not the case when we want to compute transitions
among states. Our next example shows that transitions among states do
depend on the choice of the feedback-vertex set.

Feedback-state network with feedback-vertex set {YI}

Consider the feedback-state network of the NOR latch of Figure 6.1
with feedback-vertex set {yd. We have the excitation function

and the circuit equation

Y2 = (X2 + YI)'

The state X'YI = 11·0 is stable. If the input excitation changes to
00, the feedback-state network moves to state 00·0. The excitation
Y I in this state evaluates to 0, showing that gate 1 remains stable.
The value of gate 2 changes to 1 as a result of this input change.
Altogether, the model with feedback-vertex set {yd predicts that
the gate state of the NOR latch will be 01.

Feedback-state network with feedback-vertex set {Y2}

Now repeat the same analysis using feedback-vertex set {Y2}. It is
clear from the symmetry of the circuit that the predicted final gate
state in this case is 10!

The fact that the feedback-state model does not always predict the cor
rect transitions has been known for a long time [66, 67]. Attempts were
made to correct these deficiencies by developing a theory of "hazards." We
shall return to hazard phenomena in Chapter 7.

The examples above strongly suggest that a "more accurate" model is
needed. Consequently, we leave the feedback-state model now and consider
other alternatives. In Section 7.4 we will show that the feedback-state model
can be used to give correct results, but with a different race model.

Gate-state network

In 1955 Muller introduced a model in which a delay was associated
with each gate [100, 106, 107]. Let us analyze the NOR latch using
this model. The excitation functions are YI = (Xl + Y2) and Y2 =
(X2 + yd. The transition that leads to difficulties in the feedback
state model is from state 11·00 when the input changes to 00. If we

100 Chapter 6. Up-Bounded-Delay Race Models

use {Yl} as the feedback vertex set, we get 00·01 as the final state,
whereas {Y2} predicts 00·10. In the gate-state model, in the total state
00·00, both gates are unstable. This is the race that we have analyzed
in Figure 6.10. The network may go to stable state 00·01, or to stable
state 00·10, or it may enter the match-dependent oscillation between
00·00 and 00·11. In any case, the outcome predicted by this gate-state
network is much different than those predicted by the feedback-state
networks.

Gate- and wire-state network

The next example shows that gate delays are not sufficient. In the
gate-state network corresponding to the circuit of Figure 6.21, the
states 10·00 and 01·00 are both stable. Hence, the gate-state network
predicts no changes in gate outputs when the input changes from 10
to 01. However, suppose that we add the wire vertex z to our network
model. Now the excitation functions are

The following sequence of states is possible in the G MW analysis, if
the wire delay is appreciably large. Let the state of the new network
be X 1X 2·YIY2 z. First, 10·001 01·001 as a result of the input
change; then the network may respond with

01·001 01·10 1 01·111 01·11 0 01·010.

Thus, the presence of the wire delay makes two outcomes possible:
01·000 if the wire delay is negligible and 01·010 ifthe sequence above
is followed. Therefore the gate-state network also appears to be in
adequate.

FIGURE 6.21. Gate circuit C6.21.

At this point we can conclude that the gate- and wire-state network is
more accurate than either some feedback-state networks or the gate-state
network. We are not in a position to answer the question whether gate and
wire delays suffice. Indeed, this turns out to be the case, but the proof of
this result will come in Chapter 7.

Section 6.6. The Extended GMW Model 101

6.6 The Extended GMW Model

A generalization of the GMW model to a three-valued multiple-winner
model is now presented. Like the GMW model, this model is intuitively
easy to describe, but very inefficient. We show later that a summary of the
model's results can be found efficiently.

In the extended multiple-winner (XMW) model we are about to define,
state variables are allowed to go through the intermediate value if> when
changing from one binary value to the other. Let

N= ({O,if>,l},X,S,e,F)

be a network and let a·b be any ternary state of N. The set U(a·b) of
unstable delay vertices is defined as before. Similarly, we define a binary
relation Ra on {a, if>, l}m as the smallest relation satisfying

• bRab, if a·b is stable,

Thus any unstable state variable may keep the old value, become equal to
its excitation, or become if>.

The definition of the XMW relation is illustrated in Figure 6.22 for the
gate-state network of the NOR latch, when started in state 10·10. The sub
script on an unstable variable gives its excitation.

FIGURE 6.22. Example of XMW analysis.

Next, we need to define the outcome of a transition. The concept of tran
sient cycle is somewhat more complicated here. A cycle is called transient
in the XMW model when there is a vertex i that is unstable in all the

102 Chapter 6. Up-Bounded-Delay Race Models

states in the cycle, has the same value in all these states, and that value is
either binary or the excitation of that vertex is the same in all the states
of the cycle. Thus we can have the following two cases. The variable may
have the value If> and a constant binary excitation, or it may have a binary
value b and either b or If> as excitation. The assumption is that a binary
signal being "pulled" alternately to its complement and to If> cannot persist
indefinitely. However, a If>-value pulled alternately to ° and 1 can remain
If> indefinitely.

With this modification, one can define the sets trans, cycle, and out as
in the case of the GMW relation.

6.7 Single-Winner Race Models

One of the basic assumptions in the GMW model is that there can be multi
ple winners in a race. This assumption corresponds closely to the notion of
"true concurrency" [42J. In the literature dealing with concurrent systems,
it is common to replace true concurrency with an interleaved model of con
currency. In this model, when there is more than one unstable component,
only one can change at a time. However, the order in which the components
change cannot be predicted. We now define a race model, called the gen
eral single winner (GSW) model, that corresponds to such an interleaved
model of concurrency. We then compare and contrast the results obtained
by using the GSW model and the GMW model.

Given a network N we define the binary GSW relation Ua on the set
{o,l}m of internal states of N for every input vector a E {O, l}n.

For any bE {O, l}m,
bUab, if U(a·b) = 0, i.e., the total state a·b is stable,
bUab{k}, for every k E U(a·b),

where by b{k} we mean b with the variable k complemented. No other pairs
of states are related by Ua.

We define the outcome of a GSW analysis in the same way as for the
GMW analysis, i.e.,

out(Ua(b)) = {s I bU;c and cU;s, where c E cycLnontrans(Ua(b))},

where cycLnontrans is defined exactly as in the GMW relation.
The following proposition characterizes the results obtained by a GMW

and a GSW analysis.

Proposition 6.3 Given a network N we have out(Ua(b)) ~ out(Ra(b)).
Furthermore, there exist networks for which the inclusion is proper.

Proof: The first claim follows trivially from the definition of out(Ua(b))
and out(Ra(b)). For the second claim, consider the gate-state network for

Section 6.8. Up-Bounded Ideal Delays 103

FIGURE 6.23. Circuit for which out(Ua(b)) C out(Ra(b)).

the circuit in Figure 6.23 started in the stable state 11·000 when the in
puts change to 00. In Figure 6.24 we show the Roo(OOO) and the Uoo(OOO)
relations. Note that out(Uoo(OOO)) = {OIl, 101}, whereas out(Roo(OOO)) =
{OOO, 110,011,101}. In particular, in the GMW relation it is possible for
the XOR gate to remain 0 indefinitely, whereas in the GSW model it must
change to 1 within time 2D, where D is the largest gate delay. 0

Roo (000) Uoo(OOO)

QQO QQO

,/;~ A
lOQ 01Q 10Q 01Q

!~Y! ! !
101 110 011 101 011

0 0 0 0
FIGURE 6.24. Roo(OOO) and Uoo(OOO) relations.

We show in Chapter 7 that with a sufficient number of delays in the net
work model, a GSW analysis yields the same outcome as a GMW analysis.

6.8 Up-Bounded Ideal Delays

Recall that an ideal delay has the property that every input transition
eventually appears at the output. Thus each delay must "remember" how
many "unsatisfied" transitions have occurred. For this reason, the analysis
of networks with ideal delays is somewhat more complex. This material is
based partly on [56].

104 Chapter 6. Up-Bounded-Delay Race Models

Let N = ({O, I}, X,S,£, F) be a network. The ID-state of Nis an ordered
pair (b, u), where b E {O, l}m is the state of Nand u is a vector of m
nonnegative integers. Each such integer Ui is called the count and gives the
number of unsatisfied transitions for variable Si, as is explained below. The
count Ui is 0 if and only if the variable Si is stable. We now define a binary
relation on the set of ID-states of a network with ideal delays.

The ideal multiple-winner relation (IMW relation) Ia is defined as follows.
For any q = (b, u), we have qIaq if and only if u is the all-zero vector.
Otherwise, qIaq' if q' = (b', u') satisfies the conditions below. Select any
number of state variables in b that have positive counts and change them
to obtain b'. Each count u~ is then calculated as follows:

u~ = Ui - 1 if b~ "# bi and Si(a·b) = Si(a·b'),

u~ = Ui, if b~ = bi and Si(a·b) = Si(a·b'),

u~ = Ui, if b~ "# bi and Si(a·b) "# Si(a·b'),

u~ = Ui + 1 if b~ = bi and Si(a·b) "# Si(a·b').

The interpretation of these rules is quite straightforward. When a variable
changes, one of the changes that has previously appeared at the input of its
delay appears now at the output of the delay. Thus one of the previously
unsatisfied transitions has become satisfied; consequently, the count is re
duced by 1. However, if the excitation of the variable changes during the
transition, then a new transition has occurred at the input of the delay and
the count must be increased by 1. Note that it is possible for a variable and
its excitation to change at the same time. In that case, the count remains
unchanged.

We illustrate the relation Ia with the gate-state network of Figure 6.3.
Suppose the network starts in stable total state 11·00. The corresponding
ID-state is (00,00). Assume that the input changes to 00; thus we are
interested in the relation 100 . After the input changes, both gates become

(00,11)

~~
(10,20) (10,02) (01,20) (01,02)

~y
(11,11)

FIGURE 6.25. Analysis of latch with ideal delays.

Section 6.8. Up-Bounded Ideal Delays 105

unstable and the ID-state becomes (00,11). This is our initial ID-state for
this transition. The graph of the fa relation is shown in Figure 6.25. Notice
that there are no stable states in this graph. Note also that states 10 and
01, which are stable in GMW analysis, are unstable here; in fact each state
corresponds to two ID-states with different counts.

x

FIGURE 6.26. Circuit with infinite transition graph.

Our second example illustrates that the count variables may be un
bounded and the fa graph may be infinite. Consider the circuit of Fig
ure 6.26. The network with state variables Yl, Y2, Y3 satisfies the excitation
equations Y1 = X EB Y2, Y2 = Yl, and Y3 = Yl. State 0·000 is stable. Chang
ing the input to 1 we obtain the ID-state (000,100). One verifies that the
following sequence is part of the fa relation graph:

(000,100) -+ (100,011) -+ (110,101) -+ (010, 012) -+ (000,102).

Thus we have returned the first two variables to their initial state, and the
third variable has not changed but has acquired two unsatisfied transitions.
We can repeat the cycle on the first two variables without changing the
value of the third. This would lead to the state (000, 004). Clearly, this can
be done arbitrarily many times, resulting in an infinite relation graph. Note
that, although the delay of Y3 is up-bounded, the delays of Yl and Y2 can
be arbitrarily smaller than that of Y3.

FIGURE 6.27. Circuit in which IMW differs from GMW.

106 Chapter 6. Up-Bounded-Delay Race Models

QQOO

/+~
01QO 1100 1000

+ V V
0110

V
FIGURE 6.28. Graph of Rl for the circuit of Figure 6.27.

Our third example shows that it is possible to reach certain states in Ia
that are not possible in Ra. Consider the circuit of Figure 6.27. Suppose
we use the feedback-state network with state variables Yl, Y2, Y3, Y4. The
excitation equations are

Y1 = Yl + X *Y2, Y2 = Y2 + X *Yl,

Y3 = Y3 + X *Yl *Y2, Y4 = Y4 + Yl *Y2*Y3·

Starting in the stable state 0·0000 and changing the input to 1, we find
the relation graph of Rl (0000) as shown in Figure 6.28. Notice that the
variable Y4 has the value 0 under the inertial delay model.

In contrast to the above, Figure 6.29 shows a path in the h graph for
the same network. Here it is possible to reach the state 0111, which is not
in the outcome of the GMW analysis.

(0000,1100)

t
(0100,2010)

t
(0110,2000)

t
(1110,2001)

t
(1111,2000)

()
(0111,2000)

FIGURE 6.29. Part of graph of h for the circuit of Figure 6.27.

Section 6.9. Proofs 107

6.9 Proofs

The proofs that were omitted in the main body of the chapter are now
provided along with some auxiliary results.

6.9.1 Proofs for Section 6.2

The following observation is required in later proofs. Recall that an Ra
sequence is nontransient if there is no variable that is unstable and has the
same value from some point on in the sequence.

Proposition 6.4 An Ra -sequence,,! = (SO, Sl, ...) is nontransient if and
only if, for every state variable s j and for every integer r 2: 0 such that
sj = a E {O, I} and Sj(a·s r) = a, there exists an integer p > 0 such that
s;+p = a or Sj(a.sr+P) = a.

This proposition implies that, in a nontransient sequence, the "runs"
during which a variable has a constant value and is unstable are all finite.

We now show that for each UlNa-history there is a corresponding non
transient Ra-sequence. Given a UlNa-history J.l = (8, X(t), s(t)), recall
that "!(J.l) = (SO,SI, ...), where si = S(ti) for i 2: o.

Lemma 6.1 Let J.l be a UlNa -history. Then "!(J.l) = (sO, sl , ...) is a non
transient Ra -sequence.

Proof: First we note that s(ti- t} =I- s(t;) for all i > 0, by definition of
J.l. Thus Si-1 =I- si. Let K be the set of all the state variables that change
in going from si-l to Si. To show that (sO, Sl, ...) is an Ra-sequence, we
need to verify that each of the variables in K is unstable in the total state
a·si- 1. Suppose, on the contrary, that Sj E K but Sj(a·si- 1) = S;-1 = a.
Then Sj(a·s(t)) = Sj(t) = a, for ti-l :::; t < ti. This contradicts Property 1,
which requires the existence of a 8 such that ti - 8:::; t < ti with Sj(t) = a.
One verifies also that, if the Ra-sequence constructed above is finite, its last
state must be stable, because the last state in the UlNa-history is stable.
Therefore (sO, SI, ...) is an Ra-sequence. Suppose the sequence (sO, SI, ...)
is transient, i.e., there exists a state variable Sj and an integer r 2: 0 such
that sj = a and Sj(a·si) = a for i 2: r. By the definition of the sequence
(SO, s1, ...) this implies that Sj(t) = a and Sj(a·s(t)) = a for t 2: ti,
contradicting Property 2. Thus the Ra-sequence is nontransient. D

Next, we want to show that, for every nontransient Ra-sequence, there
exists a corresponding UlNa-history. Before we can prove this result, we
must introduce a number of concepts. Consider a nontransient Ra-sequence
"! = (sO, s1, .. .). A run from state si of,,! is a sequence (si, si+1, ... , ... Sp-1)
of consecutive states of "! with the following property: There exists a j,

108 Chapter 6. Up-Bounded-Delay Race Models

1 :S j :S m such that

s; = S~+1 = ... = S~-1 = a,

Sj(a·s i) = Sj(a.sH1) = ... = Sj(a·sp - 1) = a,

but s~ = a or Sj (a·sP) = a. The length of a run is the number of states in
it. Since we are assuming that 'Y is nontransient, the length of the longest
run from any state is finite. The longest run from si is called a maximal
run of 'Y. Let P(Si) denote the length of the longest run from state Si. Note
that a stable state has no runs.

We are interested in the lengths of the maximal runs for the following
reason. To construct a UlNa-history corresponding to an Ra-sequence, we
must assign a time ti to each state Si in the Ra-sequence. The difference
between the times assigned to states SP(si) and si in the sequence must not
exceed the upper bound Dj for any unstable variable Sj defining the run;
otherwise, we would be violating Property 2 of UIN delays. At the same
time, when assigning times to the states in the Ra-sequence to form the
corresponding UlNa-history, we must be careful not to assign an infinite
number of states to a finite interval. The following construction presents
one method of avoiding this problem.

We view 'Y as consisting of a sequence of certain maximal runs that will
be called segments. The first segment is so, S1, ... , sP(sO)-1, where P(sO) is
the length of the longest run from so. Let D be the minimum value of all
the network delays. State SO will be assigned time Q and state sP(sO) will be
assigned time D /2. The next segment is sP(sO), sP(sO)+!, ... , sP(sP(So) -1).

In other words, we first move to the first state after the end of the first
segment and reach the state sP(sO). We then find the maximal run from

P(peso)) •
that state, and advance further by that run. The state s s wIll be
assigned time 2D /2. We then continue in the same fashion.

In general, each segment will be assigned exactly D /2 time units. The
intermediate states (if any) reached during a segment will be assigned times
in such a way that they are equally spaced between the initial states of
consecutive segments. By this construction, and the fact that each run is of
finite length, we are ensuring that only a finite number of changes occurs
in any finite interval. Furthermore, since the time for each segment is D /2
and any run can involve at most two segments, the length of the longest
possible run of 'Y is strictly less than the time assigned to two segments,
Le., D. Thus, the length of any run will be strictly less than D, as required
by the maximum delay assumption.

To illustrate this construction, consider the nontransient Ra-sequence
'Y = (sO,s1, ... ,s9) =

CQ 11,Q 1 Q, Ql1, Ill, 11Q, Ill, 11Q, 1 QQ, 1 Q 1).

(This sequence is derived from Figure 6.12.) One verifies that sO has a
maximal run of length 3, S1 of length 2, s2 of length 2, s3 of length 4, etc.

Section 6.9. Proofs 109

We divide 'Y into segments as follows:

(Q11,Q1Q,Q11) (111,11Q,111,11Q) (10Q) (101),

where the final state 101, corresponds to a special final segment that has
no runs. Suppose the least upper bound of the three delays is D = 6 ns.
Then the time sequence e (divided into segments to improve readability)
assigned by this construction is

(0,1,2) (3,3.75,4.5,5.25) (6) (9).

Formally, suppose that 'Y = (sO, Sl, ...) is a nontransient Ra-sequence.
The UlNa-history Ilh) = (e,X(t),s(t)) is constructed in two steps. First
we compute the index of the state that starts segment j. We denote this
index by OJ and define it recursively as

{ 0 if j = 0,
(Tj = (Tj-l + p(sa j - 1) otherwise.

e will be chosen in such a way that interval j will begin at time j D /2.
This ensures that the time associated with state saj is jD/2. Thus define
e by

ti = {

:i.Q + (i-aj)D
2 2(a]+1 -aj)

:i.Q
2

Let X(t) = a for t ~ to. For all i ~ 0, let s(t) = Si for ti S t < tHlJ if Si is
unstable; let s(t) = si for ti S t, if Si is stable.

Proposition 6.5 Suppose the length of the longest run from Si is p. Then
tHp - ti < D.

Proof: We prove the claim by contradiction. Assume tHp - ti ~ D. Clearly,
Si cannot be the first state of any segment, because the first state after Si'S

longest run is D /2 < D time units away from si. There must be a segment
with a nonzero run that starts after si; if the following segment were the
final stable state, then tHp - ti could not exceed D /2. This implies that j
satisfies the conditions

jD (j + l)D
ti < 2 and 2 S tHp'

Now we have a run from time ti to time tHp and this run properly includes
the segment between OJ and (Tj+l. This is a contradiction that the run
between (Tj and (Tj+1 is of maximal length. 0

Lemma 6.2 Let 'Y be a nontransient Ra -sequence. Then J1('Y) is a UINa-
history.

110 Chapter 6. Up-Bounded-Delay Race Models

Proof: We need to establish that J-l('Y) satisfies Conditions I and II of the
definition of UlNa-history in Section 6.2. Conditions I(a), (b) and (e) follow
immediately from the construction of J-l("(). Conditions I(c) and (d) follow
from the fact that 'Y is an Ra-sequence. Now, let sj be any state variable
in N. To prove the lemma we need to verify Condition II, i.e., that the
waveform Sj(X(t),s(t))/Sj(t) in J-l("() satisfies Properties 1 and 2 for the
input/output behavior of a UIN delay.

First we verify Property 1. Suppose Sj(t) changes from a to 0: at time
T. From the definition of s(t), this means that there exists k > 0 such that
tk = T and sj-1 = a and sj = Sj(T) = 0:. Since (so'.s1, 00') is an Ra
sequence, sk-1 Rask. Hence the variable Sj must be unstable in total state
a·sk- 1, i.e., Sj(a·sk- 1) = 0:. By definition of s(t), we have sk-1 = s(t),
for tk-1 ~ t < tk' Hence Sj(a·s(t)) = 0: for T - (tk - tk-d ~ t < T, and
Property 1 holds for each variable S j .

For Property 2, assume that Sj(X(t), s(t)) = 0: for T ~ t < T + D,
but that Sj(t) = Ii in the same interval. Suppose tk ~ T < tk+l, and
t/ ~ T + D < tt+!; then the same conditions also hold for the interval
tk ~ t < tt+!. But this implies the existence of a run that lasts for time
tt+! -tk that is greater than or equal to D. It follows from our construction
and from Proposition 6.5 that such a run cannot exist. Hence, we conclude
that Sj(X(t),s(t))/Sj(t) satisfies Property 2 for all variables Sj. 0

The main theorem of Section 6.2 that relates the GMW model to up
bounded inertial delays now follows from the two lemmas above.

6.9.2 Proofs for Section 6.3

Lemma 6.3 If state d is in out(Ra(b)), then it is not D-transient.

Proof: Suppose d E out(Ra(b)); then there exists a nontransient state c
such that bR~ c and cR~ d. Then we can find sequences of the form

° i (i+! j)m i+ 1 k S ,00.,S, S ,00.,S ,S ,00"S,

where sO = b, si+1 = C ,sk = d, (si+1, ... , sj) is a nontransient cycle, and
m is an arbitrarily large integer. Corresponding to each such sequence, we
can construct a UlNa-history J-l = (8,X(t),s(t)). In this history, let 8 > 0
be the time required to go once around the cycle involving state c. Assume
that d is D-transient with T as the limit. Then we can choose m large
enough to satisfy m8 > T. But this means that state d can be reached in J-l
by a sequence of length greater than T; this is a contradiction. 0

Lemma 6.4 If d rf. out(Ra(b)), then d is D-transient.

Proof: If d is not in the outcome, then it can be reached by a sequence
that either contains no cycles or contains only transient cycles.

Section 6.9. Proofs 111

Consider first the case of a sequence "(= so, ... , sk, where Si Rasi+1 for
i = 0, ... ,k -1, sO = b, sk = d, and all the states are distinct. Since at least
one of the 2m states of N must be in the outcome, and sk = d is not in the
outcome, it follows that k must be strictly less than 2m - 1. Consider now
the prefix j.L, corresponding to ,,(, of any UlNa-history satisfying the bound
D. Each interval ti+l - ti must be less than D, by Property 2. Hence the
time to reach state d is less that (2m - 2)D.

It may be possible to increase the length of a sequence from b to d by
inserting transient cycles. So suppose that we have a sequence

° i i+l j i+l I k S , ... ,s ,(s , ... ,s),s ,s , ... ,s ,

where sO = b, Si+l = c, sk = d and the transient cycle (Si+l, ... , sj) has
been inserted. The transient cycle is entered when the transition from si

to the first Si+l is made. The cycle is left when the transition from the
second Si+l to sl is made. The sequence (Si+l, ... , sj), si+l is a run with
an unstable variable having a constant value. This run must last less than
D units of time. But this means that the time to go from the first si+1
to sl must be less that D. Therefore the total time for going from b to d
is still less that (2m - 2)D, even if a transient cycle is inserted. Since any
sequence from b to d can be viewed as a sequence of distinct states into
which transient cycles have been inserted, it follows that the time to reach
d is always less that (2m - 2)D. Thus, if d is not in the outcome, then it is
D-transient with limit (2m - 2)D. 0

From these two lemmas, Proposition 6.1 and Theorem 6.2 now follow.

Chapter 7

Ternary Simulation
As we have seen in Chapter 6, the race analysis methods-that examine all
possible successors of a given state-are computationally intractable. We
now describe a method that is quite efficient and produces results that can
be viewed as a summary of the results produced by the multiple-winner
methods. For many purposes, such summarized results are sufficient.

The idea of ternary simulation is relatively straightforward, as we illus
trate in Section 7.1 by several examples. Next, the two parts of the ternary
algorithm are defined and their results are characterized in Sections 7.2
and 7.3. The result of Algorithm A can be thought of as providing a sum
mary for the set of all the states reachable from the initial state in the
GMW analysis of an input-, gate-, and wire-state network. Similarly, Al
gorithm B is shown to provide a summary of the outcome of the same
GMW analysis. In Section 7.4 we show that every input- and feedback
state model gives correct results for transitions among states, provided it
is analyzed with the aid of ternary simulation. We next show in Section 7.5
that ternary simulation not only gives the correct outcome, but is also ca
pable of detecting static hazards in the network outputs. In Sections 7.6
and 7.7 we relate ternary simulation to the GSW and the XMW analysis
methods, respectively. The latter result shows that ternary simulation is
also applicable to CMOS networks. We close the chapter with Section 7.8,
which contains the proofs of the more difficult results.

How To Read This Chapter

Some of the proofs of the results in this chapter are quite complex. We have
included such proofs in Section 7.8. That section can be omitted on first
reading. While the proofs remaining in the main body of the chapter are
relatively simple, the reader may wish to get an overview of the chapter by
omitting them on first reading.

7.1 Introductory Examples

In 1965 Eichelberger developed a method [49] for the detection of hazards
and races. The method uses three values for logic signals: 0,1, and <P.

114 Chapter 7. Ternary Simulation

The precise mathematical meaning of <I> was given in Section 2.3, where
ternary algebra was discussed; intuitively, we interpret <I> as a changing,
uncertain signal. Eichelberger's method consists of two parts, which we
call Algorithms A and B, and assumes that the circuit is started in a stable
state and some inputs are changed. In this chapter we present a more
general method that does not require the initial circuit state to be stable.
This material is closely based on [126].

Assume we are given a network N started in some total state a·b. In
Algorithm A, every state variable is repeatedly set to the least upper bound
(lub) of its current value and its excitation. Thus, in the first step, all
the unstable state variables are set to <1>. Intuitively, this indicates that
these variables are uncertain. The uncertainty so introduced is then spread
throughout the network. In Algorithm B, every state variable is repeatedly
set to its excitation. Consequently, some of the uncertainties are removed.
If they are all removed, then the outcome is a stable binary state. If some
uncertain state variables remain, the outcome for these state variables may
be either a or 1, depending on the relative sizes of the delays. Together,
Algorithms A and B constitute ternary simulation. We illustrate these ideas
with three informal examples.

Example 1

Consider the circuit of Figure 7.1. Suppose it was in stable initial
total state X·XYIY2Y3 = 0·0011, and the input just changed to 1.
Note that we assume there is a delay associated with the input. We
now run the algorithm starting the network in total state 1·0011.
First, the input delay has an excitation that differs from its current
value; thus it changes to <1>, i.e., the state becomes 1·<1>011. Now the
output of the OR gate becomes <1>, since one of its inputs is a and
the other is uncertain. Similarly, the NAND gate's output becomes
uncertain, and the circuit reaches ternary state 1·<1><1> 1 <1>. In this state,
the inverter input is uncertain, and state 1·<1><1><1><1> is reached. This
state is stable, and Algorithm A terminates here. These steps are
shown in Figure 7.2.

For Algorithm B, the circuit starts in the state reached in Algorithm
A, i.e., in 1·<1><1><1><1>. In the first step, the input delay changes and the

x
X--~~------------------~

FIGURE 7.1. Circuit for Example 1.

Section 7.1. Introductory Examples 115

Algorithm A Algorithm B

1·0011 1· <I> <I> <I> <I>

t t
1· <I> 0 11 1·1 <I> <I> <I>

t t
1 . <I> <I> 1 <I> 1·11 <I> <I>

t t
1 . <I> <I> <I> <I> 1· 11 o <I>

() t
1·1101

()
FIGURE 7.2. Ternary simulation for Example 1.

circuit moves to 1· 1 <I><I><I>. Now the OR gate responds to the input
delay change, and state 1·11 <I> <I> is reached. As a result of this, the in
verter, and then the NAND gate, also change as shown in Figure 7.2.
Thus the result of the ternary simulation is the binary state 1·1101.

The transition we have analyzed above corresponds to the GMW
analysis shown in Figure 7.3, where we used the input- and gate
state model. Here the two methods of analysis give the same result,
because the outcome of the GMW analysis is also the state 1·1101.

1101

()
FIGURE 7.3. GMW analysis for Example 1.

116 Chapter 7. Ternary Simulation

Example 2

For our second example, consider the circuit of Figure 7.4, first with
out the wire delay, i.e., with excitation functions Y1 = x EB x, and
Y2 = Yl + Y2· If the circuit is in stable total state X'XYIY2 = 0·000
and the input changes to 1, we can carry out the analysis starting in
state 1·000. If we do so, we find

Algorithm A:

1·000 -- 1·~00 -- 1·~~0 -- 1·~~~.

Algorithm B:

1·~~~ -- 1·1~~ -- 1·1O~.

Here, the ternary simulation result disagrees with the GMW analy
sis in the input- and gate-state model; the latter predicts the stable
state 1·100 as the final outcome, as contrasted with 1·1O~ predicted
above by Algorithm B. If the wire delay z is added, however, and the
network's total state is X'XYIY2Z, we have

Algorithm A:

1·0000 -- 1·~000 -- 1·~~0~ -- 1·~~~~.

Algorithm B:

1·~~~~ -- 1·1~~~ -- 1·1~~1 -- 1·1O~1.

It is easy to see that a GMW analysis of this extended network pre
dicts two stable states, 1·1001 and 1·1011, for this transition. If we
accept the ternary state 1·10~1 as representing both of these binary
states, then the results of ternary simulation agree with the GMW
analysis.

FIGURE 7.4. Circuit for Example 2.

Example 3

In our third example, the input delay to the circuit is stable, but an
internal gate is unstable. It may appear unusual to start in a state
in which the input has not changed, but there is some internal insta
bility. In practice, however, such situations occur quite frequently. In
particular, when power is applied to a circuit, it is usually impossible
to know its starting state.

Section 7.1. Introductory Examples 117

x
x------~--+-~

z

FIGURE 7.5. Circuit for Example 3.

Consider the circuit of Figure 7.5 started in unstable total state X·
x YIY2Y3Y4Y5 Z = 0·001010 1. Note that only gate Y2 is unstable in
this state. The analysis yields

Algorithm A:

0·001010 1 ----+ 0·0 OellOlO 1 ----+ 0·0 o ell 0 ell 0 1 ----+ 0·0 OellOellell ell.

Algorithm B:

0·0 OellOellell ell.

Suppose we now perform a GMW analysis; the result shows that the
circuit is not guaranteed to reach a unique stable state. For example,
the nontransient cycle

0·0 01010 1 ----+ 0·0 000101 ----+ 0·0 OOOOQl ----+

0·00Q0011 ----+ 0·001OQ11 ----+ 0·0010111 ----+ 0·0010101

is in the outcome. From this observation, and the fact that the wire z

is unstable in three of the states in the nontransient oscillation (and
can therefore become 0), one has

0·0 o ell 0 ell ell ell!;;; lub out(Ra (0·00101O 1)).

For convenience, an input-, gate-, and wire-state network model of a
circuit C is called the complete network of C. The main theorem of this
chapter states that ternary simulation of a complete network N agrees with
the results of the GMW analysis, Le., ternary simulation computes the lub
of the GMW outcome. We postpone the formal statement of this theorem
until more background has been established.

118 Chapter 7. Ternary Simulation

7.2 Algorithm A

For ternary simulation we use the ternary domain in the network model.
To distinguish two versions of the same network, one with a binary do
main and the other with a ternary domain, we denote them by Nand
N, respectively. Let N = ({O,I},X,S,£,F) be a binary network, and
N = ({ 0, <Ii, I}, X, S, £ , F) its ternary counterpart, called the ternary ex
tension of N. There are n inputs and m state variables in Nand N. We
use the convention that state variable vectors in the ternary domain are
denoted by s and the input and vertex excitation function vectors by X
and S. Let a·b be a (binary) total state of N. We remind the reader that
the ternary excitation function Si associated with each state variable Si

satisfies the monotonicity property

a!;;; b implies Si(a) !;;; Si(b),

for all a, b E {O, <Ii, l}n. This is true because Si is always the ternary
extension of a Boolean function, and the monotonicity property holds for
ternary extensions (see Section 2.3).

The first algorithm of ternary simulation is formally defined as follows:

Algorithm A
h :=OJ
so:= bj
repeat

h:= h + Ij
sh := lub{sh-l, S(a·sh-1)}j

until sh = sh-l j

In the following, we use A (roman) to denote the name of the algorithm
and A (italic) to denote the length of the sequence of states that the algo
rithm generates. Propositions 7.1 and 7.2 below are based on [26).

Proposition 7.1 Algorithm A generates a finite sequence so, ... , sA of
states, where A ::; m. Furthermore, this sequence is monotonically increas
ing, i.e.,

sh c: sh+l, for 0 ::; h < A.

Proof: First, by the fact that t !;;;; lub{t, t'}, for all t and t', it follows that

Sh !;;; lub{ sh, S(a·sh)} = Sh+l, for 0 ::; h < A.

Second, in each step of the algorithm, at least one state variable must
become <Iij otherwise the algorithm terminates. Since there are m state
variables, it now follows that A cannot exceed m. 0

Let N be a network in state b with inputs held constant at a. Define the
set of all states reachable from b in the GMW analysis as: reach(Ra(b)) =
{c I bR~c}. In the following, if h > A, by Sh we mean SA.

Section 7.2. Algorithm A 119

Proposition 7.2 The least upper bound of the set of all the states reach
able in the GMWanalysis of a network N is covered by the result of Algo
rithm A for N, i.e.,

lubreach(Ra(b)) ~ sA.

Moreover,

b(Ra)hc implies c ~ Sh.

Proof: The proof of the second claim is by induction on h. For h = 0,
we have b(Ra)Oc implies c = b. But also sO = b. Hence b(Ra)Oc implies
c ~ so. Assume now that b(Ra)hc implies c ~ sh, and suppose that cRad.
By definition of Ra , each component di of d has either the value of the
corresponding component Ci in c or it is equal to the excitation Si(a·c).
Thus d ~ lub{ c, S(a·c)}. The latter expression is equal to lub{ c, S(a·c)},
since the ternary extension S agrees with S on binary arguments. Using
the induction hypothesis, the monotonicity of S, and the monotonicity of
lub, we find d ~ lub{ Sh, S(a·sh)} = Sh+l. Thus the second claim holds.
By Proposition 7.1, sA covers sh for every hj hence the main claim is
established. D

The formulation of Algorithm A above is very general, in the sense that it
makes no assumptions about the starting state a·b. However, if the network
starts in a stable total state, then only input-delay vertices are unstable
after an input change. In this case it is convenient to use a slightly simpler
formulation of Algorithm A; we cl1ll this version Algorithm A. Assume N is
started in the stable total state &·b and the input changes to a. Algorithm A
is defined as follows:

Algorithm A
h :=OJ
a:= lub{&, a}j
So:= bj
repeat

h:= h+ 1j
Sh := S(a.sh - 1);

until Sh = sh-l j

The reader can verify that the monotonicity result of Proposition 7.1
holds also for Algorithm A. Thus we have

Proposition 7.3 Algorithm A generates a finite sequence so, ... , sA of
states, where A :::; m. Furthermore, this sequence is monotonically increas
ing, i.e.,

sh C sh+l, forO:::; h < A.

120 Chapter 7. Ternary Simulation

The reader can also verify that Algorithm A applied to the network of
Figure 7.1 yields exactly the same results as those of Figure 7.2.

The next lemma shows that the simpler version of the first algorithm
is sufficient when the network N has input delays and is in a stable total
state initially. For convenience, we assume that the first n state variables
are the n input-delay variables, i.e., that Sj = Xj for j = 1, ... ,n.

Lemma 7.1 Let N be a ternary network with input delays started in the

stable total (binary) state a·b and let the input change to a. Let sA denote
the result of Algorithm A. Similarly, let sA denote the result of Algorithm A
when N is started in the total state a·b. Then sA = sA.

Proof: Let sh, 0 ~ h ~ A and sh, 0 ~ h ~ A be the results of Algorithms A
and A, after h steps. We prove that sj = sj for h ~ o. The lemma then
follows immediately by Propositions 7.1 and 7.3. Consider first an input
delay vertex j; its excitation is Xj. Note that bj = aj, since a·b is a stable
total state. There are two sub cases to consider. If aj = aj, then aj = aj
and it follows trivially that sj = bj and sj = bj for h ~ o. On the other
hand, if aj -::j:. aj, then

if h = 0,
otherwise.

Altogether, if j is an input-delay vertex, then sj = sj for h ~ o.
We now show by induction on h, that Sh = sh for h ~ O. Since sa = sa =

b, the basis follows trivially. Assume inductively that sh = sh holds for some
h ~ O. If j is an input vertex, we already know from the above that SJ+l =

sJ+1. If j is an internal vertex, then Sj (a·c) = Sj (a'·c) for every a, a' E

{O, <P, l}n and c E {O, <P, l}m. In particular, Sj(a.sh) = Sj(a·sh). This,
together with the induction hypothesis, implies that Sj(a.sh) = Sj(a.sh) =
sJ+1. We now claim that Sj(a.sh) = lub{sj, Sj(a.sh)}. From the properties

of lub, it follows that Sj(a·sh)!;;; lub{sj, Sj(a·sh)}. If Sj(a·sh) = <P then,
trivially, lub{ sj, Sj (a.sh)} ~ Sj(a·sh).

This leaves the case where Sj(a·sh) E {O, I}. Recall that Sj is a mono
tonic function of its arguments. Recall also that the network is started in
a stable total state a·b in which all the arguments of Sj are binary, and
in which Sj = Sj(a·b) = bj . Note that each Sj can either remain at its
initial binary value throughout the algorithm or it can change to <P. The
latter can only occur if Sj has changed to <P in the previous step. In sum
mary, if Sj(a·sh) E {O, I}, then sj = Sj(a·sh), and we have proved our
claim that Sj(a.sh) = lub{sj, Sj(a·sh)}. Using this claim and the fact that

Sj(a·sh) = Sj(a.sh), we now have

sJ+1 = lub{sj,Sj(a.sh)} = Sj(a.sh) = Sj(a.sh) = sJ+1.

Thus the induction step goes through, and the claim follows. D

Section 7.3. Algorithm B 121

The main result of this section is the following [9, 21].

Theorem 7.1 Let N = ({ 0, I}, X, S, £, F) be a complete binary network,
and let N = ({ 0, <P, I}, X, S, £, F) be its ternary counterpart. If N is started
in total state a·b, then the result sA of Algorithm A for N is equal to the
lub of the set of all the states reachable from the initial state in the GMW
analysis of N, i. e.,

sA = lub reach(Ra(b)).

Proof: By Proposition 7.2, lUbreach(Ra(b)) is covered by the result of
Algorithm A for N. It remains to be shown that the lub of the reachable
states of N covers sA. This follows from Corollary 7.2 on page 136. In the
corollary, it is shown that, for every vertex j, there is a state sj E {O, l}m
such that bR~ sj and s1 r; lub{ bj , s;}. This sufices to prove the result. 0

7.3 Algorithm B

In Algorithm B, we see how much of the uncertainty introduced by Al
gorithm A is eventually removed; hence we start the network in the state
generated by Algorithm A.

Algorithm B
h:= 0;
to := sA;

repeat
h:= h+ 1;
t h := S(a.th- 1);

until t h = t h - 1 ;

Proposition 7.4 Algorithm B generates a finite sequence to, ... , t B of
states, where B ::; m. Furthermore, this sequence is monotonically decreas
ing, i.e.,

t h ::J th+1, for 0 ::; h < B.

Proof: We first prove by induction on h that t h ;;J th+1. For the basis,
observe that sA = lub{ sA, S (a.sA)}. It follows from the properties of lub
that to = SA ;;J S(a.sA) = t 1 . Now assume inductively that t h ;;J th+!o By
the monotonicity of S it follows that t h+1 = S(a·th) ;;J S(a·th+!) = t h+2

and the induction step goes through.
In view of this result, at least one state variable must change from <P

to a binary value in each step of the algorithm; otherwise the algorithm
terminates. Since there are m state variables, B cannot exceed m, and the
proposition follows. 0

122 Chapter 7. Ternary Simulation

Proposition 7.5 The least upper bound of the set of all the states in the
outcome of the GMWanalysis of a network N is covered by the result of
Algorithm B for N, i.e.,

lub out(Ra(b)) ~ t B .

Moreover, for every h ~ 0,

lub out(Ra(b)) ~ tho

Proof: We prove the latter claim by induction on h. If h = 0, then t h = sA.

Since out(Ra(b)) ~ reach(Ra(b)), we have lubout(Ra(b)) ~ sA by Theo
rem 7.1, and the basis holds. Now suppose that h > 0 and that t h satisfies
the claim, but t h+1 does not. Then there must exist c E out(Ra(b)) and a
vertex i such that Ci ~ (t h+1k Since Ci E {0,1}, this can only happen if
(t h+1)i = Ci. We now assert that the excitation Si(a·d) is equal to (t h+1)i
for every state din out(Ra(b)). First note that

S(a·d) = S(a·d) ~ S(a.th) = t h+1,

where the inequality follows from the inductive assumption (which im
plies d ~ t h) and the monotonicity of S. Now, since (th+1)i is binary
and ;;;J Si(a·d), it must be equal to Si(a·d), as claimed. Now consider any
nontransient cycle in out(Ra(b)). Since the excitation of the i-th variable
is constant throughout the cycle, the value of the variable must be con
stant throughout the cycle. Since the cycle is nontransient, that value must
be equal to the excitation. Thus di = (th+1)i = Ci for every state d in
the cycle. Since the nontransient cycle was arbitrary, we have shown that
di = (th+1)i = Ci for every state d in every nontransient cycle in out(Ra(b)).
This, together with the fact that Si(a·e) = Ci for every state e in out(Ra(b)),
implies that every state d E out(Ra(b)) reachable from a nontransient cycle
will also have di = (t h+1)i = Ci. However, these results together imply
that di = Ci for every d E out(Ra(b)), contradicting the assumption that
C E out(Ra(b)). Hence, the induction step goes through. The main claim of
the proposition now follows in view of Proposition 7.4. D

The characterization of the results of Algorithm B is given by:

Theorem 7.2 Let N = ({O,l},X,S,£,F) be a complete binary network,
and let N = ({ 0, ~, I}, X, S, £, F} be its ternary counterpart. If N is started
in total state a·b, then the result t B of Algorithm B is equal to the lub of
the outcome of the GMWanalysis, i.e.,

t B = lub out(Ra(b)).

Proof: By Proposition 7.5, lub out(Ra(b)) is covered by the result of Al
gorithm B. It remains to be shown that the lub of all the states in the
outcome of N covers t B . This follows from Lemma 7.9 given on page 141.
In the lemma it is shown that there exists a nontransient cycle Z reachable
from the initial state and such that the lub of all the states in Z covers t B •

This suffices to prove the theorem. D

Section 7.4. Feedback-Delay Models 123

7.4 Feedback-Delay Models

We have seen in Section 6.5 that the feedback-delay model used in con
junction with the GMW analysis is not quite correct; while it predicts
the correct stable states, it does not predict the correct transitions among
them. We show in this section that the feedback-delay model is completely
correct when used in conjunction with ternary simulation.

Recall that a set F of vertices of a directed graph g is called a feedback
vertex set if the removal from g of all the vertices in F, along with all
their incident edges, results in an acyclic graph. We show that, to obtain
the same results as does the GMW analysis of a complete network, it is
sufficient to associate state variables with inputs and any feedback-vertex
set, if ternary simulation is used. The results are independent of the choice
of the vertex set. First, however, we describe the process of removing one
state variable from the ternary network.

Without loss of generality, we assume that the variable to be removed is
variable m-if some other variable is to be removed, we can always renum
ber the vertices. Let N = ({O, cJI, I}, X, S, e, F) be any ternary network in
which 8 m is a state variable with excitation function 8m that does not de
pend on any input excitation function nor on the value 8 m itself. Since 8m is
independent of 8m, we have 8 m(X·81· ··8m-1·8m) = 8m(X·81···8m-1·cJI)
for every X and Si, 1:::; i :::; m.

Given N we now define N = ({O, cJI, I}, X,S,e,F) as follows: S = S
{m} with labels 5 = 51 ... 5m-1 and excitation functions 8 = 81 ... 8m-I>

where

8i = 8 i (X.5·8m(X·5.cJI)) for 1 :::; i < m,

and with circuit equations

if i = m,
otherwise.

As usual, the edge set defines the dependencies. It should be noted that e
can contain new edges introduced by this process. Note also that we must
use ternary, and not Boolean, algebra in manipulating and simplifying the
expressions for the excitation functions and circuit equations.

To illustrate the removal of a state variable, consider the network N in
Figure 7.6, with excitation functions

8 1 = Xl, 8 2 = (81 + 84) 83 = X 2, 84 = (82 + 83),

and circuit equations

F1 = 81, F2 = 82, F3 = 83, F4 = 84, F5 = S2, F6 = 84·

We remove the state variable 84. The reduced network N is shown in
Figure 7.6.

124 Chapter 7. Ternary Simulation

Network N Network N

FIGURE 7.6. Illustrating state removal.

Here the excitation functions are

81 = Xl, 82 = (81 + (82 + S3)), 83 = X 2,

and the circuit equations are

Fl = Sl, F2 = S2, F3 = S3,
-;-:--~

F4 = (S2 + S3), F5 = S2, F6 = (S2 + S3).

Proposition 7.6 Assume a·b is a (binary) total state of network N such
that vertex m is stable, i.e., bm = Sm(a·b). Let sA (t B) be the result of
Algorithm A (B) for N, when N is started in state a·b. Similarly, let sA
·B . .

(t) be the result of Algorithm A (B) for N, when N is started in state
a·b, where bj = bj for 1 ~ j ~ m - 1. Then, for 1 ~ j ~ m - 1,

A.A B·B
Sj = Sj and tj = tj .

Proof: Consider Algorithm A for network N. If the excitation of m never
changes, i.e., if Sm(a·s i) = s~ = bm , for 0 ~ i ~ A, the proposition holds
trivially. Hence, assume Sm(a·s i) changes for the first time at step r > o.
From the monotonicity of Algorithm A, the fact that Sm does not depend
on any input excitation, and the assumption that m was stable in the total
state a·b, we can conclude that

if i < r,
if i ~ r.

From this and the definition of Algorithm A it follows that

if i < r + 1,
ifi~r+l.

Clearly, s~ = S} for 1 ~ j ~ m - 1 and 0 ~ i ~ r. Since Sm(a·s) does not
depend on Sm, it follows that for i ~ r we have

if i < r,
if i = r.

Section 7.4. Feedback-Delay Models 125

However, by Proposition 7.1, ~,r ~ Si for i 2: r; since Sm is monotone, it
follows that

Sm(a.si.<r» = { ~m

Consequently,

if i < r,
ifi2:r.

si C S (a.s i .<r» C si+l. m - m _ m

We now proceed by induction on i to show that

(7.1)

Si. C Si. C Si+l for 1 < J. < m - 1. (7.2)
J-J-J --

For the basis, observe that s~ = bj and s~ = bj for 1 S j S m - 1.
By Proposition 7.1, SO ~ SI and the basis holds. Assume inductively that
s; ~ s; ~ S~+1 for 1 S j S m - 1. This hypothesis, the monotonicity of lub
and of S, and (7.1), yield for 1 S j S m - 1

S~+1 lub{s;, Sj(a·si)}

C lub{s;, Sj(a·si.s~)}

C lub{sj, Sj(a.si.Sm(a.si.<r»)} = lub{s;, Sj(a·si)} = s;+l
C lub{s;,Sj(a.si.s~l)}

C lub{s;+l,Sj(a.si+l)} = S;+2,

and the induction goes through.
Given (7.2) and the fact that Algorithm A converges (Proposition 7.1),

it follows immediately that sf = sf, for 1 S j S m - 1. The proof of the
second claim follows in a dual fashion. 0

Given any feedback-vertex set, we can construct a corresponding reduced
network, as is shown in the next result.

Proposition 7.7 For any feedback-vertex set F of a complete network N
there exists a reduced network N with vertex set equal to X U I U F, where
I is the set of input-delay vertices.

Proof: By definition of feedback-vertex set, an acyclic graph results when
the feedback vertices are removed from N. The vertices in N can be clas
sified as follows. Feedback vertices, input vertices, and input-delay vertices
are all of rank o. Inductively, the vertices with incoming edges only from
vertices in ranks 0 to i-I, which are not of rank 0 through i-I, are rank
i vertices. Use the vertex removal process to remove all vertices of rank
1. Note that no feedback is introduced by this construction in the acyclic
graph consisting of the vertices that are not in F. Thus vertices that were
of rank 2 are now of rank 1 in the new graph. This process can be repeated
until all the vertices not in X U I U F have been removed. 0

126 Chapter 7. Ternary Simulation

Intuitively, one might think that the converse of Proposition 7.7 holds,
i.e., that the vertices remaining after a network has been reduced constitute
a feedback vertex set of the original network. This is not the case, however,
as the following example shows. Consider the network in Figure 7.7, where
the excitation functions are

SI =X, S2 = 81,

S4 = 8283 + 8284 + 8384, S5 = 84 + 85·

If we first remove vertex 82, we get the reduced network N shown in
Figure 7.7 with excitation functions

SI = X, S3 = 81,

S4 = 8183 + 8184 + 8384, S5 = 84 + 85.

Network N

Network N

Network N

NetworkN

FIGURE 7.7. Reduction below feedback vertex set.

Section 7.5. Hazards 127

We now remove vertex 83, obtaining the network N shown in Figure 7.7
with excitation functions

8 1 = X, 84 = 8181 + 8184 + 8184 = 81, 8 5 = S4 + 85·

Note that the dependency on vertex 84 was removed from 8 4 in this tran
formation. Finally, we remove vertex 84, and obtain network N shown in
Figure 7.7 with excitation functions

81 = X, 85 = Sl + 85·

Reductions below the minimal feedback vertex set, such as the one de
scribed here, are possible because some of the excitation functions become
degenerate. On the other hand, the feedback vertex set reflects only the
structure of the graph.

We are now ready to state the main theorem of this section.

Theorem 7.3 The results of Algorithm A for a network N and for any
reduced version N of N are equal with respect to the feedback variables. The
same is true for Algorithm B.

Proof: Proposition 7.6 states that the results are equal for the remaining
vertices if only one vertex is removed. The result now follows by induction
on the number of vertices not in X U I u:F and by Proposition 7.7. 0

Corollary 7.1 The results of Algorithm A for a network N and for any
feedback-vertex model of N are equal with respect to the feedback variables.
The same is true for Algorithm B.

7.5 Hazards

Until now, our main concern in the analysis of a network has been its
outcome (in the case of GMW analysis) or the least upper bound of the
outcome (in the case of ternary simulation). While it is true that the final
stable state reached by a network is of great importance, there are other
concerns that must be addressed. Typical examples of such secondary con
straints are the so-called static hazards, where a network output has the
same value after a transition as it did before the transition, but may re
ceive the complementary value for a short time during the transition. In
this chapter we consider two types of hazard phenomena that have been
studied in the classical theory of switching circuits.

7.5.1 Static Hazards

We illustrate the phenomenon of static hazards with a simple example.
Consider the network of Figure 7.8. The output Y4 is defined by the Boolean

128 Chapter 7. Ternary Simulation

Xl----~----------------~

Y4

X3 ----I

FIGURE 7.8. Circuit with a static hazard.

expression Y4 = XlX2+XlX3 • One verifies that Y4 is 1 when Xl = 0, X 2 =
I,X3 = 1, and also when Xl = I,X2 = I,X3 = 1. Suppose that the
network is started in the stable total state X·y = 111·0101, and that Xl
changes to 0. From the equation for Y4, one would expect the value of Y4
to remain 1. If the delay of the inverter is appreciable, however, gate Y2
may become ° before the state of the inverter changes and Y3 becomes 1.
Thus Y4 may become temporarily 0; this situation is called a static hazard
in the output Y4. Static hazards are undesirable whenever a circuit is used
as a component of a larger system. In this case, a second component of the
system may incorrectly respond to the short pulse that may appear on the
output of the first component, thus causing an error in the outcome of the
second component.

Since Huffman [68] first defined the static hazard in 1957, many methods
have been proposed for finding static hazards in both combinational and
sequential circuits. A majority of these, including those proposed by [68]
and [92], operate in the well-known domain of Boolean algebra and have
exponential time complexity in the worst case, while others [52, 99] use
complex multivalued algebra. These methods are suitable only for small
combinational circuits, but ternary simulation [23, 49, 148] provides us with
a powerful algorithm that has polynomial time complexity for detecting
static hazards on any state variable in a sequential circuit.

The fact that ternary algebra can be used to detect static hazards was
first shown by [148] in 1964, but only for single input changes and combi
national circuits. The work in [49] expanded this method into an algorithm
that is able to detect all static hazards in sequential circuits during multi
ple input changes. We now describe the algorithm of [49] adapted to our
notation.

Let N = ({O, I}, .1',S, £, F) be a binary network, and let N = ({O, <1>, I},
.1',S,£,F) be its ternary extension. Let a E {O,l}n, bE {O,I}m, and let
Ra be the GMW relation for N.

A network N is said to have a static hazard on a state variable Si from
state a·b if and only if

• bi = Ci, for every C E out(Ra(b)), but

• there exists a state d such that bR;; d and di = b;.

Section 7.6. Ternary Simulation and the GSW Model 129

Theorem 7.4 A complete network N has a static hazard on variable Si

from state a·b if and only if its ternary extension N has the following prop
erty: The result sf of Algorithm A applied to a·b is <I> , while the result tf
of Algorithm B is equal to the initial value bi .

Proof: The initial binary value bi is the same as the result of Algorithm
B if and only if the value in any state of the outcome is also that binary
value. The result of Algorithm A gives the least upper bound of all the
states reachable from b. The result of Algorithm A is <I>, if and only if there
exists a state d reachable from b such that di i- bi . Hence the theorem
follows. 0

7.5.2 Dynamic Hazards

Informally, a network N is said to have a dynamic hazard if and only if there
is a variable that has one value in the initial state, the complementary value
in all the states of the outcome, and changes more than once in going from
the initial state to some state in the outcome. Formally, N has a dynamic
bi to bi hazard on a state variable Si from state a·b if and only if

• Ci = li;, for every c E out(Ra(b)), but

• there exist states d and e such that bHtd, dHte, di = li;, and ei = bi .

The network of Figure 7.9 has a dynamic hazard on state variable S4 from
state 1·1000. One verifies that, in the GMW model using the gate-state net
work, the variables may change in the following order: S3, S4, S1 , 83, 84, 82, 84.

The outcome of the transition is stable state 1·0101.

x

1------------------~

FIGURE 7.9. Circuit with a dynamic hazard.

To the best of our knowledge, there are no efficient methods for finding
dynamic hazards.

7.6 Ternary Simulation and the GSW Model

We now show that, if a sufficient number of delays is included in the network
model, a GSW analysis yields the same outcome as a GMW analysis. This

130 Chapter 7. Ternary Simulation

shows that concurrency can be simulated by the interleaving of actions in
gate networks. Also, this result provides another illustration of the trade
off between the power of the race model and the amount of detail in the
network model. This section is based on [48].

Consider a complete network N = ({O, I}, X,S, £, F), and a related net
work N= ({O,I},X,S,£,F), where we have added a (wire) state variable
s~ for every state variable Si in N as follows. If the state of N is denoted
by X ·s, then the state of N is denoted by X ·ss', where s = S1, ... ,Sm and
s' = s~, ... , s~. Furthermore, if the excitation vector S of N is S(X·s),
then the excitation vector S of Nis S(X·s')S'(s), where S' is the identity
function taking an m-tuple as argument. In other words, S: = Si, for all
i = 1, ... , m. A similar change is made in all the circuit equations. We
denote by Ra(bb) the GMW relation of N, and by Ra(bb) the GSW relation
of N.
Proposition 7.8 Suppose N is started in state a·b. For each path beginning
with b in the Ra(b) relation of N, there is a similar path beginning with bb
in the Ra(bb) relation of N, where each total state x.s of N corresponds to
the total state X ·ss of N.
Proof: The proof is by induction on the path length 1. Clearly the result
holds trivially for 1 = 0, by construction of N. Now suppose state c has
been reached in N and state ee in N. We show that, for each possible one
step transition from e to d, there is a multistep transition from ee to dd.
In the transition of N, some nonempty set V of unstable variables has been
changed. Corresponding to this change, we obtain a sequence of transitions
in N from ss' = ce, by first changing the unstable variables of V in the vector
s one by one. It is easily seen that these variables are indeed unstable, and
that changing one of them does not affect the instability of the others, since
that is determined by the variables in s'. Thus we reach the state de. All
the variables in s' corresponding to set V are now unstable. We proceed to
change them one at a time, thus reaching state dd in N. 0

From this result it follows that the GSW model with an extra wire delay
for each original state variable of N can simulate each behavior in the GMW
analysis of N.

Next, we define the outcome of the GSW analysis of any network in
the same way as we have defined it in the GMW analysis, except that the
relation graph Ra(bb) is used. For convenience let out(Ra(bb)) ! s denote
the set {q E {o,l}m I qq' E out(Ra(bb)) for some q' E {o,l}m}. We are
now in a position to prove the main result of this section.

Theorem 7.5 The outcome of the GSW analysis of N restricted to the
first m state components is equal to the outcome of the GMWanalysis of
N, i.e.,

out(Ra(bb)) ! s = out(Ra(b)).

Section 7.7. Ternary Simulation and the XMW Model 131

Proof: Using the construction in the proof of Proposition 7.8, we see that,
for each state c in a cycle of the Ra(b) relation graph of N, state cc also
occurs as a state of a cycle in the Ra(bb) relation graph of N. Moreover,
from the definition of nontransient cycle, it follows that the cycle in Ra(bb)
constructed as above to correspond to a nontransient cycle of N is also
nontransient. Consequently, the outcome of the GMW analysis of N is a
subset of the outcome of the GSW analysis of N restricted to the first m
state components. In symbols,

out(Ra(b)) ~ out(Ra(bb)) 1 s.

Clearly, the outcome of the GMW analysis of N contains the outcome of
the GSW analysis of N, i.e.,

out(Ra(bb)) ~ out(Ra(bb)).

This relationship is preserved under the restriction to s, i.e.,

out(Ra(bb)) 1 s ~ out(Ra(bb)) 1 s.

Note that the variables of N constitute a feedback vertex set, because we
have assumed that N is a complete network. Consequently, Theorem 7.3
applies, implying that the outcome of the GMW analysis of N restricted to
the first m variables is equal to the outcome of the GMW analysis of N. In
symbols, out(Ra(bb)) 1 s = out(Ra(b)). Our claim now follows. 0

7.7 Ternary Simulation and the XMW Model

The extended multiple-winner (XMW) race model defined in Section 6.6 is
particularly appropriate for analyzing the behavior of switch-level circuits,
since the network model for such circuits is usually defined using a ternary
domain. Like the GMW race model, however, the XMW model is computa
tionally intractable. In this section we show that ternary simulation can be
used to determine the outcome of the XMW analysis. First we prove that
the result of Algorithm A computes the lub of all the reachable states in the
XMW relation. Second, we show that the result of Algorithm B is equal to
the lub of the outcome of the XMW analysis. A major difference between
these results and those of Sections 7.2 and 7.3 is that the correspondence
is not limited to complete networks. Thus, for example, determining the
lub of the outcome of the XMW analysis for an input- and feedback-state
network model can be carried out by performing ternary simulation.

Theorem 7.6 Let N = ({O,<p,l},X,S,£,F) be a ternary network. IfN
is started in binary total state a·b, then the result sA of Algorithm A for N
is equal to the lub of the set of all the states reachable from the initial state
in the XMW analysis ofN, i.e., sA = lub{s E {O, <P, l}m I bR:s}.

132 Chapter 7. Ternary Simulation

Proof: First we claim that sA ~ lub{s E {O, tP, l}m I bR:s}. To verify this,
it is sufficient to establish that consecutive states in Algorithm A are Ra
related, i.e., that bRaSh, for h ~ 0. This would imply, in particular, that
sA E {s E {O, tP, l}m I bR:s}. Our claim follows by induction on h. By the
definition of the Ra relation in Section 6.6, one of the possible successor
states is the lub of the current state and the excitation-precisely the value
used by Algorithm A.

To show the converse, we claim that

lub{c E {O, tP, l}m I bR~c} ~sA.
This follows by induction on h and the observation that, if e, dE {O, tP, l}m
and cRad, then d ~ lub{ e, S(a·en. 0

Theorem 7.7 Let N = ({O, tP, I}, X, S, £, F) be a ternary network. If N
is started in binary total state a·b, then the result t B of Algorithm B for N
is equal to the lub of the outcome of the XMWanalysis, i.e.,

t B = lubout(Ra(b)).

Proof: We begin by establishing that t B ~ lubout(Ra(b)). Since to = sA
and, bR:sA (as shown above), we have bR:to. By the definition of the
XMW relation, it follows that thRath+!, for ° ::; h < B. Altogether, we
have bRatB. Since t B is a stable state, it must be in the outcome of the
XMW relation. Hence, the claim follows.

To prove the converse, we show that lubout(Ra(b)) ~th, for h ~ 0,
by induction on h. The basis follows trivially from Theorem 7.6 and the
observation that the outcome is a subset of the set of reachable states. For
the induction step, assume that s is an arbitrary state in the outcome of the
XMW analysis and that s ~ th. We now claim that s ~ th+!o Note first that
t h+! = S(a·t h). By the monotonicity ofS, it follows that S(a·s) ~ S(a·th) =
th+!o Consider any vertex j. If tJ+! = tP, then Sj ~ tJ+! holds trivially.

Therefore, suppose that tJ+! = a E {O, I}. We have shown above that
S(a·s) ~ th+!o Thus, the excitation of vertex j is equal to a in state s.
Because s is an arbitrary state in the outcome, the excitation of vertex j
is equal to a in every state in the outcome. Since a is binary, it follows
that Sj = a; thus Sj ~ tJ+l. Since j was arbitrary, we can conclude that

s ~ t h +!, and the induction step goes through. 0

7.8 Proofs of Main Results

Let Nand N be as in Theorem 7.1. Note that they are complete networks.
Let 9 denote the set of gate vertices and let W denote the set of wire

Section 7.8. Proofs of Main Results 133

vertices. It is often necessary to select the fan-in and fan-out vertices for a
given vertex. Thus, for any gate vertex i, let its fan-in vertices be

o:i = {j I (j,i) E £}.

Note that o:i no:j = 0 if i =F j. With a slight abuse of notation, given a vector
v of length m and o:i =F 0, we write o:i(V) to denote the components of the
vector corresponding to the fan-in vertices; thus, if o:i = {0:1, 0:2, . •• ,O:r},
then o:i (v) = Val' Va2 , ..• , var • Similarly, for any gate vertex i, let its fan
out vertices be

{3i = {j I (i,j) E £}.

Again, note that {3i n {3j = 0 if i =F j. Given a vector v of length m and {3i =F
0, we write (3i (v) to denote the components of the vector corresponding to
the fan-out vertices of vertex i. Finally, if sh , ° ::; h ::; A, denotes the results
of Algorithm A after h steps, and vertex s1 = cP, let 'Yj denote the step in
which this vertex changes to cP, i.e., if sj-l = bj and sj = cP then 'Yj = k.

The following technical result will be needed in the proof of Lemma 7.2.

Proposition 7.9 Let Nand N be as in Theorem 7.1. Let j be a gate
vertex with in degree dj and fan-in set o:j. Given s E {a, cP, l}m, such that
Sj = bj E {O,l} and lub{sj, Sj(a·s)} = cP, there exists of E {O,l}dj such
that of ~ o:j(s) and Sj(a·s) = bj for every s E {O,l}m such that o:j (s) = of.

Proof: We prove the claim by contradiction. Assume that, for all of E
{O,l}dj such that of ~o:j(s), there is some state s E {O,l}m such that
of = o:j (s) and Sj (a·s) = bj . Since Sj depends only on the vertices in o:j, we
can conclude that Sj(a·s) = bj implies Sj(a.s') = bj for every s' E {O,l}m
such that o:j(s) = o:j(s'). Altogether, we have that Sj(a·s) = bj for every
s E {a, l}m such that o:j(s) ~ o:j(s). However, by the definition of ternary
extension, this implies that Sj(s) = bj , which means that lub{sj, Sj(a·s)} =
lub{ bj , bj } = bj , contradicting the assumption that lub{ Sj, S j (a·s)} = cP. 0

In showing that ternary simulation is covered by GMW analysis, the
following lemma is the key result for Algorithm A.

Lemma 7.2 Let Nand N be as in Theorem 7.1, and let s\ ° ::; h ::; A
be the result of Algorithm A after h steps. Then, for each h, there exists
Sh E {O,l}m such that

2. if j is an input-delay or gate vertex then

s~ = ..l... {
b.

3 bj

ifsj = bj ,

if sj = cPj

134 Chapter 7. Ternary Simulation

3. if j is a wire vertex in the fan-out set of vertex i and in the fan-in
set of vertex k (i = k is possible), and s~ = bk then

if sf = bi and sJ = bj ,
i/sh = cP or sh = cPo

'01 • J'

4. if j is a wire vertex in the fan-out set of vertex i and in the fan-in
set of vertex k (i = k is possible), and sf = s~ = cP then

'Yi ~ 'Yk implies s7 = Sj(a·sh).

Proof: We prove the lemma by induction on h. The reader may find it
useful to follow the construction in the proof of the lemma in parallel with
the construction in Figure 7.11 for the circuit of Figure 7.10 started in the
(unstable) total state 1·00101110000011.

S1 x--....... -I

FIGURE 7.10. Circuit used to illustrate Lemma 7.2.

Algorithm A
sO 01 0 10 01 10 01 10 01 10 0 0 1 1 0

S3 cP1 cP cP cP cP cP cP cP cP cP cP cP 1~ cP

s4 cP1 cP cP cP cP cP cP cP cP cP cP cP cP cP

GMW
sO Q 0 1 Q 1 Q 1 Q 1 0 0 1 1 0
S1 Q 0 1 Q 1 Q 0 Q 1 0 0 11 0
S1 1 QQ 1 QIQIQQQ 110
~ lQQIQlQlQQQI10
s2 1 Q Q 1 Q 1 Q 1 Q Q Q 11 0
~ lQQIQlQlQl11IQ
~ lQQIQlQlQI1011
~ lQQIQlQlQI1011
~ lQQIQlQlQI1011

FIGURE 7.11. Illustrating Lemma 7.2.

The basis, h = 0, follows trivially since SO = b E {O, l}m. Assume induc
tively that state sh has been reached and that sh satisfies Properties 1-4.
We show how to reach a state sh+1 that satisfies all four properties. We do
this in two steps. We first show that there is a state sh+1 reachable from
sh in which all input-delay and gate vertices that change to cP in step h + 1
in Algorithm A are unstable. We then conclude the proof by showing how
Sh+1 can be reached from sh+1.

It is convenient to introduce the following shorthand. Let Ch+1 be the
set of gate and input-delay vertices that change to cP in step h + 1, i.e.,

Ch+1 = {j E I U g I s1 = bj and s7+1 = cP}.

Section 7.8. Proofs of Main Results 135

Now, let sJ+1 = sJ for every input-delay and gate vertex. If j E Ch+ I , let

a j (sh+1) = cj , where cj E {O, 1 }dj is such that cj ~ a j (sh) and Sj (a·s) = bj
for all s E {O,l}m such that aj(s) = cj . By Proposition 7.9 such cj is
guaranteed to exist. If j rt Ch+I, let a j (sh+I) = aj(sh). Note that this
completely determines sh+1. We first claim that every vertex in Ch+1 is
unstable in sh+1. To verify this, we consider two cases. First, if j is an
input-delay vertex, then h must be 0 and the input-delay excitation function
Xj must be bj . Thus input-delay vertex j is unstable at h = O. Since, by
construction, no input-delay vertex changes in going from sh to sh+1 , input
delay vertex j must still be unstable in Sh+1. On the other hand, if j is a gate
vertex, then a j (sh+1) = cj . But cj was chosen so that Sj (a·sh+1) = bj . By
Property 2 of the induction hypothesis, sJ = bj ; thus vertex j is unstable
in sh+1.

We now claim that sh R~ sh+1. Clearly, the claim holds if sh+1 = sh.
Hence, assume sh+1 i= sh. It is sufficient to show that each vertex that
changes in going from sh to sh+1 is unstable in total state a·sh. Let j be
such a vertex, i.e., assume sJ+1 i= sJ. By construction, it follows that j

must be a wire vertex in the fan-in set of some vertex k E Ch+1 and in the
fan-out set of some vertex i. However, a k (sh+1) = ck and, by definition,
ck c::: a k (sh) In particular ck = sh+1 c::: sh If sh = b· and Sh = b· then by _. 'J J - J. Z Z J J ,

Property 3 of the induction hypothesis, sJ = bj . However, sJ = bj implies

that sJ+1 = bj and thus in this case sJ+1 = sJ. On the other hand, if
sf = <I> or sJ = <I> then, again by Property 3 of the induction hypothesis,

we have sJ = Sj(a·sh), and thus vertex j is unstable in total state a·sh.

Altogether, sJ+1 is either equal to sJ or Sj(a.sh) for 1 ~ i ~ m; thus
sh R~sh+1.

We are now ready to construct Sh+1. If j E Ch+1 let sJ+1 = Sj (a·sh+1)

and ,8j (sh+1) = ,8j (S (a· sh+1)). If j rt Ch+1 , let sJ+1 = sJ+1 and ,8j (sh+1) =

,8j(sh+1). Note that this uniquely determines sh+1. We now must verify
that sh+1 satisfies Properties 1-4. First, it follows immediately from the
construction that Sh+I R~sh+1. From the fact that sh R~Sh+I and from the
induction hypothesis, it follows that bR~sh+I and Property 1 holds. Second,
by construction, SJ+I = sJ for every input-delay and gate vertex and the
only gate and input-delay vertices that are changed in going from sh+1 to
Sh+1 are those that change to <I> at step h + 1 in Algorithm A; hence it
follows from the induction hypothesis that Property 2 holds for every gate
and input-delay vertex in sh+1 .

