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Foreword 

The dramatic surge of academic and industrial interest in asynchronous 
design over the past decade has engaged workers with diverse talents using 
ideas from disciplines such as programming theory, process algebras, ad
vanced silicon technology, system theory, and classical digital circuit theory. 
Spanning these ideas presents a serious difficulty to those new to the area, 
and to those more experienced workers who wish to broaden the ideas and 
skills that they can bring to bear on the many difficult problems that need 
to be solved if asynchronous circuits are to become a major new frontier of 
computer design. 

Brzozowski and Seger have made a Herculean effort to collect and orga
nize a uniquely broad yet thorough and rigorous collection of basic ideas, 
mathematical models, and techniques within a consistent analytical theme. 
Their approach, while rooted in classical switching theory, begins by ex
posing and explaining the limitations and inadequacies of classical methods 
in the face of modern design needs, and extends and refines the classical 
approaches using modern concepts and models drawn from other areas. 
A major strength of their treatment is that it provides a firm foundation 
for understanding the behavior of asynchronous circuits from the bottom 
up, rather than focusing on a narrower approach to the specification and 
synthesis of particular classes of circuits. In this sense this book is comple
mentary to other recent treatments; thus its message seems likely to prove 
enduring as design methods and styles rapidly evolve. 

Charles E. Molnar 
Washington University 

St. Louis, Missouri, USA 



Preface 
An asynchronous circuit is a digital circuit in which each component reacts 
to changes on its inputs as these changes arrive, and produces changes 
on its outputs when it concludes its computation. In essence, all digital 
circuits can be viewed as being asynchronous. A "synchronous" circuit is 
simply one designed according to special design rules and operated under 
special assumptions about its environment. In particular, in a synchronous 
circuit one or more signals are designated as "clocks." The structure of a 
synchronous circuit must be such that every closed path contains a "state
holding" element (latch or flip-flop) controlled by the clock; thus the circuit 
consists of combinational circuits alternating with state-holding elements. 
Restrictions are placed on the circuit inputs, including the clocks, and on 
the delays of the combinational parts. For example, the combinational logic 
must be stable for some time (the "setup" time) before a clock change, and 
for some time (the "hold" time) after the clock change. Not surprisingly, 
these severe restrictions make synchronous circuits easy to understand and 
to design. It should be noted, however, that a synchronous circuit operating 
in an environment that violates some of the design assumptions must be 
treated as asynchronous. 

Although asynchronous circuits date back to the early 1950s, most of the 
digital circuits in use today are synchronous, except for some small asyn
chronous interface parts. Traditionally, asynchronous circuits have been 
viewed as difficult to understand and design. Consequently, the design of 
interface circuits has become almost an art, learned on the job through 
trial and error. 

Recently, there has been a great surge of interest in asynchronous circuits. 
This interest stems partly from an increase in (asynchronous) communica
tion activity in digital circuits, and partly from a desire to achieve higher 
performance with lower energy consumption and design cost. Also, the de
velopment of several new asynchronous design methodologies has made the 
design of much larger and more complex circuits possible. 

Asynchronous design presents a serious challenge to the designer. On the 
one hand, it has (among other advantages) the following potential benefits: l 

• Increased speed: Each computation is completed in the time needed 
for that particular computation, and not for the worst case . 

• Reduced power consumption: In synchronous circuits, clock lines 

1 A comprehensive discussion of the pros and cons of asynchronous design is 
given in Chapter 15. 
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have to be toggled and circuit nodes have to be precharged and dis
charged, even in parts unused in the current computation. Transitions 
in asynchronous circuits need occur only in parts involved in the cur
rent computation. 

• Manageability of metastable phenomena: Elements that guar
antee mutual exclusion or synchronize external signals with a clock 
are subject to metastability-an unstable equilibrium in which a cir
cuit can remain for an unbounded amount of time. Since all the el
ements in synchronous circuits must have bounded response times, 
occasional failures caused by metastability are unavoidable. Asyn
chronous circuits can wait until the mutual exclusion element leaves 
the metastable state. 

On the other hand, the potential advantages above have remained by and 
large potential. Asynchronous circuits are more difficult to design in an ad 
hoc fashion than are synchronous circuits. Asynchronous communication 
protocols increase the computation time, and involve additional circuitry. 
The existing computer-aided design tools and implementation alternatives 
available for synchronous circuits either cannot be used at all in asyn
chronous design or require extensive modifications. 

Recently, the above-mentioned state of affairs has begun to change with 
the development of new synthesis approaches that make design of asyn
chronous circuits less of an art and more of an algorithm. Also significant 
new insight has been gained into the theory of asynchronous circuits. In 
view of these developments, there is considerable reason for optimism that 
asynchronous design will be able to achieve many of its potential advan
tages. 

This book provides a comprehensive theory of asynchronous circuits, in
cluding modeling, analysis, simulation, specification, verification, and an 
introduction to design. It is intended as a reference for computer scientists 
and engineers involved in research and development of asynchronous de
signs. It is also suitable as a text for a graduate course in asynchronous cir
cuits, and has been used in courses at the Universities of British Columbia, 
Waterloo, and Western Ontario. Except for requiring some mathemati
cal maturity and some basic knowledge of logic design, the book is self
contained. 

The book is organized as follows: After an introductory first chapter 
intended to motivate the reader to study asynchronous phenomena, we 
give some mathematical background material in Chapter 2. Because delays 
playa crucial role in digital circuits, they are discussed next, in Chapter 3. 
Chapter 4 reviews the basic properties of gate circuits and describes our 
mathematical model of gate circuits, along with several "network" models 
used for deriving circuit behaviors. MOS transistor circuits are treated in a 
similar way in Chapter 5, where several switch-level models are described. 
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Chapter 6 contains a formalization of the classical binary analysis meth
ods used to detect races and hazards in digital circuits. These methods are 
based on the assumption that component delays are inertial and bounded 
only from above. Chapter 7 describes ternary simulation, which efficiently 
provides some of the results of binary analysis. Chapter 8 presents analy
sis methods based on the realistic assumption that component delays are 
bounded from below as well as from above. The computational complexity 
of various analysis methods is discussed in Chapter 9. Chapter 10 provides 
the background material on finite automata and regular languages that 
is necessary for the specification of asynchronous behaviors. Mathematical 
definitions of specifications and implementations of asynchronous behaviors 
are discussed in Chapters 11 and 12. Chapter 13 discusses the limitations of 
the models that use delays bounded only from above. Chapter 14 describes 
symbolic methods, which provide efficient analysis and verification tools for 
asynchronous circuits. Finally, Chapter 15 contains a comprehensive survey 
of asynchronous design methods. 

Much of the material in this book has appeared previously only in tech
nical journals, conferences, or theses, but has not been treated in a coherent 
formalism in any book. Moreover, several results have never been published 
before, having been developed especially for this book. 
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Chapter 1 

Introductory Examples 
Digital circuits are normally designed as networks of interconnected compo
nents. There are two basic approaches to the coordination of the activities 
of such components: synchronous and asynchronous. 

In a synchronous circuit the "state-holding" components operate under 
the control of a common periodic signal, called "clock." All the operations 
must take place at the correct time within each clock cycle. Thus, for 
example, certain data is required to be ready for some minimum amount of 
time (the "setup" time) before the clock becomes active, and should be held 
constant for some minimum amount of time (the "hold" time) while the 
clock is active, in order to be properly interpreted. The synchronous mode 
of operation greatly simplifies circuit design. Consequently, most digital 
circuits are synchronous. As designs grow larger and larger, however, it 
becomes increasingly more difficult to distribute the clock to all the parts 
of the system at the same time. 

In contrast with the clocked operation of a synchronous circuit, asyn
chronous coordination of activity is performed through some kind of "hand
shaking" protocol among the communicating components. These commu
nications take place only when required by the current computation. Here 
lies both the strength and the weakness of asynchronous design: On the 
one hand, there is a potential for increasing the average speed of the com
putations and lowering the power consumption. On the other hand, there 
is a considerable overhead associated with the handshaking protocols. 

To ensure the correct setup and hold times in synchronous circuits, 
the designer must make certain assumptions about the delays of the vari
ous components and interconnecting wires. Synchronous design textbooks 
rarely stress the importance of these assumptions. In contrast to this, in 
asynchronous circuits, the absence of a clock makes the designer much more 
aware of the presence and importance of the various circuit delays. In this 
chapter we present four introductory examples, the main point of which 
is to demonstrate the important role of delays in various synchronous and 
asynchronous digital circuits, and the serious consequences that may arise 
if delays are not properly taken into account. Much of this book is devoted 
to the study of the effects of delays on circuit operation, and we will re
visit in later chapters many of the phenomena that are discussed in these 
examples. 
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The first example illustrates the difficulty of computing the maximum 
delay of a combinational gate circuit. In the second example, we analyze a 
well-known clocked gate circuit, that of an RS flip-flop. We show that the 
circuit may function improperly if a gate delay is too large. Our third exam
ple considers a combinational dynamic CMOS circuit, which operates under 
the control of a clock. This circuit functions properly under the assumption 
that the components have some specific delay values, but malfunctions if 
the actual delay magnitudes deviate slightly from their nominal ones. The 
final example describes the design-with the aid of classical techniques-of 
a commonly used asynchronous divide-by-two counter. An analysis of the 
resulting circuit shows that it may not behave as desired, unless one im
poses some restrictions on the relative sizes of the delays of the gates in the 
circuit. This points out a flaw in the classical, and still commonly taught, 
design techniques. 

How To Read This Chapter 

Each example begins with a short motivating paragraph and ends with a 
short concluding paragraph. The reader who is an experienced logic de
signer is quite likely to have seen such examples before. For such a reader 
it may suffice to look at the motivating and concluding paragraphs of most 
of the examples, for the amount of detail provided would likely be found 
boring. The reader who is not an expert in logic design, but who has had an 
introductory course in logic design (or equivalent experience), is not likely 
to have seen these examples. We provide enough detail to permit such a 
reader to follow the arguments presented. The CMOS example requires 
some knowledge of transistor circuits; the reader unfamiliar with such cir
cuits should read Section 5.1 first. Finally, the reader who has no familiarity 
with logic design is advised to omit this chapter on first reading. Instead, 
that reader should first invest some time and effort in Chapter 2 for some 
mathematical background, Chapter 3 for an introduction to properties of 
delays, Chapter 4 for an introduction to gate circuits, and Chapter 5 for an 
introduction to transistor circuits. When some of that material is absorbed, 
the examples of Chapter 1 may be better appreciated. 

1.1 Logic Gates 

Before proceeding to the examples, we briefly define some notation and 
terminology used in connection with gates. The reader interested in more 
details concerning basic aspects of logic design may wish to consult an 
introductory text like [25, 77, 88, 94]. 

The two logic values are denoted by ° and 1. A Boolean function of 
n variables is any mapping f of {O,l}n into {O,l}. A gate is a physical 
device intended to implement a Boolean function. Some commonly used 
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TABLE 1.1. Common Boolean functions. 

X I X 2 ID NOT OR NOR AND NAND XOR 

00 0 1 0 1 0 1 0 
o 1 0 1 1 0 0 1 1 
10 1 0 1 0 0 1 1 
1 1 1 0 1 0 1 0 0 

Xl Xl Xl +X2 Xl +X2 X I *X2 X I *X2 X I EBX2 

one- and two-input Boolean functions are defined in Table 1.1. The name 
of the function is given above its column vector of values, and a Boolean 
expression corresponding to the function is given below the column vector. 

Gate symbols corresponding to the functions of Table 1.1 are given in 
Figure 1.1. The identity function ID can be realized by a wire connecting 
the input to the output; hence, there is no special gate symbol for this 
function. 

X --{>o-y XI=D-X 2 y XI=D-X 2 Y 

y=X Y = Xl +X2 Y = X I *X2 

~~=JD-Y Xl=[>-X 2 Y XID-X 2 Y 

Y = Xl EB X 2 Y = (Xl +X2) Y = (X I *X2) 

FIGURE 1.1. One- and two-input gates. 

1.2 Performance Estimation 

Motivation Our first example considers the common problem of finding 
an upper bound D on the delay of a combinational gate circuit. One 
approach to this problem is to assume an upper bound on the delay 
of each gate in the circuit, and to add up all these bounds in every 
input-to-output path. The largest such sum is then taken as the upper 
bound D. Our example shows that this approach may overestimate 
D in case the path with the largest sum is a "false path." A second 
approach is to simulate the circuit using some nominal values for 
the gate delays. Our example demonstrates that this method may 
underestimate D if some of the gate delays deviate slightly from their 
nominal values. 
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Inputs 
Combinational 

Outputs 

Logic 
~ ~ 

Latches 

t 

FIGURE 1.2. Generic synchronous circuit. 

Synchronous circuits are often depicted as in Figure 1.2. Determining the 
delay through the combinational logic is a common requirement in de
signing such circuits. Since the maximum delay of the logic directly de
termines the maximum clock frequency-and thus the maximum speed of 
the complete circuit-it is important to compute this delay as accurately 
as possible. Furthermore, in some technologies [50] the smallest latch is 
of a "pass-through" type, i.e., when the clock is high the latch is trans
parent and its output immediately reflects its input. Here the minimum 
delay through the combinational logic is also of vital importance, since it 
determines the maximum width of the clock pulse for correct operation. 

a 
b 

c 

d 
e 

f 
9 
h 

FIGURE 1.3. Combinational circuit containing false paths. 

The running example in this subsection is the combinational circuit of 
Figure 1.3. The question we pose is the following: Assume that the circuit 
is in a stable state and some of the inputs change. What is the minimum 
amount of time we must wait until we can guarantee that the outputs (Y8, 
Yu, and Y14) have reached their final values? For simplicity, assume that 
all the gates have the same delay, say 5 ns. For convenience, we refer to 
"gate with output y/' simply as Yi. 
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There are two basic approaches to determining the maximum delay 
through combinational logic [95]: path analysis and simulation. In standard 
path analysis the functionality of the combinational logic is completely ig
nored and only its topology is considered. Hence, the maximum delay is 
determined from the longest path from an input to an output. In the circuit 
of Figure 1.3, it is easy to verify that the longest path involves eight gates. 
Hence, this simple version of path analysis indicates that the maximum 
delay of the circuit in Figure 1.3 is 40 ns. 

Ignoring the functionality of the circuit may result in what is usually 
called the "false path" problem. A path is said to be false if no input 
change can propagate through it. To illustrate the concept, consider the 
path Yl, Y2, Y4, YlO, Yll, Y12, Y13, Y14, which is the longest path in the 
circuit of Figure 1.3. Note that a change in input e propagates through 
this path to the output only if it goes through both Yll and Y14. For such 
a change to propagate through Yll, gate Y9 must be high. For the same 
change to propagate through Y14, however, Y9 must be low. Since Y9 will 
be stable by the time a change of e has propagated through Yl, Y2, Y4, and 
YlO, it follows that the change will be stopped either in Yll or in Y14. Hence, 
this topologically long path does not determine the maximum delay of the 
circuit. In summary, false paths may make path analysis overly pessimistic. 

Simulation-based approaches encounter different problems. Here, the first 
difficulty is to know what to simulate. Unless sophisticated techniques, like 
symbolic simulation (see Chapter 14), are applied, exhaustive simulation is 
often not feasible. Thus only some small "representative" sample of all in
put changes can be simulated. If the input change that exhibits the longest 
delay is not simulated, we will underestimate the maximum delay of the 
combinational circuit. However, even if we do simulate the worst-case input 
change (through luck, insight, or intelligent choice of input patterns), we 
might still not compute an accurate estimate of the maximum delay. To 
illustrate this problem, consider the circuit of Figure 1.3 again. Since there 
are only eight inputs and the circuit is quite small, exhaustive simulation 
is feasible. In fact, exhaustive simulation of all present/next input pairs re
quires only 65,532 input patterns-a relatively small number in the context 
of circuit simulation. If we simulate all these patterns, we will discover that 
all the outputs are stable within five gate delays, i.e., within 25 ns. 

To explain why 25 ns is the maximum delay according to a simulator, 
consider the different paths in the circuit. From the false path discussion 
above, we know that no input change can propagate through both Yu and 
Y14. Hence, a change in Y14 must originate in a or in b. Since the longest 
path from a or b to Y14 has five gates, Y14 will be stable after at most 25 ns. 
Also, since the longest path from any input to output Yll has five gates, Yu 
will be stable after 25 ns. Finally, consider Ys. There are some paths from 
inputs d and e to Ys with more than five gates. However, all these paths 
go through Y2 and Y5. In other words, for a change in d or e to propagate 
to Ys, there must be a change on Y2 followed later by a change on Y5. This 
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implies that the change must propagate through Y3 or Y4. There are three 
cases to consider: the change propagates only through Y3, only through Y4, 
or through both Y3 and Y4. First, if it propagates through Y3 but not Y4, 
then c must be high and Y4 must be low. Consequently, one of the inputs 
to Y5 will be low, stopping the change from propagating. Similarly, if the 
change propagates through Y4 but not Y3, then Y3 must be low and, again, 
one of the inputs to Y5 will be low. In the remaining case, the input change 
propagates through both Y3 and Y4. Since the circuit is started in a stable 
state, however, and the delays in Y3 and Y4 are identical, it follows that one 
of Y3 and Y4 will change from high to low and the other will change from 
low to high. As before, one of the inputs to Y5 will be low. Consequently 
the paths from d and e to Ys with more than five gates cannot propagate 
any input changes. 

We have seen that the answer obtained by path analysis is overly pes
simistic. Is the simulation-based answer correct? If we assume that the de
lays of the circuits are exactly as given, i.e., exactly 5 ns each, then 25 ns is 
indeed the correct delay value. But what if the delay values are not exactly 
known? In particular, what if we know only that 5 ns is an upper bound on 
each gate delay? Will this change the answer? Intuitively, it would appear 
safe to conclude that speeding up some gates cannot slow down the com
plete circuit, but here our intuition leads us astray. Consider the case when 
the delays of Y3 and Y5 are reduced to 2.5 ns. In Figure 1.4 we show the 
sequence of states that results in this modified circuit when it is started in 
the stable state l ab ... h·YlY2 ... Y14 = 10010110·10011010001101, and the 
input e changes to 1. The states in Figure 1.4(a)-(i) are reached at times 
0, 5, 10, 12.5, 15, 20, 25, 30, and 35, respectively. Clearly, the output Ys is 
not stable until 35 ns-significantly later than predicted by the simulation
based maximum delay analysis carried out above! This can be explained as 
follows. Consider Figure 1.4(c); here, Y3 and Y4 are both unstable, and Y5 
is stable. Since Y3 is faster than Y4, Y5 becomes unstable and will change. 
This results in changes in Y6, Y7, and Ys; this sequence was impossible if 
all the gates had the same delay. The complete new sequence of events 
is longer than the longest sequence encountered under the assumption of 
equal delays. 

Conclusions Estimating the maximum delay of a combinational gate cir
cuit is a difficult problem. False paths may overestimate this delay, 
and simulation methods based on nominal values may underestimate 
it. Variations in delays may cause significant differences in the max
imum delay. The problem here is quite subtle, because a decrease in 
some gate delays may cause the overall circuit delay to increase! 

lTo simplify notation, we write tuples without parentheses and commas. The 
centered dot . is used as a separator to divide the input-state component from 
the internal-state component of the total state. 
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1.3 RS Flip-Flop 

Motivation The purpose of this example is to illustrate how a clocked 
circuit may malfunction if, because of a slow inverter, a change in 
the clock reaches one of the components later than it reaches another 
component. 

The circuit shown in Figure 1.5 is a master-slave reset/set (RS) flip-flop. 
We first describe a transition of this flip-flop assuming that the inverter 
delay is the same as the delay of the NAND gates. We demonstrate that 
the flip-flop behaves as expected under this assumption. Next, we assume 
that the inverter is considerably slower, and show that the behavior may 
no longer be correct. 

FIGURE 1.5. Master-slave RS flip-flop. 

The circuit of Figure 1.5 has data inputs S ("set") and R ("reset") which 
have the constant values S = 1 and R = 0 for the purpose of this example. 
The third input, ¢, is the clock which is a periodic binary signal. The 
internal state of the circuit is represented by the 9-tuple of values of the 
gate variables Yl, ... , Y9. Gates Y3 and Y4 constitute the master latch of 
the flip-flop, and Y7 and Y8 constitute the slave latch. The value stored 
in the master latch is Y3, and the complement of that value is stored in 
Y4 under stable conditions. Similarly, the value stored in the slave latch 
is Y7, with Y8 storing the complementary value. We begin with an initial 
stable total state in which ¢ = o. In such a state, the inputs Yl and Y2 to 
the master latch both have the value 1. Assuming that the master latch 
contains the values Y3Y4 = 01 (or 10), we see that its state cannot change 
when YIY2 = 11; we say that the master latch is "logically isolated." The 
reader will verify that the values 01 (respectively 10) on Y3Y4 force Y5Y6 to 
become 10 (respectively 01) when ¢ is 0, and, consequently, Y9 is 1. This, 
in turn, forces Y7Y8 to become 01 (respectively 10). Thus, it is seen that 
the slave follows the master. 

Consider the transition from stable total state ¢·YIY2 Y3Y4 Y5Y6 Y7Y8 Y9 = 
0·11 0110 011, where a small space has been inserted between consecutive 
pairs of Y values in order to improve readability. Suppose now that the clock 
changes to 1. The situation is then as shown in Figure 1.6( a). Both gate Yl 
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FIGURE 1.6. Sequence of states after clock rises. 

and the inverter Y9 are unstable. If they change at the same time, the state 
of Figure 1.6(b) results, where gates Y3 and Y6 are unstable. When gate Y6 
changes to 1, the slave becomes isolated; under these conditions, the state 
Y7Y8 of the slave cannot change. If Y3 and Y6 change at the same time, 
we reach the state shown in Figure 1.6(c). Here, only gate Y4 is unstable. 
When that gate changes, we reach the stable state 1·0110 11 01 0 shown in 
Figure 1.6( d), where the master has now been set but the slave retains the 
old reset value. This is as it should be. 

We now reanalyze the transition from state 0·11 0110 011 caused by the 
change of the clock, but this time we assume that the inverter is slow. The 
initial state is repeated in Figure 1.7(a). Suppose Yl changes first, and then 
Y3-as shown in Figure 1. 7(b) and (c)-while the inverter still retains its 
old value. Gates Y4 and Y5, as well as the inverter, are now unstable; if all 
three change together, we reach the state of Figure 1.7(d). This time Y5,Y6 
and Y7 are unstable; changing these gates leads to state Figure 1. 7( e). In 
that state both gates of the slave latch are unstable. If Y8 changes first, 
we reach the stable state of Figure 1. 7( f), where the slave, as well as the 
master, has changed. 

The sequence of events described above happens if the inverter delay is 
at least as large as the sum of the delays in gates Yl, Y3, and Y5. While this 
may not be very likely, the designer should be aware of such possibilities. 
In Chapter 7 we develop efficient methods for detecting problems that may 
be caused by gate and wire delays. 
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(b) 

1 

FIGURE 1.7. Possible flip-flop transition with slow inverter. 

Conclusions The RS flip-flop uses the clock signal with its master latch 
and the inverted clock signal with its slave latch. It is the intention 
that changes in these two signals should take place approximately at 
the same time. This assumption is violated if the delay of the inverter 
is too large; then the flip-flop will not operate correctly. 

1.4 Dynamic CMOS Logic 

Motivation Our third example deals with timing problems in modern 
VLSI circuits. The example is a dynamic CMOS circuit using the 
normal precharge/evaluate clock cycle. It is intended to be a com
binational circuit implementing a simple Boolean function. We show 
that it works well with nominal delay values, but fails if some delays 
deviate from their nominal values, even if the deviation is only 10%. 
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Figure 1.8 shows a simple dynamic CMOS circuit. The circuit operates 
under the control of a clock ¢. The phase of the clock with ¢ = 0 is called 
the "precharge" phase, and the phase with ¢ = 1 is the "evaluate" phase. 
Assume that only nodes 0:, (3",8, and Out have any significant capacitance 
associated with them. The circuit is intended to work as follows: When the 
clock signal ¢ is low, nodes 0:, (3, and 8 are all connected through a closed P
transistor to the high voltage Vdd, but are isolated from ground by an open 
N-transistor. Note that this is independent of the values on a, b, c, d, and 
e. As a result, 0:, (3, and 8 will be precharged to Vdd . This will cause the N
transistors connected to nodes, and Out to be closed and the P-transistors 
connected to these nodes to be open. As a result, the voltage on both, and 
Out will be low. This sequence of events should occur, irrespective of the 
previous state of the nodes, as long as ¢ is held low long enough to permit 
nodes 0:, (3, and 8 to be precharged. In other words, ¢ = 0 is a "forcing" 
signal. 

Out 

a-j 

f-e 

FIGURE 1.8. Dynamic CMOS circuit with timing problem. 