Now, consider any wire vertex j that is in the fan-out set of vertex i
and in the fan-in set of vertex k and for which SZ+I = bk . If s~+1 = sf
and sh+1 = sh then by the construction sh+1 = sh and sh+1 = sh Thus J J' 'z Z J J. ,

by the induction hypothesis, Property 3 holds for j. On the other hand,
if i E Ch+1, the construction of sh+1 ensures that each wire vertex in the
fan-out set of gate i is unstable, since we simultaneously set its output to

136 Chapter 7. Ternary Simulation

its current excitation and change its input. Hence, Property 3 holds in this
case too. Finally, if s7+1 = bi but sj+1 = <P, it follows immediately that h
must be ° and that the circuit was started in a state in which wire vertex
j was unstable, i.e., bj = Sj(a·b). Since neither i nor k is in C1 , it follows
that s} = s? = bi and that sJ = s~ = bj . Since the excitation of wire vertex
j is completely determined by the value on a gate or input-delay vertex i,
it follows that wire vertex j will remain unstable in total state a·sh+1 and
Property 3 holds.

Finally, consider any wire vertex j such that j E fJ i , j E o.k, s7+1 =
s~+1 = <P and Ii :::: Ik' There are two cases to consider. If i E Ch +1 then,
by the construction of sh+1, we have sj+1 = Sj(a·sh+1). On the other hand,

if i ~ Ch+1, then k ~ Ch+l, since otherwise Ik > Ii' However, if neither i
nor k is in Ch+ 1 then none of i, j, and k changes in going from sh to sh+ 1•

Since j is a wire vertex, its excitation depends only on the value on vertex
i. Consequently, the excitation of vertex j does not change in going from
sh to sh+1. By Property 4 of the induction hypothesis, it therefore follows
that sj+1 = Sj(a·sh+1). 0

From this result, we immediately obtain the following:

Corollary 7.2 Let Nand N be as in Theorem 7.1. Then, for 1:::; j :::; m,
there exists a state sj E {a, l}m such that bR~sj and

. A
lub{bj,sD;;;) Sj'

Proof: If s1 = bj , the result follows trivially. So assume s1 = <P. If j
is an input-delay or gate vertex, then the result follows immediately from
Lemma 7.2, Property 2. So assume j is a wire vertex between vertices i and
k, i.e., (i, j) E £ and (j, k) E £. If vertex j is unstable in total state a·b, then
we can reach a state in which s j = bj . Hence, assume wire vertex j is stable
in state a·b. The excitation of wire vertex j is completely determined by the
value on vertex i; thus Sj(a·s) = bj for every s E {a, l}m such that Si = bi'
Assume vertex j changes to <P at step r in Algorithm A. This implies that
vertex i must have changed to <P in step r - 1, and thus sf = <P. By
Lemma 7.2, Property 2, this implies that we can reach a state s E {a, l}m
such that Si = bi. This means that Sj(a·s) = bj ; thus we can reach a state
8 in which 8j = bj . 0

Given the result t B of Algorithm B if tf = <P, we say that vertex j
is an indefinite vertex; otherwise it is a definite vertex. Note that every
input-delay vertex is definite since we assume that the inputs to the circuit
are always binary. Let D denote the set of definite vertices and .:J the set
of indefinite vertices.

Assuming there is at least one indefinite vertex j (i.e., Algorithm B
does not yield a binary result), there must be some other vertex i E o.j

that is also indefinite. Otherwise, all inputs to vertex j would be binary
and its excitation could not be <P. Since the network N is finite, we must

Section 7.8. Proofs of Main Results 137

have at least one cycle of indefinite vertices; such a cycle will be called
indefinite. Note that, since the network is complete-and thus every loop
in the network is of length at least two-there must be at least one gate
vertex and one wire vertex in every indefinite cycle.

Eventually we want to show that if the result of Algorithm B contains
at least one CP, there exists a nontransient cycle of length ~ 2 (Le., an
oscillation) in the graph of the relation Ra for N such that all indefinite
vertices "take part" in the oscillation, Le., each vertex variable takes on
both values ° and 1 in the cycle. Furthermore, that cycle is reachable from
the initial state of N.

The following definitions help to simplify the proofs. A total state a·c of
N is compatible with a·tB if c ~ t B . Also, a total state a·c of N is definite
stable if all the definite vertices are stable in that state. Finally, a total
state a·c of N is loop-unstable if there is at least one unstable wire vertex
in each indefinite cycle of N.

Lemma 7.3 Let Nand N be as in Theorem 7.1 and let sA E {O, I}m be a
state derived as in the prool 01 Lemma 7.2. 11th is the result 01 Algorithm
B after h steps, Os h S B, then there is a state th E {O,I}m such that

I. bR:th, II. th ~th, III. i/tJ = cP then tJ = s1

Proof: We proceed by induction on h. For the basis, let to = sA. Properties
I-III follow trivially from the fact that to = sA, from Proposition 7.2, and
from the assumption that sA satisfies Properties 1-3 of Lemma 7.2.

Assume inductively that th has been constructed and let

t~+1 = {Sj(a.th) iftJ+1 E {O, I},
J tJ otherwise.

Clearly, th R~th+1. Together with the induction hypothesis Property I, it
follows that bR~th+l. For Property II, consider any vertex j. If tJ+1 = CP,

then it follows trivially that tJ+1 ~ tJ+1. Hence assume that tJ+1 E {O, I}.

By definition of Algorithm B, tJ+1 = Sj(a·th). By the induction hypothesis
Property II and the monotonicity of S, it follows that Sj(a.th) ~ Sj(a.th) =
tJ+1. But Sj(a·th) = Sj(a·th), since the ternary extension S agrees with S

on binary arguments. By construction, tJ+1 E {O, I} implies that tJ+1 =
Sj(a.th). Thus, it follows that tJ+1 ~ tJ+1. Since j was arbitrary, Property
II follows. Finally, by the monotonicity of Algorithm B (Proposition 7.4) if
tJ+1 = CP, then tJ = CP. However, by construction, if tJ+1 = CP, then tJ+1 =
tJ. This, together with the induction hypothesis Property III, implies that
if tJ+1 = CP, then tJ+1 = tJ = s1 and Property III follows. Since Properties
I-III hold for th +1 , the induction goes through and the lemma follows. 0

Lemma 7.4 Let t E {O,I}m be any state such that t ~ t B . Then t is
definite-stable.

138 Chapter 7. Ternary Simulation

Proof: By Proposition 7.4, t B = S(a·t B). Now consider any definite ver
tex j. By the definition of definite it follows that tf E {a, I} and thus
tf = Sj(a.t B) E {a,I}. However, by assumption, t!;;;tB , and by the
monotonicity of S, it follows that Sj(a·t)!;;; Sj(a.t B) = tf E {a, I} and
therefore Sj(a·t) = tf. But Sj(a·t) = Sj(a·t), since the ternary exten
sion S agrees with S on binary arguments. Altogether, if tf E {a, I} then

Sj(a·t) = tf = tf, where the last equality follows from the fact that

tf !;;;tf. 0

Corollary 7.3 Let t B be a state derived as in the proof of Lemma 7.3.
Then t B is definite-stable.

Proof: The proof follows immediately from Lemma 7.4 and by Property II
of Lemma 7.3. 0

Lemma 7.5 Let t B be a state derived as in the proof of Lemma 7.3. Then
t B is loop-unstable.

Proof: It is sufficient to prove the claim for each indefinite simple cycle,
where a cycle is simple if it has no repeated vertices except for the first and
the last vertex in the cycle. Let C be an arbitrary indefinite simple cycle in
N. Note that C only contains gate and wire vertices, since no input-delay
vertex can be indefinite. A gate vertex i in C is said to be terminating if no
other gate vertex in C becomes ~ in Algorithm A after vertex i. Clearly,
there must be at least one terminating vertex in C. Assume vertex i is
terminating in C and that it became ~ at step r of Algorithm A. Since i is
in C, one of the wire vertices in f3i must be the successor vertex to i in C;
assume this is vertex j. We now claim that j is unstable in t B . Note first
that since i and j are indefinite vertices, i.e., tf = tf = ~, by Property III
of Lemma 7.3, we can conclude that tf = sf and tf = s1. Furthermore,
since j is a wire vertex, its excitation is completely determined by the value
on gate vertex i. Thus, if j is unstable in sA, then it is also unstable in t B .

Finally, since i is terminating, it follows that Ii 2 I k for every other gate
vertex in C. In particular, if j E a k (k = i is possible), then Ii 2 Ik' By
Property 4 of Lemma 7.2 it follows that s1 = Sj (a·s A). 0

The proof now proceeds as follows. Starting with a state s E {a, l}m we
first exhibit a sequence of states

where r is the number of indefinite gate vertices, and, for a ::; k ::; r, exactly
k indefinite gate vertices in sk have values complementary to those in s, and
the other indefinite gate vertices are the same as in s. Note that we do not
say anything about the indefinite wire vertices. For convenience, we will say
that k indefinite vertices have been "marked" in this way. By repeating this

Section 7.8. Proofs of Main Results 139

process of marking (i.e., complementing) all of the indefinite gate vertices,
we show the existence of an oscillation involving all the indefinite gate
vertices. We then show that every indefinite wire vertex also oscillates in
the constructed cycle.

Lemma 7.6 Let t B be the result of Algorithm B and let a·s be any total
state compatible with a.t B , definite-stable, and loop-unstable. Assume that
zero or more, but not all, indefinite gate vertices are marked. Assume also
that every wire vertex between a marked and an unmarked indefinite gate
vertex is unstable. Then there exists at least one unmarked indefinite gate
vertex k, such that all indefinite wire vertices in o:k are unstable.

Proof: Consider the directed graph G = (V', £/), where

V' {i E S I tf = <I>}, and

£' = {(i,j) E £ liE g or Si = Si(a·s)} n (V' x V').

G can be obtained from the network graph by retaining only the indefinite
vertices and those edges between indefinite vertices that either leave a gate
vertex or leave a wire vertex that is stable in a·s. G has two important
properties:

1. there is no path from a marked vertex to an unmarked vertex, and

ll. there is no cycle in G.

Both properties follow from the construction of G and the assumptions in
the lemma.

Now consider a reverse path in G. Start at some unmarked gate vertex
k E V' and traverse G backward. From (ii) and the fact that G is finite,
it follows that a reverse path in G started at vertex k must stop at some
vertex, say j. Note that j must be a gate vertex, and, by (i), must be
unmarked. Furthermore, since each indefinite gate vertex has at least one
indefinite wire vertex in its fan-in set, it follows that all indefinite wire
vertices in o:j must be unstable; otherwise the reverse path would not have
stopped at j. 0

Lemma 7.7 Let t B be the result of Algorithm B and let a·s be any total
state compatible with a·t B , definite-stable, and loop-unstable. If, for some
gate vertex j, all indefinite vertices in o:j are unstable, then there exists
a state s reachable from s, compatible with t B , definite-stable and loop
unstable,such that

i. Sj = Sj, and

ii. all indefinite wire vertices in {3j are unstable in s.

140 Chapter 7. Ternary Simulation

Proof: We construct s in a two-step process. First we show that there is
a state s reachable from s such that Sj = Sj(a·s). We then show how to
reach s from S.

For every input and gate vertex k, let Sk = Sk. If k =I- j, let o;k(S) =
o;k(s). Let o;j(s) = d, where d E {O,l}dj is such that d ~o;j(tB) and
Sj(a·c) = bj for all c E {O,l}m such that o;j(c) = d. We claim that
such d is guaranteed to exist. Suppose it did not, i.e., assume that, for
all d E {O,l}dj such that d~o;j(tB), there is some state wE {O,l}m
such that d = o;j(w) and Sj(a.w) = Wj' Since Sj depends only on the
vertices in o;j, we can conclude that Sj(a·w) = Wj implies Sj(a·w') = Wj
for every w' E {o,l}m such that o;j(w) = o;j(w'). Altogether, we have
that Sj(a·w) = Wj for every W E {o,l}m such that o;j(w)~o;j(tB). By
the definition of ternary extension, this implies that Sj(tB) = Wj' But,
by Lemma 7.4, S(tB) = t B; thus tf = Wj E {O, I}. This contradicts the
assumption that j is an indefinite gate vertex. Hence, our claim that such
d exists is true.

It remains to be shown that sR;s. This follows from the fact that

d ~o;j(tB),

the fact that all indefinite vertices in o;j are unstable, and the fact that s
is compatible with t B •

We now are ready to construct s. For every input and gate vertex i let

and

if i = j,
otherwise,

if i = j,
otherwise.

Clearly, sR;s and thus sR;s. By construction, Sj = Sj(a·s) = Sj, and
Property (i) holds. On the other hand, the construction of s ensures that
each wire vertex in the fan-out set of gate i is unstable, since we simulta
neously set its output to its current excitation and change its input. Thus
Property (ii) follows. If gate vertex j is indefinite, then each wire vertex in
j3j is also indefinite. Consequently, it is straightforward to verify that s is
definite-stable, loop-unstable, and compatible with t B . 0

Lemma 7.8 Let t B be the result of Algorithm B and let a·s be any total
state compatible with a·tB, definite-stable, and loop-unstable. Assume there
are r indefinite gate vertices. Then, for each k, ° ::; k ::; r, there is a state
sk E {O, l}m with k vertices marked such that sR;sk and a·sk is compatible
with a·tB, definite-stable, loop-unstable, and every wire vertex between a
marked and an unmarked indefinite gate vertex is unstable.

Section 7.8. Proofs of Main Results 141

Proof: We proceed by induction on the number of indefinite gate vertices
that have been marked, i.e., complemented. For the basis, k = 0, let sO = s
and the claim follows trivially. Now assume inductively that the claim holds
for k ~ 0. By Lemma 7.6, it follows that there exists an unmarked indefinite
gate vertex j such that all indefinite gate vertices in a j are unstable in
a·sk. But Lemma 7.7 guarantees the existence of a state sk+1, such that
sk R~Sk+l and a·sk+l is compatible with a·tB , definite-stable, and loop
unstable. Furthermore, gate vertex j is complemented, and all the indefinite
wire vertices in (3j are unstable in a·sk+l. Now mark vertex j, and note
that all indefinite wire vertices between marked and unmarked indefinite
gate vertices are still unstable. Hence, the induction step goes through and
the lemma follows. D

Corollary 7.4 Let t B be the result of Algorithm B and let a·s be any total
state compatible with a·tB , definite-stable, and loop-unstable. Then there is
a state s reachable from s and such that a·s is compatible with a·tB , definite
stable, loop-unstable, and all indefinite gate vertices have complementary
values in sand s.

Proof: This follows immediately from Lemma 7.8 for k equal to the number
of indefinite gate vertices. D

We are now ready to state and prove the main result of this section:

Lemma 7.9 Let Nand N be as in Theorem 7.2. Then there exists a non
transient cycle Z that is reachable from the initial state b such that

lub{s I s E Z} ;;;) t B .

Proof: By Lemmas 7.3 and 7.5, and Corollary 7.3, it follows that a·tB

is compatible with a·tB , definite-stable, and loop-unstable. Hence, Corol
lary 7.4 can be applied. Since Corollary 7.4 can be applied any number of
times and there is only a finite number of possible states, there must exist
a cycle in the Ra graph. By the construction of Corollary 7.4 it follows that
each indefinite gate vertex oscillates. By the construction in Lemmas 7.7
and 7.8, it is also easy to see that every indefinite wire vertex in the fan-out
sets of the indefinite gate vertices also oscillates. However, a wire vertex j
in the fan-out set (3i of some gate vertex i is indefinite if and only if gate
vertex j is indefinite. Hence, every indefinite vertex is oscillating. Since all
definite vertices are stable, it follows that the cycle is nontransient. D

Chapter 8

Bi-Bounded Delay Models
The race models discussed so far correspond to delays that are only bounded
from above; consequently, the ratio between two delays can be arbitrarily
large. The use of such models often leads to very conservative results. For
example, suppose a GMW analysis indicates a possible timing problem, say
a critical race. It may be the case that, unless the delay in one particular
gate is greater than the sum of the delays in a large number of other gates,
this critical race will always be resolved in the same way. To obtain more
realistic results, we must place some constraints on the relative values of
gate and wire delays.

One possible assumption would be that each component (gate and wire)
has a fixed nominal delay value, but that value may differ from component
to component; this is, in fact, what many commercial simulators do. Un
fortunately, in such an approach small perturbations in the delay values
can change the predicted behavior of the network. In other words, models
using nominal delays have no ability to detect any race or hazard phe
nomena; hence, they are not very suitable for analyzing the behavior of
asynchronous networks.

To overcome the above-mentioned deficiencies, we need models in which
the delays are not completely known and may, in fact, vary in time, but
cannot take on arbitrarily small values. In this chapter, we develop models
in which the delay magnitudes lie between lower and upper bounds, and
we present algorithms for analyzing networks with the aid of such models.
All the delays in this chapter are inertial.

How To Read This Chapter

Section 8.1 contains several examples and some constructive proofs that
are not difficult to follow. Sections 8.2-8.4 deal with continuous models
and can be omitted on first reading. In Section 8.5 we return to discrete
models, but in the ternary domain. Since there are no proofs in this section,
it should be relatively accessible.

144 Chapter 8. Bi-Bounded Delay Models

8.1 Discrete Binary Models

In this section we study several discrete models. To simplify the discussion,
we associate delays with gates only; it is trivial to generalize the results to
networks containing also wire delays.

The simplest approach to bi-bounded delay analysis is to use a "slow"
mode--in which all the gates have their maximal delays-and a "fast"
mode, with minimal delays. It is clear that such a model suffers from the
same problem as the nominal-delay model, i.e., that a small perturbation of
one of the delays can completely change the behavior of the network. There
is an even more subtle problem, however. Intuitively, it sounds plausible
that the transition time predicted by a simulator operated in "slow" mode
should be an upper bound on the time the network would actually take for
this transition. Unfortunately, this is not the case. We have already seen
this in the performance estimation example of Chapter 1. Below we provide
another simple example of this problem.

A problem with the slow mode

Consider the network CS.1 of Figure 8.1 started in stable total state
X·y = 0·1001 when the input changes to 1 and the delay in each gate
is between 1 and 3 time units. It is easy to see that only gates 1 and
2 will change, if we assume that all the gates have a delay of exactly
3 time units. Thus, according to such an analysis, the maximum time
it takes for this network to stabilize (by reaching state y = 0101) is
3 time units. However, if gates 1,2,3, and 4 have delays of 3,1,2 and
2 time units, respectively, the network will actually take 7 time units
to reach the same state, as is easily verified.

[1,3]

X

1

[1,3]

FIGURE 8.1. Network Cs. 1 .

The question now arises whether it suffices to analyze a network for all
possible combinations of lower and upper bounds on the delays. Again, it
turns out that the answer is negative.

Section 8.1. Discrete Binary Models 145

A problem with all slow-fast combinations

Consider gate network CS.2 of Figure 8.2. Assume that it is started
in the stable state X·y = 0·0111100 and that the input changes to
X = 1. Furthermore, suppose the delays are bounded as shown in
Figure 8.2. If we only consider "extreme-case" delays, Le., 1 or 5, it
can be verified that the only possible nontransient states reachable
are 1011000, 1010000 and 1011001, i.e., at least one of Y4 and Y7
does not change. If we also allow the delays to be anywhere between
the bounds, however, the network can also reach 1010001-a state in
which both Y4 and Y7 have changed. This can happen if, for example,
81 = 3, 85 = 5, and the remaining delays are equal to 1. In fact, one
can verify that this state is reachable only if 2 :S 81 :S 4.

[1,5] [1,5]

X Y1
1

FIGURE 8.2. Network CS.2 .

Can a correct analysis be carried out by considering only all the integer
delay values between the minimum and maximum delays of each compo
nent? Unfortunately, even such an elaborate analysis is not always correct.

A problem with fixed discrete resolution

Consider network CS.3 of Figure 8.3 started in the stable state X = 0,
y = 11100000 with X changing to 1. Assume the delays are bounded
as shown in the figure. If only integer values are used for the de
lays, the single nontransient state reachable by the network is y =
00000000, i.e., the "OR-latch" (gate 8) does not change. This can be
seen as follows. If Ys is to change, it must be unstable for one time
unit. Hence, Y7 must change to 1 at some time. For this to happen,
Y4 and Y6 must be 0 and Y5 must be 1. To change gate Y5, gates Y1
and Y3 must have different values for 'at least one time unit. Since
1 :S 81(t) :S 2 and 1 :S 83(t) :S 2, however, this implies that one of

146 Chapter 8. Bi-Bounded Delay Models

[1,2] [1,1]

[1,3]

X--.---l

[1,2]

FIGURE 8.3. Network C8.3.

Y1 and Y3 must change at time 1 and the other at time 2. Since the
network is completely symmetric, we may assume that Y1 changes
at time 1 and Y3 at time 2. To propagate the change in Y5 to the
OR latch, we must choose the delay of Y2 in such a way that neither
Y4 nor Y6 changes at the same time as Y5. This is impossible using
only discrete delay values, since 82 = 1 will cause Y6 to change at the
same time as Y5, and 82 = 2 or 3 will cause Y4 to change at the same
time as Y5. Hence, the oR-latch will remain O. On the other hand, if
we remove the discreteness restriction, the network can reach a state
where the oR-latch has the value 1. For example, let 81 = 1, 82 = 1.5,
and 83 = 2. In this case, gates Y4 and Y6 will be unstable for only
0.5 time units-less than their minimum delays-and thus will not
change.

In the example above, we have used only integer values for delays. Would
a finer (discrete) resolution help? We show below that, no matter how fine
the resolution, a discrete model can never be as accurate as the continuous
one.

A problem with variable discrete resolution

Consider a binary network N = ({O,l},X,S,£,F). Let the delay
bounds for variable Si be the nonnegative integers di and D i . Let
outk(Ra(b)) denote the outcome of a race analysis when the network
is started in the state b, the input changes to a, and the delay in any
variable Si is allowed to take on only values from the set {di , di + ~, di +
~, ... , Di - V· Similarly, let out(Ra(b)) denote the outcome when the
delays can take on any value in the interval [di , Di). (As usual, [d, D]
denotes a closed interval, (d, D] and [d, D) denote half-open intervals,
and (d, D) denotes an open interval.) The next theorem shows that
this kind of resolution can also fail.

Section 8.1. Discrete Binary Models 147

Theorem 8.1 For any constant integer k ~ 1, outk(Ra(b)) ~ out(Ra(b)).
Furthermore, for some networks the inclusion is proper.

Proof: The first part of the theorem is trivial. The example above shows
that the inclusion can be proper when k = 1. Hence, we focus on proving
the claim for k > 1. We prove this by constructing a network with an
input transition such that a certain final state can be reached only if at
least one component of the network has a delay strictly greater than 1
and strictly less than 1 t. In fact, we will construct a network such that
outk(Ra(b)) C out2k(Ra(b)).

x
[1,2) [1,2)

Y8k+l Y8k+2 Y9k

FIGURE 8.4. Network construction for Theorem 8.1.

The construction is shown in Figure 8.4. It consists of two chains of
delays, of length 2k and k, respectively. The delays of the delay elements in
the chains are all assumed to be in the interval [1,2). The input and output
of each delay element in the longer chain are also used by a small network
consisting of a larger delay, a XOR gate, and an "OR latch." Assume now
that the network is started in state X·y = X'Y1 ... Y9k+2 = 0·0 ... 0, and
that the input changes to 1. Can all the OR gates be 0 after this change
has occurred and the network has reached a stable state?

Note that, if any OR gate changes to 1 during the transition, it cannot
change back to 0 later. Note also that, ifaxOR gate feeding an OR gate
changes to 1 at any time, the OR gate must also change to 1, since the
minimum delay of the XOR gate is greater than the maximum delay of the
OR gate. Now consider subnetwork i on the longer delay chain. To avoid
changing, the XOR gate Y4k+i must be unstable for strictly less than 3 time
units. Since the delay of Yi is strictly smaller than that of Y2k+i-and the
delay of Y2k+i is at least 4 time units-it follows that the delay of Yi must
be strictly greater than 1 for Y4k+i not to change.

First, we analyze this network using a discrete model with resolution t.
Since the delay of Yi must be strictly greater than 1, it follows that it must

148 Chapter 8. Bi-Bounded Delay Models

belong to the set {1 i, 1 ~, ... , 2 - D. If all the OR gates in the longer delay
chain remain 0, the total delay through the longer delay chain must be
greater than or equal to 2k(li) = 2k + 2. Now consider the shorter delay
chain. The maximum total delay through this chain must be less than or
equal to k(2 - i) = 2k - 1. Thus, if all the OR gates in the longer delay
chain are to remain 0, the XOR gate Y9k+1 must be unstable for at least
2k + 2 - (2k - 1) = 3 time units and must therefore change. In summary,
no state in outk(Ra(b)) has Y6k+1 = Y6k+2 = ... = YSk = Y9k+2 = 0.

TABLE 8.1. Possible delay assignment for tk resolution.

Yi for 1 SiS 2k 1+1 k
Y2k+i for 1 SiS 2k 4

Y4k+i for 1 SiS 2k 3- A
Y6k+i for 1 SiS 2k 1
YSk+i for 1 SiS k 2 _.l

2f
Y9k+l 3 - 2k
Y9k+2 1

On the other hand, if we assume the resolution is A, we would have to
consider-among many other delay assignments-the case where the delays
in the different components are as listed in Table 8.1. Since here the delay of
Yi is 1 i, that of Y2k+i is 4, and that of XOR gate Y4k+i is 3- 21k ' it follows that
the XOR gate will be unstable for a time shorter than its delay and will not
change. Similarly, the difference between the total delays through the longer
and the shorter delay chains will be 2k(1 i) - k(2 - A) = 2 + ! < (3 - A)
for k > 1. Hence, XOR gate Y9k+1 will not change. Consequently, there is
a state in out2k(Ra(b)) in which Y6k+1 = Y6k+2 = ... = YSk = Y9k+2 = O.
Since there was no such state in outk(Ra(b)), the proper inclusion has been
established and the claim follows. 0

The result above shows that no fixed resolution is sufficient for every
circuit. To the best of our knowledge it is still not known whether a dis
crete model with resolution f(n + m), for some function f, is guaranteed
to be correct for every network with n inputs and m state variables. We
conjecture that this is indeed the case. It is easy to generalize the proof
above, however, to show that f must be at least singly exponential in m.
Hence, the existence of such a resolution function is more of theoretical
than practical interest.

8.2 Continuous Binary Model

As was shown in the previous section, it appears necessary to treat time as
a continuous quantity, if an accurate bi-bounded delay analysis is desired.
The model and algorithm described in this section are based on the work

Section 8.2. Continuous Binary Model 149

in [45] and [84], which uses an analysis with binary delays. In the next
section we describe another continuous algorithm, but one that assumes
the delays are of the extended ternary type.

In the GMW model, the current state of input-excitation and internal
state variables is sufficient to determine the set of possible successor states
of the network. Clearly this is not the case in a bi-bounded delay analysis.
For example, if two gates with nonoverlapping delay bounds, say [1,2) and
[3,5), become unstable at the same time, the gate with the smaller delay
must change first. Consequently, we need to record a certain amount of
previous excitation history for each variable. In fact, we must remember
either how long an unstable variable has been unstable or how much longer
the variable can be unstable without changing. In this section we use the
latter approach and introduce a time-left variable. When a variable becomes
unstable because of an input or state change, the time-left variable can be
set to any time consistent with the delay bounds. We use the convention
that stable variables have an infinite amount of time left. More formally,
assume we have a binary network N= ({O, l},X,S,£,F), started in stable
total state i],.b, and wish to study the transition caused by changing the
input to a at time 0. Assume also that the delay 8j (t) of variable j, 1 :::;
j :::; m, satisfies dj :::; 8j (t) < D j , for some nonnegative integers dj and D j .

A race state is a pair (c, r), where c is the current state of the network,
i.e., c E {O, l}m, and r is a vector of size m such that ri E (0, D i) for
unstable variables and ri = 00 for stable variables. Intuitively, the variables
in r serve as alarm clocks for the unstable variables. When an alarm clock
goes off (expires), the corresponding variable must change. If a variable
becomes stable because of some other change, the corresponding alarm
clock is turned off, i.e., set to 00. This takes care of the inertial nature of
the delays.

Let Q denote the (infinite) set of race states that are reachable according
to the bi-bounded delay race model, and let Ra denote a binary relation
on Q defining possible successor states. Furthermore, let .:J ~ Q be the
set of initial race states of network N when it is started in stable total
state a,·b and the input changes to a at time 0. The choice of starting
state is very flexible. In fact, the only requirements are that 1) the state
of the network is b, 2) stable variables have their alarm clocks set to 00,

and 3) unstable variables have their alarm clocks set to values that are
consistent with the minimum and maximum delay values of their variables.
Now, given a race state (c, r), we determine a possible successor state as
follows: If a·c is a stable total state, the network remains in this state
indefinitely; thus a stable state has only itself as successor. Otherwise, a
possible successor state is obtained by waiting until the first alarm clock
goes off, i.e., waiting for rmin = min{ri I 1 :::; i :::; m} time units. When
this occurs, the corresponding variables are complemented. (Note that, if
several alarm clocks have the same value, all of the corresponding variables
change at the same time.) We then update the alarm clocks. Three cases

150 Chapter 8. Bi-Bounded Delay Models

are possible: First, if a variable is stable in the new network state, its
alarm clock is turned off, i.e., ri is set to 00. Second, if a variable has been
unstable for some time, but the alarm clock did not expire in this transition
(i.e., ri > rmin), then the time left on the alarm clock is simply decreased
by rmin. Finally, if neither of these two situations applies, the variable
starts a new race unit; its alarm clock is set to any value consistent with
its delay bounds. Note that this case includes both the situation when a
stable variable becoms unstable as well as the situation when an unstable
variable changes but remains unstable after the change.

As in Chapter 6, let U(a·c) denote the set of variables that are unstable
in the total state a·c, i.e., U(a·c) = {Sj I Sj(a·c) =f:. Cj}.

Formally, :1, Q, and Ra are defined inductively as follows.

Basis: :1 = Q is defined to be the set of all acceptable starting race states,
i.e., race states (b, r) such that, for each i, 1 ::; i ::; m, either Si E
U(a·b) and di ::; ri < Di , or Si is stable and ri = 00.

Induction step: Given (c, r) E Q:

1. If U(a·c) = 0, then (c, r)Ra(c, r).

2. If U(a·c) =f:. 0, then select any P <:;:; U(a·c), P =f:. 0, and any real
number rmin such that ri > rmin for every Si E U(a·c) - P and
ri = rmin for every Si E P. Let (c',r') E Q, and (c,r)Ra(c',r'),
where

and

if Si E P,
otherwise,

if Si (j. U(a·c'),
if Si E U(a·c') and ri > rmin,

otherwise,

for any choice of Pi such that di ::; Pi < Di .

Example 1

To illustrate the definition above, consider network C8 .5 of Figure 8.5.
Assume that it is started in stable total state 0·11 and the input

[1,2)

x------L[>-y' ~
[1,3) ~

FIGURE 8.5. Network C8.5.

Section 8.2. Continuous Binary Model 151

changes to 1 at time 0. Two possible race sequences are shown in
Figure 8.6. The 'numbers to the right of the arrows are the different
values of rmin.

[11, (1.359, 1.359)]

.1.359

[OQ, (00, 1.7)]

.1.7
[01, (00,00)]

{)

[11, (2.5, 1)]

.1
[1 Q, (1.5, 1.2)]

.1.2
[11, (0.3, 1. 7)]

.0.3

[01,(00,00)]

{)
FIGURE 8.6. Two possible race sequences.

Let 9 denote a sequence (sO, rO), (s1, r1), . .. of race states such that
(sO,rO) E :r and (sk,rk}Ra(sk+1,rk+1), for k ~ O. To define the state of
the network at a particular time according to such a sequence, we need
to know when the sequence changes from one state to the next. We can
accomplish this by associating a time sequence with each race sequence;
this is simply a sequence to, t1, . .. of real numbers defined inductively as
follows. Let to = 0. Assuming that th has been defined, then th+1 = th, if
U(a·sh) = 0, and th+1 = th + min1::;i::;m rf, otherwise.

Let 0 be the set of all race sequences for network N when it is started in
stable total state Q,·b and the input changes to a at time 0. For 9 E 0 with
corresponding time sequence to, t1, .. . , the state of the network at time t
according to this race sequence is written as sg(t) and is equal to

for t < 0,
for th $ t < th+1 if U(a.sh) =F 0,
for th $ t if U(a.sh) = 0.

The set of possible states of the network at time t is called Reach(t) and is
defined as

Reach(t) = {s I s = sg(t) for some 9 EO}.

In the example above, it is easy to verify that Reach(t) = {ll} for ° $
t < 1, that Reach(t) = {OO,Ol,lO,ll} for 1 $ t < 2. It is quite laborious,
however, to compute Reach(t) for t ~ 2. We will return shortly to the
question of computing Reach(t) efficiently. Before doing so, we show that

152 Chapter 8. Bi-Bounded Delay Models

the bi-bounded race model captures exactly the behavior of a network
consisting of ideal delay-free excitation functions connected in series with
bi-bounded inertial delays, as defined in Section 3.4. We do this by proving
two rather technical lemmas. The first lemma shows that the behavior of a
network according to a bi-bounded delay race sequence is consistent with
the bi-bounded inertial delay model. More precisely:

Lemma 8.1 Let g = (sO, rO), (S1, r1), ... be an arbitrary bi-bounded delay
race sequence for network N, when it is started in the stable total state a·b
and the input changes to a at time o. Furthermore, let

X(t) = { :
for t < 0,
for t 2: o.

Then the input/output behavior of every variable s j is consistent with the
bi-bounded inertial delay model, i.e., Sj(X(t),S9(t))/SJ(t) is an acceptable
input/output waveform according to the bi-bounded inertial delay model.

Proof: The proof is straightforward but somewhat tedious and is left as
an exercise for the interested reader. 0

The converse result is stated in Lemma 2. Let X(t) and s(t) denote the
input and state of network N at time t.

Lemma 8.2 Assume that Sj(X(t), s(t))/Sj(t), for 1 ~ j ~ m, is an ac
ceptable input/output waveform according to the bi-bounded inertial delay
model, when N is started in stable total state a·b and the input changes to
a at time O. Then we can construct a valid bi-bounded delay race sequence
corresponding to this input/output waveform.

Proof: Again, the proof is straightforward but tedious and is left as an
exercise for the interested reader. 0

Together, the two lemmas above establish the desired connection between
the bi-bounded inertial delay model and the behavior of a network accord
ing to the bi-bounded delay race model. Unfortunately, the bi-bounded
delay race model is not very useful because of its continuous nature.

8.3 Algorithms for Continuous Binary Analysis

In the analysis of the previous section, there may be infinitely many starting
states and, given a race state, there may be infinitely many successor states.
Since these states may differ only in their r-components, the question arises
whether it is possible to deal with equivalence classes of race states instead.
The main result of [45] and [84] is that this is indeed possible.

Before we can describe the algorithm, we need some properties of inter
vals. Let T denote a time interval. Let LT J (r T 1) denote the lower (upper)
bound on the interval T. The intersection of two intervals and the addition

Section 8.3. Algorithms for Continuous Binary Analysis 153

of two intervals are defined in the obvious way. The subtraction of an in
terval 7" is defined as addition of -7", where -7" is defined by L -7" J = - r 7" 1,
r -7"1 = - L7" J, and each end of -7" is closed or open according to whether
the opposite end of 7" is closed or open. The main property of intervals
that should be emphasized is that, although a nonempty interval repre
sents an infinite number of possible values, if the bounds on the intervals
are integers, all the operations above can be performed very efficiently.
Furthermore, the operations yield intervals with integer bounds.

It is tempting to believe that intervals could be used to bound the pos
sible values of the alarm clocks of the unstable variables, and thus that
we could remove the continuous parts of the bi-bounded delay race model.
Unfortunately, this is not as easy as it may first appear. The problem can
be illustrated by a simple example. Consider a race state in which three
variables, say S1, S2, and S3, are unstable and the corresponding alarm
clocks, rb r2, and r3, are bounded by [1,2), [7,8), and [7,8), respectively.
Assume that variable S1 changes first; this can happen any time in the
interval [1,2). The question now arises: How much time remains on the
alarm clocks r2 and r3 after variable S1 has changed? If we simply subtract
the interval [1,2) we would get the result [5,7) and [5,7), respectively. It is
true that the time remaining on alarm clocks r2 and r3 can be as small as
5 and can be almost 7. It is not possible, however, for the time remaining
on alarm clock r2 to be 5, while the time remaining on alarm clock r3 is
greater than 6. What we have lost is the relation between the times left
on alarm clocks r2 and r3. Thus, we must also keep track of bounds on
the differences between the time remaining on pairs of alarm clocks. One
of the results of [45] and [84] is that it is sufficient to keep bounds on the
individual alarm clocks and the differences between all pairs of alarm clocks
in order to carry out an efficient and accurate bi-bounded delay analysis.

Let us now return to defining a more efficient bi-bounded delay analysis.
The basic idea is to associate with each state a convex linear region describ
ing the possible values of the alarm clocks, rather than one specific instance
of these clocks. Consequently, define a bd-state to be the pair (c, ~), where
c is the current state of the network and ~ is an m x (m + 1) lower trian
gular matrix of intervals. For 1 :::; j < i :::; m the interval O'ij bounds the
difference between the times r i and r j remaining on alarm clocks i and j
when both Si and Sj are unstable variables. For 1 :::; i :::; m the interval O'iO

bounds the time remaining on alarm clock i. The feasible region for such
matrix is

S(~) = {(rl. ... ,rm) I ri - rj E O'ij for 0 :::; j < i :::; m and ro = O}.

If S(~) f:. 0 the matrix is said to be a feasible matrix; otherwise it is an
infeasible matrix.

There are two difficulties with using such a lower triangular matrix of
intervals to represent a feasible region: First, there are, in general, many
different matrices representing the same region. Hence, comparing regions

154 Chapter 8. Bi-Bounded Delay Models

can be difficult. Second, it is often difficult to determine whether a matrix
is feasible or not. One of the keystones in the analysis procedure we will
describe shortly is Algorithm 1 of Table 8.2.

TABLE 8.2. Algorithm 1.

for k = 0 to m such that k = 0 or Sk E U(a·c)
for i = 1 to m such that i =I k and Si E U(a·c)

for j = 0 to i-I such that j =I k and j = 0 or Sj E U(a·c)

{
(Tij n ((Tik + (Tkj) if j < k < i,

(Tij = (Tij n ((Tik - (Tjk) if k < j,
(Tij n ((Tkj - (Tki) if i < k.

All other (Tij remain the same.

Algorithm 1 is an adaptation of the Floyd-Warshall all-pairs shortest
path algorithm for directed graphs. The algorithm can be used to derive
a canonical matrix for every feasible region, as the following lemma illus
trates:

Lemma 8.3 Given a state c of a network and a lower triangular matrix I;

of intervals, the result of Algorithm 1, denoted O(c, I;), is a lower triangular
matrix of intervals satisfying the following two properties: First, if I; is
feasible, then O(c, I;) is the unique lower triangular matrix for the feasible
region for I;. Second, if I; is infeasible, then at least one of the intervals of
O(c, I;) is empty.

Proof: We refer the reader to [84] for the proof of this result. o
It should be pointed out that we are normally interested only in (Tij

entries for·which both Si and Sj are unstable variables or j = o. Other
entries are usually (-00,00).

Let W denote the set of bd-states that are reachable according to the
bi-bounded delay analysis method, and let 'Ra denote a binary relation
on the set W denoting the possible successor states. The network starts
in the bd-state (b, I;), where I; = {(Tij}, is a lower triangular matrix such
that (TiO = [di , D i), and (Ti,j is (di - Dj,Di - dj) when Si,Sj E U(a·b) and
(-00,00) otherwise. Intuitively, this single state captures every race state
in the set .J defined earlier. Now given a bd-state (c, I;) E W we progress
as in the GMW model by choosing some subset P of the unstable variables
as candidates to be complemented. Not every subset of unstable variables,
however, is a suitable candidate for change. We must also consider the
amount of time left on the corresponding alarm clocks. There are three
conditions that must be satisfied: First, every active alarm clock must be
positive, since we are trying to compute a successor state, i.e., a state
reached later in time. Second, every variable in P must have the same
value on its alarm clock, i.e., (Tij must be equal to [0,0] for every Si and
Sj in P. Finally, the alarm clock of every unstable variable that does not

Section 8.3. Algorithms for Continuous Binary Analysis 155

change must be strictly larger than any of the changing variables' alarm
clocks. We determine whether such a P is possible by intersecting ~ with
intervals derived according to these three conditions, and then applying
Algorithm 1 to deduce whether the matrix obtained is feasible or not. If
it is, we compute the new state reached as follows. The network state is
obtained by complementing the variables in P. Computing the new matrix
is more complex. Intuitively, the computation is to move the reference time
point, or time ro in the matrix, to the time when the variables in P change.

More formally, the procedure is defined inductively as follows:

Basis: (b,O(b,~)) E W, where ~ = {aij} is a lower triangular matrix of
intervals defined for 0 :S j < i :S m as

if j = 0,
otherwise.

Induction step: Given q = (c,~) E W,

1. if U(a·c) = 0, then qRaqj

2. ifU(a·c) of. 0, select any P ~ U(a·c), P of. 0 such that t = O(c, i;)
is feasible, where i; = {Uij} is defined below. For 0 :S j < i :S m

1
aij n (0,00)
aij n [0,0]

Uij = aij n (0,00)
aij n (-00,0)
aij

if j = 0,
if Si E P and Sj E P,
if Si E U(a·c) - P and Sj E P,
if Si E P and Sj E U(a·c) - P,
otherwise.

Let ij = (c, O(c, f;)) E Wand qRaij, where

Ci = {Si(a.c) if Si E P,
Ci otherwise,

and f; = {(Tij} is defined as follows. For any Sk E P and for
0< i :S m let

For 0 < j < i :S m let

if i E 0 and k < i,
if i E 0 and k ~ i,
otherwise.

_ {aij if i E 0 and j E 0,
aij = (-00,00) otherwise,

where 0 = {i I Si E U(a·c) n U(a·c) and Si ~ Pl·

To illustrate the method, consider circuit C8 .5 of Figure 8.5 started in
stable total state X·YIY2 = 0·11, with X changing to 1 at time O. Assume
the delay of the inverter is bounded by [1,3) and the delay of the NAND

156 Chapter 8. Bi-Bounded Delay Models

(ll,[f~:~~ (-2,1)])

------------------(OQ, [f~:~~ (-00,00)]) (lQ, [~~:;? (-1,2)])

J

(0,2)])

FIGURE 8.7. Example of bi-bounded delay analysis.

gate is bounded by [1,2). In Figure 8.7 we show W and na according to
such a bi-bounded delay analysis.

To conclude this section we need to show that the method described
above is both correct and viable. It is easy to convince oneself that the
method produces a finite number of bd-states in W. The main reason for
this is that the operations we perform on the matrices are all such that
the intervals always have integer bounds either between D = maxl:S;i:S;m Di
and -D, or equal to ±oo. The correctness of the method is shown in the
following theorem which relates the Wand na with the results predicted
by the bi-bounded delay race model.

Theorem 8.2 The outcome computed by the method above is identical to
the outcome predicted by the bi-bounded delay mce model. Formally,

{s I (b, t)n; (s, E) and (s, E)nt (s, E)} =

{s I 37 > 0 such that s E Reach(t) for all t 2:: 7},

where (b, t) is the bd-state defined by the basis case in the algorithm.

Proof: We refer the reader to [45] or [84] for the proof. 0

8.4 Continuous Ternary Model

The main problem with the analysis method described in the previous
section is its large computational requirement; the algorithm is significantly

Section 8.4. Continuous Ternary Model 157

more time-consuming than even a GMW analysis. Thus, the method is only
useful for very small networks. In this section, which is based on the work
in [122], we present a bi-bounded delay race model related to the extended
bi-bounded inertial delay model, and an efficient analysis method for this
model.

The underlying race model is called the extended bi-bounded delay (XED)
model and is defined for ternary networks. Assume that a ternary network
N = ({O,<P,l},X,S,£,F) is started in stable total state a·b, and that
the input changes to a at time O. Note that we always assume the inputs
are binary; thus, both a and a belong to {O, l}n. We also assume that the
delay t5j (t) of variable Sj, 1 :::; j :::; m, satisfies dj :::; t5j (t) < D j , for some
nonnegative integers dj and D j.

A certain amount of previous excitation history is needed in the XBD
race model. Define a race state to be a 4-tuple [c, u, v, tJ as follows. The first
component, c E {O, <P, 1} m, is the current state of the network. The second
component, u, is a vector of m real numbers and is used to remember how
long an unstable variable with a binary value has been unstable. The third
component, v, serves a similar purpose, but is used to remember how long
an unstable variable has had a binary excitation. The last component, t,
is a real number denoting the time at which this state was reached. Note
that the input is assumed to change (from a to a) at time O.

Let Q denote the set of race states reachable according to the XBD race
model, and let Ra denote a binary relation (to be defined) on the set Q
denoting the possible successor states. An XED race sequence is an infinite
sequence [sO, uo, vO, to], [sl, u1, VI, t1 J, ... of race states such that

and

[sh,uh,vh,thJRa[Sh+1,Uh+1,Vh+1,th+1], for h ~ O.

One can view an XBD race sequence as a sequence of "snapshots" of the
network. The network starts in state [b, (0, ... ,0), (0, ... ,0), OJ of Q at time
O. Given some state [c, u, v, tJ in Q, we determine a possible successor state
as follows. If a·c is a stable total state, the network remains in this state
indefinitely; thus a stable state has only itself as successor. Otherwise, we
take a new snapshot of the network at time t + t5 for some t5 > O. Since
this snapshot is to capture the next change of the network state, t5 must be
chosen carefully. Because a variable with a binary value must be unstable
for at least dj units of time before it can change to <P, and an unstable
variable must have the same binary excitation for at least dj units of time
before it can change to this excitation, t5 must be chosen so that there exists
at least one unstable variable Sj for which Uj + t5 or Vj + t5 is greater than
or equal to dj . On the other hand, since a variable cannot be unstable and
have a binary value, or be unstable and have a binary excitation, for D j

158 Chapter 8. Bi-Bounded Delay Models

units of time without changing, 6 must be chosen so that each of Uj + 6
and Vj + 6 is strictly smaller than Dj for all unstable variables Sj.

Once 6 has been selected, two sets, cct> and CB , are computed. The set
cct> contains all the variables that, for this 6, are candidates for changing
to ct>, i.e., it contains all the variables that are binary, unstable, and for
which Uj + 6 is greater than or equal to dj . The set CB contains all the
variables that, for this 6, are candidates for changing from ct> to a binary
value, i.e., all the variables that are ct>, are unstable, and for which Vj + 6
is greater than or equal to dj . Finally, some nonempty subset of cct> u C B

is chosen, the appropriate variable values are changed, and U and v are
updated accordingly.

It is important to note that, if a state in Q is unstable, it has infinitely
many possible successor race states, though the number of S values is, of
course, finite.

As before, let U(a·c) denote the set of vertices that are unstable in the
total state a·c, i.e.,

U(a·c) = {Sj I Sj(a.c) =1= Cj}.

Define the set of vertices that have a binary value in state c to be

B(c) = {Sj I Cj E {O, I}}.

Also, let the set of vertices that have a binary excitation in the total state
a·c be

Bt:(a·c) = {Sj I Sj(a·c) E {O, I}}.

Now Q and Ra are formally defined inductively as follows:

Basis: Let [b, (0, ... ,0), (0, ... ,0),0] E Q.

Induction step: Given q = [c, U, v, t] E Q,

1. if U(a·c) = 0, then qRaqj

2. if U(a·c) =1= 0, then for any 6> ° such that 6min ~ 6 < 6max , where

Omin = min{min{dj - uj,dj - Vj} I Sj E U(a·c)},

and

omax = min{min{Dj -:- Uj, Dj - Vj} I Sj E U(a·c)},

let

cct> = U(a·c) n B(c) n {Sj I Uj + 62:: dj }

and

CB = U(a·c) n {Sj I Cj = ct>} n {Sj I Vj + 62:: dj }.

Section 8.4. Continuous Ternary Model 159

Finally, for any P ~ e<I> u eB , Pi=- 0, let q' = [c' , u' , v' , t + 8] E Q
and qRaq', where

and

vj = {

Example 2

Uj +8
o

if 8j E P n e<I>,
if 8j E P neB,
otherwise,

if 8j E U(a·c) n 6(c) n U(a·c') n 6(c'),
otherwise,

vj+8 if 8j EU(a·c) n 6£(a·c) n U(a·c') n 6£(a·c'),
o otherwise.

To illustrate the definition above, consider network es.s of Figure 8.8
started in stable total state 1·100 when the input changes to O. Two
possible XBD race sequences are shown in Figure 8.9. We use the
notation 0<I>' (01, <I>o, etc.) to denote a variable that currently has the
value 0 (0, <I> , etc.) and excitation <I> (1, 0, etc.). The numbers to the
left of an arrow denote the limits for 8, and the number to the right
of an arrow corresponds to the 15 chosen.

To illustrate some steps in the computation, consider the left XBD
race sequence of Figure 8.9. We start in state [1000, (0,0,0), (0,0,0),
0], where U(0·100) = {8d. Now, for all the unstable variables 8j (in
this case variable 81 only), we compute the values of dj - Uj, dj - Vj,

D j -Uj, and D j -Vj in order to find the lower and the upper bounds
on 15. We get I5min = 1 and I5max = 3. In our example, we choose

8 = 2. Once 8 has been chosen, we must determine the set e<I> of
variables that, for this choice of 8, are candidates for changing to
<I> , and the set eB of candidates for changing from <I> to a binary
value. More specifically, the variables in e<I> are all unstable, all have

X

1

[1,3)

[1,3)

[1,3)

FIGURE 8.8. Network es.s.

160 Chapter 8. Bi-Bounded Delay Models

[10 ,0,0,(0,0,0),(0,0,0),0]

1::; 8 < 3+2

[tPo, 0<1>, 0<1>, (0,0,0), (2, 0, 0), 2]

0<8<1+0.5

[0,01,01, (0,0.5,0.5), (0,0,0),2.5]

0.5 ::; 8 < 2.5+0.5

[0, tPl> 0<1>, (0,0,1), (0,0.5,0),3]

0<8<2+1

[0,1,0, (0,0,0), (0,0,0),4]

{)

[10,0,0),(0,0,0),(0,0,0),0]

1 ::; 8 < 3+1.3

[tPo, 0<1>, 0<1>, (0,0,0), (1.3, 0, 0),1.3]

0< 8 ::; 1.7+1.5

[tPo, tP, 0<1>, (0,0,1.5), (2.8,0,0),2.8]

o < 8 < 0.2+0.1

[0, tP1, 0<1>, (0,0,1.6), (0,0,0),2.9]

0<8 < 1.4+1.2

[0,1<1>, tPo, (0, 0, 0), (0,0,0),4.1]

1 ::; 8 < 3+2.3

[0, tP, tP, (0,0,0), (0, 0, 0), 6.4]

{)
FIGURE 8.9. Two possible XBD sequences.

a binary value, and for all of them Uj +82: dj . The set C B is defined

similarly. In the present situation C tP = {Sl} and C B = 0. Once
C tP and C B have been computed, we have to choose some nonempty
subset of C tP U CB as the set P. Here there is no choice; P must
be equal to {sd Given P and 8, we now proceed as follows. The

state of variable Sj is changed to tP if Sj is in C tP n P, and to its
excitation value if Sj is in CB np. No other variables are changed. In
our example, only Sl is changed, and it is changed to tP. When this
is done, the vectors U and v are updated as follows: If a variable Sj

was unstable and had a binary excitation in the previous state and
the same situation holds in this new state, then Uj is incremented by
8. Otherwise, Uj is set to O. Similarly, a variable that was unstable
and had a binary excitation in the previous as well as the new state,
gets Vj incremented by 8 ; all other variables get Vj set to O. In our
example, variable Sl is not binary in the new state and thus U'l = o.
On the other hand, variable Sl satisfies all the conditions for getting
V1 incremented, and thus V'l = 8 = 2. Variables S2 and S3 were not
unstable in the previous race state; thus u' 2 = U' 3 = v' 2 = v' 3 = o.
Hence, a possible successor state is [tPo0tP0tP' (0,0,0), (2,0,0),2].

Next we determine a successor state to [tPo0tP0tP' (0,0,0), (2,0,0),2].
First, U(O·tPOO) = {Sl,S2,S3}. We then find that 8min = -1 and
8max = 1. Since 8 must be nonnegative, it must be in the open interval

Section 8.4. Continuous Ternary Model 161

(0,1). In our example, 6 is chosen to be 0.5. It is easy to verify that,
for this choice of 6, C(p = 0 and C B = {Sl}. Although variables S2

and S3 are unstable, they have only been unstable from time 2. Since
the maximum delay in variable Sl must be less than 3, it follows
that only variable Sl will be a candidate for changing. As above, we
get P = {sd. The reader can verify that the network reaches state
[00101 , (0, 0.5, 0.5), (0, 0, 0), 2.5].

Let g be the set of all XBD race sequences for network N, when N is
started in stable total state d·b and the input changes to a at time O. For
g E g, the state of the network according to this race sequence is written
as S9(t), and is equal to

S9(t) = { ~
s'

for t < 0,
for t i ~ t < ti+1 if U(a·s i) -:j:. 0,
for t i ~ t if U(a·s i) = 0.

The set of possible states of the network at time t is called Reach(t) and is
defined as

Reach(t) = {s I s = S9(t) for some g E g}.

In the example above, it is easy to verify that Reach(t) = {100} for 0 ~
t < 1, that Reach(l) = {IOO, (POO} , and that Reach(t) = {IOO, (POO, OOO}
for 1 < t < 2. It is very laborious, however, to compute Reach(t) for t ~ 2.
We will return shortly to the question of computing Reach(t) efficiently.
Before doing this, we establish that the XBD race model captures exactly
the behavior of a network consisting of ideal, delay-free excitation functions
connected in series with extended bi-bounded inertial delays. We do this by
proving two lemmas. The first lemma shows that the behavior of a network
according to an XBD sequence is consistent with the extended bi-bounded
inertial-delay model. More precisely:

Lemma 8.4 Let g = [SO, uO, vO, to], [Sl, u\ VI, t 1], ••• be an arbitrary XBD
race sequence for network N, when N is started in stable total state d·b
and the input changes to a at time O. Furthermore, let

X(t) = { : for t < 0,
for t ~ o.

Then the input/output behavior of every variable Sj is consistent with the
extended bi-bounded inertial-delay model, i.e., Sj(X(t), S9 (t))/S} (t) is an
acceptable input/output waveform according to the XID model.

Proof: The proof is straightforward but quite lengthy. Hence, it is not
included here and we refer the interested reader to [122]. 0

The converse result is stated in Lemma 2. Let X(t) and s(t) denote the
input and state of network N at time t.

162 Chapter 8. Bi-Bounded Delay Models

Lemma 8.5 Assume that Sj(X(t), s(t))/Sj(t), for 1 :::: i :::: m, is an ac
ceptable input/output waveform according to the XID model, when N is
started in stable total state d·b and the input changes to a at time O. Then
we can construct a valid XED sequence corresponding to this input/output
waveform.

Proof: Again, the proof is straightforward but lengthy and the interested
reader is referred to [122]. 0

In summary, the two lemmas above establish a direct link between the
extended bi-bounded inertial-delay model and the behavior of a network
according to the extended bi-bounded delay race model.

8.5 Discrete Ternary Model

The XBD race model is more of theoretical interest than of practical use,
since each state can have infinitely many successor states. We now define
an efficient algorithm, called the ternary bi-bounded delay algorithm (TBD
algorithm), for simulating a network. We will show that the results obtained
by applying this method summarize the outcome predicted by the extended
bi-bounded delay race model.

The basic idea behind the TBD algorithm is quite simple and is given in
the following two rules:

1. Change an unstable variable to <I> as soon as allowed by its minimum
delay.

2. Change a variable from <I> to a binary value as late as possible.

An informal description of a similar algorithm was given by [32] in 1971.
In the TBD algorithm, as in the XBD race model, it is necessary to

remember a certain amount of previous excitation history. For this reason,
define a tbd-state to be the triple (z, U, V). The first component, z, is the
current "summarized" state of the network. The second component, U, is a
vector of m integer values. For a stable variable Sj, Uj = 0, whereas for an
unstable variable with a binary value, Uj denotes the current "race unit"
of the variable. For example, in the starting state, every unstable binary
variable will have Uj = 1, denoting that the variable is currently in its first
unstable time slot. Similarly, V is used like U, but here the criterion is
that the variable is unstable and has a binary excitation. The summarized
state of the network is computed at times 1,2,3, ... , in a two-step process.
Given the state (zh-l, Uh - 1 , V h - 1), we first compute an intermediate state
(zh, Uh, Vh). Intuitively, this state is the summarized state of the network
at time h - f for an arbitrarily small f. To compute zh, we change only
the variables that have to change to their binary excitation. These are

Section 8.5. Discrete Ternary Model 163

the variables that have ~h-l = Dj . Owing to these changes, some other
variables may become stable, and they are removed from U and V.

Once the intermediate tbd-state is calculated, we compute the new "next"
state, i.e., the summarized state of the network at time h. First, to obtain
zh, we change all the variables that may change to <P. These are the vari
ables that have U'; = dj . All other variables are unchanged. Second, the
vectors U and V are updated. This time the update consists of increment
ing Uj and Vj by 1, if variable Sj satisfies the conditions below, and setting
them to 0 otherwise. For example, a variable Sj that is unstable and has a
binary value in zh will get Ujh = U'; + 1, whereas a variable that became
stable in zh will get U'; = o.

Formally, the TBD algorithm is defined inductively as follows:

Basis: ZO = h.

UJ = { ~

~o = { ~

if Sj E U(a·zO) n B(zO),
otherwise;

if Sj E U(a·zO) n B£(a·zO),
otherwise.

Induction step: Given (zh-l, Uh - 1 , V h - 1), we first compute the interme
diate tbd-state (zh, Uh, Vh) as follows:

V h - 1
J

o

·f V h - 1 D 1 j = j,

otherwise;

if Sj E U(a.zh) n B(zh),
otherwise;

if Sj E U(a·zh) n B£(a.zh),
otherwise.

Once this intermediate state is known, the state (zh, uk, Vh) is com
puted as follows:

if Sj E U(a.zh) n B(zh),
otherwise;

if Sj E U(a·zh) n B£(a.zh),
otherwise.

164 Chapter 8. Bi-Bounded Delay Models

Example 3

To illustrate the algorithm, consider network Cs.s of Figure 8.8 started
in stable total state 1·100, when the input changes to X = o. In
Figure 8.10 we show the results of the TBD algorithm. It is easy to
verify that Z3 is stable; hence the algorithm terminates at this point.

Zo : (1000, (1,0,0), (1,0,0))

t
Zl : (1000, (1,0,0), (1, 0, 0))

t
Zl : (<1>004>04>, (0, 1, 1), (2,0,0))

t
Z2 : (<1>004>04>, (0, 1, 1), (2,0,0))

t
Z2 : (<1>0<1><1>, (0, 0, 0), (3,0,0))

t
Z3 : (0<1><1>, (0,0,0), (0,0,0))

t
Z3 : (0<1><1>, (0,0,0), (0,0,0))

{)
FIGURE 8.10. TBD analysis of Cs.s.

Example 4

Our next example is more complicated. Consider the network CS.11

of Figure 8.11 started in stable total state X = 0, s = 0000001,

X

1

FIGURE 8.11. Network CS.11.

Section 8.5. Discrete Ternary Model 165

0: 0000001 0: 0000001

• • 3: if>000001 7: if>000001

• • 5: 1000001 13 : 1000001

• • 6: 1000if>01 14 : 1000if>01

• • 7: 10if>0if>01 21 : 10 if> 0 if> 01

• • 10: 10 if> 0 10 1 26 : 10 if> 0 10 1

• • 12 : 1 if> if> if> 10 1 28 : 1 if> if> if> 101

• • 15 : 1 if> 1 if> 1 if> if> 35 : 1 if> if> if> 1 if> if>

• • 18 : 1 if> 1 if> if> if> if> 39 : 1 if> 1 if> 1 if> if>

• • 20 : 1111 if> if> if> 42 : 1 if> 1 if> if> if> if>

• • 25 : 1111if>1O 49 : 1 if> if> if> if> if> if>

• {)
30 : 1111010

{)
FIGURE 8.12. TBD analyses with ±25% and ±30% deviation.

when the input changes to X = 1 at time O. In Figure 8.12 we have
summarized the TBD analyses of this transition when the delay in
each gate is bounded by [3,5) and [7,13), respectively. To clarify the
picture, we only show zh when zh #- zh-l. If the base time is in ns,
then, if the delay is bounded by [7,13), we are analyzing a situation
where the gate delays are 10 ns ±30%. Similarly, if the base time
corresponds to 2.5 ns, then, if the delays are bounded by [3,5), the
gate delays are 10 ns ±25%.

166 Chapter 8. Bi-Bounded Delay Models

We are now ready to characterize the results obtained by a TBD analysis.
Let zO, Zl , zl , ... be the sequence of states computed by the TBD algorithm
and let Reach(t) be the outcome according to the extended bi-bounded
delay race model. The following theorem shows that the TBD algorithm
can be used to get essentially the same information as that found by the
XBD race model.

Theorem 8.3 zr = lub Reach(r) for r = 0,1,

Proof: The proof of this result is too lengthy to include here, and we refer
the reader to [122]. 0

We are now in a position to interpret the results of the TBD analyses of
CS.ll shown in Figure 8.12. By Theorem 2, we can conclude that, according
to the extended bi-bounded delay race model, the circuit can tolerate a
±25% variation of the gate delays but not a ±30% variation.

One of the main attractions of the TBD algorithm is its computational
efficiency. A TBD analysis usually requires at most twice the computa
tional effort required by a nominal delay analysis. If we start with a binary
network and use its ternary extension as our network for the analysis, how
ever, we obtain this computational efficiency at a price. In particular, if we
compare with a (continuous) binary bounded delay analysis, we may get
"false negatives," i.e., our analysis in the ternary domain may not be an
exact summary of a binary analysis. Although the TBD analysis result is
correct with respect to an extended bi-bounded race analysis, it is more
conservative than the binary bi-bounded delay analysis. A possible multi
level approach to analyzing a transition would be to start with ternary
simulation. If the result of ternary simulation is binary, then we are done.
Otherwise, use the TBD algorithm to analyze the transition. Again, if this
yields a binary final state, we are done. Finally, if all else fails, use the
binary bi-bounded delay analysis algorithm to analyze the transition. By
using the most efficient but most pessimistic analysis techniques first, we
can reduce the number of transitions that need to be analyzed by the com
putationally very expensive methods. In Chapter 14 we return to this topic
and show how we can analyze several transitions at once by using symbolic
formulations of the algorithms discussed so far in the book.

Chapter 9

Complexity of Race Analysis
Two questions naturally arise in connection with the analysis of a transition
caused by an input change: 1) Will the network eventually reach a unique
(binary) stable state? 2) Will the network be in a unique (binary) state
at time t? We call the first question the "stable-state reachability" (SSR)
problem and the second the "limited reachability" (LR) problem. Both
questions can be answered by using the race analysis algorithms presented
in earlier chapters. Some of these algorithms are highly efficient, whereas
others appear to require time exponential in the size of the network to be
analyzed. In this chapter we explore the inherent computational complex
ity of these analysis problems. We assume the reader is familiar with the
standard terminology for NP-completeness, as described in [55]. The work
given here is based mainly on [122, 123].

How To Read This Chapter

This chapter can be omitted on first reading since no subseqeuent material
depends directly on it. For a summary of the main results, the reader is
directed to Tables 9.1 and 9.2 on pages 181 and 185, respectively.

9.1 Stable-State Reachability

Assume that N is a network started in stable total state a·b. The stable
state reachability (SSR) problem is: If the input changes to a at time 0 and
is kept at that value, does the network eventually reach a unique stable
binary state?

Before studying the computational complexity of this question, we need
to make a rather fundamental assumption. Unless otherwise stated, we
henceforth assume that the excitation function Sj, 1 ~ j ~ m, can be com
puted using at most O(mk) space and in time O(mk) for some constant
k > O. This assumption is quite reasonable. Also, if it does not hold, even
the problem of determining whether a given state is unstable is intractable.
In fact, for many types of circuits it is reasonable to assume that the ex
citation functions can be computed in constant time. Gate circuits with
bounded fan-in provide a typical example.

168 Chapter 9. Complexity of Race Analysis

In the following we study the complexity of the SSR problem for different
race models. We start with the simplest case-the unit-delay model.

Theorem 9.1 The SSR problem is PSPACE-complete for the unit-delay
race model.

Proof: For the unit-delay model, SSR is clearly in PSPACE, since we can
simulate the circuit and use a counter to keep track of the number of state
changes. If the circuit has not reached a stable state within 2m steps, it must
have entered an oscillation and will never reach a stable state. Since the
simulation requires only enough space to compute the excitation functions,
i.e., space polynomial in m, and the counter needs only space linear in m,
it follows that the unit-delay SSR (UD-SSR) problem is in PSPACE.

To prove the theorem, it is therefore sufficient to establish that a known
PSPACE-complete problem can be reduced to the UD-SSR problem. The
quantified Boolean formula (QBF) problem turns out to be appropriate.
Following [65] a QBF is defined as follows:

1. If x is a variable, then it is a QBF. The occurrence of x is free.

2. If El and E2 are QBFs, then so are ,(Ed, (Ed 1\ (E2), and (E1) V
(E2). An occurrence of x is free or bound, depending on whether the
occurrence is free or bound in El or E 2 . Redundant parentheses can
be omitted.

3. If E is a QBF, then 3x(E) and Vx(E) are QBFs. The scopes of 3x
and "Ix are all the free occurrences of x in E. Free occurrences of x in
E are bound in 3x(E) and Vx(E). All other occurrences of variables
in Vx(E) and 3x(E) are free or bound, depending on whether they
are free or bound in E.

A QBF with no free variables has a value of either true or false, denoted
by 1 and 0, respectively. The value of such a QBF is obtained by replacing
each sub expression of the form 3x(E) by EO V El and each sub expression
of the form Vx(E) by EO 1\ El, where EO (El) is E with all the occurrences
of x in the scope of the quantifier replaced by 0 (1). The QBF problem is
to determine whether a QBF with no free variables has the value true. It
was shown in [65, 131] that the QBF problem is PSPACE-complete.

Given a QBF E with no free variables, we design a circuit with one
input; this circuit, started in a stable state (to be defined) and with the
input changing from 0 to 1, reaches a new stable state if and only if E is
true. If E is false, the circuit oscillates. Thus the basic idea is to design
a sequential circuit that evaluates E. We must ensure, however, that the
size of this circuit-and thus the size of the UD-SSR problem-remains
polynomial in the size of the QBF problem. Hence, we cannot simply take
two copies of a circuit that evaluates E, use them to evaluate E for x = 0
and x = 1, and compute the OR of the results in order to compute 3x(E),

Section 9.1. Stable-State Reachability 169

since this could generate a circuit of size exponential in the size of E.
We can design a small control circuit, however, that first evaluates E for
x = 0, stores the result, and then evaluates E for x = 1 and combines the
two results. This is the basic idea, but the construction we actually present
is more complicated and far from minimal in size. We do this in order to
simplify the correctness proof.

D-._-------I

~...----Q

r ------+----1

c------.----1

FIGURE 9.1. A D flip-flop with completion and reset signals.

Before we describe how to transform E into N, we present our basic
building block-a D flip-flop (DFF) with completion signals and an asyn
chronous reset input. The circuit is shown in Figure 9.1; it is an ordinary
D flip-flop with reset input, but it also has eight extra inverters. These
inverters function as delays, making sure that the completion signal, called
Ca , for the store signal, c, does not occur before the output Q has obtained
the value of the input D. The reset signal r and the reset completion sig
nal r a are treated similarly. The signals that arrive on the store input and
reset input consist of pulses (0 -+ 1 -+ 0) 3 unit delays long. Furthermore,
there is at most one pulse propagating through the flip-flop at any given
time. The reader can easily verify that the circuit of Figure 9.1 does indeed
behave as described under these assumptions, if every gate is assumed to
have a unit delay.

Assume that E is a given QBF with no free variables, and let N denote
the circuit to be constructed. We first define a sub circuit N recursively as
follows:

Basis: If E = x, then N is the circuit shown in Figure 9.2(a).

Induction step: Assume that circuits Nl and N2 corresponding to the
QBFs El(X) and E 2 (x) have been constructed.

170 Chapter 9. Complexity of Race Analysis

C

x

C

y

C

: DFF:
y

: D Q :Out

r

.... 9

(a)

.-- --_ .. _-

:C

~ y Out I-----l

DFF

"X)--~D Q . Out

r

o

(b)

FIGURE 9.2. Construction for (a) a variable Xj (b) ,E1 (y).

ra

C Ca C Ca C Ca
Ca

Nl N2 DFF:

* y Out y Out D Q
: Out

r

0

FIGURE 9.3. Construction for E 1 (y) V E 2 (y).

1) If E = ,(Ed, then N is the circuit shown in Figure 9.2(b).

2) If E = (Ed V (E2), then N is the circuit shown in Figure 9.3.
Similarly, if E = (El) 1\ (E2)' then N is the circuit obtained by
replacing the *-marked OR gate in Figure 9.3 by an AND gate.

3) If E = 3x(El), then N is the circuit shown in Figure 9.4. Simi
larly, if E = TtX(El)' then N is the circuit obtained by replacing
the *-marked OR gate in Figure 9.4 by an AND gate.

Finally, if N is the circuit that corresponds to E, then N is the circuit
shown in Figure 9.5.

The main idea of the construction of N is to separate the "control"
path from the "data" path. Furthermore, we make sure that only one pulse
propagates through the control path of the circuit, and that no signal from
the data path can affect the control path. The "combinational" parts of
E are rather obvious, and are shown in Figures 9.2-9.3. For example, the

Section 9.1. Stable-State Reachability 171

.... ----.----_ ... _-_ -_ _-_ - ----

ra
C Ca

DFF

DQ
r

0

ra
C Ca

C Ca

NI
DFF

Y

Out
DQ

y

Out

r
x

ra 0

C Ca

DFF

D Q~---+----------~
r

C

FIGURE 9.4. Construction for 3x. El (x, y).

in - ------1 ra
C Ca CCa

N
Out

FIGURE 9.5. Complete construction for Theorem 9.1.

circuit of Figure 9.2(b) corresponds to a sub expression -,E1 (y), and works
as follows: When a pulse arrives at the "start" input (c), it is immediately
sent to the start input of the subcircuit that evaluates El(Y). When the

172 Chapter 9. Complexity of Race Analysis

completion signal arrives from this subcircuit, a pulse is delayed 2 units
of time in order to allow the inversion of the result in the data path. Fi
nally, this inverted result is latched in the D flip-flop. When this is done, a
pulse arrives at the completion output (ca) of the entire circuit. The other
combinational circuits can be verified using similar arguments.

The circuits corresponding to the expressions 3x. El (x, y) and \Ix. El (x, y)
are more complicated. We discuss only the circuit shown in Figure 9.4,
which evaluates 3x. E1(x, y). The circuit for \Ix. E1(x, y) works similarly.
The basic idea is as follows: We want the circuit to evaluate El (0, y), store
the result, evaluate E I (l, y), OR the two results together, and latch the final
result. The left-most D flip-flop serves as a "status register" keeping track
of the current value of x. The topmost D flip-flop is used to remember the
result of El (0, y), and the right-most D flip-flop is used to latch the final
result. When a pulse arrives at the start input c, the status register is reset.
This causes x to be set to O. Once the status register has been reset, the
completion signal (ra) is fed via the left-most OR gate to the start input
(c) of the sub circuit NI evaluating EI(x,y). When this result E(O,y) be
comes available (i.e., when a pulse arrives at the Ca output), it is latched
in the topmost D flip-flop. This follows because the completion output (ca)

from NI is directed to the store input of the topmost D flip-flop, when x
is O. After the value has been latched in the topmost D flip-flop, a pulse
goes back to the status register. Since the D input of the status register is
connected to 1, the output (Q) changes to 1, causing x to become 1. Now,
when the output of the latch (Q) has obtained the value 1, the completion
signal (ca) is fed via the left-most OR gate to the C input of NI . This time
x = 1, and NI evaluates E1(1, y). When the result of EI(l, y) is available, it
is combined with the stored value of EI (0, y) and latched in the right-most
D flip-flop. The completion signal is then used to signal to the remain
ing circuit that the result of 3x. EI (x, y) is available at the output. It is
straightforward to convince oneself that the circuit of Figure 9.4 behaves
as described if the unit-delay model is assumed. We leave the details to the
interested reader.

The figures above have shown how to convert a QBF E with no free
variables into a sequential circuit N. Note that, for each operator in the
QBF, we need only a constant number of gates. For a QBF of length r, we
get a circuit with at most 44r gates. We are not quite done, however. The
final part of the circuit, shown in Figure 9.5, must be put "around" N in
order to correctly introduce a pulse into N and also to interpret the final
result. The idea is to use a NOR gate feeding back to itself as an oscillator.
The only time a stable state can be reached in the complete circuit when
the input changes from 0 to 1, occurs when the final latch gets the value 1.
This can happen if and only if QBF E is true.

Our final task is to assign a starting state to this circuit. This is simply
the state in which all the flip-flops are storing the value 0, and the input
in is O. The reader can easily verify that this total state is stable.

Section 9.1. Stable-State Reachability 173

In summary, the construction described above takes an arbitrary QBF
E of size r, with no free variables, and yields a gate circuit with at most
44r+19 gates. If this circuit is started in the stable total state defined above,
and the input changes from 0 to 1, then the circuit eventually reaches a
stable state if and only if E is true. Hence, if we can solve the UD-SSR
problem in polynomial time, then we can solve all problems in PSPACE in
polynomial time. This, together with the fact that the UD-SSR problem is
in PSPACE, implies that it is PSPACE-complete. 0

Since the unit-delay version of SSR is PSPACE-complete and unit-delay
analysis is a special case of nominal delay analysis, it follows trivially that
the SSR problem for the nominal delay model is also PSPACE-complete.

In the models above we have knowledge of the exact sizes of the delays.
In contrast to this, the GMW and XMW race models below use delays that
are (almost) completely unknown. The complexity of the SSR problem for
the GMW model depends on where we assume delays.

Theorem 9.2 If the network has input-, gate-, and wire-delays, the SSR
problem is solvable in polynomial time for the GMW race model.

Proof: Since the network is complete, we can use the ternary simulation
algorithm described in Chapter 7. To determine the answer to this SSR
problem, it is sufficient to consider the result sB of ternary simulation. If
sB is binary, then it follows by Theorem 7.2 that the circuit must eventually
reach this state according to a GMW analysis. On the other hand, if sB is
not binary, then, again by Theorem 7.2, we can conclude that the circuit
does not reach a unique binary state; thus it can oscillate and/or have
a critical race. The polynomial time result follows from the fact that the
ternary simulation algorithm produces, in the worst case, a sequence of
2m states, each requiring at most m excitation function evaluations. This,
together with the assumption that the excitation functions can be evaluated
in time polynomial in the size of the circuit, implies the required result. 0

In view of Theorems 7.6 and 7.7, we can also conclude, using similar
arguments, that the following theorem holds.

Theorem 9.3 For any network with input delays, the SSR problem is solv
able in polynomial time for the XMW race model.

Surprisingly, if we gain more information about the delays-in particular,
that there are no wire delays-the SSR problem for the GMW race model
becomes intractable (assuming P "# NP) as the following theorem shows.

Theorem 9.4 In the gate-delay model and in the input- and gate-delay
model the SSR problem for the GMW race model is NP-hard.

Proof: We prove the claim for the gate-delay model. The input- and gate
delay model result can be shown using virtually identical arguments and
is left as an exercise for the interested reader. To prove NP-hardness, we

174 Chapter 9. Complexity of Race Analysis

show how to transform the Boolean tautology problem to the GMW-SSR
problem. The Boolean nontautology problem is defined as follows: Given a
Boolean expression E over {Xl, ... ,xn } using the connectives ..." V, and 1\,
is E not a tautology, i.e., is there a truth assignment for the variables that
makes E false. Cook [39] showed in 1971 that the nontautology problem
is NP-complete. This result implies that the Boolean tautology problem,
defined dually, is NP-hard. Hence, to prove that the GMW-SSR problem
is NP-hard, it is sufficient to transform the Boolean tautology problem to
the GMW-SSR problem.

Given any Boolean expression E over {XI. ... ,xn } using the connectives
..." V, and 1\, we show how to construct a circuit N with one input. When
this circuit is started in a stable state (to be defined) and the input changes
from 0 to 1, the outcome according to a GMW analysis consists of a single
state if and only if E is a tautology. The basic idea is quite similar to
the construction in [116]. We use a "race-generating" circuit, shown in
Figure 9.6, for every input variable Xi. In Figure 9.7 we show a GMW

)O-----ca

in ---4t---l
YI

Y4

FIGURE 9.6. Critical-race generating circuit.

lQOO

FIGURE 9.7. GMW analysis of the critical-race generating circuit.

Section 9.1. Stable-State Reachability 175

analysis of the race-generating circuit when it is started in stable state
Y = Yl ... Y4 = 1000, kill = 0 and in changes from 0 to 1. There are two
important properties of the circuit: first, that there are two stable states
reachable (0010 and 0011), and, second, that when the NOR gate changes
from 0 to 1, all other gates in the circuit are stable. Thus, output Ca acts
as a completion signal for this circuit.

Assume that E is a given Boolean expression. We first construct a sub
circuit N defined recursively as follows:

Basis: If E = Xi then N is the (trivial) circuit shown in Figure 9.8.

Induction step: Assume that circuits Nl and N2 , corresponding to Boolean
expressions El(X) and E2(X), respectively, have been constructed.

1) If E = -,El(x) then N is the circuit shown in Figure 9.9.

2) If E = El(X)I\E2(X) then N is the circuit shown in Figure 9.10.

3) If E = El(X)V E2(X) then N is the circuit shown in Figure 9.11.

The circuit N has n inputs, labeled Xl, ... , X n , a "compute" input c, an
output Out, and a "compute-acknowledge" output Ca. We will design N in
such a way that the inputs Xl, ... , Xn are stable by the time C changes. N
is started in the stable state implied by C = 0 and C changes to 1 at some

C -------..;...-- Ca

Xl~ . .
Xi-:-:~---~--Out

Xn~

FIGURE 9.8. Circuit for E = Xi.

C
C Cal-+--'-l

X
Ca

X Out
xr~---------r------~~Out

FIGURE 9.9. Circuit for ,El(X),

176 Chapter 9. Complexity of Race Analysis

.. __ _-_

C
--....... -jC

x
· . · . . x OutH---.-t-I · .

C Ca

N2

• x Out 1--*------1--1

FIGURE 9.lD. Circuit for E1{x) 1\ E2(X).

· : x Out 1-+--..... -+-1

C Ca

~ !O~
x Outl--~---I

FIGURE 9.11. Circuit for El(X) V E2(x).

point in time. We claim that N satisfies the following two properties: The
output Out of N has the value E(x) when the Ca output changes from 0
to 1, and neither Out nor Ca changes again if the inputs are held fixed. We
prove this claim by induction.

Section 9.1. Stable-State Reachability 177

Basis: It is trivial to verify that the circuit of Figure 9.8 satisfies both
properties.

Induction step: Assume that the claim holds for the circuits Nl and N2
corresponding to the Boolean expressions El (x) and E2 (x), respec
tively.

1) If E = -.E1(x), we need to verify the claim for the circuit shown
in Figure 9.9. Note that, if the Ca output of Nl is 0, then the
outputs of the gates shown in Figure 9.9 are uniquely deter
mined. By the induction hypothesis, it is sufficient to perform
a GMW analysis for the gates shown in Figure 9.9 for different
values of Out from Nl when the Ca signal of Nl changes from 0
to 1. There are two cases to consider. First, suppose that Out
of Nl is 1. This implies that the NOR gate has the value 0 and
remains stable no matter which other gates change. Hence, the
output Out of N is 0, i.e., has the same value as -.E1(x). The
output Ca of N can change from 0 to 1 only when the Ca signal
from Nl has propagated through both inverters, the topmost
AND gate, the OR gate, and the last AND gate. It follows that
Ca changes only once, and the claim holds. Second, consider the
case when Out from Nl is O. In this case the topmost AND gate
is stable with the value o. The output Ca of N can change from
o to 1 only when the Ca signal from Nl has propagated through
both inverters, the NOR gate, the OR gate, and the final AND

gate. It follows that Out of N has the value 1 (i.e., the value of
-.E(x)) before Ca of N changes, and that Ca changes only once.
Hence the claim follows.

2) If E = El (x) 1\ E2 (x), we need to verify the claim for the circuit
shown in Figure 9.10. In order for Ca of N to change from 0 to
1, the Ca signals from both Nl and N2 must have changed to
1, and this change must have propagated through the topmost
AND gate and both inverters. If at least one of the Out outputs
of Nl and N2 is 0, then the three-input AND gate must be stable
with the value 0 = El(X)I\E2(X). If both Out outputs are 1, then
for Ca of N to become 1 requires that the output of the three
input AND gate changes to 1 first. With these observations, it
is straightforward to verify the claim.

3) If E = El(X) V E2(x), we need to verify the claim for the circuit
of Figure 9.11. This is similar to case 2), and we leave the details
to the interested reader.

In summary, N is a circuit that evaluates E(x) when the "compute" signal
C changes to high. When the correct value is available on the Out output,
the Ca output changes to high. Note that N works correctly no matter what
the gate delays are (as long as they are finite).

178 Chapter 9. Complexity of Race Analysis

Finally, in Figure 9.12, we show how to use n race-generating circuits
and N to construct N. The basic idea is as follows. The circuit is started
in the stable state in which in = 0 and all OR gates with self-loops have
the value o. There is one race-generating circuit for each input variable
to E. When in changes from 0 to 1, each of these race-generating circuits
settles down with either the value 0 or 1 on its output Xi. Since the Ca

outputs of all the race-generating circuits are connected via a chain of AND

gates, the c input to N does not change to 1 until all the race-generating
circuits have reached a stable state. There are two cases to consider: If E(x)
is a tautology, then-irrespective of the state of each input variable-the
output Out of N is 1 when its Ca output changes to high. This implies that
the last AND gate eventually changes to 1 causing the right-most OR gate
also to change to 1. Once this happens, the OR gate remains stable. After
the output of the OR gate changes to high, the oscillation in the NAND gate
eventually stops. Furthermore, this sets all the input variables to 1 (since
the kill signal causes the OR gates with self-loops in the race-generating
circuits to change to 1). This uniquely determines the values of all the gates
in N and of the right-most AND gate. Hence, if E(x) is a tautology, the
circuit N eventually reaches a unique stable state.

Xl

X2

X3 .
Xn Out

N Ca

}----+-lC

in

FIGURE 9.12. Complete circuit for Theorem 9.4.

Section 9.1. Stable-State Reachability 179

On the other hand, assume E(x) is not a tautology. Then, for some
Boolean vector a E {O, l}n, E(a) is false. Since each race-generating cir
cuit can reach the state 0 or 1 independently, there must exist some delay
assignment such that Xl = ab X2 = a2, ... , Xn = an. For this delay as
signment, the result on Out from N is 0 when its Ca output changes from
o to 1. This implies that the right-most AND gate, and therefore also the
right-most OR gate, will never change. Thus the circuit never reaches a sta
ble state, since the NAND gate continues to oscillate. In summary, if E(x)
is not a tautology, then the outcome of the GMW analysis of N contains
more than one state.

Because the circuit N contains O(l(E)) gates, where l(E) denotes the
length of the Boolean expression, E is a tautology if and only if the out
come of the GMW analysis of N contains a single state. Since the Boolean
tautology problem is NP-hard, so is the GMW-SSR problem. 0

Next we consider the inherent complexity of the SSR question for the
bi-bounded race models of Chapter 8.

Theorem 9.5 The SSR problem is NP-hard for the bi-bounded binary de
lay race model.

Proof: The proof parallels the proof of Theorem 9.4 with the addition
that each gate used in the construction is assumed to have delays bounded
by [1,2). For these delay bounds, it is easy to see that the race-generating
circuit of Figure 9.6 still satisfies the two crucial properties, i.e., that output
Y4 can end up being either 0 or 1, and that output Y3 changes from 0 to 1
after all the other gates in the circuit have reached a stable state. Also, it
is easy to verify that the construction used in the remainder of the proof
ensures that the circuit reaches a unique stable binary state if and only if
the expression E is a tautology. 0

The complexity of the SSR problem for the extended bi-bounded delay
race model is less clear. For the special case in which the delay bounds can
grow with the size of the circuit, we have the following result:

Theorem 9.6 If the lower delay bounds of the gates are of size O(3m),

where m is the size of the circuit, the SSR problem for the extended bi
bounded delay model is PSPACE-hard.

Proof: We show how to transform the unit-delay SSR problem into the
general extended bi-bounded delay SSR problem. In view of Theorem 9.1,
the result then follows immediately. For convenience, we refer to the two
SSR problems as the UD-SSR and XBD-SSR problems. Let N be the orig
inal network, containing m state variables, for which we try to answer
the unit-delay SSR question. Transform N to N by adding a wire delay
in every edge of N. This can increase the circuit size by at most O(m2)

state variables. Let the delay t5j (t) in every variable be bounded as follows:
(D -1) ::; t5j (t) < D, for D = 2 x 3m + 2. We now argue that the answer to

180 Chapter 9. Complexity of Race Analysis

the XBD-SSR problem for N is yes if and only if the answer to the UD-SSR
problem for N is yes. Note that all the delays have the same bounds in N
thus they could be exactly the same-and there is a delay in every wire.
It follows that, if there is an oscillation in the UD analysis of N, then the
same oscillation must exist in an XBD analysis of N. Hence, if the answer
to the UD-SSR question for N is no, then so is the answer to the XBD-SSR
question for N. If the answer to the UD-SSR question for N is yes, then
the sequence of states computed by the UD analysis of N must be of length
less than or equal to 3m (and the last state must be stable). This implies
that the unit-delay analysis of N also reaches the same stable state, but
that the length of the sequence is less than or equal to 2 x 3m ---every odd
state corresponding to an input or gate variable change and every even
state corresponding to a wire variable change. On the other hand, it is easy
to convince oneself that the XBD analysis of N yields the same result as
the UD analysis of N, as long as we do not carry out the analysis for too
many steps. In fact, the two correspond exactly for r steps, if the time to
complete r + 1 of the fastest possible transitions is strictly greater than
the time to complete r of the slowest possible transitions. In other words,
the UD and XBD analyses of N correspond exactly for r steps as long as
(r + 1)(D - 1) > rD, i.e., as long as r < D - 1. Since D = 2 x 3m + 2,
we can conclude that the XBD analysis of N corresponds exactly to the
UD analysis of N, if the length of the UD sequence is at most 2 x 3m .

Altogether, we have shown that, if the answer to the UD-SSR question for
N is yes, then so is the answer to the XBD-SSR question for N. 0

The assumption that the maximum delay can grow exponentially fast
with the size of the network was crucial in the proof of Theorem 9.6. This is
a very unrealistic assumption. A more interesting question is the complexity
of the XBD-SSR problem when the maximum delay is constant or can grow
only polynomially in the size of the circuit. The complexity of this restricted
XBD-SSR problem is still open.

In Table 9.1 we summarize the results of this section. The following obser
vations can be made: When the delay in each component is known exactly
or almost exactly, the SSR problem is intractable (assuming PSPACE#
PTIME, of course). On the other hand, when the delays can be arbitrary
and changes can go through <I> (i.e., when the XMW model is used), the
SSR problem can be solved very efficiently. It is interesting to note that, for
the GMW model, the difficulty of the SSR problem depends on whether
both wires and gates or only gates have delays. In the former case the
GMW-SSR problem is solvable in polynomial time, whereas in the latter
case it is NP-hard. For the binary bi-bounded delay models, the SSR prob
lem is intractable. In general, the SSR problem is intractable for all binary
race models, except the GMW model on complete networks.

The results of this section are rather negative, showing that the SSR
problem is intractable for many realistic race and delay models. In the next

Section 9.2. Limited Reachability 181

TABLE 9.1. Complexity of the stable-state reach ability problem.

Race model Complexity
UD PSPACE-complete
BD NP-hard
XBD PSPACE-hard
restricted XBD unknown
XMW polynomial time
GMW1 polynomial time
GMW2 NP-hard
1 assuming both gate and wire delays.
2 assuming gate delays only.

section we study the more practical version of the SSR problem, where we
impose a condition on the length of time required for the circuit to reach
a stable state.

9.2 Limited Reachability

The limited reachability (LR) problem is to determine whether a network
with m state variables reaches a unique binary stable state within time r(m)
for some function r. If r is exponential in m, the LR problem degenerates
into essentially the SSR problem. Thus we henceforth assume that r(m) is
O(mk) for some constant k> O.

Theorem 9.1 The limited reachability problem is solvable in polynomial
time for the unit-delay model and the extended bi-bounded delay model.

Proof: For the unit-delay model, simulate the circuit for r steps. Each step
requires at most m excitation-function evaluations, each using time at most
polynomial in m. Since r is assumed to be bounded by some polynomial in
m, the first claim follows immediately. For the extended bi-bounded delay
model, carry out r steps of the TBD algorithm. By Theorem 8.3, the result
of the TBD algorithm is equal to the lub of all the states the network can
be in at time r. If this result is a binary stable state, the answer to the LR
problem is yes, otherwise it is no. Each step of the TBD algorithm requires
at most 2m excitation function evaluations plus some bookkeeping. Since
r is assumed to be bounded by some polynomial in m, the claim follows. D

Our next two results are perhaps more of theoretical than practical inter
est, but they illustrate how different assumptions made about the network
affect the complexity of the limited reachability problem. First we consider
a constant fan-in network and a constant r.

182 Chapter 9. Complexity of Race Analysis

Theorem 9.8 If the maximum in degree of a state vertex is some constant
c, and r(m) = ro for some constant ro, then the limited reachability problem
is solvable in time polynomial in the size of the circuit fOT the binary bi
bounded delay model.

Proof: Assume that d is the minimum delay of any vertex in the network.
The crucial observation is that an input change can propagate through at
most '!:f vertices when each vertex has a delay of at least d units and we
want to know the value of a vertex after TO time units. Hence, to determine
whether a vertex i will have a unique binary value and be stable at time TO,
it is sufficient to consider the values on the vertices that are within distance
'!:f from vertex i. Since we assumed a constant maximum indegree of the
state vertices this implies that there are at most

c!f+1 -1

c-l

vertices that can affect the value and excitation of vertex i at time TO' In
other words, to determine vertex i's value and excitation at time TO, it is
sufficient to perform an extended bounded delay analysis on a subnetwork
containing a constant (though normally very large) number of vertices.
Thus, the computational effort required to determine the value and excita
tion of vertex i at time TO does not depend on the size m of the complete
network. Using this procedure for each vertex in N immediately gives the
answer to the LR problem: If each vertex reaches a unique stable state then
the answer to the LR problem is yes, otherwise it is no. We leave the details
of the proof to the interested reader. 0

In the following theorems we consider the complexity of the LR problem
for the binary bi-bounded delay model with more liberal conditions on the
maximum indegree of state vertices or on the number of time units we are
willing to wait.

Theorem 9.9 If the maximum in degree of a state vertex is O(m) and
r(m) is 0(1), the limited reachability problem is NP-hard for the binary
bi-bounded delay model.

Proof: We transform the 3-satisfiability problem into the LR problem.
Given a Boolean formula E in 3-conjunctive normal form (i.e., a formula
that is a product of clauses, each clause containing three literals), we show
how to construct a network N with one input. If N is started in a stable
total state (to be defined) and the input changes from 0 to 1, then a binary
bi-bounded delay analysis of this transition, carried out for at least 64 time
units, indicates that N reaches a single stable state if and only if E is not
satisfiable. In other words, the answer to the LR problem for N is yes if
and only if E is not satisfiable. Since the size of N is polynomial in the size
of E, and the 3-satisfiability problem is NP-complete [39], it follows that
the LR problem is NP-hard.

Section 9.2. Limited Reachability 183

Out

FIGURE 9.13. Construction of N for Theorem 9.9.

The construction of N is very similar to the construction in the proof
of Theorem 9.4. We use the race-generating circuit of Figure 9.6. However,
we now assume that the delay in each gate is bounded by [3,4). The reader
can easily verify that, if in changes from 0 to 1 at time 0, then, according
to the bi-bounded delay model, the race-generating circuit can only reach
stable states 0010 or 0011; in either case, the value of Xi is stable before
the Ca signal changes from 0 to 1. Also, it is easy to verify that Ca and Xi

are guaranteed to be stable at time 12 and 8, respectively.
Let E be a given Boolean expression in 3-conjunctive normal form. We

first construct a sub circuit N that evaluates the complement of E. In
Figure 9.13 we outline how such a circuit can be constructed given that
all the gates have delay bounds [3,4). First the inverters compute ti, then
the OR gates compute the values of the clauses, the multi-input AND gate
computes the product of all the clauses, and the topmost inverter comple
ments the result. The row of inverters at the bottom is used to delay the
"compute" signal C so that the Ca signal cannot change from 0 to 1 until
the value of -,E(x) is available on Out. If the various XiS are stable by the
time C changes from 0 to 1, it is easy to verify that Ca does not change from
o to 1 before Out has taken on the value of -,E(x).

Finally, in Figure 9.14 we show how to use n race-generating circuits and
N to construct N. Again, all the gates are assumed to have delay bounds
[3,4). The basic idea is as follows. The circuit is started in the stable state
in which in = 0 and all the OR gates with self-loops have the value O. There
is one race-generating circuit for each input variable to E. When in changes
from 0 to 1, each of these circuits settles down with either the value 0 or
1 on its output. Since the Ca outputs of all these circuits are connected to

184 Chapter 9. Complexity of Race Analysis

r---+-----------~XI
'-----r--~

X2

X3 .
Xn Out

N Ca

c

in

FIGURE 9.14. Complete circuit for Theorem 9.9.

an AND gate, it follows that the c input to N does not change to 1 until
all the race-generating circuits have reached a stable state. There are two
cases to consider: If E(x) is not satisfiable, then, irrespective of the state
of each input variable, the output Out of N is 1 when Ca rises in N. This
implies that the last AND gate changes to 1, causing the right-most OR

gate to change to 1 also. Once the OR gate changes to 1, it remains stable.
When the output of this OR gate rises, the oscillation in the NAND gate
stops. Furthermore, all the input variables will be set to 1 (since the kill
signal causes the OR gates with self-loops in the race-generating circuits to
change to 1). This uniquely determines the values of all the gates in Nand
of the right-most AND gate. Hence, if E(x) is not satisfiable, the circuit N
terminates in a unique stable state. In fact, it is easy to verify that N takes
at most 64 time units to reach this stable state.

In case E(x) is satisfiable there must exist some Boolean vector a E

{O, l}n, such that E(a) is true. Since each race-generating circuit can reach
the state 0 or 1 independently, there must exist some delay assignment such
that Xl = aI, x2 = a2, ... , Xn = an. For this delay assignment, the result
on Out from N is 0 when Ca changes from 0 to 1 on N. This implies that the
right-most AND gate never changes; consequently, neither does the right
most OR gate. Since the NAND gate can continue to oscillate, the circuit
never reaches a stable state. In summary, if E(x) is not satisfiable, the

Section 9.2. Limited Reachability 185

outcome of the binary bi-bounded race analysis carried out for at least 64
time steps contains more than one state.

We have shown that E is not satisfiable if and only if the outcome of the
binary bi-bounded delay analysis of N, carried out for at least 64 time units,
contains a single state, where the circuit N contains O(l(E)) gates, l(E)
being the size of the Boolean expression. Since the 3-satisfiability problem
is NP-complete, it follows that the LR problem for the binary bi-bounded
delay model is NP-hard. 0

Although the unbounded indegree assumption above is not very realistic,
it allowed us to compute the AND of O(m) signals in one gate delay. A more
realistic assumption is that the indegree of every state vertex is bounded
by some relatively small constant. It is then quite reasonable to allow a
circuit O{logm) time units to settle down. Consider, for example, a one
output combinational network having m vertices. Such a network may take
o (log m) time units to reach stability. If we assume bounded indegree and
allow a (relatively slowly) growing r(m) we get the following result:

Theorem 9.10 If the maximum in degree of a state vertex is c for some
constant c, and if r is O(log m), then the limited reachability problem is
NP-hard for the binary bi-bounded delay model.

Proof: The proof is similar to the proof of Theorem 9.9, except that the
big AND gates are replaced by trees of c-input AND gates. Since the heights
of these trees are bounded by O{logm), it is easy to verify that, if E is
not satisfiable, circuit N reaches a unique stable state within O(log m)
time units. On the other hand, if E is satisfiable, then N can reach an
oscillation. 0

TABLE 9.2. Complexity of the limited reachability problem.

Race model Complexity
UD polynomial time
BDI polynomial time
BD2 NP-hard
BD3 NP-hard
XBD polynomial time
1 assuming bounded indegree and r(m) = ro.
2 assuming unbounded indegree and that r(m) is 0(1).
3 assuming bounded indegree and that r(m) is O{logm).

In Table 9.2 we summarize the results of this section. The LR problem
is solvable in time polynomial in the size of the circuit for the unit-delay
model and the extended bi-bounded race model. For binary race models,
even the LR problem is almost always intractable.

Chapter 10

Regular Languages and
Finite Automata
This chapter provides an introduction to the theory of regular languages
and finite automata. These concepts will be used in the following chapters
for describing behaviors of asynchronous circuits and for specifying abstract
behaviors. The theory of regular languages and finite automata is now
well established as one of the important basic tools of computer science.
We present this theory in a somewhat different way than is done in most
textbooks, because we feel that our approach is more general and permits us
to establish the relationship between regular languages and finite automata
in a very natural way. For a general introduction to regular languages and
finite automata, see one of the many texts on this subject, for example
[65,77,100,120]; for material closer to our treatment see [16, 17, 20].

10.1 Regular Languages

10.1.1 Semigroups

A semigroup is an algebraic system S = (X, 0), where X is a set and ° is a
binary operation on X that satisfies the associative law

x ° (y ° z) = (x ° y) ° z,

for all x, y, z E X. The binary operation is often called multiplication,
and the symbol ° is usually omitted. If Y is a subset of X, then (Y,o) is a
subsemigroup of S if Y is closed under 0, i.e., if xoy is in y, for all x, y E y.

A monoid is an algebraic system M = (X,0,1M), where (.1',0) is a
semigroup and 1M is an element of X, called unit, that satisfies the unit
law

x ° 1M = 1M ° X = x,

for all x EX. It is easily verified that a semigroup can have only one
element satisfying the unit law, i.e., the unit element is unique. If Y is a
subset of X, then (y, 0, 1 M), is a submonoid of M if 1 M E Y and Y is closed
under 0.

188 Chapter 10. Regular Languages and Finite Automata

As an example, consider any set X. Then the systems (P(X), U, 0) and
(P(X), n, X) are both monoids. Also, if N is the set of nonnegative integers,
then (N, +,0) and (N, x, 1) are monoids, where + and x denote ordinary
addition and multiplication.

10.1.2 Languages

Let 1; be a nonempty set. We normally assume that the set 1; is a fixed,
finite set; we refer to it as an alphabet and to the elements of 1; as letters.
Any finite sequence of letters is called a word. For example, if I; = {a, b},
then a and babb are words. Note that we make no distinction between a
letter and the word consisting of that letter; the meaning is clear from the
context. The number of letters in a word x is called its length and is denoted
by Ix!- Thus lal = 1 and Ibabbl = 4. A word of length n may be viewed as
an ordered n-tuple of letters. It is also convenient to introduce the O-tuple
of letters, called the empty word and denoted by E. Note that lEI = O.

Given two words x = al ... an and y = bl ... bm , we define the product
or concatenation of x and y to be the word xy = al ... anbl ... bm . It is
clear that concatenation is associative, and that the empty word E acts
as a unit since EX = XE = x, for any word x. Let 1;* be the set of all
the words, including the empty word E, over alphabet 1;. It follows that
(I;*, concatenation, E) is a monoid. This monoid of all the words over I; is
called the free monoid generated by 1;.

If w is a word, we denote the concatenation of n copies of w by wn . If
n = 0, we have WO = E for all w. Thus, for example, the infinite set of words
X = {b, ab, aab, . .. } is conveniently denoted by {anb I n 2: O}, i.e., it is the
set of all the words of the form "zero or more a's followed by b."

A language over an alphabet 1; is any subset of 1;*, i.e., any set of words.
Given a family of languages over I;, we can form new languages by applying
certain operations. To begin with, we have the usual set operations such as
union, intersection, and complement with respect to I;*. Other operations
arise naturally because languages are subsets of a special universal set 1;*,

which is a monoid. Thus we can extend the operation of concatenation from
I;* to P(I;*), the set of all languages over 1;, as follows: For X,Y ~ 1;*,

Xy = {w I w = xy,x E X,y E Y}.

It is easily verified that concatenation of languages is associative and
that the language {E} satisfies

{E}X = X{E} = X,

for all X ~ 1;*. Thus the system (P(1;*), concatenation, {E}) is again a
monoid.

To illustrate concatenation of languages, let I; = {a, b}, X = {bab, baba}
and Y = {E, a, bb}; then XY = {bab, baba, babaa, babbb, bababb}. Note that
a word in a product may be generated in more than one way; for example,

Section 10.1. Regular Languages 189

baba = (baba)(c) = (bab)(a). Some basic properties of concatenation of
languages are given below; the concatenation operator has precedence over
union and intersection.

C1 X(YZ) = (XY)Z,
C2 X{c} = X,
C3 X0 = 0,
C4 X(yuZ)=xyuxz,
C5 x(ynz) ~ xynxz,

C2' {c}X = X,
C3' 0X = 0,
C4' (yuZ)x=yxuzx,
C5' (ynz)x~yxnzx.

The following example shows that C5 cannot be strengthened to an
equality. Let X = {c, a}, y = {aa}, and Z = {a}. Then X(YnZ) = 0, but
xy n xz = {aa}. A similar example shows that C5' cannot be strength
ened.

We next define two closely related unary operations on languages. For
X~ ~*, the language

is the subsemigroup of ~* generated by X. Thus X+ is the set of all the
words of the form w = Xl ... X n , n ~ 1, Xi E X, i = 1, ... , n. Similarly, the
language

X* = U Xn
n~O

is the submonoid of ~* generated by X.
We refer to the + and * operations as plus and star, respectively. Some

properties of these operations are listed below.

P1 X+ = XX*,
P2 (X+)+ = X+,
P3 0+ = 0,
P4 {c}+ = {c},
P5 X+X=XX+,
P6 X ~ Y implies X+ ~ y+,

10.1.3 Regular Languages

S1 X*=X+u{c},
S2 (X*)*=X*,
S3 0* = {c},
S4 {c}* = {c},
S5 X*X = XX*,
S6 X ~ Y implies X* ~ Y*.

We now restrict our attention to a particular family of languages, namely
to the family R£g of "regular" languages; this turns out to be precisely
the family of languages recognizable by finite automata.

First, given an alphabet ~, we define a letter language to be any language
C consisting of a single word oflength one, i.e., C = {a}, where a E ~. The
family R£g~ of regular languages over ~ is the smallest family of languages

190 Chapter 10. Regular Languages and Finite Automata

containing the letter languages, and closed under union, complementation,
concatenation, and star. Thus we have

Definition 10.1 The family R£gro of regular languages over ~ is defined
inductively as follows:

Basis: {a} E R£9ro for each a E ~.

Induction step: If X and Y are in R£gro, then so are Xu y, X, XY,
and X*.

Every language in R£gE can be constructed by a finite number of applica
tions of the two rules above.

In view of the fact that X n Y = XU:y, the family R£gro is closed under
intersection. Similarly, R£9ro is closed under the difference operation and
the symmetric difference operation.

Suppose the alphabet is ~ = {a, b}; then the following are examples of
regular languages over ~:

• Rl = ({a} U {b})* = {a} U {a} = ~*-the set of all words over the
alphabet ~.

• R2 = ~* = 0-the empty language.

• R3 = (~*)* = 0* = {c}-the language consisting of the empty word.

• R4 = {a}{b}{a}({a} U {b})*-the set of all words that begin with
aba.

• R5 = ({a }U{b})*{ a}{ a}({a }U{b})*-the set ofaB words that contain
two consecutive a's.

• R6 = {a}~* n ~*{b} n ~*{b}{b}~*-the set of all words that begin
with a, end with b, and do not contain two consecutive b's.

• R7 = ({a} U {b}{a}*{b})*-the set of all words that have an even
number of b's.

10.1.4 Quotients of Languages

We now introduce the notion of "left quotient," or simply "quotient," of a
language by a word. This notion will playa key role in the characterization
of regular languages.

Let X ~ ~* be a language and let W E ~* be a word. The (left) quotient
of X by W is denoted by w-1 X, and is defined by

w-1X={xlwXEX}.

Section 10.1. Regular Languages 191

The quotient w-1X may be viewed as the set of all words that can "follow
w in X:" To construct w-1X we can first take the set y of all the words
of X that begin with w. (Note that w itself also begins with w.) If w
is then removed from each word wx in y leaving the word x, the set of
words so obtained is precisely w- I X. In a sense, this is a division of X
by w on the left, hence the name "left quotient." As an example, consider
X = {ba,aba,abb}. Then a-lX = {ba,bb} and (ba)-IX = {c}.

We often need to determine whether a given regular language contains
the empty word. This can be done with the aid of the 8 operator defined
by

if c E X,
otherwise.

The use of the left quotient and the 8 operator permits us to determine
whether an arbitrary word w is in X, because

wE X if and only if 8(w- IX) = {c}.

Some basic properties of left quotients with respect to letters are given
below. For all a, b E ~,a -=J b and X, Y ~ ~*, we have

a- l0 = a-l{c} = a-I{b} = 0,

a-l{a} = {c},

a-l(X U Y) = (a- I X) U (a-ly),

a-l(X n y) = (a-lX) n (a-Iy),

a-lX = a-lX,

a-I(X - y) = (a-IX) _ (a-Iy),

a-I(X~Y) = (a-lX)~(a-Iy),

a-l(XY) = (a-lX)y U 8(X)(a- l y),

a-IX* = (a-lX)X*.

The verification of these properties is straightforward. The following ob
servations permit us to calculate the quotients of a language with respect
to arbitrary words:

c-IX = X,

and for all w E ~* and a E ~:

(wa)-IX = a-l(w-IX).

We will show that a language is regular if and only if it has a finite
number of distinct quotients. Before we do this, however, we will simplify
our notation for regular languages by introducing regular expressions.

192 Chapter 10. Regular Languages and Finite Automata

10.2 Regular Expressions

10.2.1 Extended Regular Expressions

In view of Definition 10.1, the only way we have for representing a regular
language X consists of specifying how X is formed from the letter languages
by the application of union, complement, concatenation, and star. This
amounts to writing an expression for X. We formalize this as follows:

Definition 10.2 The family ERXr, of extended regular expressions over
an alphabet ~ is defined inductively as follows:

Basis: 0, e, and each a E ~ are in ERX r,.

Induction step: If X and Yare in ERXE, then so are (X U Y), X,
(XY), and X*.

Every extended regular expression in ERX E can be constructed by a finite
number of applications of the two rules above.

At this point, extended regular expressions are strings of symbols formed
by starting with some basic symbols and combining these symbols with the
use of a finite number of operations, as specified in the induction step. For
example, (((aUb*)(aa))*Ub) is an extended regular expression, whereas aub
and ab are not. Of course, we intend to use extended regular expressions
to denote regular languages. The two concepts are related below.

Definition 10.3 The mapping L : ERXr, -> REQr, is defined inductively
as follows:

Basis: L(0) = 0, L(e) = {e}, and for each a E~, L(a) = {a}.

Induction step:

L(X U Y) = L(X) U L(Y),
L(X) = L(X),
L(XY) = L(X)L(Y), and
L(X*) = (L(X))*.

The mapping L associates with each extended regular expression X the
language L(X). For example, for ~ = {a, b},

L(((a U b)*b)) = L((a U b)*)L(b) = (L(a U b))* L(b)

= (L(a) U L(b))* L(b) = ({a} U {b})*{b}.

Whereas each extended regular expression defines a unique regular lan
guage, each regular language may be represented by an infinite number of
extended regular expressions. We say that extended regular expressions X
and Yare equivalent if and only if L(X) = L(Y). To simplify notation, we

Section 10.2. Regular Expressions 193

denote this equivalence by equality and write X = Y if L(X) = L(Y). All
the laws applicable to languages are now also applied to extended regular
expressions. Thus we write XU Y U Z instead of (X U (Y U Z)) since union
is associative for languages, etc. Also, we write x E X and X ~ Y instead
of x E L(X) and L(X) ~ L(Y). This simplifies the notation considerably.
For example, for ({a} U {b})*{a}{a} we can now write (a U b)*aa. It is
also convenient to include (X n Y), (X - Y), (X ~Y), and X+ as extended
regular expressions.

10.2.2 Quotients of Regular Expressions

We now define a quotient operator for extended regular expressionsj the
quotient of an extended regular expression by a word denotes the quotient
of the language denoted by that expression. First we need a method for
computing 8(L(X)) from an extended regular expression X.

Definition 10.4 If X is an extended regular expression, 8(X) is defined
inductively as follows:

Basis: 8(0) = 0; 8(c) = c; 8(a) = 0, for each a E ~.

Induction step:

8(X U Y) = 8(X) U 8(Y),

8(X) = {c if 8(X) = 0
o if8(X) = c,

8(XY) = 8(X)8(Y),

8(X*) = c.

One easily verifies that L(8(X)) = 8(L(X)).

The quotient of an extended regular expression X with respect to a letter
a is defined as follows:

Basis: a-I0 = a-Ic = a-1b = 0, where a # bj a-1a = c.

Induction step:

a-I X* = (a- I X)X*.

194 Chapter 10. Regular Languages and Finite Automata

The quotient of an extended regular expression with respect to a word is
defined as follows. If Iwl = 0 then w = c and w- 1 X = X. If Iwl = 1, then
w is a letter, and w- 1 X is computed as above. If Iwl > 0, then w = xa, for
some x E ~*,a E~, and

(xa)-l X = a-1(x- 1 X).

One now verifies that

Definition 10.5 Two extended regular expressions X and X' are said to
be similar (and this is denoted by X "" Y) if one can be obtained from
the other using only a finite number of applications of the following rules,
called similarity laws:

X0 = 0X = 0,

xu0 = 0ux = X,

Xc=cX=X,

XUX=X,

XUY = YUX,

Xu (Y U Z) = (X U Y) U Z,

where X, Y, and Z are any extended regular expressions.

The similarity relation"" is an equivalence relation on fRX I:, and X "" Y
implies L(X) = L(Y). However, L(X) = L(Y) does not imply X"" Y. For
example, this is the case if ~ = {a, b}, X = ~*a and Y = (bUaa*b)*aa*, or
if X = a* and Y = ~*b~*. Even with the relatively weak set of similarity
laws, we can prove that the number of quotients of a regular language is
finite.

Theorem 10.1 The number of dissimilar quotients of an extended regular
expression is finite.

Proof: The proof is beyond the scope of this book, and we refer the reader
to [16, 17] for further details. However, the following sketch indicates the
structure of the proof. We proceed by induction on the number n(X) of
regular operators (union, concatenation, complement, and star) in X. Let
q(X) be the number of dissimilar quotients of an extended regular expres
sion X.

Basis: If n(X) = 0, then X is one of 0, c, or a E ~. One verifies that
q(0) = 1, q(c) = 2, and q(a) = 3.

Induction step: If n(X) > 0 then X must have one of the forms below.

Section 10.2. Regular Expressions 195

If X = Y U Z, then q(X) ~ q(Y)q(Z),

if X = Y, then q(X) = q(Y),

if X = YZ, then q(X) ~ q(Y)2Q(Zl,

if X = Y*, then q(X) ~ 2Q(Yl.

From this it follows that the number of dissimilar quotients is always
finite. D

Corollary 10.1 If X has q(X) dissimilar quotients, then they can all be
found by taking quotients with respect to words of length ~ q(X) - 1.

Proof: Arrange the words of ~* in order of increasing length, and alpha
betically for words of the same length. Find the quotients of X in that
order. If, for some n, all the quotients with respect to words of length n
already have similar counterparts with respect to words of shorter length,
then no new dissimilar quotients will ever be found, and the process ter
minates. Thus at least one new quotient must be found for each n or the
process terminates. In the worst case, only one quotient is found for each
n E {O,l,oo.,q(X) -I}. D

Corollary 10.2 Every regular language has a finite number of distinct
quotients.

Proof: This follows, because similarity implies equivalence. D

We now present some examples of the process of quotient construction.

Example 1

In the divide-by-2 counter described in Chapter 1, an output change
occurs for every two input changes. Suppose we let a and b repre
sent input and output changes, respectively. Then the possible input
output sequences-such sequences are sometimes called traces--that
may occur when the counter is started in a stable state are:

c,a,aa,aab,aaba,aabaa,aabaab, ... ,

i.e., at any particular time, there may have been no signal changes at
all (c), or there may have been exactly one input change (a), or two in
put changes (aa), or two input changes followed by an output change
(aab), etc. One can verify that this set of sequences is conveniently
represented by the extended regular expression X = (aab)*(cUaUaa).
For the purposes of illustrating precisely the inductive nature of the
quotient construction process, we will assume that the expression is
parenthesized as follows:

X = (((aa)b)*((c U a) U (aa))).

196 Chapter 10. Regular Languages and Finite Automata

Suppose we wish to compute a-I X. Since X is the concatenation of
two expressions, X = YZ, where Y = ((aa)b)* and Z = ((c U a) U
(aa)), we use the law for concatenation first:

since 8(Y) = c. Next, we use the law for star to obtain

The law for concatenation would then be applied to the subexpression
((aa)b). However, if we use the similarity laws, the computation can
proceed much more quickly. It is clear that a-I((aa)b) = a-I(aab) =
abo Therefore, a-Iy = abY. Similarly, it is easy to see that a-IZ =
c U a. Altogether,

a-I X = abYZ U c U a = abX U c U a.

Using similar reasoning, we find all the dissimilar quotients of X as
follows:

c- I X = X = (aab)*(c U a U aa),

a-IX = abX UcU a,

(ab)-I X = b-I(a- I X) = 0 = b- I X,

(ba)-I X = a-I(b- I X) = 0 = b- I X,

Since no new quotients arise with respect to words of length three,
the process terminates here. There are four dissimilar quotients: X,
abX U c U a, 0, and bX U C. It is easy to see that each quotient
corresponds to a distinct language. We will return to this example
shortly.

Section 10.2. Regular Expressions 197

Example 2

Consider a set-reset latch in which sand r represent changes on
the set and reset inputs, respectively. Suppose the latch starts in a
stable state with both inputs at o. We then wish to restrict the latch
operation as follows: (a) the set and reset inputs are never to change
at the same time; (b) only input pulses on the set and reset inputs
are allowed, i.e., if the signal s occurs, it must be followed by another
s before r can change, and vice versa; (c) the input sequence cannot
begin with a reset. The first condition is automatically taken care of
if we assume that the input alphabet is ~ = {r, s}. For the second
condition we must restrict the input changes to the set (ssUrr)*. The
third condition can be expressed by r~*, where ~ = sUr. Altogether,
the desired behavior may be described by

x = r~* n (ss U rr)*.

The quotients are computed as shown below. To shorten the example,
we use some obvious additional simplification rules like X n ~* = X.

c:- 1X = X = r~* n (ss Urr)*,

r- 1 X = ~* n r(ss U rr)* = 0 n r(ss U rr)* = 0,

S-l X = 0" n s(ss U rr)* = ~* n s(ss U rr)* = s(ss U rr)*,

(rr)-l X = 0 = r- 1 X,

(rs)-l X = 0 = r- 1 X,

(SS)-lX = (ssUrr)*,

(ssr)-l X = r(ss U rr)*,

(SSS)-l X = s(ss U rr)* = S-l X,

(ssrr)-l X = (ss U rr)* = (SS)-l X,

Altogether, there are five dissimilar quotients; one verifies that no two
of them denote the same language. We will return to this example
shortly.

198 Chapter 10. Regular Languages and Finite Automata

10.3 Quotient Equations

A word in any language is either empty or must begin with some letter.
The set of all words that begin with the letter a in a language X is clearly
{a}(a-IX). Hence we have the following disjoint decomposition for any
language:

X= U{a}(a- IX)U8(X).
aEE

Each quotient can also be expressed in this form because

w-IX = U {a}((wa)-IX) U 8(w- IX).
aEE

If X is regular and is denoted by X, then the dissimilar quotients of X
satisfy a finite set of equations derived from the form above.

Example 1 (continued)

Let Xw denote w-I X. Then the quotient equations for X = (aab)*(€U
aUaa) are

X = aXa U bXb U €,

Xa = aXaa UbXb U€,

Xaa = aXb U bX U€.

Example 2 (continued)

For X = rA* n (ss U rr)*, we have the equations

X=rXrUsXsU€,

Xss = r Xssr U sXs U €,

Xssr = r Xss U sXr.

Section 10.3. Quotient Equations 199

r S

~X Xr Xs e

Xr Xr Xr 0
Xs Xr Xss 0
Xss Xssr Xs e

Xssr Xss Xr 0

FIGURE 1O.l. Representation of quotient equations by a table.

r,s

FIGURE 10.2. Representation of quotient equations by a graph.

It is useful to represent the set of quotient equations in two different
forms. The tabular form for Example 2 is shown in Figure 10.1, where
the correspondence is self-explanatory. The incoming arrow designates the
given expression. The graphical form is shown in Figure 10.2, where quo
tients correspond to the vertices of the graph. An incoming arrow designates
the expression X. A double circle denotes a quotient containing the empty
word. The rest is self-explanatory.

Up to this point we have shown that every extended regular expression
has a finite number of dissimilar quotients that satisfy a set of equations.
We now show that every such set of equations can be solved, and that the
solution is always a regular language.

Theorem 10.2 Let Y and Z be arbitrary languages over some alphabet E.
Suppose further that e (j. Y. Then the equation

X=YXUZ

has the unique solution X = Y* Z.

200 Chapter 10. Regular Languages and Finite Automata

Proof: First note that every solution must contain Z. But, if X ;2 Z, then
YX ;2 YZ; thus X also contains YZ. Continuing this argument, we see
that X ;2 Z U YZ U YYZ U ... = Y* Z. Thus every solution must contain
Y* Z. Now suppose that Y* Z U W is a solution for some W. Without loss
of generality, we can assume that Y* Z n W = 0. Substituting Y* Z n W for
X in the equation, we get

Y*ZUW = Y(Y*ZUW) UZ = YY*ZUZUYW = Y*ZUYW.

Let w be a shortest word of Wand let Iwl = r. We must have w E Y* Z U
YW. Also, w rt Y* Z, since we have assumed that Y* Z n W = 0. Thus
w E YW. Because we have assumed that the empty word is not in y, a
shortest word of YW is of length at least r + 1. This is a contradiction,
showing that W = 0. Thus, if there is a solution, it cannot be smaller than
Y* Z and it cannot be larger. One easily verifies that Y* Z is a solution, for

Y(Y* Z) U Z = (YY* U c)Z = (Y+ U c)Z = Y* Z. o
Corollary 10.3 Any set of quotient equations can be solved for all the
quotients by repeated application of Theorem 10.2.

Example 2 (continued)

First note that the equation for Xr has the form Xr = r Xr U sXr =
(r U S)Xr U 0. Its solution is (r U s)*0 = 0. Hence, the set of equations
can be simplified to

x = sXs Uc,

Xs = sXss ,

Xss = sXs U r Xssr U C.

Substituting the second and fourth equations into the first and third
yields

x = ssXss Uc,

Xss = ssXss U rr Xss U c = (ss U rr)Xss U c.

Solving for Xss we have Xss = (ss U rr)*. The remaining quotients
are X = ss(ss U rr)* U c, Xs = s(ss U rr)*, and Xssr = r(ss U rr)*.

We have shown that each extended regular expression X has a finite
number of distinct quotients that satisfy the quotient equations. Conversely,
the quotient equations can be solved to recover L(X), although the new
expression may be different from X. We can thus state

Section 10.3. Quotient Equations 201

Theorem 10.3 A language is regular if and only if it has a finite number
of quotients.

Using the theorem above, we can easily verify that the language {anbn I
n 2: I} is not regular. The quotient of this language with respect to the
word ai is {an-ibn I n 2: i}. This quotient contains the word bi and it
contains no other word consisting of b's only. Hence all the quotients with
respect to words of the form ai are distinct, and there is an infinite number
of them. Therefore, the language cannot be regular.

Define a regular expression to be an extended regular expression that does
not use the complementation operator, but only union, concatenation, and
star. From our method for solving quotient equations we have

Theorem 10.4 A language is regular if and only if it can be denoted by a
regular expression.

This result shows that we could have defined regular languages without
using complementation, and we would have obtained the same family. We
have allowed complement to be used because it is often convenient.

We next consider the problem of deciding the equivalence of two extended
regular expressions. The solution to this problem allows us to reduce the
quotient equations to a set in which all quotients are distinct.

Theorem 10.5 Let X, Y, and Z be extended regular expressions over ~.
Then

• X = 0 if and only if no quotient of X contains c.

• X = ~* if and only if every quotient of X contains c.

• Y:2 Z if and only if Y u Z = ~* .

• Y = Z if and only ifYLlZ = 0.

The verification of these properties is straightforward. We now have the
following procedures.

To test whether X = 0 or X = ~*, construct the quotients of X. The
equivalence of two quotients may not always be recognized, but we are
assured that the number of dissimilar quotients is finite. Find 8(Xw) for
each quotient Xw. Then use Part 1 or 2 of the theorem above. To test
whether Y :2 Z, test whether the expression Y U Z is equivalent to ~*. To
test whether Y = Z, test whether the expression Y LlZ is equivalent to the
empty set.

202 Chapter 10. Regular Languages and Finite Automata

10.4 Finite Automata

10.4.1 Basic Concepts

We now define finite automata and characterize their behavior by regu
lar expressions. Finite automata have numerous applications in computer
science; we will use them for describing behaviors. A finite automaton, or
simply automaton, is a system of the form a = (:E, Q, ql,F, f), where

• E is a finite, nonempty input alphabet;

• Q is a finite, nonempty set, called the state set;

• ql E Q is the initial state;

• F ~ Q is the set of accepting states (the set Q - F is the set of
rejecting states);

• I: Q x E --+ Q is the transition junction.

A typical step in the operation of a finite automaton is as follows: Suppose
the automaton is in a state q E Q. If it receives an input a E E, it computes
its next state as I(q, a) and moves to that state. We assume that it is
possible for us to know whether the present automaton state is an accepting
state or not. In fact, it is convenient to define an output function 9 : Q -->

{a, I}, where g(q) = 1 if q E F and g(q) = ° otherwise.
The transition function is extended to a mapping from Q x E* to Q as

described below; we use the same symbol 1 for the extended function.

I(q,c) = q,

I(q, wa) = l(f(q, w), a),

for all q E Q, w E E*, and a E E. Thus the application of the empty
word does not change the state and, for w E E+, 1 (q, w) denotes the state
reached from q after the letters of w have been applied in succession.

An incomplete automaton is the same as an automaton, except that its
transition function is partial. This means effectively that for some pairs
(q, a) the transition function is not defined. An incomplete automaton a f

is used as a simpler form of a (complete) automaton a. The automaton a
has one additional rejecting "sink" state s. The transition function of a is
the same as that of a f , except that unspecified transitions of a f go to the
sink state s in a and I(s, a) = s for all a E E.

The language accepted by a finite automaton a is denoted by L(a) and
is defined as

L(a) = {w E E* I l(ql,W) E F}.

To illustrate these definitions, consider the automaton

a = ({O, I}, {a, 1, 2}, 0, {2},j),

Section lOA. Finite Automata 203

where f(q,O) = q and f(q, 1) = q + 1 (modulo-3) for all q E {O, 1, 2}. We
can represent the automaton by the table of Figure 10.3. The states (0,
1, and 2) are listed as rows of the table. The arrow indicates that state
o is the initial state. The input symbols (0 and 1) are listed as the first
two columns. The entry in row q and column a gives the next state f (q, a).
The right-most column gives the value g(q) of the output function, showing
that state 2 is the only accepting state. The automaton accepts any input
word in which the total number of 1'8 is 2 modulo-3.

a
q 0 1 g(q)

----. 0 0 1 0

1 1 2 0

2 2 0 1

FIGURE 10.3. State table of a modulo-3 counter.

An alternative, but equivalent, representation is shown in Figure 10.4.
Here, states are represented as vertices. The initial state has an incom
ing short arrow, and accepting states are indicated by double circles. If
f (q, a) = q', then there is a directed edge from vertex q to vertex q'; fur
thermore, this edge is labeled by a.

000

~8~
1

FIGURE lOA. State graph of a modulo-3 counter.

It is evident that the three ways of describing an automaton (as a 5-
tuple, a state table, and a state graph) are equivalent, and one description
is easily reconstructed from another.

An automaton (E', Q', qI, F', f') is a subautomaton of the automaton
(E, Q, qI, F, f) if E' ~ E, Q' ~ Q, F' = F n Q', and f' is the restriction of
f to Q' x E'. A state q of an automaton a = (E, Q, q1, F, f) is accessible if
there exists a word w E E* such that f (qI, w) = q. The connected subau
tomaton aeon of a is the subautomaton aeon = (E, Q', qI, F', f'), where Q'
is the set of all the accessible states, F' is the set of all the accessible ac
cepting states, and f' is the restriction of f to Q' x E. Normally, we assume
that the automata we are dealing with are connected, i.e., that aeon = a.

204 Chapter 10. Regular Languages and Finite Automata

10.4.2 Recognizable Languages

A language X ~ ~. is called recognizable by a finite automaton if there ex
ists a finite automaton a such that X = L(a). We now show that the family
of recognizable languages is the same as the family of regular languages.

Let a = (~, Q, q1, F, J) be a finite automaton, and let qi be a state in Q.
Denote byai the automaton a with the initial state changed to qi, i.e., let
ai = (~, Q,qi,F,J). (Note that ai need not be connected, even if a is.) In
this notation a = a1. If the cardinality of Q is n, we have n automata of the
form ai. Let Xi = L(ai), for i = 1, ... , n. The set Xi can be thought of as
the language accepted by state qi of a; in fact, L(ai) = {w I f(qi, w) E F}.
These n languages are related as follows:

Proposition 10.1 Let a = (~, Q, q1, F, f) be a connected automaton with
X = L(a) and, for each i, let Wi E ~. be such that qi = f(q!, Wi). Then
Xi = wi1X.

Proof: We have wE Xi if and only if f(qi, w) E F ifand only if f(q1, WiW) E
F if and only if wE wi1 X. 0

Theorem 10.6 A language is recognizable if and only if it is regular.

Proof: Suppose X ~ ~. is recognizable by automaton a. Consider any
W E ~. and the quotient w-IX. By the proposition above, if w takes
q1 to qi, then w-1X = Xi. Hence each quotient of X is equal to one
of the languages of the form Xi. Since the automaton is finite, it follows
that X has a finite number of quotients. Hence it is regular. Conversely,
suppose X ~ ~. is regular and let X = Xl, X 2, ... , X n be all the distinct
quotients of X. Consider the automaton a = (~,{X!"",Xn},X1,F,J),
where Xi E F if and only if e: E Xi, and f(Xi,a) = a-IXi . One verifies
that f(Xi,w) = W- 1X i , for any w E ~'. Now w E L(a) if and only if
f (Xl, w) E F if and only if w -1 X 1 E F if and only if e: E w -1 X 1 if and
only if w E Xl. Hence L(a) = X, and X is recognizable. 0

The proof above establishes a one-to-one correspondence between the
quotients of a regular language and the states of the automaton recognizing
that language. This provides very direct methods for constructing a finite
automaton recognizing a given regular language, and for finding a regular
expression for the language accepted by a finite automaton.

To illustrate the correspondence between states and quotients, consider
the modulo-3 counter of Figure 10.3. If Xi corresponds to state i, we im
mediately obtain the following set of equations:

Xo = OXo U IX!,

Xl = OX1 U lX2 ,

X 2 =OX2 UIXo Ue:.

Section 10.5. Equivalence and Reduction of Automata 205

We can solve these equations for X 1 = L(a). Thus,

X 2 = 0* IX 0 U 0* ,

Xl = OX1 U 1O*IXo U 10* = 0*1O*IXo UO*10*,

Xo = OXo U 10* 10* 1Xo U 10*10* = (0 U 10*10*1)*10*10*.

Conversely, given an extended regular expression, one needs only to
construct its quotient equations to obtain a finite automaton recogniz
ing the expression. We have already illustrated this with the example of
Figure 10.2.

10.5 Equivalence and Reduction of Automata

Consider two automata a = (~, Q, q1, F, J) and a' = (~, Q', q~, F', 1')
with output functions 9 and g', connected as shown in Figure 10.5. Apply
the same input sequence to both automata and observe the outputs at the
end of the sequence. If the outputs differ, then the two automata are said
to be distinguishable; in fact, they are distinguishable by that sequence. If,

for all w E ~*,g(f(q1'W)) = g'(f'(q~,w)),

then L(a) = L(0') and a and a' are said to be indistinguishable or equiv
alent.

a 9

w E ~*

a' g'

FIGURE 10.5. Parallel connection of automata.

The test described above involves an infinite number of words, namely,
all the words in ~*. We can reduce this test to one involving a finite number
of steps. Define the automaton

o.~o.' = (~,Q x Q',(q1,qD,H,h),

where h((q, q'), cr) = (f(q, cr), f'(q', cr)), and (q, q') E 1i if and only if (q E F
and q' rf- F') or (q rf- F and q' E F'). The automaton o.~o.' corresponds
to the automaton obtained from the parallel connection of a and a' by
combining the outputs 9 and g' with a XOR gate to obtain output h. It
is clear that a and a' are indistinguishable if and only if the output h is

206 Chapter 10. Regular Languages and Finite Automata

always O. This is equivalent to testing whether L(o~o') = 0. If 0 has n
states and 0:' has n' states, then o~o:' has at most nn' states. It follows
that, if two automata are distinguishable, then they can be distinguished
by a word of length not greater that nn'.

Consider now the problem of testing whether two states qi and qj of a
given automaton 0 = (~, Q, qI, F, f) are equivalent. If they are equiva
lent, i.e., indistinguishable, then we will write qi '" qj. Indistinguishability
is an equivalence relation on Q. Testing for indistinguishability amounts
to testing whether L(Oi) = L(oj). (Recall that 0i is 0 with initial state
changed to qi.) We could test for the equivalence of every pair of states by
the method described above. A more efficient algorithm will be described
below in a somewhat more general setting.

A Moore machine [104] is a 6-tuple f..L = (~, r, Q, qI, f,g), where~, Q, qI,
and f are as in a finite automaton, r is a finite, nonempty output alphabet,
and 9 : Q -+ r is the output function. A Moore machine is therefore a
generalization of the concept of finite automaton. An automaton can have
at most two output values, whereas a Moore machine may have any finite
number of output values.

Two states qi and qj of a Moore machine are k-distinguishable if there
exists a word w E ~* of length::; k such that g(f(qi'W)) -j. g(f(qj,w)).
In particular, qi and qj are O-distinguishable if and only if g(qi) -j. g(qj).
Two states are distinguishable if they are k-distinguishable for some k ~ O.
They are indistinguishable or equivalent, written qi '" qj, if they are not
distinguishable. Call qi and qj k-equivalent if they are not k-distinguishable;
in that case we write qi "'k qj. The relation k-equivalence is indeed an
equivalence relation on the set Q of states, and defines a partition Pk on
Q; the blocks of this partition are the k-equivalence classes. Since qi '" k+! qj
implies qi "'k qj, it follows that PHI is a refinement of Pk·

Theorem 10.7 Let f..L = (~,r,Q,qI,f,g), be a Moore machine with n
states. If two states qi and qj are distinguishable, then they are distinguish
able for some k ::; n - 2.

Proof: Consider the partitions Po, PI"'" etc. Suppose, for some m, Po,· .. ,
Pm are all distinct, i.e., Pi is a proper refinement of Pi- I for 1 :s; i :s;
m, but Pm+I = Pm- We claim that qi "'m qj implies qi '" qj. Suppose,
to the contrary, that there exists w E ~* with Iwl = r > m such that
g(f(qi' w)) -j. g(f(qj, w)). Without loss of generality, suppose that w is the
shortest such word. Let w = uv with Ivl = m + 1, and let Pi = f(qi,u)
and Pj = f(qj, u). Then Pi and Pj are (m + I)-distinguishable. By the
assumption that Pm+! = Pm, Pi and Pj are m-distinguishable. Hence qi
and qj are (r - I)-distinguishable. This contradicts the fact that w was a
shortest distinguishing word.

We have assumed that qi and qj are distinguishable; hence the partition
Po must have at least two nonempty blocks. For i > 0, if Pi is a proper
refinement of Pi-I, then Pi has at least i + 2 blocks. In particular, Pn - 2

Section 10.6. Nondeterministic Automata 207

has at least n blocks if it is a proper refinement of Pn - 3 . Thus the longest
possible sequence of partitions is Po, . .. , Pn - 2 • Hence any two states that
are distinguishable are in different blocks of Pn - 2 , and the claim follows.o

To illustrate the construction above, consider the Moore machine of
Figure 10.6. The partition Po is Po = {I, 2, 3}{ 4, 5}. Examine the tran
sitions from block {I, 2, 3} under input a; the resulting states are {2, 3, 2}.
Since 2 and 3 are O-equivalent, no new information is found. Next exam
ine transitions under b; now the states are {3, 4, 4}. Since 3 and 4 are
O-distinguishable, the pairs {1,2} and {1,3} are I-distinguishable. A sim
ilar examination of block {4, 5} yields no new information. Hence PI
{1}{2,3}{4,5}. In the next step, block {4,5} can be refined and P2

{1}{2,3}{4}{5}. One verifies that P2 = P3 , and the process stops here.

1

2

3
4

5

a

2

3

2

5

4

b

3

4

4

3

1

1

1

1

o
o

FIGURE 10.6. Illustrating equivalent states.

A Moore machine is reduced if no two of its states are equivalent. A re
duced machine corresponding to a given machine can always be constructed
by using the equivalence classes (blocks of the final partition) of the rela
tion '" on Q as states of the reduced machine. The reduced machine for
our example above is shown in Figure 10.7.

{I}
{2,3}

{4}
{5}

a

{2,3}

{2,3}

{5}
{4}

b

{2,3}

{4}
{2,3}

{I}

1

1

o
o

FIGURE 10.7. Illustrating a reduced machine.

10.6 Nondeterministic Automata

The automata and Moore machines defined so far were deterministic in
the sense that the next state was uniquely determined by the present state

208 Chapter 10. Regular Languages and Finite Automata

and input. The notion of transition function can be generalized to permit a
choice of several next states. Such a concept arises naturally in the context
of quotient equations. For example, consider the equations

Xl = aX 2 U bX 1 U eX 3 U c,

X 2 = aX 2 U bX 2 U eX 2 U c,

X 3 = aX 3 U bX 2 U eX 1·

Since X 2 = (aUbUe)X2 Uc, we have X 2 = ~*. Also,

a(X2 U X 3) U b(X1 U X 2) U e(X1 U X 3) U c

a~' U b~* U e(X1 U X 3) U c.

Since every quotient of Xl U X 3 contains c, we also have Xl U X 3 = ~*,
i.e., X 2 = Xl U X 3. The three quotient equations can be replaced by the
following two equations:

Xl = a(X 1 U X 3) U bX 1 U eX 3 U c,

X3 = aX3 U b(X1 U X 3) U eX1.

The state graph corresponding to the new set of equations is shown in
Figure 10.8.

a,b a,b

FIGURE 10.8. A nondeterministic automaton.

A nondeterministic finite automaton II is a 5-tuple II = (~, Q, I, F, 1),
where ~, Q, and F are as in a deterministic automaton, I ~ Q is the set
of initial states, and f : Q x ~ -+ P(Q) is the transition function specifying
a set (possibly empty) of next states.

As in the deterministic case, we extend the transition function to words.
For all q E Q, w E ~*, and (J' E~, f(q,c) = {q}, and

f(q,w(J') = U f(q',(J').
q'E!(q,w)

We also extend the transition function to sets of states. For Q' ~ Q,
f (Q' , w) = U qE Q' f (q, w). The language accepted by a nondeterministic
automaton is £(11) = {w I f(I, w) n F =j;0}.

Section 10.7. Expression Automata 209

Theorem 10.8 Let v be a nondeterministic automaton. Then L(v) is a
regular language.

Proof: As in the deterministic case, we associate a nondeterministic au
tomaton Vi with each state qi of v, where Vi = (~,Q,{qd,F,f). Let
Xi = L(Vi)' as before. Then one can write a set of quotient equations
for the Xi and solve them as in the deterministic case. D

A deterministic automaton equivalent to a given nondeterministic au
tomaton can be found using the so-called subset construction given in the
following theorem.

Theorem 10.9 Let v = (~, Q, I, F, f) be a nondeterministic automaton.
Let 0: = (~, P(Q),I,9,f') be the deterministic automaton with Q' E 9 if
and only if Q' n F i= 0 for all Q' <:::; Q, and f'(Q',O") = f(Q',O"). Then
L(o:) = L(v).

Proof: The verification of this is routine. D

The concept of nondeterministic automaton is easily generalized to Moore
machines. We leave the details to the reader.

10.7 Expression Automata

Expression automata are useful generalizations of nondeterministic au
tomata. In particular, we use them here in order to describe an easy al
gorithm for finding regular expressions accepted by finite automata. The
following is based on [20] and an improvement introduced in [144].

An expression automaton is a quintuple Tf = (~, Q, I, F, R), where ~, Q,
F, and I are as in a nondeterministic automaton, and R, the transition
relation, is a finite subset of Q x R£XE X Q, where R£XE is the family of
regular expressions over~. If (q,X,q') E R, then we draw a directed edge
from q to q' and label it with X. We interpret such an edge as follows: The
automaton Tf can move from q to q' whenever any word W E X is applied
to it. A word W E ~* is accepted by Tf if and only if there are the following
items: a state q E Ii a state q' E Fi words WI, W2, ... , Wk in ~* such that
W = WI W2 ... Wki states ql = q, q2, ... , qk, qk+l = q' in Qi and expressions
Xl,X2,· .. ,Xk such that Wi E Xi and (qi, Xi, qi+d E R for 1::; i::; k. In
case all these conditions are satisfied, we say that there is a successful path
spelling W from q to q'. The language accepted by Tf is the set of all words
accepted by Tf.

An expression automaton is said to be normalized if there is at most
one transition of the type (q, X, q') for every pair (q, q') of states from
Q. Given any expression automaton Tf we can easily find a normalized
expression automaton Tf' that accepts the same language as Tf. Suppose
(q, Xl, q'), ... , (q, X m , q') are all the transitions from q to q' in Tf. We remove

210 Chapter 10. Regular Languages and Finite Automata

them all, and add the transition (q, X, q'), where X = X1U ... UXm. Clearly,
the language accepted is not changed by this transformation.

We now describe an algorithm for finding a regular expression for the
language accepted by a normalized expression automaton. Given a normal
ized expression automaton TI = (2;, Q,I,F,R), we first enlarge TI by adding
two states to it. The resulting expression automaton Ti' is defined by

Ti' = (2;, Q U {i, t}, {i}, {t}, R'),

where

R' = R U {(i, c, q) I q E I} U {(q, c, t) I q E F}.

It is clear that the language accepted by Ti' is the same as that accepted
by TI. We have merely introduced a new initial state i from which every
state of I can be reached by an empty-word transition, and a new terminal
state t that is reachable from each accepting state in F by an empty-word
transition. There is a successful path spelling w from i to t in Ti' if and only
if there is a successful path spelling w from one of the initial states in I to
one of the final states in F. This can be easily formalized.

Next we show that any state of Ti' that belongs to Q can be removed
without changing the language accepted. States i and t are not removed.
We apply this procedure of removing states from Q until none is left; the

a
(a)

b

(b)

ab

(c)

FIGURE 10.9. Finding a regular expression by state elimination.

Section 10.7. Expression Automata 211

final expression automaton so obtained has only the two states i and t
and only one entry (i, X, t) in R. The language accepted by the original
automaton", is precisely L(X).

The removal of a single state p from Q is done as follows: For each
triple of transitions of the type ((q,X,p), (p,Y,p), (p,Z,q')), we remove
the transitions (q, X,p) and (p, Z, q') and add the transition (q, Xy* Z, q').
Finally, state p and the transition (p, Y, p) are also removed. If there are no
transitions of the type (p,Y,p), then, for each pair ((q,X,p),(p,Z,q')) of
transitions, we remove (q, X, p) and (p, Z, q') and add (q, X Z, q'). We claim
that we have not changed the language accepted by doing this removal of
state p. First, any path from q to q' that does not go through p still exists
after the modification. Second, any path that does go through p has been
accounted for by the expression XY* Z, or by the expression X Z. No paths
have been added unless equivalent paths existed in the original automaton.
Hence the language accepted is the same.