In the evaluation phase, the clock signal ¢ becomes high. The behavior 
of the circuit, and consequently the final value on node Out, depends on 
the values on the input nodes a, b, c, d, and e. Consider first node 8. If at 
least one of c, d, and e is high, then 8 will be connected through a path of 
closed N-transistors to ground; consequently, the charge stored on 8 will be 
removed. Thus, only if all of c, d, and e are low will 8 remain high. If the 
charge on 8 is removed-and thus the voltage becomes low-the voltage on 
node, will subsequently become high. Using the same type of argument 
as for node 8, the reader can verify that node 0: will remain high only if at 
least one of a and b is low. Node (3 will remain isolated-and thus at a high 
voltag~nly if at least one of 0: and, is low. Finally, Out will become 



12 Chapter 1. Introductory Examples 

high only if (3 becomes low. In summary, 

Out = 73 = (H , = (a * b) * "8 = (a * b) * (c + d + e). 

Thus when the clock signal becomes high, the circuit should stabilize with 
the value of Out determined by the Boolean expression (a * b) * (c + d + e). 

To determine whether the circuit behaves as above under various delay 
distributions, we need to know the rise and fall delays of the nodes of the 
circuit. In general, determining the delay of a node is a difficult problem 
since that delay depends on many factors such as the layout of the transis
tors around the node, the fan-out of the node, the wiring and layout of the 
transistors loading the node, and manufacturing parameters and defects. 
For a more complete discussion of the problem of determining circuit de
lays, the reader is referred to [30, 119]. We simply assume that the delays 
are given. In particular, suppose that the rise and fall delays of nodes O!, 

(3, " 8, and Out are as given (in nanoseconds) in Table 1.2. 

TABLE 1.2. Nominal node delays in the dynamic CMOS circuit. 

Node Rise delay Fall delay 
O! 5 14 
(3 5 4 , 4 3 
8 5 9 

Out 8 6 

Consider first the precharge phase, i.e., the interval when ¢ = O. For the 
circuit to be properly precharged, we must keep ¢ low at least long enough 
for O!, (3, and 8 to become high. For correct operation, however, that is 
not sufficient. We must also wait until , becomes low before we raise cp. 
Otherwise, the charge stored at (3 could be prematurely discharged if cp 
becomes high while, is still high. We must also wait for Out to become 
low. In summary, ¢ must be kept low for at least max{5, (5+3), (5+6)} = 11 
ns in order to ensure proper precharging and initialization. 

Now turn to the evaluation phase. Since cp is kept high during that entire 
phase, it follows that a precharged node will either stay charged (stay high) 
or be discharged (change to low). Thus, no precharged node can change 
more than once during the evaluation phase. 

To determine whether the circuit computes the Boolean function (a * b) * 
(c+d+e), we carry out an exhaustive case analysis. Because of symmetry, 
it suffices to consider the following three cases: 

1. Inputs c, d, and e are all low, 

2. At least one of c, d, and e is high, and at least one of a and b is low, 

3. At least one of c, d, and e is high, and a and b are both high. 



Section 1.4. Dynamic CMOS Logic 13 

'~~!'l t-=--~ 
l-.Jr' 
~I., 

1 

I 

-1,.1 
1 1 I., 

1 
I 

I.,~I.,~I.,~ 
1 1 1 1 1 1 r' ,..' ,..' 

l--~rl 1-1 
~I., 

~ 

1 1 1 L _____ + _____ .J 

(a) t = 0 

I.,~ 
1 1 ,.1 

1 

"*" 

'4~krou, 
1-1r~ ! 1 .,. P-1 I I 

1 1 

l~r' ., 1 0 
---"'" r' 

1 I 
I 1 
~ ~,..I 

l---if 1---,1 .. 
" 1 

"*" "*" 
(c) t = 13 

~1 

(b) t = 9 

(d)t=14 

FIGURE 1.9. State sequence of dynamic CMOS circuit. 

~1 

First, if c, d, and e are all low, it follows that 8 remains high; consequently, 
'Y remains low. Hence, f3 will not be connected to ground regardless of the 
value on ll. Thus, f3 remains high, forcing Out to remain low. Therefore the 
circuit behaves correctly in this case. 

Now consider Case 2. Since one of a and b is low, node II remains high 
throughout the evaluation phase. Because one of c, d, and e is assumed to 
be high, 8 will be discharged. This will cause 'Y to become high. When this 
occurs f3 will become low, causing Out to become high. The circuit is now 
stable. Hence, if at least one of a and b is low and at least one of c, d, and 
e is high, Out will become high, as required. 

Finally, if a, b, and at least one of c, d, and e is high, the circuit will 
go through the sequence of states shown in Figure 1.9, where c, d, and e 
are high. We have used the convention that an unstable node's value is 
underlined and at least one of the closed paths making that node unstable 
is dashed. Suppose the clock becomes high at time t = 0; then II and 8 
are unstable (Figure 1. 9( a)). Since the fall delay of 8 (9 ns) is significantly 
smaller than the fall delay of II (14 ns), the circuit reaches the state shown 
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in Figure 1.9(b) at t = 9, and "( becomes unstable. Since the rise delay of 
"( is only 4 ns, "( will change (at t = 13) before a, despite the fact that 
it became unstable 9 ns after a. At this point, f3 is starting to discharge 
through the closed path to ground, as illustrated in Figure 1.9(c). However, 
a changes to low at t = 14; consequently, f3 is unstable for only 1 ns. Since 
the fall delay of f3 is 4 ns, f3 remains high. Hence, node Out remains low as 
desired. 

Since the circuit produces the expected result for all possible input com
binations, we might be tempted to label it "correct." We show, however, 
that a malfunction may occur if the delays of the nodes depart slightly 
from the nominal delays of Table 1.2. Since dynamic properties-like tem
perature, age, and previous values assigned to a node-all affect the delay 
of a node, a circuit should be robust to changing delay values, in the sense 
that relatively small changes in the delays should not affect the basic func
tionality of the circuit. 

To illustrate the problem with the circuit of Figure 1.8, consider the case 
when the delays vary within ±1O% of the nominal delay values. In such a 
situation, the delay values may be as shown in Table 1.3. Note that the 
delays of some nodes are larger than before, whereas the delays of other 
nodes are smaller. In Figure 1.10 we show the sequence of states that would 

TABLE 1.3. Possible delay assignment with less than 10% deviation. 

Node Rise delay Fall delay 
a 5 15.3 
f3 5 3.6 
"( 3.6 3 
0 5 8.1 

Out 8 6 

result when a, b, c, d, and e are all high. If we assume ¢ becomes high at 
time 0, the states shown in Figure 1.1O(b), (c), (d), and (e) are reached 
at times 8.1, 11.7, 15.3, and 23.3, respectively. Node 0 falls at t = 8.1 ns 
(Figure 1.10(b)). Next, "( rises at time t = 8.1 + 3.6 = 11.7 ns, and f3 
becomes unstable (Figure 1.10(c)). All this time node a is unstable, but it 
does not change because of its large fall delay. This gives f3 enough time to 
discharge at t = 11.7+ 3.6 = 15.3 ns. At the same time, a finally discharges 
(Figure 1.10(d)), but it is now too late, and Out gets the incorrect value 1 
at t = 15.3 + 8 = 23.3 ns (Figure 1.1O(e)). This malfunction is caused by 
the fact that the transitions of 0 and "I happen to be faster than expected, 
whereas the transition of a is slower than expected. 

Conclusions This examples illustrates, once again, the danger of consid
ering only nominal delay values in analyzing the behavior of a circuit. 
In this case, however, the context is switch-level analysis of dynamic 
CMOS circuits. 
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(b)t=8.1 

(c) t = 11.7 (d) t = 15.3 

(d)t=23.3 

FIGURE 1.10. Timing error in dynamic CMOS circuit. 
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1.5 Divide-by-2 Counter 

Motivation This example illustrates a flaw in the classical design tech
niques for asynchronous circuits. A circuit designed with these tech
niques may not function properly under all delay distributions. Thus 
an analysis is required after a design. We stress this point because 
many texts in logic design do not mention these difficulties. 

Our final example illustrates the classical method of designing asynchronous 
sequential circuits [66, 67, 135]. We wish to implement a "divide-by-2" 
counter to operate as follows. The counter is to have one binary input 
X and one binary output z. In the initial state of the counter, we have 
X = z = O. As the input X changes from 0 to 1 to 0, repeatedly, the circuit 
should produce one output change for every two input changes, as shown 

X 

z ____ --' 

A B :0 D A :B C D A B 

FIGURE 1.11. Waveforms for divide-by-2 counter. 

in Figure 1.11. The input is permitted to change at any time, except for 
the restriction that each new input value lasts long enough for the circuit 
to stabilize. Also we assume that the rise and fall times in each waveform, 
as well as delays between input and output changes, are negligible; conse
quently, they are shown as zero in the figure. If the input waveform were 
periodic, then the output waveform would also be periodic, but would have 
twice the period of the input waveform-or half the frequency. For this 
reason, the circuit is called a divide-by-2 counter. 

When we examine the input/output waveforms in Figure 1.11, we see 
that the circuit goes through four distinct input/output combinations, 
namely 0/0, 1/0, 0/1, and 1/1; this pattern (ABeD) then repeats. The 
behavior of the circuit can also be described by a "flow table," which speci
fies how the circuit's states change. Such a flow table is shown in Figure 1.12 
and its interpretation is as follows. The column label specifies the present 
value of the input X, whereas the row label denotes the present "internal 
state" p of the circuit. The pair (X,p) is the "total state" of the circuit. 
The entry (q, z) corresponding to total state (X, p) specifies the next in
ternal state q and the output z. In some states the value of the output is 
optional, i.e., it is a "don't care." For such states, we leave z unspecified 
and indicate this by -. 
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FIGURE 1.12. Flow table for counter. 

When the present input is ° and the present internal state is A, the circuit 
is in its initial total state (0, A). The entry corresponding to this total state 
indicates that the next internal state is also A and that the output is 0. 
Whenever the present internal state and the next internal state are the 
same, we say that the total state of the circuit is "stable," meaning that no 
internal state change will take place unless the input changes. Stable states 
are circled in the flow table. Suppose now that the circuit starts in the total 
state (0, A) and the input changes (to 1). The new total state is (1, A). The 
next-state entry in column 1, row A is B; this shows that the total state is 
unstable and the next internal state will become B, provided the input X 
is kept constant at its new value (1) long enough to permit the circuit to 
"stabilize." According to the waveforms for the counter, the output in total 
state (1, B) should still be 0. We also want to avoid any output changes 
during the time when the circuit is in transition from stable state (0, A) 
to stable state (1, B); for this reason, the output entry for unstable total 
state (1, A) is also 0. 

Next, consider an input change from stable state (1, B). The circuit will 
eventually reach stable state (0, C) which has output 1. Thus, during the 
transition from stable state (1, B) to stable state (0, C), the output should 
change from ° to 1. The output entry in unstable total state is left unspeci
fied. This entry will be replaced eventually by either a ° or a 1 in the circuit 
that realizes the flow table, but it is best not to introduce any unnecessary 
constraints too early. 

The reader can follow the remaining input changes from stable state 
(0, C) to stable state (1, D), and from (1, D) back to (0, A); they are similar 
to the changes just described. 

In the next step of the design procedure, we replace the abstract states 
A, B, C and D by tuples of values of binary "state variables," so that we can 
implement the circuit with binary logic gates. Two variables are sufficient, 
and we choose the assignment A f-+ 00, B f-+ 01, C f-+ 11, D f-+ 10. Notice 
that this assignment implies that, in every state transition, only one vari
able is required to change. This avoids situations called "races," in which 
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several variables are unstable at the same time. Since delays associated with 
the racing variables are not known in general, it is not possible to predict 
which variables will "win" the race by changing first. Because the subse
quent circuit behavior may depend on the choice of the winning variables, 
many classical design techniques are based on race-free assignments. 

When the assignment of state variables is made in the flow table of 
Figure 1.12, we obtain the table of Figure 1.13. This table is called the 
"excitation table" because it shows whether or not the state variables are 
"excited" to change (Le., are unstable) in any given total state. The output 
entries are also shown in the excitation table, for convenience. Note that 
the comma between the state variables and the output separates the two 
types of variables. The present values of state variables are denoted by Yl 
and Y2, whereas the excitations of these variables are Y1 and Y2. 

x 
Yl Y2 0 1 

00 (@, 0 01,0 

01 11, - ®,O 
11 @,1 10,1 

10 00, - @,1 

Y1Y2 , z 

FIGURE 1.13. Excitation table for counter. 

The excitation table leads directly to a circuit, as we now show. The 
excitations Y1 and Y2 are Boolean functions of the input X and the state 
variables Yl and Y2. Using standard methods [135], we find the following 
expressions for the excitations and the output: 

Y1 : X *Y2 + Yl *Y2 + X *Yl, 
Y2 : X *Y2 + Yl *Y2 + X *Yl, 
z: Yl. 

For the output, the "don't care" conditions were assigned binary values so 
as to simplify the resulting Boolean expression. The product Yl *Y2 in the 
expression for Y1 is redundant from the logic point of view, but is included 
for the following reason: When the internal state is 11, the excitation Y1 is 1 
for both values of the input. When the input changes from 0 to 1, however, it 
is possible for Y1 to become temporarily OJ this is called a "static hazard." 
This hazard can be avoided if the redundant product Yl *Y2 is included 
in the expression for Y1 . The expression for excitation Y2 has been given 
a similar redundant product Yl *Y2. More will be said about hazards in 
Chapter 7j for now it suffices to point out that the use of hazard-free 
circuits is required in the classical design methods. 
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z 

x 

FIGURE 1.14. Gate circuit for counter. 

The excitation expressions above are next implemented by two-level 
AND/OR circuits as shown in Figure 1.14. The variables Yl and Y2 are iden
tified with Y1 and Y2 , respectively, and are associated with the same node 
in the circuit. The interpretation is that Yi is the present state of a node 
and Yi is its excitation, for i = 1,2. 

The following analysis of the circuit just designed shows that, for some 
gate delay distributions, it does not behave as intended. Consider the initial 
stable total state X = 0, Yl = 0, Y2 = 0, and suppose the input changes 
to 1. The situation is as shown in Figure 1.15(a). Two gates, Ul and V5 

(shaded in the figure), are unstable in this state. We will assume that the 
inverter Ul is very slow; then V5 changes first, and the new state is as 
shown in Figure 1.15(b). Next, gate Y2 changes, and we reach the state 
in Figure 1.15(c). Changing V3 leads to Figure 1.15(d), and Yl can change 
next (along with Ul and V4), as shown in Figure 1.15(e). In summary, if the 
inverter Ul is slow, the following sequence of signal changes can take place: 
V5, Y2 , V3, Yl. This violates the specification given in the flow table, for the 
output z was not supposed to change during the transition from (0, A) to 
(1, B). This sequence of events will take place if the delay of inverter Ul 

exceeds the sum of the delays of gates V5, Y2, V3, and Yl. 
One can verify (with some additional work) that, under the stipulated 

delay conditions, the circuit may eventually reach stable total state X = 
1, Yl = 1, Y2 = 0, in which case the final state and output are also incorrect. 

Conclusions As our example has shown, one cannot rely on the correct-
ness of a circuit designed using classical methods without performing 
an elaborate analysis of the effects of the various circuit delays. 
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FIGURE 1.15. Possible state sequence for counter. 
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1.6 Summary 

The four examples in this chapter illustrate the importance of delays in 
synchronous and asynchronous circuits. Various aspects of this topic are 
treated in greater detail as described below. To begin with, precise mathe
matical models of delays are introduced in Chapter 3. Similarly, in Chapters 
4 and 5 we formalize our models of gate and transistor circuits, respectively. 

The issues of performance estimation (as in our first example) and de
tection of timing problems (as in our CMOS example) are dealt with in 
Chapters 8 and 14. The techniques developed in these chapters allow us 
to analyze a circuit assuming that its component delays are bounded by 
minimum and maximum values, but can take on any value between these 
bounds. In particular, we show that the circuit of Figure 1.3 will always 
reach a stable output state within 35 time units, if the delay of each gate 
is bounded between 1 and 5 time units. 

The detection of timing problems in synchronous and asynchronous cir
cuits (as in the examples of the RS flip-flop and the divide-by-2 counter) 
is dealt with in Chapters 6, 7, and 8. The inherent complexity of these 
problems is examined in Chapter 9, where the intractability of computing 
the exact solutions is demonstrated. 

The design issues raised by the last example (the divide-by-2 counter) 
are discussed in Chapters 11-13, and 15. In particular, Chapters 11 and 12 
formalize the notion of specification and realization of asynchronous behav
iors. In Chapter 13 we show that certain specifications are not realizable 
unless assumptions about the relative sizes of component delays are made. 
Finally, modern methods for asynchronous circuit design are surveyed in 
Chapter 15. 



Chapter 2 

Mathematical Background 
Our goal in this chapter is to establish a mathematical foundation for 
the following chapters. We provide here brief introductions to set theory, 
Boolean algebra, ternary algebra, and directed graph theory. The material 
is presented rather concisely, and the reader may wish to refer to some 
introductory texts for additional explanations [5, 6, 25, 115]. We point out 
that, while most of the material in this chapter appears frequently in basic 
texts on discrete mathematics, this is not the case for the section on ternary 
algebra. 

2.1 Sets and Relations 

We use calligraphic letters A, B, . .. to denote sets and lower case letters 
a, b, . .. to denote individual elements of sets. Table 2.1 gives the terminol
ogy and notation pertaining to sets. 

A mapping f of a set A to a set B is called a function from A to B, 
written f: A --+ B, if for every element a E A, there exists a unique element 
bE B such that f(a) = b. A is called the domain of f and B its codomain. 
Let 

B' ~f {b E Bib = f(a) for some a E A}, 

where ~f means "is defined to be." Then B' is the image of A under f. In 
case B = B', we say that f is surjective (or that f is a function from A 
onto B, or that f is onto). Also, f is said to be injective (or one-to-one) if, 
for every at, a2 E A, al =f. a2 implies f(al) =f. f(a2). Finally, f is said to be 
bijective if f is surjective and injective. 

By an n-tuple, n ~ 2, we mean an ordered sequence of n elements (not 
necessarily distinct). The n-tuple with ai as its ith element (i = 1, ... , n) 
is written (al, . .. ,an) or (at, . .. ,an). An ordered pair is a 2-tuple. 

The Cartesian product A x B of two sets A and B is the set of all ordered 
pairs (a, b), where a E A and b E B. The Cartesian product of n sets 
At, ... ,An is defined similarly. 

A unary operation on a set A is a function from A to A. A binary 
operation on A is a function from A x A to A. If 0 denotes an arbitrary 
binary operation on A, we usually write aD b for D((a,b)). 

A binary relation R from set A to set B is any subset of Ax B. If 
(a, b) E R, we write aRb and say that a is related by R to b. A binary 
relation on A is a binary relation from A to itself. 
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TABLE 2.1. Terminology for sets. 

Symbol 
aEA 
a~A 
{a E A I a has property P} 

A=8 
A~8or8 2A 
A c 8 or 8:J A 
o 
An8 
AU8 
A-8 

An8=0 
P(A) 

IAI 

Meaning 
a is an element of A 
a is not an element of A 
the set of all elements of A 

that have property P 
sets A and B are equal 
A is a subset of 8 
A is a proper subset of 8 
the empty set 
the intersection of A and 8 
the union of A and 8 
the difference of A and 8 

A - 8 ~f {a I a E A and a ~ 8} 
the symmetric difference of A and 8 

A~8 ~f (A - 8) U (8 - A) 
A and 8 are disjoint 
the power set of A, i.e., the set 

of all subsets of A 
the cardinality of A, i.e., the 

number of elements in A 

Given any binary relation R on A, the composition of R with R, written 
RR or R2, is defined as 

{(a, c) E A x A I aRb and bRc for some bE A}. 

Furthermore, let Rl ~f Rand Rn+l ~f RRn, for n ~ 1. The tmnsitive 
closure R+ of R is defined to be 

{( a, b) I aRh b for some positive integer h}. 

The reflexive and tmnsitive closure R* of R is defined as 

{(a,a) I a E A}UR+. 

Let R be a binary relation on A, i.e., R ~ A x A

I. R is reflexive if aRa for all a E A. 

2. R is symmetric if aRb implies bRa for all a, b E A. 

3. R is antisymmetric if aRb and bRa implies a = b for all a, b E A. 

4. R is tmnsitive if aRb and bRc implies aRc for all a, b, c E A. 
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A binary relation on A which is reflexive, symmetric, and transitive is called 
an equivalence relation on A. A binary relation on A which is reflexive, 
antisymmetric, and transitive is called a partial order on A. 

A poset (partially ordered set) is an ordered pair (A, ::;), where A is a set 
and S is a partial order on A. If (A, ::;) is a poset, B is a nonempty subset 
of A, and a E A, then a is an upper bound of B if s ::; a for all s E B. An 
upper bound a of B is called least upper bound of B, written lub B, if a S b 
for every upper bound b of B. Clearly, if lub B exists, it is unique. 

To illustrate the definitions above, consider the poset ({O, <1'>, I}, ~), 
where the "uncertainty" partial order ~ on the set {O, <1'>, I} is defined 
as follows: 

O~O, 1~1, <1'>~<1'>, 0~<1'>, and1~<1'>, 

and no other pairs are related by ~. Here, the value <1'> is used to denote 
"lack of information" or "uncertainty." On the other hand, both 0 and 1 are 
"certain" values, and neither of them contains more information than the 
other one. Thus, for s, t E {O, <1'>, I}, the statement s ~ t can be interpreted 
as t "has at least as much uncertainty" as s. When s ~ t, we say that s is 
covered by t or that t covers s. It is easy to convince oneself that lub{O} = 0, 
lub{l} = 1, and that the lub of every other nonempty subset of {O, <1'>, I} is 
equal to <1'>. 

2.2 Boolean Algebra 

An algebraic system is a set A together with one or more operations on 
A which satisfy specific axioms. A Boolean algebra is an algebraic system 
B = (A, +, *, -, 0,1), where A is a set, + and *1 are binary operations on 
A, - is a unary operation on A, and 0 and 1 are two distinct elements of A 
such that all the axioms of Table 2.2 are satisfied.2 The elements 0 and 1 
are called the universal bounds of B. Note that, except for B8, the axioms 
are listed in pairs; one axiom in a pair can be obtained from the other by 
interchanging 0 and 1, and addition and multiplication. This property of 
Boolean algebra is called duality. Axiom B8 is self-dual, since it does not 
involve 0, 1, addition, or multiplication. 

The smallest Boolean algebra is Bo = ({0,1},+,*,-,0,1), where the 
underlying set has only two elements, and the operations +, *, and - are 
the OR, AND, and NOT (complement) operations as defined in Table 2.3. 

A Boolean function of n variables is any function f from {O, l}n to {O, I}, 
for n ;::: O. To each n-tuple a = (al, ... ,an) E {O, l}n, the function f assigns 

lWe often represent the multiplication operator by juxtaposition, i.e., we write 
ab rather than a*b. 

2There are several sets of axioms that can be used to define a Boolean algebra. 
The one shown in Table 2.2 is chosen for convenience. 



26 Chapter 2. Mathematical Background 

TABLE 2.2. Axioms of Boolean algebra. 

For all a, b, and c in A, we have: 

Bl a+a = a Bl' a*a = a 
B2 a+b = b+a B2' a*b = b*a 
B3 a+(b+c) = (a+b)+c B3' a*(b*c) = (a*b)*c 
B4 a+(a*b) = a B4' a*(a+b) = a 
B5 a+O = a B5' a*l = a 
B6 a+l = 1 B6' a*O = 0 
B7 a+a= 1 B7' a*a = 0 
B8 (a) = a 
B9 a+(b*c) = (a+b)*(a+c) B9' a*(b+c) = (a*b)+(a*c) 
BI0 (a+b) = a*b BI0' (a*b) = a+b 

TABLE 2.3. The operations +, *, and in Bo. 

al a2 al+a2 
0 0 0 
0 1 1 

al a2 al *a2 
000 
o 1 0 

~I~ 
1 0 

1 0 1 1 0 0 
1 1 1 1 1 1 

a unique value f(a) E {O, I}. It is easy to verify that there are 22n distinct 
Boolean functions of n variables. 

Given Boolean functions f: {O, l}n --+ {O, I} and g: {O, l}n --+ {O, I}, 
define, for each n-tuple a = (aI, ... , an) E {O, l}n, 

(f+g)(a) ~f f(a)+g(a), 

(f*g)(a) ~f f(a)*g(a), 

](a) ~f (f(a)), 

where on the right-hand side of each equation the addition, multiplica
tion, and complementation are the operations of Bo. These operations are 
applicable since, for each a, the values of f(a) and g(a) are elements of 
{O, I}. Now introduce two special functions 101 and 111 as follows: For all 

a E {O, l}n, 101(a) ~ 0, and 111(a) ~f 1. It is now straightforward to prove 
the following theorem: 

Theorem 2.1 Let Bn be the set of all Boolean functions of n variables. 
Then (Bn, +, *, -,101,111), is a Boolean algebra where the operations +, *, 
and - are the operations on Boolean functions defined above. 



Section 2.2. Boolean Algebra 27 

Proof: We need to verify that the operations on functions as given above 
satisfy the axioms of Boolean algebra. This is quite straightforward, and 
we refer the interested reader to [25, 58J. D 

We conclude this section by introducing Boolean expressions and relating 
them to Boolean functions. Let 0, 1, Xl, ... ,xn be distinct symbols. A 
Boolean expression over Xl, .•. , Xn is defined inductively: 

1. 0, 1, X I, ... , Xn are Boolean expressions. 

2. If E and F are Boolean expressions, then so are (E+F), (E*F), and 
E. 

3. Any Boolean expression can be obtained by a finite number of appli
cations of Rules 1 and 2. 

To simplify notation we assume that * has precedence over +; this allows us 
to omit some parentheses. Note that, so far, Boolean expressions represent 
an infinite set of well-formed strings of symbols. Their relation with Boolean 
functions has not yet been established. To do this, let En denote the set of 
all Boolean expressions over n variables. Define a mapping I I: En - Bn as 
follows: 

1. The expressions 0, 1, Xl,"" Xn are mapped to the functions 101, 111, 
IXII,· .. , IXnl, respectively, where IXil is defined by 

Thus the function IXil selects the ith component of its argument n
tuple. 

2. I(E+F)I d~f (IEI+IFI), 

The mapping II assigns to each expression E E En a unique Boolean 
function lEI E Bn. However, there is an infinite number of expressions de
noting a given function. This can be seen as follows. First, every Boolean 
function has a canonical sum-of-products expression, in which each prod
uct is a product of complemented and uncomplemented variables [25, 58J. 
That expression is 0 if the function is identically zero; otherwise, it has a 
product corresponding to every binary n-tuple of variable values for which 
the function has the value 1. Once we have one expression, we can triv
ially obtain infinitely many others by using such axioms as lEI = I(E+E)I 
arbitrarily many times. 
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2.3 Ternary Algebra 

In analyzing the behavior of asynchronous circuits, it is often convenient 
to work in ternary, rather than Boolean, algebra [25, 26, 105]. We use 0 
and 1 for the two Boolean values, and a third value <P, which represents an 
"uncertain value" that is neither 0 nor 1. More will be said about this later. 
To improve readability, names of ternary variables will be set in boldface 
type. 

A ternary algebra is an algebraic system T = (A, +, *, -, 0, <P, 1), where 
A is a set, + and * are binary operations on A, - is a unary operation on 
A, and 0, 1 and <P are three distinct elements of A such that all the axioms 
of Table 2.4 are satisfied. Note the duality of the axioms. 

TABLE 2.4. Axioms of ternary algebra. 

For all a, b, and c in A, we have: 

Tl a+a=a Tl' a*a= a 
T2 a+b = b+a T2' a*b= b*a 
T3 a+(b+c) = (a+b)+c T3' a*(b*c) = (a*b)*c 
T4 a+(a*b) = a T4' a*(a+b) = a 
T5 a+O=a T5' a*1 = a 
T6 a+l = 1 T6' a*O = 0 
T7 (a) = a 
T8 a+(b*c) = (a+b)*(a+c) T8' a*(b+c) = (a*b)+(a*c) 
T9 (a+b) = a*1) T9' (Mb) = a+1) 
TI0 (a+a)+<p = a+a TlO' (a*a)*<p = a*a 
Tll <P=~ 

It should be emphasized that, although algebra T is very similar to a 
Boolean algebra, it is not a Boolean algebra. In particular, the two axioms 
concerning complements in a Boolean algebra, a+a = 1 and aa = 0, do 
not hold when a = a = <P. 

As in the case of Boolean algebra, there are many axiom sets defining 
ternary algebra. For example, it can be shown that axioms TlO and TI0' 
can be replaced by 

T'lO (a+a)+(b*1)) = a+a T'10' (a*a)*(b+1)) = a*a 

The smallest ternary algebra is To =({O, <P, I}, +, *, -, 0, <P, 1), where the 
set has only three elements, and +, *, and - are the ternary OR, AND, and 
NOT operations as defined in Table 2.5.3 

3We use the same symbols for the ternary AND, OR, and NOT as we do for the 
binary functions. The context determines which functions are intended. 



Section 2.3. Ternary Algebra 29 

TABLE 2.5. The operations +, *, and in To. 

a2 a2 
al+a2 ° <f> 1 al*a2 ° <f> 1 

tit ° ° <f> 1 ° ° ° ° al <f> <f> <f> 1 al <f> ° <f> <f> <f> <f> 
1 1 1 1 1 ° <f> 1 1 ° 

A ternary function of n variables is any function f from {O, <f>, l}n to 
{0,<f>,1}, for n 2': 0. To each n-tuple a = (aI, ... ,an) E {o,<f>,l}n, the 
function f assigns a unique value f(a) E {a, <f>, I}. It is easy to verify that 
there are 33n distinct ternary functions of n variables. 

Given ternary functions f, g: {a, <f>, l}n ----+ {O, <f>, I} define ternary func
tions f+g, f*g, and f, as follows. For each n-tuple a = (al, ... , an) E 
{o,<f>,l}n, 

(f+g)(a) ~f f(a)+g(a), 

(f*g)(a) ~f f(a)*g(a), 

f(a) ~f (f(a)), 

where on the right-hand side of each equation the addition, multiplica
tion, and complementation are the operations of To. These operations are 
applicable since, for each a, the values of f(a) and g(a) are elements of 
{0,<f>,1}. Now introduce three special functions 101, 1<f>1 and 111 as follows: 

For all a E {O,<f>,l}n, 101(a) ~f 0, 1<f>I(a) ~ <f>, and 111(a) ~f 1. It is now 
straightforward to prove the following theorem. 

Theorem 2.2 Let Tn be the set of all ternary functions of n variables. 
Then Tn is a ternary algebra under the operations defined in Table 2.5 
with 101, 1<f>1, and 111 acting as 0, <f>, and l. 

Proof: We need to verify that the operations on functions as given above 
satisfy the axioms of Table 2.4. This is straightforward, and we leave the 
details to the interested reader. 0 

Paralleling the development in the previous section, we now introduce 
ternary expressions and relate them to ternary functions. Let 0, cf>, 1, 
Xl, ... ,Xn be distinct symbols. A ternary expression over XI, ... ,Xn is de
fined inductively: 

1. 0, cf>, 1, XI, ... , Xn are ternary expressions. 

2. If E and F are ternary expressions, then so are (E+F), (E*F), and E. 

3. Any ternary expression can be obtained by a finite number of applica
tions of Rules 1 and 2. 
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Now, let Fn denote the set of all ternary expressions over n variables. 
Define a mapping I I: F n ---; Tn as follows: 

1. The expressions 0, <I> , 1, Xl, ... ,Xn are mapped to the functions 101, 
I<I>I, 111, IX11,···, IXnl, respectively, where IXil is defined by 

2. I(E+F)I ~f (IEI+IFI), 

The mapping I I assigns to each expression E E F n a unique ternary func
tion lEI E Tn. It is interesting to note that not all ternary functions have 
corresponding ternary expressions, as we shall see later. If a function does 
have such an expression, however, then it has an infinite number of distinct 
ternary expressions. 

We are now ready to consider the relation between Boolean and ternary 
functions. We need the following definitions. Define the uncertainty partial 
order [:;;; on {O, <I> , I} as at the end of Section 2.1. We write a C b if a [:;;; b 
and a =I- b. 

For n ;::: 1, let {O, <I> , l}n denote the set of all possible n-tuples of ternary 
values. The partial order [:;;; is extended to {O, <I>, l}n in the natural way: 

a [:;;; b if and only if ai [:;;; bi for all i, 1 ~ i ~ n, 

where a = (al, ... , an) and b = (bl , ... , b n ), are any two elements of 
{O,<I>,l}n. Thus, for example,4 o <I> 10 c o <I> 1 <I> , but 0<I>1 and 1<I>1 are not 
related by [:;;;. 

In the partially ordered set ({ 0, <I>, I}, [:;;;), we define the concept of least 
upper bound as in Section 2.1. The definition is also extended to {O, <I> , l}n 
to be the component-by-component least upper bound. For example, 

lub{ <I>0101, 11101,01001} = <I><I><I>01. 

From the definition of the partial order !:, one easily verifies the follow
ing property of least upper bound: 

Proposition 2.1 For any two ternary variables a and b in {O, <I> , I}, 

lub{a, b} = Mb + (a + b)*<I>. 

4 As in Chapter 1, we usually omit parentheses and commas in n-tuples of 
binary or ternary symbols, e.g., we write 1011> rather than (1,0,1,1». 
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For any Boolean function f: {a, l}n ---+ {a, I}, we can define its ternary 
extension f: {a, <1>,l}n ---+ {a, <1>, I} as 

f(a) = lub{f(t) It E {a, l}n and t ~a}, 

for all a E {a, <1>, l}n. Note that any Boolean function f agrees with its 
ternary extension f when the argument a is binary. 

To illustrate the definition above, we let f be the two-argument OR func
tion; then 

f(O, <1» = lub{f(O,O),f(O, I)} = lub{O, I} = <1>, and 

f(l, <1» = lub{f(1, 0), f(l, I)} = lub{l, I} = 1. 

The reader can verify that the functions defined in Table 2.5 are the 
ternary extensions of the Boolean functions OR, AND, and NOT. 

The following important property, the monotonicity property, is easily 
verified to hold for the ternary extension f of any Boolean function f: 

a~b implies f(a)~f(b), 

for all a, b E {O, <P, l}n. This property is interpreted as follows: If input 
vector b is at least as uncertain as input vector a, then gate output f(b) is 
at least as uncertain as f( a) . 

In the case of Boolean algebra, every Boolean function can be repre
sented by a Boolean expression. However, not every ternary function can 
be represented by a ternary expression. For example, it can be shown that 
the one-variable function that is <1> when the variable is 1 and is ° other
wise cannot be represented by any ternary expression. In fact, the ternary 
functions that can be described by ternary expressions are precisely those 
that are monotonic, i.e., that satisfy the monotonicity property above, as 
the following theorem [105] shows. 

Theorem 2.3 A ternary function f is monotonic if and only if there exists 
a ternary expression F such that IFI = f. 

Proof: We only sketch the proof here; for further details see [105]. Suppose 
that the ternary function fis denoted by the ternary expression F, i.e., that 
f = IFI. It is easily seen that the functions denoted by the expressions 0, 
1, <1>, Xl, ... ,Xn are all monotonic. One then verifies that f is monotonic 
if and only if f is. Next, from the definition of the operation +, it is easy 
to show that this operation is monotonic, i.e., that a ~ a' and b ~ b' imply 
a+b ~ a' +b'. Similarly, * is also monotonic. It then follows by induction 
on the number of operators C, +, and *) in the ternary expression F that 
f = IFI is monotonic. 

Conversely, suppose f: {a, <1>,l}n ---+ {O, <1>, I} is monotonic. Consider the 
set r 1 (1), i.e., the set of all ternary n-tuples a such that f( a) = 1. Select all 
the maximal n-tuples (under the partial order ~) of rl(l). For each such 
n-tuple a construct a product P of variables and complemented variables 
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as follows. If ~ = 0, include Xi as a factor in P. If ai = 1, include Xi as 
a factor in P. Finally, if ~ = ~, include 1 as a factor. It is clear that the 
product P accounts for all the I's in fthat are due to all the n-tuples below 
or equal to the maximal n-tuple being considered. Since f is monotonic, it 
follows that all such n-tuples are indeed in the set rl(I). Denote the sum 
of all such products derived from maximal n-tuples of rl(I) by Fl. In a 
similar way, derive a sum of products Fo for the set rl(O). This accounts 
for all the D's of the function. Noticing that f must be ~ if it is not 0 or 1, 
we obtain the ternary expression F = Fl + ~*(Fo + Fl ), which denotes f. 

o 
The expression derived in the proof of the theorem can be simplified to 

F = Fl + ~*Fo as the following proposition shows. 

Proposition 2.2 If a and b are arbitmry ternary values, then 

a+IP*(b+a) = a+b*q>. 

Proof: This can be seen as follows: 

a + q>*(b + a) = a + ~*b*a = (a+a)*(a+~*b) 
= (a+a+~)*(a+~*b) 

= a+(a+~)*~*b = a+IP*b*a+~*b 
= a+q>*b 
= a+b*q>. 

2.4 Directed Graphs 

o 

For several topics in this book it is convenient to represent certain concepts 
graphically. For this reason, we provide a very brief introduction to the 
theory of directed graphs. 

A directed gmph or digmph G is an ordered pair (V, e), where V is a 
set of elements called vertices and e ~ V x V is a set of edges. An edge 
e = (v, v') is said to be from v to v'; v is the tail of e, while v'is its head. 
Note that there can be at most one edge from one vertex to another. If 
( v, v') or (v', v) is an edge in a digraph, then the vertices v and v' are said 
to be adjacent. There may be an edge from a vertex to itself; such an edge 
is called a loop or self-loop. The indegree of a vertex v is the number of 
edges with v as the head. The outdegree of a vertex v is the number of 
edges with v as the tail. 

To illustrate the definitions above, consider G = (V, e), where V = 
{I, 2, 3, 4} and e = {(I, 1), (1, 2), (1,3), (2,3), (3, I)}. It is customary to rep
resent digraphs as diagrams in which vertices are small circles and edges are 
lines with arrowheads. The digraph G above is represented in Figure 2.1. 
Node 3 has indegree 2 and out degree 1. Node 1 has a loop. 



Section 2.4. Directed Graphs 33 

FIGURE 2.1. Digraph G. 

A walk is a sequence of edges (el, ... ,ep ), such that ei = (Vi-bVi), i.e., 
the head of ei is the same as the tail of ei+1, for all i = 1, ... ,p - l. 
The number p of edges in a walk is its length. A walk can also be uniquely 
specified by the sequence Vo, ... , vp of vertices encountered during the walk. 
If the edges of a walk are all distinct, it is called a trail. For example, the 
vertex sequence (1,2,3,1,3,1) in G, which describes a walk of length 5, 
is not a trail because the edge (3,1) appears twice. If all the vertices of a 
walk, except possibly the first and the last, are distinct, it is called a path. 
Thus (2,3,1,3) is a trail of G, but it is not a path. A walk, trail, or path is 
closed if it has positive length and its initial vertex is the same as its final 
vertex. A cycle is another name for a closed path. A digraph is acyclic if it 
has no cycles. 

A digraph G = (V, £) is said to be bipartite if its vertices can be parti
tioned into two disjoint sets VI and V2 , such that no two vertices in the 
same set are adjacent. 

A subset !C of V is called a feedback vertex set if every cycle of G contains 
at least one vertex from !C. Thus, if all the vertices in !C are removed from 
the graph along with all their incident edges, the remaining digraph is 
acyclic. For the digraph G of Figure 2.1 the sets {l, 3} and {I} are feedback 
vertex sets. 
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Delay Models 
The customary model of a logic gate is its Boolean function. It should 
be clear that this model does not take into account all of the properties 
of a physical gate. For example, physical gates have delays associated with 
their operation. Thus, if an input of a gate changes at some time, its output 
will respond to this change only at some later time, whereas the Boolean 
function model treats the response as instantaneous. In this chapter we 
consider the basic properties of delays, and introduce a number of mathe
matical models of delays. First, however, we discuss the possible behaviors 
of the environment of a circuit. 

3.1 Environment Modes 

In modeling a physical system we usually select a number of system vari
ables to represent an abstraction of the system. We call these variables the 
state variables of the system. If the knowledge of the chosen variables is 
adequate to describe the aspects of the system behavior that are of interest 
to us, then we have an adequate model. Otherwise the set of variables must 
be augmented. 

Every circuit operates in some environment that provides inputs to the 
circuit. The concept of a change in the input state is a very basic one, and 
one that we will use frequently in this book. This concept is formalized as 
follows: A variable v(t) taking its values from a finite domain is said to 
change at time r if v ( r) = {3, and there exists a 8 > 0 such that v ( t) = 0: i
{3, for r - 8 :::; t < r. In other words, v must have the new value at time 
r and it must have had the old value for an interval just before, but not 
including, r. 

The environment may change the circuit inputs at any time, without 
paying any attention to the state of the circuit; such a mode of operation 
might be called the completely unrestricted mode. But a circuit might fail to 
operate correctly, if its inputs are changed too quickly or at the wrong time. 
Even if we ignore circuits entirely, a completely unrestricted environment 
might lead to some serious difficulties. For example, consider a signal that 
changes at the following times: 0,1/2,3/4,7/8, .... Such a signal would 
have an infinite number of changes in the finite interval of one time unit. 
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Because the completely unrestricted mode cannot arise in practice and 
leads to considerable mathematical difficulties, we assume from now on 
that every environment satisfies the following: 

• Finiteness Condition: Only a finite, but possibly unbounded, num
ber of signal changes can occur in any finite interval. 

An environment satisfying only the finiteness condition is called unre
stricted. 

We distinguish two restricted modes of operation: the fundamental mode 
and the input-output mode. The fundamental mode of operation assumes 
that the circuit starts in some stable total state, i.e., in a state in which 
its inputs, internal signals, and outputs all have fixed values and have no 
tendency to change. (More will be said about these concepts later; for the 
time being we appeal to the reader's intuition.) By definition, a stable total 
state persists permanently, unless the circuit inputs change. In such a stable 
state, the environment is permitted to change the circuit inputs. After that, 
however, the environment is not allowed to change the inputs again until 
the entire circuit stabilizes. Note that this assumes that the circuit does 
indeed stabilize; this assumption holds in most circuits of interest. The 
fundamental mode of operation has been used since the introduction of 
asynchronous circuits [66, 67, 93, 135]. In practice, this mode is realized 
as follows. One estimates the time required for a circuit to stabilize in the 
worst case, and then makes sure that the inputs remain constant for at 
least that amount of time. Note that the definition of the fundamental 
mode makes sense only if one assumes that the circuit delays are bounded 
from above. 

More recent asynchronous design techniques use the input-output mode 
of operation [18, 19, 103, 147]. As before, the starting point is a stable total 
state of the circuit. Here, the environment is allowed to change the circuit 
inputs. The environment may change the inputs again only after the circuit 
has responded by producing an output change, or if no output response is 
expected. Note that this does not imply that the entire circuit must be 
stable, for some internal signals may still be changing. 

We shall return to fundamental mode and input-output mode operations 
later and make these concepts more precise. For the present chapter we 
assume that the environment is using a mode that satisfies the finiteness 
condition but is otherwise unrestricted. 

3.2 Gates with Delays 

To motivate the body of this chapter we give a brief introduction to the 
problems one encounters when dealing with physical components such as 
gates. To keep the discussion simple, we consider an inverter. Our first 
model of an inverter represents it simply as the Boolean complement func-
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tion. To obtain a more accurate model, we represent the physical inverter 
as an ideal inverter (Le., the Boolean complement function) in series with a 
delay element. Figure 3.1 shows an ideal inverter with input X and output 
Y in series with a delay element with input Y and output y. The signals X 
and yare intended to represent the input and output signals of the physical 
inverter. The fictitious signal Y is called the "excitation" of the physical 
inverter; this represents the value toward which the inverter output is being 
driven. 

X 
y 

FIGURE 3.1. Model of physical inverter. 

Figure 3.2 shows some waveforms of the signals associated with an in
verter modeled as an ideal inverter in series with a delay element. The 

X(t) n IlJ 

Y(t) U LJl 
: D: 

y(t) U rL 

y(t) 

FIGURE 3.2. Waveforms for inverter with delay. 

input signal X(t) varies with time. It is assumed to be binary and capable 
of instantaneous changes from 0 to 1 and from 1 to o. These changes may 
occur at any time and may result in wide or narrow "pulses," i.e., intervals 
during which the signal has a constant value. Thus we are assuming the 
environment is unrestricted except that it satisfies the finiteness condition. 
The signal Y is assumed to be the complemented version of the input X at 
all times; however, the physical inverter output y follows the changes occur
ring in the signal Y only after some delay D. If the delay were constant and 
ideal, the output would appear as shown by the waveform y(t). The actual 
output, shown as y(t), is similar to y(t), except that short pulses occurring 
in y do not occur in y. This reflects the inertial nature of physical delays. 
In the following sections we consider a number of possible models for delay 
elements. 
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3.3 Ideal Delays 

A delay is a "black box" that has one input and one output (see Figure 3.3) 
and an input/output behavior that is governed by a delay model. To sim
plify the discussion, assume that X (t) = x( t) = {3 E {O, I} for t < o. This 
assumption allows us to establish a well-defined starting point. 

X(t).IL-. __ 8(_t)_--,1 x(t). 

FIGURE 3.3. Delay component. 

The concept of ideal delay was introduced informally in Figure 3.2. We 
would like to make precise the notion that a delay is ideal in that it is 
not inertial, i.e., does not "lose any pulses." There are several possible 
variations for such a definition, as we now show. In the fixed ideal delay 
(FID) model, the delay's behavior is specified by the following rule: 

x(t) = X(t - d), 

where the delay d > 0 is a fixed constant. Thus the output is an exact 
replica of the input but shifted to the future d units of time. An example 
of the response of an ideal delay (d = 1) to an input signal is shown in 
Figure 3.4. 

X(t) ~ '----------'nL...-_1lJ 
x(t) 

I • o 5 10 15 

FIGURE 3.4. Ideal delay response. 

In a physical circuit, we normally do not know the exact size of a delay; 
at best, we might have an estimate. Also, delays are normally not constant, 
but might vary with temperature or change with age. Moreover, the delay 
of a component might depend on its previous history. For example, a gate 
that has just changed from 0 to 1 might have a shorter delay for changing 
back to 0 than it would have, had it had the value 1 for a long time. To 
model such properties, we allow delays to vary in time, but only within 
some bounds. 

In analyzing circuits, it turns out that it is not so much the absolute mag
nitude of a delay that is of importance, but rather the delay ratios. Suppose 
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delay dl is fixed, but another delay d2 can be arbitrarily large. Then the 
ratio d2 /dl can also be arbitrarily large. To represent physical components 
realistically, we assume that every delay is bounded from above. Note that 
this assumption does not prevent the ratio d2/ dl from being arbitrarily 
large, if dl is permitted to be arbitrarily close to zero. Consequently, al
though every physical delay is bounded from below by zero, we do not 
consider zero to be a proper lower bound. This kind of reasoning leads to 
the terminology introduced below. 

We distinguish between two types of assumptions about delay bounds. 
First, we might assume the delays are bounded both from below and from 
above (by nonzero constants). We say such delays are bi-bounded. Delays 
that are only bounded from above will be called up-bounded. Since we al
ways assume that each delay is bounded from above, i.e., either up-bounded 
or bi-bounded, there is no need for the concept of "down-bounded" delays. 

A bi-bounded ideal delay (BID) is defined as follows. Recall that we are 
assuming that the input and the output of the delay component have the 
same value initially and that the signals are binary. Under these special 
circumstances, we may represent the input waveform as a (finite or in
finite) sequence (tl, t2"") of increasing real numbers, where each real 
number ti represents an instant at which the input signal changes. Thus 
the input waveform in Figure 3.4 could be represented by the sequence 
(0,2,5,5.5,8,10,10.5,13), together with the initial value O. In a similar 
way, we represent the output waveform of a delay component by the se
quence (t~, t;, ... ) of increasing real numbers. In the BID model, we have 
the following rules: 

1. There is a one-to-one correspondence ti f--.+ t~ between the sets of 
instants in the input and output waveforms. 

2. There exist constants d > 0 and D > d, such that 

for all i = 1,2, .... 

The reader should observe the following difference between the nature 
of the definitions of the FID and BID models. In the FID model, given an 
input waveform, one may predict uniquely the output waveform. This is 
not possible in the BID model. Here, given an input waveform and a cor
responding candidate for an output waveform, we can only decide whether 
or not the given output waveform is consistent with the BID model, i.e., 
whether it could occur as a response to the given input waveform. Thus, to 
each input waveform there corresponds an infinite family of possible output 
waveforms. 

It is also useful to have the concept of an up-bounded ideal delay. For
mally, the input and output waveforms of an up-bounded ideal delay (UID) 
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with upper bound D satisfy the following conditions: Let (tl' t2, ... ) and 
(ti, t~, . .. ) be input and output sequences (respectively) of increasing real 
numbers. Then 

1. there is a one-to-one correspondence ti I-t t~ between the sets of 
instants in the input and output waveforms; 

2. ti < t~ < ti + D, for all i = 1,2, .... 

Thus any UID delay is strictly greater than 0 and strictly less than D. 

3.4 Inertial Delays 

The ideal delay model is often not realistic, since it fails to capture the fact 
that many physical delays ignore very short pulses, i.e., tend to "smooth 
out" fast varying signals. For this reason we consider several types of inertial 
delays [100, 135). Our approach follows that of [23, 24, 122). 

The first delay model we consider is the fixed inertial (FIN) delay model. 
The delay 8(t) is constant in time, i.e., 8(t) = d > O. The behavior is defined 
by the following two rules: 

1. If x( t) changes from 0: to Q at time T, then we must have had X (t) = Q 
for T - d ~ t < T. 

2. If X(t) changes from 0: to Q at time T and X(T) = 0:, then either (a) 
x( t) changes to Q at time T + d or (b) X (t) changes back to 0: before 
T + d. 