We illustrate this construction with the example of Figure 10.9 and
Figure 10.10. The original automaton of Figure 10.9(a) is deterministic.
First, we add the initial and terminal states i and t as in Figure 10.9(b). The

(a)

ab

--0 ~~ a

:0 (b) c

(b U aa)b*

(b U aa)b*a

(c) aU(bUaa)b* CD
ab U (b U aa)b*a

(d) --0 (ab U (b U aa)b*a)*(a U (b U aa)b*) ~0
FIGURE 10.10. Figure 10.9 continued.

212 Chapter 10. Regular Languages and Finite Automata

elimination of state 2 yields the graph of Figure 10.9(c). The normalized
version of Figure 1O.9(c) is shown in Figure 1O.1O(a). Next, we eliminate
state 3, normalize, and finally eliminate state 1, as shown in Figure 10.10.
Thus a regular expression for the language accepted by the automaton is

(ab U (b U aa)b*a)*(a U (b U aa)b*).

Chapter 11

Behaviors and Realizations
In previous chapters we have discussed the analysis of a network when it
is started in a stable state and some inputs are changed, and then held
constant at their new values. This is only part of the analysis problem.
A complete analysis also involves the network behavior in response to a
sequence of input changes, some of which may occur while the network
is unstable, if fundamental-mode operation is not used. We consider such
behaviors in this chapter.

We define the concept of "realization" of a specification behavior by an
implementation behavior; this includes deadlock and livelock phenomena
in candidate implementations, and choice in specifications. The concept of
realization is needed in Chapter 13, where we show that some specifications
are not realizable under certain delay assumptions. This concept is also
required in Chapter 14, where we discuss the verification process.

The early work on asynchronous circuits used the so-called primitive flow
tables to describe behaviors [66, 67J. The problem of realizing a flow table
by a logic circuit has been studied by many researchers; see, for example,
[135J and the more recent work of [38, 109J. Many modern asynchronous
design techniques do not use flow tables; see Chapter 15 for references to
these techniques. Our approach has been influenced by the work of [19J
and [146, 147J. Some related work can also be found in [62J and [101],
but there are considerable differences in our approach. We develop a model
closely related to finite automata; this allows us to exploit some well-known
ideas from automaton and language theory. Also, we remove some of the
possible ambiguities of flow tables by making transitions between states
explicit. This will be discussed further in Chapter 12.

How To Read This Chapter

Section 11.3 involves relatively simple ideas, but is rather technical. It can
be omitted on first reading; instead, the reader may assume that the spec
ification and implementation have identical input alphabets and identical
output alphabets. Section 11. 7 deals with choice in specifications. This topic
requires further research; consequently, this section is primarily of interest
to the researcher.

214 Chapter 11. Behaviors and Realizations

11.1 Motivation

The following intuitive distinction is made between implementations and
specifications: An implementation describes what might happen in a circuit,
whereas a specification states what should happen.

To motivate our definitions of specification and implementation, we begin
with some very simple informal examples from combinational logic design.
We have in mind a scenario where a designer is given some sort of specifi
cation and is to design a circuit satisfying this specification.

We assume that any combinational circuit is adequately modeled by a
Boolean function; we call this a (proposed) implementation (function) fB.
In the simplest case, the specification is also modeled by a Boolean function
fA. To check whether an implementation fB realizes a specification fA, we
need to compare the two functions. Thus "realizes" is a binary relation on
Boolean functions; in this case the relation is simply equality. For example,
suppose the specification requires that there be a binary input X and a
binary output 0, and that the function fA be complementation, Le., 0
is to be equal to X. An inverter circuit is an acceptable implementation,
because its Boolean function fB is also complementation.

Consider now a parallel situation where we are to design an asynchronous
circuit to meet some specification. We assume that any asynchronous cir
cuit is adequately represented by a formal model we call "behavior,,;l we
call this a (proposed) implementation (behavior) B. In the simplest case,
the specification is also modeled by a behavior A. To check whether an
implementation B realizes a specification A, we need to compare the two
behaviors. Thus "realizes" is a binary relation on behaviors; in general, this
relation is much more complex than equality.

The next example raises some issues concerning the inputs and outputs
of an implementation as they relate to a specification. For every input of a
specification, there must be a corresponding input in the implementation.
In general, however, the implementation B may have more inputs than the
specification A. Such inputs of B are simply "not used" if B is to realize
A. More precisely, each such input is fixed at either 0 or 1. Similarly, for
every output of a specification, there must be a corresponding output in
the implementation, but the implementation may also have some other
outputs. We simply "do not look" at the unused outputs.

To illustrate this, suppose the specification is the complementation func
tion, and the proposed implementation is a half-adder. The half-adder
has inputs Xl and X 2 and produces outputs 0 1 = Xl EB X2 (sum) and
O2 = X lX 2 (carry). If we set the input Xl to 1 permanently and ignore

1 In general, it is not a simple problem to determine an appropriate behavior
from a circuit. Such a behavior depends on the network model, on the race model,
and on the restrictions placed on the environment. In Chapters 12 and 14 we show
how to derive certain types of behaviors.

Section 11.2. Behaviors 215

the output O2 , then the output 0 1 = 1E9X2 = X2 realizes the complement
of X 2 . Similar ideas are introduced for asynchronous circuits.

The remainder of the chapter is structured as follows. Our formal concept
of behavior is introduced in Section 11.2; it models all the signal transitions
that might occur in a network. In Section 11.3 we handle "unused" inputs
and outputs of one behavior (considered as the implementation) when it
realizes another behavior (considered as the specification). In Sections 11.4-
11.6 we formalize the concept of realization. In Section 11.7, we briefly
discuss specifications with choice.

11.2 Behaviors

From now on, the word "behavior" means the formal mathematical object
defined below, unless explicitly stated otherwise. This definition is intended
to model all the possible signal transitions that might occur in a network. It
is consistent with the formal definition given in Chapter 4 of a network with
a binary domain, but (a) it represents the network states by an abstract
set rather than by a set of binary vectors, and (b) it explicitly introduces
the external outputs of the network. 2

Example 1

The following running example is used to motivate and explain our
definitions. Suppose we wish to describe the possible changes that
might occur in the binary network model of an inverter. Figure 11.1 (a)
shows the inverter circuit, together with a set of variables that permit
us to define its circuit graph. Since we need to deal with external out
puts now, we modify the definition of circuit graph slightly by adding
output vertices and output wires. Thus the circuit graph of the in
verter consists of a single input vertex Xl, an input-delay vertex Xl,

gate vertex SI, wire vertices WI and W2, and an output vertex 0 1 .

X-1-X-1-W-1--I[>o-S-1-W-2-0-1

(a) (b)

FIGURE 11.1. Inverter circuit and its network model.

2 Previously, the external outputs did not playa major role and were not
mentioned very often. Any gate or wire variable in a circuit graph of Chapter 4
may be considered as an external output. Its dependence on the input excitations
and state variables is given by one of the circuit equations in the network model.

216 Chapter 11. Behaviors and Realizations

Suppose we select only vertex variable Sl to be the state variable.
Then we have the binary network model of Figure 11.1(b):

N= ({O,I},{Xd,{Sl},£,F),

where the excitation function (£ in the network model) is 8 1 = Xl
and the output 0 1 is given by the circuit equation (F in the model)
0 1 = Sl·

A behavior is a 7-tuple B = (X, 'R, 0, Q,q1, T, 1/J), where

• X = (Xl, ... , X n), n ~ 0, is a vector of input excitation variables,
and the corresponding set of variables is X = {Xb ... , X n};

• 'R is a finite, nonempty set of internal states;

• 0 = (01, ... , Op), P ~ 0, is a vector of output variables and the
corresponding set of variables is 0 = {Ob ... , Op};

• Q = {O, l}n x 'R is the set of total states,3 where the first component
of a total state is of the form (a1' ... ,an) and the binary value ai is
associated with the variable Xi, for i = 1, ... ,n;

• q1 E Q is the initial (total) state;

• T ~ (Q x Q) - {(q,q) I q E Q} is the set of transitions;

• 1/J is the output /unction, 1/J : Q --t {O, I}P, where, for any q E Q, 1/J(q)
is of the form (ab . .. ,ap), and the binary value ai is associated with
the variable Oi, for i = 1, ... ,po

Example 1 (continued)

Let B = (X, 'R, 0, Q, q1, T, 1/J), where X = (Xd, 'R = {O, I}, 0 =
(Od, Q = {O, I} x {O, I}, q1 = (0,1), the transitions are as shown
in Figure 11.2, and the output function 1/J is given by the expression
1/J(a, b» = b, i.e., the output value is equal to the state value. In
Figure 11.2, we show the initial state by an incoming arrow. An edge
between q and q' with two arrowheads represents two transitions:
from q to q' and from q' to q.

The behavior B may be derived from the inverter network of Figure
11.1 (b) operated in an unrestricted environment. The following is
an informal description of that behavior: The behavior state (0,1)
corresponds to a stable state of the network. When the input changes

3St rictly speaking, the concept of total state is redundant, since it is de
rived from the size of X and the set 'R. We retain this concept for notational
convenience.

Section 11.2. Behaviors 217

FIGURE 11.2. Behavior of inverter.

in this state, the state becomes (1,1). Now the internal state may
change since the inverter is unstable, and state (1,0) can be reached.
In state (1,1), the environment may change the input excitation. If
that happens, the state can become (0,1) again-if the input pulse
was very short and was ignored by the inertial delay of the inverter
or the input excitation and the internal state may both change-if
the pulse was long enough to be recognized; this would result in state
(0,0). The remaining transitions are similarly explained.

Let V = Xu 0 be the set of (external) variables of the behavior. The set
~ = P(V) - {0}, where P(V) is the power set of V, is called the alphabet
of B.

Let 1 : Q -+ {O, I} n X {O, I}P be a function that associates a state label
l(q) E {o,l}n x {O,I}P with each state q = (a,r) E Q, where a E {O,l}n
and r E n. The label of q = (a, r) is the input excitation state a together
with the output state 'lj;(q); we may think of the label of a total state as
the externally visible information about that state. A label is denoted by
a vector c = a·b = al" .an·bl ... bp , where ai, bj E {O, I} for i = 1, ... ,n
and j = 1, ... ,po We also write the label of q as l(q) = X(q)·'lj;(q), where
X(q) is the input component of q and 'lj;(q) is the output associated with
q. Note that two or more distinct total states may have the same label.

The expanded state of a behavior is an element of Q x {O, I}P = ({O, l}n x
n) x {O, l}p. We frequently use the expanded state in order to have the
output vector associated with a total state easily available. For convenience,
we write the expanded state ((a,b),c) as a·b·c. The label of an expanded
state a·b·c consists of its first and third components, i.e., it is a·c.

A change in the input component or in the internal-state component (or
in both) of a total state is represented by a transition to another total state.
We stress that each transition (q, q') involves a change in at least one of
the two components of q; thus transitions of the form (q, q) are not allowed.
In a transition, we may have an input change, an internal state change, or
both. Note, however, that the output cannot change by itself in a transition;
either the input or the internal state must change if the output changes.

218 Chapter 11. Behaviors and Realizations

A transition is said to be an invisible transition if only the internal state
changes but not the input nor the output, i.e., if l(q) = l(q'); otherwise, it
is a visible transition. We define the "tag mapping" T from T to ~ U {c} as
follows. The tag of a visible transition (q,q') is denoted by T(q,q'), and is
that element (j E ~ that consists of all the external variables that change
in that transition. The value of T(q, q') for an invisible transition (q, q') is
the empty word c. Note that c is not a letter of ~.

Example 1 (continued)

In Figure 11.3 we show the expanded-state behavior corresponding to
the behavior of Figure 11.2. The transition tags are redundant, since
they can be deduced from the two states connected by each edge;
however, these tags are shown for convenience.

{Od

FIGURE 11.3. Expanded-state behavior of inverter.

A transition (q, q') is said to be an input transition if the input changes in
going from q to q', but the internal state does not change. (The output may
or may not change in an input transition.) A transition is called an intemal
state transition if the internal state changes but not the input. (The output
mayor may not change in an internal-state transition.) We also talk about
X transitions, 0 transitions, XO transitions, and c transitions-depending
on the tag of the transition. In summary, the transitions can be classified
as shown in Table 11.1.

TABLE 11.1. Types of transitions.

what changes: transition tag visible
X R 0 type type

yes no no input X yes
yes no yes input XO yes
no yes no internal-state c no
no yes yes internal-state 0 yes
yes yes no mixed X yes
yes yes yes mixed XO yes

Section 11.2. Behaviors 219

A state of a behavior is said to be static if it has no outgoing internal
state transitions; otherwise, it is dynamic. Note that a behavior cannot
leave a static state unless the input changes. In contrast to this, a dynamic
state has at least one transition not involving any input change.

Example 1 (continued)

In Figure 11.3, the transition (ql> q2) is an input transition of type
X, (q2, q3) is an internal-state transition of type 0, and (q4, q2) is a
mixed transition of type XO. States ql and q3 are static, and q2 and
q4 are dynamic.

Given any behavior B (X, R, 0, Q, ql, T, 'l/J), we associate with it a
nondeterministic finite automaton (3 with empty-word transitions; this au
tomaton is called the behavior automaton of B and is defined as follows:
(3 = (L;, Q, ql, F, I), where

• L;, the behavior's alphabet, is the input alphabet of (3;

• Q, the behavior's state set, is the state set4 of (3;

• ql E Q, the behavior's initial state, is the initial state of (3;

• F is the set of accepting states and it is always equal to Q;

• f ~ QX(L;U{c:})xQ is the automaton's transition relation: (q,O",q') E
f if and only if (q, q') E T and T(q, q') = 0".

Example 1 (continued)

The behavior of Figure 11.3 redrawn as a behavior automaton is
shown in Figure 11.4. Since all the states are accepting, they are
not marked in any special way.

{Xd
q2

{Od {Od

{Xd

FIGURE 11.4. A behavior automaton.

4Here Q is viewed as an abstract set of elements, i.e., the fact that Q
{a, l}n x n in the behavior is irrelevant in its automaton.

220 Chapter 11. Behaviors and Realizations

The set of all the words accepted by a behavior automaton {3, i.e., its
language, is denoted by L({3). This language is obviously regular since Q
is finite. Because each state is an accepting state, this language is prefix
closed, i.e., satisfies L = pref L, where pref L is the set of all prefixes of
words in L.

The language of a behavior B is denoted by L(B) and is defined to be
the language L({3) of the corresponding automaton {3.

11.3 Projections of Implementations to
Specifications

In this section we formalize the concepts of "unused" inputs and outputs of
an implementation behavior with respect to a given specification behavior.
This section may be omitted on first reading.

If an implementation B' is to realize a specification A, then each input of
A must be represented by an input of B'. Thus, we need to map a subset of
the set of inputs of B' to the set of inputs of A. We need a similar mapping
for the outputs. Also the starting state q~ of B' must represent the starting
state ql of A, i.e., we require that l'(qD projected to A should equall(ql).
In case these conditions are satisfied, we say that there is a projection of
B' to A.

Once we have selected the appropriate inputs of an implementation
B', we fix the unused inputs at the value they have in the initial to
tal state; clearly, we are not allowed to change these inputs as long as
B' is realizing specification A. This operation is formalized as follows.
Let A = (X, R, 0, Q, ql! T, 'IjJ) be a specification behavior, where X =
(Xl, ... ,Xh), h ~ 0, and 0= (Ol! ... ,Ok), k ~ 0. Let B' = (X', R', 0', Q',
q~,T','IjJ') be an implementation behavior, where X' = (Xr, ... ,X~), n ~
h, and 0' = (O~, ... ,O~), P ~ k.

Without loss of generality, we suppose that input XI of the implemen
tation represents input Xi of the specification, for i = 1, ... , h. Then
we may assume that X' = X X", where X = (Xl! ... , Xh), and X" =
(X~+1' ... ,X~). Thus X" represents the unused inputs. Now each state
q' E Q' has the form q' = aa"·r', where a E {O,l}h, a" E {O,l}n-h and
r' E R'. In this notation, the initial state is denoted by q~ = bb" ·r;' .

The input projection of an implementation behavior

B' - (X' - X X" '0' 0' Q' q' - bb" ·r' T' "") - - ,,,, , , ,1 - 17' 'P

to the subvector X of X' is now defined as follows:

B' .tJ.x= (X,n',O',Q' .tJ.x,q~ .tJ.x,T' .tJ.x,'IjJ' .tJ.x)
where

• Q' .tJ.x= {a·r' I ab"·r' E Q'},

Section 11.3. Projections of Implementations to Specifications 221

• q~ .ij.x= b·r~,

• T' .ij.x= {(a·r,a.f) I (ab"·r,ab"·f) E T'},

• ('ljJ' .ij.x)(a·r') = 'ljJ'(ab"·r').

Basically, all the inputs not in X are removed. The second part (the last
n - h components) of the input vector is first fixed at the value b" that
this part has in the initial state q~. All the states that differ from b" in
the second part of the input are removed, along with all the transitions
from and to these states. Since the second part of the input vector is now
fixed at b" in all the states that remain, the components from the second
part can be dropped. Thus the new state label is the old label with all the
components in X' - X removed.

TABLE 11.2. Transition table for NOR latch.

ql 00·01·01 q4 q9 q12 - - -
q2 00·10·10 qll q3 q13 - - -

q3 01·10·10 q13 q2 qll - - -
q4 10·01·01 ql q12 q9 - - -
q5 11·00·00 q8 qlO q6 - - -
q6 00·00·00 - - - q2 ql q7
q7 00·11·11 - - - ql q2 q6
q8 01·00·00 - - - q3 - -
q9 01·01·01 - - - - q8 -

qlO 10·00·00 - - - - q4 -
qll 10·10·10 - - - qlO - -

q12 11·01·01 - - - - q5 -

q13 11·10·10 - - - q5 - -

Example 2

To illustrate input projection, consider the behavior of Table 11.2.
(In the next chapter, we show how this behavior is derived from a
network model; for now its meaning is of no significance.) This is an
implementation behavior represented-because of its size-by a table,
rather than a graph. The total state consists of two input variables
and two internal-state variables, which are also the output variables.
(Thus the output component is always equal to the internal-state
component.) The initial state is q6.

To illustrate the removal of unused inputs, suppose that only input
Xl is needed for some specification. Then we would remove all the
transitions in columns {X2 } and {Xl ,X2 }. We also remove all the

222 Chapter 11. Behaviors and Realizations

TABLE 11.3. Illustrating input projection.

ql 0·01·01 q4 - - -
q2 0·10·10 ql1 - - -
q4 1·01·01 ql - - -
q6 0·00·00 - q2 ql q7
q7 0·11·11 - ql q2 q6
qlO 1·00·00 - - q4 -
ql1 1·10·10 - qlO - -

states in which X 2 has the value 1, because they are not reachable
from the initial state q6 in which X2 has the value O. Finally, we
remove the X 2 component from the labels, obtaining Table 11.3.

We may also "erase" unused outputs, since we never look at them. With
out loss of generality, suppose that output Oi of the specification is rep-
resented by output O~ of the implementation, for i = 1, ... , k. Conse-
quently, we may assume that 0' = 00", where 0 = (01, ... , Ok), and
0" = (0~+1' ... ' O~). Thus 0" represents the unused outputs. Each out
put vector now has the form 0 = ee", where c E {a, l}k, and c" E {a, 1 }p-k
The output projection of an implementation behavior

B' - (X' '0' 0' - 00" Q' q' T' 01,1) - ,,,,, ,- ,,1,,0/

to the subvector 0 of 0' is now defined as follows:

B' !o= (X',R',O,Q',q~,T','¢' to),

where ('¢' !o)(q) = c if'¢'(q) = ce".
Note that the state labels are now changed: the new label is the old label

with all the components in 0' - 0 removed. Also, the transition tags will be
modified. The outputs not in 0 are removed from each tag; if the resulting
set is empty, the transition becomes invisible, and the new tag is IS.

Example 2 (continued)

Consider the behavior of Table 11.3. Suppose that only output 02
is used for some specification. Consequently, we remove the 0 1 com
ponent from the labels, and erase 0 1 from the transition tags. This
results in one IS column and a second column labeled {02} as shown
in Table 11.4.

It is easily verified that the input and output projections can be done
in either order and produce the same result. Let B' .u.x·o-the behav
ior resulting from B' after the appropriate removal of unused inputs and
outputs-be defined as

B' .u.x·o= (B' .u.x) !o= (B' !o).u.x . (11.1)

Section 11.4. Relevant Words 223

TABLE 11.4. Illustrating output projection.

I q I
ql 0·01·1 q4 - - -
q2 0·10·0 qll - - -
q4 1·01·1 ql - - -
q6 0·00·0 - q2 ql q7
q7 0·11·1 - ql q2 q6

qlO 1·00·0 - - q4 -
qll 1·10·0 - qlO - -

For later use, we also define the removal of certain letters from a language.
The restriction of a letter cr of an alphabet ~ = P(V) - {0} to a subset U
of V is defined as follows:

{ c if cr n U = 0,
crtu = cr n U otherwise.

This operation is extended to words as follows: ctu = c, and, for w i- c,
(wcr)tu = (wtu)(crtu). Finally, the operation is also extended to languages
byLtu={wtul wEL}.

The restriction operation has the following interpretation. Suppose we
have a network with variable set V, but we only look at the variables in
U and ignore all the others. Then, if the network history is represented by
some word w E V*, we would only see the word wtu.

11.4 Relevant Words

In defining the notion of realization of A by B', we need to check, among
other things, that B' does not produce any outputs not permitted by A. For
this purpose, we need not consider all the words of L(B'), but only those
that are "relevant" to A. In general, a specification behavior imposes some
constraints on the environment in which the implementation is operated.
To illustrate this, suppose X 20 l X I 0 2 is in L(B'), but no word in L(A)
allows X2 to precede Xl. Then the word X20 l X I 0 2 is not relevant to A.

11.4.1 Same Input and Output Alphabets

Let A = (X, R, 0, Q, ql, T, 'lj;) be a specification behavior, and let B' =
(X', R', 0', Q', qi, T', 'lj;') be an implementation behavior. In the interest
of clarity, we first define the concept of relevant words under the assumption
that A and B' have the same input and output alphabets, i.e., that X' = X
and 0' = O. Thus B' = (X, R', 0, Q', qi, T', 'lj;'), and also ~ = ~'. This
restriction is removed later.

224 Chapter 11. Behaviors and Realizations

Let x E E* be a word in L(A). A set y of input variables, Y ~ X,
is applicable in A after x if Y = 0 or if there exists a a E E such that
xa E L(A) and a n X = y. In other words, suppose an input/output word
x occurs in A. Suppose further that it is possible to apply the input change
Y after x according to the specification Aj this input change mayor may
not be accompanied by some output change. Then the input change Y is
applicable in A after x. Note that the empty subset of X is applicable after
Xj in that case there mayor may not be a a ~ 0 such that xa E L(A).

We say that w' E L(B') is relevant to A ifw' E L(A), or w' = x'a', where
x' E L(A), a' E E, and a' n X is applicable to A after x'. Let L(B' /A) be
the set of all the words of B' that are relevant to A.

The motivation for this definition is as follows. Suppose we change the
inputs in the set Y (possibly empty) in both A and B' after input/output
word x has occurred in A and in B'. Consider now any a' such that a' nx =
y. We need to consider xa', because the outputs accompanying the input
change Y in B' may not be permitted by Aj in that case B' would not be
a good realization of A. Note that we are looking for the first violation of
the specificationj any word with xa' as prefix violates the specification if
xa'does.

11.4.2 Different Input and Output Alphabets

The definition of relevant words is now generalized to the case where the
alphabets of A and B' are not equal. The reader who omitted Section 11.3
may now proceed to Section 11.5. Our main goal in the remainder of this
section is to show that input and output projections preserve relevant words
in a certain sense. Therefore, we can perform the input and output projec
tions first and then consider relevant words.

Let A = (X, 'R, 0, Q, ql, 'I, 'IjJ) be a specification behavior, and let B' =
(X', 'R', 0', Q', q~, 'I', 'IjJ') be an implementation behavior. We say that a
word x' EL(B') is consistent with A if the word x=x't(X'UO) obtained from
x' by erasing the unused outputs (Le., the outputs in 0' -0) is in L(A).
Under these circumstances, the input/output word x of the specification is
represented by the word x' of the implementation. Note that if a word w
is consistent with A, then every prefix of w is also consistent with A.

We say that w' E L(B') is relevant to A if w' = c or w' = x'a', where x'
is consistent with A, and either a' = c or a' E E' and a' n X' is applicable
to A after x't(X'UO)' Note that every word of L(B') that is consistent with
A is relevant to A.

Observe that the set of words of B' that are relevant to A is preserved
under input projection, Le.,

L(B' /A) = L(B' .\J.x /A). (11.2)

Certainly, the right-hand side is a subset of the left-hand side, since the
input projection can only remove paths in the graph of B'. On the other

Section 11.5. Proper Behaviors 225

hand, every word in L(B' jA) uses only inputs from X. Hence it is not
removed by the projection operation. One also verifies that

L(B')to = L(B' 10)

and

(L(B' jA))to = L(B' 10 jA). (11.3)

The language (L(B' jA))to is the set of all words of B' relevant to A,
from which the unused outputs have been erased. The following propo
sition shows that this set of words is preserved by the input and output
projections.

Proposition 11.1 (L(B' jA))to = L(B' .JJ.x.o jA).

Proof: By 11.2 we have

(L(B' jA))to = (L(B' .JJ.x jA)) to.

By 11.3

(L(B' .JJ.x jA))to = L((B' .JJ.x) 10 jA).

Finally, by 11.1

L((B' .JJ.x) 10 jA) = L(B' .JJ.x·o jA). o
From now on, we assume that the appropriate input and output projec

tions have been performed. Consequently, we assume that the input exci
tation and output vectors of B' are identical to those of A.

11.5 Proper Behaviors

So far we have not imposed any restrictions on behaviors, but we are about
to do so now.

A behavior B = (X, R, 0, Q, ql, T, 'lj;) is deterministic if and only if its
associated automaton is (incomplete) deterministic. 5 Note that the word
"deterministic" is used here in the automaton-theoretic sense. Being de
terministic does not prevent a behavior from producing anyone of several
outputs in a given state.

We write q ~ q' if state q' can be reached from state q by a path spelling
w in B. A behavior is said to be proper if, whenever ql ~ q2 and ql ~ q~,
and q2 .!!..,. q3, for some a E ~, then we also have q~ .!!..,. q~, for some q~ E Q.
Note that every deterministic behavior is proper.

5Recall that an incomplete deterministic automaton has no c transitions and
for each state q E Q and each letter a E ~ there is at most one transition (q, q')
with r(q,q') = a.

226 Chapter 11. Behaviors and Realizations

If a behavior B is proper, we can construct a deterministic behavior D
such that L(D) = L(B). This is done using a sort of subset construction.
For any w E ~*, let [w] denote the set of all total states reachable by w
from q1, i.e., let [w] = {q E Q I q1 ~ q}. Note that all the states in [wl
have the same input component, i.e., q, q' E [wl implies X(q) = X(q'). This
is true because we start in the initial state and change exactly the same
inputs in order to get to q as we do to get to q'. By the same argument, the
output vectors associated with q and q' are the same. Altogether, q and q'
must have the same label. Let X([w]) denote the input component of each
state in [w], and let 1/I([w]) be the output component of each state in [wl.
Furthermore, let n([w]) = {r E n I q1 ~ X([w])·r}. This is the set of all
internal states of B that are reachable by w from q1. Let

D = (X, n', 0, Q', q~, T', 1/1'),

where

• n' = {n([w]) I w E L(B)};

• Q' = {[wll w E L(B)};

• q1 = [El;

• T' = {([w], [WtT]) I for some (q, q') E T, q E [w], q' E [WtT] and
T(q,q') = tT};

• 1/I'([w]) = 1/I([w]).

One verifies that D is well defined and that L(D) = L(B). In view of
this, every proper behavior can be replaced by a deterministic behavior
with the same language.

We require that all specification behaviors be deterministic (and there
fore proper) for the following reasons. When we describe the behavior of
a circuit, we treat it as a "black box"; consequently, we can only observe
a sequence of symbols from ~. Consider the behaviors in Figure 11.5. One
can certainly design a circuit in which first output 0 1 is produced, and
then the circuit makes the decision whether to produce O2 or 0 3 , as in
Figure 11.5(a). One can also design a circuit in which the decision whether
O2 or 0 3 will eventually be produced is made before 0 1 appears, as in
Figure 11.5(b). However, in any history of operation of either circuit, one
can only have the following words: E, 0 1, 0 10 2 , and 0 10 3 . Thus the dis
tinction made by the two behaviors of Figure 11.5 cannot be tested by any
input/output experiment. Therefore such properties are structural, not be
havioral, and we consider the behaviors of Figure 11.5 equivalent.

The specification of Figure 11.6 is not proper. According to this specifi
cation, the circuit could produce the output word {Od{ 02} and stop, or
it could produce just the word {0 1 } and stop. There would then be two

Section 11.5. Proper Behaviors 227

(a)

(b)

FIGURE 11.5. Indistinguishable behaviors.

FIGURE 11.6. An improper specification.

distinct states reached by {Ol}, and these two states would have differ
ent outgoing transitions. We will be able to represent such situations by
specifications with choice, which are the treated in Section 11.7.

We place a somewhat weaker restriction on implementation behaviors.
A behavior is said to be input-proper if, whenever ql ~ q2 and ql ~ q~,
and there exists (q2, q3) E T with r(q2' q3) n X :1= 0, then there also exists
q~ E Q such that (q~, q~) E T and r(q~, q~) n X = r(q2' q3) n X. In other

228 Chapter 11. Behaviors and Realizations

words, whether or not an input change is permitted in a given state should
depend only on the word w leading to that state.

We argue that implementation behaviors should be input-proper. (This
should apply to words relevant to a specification; we need not place any
restrictions on words that are not relevant.) If an implementation does not
satisfy this condition, then, with the same word, it can reach a state q in
which an input change is permitted, or a state q' in which such a change is
not permitted. However, the actions of the environment cannot depend on
the invisible internal state of a circuit. Consequently, implementations that
are not input-proper (with respect to words relevant to the specification)
will not be considered.

On the other hand, implementations need not be "output-proper," be
cause distinctions like those of Figure 11.5 can be made by some internal
variables.

We illustrate the definitions with some examples. The following behavior
is input-proper.

{Xd {O} {Xd {X2}
Al : ql --+ q2 --+ q3 --+ q4 --+ q5·

In contrast to this, the behavior below is not input-proper.

e {X}
A2 : ql --+ q2 --+ q3·

The environment is not permitted to apply X in state ql, but it is allowed
to do so in state q2. However, no information is provided by the circuit
whether it is in state ql or q2.

We remark that a behavior like that in the last example can be made
input-proper by providing some timing information. Thus, the behavior

{IOns} {X}
A3 : ql --+ q2 --+ q3

is acceptable. Here, the environment waits for 10 ns; after that, it is free
to change the input X. We will not be introducing any special notation for
such timing information, but we may simply view this information as an
additional input symbol.

In summary, we assume from now on that all specification behaviors are
deterministic and all implementation behaviors are input-proper (with re
spect to relevant words).

We have the following order among the families of behaviors that we
have defined:

behaviors

:::> input-proper behaviors

:::> proper behaviors

:::> deterministic behaviors.

Section 11.6. Realization 229

The following examples show that all the inclusions are indeed proper. The
behavior

e {X}
ql ---+ q2 ---+ q3

is not input-proper. The behavior

e {O}
ql ---+ q2 ---+ q3

is input-proper, but not proper. The behavior with the transitions

{X} {X}
ql ---+ q2 and ql ---+ q3

is proper, but not deterministic.

11.6 Realization

We now consider only deterministic specifications. The main question stud
ied in this section is how to make precise the notion that an implementation
behavior realizes a specification behavior.

11.6.1 Safety and Capability

Assuming that a projection of an implementation to a specification exists,
we now introduce the second condition for an implementation to realize a
specification. Suppose w' is a word of L(B') relevant to A. Intuitively, w'
is an input/output word that may occur in the implementation when an
allowable sequence of input changes is applied to B'. If w' is not in L(A),
the implementation is capable of producing a sequence of transitions that
does not exist in the specification. We say that such an implementation is
"unsafe" for A.

Definition 11.1 An implementation B' is safe for a specification A if
L(B' /A) ~ L(A).

For our third condition, we need to ensure that every word in the lan
guage of A is in L(B'). Otherwise, the specification would have input/output
words that the implementation is not capable of producing.

Definition 11.2 An implementation B' has the capability of a specifica
tion A if L(A) ~ L(B').

Note that the condition L(A) ~ L(B') is equivalent to the condition L(A) ~
L(B' /A). Thus the basic requirement for an implementation B' to realize
a specification A is the following language equality:

L(B' /A) = L(A).

230 Chapter 11. Behaviors and Realizations

As we shall see, this condition-which is based solely on language proper
ties-is not sufficient. We add two more conditions defined on the behaviors,
rather than just on their languages.

11.6.2 Deadlock

An implementation may fail to be a realization of a specification because
a "deadlock" situation may arise, as we now illustrate.

Example 3

Consider the network of Figure 11.7 and its implementation be
havior B' derived in the general single-winner model (for simplicity),
shown in Figure 11.8. First the input changes, and then there is a
critical race. If 81 wins the race, an output is produced. However,
if 82 is faster, no output is produced. Here, the language of B' is
{c, {X}, {X}{O}}. Suppose A is defined by

Then B' is safe for A and has the same capability. However, should
the network take the path in which 82 wins the race, the required
output would never be produced.

X

FIGURE 11.7. Network for deadlock example.

{O}

1·00·0
{X}

0·00·0

FIGURE 11.8. Behavior with deadlock.

Section 11.6. Realization 231

Example 4

Consider now the network of Figure 11.9 and its behavior in Figure
11.10, derived in the general single-winner model. Is this a realization
of the behavior in Figure 11.11? In state 0·010·00 there is no possibil
ity of output 0 1 . Should this be considered as deadlock? We can state
the condition given by the specification of Figure 11.11 as follows: Af
ter the environment applies the input X, the circuit should produce
either 0 1 or O2 , and both responses should be possible. It is clear
that the implementation does what is intended. It just happens that,
in case O2 is produced, an internal-state change takes place first.

X

FIGURE 11.9. A network with two outputs.

0·000·00

0·011·01

FIGURE 11.10. Behavior of network with two outputs.

{X}

FIGURE 11.11. A specification with two outputs.

232 Chapter 11. Behaviors and Realizations

To discover the appropriate definition of deadlock, consider a specifi
cation A = (X, R, 0, Q, ql, T, 'Ij;}. We would like to describe the output
words that need to be produced by A from each state. For this purpose we
consider the input projection A .u.x=O of A to the empty vector of input
variables. The alphabet of this projection is n = P(O) - {0}. Let Lo(q) be
the language accepted by state q in A .u.x=(} , i.e., let Lo(q) be the language
of the behavior A .u.x=O with initial state changed to q.

Since A is deterministic, each word w E L(A) takes A to a unique state
qw. The language Lo (qw) can be thought of as the response of A to w.

Suppose now that B' is an implementation with the same input and
output alphabets as A. Consider a fixed word w of L(A)j then wLo(qw)
describes the set of all words in L(A) that begin with wand involve no
input transitions other than those present in w itself. Note that w may
take B' to several different states from q~. As we did for A, we also define
the input projection B' .u.x=O of B', and the languages Lo(q') for all the
states of B'.

A state q' of an implementation behavior B' is said to be terminal if
Lo (q') = {c}. A similar definition applies to specification behaviors.

Definition 11.3 An implementation behavior B' has deadlock with respect
to a specification behavior A if there exists a word w E L(B') n L(A) that
leads to a terminal state in B', but to a nonterminal state in A. Otherwise,
B' is deadlock-free with respect to A.

11.6.3 Livelock

A problem may also arise if there is "livelock," as illustrated below.

Example 5

Consider the behavior Al shown in Figure 11.12, the network NI of
Figure 11.13 in the gate-state model, and the behavior of NI shown

{X} {O}

FIGURE 11.12. Behavior AI.

X

FIGURE 11.13. Network N I .

Section 11.6. Realization 233

FIGURE 11.14. Behavior of N1 .

in Figure 11.14. We would like to determine whether Nl can realize
AI, when the state variable Sl is used as the output O. The initial
state of Nl that is to represent the initial state of Al is the sta
ble state (1·000·0). The first transition (l·rl·O, O'rl ·0) corresponds to
(1·000·0,0·000·0). The labels of Nl and Al agree in the new states,
so this transition is properly implemented. Next, there should occur
the transition (0·rl·0,0·r2·l) in AI. In Figure 11.14, the network has
a nontransient (match-dependent) oscillation and a critical race. If
S3 wins the race, the network moves to (0·001·0); this change is ex
ternally invisible. The network will then move to (0.101·1), and an
output change will be observed, as required. Similarly, if S2 wins the
race from state 0·000·0, the output will change in the next step, as
required. There is, however, a third possibility, namely, the match
dependent oscillation. Should the network enter that oscillation and
remain in it indefinitely, the output change would not occur. This is
an example of livelock.

We define livelock as follows:

Definition 11.4 An implementation B' has livelock with respect to a spec
ification A if there is a word w E L(B') n L(A), leading to a nonterminal
state in A, and to a state in B' that has a cycle spelling € around it. Oth
erwise, B' is livelock-free with respect to A.

Note that the definition applies well to Example 5 above. The following
example, however, illustrates a difficulty with the general multiple-winner
model with respect to livelock.

Example 6

The GMW analysis of the network of Figure 11.15 when it is started
in state 1·00·0 and the input changes to 0 is shown in Figure 11.16.
There is a nontransient oscillation starting in the initial state; this os
cillation is invisible. If the input changes, the network moves to either

234 Chapter 11. Behaviors and Realizations

FIGURE 11.15. Network N2.

{X} {O}

1·01·0 {X} {O}

FIGURE 11.16. Behavior of N2.

0·00·0 or 0·01·0, and the oscillation involving S2 continues. However,
the output is also unstable and will change eventually; thus the cycle
(0·00·0,0·01·0) is transient. If the delay of variable SI were infinite,
then livelock would occur and the output change would not be pro
duced. In reality, however, every delay has an upper bound, and the
network must leave the transient cycle. When that happens, an out
put change occurs as required. In fact, the output may change in four
different ways, as shown in the figure. The visible behavior is then
just the word {X}{O}. Consequently, N2 realizes AI. Of course, it is
clear from Figure 11.15 that this should be so.

The inconsistency above is caused by the fact that the GMW model does
not assume any specific upper bound on the delays in the network, but only
that such a bound exists. In a more accurate model, one would have to
take the elapsed time into account in each state. This would lead to a more
complicated model, which we do not pursue.

11.6·4 Definition of Realization

We are finally ready to define the concept of realization.

Definition 11.5 An implementation behavior B' realizes a specification
behavior A if

• There exists a projection of B' to A such that each variable of A is
represented by a distinct variable of B', and the projection of q~ is ql .

Section 11.7. Behavior Schemas 235

Assuming now that the unused inputs and outputs have been removed,
we require four conditions for realization.

• B' is safe for A,

• B' has the capability of A,

• B' is deadlock-free with respect to A, and

• B' is livelock-free with respect to A.

Example 2 (continued)

The behavior B' of Table 11.4 is shown in Figure 11.17. Consider the
specification A with L(A) equal

The proposed implementation B' is not safe for A, because, for ex
ample, {02}{02}{02} is relevant to A, but it is not in L(A). On the
other hand, B' has the capability of A, because every word of L(A) is
also in L(B'). The implementation B' has deadlock; for example, the
word € leads to state q2, which is terminal. The same word, however,
leads to a nonterminal state in A. The same applies also to the word
O2 . There is no livelock present.

{Xd

{Xd

FIGURE 11.17. Behavior of Table 11.4.

11.7 Behavior Schemas

To motivate this section, let us return to our earlier example from combi
national logic design. Frequently, a specification of a combinational circuit
is not a Boolean function but a partial Boolean function. For example,

236 Chapter 11. Behaviors and Realizations

we may have a specification for a one-input, one-output circuit, where the
output should be 0 when the input is 1, but the output is a "don't care"
when the input is O. Here, the specification is no longer a function, but
could be viewed as a set of Boolean functions. In our example we would
have two Boolean functions: fA = X (if the value 1 is chosen for the don't
care entry), and 9A = 0 (if the value 0 is chosen). We view a partial func
tion specification as a "schema" describing a set of acceptable Boolean
functions, called "options." Consider the inverter circuit again as a possi
ble implementation. This implementation realizes the specification because
the inverter function f B realizes one of the options fA.

Return now to asynchronous circuits. We want to permit some choice
in the specification. In general, any set of behaviors could be used as a
specification, and the designer would choose to implement one of them.
It is convenient, however, to use a compact representation for such a set
of behaviors. As in the combinational circuit example, a specification is
a schema describing a set of behaviors called options. An implementation
realizes such a schema provided that it realizes one of its options.

Before we proceed with the formal definition, we contrast the concept
of choice with the concept of nondeterminism. If a state of a behavior
representing a network has a single outgoing transition, and that transition
has a tag of type 0, then we expect the network to produce output 0
after entering that state. Here the output is chosen deterministically. On
the other hand, we also need the ability to specify arbitration. Consider
the case of specifying an arbiter with inputs Xl and X2 and outputs 0 1

and O2 . A request is represented by an input change, and a grant by an
output change. If the two requests arrive simultaneously, one of them should
be granted. The request-granting aspect of the specification is illustrated
in Figure 11.18(a). We do not accept as a valid implementation of such
an arbiter a behavior in which only output 0 1 is produced in the state
corresponding to q. An acceptable implementation would be provided, for
example, by a network (single-winner model) in which there is a two-way
critical race between two gates, resulting in 0 1 if one gate wins and in O2

if the other gate wins.

(a) (b)

FIGURE 11.18. Arbitration and choice.

Section 11. 7. Behavior Schemas 237

In contrast to the arbitration example above, a specification with "choice"
does not require that both outputs be possible. Choice is indicated by an
arc across outgoing transitions, as illustrated Figure 11.18(b). Here the de
signer, rather than the network, has the freedom to choose only output 01,
only output O2 , or both. In the last case, where both outputs are retained,
the designer is in fact leaving the choice to the network, which, in turn,
realizes the arbitration by a critical race each time the situation arises.

We now present a rather general definition of choice in specifications. A
behavior schema is an 8-tuple

A = (X, R, 0, Q, ql, T,~, C),

where

• (X, R, 0, Q, q1, T,~) is a behavior, and

• C = {Cq I q E Q}, is a set of choice sets Cq , where Cq = {B1 , ... , B jq }

is a set of nonempty subsets, called blocks, of the set

T q = {t E Tit = (q, q') for some q' E Q}

of transitions leaving state q; furthermore, the union of all the blocks
Bi of Q is T q •

Note that the blocks of a choice set need not be disjoint. A behavior schema
is said to be choice-free if, for every q E Q, each block Bi of Cq has exactly
one transition; in effect, such a schema degenerates to a behavior.

Example 7

The idea behind the choice set is illustrated by the example of Figure
11.19, which is a specification of a "fork" with input X and outputs
0 1 and O2 . In static states, the two outputs have the same value as
the input. In Figure 11.19, blocks of the choice set are denoted by
arcs across the corresponding transitions. Blocks consisting of single
transitions are not marked in any way. Starting with static state
O'rl'OO, we can change the input and reach the dynamic state l·rl·OO.
Here, the output variables are both required to change, but they may
do so in any order whatsoever. The second half of the specification
schema is similar.

A possible implementation for this specification would be one that
always gives preference to 0 1 , In that case, the implementation would
have the transitions

238 Chapter 11. Behaviors and Realizations

FIGURE 11.19. A specification for a fork.

An equally acceptable solution would be provided by the following
set of transitions, where 0 1 rises first but falls second:

A third choice would be to implement the transitions by allowing
a race between the two variables. In that case, the implementation
behavior would be exactly like the specification schema, but without
the choice-set arcs.

In the examples above, some transitions from each block are selected at
design time, and these transitions are the ones implemented. The same set
of transitions is used every time a particular state is visited. One could also
envision an implementation that selects transitions dynamically, and may
use different selections for different visits to the same state. Consider the
following implementation behavior for the fork of Example 7:

0·r1·00 --t l·r1·00 --t l·r3·l0 --t l·r4·11 --t 0·r4·11 --t

0·r2·0l --t O·r~ ·00 --t l·r~ ·00 --t l·r;·Ol --t l·r~·11 --t

O·r~.11 --t O·r~.l0 --t 0·r1·00.

Here, variable 0 1 changes first during the first "pass" through the specifi
cation, but it changes second during the second pass.

Section 11.7. Behavior Schemas 239

Given a behavior schema A = (X,R,0,Q,q1,T,'lj;,C) and a behavior
A' = (X, R', 0, Q', qi, T', 'lj;'), we say that A' is an option of A if there
exists a function p : Q' ---+ Q satisfying the following conditions:

• p(qi) = qI, and l(qi) = 1(q1)' This ensures that both A and A' start
in states with the same input/output label.

• For every state q' E Q' and for every block B of Cp(ql), there exists
a transition (q',p') E T' such that (p(q'),p(p')) is a transition in B,
and T(q',p') = T(p(q'),p(p')). This ensures that every block of the
choice set of the state p(q') is represented by at least one transition
of A'.

• For every transition (q',p') E T', we have (p(q'),p(p')) in T, and
T(q',p') = T(p(q'), p(p')).

Example 7 (continued)
Consider Figure 11.19 again. An option for the fork specification is
shown in Figure 11.20. The first time we change the two variables se
quentially in either order, but we do not allow a simultaneous change.
The second and third times we select the simultaneous change. The
fourth time we select only 0 1 followed by O2 .

FIGURE 11.20. An implementation of a fork.

240 Chapter 11. Behaviors and Realizations

With each schema A = (X, R, 0, Q, ql, T, 'lj;, C), we associate a behavior
B = (X, R, 0, Q, q!, T, 'lj;). The language of a schema A is defined as the
language of its associated behavior B. One can verify that options satisfy
the following properties:

Proposition 11.2 Let A be a behavior schema and let B be one of its
options. Then

• L(A) = UB L(B), where the union is over all options B of A;

• L(B) ~ L(A);

• If A is choice-free, then L(B) = L(A).

We can now reduce the problem of realizing specifications with choice to a
problem of realizing choice-free specifications.

Definition 11.6 A behavior B realizes a behavior schema A if there exists
an option A' of A such that B realizes A'.

11.8 Concluding Remarks

In this chapter we have defined some important concepts, which will be
applied in later chapters. In particular, in Chapter 12 we discuss a num
ber of behaviors that can be associated with a given network. We also
compare our definitions of schemas and behaviors with the classical flow
table techniques. In Chapter 13 we use our formal notions of behaviors
and realizations to prove that certain specifications are not realizable. In
Chapter 14, we deal with symbolic behaviors and the verification problem.
Finally, in Chapter 15 we use some of the notation developed here.

Chapter 12

Types of Behaviors
In this chapter, we consider several types of behaviors that may be used
for specifying and analyzing asynchronous circuits. Section 12.1 shows how
a number of behaviors may be associated with a simple OR gate. In Sec
tion 12.2, we consider the classical primitive flow table specifications. We
point out some deficiencies of the flow table approach, and we compare
it with our formal model of behaviors. In Section 12.3 we discuss the
derivation of behaviors of networks operated in fundamental mode. General
fundamental-mode behaviors can be abbreviated to the "direct" behaviors
described in Section 12.4, if transient states are of no interest. Moreover,
many behaviors encountered in practice are even more restricted. For this
reason, we introduce in Section 12.5 the class of "serial" behaviors. These
behaviors will be used again in Chapters 13 and 14.

12.1 Introductory Examples

The most general environment one could provide for a network is the unre
stricted environment. We will use the GMW model as the underlying race
model for the analysis of a network Nj thus, let Ra be the GMW relation
of N. To derive the network behavior in an unrestricted environment we
define a binary relation Ru on the set of total states of N as follows: Let
a, a' E {O, 1}n and b, b' E {O, 1}m be such that a·b i= a' ·b'. Then

a·bRua'·b' if and only if b = b' or bRab'.

This means that the input excitation vector may change arbitrarily at any
time, and the state component may change according to the Ra relation,
where a is the present input vector.

Throughout this section, we use an OR gate as the running example.
We will introduce various types of behaviors by using this example. The
network model of the OR gate is N = ({0,l},{Xl,X2},{S},£,F), where
Xl and X2 are the two input excitation variables, s is the state variable
with excitation function S = Xl + X 2 , and 0 is the output variable given
by the circuit equation 0 = s.

Example 1

We construct the unrestricted behavior for the OR gate. State 00·1
has seven possible successor states. Since this state is unstable, the
state variable may changej this would lead to state 00·0. If input Xl
changes, the state could become 10·1 or 10·0. Similarly, if X 2 changes,

242 Chapter 12. Types of Behaviors

TABLE 12.1. Unrestricted behavior of OR gate.

q X'r {Xd {X2} {Xl, {O} {Xl {X2, {Xl,
X 2} O} O} X 2,

O}

ql 00·0 10·0 01·0 11·0 - - - -
q2 01·1 11·1 00·1 10·1 - - - -
q3 10·1 00·1 11·1 01·1 - - - -
q4 11·1 01·1 10·1 00·1 - - - -
q5 00·1 10·1 01·1 11-1 00·0 10·0 01·0 11·0
q6 01·0 11·0 00·0 10·0 01·1 11·1 00·1 10·1
q7 10·0 00·0 11·0 01·0 10·1 00·1 11·1 01·1
qs 11·0 01·0 10·0 00·0 11·1 01·1 10·1 00·1

we might have state 01·1 or 01·0. Finally, both inputs might change,
leading to state 11·1 or 11·0. The complete transition table for the OR

gate is shown in Table 12.1. The table is divided into two parts, with
the first four states being stable and the last four unstable. Since the
output variable has the same value as the state variable, we don't use
expanded states.

Example 2

The fundamental-mode behavior of the OR gate is shown in Table 12.2.
The stable states have exactly the same transitions as they do in the
unrestricted mode. Each unstable state, however, has only a single
transition, because the input is not allowed to change. Since no XO
transitions exist, we have deleted the last three columns.

Example 3

In some applications, only one input excitation is permitted to change
at a time. Our third example shows the behavior of the OR gate under
this restriction; the behavior is given in Table 12.3.

TABLE 12.2. Fundamental-mode behavior of OR gate.

ql 00·0 10·0 01·0 11·0 -
q2 01·1 11·1 00·1 10·1 -
q3 10·1 00·1 11·1 01·1 -
q4 11·1 01·1 10·1 00·1 -
q5 00·1 - - - 00·0
q6 01·0 - - - 01·1
q7 10·0 - - - 10·1
qs 11·0 - - - 11·1

Section 12.1. Introductory Examples 243

TABLE 12.3. Single-input-change behavior of OR gate.

ql 00·0 10·0 01·0 - - -
q2 01·1 11·1 00·1 - - -
q3 10·1 00·1 11·1 - - -
q4 11·1 01·1 10·1 - - -

q5 00·1 10·1 01·1 00·0 10·0 01·0
q6 01·0 11·0 00·0 01·1 11·1 00·1
q7 10·0 00·0 11·0 10·1 00·1 11·1
q8 11·0 01·0 10·0 11·1 01·1 10·1

Example 4

Table 12.4 shows a single-input-change behavior with some input
changes permitted in unstable states [44]. The approach is illustrated
as follows. Suppose the OR gate starts in stable state 10·1. If the input
Xl now changes, it is the environment's intention to change the state
of the OR gate. Suppose state 00·1 is now reached. Applying any in
put change here would negate the original intention because the new
state would be stable. Hence, no input changes are permitted in state
00·1. In contrast to this, consider stable state 00·0 and a change in
X 2 • The new state 01·0 is reached with the intention of changing the
output. Here, the input Xl can change without affecting the original
intention: the gate remains unstable. Consequently, the change in X I
is permitted. Similarly, in state 11·0, the intention is to change the
output. Changing either input preserves this intention; hence both
input changes are permitted.

TABLE 12.4. Dill's single-input-change behavior of OR gate.

ql 00·0 10·0 01·0 -
q2 01·1 11·1 00·1 -

q3 10·1 00·1 11·1 -
q4 11·1 01·1 10·1 -
q5 00·1 - - 00·0
q6 01·0 11·0 - 01·1
q7 10·0 - 11·0 10·1
q8 11·0 01·0 10·0 11·1

244 Chapter 12. Types of Behaviors

TABLE 12.5. Single-input-change fundamental-mode behavior of OR gate.

I q I X·r II {Xd I {X2 } I {O} I
ql 00·0 10·0 01·0 -
q2 01·1 11·1 00·1 -
q3 10·1 00·1 11·1 -
q4 11·1 01·1 10·1 -
q5 - - - 00·0
q6 - - - 01·1
q7 - - - 10·1
qs - - - 11·1

Example 5

Our last example of Table 12.5 shows the fundamental-mode single
input-change behavior of the OR gate. This is more restricted than
Dill's single-input-change behavior.

12.2 Fundamental-Mode Specifications

We now consider the classical primitive flow tables that have been used
for fundamental-mode specifications [66, 67, 135]. We will show that such
flow tables have Some shortcomings; consequently, we will use our behavior
schema model instead.

Example 6

The flow table of Table 12.6 illustrates many of the concepts from
classical theory [135]. The rows correspond to internal states rl, ... ,r4.
The columns list the four values of two binary inputs Xl and X 2 • Each
nonblank entry, except the one in column 11, row rl, contains the next
internal state and the present output. The output value is assumed to
be uniquely determined by the total state. The double entry in column
11, row rl denotes choice: either entry could be implemented and
the specification would be satisfied. If the internal state of an entry

TABLE 12.6. A primitive flow table.

II 00 01 11 10

rl 6), a r2,0 r3, 0 I r4, 0 r2, 1

r2 r3, 1 6),0 - r3,0

r3 rl,O - 6),1 r4, 1

r4 rl, 1 - @,O rl,O

Section 12.2. Fundamental-Mode Specifications 245

FIGURE 12.1. Schema of primitive flow table.

agrees with the row state, then the internal state will not change, i.e.,
it is stable. Stable states are indicated by circling the corresponding
internal-state entries. A flow table is called primitive if there is at
most one stable state per row.

Let us illustrate the operation of the flow table by some typical tran
sitions, and also compare the flow table notation to our behavior
schema model. For example, in column 00, row rl, entry rl, 0 indi
cates that total state X 1X 2 ·r = OO·rl is stable; the flow table remains
in this state until an input change occurs. In our notation, column 00,
row rl entry corresponds to expanded static state ql = OO·rl ·0; see
Figure 12.1. Next, consider the entry in (01, rd; it indicates that the
next internal state should be r2 and the output should not change.
Thus the "operating point" that we might associate with the flow
table starts in (00, rl), and moves horizontally to (01, rd, when X2 is
changed by the environment. Since fundamental-mode operation does
not permit any input changes in unstable states, the operating point
can only move vertically to (01, r2) as the internal state changes.
In our notation, we also have two transitions: the input transition
from OO·rl·O to 01·rl·0, where only the input X2 has changed, and an
internal-state transition from 01·rl·0 to 0l·r2·0.

Consider now total state X 1X 2·r = 11·r4, which is stable. If the
input changes to 00, we have the entry rl, 1, showing that both the
internal state and the output must change. We can model this motion
of the operating point from (11, r4) through (00, r4) to (00, rd by an
input transition from 11·r4·0 to 00·r4·1, followed by an internal-state
transition to OO·rl ·0.

246 Chapter 12. Types of Behaviors

Location (11, rt) has two entries. This represents choice: Either the
operating point can move to state r4-in which case the output
does not need to change--or it can move to r3-in which case an
output change is eventually required. We model this by transition
(OO·rI·O,I1·rI·O), followed by transitions (l1·rI·O,I1·r3·1) and (l1·rI·
0, l1·r4·0) joined by a choice arc,l as shown in Figure 12.1. Note that
there are c: transitions in this schema.

The transition from (00, rI) to (10, rI) leads to an oscillation through
states rI, r2, r3, r4, rI, r2, Now the question arises whether the en
try in (10, r3) is there only because it is necessary for the oscillation, or
is it possible to reach this state by changing input X 2 , while the flow
table is in stable state r3 with input 11? (In Figure 12.1 we assume
that there is no transition from (11, r3) to (10, r3).) There is no way
of answering such questions in the flow table representation, whereas
these ambiguities do not arise in our behavior schema representation,
since each permitted transition has an explicit representation; hence
we prefer our definition for fundamental-mode specifications.

A fundamental-mode behavior schema is defined as a schema A = (X, R,
0, Q, qb T, 'ljJ, C), where qI is static, and each dynamic state has only
internal-state transitions. This satisfies the fundamental-mode requirement
that inputs can change only if the present state is stable.

12.3 Fundamental-Mode Network Behaviors

In this section we describe a method for finding behaviors of networks
operated in fundamental mode.

Let N = ({O, I}, X, S, 0,£, F) be a network with n inputs and m state
variables. Note that we have added the set 0 of output variables of Nand
the corresponding output vector 0 = 01. ... , Op. Each output is a Boolean
function of the input excitations and state variables, as specified by the
vector F of circuit equations. Let Ra be a race relation for N that specifies
a set of possible next states for a given unstable state. The exact nature of
this relation is not important here, as long its outcome is well defined. In all
of our examples we use the GMW relation for convenience. We remind the
reader of the difficulty with livelock representation: transient cycles must
be removed from consideration.

1 We point out that, if we change the flow table slightly by replacing the T3, 0
entry in state (H, Tt) with T3, 1, this situation can be modeled by transitions
(OO·Tl·O, H·Tl·I) and (OO·Tl·O, U·Tl·O) joined by a choice are, and the additional
transitions (U·Tl·I, U·T3·I) and (H·Tl·O, U·T4·0).

Section 12.3. Fundamental-Mode Network Behaviors 247

The fundamental-mode relation Rfm of a network N on the set {a, 1 }n+m
of all the total states of N is defined as follows:

(a·b)Rfm(a'.b')

if and only if

(a·b) =I (a'.b'), bRab', and either a = a' or b = b'.

Thus two states are related by Rfm if either the first is stable and the
second differs from it only in the input vector, or the first is unstable and
the second differs from it only in the state vector.

A fundamental-mode behavior B fm of a network N with fundamental
mode relation Rfm is a behavior defined as follows:

Bfm = (X, n,o, Q,q!, T,'t/J), where

• X = (X!, ... ,Xn)j

• n = {a, l}m, where the internal state has the form (b1 , •.• ,bm), and
the binary value bi is associated with the network state variable 8i,

for i = 1, ... , mj

• 0= (01, ... ,Op)j

• Q = {a, l}n x{O, l}m, where the total state has the form ((a!, . .. ,an),
(b1 , ... , bm)), with ai associated with Xi for i = 1, ... , n, and bj

associated with 8j, for j = 1, ... ,mj

• q1 E Q is a stable initial state of N j

• T=Rfmj

• 't/J: {O,l}n x {a, l}m -+ {a, I}P is the circuit output function.

Note that, when the fundamental-mode behavior of a network is used to
realize a specification behavior, one of its stable states is chosen as the
initial state. Thus we associate with a network as many behaviors as there
are different stable states.

Example 7

To illustrate fundamental-mode behaviors, consider the NOR latch in
the gate-state model. From the excitation functions 8 1 = Xl + 82 and
8 2 = X2 + 81, we obtain the Ra relations shown in Figure 12.2. Using
these relations (and some routine work) we construct the behavior for
the latch as shown in Table 12.7. We assume that both gate outputs
are also external outputs. The table is divided into three parts. First
we list the five stable states. According to the fundamental-mode op
eration [66, 67, 93, 135], we are allowed to change any set of inputs

248

ql
q2
q3
q4
q5
q6
q7
qs
q9
qIO

ql1
ql2
ql3

q14
ql5
q16

Chapter 12. Types of Behaviors

11 11

o~Q~o 01/1"10
"S 00

(a) Roo (b) Rl1

11 11

/1" /1" 0\ /0 0' /0
QO OQ

(c) Rol (d) RIO

FIGURE 12.2. Ra relations for the NOR latch.

in any stable state. Dashed entries indicate that there are no transi
tions with the corresponding tags. Next, we list the unstable states
reachable from the stable states. The successors of unstable states are
determined by the Rim relation-here based on the GMW relation.
Finally, we list the unstable states that are not reachable from the
stable states. Since we assume that the network always starts in a
stable state, these three states can be omitted.

TABLE 12.7. Transition table for NOR latch.

00·01·01 q4 q9 ql2 - - -
00·10·10 ql1 q3 q13 - - -
01·10·10 ql3 q2 ql1 - - -
10·01·01 ql ql2 q9 - - -
11·00·00 qs qIO q6 - - -
00·00·00 - - - q2 ql q7
00·11·11 - - - ql q2 q6
01·00·00 - - - q3 - -
01·01·01 - - - - qs -
10·00·00 - - - - q4 -
10·10·10 - - - qIO - -
11·01·01 - - - - q5 -
11·10·10 - - - q5 - -
01·11·11 - - - q9 q3 qs
10·11·11 - - - q4 ql1 qIO
11·11·11 - - - ql2 q13 q5

Section 12.4. Direct Behaviors 249

12.4 Direct Behaviors

In a many situations we are interested in specifying only the outcome of
a transition but not in the many ways by which a state in the outcome
can be reached. In such cases it is sufficient to consider a restricted class of
fundamental-mode behaviors in which emphasis is placed on the outcome
of a transition, and details concerning transient states are suppressed. The
resulting concise model is useful for describing many practical circuits.

A behavior is called direct if it is a fundamental-mode behavior and, for
every dynamic state q, in every transition (q, q'), the state q' is static. Note
that, in a fundamental-mode behavior, all transitions from a dynamic state
must be internal-state transitions. Thus, in a direct behavior we specify the
"final destination" the behavior should reach. Of course, a circuit for which
a direct behavior is computed may go through a number of intermediate
states before reaching a circuit state corresponding to the final destination.
This, however, is not taken into account in a direct-behavior description of
the circuit.

Example 8

In the behavior of Figure 12.3, two output changes (constituting an
output pulse) are produced for every input change. This behavior is
fundamental-mode, but it is not direct.

0·0·0
{O}

0·1·1

{O}

{X}
{O}

1·0·0

FIGURE 12.3. A behavior that is not direct.

Proposition 12.1 If B is a direct implementation behavior, then it is
live lock-free for every specification behavior A.

Proof: There are no outgoing c transitions from a static state. Hence, every
path spelling c must begin in a dynamic state. Since each dynamic state
leads directly to a static state, a direct behavior can have only c paths of
length one. Since no cycle in a behavior can have length one, there can be
no cycles spelling c. Thus a direct behavior is livelock-free with respect to
every specification. 0

250 Chapter 12. Types of Behaviors

We now describe a construction that permits us to find the direct be
havior of a network N. We assume that its fundamental-mode behavior
Bfm = (X, R, 0, Q, ql, T, 'If;) has already been constructed.

An unstable state q = a·1' of N is called fresh if there exists an input
vector a' such that a'·r is a stable state. Thus a state is fresh if it is unstable
and can be reached from a stable state in one step of the relation Rfm.

We assume here that we are interested in designing a class of circuits
in which an input change applied to a stable state results in a "reliable"
transition to another stable state. Thus oscillations are not permitted. Fur
thermore, we want to ensure that no hazards are present in any of the
circuit outputs; otherwise, other circuits using the outputs of the circuit
being designed might reach incorrect states. A state q = a·1' is stabilizing if
out(Ra(1')) contains only stable states. A state q = a·1' is Oi-haza1'd-J1'ee if,
in any Ra-sequence of states leading from l' to a state 1" in out(Ra(1')), the
output variable Oi changes at most once. A state q is output-haza1'd-J1'ee if
it is Oi-hazard-free for every Oi E O.

FIGURE 12.4. Direct behavior for the NOR latch.

Section 12.5. Serial Behaviors 251

The direct behavior of network N with fundamental mode behavior B fm
is Bdir = (X,n,O,Q,ql,'LLir,'lf;), where 'LLir S;;; (Q X Q) is defined as
follows: If q = a·r is stable, qRfmq', and q' is both stabilizing and output
hazard-free, then (q, q') E 'LLir and (q', q") E 'LLir for all q" E out(Rfm(q')).
No other pairs of states are related.

Example 9

We illustrate the concept of direct behavior for the NOR latch with
the fundamental-mode behavior of Table 12.7. The direct behavior
is shown in Figure 12.4. Since the outputs are the same as the state
variables, they are not shown. Static states are shown shaded. Note
that a double output change occurs in the transition from state 10·10
to state 10·01. This does not imply that the two outputs change
simultaneously in the network; in fact, from the relation RIO it is clear
that O2 must change before 0 1 , No transition is included for state
11·00 under {Xl, X 2 } because the resulting state is not stabilizing.

12.5 Serial Behaviors

The types of behaviors that we have defined above are rather general;
in many practical cases the model can be even simpler than the direct
behaviors. In this section we study a class of restricted direct behaviors,
called "serial behaviors." These behaviors have some desirable properties
with respect to deadlock, and have simple representations.

A behavior is serial if it is direct and satisfies the following three addi
tional conditions:

1. It has no X ° transitions;

2. For each X' ~ X and for each state q, there is at most one transition
leaving q with tag X';

3. Each dynamic state has exactly one outgoing transition.

Consider the possible transitions in a serial behavior. The initial state is
static and can only have input or mixed transitions of type X. Consider a
transition (q, q') from any static state. If q' is static, it also can only have
X transitions. On the other hand, if q' is dynamic, we must have exactly
one (internal-state) transition, say (q', q"), because of Condition 3. This
transition (q', q") may be an c transition or an ° transition. In both cases
q" is static, because the behavior is direct. In summary, we can describe
the behavior as follows. It starts in a static state. In every static state,
the environment may supply an input change. There is exactly one input
transition corresponding to this input change. The circuit then responds
by either "doing nothing" (if the state reached by the transition is static)

252 Chapter 12. Types of Behaviors

or by moving to a new static state with or without an output change (if the
state reached is dynamic). Note that "doing nothing" permits the circuit
to change its internal state.

Example 10

The behavior in Figure 12.5 has one input, two state variables and
two outputs. In the initial state 0·00·00, the input may change. The
behavior then randomly selects one of the two outputs and changes
it. A second input change may then occur, causing the second output
to change. No further actions are permitted in state 0·11·11. This
behavior is direct, but it is not serial.

1·01·01
{X}

0·01·01

FIGURE 12.5. A behavior that is direct but not serial.

Example 11

The direct behavior of the latch of Figure 12.4 is serial provided the
input {X1 ,X2 } is not used in state 11·00.

Proposition 12.2 Let B be a serial implementation behavior, and A a
specification behavior. If B has the capability of A, then it is deadlock-free
forA.

Proof: We claim that at most two states can be reached in B by any word
w. Furthermore, we claim that, if two distinct states of B are reached by
the same word w, then one of them, say q, is dynamic, and the other, called
q', is static; furthermore, there is a transition (q, q') with tag c. We prove
our claim by induction on the length Iwl of w.

If Iwl = 0, the only state reached by w is the initial state ql. Hence our
claim holds.

Suppose that only one state q can be reached by w, and consider wcr. If
q is static, then cr must be a subset of X, because B has no X 0 transi
tions. Only one state can be reached by wcr, because of Condition 2. If q
is dynamic, then cr must be a subset of 0, because of Condition 3. In case

Section 12.5. Serial Behaviors 253

a is nonempty, again, only one state can be reached by wa. In case a is
c, two states can be reached by wa: q, and the static state q' that is the
destination of the single transition from q. Hence the induction step goes
through, if only one state can be reached by w.

Suppose now that both q and q' can be reached by wand satisfy the
inductive assumption, with q being dynamic. Consider wa. Since the single
transition from the dynamic state q is already used to get to static state
q', the only state reachable by wa is the one that can be reached from q',
and a must necessarily be a subset of X. Therefore the induction step goes
through in this case also.

Suppose now that deadlock occurs for the word w. If only one state is
reached in B by w, then that state must be terminal, and the state reached
in A by w must be nonterminal. Thus there is some word wa, a ~ 0, in
L(A), but there is no such word in L(B). Therefore B does not have the
capability of A, and we have a contradiction.

In case two states q and q' can be reached by w, it follows from the claims
that LO(q) = LO(q') = {c}. Thus both states are terminal, and the same
argument applies as above. 0

Suppose B is a serial behavior realizing some specification A. It is possible
to remove the c transitions without affecting L(B) and without introducing
deadlock or livelock by the following process. If q is static, (q, q') is an input
transition, and (q', q") is an c transition, remove both of these transitions
from B and add the transition (q, q"). Clearly, such a construction preserves
L(B). Since the resulting behavior is still serial, it is also livelock-free and
deadlock-free. Therefore, the modified B with c transitions removed still
realizes A. Note that c-free serial behaviors are deterministic.

Let B = (X, R, 0, Q, ql, T, 'IjJ) be a serial c-free behavior. A word of L(B)
is said to be complete if it leads from the initial state to a static state. In
serial behaviors we can simplify the notation by eliminating dynamic states
entirely. The complete-word behavior of a serial behavior B is defined as
follows:

iJ = (X, R, 0, Qstatic, ql, T, -J;),
where

• if (q,q') E T and q' is static, then (q,q') E T;

• if (q,q') E T and q' is dynamic, and if (q',q") E T, then (q,q") E T.

• There are no other transitions in T.

• -J; is the restriction of'IjJ to Qstatic'

It is clear that the original c-free serial behavior can be uniquely recon
structed from a complete-word behavior, by reversing the construction, i.e.,
by introducing a dynamic state whenever there is an XO transition.

254 Chapter 12. Types of Behaviors

FIGURE 12.6. Complete-word behavior of NOR latch.

Example 12

The complete-word behavior corresponding to the direct behavior of
Figure 12.4 for the latch is shown in Figure 12.6. It is assumed that
the input {XI,X2 } is not used in state 11·00.

Chapter 13

Limitations of Up-Bounded
Delay Models
In this chapter we study the behavior of the so-called delay-insensitive
(DI) circuits in response to sequences of input changes. The correctness
of the behaviors of such circuits is independent of the relative delays in
their components and wires. It will be shown that the class of behaviors
realizable by delay-insensitive circuits is quite restricted.

The basic result concerning fundamental-mode circuits dates from 1959
and is due to Unger [134, 135]. Unger considered circuits with single input
changes. He defined an "essential hazard" in a flow table as follows: Suppose
a circuit is in a stable state Q,·b and the input changes first to a, then back
to a and again to a. The circuit has an essential hazard if the state reached
after the first input change is different from that reached after three input
changes. Unger showed that no flow table with an essential hazard can
have a delay-insensitive realization. In this chapter, we give a new proof of
Unger's theorem. Our proof is based on the equivalence of the results of
ternary simulation and GMW analysis in the input-, gate-, and wire-state
model. This proof originally appeared in [122]; see also [124].