In Figure 3.5 we show how a fixed inertial delay (d = 1) would react to the 
same input signal as in Figure 3.4. 

X(t) ~ n IlJ 

x(t) n 
I I I I • 
0 5 10 15 

FIGURE 3.5. Fixed inertial delay response. 

We next define bi-bounded inertial delays satisfying 

0< d ~ 8(t) < D, 

where d and D are positive real numbers. In the bi-bounded inertial (BIN) 
delay model the input/output behavior must obey the following two rules: 
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1. If x( t) changes from a to a at time 1", then we must have had X (t) = a 
for T - d :s: t < 1". 

2. If X(t) = a for T :s: t < T + D, then there must exist a time T, 
T :s: T < T + D, such that x(t) = a for T :s: t < T + D. 

The first rule deals with the minimum delay of the delay element. It states 
that the element must be unstable for at least d units of time in order to 
change. The second rule deals with the maximum delay possible; note that 
we have a strict inequality here, i.e., a delay element cannot be unstable 
for D units of time without changing. In Figure 3.6, we show two possible 
responses to the input waveform of Figure 3.4, when the delay is bounded 
by 1 :s: t5(t) < 2. 

X(t) ~ '--_--'nL-_--' 

x'(t) n 
x(t) 

I 
0 5 

FIGURE 3.6. Possible bi-bounded inertial delay responses. 

We can also define an up-bounded inertial (UIN) delay model, which 
must satisfy the following two properties: 

1. If x(t) changes from a to a at time T, then there exists t5 > 0 such 
that X(t) = a for T - t5 :s: t < T. 

2. If X(t) = a for T :s: t < 1" + D, then there exists a time T, T :s: T < 
T + D such that x( t) = a for T :s: t < T + D. 

Note that Property 2 implies that the t5 in Property 1 must be less than D. 
In the delay models above, we have assumed that all the signals are 

binary, and that changes from 0 to 1 or from 1 to 0 are instantaneous. This 
is clearly an idealized assumption. In a physical circuit, there is usually a 
voltage range, below the minimum voltage for 1 but above the maximum 
voltage for 0, in which the logical value of the node is indeterminate. To 
capture the fact that changing signals must be in this indeterminate voltage 
range for a nonnegligible amount of time, we force all changing values to 
go via II>, i.e., x(t) can only change from a binary value to II> or from II> to 
a binary value, but never directly from 0 to 1 or from 1 to O. Using this 
approach, we define extended inertial delay models of the bi-bounded and 
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X(t) ~ n U 
x(t) ~ ~ L 

I I I I • 
0 5 10 15 

FIGURE 3.7. Possible XBIN delay response to binary input. 

X(t) 

x'(t) _----l~'--__ ______'~ 

x(t) ...--__ -111'-_---, 
'--____ --' L--

I • o 5 10 15 

FIGURE 3.8. Possible XBIN delay responses to ternary input. 

up-bounded types. Let 0 < d < D; the extended bi-bounded inertial (XBIN) 
delay model satisfies the rules: 

1. (a) If x(t) changes from a binary value 0: to IP at some time T, then 
we must have had X(t) =I- 0: for T - d ~ t < T. 

(b) If x(t) changes from IP to a binary value 0: at some time T, then 
we must have had X(t) = 0: for T - d ~ t < T. 

2. (a) If X(t) = {3 E {a, IP, 1} for T ~ t < T + D, then there must exist 
a f, f < T + D, such that x(t) = (3 for f ~ t < T + D. 

(b) If X(t) =I- 0: E {O, 1} for T ~ t < T + D, then there must exist a 
f, f < T + D, such that x(t) =I- 0: for f ~ t < T + D. 

We restrict Rule 2(b) to binary values in order to allow the output to be 
IP when the input is oscillating between ° and 1 (assuming each period of 
o (1) is strictly less than D, of course). 

In Figure 3.7, we show a possible response of an XBIN delay with d = 1 
and D = 2 to the same binary input signal as in Figure 3.4. However, the 
response of an XBIN to a signal containing IPs is more interesting. Two 
possible responses to such an input signal are shown in Figure 3.8. Note 
that the XBIN can both increase and decrease the duration of IP periods. 
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The latter effect can occur, for example, when the delay element changes 
more slowly from 0 to ~ than from ~ to 1. 

The extended up-bounded inertial (XUIN) delay model satisfies the rules: 

1. (a) If x(t) changes from a binary value a to ~ at some time T, then 
there exists 0 > 0 such that X(t) f:; a for T - 0 :::; t < T. 

(b) If x(t) changes from ~ to a binary value a at some time T, then 
there exists 0 > 0 such that X(t) = a for T - 0:::; t < T. 

2. (a) If X(t) = f3 E {O,~, I} for T :::; t < T + D, then there must exist 
a f, f < T + D, such that x(t) = f3 for f :::; t < T + D. 

(b) If X(t) f:; a E {O, I} for T :::; t < T + D, then there must exist a 
f, f < T + D, such that x(t) f:; a for f < t < f + D. 

We will return to inertial delays in Chapter 6. 
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Gate Circuits 
Gate circuits have been in use for a number of years, are generally well 
known, and are relatively easy to model mathematically. In this chapter we 
define several gate circuit classes, some reflecting topological properties and 
others arising from behavioral characteristics. We show how gate circuits 
can be modeled in a very general, mathematically precise, framework. In 
the next chapter we show how modern MOS circuits can also be modeled 
in our framework; this enables us later to derive a theory applicable to 
gates as well as MOS circuits. For additional information concerning gate 
circuits the reader should refer to a basic text on logic design, for example 
[25, 77, 88, 94]. 

How To Read This Chapter 

Section 4.5 can be omitted on first reading. The following comments clarify 
our terminology in this chapter. By the term gate we mean our model of a 
physical circuit that implements a Boolean function. Thus our gate is more 
of a mathematical object that a physical circuit. As we have mentioned 
in Chapter 3, a gate is represented by a Boolean function together with a 
delay element of some type. For some purposes, the delay is assumed to be 
zero; then the Boolean function alone suffices. Also, the input signals to 
our gates are idealized binary or ternary signals. 

We talk about "structure" and "behavior" of a gate circuit rather in
formally. The structure of a gate circuit includes a list of gates contained 
in the circuit, the Boolean functions associated with these gates, and the 
wire connections among the gates. The notion of behavior is defined more 
precisely in Chapters 6, 11 and 12; for now it suffices to think of behavior as 
describing what will happen, i.e., how various signals in the circuit evolve 
with time. 

4.1 Properties of Gates 

A gate has one or more distinct inputs and one or more distinct outputs. 
There is a direction, from input to output, that is implicitly associated 
with each gate. Although some families of gates have multiple outputs, 
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most gates have only a single output. In this book we restrict ourselves to 
single-output gates. A list of commonly used one- and two-input Boolean 
functions and a list of gate symbols corresponding to these functions were 
given in Chapter 1, Table 1.1 and Figure 1.1. 

If we apply binary signals at the inputs Xl, ... , Xn of a gate, the resulting 
output value is determined by the gate type. In this book we assume that 
the binary values are realized by voltage levels. In fact, we use "positive" 
logic, where 0 is represented by a low voltage and 1 by a high voltage. In 
reality, since transitions are not instantaneous and voltage levels fluctuate 
slightly, any voltage below a certain threshold voltage VL represents 0 and 
any voltage above a threshold voltage VH represents 1. Obviously, VH > VL. 
If the voltage of at some node (point in the circuit) is above VL, but below 
V H, we consider the value of the node to be undefined. We return to this 
later in this chapter. 

An input to a gate may be a constant (i.e., 0 or 1) or a binary variable 
Xi. The number of inputs to a gate is the fan-in of the gate. The fan-in of 
gates in most circuit families varies from one to eight. 

The output of a gate can be connected to one or more inputs of other 
gates. Sometimes the output of a gate can be connected to the gate's own 
input(s), although in practical designs this is relatively uncommon. In this 
book we use several such circuits, mainly to reduce the size of examples. 

If a gate forms a part of a larger circuit, the number of gate inputs 
connected to the output of a given gate is said to be the fan-out of that gate. 
Virtually all circuit families impose restrictions on the maximum fan-out. 
Even if no such restrictions are imposed, limiting the fan-out is desirable, 
since the delay of a gate usually increases with the fan-out. 

Normally, the output of a gate cannot be connected to the output of 
another gate. Such a connection would result in an ill-defined value if the 
computed outputs of the two gates disagreed. In some gate implementa
tions, however, the outputs of several gates can be connected together. 
Depending on the technology, the result is a wired-OR or a wired-AND con
nection. In a wired-OR technology, the value on the connection point is the 
logical OR of the output values the connected gates would have if the gates 
had not been wired together. A wired-AND connection works in a similar 
manner. Our approach to wired-OR (AND) connections is to introduce a 
virtual OR (AND) gate instead of the connection. 

In certain technologies gates can have tri-state outputs. Here, the output 
of a gate can be electrically isolated. When this occurs, the output is said to 
be "floating." A floating output has no effect on any wire to which it may 
be connected. Thus, if the designer makes sure that only one of the several 
gates with connected outputs is in its "nonfloating" (also called "driven") 
state, then that single gate determines the value of the connection point. 
This type of connection is very common in bus-based designs, where more 
than one sender can supply the value to be sent on the bus. We return to 
these gate types later in this chapter. 
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4.2 Classes of Gate Circuits 

Given a set of basic gates, we can implement more complex, arbitrary 
Boolean functions by connecting a number of gates together. For example, 
the circuit of Figure 4.1 corresponds to the expression l 

y = (Xl X2 + X 2 X 3 + Xl X3 ) 

and implements the "minority" function, which has the value 1 if a minority 
(i.e., one or zero) of its three inputs are 1. 

Xl ---+-----1 

y 

FIGURE 4.1. Feedback-free gate circuit. 

We say that a gate circuit is feedback-free, if, starting at any point in the 
circuit and proceeding via connections through gates in the direction input
to-output, it is not possible to reach the same point twice. For example, the 
circuit of Figure 4.1 is feedback-free. A gate circuit that is not feedback-free 
is said to contain feedback. 

In feedback-free circuits we define the concept of level of a gate induc
tively as follows. A gate with only external inputs is said to be at level 1. 
Inductively, if the inputs to a gate i are either external inputs or outputs 
of gates of level less than k, and at least one input is the output of a gate 
of level k - 1, then gate i is of level k. A feedback-free circuit is a level-k 
circuit if k is the maximum of the levels of its gates. 

It is well known that every Boolean function can be implemented by a 
feedback-free circuit. Conversely, if we are given a feedback-free gate circuit 
to analyze, we can use the Boolean function model to represent both the 
individual gates and also the entire circuit. 

A circuit in which the outputs are uniquely determined (after some delay) 
by the input combination is called combinational. In contrast, if a circuit 
output is not uniquely determined by the present input combination, then 
it must depend also on previous inputs, i.e., on the input sequence; such 
a circuit is called sequential. We will consider combinational circuits as 
special cases of sequential circuits. 

lUnless there is a danger of ambiguity, we omit the Boolean multiplication 
symbol * from Boolean expressions. 
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Xl------------e---------------~ 

FIGURE 4.2. Combinational gate circuit with feedback. 

Clearly, every feedback-free circuit is combinational. As our next example 
[74) shows, however, the converse does not hold. Consider the gate circuit 
of Figure 4.2. Suppose the inputs Xl, X 2 , and X3 are held constant for 
a sufficiently long time that the circuit reaches a stable state, if such a 
state exists. Assume first that Xl = o. After some time, determined by the 
delays of the gates with outputs YI and Y3, these outputs will be 1, since 
Xl = 0 uniquely determines the output of the inverter as well as the NAND 
gate. Once Y3 becomes 1, Y4 will become (after some delay) (lX3) = X 3· 

This will eventually cause the output of Y5 to become (lX3 ) = X 3 . Finally, 
Y2 will become (X2X 3 ). Note that the gate circuit is now stable, i.e., the 
output of every gate has the value computed by the gate from the current 
input values. In summary, we have just shown that any input state of the 
form X = (0, X 2 , X 3 ) (which represents the four 3-tuples 000, 001, 010, 
and 011) forces the gate circuit to a corresponding unique internal state of 
the form Y = (Yl, ... ,Y5) = (1, (X2 X 3), 1, X 3, X 3). Note that this analysis 
is completely independent of the initial state of the gate circuit. 

A similar analysis takes care of the remaining input alternatives. Let X = 
(1, X 2 , X3). After some delay, YI will become O. This will force Y5 to become 
1, which, in turn, will cause Y2 to become (X21) = Yz. Consequently, gates 
Y3 and Y4 will eventually have the values X 2 and (X2X 3), respectively. The 
circuit will then be stable. In summary, the input X = (1, X 2 , X 3 ) forces 
the circuit to a unique internal state Y = (0, X 2 , X 2 , (X2 X 3 ), 1). Again, the 
analysis is completely independent of the initial state of the gate circuit. 

We can now combine the two cases above as follows: 

YI = 1 when Xl = 0 

and 

YI = 0 when Xl = 1. 

Thus YI = Z. Furthermore, 

Y2 = (X2X 3 ) when Xl = 0 

and 

Y2 = X 2 when Xl = 1. 
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Consequently, 

Y2 = Xl (X2X 3 )+XI X 2 = ... = X2+XI X 3 · 

Similarly, 

Y3 XI +X2 , 

Y4 = XI X2+X3 , 

Y5 = XI +X3 . 

Since, after a certain delay, all the gate outputs are uniquely determined 
by the external inputs, the gate circuit is combinational, despite the fact 
that it contains feedback. 

It should be clear that the Boolean function model does not take into 
account all of the properties of a physical gate. For example, physical gates 
have delays associated with their operation. However, in traditional analysis 
of combinational circuits, delay effects are usually considered secondary 
to the basic operation of the gate. In summary, for combinational circuit 
design, a gate is usually adequately described by the very simple Boolean 
function model. In fact, Boolean algebra has been a very effective tool for 
the analysis and design of combinational circuits over the years. 

In contrast to the example of Figure 4.2, our next example shows a circuit 
that has feedback and is not combinational. For such a circuit, Boolean 
functions alone do not suffice, as we now show. Consider the circuit of 
Figure 4.3, which is a NOR latch that we use as a frequent example. If 

FIGURE 4.3. NOR latch circuit. 

we try to analyze this circuit without introducing any delays, we run into 
difficulties. Using the Boolean approach we conclude that the output y of 
the second NOR gate depends on the input X 2 and the output of the first 
NOR gate. The latter signal depends on Xl and on y. But then the output y 

depends on itself, for y = ((Xl + y) + X 2 ) = (Xl + y)X2 • If Xl = X2 = 0, 
then the equation reduces to y = y. The latter equation has two solutions, 
y = 0 and y = 1. Since y is not uniquely determined by the inputs, this 
circuit is not combinational. To analyze its behavior properly, we must 
be able to explain how its state can change as a result of an input change, 
taking into account the present output value. Such reasoning is not possible 
if we represent each gate as a Boolean function. In fact, an analysis only 
becomes possible if delays are considered. For example, if a delay is added 
somewhere in the feedback loop of Figure 4.3, say as shown in Figure 4.4, 
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then we can talk about the old value of the output as stored at the output 
Y of the delay and the new value of the output as it appears at the input 
Y of the delay. 

FIGURE 4.4. NOR latch with feedback delay. 

Two questions need to be addressed before an analysis of a gate circuit 
is possible in the Boolean function/delay model. First, what type of delays 
should we use in our model? We normally use an inertial delay model, since 
it is appropriate in many cases and the classical analysis methods are based 
on that model. We also briefly consider analysis using ideal delays. Second, 
where in the circuit should the presence of delays be assumed, so that the 
results of the analysis are sufficiently realistic? Should one associate a delay 
with every gate? Would a model that associates a delay with every gate 
and every wire be more "accurate" in some sense? Is a model in which 
two delays are associated with each wire still more accurate than the one 
with a single delay per wire? We will be able to answer these questions in 
Chapters 6 and 7, but only after a considerable amount of theory has been 
established. 

4.3 The Circuit Graph 

We now formulate a mathematical model for gate circuits. The first part of 
this model describes the structural properties, concerning the gates, gate 
types, and connections. Formally, these structural properties are captured 
by the "circuit graph." Behavioral properties are treated later. 

A circuit graph is a 5-tuple G = (X,I, g, W, E), where 

• X is a set of input vertices, labeled Xl, X 2 , • •• , X n , 

• I is a set of input-delay vertices, labeled Xl, X2, ... , X n , 

• 9 is a set of gate vertices, labeled Yl, Y2, ... , Yr, 

• W is a set of wire vertices, labeled ZI, Z2, . .. ,zP' and 

• £ ~ (X X I) U ((I U Q) x W) U (W x g) is a set of edges. 

All input vertices have indegree 0 and all wire vertices have indegree and 
outdegree 1. The directed graph defined by ((X uIu 9 u W),£) must be 
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bipartite with vertex classes I U 9 and Xu W. In other words, there is no 
edge between any two vertices in I U g, nor is there any edge between two 
vertices in X U W. Note that self-loops (edges of the form (v, v)) are also 
excluded. 

One of the purposes of the circuit graph is to identify all those points in 
the circuit with which one might want to associate a state variable. Thus 
we might wish to associate state variables with input delays, gates, and 
wires. More is said about this in Section 4.4. 

We now describe the construction of a circuit graph from a gate circuit. 
The reader may wish to refer to the circuit of Figure 4.5 and to Figure 4.6, 
which illustrates this construction. In the circuit graph we have X = {Xl}, 
I = {Xl}, 9 = {YI, Y2, Y3, Y4}, and W = {Zl, Z2, Z3, Z4, Z5, Z6, Z7}. 

Z3D a~ t;;{>Jy, z,: :., @?, Fur"'-
FIGURE 4.5. Gate circuit C4.5. 

In general, given a gate circuit, we obtain its circuit graph as follows. 
First, there is an input vertex Xi for every external input, and a gate 
vertex for every gate. For every input vertex Xi there is an input-delay 
vertex2 Xi and an edge from Xi to Xi. For every input i of every gate g in 
the circuit there is a wire vertex z. There is an edge from the wire vertex Z 

to the gate vertex corresponding to the gate g. If the input i is connected 
to an external input Xj, there is an edge from the input-delay vertex Xj 

to the wire vertex z. Otherwise, if the input i is connected to the output 
of gate g', there is an edge from the gate vertex corresponding to g' to the 
wire vertex z. 

A circuit graph is a convenient and precise notation for describing how 
the gates of the circuit are connected. It is not sufficient, however, to also 
describe the behavior of the circuit; for that one needs to answer the follow
ing questions: What is the domain, Le., the set of values that the vertices 
can take? What determines the behavior of an individual vertex? Which 
vertices have delays associated with them? What type of delays are as
sumed? What is the collective behavior of the whole graph? We next focus 
on the first two questions; we return to the remaining issues later. 

In this book the domain V of a circuit graph is usually {O, I}, but the 
ternary domain {O, 1, cp} is used when we wish to represent a gate output 
state that is neither 0 nor 1. 

2The input delay is introduced for somewhat technical reasons that will be
come clear in Chapter 7. We could use wire delays instead; however, the intro
duction of an input delay is more convenient. 
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FIGURE 4.6. Circuit graph corresponding to gate circuit C4.5. 

The behavior of a vertex is governed by a function called the vertex 
function that we now define. The vertex function Y; of a gate vertex Yi 

maps a wire-vertex state to V, i.e., Y;: VIWI --+ V. This is the Boolean 
function of the gate corresponding to the gate vertex. For a wire vertex Zi, 

the vertex function Zi, Zi: VII I+191 --+ V, provides the value of the input
delay or gate vertex connected to the incoming edge of the wire vertex. For 
an input-delay vertex Xi, the vertex function is Xi. For an input vertex, the 
vertex function maps a state of the environment to the vertex domain V. 
This function is called Xi. We may think of Xi as the input value provided 
by the environment; how the environment determines this value is of no 
interest to us. 

To illustrate the concepts introduced so far, consider again the circuit 
shown in Figure 4.5 with circuit graph shown in Figure 4.6. Assume first 
that the value domain is {O, I}. Since we do not know anything about 
the environment, we simply write the input-delay vertex function as Xl. 
The vertex functions for the gate vertices correspond directly to the gate 
functions, 

Y1 = Zl, Y 2 = Z2Z3, Y3 = Z4 + Z5, Y4 = Z6Ef)z7· 

The wire vertices have the very simple vertex functions, 

ZI=XI, Z2=Y1, Z3=X1, Z4=Y2, Z5=Y3, Z6=Y3, Z7=Y3. 

Finally, the input-delay vertex function is X 1. Since the domain is {O, I}, 
the expressions above are all Boolean expressions. On the other hand, had 
the domain been {O, IP, I}, the expressions would have been ternary expres
sions representing ternary extensions of the gate functions. 

In summary, we use the terms binary (ternary) circuit graph to mean a 
circuit graph together with a binary (ternary) domain and a set of Boolean 
(ternary) vertex functions, as specified above. 
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4.4 Network Models 

The vertex functions defined in the previous section introduce a distinction 
between the present value of a vertex variable and the present value of the 
"excitation" of that vertex variable, i.e., the value computed by the vertex 
function. This permits us to associate a delay with every input, every gate, 
and every wire in the circuit. 

To represent the state of the entire circuit, we need to select a set of state 
variables. Clearly, the circuit graph model easily permits us to select all of 
the vertex variables as state variables. We may think of such a model as 
the input-, gate-, and wire-state model. As we shall see, this model is too 
detailed for some applications, and simpler models may be preferred. 

By changing the set of state variables, we effectively change the location 
of the assumed delays in the circuit. Although many different choices of 
state variables are possible, only some are meaningful. In general, a min
imum requirement for a set of state variables is that at least one state 
variable should appear in every cycle of the circuit graph. 

At this point, we are unable to decide which set of vertices should be 
chosen to represent the state, but an answer to this question is given in 
Chapters 6 and 7. For now, we only assume that the state variables are 
selected in such a way that they form a feedback vertex set in the circuit 
graph. This implies that, if all these vertices were "cut," no feedback would 
remain in the graph. 

Having selected a set of vertices from the circuit graph to act as state 
variables, we associate with each such vertex two distinct items: the vertex 
variable and its "excitation function." The excitation function of a vertex 
in the state variable set is defined as follows. We start with the vertex 
function. We then repeatedly remove all dependencies on vertices that have 
not been chosen as state variables, by using functional composition of the 
vertex functions. 

Once the state variables have been selected and the excitation functions 
derived, it is convenient to draw a graph showing the new functional de
pendencies. This graph, called the network, has two sets of vertices: input 
excitation vertices and state vertices. There is one input excitation vertex 
for every external input, and one state vertex for every state variable. There 
is an edge from vertex i to vertex j if the excitation function of vertex j 
depends3 on the variable associated with vertex i. 

We view a network as a model of the circuit graph. In general, the net
work model contains fewer variables than the circuit graph. After we ana
lyze the network in terms of the chosen state variables we may wish to know 

3By "depends" we mean here the usual notion of functional dependence: A 
function f of n variables Xl, ... , Xn depends on Xi if there exist two input n
tuples a = (al, ... ,ai-l,ai,ai+l, ... ,an ) and a' = (al, ... ,ai-l,a:,ai+l, ... ,an ) 

such that f(a) =f:. f(a'). 
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some or all of the other vertex variable values in the original circuit graph 
in this circuit model. Since these variables are not state variables, they have 
no delays associated with them. In other words, the value of such a variable 
in the network model is always equal to the value of its excitation. Because 
we assume that the state variables constitute a feedback-vertex set, the 
values of all the variables in the circuit graph are uniquely determined by 
the values of the external inputs and of the state variables. This depen
dence of a variable that is not a state variable on the inputs and the state 
variables is described with the aid of the circuit equations. The examples 
given below clarify these ideas. 

To illustrate the concept of network, we show three different sets of 
state variables-leading to the "gate-state network," the "wire-state net
work," and an "input- and feedback-state network" -for the circuit graph 
in Figure 4.6. The domain associated with each network may be binary or 
ternary. 

In the gate-state network, only gates are assumed to have delays. Con
sequently, there is one state variable associated with each gate. In our 
example, the state variables are Yl, Y2, Y3, and Y4. The excitation functions 
are obtained as follows: 

and 

Yl = Zl = Zl = Xl = Xl, 

Y2 = Z2 Z3 = Z2 Z3 = YlXl = ylXl , 

Y3 = Z4 + Z5 = Z4 + Z5 = Y2 + Y3, 

Y4 = Z6EBZ7 = Z6EBZ7 = Y3EBY3 = 0, 

where the last step is a simplification of the Boolean expression Y3EBY3. 
From this we can derive the network graph shown in Figure 4.7. Note 

that vertex Y4 has indegree zero, because Y4 is a constant. We also obtain 
the following circuit equations from the circuit graph: 

Xl = Xl, 

Yl = Yl, Y2 = Y2, Y3 = Y3, Y4 = Y4, 

In other words, the circuit equations are 

Yl = Yl, Y2 = Y2, Y3 = Y3, Y4 = Y4, 
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FIGURE 4.7. Binary gate-state network for circuit graph 04.6. 

On the other hand, if the domain is {O, <I>,l}, the gate-state network has 
the following excitation functions: 

and 

Y I = Zl = Zl = Xl = Xl, 

Y2 = Z2 Z3 = Z2 Z 3 = YIXI = yIXI , 

Y 3 = Z4 + Z5 = Z4 + Z5 = Y2 + Y3' 

Y 4 = z6EBz 7 = Z6EBZ 7 = Y3 EBY3 = Y3Y3, 

where the operators are ternary and the last step is a simplification of 
the ternary expression Y 3 EBy 3' Note that Y 4 is not identical to 0 in ternary 
algebra. Consequently, the network graph for this model is slightly different, 
as is shown in Figure 4.8. The circuit equations are the same as above, 
except that they are ternary. 

FIGURE 4.8. Ternary gate-state network for circuit graph 04.6. 

In the Vlire-state network, only wires have delays. Thus, there is one 
state variable associated with each wire vertex. In our example, the state 
variables are Zl, Z2, ... , Z7. We obtain the excitation functions as follows: 

Zl = Z3 = Xl = Xl, 

Z2 = YI = YI = Zl, 
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The binary network graph for this model is shown in Figure 4.9. The circuit 
equations are 

Xl = XI, 

FIGURE 4.9. Binary wire-state network for circuit graph C4.6· 

Our final example of a choice of state variables gives a ternary input
and feedback-state network. Here the domain is {O, <1>, I}, and a delay is 
associated with each input vertex and with a set of feedback vertices. In 
our example we use the feedback vertex set {Y3}. We obtain the excitation 
functions Xl and 

Y3 = Z4 + Z5 = Z4 + Z5 = Y2 + Y3 = Y 2 + Y3 = Z2 Z3 + Y3 

Note that Y 3 is not equal to Y3, since the domain is {O, <1>, I}. The network 
graph corresponding to these functions is shown in Figure 4.10. The circuit 
equations are 

FIGURE 4.10. Ternary input- and feedback-state network for circuit graph C4.6. 
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In summary, a network is a 5-tuple 

N= (V,X,S,e,F), 

where V is the domain, X is the set of input excitation vertices labeled 
Xl, .. ' ,Xn , S is the set of state vertices with two sets of labels: state 
variable labels (81, ... , 8 m ) and the corresponding excitation function labels 
(Sl, ... ,Sm), £ is the set of edges, and F is the vector of circuit equations. 

4.5 Models of More Complex Gates 

As mentioned in Section 4.1, in some technologies the output of a gate 
can be made electrically isolated, or floating. Consequently, several such 
gates can have their outputs connected together. If this is the case, the 
voltage level on the connection point is a function of all the inputs to these 
gates. In general, there are two ways of modeling this kind of gate in our 
framework. We can leave the individual gates unaltered and introduce a 
new "virtual" gate that determines the logic level on the connection point, 
or we can merge all of the connected gates into one "super-gate," which 
computes the resulting value for every input combination. In this section 
we illustrate both approaches. 

There are basically three types of gates whose output can be electrically 
isolated: gates with wired-AND outputs, gates with wired-oR outputs, and 
gates with tri-state outputs. The output of a wired-AND gate is either low or 
floating. By itself, such a gate cannot drive its output high. Some external 
component, usually a resistor, must be used to ensure that the output is 
properly pulled high when the gate is not pulling it low. If several wired
AND gates have their outputs connected together and one (or more) of them 
is pulling its output low, the voltage on the connection point will be low. 
Only if all of them have floating outputs, will the voltage on the connection 
point be high. In effect, the resulting voltage on the connection point is the 
AND of the computed values on the gates. 

A wired-OR gate functions similarly, except it can only pull its output 
high. Consequently, if the outputs of several wired-OR gates are connected 
together, the resulting voltage on the connection point is the OR of the 
computed values on the gates. 

It is straightforward to model a wired-AND or wired-OR connection in our 
general framework. We introduce a virtual gate to model the connection 
point. To illustrate the process, consider the gate circuit in Figure 4.11, 
where the two NAND gates are assumed to have wired-AND outputs. 4 In 
Figure 4.11 we have also indicated the names of the existing wires. In 

4We do not show the external pull-up circuit, but the reader can imagine that 
there is a resistor between the output of, say, Yi and the power supply. 
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Zl 
Xl------t 

Z2 
X 2 -----I 

YI 

FIGURE 4.11. Circuit with two NAND gates with wired-AND outputs. 

Figure 4.12 we illustrate how a "virtual" AND gate is added. Thus, in form
ing the circuit graph, we add a new "gate" vertex, Y3, with vertex function 
corresponding to the wired-AND function. To keep the circuit graph bipar
tite, we also add two new wire vertices, Z6 and Z7. We obtain the circuit 
graph shown in Figure 4.13 with input-delay vertex functions 

Xl> X 2 , X 3 , X 4 , 

gate vertex functions 

YI = ZIZ2, Y2 = Z3 Z4, Y3 = Z6Z7, 

and wire vertex functions 

Zl = Xl, Z2 = X2, Z3 = X3, Z4 = X4, Z5 = Y3, Z6 = YI, Z7 = Y2· 

The dashed box in Figure 4.13 contains the added wire vertices and the 
new gate vertex. In effect, the connection point in the original circuit is 
translated into the vertices inside the box. Once the circuit graph has been 
obtained, a network can be derived in the usual fashion. 

FIGURE 4.12. Virtual AND gate added to Figure 4.11. 

Tri-state gates are slightly more complicated than wired-AND gates. When 
a tri-state gate is enabled, it is actively pulling its output to either high 
or low. The question arises: What happens if several tri-state gates, con
nected together, are enabled at the same time? If all of them agree on the 
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r-----------.., 
I I 

L ___________ ...J 

FIGURE 4.13. Circuit graph for circuit in Figure 4.11. 

value, there is no problem. However, if some try to drive the output high 
at the same time as others try to drive it low, the resulting voltage level 
on the connection point is not well defined. Normally, the intention is not 
to have more than one gate driving the connection point. However, due to 
design errors-possibly caused by timing problems-we must be prepared 
to handle the situation with more than one driver. Our approach is to use 
the ternary domain and use the value <1> to indicate an undefined voltage 
level. 

We model tri-state gates by merging connected tri-state gates into "super
gates." Each such super-gate has to incorporate all the functionality of the 
tri-state gates that are connected together. More specifically, assume that 
r tri-state gates have their outputs connected. Assume further that we can 
associate an enable function Ti with each gate. When Ti is low, the output 
of gate i is not driving the output (the gate is floating), and when Ti is 
high, the gate drives the gate output toward the value G i . In general, both 
Ti and G i are functions of the inputs to the tri-state gate i. 

For a circuit with some tri-state gates connected together, the corre
sponding circuit graph has only one gate vertex representing all of the 
tri-state gates that are connected together. The (ternary) gate function of 
this super-gate is 

One verifies that this ternary function is 1 if at least one gate is driving 
the output high and no gate is driving it low. Similarly, the output will be 
low when at least one gate is driving the output low and no gate is driving 
it high. In all other cases the gate function will take on the value <1>. 
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X5 Z5 

Xl 
Zl 

YI 

X 2 
Z2 

Z7 

X6 Z6 

X3 
Z3 

X 4 
Z4 

Y2 

FIGURE 4.14. Circuit with two tri-state gates. 

FIGURE 4.15. Circuit graph for circuit in Figure 4.14. 

To illustrate how tri-state gates can be modeled, consider the gate circuit 
in Figure 4.14, where the T and G functions are 

TI = Z5, T2 = Z6, G I = ZIZ2, G 2 = Z3 + Z4· 

We obtain the circuit graph shown in Figure 4.15 with input-delay vertex 
functions Xl, X 2 , X3 , X4 , X5 , X6 , gate vertex function 

y = ((ZlZ2 Z5 + Z6(Z3 + Z4)) (Z5(ZlZ2) + Z6(Z3 + Z4)) ) 

+ (( Z5(ZlZ2) + Z6(Z3 + Z4)) (ZIZ2Z5 + Z6(Z3 + Z4)))<t>, 

and wire vertex functions 

Zl = Xl, Z2 = X2, Z3 = X3, Z4 = X4, Z5 = X5, Z6 = X6, Z7 = y. 

Once the circuit graph has been obtained, a network can be derived in the 
usual fashion. 



Chapter 5 

CMOS Transistor Circuits 
The theory that has been developed so far has been presented in terms of 
gates, albeit very general gates, i.e., components capable of realizing arbi
trary Boolean functions. In practice, most VLSI circuits are implemented 
with MOS transistors as basic building blocks. Unfortunately, the theory 
developed for gates is not adequate for many MOS transistor circuits. In 
this chapter we show how these circuits can be modeled in our general 
framework. 

How To Read This Chapter 

In Sections 5.1 to 5.4 we introduce a basic switch-level model. Sections 5.5 
and 5.6 refine this basic model to handle more complex circuit designs and 
can be omitted on first reading. Finally, in Section 5.7 we show how these 
switch-level models can be used to derive network models similar to the 
ones we described in Chapter 4. 

5.1 CMOS Cells 

In this section, we show how certain Boolean functions can be implemented 
by CMOS circuits called "cells"; more general circuits are considered later. 

The fundamental components used in MOS (metal-oxide semiconduc
tor) VLSI (very large scale integration) circuits are the "N-channel and 
P-channel field effect transistors"; we refer to them simply as N-transistors 
and P-transistors. These two types of transistors are used in the CMOS 
(complementary metal-oxide semiconductor) technology. Although the phys
ical and electronic theory of such devices is quite involved [141), it is possible 
to use relatively simple mathematical models [10, 22, 27, 122] to capture 
the basic logical properties of circuits constructed with such components. 

An N-tmnsistor is a three-terminal device, which is represented by the 
diagram of Figure 5.1. The terminals tl and t2 are called the channel ter
minals of the transistor and constitute the switch of the transistor. The 
state of the switch is controlled by the signal present at the so-called gate 
terminal X. When the voltage on X is low, no channel exists and the switch 
between hand t2 is open. When the voltage on X is high, a channel exists 
between tl and t2, i.e., the switch is closed. If tl is connected to a low 
voltage, the signal at t2 also becomes low. In case tl is connected to a high 
voltage, the signal at t2 is also high, but is not as "strong" as the signal at 
tl. The reason for this is that the voltage at h will not be the same as that 
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N-transistor P -transistor Vdd (1) ground (0) 

tl tl T ~ 

X-1~ X-4~ 
-;-

t2 t2 

FIGURE 5.1. Transistor symbols. 

at tl, but rather VT volts lower, where VT, called the threshold voltage, is a 
parameter determined by the process technology and is typically between 
0.5 V and 1.5 V. Hence, if a high voltage is connected through several 
closed N-transistors, the resulting output voltage may not have sufficient 
magnitude to be treated as high. In summary, when X = 0, an N-transistor 
is an open switch; when X = 1, it is a closed switch that transmits O's well 
and 1 's poorly. 

Figure 5.1 also shows the symbol of a P-transistor. The small circle at 
the gate terminal denotes complementation. When X = 1, a P-transistor 
is an open switch; when X = 0, it is a closed switch that transmits 1 's well 
and O's poorly. 

Finally, Figure 5.1 also shows our symbol for the supply voltage Vdd 

(logical 1), and ground (logical 0). 
We define a CMOS cell [27] to be any circuit of N- and P-transistors 

with the properties below. We use the example of Figure 5.2 to illustrate 
the details of the definition. 

The channel terminals of all the transistors are first (conceptually) con
nected to each other in any fashion. For example, in Figure 5.2(a) we have 
connected six transistors. The connection points so formed, and the re
maining unconnected channel terminals, are called the nodes of the cell. In 
the example of Figure 5.2( a), we have formed five nodes labeled A, ... ,E. 

In the second (conceptual) step of constructing the cell, one of the nodes 
is connected to the constant input 0 (i.e., ground, as shown in Figure 5.1) 
and another to the constant input 1 (i.e., Vdd, as shown in Figure 5.1); these 
nodes are called the supply nodes. Suppose there are n external (variable) 
inputs. Some k ::; n nodes (which are not supply nodes) are next chosen, 
and each of them is connected to a distinct external variable input Xi, 1 :::; 
i ::; n; these nodes are called input nodes. One of the remaining nodes 
is selected to be the output node. In the example, Figure 5.2(b), node D 
has been connected to Vdd , node E to ground, and node A to the external 
input X 2• Node B has been chosen as the output node; this is shown by 
the outgoing arrow. Nodes that are not supply, input, or output nodes are 
called internal. In the example, only node C is internal. 
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FIGURE 5.2. Illustrating the definition of a cell. 

The gate terminal of each transistor is connected to exactly one input 
Xi. This means that if a node labeled Xi exists in the cell, then all the 
gate terminals that are to be controlled by Xi are connected to that node. 
However, if no input node labeled Xi exists, the gate terminals of all tran
sistors that are to be controlled by Xi are connected to the input Xi, but 
this input does not constitute a node of the cell. The connections of inputs 
to gate terminals are shown in Figure 5.2( c) for our example. 

It should be noted that the definition of a cell involves implicitly some 
assumptions about delays, namely, that the delays in the wires connecting 
several gate terminals to the same input are approximately the same and 
very small compared to other delays. Of course, when we later allow the 
inputs to a cell to be the outputs of other cells, the delays in the wires 
connecting cells can have delays associated with them. However, the "local" 
wiring is assumed to be essentially delay-free. This assumption follows the 
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one made in [10], where a cell is called a channel-connected subnetwork. 
We follow this approach here to simplify our discussion. Conceptually, it 
is easy to extend the ideas presented in this chapter to include local wire 
delays. 

In drawing circuit diagrams, it is sometimes convenient not to show all 
the connections, in order to improve the clarity of the diagram. Thus, we 
may show two terminals labeled 0 or three terminals labeled Xi' It is then 
understood that the common label implies the existence of a connection. 

We begin by considering static CMOS circuits; other types of CMOS 
circuits are mentioned later. Static CMOS circuits use N-transistors to 
transmit O's and P-transistors to transmit 1 's. An example of such a circuit 
is shown in Figure 5.3. An intuitive explanation for the working of the cell 
is as follows: The inputs are Xl and X 2 and the output is the signal at 
node y. When either Xl or X 2 or both are 1, y is not connected to 1 (Vdd), 
because at least one of the P-transistors is an open switch; however, y is 
connected to 0 (ground) through one or both of the N-transistors. Thus y 

becomes O. In case Xl and X 2 are both 0, y is connected to 1 through the 
two P-transistors in series, and it is not connected to O. Hence y becomes 
1. Altogether, the circuit performs the NOR function. 

Xl---_--a 

FIGURE 5.3. CMOS NOR gate. 

A binary input state is a binary vector of length n. It follows that, for 
each binary input state, each transistor is either a closed or an open switch, 
i.e., the state of each transistor is well defined. A path in a transistor circuit 
is a sequence of connected transistor switches that does not go through a 
supply node. Note that paths can start and/or end in supply nodes, but the 
intermediate nodes in a path must be either internal or output nodes. An 
N-path is any path of N-transistor switches that are closed, i.e., any path 
of N-transistors with a 1 on their gate terminals. A P-path is any path of 
P-transistor switches that are closed, i.e., any path of P-transistors with a 
o on their gate terminals. Finally, an M-path (M for "mixed") is any path 
of N- or P-transistor switches that are closed. 
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For the cell output y, the following Boolean functions ofthe circuit inputs 
are defined in terms of paths. (The symbol g is used for "good" paths and 
m for "mixed" paths.) 

go = 1 if and only if there is an N-path from y to an input or supply node 
with value 0, i.e., if and only if there is good path to 0; 

g1 = 1 if and only if there is a P-path from y to an input or supply node 
with value 1, i.e., if and only if there is a good path to 1; 

mo = 1 if and only if there is an M-path from y to an input or supply 
node with value 0, i.e., if and only if there is a path to 0; 

m1 = 1 if and only if there is an M-path from y to an input or supply 
node with value 1, i.e., if and only if there is a path to 1. 

In a general CMOS cell, we distinguish the following three cases for the 
output y 

y = 0 if and only if go = 1 and m1 = 0, i.e., if and only if there is a good 
path to 0 and no path to 1; 

y = 1 if and only if g1 = 1 and mo = 0, i.e, if and only if there is a good 
path to 1 but no path to 0; 

y = ~, otherwise. 

The significance of the three output values above is explained with the 
aid of several examples. The circuit of Figure 5.3 is a cell in which the 
output can only be 0 or 1 for every binary input state; such cells are called 
Boolean. A more complex Boolean cell is shown in Figure 5.4. Here go = 
mo = X 1X 2 + X 3(X1 + X 2 ) and g1 = m1 = X 1(X2 + X 3 ) + X 2 X 3 . One 
verifies that go = mo = g1 = m1, and that the cell is indeed Boolean. 

The value y = ~ covers a number of cases. First, if y is connected neither 
to 0 nor to 1, it is said to be floating. Because of capacitance, such a floating 
node "remembers" its previous state by charge storage. With time, however, 
the stored charge may "leak out," leading to an uncertain signal value. Thus 
we assign ~ to such a node. Second, if y is connected to 1 only through 
"mixed" paths containing both N- and P-transistors and is not connected 
to 0, the output value is a "weak" 1. Hence the output is classified as CP. 
A similar situation exists if the output is connected to 0 through mixed 
paths only and is not connected to 1. Finally, suppose that y is connected 
to both 0 and 1 at the same time; this condition is sometimes called a fight. 
In practice, transistors are not ideal switches but have some resistance. 
Therefore the output voltage will have a value intermediate between those 
corresponding to 0 and 1. This is also considered undesirable from the 
logical point of view, and we assign cP to y. This approach represents a 



66 Chapter 5. CMOS Transistor Circuits 

p..- X 3 

.---~--------~--~y 

~Xl 

FIGURE 5.4. Cell for minority function. 

rather strict set of design rules. Other, less stringent, sets of rules are also 
in use; we consider such variations in Sections 5.3-5.6. 

A cell is said to be redundant if it has a node that can be removed without 
affecting the output value, or if it has a transistor that can be replaced by 
either an open or a short circuit without affecting the cell output. A cell 
that is not redundant is called irredundant. 

A Boolean function f is said to be positive if there is a sum of products 
of uncomplemented variables that denotes f. For example, the majority 
function of three variables is positive because it can be denoted by X 1X 2 + 
X 2X 3 + X 3X 1 , whereas the XOR function is not positive. A function is 
negative if its complement is positive. One can verify that a function is 
negative if and only if there is a sum of products of complemented variables 
that denotes it. Note that a function may be neither positive nor negative; 
for example, the XOR function is neither positive nor negative. 

In Figure 5.5 the P-part is any network consisting entirely ofP-transistors. 
The N-part is defined similarly. A cell is said to be separated if it has the 
form shown in Figure 5.5, where there are no input nodes (thus the inputs 
can only be connected to gate terminals of transistors); otherwise, it is non
separated. Note that go = rno and gl = rnl in a separated cell. A separated 
cell is Boolean if and only if go = gl. 

Several basic properties of Boolean cells are stated below without proof. 
The reader may construct the proofs as an exercise or see [27]. 

Proposition 5.1 If an irredundant cell is Boolean, then it has no input 
nodes. 

Proposition 5.2 If a cell is Boolean, then go is positive and gl is negative. 
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FIGURE 5.5. Form of separated cell. 

Proposition 5.3 Every negative Boolean function can be implemented by 
a separated cell that has as lew transistors as any minimal nonseparated 
cell realizing the function. 

In summary, every Boolean cell implements a negative function and ev
ery negative function can be implemented by a separated cell, as shown 
in Figure 5.5, with the minimal number of transistors and with no input 
nodes. 

5.2 Combinational CMOS Circuits 

In this section we briefly discuss the realization of arbitrary Boolean func
tions by a CMOS circuit with several CMOS cells [27]. We have seen that 
any negative function can be realized by a single cell. I 

It is well known that any Boolean function can be realized using inverters 
to produce complemented inputs, and two levels of NAND gates to imple
ment a sum-of-products expression for the function. For example, consider 
the XOR function. We have I = XI X2 + XI X2• Let YI = Xl and Y2 = X 2 ; 

these functions can be realized by two CMOS inverters with two transistors 
each. Now let Y3 = (y IX 2) and Y4 = (XIY2); the Y3 and Y4 functions can be 
realized by two CMOS NAND gates with four transistors each. Finally the 
function I can be realized by another two-input CMOS NAND gate, since 
1= Y3 + Y4 = (Y3Y4). Altogether, we have the circuit of Figure 5.6 with a 
total of 16 transistors. 

IThis is true in principle; in practice, if the cell is too large, it may have to be 
decomposed into smaller cells for performance reasons. However, such topics are 
outside the scope of this book. 
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FIGURE 5.6. A CMOS circuit for XOR. 

The number of transistors in a circuit is a very rough indication of the 
area that the circuit will occupy on a chip, because wires and empty space 
usually take much more room than the transistors themselves. Neverthe
less, the number of transistors does give some indication of the complexity 
of a circuit. A realization of the XOR function with 10 transistors can be 
obtained from a different decomposition of the function into negative func
tions, namely f = (X1X2 + y), where y = (Xl + X 2 ). 

A still more economical (in terms of transistors) implementation of the 
XOR function can be obtained using so-called transmission gates [27, 88, 
94, 141]. A transmission gate controlled by X consists of an N-transistor 

Xl 

A 
x'-C Y X2 f 

~ Y 
y ~ 

FIGURE 5.7. XOR with transmission gates. 
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controlled by X in parallel with a P-transistor controlled by X. Figure 5.7 
shows a circuit with two transmission gates. The left cell is an inverter 
producing y = Xl' The right cell is not Boolean for, when Xl = X2 = 
Y = 1, there is a path from f to both a and 1. However, when the two cells 
operate together, this condition can only arise as a transient condition, and 
the circuit does realize the XOR function properly. 

Our first two examples of CMOS implementations of the XOR function 
have direct analogies to gate circuits, whereas the third one does not. For 
a more detailed discussion of combinational CMOS circuits see [27]. In the 
next section we generalize the concept of CMOS cell in such a way that it 
also includes sequential circuits. 

5.3 General CMOS Circuits 

We now consider general CMOS circuits and their corresponding models 
in which transistors are considered as controlled switches. The first formal 
"switch-level" model was introduced by Bryant [10] and such models were 
further studied in [12, 13]. The use of ternary methods for the detection of 
timing problems in CMOS circuits was considered in [8, 22, 27, 83, 122]. 
We follow here the approach of [22, 122]. 

A general CMOS circuit is defined like a CMOS cell, except that any 
transistor gate terminal may be connected either to an external input or 
to an internal node. An internal node that is connected to the gate of one 
or more transistors is called a key internal node. Internal and key internal 
nodes are labeled with internal and key internal variables. 

To illustrate the definition above, consider the circuit of Figure 5.8. The 
circuit has supply nodes a and l-connections should be supplied between 
different versions of the same node in the diagram-and it has no input 
nodes. It is convenient to number the ground node 0, the supply node 
(Vdd ) 1, and the remaining nodes 2,3, .... Thus the three internal nodes 
are labeled Y2, Y3, and Y4. Nodes Y2 and Y4 are key internal nodes, because 
each controls the gate terminals of two transistors; node Y3 is not a key 
internal node. 

We now define several CMOS models, each reflecting different types of 
design rules and accuracy requirements. Consider a circuit with n input 
variables and m internal variables, of which k are key internal variables. 
A ternary input-key state is a length-(n + k) vector of a's, 1's, and c}'s, 
associating a value with each input node and each key internal node. A 
ternary total state is a length-(n+m) vector of a's, 1's, and c}'s, associating 
a value with each input node and each internal node. N-, P-, and M-paths 
are defined as in Section 5.1. An N~ -path is a path of N-transistors that 
is not an N-path and in which each gate terminal has either a 1 or a c} 
associated with it. Thus each transistor in an N~ -path is either closed or 
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x 

FIGURE 5.8. Circuit 0 5.8. 

its state is uncertain because of a <I> on its gate terminal, and there is at 
least one transistor with such an uncertain state. p<l> -paths and M<I> -paths 
are defined similarly. 

We use the convention that nodes in circuits are labeled with symbols 
in italics (e.g., X, Y2, etc.). In the corresponding ternary model, however, 
the same vertices are shown in bold face (e.g., X, Y2' etc.) to stress their 
ternary domain. Given these conventions, for any pair of nodes i and j, 
i ¥- j, we define the following ternary path functions, which depend on the 
current input and key internal node values: 

{
I if there is a P-path from i to j, 

Pij = <I> if there is no P-path but a p<I>-path from ito j, 

o if there is no P-path or p<I>-path from i to j; 

{
I if there is an N-path from ito j, 

nij <I> if there is no N-path but an N<I>-path from ito j, 

o ifthere is no N-path or N<I>-path from i to j; 

{
I if there is an M-path from ito j, 

mij <I> if there is no M-path but an M<I> -path from i to j, 

o ifthere is no M-path or M<I>-path from ito j. 