In modern design approaches, asynchronous circuits are not operated in
fundamental mode. Several such approaches use some sort of "input/output
mode" [18, 19, 44, 103]. We will not be defining any precise notion of
input/output mode, but will later use one very simple version of this mode.
Roughly speaking, in this mode the environment does not have to wait until
the network has stabilized completely to give the next input change; a new
input can be applied as soon as the network has given an appropriate
output response. Thus the input/output mode is more "demanding" than
fundamental mode. It is not surprising, therefore, that even fewer behaviors
have delay-insensitive realizations when operated in this mode.

Some results about the limitations of the input/output mode circuits
seem to have been "folk theorems" for quite a long time. For example,
one such folk theorem is that the C-ELEMENT has no delay-insensitive
input/output-mode realization. To the best of our knowledge the first proof
of this was given in [19]. Here we present a somewhat more general definition
of input/output-mode operation and a somewhat more general version of
that result. We also show that it is impossible to design a delay-insensitive

256 Chapter 13. Limitations of Up-Bounded Delay Models

arbiter, thus providing a new proof of a result of [2]. The results concern
ing the input/output mode are also based on the equivalence of ternary
simulation and GMW analysis.

For some related work concerning other limitations of delay-insensitive
circuits, we refer the reader to [90]. That work deals with a different set of
components rather than gates.

13.1 Delay-Insensitivity in Fundamental Mode

Delay-insensitive circuits are highly desirable, since they are very robust
with respect to manufacturing variations, changes in operating conditions,
etc. In this section we define delay-insensitive network behaviors in funda
mental mode.

In a delay-insensitive network, each gate and wire must have a state
variable associated with it. Thus every output variable coincides with some
state variable. For this reason, it is not possible to have an input transition
in which the output also changes, and every letter associated with an input
transition is a subset of X.

A transition of a network N, from a stable state a·b under new input
vector a, is said to be delay-insensitive in fundamental mode if and only if
out(Ra(b)) contains a single state, where out(Ra(b)) is the outcome of the
GMW analysis in the gate-and-wire-delay model. In terms of our definitions
in the previous chapter, a delay-insensitive fundamental-mode network will
be represented by a serial behavior, or the corresponding complete-word
behavior.

In general, not all of the transitions of a network are delay-insensitive. To
illustrate this-and also to give an example of a nontrivial delay-insensitive
behavior-we introduce the circuit of Figure 13.1. It is clear from Chap
ter 7 that ternary simulation is the correct tool for determining whether a
transition is delay-insensitive. In fact, ternary simulation of an input- and
feedback-state model of the circuit is sufficient. We choose to carry out the
reduction procedure using {Y3, Y7} as the feedback-vertex set. This yields

FIGURE 13.1. Gate circuit C with nontrivial delay-insensitive behavior.

Section 13.1. Delay-Insensitivity in Fundamental Mode 257

FIGURE 13.2. Reduced network corresponding to circuit C.

the reduced network of Figure 13.2 with excitation functions Xl, X 2 and

We summarize the delay-insensitive transitions of a network in the form
of a serial behavior. The complete-word behavior for the serial behavior of
the network of Figure 13.2 is shown in Figure 13.3. Since all the states in
volved are stable, and there is a state variable Xi associated with each input
Xi, the first two components of the total state are identical to the second
two components. For this reason, we omit the input excitation part X 1X 2

of total state X 1X 2 ·X1X2Y3Y7, and show only the internal state X1X2Y3Y7.

Since we will not be concerned with outputs for a while, we do not show
them either. This is equivalent to assuming that 0 is empty. Although the
transition tags on the edges are redundant, we show the set of inputs that
change, for convenience.

In Figure 13.3 we show all the transitions that are delay-insensitive for
our example network when it is started in stable state 0011. Note that
no transition caused by a multiple-input change is delay-insensitive in this
example. It is also interesting to note that, for any state reachable from
the initial state for which an input change a is allowed, any odd number
f . {Xd

o a's takes the machme to the same state. For example, 0011 ---+ 1001,

1001 ~ 0001, and 0001 ~ 1001. We will show that this is not a coin
cidence but a fundamental property of delay-insensitive networks.

FIGURE 13.3. Delay-insensitive complete-word behavior.

258 Chapter 13. Limitations of Up-Bounded Delay Models

13.2 Composite Functions

Before deriving certain properties that are common to all delay-insensitive
networks, we introduce a technique that significantly simplifies the proofs
of our results. When analyzing synchronous circuits it is quite common to
use a method called "unfolding." The basic idea is to replicate the com
binational part of the circuit a number of times instead of feeding back
the output values; we then iteratively compute the next state. For our ap
plication, we do the unfolding using ternary extensions of the excitation
functions rather than the binary functions. The idea is to form a ternary
function that directly computes the results of Algorithm A and Algorithm
B. (Since the network always starts in a stable total state in fundamental
mode, Algorithm A is indeed applicable.) Since Algorithms A and B require
at most m iterations, we only need to unfold the circuit m times.

More formally, given a ternary network N, define its composite function
F : {a, <1>, l}n+m -+ {O, <1>, l}m as F(X·8) = s(m)(X.8) , where S(h) is
defined recursively as follows:

(h) _ { 8
S (X·8) - S(X.S(h-1)(X.8))

if h = 0,
if h ~ 1.

To illustrate this idea, consider the network of Figure 13.4, where Sl = X
and S2 = 81 (81 + 82). Since the network has two state variables, we unfold
it into two levels. This yields

S (O) - 8
1 - 1,

S (O) - 8
2 - 2,

S(1) - X 1 - ,

S(l) -() 2 = 81 81 + 82 ,

S(2) -X
1 - ,

Thus, for example, F 2(X, 8) = S~2) above.
From the definition of the composite function, it follows that it is mono

tonic, i.e., if a·b I;;; c·d then F(a·b) I;;; F(c·d). Furthermore, it is trivial to
show that if a·b is a stable state of N, i.e., if b = S(a·b), then F(a·b) = b.
Finally, assume that network N is started in stable total state a·b and the

FIGURE 13.4. Network N.

Section 13.3. Main Theorem for Fundamental Mode 259

input is changed to a. Let SA and t B be the results of Algorithms A and
B for this input change, respectively, and let a = lub{ a, a}. Then, by the
definition of F and Propositions 7.3 and 7.4, it can be shown that

(i) F(a.b) = b
(ii) F(a·b) = sA

(iii) F(a.sA)=sA
(iv) F(a·sA) = t B

(v) F(a·t B) = t B

(stability)
(result of Alg. A)
(stability)
(result of Alg. B)
(stability)

For example, if Sh denotes the hth state of the network reached during
algorithm A, establishing property (ii) is accomplished by showing that
S(h)(a.b) = sh for 0 ~ h ~ A.

13.3 Main Theorem for Fundamental Mode

We are now ready to derive some (quite restrictive) properties that are
common to all delay-insensitive circuits. Our main result is summarized in
the following theorem:

Theorem 13.1 Let N be any network and let a·b be a stable state of N.
If (a.b, a·b), and (a.b, a.b) are delay-insensitive tmnsitions of N, then so is
the tmnsition from a·b under input a, and the result of this tmnsition is
again the state a·b. See Figure 13.5. Furthermore, if some vertex j has the
same value in state b as in state b, i.e., bj = bj = a, and there is no static
hazard on this vertex during this tmnsition, then the vertex will have the
same value in b, i.e., bj = a.

0'

0'

FIGURE 13.5. Illustrating the main theorem.

The theorem states that any odd number of changes of the same set of
inputs must leave a delay-insensitive network in the same state. further
more, suppose we only consider transitions that are free of static hazards;
if an output does not change value for some input change 0', then it will
not change for any sequence of a's.

An interesting special case of the theorem occurs when the network has
only one input. From the theorem it follows that the state graph showing all
the delay-insensitive transitions for such a network can have at most three
states, assuming that we consider only the component of the state graph

260 Chapter 13. Limitations of Up-Bounded Delay Models

that is reachable from some initial state. Since the value of the input vertex
(stored in the input-delay variable) is part of the state of the network, any
such graph must have at least two states. Hence, it is easy to see that the
only possible graphs are the ones shown in Figure 13.6. From this we can
conclude, for example, that there does not exist a delay-insensitive divide
by-2 counter such as the one discussed in Chapter 1. In fact, there does not
exist a delay-insensitive mod-k counter for any k > 1.

{Xd {Xd

o
{Xd {Xd

(a) (b)

FIGURE 13.6. Delay-insensitive transitions for one-input circuit.

We prove the theorem with the aid of a series of lemmas. The following
assumptions are used for Lemmas 13.1-13.3 below. Let N be the ternary
network obtained from any Boolean network N. Assume N is operated ac
cording to the fundamental-mode assumption. Let F denote the composite
network functions as defined above. Furthermore, assume that the input
sequence is given by aO, a1, a2 , a3 , ... = ii, a, ii, a, ... , i.e., that the input is
cycled between the binary input vectors ii and a. Assume that ii·bo is a
stable total state of N. Let b i,i+1 denote the result of Algorithm A for
the transition from the stable state ai·bi when the input changes to ai+l.
Similarly, let bi+l denote the result of Algorithm B for the same transition.
Note that we do not assume that b i,i+1 and bi+l are binary.

The following lemma is the key lemma to all subsequent results. The
lemma states that if, at some point, a vertex with a binary value does not
react to an input change, it will never react thereafter.

Lemma 13.1 If there exists an integer k 2: 1 such that b;-l = b7-1,k =

b; = 0: E {O,1}, then bj-l,i = b; = 0: for all i 2: k.

Proof: We prove this by induction on i. The basis, i = k, holds trivially by
the assumptions in the lemma. Thus assume inductively that br1,i = b; =

0: for some i 2: k. First note that lub{ ai-I, ai } = lub{ ai, ai+l} = lub{ a, a} =
a. By the monotonicity of Algorithm B (Proposition 7.4), it follows that
bi-1,i ;;! b i and hence, by the monotonicity of the composite network
function, that Ff(a.bi-1,i);;! Ff(a.bi). By Property (iii) of the composite
network functions, FA(a.bi-1,i) = bi-1,i and, in particular, FJ(a.bi-1,i) =
b~-l,i which is equal to 0: by the induction hypothesis. Hence, 0: = b~-l,i ;;!

b; = Ff(a.bi), and thus Ff(a.bi) = 0:. Furthermore, by Property (ii) of

Section 13.3. Main Theorem for Fundamental Mode 261

the composite network functions, it follows that b~,i+1 = F1(a.bi) and

hence b~,i+1 = Q. In other words, the value of vertex j after Algorithm A
for the input change ai to ai+l will be Q. Finally, by the monotonicity of
Algorithm B (Proposition 7.4), it follows immediately that b i,i+1 ;;;:! b i+1
and therefore that b~+1 = Q. Hence, the induction step goes through and
the lemma follows. 0

From Lemma 13.1 we get the following corollary.

Corollary 13.1 (Monotonicity for change sequences) For all k ~ 1,

bk-1,k ;;;:! b k,k+1.

Proof: It suffices to show that whenever bJ-l,k is binary, then bJ,k+1 has

the same value. Suppose bJ-l,k = Q E {a, I} . From the monotonicity

of Algorithm A (Proposition 7.1 and proof of Lemma 7.1) and the mono
tonicity of Algorithm B (Proposition 7.4), it follows that b1-1 = b1 = Q.

Hence, b1-1 = bJ-l,k = b1 = Q E {a, I} and Lemma 13.1 applies. Thus,
b i- 1 i b i £ all' > k d' t' 1 b k k+l 0 j , = j = Q or z _ an, In par ICU ar, / = Q.

The following two lemmas give conditions on the values of a vertex after
an odd and an even number of input changes, respectively. The first lemma
states that if a vertex has a binary value after one input change, then it has
the same value after any odd number of input changes. The second lemma
is similar, but for an even number of changes.

Lemma 13.2 lfb} = Q E {a, I}, then b~i-l = Q for all i ~ 1.

Proof: We show this by induction on i. The basis (i = 1) holds trivially
by the assumption in the lemma. Thus assume inductively that b~i-l = Q

for some i ~ 1. Since i ~ 1, and thus 2i - 2 ~ 0, the state b 2i- 2,2i-l is
well defined. By Property (iv) of the composite network function, it fol
lows that b 2i- 1 = F(a2i-l.b2i-2,2i-l) and, in particular, that b~i-l =

Fj(a2i-l.b2i-2,2i-l). By the same arguments, b~i+l = Fj(a2i+1.b2i,2i+1).

However, by Corollary 13.1 it follows that b 2i- 2,2i-l ;;;:! b 2i- 1,2i ;;;;) b 2i,2i+l.
Also, by assumption, a 2i- 1 = a 2i+1 = a and thus a2i-l·b2i-2,2i-l ;;;:!
a2i+1·b2i ,2i+1. This, together with the monotonicity of F, shows that

F(a2i-l.b2i-2,2i-l) ;;;:! F(a2i+1.b2i,2i+1).

Thus,

b~i-l = Fj(a2i-l.b2i-2,2i-l) ;;;;) Fj(a2i+1.b2i,2i+1) = b~i+1,

and since b~i-l = Q by the induction hypothesis, it follows that b~i+l = Q

and the induction step goes through. 0

Lemma 13.3 lfb~ = a E {a, I}, then b~i = Q for all i ~ 1 .

262 Chapter 13. Limitations of Up-Bounded Delay Models

Proof: The arguments are similar to those in the proof of Lemma 13.2.0

We are now in a position to prove Theorem 13.1.

Proof of Theorem 13.1: There are two cases to consider. If b = b, the
theorem follows immediately. Hence consider the case where b i= b. The
dotted edge in Figure 13.5 illustrates this case. Now consider the ternary
simulation of the transition caused by the input changing from a to a
when the network is started in stable state a·b. Since this transition is
assumed to be delay-insensitive, out(Ra(b)) contains a single state. In view
of Theorem 7.2, it therefore follows that the ternary simulation of this
transition must yield b E {O, l}m+n. Hence, Lemma 13.2 applies for each
vertex of the circuit establishing the first claim of the theorem.

For the second half of the theorem, consider again the first transition,
i.e., the case where the network is started in stable state a·b and the in
put changes to a. First, using the same arguments as above, the ternary
simulation of the transition yields a binary state. In particular, bj = 0: E
{O,l}m+n. Second, by Theorem 7.4 and the fact that the transition is
hazard-free, the value on vertex j after Algorithm A is 0: too. This, to
gether with Lemma 13.1, implies that vertex j remains 0: for any sequence
of input changes between a and a, and in particular that bj = 0:. 0

Using the results above, it is easy to verify that the following six types of
vertex behaviors are the only ones possible for a vertex in a delay-insensitive
network when the input alternates between the two binary input vectors a
and a:

1. The vertex never reacts.

2. The vertex changes value on the first input change and keeps this
value from then on.

x

°
FIGURE 13.7. Gate circuit G.

Section 13.4. Delay-Insensitivity in Input/Output Mode 263

3. The vertex changes value for every input change.

4. The vertex keeps the same value, although there may be a short pulse
during every input change.

5. The vertex keeps the same value, although there may be a short pulse
during the first input change.

6. The vertex keeps the same value for the first input change, except
that there may be a short pulse during this change. For the remaining
changes, the vertex changes value for every input change.

Note that only behaviors 1-3 are normally acceptable for an output vertex.
The gate circuit G of Figure 13.7 contains gates of all the above types if

it is started in stable state X = 0, Y = Yl ... Y7 = 1010100, and the input
oscillates between 1 and o. In particular, gate 1 is of type 1, gates 2 and 3
are of type 2, gate 4 is of type 5, gate 5 is of type 3, gate 6 is of type 4,
and finally gate 7 is of type 6.

13.4 Delay-Insensitivity in Input/Output Mode

In this section, we show that delay-insensitive networks operated in in
put/output mode are even more restricted than those in fundamental mode.

13.4-1 The Main Lemma

We will show that the very simple behavior of Figure 13.8 does not have a
delay-insensitive realization operated in the input/output mode, although
it has a delay-insensitive realization operated in the fundamental mode. To
prove this result, it suffices to consider a very limited class of behaviors.

Recall that a behavior is serial if it is direct, has no XO transitions, has at
most one transition with tag X' for each subset X' of X, and each dynamic
state has at most one outgoing transition. Furthermore, we may assume
that it has no e transitions, i.e., that it is deterministic. For the purposes of
this section, we restrict such behaviors even further. A simple deterministic
behavior is a deterministic serial behavior A = (X, R, 0, Q, ql, T, 1/J), with
one additional condition: At most one external variable changes in each
transition.

We need to define how a network N in the input-, gate-, and wire-state
model is operated in the input/output mode with respect to a specification
A. Assume that we have performed the appropriate projection of N to
A, i.e., that N has the input vector X and the output vector O. The
network must have an initial state q~ representing ql. Rather than finding
the general behavior under all possible input sequences-as we have done
for fundamental mode-we will attempt to simulate the specification by

264 Chapter 13. Limitations of Up-Bounded Delay Models

applying to the network only the relevant input sequences. We define the
input/output-mode behavior of N to be B' = (X, R, 0, Q', q~, T', 'lj;'), where
R' ~ {O,I}m and T' will be defined later.

{O} {X}

FIGURE 13.8. Behavior AI.

We begin by an example that illustrates the main ideas and also points
out the differences between the fundamental mode and the input/output
mode. Consider the behavior Al of Figure 13.8. The simulation of Al by
a network N is illustrated in Figure 13.9. In the fundamental mode, the
initial state of a network N realizing Al must be stable. No such condition
is imposed on N if it is operated in the input/output mode. Thus N could
start in any state q~ = O·b such that 'lj;'(q~) = O. Note, however, that any
state q' = O'c with c E reach(Ro(b)) would also have to have 'lj;'(q') = O.
This has to hold because the network output is not permitted to change,
if the environment chooses not to apply any input changes for a while.

It follows that every state c E reach(Ro(b)) must have an input transition
to represent the first transition of AI. The state reached by this transition
must be of the form l·d with 'lj;'(I·d) = O. Observe that the internal state
d may differ from c: Since O·c need not be stable, it is conceivable that the
internal state can change at the instant the input change occurs. However,
the output cannot change instantly because the output wire has a delay
associated with it.

Every network state l·d as above must be unstable, because the speci
fication now expects an output change. Furthermore, in any RI-sequence

FIGURE 13.9. Simulation of Al by a network.

Section 13.4. Delay-Insensitivity in Input/Output Mode 265

starting in d and terminating in some state in out(R 1 (d)), the output must
change exactly once. In such a sequence, every state with the old output
value 0 still represents state l·rl·O of the specification, and every state with
the new output value 1 represents 1·r2·1.

Consider now any state e that is reachable from d by an R1-sequence and
that has ~'(l·e) = 1. In fundamental mode, the environment would have to
wait until a stable state is reached. There is no such condition here, and the
input is allowed to change again as soon as the new output value appears.
Let 0-1 be the state immediately after the input changej then ~'(O·J) = 1.

Finally, we must ensure that the output does not change again. Thus,
every state 9 reachable from f by an Ro-sequence must have ~'(O·g) = 1.

The properties of any network N realizing Al are now summarized for
convenience:

P1 If q~ = O·b, every state c (including b) reachable by an Ro-sequence
from b must have ~'(O·c) = O.

P2 The input is allowed to change in any state O·c, defined as above, and
the state l·d reached after this input change must be unstable and
must satisfy ~'(l·d) = O.

P3 In every R1-sequence starting with d and ending with a state in out(Rb
d), 0 changes exactly once.

P4 Let e be any state that can be reached by an R1-sequence from d and
that has ~'(l, e) = 1. Then the input is allowed to change again. The
state 0-1 so reached must have ~'(O, J) = 1.

P5 Every state 9 reached from f by an Ro-sequence must have ~'(O·g) = 1.

In general, we define a set Q' of states of N that is used in the simula
tion of a simple deterministic behavior Aj the definition is by induction. We
also define inductively a function ¢ : Q -- P(Q')j this function specifies,
for each q, the set ¢(q) of all the states of the network that have to behave
like q.

Induction step: Suppose q' = a·b E Q', and q' E ¢(q), where q = a·T.

• If q is static, we have two cases:

1. If p' = a·b and bRab, add p' to Q' and to ¢(q).

2. If q is static, p = ii·r, and (q,p) E T, let b be any state Ra-related
to bin N, and let p' = ii·b. Add p' to Q' and to ¢(p).

266 Chapter 13. Limitations of Up-Bounded Delay Models

• If q is dynamic, then there is a unique transition (q,p) in which one
output variable changes. If p' = a.b, bRab, we have the following two
cases:

1. If 'IjJ'(p') ='IjJ(p), add p' to Q' and to ¢(p).

2. If 'IjJ'(p'):f:. 'IjJ(p), then N is rejected, since it is unable to realize
A.

This construction is continued until N is rejected as above, or Q' cannot
be enlarged any further.

Assuming that N has not been rejected, we are now in a position to state
the basic rule for the input/output mode of operation: The environment
may change the input only if the network N is in a state q' representing
a static state of the behavior A, i.e., if q' E ¢(q) and q is static. More
precisely, we define the transition set T' of B':

• If q' E ¢(q), q is dynamic, and q' = a·b, then (q',p') E T' for all
p' = a·b, where bRab.

• If q' E ¢(q), q is static, q' = a·b, q = a·r, p = a·r and (q,p) is an
allowed input transition in A, then (q',p') E T', where p' = a·b and
bRab.

x

FIGURE 13.10. Network CI3.1O.

We illustrate the construction using the network I of Figure 13.10. First,
we show that this network operated in the fundamental mode realizes be
havior AI. We use stable state X'S I S 2S 3 = X'SI S20 = 0·000 as the initial
state. If the input changes to 1, we have the following sequence of states:

{X} e {O} e
0·000 --t 1·000 --t 1·100 --t 1·101 --t 1·111.

The last state reached is stable. Now the second input change can be ap
plied; this results in the sequence

{X} e
1·111 --t 0·111 --t 0·011.

Thus we see that the specification behavior Al is indeed implemented.

IFormally, in the input-, gate-, and wire-state model, we should have one delay
for the input X and another for the wire from the input delay to the OR gate. One
can easily verify that the extra delay would not change any of the conclusions
that are about to be made.

Section 13.4. Delay-Insensitivity in Input/Output Mode 267

Now consider the input/output mode. First, we have Q' = {O·OOO},
and 0·000 E ¢(O·rl·O). Next, since (O·rl·O,l·rl·O) E T, we have Q' =
{O·OOO, 1·000}, and 1·000 E ¢(l·rl·O). We then add 1·100, HOI, and 1·111
to Q'. We also add 1·100 to ¢(1·rl·O), and 1·101 and 1·111 to ¢(1·r2·1). The
input is permitted to change in states 1·101 and 1·111, since they represent
the static state 1·r2·1. Hence we also add the states 0·101 and 0·111, to Q'
and to ¢(0·r2·1). From state 0·101, we can reach 0·001 and hence 0·000.
Here the output is incorrect. Hence G13.lO fails to realize AI.

We are now in a position to prove that there does not exist any network
that realizes Al when operated in the input/output mode.

Lemma 13.4 The behavior Al does not have a DI input/output-mode re
alization.

Proof: If gate network N with initial state q~ is a delay-insensitive in
put/output realization of behavior AI, then it must have the properties
PI - P5 listed above.

We show that if a delay-insensitive input/output-mode realization (N, q~)
of Al existed, then we could construct a network G13.11 that would have
contradictory properties.

o
N

FIGURE 13.11. Network CI3.11'

Consider the network G13.11 that uses N as shown in Figure 13.11. Notice
that a delay element is introduced for every wire. 2 Since Network N also
contains a delay element for each wire, we have an input-, gate-, and wire
state network model for GI3 .11 . Let s' denote the vector of internal state
variables of N, except for the output variable, which is denoted by O.

The initial state of GI3 .11 is)(·ss'O =)('SIS2S3XS'O = O·lOOObO. We
then have the following Ro-sequence:

1000bO --+ OOOOb'O --+ 0010cO --+ 0011dO.

Note that, in all the steps above, the output 0 of N has been stable, as
guaranteed by conditions PI and P2 . Condition P2 also requires state l·dO

2 As before we omit the input delay since it has no effect on the conclusions
we will draw.

268 Chapter 13. Limitations of Up-Bounded Delay Models

of N to be unstable. By P3 , N eventually reaches a state 1·e1, for some
vector e. Thus we must have an Ro-sequence

OOlldO --+ * OOlle1.

From P4 and P5 it now follows that 0 cannot change any more, even if X
becomes 0 again; this has to hold for all possible values that s' may reach.
Thus, the s'-component of the state of G13.U becomes irrelevant, and we
replace it by # from now on. We have the following Ro-sequence:

001le1 --+ 0111#1 --+ 0101#1 --+ 0100#1.

In the last state, the variables SI, S2, S3, X, and 0 are stable and will not
become unstable again. It follows that the outcome of the GMW analysis of
G13.11 started in state 0·1000bO, always yields states of the form 0·0100#1,
i.e.,

hE out(Ro(1000bO)) implies the 0 component of his 1.

Consequently, even in the presence of arbitrary gate and wire delays, the
final outcome of the transition yields 0 = 1. We also observe that, in
the analysis above, N is operated in input/output mode with respect to
behavior AI.

Next we show that ternary simulation of GI3.U contradicts the conclusion
reached above. Note that, by condition PI, as long as the input X of N is
0, the excitation of the output delay must be o. Hence the output delay is
initially stable. Algorithm A produces the following sequence:

0·1000bO --+ 0·<1>000#0 --+ 0·<1>0<1>0#0 --+ 0·<1>0<1><1>#0,

where the # here indicates that we don't know the values of the s' portion of
the state. We trivially have 1000bORo 1000bO, and we have shown above that
1000bO Ro * 001le1, i.e., both 1000bO and 001le1 are reachable from 1000bO
(in zero or more steps). Consequently, the output 0 can take the values 0
and 1 in the GMW analysis of the network. But then, by Proposition 7.2,
Algorithm A of the ternary simulation must produce 0 = <1>. Subsequently,
S2 becomes <1>, and the final result of Algorithm A has the form O·<1><1><1><1>t<1>
for some vector t of ternary values.

Applying Algorithm B to state O·<1><1><1><1>t<1>, we find that it terminates in
the second step with state O·O<1><1><1>t<1>. Consequently, Algorithm B predicts
that 0 has the value <1>. But then, by Theorem 7.2, there exists a state in
the outcome of the GMW analysis where 0 = O. This contradicts the GMW
analysis above. Therefore, the network N with the postulated properties
cannot exist, and we have proved that behavior Al does not have a delay
insensitive gate realization operated in the input/output mode. 0

Section 13.4. Delay-Insensitivity in Input/Output Mode 269

13.4-2 Some Behaviors Without DI Realizations

With the lemma above it is easy to verify that the behaviors of the NOR

latch, and two basic components of delay-insensitive design, namely, the
JOIN and the TOGGLE [46, 107], do not have delay-insensitive realizations
in the input/output mode.

First, the latch of Figure 12.4 has the following sub-behavior:

00.10·10 ~ 10·10·10 {O~a} 10·01·01 ~ 00·01·01.

Thus, simply by setting X2 to 0 and ignoring the output 0 1 , we obtain the
behavior

0·10·0 ~ 1·10·0 ~ 1·01·1 ~ 0·01·1,

which is isomorphic to AI, if we identify X with Xl and 0 with O2 •

{O}

{O}

FIGURE 13.12. Behavior of JOIN.

In Figure 13.12 we show a behavior of the JOIN with inputs Xl and X 2
and output O. Starting from state 00·r1·0 or H·r5·1, the JOIN produces no
output when only one input changes. When the second input changes, the
JOIN then changes its output to agree with the two inputs. The JOIN has
the sub-behavior:

{X2 } {oJ {Xa}
1O·r2·0 ~ H·r4·0 ~ H·r5·1 ~ 1O·r6·1.

If we set the input Xl to 1 and associate X 2 with X, we obtain a behavior
isomorphic to AI.

Figure 13.13 shows a behavior of a TOGGLE with input X and outputs
0 1 and O2 • If we count the input changes starting from the initial state
0·r1 ·00, each odd input change causes a change in output 0 1 and each
even input change causes a change in output O2 • The TOGGLE contains the
behavior

0·r1·00 ~ l·rI·OO ~ 1·r2·10 ~ 0·r2·10 ~ 0·r3·H,

and we obtain a behavior with the same language as Al by ignoring the
second output.

270 Chapter 13. Limitations of Up-Bounded Delay Models

{X} {Od

{X

{Od {X}

FIGURE 13.13. Behavior of TOGGLE.

FIGURE 13.14. A generalized version of AI.

By means of slight modifications in the proof of Lemma 13.4, we can
show that three other behaviors also lack delay-insensitive input/output
mode realizations.

Lemma 13.5 Any behavior having the form shown in Figure 13.14, where
a, bE {O, I}, does not have a DI gate realization in input/output mode.

Proof: In case ab = 10, repeat the arguments of Lemma 13.4, but with
network C13.11 modified as follows. Insert an inverter in series with a delay
in the wire leading to the input X of network N.

In case ab = 01, modify network CI3.11 by the addition of an inverter in
series with a delay in the wire leaving output 0 of network N.

In case ab = 11, modify network CI3.11 by the addition of two inverters
with delays as indicated in the two cases above. D

13.4.3 Nontrivial Sequential Behaviors

An example of a simple deterministic behavior that does have a delay
insensitive input/output-mode realization is shown below. It is realizable
by an inverter with input X and output O. The behavior is rather triv
ial, however, since every input vector uniquely determines the static state
eventually reached by the behavior.

{X} {O} {X} {O}
O·r!"l ----+ 1·rl·1 ----+ l·rz·O ----+ O·rz·O ----+ O·rl·l.

Section 13.4. Delay-Insensitivity in Input/Output Mode 271

To eliminate such trivial cases, we impose the following condition on
simple deterministic behaviors:

A behavior A = (X, R, 0, Q, ql, T, t/J) is nontrivial if there exists at least
one input vector X = a for which there are at least two static states a·rl·b
and a·r2·b' where b =f. b' and one of the states is reachable from the other.

We have the following result:

Theorem 13.2 No nontrivial simple deterministic behavior A with a bi
nary input has a delay-insensitive gate realization in the input/output mode.

Proof: Suppose a·r2 ·b' is reachable from a·rl ·b. Since b =f. b', they must
differ in at least one component. Without loss of generality, assume that
these two output vectors differ in their last component, i.e., that b = cd
and b' = c'd, where d E {O, I}.

In case ad = 00, we can apply the following reasoning: Start in state
O·rl·cO, which is stable. For 0·r2·c'l to be reachable from O·rl·cO, we must
change X to 1 and then back to 0 some finite number of times. At some
point in this sequence we must have a state 0·r3·eO, where the output has
not yet changed, but from which we can reach state 0·r2·c'l with two input
changes. Thus, we must have the sub-behavior

{X} {X} ,
0·r3·eO --+ l·r3·eO --+ l·r4·fg --+ 0·r4·fg --+ 0·r2·c l.

We can now consider two subcases.

Case 1: If 9 = 1, then the sequence above projects to the behavior AI, if we
ignore all but the first and the last components. By Lemma 13.4, A cannot
be realized.

Case 2: 9 = O. We now have the following sequence:

{X} {X} ,
0·r3·eO --+ l·r3·eO --+ l·r4-f0 --+ 0·r4·fO --+ 0·r2·c 1,

where state l·r4·fO represents a static state in behavior A, because the
output is not changing, by assumption. By Theorem 13.1, since the output
does not change in the first step, it cannot change in the second step. Hence,
this behavior is not realizable by any network, even if it is operating in the
fundamental mode.

The other cases, where ad = 10 or ad = 01 or ad = 11 are all dealt with
similarly, using Lemma 13.5. D

We close by proving that it is impossible to construct a delay-insensitive
gate circuit that would act as an arbiter. This problem was considered
by [2], where a proof of this was given in a totally different formalism.
Consider the behavior of Figure 13.15. It represents the essential function
in the arbitration process. The two inputs represent requests for the use of
a single resource. When Xl and X2 are both 1, only one of them can be
served. The arbiter then has to decide whether to grant the resource to Xl

272 Chapter 13. Limitations of Up-Bounded Delay Models

FIGURE 13.15. An arbiter behavior.

by setting 0 1 = 1,02 = 0, or to X 2 by setting 0 1 = 0,02 = 1. The arbiter
is not allowed to always give preference to one of its inputs but must, in
fact, implement the critical race. Note that the behavior of Figure 13.15
satisfies the condition that there are two distinct static states for one input
vector. However, one state need not be reachable from the other; thus we
are unable to apply Theorem 13.2. Nevertheless, we are able to prove the
following result.

Theorem 13.3 Suppose a direct behavior A has an initial dynamic state
qo = a·ro·bc, where band c are the values of one-bit output vectors 0 1
and O2. Suppose further that q1 = a·r1bc and q2 = a·r2·bc are two static
states such that (qO, qd, (qo, q2) E T and that no output sequences other
than E:, { 0 1}, and {02} are allowed. Then this behavior does not have a
delay-insensitive realization in the input/output mode.

Proof: Assume that a delay-insensitive realization N exists. This means
that we can use the input-, gate-, and wire-state network model to analyze
N. By Theorem 7.2, we know that the outcome of Algorithm B must yield
0 1 = 02 = <P. By Lemma 7.9, there exists a nontransient cycle reachable
from the network state representing ro in which the variables 0 1 and O2

take both values. Thus, N is capable of producing output sequences that
are not allowed. 0

13.5 Concluding Remarks

In this chapter, we have confined ourselves to networks of gates. Conse
quently, basic elements like the JOIN, C-ELEMENT,3 TOGGLE, and ARBITER

were not allowed. This choice was made because we wanted to investigate
the basic limitations of gate circuits, in view of the well-established use of
gates as primitive elements for the design of synchronous circuits.

3The C-ELEMENT is similar to the JOIN, but permits the environment to "with
draw" an input change; it will be treated in more detail in Chapter 15.

Section 13.5. Concluding Remarks 273

Delay-insensitivity needs to be redefined for switch-level models of CMOS
circuits, since the "components" and "wires" are not as easily identified.
One could consider the components to be transistors, but it may be more
practical to consider complex cells as components. Similarly, which wires
should be taken into account and which can be ignored is arguable. How
ever, the most important decision is which race model should be used. Since
CMOS circuits may produce intermediate voltage levels during operation,
it is natural to require that the XMW race model be used. In view of The
orems 7.6 and 7.7 it thus follows that our results about nonrealizability
apply to these more more modern technologies as well. Furthermore, since
these theorems apply both to feedback delay models as well as to more
elaborate network models, it follows that these results are quite insensitive
to the exact definition of "components" and "wires" in a CMOS network.

We may draw the following two conclusions from the present chapter:

• If one wants to realize components like JOINS, C-ELEMENTS, TOGGLES,

or latches by circuits using only gates, then one has to make some
assumptions about the gate and wire delays.

• A set of components different from the set of logic gates is needed for
the realization of any significant class of delay-insensitive behaviors.

Sets of primitive components for particular classes of delay-insensitive be
haviors have been suggested in [46, 146], for example. We will return to
this in Chapter 15.

Chapter 14

Symbolic Analysis

The race analysis algorithms and the behaviors introduced so far in this
book all use the tacit assumption that the states of a network are repre
sented ~licitly. Since the state space grows exponentially with the size
of the network, such a representation can only be used for relatively small
circuits. In this chapter we consider representing states and other similar
objects symbolically.

In Section 14.1 we discuss a method, based on ordered binary decision
diagrams (OBDDs), for representing Boolean functions. This method over
comes, in practice, many of the drawbacks of the more traditional ways
of representing such functions, since it permits a compact representation
for complex Boolean functions. In Section 14.2 we show how mathematical
objects like sets, relations, and behaviors can be represented concisely by
OBDDs. We also demonstrate how traditional algorithms can be rephrased
in terms of OBDD manipulations.

In Sections 14.3 and 14.4 we derive a symbolic representation of a be
havior directly from a network. In particular, in Section 14.4 we convert
some of the race analysis algorithms discussed earlier in the book to sym
bolic form. As a side effect, we derive an efficient and practical algorithm for
computing the minimum and maximum delays in a combinational network,
finally providing a solution to the problem introduced in Section 1.2.

We next explore algorithms for determining whether a symbolic behavior
realizes another symbolic behavior. In Section 14.5 we give an algorithm
which, if successful, guarantees that a behavior realizes another one. How
ever, there are situations in which our algorithm can be overly cautious,
reporting failure when the realization relation actually holds.

Finally, in Section 14.6 we discuss a method, called "model checking,"
which can be used to determine the validity of a temporal-logic formula
with respect to a behavior. This technique is invaluable for checking that a
specification satisfies some desirable properties. Furthermore, for systems
in which the only specification consists of a collection of properties that
the system should satisfy, model checking can be used directly to verify
that an implementation behavior extracted from a network satisfies these
properties.

276 Chapter 14. Symbolic Analysis

14.1 Representing Boolean Functions

An efficient method for representing and manipulating symbolic expressions
constitutes a corner-stone in symbolic analysis. In the context of digital
circuits, such a method usually involves representing and manipulating
Boolean functions. For this reason, we begin with a brief digression into
methods of representing Boolean functions.

Ideally, a representation of Boolean functions should satisfy the following
requirements:

1. It should allow an efficient test for the equality of two functions.

2. It should be able to represent Boolean functions of a large number of
variables. To be of practical significance, the representation must be
able to handle functions of at least 30-40 variables.

3. It should permit efficient computation of common operations, such as
complement, product, and sum of Boolean functions. Also, functional
composition and quantification over a set of variables is often needed.

4. It should not require excessive amounts of storage for common func
tions.

Unfortunately, the existence of a representation satisfying these require
ments would imply the existence of an efficient solution to the Boolean
tautology problem-a well-known NP-hard problem. Therefore, unless P =
NP, no such representation exists. Consequently, we have to be satisfied
with some heuristic method that works well in practice but has an expo
nential worst-case behavior.

A common way of representing a Boolean function is by a Boolean expres
sion, such as a sum-of-products. This representation has the disadvantage
that a sum-of-products denoting the complement of a sum-of-products E
can be exponentially larger than E. Other common representations, like
expression trees or expression DAGs (directed acyclic graphs), solve the
problem of exponential blowup when performing a single operation, but
pay the price of making comparisons extremely time-consuming.

The OBDD is a Boolean function representation that satisfies many of
the requirements listed above. OBDDs were originally proposed by [82]
and [1], further refined by [53], and made practical and popular by [11].
An OBDD represents a collection of Boolean functions as a forest of rooted
DAGs. This is illustrated by the example of Figure 14.1, where four distinct
Boolean functions are represented. There are two leaf vertices (represented
as squares): one labeled 0 and the other labeled 1. Each internal vertex
(represented as a circle) is labeled with a variable. It has two outgoing
edges, one corresponding to 1 and the other to O. The I-edge represents
the Boolean function for the case where the variable is 1, and the O-edge
corresponds to the case where the variable is o. In Figure 14.1 the I-edges

Section 14.1. Representing Boolean Functions 277

b+c ab+ ac+ be bc

FIGURE 14.1. Example of ordered binary decision diagram.

are shown as solid lines, whereas the O-edges are dotted. For a given assign
ment of binary values to the variables, the value of the function is found
by following the path (corresponding to the assignment) from its root to
one of the leaves.

The order in which variables are tested in the OBDD follows a global
total order in which each variable occurs only once. In Figure 14.1 the order
is a, b, c. If we ensure that no OBDD vertex is created with its I-edge
leading to the same successor vertex as its O-edge and that no two OBDD
vertices with the same variable label have the same O-successors (vertices
reached by the O-edges) and the same I-successors, we can show that no
two vertices define the same Boolean function. Consequently, testing two
Boolean functions for equality is trivial: the functions are equal if and only
if they are represented by the same OBDD vertex.

Computing the product or sum of two Boolean functions represented by
OBBDs can be done efficiently by a recursive procedure. The size of the
resulting OBDD is bounded by the product of the sizes of the OBDDs
representing the two functions. In practice, the resulting OBDD is often
significantly smaller. The size of the OBDD representing the complement
of a Boolean function is exactly the same as that representing the function.

In the OBDD representation, it is straightforward to perform universal
and existential quantification of some of the variables of a Boolean function.

278 Chapter 14. Symbolic Analysis

Also, the operation of substitution of functions for some of the variables of a
given function can be performed efficiently. We use the following notation: 1

'<IVi. f(VI, ... , Vi-I, Vi, Vi+l, ... , Vn) =
f(VI, ... , Vi-I, 0, Vi+l, ... , Vn) * f(VI, ... , Vi-I, 1, Vi+l, ... , Vn)

and

3Vi·f(VI"",Vi-I,Vi,Vi+I,""Vn) =

f(VI, ... , Vi-I, 0, Vi+l,· .. , Vn)+ f(VI,·· . , Vi-I, 1, Vi+l, ... , vn).

If it is understood that V is one of the variables of f, we write '<Iv. f and
3v. f for short. We also extend this notation to quantifications over vectors
of Boolean variables. For example, if V is the vector (VI, V2) then we write

f(0,0,V3,""Vn)+
f(0,1,V3,""Vn)+
f(1,0,V3,""Vn)+
f(1, 1, V3, ... , vn).

FIGURE 14.2. OBDDs for a1b1 + a2b2 + a3 b3 using different orderings.

The variable order can have a significant effect on the size of the OBDD
of a function. For example, in Figure 14.2 we show the function albl +
a2b2 + a3b3 for two different variable orderings. If we generalize this expres
sion to albl + a2b2 + ... + anbn , we see that the OBDD using the ordering

1 To avoid ambiguity, in this chapter we return to the use of the explicit symbol
* for Boolean multiplication.

Section 14.2. Symbolic Representations 279

at, bl , a2, b2, ... , an, bn is of size 2n+2, whereas the OBDD using the order
ing al, a2, ... , an, bl , b2, ... , bn is of size 2n+l. In general, finding an optimal
ordering is an NP-hard problem; thus heuristics must be used. Fortunately,
in most OBDD implementations, it is possible to change the order of ad
jacent variables efficiently. By repeating this procedure, one can devise re
ordering schemes that find local minima. In practice, such dynamic schemes
are quite useful, although they are slow. Finally, it should be pointed out
that there are Boolean functions for which no variable ordering yields a
small OBDD. The classical example here is the nth output of an n-bit by
n-bit binary multiplier. It has been shown [14] that the OBDD representing
this function is of size exponential in n for every variable ordering. Surpris
ingly, although most Boolean functions have OBDDs of exponential size (as
can be seen by a simple counting argument), most functions encountered in
computer-aided design algorithms have small OBDD representations. It is
this pragmatic observation that has lead to the widespread use of OBDDs.

In summary, as a practical way of representing Boolean functions, OB
DDs meet most of the requirements listed in the beginning of this section.
For a more thorough treatment of OBDDs, including more efficient rep
resentations and various applications, the reader is referred to the survey
article [15]. In the remainder of this chapter, we develop algorithms under
the assumption that all Boolean functions are represented by OBDDs.

14.2 Symbolic Representations

Given that we can represent, manipulate, and compare Boolean functions
efficiently, an attractive way of solving many problems is to represent the
objects involved as Boolean functions and to phrase the relevant algorithms
in terms of operations on Boolean functions. In this section we describe
some of the common encoding techniques that we use in the remainder of
the chapter. It should be emphasized that the techniques we discuss do not
rely on the OBDD representation of Boolean functions. Any representation
will suffice, as long as it supports efficient equality checking, composition,
and quantification.

14.2.1 Finite Domains

A common approach to mapping a problem concerning objects drawn from
some finite domain into a problem phrased in terms of Boolean functions
is to encode the domain as a vector of Boolean functions. If the domain V
has n elements, we can encode its elements as pog2 n l-bit binary numbers.
Sometimes the encoding is obvious-as is the case of numbers drawn from
some finite subset of the integers. In other cases, the mapping can be chosen
arbitrarily. For simplicity, the mapping is usually a one-to-one function,
i.e., there is a unique binary number associated with every element dE V.

280 Chapter 14. Symbolic Analysis

Let 71': 'D _ {O, I}n denote such a function, and let 71'i denote the ith bit
of the encoding. A function F: 'D _ 'D is encoded in the obvious way,
i.e., as a function I: {O, I}n - {O, I}n such that I = (II, 12, ... ,In) and
li(7I'(d)) = 71'i(F(d)), for all d E 'D and 1 :::; i :::; n.

To illustrate the process of encoding a finite domain-and also to intro
duce an important encoding used in the remainder of the chapter--consider
representing the domain {O, <I>,I}. Since there are three elements, the en
coding must use at least two bits. One possibility is a "dual-rail" encod
ing in which the ternary value a is encoded as pair (a.I, a.O), as shown
in Table 14.1. Note that pair (0,0) is not used. We use the convention

TABLE 14.1. Dual-rail encoding of ternary values.

Ternary value Encoded value
a (a.I, a.O)
0 (0,1)
<I> (1,1)
1 (1,0)

that variables like ai, bi, etc., have encoded versions (ai.I, ai.O), (bi.I, bi.O),
etc., and that ternary functions, like SO, TO, etc., have encoded versions
(8.10,8.0()), (T.10, T.O()) , etc. In Table 14.2 we show the encoded ver
sions of the ternary extensions of the Boolean functions ID, NOT, AND, OR,

and lub of two ternary values. One verifies that, if 71'(a) = (a.I, a.O) and
71'(b) = (b.I, b.O), then a!; b if and only if b.h b.O + a.h b.O + a.O * b.1 = 1.

TABLE 14.2. Dual-rail versions of ternary operations.

Ternary operation Encoded version
f() /.10 /.00
a a.1 a.O
-a a.O a.I
a*b a.I * b.I a.O+ b.O
a+b a.1 +"b.I a.O * b.O
Zubia, b} a.I + b.I a.O+ b.O

14.2.2 Sets

Given a finite domain 'D and a binary encoding 71' of'D, we have two natural
ways of representing subsets of 'D: as characteristic functions or as para
metric representations [71]. For our purposes, the former representation
suffices. The characteristic /unction, Xs, of a set S ~ 'D is a membership
predicate, i.e., given an element s E 'D, we have Xs(7I'(s)) = 1 if and only if
s E S. Characteristic functions are useful, because operations on sets have

Section 14.2. Symbolic Representations 281

operations on characteristic functions as natural counterparts, as is shown
in Table 14.3. Recall that 101 and 111 denote the Boolean functions that are
identically 0 and 1, respectively.

TABLE 14.3. Set operations on characteristic function representation.

Set and operations Corresponding function and operation
0 101
V 111

SuT xs + XT
SnT XS*XT
S-T -

XS*XT
Sc.;T "Iz. Xs(z) + XT(Z)

14-2.3 Relations

Since relations can be viewed as sets, characteristic functions can also be
used to represent relations compactly and to perform efficiently such oper
ations as intersection, union, and difference of relations. By using function
composition and quantification, we can also compute the composition of
relations efficiently. For example, suppose that P c.; S x T and R c.; T x U
are two binary relations with characteristic functions XP and XR, respec
tively. Then the characteristic function XPoR of the composition of the two
relations can be computed as

XPoR(X, y) = 3z. Xp(x, z) * XR(Z, y).

Thus, as long as substitution and quantification can be performed effi
ciently, so can the composition of relations.

Another useful operation is the reflexive and transitive closure of a rela
tion. The algorithm for this computation illustrates a common technique in
symbolic computations-the use of fixed-point calculations. Here we intro
duce only the basic ideas of fixed-point calculations; for a more complete
treatment of the underlying theory, the reader is referred to [61].

The system (1'(S), c.;), where S is any set, is a partially ordered set.
Because the least upper bound and the greatest lower bound of any set
T of elements from 1'(S) are both defined,2 the system is also a complete
lattice.

A function f: 1'(S) ~ 1'(S) is said to be continuous if for every nonde
creasing sequence S1 c.; S2 c.; ... , where Si E 1'(S), we have f(Ui?1Si) =
Ui>d(Si) and f(ni>1Si) = ni>d(Si). For finite sets, every monotonic
fu~ction is continuous [61]. For a continuous function f: 1'(S) ~ 1'(S)

2The least upper bound is the union of the sets in T and the greatest lower
bound is their intersection.

282 Chapter 14. Symbolic Analysis

1. (a) I has a unique least fixed point £, E P(S), i.e., there exists an
element £, that satisfies I(£') = £, and, if I(C) = C for some
C E P(S), then £, ~ C.

(b) The least fixed point of the function I, written lfp S./(S), is
defined by Ui~0Ii(0), where Ii is the composition of i copies of

I·
2. (a) I has a unique greatest fixed point 9 E P(S), i.e., there exists

an element 9 that satisfies I(Q) = 9 and, if I(C) = C for some
C E P(S), then C ~ g.

(b) The greatest fixed point of the function I, written glp S·/(S),
is defined by ni~oli(S).

If S is finite and I is monotonic, the least fixed point can be derived by
iteratively computing SO = 0, and Si+l = I(Si) for i :2: O. Eventually
some iteration step yields Si = Si-\ this value is the least fixed point [61].
Similarly, starting with SO = S, the sequence of sets Si converges to a fixed
point, which is the greatest fixed point.

To illustrate the use of fixed-point calculation, consider any binary rela
tion R ~ V x V, where V is a finite domain. Let I = {(a, a) I a E V} and
define the function I: P(V x V) ----+ P(V x V) by

I(S)=IURoS.

One verifies that I is monotonic. Consequently, I is continuous and has a
unique least fixed point. We claim that this fixed point is the relation R*.
To see this, first note that R* is a fixed point of I. Thus we need only show
that it is the least fixed point. For suppose that R* is not the least fixed
point. Then there is an element (x, y) E R* such that (x, y) f/. lip S·/(S).
Note that x =F y, since I = {(a,a) I a E V} ~ lfp S./(S). On the other
hand, if x =F y, there must exist a finite sequence xO, xl, ... , xk, such that
xO = x, xk = y, and (Xi,xi+l) E R for 0::::: i < k. It is a routine exercise to
show, by induction on the length of the sequence, that every pair (x, y) such
that y is reachable from x by a finite sequence as above is in lfp S./(S).
Thus, R* = lfp S./(S).

For the function I above, if the cardinality of V x V is N, then the
fixed point will be reached in at most N steps. By modifying the iteration
slightly, a significantly faster convergence can be achieved. The technique
is usually referred to as iterative squaring [28] and is based on the following
definition:

I(S)=IURUSoS.

Again, it can be shown that R* = lfp S./(S), and that the fixed point is
now reached in at most flog2 Nl steps. For symbolically encoded sets, this
reduction in the number of iterations can sometimes significantly speed up
the fixed-point calculation.

Section 14.2. Symbolic Representations 283

The reflexive and transitive closure of a relation can now be computed
using characteristic functions to perform relation composition and fixed
point calculations. The success of this method relies heavily on the ability
to perform substitutions, quantifications, and equality checking efficiently.
We shall return to other fixed-point calculations later in this chapter.

14.2.4 Behaviors

Behaviors were formally defined in Chapter 11 as 7-tuples. Since all the
components of a behavior are finite, we can encode them like any other
finite domain. For example, consider a behavior A = (X, R, 0, Q, ql, T, 'l/J),
where X has n components and R has cardinality h. Let k = flog2 h 1, and
define a mapping 71': Q ---+ {a, 1 }n+k. We can now define the characteristic
function t: {a, l}n+k x {a, l}n+k ---+ {a, I} for the transition set as follows.
For every q, '1' E Q,

t(71'(q) , 71'('1')) = { ~ if (q, '1') E T,
otherwise.

(14.1)

Note that, in general, t is not uniquely defined, since 71' may not be onto the
set {O,l} n+k. As a result, the user is free to choose any Boolean function
that satisfies (14.1). If the function is represented as an OBDD, choosing
a function with a compact representation is important. For an automatic
procedure that often works quite well in practice, the reader is referred
to [40].

In summary, the symbolic representation of a behavior is also a 7-tuple,
but the internal state set is encoded as a set of binary vectors and the
transition set is replaced by a Boolean function serving as the characteristic
function of the set. More formally, a symbolic behavior is a 7-tuple

B = (X, R, 0, Q, q1, t, 'l/J),

where

• X = (Xl, ... ,Xn), n ~ 0, as in a behavior;

• R ~ {O,l}k for some k ~ 0;

• 0 = (01, ... , Op), P ~ 0, as in a behavior;

• ql E Q;

• t: {a, l}n+k X {a, l}n+k ---+ {a, I} is the transition predicate;

• 'l/J: {a, l}n x {a, l}k ---+ {a, l}p.

284 Chapter 14. Symbolic Analysis

14.3 Deriving Symbolic Behaviors

For the symbolic representation of a behavior to be practical, we need some
way of deriving it directly from a given network, race model, and environ
ment assumptions, without having to compute the conventional behavior
first. In this section we show how various types of behaviors can be derived
when the underlying race model is GMW or GSW. In particular, we illus
trate how to derive the unrestricted behavior and how this behavior can be
restricted to yield, for example, the fundamental-mode behavior. Finally
we show how a direct behavior can be derived from the fundamental-mode
behavior.

To simplify the notation in the remainder of the chapter, we introduce
some shorthand. First, for any Boolean values a and b, let a=:} b denote
the expression a + b. Similarly, let a == b denote the expression a E9 b, and
let a t=. b denote a == b == a E9 b. Thus == denotes the complement of the XOR

function; this is sometimes called the equivalence function or the exclusive
NOR function. We extend this notation to vectors in the obvious way, i.e., for
vectors a, b E {O, l}n, we write a == b and a t=. b instead of I1~=1 (ai == bi)
and I1~=l(ai==bi)' respectively. Similarly, for a,c E {O,l}n and b,d E
{O, l}m, we write a·b == c·d and a·b t=. c·d rather than (a == c) * (b == d) and
(a == c) * (b == d).

Assume that we are given a binary network N == ({O, I}, X,S, £, F) with
n input excitations and m state variables. Let A == (X, 'R-, 0, Q, ql, T, 1/J)
denote the unrestricted behavior of N under the GMW race model. Ac
cording to the definition of unrestricted behavior, we have (a·b, c·d) E T if
and only if a·b =f:. c·d and b == d or bRad, where Ra is the GMW relation.
We first derive the characteristic function r for the union over all a of the
Ra relations as follows:

r(a·b, c·d) == (a == c) *
((b t=. S(a·b)) =:} (d t=. b)) *

(fi ((di == bi) + (di == Si(a.b)))) .

Using r, we can express the characteristic predicate tu of the unrestricted
behavior's transition set T as

tu(a·b, c·d) = (a·b t=. c·d) * ((b == d)+r(a·b, a·d)) ,

where the first product corresponds to the constraint a·b =f:. c·d, and the
second product asserts that the next internal state value is either the same
as the current one or is Ra-related with the current one.

Example 1

The unrestricted behavior of the network of Figure 14.3 illustrates
the efficiency of the symbolic representation. Suppose we are using

Section 14.3. Deriving Symbolic Behaviors 285

X2--------------~

FIGURE 14.3. Network C14.3.

the gate-state network model with excitation functions 8 1 = 83 + 82,

8 2 = X2 + 81, and 83 = Xl and output functions 0 1 = 81 and
O2 = 82. We use the obvious encoding of internal states, i.e., we
assume that Q = {O,1}5, where the first two values correspond to
the input excitations, the next two to the outputs 81 and 82 and
the last one to the (internal) state variable 83. After expanding the
shorthand notation and performing some simplifications, we can write
the characteristic predicate tu(a1a2·b1b2b3, C1C2·d1d2d3) as

tu = ((a1 EI1 ct) + (a2 EI1 C2) + (b1 EI1 dt) + (b2 EI1 d2) + (b3 EI1 d3)) *
((b1 EI1 d1) + (d1 EI1 (b2 + b3))) *
((b2 EI1 d2) + (d2 EI1 (a2 + b1))) *
((b3 EI1 d3) + (d3 EI1 a1)).

This Boolean expression can be represented by an OBDD with 65
vertices. This should be compared with the total number, 412, of
elements in T.

Example 2

For larger circuits, the difference between an explicit representation
and the implicit symbolic OBDD representation of the transition
set T is even more striking. For example, the symbolic behavior for
the unrestricted behavior of the gate-state model of the network in

FIGURE 14.4. Network C14.4.

286 Chapter 14. Symbolic Analysis

Figure 14.4 requires 645 OBDD vertices representing a set contain
ing 108, 768 elements. Clearly, representing behaviors symbolically as
OBDDs makes it possible to deal with much larger circuits than those
that can be handled by the traditional explicit representations.

From the characteristic function for the unrestricted behavior, we can
derive other types of behaviors. For example, consider finding the unre
stricted single-winner (USW) behavior. The additional constraint is that
at most one internal state variable can change in each transition. We can
derive the USW behavior by intersecting the transition set of the unre
stricted behavior with the set of transitions in which at most one internal
state changes. Since the transition set is represented by its characteristic
function, intersection corresponds to Boolean product. Thus we get

tusw(a·b,c·d) = tu(a·b,c·d) * (t IT (bj == dj)) .

,=1 j=1

jf.i

Performing this operation on the OBDD-based transition predicates for
Examples 1 and 2 above is straightforward; the resulting OBDDs have 66
and 462 vertices, respectively. In a similar way, one can derive the required
operations to compute other types of behaviors, for example, those that
only allow single input changes, no mixed transitions, etc.

There are two possible avenues for finding the fundamental-mode be
havior of a network. The most straightforward approach is to derive that
behavior directly from the network, without first deriving the unrestricted
behavior. This can be accomplished by adding the constraint that, if a·b is
not stable, then the input is not allowed to change. Thus

tFM (a·b, c·d) = (a·b f; c·d) *
((b == d)+r(a·b,c·d)) * ((a == c)+(b == S(a·b))),

where the first part ensures freedom from self-loops, the second part ensures
that state variables either keep their values or change according to the Ra
relation, and the final part ensures that either the inputs do not change or
the state a·b is stable.

The second approach to computing the fundamental-mode behavior fol
lows from the observation that a state of a network is stable if and only if it
is a static state in the unrestricted behavior, i.e., has no internal-state tran
sitions. Given this observation, we can compute the characteristic function
for the fundamental-mode transition set as

tFM(a·b, c·d) = tu(a·b, c·d) * ((a == c)+3f. tu(a·b, a.!)) .

Note that this computation requires existential quantification over a set of
Boolean variables. This is a straightforward operation with OBDDs, but

Section 14.3. Deriving Symbolic Behaviors 287

whether this added complexity is worthwhile depends on whether the un
restricted environment is also needed. If the goal is to compute only the
fundamental-mode behavior, the first approach is simpler and computa
tionally more efficient.

For some applications, the fundamental-mode behavior is unnecessarily
detailed, and the direct behavior may be preferable. To find this behavior,
we introduce a set of Boolean functions that allow us to write the final
computation succinctly. Let r* denote the characteristic function for the
reflexive and transitive closure of the relation r defined earlier. Note that
r* (a·b, c·d) = 1 implies that a = c. Given r, we can compute this function
using the fixed-point algorithm discussed in Section 14.2.3. Also, let r+
denote the transitive closure of r. From r* and r, we can find r+ as follows:

r+(a·b, c·d) = ((b ¢ d) * r*(a·b, c·d))+r(a·b, c·d).

Next, define the Boolean predicate nontransi(a·b) as

nontransi(a·b) (bi == Si(a·b))+

3d. [(r*(a·b, a·d) * r*(a·d, a·b))

'* ((di ¢ bi)+(Si(a·d) ¢ Si(a·b)))J.

This predicate can be interpreted informally as follows. State variable Si

is "nontransient" in total state a·b (formally, nontransi(a·b) = 1) if either
that variable is stable in state a·b, or, if there exists a cycle, say Ci, of the
Ra relation containing b, and d is any state Ci , then either di is different
from bi or the excitation Si(a·d) is different from Si(a·b). Now, if every
variable is nontransient in state a·b, consider the cycle C constructed by
following the cycles C~, then C~, ... , then C:", of the individual variables,
where c: is the empty cycle if variable Si is stable in state a·b, and C: = Ci

if there is a cycle Ci of nonzero length involving Si, as above. Clearly,
the cycle C so constructed is a nontransient cycle. Hence, a·b appears in
a nontransient cycle, if and only if each of the state variables satisfies
the predicate nontransi(a·b). Let nontrans(a·b) = n::l nontransi(a·b). The
outcome relation is now defined as

out(a·b, c·d) = 3(e·!). r*(a·b, e·!) * nontrans(e·!) * r*(e-j, c·d).

Here, state c·d is out-related to state a·b if and only if a = c and internal
state d is in out(Ra (b)). Finally, define the Boolean predicates stable and
fresh as

stable(a·b) = (b == S(a·b)),

and

fresh(a·b) = 3c. stable(c·b).

We are now ready to define a "stabilizing" predicate, i.e., the characteristic
function of the set of states that only have stable states in their outcomes

stabilizing(a·b) = 'v'd. [out(a·b, a·d) '* stable(a·d) J.

288 Chapter 14. Symbolic Analysis

To define an Orhazard-free predicate, we define two relations: The first
one (unchj) relates states band d if output OJ has the same value in every
state in every path from b to d. The second relation (diff) relates band d
if d can be reached from b by an Ra relation and output OJ is different in
the two states. Formally, let

and

unchj (a·b, c·d) = r* (a.b, c.d) *
Ve. [(r*(a·b, a·e) * r*(a·e, a·d))

=> ('ljJj(a·b) == 'ljJj(a·e))],

di~ (a·b, c·d) = r* (a·b, c·d) * ('ljJj (a·b) :t 'ljJj (c·d)) ,

hazfreej(a·b) = Vd. r*(a·b, a·d) => (unchj(a·b, a·d)+diffj(a·b, a·d)),

p

hazardJree(a·b) = II hazfreej(a.b),
j=l

valid(a·b) = stabilizing(a·b) * hazardfree(a·b).

We now define the transition predicate, tDIR(a·b, c·d), for the direct behavior
as

tDIR(a·b, c·d) = (a·b:t c·d) *
[(b == d) * stable(a·b) * valid(c·d)

+
(a == c) * fresh(a·b) * valid(a·b) * out(a·b, c·d) 1 .

Intuitively, total states a·b and c·d are related in the direct behavior of a
network if and only if either b = d, a·b is stable, and c·d is stabilizing and
output hazard-free, or a = c, a·b is a fresh state that is stabilizing and
output hazard-free and d E out(Ra(b)).

14.4 Symbolic Race Analysis

In the previous section we showed how to derive symbolic representations
of various behaviors directly from a network. A network's serial behavior
can be found from its direct behavior using techniques similar to the ones
used for direct behaviors. However, it is more efficient to compute the serial
behavior directly, using a symbolic version of the race analysis algorithms
given in Chapters 7 and 8. In this section we first describe how the sym
bolic serial behavior can be derived for an input-, gate-, and wire-state
network using symbolic ternary simulation. We then show how the serial
behavior can be computed when the network is represented by the ternary
bi-bounded delay model. We accomplish this by devising a symbolic version

Section 14.4. Symbolic Race Analysis 289

of the TBD algorithm. As a side effect, we also show how this algorithm can
be used to determine the minimum and maximum delays of a combinational
network, finally giving an algorithm for solving the problem discussed in
Section 1.2.

All the race analysis algorithms that we discuss in this section are based
on ternary networks. Let N = ({O,l},X,S,£,F) be a binary network,
and N = ({O,<I>,l},X,S,£,F) be its ternary extension. Using the dual
rail encoding of Section 14.2.1, we find encoded versions of the excitation
functions; let Sj.1 and Sj.O denote the high and low rails corresponding to
ternary excitation function S j.

We derive the serial behavior of a network by first finding its complete
word behavior taw. The serial behavior can then be computed as follows:

[(b == d) * 3d'. taw(a·b, c·d')]+

[(a == c) * 3a'. taw(a'·b, c·d)].

14.4.1 Symbolic Ternary Simulation

If S = (S1, .•• , sn) is a binary vector, let s denote its bit-by-bit complement,
i.e., s = (81, ... , sn). Also, the vector (SI.1, ... , sn.1) is denoted by s.l, and
(SI.0, ... ,sn.O) by s.O.

Reformulating Algorithms A and B to the symbolic (dual-rail-encoded)
domain is straightforward; we replace all ternary operations by the encoded
versions, as given in Table 14.2. More precisely, let c·b be any binary total
state of the network N. The symbolic version of Algorithm A is given by

Algorithm A
h :=0;
s.l:= b;
s.O:= Ii;
repeat

h:= h + 1;
sh.1 := sh-l.1+S.1(c.(sh-l.1, sh-l.0));
sh.O:= sh-l.0+S.0(c.(sh-l.1,sh-l.0));

until (sh.1 = sh-l.1) and (sh.O = sh-l.0);

and the symbolic version of Algorithm B is defined by

Algorithm B
h :=0;
to.1 := sA.1;
to.O := sA .0;
repeat

h:= h + 1;
th.1:= S.1(C·(th- l .1,th- 1 .0));
th.O:= S.0(c.(th- 1 .1,th- 1 .0));

until (th.1 = t h- l .1) and (th.O = th-l.0);

290 Chapter 14. Symbolic Analysis

where (SA .1, sA .0) is the dual-rail-encoded version of the fixed point reached
in Algorithm A. Note that only product, sum, complement, and equality
checking between Boolean functions are needed to carry out this symbolic
ternary simulation algorithm. If we represent the Boolean functions by
OBDDs, all these operations can be performed efficiently. Hence, we can
compute the vectors tB.1 and tB.O of Boolean functions representing the
final result t B of ternary simulation when the initial state of the network
is c·b.

The complete-word behavior of an input-, gate-, and wire-state network
analyzed according to the GMW model can now be derived as follows:

tcw(a·b,c·d) = (a ¢ c) * (b == S(a·b)) * (d == S(c·d)) *
(tB.1 == d) * (tB.O == (1),

where (tB .1, tB .0) is the dual-rail-encoded result of symbolic ternary sim
ulation, given c·b as initial state. In other words, two total states are
complete-word related if they differ in the input vector, they are both
stable, and the second state is the result of (symbolic) ternary simulation
applied to state c·b. The serial behavior of a network can be computed from
the complete-word behavior as described earlier.

14.4.2 Symbolic Bounded-Delay Analysis

The reformulation of standard ternary simulation into a symbolic algorithm
required only that ternary operations be replaced by pairs of binary oper
ations. Creating symbolic versions of other race analysis algorithms can be
more difficult. The main problem is the dependence of the algorithms on
data. For example, the TBD algorithm of Section 8.5 contains tests whether
a variable is currently <I> or binary, etc. Consequently, it is not possible to
use this algorithm directly in a symbolic environment. In this subsection we
first restate the TBD algorithm in a format that makes it more amenable to
symbolic analysis. We then show how the new formulation can be converted
to symbolic notation. We assume here that there is an input delay for each
input-excitation variable in the network. The reason for this assumption
will become clear when we describe the transformation technique used to
make the TBD algorithm amenable to symbolic manipulation.

Example 3

To illustrate the motivation behind the revised TBD (rTBD) algo
rithm, consider the circuit shown in Figure 14.5 with delay bounds as
illustrated. If this circuit is started in total (stable) state 100·1000000,
and the input excitations change to 011, we obtain a TBD analysis
as shown in Figure 14.6. In Figure 14.6 we have also named each
state reached in the algorithm by zi, for consecutive i's. We make the
following observations: First, an unstable input vertex j with delay

Section 14.4. Symbolic Race Analysis 291

;~ _::_::_:_:;_g:' dS"
83 [3,4)

[1,2)

r=D-
[2,5)

FIGURE 14.5. Circuit to illustrate rTBD algorithm.

ZO: ZO = (10 01 01 ° ° ° ° ,(1,1,1,0,0,0,0), (1, 1, 1, 0, 0, 0, 0))
Zl: zl=(10 0l 01 0 ° 00,(1,1,1,0,0,0,0),(1,1,1,0,0,0,0))
Z2: Zl = (<POOl 01 OopO ° ° ,(0,2,2,1,0,0,0), (2,2,2,0,0,0,0))
Z3: z2 = (0 01 01 01 ° ° ° ,(0,2,2,1,0,0,0), (0,2,2,0,0,0,0))
z4: z2 = (0 <PlOl <PlOopO.pO ,(0,0,3,0,1,1,0),(0,3,3,1,0,0,0))
Z5: z3 = (0 <PlOl <PI0opO.p0 ,(0,0,3,0,1,1,0),(0,3,3,1,0,0,0))
Z6: Z3 = (0 <PI <PI <PI0opOopO ,(0,0,0,0,2,2,0), (0,4,4,2,0,0,0))
z7: z4 = (0 1 1 <PlOlOopO ,(0,0,0,0,2,2,0), (0,0,0,2,0,0,0))
Z8: z4 = (0 1 1 <PI <PI <P Oop, (0,0,0,0,0,0,1), (0,0,0,3,1,0,0))
Z9: z5 = (0 1 1 1 <Pl<P 0.p,(0,0,0,0,0,0,1),(0,0,0,0,1,0,0))
ZlO: z5 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,2,0,0))
Zl1: z6 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,2,0,0))
Z12: z6 = (0 1 1 1 <Pl<P <P ,(0,0,0,0,0,0,0),(0,0,0,0,3,0,0))
Z13: z7 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,3,0,0))
Z14: z7 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0, 0, 0, 0, 4, 0, 0))
Z15: z8 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,4,0,0))
Z16: Z8 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,5,0,0))
Z17: z9 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,0,0))
Z18: z9 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0, 0, 0, 0, 0,1,0))
Z19 : z10 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,1,0))
Z20: ZlO = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0),(0,0,0,0,0,2,0))
Z21 : Zl1 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,2,0))
Z22 : Zl1 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,3,0))
z23 : z12 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,3,0))
Z24 : z12 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,4,0))
Z25: z13 = (0 1 1 1 1 ° <p0,(0,0,0,0,0,0,0),(0,0,0,0,0,0,0))
Z26: Z13 = (0 1 1 1 1 ° <p0,(0,0,0,0,0,0,0),(0,0,0,0,0,0,1))
Z27 : z14 = (0 1 1 1 1 ° <Po, (0,0,0,0,0,0,0), (0,0,0,0,0,0,1))
Z28 : z14 = (0 1 1 1 1 ° <Po, (0, 0, 0, 0, 0, 0, 0), (0,0,0,0,0,0,2))
Z29: z15 = (0 1 1 1 1 ° ° ,(0,0,0,0,0,0,0),(0,0,0,0,0,0,0))
z30: z15 = (0 1 1 1 1 ° ° ,(0,0,0,0,0,0,0),(0,0,0,0,0,0,0))

FIGURE 14.6. Example of TBD analysis.

292 Chapter 14. Symbolic Analysis

bound [dj , D j) changes to ~ in state z2dj and to its (binary) excita
tion in state z2Dj-l. A state vertex j with delay bound [dj , Dj) that
becomes unstable in state Z2k, for some k, and stays unstable until at
least state Z2k+2dj -l, changes to ~ in state Z2k+2d j • Also, if a state
vertex j is unstable and gets a binary excitation in state Z2k-l, for
some k > 0, and the excitation remains at this value for the next
2Dj - 1 states, then the vertex changes to this excitation in state
Z2k-1+2D j • Given the behavior of the input vertices, it is easy to see
that vertices only change to ~ in even states and to binary values
in odd states. Thus, one can view the input vertices as creating a
"change-to-~ wave" and a "change-to-binary wave." The first wave
propagates on even time steps; the second on odd time steps. Note
that the "speed" of the ~-wave is strictly greater than the speed of
the binary wave.

The example above provides an intuitive motivation for the revised TBD
algorithm, called the rTBD algorithm for short. The rTBD algorithm also
uses two vectors of counters, in addition to the current state of the network,
to keep track of how long a vertex has been unstable and how long it has
had a binary excitation. However, the algorithm uses the odd/even changes
instead of computing intermediate states, as was done in the original TBD
algorithm. More formally, the rTBD algorithm is defined inductively as
follows:

. ·0· ° . ° Baszs: (z , U , V) = (b, (0, ... ,0), (0, ... ,0))

Induction Step: Given (Zh, Uh, Vh), state (zh+!, Uh+! , Vh+!)
is computed as follows:

U,!-+! = Uj + 1 {
• h

J 0

V:~+! = Vj + 1 {
. h

J 0

if Sj E U(a, zh) n B(zh),
otherwise;

if Sj E U(a, zh) n Be(a, zh),
otherwise;

if 1~j~n and
if n<j~n+m
l·f . h+! Uj = 2dj ,

otherwise.

. h+l Vj = 2Dj -1,
. h+!

andVj = 2Dj ,

The following theorem shows that this algorithm produces the same results
as the TBD algorithm of Chapter 8.

Theorem 14.1 Suppose that ((zO, UO, VO), (ZI, U\ VI), (zI, UI, VI), ...)
0·0·01·1·12·2·2 and ((z , U , V), (z , U , V), (z , U , V), ...) are the sequences of states

computed by the TBD and the rTBD algorithms, respectively. Then Z2i-1 =
Zi for i = 1,2, ... , and Z2i = Zi for i = 0,1,

Section 14.4. Symbolic Race Analysis 293

Proof: The proof of this result is rather technical and too lengthy to be
included here. We refer the reader to [125]. 0

Consider now the rTBD algorithm when the ternary values and excita
tion functions are represented in the dual-rail encoding of Table 14.1. In
[122] it was shown that a vertex can change only from a binary value to
<P or from <P to a binary value in the TBD algorithm. Furthermore, except
for the input vertices, the excitation of a vertex can only change from a
binary value to <P or from <P to a binary value. In view of Theorem 14.1,
the same statements hold for the rTBD algorithm. The signal transitions
possible in the rTBD algorithm are shown in Table 14.4, together with the
corresponding encoded transitions.

TABLE 14.4. Possible signal transitions in the rTBD algorithm.

Ternary values Encoded values
O-+<P (0,1) -+ (1,1)
1-+<p (1,0) -+ (1,1)
<P-+O (1,1) -+ (0,1)
<p-+1 (1,1) -+ (1,0)

Note that changing from a binary value to <P requires changing one of the
rails from 0 to 1, and changing from <P to a binary value requires changing
one of the rails from 1 to O. This observation can be used to derive a "dual
rail version" of the rTBD algorithm. In Figure 14.7 we show graphically

~ 0-+1 2dj ~ 1-+0 2Dj -1

~
0-+1 2dj ~ 1-+0 2Dj -1

(a)

B- =
~ 0-+1 2dj ~ • :!.:

1-+0 2Dj

~
0-+1 2dj ~ 1-+0 2Dj . Sj.O

(b)

FIGURE 14.7. Dual-rail rTBD algorithm: (a) input vertex; (b) state vertex.

294 Chapter 14. Symbolic Analysis

how such a transformation can be performed. Each vertex in the TBD
algorithm is split into two vertices, each with a "delay box" showing the
delays associated with changing the vertex variable from 0 to 1 and from
1 to O. Note that the input vertices are treated somewhat differently from
the state vertices.

The restatement of the rTBD algorithm transforms the original TBD
algorithm into two simpler binary-delay modeling problems. However, it
does not solve the data dependence problem-the delay boxes must still
test for specific values. What is needed is some way of modifying the delay
boxes of Figure 14.7 so that they need not test explicitly for O's or l's. To
introduce the technique of symbolic TBD analysis, we derive a delay box for
the case where the 0 -+ 1 transition should take two steps, and the 1 -+ 0
transition should take six steps. To aid the reader's intuition, we develop
the ideas in terms of a "circuit" that is analyzed using a unit-delay race
algorithm. The basic construction can be easily generalized and formalized.

FIGURE 14.8. First attempt to design a delay circuit.

In Figure 14.8 we show two small "delay circuits" that almost achieve
the desired data independence. Since the high-rail and the low-rail delay
circuits are identical, we discuss only one of them. The delay circuit consists
of a series of unit-delay elements, an AND gate, and an OR gate. Note that
we assume that the evaluations of the excitation function and the AND
and OR gates are instantaneous (Le., have zero delay). Thus, we are really
performing a "unit/zero-delay analysis." Assume that the delay circuit is
started in a stable state, Le., all element and gate outputs are 0 (1). If
the excitation function changes to 1 (0), the output will change to its new
value after 2 (6) unit delays. In other words, if changes of the excitation
occur so seldom that the delay circuits are always stable when the change
occurs, the delay circuit delays a 0 -+ 1 transition two steps, and a 1 -+ 0
transition six steps-exactly as required.

Section 14.4. Symbolic Race Analysis 295

The delay circuit of Figure 14.8 works correctly as long as changes of the
excitation do not occur too often. However, in a real circuit this cannot
always be guaranteed. Consider for example what would happen if the
excitation had been 0 for a long time and then changed to 1 at time t
and back to 0 again at time t + 1. This "glitch" propagates unchanged
through the delay circuit and appears on the output of the delay circuit at
time t + 3. On the other hand, in the rTBD algorithm, such a pulse would
be suppressed. What is needed is a delay circuit that can exhibit inertia,
i.e., that ignores such short pulses. Since pulses in the rTBD algorithm
are always of integer length, it is sufficient to find a circuit that can filter
out glitches of integer length. In Figure 14.9 we show such a delay circuit.
Again, it is a chain of unit delays and some delay-free AND gates and
OR gates. For the output of this delay circuit to change from 0 to 1, the
excitation must be 1 for at least two consecutive steps. Similarly, for the
output to change from 1 to 0, the excitation function must be 0 for at least
six consecutive steps. Hence, the delay circuit of Figure 14.9 exhibits the
desired inertia. Furthermore, it does not contain any data-dependent tests,
and requires only standard unit-izero-delay simulation.

FIGURE 14.9. Final version of delay circuit.

In summary, by reformulating the TBD algorithm and using the dual
rail encoding of Table 14.1 for ternary values, we have shown how a ternary
network can be transformed into a binary network in such a way that the
unit-delay analysis of the transformed network corresponds exactly to the
TBD analysis of the original network. The same transformation technique
can be used for other delay models. First of all, it is straightforward to
design a delay circuit that delays a 0 ---+ 1 transition e time units and a
1 ---+ 0 transition E time units (where e is not necessarily less than E),
and exhibits inertia. Now assume the high rail has a 0 ---+ 1 delay equal to
r (for minimum rise delay) and a 1 ---+ 0 delay equal to F (for maximum

296 Chapter 14. Symbolic Analysis

fall delay), and the low rail has a 0 -+ 1 delay equal to f (for minimum
fall delay) and a 1 -+ 0 delay equal to R (for maximum rise delay). Note
that we must have r :S Rand f :S F for proper operation. Otherwise the
output of the vertex could possibly get the value 0 on both the low and
the high rails-an illegal situation. In Table 14.5 we show the different race
models we obtain by using different values of the delay bounds. Note that
the nominal delay (ND) model can be simplified by using only half as many
unit-delay elements. However, by using the numbers shown, it is possible
to have nominal delays on certain vertices and bounded delays on others.

TABLE 14.5. Race models obtained for different delay circuits.

Input vertices State vertices Corresponding race model
r = f = 2dj r = f = 2dj TBD analysis with delays
R = F = 2Dj -1 R=F = 2Dj d·T < ~ ·(t) < D·T J - J J

r = R = 2rj r = R = 2rj ND analysis with rise delays
f = F = 21; f = F = 2fj r j T and fall delays I; T
r = 2rj r = 2rj TBD analysis with rise delays
R = 2Rj -1 R=2Rj rjT::; Llj(t) < RjT
f = 21; f = 2fj and fall delays
F = 2Fj -1 F=2Fj fjT :S ~{(t) < FjT

With the ability to perform bi-bounded-delay and nominal-delay race
analysis symbolically, it is easy to derive the serial behavior of a network.
There is one difficulty remaining. In the nominal-delay and TBD algo
rithms, the only guarantee we can give, in general, on the maximum length
of any cycle in the outcome is that it contains fewer than 2m D (3m D)
states, where D is the maximum delay associated with any vertex. This
implies that the symbolic versions of these algorithms may have to be car
ried out for exponentially many steps in order to compute the outcome
of a transition. A pragmatic solution is to impose an upper limit on the
number of steps the circuit is allowed to take to reach a stable state. Hence,
we can compute a vector of Boolean functions representing the final result
of symbolic TBD (or ND) simulation when the initial state of the network
is G,·b and the input is changed to a. Consequently, the computation of the
complete-word behavior of a network can be performed as follows:

tow(a·b, c·d) (a", c) * (b == S(a·b)) * (d == S(c·d)) *
(r.1 == d) * (r.O == d),

where (r.1,r.O) represents the final result of symbolic TBD (or ND) simula
tion, depending on the delay/race model used. Intuitively, two total states
are complete-word-related if they are both stable, they differ in their inputs,
and the second state is the result obtained by a (symbolic) race analysis
algorithm. From the symbolic complete-word behavior we can derive the
serial behavior as discussed earlier.

Section 14.5. Symbolic Verification of Realization 297

We have demonstrated how nominal-delay and bi-bounded-delay race
analysis can be performed by carrying out a unit-delay analysis of a trans
formed network. The transformation of the original network consisted of
two steps. First a binary dual-rail-encoded network was obtained from the
ternary network. Next, each input- and next-state vertex in the dual-rail
network was replaced by a delay circuit that was determined by the race
model and the delay associated with the vertex. By using this transforma
tional technique, we were able to carry out these race analysis algorithms
symbolically. One important side effect of this is that we can use symbolic
unit-delay analysis to compute the minimum and maximum delays a net
work may exhibit for any input change. In particular, this is a powerful
technique for determining the minimum and maximum propagation delays
in a combinational network. We begin by applying the (fully symbolic) in
put vector a. We then simulate the (transformed) network until it reaches
a stable state. Since the network is combinational, the circuit is guaranteed
to reach such a state. At this point, we apply a completely new set of (sym
bolic) input values and start simulating. For each step of the (unit-delay)
simulation, we also compute the XOR of the old and new values of the out
put functions. Given the results above, one verifies that the first time this
Boolean function differs from 101 determines the minimum delay for any
input change, and the last time the function differs from 101 determines
the maximum delay for any input change. In essence, by running two sym
bolic unit-delay simulations, we obtain the same amount of information as
we would get had we simulated the original network using a nominal or
bi-bounded race analysis algorithm for every possible input change. More
over, symbolic simulation can often be done in a tiny fraction of the time
that such an exhaustive simulation would require.

14.5 Symbolic Verification of Realization

In the previous sections we have shown how to represent specification be
haviors in symbolic form, and we have derived symbolic representations
of several implementation behaviors from a given network, environmental
assumptions, and race model. We now consider algorithms for determin
ing whether a (symbolic) specification behavior is realized by a (symbolic)
implementation behavior.

In Chapter 11 five conditions were given for an implementation behav
ior B' to realize a specification behavior A. Here we assume that the first
condition has been satisfied, i.e., that the initial mapping and removal of
unused inputs and outputs have been done. The reason for this is our purely
pragmatic aim to simplify the notation. Thus, following Section 11.3, we
assume that the input excitation and output vectors of B' are identical
to those of A, and we focus on the remaining four conditions. Unfortu
nately, these conditions include both language containment properties and

298 Chapter 14. Symbolic Analysis

structural properties of the behaviors' graphs; thus, a direct adaptation
to a symbolic domain presents some problems. In particular, the language
containment conditions are difficult to translate into efficient symbolic algo
rithms, especially when the implementation behavior is nondeterministic.
Consequently, we first develop a new set of conditions that are amenable
to symbolic analysis and that imply the original conditions. Unfortunately,
our decision procedure is not perfect: there are cases where an implemen
tation realizes a specification, but our decision procedure fails to discover
this.

Let A = (X, R, 0, Q, ql, T, '¢) be a deterministic (and hence proper)
specification behavior, and let B' = (X,R',O,Q',qi,T',,¢') denote an
input-proper implementation behavior.3

Recall that an empty-word path (or c-path) in B' is a sequence s~, s~, ... ,
s~ of states such that (s~, s~+l) E T' for 0 :S i < k, and l'(sD = l'(s~), for
0< i :S k. In other words, such a path "spells" the empty word c. For any
states s', t' E Q', define the predicate c-path(s', t') to hold if and only if
there is an c-path from s' to t'. Let T~. denote the transition set obtained
by adding transitions that "bypass" empty-word transitions in T', i.e., let

T~. = T' U {(q', r') I :ls'. c-path(q', s') and (s', r') E T' }.

Finally, let T:_ free denote the set obtained from T~. by removing all empty
word transitions, i.e., let

T:_ free = {(q',r') Il'(q') =I- l'(r') and (q',r') E T:.}.

The c-free behavior B;_free of an implementation behavior B' is identical
to B' except the transition set T' is replaced by T:_free • The following
proposition follows from the construction of T:_free .

Proposition 14.1 L(B') = L(B;_freJ.

The c-free behavior B;_free is more convenient than B' for language prop
erties, but does not preserve the deadlock and livelock characteristics of
B'. Consequently, we need to keep track of these characteristics separately.
We do this by defining a set, called trap', that contains all the states in
B' that can reach, through a sequence of empty-word transitions, either
an empty-word cycle or a terminal state. Intuitively, a trap state is a state
from which the implementation might never produce an output, unless an
input change is applied. Formally, let trap' be defined as

{q' I :lr'. (q', r') E T~., l' (q') = l' (r'), and (r', r') E T:. or r' E term'},

3Determining that a symbolic behavior is (input-)proper can be done using
techniques similar to those of this section. However, the algorithms that we nor
mally use to derive the symbolic behaviors from networks guarantee that the
behaviors already have the desired property.

Section 14.5. Symbolic Verification of Realization 299

where term' is the set of terminal states of B'. One verifies that the terminal
states of B' are the same as those of B;_f,ee' In view of the fact that B;_f,ee has
no empty-word transitions, the set term' can be found more conveniently
from T:_f,ee as follows:

term' = {q' I 'rip'. (q',p') E T:_f,ee implies X(q') -=I- X(p')}.

The basic idea behind the decision procedure that tests for realization
is to find a binary relation between the states in the specification behavior
and the states in the implementation behavior. Informally, this relation
identifies "equivalent" states in the sense that words that are relevant to
the specification take the two behaviors to related states, and related states
have similar livelock and deadlock behaviors. More formally, we say that
binary relation M ~ Q x Q' is a state-realization relation if and only if

1. qlMq~.
(Initial states correspond.)

2. If qMq', then l(q) = l'(q').
(Corresponding states have the same labels.)

3. If (q, r) E T and qM q', then there exists r' E Q' such that (q', r') E

T:_f,ee and r M r'.
(For each transition in the specification there is a corresponding tran
sition in the implementation.)

4. Suppose that (q',r') E T:_f,ee' qMq', and either (a) X(q') -=I- X(r'),
and there exists a state r E Q such that (q, r) E T and X(r) = X(r'),
or (b) X(q') = X(r'). Then there exists r E Q, such that (q,r) E T
and rMr'.
(For each transition of the implementation that is relevant to the
specification there is a corresponding transition in the specification.)

5. If q' E trap', and qM q', then q must be a terminal state.
(Implementation states that might never produce any outputs can
only be related to specification states that are terminal.)

Lemma 14.1 Assume that M is a state-realization relation between A and
B' and that wE L(A) nL(B;_f,eJ. If q E Q is the state reachable by w from
ql in A and q' E Q' is any state reachable by w from q~ in B;_f,ee' then
qMq'.

Proof: We prove the claim by induction on the length of the word w. The
basis, Iwl = 0, follows trivially from Property 1 of the state-realization rela
tion, since, by construction of B;_f,ee' the only state reachable from q~ by the
empty word is q~. Assume now that the claim holds for all words of length
less than n for some n ~ 1. Consider a word w = U(J E L(A) n L(B;_f,eJ
such that Iwl = n. Since w E L(A), it follows that there must exist a

300 Chapter 14. Symbolic Analysis

state sequence ql, ... , qn+ 1 E Q that spells w. Note that the sequence
ql, ... ,qn spells u. Now consider any state q~+1 reachable by w in B~_free.
Since w = UO", there exists a state q~ reachable by u in B:_free such that
(q~, q~+1) E T:_free and r(q~, q~+1) = 0". By the induction hypothesis,
qnMq~; by Property 2 of the state-realization relation, l(qn) = l'(q~). Since
(qn,qn+1) E T and r(qn,qn+1) = 0", it follows that l(qn+d = l'(q~+1). By
Property 4 of the state-realization relation, there must exist a state r E Q
such that (qn, r) E T and r M q~+1. Because A is deterministic, r must be
qn+1. Altogether, we have shown that qn+1 M q~+1. Thus the induction goes
through and the claim follows. 0

Lemma 14.2 If M is a state-realization relation between A and B', then
B' realizes A.

Proof: Assume that M is a state-realization relation between A and B'.
We need to verify that

i. L(B' /A) s:;; L(A) (safety).

ii. L(A) s:;; L(B' /A) (capability).

iii. If w E L(B') n L(A) leads to a terminal state in B', then it also leads
to a terminal state in A (deadlock-freedom).

iv. If w E L(B') n L(A), leads to a state in B' that has a cycle spelling c
around it, then w leads to a terminal state in A (livelock-freedom).

By Proposition 14.1 we know that L(B') = L(B:_freJ. From the definition
of relevant words we have L(B' / A) = L(B~_free/ A). Hence, for the language
containment properties (i) and (ii), we can substitute B:_free for B'.

We prove (i) by showing, by induction on the length of w, that w E
L(B~_fre./A) implies w E L(A). If Iwl = 0, i.e., w = c, then w E L(A),
because the empty word is accepted by every specification behavior. Now
assume inductively that, for some n 2: 0, we have u E L(B:_fre./A) and
lui ~ n implies that u E L(A). Consider any word w = UO" E L(B:_free/A)
such that lui = nand 0" E E. Since w E L(B:_free/A), we can find states
q' and r' E Q' such that q' is reachable from q~ by u, (q', r') E T:_free ,
and r(q',r') = 0". We now claim that there are corresponding states q
and r E Q such that q is reachable from the initial state ql by the word
u, (q,r) E T, and r(q,r) = 0". By the induction hypothesis, it follows
that u E L(A); let q E Q be the state reachable from ql by u. Because
u E L(A) n L(B:_free/A) = L(A) n L(B:_free), it follows by Lemma 14.1 that
qM q'. Since w is relevant to A, either 0" n X = 0 or 0" is applicable in A after
u. In either case, Property 4 of the state-realization relation guarantees that
there is a state r E Q such that (q, r) E T and r M r'. By Property 2 it
follows that l(r) = l(r') and r(q,r) = r(q',r') = 0". Altogether, we have
shown that w E L(A); thus the induction step goes through and the claim
follows.

Section 14.5. Symbolic Verification of Realization 301

Claim (ii) follows by an inductive argument on the length of a word w in
L(A) and by Properties 1, 2, and 3 of the state-realization relation. Finally,
(iii) and (iv) follow from Property 5 of the state-realization relation and
from the definition of trap'. 0

We now turn our attention to determining whether a state-realization
relation exists. Our approach is to compute the most general relation satis
fying Properties 2-5, and then determine whether this relation also satisfies
Property 1. This most general relation is found by a fixed-point calculation.
Intuitively, we compute a sequence of approximations to the relation, refin
ing each approximation until we reach the most general relation satisfying
Properties 2-5.

Formally, suppose we are given a deterministic specification behavior
A = (X, R, 0, Q, ql, T, 'IjJ) and an input-proper implementation behavior
B' = (X,R',O,Q',q~,T','IjJ'). We start with the set Mo = Q X Q'. This
includes all possible pairs of states that are candidates to be related by
a state-realization relation. To ensure that corresponding states have the
same label, we define the set

label = ((q,q') I q E Q,q' E Q', and l(q) = l'(q')}.

To enforce Property 5 of a state-realization relation we define

live = {(q,q') I q E Q,q' E Q', and q' E trap' implies q E term}.

The next two definitions deal with the language properties of capability
and safety. For any set M ~ Q X Q', let

and

cap(M) = {(q,q') I q E Q,q' E Q', and'tlr E Q. [(q,r) E T implies
3r' E Q'. [(q',r') E T:.free and (r,r') EM]]}

safe(M) = {(q,q') I q E Q,q' E Q', and 'tIr' E Q'.
[(q' , r') E T:.free and (q, q' , r') E appl implies
3r E Q. [(q,r) E T and (r,r') EM]]},

where appl is the set

{(q, q', r') I X(q') = X(r') or 3f E Q.[(q, f) E T and X(r) = X(r')]}.

Now define

f(M) = labeln cap(M) n safe(M) n live.

Note that the sets in the expression above correspond directly to Properties
2-5 of the state-realization relation. Consequently, the following proposition
holds:

Proposition 14.2 If M is a solution to the equation M = f(M) and
(ql, qD EM, then M is a state-realization relation.

302 Chapter 14. Symbolic Analysis

It is easily verified that f(M) is monotonic; thus the greatest fixed-point
of the equation M = f(M) is well defined. Altogether, we get the main
result of this section:

Theorem 14.2 Let A = (X, R, 0, Q, ql, I, 'ljJ) be a proper specification
behavior, let B = (X, R', 0, Q', q~, I', 'ljJ') an input-proper implementation
behavior, and let M = gfp M. f(M). If (ql, qi) E M, then B' realizes A.

Proof: Assume (ql, q~) E M. Since M = gfp M. f(M), it follows trivially
that M is a solution to M = f(M). By Proposition 14.2, M is a state
realization relation. Hence Lemma 14.2 applies and the claim follows. 0

The theorem above provides a straightforward fixed-point algorithm for
determining whether a behavior is a realization of another behavior. How
ever, it should be noted that the condition of the theorem is only a suf
ficient condition. There are behaviors related by the realization relation
for which this procedure fails, since we require each specification state to
correspond to some implementation state. For example, there is no state
realization relation between the behavior of Figure 11.5 (a) and the be
havior of Figure 11.5 (b). Consequently, our decision procedure would in
correctly claim that the behavior of Figure 11.5 (b) is not a realization of
the behavior of Figure 11.5 (a). It is difficult to guess how common this
type of state splitting is in practice; thus the degree of applicability of our
algorithm is still unknown.

We now turn our attention to a symbolic version of the fixed-point algo
rithm above. We denote all the sets and relations needed in the algorithm by
their characteristic functions. Assume that A = (X, R, 0, Q, ql, t, 'ljJ) is a de
terministic symbolic specification behavior and that B' = (X, R', 0, Q', q~,
t', 'ljJ') is an input-proper symbolic implementation behavior. We introduce
some shorthand to improve the notation. First, we write l(a·b) == l(c·d) to
denote the expression (a == c) * ('ljJ(a·b) == 'ljJ(c·d)). We also write l'(a'·b') ==
l' (c' ·d') to denote the corresponding expression in which 'ljJ is replaced by
'ljJ'. We write X(a·b) == X(c·d) instead of (a == c).

We first need to compute the characteristic functions t~. and t:.free for
the relations I~. and I:.free , respectively. The function t~. is defined by
the fixed-point equation

t~* = lfp m. arm],

where

a[m](a', b') = t'(a', b')+ (3c'. t'(a', c') * (l'(a') == l'(c')) * m(c', b')).

To better understand the fixed-point formulation, consider computing
t~* by the fixed-point iteration

i {IOI m = a[mi - 1]

if i = 0,
otherwise.

Section 14.6. Symbolic Model Checking 303

It is easy to verify that, for i > 0, mi(a', b') = 1 if and only if there is
a state c' (a' = c' is possible) such that there is an empty-word path of
length at most i-I that takes B' from a' to c' and t' (c', b') holds.

Now t~.f ••• can be computed from t~.:

(f .•• (a', b') = t~. (a', b') * (I' (a') ¢ I' (b')).

If we define term and term: as

term(a) = Vb. t(a, b) => (X(a) ¢ X(b)),

and

term'(a') = Vb'. t'{a',b') => (X{a') ¢ X(b')),

we can define tmp' as

tmp'(a') = 3b'. t~. (a', b') * (I' (a') == I' (b')) * (term'(b')+t~. (b', b')) .

Finally, the most general state-realization relation (excluding Property 1),
is given by the fixed-point equation

m = gfp m. ,6[m] ,

where

,6[m] {a, a') = label(a, a') * cap[m] (a, a') * safe[m] (a, a') * live(a, a'),

label(a, a') = (l{a) == l(a')),

cap[m] {a, a') = Vb. [t{a, b) => (3b'. [t:.fr •• (a', b') * m(b, b')])],

safe[m] (a, a') = Vb'. [(t~{a', b') * appl{a, a', b')) =>
(3b. [t{a, b) * m{b, b')])] ,

appl(a, a', b') = {X (a') == X(b')) + (3c. [t(a, c) * (X(c) == X(b'))]) ,

and live(a, a') = (tmp'(a') => term(a)).

In view of Theorem 14.2, if m{ql,qD = 1, then B' is a realization of A.

14.6 Symbolic Model Checking

In the previous section, we discussed methods for testing whether one be
havior is a realization of another. Such methods cannot be applied, how
ever, if the correctness of the specification itself is in doubt. One way to
improve the "quality" of a specification is to check that it satisfies some
desired properties. For example, we may want to ensure that an arbiter
specification never allows both requests to be granted at the same time. In
other circumstances, we may not have a complete specification, but only
a collection of properties a design should satisfy. Such properties can be
verified using model checking-an algorithm that can be used to determine

304 Chapter 14. Symbolic Analysis

the validity of some temporal-logic formulas with respect to a behavior. In
this section we discuss a simple temporal logic and a decision procedure
that checks the validity of a formula in a given symbolic behavior.

We begin with a brief introduction to temporal logic. Propositional logic
deals with absolute truths in a domain, i.e., with propositions that are
either true or false. Predicate logic extends this notion of truth to rela
tive truth, depending on the actual arguments involved. Modal logic-a
special case of which is temporal logic-generalizes this concept of truth
even further by making it dependent on the "world" currently being exam
ined. Thus, within a world, predicate logic is used, whereas between worlds,
modal operators are introduced. In the hardware domain, the worlds rep
resent different states of a system, and the movement from one world to
another represent the dynamic behavior of the system. For this reason, we
use the word state rather than world in the sequel.

There are several types of temporal logics; for a comprehensive discussion
of the temporal logics used in hardware verification, the reader is referred
to [57]. In this section we highlight only one such logic-computational tree
logic (CTL)-together with its associated decision procedure [37J. CTL is
particularly appropriate for stating properties of asynchronous systems.

A CTL formula is defined with respect to a set of atomic formulas. These
atomic formulas should be viewed as basic properties of individual states.
In our context, the atomic formulas constrain the inputs and/or outputs
to be 1 or O. Formally, the syntax of a CTL lormula is defined as follows:

1. (a) Input i is 1 (where 1 :::; i :::; n),

(b) Input i is 0 (where 1 :::; i :::; n),

(c) Output i is 1 (where 1 :::; i :::; p),

(d) Output i is 0 (where 1 :::; i :::; p).

2. If 1 is a CTL formula, then so are

(a) -,1 (not I),

(b) AX 1 (for all paths 1 holds in the next state),

(c) EX 1 (there is a path in which 1 holds in the next state),

(d) AG 1 (for all paths, 1 holds in every state),

(e) EG 1 (for some path, 1 holds in every state),

(f) AFI (for all paths, eventually 1 holds),

(g) EFI (for some path, eventually 1 holds).

3. If 1 and 9 are CTL formulas, then so are

(a) 11\ 9 (J and g),

(b) A(JUg) (for all paths: 1 until g),

(c) E(JUg) (for some path: 1 until g),

Section 14.6. Symbolic Model Checking 305

where we have included in parentheses the common way to read the various
formulas. Other logical connectives like v, *, are defined in the usual way
in terms of /\ and '.

Suppose A = (X, R, 0, Q, ql, T, '¢) is a behavior. If q E Q and there does
not exist apE Q such that (q,p) E T we say that q is a sink in A. With A
and sEQ we associate an infinite computation tree, with root s and with
an edge from vertex t to vertex u if and only if (t, u) E T or t is a sink and
u = t. An infinite path of the tree starting at the root s is an s-path of A.
In Figure 14.10 we illustrate the construction of the computation tree from
a simple behavior. Note that the sink (10·rl·10) is repeated indefinitely.

FIGURE 14.10. Simple behavior and corresponding computation tree.

Given a CTL formula J, we write A, s F J (or s F J if A is understood),
to state that the formula J holds in the computation tree derived from A
and rooted at s. Formally, the semantics of a CTL formula J is defined
recursively as

1. (a) SF (input i is 1) holds if and only if Xi(S) = 1.

(b) sF (input i is 0) holds if and only if Xi(S) = O.

(c) sF (output i is 1) holds if and only if '¢i(S) = 1.

(d) sF (output i is 0) holds if and only if '¢i(S) = o.

306 Chapter 14. Symbolic Analysis

2. (a) S F -,1 if and only if S F I does not hold.

(b) S FAXI if and only if t F I for every s-path (s, t, ...) of A.

(c) SF EXI if and only if t F I for some s-path (s, t, ...) of A.

(d) s F AGI if and only if I holds in every state in every s-path of
A.

(e) SF EGI if and only if I holds in every state in some s-path of
A.

(f) s F AF I if and only if for every s-path of A there is at least
one state in which I holds.

(g) s F EF I if and only if for some s-path of A there is at least
one state in which I holds.

3. (a) s F I 1\ g if and only if s F I and s F g.

(b) s F A(fU g) if and only iffor every s-path (so, S1, ..•) of A there
exists some j ~ 0 such that Sj F g and Si F I for 0 ::; i < j.

(c) s F E(fU g) if and only if for some s-path (so, Sl, ...) of A there
exists some j ~ 0 such that Sj F g and Si F I for 0 ::; i < j.

The temporal logic above is useful for describing properties of behaviors.
To illustrate this, consider the behavior of Figure 14.11, where the (ex
panded) initial state is OOO'TO'O, the inputs are a, b, and c, and the output
is Out. The behavior specifies a three-input Muller C-ELEMENT operated
in an environment that may withdraw a request, but only if the behavior is
in a static state. We can divide the properties we would like the behavior

FIGURE 14.11. Specification behavior for three-input C-ELEMENT.

Section 14.6. Symbolic Model Checking 307

to exhibit into two types: liveness (something good will eventually happen)
and safety (nothing bad will ever happen). We give some examples of each
type of property.

For a C-ELEMENT to function properly, we should ensure that, if we keep
all three inputs at the same value, then eventually the output should change
to this value. We can express this liveness property by the following two
CTL formulas:

AG(A((a = 0 /\ b = 0/\ c = 0) U (Out = 0 V a = 1 V b = 1 V c = 1))),

and

AG(A((a = 1 /\ b = 1/\ c = 1) U (Out = 1 Va = 0 vb = 0 V c = 0))),

where we have used the shorthand a = 1 for "input a is 1," etc. The CTL
formulas state that, in any state s that is reachable from the initial state
and in which all the inputs are equal, in every path leaving s, either one of
the inputs must eventually change or the output must eventually change
to agree with the common input value.

The following safety condition should hold: If all three inputs and the
output have the same value, then the output should not change until all
three inputs have changed to the complementary value. This condition can
be expressed by the two CTL formulas:

AG((a = 0/\ b = 0 /\ c = 0/\ Out = 0)
=> A(Out = 0 U (a = 1 /\ b = 1 /\ c = 1)))

and

AG((a = 1/\ b = 1/\ c = 1/\ Out = 1)
=> A(Out = 1 U (a = 0/\ b = 0/\ c = 0))).

We are interested in CTL not only because it is a concise and powerful
specification language for desirable properties of a system, but also because
there is a very efficient algorithm for determining whether a CTL formula
holds for the initial state of a behavior. The basic algorithm, called the
model checking algorithm, was introduced in [37]. The original algorithm
was described in terms of Kripke structures,4 which include behaviors, and
requires an explicit representation of the state space. Here we present the
algorithm in terms of fixed-point calculations, making it amenable to a sym
bolic formulation. Our formulation is similar to the one described in [28].

4 A Kripke structure is a triple (8, R, L), where 8 is a set of states, R is a
successor relation, and L is a labeling function associating with each state a
subset of a given fixed set of atomic formulas.

308 Chapter 14. Symbolic Analysis

Given a behavior A = (X,R,O,Q,ql,7,'I/J) and a CTL formula f, the
model checking algorithm computes the set H(f) ~ Q of states that satisfy
f. Let

7' = 7 U {(q, q) I q E Q and q is a sink }.

This ensures that for every q there exists a q' such that (q, q') E 7' by
adding the self-loops needed to make all computation paths infinite. The
model checking algorithm is now defined recursively as follows:

1. (a) H(input i is 1) = {q I Xi(q) = 1}.

(b) H(input i is 0) = {q I Xi(q) = O}.

(c) H(output i is 1) = {q I 'l/Ji(q) == 1}.

(d) H(output i is 0) = {q I 'l/Ji(q) == O}.

2. (a) H(...,f) = Q -H(f).

(b) H(AXf) = {s I "It. (s,t) E 7' =? t E H(fn.

(c) H(EXf) = H(...,(AX(...,f))).

(d) H(AGf) = gfp U.H(f) n {s I "It. (s,t) E 7' =? t E U}.

(e) H(EGf) = H(...,(AF...,f)).

(f) H(AFf) = lfp U. H(f) U {s I "It. (s, t) E 7' =? t E U}.

(g) H(EFf) = H(...,(AG...,f)).

3. (a) H(f 1\ g) = H(f) n H(g).

(b) H(A(fUg)) == lfp U. H(g)U(H(f)n{s I "It. (s, t) E 7' =? t E U}.

(c) H(E(fUg)) = H(...,(A(...,gU(...,f 1\ ...,g)) V AG(...,g))).

To verify that CTL formula f holds in behavior A, we simply ensure that
the initial state of A is in H(f).

The fixed-point calculations above are used to compute the set of states
that satisfy some of the "global" CTL formulas. For example, consider
finding the set of states that satisfy the CTL formula AG f when given
the set H(f) that contains all the states that satisfy f. As stated above,
this set can be found by computing the greatest fixed point of the function
g(U) = H(f)n{s I "It. (s, t) E 7' =? t E U}. First, note that 9 is monotone.
Since Q is finite, it follows that the greatest fixed point is well defined.
Intuitively, the fixed-point calculation consists of finding the largest subset
U of Q such that 1) f holds in every state in U, and 2) for every state
u E U, every successor of u is also in U. Clearly, every element u E U
satisfies AG f. Conversely, if an element v is not in U, then either f does
not hold in v or there is some state reachable from v in which f does not
hold. (Otherwise v would have been in U.) Both cases imply that AG f does
not hold in v. Altogether, it is straightforward to prove that S F AG f if

Section 14.6. Symbolic Model Checking 309

4

FIGURE 14.12. Example of behavior for model checking.

and only if 8 E gfp U. 1i(J) n {8 I 'TIt. (8, t) E T' => t E U}. The other
fixed-point computations can be motivated using similar arguments.

To illustrate the model checking algorithm, consider the behavior of
Figure 14.12, where the outputs are a, b, and c. Consider the CTL for
mula AG((a = 1) V (c = 1)). We would like to compute the subset of Q for
which this formula holds, i.e., we would like to find the set U such that

1. every state in U has a = 1 or c = 1,

2. for every u E U and for every infinite path starting in u, every state
in this path has a = 1 or c = 1.

First, we rewrite the formula as one using only the connectives 1\ and -'j
the new version is AG (..., ((..., (a = 1)) 1\ (..., (c = 1)))). Since the behavior has
no sinks, we have T' = T. Using the definition of 1iO we obtain

1i(AG(...,((...,(a = 1)) 1\ (-,(c = 1))))) =
gfp U.1i(...,((-,(a = 1)) 1\ (-,(c = 1)))) n {8 I Vt. (8, t) ET' =>tEU}.

Now, since

1i(...,((...,(a = 1)) 1\ (-,(c = 1))))

we get

= Q -1i((-,(a = 1)) 1\ (-,(c = 1)))

Q - (1i((...,(a = 1))) n 1i((...,(c = 1))))

= Q - ((Q -1i((a = 1))) n (Q -1i((c = 1))))

Q - ((Q - {2,3}) n (Q - {3,4,5}))

Q - (({1,4,5}) n ({1,2}))

= {2, 3, 4, 5},

1i(AG(-,((...,(a = 1)) 1\ (...,(c = 1))))) =
gfp U. {2,3,4,5} n {8 I Vt. (8,t) E T' => t E U}.

310 Chapter 14. Symbolic Analysis

The fixed point can now be computed as

Uo = Q,

Thus

U1 = {2,3,4,5} n {s I 'lit. (s,t) E T' => t E Uo}

{2,3,4,5} n {1,2,3,4,5} = {2,3,4,5},

U2 = {2,3,4,5} n {s I 'lit. (s,t) E T' => t E Ud

= {2, 3, 4, 5} n {I, 2, 3, 4} = {2, 3, 4},

U3 = {2,3,4,5} n {s I 'lit. (s,t) E T' => t E U2 }

= {2,3,4,5}n{I,2,3,4} = {2,3,4} =U2'

1i(AG(-.«-,(a = 1))" (-.(c = 1)))))
= gfp U. {2,3,4,5} n {s I 'lit. (s,t) E T' => t E U}

= {2,3,4}.

Hence the formula AG«a = 1) V (c = 1» holds if and only if the initial
state of the behavior is 2, 3, or 4.

We now convert the model checking algorithm to symbolic form. For a
more complete treatment of symbolic model checking, the reader is referred
to [28]. Given a symbolic behavior A = (X, n, 0, Q, qb t, 'IjJ) and a CTL for
mula I, the symbolic model checking algorithm computes the characteristic
function, h[/], for the set of states that satisfy I. As before, we need to
add self-loops to sinks to make the transition predicate complete. Let

t' (a, b) = t(a, b)+ ((3c. t(a, c») * (a == b») .

The symbolic model checking algorithm is now defined recursively as fol
lows:

1. (a) h[input i is 1](a) = Xi(a).

(b) h[input i is 0 lea) = Xi(a).

(c) h[output i is 1](a) = 'ljJi(a).

(d) h[output i is 0](a) = 'ljJi(a).

2. (a) h[-'/](a) = hU](a)

(b) h[AX/](a) = Vb. «t'(a,b» => (h[/](b))).

(c) h[EX/] = h[-.(AX(-,f)].

(d) h[AGI] = gfp s. a[/,s], where

aU, s](a) = (h[/](a» * (Vb. (t'(a, b) => s(b))).

Section 14.6. Symbolic Model Checking 311

(e) h[EG/] = h[...,(AF...,J)].

(f) h[AF I] = lfp s. ,8[/, s], where

,8[/, s](a) = (h[f](a))+ (Vb. (t'(a, b) '* s(b))).

(g) h[EFf] = h[...,(AG...,J)].

3. (a) h[f 1\ g](a) = (h[f](a)) * (h[g](a)).

(b) h[A(JUg)] = lfp s. ,[I, g, s], where

,[f,g,s](a) = h[g](a)+ (h[/] (a) * (Vb. (t'(a,b) '* s(b)))).

(c) h[E(JUg)] = h[...,(A(...,gU(""1 1\ ...,g)) + AG(...,g))].

To determine whether I is satisfied in the symbolic behavior, we check
whether h[f] (ql) = l.

One of the main strengths of CTL model checking is the fact that the
decision procedure is completely automated. The user of the procedure need
not be aware of the details of the given behavior, but can interact with the
model checker to determine whether the behavior satisfies some desired
properties. Also, one can modify the model checking algorithm above to
produce counterexamples to a formula, Le., sequences of states starting in
the initial state and leading to states that do not satisfy the formula. This
capability makes model checking an extremely valuable checking procedure
in practical applications.

Temporal logics and model checking have the following drawbacks: In
this approach to verification, the specification must be a list of desired
properties. It may be difficult to judge whether the temporal formulas used
completely characterize the desired behavior of the system. Also, it is easy
to forget to check some property that one might take for granted. Finally,
temporal logic formulas can be difficult to understand; this creates a danger
of misunderstanding the properties that have been verified.

Although the symbolic approach significantly increases the usefulness of
model checking, the size of behaviors that can be checked is too small to
model circuits that include nontrivial data paths. Hence, model checking is
primarily useful in verifying the control parts of a design. Other methods
must be used to verify the data path as well as the interactions between
the data path and the control parts. Alternatively, design techniques that
guarantee correct operation can also be employed. We return to this topic
in Chapter 15.

Chapter 15

Design of Asynchronous Circuits
Janusz A. Brzozowski, Scott Hauck, and Carl-Johan H. Seger

Most of this chapter is based on an article by Scott Hauck. 1 However, we
have adapted this material to the style of the book, omitted certain topics,
significantly changed other topics, and added new material.

The main theme of this book has been the analysis of circuit behavior.
We have also considered the verification problem-whether an implemen
tation realizes a given specification. However, we have not yet discussed
the vitally important question of design. Systematic and efficient meth
ods for designing asynchronous circuits are needed if such circuits are to
be more widely used. As we have already pointed out, the classical meth
ods for designing asynchronous circuits are often inadequate. The interest
in asynchronous circuit design has increased dramatically in the past ten
years, and today there are several methodologies that have been used on
nontrivial design projects. In this chapter we give a brief survey of this
exciting and fast moving field. Because of space and time limitations, we
do not consider these design methods in depth, but only give the reader a
flavor of the approaches together with references that can be pursued for
additional detail.

How To Read This Chapter

In the introductory Section 15.1 we discuss the potential advantages of
asynchronous design, and also some of the drawbacks. In the remainder of
the chapter we briefly describe a number of design techniques. The relations
among these techniques are discussed below. However, most sections are
relatively independent and could be read separately in order to get a first
impression of the methods described.

First, we describe four methods that use the bounded-delay assumption.
Both gates and wires are assumed to have delays, but such delays are bi
bounded. We begin in Section 15.2 with the classical method of Huffman,

lScott Hauck, "Asynchronous Design Methodologies: An Overview," Proceed
ings o/the IEEE, Vol. 83, No.1, January 1995. Copyright @1995 by the Institute
of Electrical and Electronic Engineers, Inc.

314 Chapter 15. Design of Asynchronous Circuits

in which behaviors are specified by flow tables and circuits are assumed
to operate in the fundamental mode. Next, some of the fundamental-mode
restrictions are removed in Section 15.3, where Hollaar's approach is de
scribed, and in Section 15.4, where the more recent work on "burst-mode"
circuits is presented. Section 15.5 discusses the design of modules for delay
insensitive networks to be discussed later in the chapter. Since these mod
ules are designed using the bounded-delay assumption, they are included
here. The modules are specified by a type of Petri net.

Second, we present two methodologies for designing speed-independent
circuits. Here, component delays are permitted to be arbitrary, but wire
delays are assumed to be negligible. Section 15.6 discusses "signal transition
graphs," which constitute a specification formalism closely related to Petri
nets. In Section 15.7 we briefly mention a somewhat different formalism
called "change diagrams."

Third, we turn to the design of delay-insensitive circuits. General prob
lems of data representation and synchronization in systems operated with
out a clock are discussed in Section 15.8. We then describe Ebergen's design
method, which is based on "trace theory" -a language derived from regular
expressions by the addition of some operators, such as a parallel composi
tion ("weave"), and by the introduction of a distinction between input and
output alphabets. This method is presented in Section 15.9.

Fourth, we consider three methodologies that involve a high-level speci
fication language and compilation to lower-level constructs. Section 15.10
describes Martin's methodology, which has been used in several relatively
large asynchronous designs, including a microprocessor. Martin uses a high
level language related to communicating sequential processes (CSP) and
Dijkstra's "guarded command language." Programs are transformed into
collections of simple statements, which are next expanded into "handshake
protocols." These protocols are further refined into "production rules,"
which, in turn, are converted directly to CMOS circuits. This methodol
ogy leads to "quasi-delay-insensitive" circuits, in which some forks are as
sumed to have equal delays (are "isochronic"). Section 15.11 discusses van
Berkel's Tangram language and the intermediate architecture of "hand
shake circuits." Tangram is also related to CSP and to the guarded com
mand language. Brunvand's approach is briefly sketched in Section 15.12.
Here, a subset of the language OCCAM, also related to CSP, is used. Delay
insensitive modules are designed to correspond to language constructs, such
as a while loop. The compilation of programs to networks of modules is then
straightforward.

Finally, we discuss two methodologies that combine several different fea
tures. In Section 15.13, we mention the design style of Jacobs, Broderson,
and Meng, which results in "self-timed" circuits. The design uses logic
blocks implemented in DCVS logic with dual-rail inputs and completion
signals, connected by "interconnection blocks" that provide control. The in
terconnection blocks are specified by signal transition graphs. Last, but not

Section 15.1. Introduction 315

least, in Section 15.14 we discuss "micropipelines"-a design style in which
the control functions are implemented delay-insensitively, but the data
path circuits obey the "bundled-data" convention. Micropipelines were the
topic of the Turing Award lecture by Sutherland. This approach has been
used for the design of a number of special purpose circuits, including mi
croprocessors [54, 114, 130J.

Section 15.15 concludes the chapter. As we have mentioned earlier, time
limitations prevented us from including other promising asynchronous de
sign techniques. The interested reader may wish to refer to [72J for an
overview of algebraic approaches to the specification of safety and progress
properties of delay-insensitive circuits. Such approaches make it possible to
specify circuits concisely and facilitate verification of designs.

15.1 Introduction

Much of today's synchronous logic design is based on two major assump
tions: all signals are binary and time is discrete. Both of these assumptions
are made in order to simplify logic design. The assumption that signals are
binary permits us to use Boolean algebra to describe and manipulate logic
circuits. The assumption that time is discrete permits us to ignore hazards
to a large extent.

Asynchronous digital circuits keep the assumption that signals are binary
but remove the assumption that time is discrete. This has the following
potential benefits:

No clock skew

Clock skew is the difference in arrival times of the clock signal at
different parts of the circuit. Since asynchronous circuits-by defini
tion-have no global clock, there is no need to worry about clock
skew. In contrast, the designer of a synchronous circuit must often
slow down its operation in order to accommodate the skew. As VLSI
feature sizes decrease, clock skew becomes a much greater concern.

Lower power

In synchronous circuits, clock lines have to be toggled and circuit
nodes have to be precharged and discharged even in parts unused in
the current computation.2 For example, if a floating-point unit in a
processor is not used in a given instruction stream, it must still be
operated by the clock. Although asynchronous circuits often require
more signal transitions in a given computation than do synchronous
circuits, these transitions usually occur only in areas involved in the
current computation.

2In fairness it should be pointed out that in some synchronous designs the
clock is selectively turned off and on in different subsystems as needed.

316 Chapter 15. Design of Asynchronous Circuits

Average-case instead of worst-case performance

Synchronous circuits must wait until the slowest possible computation
has been completed before latching the results; this yields worst-case
performance. Many asynchronous circuits sense when a computation
has ended; this gives average-case performance. For circuits such as
ripple-carry adders-where the worst-case delay is significantly larger
than the average-case delay-this can result in substantial savings.

Easing of global timing issues

In circuits such as synchronous microprocessors, the clock rate, and
thus performance, is dictated by the slowest (critical) path. Thus, the
design must be carefully optimized to achieve the highest clock rate;
this optimization must be applied also to rarely used portions of the
circuit. Since many asynchronous circuits operate at the speed of the
path currently in operation, rarely used portions of the circuit can be
left unoptimized without adversely affecting overall performance.

Better technology migration potential

Circuit functions are often implemented in several different technolo
gies during their lifetime. Early circuits might be implemented with
mask- or field-programmable gate arrays (MPGAs or FPGAs), while
later production runs might migrate to semi-custom or custom ICs.
Often, greater performance for synchronous circuits can be achieved
only by migrating all components to a new technology, since the over
all performance is based on the longest path. In many asynchronous
circuits, migration of only the more critical components can improve
average performance, since performance depends only on the cur
rently active path. Also, since many asynchronous circuits sense com
putation completion, components with different delays may be sub
stituted for older components without altering the rest of the circuit.

Automatic adaptation to physical properties

The delay through a circuit can change with variations in fabrication,
temperature, and power-supply voltage. In synchronous circuits one
must assume that the worst possible combination of factors is present
and one must clock the circuit accordingly. Asynchronous circuits that
sense computation completion run as quickly as the current physical
properties allow.

Robust mutual exclusion and external input handling

Elements that guarantee mutual exclusion of independent signals or
synchronize external signals with a clock are subject to metastabil
ity [31]. A metastable state is a state of unstable equilibrium in which
a circuit can remain for an unbounded amount of time [96]. For exam
ple, as we have mentioned in Chapter 6, a NOR latch can exhibit this

Section 15.1. Introduction 317

type of behavior. Synchronous circuits require all elements to have
bounded response time. Thus, there is some chance that mutual ex
clusion elements will fail in a synchronous circuit. Most asynchronous
circuits can wait an arbitrarily long time for the mutual exclusion ele
ment to leave the metastable state; thus mutual exclusion is robustly
implemented. Also, since there is no clock with which signals must
be synchronized, asynchronous circuits accommodate external inputs,
which are by nature asynchronous, more gracefully.

With all of the advantages of asynchronous circuits, one might wonder
why synchronous circuits predominate. The reason is that asynchronous
circuits have several problems as well. They are more difficult to design in
an ad hoc fashion than are synchronous circuits. In a synchronous circuit,
a designer can simply define the combinational logic necessary to compute
given functions, and add latches to store the results of these computations.
By providing a long enough clock period, one removes all worries about haz
ards and dynamic states of the circuit. In contrast to this, designers of asyn
chronous circuits must pay a great deal of attention to the dynamic states of
the circuit. Hazards must be removed from the circuit (or not introduced in
the first place) to avoid incorrect results. The ordering of operations-fixed
by the placement of latches in a synchronous circuit-must be carefully en
sured by the asynchronous control logic. For complex circuits, these issues
become too difficult to handle manually. Unfortunately, in general, the ex
isting CAD tools and implementation alternatives available for synchronous
circuits cannot be used in asynchronous design. For example, some asyn
chronous methodologies severely limit the transformations permitted for
logic decomposition. Placement, routing, partitioning, logic synthesis, and
most other CAD tools either cannot be used at all or require extensive
modifications in order to be applicable to asynchronous circuits.

Finally, even though many of the advantages of asynchronous circuits
relate to higher performance, it is not clear that asynchronous circuits are
actually faster in practice. Asynchronous circuits generally require extra
time because of their communication protocols; this increases the average
case delay. It is unclear whether this cost is greater or smaller than the
benefits listed previously, and more research in this area is necessary.

Because of all the problems listed above, asynchronous design is an im
portant research area. Regardless of how successful synchronous designs
are, there will always be a need for asynchronous logic in interface cir
cuits. Also, although ad hoc design of asynchronous circuits is impractical,
there exist methodologies and CAD algorithms developed specifically for
asynchronous design.

Several of the main asynchronous design approaches are surveyed in this
chapter. Because of space limitations, we do not attempt to include all
of the existing methodologies, nor do we explore all the subtleties of the
methodologies that are included. Instead, we discuss the essential aspects of

318 Chapter 15. Design of Asynchronous Circuits

some classical methods and some of the more promising modern methods.
This should provide the reader with a solid framework on which to base
further study. Likewise, we do not cover many of the related areas-such as
testing-which are important to any design, yet too complex to be handled
adequately here. For an introduction to asynchronous testing, see [69].

15.2 Fundamental-Mode Huffman Circuits

The classical model for asynchronous circuits is quite similar to that used
for synchronous circuits, except that delays are used in place of clocked
latches or flip-flops; see Figure 15.1. It is assumed that the delays of all
the circuit elements and wires are bi-bounded. Circuits designed with this
model (usually coupled with the fundamental-mode assumption) are gen
erally referred to as Huffman circuits, after D. A. Huffman, who developed
many of the early concepts [66, 67].

The circuit to be synthesized is usually specified by a flow table [135],
such as those we have used in Chapters 1 and 12. Normally it is assumed
that each unstable state leads directly to a stable state (i.e., the behavior is
direct), with at most one transition occurring on each output variable. As
in synchronous sequential circuit design, the flow table is first reduced, and
the reduced table is then encoded. Finally, expressions for the excitation
functions for all state variables are found with the aid of some minimiza
tion programs. The reader may wish to refer to the divide-by-2 counter in
Chapter 1 to recall some of these design steps.

Several special concerns not occurring in synchronous circuits arise in
asynchronous designs. Since there is no clock to synchronize input arrivals,
the circuit must behave properly in intermediate states caused by multiple
input changes. For example, suppose the input changes from 00 to 11; then
it may briefly pass through either 01 or 10. One must ensure that the entries
in columns 01 and 10 of the flow table are appropriately selected so that
the transition accompanying the double input change is independent of the
transient inputs.

Combinational
Logic

Delay Elements

FIGURE 15.1. Classical asynchronous sequential circuit structure.

Section 15.2. Fundamental-Mode Huffman Circuits 319

We must also deal with hazard removal. As we have shown in Chap
ter 7, hazards on circuit outputs may cause unexpected short pulses that
may result in incorrect behavior of circuits that receive these outputs. All
static and dynamic hazards corresponding to a single input change can be
eliminated by adding certain redundant products to a sum-of-products re
alization of a circuit [135]. Unfortunately, this procedure cannot guarantee
correct operation when several inputs are allowed to change simultaneously.
The solution generally adopted is to impose the single-change restriction,
although it may be difficult to impose such a restriction on the environment.

An important point needs to be made aboat the sum-of-products form.
As the number of circuit inputs increases, the number of inputs to the AND

and OR gates increases. Since most technologies either restrict the num
ber of inputs to a gate, or involve long delays in gates with large fan-ins,
it is important to have methods for decomposing large gates. As proven
in [135], many algebraic transformations, including the associative, dis
tributive, and DeMorgan's laws, do not introduce any new hazards. Thus,
a sum-of-products form can be changed by these transformations into a
multilevel expression involving smaller fan-in. The ability to use logic trans
formations is an important advantage of this methodology, for some other
methodologies do not allow them.

Note that some transformations, such as ab + ae + be = ab + be can
introduce hazards. In the circuit using the expression on the right-hand
side, there is a static hazard when a = b = e = 1 and b changes to O. Before
the change, the output is 1 because of the product abo After the change,
the product be holds the output at 1. But, if the band b inputs are both
o during the change, because of a slow inverter, the output might become
o temporarily. This hazard is prevented in the expression on the left-hand
side by the presence of the product term ae.

To extend the combinational circuit methodology to sequential circuits,
we use a model similar to that used for synchronous circuits. See Figure 15.1
and compare it to Figure 1.2. Since we made the restriction that only one
input to the combinational logic can change at a time, this forces several
requirements on the asynchronous circuit. First, we must ensure that the
combinational logic has settled in response to a new input before a state
variables changes. This is done by placing delay elements in the feedback
lines. Also, the same restriction dictates that only one state variable can
change at a time. State encoding can be done in such a way that only a
single state bit changes in each state transition; however, these encodings
sometimes require multiple representations of each state [135], and compli
cate the combinational logic. "One-hot" encodings-in which each state qi
is represented by a vector Y with Yi = 1 and with Yj = 0 for i i: j-require
two transitions, but simplify the associated logic. A state transition from
qi to qj is accomplished by first setting Yj and then resetting Yi. The final
requirement is that the next external input transition cannot occur until
the entire circuit settles in a stable state, i.e., fundamental-mode operation

320 Chapter 15. Design of Asynchronous Circuits

is used. For a one-hot encoding, this means that a new input must be de
layed long enough for three change propagations through the combinational
logic and two through the delay elements. With a one-hot encoding one can
implement each state variable with the same type of module; state transi
tions are then realized by appropriate connections between modules. The
bounded-delay design method proposed in [41] illustrates this approach.

15.3 Hollaar Circuits

The fundamental-mode assumption, while simplifying logic design, increases
computation time. As has been mentioned above, the fundamental mode is
often coupled with the single-input-change assumption. There are certain
cases in which both restrictions can be removed. For example, suppose an
output 0 is determined by some function of the form Xl + f(X2 , X 3 , X 4).

When Xl = 0, changes in the remaining inputs could produce hazards in
O. However, when Xl = 1 the remaining inputs can change in an arbitrary
fashion without affecting the output, and the total state need not be sta
ble when such changes occur. Clearly, this observation can eliminate the
fundamental-mode assumption only in certain special cases.

A method due to Hollaar [63] uses detailed knowledge of the implementa
tion to allow new transitions to arrive earlier than the fundamental-mode
assumption would allow. A one-hot state assignment is used in this ap
proach, and the value of each state variable is stored in a set-reset NAND

latch. Suppose first that we have a "straight-line" sequence ql, q2, q3 of
transitions as shown in Figure 15.2, and the transition into state qi occurs
when certain conditions defined by the function Ci hold. In Figure 15.2,
NAND gates 5 and 6 form a set-reset latch for state q2. Suppose that the
circuit is in state ql; then 81 = 1 and the other state variables are all o. The
latch with output 82 can be set only if the latch of the previous state ql is
set, and the conditions C2 for a transition from ql to q2 are satisfied. Once
82 becomes 1, gate 6 becomes 0 and causes a 0 to 1 transition in gate 3.
This, in turn, causes 81 to become O. Thus, the "present-state" latch is reset
after the "next-state" latch has been set. This basic scheme is extended to
more general types of transitions by the use of FORK and JOIN modules.

Careful analysis of the implementation in Figure 15.2 shows that the
fundamental-mode assumption can be relaxed. Suppose that each gate has
delay 6. The fundamental-mode assumption requires that 66 time units
must elapse between transitions. For example, after C2 becomes 1 (causing
a state change from ql to q2), the sequence of gate changes is 4, 5, 6, 3, 2,
4, before the circuit stabilizes. However, after time 36 (the sequence 4, 5,
6), state bit 82 is properly set, and C2 can safely change again. This delay
is half of the delay required by the fundamental-mode assumption. Also,
after gate 5 becomes 1, gate 7 can change and begin a transition to state
q3. The time between a change on C2 and a change on C3 would then be

Section 15.4. Burst-Mode Circuits 321

FIGURE 15.2. Hollaar's implementation.

only 28, since only gates 4 and 5 would have changed. This is three times
faster than the fundamental-mode operation. As long as gate delays are
approximately equal, state bits 81 and 82 will be eventually 0, and state
bit 83 will be 1. Although there is a possibility that three state bits might
be 1 at the same time, the final state will be correct for each transition.

Unfortunately, Hollaar's method has some disadvantages. First, the gen
eral case where a state can have multiple successors requires five gate delays
for proper operation. Second, some hazards can occur and the circuit can
enter an incorrect state. Imagine that the circuit is in state ql, and that
C2 = Xl and C3 = Xd(X2 , X 3 , X 4). Further assume that input Xl is
changing from 0 to 1, and f(X2 , X 3 , X 4) = 1. As expected, C2 becomes 1
and eventually causes 82 to be 1. However, C3 might take longer to become
o than it took C2 to become 1. If this difference is greater than the delays
in gates 4 and 5, gate 7 might produce a hazard pulse that might cause
state bit 83 to be set. Thus, the circuit would not correctly implement the
specified transitions. Nevertheless, Hollaar's method permits the relaxation
of the fundamental-mode requirements in some circuits.

15.4 Burst-Mode Circuits
A design methodology called burst-mode attempts to move closer to syn
chronous design styles than Huffman's method. Like Huffman's method, it
is based on sequential machines, but the circuits designed are hazard-free
(at the gate level) by construction, and inertial delays are not needed for
hazard elimination.

322 Chapter 15. Design of Asynchronous Circuits

As shown in Figure 15.3, circuits are specified by state graphs in which
each transition is labeled by a nonempty set of inputs (an input burst),
and a set of outputs (an output burst). The state labels show the values of
the input vector, an internal state variable, and the output vector. More
details about this graph will be given later. When the circuit is in a given
state, the inputs in one of the input bursts leaving this state can change.
Such changes of inputs in a burst are allowed to occur in any order, and
the circuit does not react until the entire input burst has occurred. No
input burst can be a subset of another input burst leaving the same state.
This is required so that the circuit can unambiguously determine when a
complete input burst has occurred, and can react accordingly. For example,
in the state graph in Figure 15.3, an edge with input burst {XI, X 2 , X 3 }

could not be added from state ql to state q4, because the other input bursts
leaving state ql would be subsets of this input burst.

Once an input burst is complete, the circuit activates the specified output
burst and enters the specified next state. A new input change is allowed
only after the circuit has completely reacted to the previous input burst.
Thus, burst-mode systems still require the fundamental-mode assumption,
but only between transitions in different input bursts.

As described in [149, 150], burst-mode circuits can be implemented by
techniques similar to those used for Huffman circuits. Since burst-mode cir
cuits allow multiple input changes, one would expect to have the same haz
ard problems that motivated the single-in put-change restriction in Huffman
circuits. However, the burst-mode specification allows outputs to change
only after an entire input burst, as we now describe. Given two input vec
tors A and B, we say that an input vector C is "between" A and B if, for
all i, Ci is either equal to Ai or to Bi. A given Boolean function f is said
to have a burst-mode input transition from input vector A to input vector

{X1 ,X2 ,X3 ,

Ol,02}

FIGURE 15.3. Burst-mode specification.

Section 15.4. Burst-Mode Circuits 323

B if f(A) = f(C) for every vector C, C ¥- B, between A and B. Thus the
output of a circuit implementing f is allowed to change only after every
input (that participates in the transition) has changed. In this synthesis
method all combinational functions are guaranteed to have burst-mode in
put transitions.

It is a constraint on the environment that transitions from the next
input burst are not allowed to arrive until the circuit has finished reacting
to the previous burst. A technique, similar to that used in Huffman circuits,
of adding redundant product terms to a sum-of-products form to remove
hazards is sufficient to implement burst-mode circuits [112]. Finally, burst
mode circuits must use the same special state encodings and delays on the
feedback lines as do Huffman circuits.

A different method of implementing burst-mode specifications is de
scribed in [110, 111]. As shown in Figure 15.4, a clock is generated locally
in each module being designed; this clock is independent of the local clock
in any other module. This is intended to avoid some of the hazards found
in the Huffman design style discussed earlier.

x 1 - Clock Clock
X 2 - Generator y X 3 -

O~ Dynamic
---01

Latch

X 1 - Combinational O~ Dynamic
X 2 - Logic Latch ---02

X 3 -

S Dynamic s' Static s
-

Latch Latch

Phase 1 Phase 2

FIGURE 15.4. Circuit schematic for a locally clocked implementation.

To understand how a locally clocked module works, consider the example
of Figure 15.3. This specification requires one state bit s, which is 1 when
the machine is in state Q4, and 0 otherwise. A complete table of combina
tions for this specification is shown in Table 15.1. Assume that the circuit
is stable in state ql with all the inputs, all the outputs, and s set to O. In
a stable state, the local clock is 0, and data can pass through the phase-l

324 Chapter 15. Design of Asynchronous Circuits

TABLE 15.1. Table of combinations for burst-mode specification.

Xl X 2 X3 S 01 O2 S
0 - - 0 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 1 1 1
1 - - 1 1 1 1
- 1 - 1 1 1 1
- - 1 1 1 1 1
0 0 0 1 0 0 0

latches. The first transitions to occur are Xl and X2 being set to 1. This
case is simple because there is no state change, since s is still stable at O.
Consequently, the local clock remains O. The only effect is that, once both
the Xl and X 2 transitions occur, the combinational logic generating O~
changes its output to 1, and that value propagates through the phase-1
latch to output 0 1 . A more interesting case occurs when the input X3 then
changes to 1 as well. In this case, the state variable s must change. First,
the combinational logic for the output O~ and for the state bit excitation
S change in response to the change in X 3 , resulting in 0; = 1, and S = 1.
The conditions for enabling the local clock are now satisfied, but the clock
is delayed to ensure that the output and state changes propagate through
the phase-l latches (i.e., until O2 and Sf become 1) before the clock be
comes 1. Once the clock becomes 1, the phase-1 latches are disabled, and
the phase-2 latches are allowed to pass their values through. This permits
the new value of the state bit to reach the combinational logic and the clock
generator. However, since the phase-llatches are disabled, any new values,
including hazards, are not passed through. The local clock is then reset
by the arrival of the new state, the phase-2 latches are disabled, and the
phase-1 latches are again allowed to pass data. This completes the reaction
of the module to the new data, and the module is now ready for another
input burst.

The major advantage claimed for the locally clocked implementation
is the avoidance of the hazards encountered by normal Huffman circuits.
Also, standard synchronous state assignment techniques can be employed.
However, not all hazards can be ignored. In all transitions the outputs
are generated directly in response to the inputs, and the local clock offers
no hazard protection. Thus, the redundant products necessary in Huffman
circuits are also needed for the output logic, and special care must be taken
to avoid dynamic hazards [112]. The local clock logic may also contain
hazards. Although the clock signal is not directly seen by the environment,
a hazard on the clock line could cause the state to change partially or
completely when no change was intended.

Section 15.5. Module Synthesis Using I-Nets 325

15.5 Module Synthesis Using I-Nets

In contrast to bounded-delay models, delay-insensitive circuit design (to
be discussed later) assumes that the delays in basic modules as well as
in wires are unbounded. To make delay-insensitive circuit design practical
for general computations, we must have a set of basic modules that both
work properly under the delay-insensitive assumption and provide suffi
cient functionality to implement a wide class of circuits. From Chapter 13
and [90], we know that standard gates are not suitable. Consequently, we
must abandon the delay-insensitivity goal when designing basic modules,
i.e., we must design such modules using the bounded-delay assumption.
This is not an unreasonable compromise, since a basic module usually in
volves a relatively small area on a chip and its delays can be controlled to
a large extent. Once the modules are designed, however, we can carry out
the rest of the design-of networks constructed using such modules-with
delay-insensitive methods.

A methodology for the design of modules for use in delay-insensitive
networks has been proposed in [35, 36, 102, 103, 129]. This methodology
is founded on I-nets (for interface nets), a model based on Petri nets [108,
113]. Note that a second methodology based on Petri nets, namely that
of signal transition graphs (STGs), is discussed in Section 15.6. STGs and
I-nets have many similarities, which we discuss in Section 15.6.

I-nets are used as a formalism for specifying behaviors3 of modules. An
I-net is a directed graph with two types of nodes: places, denoted by circles,
and transitions, denoted as bars. The graph is bipartite, with places con
nected by directed edges only to transitions and transitions connected only
to places. A place may hold a finite number of tokens, denoted by small
black dots inside the place's circle. If there is an edge from a place p to a
transition t, then p is an input place of t. Similarly, if there is an edge from
t to p, then p is an output place of t. A marking of an I-net is an assignment
of tokens to places. Two simple I-nets are shown in Figure 15.5.

A transition is enabled when each of its input places contains at least one
token. An enabled transition may fire by removing a token from each of its
input places, and putting a token in each of its output places. A sequence
of firings of single transitions in an I-net is called an execution of the I-net.

The left part of Figure 15.5(a) shows the symbol for a JOIN element with
inputs Xl and X2 and output O. Starting from a stable state, the element
produces an output change only after both of its inputs change. Since the
inputs may change at different times, the JOIN provides a very basic syn
chronization function. The right part of Figure 15.5(a) shows an I-net for
the JOIN and a simple environment. Similarly, Figure 15.5(b) shows the

3Here we use the word "behavior" in its intuitive sense and not in the formal
sense of Chapter 11.

326 Chapter 15. Design of Asynchronous Circuits

(a) (b)

FIGURE 15.5. Examples of I-nets: (a) JOIN, (b) MERGE.

symbol for a MERGE element along with an I-net for the MERGE and a sim
ple environment. In the MERGE element a change in either input produces
a change in the output. More details about the operation of these I-nets
are provided below.

In Figure 15.5 the transitions labeled Xl and X 2 are enabled in both
I-nets. For the JOIN element, once transitions Xl and X 2 have fired, there
are tokens only in places 3 and 4. At this point the 0 transition is enabled;
once it fires, the I-net returns to the pictured state. For the MERGE element,
either Xl or X2 can fire, but not both, because the firing of either transition
removes the input token, disabling the other transition. After Xl or X 2

fires, 0 becomes enabled. Its firing returns the graph to the pictured state.
To relate I-nets to circuits, we associate signal labels with the I-net tran

sitions. Thus every firing of an I-net transition corresponds to a signal
transition on the corresponding signal wire. Note that a given label may
appear on several transitions. An I-net not only determines the proper
functioning of the module being specified, but also determines how the en
vironment of the module must behave. For example, the environment for
the JOIN element is required to produce exactly one transition on both the
Xl and the X 2 wires between any two transitions on the 0 output. The
MERGE element restricts the environment to exactly one transition on one
of Xl and X 2 between any two 0 transitions. Of course, the I-net is not
a complete specification of the environment but only a description of its
interaction with the module in question. Any environment that fulfills the
specified sequences on the module inputs and outputs may be used. For
example, one input of a MERGE element could be connected to the out
put of a JOIN, the other input could be kept fixed, and the output of the
MERGE could be connected to the Xl input of the JOIN, without violating
the environment specification.

Section 15.5. Module Synthesis Using I-Nets 327

o

(a)

o

(b)

FIGURE 15.6. State graphs for JOIN: (a) ISG, (b) EISG.

To find a circuit corresponding to an I-net specification, an interface state
graph (ISG) is first derived from the I-net. This graph shows the states the
interface can assume and describes the allowed state changes. For example,
in the JOIN, the initial state of the ISG corresponds to the marking of
places 1 and 2; this is denoted as state {I, 2}; see Figure 15.6. If Xl fires,
we reach state {2,3}, and, if X 2 fires, we reach {1,4}. These two states
have only one possible successor state {3,4} reached after both Xl and X2

have fired. In turn, state {3, 4} can only be followed by state {1,2}. Each
edge between two states in an ISG is marked by the transition that causes
the corresponding state change. Thus, we have the edge labeled Xl from
state {I, 2} to state {2, 3}, etc.