It is convenient to extend this definition by postulating that Pii = nii = 
mii = 1, for every node i. It should be noted that all path functions are 
symmetric, i.e., Pij = Pji for every node i and j. 
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To illustrate the concepts of path functions, consider the the example of 
Figure 5.8. It is straightforward to verify the following path functions: 

n20 = XY4, P20 = 0, m20 = XY4' 

n21 = 0, P21 = X + Y4, m2l = X + Y4' 

n23 = X, P23 = 0, m23 = X, 

n30 = Y4, P30 = 0, m30 = Y4, 

n31 = 0, P31 = 0, m3l = X(X + Y4)' 

and 

5.4 Node Excitation Functions 

Given the basic path functions derived in the previous section, we can 
define a variety of different types of models applicable to CMOS circuits, 
depending on the details of the CMOS technology used and also on the 
design philosophy. We start by deriving some very simple models and then 
gradually expand these basic ideas. 

The strictest set of CMOS design rules corresponds to the following def
inition of an (internal) node excitation function: Given an input-key state 
or a total state, a node excitation is declared to be 0 (1) if and only if that 
node is connected to 0 (1) through an N-path (P-path) and is not con
nected to 1 (0); in all other cases, the excitation is declared to be <II, which 
represents an undefined signal. Using the ternary algebra of Section 2.3, we 
can denote the excitation function by the expression 

Y i = PilmiO + (Pil m iO + niomid<ll, 

i.e., the node i is excited to 1 if there is a good connection (P-path) to 
node 1 (corresponding to Vdd ) and no path to node 0 (corresponding to 
ground); it is excited to 0 if there is a good connection (N-path) to 0 and 
no connection to 1; and it is excited to <II if it is not the case that it is excited 
to either 0 or 1. The reader should verify that the expression above does 
indeed correspond to the desired function. According to Proposition 2.2, it 
is possible to simplify this expression to 

Y i = PilmiO + (niOmil)<II. 
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For the example of Figure 5.8, we find the following excitation functions: 

Y2 = P2l m 20 + (n20m21)~ 

= (X + Y4)(XY4) + (XY4(X + Y4))~ 

= X+Y4' 

Y3 = P31 m30 + (n30m 31 )~ 

= OY4 + (Y4(X(X + Y4)))~ 
= (XX + Y4)~ = XX + Y4~' 

and 

Y4 P4l m 40 + (n40m41)~ 

= Y2 Y2 + (Y2Y2)~ = Y2· 

Note that the node excitation defined above can be written in the form 
Ui + (Ui + Zi)~' or simplified to Ui + Zi ~, for some functions Ui (for unity) 
and Zi (for zero). Here, Ui denotes the conditions under which Y i is 1, and 
Zi gives the conditions under which Y i is O. We can now generalize the 
model above and define four different basic models: 

Modell Y i = PilmiO + (niOmi1)~' 

Model 2 Y i = PilniO + (niOPil)~' 
Model 3 Y i = milmiO + (miOmi1)~' 
Model 4 Y i = PilniO + milmiO + (niOPil + miOmi1)~. 

Modell is the one we introduced above. It was originally introduced in 
[27]. Model 2 assumes that a P-path to 1 (a "good" path) is stronger than 
any path to 0 containing at least one P-transistor (a "bad" path) (and 
vice versa for N-paths). We get Y i = 1 (O) as long as there is at least one 
good path to 1 (0), but no good path to 0 (1). Hence, a fight between a 
good path and a bad path is resolved in favor of the good path. This is 
a substantially more liberal rule, but may be necessary to explain certain 
very tricky designs [27]. Model 3 is more traditional and corresponds to a 
special case of the model in [10]. Here there is no distinction at all between 
P- and N-paths, and we have Y i = 1 (0) if and only if there is some mixed 
path to 1 (0) but no mixed path to 0 (1). Model 4 is a combination of 
Models 2 and 3. Here the rules are: good paths override bad paths; if there 
are no good paths, the bad paths determine the output. 

To illustrate these four basic models, consider again the circuit of Figure 
5.8. It is easy to convince oneself that Y 2 = X + Y4 and that Y 4 = Y2 for 
every model. However, for node Y 3' Models 1-4 yield the following node 
excitation functions: 
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Modell: Y3 = P3l m 30 + (n30m 31)<P = 

= (XX + Y4)<P , 

Model 2: Y 3 = P3l n 30 + (n30P31)<P = 
= y4<P, 

Model 3: Y 3 = m3l m 30 + (m30m 3d<P = 

= XY4 + (XX + Y4)<P, 

Model 4: Y 3 = P3l n 30 + m3l m 30 + (n30P31 + m30 m 3t}<P = 

= XY4 +y4<P· 

5.5 Path Strength Models 

So far we have assumed that all the transistors have the same conductance 
(except that the conductance for transmitting a 1 may be different from the 
conductance for transmitting a 0). Sometimes it is useful to use transistors 
with significantly different conductances. We can represent this in a switch
level model by assuming that the transistors have different "strengths." We 
assume that there is a finite number of strengths denoted by the integers 
1, ... ,q. A transistor of strength r has a conductance that is an order of 
magnitude higher than that of a transistor of strength p if and only if r > p. 
We also need to add the notion of strength to the path functions. A path 
is of strength s if all the transistors in the path have strength ~ s. Let 
pij' nij' and mij denote the path functions of strength s. A signal from a 
strong path overrides a signal from a weaker path. Modell, extended to 
handle the different transistor strengths, gives the following functions: 

Ui = (mio)(pil + (miol)(pi;l + ... + (m;o)(ph)" .)) 

and 

Zi = (mil)(nio + (mJ;I)(nJo- I + ... + (m}l)(n}O)" .)). 

To illustrate these ideas, consider the CMOS circuit of Figure 5.9. The 
circuit is designed in a slight variation of the domino style [141]. Instead 
of relying on charge storage, a "weak" inverter provides feedback for the 
circuit so that it exhibits the appropriate behavior. The transistors have 
been assigned strengths as shown in Figure 5.9. Using this refined model, 
after simplifications, we get the following functions for the key internal 
nodes Y2 and Y5: 

U2 = (m~O)(p~1 + (m~O)(p~l)) = Xl + (X2 + X 3)Y5' 
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FIGURE 5.9. CMOS domino gate with "staticizer." 

Z5 (m~l)(n~O + (m~l)(n~O)) = Y2' 

which yield the node excitation functions 

Y2 = U2 + Z2<P = Xl + (X2 + X3)Y5' 

Y5 = U5+ Z5<P=Y2· 

The model above is often sufficient for CMOS circuits with more than one 
transistor strength, but it is sometimes overly pessimistic. In the CMOS 
circuit in Figure 5.10 every path to node 3 is of strength 1. Consider the 

L--·Y3 

FIGURE 5.10. Illustration of path blocking. 
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situation when Xl = 0, X 2 = 1, and X3 = o. There is a P-path of strength 
1 to the power supply, but also a mixed path of strength 1 to ground. 
Using the definition above, we conclude that Y 3 = iI>. At the same time, the 
excitation of node Y2 is 1, because the strong path through the P-transistor 
overrides the weak path through the N-transistor. If we reexamine the path 
functions used in calculating the excitation of Y3' we notice that they all 
go through node 2. From an electrical point of view, it is now reasonable 
to say that the path from ground to node 3 is blocked by the strong path 
from node 2 to supply node 1. This observation, that some weak paths 
can be blocked by stronger paths "along the way," can be formalized and 
incorporated in the excitation functions. We refer the interested reader to 
[12, 13J where not only is such a model defined, but very efficient methods 
for deriving the excitation functions are also given. 

5.6 Capacitance Effects 

The node excitation functions derived in the previous section fail to capture 
the fact that there is a certain amount of capacitance in CMOS circuits. 
In particular, the key internal nodes have a capacitance associated with 
them; hence there is some "memory" in each such node. The case when 
there is only one key internal node in every cell can be handled in a very 
straightforward way. Here we make two assumptions: 1) The capacitance of 
a key internal node is much larger than the capacitance of any other node 
in the cell. 2) A 1 (0) stored on a key internal node can only determine the 
excitation of that node if the node is completely isolated from the supply 
nodes. One can verify that the following modifications to Models 1-4 take 
this into account: 

Modell M Y i = (Pi I + Yi)miO + ((lliO + Yi)mil)iI>, 

Model2M Y i = PillliO + YimiO + (lliOPil + Yi midiI>, 

Model3M Y i = milmiO + YimiO + (miOmil + Yi midiI>, 

Model4M Y i = Pil lliO + milmiO + YimiO, 

+ (lliOPil + miOmil + Yi midiI>· 
For example, using model 1M , Y is 1 if there is a good path to 1 and no 

path to 0, or if the previous value was 1 and there is no path to O. A dual 
situation holds for Y = o. 

To illustrate the idea above, consider the CMOS circuit of Figure 5.11. 
The circuit is a two-input AND gate implemented in (simple) domino CMOS 
technology [141J. A domino CMOS circuit works as follows. There are two 
phases, a precharge phase and an evaluation phase. In the precharge phase, 
the clock signal (called Xl in our example) is set to 0 causing the high
capacitance node Y2 to be driven to a high voltage through the P-transistor. 
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Xl --<i 
Y2 

X 2 ---1 
Y3 

X3 ---1 -;-

Y4 

Xl ---1 

FIGURE 5.11. A two-input AND gate in CMOS domino style. 

Note that this happens irrespective of the values of X2 and X3 because 
the bottommost N-transistor is not conducting. In the second phase, the 
evaluation phase, the clock signal is switched to 1. Node Y2 will keep its 
high value unless it is connected to ground. That will happen only if X 2 

and X3 are both high. Our first model for this circuit assumes that node Y 2 

has a capacitance that is an order of magnitude larger than those of nodes 
Y 3 and Y 4· Using model 1 M we get the following node excitation functions 
for the key internal nodes Y 2 and Y 5: 

Y2 = (P21 + Y2)m20 + ((n20 + Y2)m21)!l> 

= ... = Xl + Y2(X2 + X 3), 

... =Y2· 

Note that, for a binary input-Key state, the excitations of the key internal 
nodes are binary. We can generalize the concept of a Boolean cell from 
Section 5.1 to general CMOS circuits by defining a circuit to be Boolean if 
and only if, for every binary input-key state, the excitations can only be 0 
or 1. 

When there is more than one key internal node in each cell, a more com
plicated node excitation function must be used, because charge can "spill 
over" from one node to another causing the excitation to become unde-
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fined. From here on, we assume that charge sharing comes into effect only 
when the nodes are isolated from the supply nodes. This is a reasonable as
sumption since paths connected to the supply nodes can provide essentially 
infinite amounts of charge. Below, we give the definitions of the functions 
Ui and Zi for the excitation function Yi = Ui + zicfl. Let Ci denote the set 
of key internal nodes in the cell containing node i. Modell, extended to 
handle the case of multiple key internal nodes, gives the following functions 

PilmiO+miO (II(Yj+mij )) 
JECi 

PilmiO + mioYi II (Yj + mij), 
jECi 

niOmil + mil (II (y j + m ij )) 
JEC i 

niOmil + milYi II (Yj + mij). 
jECi 

( LYjPij ) 
jECi 

The basic idea is as follows. We only discuss the Ui function, but the 
arguments can be trivially extended to the Zi function. First, charge sharing 
comes into effect only when there are no paths to ground, i.e., miO = O. 
Second, if a node i is disconnected from the supply nodes, then all the key 
internal nodes connected via some path to i must have the value 1 in order 
to cause the excitation of i to be 1. This is captured in the second half of 
the formula. Either the value of a key internal node j must be 1 or node 
j must be disconnected from node i. Moreover, at least one of the nodes 
must be 1 and must be connected to i by a P-path in order to get Ui = l. 
(In the formulas above we assumed that Yi is a key internal node; hence 
mii = Pii = nii = 1, and the last equalities in the formulas follow.) 

Node excitation functions for the other basic CMOS models are derived 
similarly. For example, for Ui in a model based on Model 2, one replaces 
Pil miO by Pil niO· 

In the discussion above only the key internal nodes were assumed to have 
memory. Furthermore, it was postulated that all the key internal nodes 
have the same "size." A common technique in CMOS circuits is the use 
of precharged lines, where certain nodes are designed with a substantially 
higher capacitance than that of all the other nodes. This can be modeled 
as if these nodes had "greater size" than normal nodes. To describe such 
excitation functions, we need the following notation. Let q, 1 :::; s :::; q, be 
the set of all nodes of size s in the cell that contains node i. Assume further 
that the sizes are totally ordered, so that a node in Cf is substantially 
bigger (has a substantially higher capacitance) than a node in C~ if and 
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only if p > r. Modell, extended to handle multiple key internal nodes and 
different node sizes, gives the following functions 

Ui PilmiO + miO (II (Yj + mij) (L YjPij 
jECf jECf 

+ II (Yj + mij) ( L YjPij 
jECf-1 jECf-1 

+ ... 

+ II (Yj +mij) (LYjPij ) ... ))) 
JEC; JEC; 

and 

Zi lliOmil +mil (II (Yj +mij) (LYjllij 
jECf jECf 

+ II (Yj + mij) ( L Yjllij 
jECf-1 jECf- 1 

+ ... 

+ II (Yj + mij) (L Yjllij ) ... ))) 
JECi JECi 

where we have used the convention that I1jECr ... is equal to 1 if Ci = 0 
and similarly that LjEC: ... is equal to 0 if C[ = 0. 

Once again, the basic idea is quite simple. First, the node must be isolated 
from the supply nodes before charge sharing effects should be considered. 
Furthermore, for a node of strength r with value 1 to be relevant to the 
node i, either every stronger node must be isolated from i or the stronger 
nodes that are connected to i must have the value 1 (thus making the value 
of the node of strength r irrelevant anyway). 

It should be pointed out that the models above constitute only a few of 
the very many possibilities. For example, we required that a stored 1 on a 
node must drive the output node through a P-path in order to transmit a 
1 properly. In some cases it may be appropriate to relax this condition and 
allow any kind of path. The derivation of such a model is left as an exercise 
for the interested reader. 

Finally, it is possible now to combine the models of the previous section 
with the models in this section and obtain a "universal" model that cap
tures path blocking, different transistor strengths, and node sizes. Again, 
we refer the interested reader to [12, 13]. 
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5.7 Network Model of CMOS Circuits 

The previous sections have shown how to derive ternary node excitation 
functions for general CMOS circuits. Given that there are many possible 
switch-level models to use in deriving the node excitation functions, there 
are many circuit graphs possible for any given CMOS circuit. Following our 
treatment of gate circuits in Chapter 4 we define the circuit graph to reflect 
the circuit topology. The network models reflect the behavioral properties 
of the circuit. 

Given a CMOS circuit, the corresponding circuit graph is a 5-tuple G = 
(X,I, T,N,£), where 

• X is a set of input vertices, labeled Xl, X2 , ..• , X n , 

• I is a set of input-delay vertices, labeled Xl, X2,· .. , X n , 

• T is a set of transistor vertices, labeled t l , t2,"" tp, 

• N is a set of node vertices, labeled Y 2' Y 3' ... , Y m , 

• e ~ (X x I) u ((IUN) x (TuN)) u (T x N) is a set of edges. 

All input vertices have indegree 0, all input-delay vertices have indegree 
and out degree 1, and all the transistor vertices have indegree l. 

Given a CMOS circuit, we obtain its circuit graph as follows. First, there 
is an input vertex Xi for every external input Xi, a transistor vertex ti for 
every transistor, and a node vertex Yi for every node in the circuit except 
for the supply nodes. For every input vertex Xi there is an input-delay 
vertex Xi and an edge from Xi to Xi. There is an edge from every node 
vertex Y to every node vertex Y' in the same cell. Note that this includes 
an edge from Y to y. There is an edge from the transistor vertex t to every 
node vertex in the cell that contains t. There is also an edge from input
delay or node vertex i to transistor t if the gate terminal of the transistor 
is connected to this input delay or node. 

We illustrate the concept of a circuit graph using the CMOS circuit of 
Figure 5.12. The corresponding circuit graph, with X = {Xl}, I = {xd, 
N = {Y2'Y3'Y4}' and T = {tl, t2, t3, t4, t5, t6}, is shown in Figure 5.13. 

As for gate circuits, a circuit graph is a convenient and precise notation 
for describing how the components of a CMOS circuit are connected-it is 
a structural representation of the circuit. To study its behavior, we need to 
add a domain. The domain for CMOS circuits is always the ternary domain, 
{O, 1, q>}, because CMOS circuits often have undefined node excitations 
for certain (usually transient) binary input values. Hence, even for binary 
circuits, we must be prepared to handle excitations that are q>. 

For an input-delay vertex X, the vertex function maps a state of the 
( undefined) environment to the vertex domain V. This function is called 
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FIGURE 5.12. CMOS circuit C. 

FIGURE 5.13. Circuit graph of CMOS circuit in Figure 5.12. 

X. As in gate circuits, X is the input value provided by the environment, 
and the variable x holds the input value "seen" by the circuit. 

For a transistor vertex, there are two cases. If the transistor is of the N 
type, the vertex function T: VIII+INI -> V is the value of the input or com
ponent vertex connected to the gate terminal of the transistor. On the other 

hand, if the transistor is of P-type, the vertex function T: VIII+INI -> V is 
the complement of the value of the input or component vertex connected 
to the gate terminal of the transistor. 

For a node vertex, the vertex function Y maps a transistor-vertex state 
to V, i.e., Y: VITI+INI -> V. The actual function here is determined from 
the topology of the cell containing the vertex as well as from the switch
level model used, as discussed in the previous section. This function is used 
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to represent the behavior of the collection of transistors in the cell and 
can be quite complex. However, by Theorem 2.3, it always satisfies the 
monotonicity property 

8 ~ t implies f(8) ~ f(t), 

for all ternary 8, t. 
To illustrate the concepts introduced so far, consider again the circuit 

shown in Figure 5.12 with circuit graph shown in Figure 5.13. The input
delay vertex function is Xl' The transistor vertex functions are 

TI = Xl, T2 = Xl, T3 = Y4' T4 = Y4' T5 = Y2' T6 = Y2' 

Assuming we use the strict CMOS Modell from Section 5.4, we obtain the 
node vertex functions 

and 

y 2 = (tl + t3)(t; + t4) + (t2t4tl t3)<I>, 

Y3 = (t4(t2 + t l t 3))<I>, 

Y4 = t5t6 + (t5t 6)<I>. 

As in gate circuits, the vertex functions defined above introduce a dis
tinction between the present value of a vertex variable and the present 
value of the "excitation" of that vertex variable, i.e., the value computed 
by the vertex function. This permits us to associate a delay with every 
input, every transistor, and every node in the circuit. 

To represent the state of the entire circuit, we need to select a set of 
state variables. As for gate circuits, by changing the set of state variables, 
we effectively change the locations of the assumed delays in the circuit. 
Clearly, the circuit graph model easily permits us to select all of the vertex 
variables as state variables. We may think of such a model as the input-, 
transistor-, and node-state model. As we shall see, this model is too detailed 
for many applications, and simpler models are often preferred. In particular, 
we often use an input- and key-state model. 

As for gate circuits, having selected a set of vertices from the circuit graph 
to act as state variables, we associate with each such vertex two distinct 
items: the vertex variable and its "excitation function." The excitation 
function of a vertex in the state variable set is obtained as follows. We start 
with the vertex function. We then repeatedly remove all dependencies on 
vertices that have not been chosen as state variables, by using functional 
composition of the vertex functions. 
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U p-Bounded-Delay Race Models 

In this chapter we describe a formal model for the analysis of the behavior of 
asynchronous circuits modeled by networks in which the delays are inertial 
and have only upper bounds. The analysis is limited to a single transition: 
Suppose the network is in a given state and the input is kept constant. We 
would like to know what is the "outcome" of the transition, i.e., what are 
the possible states of the network a "long" time after the input change, i.e., 
after the "transients have died down." The analysis of the circuit behavior 
in response to a sequence of input changes can then be carried out as a series 
of such transition analyses. We postpone the discussion of the response to 
an input sequence until Chapters 11-13. 

Our basic analysis model corresponds to the classical binary "race analy
sis," that has been in use for many years [66, 67, 135]. These methods were 
originally rather informal, but were formalized in 1979 in [26] as the "gen
eral multiple-winner" (GMW) model. In particular, the concept of outcome 
was formally defined there. We describe the GMW model in some detail in 
this chapter. 

Next, we begin studying how the analysis is affected by the choice of state 
variables or, equivalently, of the delay locations in the network model. We 
show in Section 6.4 that any set of feedback variables is sufficient for the 
purpose of calculating the stable total states of a network. In Section 6.5, 
however, we demonstrate with the aid of several examples that the outcome 
of a transition depends on the choice of the state variables. 

We also consider several variations of the basic model. First, we ex
tend the GMW model to the ternary domain, thus obtaining the extended 
multiple-winner (XMW) model. Second, we briefly mention "single-winner" 
models in which only one state variable can change at a time. Third, we 
briefly discuss an ideal-delay model. 

The models mentioned above are intuitively appealing, but computa
tionally intractable for large circuits. In Chapter 7 we describe efficient 
algorithms that produce most of the results of interest obtainable from the 
binary race models. 
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How To Read This Chapter 

There are several results in this chapter with rather technical proofs. These 
proofs have been grouped together as Section 6.9, and can be omitted on 
first reading. 

6.1 The General Multiple-Winner Model 

When gates are implemented by physical circuits, it is not possible to guar
antee that the delays of two gates of the same type are exactly the same, 
even if it is the designer's intention to make them the same. Moreover, if 
one succeeded in producing two equal delays, they could become unequal 
as a result of such factors as aging, radiation, changes in temperature, etc. 
The behavior of a well-designed circuit should not change if the delay of one 
of its components deviates slightly from its nominal value. Thus, we have to 
accept the possibility that gate delays may be unequal. It is impractical to 
try to measure all the gate delays in a large circuit; consequently, we need 
an analysis model in which the exact delay values are not known. Similar 
remarks apply to wire delays. These considerations lead us to an analysis 
technique that examines all the possible relative delay values. 

This section, which represents a formalization of the methods used earlier 
by many researchers (e.g., [66, 67, 135]), is based on [23, 25, 26]. For our 
present purposes, we do not refer to the circuit from which the network 
model has been derived, for we develop methods for the analysis of the 
network itself. Recall that a network has the form 

N= (D,X,S,£,F), 

where D is the domain, X is the set of input excitation vertices labeled 
Xl"'" X n , S is the set of state vertices with two sets of labels: state vari
able labels (Sl,"" sm) and the corresponding excitation functions (81 , ... , 

8m ), £ is the set of edges, and F is a vector of circuit equations that, given 
a state of the network, compute the implied values of all the components 
in the original circuit. 

A total state c = a·b is an (n + m)-tuple of values from D, the first 
n values (the n-tuple a) being the values of the input excitations, and 
the remaining m values (the m-tuple b) being the values of the variables 
Sl,"" Sm, which we refer to as (internal) state variables. Given the total 
state a·b of a network, the circuit state consists of the values computed by 
the circuit equations for this total state. 

In any total state c = a·b, we define the set of unstable state variables as 

U(a·b) = {Si I bi :f 8 i (a·b)}. 

Thus state c is stable if and only if U(c) = 0. 
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Until further notice, we use the binary domain in all the networks. We 
wish to know how the circuit behavior will evolve when it is started in a 
given initial state and the input is kept constant. For this purpose we define 
a binary relation Ra on the set {O, l}m of internal states of N for every 
input vector a E {O, 1 }n: 

For any b E {O,l}m, 

bRab, if U(a·b) = 0, i.e., the total state a·b is stable, 

bRabIC, if U(a·b) :f:. 0, and JC is any nonempty subset of U(a·b), 

where by bIC we mean b with all the variables in JC complemented. No other 
pairs of states are related by Ra. The relation Ra is called the geneml 
multiple-winner (CMW) relation for the reasons explained below. 

An internal state in which more that one state variable is unstable is 
called a mce. In any race the GMW model permits any nonempty subset 
of unstable variables to change at the same time; thus there are "mul
tiple winners" possible. Also, the relation is called "general" because no 
assumptions are made about the relative values of the delays (although we 
do assume that all the delays are up-bounded). 

We frequently depict Ra by a directed graph, drawing an edge from b to 
b' if bRab'. Such an edge indicates that b' is a possible immediate successor 
of b. A loop from b to b indicates that the total state a·b is stable. The 
graph is then a description of the possible network behaviors under the 
assumption that the input excitation remains constant at the value a. 

A number of different types of phenomena are possible, as we now show. 
We denote by Ra(b) that portion of the graph of the relation Ra that 
contains only the states reachable from b. 

Race-free transition to a unique stable state 

To tie together a number of concepts, we now present a complete 
example of analysis. We begin with the NOR latch of Figure 6.1. Its 
circuit graph is shown in Figure 6.2. For this example, we associate 
delays only with the two gates; the gate-state network obtained from 

FIGURE 6.1. NOR latch. 
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FIGURE 6.2. Circuit graph for NOR latch. 

FIGURE 6.3. Gate-state network for NOR latch. 

Figure 6.2 is shown in Figure 6.3, where 81 = Y1 and 82 = Y2. The 
excitation functions are 

The graph of the GMW relation RlO(lO) is shown in Figure 6.4. Un
stable variables are underlined in such figures. Here, in each unstable 
state there is only one unstable variable; thus there are no races. The 
unstable variable must eventually change in each case, since the de
lays are assumed to be finite. Furthermore, a unique stable state is 
reached. Hence this type of behavior presents no difficulties if we as
sume that our objective is to design a circuit that changes from one 
stable state to another as a result of an input change. 

10 

t 
OQ 

t 
01 

o 
FIGURE 6.4. A race-free transition. 
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Noncritical race 

Consider the circuit shown in Figure 6.5. In the gate-state network, 
we have the excitation functions 8 1 = X and 8 2 = X. In total state 
1·11 there is a race. However, the final outcome of this race is always 
the same, namely the stable state 1·00. The graph of R1 (11) is shown 
in Figure 6.6. This race is noncritical, because its outcome is the 
same for all possible distributions of delays. Such a race corresponds 
to acceptable behavior, if we are only interested in the final stable 
state. 

X--+---l 

FIGURE 6.5. A circuit with a noncritical race. 

11 
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\/ 
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FIGURE 6.6. A noncritical race. 

Critical race 

Let us return to the latch of Figure 6.1 as represented by the gate
state model of Figure 6.3. In the total state 00·00, both gates are 
unstable (see Figure 6.7). This is a race, the final outcome of which 
depends on the relative values of the two delays; such a race is called 
critical. Let us consider this in more detail. Suppose the delays of the 
two gates are 81 and 82 . If gate 1 is faster than gate 2, i.e., if 81 < 82 , 

then gate 1 wins the race and the network reaches the internal state 
10. The total state 00·10 is stable. The instability of gate 2 that was 
present in state 00·00 has been removed because the output of gate 1 
changed. Gate 2 has been excited for time 81 , a time that is shorter 
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QQ 
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01 10 

o 0 
FIGURE 6.7. A critical race. 

than its delay 02, and it has lost the race. The fact that gate 2 has 
not reacted to the short pulse of excitation reflects the inertial nature 
of its delay. Similar remarks apply if 01 > 02. 

Race-free oscillation 

Consider the network of Figure 6.8, which uses the gate-state model. 
The excitation function is S = (X *s). The graph of R1(0) is shown in 
Figure 6.9. Here, the network never reaches a stable state, but goes 
through a periodic succession of unstable states. Such a cycle of states 
is called an oscillation. Note, however, that there are no races; in each 
unstable state exactly one variable is unstable. 

X ...--_...,D..--s---, 
FIGURE 6.8. A circuit with an oscillation. 

Q 

o 
1 

FIGURE 6.9. A race-free oscillation. 

Match-dependent oscillation 

Yet another phenomenon occurs in the NOR latch model in the gate
state network if one allows for the possibility that both delays are 
exactly equal. Starting in the total state 00·00, the network then 
moves to state 00·11. If we repeat the analysis from this state, we 
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11 

FIGURE 6.10. A match-dependent oscillation. 

obtain the graph of Figure 6.10. The cycle consisting of the two states 
00 and 11 is an oscillation. Oscillations may occur in physical circuits, 
but, of course, they will not have this idealized binary nature that is 
described by our very simple model. The following phenomenon also 
occurs in physical circuits: In the transition from state 00·00, the 
circuit may enter a metastable state in which the two outputs have 
an intermediate voltage value, between the voltages corresponding to 
the logical 0 and 1 signals [31]. Although the metastable state does not 
persist indefinitely, it is impossible to bound its duration. In a way, 
the oscillation shown above has similar properties. For the oscillation 
to continue, one would have to have perfectly matched delays at all 
times. This is highly unlikely. It is plausible that such a perfect match 
could exist for several cycles, and it would be difficult to predict how 
long the oscillation would last. We call this type of oscillation match
dependent. In a crude way it models the metastability phenomenon. 

Transient oscillation 

Figure 6.12 shows the graph of R 1 (011) for the gate-state network 
derived from the circuit of Figure 6.11. The excitation functions are 
8 1 = X +81, 8 2 = 81, and 83 = (X *82*83). There are two oscillations, 
(011,010) and (111,110). Each of these two cycles has the property 
that there is a variable that is unstable in both states of the cycle 
and has the same value in those states. In cycle (011,010), 81 is the 
unstable variable in question. Since the delay of 81 is assumed to 

X----·t-----------------------, 

r D" J [>0 " F-1JJ 
FIGURE 6.11. A circuit with transient oscillations. 
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x 

FIGURE 6.12. Illustrating transient oscillations. 

be bounded from above, say by D, this oscillation cannot persist; 81 

will eventually change, causing the network to leave the cycle. We 
call such oscillations "transient." It is clear from Figure 6.12 that 
the network eventually reaches stable state 101; hence this behavior 
is acceptable, if one is only interested in the final stable state. In 
fact, from Figure 6.12 and the assumption that the delay of each 
component is bounded from above by D, it follows that the circuit is 
guaranteed to be in the state 101 after at most 3D time units. 

From the example above, we may be tempted to say that transient 
cycles can always be disregarded if we are only interested in the out
come of a transition. But suppose the circuit first enters a nontran
sient cycle-where, by definition, it can stay for an arbitrarily long 
time- and then leaves this cycle and enters a transient cycle. Con
sider the circuit of Figure 6.13 started in stable state 1·00011 when 
the input changes to o. In Figure 6.14 we show the graph Ro(OOOll). 
Note that there are five cycles in the graph: two self-loops for stable 

D'3~ 

FIGURE 6.13. A circuit with transient states in the outcome. 
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FIGURE 6.14. Transient cycles reachable from a nontransient cycle. 

states 10101 and 01101, a nontransient cycle (00011, 11011), and two 
transient cycles (10111, 10110) and (01111, 01110). The circuit can 
stay in nontransient cycle (00011,11011) for an arbitrarily long time, 
without violating any delay bounds. It can then move to state 10011 
and later enter transient cycle (10111,10110). This shows that it is 
possible for a circuit to enter a transient cycle after an arbitrarily 
long time. Such a transient cycle cannot be disregarded, and will be 
included in the definition of outcome of a transition. 

Overlapping oscillations 

The network of Figure 6.15 has the GMW behavior shown in Figure 
6.16. To simplify the graph of Figure 6.16, we have used one edge 

FIGURE 6.15. Two oscillators. 

with two arrowheads between two states s and s' to represent an 
edge from s to s' and an edge from s' to s. Note that there are 
several transient oscillations, for example, (00,01) and (10,11). Note 
also that all four states take part in several nontransient oscillations, 
for example, (00,01,11,10). This example illustrates the fact that two 
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QQ ...... ~---I~~ Ql 

lQ ...... _---I~~ 11 

FIGURE 6.16. GMW behavior of two oscillators. 

transient oscillations may be connected to each other, i.e., that it is 
possible for a network to be in one transient cycle for a while, then 
switch to a second transient cycle, then return to the first cycle, etc. 

This concludes our series of examples of possible behaviors. We now for
malize several concepts, so that we can treat the network analysis problem 
more precisely. 

6.2 GMW Analysis and UIN Delays 

In this section we state the result that the general multiple-winner race 
model captures exactly the behavior of a network under the assumption 
that each state variable Sj corresponds to an ideal, delay-free "gate" with 
excitation function Sj(X(t)·s(t)) in series with an up-bounded inertial 
(UIN) delay. Throughout this chapter we assume that each delay bi in 
a network is a UIN delay bounded from above by some constant D i , i.e., 
that 0 :s; bi < D i . The maximum value of all the Di in the network can be 
used as an upper bound for all the delays in the network. 

Recall that a binary variable v(t) is said to change at time T if it was 
previously 0 and is Q: at time T, i.e., if V(T) = Q:, and there exists a b > 0 
such that v(t) = 0, for T - b :s; t < To Recall also that an up-bounded 
inertial delay with input S and output s must satisfy the following two 
properties: 

1. If s changes, then it must have been unstable. 
Formally, if s(t) changes from Q: to 0 at time T, then there exists 
b > 0 such that S(t) = 0 for T - b :s; t < T. 

2. s cannot be unstable for D units of time without changing. 
Formally, if S(t) = Q: for T :s; t < T + D, then there exists a time r, 
T :s; r < T + D such that s(t) = Q: for r :s; t < T + D. 

We want to show that the up-bounded inertial delay model and the 
GMW race model are mutually consistent. We describe this consistency 
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intuitively first. Suppose that, for each state variable Sj in the network, 
we have an input/output waveform Sj(t)/Sj(t), where Sj(t) is the state 
of the variable at time t and Sj(t) = Sj(X(t)·s(t)) is the corresponding 
excitation at time t, computed from the total state X(t)·s(t) at time t. 
Suppose further that each such waveform obeys Properties 1 and 2 of UIN 
delays. Then we demonstrate that the state sequence obtained from the 
waveforms corresponds to the GMW analysis of the network. Before we 
can prove this claim, however, we need to define precisely the waveforms 
mentioned above; these waveforms are called a UlNa-history. 

Informally, a UlNa-history of a network is a set of waveforms beginning 
at time to. The input excitation vector X is kept constant at the value a. 
The real numbers ti represent the time instants at which the state vector 
S changes. The state is constant in any interval between ti and ti+1. The 
number of state changes can be either finite or infinite. If it is finite, then 
the last state reached must be stable. If it is infinite, then we allow only a 
finite number of state changes in any finite interval. 

X--·T~~~Sl __ ~[]rS_l __ ~~~S_2 __ ~~ 

FIGURE 6.17. Network N. 

The network of Figure 6.17 illustrates the concepts above. Suppose the 
two delays Ih and 82 are up-bounded inertial delays with upper bounds 
Dl = 4 and D2 = 2, respectively. In Figure 6.18 we show some waveforms 

X~ 

Sl~~ __________________________________________ __ 

S2 ______________ --' L 
trl +-rl +I~I +1-1r+1~+I~Ir+I~I~I~I~I~I-+I~I-+I~I-+141-+1 •• 

o 1 234 

FIGURE 6.18. A UIN1-history for N. 
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for the state variables Sl and S2 of N, along with those of the excitations 
8 1 and 82 • One easily verifies that these waveforms are consistent with 
the assumptions that b1 and b2 are inertial delays satisfying 0 ::; b1 < 
4 and 0 ::; b2 < 2. The corresponding UlNa-history 11- includes (a) the 
sequence e = (to, t1, t2, t3) = (0,1.2,3.6,4.2), of consecutive instants of 
time at which some state change takes place; (b) the waveform of the 
input X, assumed to be constant for t ~ to; and (c) the waveforms of the 
state variables Si. Each UlNa-history 11- determines a sequence of states. In 
our example, we have the sequence "((11-) = (10,11,01,00). It is clear that 
the waveforms can be uniquely reconstructed from the value a of X, the 
sequence e of time instants, and the state sequence "((11-); note that the 
waveforms are of no interest before time to. 

Formally, a UlNa-history of a network N for some a E {O,l}n is an or
dered triple 11- = (6, X(t), s(t)), where e is a strictly increasing sequence 
e = (to, tl, ... ) of real numbers, and X(t) and s(t) are functions, X map
ping real numbers to {O, l}n and s mapping real numbers to {O, l}m. These 
functions satisfy the following properties. 

I. (a) X(t) = a for all t ~ to. 

(b) s(t) = bi for ti ::; t < ti+1' where bi E {O, l}m, for all i ~ O. 

(c) s(ti-d =FS(ti), for each i ~ 1, i.e., s(t) changes at each ti. 

(d) If the sequence (to, h, ... , tr) is finite, then for all t ~ tr we have 
s( t) = br, for some br E {O, I} m such that a·br is a stable total 
state of N. 

(e) If the sequence (to, tl, ... ) is infinite, then for every t > 0, there 
exists an i such that ti ~ t. Note that this requirement implies 
that there is only a finite number of state changes in any finite 
time interval. 

II. For each variable Sj, the input/output waveform 8j (X(t)·s(t))/Sj(t) 
is consistent with the assumption that variable Sj is represented by 
the delay-free excitation function 8j in series with an up-bounded 
inertial delay. In other words, the input/output waveform satisfies 
Properties 1 and 2 of up-bounded inertial delays. 

The state sequence "((11-) corresponding to a UlNa-history 11- is defined to 
be the sequence (s(to), s(td, .. . ). 

Next, we formalize the concept of a sequence of states derivable from 
a GMW analysis of a network. A sequence "( = (SO, Sl, ... ) of states (i.e., 
binary m-tuples) is called an Ra-sequence for some a E {O, l}n if and only 
if Si =F si+1, si Rasi+1 for i ~ 0, and either the sequence is infinite or the 
last state is stable. An infinite Ra-sequence is said to be transient if and 
only if there exists a state variable Sj and an integer r ~ 0 such that, 
for i ~ r, sj = a E {O, I} and 8j (a·s i ) = a. Thus a transient sequence 
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contains a variable that, from some point in time, has the same value and 
is unstable. Such a situation can exist only if the delay of that variable is 
infinite. An Ra-sequence that is finite, or infinite but not transient, is said 
to be non transient. Since we assume that all the circuit delays are bounded 
from above, we consider only nontransient Ra-sequences. 

Continuing with our example, Figure 6.19 shows the graph of the rela
tion R1(1O) for the network of Figure 6.17. It is seen that the sequence 
(10,11,01,00) is a nontransient R1-sequence. 

lQ 

11 OO~ 

\/ 
01 

FIGURE 6.19. GMW relation Rl(lO) for N. 

We now claim that for each UlNa-history there is a corresponding non
transient Ra-sequence and vice versa. 

Theorem 6.1 There is a one-to-one correspondence between nontransient 
Ra -sequences and UlNa -histories. In other words, the GMW analysis of a 
network is consistent with the up-bounded inertial delay model. 

Proof: See Section 6.9. The proof involves two lemmas. The first lemma 
shows that the state sequence 'Y(f.l-) corresponding to any UlNa-history 
is always a nontransient Ra-sequence. The second lemma shows that for 
every Ra-sequence 'Y there is time sequence e such that the waveforms f.l-b) 
corresponding to 'Y and e constitute a UlNa-history. 0 

6.3 The Outcome in GMW Analysis 

As has been mentioned above, in many applications we are only inter
ested in the "nontransient" states reached from a given state after an input 
change. We have called this as-yet-undefined set of states the outcome of a 
transition. We give a precise definition of outcome in this section. 

It is not entirely clear at first glance how outcome should be defined. 
Since every graph of Ra(b) is finite, every path from b must eventually 
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reach a cycle. (A stable state is a cycle oflength one.) One may be tempted, 
therefore, to say that the network has reached its outcome when a cycle in 
the graph has been reached. This may not be the case, however, if the cycle 
is transient, as has been illustrated in the transient oscillation example and 
as is formally defined below. 

A cycle in the relation diagram of Ra(b) is transient if there exists a 
state variable Si that has the same value in all the states of the cycle and 
is unstable in each state of the cycle. Let D be the maximum value of all 
the network delays. A network cannot stay in a given transient cycle for 
more than D units of time. Let the set of cyclic states reachable from b in 
the relation diagram of Ra (b) be 

cycl(Ra(b)) = {s E {o,l}m I bR:s and sR~s}, 

where R+ is the transitive closure of R, and R* is the reflexive and transitive 
closure of R. Next, define the set of nontransient cyclic states to be 

cycLnontrans(Ra(b)) = {s I s appears in a nontransient cycle}. 

The outcome of the transition from b under input a is the set of all the 
states that appear in at least one nontransient cycle or are reachable from 
a state in a nontransient cycle. Mathematically, we have 

out(Ra(b)) = {s I bR:c and cR:s, where c E cycLnontrans(Ra(b))}. 

The reason for this definition will become clearer soon. We define a state 
d to be transient if it is reachable from b (i.e., if bR~d) but is not in the 
outcome out(Ra(b)), and to be nontransient if it is in out(Ra(b)). 

Our analysis problem can now be formalized as follows: Given a total 
state a·b, find out(Ra(b)). Note that this problem, as stated, is of expo
nential complexity because out(Ra(b)) can contain as many as 2m states. 
However, we are able to show later that a "summarized version" of out can 
be efficiently computed. This will be done with the aid of ternary simula
tion, which is the topic of Chapter 7. 

Before we proceed, we want to compare the outcome with the conse
quences of the assumption that all delays are up-bounded and inertial. 
Consider a network N in which all the delays are bounded by D. Let N be 
started in state b with the input held constant at a. A state c is said to be 
D-transient with limit T for a·b if it is reachable from b and there exists a 
real number T > 0 such that in every UlNa-history jL, the condition t ::::: T 

implies s(t) i=- c. This definition means that, as long as every delay in the 
network is less than D, after a certain time limit T the network cannot be 
in a D-transient state. D-transient states are related to the transient states 
by the following result. 

Proposition 6.1 Under the conditions defined above, a state is transient 
if and only if it is D-transient. 
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Proof: See Section 6.9. D 

Recall that the fundamental mode requires a network to be in a stable 
state before an input change can be made. This implies that, after every 
input change, the environment must wait "long enough" for the network to 
stabilize. The next result makes precise the concept of fundamental mode 
operation of a network, by specifying how long is long enough. 

Theorem 6.2 Let N be any network with m up-bounded delays with upper 
bound D. Suppose N is in state b at time 0 and the input is held constant 
from time a until time t ?: (2m - 2)D. Then the state of the network at 
time t is in out(Ra(b)). 

Proof: See Section 6.9. D 

Note that the theorem applies in particular when state a·b is stable; 
consequently, this result gives a bound on the duration of constant-input 
intervals required for fundamental mode operation. 

For every network with delays up-bounded by D, one can calculate a 
constant T(D) that is less than or equal to (2m - 2)D. If we start in state b 
and keep the input constant at a for time T(D), we are guaranteed that the 
network will reach some state in out( Ra (b)). If out( Ra (b)) consists of a single 
stable state, we know that this stable state has been reached after time 
T(D). The environment may then change the input, and a new transition 
begins. 

6.4 Stable States and Feedback-State Networks 

The first model for sequential circuit analysis was introduced by Huffman 
in 1954 [66, 67]. In his model, delays are associated only with a set of 
"feedback wires" -with the property that cutting all these wires results 
in the removal of all the feedback loops from the circuit. In terms of our 
network model, Huffman's model is a feedback-state network of Section 4.4. 

FIGURE 6.20. Input-, gate-, and wire-state network. 

A feedback-state network properly describes the stable states of a circuit, 
as we illustrate with the example of Figure 6.1. The input-, gate-, and wire
state network is repeated in Figure 6.20. Suppose that the network is in 
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total state X·xyz = 00·00010001; one verifies that this state is stable. 
Suppose further that we select {Z4} as the feedback vertex set, i.e., as the 
state set. Then, the input and feedback variable values uniquely determine 
all the other variable values in the circuit. This is true because, in any stable 
state, each excitation function has the same value as the corresponding 
vertex variable. In our example we have the following circuit equations, 
(leaving out the equation for Z4): 

Thus, under the assumption that the network is stable, we have expressed 
all the vertex variables in terms of the input excitations and the feed
back variables. This is always possible because, by definition, "cutting" the 
feedback vertices results in a feedback-free graph that corresponds to a 
combinational circuit. Hence, if we know the input values and the values at 
all the feedback vertices, we can reconstruct the rest of the vertex values. 

Recall that by a circuit state we mean the vector of all the vertex variables 
in the circuit graph. 

Proposition 6.2 The set of stable circuit states computed using a feedback 
vertex set is independent of the choice of the feedback vertex set. 

Proof: Suppose a circuit state X·s = a·b is stable. Let f and g be the 
vectors of values of two distinct feedback vertex sets F and g in this state. 
The values a together with the values f uniquely determine the values of all 
the variables in the circuit graph, and the result is circuit state X·s = a·b. 
Similarly, the values a together with the values g uniquely determine the 
rest of the variables, and this also results in state X·s = a·b. Hence, if a 
circuit state is found using the feedback vertex set F, then it is also found 
using g. D 

We illustrate the computation of the stable states of the network of 
Figure 6.20 using the feedback vertex set {Z4}. The excitation function for 

the single feedback variable is Z4 = (X2 + (Xl + Z4)). We find the stable 
states (X·z4 ) of the feedback-state network to be 00·0,00·1,01·0,10·1, and 
11·0. The stable states of the input-, gate-, and wire-state network can now 
be computed using the circuit equations. These states are 

00·00010001, 00·00100010, 01·0110 0110, 10·10 011001, 

and 

11·11 00 1100. 
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6.5 GMW Analysis and Network Models 

In this section we illustrate how the results of a G MW analysis differ as 
we vary the network model. Although feedback variables suffice for stable 
state calculations, this is not the case when we want to compute transitions 
among states. Our next example shows that transitions among states do 
depend on the choice of the feedback-vertex set. 

Feedback-state network with feedback-vertex set {YI} 

Consider the feedback-state network of the NOR latch of Figure 6.1 
with feedback-vertex set {yd. We have the excitation function 

and the circuit equation 

Y2 = (X2 + YI)' 

The state X'YI = 11·0 is stable. If the input excitation changes to 
00, the feedback-state network moves to state 00·0. The excitation 
Y I in this state evaluates to 0, showing that gate 1 remains stable. 
The value of gate 2 changes to 1 as a result of this input change. 
Altogether, the model with feedback-vertex set {yd predicts that 
the gate state of the NOR latch will be 01. 

Feedback-state network with feedback-vertex set {Y2} 

Now repeat the same analysis using feedback-vertex set {Y2}. It is 
clear from the symmetry of the circuit that the predicted final gate 
state in this case is 10! 

The fact that the feedback-state model does not always predict the cor
rect transitions has been known for a long time [66, 67]. Attempts were 
made to correct these deficiencies by developing a theory of "hazards." We 
shall return to hazard phenomena in Chapter 7. 

The examples above strongly suggest that a "more accurate" model is 
needed. Consequently, we leave the feedback-state model now and consider 
other alternatives. In Section 7.4 we will show that the feedback-state model 
can be used to give correct results, but with a different race model. 

Gate-state network 

In 1955 Muller introduced a model in which a delay was associated 
with each gate [100, 106, 107]. Let us analyze the NOR latch using 
this model. The excitation functions are YI = (Xl + Y2) and Y2 = 
(X2 + yd. The transition that leads to difficulties in the feedback
state model is from state 11·00 when the input changes to 00. If we 
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use {Yl} as the feedback vertex set, we get 00·01 as the final state, 
whereas {Y2} predicts 00·10. In the gate-state model, in the total state 
00·00, both gates are unstable. This is the race that we have analyzed 
in Figure 6.10. The network may go to stable state 00·01, or to stable 
state 00·10, or it may enter the match-dependent oscillation between 
00·00 and 00·11. In any case, the outcome predicted by this gate-state 
network is much different than those predicted by the feedback-state 
networks. 

Gate- and wire-state network 

The next example shows that gate delays are not sufficient. In the 
gate-state network corresponding to the circuit of Figure 6.21, the 
states 10·00 and 01·00 are both stable. Hence, the gate-state network 
predicts no changes in gate outputs when the input changes from 10 
to 01. However, suppose that we add the wire vertex z to our network 
model. Now the excitation functions are 

The following sequence of states is possible in the G MW analysis, if 
the wire delay is appreciably large. Let the state of the new network 
be X 1X 2·YIY2 z. First, 10·001 ....... 01·001 as a result of the input 
change; then the network may respond with 

01·001 ....... 01·10 1 ....... 01·111 ....... 01·11 0 ....... 01·010. 

Thus, the presence of the wire delay makes two outcomes possible: 
01·000 if the wire delay is negligible and 01·010 ifthe sequence above 
is followed. Therefore the gate-state network also appears to be in
adequate. 

FIGURE 6.21. Gate circuit C6.21. 

At this point we can conclude that the gate- and wire-state network is 
more accurate than either some feedback-state networks or the gate-state 
network. We are not in a position to answer the question whether gate and 
wire delays suffice. Indeed, this turns out to be the case, but the proof of 
this result will come in Chapter 7. 



Section 6.6. The Extended GMW Model 101 

6.6 The Extended GMW Model 

A generalization of the GMW model to a three-valued multiple-winner 
model is now presented. Like the GMW model, this model is intuitively 
easy to describe, but very inefficient. We show later that a summary of the 
model's results can be found efficiently. 