The ISG describes all possible transitions of interface signals. This in
formation must be converted to a representation based on logic levels that
are used in digital circuits. This is done by constructing an encoded ISG
(EISG) , from the ISG. The designer has to choose an initial state for all
the signals. In the case of the JOIN, we can use state X l X2·O = 00·0. From
here on, we follow the ISG in order to develop the state transitions in the

328 Chapter 15. Design of Asynchronous Circuits

TABLE 15.2. Table of combinations for JOIN.

XI X20 0'
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

EISG. Thus, if a transition of signal Xl occurs, we reach EISG state 10·0.
Similarly, if X 2 changes, we have state 01·0. The complete EISG is shown
in Figure 15.6(b).

The EISG is an expanded version of the ISG. Each state of the ISG
corresponds to one or more states in the EISG. This "state-splitting" is
often necessary, because the EISG must make a distinction between a rising
transition on a wire and a falling transition on the same wire, whereas no
such distinction is needed in the ISG. In the example of Figure 15.6, every
state in the ISG is split into two states in the EISG. Finally, there are ISGs
for which no valid EISG can be created. We will return to this topic shortly.

Note that, in general, if a valid EISG can be created, it is a restricted type
of behavior (where we now use the word in the formal sense of Chapter 11).
The total state is completely determined by the state label. Furthermore,
only single input changes are permitted. (Concurrent input changes are
represented as interleaved changes, as demonstrated by the JOIN element.)
A table of combinations specifying the next value of the output in terms of
the present values of the inputs and the output can be constructed directly
from an EISG as follows. In any static state, the output should keep its
old value. In any dynamic state, the output should change. If an input
output combination does not occur in the EISG, a "don't care" value is
assigned to the next output. For the case of the JOIN, we find the function
of Table 15.2. The next value 0' of the output should be the same as its
present value 0 in the static states 00·0, 01·0, 10·0, 11·1, 01·1, and 10·1.
For those states, we simply copy the value of 0 to 0'. For the two dynamic
states, we complement the value of 0 to obtain the value of 0'. From such
a table, we can find a Boolean expression for the output, using standard
methods of simplification. In the case of the JOIN we find

0' = XIX2 + XIO + X 20.

The module can now be implemented by the two-level combinational circuit
corresponding to this expression, if we connect the 0' output to the 0 input
of the circuit.

Section 15.5. Module Synthesis Using I-Nets 329

Complete algorithms describing the design steps illustrated above are
given in [129]. Note that the algorithm for constructing an ISG from an
I-net can be exponential in the number of places, since all the markings
might have to be enumerated. This means that this synthesis procedure is
inappropriate for large circuits with complex I-nets. It is, however, quite
adequate for designing small modules.

Before we discuss specific implementation structures, we point out that
not all I-nets properly represent delay-insensitive circuits. For example, an
I-net can have two consecutive firings of a transition, and the corresponding
two consecutive signal transitions on a single wire. This constitutes a hazard
on that wire, because the second signal transition could "catch up" to
the first one and cancel its effect. One has to admit such possibilities, if
no assumptions are made about component and wire delays. A module
described by an I-net with such a hazard would not be delay-insensitive.
Consequently, the class of I-nets must be restricted to avoid such problems.
The so-called foam rubber wmpper constraint [103] provides an appropriate
restriction. It states that we must be able to attach arbitrary delays to
the input and output wires of any delay-insensitive circuit, and the new
interface so created must behave like the original module, with no ha
zards introduced by the added wire delays. If the introduction of these
delays allows signal-transition sequences not present in the original circuit,
the circuit is not delay-insensitive. Note that the same requirement can
be expressed as local constraints on ISGs, as described in [133]. Different
formalizations have also been given by [47, 121, 140].

While the foam rubber wrapper constraint helps identify a specifica
tion as delay-insensitive, there are other problems that might preclude a
proper implementation. First, as shown in the MERGE specification, an 1-
net can include a mutually exclusive choice. This presents no difficulties
in the MERGE I-net, since the decision between firing Xl and X 2 is made
by the environment, and the environment might have extra information
with which to make this decision deterministically. However, modules in
which some form of arbitration is needed are not properly handled by this
methodology and must be handled differently [129]. The second difficulty
arises because the I-net structures are too powerful and can define lan
guages that are not regular. Such I-nets cannot be implemented as finite
state machines. For example, an I-net can be constructed [108] to accept
the language {aibi I i ~ O}. Care must be taken to avoid such specifica
tions. Third, the EISG generated by the algorithm may have more than one
state with the same input/output label. Unless they are equivalent, such
states must be distinguished by the addition of some binary internal state
variables. An ad hoc method for doing this is presented in [129], but no
automatic method for handling these situations is available. Note, however,
that some of the techniques of state variable insertion developed for STGs
(discussed in Section 15.6) are also applicable to I-nets.

330 Chapter 15. Design of Asynchronous Circuits

.-----------~Sl
Xl--~~ ~----e_~
Xn Combinational

circuit

Sm~----------~

(a)

L.D Q . Q-flop . r--+ C A

. ~ · D Q · Combinational '--;-
Q-flop circuit

.
...-. C A · · ·

x 1 D Q

· Q-flop ...-. C A -· · . · Q-clock ·
D Q - control

...-. Q-flop · C A

(b)

FIGURE 15.7. Implementation structures: (a) clock-free, (b) locally clocked.

The function obtained for the module output from the EISG is imple
mented by a circuit structure similar to those presented in Sections 15.2
and 15.4. Two basic structures are used. The clock-free structure of Fig
ure 15. 7(a) does not follow the restrictions of fundamental-mode operation
and permits some hazards. The effects of the hazards are eliminated in
two steps [51J. The first step deals with hazards caused by transitions that
are sequential in the specification but become concurrent because of circuit
delays. For example, suppose a signal transition at an input of a MERGE

element causes a signal transition at its output; because of wire delays
these two transitions may arrive in reverse order in some other part of
the circuit. The solution is to add delays to both the output and feedback

Section 15.6. Signal Transition Graphs 331

lines [51, 135]. In the second step, hazards due to concurrent transitions
(i.e., transitions that are unordered in the specification) are removed. Static
hazards can be eliminated by adding redundant product terms in the two
level realization of Boolean function [135]. Dynamic hazards are handled by
the insertion of inertial-delay elements [135] at the outputs of certain gates.
Note that these inertial delays can be combined with the delays necessary
to eliminate hazards due to sequential transitions. While this approach al
lows multiple input changes (which are necessary in most delay-insensitive
elements, including the JOIN), it significantly increases the total delay in
the system.

The second implementation strategy [103, 117] is similar to the locally
clocked burst-mode circuits discussed earlier. However, instead of generat
ing a clock only when inputs arrive, a locally clocked module, Q-module,
constantly clocks its latches, but the clock is totally internal to the module
and is "pausable." The system behaves like a standard synchronous system.
Inputs and state variables are latched on a regular basis, and enough time
is allowed between clock pulses to permit the combinational logic to com
pletely settle after each input change. This structure could have the same
problems with asynchronous inputs as does a standard synchronous circuit.
These problems are overcome as follows: First, all flip-flops, called Q-fiops,
are built with synchronizers-elements that can reliably latch asynchronous
inputs. Second, since synchronizers can take an unbounded amount of time,
the Q-flops must inform the Q-clock control when they have completed their
operation (using the wires labeled A in Figure 15. 7(b)), so that the clock
can be sufficiently delayed. In this way, a completely synchronous state
machine can be reliably embedded in an asynchronous environment.

Each of the two methods above has some disadvantages. The clock-free
structure adds delays to the system, but it is simple. Since combinational
modules require only small delays to be added, this model seems to be
suitable for such modules. On the other hand, the locally clocked module
has the added logic and delay of a rather complex latching structure.

15.6 Signal Transition Graphs

Signal transition graphs (STGs), were introduced in [33, 34]; signal graphs,
a model almost identical to STGs, were introduced independently in [118].
These models have received considerable attention. Like I-nets, STGs spec
ify asynchronous circuits by Petri nets [108, 113] with transitions labeled
by signal names. When a labeled transition fires, the corresponding sig
nal changes in the circuit. In contrast to I-nets, many STG methodologies
attempt to achieve greater automation of the synthesis process and avoid
exponential complexity by restricting the types of Petri nets allowed. It
should be pointed out that by limiting the class of Petri nets one may also
limit the class of circuits that can be designed.

332 Chapter 15. Design of Asynchronous Circuits

X+

!
0+

2 ot

0-
1

0+
1

0-
1 1

0+
1

X- X-

\
0-

2

(a) (b)

FIGURE 15.8. Illustrating marked graphs: (a) a marked graph; (b) STG/MG.

The simplest major class of STGs is the class STG /MG corresponding
to Petri nets that are marked graphs [64], where a marked graph is a Petri
net in which each place has at most one input transition and at most one
output transition. In such a graph, tokens can be removed from a place only
by firing its one output transition. Therefore, once a transition is enabled,
it can be disabled only by firing. Consequently, choice cannot be modeled,
where by choice we mean a situation in which either event A or event B,
but not both, can occur.

Consider the marked graph of Figure 15.8(a). The following conventions
are used when such graphs are treated as STGs. The transition labels in
dicate not just the signal names, but also the transition types, either rising
(+) or falling (-). Thus, when a transition labeled X+ (respectively X-)
fires, the signal X changes from 0 to 1 (respectively from 1 to 0). Transi
tions on input signals are also distinguished by underlining; however, we
need not use this notation, since our inputs are called Xi and our outputs
are OJ.

In the graphical representation of an STG, a labeled transition is replaced
by its label, and places with one input and one output are omitted. Tokens
in places that are so omitted are placed on the corresponding edges. Thus,
the Petri net (here also a marked graph) of Figure 15.8(a) is redrawn as an
STG in Figure 15.8(b).

Section 15.6. Signal Transition Graphs 333

FIGURE 15.9. Illustrating marked graphs, continued: state graph.

State graphs can be associated with STGs in a manner similar to the one
we have described for I-nets. The initial state corresponding to the marking
shown in Figure 15.8(b) is X .010 2 = 1·00. The state graph of this STG is
shown in Figure 15.9.

To permit the modeling of choice, STGs can be extended in two ways. In
an input-choice STG (STGllC), places are allowed to have multiple input
and output transitions; however, if two transitions share the same input
place, then they cannot have any other input places, and they must be
labeled by input signals. These STGs are also known as free-choice STGs.
An example of an STG/IC is given in Figure 15.10(a). The transitions
labeled xi and xi share a place. Note that we are not allowed to change
either of these labels to an output label. Also, we are not permitted to
add another edge leading from another place to xi or Xi. A non-input
choice STG (STGINC) allows all of the constructs of STG/ICs, as well
as "non-input" choice. As shown in Figure 15.1O(b), two output-signal or
internal-signal transitions can share a common input place, but must then
have no other input places. Moreover, the model is extended by the addition
of labels on the outgoing edges of places with choice. The label for an edge
leaving a given place with choice is either a signal name (C in the figure)
or its complement (C). The transition reached by an edge labeled C can
fire only if C = 1. In an STG/NC we must ensure that, when a place with
non-input choice has a token, exactly one of the outgoing edge labels is 1,

334 Chapter 15. Design of Asynchronous Circuits

0+

A
x+ X+

1 2

V
x+

A
0+ 0+

1 2

0-

(a) (b)

FIGURE 15.10. Choice in STGs: (a) input choice; (b) non-input choice.

and none of the edge signals can change before the choice is made. Thus, it
is always clear which of the two transitions should fire. Also, input-signal
transitions are not allowed as part of a non-input choice, except as edge
labels, though input choice is allowed in the form described for STG JICs.

To design useful circuits from STGs we often impose some restrictions on
the STGs. An STG is live if it is possible to fire every transition from every
reachable marking. The STG in Figure 15.11(a) is not live because once
transition ot has fired it can never fire again. An STG is safe if no place
or edge can ever contain more than one token. The STG in Figure 15.11(b)
is not safe [145], because the edge from xi to ot has two tokens after
the firing sequence ot, Xi:, 0:;, xi. An STG is persistent if for each edge
A * -+ B*, where S* denotes either S+ or S-, there must be other edges
that ensure that B* fires before the opposite transition of A*. The STG in
Figure 15.11(c) is not persistent, since there is an edge Xi -+ ot, yet Xl
can fire before ot does. Note that input signals to an STG are generally not
required to satisfy the persistency condition in the following sense. If A * -+

B* , where B is an input, we do not care if the transition opposite to A * fires
before B*; it is assumed that the environment guarantees the persistency
of B*. An STG has a consistent state assignment if the transitions of a
signal S strictly alternate between S+ and S-, i.e., the STG attempts to
neither raise a signal that is already high nor lower a signal that is already
low. Consistent state assignment is a necessary condition for realizability.
The STG in Figure 15.11(d) does not have a consistent state assignment,
since two 0+ transitions can occur without an intervening 0-. An STG
has a unique state assignment if no two of its markings have identical values
for all the signals. Note that the value of a signal can be determined by

Section 15.6. Signal Transition Graphs 335

+-
ot 0:;

X+ x+

_.1 X .:
ot ot

If • • Xl X:;

• • xi .. ot 0 1 0:;

(a) (b)

o+~X+ 1

0+

().
0+

• t
xt

• 0-

0-

t
Xl

t
x:; ___ o+

(d) (e)

FIGURE 15.11. STGs violating various properties: (a) liveness; (b) safety; (c)
persistency; (d) consistency of state assignment; (e) uniqueness of state assign
ment and single-cycle transitions.

looking at the next reachable transition of that signal. If the next transition
is S+ (respectively S-), the signal's current value is 0 (respectively 1). The
STG in Figure 15.11(e) does not have a unique state assignment, since the
signal values are X 1 X 2 ·0 = 10·0 both in the initial marking and in the
marking with a token on the edge X:; ---4 0+. Finally, an STG has single
cycle transitions if each signal appears in exactly one rising and exactly
one falling transition. The STG in Figure 15.11(e) does not satisfy this
condition, since both 0+ and 0- appear twice.

Except for the consistent state assignment property, the restrictions
listed above are not necessary for realizability. However, they often lead
to efficient circuit generation. As we will see, efficient algorithms for ensur
ing most of these requirements have been developed.

The substantial restrictions imposed on the allowable Petri-net con
structs-the restricted classes STG/MG, STG/IC, and STG/NC, as well

336 Chapter 15. Design of Asynchronous Circuits

as the conditions illustrated in Figure 15.11-are justified only if they lead
to better design algorithms. We have seen that I-nets constitute an example
of automatic generation of circuits from rather general Petri-net specifica
tions, as long as we are willing to pay the cost of potentially exponential-size
state graphs. The same technique, of generating the underlying state graph
from a Petri net, then finding the implied functions, and realizing the func
tions represented in it, applies also to STGs. Moreover, techniques have
been developed to implement STGs without exponential state blowup.

One of the most intuitive approaches is contraction [33J. From an STG/IC
we generate a circuit that is live, safe, persistent, and has a consistent
unique state assignment, and single-cycle transitions. We do this by remov
ing from the STG IIC all the transitions that do not directly impact the
signal being synthesized. For example, consider the STG of Figure 15.12(a)
and its state diagram shown in Figure 15.12(b). The incoming arrow at the
top of Figure 15.12(b) designates the initial state, which is X 1X 2 ·010 2 =
00·00. To save space, the state labels are not shown; however, they are
easily reconstructed.

To reduce the exponential blowup in the size of the state diagram, we will
synthesize a circuit for each of the two outputs from contracted STGs, as
described below. First, we synthesize the logic for output 0 1 ; in that case,

X+
1

x+
2

+ + 0+--.0+ 1 2

• J)1- • 0-
2

0-
2

1 2

+ +
0-; --.0:;

(a)

FIGURE 15.12. Contraction: (a) STG A; (b) state diagram of A.

Section 15.6. Signal Transition Graphs 337

x+ X+
1

1

~
0+

1

ot ~ot-,

~
I I
I I

• I I 0; 0;
I I
I I
I :. I
I I
I I
I I 0 1 t I

I
0-

1 ~ 0; _.J

(a) (b)

FIGURE 15.13. Contraction: (a) contracted STG for 0 1 ; (b) state diagram.

output O2 can be ignored, except to the extent that it affects 0 1 • Since
the transitions xi and Xi do not affect 0 1 directly, they are removed.
Because there are some sequencing constraints between 0 1 and O2 , the
transitions ot and 0; are kept; they are shown connected by dashed edges
in Figure 15.13(a). The state diagram corresponding to the contracted STG
is shown in Figure 15.13(b). Note that there are only eight states, while the
original state diagram has 16.

Next, we contract the original STG with respect to O2 • The result is
shown in Figure 15.14(a), along with the corresponding state diagram.
Again, we have eight states instead of 16. In more complex examples one
can expect more significant savings. The complete circuit implementation
for the original STG consists of the network of components obtained by
the contractions.

An algorithm for converting an STG/NC into an STG/IC has been devel
oped in [33]. This method both requires and preserves all of the restrictions
listed above, except that single-cycle transitions are no longer guaranteed.
In cases where transitions remain single-cycle, the contraction strategy can
be used to implement STG/NC circuits efficiently.

Several other researchers have developed efficient algorithms for STG
transformation and synthesis. As described above, the algorithm of [33]
requires that the STG to be synthesized not only be persistent, but also
obey several other restrictions, including unique state assignment. In [137]
algorithms are included to transform a live STG/MG with single-cycle
transitions to achieve both persistency and unique state encoding. In [87]
a method is described for transforming a live, safe STG /MG with single-

338 Chapter 15. Design of Asynchronous Circuits

xi

l
~ot---I .. ~ot III 1 1
1 1 •
1 1
1 1

.1 1
1 1
1 1
1 1
1 1

: ,
L -Ol---I .. ~02

(a) (b)

FIGURE 15.14. Contraction: (a) contracted STG for O2 ; (b) state diagram.

cycle transitions to a persistent STG with unique state assignment, and
then generating an implementation by an efficient algorithm that requires
no state graph construction. This theory is extended in [86] to test for
"realizable" state encoding in live, safe STG IICs. Instead of requiring that
no two states have identical values for all signals-as is the case with unique
state assignment-realizable state encoding allows two states to have the
same signal values, as long as the same non-input transitions can occur from
both states. However, the input transitions can differ, since the environment
is assumed to have additional information to resolve the ambiguity.

If the exponential cost of state graph construction can be tolerated, sev
eral other algorithms are of interest. In [3] speed-independent circuits are
designed from state graphs using simple gates, such as ANDS, ORS, and
C-ELEMENTs. This removes the difficulty in [33] of computing an arbitrarily
complex function without internal hazards. The gates used in [3] may have
high fan-in; this problem is addressed in [4]. Instead of speed-independence,
[78] presents an approach to implementing live, safe STG/ICs with unique
state assignments in a bounded-delay model. Note that these STGs do not
have to be persistent and can have non-single-cycle transitions. These cir
cuits have a structure similar to the Huffman circuits described earlier, with
sum-of-products expressions implemented with AND and OR gates. These
sum-of-products circuits are used by RS flip-flops, which are assumed to be
somewhat immune to dynamic hazards on their inputs. Delays are added
to avoid some hazards; [80] uses a linear-programming algorithm for op
timal insertion of delays. The problem of delay-fault testing is addressed
in [75]. Both [79] and [138] handle state-variable insertion, the former per-

Section 15.7. Change Diagrams 339

mitting live, safe STGjICs, the latter allowing any state graph that is finite,
connected, and has a consistent state assignment. Finally, we refer the in
terested reader to [81] for a comprehensive treatment of the STG design
methodology.

15.7 Change Diagrams

Change diagrams (CDs) [76] are similar to STGs. Like an STG, a CD
has vertices labeled by signal transitions and edges that define the al
lowed sequences of transition firings. However, as shown in Figure 15.15,
there are two types of edges: "strong-precedence" (solid lines) and "weak
precedence" (dashed lines). Furthermore, strong precedence edges can be
either ordinary or "disengageable" (solid lines with crosses). Like an STG,
a CD has an initial marking of tokens on its edges. Note the incoming edge
to the vertex labeled Xi. It is assumed that such an edge has a token
initially, and this token is used only to start the operation of the CD.

(a) (b)

FIGURE 15.15. Illustrating change diagrams: (a) a CD; (b) its state graph.

340 Chapter 15. Design of Asynchronous Circuits

The input edges to any node are either all strong-precedence or all weak
precedence. Strong edges can be thought of as AND-edges, since a transition
with strong-precedence input edges cannot fire until all of these edges have
tokens. Thus, strong-precedence edges are like the edges in STGs. Weak
edges are oR-edges, in that a transition with weak-precedence input edges
can fire whenever anyone of these edges has a token. When a transition
fires, a token is removed from each of its input edges and a token is placed
on each of its output edges. Since a transition with weak-precedence input
edges can fire before all these edges have tokens, tokenless edges may have
negative tokens assigned to them; this is indicated by small open circles.
When a (positive) token arrives at an edge with a negative token, cancel
lation occurs. Disengageable edges can fire only once; after such an edge
fires, it is considered removed from the CD. Thus, disengageable edges can
be used to connect an initial, nonrepeating set of transitions to an infinitely
repeating cycle.

We illustrate the operation of a CD by the example of Figure 15.15.
Initially, only transition xt is enabled. When it fires, Xl will remain 1 for
as long as the CD is in operation. When the CD is no longer needed, X I
will be reset by some means that are not part of the model. After xt fires,
the two disengageable edges have one token each. We see that ot and ot
are both enabled. If ot fires and then ot, the firing sequence can proceed
just as it would in an STG. Thus, at can fire and remove both tokens
from the dashed edges. The transition xi is now enabled, and so on. On
the other hand, consider the situation after ot has fired, but ot has not.
Because at has weak-precedence input edges, it can now fire, removing
the token on the edge ot --+ ot and creating a negative token on the edge
ot --+ Ot. Now, when at fires, a positive token is introduced on the edge
at --+ ot, canceling the negative token. The CD specifies that ot may fire
after at has fired, or at has fired, or both ot and at have fired. But, in
all these cases, ot should fire only once. If negative tokens were not used,
the sequence (xt, at, at, at) could be followed by another firing of at·
The complete state graph corresponding to the CD of Figure 15.15(a) is
shown in Figure 15.15{b). The state is XIX2·010203, and the edge tags
are not shown.

Disengageable edges are an improvement over the STG model, since they
allow the modeling of initial, nonrepeating transitions; this is not possible
in STGs. Also, many of the restrictions that are placed on STGs are not
present in CDs. Thus, liveness-which requires all transitions to potentially
fire infinitely often-is replaced by the requirement that all transitions must
be able to fire at least once. Persistency-which requires that the opposite
transition of a given transition t not fire until all transitions enabled by
t have fired-is replaced by the requirement that an enabled transition
can only be disabled by its firing. Other constraints include certain con
nectedness properties and alternation of positive and negative transitions
on every signal. All of these CD correctness constraints can be checked in

Section 15.8. Protocols in DI Circuits 341

time polynomial in the size of the CD. The method used to verify that
these conditions hold is to unroll a cyclic CD into an acyclic, infinite CD.
It can be shown that only the first n periods in this unrolling need to be
considered, where n is the number of vertices in the original CD.

Unfortunately, the CD model has some disadvantages. For example, it
cannot represent a XOR gate. Weak-precedence edges can model the fact
that either input to a gate can cause its output to change, but then the
other input has to change twice before it can have an effect on the output,
because the first change serves only to cancel the negative token. Also, CDs
are unable to specify the type of choice where two different transitions can
remove a token from a shared place.

15.8 Protocols in DI Circuits

As has been stated earlier, delay-insensitive circuit design assumes that
the delays in both components and wires are unbounded. It should be no
surprise that this assumption has a great impact on the resulting circuit
structure. In bounded-delay models, we assume that, given enough time
after an input change, a circuit will reach a stable state, and a new in
put change can then be safely applied. With a delay-insensitive model, no
matter how long one waits, there is no guarantee that the input change
has been properly received and processed by the circuit. This forces the
receiver of a signal to inform the sender, by an acknowledge signal, that
the information has been received. The sender, in turn, is required to wait
until it gets the acknowledge signal before sending a new signal.

In the so-called two-phase handshaking protocol, a request transition is
sent from the sender to the receiver, and then an acknowledge transition
is returned by the receiver to the sender. Assuming the request (r) and
acknowledge (a) wires are both 0 initially, they both become 1 after one
cycle of the protocol. Thus the first cycle results in the following r·a states:
0·0, 1·0, 1·1. The next cycle returns both wires to low: 1·1, 0·1, 0·0.

Some methodologies use a Jour-phase handshaking protocol in order to
return the request and acknowledge wires to their original values after every
cycle. Thus one cycle results in the following r·a states: 0·0,1·0,1·1,0·1,0·0.
Although four-phase handshaking appears to require twice as much time,
because twice as many transitions are sent, in most cases computation time
dominates communication time. In addition, the second half of the four
phase handshaking can often be done concurrently with computations, thus
improving performance. Finally, since only a rising edge initiates a commu
nication, four-phase circuit structures can be simpler than their two-phase
counterparts. Altogether, these properties makes four-phase handshaking
competitive.

Delay-insensitive design also requires a new way of passing data. In syn
chronous circuits, the value of a wire is assumed to be correct by a given
time (for example, when the clock pulse arrives), and can be safely used

342 Chapter 15. Design of Asynchronous Circuits

Xl.o
XI{ Xl

X I .l X2

X 2 ·0
xd

X 2·1
Control

Ack Ack

Sender Receiver Sender Receiver
(a) (b)

FIGURE 15.16. Data transfer: (a) transition signaling, (b) bundled-data method.

at that time. In delay-insensitive circuits, there is no guarantee that a wire
will reach its proper value by any specific time. Thus, a transition must be
sent to inform the receiver of the new value. With transition signaling, a
bit of data cannot be transferred by a single wire, because the opposite of a
transition-no transition-cannot be distinguished from a delayed transi
tion. Thus two wires are required from sender to receiver to transfer a data
bit, with the wire on which a transition occurs determining the value being
transmitted. For example, the two wires could be labeled X.O and X.1, with
a transition on X.O indicating the data bit is a 0, and a transition on X.1
indicating the data bit is 1; see Figure 15.16(a). Other variations on this
theme are possible [139], but are beyond the scope of this discussion. Both
two-phase and four-phase protocols can be implemented with a two-wire
scheme. A two-phase communication requires a single transition on one of
the two wires, whereas a four-phase protocol requires two. In both cases
an additional wire is required to send acknowledgments back to the sender,
though only one such wire is needed for multi-bit communications.

The so-called bundled data method of data transfer allows fewer wires to
be used, but violates the delay-insensitive model. It allows a single wire for
each data bit, and one extra control line for each data word. It is assumed
that the delay in the extra control wire is longer than the delay in each
of the data wires. Thus, when a transition appears on its control wire, the
receiver knows that the values on the data lines have already arrived; see
Figure 15.16(b).

As we have seen, the assumption that element and wire delays are un
bounded leads to complications in the signaling protocols. However, these
methodologies do overcome some of the problems found in bounded-delay
models. The unbounded-delay assumption also has the desirable effect of
separating circuit correctness concerns from concerns about specific delay
values. Consequently, timing improvements, such as delay optimization by
transistor sizing, can be applied without affecting circuit correctness.

Section 15.9. Ebergen's Trace Theory Method 343

In Section 15.5 we have described a methodology for designing delay
insensitive modules. Once a set of such modules is available, the design
of asynchronous networks consisting of such modules is free of timing con
straints. Of course, the modules have to be properly operated. For example,
a JOIN element cannot be used in the same place as a MERGE, since the first
requires two input transitions between any two output transitions, while
the second requires only one. However, such restrictions are much simpler
than those of most other methodologies, and it is usually clear which mod
ule needs to be used from the functionality required.

In the next three sections we describe techniques for designing delay
insensitive networks, assuming that suitable modules are available.

15.9 Ebergen's Trace Theory Method

A method for delay-insensitive circuit design has been proposed by Eber
gen [46, 47]. The method uses a unified model for both module specification
and circuit design, and is based on trace theory, a model similar to regular
expressions. In the following, we do not use Ebergen's notation, but one
that is closer to the notation in this book.

A trace structure is a triple T = (X, 0, L), where X is the input alphabet
of T, ° is the output alphabet of T, and the language L ~ (X U 0)*, called
the trace set of T, describe a desired circuit functionality. The set A = xuO
is the alphabet of T. Each symbol in the alphabet corresponds to a signal
in the circuit, and the appearance of the symbol in a word represents a
transition on that signal.

The following operations are defined on trace structures. Given trace
structures T = (X, O,L) and T' = (X', 0', L'), we define

• concatenation: TT' = (X u X', ° u 0', LL');

• union: T U T' = (X u X', ° U 0', L U L');

• star: T* = (X,O,L*);

• pref: prefT = (X,O,prefL), where prefL is the set of all prefixes of
words in L;

• restriction to a subalphabet, also called projection:

TtB = (XnB,OnB,{wtB I w E L}),

where wtB is w with all the letters that are not in B removed;

• and weave: TilT' = (X u X', ° U 0', L11), where

LII = {w E (A U A')* I wtA ELand wtA' E L').

344 Chapter 15. Design of Asynchronous Circuits

The operations concatenation, union, and star on languages are the same
as those used in regular expressions. We have already used the prefix oper
ation and the restriction to a subalphabet in Chapter 11. Restriction to a
subalphabet is an important tool for hierarchical construction of circuits.
When a circuit is constructed from components, some symbols are used
internally to interconnect the components, but are not associated with any
external symbols. Such symbols become internal symbols, and are removed
when the external properties of the network are described. The weave rep
resents "synchronization on common symbols." To illustrate this, consider
the trace structures T = ({a}, {c}, {ac}) and T' = ({b}, {c}, {bc}). The
weave of T and T' is then TilT' = ({a, b}, {c}, {abc, bac}). Note that the
traces ac from T and bc from T' are both consistent with the trace abc of
TilT', and that they are synchronized by the occurrence of c.

To have a convenient finite representation of the set of all possible in
put/output sequences, Ebergen uses the language of commands. Commands
are similar to regular expressions. The atomic commands are: 0, c, a?,
a!, and a, for each a E A. They represent the trace structures: (0,0,0),
(0,0, {c}), ({a}, 0, {a}), (0, {a}, {a}), and ({a}, {a}, {a}), respectively. Gen
eral commands are constructed from atomic commands with the use of the
trace-structure operators above. We use the following order of operator
precedence to simplify the notation: star, followed by prej, followed by
concatenation, followed by union and weave at the lowest level.

We illustrate the command language with the JOIN element of Figure
15.5(a). The JOIN can be described by the command prej(Xl ?0!IIX2 ?O!)*.
The concatenation operations enforce that an input precedes the output.
The fact that output 0 is shared between two commands in the weave
synchronizes them, ensuring that both inputs occur before the output can
occur. The star allows the JOIN to repeat this protocol an arbitrary number
of times. The prej permits any prefix of the complete protocol to be defined
as a valid trace. Note that the JOIN element can also be described by the
commands prej((Xl ?IIX2 ?)O!)* and prej(Xl ?X2 ?O! U X 2 ?X1 ?O!)*.

As we have stated earlier, one of the advantages of the trace method
ology is that both the circuit to be synthesized and the basic modules
used to implement it are represented in the same model. Most of the basic
elements used in this methodology are shown in Figure 15.17. WIRE and
IWIRE represent connections between two terminals. In a WIRE the envi
ronment must produce the first transition, whereas in the IWIRE the first
transition comes from the component. Otherwise, the two components are
very similar in that their input and output transitions alternate. The WIRE

and IWIRE are specified by the commands prej(X?O!)* and prej(O!X?)*,
respectively. The FORK is self-explanatory; it can be described by the com
mand prej(X?(01!II02!))*. We have already discussed the JOIN above. The
TOGGLE element, introduced in Chapter 13, can be specified by the com
mand prej(X?01!X?02!)*. In Figure 15.17, the small dot indicates the
output that changes in response to the first input transition. We have dis-

Section 15.9. Ebergen's Trace Theory Method 345

WIRE

X? -------I~~ O!

FORK

X?~01!
----02!

X ? C-ELEMENT

1·~_~0!
X2?~

IWIRE

X? ---tD>---"~ O!

X ? =nERCEL
0 I

1· 1·

R O!

X 2? 02!

SEQUENCER

S?

FIGURE 15.17. Basic elements.

cussed the MERGE earlier in connection with I-nets; it can be specified by
preJ((X1? UX2 ?)O!)*. Notice that the trace theory representations of com
ponents are more compact than those of our behavior model, since only
transitions are recorded in trace theory, whereas we also include the signal
levels in behaviors. Compare, for example, the command specifications of
the JOIN and TOGGLE elements with the corresponding behaviors in Chap
ter II.

The C-ELEMENT is similar to the JOIN, except for the fact that an input
transition can be "withdrawn" by a second transition on the same input.
The C-ELEMENT can be specified by the command4

preJ((X1?)2 U (X2?)2 U (Xl?IIX2?)0!)*.

4Recall that w2 is a shorthand for ww.

346 Chapter 15. Design of Asynchronous Circuits

Note that the trace set of the JOIN is a subset of the trace set of the
C-ELEMENT. The astute reader will note that the C-ELEMENT is not delay
insensitive. This issue is discussed later. The RCEL is a delay-insensitive re
placement for the C-ELEMENT. It has the same functionality as the C-ELEMENT

but also acknowledges all inputs to Xl and X 2 by outputs 0 1 and O2 , re
spectively. It can be specified by

prej((Xl ?01!)2 U (X2?02!)2 U (Xl?(Ol!IIO!) II X2?(02!110!)))*.

The SEQUENCER is a mutual exclusion element that passes a single input
transition from Xl to 0 1 or from X 2 to O2 for each transition on S. Thus,
a single output transition is generated for each S transition, and there must
always be at least as many Xl transitions as 0 1 transitions, and at least
as many X2 transitions as O2 transitions. The following is a specification
for the SEQUENCER:

To synthesize a circuit using trace theory, we first specify the desired
behavior by a set of traces denoting its input-output sequences. Note that
trace sets do not necessarily correspond to delay-insensitive behaviors. For
example, prej(O!O!) has an output hazard. To prevent this, Ebergen has
proposed a test for delay-insensitivity that is similar to the foam rubber
wrapper property; he also defined a command grammar that generates only
delay-insensitive trace sets. Note that, although it is conjectured that this
grammar cannot represent all possible delay-insensitive circuits (the RCEL

has not been successfully represented [46]), it seems to handle most circuits.
Once the desired circuit is specified by a delay-insensitive trace structure,
it can be realized using the components shown in Figure 15.17 with the aid
of a syntax-directed translation scheme. In this approach, a complex trace
structure is decomposed into a network of several simpler trace structures.
Successive applications of such decomposition eventually yield a set of trace
structures directly implementable by the basic components.

To illustrate this approach, we describe a half-adder that would normally
have 1-bit inputs X and Y and 1-bit outputs S (sum) and C (carry). Each
of these signals is represented in the two-wire scheme; thus, X is represented
by X.O and X.1, etc. The half-adder can be specified by the trace structure

prej((X.O?IIY.O?)(S.O!IIC.O!) U

(X.O?IIY.1?)(S.1!IIC.O!) U

(X.1?IIY.O?)(S.1!IIC.O!) U

(X.1 ?11Y.1 ?)(S.O!lIC.1!))*.

In this specification, both the two inputs and the two outputs occur in
parallel. We can decompose this trace structure into a weave AIIB of two
trace structures A and B (defined below), one without parallel outputs

Section 15.9. Ebergen's Trace Theory Method 347

and one without parallel inputs. This is done by introducing the auxiliary
signals qo, ... ,q3 as follows:

A = pre/((X.O?IIY.O?)qo! U (X.0?11Y.1?)ql!U

(X.1?IIYO?)q2! U (X.1?IIY1?)q3!)*;

B = pref(qo ?(S.0'lIC.O!) U ql ?(S.l!IIC.O!)U

q2 ?(S.l'1IC.O!) U q3 ?(S.O'lIC.1!))*.

The command A is recognized as a specification for a 2 x 2 JOIN (also
called a "decision wait" element); see the left component of Figure 15.18.
Informally, the 2 x 2 JOIN has two "horizontal" inputs X.O? and X.1? and
two "vertical" inputs YO? and Y1? It expects one horizontal and one
vertical input. It has four outputs qo!, ... , q3!; upon receiving X.i? and
Yj?, the 2 x 2 JOIN produces output qk!, where k is the decimal integer
represented by the binary pair (i,j). The 2 x 2 JOIN can be decomposed
further into simpler components; this decomposition is nontrivial, and we
refer the reader to [46].

It can be verified that the command B can be implemented by three
MERGE elements, as shown in Figure 15.18.

While trace structures provide a theoretical basis for the design of delay
insensitive circuits, they have some disadvantages. The first has been al
luded to earlier-one of the elements commonly used in the synthesis pro
cedure (the C-ELEMENT) is not delay-insensitive, since two transitions on
a single input wire may occur without an intervening output. One solu
tion proposed by Ebergen is to replace this with an RCEL, which is similar
to a C-ELEMENT except that it has two extra outputs to acknowledge all
input transitions. It is not clear whether the added complexity of this ele
ment would be justified in practical designs. The second solution is to add
isochronic forks to the model; these are forks in which the difference in the

YO? Y1?

X.O? M C.O!

f--t-*------I~ S.l!

X.1? S.O!

L-____ ~ C.1!
2 x 2 JOIN

FIGURE 15.18. A decomposition of a half-adder.

348 Chapter 15. Design of Asynchronous Circuits

FIGURE 15.19. Illustrating the use of an isochronic fork.

delays between the two output branches is negligible. For example, consider
the command

It can be implemented by a relatively complex circuit consisting of several
components [46]. It can also be implemented by two C-ELEMENTs and a
fork, as shown in Figure 15.19. The fork must be isochronic; otherwise, the
transition on the Xo? wire going to the C-ELEMENT that has not received
its second input would not be acknowledged, thus creating the possibility
of a hazard. With isochronic forks, we can safely use C-ELEMENTS; how
ever, circuits so designed are no longer fully delay-insensitive. We return
to isochronic forks in Section 15.10.

The second issue is the low-level nature of the command language, which
makes command specifications difficult to understand. Most of this diffi
culty can be attributed to the weave operator. The reader should note,
however, that without the use of some operator like the weave, the size of
a specification would be exponentially bigger than the size of the corre
sponding specification with weaves. Also, any parallel operator is likely to
be seen as difficult initially. In any case, the specification of a large circuit,
such as a microprocessor, at the level of individual transitions is rather
impractical. Adding a more understandable high-level language above the
trace structure methodology would significantly increase its attractiveness.

15.10 Compilation of Communicating Processes

Martin's methodology [89, 91] starts with a high-level specification in the
source language of communicating hardware processes (CHP), similar to
Hoare's communicating sequential processes [62] and Dijkstra's guarded
commands [43]. The language describes a behavior by specifying the re
quired sequences of communications. Several large asynchronous circuits
have been designed and implemented using this technique [89, 91].

A program in CHP consists of a collection of concurrent processes com
municating over named channels. The channels have no storage capac
ity; thus communication over a channel serves as a synchronization. Each

Section 15.10. Compilation of Communicating Processes 349

process is described in terms of simple programming language constructs
that include variables, assignments, conditional branching, looping, and
sequencing. The only basic data type is Boolean and the only type con
structors are records and (fixed-size) arrays.

For a Boolean variable a, the assignment a := 1 (a := 0) is abbreviated
as a i (at). There are two general composition operators: the sequential
operator ";" and the parallel operator "II". Intuitively, 81 ; 8 2 is interpreted
as "first execute 81 and then 82 ," whereas 81 1182 is viewed as "execute 81

and 8 2 concurrently." There are two types of selection operators: determin
istic and nondeterministic. The syntax is [(G1 ---. 8 1) ~ ... ~ (Gn ---. 8n) 1
for the deterministic choice, and [(G1 ---. 8 1) I ... I (Gn ---. 8n)] for
the nondeterministic choice. The G/s are called guards and G i ---. 8 i is a
guarded command. If a guard evaluates to true in the current state, the
guarded statement may be executed. If we can guarantee by some means
(for example, by environmental assumptions) that at most one guard is
true in any state, then deterministic choice can be used. Otherwise, non
deterministic choice must be specified. Consequently, the introduction of
arbitration is explicit in the high-level specification. We often write [G],
instead of [G ---. skip l, where "skip" represents no operation. The state
ment [G 1 simply stands for "wait until G holds." The last programming
construct is repetition, which is written as *[8], and denotes an infinite
iteration of 8.

Processes communicate with each other by communication commands
on ports. A port on one process is paired with a port on another process
to form a channel. There are one-to-one, one-to-many, and many-to-many
channels. Normally, communications on channels serve as synchronizations.
For example, a reader is blocked until a sender sends a message on their
common channel. However, a probe command can be used by a process to
determine, without blocking, whether there are data to be read. A probe
of port A is written as A. Finally, the communication of data over channels
is specified by input and output commands. An input command on port A
is written as A?, whereas an output command on port B is written as B!.

Although the language constructs are more primitive than those used in
most programming languages, they provide a higher-level abstraction than
many of the other approaches for describing asynchronous circuits. Further
more, they appear to provide enough flexibility to handle a large class of
circuits [89, 91]. Unfortunately, although superficially similar to CSP and
guarded commands, CHP does not have a formal semantics. Consequently,
the process decomposition and translation rules used in translating a CHP
program to an asynchronous circuit are not formally proved to be correct.
This is a current drawback of CHP and the associated design method. 5

SThis deficiency has been addressed to some extent in [127], where a semantics
for a small subset of CHP and the associated transformation techniques has been
given. However, more work is needed before all of CHP is properly defined.

350 Chapter 15. Design of Asynchronous Circuits

The design methodology proceeds as follows: First the abstract specifi
cation program is refined using "semantics-preserving" transformations to
increase concurrency, etc. For example, a purely sequential specification
may be rewritten to introduce pipelining. The program is then rewritten
by syntax-directed transformations into a collection of simple statements.
Once a desirable intermediate-level program has been derived, the com
munication primitives of CHP are expanded into handshaking protocols
using dual-rail-encoded signals. These protocols are then further refined to
"production rules," which are guarded assignments. By imposing certain
constraints on the production rules, one can implemented them directly as
networks of CMOS transistors. Thus, there is a direct path from a CHP
program to a (custom) CMOS circuit. We now illustrate this process by a
simple example.

S?---l

T!---l

Stack
ex
ey

FIGURE 15.20. Abstract stack circuit.

The task is to design a one-bit-wide stack of depth two, as illustrated
in Figure 15.20. We do not carry out a complete design, but we do show
how parts of the design progress from an abstract program to a transistor
circuit. For simplicity, we assume that competing requests for pushing and
popping the stack never arise. 6 Note that in this example, the user of the
stack must determine whether the stack is empty or full.

The following is a CHP program describing the stack:

Stack == process (S? bool, T! bool)
x,y: bool

*[[(5 -> (y := Xj S?x)) ~ (T -> (T!xjx := y)) II
end

Intuitively, the CHP program declares a stack process that communicates
on two ports: the input port S? and the output port T!. It uses the two
variables x and y to store the content of the stack. The probe construct
is used to determine whether a push, a pop, or no operation is currently
requested. If a push is requested, i.e., the probe of S becomes true, the
process copies the current value in x to y. It then reads the value to be
pushed and stores it in x. The pop works in a similar fashion.

The first step in the compilation process is called process decomposi
tion and uses a divide-and-conquer strategy. Complex CHP processes are

6The reason for this assumption is to avoid the complexity of arbitration.
The methodology deals quite well with this issue, but the general problem is too
complicated to discuss here.

Section 15.10. Compilation of Communicating Processes 351

Stack
............... __

S? ---:-- StackMaster
T! ---:-- ex

P! Q?

p? q!

Reg
ey

.-

FIGURE 15.21. Stack process decomposed into StackMaster and Reg.

decomposed into smaller processes. By repeatedly applying such transfor
mations, one can derive a collection of processes, each in one of only four
distinct formats. This greatly simplifies the remaining steps in the compila
tion process. In our example, as illustrated in Figure 15.21, we decompose
Stack into the processes StackMaster and Reg, which communicate over two
new channels (P!,p?) and (Q?, q!). Let

StackMaster == process(S? bool, T! bool, Q? bool, P! bool)
x: bool

*[[(8 -+ (P!x;S?x)) ~ (T -+ (T!x;Q?x)) II
end

and

Reg == process(p? bool, q! bool)
y: bool

*[[(15 -+ p?y) ~ (q -+ q!y) II
end

Altogether, we get

Stack == process(S? bool, T! bool)
StackMaster(S, T, Q, P) II Reg(p, q)
channel (Q, q), (P,p)

end

To keep the example simple, from now on we focus on the compilation of
the Reg process only.

The next step in the compilation process is handshake expansion. Here,
all commands of CHP are implemented in terms of actions on wires carrying
Boolean signals. A four-phase protocol is used for all communication, and
all data items transmitted through channels are dual-rail-encoded. Since
Boolean values are to be received on port p?, two data wires and one
acknowledgment wire are needed, as illustrated in Figure 15.22. The data
wire pi! is used to receive the value 1, whereas the wire Pia is used to receive

352 Chapter 15. Design of Asynchronous Circuits

pil pio po
Reg

qi qOl qoo
'--"" '--""

p? .y q!

FIGURE 15.22. Handshake expansion of Reg process.

the value O. Similarly, for port q!, we get request wire qi and (output) data
wires qOl and qoo. At this point we have a choice as to which process is the
active agent (the initiator of communication) and which one is the passive
agent. If the Reg process is active on port q!, then sending a 1 is replaced by
qOl j; [qi]; qod; [...,qi] and sending a 0 is replaced by qoo j; [qi]; qoo!; [...,qi].
Intuitively, the process first raises the appropriate qo wire, waits for the
receiving process to acknowledge the data, lowers the data signal, and waits
for the receiver to complete the handshake protocol. On the other hand,
if the Reg process is passive on q!, then sending a 1 uses the following
protocol: [qi]; qOl j; [...,qi]; qOl!, and sending a 0 is similarly treated. If Reg
is passive on p?, then receiving a 1 is replaced by [Pil];poj; [...,pil];po!, and
receiving 0 is replaced by [Pio]; po j; [""pio]; po!. Finally, a probe of p for
value 1 (respectively, for value 0) is simply replaced by pil (respectively,
pio)·

In our case, we assume that Reg is passive for communication on both
ports p? and q!. Thus, the handshake expansion of the body of Reg yields:

*[[(pil ~ yj; [y];poj; [...,pil];po!)

]].

~ (pio ~ y!; [""y];poj; [""pio]; po!)
I ((qi /\ y) ~ qOl j; [...,qi]; qOl!)
I ((qi/\ ...,y) ~ qooj; [...,qi]; qoo!)

Intuitively, the first guarded command can be interpreted as follows: The
process continually checks the value on the p~ wire. If pil becomes 1, the
process assigns 1 to y. It then waits for y to become 1. Once this happens,
the process raises the acknowledgment signal po and waits for the data
input signal to return to 0, after which the process concludes by lowering
po. The other guarded commands can be interpreted similarly.

After the handshake expansion, further optimizations are often possi
ble. The most important one is the reshuffiing of communication actions.
Intuitively, reshuffling moves the beginning of some four-phase handshake
protocols to positions located earlier in the process. Thus processes can
be started earlier and several processes can work concurrently; this im
proves the performance of the circuit. For brevity, we perform no further
optimizations of the handshake expansion of Reg.

Section 15.10. Compilation of Communicating Processes 353

The final transformation of a CHP program translates the handshake
program into a set of production rules. A production rule, written as G f-t S,
is a guarded assignment. The guard G is a Boolean expressions and the
assignment S is either of the form x i or x!, for some variable x. The
behavior of a set of production rules can be summarized as follows:

1. Nondeterministically select a production rule.

2. Evaluate its guard. If the guard is true, update the state of all signals
according to the assignment. Otherwise, retain the current state.

3. Go to (1).

Note that the nondeterministic selection is weakly fair in the sense that
each production rule is selected infinitely often [89, 91).

To ensure proper operation, any valid set of production rules must satisfy
two basic requirements: stability and noninterference. A production rule
G f-t xi is said to be stable if, whenever G holds in s, then either G or x
must hold in each possible successor state of s. The stability of a production
rule G f-t x! is defined similarly. Altogether, a production rule is said to
be stable if, when its guard becomes valid, the guard continues to hold in
every valid computation path until the assignment is performed. A set of
production rules is stable if every production rule in the set is stable. The
stability requirement implies freedom from hazards in the circuit.

The second requirement, "noninterference," states that no inconsistent
production rules are allowed. More formally, two production rules G1 f-t

xi and G2 f-t x! that assign complementary values to the same variable
are said to be complementary. Two complementary production rules are
noninterfering if no state can be reached in which both G1 and G2 hold. A
set of production rules is said to satisfy the noninterference requirement if
every pair of complementary production rules in the set is noninterfering.

The compilation of a handshaking protocol to production rules is the
most difficult part in the compilation process. Part of the difficulty stems
from the fact that we are trying to implement a sequential process (albeit
a simple one) by a collection of very simple concurrent processes. Thus,
the sequencing must be performed explicitly, and efficiency is difficult to
achieve. The compilation proceeds as follows. First, the handshake process
is syntactically translated into a set of production rules. To ensure proper
sequencing, additional state variables are introduced, along with production
rules involving these variables. This is done to distinguish different states
with identical signal values. This step is referred to as state assignment,
although it is quite different from the traditional state assignment. Once the
state assignment has been performed, the guards of the production rules are
strengthened until the set satisfies both the stability and noninterference
requirements. Finally, the production rules assigning values to the same
variable are grouped together, and a (complex) transistor cell is derived.

354 Chapter 15. Design of Asynchronous Circuits

This last step is referred to as the operator reduction step. Here, further
introduction of state variables and production rules can occur to make the
implementation more efficient.

In the case of the Reg handshake expansion, one verifies that each hand
shake sequence results in a different variable- and wire-state. Thus, no
further state variables are needed for the state assignment. The syntax
directed translation of the handshake process yields the following set of
production rules (listed in the order in which they are produced from the
program):

(1) pil f-+ yi
(2) y f-+ poi
(3) ""'pil f-+ po!
(4) p~ f-+ y!
(5),y f-+ poi
(6),p~ f-+ po!
(7) qi /\ Y f-+ qOli
(8),qi f-+ qOl!
(9) qi /\,y f-+ qooi
(10),qi f-+ qoo!

If the circuit is started in the state in which all signals are 0, then the
complementary Rules (3) and (5) are interfering. Thus, this set of produc
tion rules is not free of interference. Note that Rules (1) and (4) are not
interfering since we assume the environment never raises both pil and pio.
There are several ways of solving these problems, but one of the simplest
solutions is to strengthen the guard of Rule (2) to pil/\ y, the guard of Rule
(5) to p~ /\,y, and the guards of Rules (3) and (6) to ""'pil /\,pio. Note
that these are indeed valid strengthenings since the corresponding states
in the handshake process all satisfy these stronger conditions. After also
merging Rules (3) and (6) (since they are now identical) we obtain the set

(1) pil f-+ yi
(2') pil /\ Y f-+ poi
(3') ""'pil /\,p~ f-+ po!
(4) p~ f-+ y!
(5') p~ /\""'y f-+ poi
(7) qi/\ y f-+ qOli
(8),qi f-+ qOl!
(9) qi /\,y f-+ qooi
(10),qi f-+ qoo!

One can show-using model checking for example-that this set satisfies
both the noninterference and stability requirements.

The only remaining step is to design some components that implement
the production rules derived above. If we can ensure that every guard of a
rising assignment (xi) is a conjunction of negated terms and every guard

Section 15.10. Compilation of Communicating Processes 355

of a falling assignment (x 1) is a conjunction of (positive) terms, then a
one-output CMOS cell can be used for each variable in the program. In our
case, we can add five additional variables that take on the complemented
values of some signals, to arrive at the production rule set given by

,pil 1--+ pili
Pit 1--+ pill

,pio 1--+ pioi
pio 1--+ pio!

,x 1--+ yi
x 1--+ y!

,qoo 1--+ qOoi
qao 1--+ qoo!

,qal 1--+ qOl i
qal 1--+ qot!

x 1\ qi 1--+ qal!
,xV,qi 1--+ qOli

y 1\ qi 1--+ qao!
,y V ,qi 1--+ qaoi

,pil 1--+ xi
pio 1--+ x!

(,pil 1\ ,y) V (,p~ 1\ ":) 1--+ poi
pil 1\ pio 1--+ po!

where we have deliberately grouped together the production rules that set
and reset the same variable. We see that the first five pairs of production
rules can be implemented as inverters, and the next two pairs as two-input
NAND gates. The last two pairs of production rules are nonstandard. They
can be implemented as shown in Figure 15.23. Note that there are states in
which the output nodes are isolated. If we ensure that the stack is operated
frequently enough (so that charge leakage does not cause any problem in
the dynamic gates), one can verify that the CMOS cells shown in the figure
work properly. On the other hand, if we cannot guarantee the operating
frequency, the cell can be modified by the addition of a "staticizer" as
was discussed in Chapter 5 in the circuit of Figure 5.9. The final circuit
implementing Reg is shown in Figure 15.24.

356 Chapter 15. Design of Asynchronous Circuits

(a) (b)

FIGURE 15.23. CMOS cells for production rules: (a) cell A, (b) cell B.

pio---------il(lIc

Cell x
A

y

qi----------------~.---_+----------~

Cell
B

FIGURE 15.24. Circuit derived for the Reg process.

po

It should be emphasized that the design methodology creates speed
independent, but not delay-insensitive, designs, since it is assumed that a
signal connected to several cells arrives at these cells at the same time,
i.e., that forks are isochronic. One can first assume that all the wires
have delays and analyze the circuit under this assumption. Thus, one can
determine which wires actually need the isochronic assumption. In this
case, it turns out that only the forks labeled * and ** must be isochronic. In

Section 15.11. Handshake Circuits 357

practical terms, even those forks can use a more relaxed delay assumption.
Basically, as long as the delay from pio to the N-transistor in cell A is less
than the combined delay of the lower inverter, the complex final cell B, the
environment, the pil inverter, and the wire to the P-transistor in cell A, the
circuit functions properly. A similar argument can be made for the upper
fork. Thus, in practice, the circuit is very close to being delay-insensitive.

It is important to realize that many of the steps involved in the compi
lation process require subtle choices that may have significant impact on
circuit area and delay. Although heuristics have been suggested for many
of the choices, much of the effort is directed toward aiding a skilled de
signer instead of creating automatic tools. This is advantageous, because
better decisions can often be made by humans than by programs. It does,
however, require more informed designers than do other methods. Another
source of problems is that circuits resulting from this synthesis process re
quire complex custom gates, and these gates cannot be easily broken down
into simpler components.

Work related to Martin's approach has been reported in [29], where a
compiler was written to automatically transform concurrent programs writ
ten in a language similar to CHP to circuits consisting of standard building
blocks, rather than custom CMOS cells. Another approach using standard
building blocks is described in Section 15.11.

15.11 Handshake Circuits

A design methodology developed by van Berkel and his research group at
Philips Research [136] uses a high-level programming language called Tan
gram and an intermediate architecture of "handshake circuits." Tangram is
based on Hoare's CSP [62], and Dijkstra's guarded-command language [43].
Tangram programs are automatically compiled to handshake circuits. A
handshake circuit is a delay-insensitive network of special components con
nected by communication channels. A component communicates with other
components only through Request/Acknowledge messages along the chan
nels. About 20 types of components are used; they are chosen to be in close
correspondence with operations definable in Tangram. Thus, the transla
tion of a Tangram program to a handshake circuit is "syntax-directed,"
i.e., the structure of a Tangram program is reflected in the structure of
the corresponding handshake circuit. To complete the design, handshake
components are implemented as VLSI circuits.

An important advantage of using components that correspond to Tan
gram statements is the ability to estimate the area, speed, and energy
consumption of the final VLSI circuit from the Tangram program. A given
functional specification can be represented by several functionally equiv
alent, but structurally different, Tangram programs. By analyzing these
programs, the designer may be able to select the most appropriate struc-

358 Chapter 15. Design of Asynchronous Circuits

ture to match the design goals. For example, in designing a portable CD
player, one may wish to minimize the energy consumption in order to max
imize the lifetime of the battery.

We now give some examples to illustrate the flavor of the design method.
A Tangram program, BUF1(a, b), for a one-place buffer capable of storing
a Boolean value is as follows:

(a?bool & b!bool) . I [x : var bool I #[a?x; b!xlll,
where the statement in parentheses is a declaration of port and channel
variables, and the statement after the dot . represents the program behav
ior. The declaration states that a is an input port of the buffer, and b is
its output port. Both the input and output ports are of type Boolean. The
centered dot· separates the declaration from the behavior. The behavior,
in this case, is defined by a "block" command, enclosed in the brackets
'I [' and 'll'· Within the command, x is declared as a local variable of type
Boolean, the bar 'I' is a separator, and the remaining Tangram statement
is a command describing the program actions. The symbol # denotes un
bounded repetition. The command a?x denotes the storing of a (Boolean)
value received on input port a in internal variable x. The command b!x
denotes the sending of the value stored in x through port b. The semicolon
denotes that the second command follows the first.

Our next example illustrates the modularity of Tangram. A two-place
buffer, BUF2 (a, c), can be specified by the Tangram program

(a?bool & c!bool) ·I[b: chan booll BUF1(a,b) II BUF2 (b,c) ll,
where b is an internal channel, and BUF1(a,b) and BUF2 (b,c) are two
instances of the one-place buffer. The output of the first buffer is connected
to the input of the second through channel b. The communication along b
follows CSP rules [62], in that it requires the simultaneous participation by
receiver and sender, and has the effect of copying the value stored in the
local variable of the first buffer into the local variable of the second. The
fact that the two buffers operate in parallel is denoted by II.

The following Tangram program, WA G(a, c) (for "wagging" buffer), is
functionally equivalent to the two-place buffer:

(a?bool & c!bool) ·I[x,Y: var booll a?x; #[(a?y II c!x); (a?x II c!Y)]ll·
Here, the first data value is placed in variable x and then successive values
are placed alternately into y and x. Similarly, the output is taken first
from x, then from y, etc. The two designs, BUF2 (a,c) and WAG(a,c),
have the same input/output behaviors but differ in structure. Depending
on the design goals, one may prefer one design over another. For example,
it has been shown [136l that a shift register designed using the "wagging
principle" is faster that one using the "ripple structure."

A handshake circuit for B UF1 (a, b) is shown in Figure 15.25. There are
five handshake components depicted by large circles. Each component may

Section 15.11. Handshake Circuits 359

a b

FIGURE 15.25. A handshake circuit for BUF1{a,b).

have active ports, denoted by black dots, and passive ports, denoted by
small circles. The circuit has three (external) ports, labeled 1>, a, and b.
There are five channels, labeled c, d, e, wx, and rx. The operation of the
buffer is started by a request from the environment appearing on the chan
nell>. Since the buffer will operate forever, no acknowledgment will ever
be sent along 1>. The repeater component (#) sends out an initial request
on its active port through channel c after the receipt of a communication
on I> and, subsequently, after each communication received along c; this
corresponds to the unbounded repetition in the Tangram command for
B UF! (a, b). The component marked with; is a sequencer. After the receipt
of a request along c, it first engages in an exchange of handshakes through
the port marked *, and then through the other port. After these hand
shakes, it sends an acknowledge signal through channel c. Each of the two
components marked T is a transferrer. In response to a request along d, the
left transferrer requests and receives a value along a and passes it along wx.
Upon receipt of an acknowledgment along wx, it sends an acknowledgment
along d. The component marked x is a variable. A value passed along wx
is stored and then acknowledged along wx. A request received by variable
x along rx results in the sending of the data stored in x along rx. Finally,
the right transferrer, upon receipt of a request along e, requests a value
from x, passes that value along b, and reports completion along e.

For further examples of handshake circuits, the reader is referred to [136].
To improve the efficiency of a handshake circuit, one may perform "peep
hole" optimization. Some techniques have been developed for the estima
tion of area, speed, and power of handshake circuits. Once the "best" hand
shake circuit is selected, the design is completed by implementing the hand
shake components involved and interconnecting them as dictated by the

360 Chapter 15. Design of Asynchronous Circuits

handshake circuit. Many of the handshake components, like the repeater,
are fixed and simple. The implementation of components like variables and
transferrers depends on the data types involved.

A discussion of the pros and cons of this methodology, along with a
number of interesting design examples, can be found in [136].

15.12 Module-Based Compilation Systems

The main advantage of module-based systems is that their use can be
coupled with a high-level language and automatic translation software. A
subset of OCCAM-a language invented to describe communicating se
quential processes-has been used by [7]. The approach here is to provide
a delay-insensitive module for each of the language constructs. For exam
ple, a while loop in the language would require a WHILE element, which has
connection terminals for a conditional test, a loop body, and an interface to
the surrounding environment. It is then a straightforward process to con
vert parse trees for the input language into circuit structures built out of
delay-insensitive modules. Techniques similar to peep-hole optimization in
software compilers can be applied to the circuit to reduce area and delays.
For example, a WHILE element with its condition always true can be re
placed by an infinite loop element. Finally, the circuit can be implemented
by interconnecting the modules as specified by the program translation.

This approach is very similar to standard cell synthesis and has similar
advantages and disadvantages. Since modules are standardized, they can
be precertified. In designing circuits that use such modules, we can safely
assume the modules are correct, and we need to worry only about the
logical correctness of the overall network of modules. Also, typical modules
tend to be simple and can be manually developed by skilled designers.
Consequently, the methods used to synthesize the modules need not be
efficient. For example, the exponential algorithm for converting I-nets to
ISGs is acceptable for module synthesis. On the other hand, since we are
required to use preset modules, we usually cannot perform optimizations
on the module structures themselves. Thus, some possible optimizations
are ruled out, because we do not have the required simpler modules. Also,
for each implementation technology, we may need to generate a new set
of modules. While the specific design rules of a different process may not
introduce so many changes as to require new modules, technologies such as
mask- and field-programmable gate arrays, and even specific architectures
within these technologies, may require their own module sets. Finally, while
strict delay-insensitive designs encapsulate timing issues within modules,
some methodologies (including that of [7]) use bundled data protocols. Such
protocols require timing constraints between modules, thus complicating
circuit implementation.

Section 15.13. DCVSL and Interconnection Modules 361

15.13 DCVSL and Interconnection Modules

In the design methodology of [70, 98, 97], a digital system is composed
of two types of blocks: computation blocks and interconnection blocks.
Computation blocks include such functional units as shifters, multipliers,
arithmetic logic units (ALUs), and other combinational circuits, and also
random-access memories (RAMs) and read-only memories (ROMs). In
terconnection blocks provide the required handshaking protocols between
computation blocks and ensure proper timing for data transfers. Thus, they
may include such data transfer circuits as pipeline registers and mUltiplex
ers. The control blocks are generated from STG specifications described
in Section 15.6. The computation blocks generate completion information,
in addition to performing computation. For this reason, the authors refer
to these systems as self-timed-a term introduced by C. L. Seitz in [96],
Chapter 7.

One implementation of the computation blocks uses differential cascode
voltage switch logic (DCVSL) [60]. The DCVS logic is a precharge logic that
uses two-rail complementary inputs and provides complementary outputs.
The circuits use a four-phase protocol, and can easily be made to generate
completion signals. A typical DVCS cell (with completion signal genera
tion) is shown in Figure 15.26. When the request line Req is 0, the cell is
precharged, the two outputs are set to 0, and the Done signal is O. When

Out.1

Out.O

Y.1---1

FIGURE 15.26. A DCVS logic block.

362 Chapter 15. Design of Asynchronous Circuits

the Req line becomes 1 and the inputs have taken on their values, the tree
of N-transistors implementing the desired function-in this case, the XOR

function of two variables-pulls one, but only one, of the precharged nodes
down to 0, causing one of the outputs to become 1. This in turn causes
the Done signal to become 1. Eventually, Req becomes 0, causing Done
to follow, and the pattern repeats. Altogether, the (Req ,Done) sequence
is ((0,0), (1, 0), (1, 1), (0, 1), (0,0)), as required by the four-phase protocol.
Note that the succeeding circuit must have time to accept the new result
before Req returns to 0.

An example of a pipeline constructed with this method is shown in
Figure 15.27. A typical DCVS logic block consists of a several DCVSL
cells connected in an acyclic network to compute some complex Boolean
functions. Only the final DCVSL cells in the DCVS logic block need to
compute their completion (Done) signals. These separate completion sig
nals are then combined to form a single completion signal, Rin , from the
DCVSL block. The signal Rout is connected to the individual Req lines in
the cells.

The operation of the logic blocks must be controlled by the interconnect
block. Since individual logic blocks have different and sometimes varying
delays, the control must ensure that no data is overwritten or used more
than once. In the methodology described in [97] these control circuits are
designed using STGs. For more details, we refer the reader to [97].

-Din DCVS - Logic
Block

A

~ Rout
Req

Done

r-------.,
I I
I Data I
I I
I Register I
I I

Dout I Q
D :Din

Q

Store

Rin Rout
Control

CAB

Aout : lAin
I I
I I L _______ .J

Interconnect
Block

r-------.,
I I
I Data I
I I
I Register I
I I

Dout : Q
DCVS D :Din

Q Logic I

Block
I
I

B Store:
I
I

IReq I

Rin I Rout
Done I

Control I

CBC
I
I
I

Aout: ':Ain
I I
I I
L _______ .J

Interconnect
Block

FIGURE 15.27. A pipeline with DCVSL blocks.

Section 15.14. Micropipelines 363

15.14 Micropipelines

Micropipelines were introduced in Ivan Sutherland's Thring Award lec
ture [132] primarily as an asynchronous alternative to synchronous "elastic"
pipelines, i.e., pipelines in which the amount of data contained can vary.
However, they also serve as a powerful method for implementing general
computations. Although often categorized as a delay-insensitive methodol
ogy, they are actually composed of a bounded-delay data path moderated
by a delay-insensitive control circuit. Note that the timing constraints in
this system are not simply the bundled-data constraints, since the timing
of all computation elements is important.

The basic structure of a micropipeline consists of the control FIFO
("first-in, first-out" buffer) shown in Figure 15.28(a), where the gates la
beled C are Muller C-ELEMENTs. The FIFO stores transitions sent to it
through Rin , shifts them to the right, and eventually outputs them through
Rout. To understand how the circuit works, consider the initial state, in
which the FIFO is empty and all the wires, except the inverter outputs,

(a)

,----Aout

Rout

(b)

FIGURE 15.28. Micropipeline structure: (a) control, (b) computation.

364 Chapter 15. Design of Asynchronous Circuits

are o. A transition from 0 to 1 at Rin is able to pass through all the
C-ELEMENTS in series, and emerges on Rout. During this process a tran
sition moves completely around each of the small cycles consisting of two
C-ELEMENTS and an inverter. Except for Aout, the levels of all the signals in
the circuit change. The next transition, which is from 1 to 0, is able to pass
through the first two C-ELEMENTS, but not through the third one, which is
waiting for a transition on A out . This represents the case where the output
side of the FIFO is not yet ready to accept a new transition. Note that
new transitions may enter through R in before previous transitions leave
the FIFO, and they will be held up at successively earlier C-ELEMENTS,

one transition per C-ELEMENT. Since the sender must wait for a transition
on Ain before sending the next transition on Rin, when a transition on
Ain does appear the sender knows that its previous transition has passed
through the first C-ELEMENT. If a transition appears on Aout, a transition
will be able to leave through Rout, freeing up a space in the pipeline. We
require transitions on the receiver side to alternate between Aout and Rout

to make sure the transitions sent on Aout actually pass through the first
C-ELEMENT from the right. With these restrictions, the pipeline acts like
a FIFO for transitions. Note that the structure repeats-there are three
stages in the pipeline shown, with adjacent stages flipped around the hori
zontal axis-and could be extended by simply connecting additional stages
to the front or back.

We can take the simple transition FIFO described above and use it as
the basis for a complete computation pipeline, as shown in Figure 15.28(b).
The blocks labeled RG are registers. The register output Cd is a delayed
version of input C, and output Pd is a delayed version of input P. Thus,
the transition FIFO of Figure 15.28(a) is embedded in Figure 15.28(b),
with delays added to some of the lines. The registers are similar to level
sensitive latches from synchronous design, except that they respond to
transitions on two inputs instead of a single clock input. They are initially
active, passing data directly from data inputs to data outputs. When a
transition occurs on the C (capture) wire, data are no longer allowed to
pass and the current values of the outputs are statically maintained. Then,
once a transition occurs on the P (pass) input, data are again allowed to
pass from input to output, and the cycle repeats. As mentioned earlier,
Cd and Pd are copies of the control signals C and P, delayed so that the
register completes its response to the control signal transitions before they
are sent back out. Refer to the figure; if we ignore the logic blocks and the
explicit delay element, we have a simple data FIFO. Data are first supplied
by the sender, and then a transition occurs on the Rin wire. Because of
the delays associated with the control wires passing through the registers,
the data advance ahead of the control transition. If the control transition is
forced to wait at any C-ELEMENT, the data wait in the preceding register,
which is in the capture mode. Thus, the transitions are buffered in the
FIFO control, and the data are buffered in the registers.

Section 15.14. Micropipelines 365

Computation on the data stored in a micropipeline is accomplished by
adding logic blocks between the register stages. Since these blocks slow
down the data moving through them, the accompanying control transition
must also be delayed; this is done by the added delay elements, labeled 8,
whose delay must be at least as large as the worst-case delay of the logic
block. The major benefit of the micropipeline structure is that, since the
registers moderate the flow of data through the pipeline, they also "ab
sorb" hazards. Thus, any logic structures, including the straightforward
structures used in synchronous designs, can be used in the logic blocks.
This means that a micropipeline can be constructed from a synchronous
pipeline by simply replacing the clocked level-sensitive latches with the
micropipeline control structure. Since the micropipeline removes the re
quirement of operating in lock-step with a global clock, an added benefit
of a micropipelined version of a FIFO is that it is automatically elastic, in
that data can be sent to and received from the FIFO at arbitrary times.

Although micropipelines are a powerful implementation strategy that
elegantly implements elastic pipelines, they are not without some prob
lems. While the micropipeline removes the hazard considerations of other
bounded-delay models, it still delivers worst-case performance by adding
delay elements to the control path to match worst-case computation times.
Also, since delay assumptions are made, the circuits must be tested for
delay faults. The final, and probably most significant, problem with mi
cropipelines is the present lack of systematic methods for their use in com
plex systems. Although simple straight-line pipelines without feedback can
be implemented easily by micropipelines, few designs conform to this sim
ple model. Many applications, like digital signal processing, involve highly
repetitive computations. Typically, the computation performed depends on
earlier inputs and previously calculated values. Unfortunately, it is not clear
how to implement feedback in micropipelines.

A variation of micropipelines are self-timed rings [142], which are es
sentially micropipelines whose output is connected directly to its input. If
such a ring contains an odd number of inversions in the control path, it
will operate indefinitely. Each complete cycle through the pipeline performs
a step in an iterative computation. If completion signals and handshake
protocols are used, there can be several computation "waves" progressing
through the ring simultaneously. Such a ring circuit can achieve very high
performance. For example, a very fast 54-bit divider circuit was described
in [143]. In general, however, the design of self-timed ring circuits is not
straightforward.

Although the control structure of a micropipeline can be enhanced by
using additional elements, this is a fairly complex activity. While several
micropipelined solutions using specific circuit structures have been de
veloped [73, 85, 128], including complete asynchronous microprocessors
[54, 114, 130], a general, higher-level method for designing micropipeline
control circuits is yet to be developed.

366 Chapter 15. Design of Asynchronous Circuits

15.15 Concluding Remarks

In this chapter we have discussed the following synthesis approaches: Huff
man circuits, Hollaar circuits, burst-mode circuits, I-nets, STGs, change
diagrams, trace theory, communicating process compilation, handshake cir
cuits, module-based compilation, DCVSL-based circuits, and micropipe
lines. Making a thorough comparison of the different approaches, especially
in the critical issues of performance, area, and power usage, is difficult, and
very few such comparisons have been done. Moreover, in spite of the fact
that several impressive asynchronous designs have been carried out, there
has not been any compelling evidence that asynchronous circuits are better
than synchronous. The fundamental issue as to which of the asynchronous
design styles is best in performance, or area, or power, as well as the ques
tion whether any asynchronous approach is preferable over the prevalent
synchronous model, is still open.

As we have seen, asynchronous design is a rich area of research, with
many different approaches to circuit synthesis. We stress that only some
of the results in this area have been surveyed in this chapter, since our
goal has been to present an overview of several representative approaches.
Many interesting techniques have been omitted, important areas such as
verification and testing largely ignored, and the methodologies that were
discussed have not been explored in depth. Our hope is, however, that
this chapter gives sufficient background to put further readings in proper
context.

Bibliography
[1] S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Com

puters, C-27(6), pp. 509-516, 1978.

[2] J. H. Anderson and M. G. Gouda. A New Explanation of the Glitch
Phenomenon. Acta Informatica, 28, pp. 297-309, 1991.

[3] P. A. Beerel and T. H. Meng. Automatic Gate-Level Synthesis of
Speed-Independent Circuits. In Proceedings of International Confer
ence on Computer-Aided Design, IEEE Press, pp. 581-586, 1992.

[4] P. A. Beerel and T. H. Meng. Logic Transformations and Observ
ability Don't Cares in Speed-Independent Circuits. In Proceedings of
Tau 93. Participant's Proceedings, 1993.

[5] G. Birkhoff and T. C. Bartee. Modern Applied Algebra. McGraw-Hill
Book Company, 1970.

[6] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
American Elsevier Publishing Company, 1976.

[7] E. Brunvand and R. F. Sproull. Translating Concurrent Programs
into Delay-Insensitive Circuits. In Proceedings of International Con
ference on Computer-Aided Design, IEEE Press, pp. 262-265, 1989.

[8] R. E. Bryant. Race Detection in MOS Circuits by Ternary Simula
tion. In F. Anceau and E. J. Aas, editors, Proceedings of the IFIP
International Conference on Very Large Scale Integration, North
Holland Publishing Company, pp. 85-95, 1983,

[9] R. E. Bryant. Toward a Proof of the Brzozowski- Yoeli Conjecture on
Ternary Simulation. Unpublished Manuscript, 1983.

[10] R. E. Bryant. A Switch-Level Model and Simulator for MOS Digital
Systems. IEEE Transactions on Computers, C-33(2), pp. 160-177,
1984.

[11] R. E. Bryant. Graph-Based Algorithms for Boolean Function Ma
nipulation. IEEE Transactions on Computers, C-35(8), pp. 677-691,
1986.

[12] R. E. Bryant. Algorithmic Aspects to Symbolic Switch Network
Analysis. IEEE Transactions on Computer-Aided Design, CAD-6(4),
pp. 618-633, 1987.

368 Bibliography

[13J R. E. Bryant. Boolean Analysis of MOS Circuits. IEEE Transactions
on Computer-Aided Design, CAD-6(4), pp. 634-649, 1987.

[14J R. E. Bryant. On the Complexity of VLSI Implementations and
Graph Representations of Boolean Functions with Applications to
Integer Multiplication. IEEE Transactions on Computers, C-40(2),
pp. 205-213, 1991.

[15J R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary
Decision Diagrams. ACM Computing Surveys, 24(3), pp. 292-318,
1992.

[16J J. A. Brzozowski. Regular Expression Techniques for Sequential Cir
cuits. PhD thesis, Department of Electrical Engineering, Princeton
University, Princeton, New Jersey, USA, 1962.

[17J J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the
ACM, 11(4), pp. 481-494, 1964.

[18J J. A. Brzozowski and J. C. Ebergen. Recent Developments in the
Design of Asynchronous Circuits. In J. Csirik, J. Demetrovics, and
F. Gecseg, editors, Proceedings of Fundamentals of Computation
Theory, Lecture Notes in Computer Science, 380, Springer-Verlag,
pp. 78-94, 1989.

[19J J. A. Brzozowski and J. C. Ebergen. On the Delay-Sensitivity of Gate
Networks. IEEE Transactions on Computers, C-41(11), pp. 1349-
1360,1992.

[20J J. A. Brzozowski and E. J. McCluskey. Signal Flow Graph Tech
niques for Sequential Circuit State Diagrams. IEEE Transactions on
Electronic Computers, EC-12(2), pp. 67-76, 1963.

[21J J. A. Brzozowski and C-J. H. Seger. A Characterization of Ternary
Simulation of Gate Networks. IEEE Transactions on Computers,
C-36(11), pp. 1318-1327, 1987.

[22J J. A. Brzozowski and C-J. H. Seger. A Unified Framework for Race
Analysis of Asynchronous Networks. Journal of the ACM, 36(1),
pp. 20-45, 1989.

[23J J. A. Brzozowski and C-J. H. Seger. Advances in Asynchronous Cir
cuit Theory Part I: Gate and Unbounded Inertial Delay Models. Bul
letin of the European Association for Theoretical Computer Science,
1990(42), pp. 198-249, 1990.

[24J J. A. Brzozowski and C-J. H. Seger. Advances in Asynchronous Cir
cuit Theory Part II: Bounded Inertial Delay Models, MOS Circuits,
Design Techniques. Bulletin of the European Association for Theo
retical Computer Science, 1991(43), pp. 199-263, 1991.

Bibliography 369

[25] J. A. Brzozowski and M. Yoeli. Digital Networks. Prentice-Hall, 1976.

[26] J. A. Brzozowski and M. Yoeli. On a Ternary Model of Gate Net
works. IEEE Transactions on Computers, C-28(3), pp. 178-184, 1979.

[27] J. A. Brzozowski and M. Yoeli. Combinational Static CMOS Net
works. Integration, The VLSI Journal, 5, pp. 103-122, 1987.

[28] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic Model
Checking: 1020 States and Beyond. Information and Computation,
98(2), pp. 142-170, 1992.

[29] S. M. Burns. Automated Compilation of Concurrent Programs into
Self-timed Circuits. Master's thesis, Department of Computer Sci
ence, California Institute of Technology, Pasadena, California, USA,
1987.

[30] P. K. Chan and K. Karplus. Computing Signal Delay in General
RC Networks by Tree/Link Partitioning. IEEE Transactions on
Computer-Aided Design, CAD-9(8), pp. 898-902, 1990.

[31] T. J. Chaney and C. E. Molnar. Anomalous Behavior of Synchronizer
and Arbiter Circuits. IEEE Transactions on Computers, C-22(4),
pp. 421-422, 1973.

[32] S. G. Chappell and S. S. Yau. Simulation of Large Asynchronous
Logic Circuits Using an Ambiguous Gate Model. AFIPS Conference
Proceedings, 39, pp. 651-661, 1971.

[33] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph
Theoretic Specifications. PhD thesis, Department of Electrical En
gineering and Computer Science, MIT, Cambridge, Massachusetts,
USA, 1987.

[34] T.-A. Chu, C. K. C. Leung, and T. S. Wanuga. A Design Method
ology for Concurrent VLSI Systems. In Proceedings International
Conference on Computer Design, IEEE Press, pp. 407-410, 1985.

[35] W. A. Clark. Macromodular Computer Systems. In Proceedings of
the Spring Joint Computer Conference, AFIPS, 1967.

[36] W. A. Clark and C. E. Molnar. The Promise of Macromodular Sys
tems. In Digest of Papers, Compcon 72, 1972.

[37] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifica
tions: A Practical Approach. In Proceedings of the 10th ACM Sym
posium on the Principles of Programming Languages, ACM, 1983.

370 Bibliography

[38] W. Coates, A. Davis, and K. Stevens. The Post Office Experience:
Designing a Large Asynchronous Chip. Integration, The VLSI Jour
nal, 15(3), pp. 341-366, 1993.

[39] S. A. Cook. The Complexity of Theorem-Proving Procedures. In
Proceedings of the Third Annual ACM Symposium on the Theory of
Computing, pp. 151-158, ACM, 1971.

[40] O. Coudert, J.-C. Madre, and C. Berthet. Verifying Temporal Proper
ties of Sequential Machines Without Building Their State Diagrams.
In E. Clarke and R. Kurshan, editors, Proceedings of Computer-Aided
Verification '90, American Mathematical Society, pp. 75-84, 1990.

[41] R. David. Modular Design of Asynchronous Circuits Defined by
Graphs. IEEE Transactions on Computers, C-26(8), pp. 727-737,
1977.

[42] B. S. Davie and G. J. Milne. The Role of Behaviour in VLSI Design
Languages. In D. Borrione, editor, From HDL Descriptions to Guar
anteed Correct Circuit Designs, North-Holland Publishing Company,
1987.

[43] E. W. Dijkstra. Guarded Commands, Nondeterminacy and For
mal Derivations of Programs. Communications of the ACM, 18(8),
pp. 453-457, 1975.

[44] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. PhD thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA,
1988.

[45] D. L. Dill. Timing Assumptions and Verification of Finite-State
Concurrent Systems. In J. Sifakis, editor, Proceedings of Interna
tional Workshop on Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science, 407, Springer-Verlag,
pp. 197-212, 1990.

[46] J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits.
CWI Thact 56, Centre for Mathematics and Computing Science, Am
sterdam, The Netherlands, 1989.

[47] J. C. Ebergen. A Formal Approach to Designing Delay-Insensitive
Circuits. Distributed Computing, 5(3), pp. 107-119, 1991.

[48] J. C. Ebergen and J. A. Brzozowski. On Network and Race Models
for Asynchronous Circuits. Unpublished Manuscript, 1990.

[49] E. B. Eichelberger. Hazard Detection in Combinational and Sequen
tial Switching Circuits. IBM Journal of Research and Development,
9, pp. 90-99, 1965.

Bibliography 371

[50] E. B. Eichelberger and T. W. Williams. A Logic Design Structure
for LSI Testability. Journal of Design Automation and Fault Tolerant
Computing, 2(2), pp. 165-178, 1978.

[51] T. P. Fang and C. E. Molnar. Synthesis of Reliable Speed-Independent
Circuit Modules: II. Circuit and Delay Conditions to Ensure Opera
tion Free of Problems from Races and Hazards. Technical Memoran
dum 298, Computer Science Laboratory, Washington University, St.
Louis, Missouri, USA, 1983.

[52] G. Fantauzzi. Theory and Design of Switching Circuits. IEEE Trans
actions on Computers, C-23(6), pp. 576-581, 1974.

[53] S. Fortune, J. Hopcroft, and E. M. Schmidt. The Complexity
of Equivalence and Containment for Free Single Variable Program
Schemes. In G. Ausiello and C. Boehm, editors, Proceedings of the
Fifth International Colloquium on Automata, Languages and Pro
gramming, Lecture Notes in Computer Science, 62 Springer-Verlag,
pp. 227-240, 1978.

[54] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods.
A Micropipelined ARM. In T. Yanagawa and P. A. Ivey, editors,
Proceedings of the IFIP International Conference on Very Large Scale
Integration. North-Holland Publishing Company, 1993.

[55] M. R. Garey and D. S. Johnson. Computers and Intractability, A
Guide to the Theory of NP-Completeness. W. H. Freeman and Com
pany, 1979.

[56] S. Gingras and J. A. Brzozowski. Unbounded Finite Delay Models in
Asynchronous Circuit Analysis. Unpublished Manuscript, 1991.

[57] A. Gupta. Formal Hardware Verification Methods: A Survey. Formal
Methods in System Design, 1(2/3), pp. 151-238, 1992.

[58] M. A. Harrison. Introduction to Switching and Automata Theory.
McGraw-Hill Book Company, 1965.

[59] S. Hauck. Asynchronous Design Methodologies: An Overview. Pro
ceedings of the IEEE, 83(1), 1995.

[60] L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma. Cas
code Voltage Switch Logic: A Differential CMOS Logic Family. In
Proceedings of 1984 IEEE International Solid-State Circuits Confer
ence, IEEE Press, pp. 16-17, 1984.

[61] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[62] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

372 Bibliography

[63] L. A. Hollaar. Direct Implementation of Asynchronous Control Units.
IEEE Transactions on Computers, C-31(12), pp. 1133-1141, 1982.

[64] A. Holt and F. Commoner. Events and Conditions. In Record of
the Project MAC Conference on Concurrent Systems and Parallel
Computation, ACM, pp. 3-52, 1970.

[65] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computations. Addison-Wesley Publishing Company,
1979.

[66] D. A. Huffman. The Synthesis of Sequential Switching Circuits. IRE
Transactions on Electronic Computers, 257(3), pp. 161-190, 1954.

[67] D. A. Huffman. The Synthesis of Sequential Switching Circuits. IRE
Transactions on Electronic Computers, 257(4), pp. 275-303, 1954.

[68] D. A. Huffman. The Design and Use of Hazard-Free Switching Cir
cuits. Journal of the ACM, 4(1), pp. 47-62, 1957.

[69] H. Hulgaard, S. M. Burns, and G. Borriello. Testing Asynchronous
Circuits: A Survey. Technical Report FR-35, Department of Com
puter Science and Engineering, University of Washington, Seattle,
Washington, USA, 1994.

[70] G. M. Jacobs and R. W. Brodersen. Self-Timed Integrated Circuits
for Digital Signal Processing Applications. In R. W. Brodersen and
H. S. Moscovitz, editors, VLSI Signal Processing, III, IEEE Press,
1988.

[71] P. Jain and G. Gopalakrishnan. Hierarchical Constraint Solving in
the Parametric Form with Applications to Efficient Symbolic Simula
tion Based Verification. In Proceedings International Conference on
Computer Design, IEEE Press, pp. 304-307, 1993.

[72] M. B. Josephs and J. T. Udding. An Overview of D-I Algebra. In
T. N. Mudge, V. Milutinovic, and L. Hunter, editors, Proceedings
of the 26th Annual Hawaii International Conference on System Sci
ences, pp. 329-338, 1993.

[73] S. Karthik, I. de Souza, J. T. Rahmeh, and J. A. Abraham. Interlock
Schemes for Micropipelines: Application to a Self-Timed Rebound
Sorter. In Proceedings International Conference on Computer Design,
IEEE Press, pp. 393-396, 1991.

[74] W. H. Kautz. The Necessity of Closed Circuit Loops in Minimal
Combinational Circuits. IEEE Transactions on Computers, C-19,
pp. 162-166, 1970.

Bibliography 373

[75] K. Keutzer, L. Lavagno, and A. Sangiovanni-Vincentelli. Synthesis
for Testability Techniques for Asynchronous Circuits. In Proceedings
of International Conference on Computer-Aided Design, IEEE Press,
pp. 326-329, 1991.

[76] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Con
current Hardware, The Theory and Practice of Self-Timed Design.
John Wiley & Sons, 1994.

[77] Z. Kohavi. Switching and Finite Automata Theory, Second Edition.
McGraw-Hill Book Company, 1978.

[78] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms
for Synthesis of Hazard-Free Asynchronous Circuits. In Proceedings of
the Design Automation Conference, IEEE Press, pp. 302-308, 1991.

[79] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni
Vincentelli. Solving the State Assignment Problem for Signal Tran
sition Graphs. In Proceedings of the Design Automation Conference,
IEEE Press, pp. 568-572, 1992.

[80] L. Lavagno and A. Sangiovanni-Vincentelli. Linear Programming for
Optimum Hazard Elimination in Asynchronous Circuits. In Pro
ceedings International Conference on Computer Design, IEEE Press,
pp. 275-278, 1992.

[81] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for Synthesis
and Testing of Asynchronous Circuits. Kluwer Academic Publishers,
1993.

[82] C. Y. Lee. Representation of Switching Circuits by Binary-Decision
Programs. Bell System Technical Journal, 38(4), pp. 985-999, 1959.

[83] T. Lengauer and S. Naber. An Analysis of Ternary Simulation as a
Tool for Race Detection in Digital MOS Circuits. Integration, The
VLSI Journal, 4, pp. 309-330, 1986.

[84] D. L. Lewis. Finite-State Analysis of Asynchronous Circuits with
Bounded Temporal Uncertainty. Technical Report TR-15-89, De
partment of Computer Science, Harvard University, Cambridge, Mas
sachusetts, USA, 1989.

[85] A. Liebchen and G. Gopalakrishnan. Dynamic Reordering of High
Latency Transactions Using a Modified Micropipline. In Proceedings
International Conference on Computer Design, IEEE Press, pp. 336-
340,1992.

[86] K. J. Lin and C. S. Lin. On the Verification of State-Coding in STGs.
In Proceedings of International Conference on Computer-Aided De
sign, IEEE Press, pp. 118-122, 1992.

374 Bibliography

[87] K. J. Lin and C. S. Lin. A Realization Algorithm of Asynchronous
Control Circuits from STG. In Proceedings of EDAC, IEEE Press,
pp. 322-326, 1992.

[88] M. M. Mano. Digital Design, Second Edition. Prentice-Hall, 1991.

[89] A. J. Martin. Programming in VLSI: From Communicating Processes
to Delay-Insensitive Circuits. In C. A. R. Hoare, editor, UT Year of
Programming Institute on Concurrent Programming. Addison-Wesley
Publishing Company, 1989.

[90] A. J. Martin. The Limitations to Delay-Insensitivity in Asynchronous
Circuits. In Proceedings of the 6th MIT Conference on Advanced
Research in VLSI, The MIT Press, pp. 263-278, 1990.

[91] A. J. Martin. Synthesis of Asynchronous VLSI Circuits. Lecture
Notes from the Summer School in Marktoberdorf, July 26-August
7, 1994. To appear in Lecture Notes in Computer Science, Springer
Verlag, 1994.

[92] E. J. McCluskey. Transients in Combinational Logic Circuits. In
R. H. Wilcox and W. C. Mann, editors, Redundancy Techniques for
Computing Systems, Spartan Books, pp. 9-46, 1962.

[93] E. J. McCluskey. Fundamental Mode and Pulse Mode Sequential Cir
cuits. In C. M. Popplewell, editor, Proceedings of the IFIP Congress
62, North-Holland Publishing Company, pp. 725-730, 1963.

[94] E. J. McCluskey. Logic Design Principles. Prentice-Hall, 1986.

[95] P. C. McGeer and R. K. Brayton. Integrating Functional and Tem
poral Domains in Logic Design. Kluwer Academic Publishers, 1991.

[96] C. Mead and L. Conway. Introduction to VLSI Systems. Addison
Wesley Publishing Company, 1980.

[97] T. H. Meng. Synchronization Design for Digital Systems. Kluwer
Academic Publishers, 1991.

[98] T. H. Meng, R. W. Brodersen, and D. G. Messerschmitt. Auto
matic Synthesis of Asynchronous Circuits from High-Level Specifica
tions. IEEE Transactions on Computer-Aided Design, CAD-8(11),
pp. 1185-1205, 1989.

[99] G. A. Metze. An Application of Multi-Valued Logic Systems to Cir
cuits. In Proceedings of the Symposium on Circuit Analysis, pp. 11-
1-11-14, 1955.

[100] R. E. Miller. Switching Theory, Volume 2: Sequential Circuits and
Machines. John Wiley & Sons, 1965.

Bibliography 375

[101] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[102] C. E. Molnar. Macromodular Computer Systems. In B. D. Wax
man and R. W. Stacy, editors, Computers in Biomedical Research,
Academic Press, pp. 45-85, 1974.

[103] C. E. Molnar, T. P. Fang, and F. U. Rosenberger. Synthesis of Delay
Insensitive Modules. In H. Fuchs, editor, Proceedings of the 1985
Chapel Hill Conference on VLSI, Computer Science Press, pp. 67-
86,1985.

[104] E. F. Moore. Gedanken Experiments on Sequential Machines. In
C. E. Shannon and J. McCarthy, editors, Automata Studies, Annals
of Mathematics Study 34, Princeton University Press, Princeton NJ,
pp. 129-153, 1956.

[105] M. Mukaidono. Regular Ternary Logic Functions-Ternary Logic
Functions Suitable for Treating Ambiguity. In Proceedings of the 13th
Annual Symposium on Multiple- Valued Logic, IEEE Press, pp. 286-
291,1983.

[106] D. E. Muller. A Theory of Asynchronous Circuits. Technical Re
port 66, Digital Computer Laboratory, University of Illinois, Urbana
Champaign, Illinois, USA, 1955.

[107] D. E. Muller and W. S. Bartky. A Theory of Asynchronous Cir
cuits. In Proceedings of an International Symposium on the Theory
of Switching, Annals of the Computation Laboratory of Harvard Uni
versity, Harvard University Press, pp. 204-243, 1959.

[108] T. Murata. Petri Nets: Properties, Analysis and Applications. Pro
ceedings of the IEEE, 77(4), pp. 541-580, 1989.

[109] S. M. Nowick. Automated Synthesis of Burst-Mode Asynchronous
Controllers. PhD thesis, Department of Computer Science, Stanford
University, Stanford, California, USA, 1993.

[110] S. M. Nowick and D. L. Dill. Automatic Synthesis of Locally-Clocked
Asynchronous State Machines. In Proceedings of International Con
ference on Computer-Aided Design, IEEE Press, pp. 318-321, 1991.

[111] S. M. Nowick and D. L. Dill. Synthesis of Asynchronous State Ma
chines Using a Local Clock. In Proceedings of International Confer
ence on Computer Design, IEEE Press, pp. 192-197, 1991.

[112] S. M. Nowick and D. L. Dill. Exact Two-Level Minimization of
Hazard-Free Logic with Multiple Input Changes. In Proceedings of
International Conference on Computer-Aided Design, IEEE Press,
pp. 626-630, 1992.

376 Bibliography

[113] J. L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, 1981.

[114] D. Pountain. Computing without Clocks. BYTE, 18(1), pp. 145-150,
1993.

[115] F. P. Preparata and R. T. Yeh. Introduction to Discrete Structures
for Computer Science and Engineering. Addison-Wesley Publishing
Company, 1973.

[116] V. Ramachandran. Algorithmic Aspects of MOS VLSI Switch-Level
Simulation with Race Detection. IEEE Transactions on Computers,
C-35(5), pp. 462-475, 1986.

[117] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. P. Fang. Q
Modules: Internally Clocked Delay-Insensitive Modules. IEEE Trans
actions on Computers, C-37(9), pp. 1005-1018, 1988.

[118] L. Y. Rosenblum and A. V. Yakovlev. Signal Graphs: From Self
Timed to Timed Ones. In Proceedings of International Workshop on
Petri Nets, pp. 199-206, 1985.

[119] J. Rubinstein, Jr., P. Penfield, and M. A. Horowitz. Signal Delay in
RC Tree Networks. IEEE Transactions on Computer-Aided Design,
CAD-2(3), pp. 202-211, 1983.

[120] A. Salomaa. Theory of Automata. Pergamon, 1969.

[121] H. M. J. L. Schols. A Formalization of the Foam Rubber Wrapper
Principle. Master's thesis, Department of Mathematics and Com
puting Science, Eindhoven University of Technology, Eindhoven, The
Netherlands, 1985.

[122] C-J. H. Seger. Models and Algorithms for Race Analysis in Asyn
chronous Circuits. PhD thesis, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, 1988.

[123] C-J. H. Seger. The Complexity of Race Detection in VLSI Circuits. In
C. L. Seitz, editor, Proceedings of the 1989 Decennial Caltech Confer
ence on VLSI, Advanced Research in VLSI, The MIT Press, pp. 335-
350,1989.

[124] C-J. H. Seger. On the Existence of Speed-Independent Circuits. The
oretical Computer Science, 86(2), pp. 343-364, 1991.

[125] C-J. H. Seger. Symbolic Bounded Delay Simulation. Unpublished
Manuscript, 1992.

Bibliography 377

[126] C-J. H. Seger and J. A. Brzozowski. Generalized Ternary Simula
tion of Sequential Circuits. Theoretical Informatics and Applications,
28(3/4), pp. 159-186, 1994.

[127] S. F. Smith and A. E. Zwarico. Provably Correct Synthesis of Asyn
chronous Circuits. In J. Staunstrup and R. Sharp, editors, Proceed
ings of the Second IFIP Workshop on Designing Correct Circuits,
North-Holland Publishing Company, pp. 237-260, 1992.

[128] J. Sparsf/}, C. D. Nielsen, L. S. Nielsen, and J. Staunstrup. Design of
Self-Timed Multipliers: A Comparison. In S. Furber and M. Edwards,
editors, Asynchronous Design Methodologies, IFIP Transactions, A-
28, Elsevier Science Publishers, pp. 165-179, 1993.

[129] R. F. Sproull and 1. E. Sutherland. Asynchronous Systems, Vol
ume I: Introduction. Technical Report 4706, Sutherland, Sproull &
Associates, Inc., Palo Alto, California, USA, 1986.

[130] R. F. Sproull, 1. E. Sutherland, and C. E. Molnar. The Counterflow
Pipeline Processor Architecture. IEEE Design and Test of Comput
ers, 11(3), pp. 48-59, 1994.

[131] L. J. Stockmeyer. The Complexity of Decision Problems in Automata
Theory and Logic. PhD thesis, Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA,1974.

[132] 1. E. Sutherland. Micropipelines. Communications of the ACM, 32(6),
pp. 720-738, 1989.

[133] J. T. Udding. A Formal Model for Defining and Classifying Delay
Insensitive Circuits and Systems. Distributed Computing, 1(4),
pp. 197-204, 1986.

[134] S. H. Unger. Hazards and Delays in Asynchronous Sequential Switch
ing Circuits. IRE Transactions on Circuit Theory, CT-6, pp. 12-25,
1959.

[135] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley
Interscience, 1969.

[136] K. van Berkel. Handshake Circuits. Cambridge University Press,
1993.

[137] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man. Time
and Area Performant Synthesis of Asynchronous Control Circuits. In
Proceedings of Tau 90, Participant's Proceedings, 1990.

378 Bibliography

[138J P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A Generalized
State Assignment Theory for Transformations on Signal Transition
Graphs. In Proceedings of International Conference on Computer
Aided Design, IEEE Press, pp. 112-117, 1992.

[139J T. Verhoeff. Delay-Insensitive Codes-An Overview. Distributed
Computing, 3(1), pp. 1-8, 1988.

[140J T. Verhoeff. Characterizations of Delay-Insensitive Communication
Protocols. Computing Science Notes 89/06, Department of Mathe
matics and Computer Science, Eindhoven Univ. of Technology, Eind
hoven, The Netherlands, 1989.

[141J N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, 1985.

[142J T. E. Williams. Self- Timed Rings and their Application to Division.
PhD thesis, Department of Computer Science, Stanford University,
Stanford, California, 1991.

[143J T. E. Williams and M. A. Horowitz. A Zero-Overhead Self-Timed
160ns 54b CMOS Divider. IEEE Journal of Solid-State Circuits,
26(11), pp. 1651-1661, 1991.

[144J D. Wood. Theory of Computation. Harper and Row, Publishers,
1987.

[145J A. V. Yakovlev. On Limitations and Extensions of STG Model for
Designing Asynchronous Control Circuits. In Proceedings of Inter
national Conference on Computer Design, IEEE Press, pp. 396-400,
1992.

[146J M. Yoeli. Net-Based Synthesis of Delay-Insensitive Circuits. Techni
cal Report 609, Department of Computer Science, Technion, Haifa,
Israel, 1990.

[147J M. Yoeli and I. Reicher. Synthesis of Delay-Insensitive Circuits Based
on Marked Graphs. Technical Report 543, Department of Computer
Science, Technion, Haifa, Israel, 1989.

[148J M. Yo eli and S. Rinon. Application of Ternary Algebra to the Study
of Static Hazards. Journal of the ACM, 11(1), pp. 84-97, 1964.

[149J K. Yun and D. 1. Dill. Automatic Synthesis of 3D Asynchronous
State Machines. In Proceedings of International Conference on
Computer-Aided Design, IEEE Press, pp. 576-580, 1992.

[150] K. Yun, D. L. Dill, and S. M. Nowick. Synthesis of 3D Asynchronous
State Machines. In Proceedings of International Conference on Com
puter Design, IEEE Press, pp. 346-350, 1992.

List of Figures

1.1 One- and two-input gates.
1.2 Generic synchronous circuit.
1.3 Combinational circuit containing false paths.
1.4 Speeding up some gates can slow down the circuit.
1.5 Master-slave RS flip-flop.
1.6 Sequence of states after clock rises.
1. 7 Possible flip-flop transition with slow inverter.
1.8 Dynamic CMOS circuit with timing problem.
1.9 State sequence of dynamic CMOS circuit.
1.10 Timing error in dynamic CMOS circuit.
1.11 Waveforms for divide-by-2 counter.
1.12 Flow table for counter. . ..
1.13 Excitation table for counter
1.14 Gate circuit for counter.
1.15 Possible state sequence for counter.

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Digraph G.

Model of physical inverter.
Waveforms for inverter with delay.
Delay component.
Ideal delay response.
Fixed inertial delay response.
Possible bi-bounded inertial delay responses.
Possible XBIN delay response to binary input.
Possible XBIN delay responses to ternary input.

Feedback-free gate circuit.
Combinational gate circuit with feedback.
NOR latch circuit.
NOR latch with feedback delay.
Gate circuit C4 .5 . . •......

Circuit graph corresponding to gate circuit C4 .5 .

Binary gate-state network for circuit graph C4.6.
Ternary gate-state network for circuit graph C4.6 .

Binary wire-state network for circuit graph C4 .6 •

Ternary input- and feedback-state network for circuit C4 .6 .

Circuit with two NAND gates with wired-AND outputs.
Virtual AND gate added to Figure 4.11.

3
4
4
7
8
9

10
11
13
15
16
17
18
19
20

33

37
37
38
38
40
41
42
42

47
48
49
50
51
52
55
55
56
56
58
58

380 List of Figures

4.13 Circuit graph for circuit in Figure 4.11.
4.14 Circuit with two tri-state gates.
4.15 Circuit graph for circuit in Figure 4.14.

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

Transistor symbols.
Illustrating the definition of a cell.
CMOS NOR gate.
Cell for minority function.
Form of separated cell. . .
A CMOS circuit for XOR.

XOR with transmission gates.
Circuit C5.8 . • . • . . • . • . .

CMOS domino gate with "staticizer."
Illustration of path blocking.
A two-input AND gate in CMOS domino style.
CMOS circuit C.
Circuit graph of CMOS circuit in Figure 5.12.

NOR latch
Circuit graph for NOR latch. . . .
Gate-state network for NOR latch.
A race-free transition.
A circuit with a noncritical race.
A noncritical race.
A critical race.
A circuit with an oscillation.
A race-free oscillation. . ..
A match-dependent oscillation.
A circuit with transient oscillations.
Illustrating transient oscillations.
A circuit with transient states in the outcome.
Transient cycles reachable from a nontransient cycle.
Two oscillators.
GMW behavior of two oscillators.
Network N
A U I N 1-history for N.
GMW relation R1(1O) for N.
Input-, gate-, and wire-state network.
Gate circuit C6 .21 • . .••.•.•..

Example of XMW analysis.
Circuit for which out(Ua(b)) C out(Ra(b)).
Roo(OOO) and Uoo(OOO) relations.
Analysis of latch with ideal delays.
Circuit with infinite transition graph.
Circuit in which IMW differs from GMW.

59
60
60

62
63
64
66
67
68
68
70
74
74
76
80
80

85
86
86
86
87
87
88
88
88
89
89
90
90
91
91
92
93
93
95
97

100
101
103
103
104
105
105

List of Figures 381

6.28 Graph of R1 for the circuit of Figure 6.27. 106
6.29 Part of graph of 11 for the circuit of Figure 6.27. 106

7.1 Circuit for Example 1. 114
7.2 Ternary simulation for Example 1. 115
7.3 GMW analysis for Example 1. 115
7.4 Circuit for Example 2. .. 116
7.5 Circuit for Example 3. 117
7.6 Illustrating state removal. .. 124
7.7 Reduction below feedback vertex set. 126
7.8 Circuit with a static hazard. 128
7.9 Circuit with a dynamic hazard. ... 129
7.10 Circuit used to illustrate Lemma 7.2. 134
7.11 Illustrating Lemma 7.2. 134

8.1 Network C8.1 . 144
8.2 Network C8.2 . 145
8.3 Network C8.3 . 146
8.4 Network construction for Theorem 8.1. 147
8.5 Network C8.5 • • • • • • • • • • . . • • . 150
8.6 Two possible race sequences. 151
8.7 Example of bi-bounded delay analysis. 156
8.8 Network C8.8 • • • . . • • • • • 159
8.9 Two possible XBD sequences. 160
8.10 TBD analysis of C8 .8 • 164
8.11 Network C8 .11 • •••••••• 164
8.12 TBD analyses with ±25% and ±30% deviation. 165

9.1 A D Hip-Hop with completion and reset signals. 169
9.2 Construction for (a) a variable x; (b) ..,E1(y). 170
9.3 Construction for E1(y) V E2(Y)' 170
9.4 Construction for 3x. E1 (x, y). 171
9.5 Complete construction for Theorem 9.1. 171
9.6 Critical-race generating circuit. 174
9.7 GMW analysis of the critical-race generating circuit. 174
9.8 Circuit for E = Xi. •••. 175
9.9 Circuit for ..,E1 (x). 175
9.10 Circuit for E 1(x) /\ E 2 (x). 176
9.11 Circuit for E 1(x) V E 2 (x). 176
9.12 Complete circuit for Theorem 9.4. 178
9.13 Construction of N for Theorem 9.9. 183
9.14 Complete circuit for Theorem 9.9. 184

10.1 Representation of quotient equations by a table. 199
10.2 Representation of quotient equations by a graph. 199

382 List of Figures

10.3 State table of a modulo-3 counter.
10.4 State graph of a modulo-3 counter.
10.5 Parallel connection of automata.
10.6 Illustrating equivalent states.
10.7 Illustrating a reduced machine.
10.8 A nondeterministic automaton.
10.9 Finding a regular expression by state elimination.
10.10 Figure 10.9 continued.

11.1 Inverter circuit and its network model.
11.2 Behavior of inverter.
11.3 Expanded-state behavior of inverter.
11.4 A behavior automaton.
11.5 Indistinguishable behaviors. "
11.6 An improper specification. . ..
11.7 Network for deadlock example.
11.8 Behavior with deadlock.
11.9 A network with two outputs.
11.10 Behavior of network with two outputs.
11.11 A specification with two outputs.
11.12 Behavior AI'

203
203
205
207
207
208
210
211

215
217
218
219
227
227
230
230
231
231
231
232

11.13 Network N I . 232
11.14 Behavior of N I . 233
11.15 Network N 2 . 234
11.16 Behavior of N 2 . 234
11.17 Behavior of Table 11.4. 235
11.18 Arbitration and choice. 236
11.19 A specification for a fork. 238
11.20 An implementation of a fork. 239

12.1 Schema of primitive flow table. 245
12.2 Ra relations for the NOR latch. 248
12.3 A behavior that is not direct. . 249
12.4 Direct behavior for the NOR latch. 250
12.5 A behavior that is direct but not serial. 252
12.6 Complete-word behavior of NOR latch. 254

13.1 Gate circuit C with nontrivial delay-insensitive behavior. 256
13.2 Reduced network corresponding to circuit C. 257
13.3 Delay-insensitive complete-word behavior. 257
13.4 Network N. 258
13.5 Illustrating the main theorem. 259
13.6 Delay-insensitive transitions for one-input circuit. 260
13.7 Gate circuit G. 262
13.8 Behavior AI. 264

List of Figures 383

13.9 Simulation of Al by a network. 264
13.10 Network G13.lO. . 266
13.11 Network G13.11. . . . 267
13.12 Behavior of JOIN. . . 269
13.13 Behavior of TOGGLE. 270
13.14 A generalized version of AI. 270
13.15 An arbiter behavior. 272

14.1 Example of ordered binary decision diagram. 277
14.2 OBDDs for a1b1 + a2b2 + a3b3 using different orderings. 278
14.3 Network G14.3•.•... 285
14.4 Network G14 .4. 285
14.5 Circuit to illustrate rTBD algorithm. 291
14.6 Example of TBD analysis. 291
14.7 Dual-rail rTBD algorithm: (a) input vertex;

(b) state vertex. 293
14.8 First attempt to design a delay circuit. . . . 294
14.9 Final version of delay circuit. 295
14.10 Simple behavior and corresponding computation tree. 305
14.11 Specification behavior for three-input C-ELEMENT. 306
14.12 Example of behavior for model checking. 309

15.1 Classical asynchronous sequential circuit structure. 318
15.2 Hollaar's implementation. 321
15.3 Burst-mode specification. 322
15.4 Circuit schematic for a locally clocked implementation. 323
15.5 Examples of I-nets: (a) JOIN, (b) MERGE. 326
15.6 State graphs for JOIN: (a) ISG, (b) EISG. 327
15.7 Implementation structures. 330
15.8 Illustrating marked graphs. 332
15.9 Illustrating marked graphs, continued. .. 333
15.10 Choice in STGs: (a) input choice; (b) non-input choice. 334
15.11 STGs violating various properties. 335
15.12 Contraction: (a) STG A; (b) state diagram of A. 336
15.13 Contraction with respect to 0 1 . 337
15.14 Contraction with respect to O2 • 338
15.15 Illustrating change diagrams. . 339
15.16 Data transfer methods. 342
15.17 Basic elements. 345
15.18 A decomposition of a half-adder. 347
15.19 Illustrating the use of an isochronic fork. 348
15.20 Abstract stack circuit. 350
15.21 Stack process decomposed into StackMaster and Reg. 351
15.22 Handshake expansion of Reg process. 352
15.23 CMOS cells for production rules: (a) cell A, (b) cell B. 356

384 List of Figures

15.24 Circuit derived for the Reg process. 356
15.25 A handshake circuit for BUF1 (a, b). 359
15.26 A DCVS logic block. 361
15.27 A pipeline with DCVSL blocks. . . 362
15.28 Micropipeline structure: (a) control, (b) computation. 363

List of Tables

1.1 Common Boolean functions. 3
1.2 Nominal node delays in the dynamic CMOS circuit. 12
1.3 Possible delay assignment with less than 10% deviation. 14

2.1 Terminology for sets. 24
2.2 Axioms of Boolean algebra. ... 26
2.3 The operations +, *, and - in Bo. 26
2.4 Axioms of ternary algebra. 28
2.5 The operations +, *, and - in To. 29

8.1 Possible delay assignment for A resolution. 148
8.2 Algorithm 1. 154

9.1 Complexity of the stable-state reachability problem. 181
9.2 Complexity of the limited reachability problem. 185

11.1 Types of transitions.
11.2 Transition table for NOR latch.
11.3 illustrating input projection.
11.4 illustrating output projection.

218
221
222
223

12.1 Unrestricted behavior of OR gate. 242
12.2 Fundamental-mode behavior of OR gate. 242
12.3 Single-input-change behavior of OR gate. 243
12.4 Dill's single-input-change behavior of OR gate. 243
12.5 Single-input-change fundamental-mode behavior of OR gate. 244
12.6 A primitive flow table. 244
12.7 Transition table for NOR latch. 248

14.1 Dual-rail encoding of ternary values. 280
14.2 Dual-rail versions of ternary operations. 280
14.3 Set operations on characteristic function representation. 281
14.4 Possible signal transitions in the rTBD algorithm. 293
14.5 Race models obtained for different delay circuits. . 296

15.1 Table of combinations for burst-mode specification. 324
15.2 Table of combinations for JOIN. •.•••.••.•. 328

List of Mathematical Concepts

List of Algorithms

Ternary simulation: Algorithm A 118
Ternary simulation: Algorithm A 119
Ternary simulation: Algorithm B 121
Feasible region algorithm (Algorithm 1) 154
Symbolic ternary simulation: Algorithm A 289
Symbolic ternary simulation: Algorithm B 289
rTBD Algorithm ... 292

List of Corollaries

Corollary 7.1
Corollary 7.2
Corollary 7.3
Corollary 7.4
Corollary 10.1
Corollary 10.2
Corollary 10.3
Corollary 13.1

List of Definitions

Definition 10.1
Definition 10.2
Definition 10.3
Definition 10.4
Definition 10.5
Definition 11.1
Definition 11.2
Definition 11.3
Definition 11.4
Definition 11.5
Definition 11.6

127
136
138
141
195
195
200
261

190
192
192
193
194
229
229
232
233
234
240

388 List of Mathematical Concepts

List of Lemmas

Lemma 6.1
Lemma 6.2
Lemma 6.3
Lemma 6.4
Lemma 7.1
Lemma 7.2
Lemma 7.3
Lemma 7.4 .. .
Lemma 7.5 .. .
Lemma 7.6 .. .
Lemma 7.7 .. .
Lemma 7.8 .. .

107
109
110
110
120
133
137
137
138
139
139
140

Lemma 7.9 ... 141
Lemma 8.1 ... 152
Lemma 8.2 ... 152
Lemma 8.3 ... 154
Lemma 8.4 ... 161
Lemma 8.5 ... 161
Lemma 13.1 .. 260
Lemma 13.2 .. 261
Lemma 13.3 .. 261
Lemma 13.4 .. 267
Lemma 13.5 .. 270
Lemma 14.1 .. 299
Lemma 14.2 .. 300

List of Propositions

Proposition 2.1 .. 30
Proposition 2.2 .. 32
Proposition 5.1 .. 66
Proposition 5.2 .. 66
Proposition 5.3 .. 66
Proposition 6.1 .. 96
Proposition 6.2 .. 98
Proposition 6.3 ... 102
Proposition 6.4 ... 107
Proposition 6.5 ... 109
Proposition 7.1 ... 118
Proposition 7.2 ... 118
Proposition 7.3 ... 119

List of Mathematical Concepts 389

Proposition 7.4 ... 121
Proposition 7.5 ... 121
Proposition 7.6 ... 124
Proposition 7.7 ... 125
Proposition 7.8 ... 130
Proposition 7.9 ... 133
Proposition 10.1 .. 204
Proposition 11.1 .. 225
Proposition 11.2 .. 240
Proposition 12.1 .. 249
Proposition 12.2 .. 252
Proposition 14.1 .. 298
Proposition 14.2 .. 301

List of Theorems

Theorem 2.1 ... 26
Theorem 2.2 ... 29
Theorem 2.3 ... 31
Theorem 6.1 ... 95
Theorem 6.2 ... 97
Theorem 7.1 ... 121
Theorem 7.2 ... 122
Theorem 7.3 ... 127
Theorem 7.4
Theorem 7.5
Theorem 7.6
Theorem 7.7
Theorem 8.1
Theorem 8.2
Theorem 8.3
Theorem 9.1
Theorem 9.2
Theorem 9.3
Theorem 9.4
Theorem 9.5
Theorem 9.6
Theorem 9.7
Theorem 9.8
Theorem 9.9
Theorem 9.10
Theorem 10.1
Theorem 10.2

128
130
131
132
146
156
166
168
173
173
173
179
179
181
181
182
185
194
199

390 List of Mathematical Concepts

Theorem 10.3
Theorem 10.4
Theorem 10.5
Theorem 10.6
Theorem 10.7
Theorem 10.8
Theorem 10.9
Theorem 13.1
Theorem 13.2
Theorem 13.3
Theorem 14.1
Theorem 14.2

200
201
201
204
206
208
209
259
271
272
292
302

Index

An entry for a name refers to a page on which either the name is mentioned
or an author's work is cited.

Abraham, J. A., 365
accept, 202, 209
accepting state, 202
accessible, 203
acknowledge, 341, 359
active agent, 352
acyclic, 33
addition, 26, 29
adjacent, 32
Akers, S. B., 276
alarm clock, 149, 153
algebraic

system, 25
transformation, 319

Algorithm A, 114, 118
Algorithm A, 119
Algorithm B, 114, 121
alphabet, 188, 217, 343
ALU, 361
analysis, 16, 83, 213, 241
AND, 2, 25, 338
AND-edge, 340
Anderson, J. H., 256, 271
antisymmetric, 24
appl, 301
applicable, 224
arbiter, 236, 256, 271
ARBITER, 272
arbitration, 236, 329
associative, 187
asynchronous, 1, 16, 21, 83, 213,

313, 318, 363
atomic command, 344
automaton, 202

behavior, 219
expression, 209
finite, 202

incomplete, 202
average-case, 316
axiom, 25, 28

Bartee, T. C., 23
Bartky, W. S., 99, 269
bd-state, 153
Beerel, P. A., 338
behavior, 45, 214, 216, 283

automaton, 219
complete-word, 253, 256, 296
deterministic, 225, 253, 263
direct, 263, 287, 318
fundamental-mode, 242, 247,

286
indistinguishable, 226
language of, 220
nontrivial, 271
of latch, 247
proper, 225
realizable, 255
schema, 237, 246
serial, 256, 263, 288, 296
simple deterministic, 263
single-input-change
Dill's, 243
symbolic, 283, 284
unrestricted, 284

Berthet, C., 283
between, 322
bi-bounded, 313

delay, 39, 144, 296
extended inertial delay, 42
ideal delay, 39
inertial delay, 40

BID,39
bijective, 23

392 Index

BIN, 40
binary

circuit graph, 52
domain, 85
input state, 64
operation, 23
relation, 23
signal, 315

bipartite, 33, 51, 325
Birkhoff, G., 23
block, 237

command, 358
blocked,75
Bondy, J. A., 23
Boolean

algebra, 23, 25
CMOS cell, 65
CMOS circuit, 76
expression, 3, 27, 276
function, 2, 25, 276
quantified formula, 168

Borriello, G., 318
bounded delay, 313, 338, 363
Brayton, R. K., 5, 338
Brodersen, R. W., 361
Brunvand, E., 360
Bryant, R. E., 61, 64, 69, 72, 75,

78, 121, 276, 279
Brzozowski, J. A., 2, 23, 27, 28,

36,40,45,61,62,66-69,
72,83,84,103,114,118,
121, 128, 130, 187, 194,
209, 213, 255

buffer, 358
bundled data, 315, 342, 360
Burch, J. R., 282, 307, 310
Burns, S. M., 318
burst-mode, 321, 322, 331

C-ELEMENT, 255, 272, 306, 338,
345, 363

canonical sum-of-products, 27
cap, 301
capability, 229, 300
capacitance, 11, 65, 75, 77

cardinality, 23
Cartesian product, 23
Catthoor, F., 337
CD, 339
Chan, P. K., 12
Chaney, T. J., 89, 316, 331
change, 92

at time, 35
diagram, 339
multiple-input, 257

channel, 61, 349, 358
connected subnetwork, 64

Chappell, S. G., 162
characteristic function, 280
charge, 11, 76

sharing, 77
storage, 65

choice, 246, 332, 341
are, 246
free, 237
set, 237

CHP, 348
Chu, T.-A., 331, 336-338
circuit

asynchronous, 1
delay-insensitive, 255
equation, 54, 57
family, 46
graph, 50, 79, 215

binary, 52
ternary, 52

Huffman, 318
output function, 247
sequential, 47
state, 84
synchronous, 1,4
two-level, 19

Clark, W. A., 325
Clarke, E. M., 282, 304, 307, 310
classical model, 318
clock, 1, 8, 11

generator, 324
local, 323
rate, 316
skew, 315

closed path, 33
closure

reflexive and transitive, 24,
96, 281

transitive, 24, 96
CMOS, 61

Boolean circuit, 76
cell, 62
circuit, 67, 69, 273, 314
design, 71
domino, 75
dynamic,lO
model, 69

Coates, W., 213
codomain, 23
combinational, 47

circuit, 10
logic, 3, 5

command, 344
grammar, 346

Commoner, F., 332
communicating hardware processes,

348
communicating sequential processes,

348, 357
compatible, 137
compilation, 314
complement, 25, 26, 28, 29
complementary, 353, 361
complete

lattice, 281
network, 117
word, 253, 296

completion, 169, 361
complexity, 167, 180, 185
component, 273
composite function, 258
composition, 24, 281
computation

block,361
iterative, 258
pipeline, 364
tree, 305

computational complexity, 167
computational tree logic, 304

Index 393

concatenation, 188, 343
concurrency, 102
conductance, 73
connected, 203
consistent, 224

state assignment, 334
continuous-delay model, 148, 152,

156
continuous function, 281
contraction, 336
Conway, L., 316, 361
Cook, S. A., 174, 182
correctness concerns, 342
Coudert, 0., 283
count, 104
counter, 16-20, 260

divide-by-two, 260
mod-k,260

counterexample, 311
cover, 25
critical race, 87
CSP, 348, 357
CTL, 304
cycle, 33
cyclic state, 96

D-transient, 96, 110
DAG,276
data path, 363
David, R., 320
Davie, B. S., 102
Davis, A., 213
Davis, J. W., 361
Day, P., 315, 365
DCVS logic, 314, 361
De Man, H., 337, 338
de Souza, I., 365
deadlock, 232, 252, 298, 300
decision wait, 347
definite vertex, 136
definite-stable, 137
delay, 1, 38, 46, 49, 63, 84, 318,

338
bi-bounded, 39, 144, 296
bounded, 341

394 Index

box, 294
circuit, 294
combinational circuit, 3
continuous

binary, 148, 152
ternary, 156

discrete
binary, 144
ternary, 162

element, 37, 319, 365
extreme-case, 145
fall, 12
fault, 338, 365
ideal, 38
inertial, 40
maximum, 4
minimum, 4
model, 38
nominal, 10, 296
propagation, 297
rise, 12
unbounded, 341
unit, 294
up-bounded, 39
up-bounded inertial, 92
zero, 294

delay-insensitive, 314, 341, 343, 363
circuit, 255
design, 325
in fundamental mode, 256
in input/output mode, 263
realization, 263

dependence, 53
design, 16, 313, 343

automation, 331
deterministic, 207

automaton, 207
behavior, 225

DI,255
difference, 23
differential cascode voltage switch

logic, 361
digital signal processing, 365
digraph,32
Dijkstra, E. W., 348, 357

Dill, D. L., 149, 152, 153, 156,
243, 255, 322, 323, 324

direct, 249
behavior, 287

directed graph, 32
acyclic, 276

discrete-delay model, 144, 162
distinguishable, 205, 206
divide-by-two counter, 16
domain, 23, 51, 57, 79
domino CMOS, 75
don't care, 16, 328
driven, 46
DSP, 365
dual-rail encoding, 280
duality, 25, 28
dynamic

hazard, 129, 338
state, 219

Ebergen, J. C., 36, 130, 213, 255,
269, 273, 329, 343, 346-
348

edge, 32, 50, 57, 79
disengageable, 339
strong-precedence, 339
weak-precedence, 339

Eichelberger, E. B., 4, 113, 128
Else, 327
elastic pipeline, 363
electrically isolated, 46, 57
Emerson, E. A., 304, 307
empty

set, 23
word, 188
word path, 298

enabled, 325, 332
encoded ISe, 327
encoding

dual-rail, 280
one-hot, 319

energy consumption, 357
environment, 35, 241
E transition, 218, 253
E-free behavior, 298

€-path,298
equivalence

function, 284
relation, 25

equivalent, 192, 205, 206
Eshraghian, K., 61, 68, 73, 75
essential hazard, 255
evaluation, 10, 76
excitation, 37, 53, 81

function, 53, 57, 81
table, 18

exclusive NOR, 284
execution, 325
existential quantification, 278
expanded state, 217
expression

automaton, 209
Boolean, 276
DAG,276
tree, 276

extended
bi-bounded delay, 42, 157
multiple-winner, 101
regular expression, 192
u p-bounded inertial delay, 43

external variable, 217
extreme-case delay, 145

fabrication, 316
fall delay, 12
false

negative, 166
path,5

fan-in, 46, 338
fan-out, 46
Fang, T.-P., 36, 255, 325, 329-331
Fantauzzi, G., 128
fast mode, 144
feasible

matrix, 153
region, 153

feedback,47
delay model, 123
free, 47
loop, 49

Index 395

state network, 97, 99
vertex, 98
vertex set, 33, 53, 123
wire, 97

FID,38
field effect transistor, 61
field-programmable gate array,

360
FIFO,363
fight, 65
FIN, 40
finite

automaton, 202
domain, 279

finiteness condition, 36
fire, 325, 331
firing sequence, 340
fixed

ideal delay, 38
inertial delay, 40
point, 282

flip-flop, 8, 169, 318
floating, 46, 57, 65
flow table, 16, 318

primitive, 244
foam rubber wrapper, 329
fork,237

isochronic, 356
FORK, 344

module, 320
Fortune, S., 276
four-phase handshaking, 341
FPGA,316
free monoid, 188
fresh, 250
function, 23

Boolean, 276
composite, 258
continuous, 281
monotonic, 258, 281

fundamental mode, 36
behavior, 242, 247, 286
operation, 256, 319
relation, 247

Furber, S. B., 315, 365

396 Index

Garey, M. R., 167
Garside, J. D., 315, 365
gate, 2, 45, 61, 272

and wire-state network, 100
array, 316
circuit, 45
output, 45
state network, 99
symbol,3
vertex, 50
virtual, 46, 57

gate-state
model, 247
network, 54

general multiple winner, 85
general single winner, 102
gfp,282
Gingras, S., 103
GMW, 85, 173, 255
good path, 65
Goossens, G., 337, 338
Gopalakrishnan, G., 280, 365
Gouda, M. G., 256, 271
graph theory, 23
greatest fixed point, 282
Griffin, W. R., 361
ground,62
GSW, 102, 129
guarded command, 349,357
Gupta, A., 304

half-adder, 346
handshake

circuit, 357
component, 358
expansion, 351
four-phase, 341
protocol, 361
two-phase, 341

Harrison, M. A., 27
hazard, 18, 99, 250, 315, 321

absorption, 365
avoidance, 324
dynamic, 129
essential, 255

free, 321
removal, 319, 330
static, 18, 127, 128, 259

head of edge, 32
Heller, L. G., 361
Hennessy, M., 281, 282
Hoare, C. A. R., 213, 348, 357,

358
hold time, 1
Hollaar, L. A., 320
Holt, A., 332
Hopcroft, J. E., 168, 187, 276
Horowitz, M. A., 12, 365
Huffman, D. A., 16,36,83,84,97,

99, 128, 213, 244, 247,
318

Hulgaard, H., 318

I-net, 325, 331
10,2
ID-state, 104
ideal delay, 38
ideal multiple winner, 104
image, 23
implementation, 214, 220
IMW, 104
incomplete automaton, 202
indefinite

cycle, 137
vertex, 136

indegree, 32
indistinguishable, 205, 206

behavior, 226
inertial, 83

delay, 40, 331
infeasible matrix, 153
initial state, 202, 208
initial total state, 216
injective, 23
input, 62

alphabet, 202, 343
burst, 322
choice STG, 333
command, 349
delay vertex, 50, 79

excitation variable, 216
excitation vertex, 53, 57
gate, 45
gate and wire state, 53
key state, 69
output mode, 36
place, 325
projection, 220
proper behavior, 227
sequence, 255
transistor and node state, 81
transition, 218
vertex, 50, 79

input- and feedback-state network,
56

input- and key-state, 81
input/output

mode, 255, 263, 264
waveform, 93

interface
state graph, 327
net, 325, 331

interleaving, 102, 129
internal

node, 62
state, 16, 84, 216, 244
state transition, 218
symbol, 344
variable, 69
vertex, 276

intersection, 23
interval, 152
invisible transition, 218
irredundant, 66
ISG,327
isochronic fork, 347, 356
isolated node, 77
iterative squaring, 282
IWIRE, 344

Jacobs, G. M., 361
Jain, P., 280
Johnson, D. S., 167
JOIN, 269, 272, 320, 326, 344
Josephs, M. B., 315

Index 397

k-distinguishable, 206
k-equivalent, 206
Karplus, K., 12
Karthik, S., 365
Kautz, W. H., 48
Keutzer, K., 338
key internal

node, 69
variable, 69

Kishinevsky, M. A., 339
Kohavi, Z., 2, 45, 187
Kondratyev, A. Y., 339
Kripke structure, 307

label, 301
language, 188

accepted, 202, 209
of a behavior, 220

latch, 4, 318, 320
Lavagno, L., 338, 339
leaf vertex, 276
least

fixed point, 282
upper bound, 25, 30

Lee, C. Y., 276
Lengauer, T., 69
length, 33, 188
letter language, 189
letters, 188
Leung, C. K. C., 331
level,47
Lewis, D. L., 149, 152-154, 156
lfp, 282
Liebchen, A., 365
limit, 96
limited reachability, 181, 185
Lin, B., 338
Lin, C. S., 337, 338
Lin, K. J., 337, 338
linear programming, 338
live, 301
livelock, 233, 249, 298, 300
liveness, 307
locally clocked, 331
logic

398 Index

design, 2, 45, 315
modal,304
predicate, 304
value, 2

loop, 32
unstable, 137

LR problem, 181, 185
lub,25

M-path,64
Madre, J.-C., 283
Mano, M. M., 2, 45, 68
marked graph, 332
marking, 325
Martin, A. J., 256,325, 348, 349
mask-programmable gate array, 360
master-slave, 8
match-dependent, 88, 89
maximal run, 108
McCluskey, E. J., 2, 36, 45, 68,

128, 187, 209, 247
McGeer, P. C., 5
McMillan, K. 1., 282, 307, 310
Mead, C., 316, 361
membership predicate, 280
Meng, T. H. Y., 338, 361
MERGE, 326, 345
Messerschmitt, D. G., 361
metastability, 316
metastable state, 89
Metze, G. A., 128
micropipeline, 315, 363
microprocessor, 314, 315, 365
Miller, R. E., 40, 99, 187
Milne, G. J., 102
Milner, R., 213, 238
minority function, 47
mixed

path, 65
transition, 219

modal logic, 304
mode

completely unrestricted, 35
input-output, 36, 263

fundamental, 36, 242, 244, 256,
259, 286

unrestricted, 36, 241, 285
unrestricted, 36

model
gate-state, 53
input- and gate-state, 53
input-, gate-, and wire-state,

53
wire-state, 53

model checking, 303
modularity, 358
module, 325

locally clocked, 323
based compilation, 360

Molnar, C. E., 36, 89, 255, 315,
316, 325, 329-331, 365

monoid, 187
monotonic, 31

function, 281
Moon, C. W., 338
Moore machine, 206
MOS, 61
MPGA,316
Mukaidono, M., 28, 31
Muller, D. E., 99, 269
multiple winners, 85
multiplexer, 361
multiplication, 26, 29, 187
multiplier, 361
Murata, T., 325, 329, 331
Murty, U. S. R., 23
mutual exclusion, 316, 346
M<l>-path,70

N-channel, 61
N-part, 66
N-path,64
N-transistor, 11, 61
n-tuple, 23
NAND

gate, 2
latch, 320

negative function, 66

network, 53, 57
complete, 117
feedback-state, 99
gate- and wire-state, 100
gate-state, 99
model, 241
ternary, 157

Nielsen, C. D., 365
Nielsen, L. S., 365
node, 62

excitation function, 71
vertex, 79

nominal delay, 10, 296
noncritical race, 87
nondeterministic automaton, 208
noninterfering, 353
nonseparated, 66
nontransient, 96

cycle, 90
Ra-sequence, 107
sequence, 95

nontrivial behavior, 271
NOR

gate, 2, 64
latch, 49, 85, 269, 247, 316

normalized, 209
NOT, 2, 25
Nowick, S. M., 213, 322-324
NP-complete, 174
NP-hard, 174
N<I>-path,69
Niiher, S., 69

o transition, 218
Oi-hazard-free, 250
OBDD,276
OCCAM, 360
one-to-one, 23
onto, 23
operating point, 245
operation

binary, 23
unary, 23

operator
precedence, 344

reduction, 354
optimization, 360
option, 239

Index 399

OR, 2, 25, 241, 266, 338
OR-edge, 340
ordered binary decision diagram,

276
ordered pair, 23
ordering, 277
oscillation, 88, 246, 250

match-dependent, 88
overlapping, 91
race-free, 88
transient, 89

outcome, 95, 122, 249, 256
GMW,96
GSW,102
XMW, 101, 132

out degree, 32
output, 215

alphabet, 206, 343
burst, 322
command, 349
function, 202, 206, 216
hazard-free, 250
node, 62
place, 325
projection, 222
variable, 216
vertex, 215

overlapping oscillation, 91

P-channel, 61
P-part,66
P-path,64
P-transistor, 11, 62
parallel operator, 349
parse tree, 360
partial order, 25
pass-through latch, 4
passive, 352
path, 33, 64

analysis, 5
blocking, 74

pausable, 331

400 Index

Paver, N. C., 315, 365
Penfield" P. Jr., 12
Peterson, J. L., 325, 331
Petri nets, 325, 331
Philips Research, 357
pipeline, 361, 362
place, 325
plus operator, 189
port, 349, 358
poset, 25
positive

function, 66
logic, 46

Pountain, D., 315, 365
power, 1, 315, 366

set, 23
supply, 316

precertified, 360
precharge, 10, 75, 77, 315, 361
predicate logic, 304
pre!, 220, 343
prefix, 343
prefix-closed, 220
Preparata, F. P., 23
primitive flow table, 245
probe, 349
process decomposition, 350
product, 27, 31, 188
production rule, 353
program behavior, 358
projection, 220, 343

input, 220
output, 222

propagation delay, 297
proper behavior, 225
protocol

four-phase, 341
two-phase, 341

PSPACE,168
p<P -path, 70

Q-flops, 331
Q-module, 331
QBF problem, 168
quantification

existential, 278
universal, 278

quantified Boolean formula, 168
quasi-delay-insensitive, 314
quotient

equation, 198
left, 190
with respect to a letter, 193
with respect to a word, 194

Ra-sequence, 94, 107
race, 17, 85

analysis, 83
critical, 87
free oscillation, 88
free transition, 85
generating circuit, 174
noncritical, 87
state, 149, 157
unit, 150, 162

Rahmeh, J. T., 365
RAM, 361
Ramachandran, V., 174
ReEL, 346
reach, 118
Reach, 151, 161, 166
reachable, 118, 121, 132
realizable

state encoding, 338
behavior, 255

realization, 214, 234, 235, 297
sum-of-products, 319

recognizable language, 204
reduced

machine, 207
flow-table, 318

redundant
cell, 66
product, 18, 319

reflexive, 24, 96
regular

expression, 192, 201, 343
language, 190

Reicher, 1., 36, 213
rejecting state, 202

relation
binary, 23
state-realization, 301

relevant, 224
repeater, 359
repetition, 349
request, 359, 361
reshuffling, 352
restriction, 223

to a subalphabet, 343
Rinon, S., 128
ripple-carry, 316
rise delay, 12
ROM, 361
Rosenberger, F. V., 36, 255, 325,

329, 331
Rosenblum, L. Y., 331
RS flip-flop, 338
rTBD, 292
Rubinstein, J., 12
run, 107

s-path,305
safe, 229, 301
safety, 300, 307
Salomaa, A., 187
Sangiovanni-Vincentelli, A., 338,

339
Schmidt, E. M., 276
Schols, H. M. J. L., 329
Seger, C-J. H., 40, 61, 69, 84, 114,

121, 128, 157, 161, 162,
166, 167, 255, 293

segment, 108
selection, 349
self-loop, 32
self-timed, 314, 361

ring, 365
semi-custom, 316
semigroup, 187
separated cell, 66
sequencer, 359
SEQUENCER, 346
sequential

circuit, 47

operator, 349
serial, 251

Index 401

behavior, 256, 288, 296
set, 8, 23, 280

partially ordered, 25
set-reset latch, 8, 320
setup time, 1
shifter, 361
shortest-path algorithm, 154
signal transition graph, 325, 326,

331
similarity law, 194
simulation, 5, 5, 264

exhaustive, 5
symbolic, 5

single-change, 319
single-cycle transition, 335
sink, 305
Sistla, A. P., 304, 307
size, 77
skew, 315
slow mode, 144
Smith, S. F., 349
Spars(2l, J. , 365
specification, 214, 220, 241, 343
speed, 1, 357
speed-independent, 314, 338
Sproull, R. F., 315, 325, 360, 365
SSR problem, 167
stabilizing, 250
stable, 84, 353

state, 17, 97
stable-state reachability, 167, 180
standard cell synthesis, 360
star operator, 189, 343
state, 202

accepting, 202
assignment, 320, 353
dynamic, 219
encoding, 319
expanded,217
graph, 322, 340
initial, 216
intermediate, 249
internal, 16

402 Index

label, 217
metastable, 316
reachable, 118, 121, 132
realization relation, 299, 301
rejecting, 202
splitting, 328
stable, 17
static, 219, 245
terminal, 232, 299
total, 16, 216
transition, 17, 99
unstable, 84
variable, 17, 35, 51, 53, 81
vertex, 53, 57

static
hazard, 18, 18, 127, 128, 259
state, 219, 245
CMOS, 64

Staunstrup, J., 365
Stevens, K., 213
STG, 325, 331

free-choice, 333
IC,333
live, 334
MG,332
NC,333
non-input-choice, 333
persistent, 334
safe, 334

Stockmeyer, L. J., 168
structure, 45
subautomaton, 203
submonoid, 187, 189
subsemigroup, 187, 189
subset, 23

construction, 226
proper, 23

sum of products, 32
super-gate, 57, 59
supply node, 62
surjective, 23
Sutherland, I. E., 315, 325, 329,

363, 365
switch, 61, 62
switch-level, 61, 69, 131, 273

symbolic
behavior, 283, 284
bounded-delay analysis, 290
simulation, 5
ternary simulation, 289

symmetric, 24
difference, 23

synchronization, 316, 344
synchronous, 1, 21, 315, 318, 363

circuit, 1, 4
design, 365

syntax-directed
compilation, 357
translation, 346

tag, 218
tail of edge, 32
Tangram, 357
Taubin, A. R., 339
tautology, 174
TBD algorithm, 162
tbd-state, 162
temperature dependency, 316
temporal logic, 304
terminal state, 232, 299
terminating, 138
ternary

algebra, 23, 28
AND,28
bi-bounded delay algorithm,

162
circuit graph, 52
expression, 29
extension, 31, 118, 258
function, 29
network, 157
NOT, 28
OR, 28
path function, 70
simulation, 114, 115, 255

testing, 318
Thoma, N. G., 361
threshold voltage, 46, 62
time-left, 149
TOGGLE, 269, 272, 345

tokens, 325
total state, 16, 69, 84, 216
trace, 195

methodology, 344
set, 343
structure, 343
theory, 343

trail, 33
transferrer, 359
transient, 96

cycle, 90, 96, 101
oscillation, 89
sequence, 94

transistor
sizing, 342
strength, 73
vertex, 79

transition, 8, 17, 216, 245, 325,
364

function, 202
input, 218
internal-state, 218
invisible, 218
label, 332
predicate, 283
relation, 209
signaling, 342
state, 99
tag, 218
type, 218, 332
unsatisfied, 103
visible, 218

transitive closure, 24, 96
transmission gate, 68
trap state, 298
tri-state, 46, 57, 58
true concurrency, 102
2 x 2 JOIN, 347
two-level circuit, 19
two-phase handshaking, 341
two-rail, 361

UD-SSR problem, 168
Udding, J. T., 315, 329
UID,39

Index 403

UIN, 41, 92
UIN a-history, 94, 107
Ullman, J. D., 168, 187
unary operation, 23
uncertainty, 25, 30
unfolding of circuit, 258
Unger, S. H., 16, 18, 36, 40, 83,

84, 213, 244, 247, 255,
318, 319, 331

union, 23, 343
unique state assignment, 334
unit, 187
unit-delay analysis, 294
unit/zero-delay analysis, 294
universal

bounds, 25
quantification, 278

unrestricted
behavior, 284
environment, 216, 241
mode, 35, 36
single-winner, 286

unrolling of change diagram, 341
unsatisfied transition, 103
unstable state, 84
up-bounded

delay, 39
ideal delay, 39
inertial delay, 41, 92

upper bound, 25
USW,286

van Berkel, K., 357, 359, 360
Vanbekbergen, P., 337, 338
variable, 359

external, 217
ordering, 277

Varshavsky, V. I., 339
Vdd,62
Verhoeff, T., 329, 342
vertex, 32

definite, 136
function, 52, 79
gate, 50
indefinite, 136

404 Index

input, 50
input-delay, 50
internal, 276
leaf, 276
wire, 50

virtual gate, 46, 57
visible transition, 218
VLSI,61
voltage level, 46

wagging, 358
walk, 33
Wanuga, T. S., 331
waveform, 16, 37
weakly fair, 353
weave, 343
Weste, N. H. E., 61, 68, 73, 75
WHILE, 360
Williams, T. E., 365
Williams, T. W., 4
wire, 273, 325

and gate-state network, 100
state network, 55
vertex, 50

WIRE, 344

wired-AND, 46, 57
wired-oR, 46, 57
Wood, D., 209
Woods, J. V., 315, 365
word, 188
worst-case performance, 316, 365

X transition, 218
XBD,157
XBIN,42
XID,161
X11W, 101, 131, 173
XO transition, 218
XOR, 2, 67, 341, 362
XUIN,43

Yakovlev, A. V., 331, 334
Yau, S. S., 162
Yeh, R. T., 23
Yoeli, 11., 2, 23, 27, 28, 36, 45,

61,62,66-69,72,83,84,
118, 128, 213, 273

Yun, K., 322, 323

Zwarico, A. E., 349

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