In the extended multiple-winner (XMW) model we are about to define, 
state variables are allowed to go through the intermediate value if> when 
changing from one binary value to the other. Let 

N= ({O,if>,l},X,S,e,F) 

be a network and let a·b be any ternary state of N. The set U(a·b) of 
unstable delay vertices is defined as before. Similarly, we define a binary 
relation Ra on {a, if>, l}m as the smallest relation satisfying 

• bRab, if a·b is stable, 

Thus any unstable state variable may keep the old value, become equal to 
its excitation, or become if>. 

The definition of the XMW relation is illustrated in Figure 6.22 for the 
gate-state network of the NOR latch, when started in state 10·10. The sub
script on an unstable variable gives its excitation. 

FIGURE 6.22. Example of XMW analysis. 

Next, we need to define the outcome of a transition. The concept of tran
sient cycle is somewhat more complicated here. A cycle is called transient 
in the XMW model when there is a vertex i that is unstable in all the 
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states in the cycle, has the same value in all these states, and that value is 
either binary or the excitation of that vertex is the same in all the states 
of the cycle. Thus we can have the following two cases. The variable may 
have the value If> and a constant binary excitation, or it may have a binary 
value b and either b or If> as excitation. The assumption is that a binary 
signal being "pulled" alternately to its complement and to If> cannot persist 
indefinitely. However, a If>-value pulled alternately to ° and 1 can remain 
If> indefinitely. 

With this modification, one can define the sets trans, cycle, and out as 
in the case of the GMW relation. 

6.7 Single-Winner Race Models 

One of the basic assumptions in the GMW model is that there can be multi
ple winners in a race. This assumption corresponds closely to the notion of 
"true concurrency" [42J. In the literature dealing with concurrent systems, 
it is common to replace true concurrency with an interleaved model of con
currency. In this model, when there is more than one unstable component, 
only one can change at a time. However, the order in which the components 
change cannot be predicted. We now define a race model, called the gen
eral single winner (GSW) model, that corresponds to such an interleaved 
model of concurrency. We then compare and contrast the results obtained 
by using the GSW model and the GMW model. 

Given a network N we define the binary GSW relation Ua on the set 
{o,l}m of internal states of N for every input vector a E {O, l}n. 

For any bE {O, l}m, 
bUab, if U(a·b) = 0, i.e., the total state a·b is stable, 
bUab{k}, for every k E U(a·b), 

where by b{k} we mean b with the variable k complemented. No other pairs 
of states are related by Ua. 

We define the outcome of a GSW analysis in the same way as for the 
GMW analysis, i.e., 

out(Ua(b)) = {s I bU;c and cU;s, where c E cycLnontrans(Ua(b))}, 

where cycLnontrans is defined exactly as in the GMW relation. 
The following proposition characterizes the results obtained by a GMW 

and a GSW analysis. 

Proposition 6.3 Given a network N we have out(Ua(b)) ~ out(Ra(b)). 
Furthermore, there exist networks for which the inclusion is proper. 

Proof: The first claim follows trivially from the definition of out(Ua(b)) 
and out(Ra(b)). For the second claim, consider the gate-state network for 
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FIGURE 6.23. Circuit for which out(Ua(b)) C out(Ra(b)). 

the circuit in Figure 6.23 started in the stable state 11·000 when the in
puts change to 00. In Figure 6.24 we show the Roo(OOO) and the Uoo(OOO) 
relations. Note that out(Uoo(OOO)) = {OIl, 101}, whereas out(Roo(OOO)) = 
{OOO, 110,011,101}. In particular, in the GMW relation it is possible for 
the XOR gate to remain 0 indefinitely, whereas in the GSW model it must 
change to 1 within time 2D, where D is the largest gate delay. 0 

Roo (000) Uoo(OOO) 

QQO QQO 

,/;~ A 
lOQ 01Q 10Q 01Q 

!~Y! ! ! 
101 110 011 101 011 

0 0 0 0 
FIGURE 6.24. Roo(OOO) and Uoo(OOO) relations. 

We show in Chapter 7 that with a sufficient number of delays in the net
work model, a GSW analysis yields the same outcome as a GMW analysis. 

6.8 Up-Bounded Ideal Delays 

Recall that an ideal delay has the property that every input transition 
eventually appears at the output. Thus each delay must "remember" how 
many "unsatisfied" transitions have occurred. For this reason, the analysis 
of networks with ideal delays is somewhat more complex. This material is 
based partly on [56]. 
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Let N = ({O, I}, X,S,£, F) be a network. The ID-state of Nis an ordered 
pair (b, u), where b E {O, l}m is the state of Nand u is a vector of m 
nonnegative integers. Each such integer Ui is called the count and gives the 
number of unsatisfied transitions for variable Si, as is explained below. The 
count Ui is 0 if and only if the variable Si is stable. We now define a binary 
relation on the set of ID-states of a network with ideal delays. 

The ideal multiple-winner relation (IMW relation) Ia is defined as follows. 
For any q = (b, u), we have qIaq if and only if u is the all-zero vector. 
Otherwise, qIaq' if q' = (b', u') satisfies the conditions below. Select any 
number of state variables in b that have positive counts and change them 
to obtain b'. Each count u~ is then calculated as follows: 

u~ = Ui - 1 if b~ "# bi and Si(a·b) = Si(a·b'), 

u~ = Ui, if b~ = bi and Si(a·b) = Si(a·b'), 

u~ = Ui, if b~ "# bi and Si(a·b) "# Si(a·b'), 

u~ = Ui + 1 if b~ = bi and Si(a·b) "# Si(a·b'). 

The interpretation of these rules is quite straightforward. When a variable 
changes, one of the changes that has previously appeared at the input of its 
delay appears now at the output of the delay. Thus one of the previously 
unsatisfied transitions has become satisfied; consequently, the count is re
duced by 1. However, if the excitation of the variable changes during the 
transition, then a new transition has occurred at the input of the delay and 
the count must be increased by 1. Note that it is possible for a variable and 
its excitation to change at the same time. In that case, the count remains 
unchanged. 

We illustrate the relation Ia with the gate-state network of Figure 6.3. 
Suppose the network starts in stable total state 11·00. The corresponding 
ID-state is (00,00). Assume that the input changes to 00; thus we are 
interested in the relation 100 . After the input changes, both gates become 

(00,11) 

~~ 
(10,20) (10,02) (01,20) (01,02) 

~y 
(11,11) 

FIGURE 6.25. Analysis of latch with ideal delays. 
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unstable and the ID-state becomes (00,11). This is our initial ID-state for 
this transition. The graph of the fa relation is shown in Figure 6.25. Notice 
that there are no stable states in this graph. Note also that states 10 and 
01, which are stable in GMW analysis, are unstable here; in fact each state 
corresponds to two ID-states with different counts. 

x 

FIGURE 6.26. Circuit with infinite transition graph. 

Our second example illustrates that the count variables may be un
bounded and the fa graph may be infinite. Consider the circuit of Fig
ure 6.26. The network with state variables Yl, Y2, Y3 satisfies the excitation 
equations Y1 = X EB Y2, Y2 = Yl, and Y3 = Yl. State 0·000 is stable. Chang
ing the input to 1 we obtain the ID-state (000,100). One verifies that the 
following sequence is part of the fa relation graph: 

(000,100) -+ (100,011) -+ (110,101) -+ (010, 012) -+ (000,102). 

Thus we have returned the first two variables to their initial state, and the 
third variable has not changed but has acquired two unsatisfied transitions. 
We can repeat the cycle on the first two variables without changing the 
value of the third. This would lead to the state (000, 004). Clearly, this can 
be done arbitrarily many times, resulting in an infinite relation graph. Note 
that, although the delay of Y3 is up-bounded, the delays of Yl and Y2 can 
be arbitrarily smaller than that of Y3. 

FIGURE 6.27. Circuit in which IMW differs from GMW. 
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QQOO 

/+~ 
01QO 1100 1000 

+ V V 
0110 

V 
FIGURE 6.28. Graph of Rl for the circuit of Figure 6.27. 

Our third example shows that it is possible to reach certain states in Ia 
that are not possible in Ra. Consider the circuit of Figure 6.27. Suppose 
we use the feedback-state network with state variables Yl, Y2, Y3, Y4. The 
excitation equations are 

Y1 = Yl + X *Y2, Y2 = Y2 + X *Yl, 

Y3 = Y3 + X *Yl *Y2, Y4 = Y4 + Yl *Y2*Y3· 

Starting in the stable state 0·0000 and changing the input to 1, we find 
the relation graph of Rl (0000) as shown in Figure 6.28. Notice that the 
variable Y4 has the value 0 under the inertial delay model. 

In contrast to the above, Figure 6.29 shows a path in the h graph for 
the same network. Here it is possible to reach the state 0111, which is not 
in the outcome of the GMW analysis. 

(0000,1100) 

t 
(0100,2010) 

t 
(0110,2000) 

t 
(1110,2001 ) 

t 
(1111,2000) 

() 
(0111,2000) 

FIGURE 6.29. Part of graph of h for the circuit of Figure 6.27. 
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6.9 Proofs 

The proofs that were omitted in the main body of the chapter are now 
provided along with some auxiliary results. 

6.9.1 Proofs for Section 6.2 

The following observation is required in later proofs. Recall that an Ra
sequence is nontransient if there is no variable that is unstable and has the 
same value from some point on in the sequence. 

Proposition 6.4 An Ra -sequence,,! = (SO, Sl, ... ) is nontransient if and 
only if, for every state variable s j and for every integer r 2: 0 such that 
sj = a E {O, I} and Sj(a·s r ) = a, there exists an integer p > 0 such that 
s;+p = a or Sj(a.sr+P ) = a. 

This proposition implies that, in a nontransient sequence, the "runs" 
during which a variable has a constant value and is unstable are all finite. 

We now show that for each UlNa-history there is a corresponding non
transient Ra-sequence. Given a UlNa-history J.l = (8, X(t), s(t)), recall 
that "!(J.l) = (SO,SI, ... ), where si = S(ti) for i 2: o. 

Lemma 6.1 Let J.l be a UlNa -history. Then "!(J.l) = (sO, sl , ... ) is a non
transient Ra -sequence. 

Proof: First we note that s( ti- t} =I- s( t;) for all i > 0, by definition of 
J.l. Thus Si-1 =I- si. Let K be the set of all the state variables that change 
in going from si-l to Si. To show that (sO, Sl, ... ) is an Ra-sequence, we 
need to verify that each of the variables in K is unstable in the total state 
a·si- 1. Suppose, on the contrary, that Sj E K but Sj(a·si- 1) = S;-1 = a. 
Then Sj(a·s(t)) = Sj(t) = a, for ti-l :::; t < ti. This contradicts Property 1, 
which requires the existence of a 8 such that ti - 8:::; t < ti with Sj(t) = a. 
One verifies also that, if the Ra-sequence constructed above is finite, its last 
state must be stable, because the last state in the UlNa-history is stable. 
Therefore (sO, SI, ... ) is an Ra-sequence. Suppose the sequence (sO, SI, ... ) 
is transient, i.e., there exists a state variable Sj and an integer r 2: 0 such 
that sj = a and Sj(a·si ) = a for i 2: r. By the definition of the sequence 
(SO, s1, ... ) this implies that Sj(t) = a and Sj(a·s(t)) = a for t 2: ti, 
contradicting Property 2. Thus the Ra-sequence is nontransient. D 

Next, we want to show that, for every nontransient Ra-sequence, there 
exists a corresponding UlNa-history. Before we can prove this result, we 
must introduce a number of concepts. Consider a nontransient Ra-sequence 
"! = (sO, s1, .. . ). A run from state si of,,! is a sequence (si, si+1, ... , ... Sp-1) 
of consecutive states of "! with the following property: There exists a j, 
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1 :S j :S m such that 

s; = S~+1 = ... = S~-1 = a, 

Sj(a·s i ) = Sj(a.sH1 ) = ... = Sj(a·sp - 1 ) = a, 

but s~ = a or Sj (a·sP ) = a. The length of a run is the number of states in 
it. Since we are assuming that 'Y is nontransient, the length of the longest 
run from any state is finite. The longest run from si is called a maximal 
run of 'Y. Let P( Si) denote the length of the longest run from state Si. Note 
that a stable state has no runs. 

We are interested in the lengths of the maximal runs for the following 
reason. To construct a UlNa-history corresponding to an Ra-sequence, we 
must assign a time ti to each state Si in the Ra-sequence. The difference 
between the times assigned to states SP(si) and si in the sequence must not 
exceed the upper bound Dj for any unstable variable Sj defining the run; 
otherwise, we would be violating Property 2 of UIN delays. At the same 
time, when assigning times to the states in the Ra-sequence to form the 
corresponding UlNa-history, we must be careful not to assign an infinite 
number of states to a finite interval. The following construction presents 
one method of avoiding this problem. 

We view 'Y as consisting of a sequence of certain maximal runs that will 
be called segments. The first segment is so, S1, ... , sP(sO)-1, where P( sO) is 
the length of the longest run from so. Let D be the minimum value of all 
the network delays. State SO will be assigned time Q and state sP(sO) will be 
assigned time D /2. The next segment is sP(sO), sP(sO)+!, ... , sP(sP(So) -1). 

In other words, we first move to the first state after the end of the first 
segment and reach the state sP(sO). We then find the maximal run from 

P( peso)) • 
that state, and advance further by that run. The state s s wIll be 
assigned time 2D /2. We then continue in the same fashion. 

In general, each segment will be assigned exactly D /2 time units. The 
intermediate states (if any) reached during a segment will be assigned times 
in such a way that they are equally spaced between the initial states of 
consecutive segments. By this construction, and the fact that each run is of 
finite length, we are ensuring that only a finite number of changes occurs 
in any finite interval. Furthermore, since the time for each segment is D /2 
and any run can involve at most two segments, the length of the longest 
possible run of 'Y is strictly less than the time assigned to two segments, 
Le., D. Thus, the length of any run will be strictly less than D, as required 
by the maximum delay assumption. 

To illustrate this construction, consider the nontransient Ra-sequence 
'Y = (sO,s1, ... ,s9) = 

CQ 11,Q 1 Q, Ql1, Ill, 11Q, Ill, 11Q, 1 QQ, 1 Q 1). 

(This sequence is derived from Figure 6.12.) One verifies that sO has a 
maximal run of length 3, S1 of length 2, s2 of length 2, s3 of length 4, etc. 
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We divide 'Y into segments as follows: 

(Q11,Q1Q,Q11) (111,11Q,111,11Q) (10Q) (101), 

where the final state 101, corresponds to a special final segment that has 
no runs. Suppose the least upper bound of the three delays is D = 6 ns. 
Then the time sequence e (divided into segments to improve readability) 
assigned by this construction is 

(0,1,2) (3,3.75,4.5,5.25) (6) (9). 

Formally, suppose that 'Y = (sO, Sl, ... ) is a nontransient Ra-sequence. 
The UlNa-history Ilh) = (e,X(t),s(t)) is constructed in two steps. First 
we compute the index of the state that starts segment j. We denote this 
index by OJ and define it recursively as 

{ 0 if j = 0, 
(Tj = (Tj-l + p(sa j - 1 ) otherwise. 

e will be chosen in such a way that interval j will begin at time j D /2. 
This ensures that the time associated with state saj is jD/2. Thus define 
e by 

ti = { 

:i.Q + (i-aj)D 
2 2(a]+1 -aj) 

:i.Q 
2 

Let X(t) = a for t ~ to. For all i ~ 0, let s(t) = Si for ti S t < tHlJ if Si is 
unstable; let s(t) = si for ti S t, if Si is stable. 

Proposition 6.5 Suppose the length of the longest run from Si is p. Then 
tHp - ti < D. 

Proof: We prove the claim by contradiction. Assume tHp - ti ~ D. Clearly, 
Si cannot be the first state of any segment, because the first state after Si'S 

longest run is D /2 < D time units away from si. There must be a segment 
with a nonzero run that starts after si; if the following segment were the 
final stable state, then tHp - ti could not exceed D /2. This implies that j 
satisfies the conditions 

jD (j + l)D 
ti < 2 and 2 S tHp' 

Now we have a run from time ti to time tHp and this run properly includes 
the segment between OJ and (Tj+l. This is a contradiction that the run 
between (Tj and (Tj+1 is of maximal length. 0 

Lemma 6.2 Let 'Y be a nontransient Ra -sequence. Then J1( 'Y) is a UINa-
history. 
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Proof: We need to establish that J-l( 'Y) satisfies Conditions I and II of the 
definition of UlNa-history in Section 6.2. Conditions I(a), (b) and (e) follow 
immediately from the construction of J-l("(). Conditions I(c) and (d) follow 
from the fact that 'Y is an Ra-sequence. Now, let sj be any state variable 
in N. To prove the lemma we need to verify Condition II, i.e., that the 
waveform Sj(X(t),s(t))/Sj(t) in J-l("() satisfies Properties 1 and 2 for the 
input/output behavior of a UIN delay. 

First we verify Property 1. Suppose Sj(t) changes from a to 0: at time 
T. From the definition of s(t), this means that there exists k > 0 such that 
tk = T and sj-1 = a and sj = Sj(T) = 0:. Since (so'.s1, 00') is an Ra
sequence, sk-1 Rask. Hence the variable Sj must be unstable in total state 
a·sk- 1, i.e., Sj(a·sk- 1) = 0:. By definition of s(t), we have sk-1 = s(t), 
for tk-1 ~ t < tk' Hence Sj(a·s(t)) = 0: for T - (tk - tk-d ~ t < T, and 
Property 1 holds for each variable S j . 

For Property 2, assume that Sj(X(t), s(t)) = 0: for T ~ t < T + D, 
but that Sj(t) = Ii in the same interval. Suppose tk ~ T < tk+l, and 
t/ ~ T + D < tt+!; then the same conditions also hold for the interval 
tk ~ t < tt+!. But this implies the existence of a run that lasts for time 
tt+! -tk that is greater than or equal to D. It follows from our construction 
and from Proposition 6.5 that such a run cannot exist. Hence, we conclude 
that Sj(X(t),s(t))/Sj(t) satisfies Property 2 for all variables Sj. 0 

The main theorem of Section 6.2 that relates the GMW model to up
bounded inertial delays now follows from the two lemmas above. 

6.9.2 Proofs for Section 6.3 

Lemma 6.3 If state d is in out(Ra(b)), then it is not D-transient. 

Proof: Suppose d E out(Ra(b)); then there exists a nontransient state c 
such that bR~ c and cR~ d. Then we can find sequences of the form 

° i ( i+! j)m i+ 1 k S ,00.,S, S ,00.,S ,S ,00"S, 

where sO = b, si+1 = C ,sk = d, (si+1, ... , sj) is a nontransient cycle, and 
m is an arbitrarily large integer. Corresponding to each such sequence, we 
can construct a UlNa-history J-l = (8,X(t),s(t)). In this history, let 8 > 0 
be the time required to go once around the cycle involving state c. Assume 
that d is D-transient with T as the limit. Then we can choose m large 
enough to satisfy m8 > T. But this means that state d can be reached in J-l 
by a sequence of length greater than T; this is a contradiction. 0 

Lemma 6.4 If d rf. out(Ra(b)), then d is D-transient. 

Proof: If d is not in the outcome, then it can be reached by a sequence 
that either contains no cycles or contains only transient cycles. 
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Consider first the case of a sequence "( = so, ... , sk, where Si Rasi+1 for 
i = 0, ... ,k -1, sO = b, sk = d, and all the states are distinct. Since at least 
one of the 2m states of N must be in the outcome, and sk = d is not in the 
outcome, it follows that k must be strictly less than 2m - 1. Consider now 
the prefix j.L, corresponding to ,,(, of any UlNa-history satisfying the bound 
D. Each interval ti+l - ti must be less than D, by Property 2. Hence the 
time to reach state d is less that (2m - 2)D. 

It may be possible to increase the length of a sequence from b to d by 
inserting transient cycles. So suppose that we have a sequence 

° i i+l j i+l I k S , ... ,s ,(s , ... ,s ),s ,s , ... ,s , 

where sO = b, Si+l = c, sk = d and the transient cycle (Si+l, ... , sj) has 
been inserted. The transient cycle is entered when the transition from si 

to the first Si+l is made. The cycle is left when the transition from the 
second Si+l to sl is made. The sequence (Si+l, ... , sj), si+l is a run with 
an unstable variable having a constant value. This run must last less than 
D units of time. But this means that the time to go from the first si+1 
to sl must be less that D. Therefore the total time for going from b to d 
is still less that (2m - 2)D, even if a transient cycle is inserted. Since any 
sequence from b to d can be viewed as a sequence of distinct states into 
which transient cycles have been inserted, it follows that the time to reach 
d is always less that (2m - 2)D. Thus, if d is not in the outcome, then it is 
D-transient with limit (2m - 2)D. 0 

From these two lemmas, Proposition 6.1 and Theorem 6.2 now follow. 



Chapter 7 

Ternary Simulation 
As we have seen in Chapter 6, the race analysis methods-that examine all 
possible successors of a given state-are computationally intractable. We 
now describe a method that is quite efficient and produces results that can 
be viewed as a summary of the results produced by the multiple-winner 
methods. For many purposes, such summarized results are sufficient. 

The idea of ternary simulation is relatively straightforward, as we illus
trate in Section 7.1 by several examples. Next, the two parts of the ternary 
algorithm are defined and their results are characterized in Sections 7.2 
and 7.3. The result of Algorithm A can be thought of as providing a sum
mary for the set of all the states reachable from the initial state in the 
GMW analysis of an input-, gate-, and wire-state network. Similarly, Al
gorithm B is shown to provide a summary of the outcome of the same 
GMW analysis. In Section 7.4 we show that every input- and feedback
state model gives correct results for transitions among states, provided it 
is analyzed with the aid of ternary simulation. We next show in Section 7.5 
that ternary simulation not only gives the correct outcome, but is also ca
pable of detecting static hazards in the network outputs. In Sections 7.6 
and 7.7 we relate ternary simulation to the GSW and the XMW analysis 
methods, respectively. The latter result shows that ternary simulation is 
also applicable to CMOS networks. We close the chapter with Section 7.8, 
which contains the proofs of the more difficult results. 

How To Read This Chapter 

Some of the proofs of the results in this chapter are quite complex. We have 
included such proofs in Section 7.8. That section can be omitted on first 
reading. While the proofs remaining in the main body of the chapter are 
relatively simple, the reader may wish to get an overview of the chapter by 
omitting them on first reading. 

7.1 Introductory Examples 

In 1965 Eichelberger developed a method [49] for the detection of hazards 
and races. The method uses three values for logic signals: 0,1, and <P. 
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The precise mathematical meaning of <I> was given in Section 2.3, where 
ternary algebra was discussed; intuitively, we interpret <I> as a changing, 
uncertain signal. Eichelberger's method consists of two parts, which we 
call Algorithms A and B, and assumes that the circuit is started in a stable 
state and some inputs are changed. In this chapter we present a more 
general method that does not require the initial circuit state to be stable. 
This material is closely based on [126]. 

Assume we are given a network N started in some total state a·b. In 
Algorithm A, every state variable is repeatedly set to the least upper bound 
(lub) of its current value and its excitation. Thus, in the first step, all 
the unstable state variables are set to <1>. Intuitively, this indicates that 
these variables are uncertain. The uncertainty so introduced is then spread 
throughout the network. In Algorithm B, every state variable is repeatedly 
set to its excitation. Consequently, some of the uncertainties are removed. 
If they are all removed, then the outcome is a stable binary state. If some 
uncertain state variables remain, the outcome for these state variables may 
be either a or 1, depending on the relative sizes of the delays. Together, 
Algorithms A and B constitute ternary simulation. We illustrate these ideas 
with three informal examples. 

Example 1 

Consider the circuit of Figure 7.1. Suppose it was in stable initial 
total state X·XYIY2Y3 = 0·0011, and the input just changed to 1. 
Note that we assume there is a delay associated with the input. We 
now run the algorithm starting the network in total state 1·0011. 
First, the input delay has an excitation that differs from its current 
value; thus it changes to <1>, i.e., the state becomes 1·<1>011. Now the 
output of the OR gate becomes <1>, since one of its inputs is a and 
the other is uncertain. Similarly, the NAND gate's output becomes 
uncertain, and the circuit reaches ternary state 1·<1><1> 1 <1>. In this state, 
the inverter input is uncertain, and state 1·<1><1><1><1> is reached. This 
state is stable, and Algorithm A terminates here. These steps are 
shown in Figure 7.2. 

For Algorithm B, the circuit starts in the state reached in Algorithm 
A, i.e., in 1·<1><1><1><1>. In the first step, the input delay changes and the 

x 
X--~~------------------~ 

FIGURE 7.1. Circuit for Example 1. 



Section 7.1. Introductory Examples 115 

Algorithm A Algorithm B 

1·0011 1· <I> <I> <I> <I> 

t t 
1· <I> 0 11 1·1 <I> <I> <I> 

t t 
1 . <I> <I> 1 <I> 1·11 <I> <I> 

t t 
1 . <I> <I> <I> <I> 1· 11 o <I> 

() t 
1·1101 

() 
FIGURE 7.2. Ternary simulation for Example 1. 

circuit moves to 1· 1 <I><I><I>. Now the OR gate responds to the input 
delay change, and state 1·11 <I> <I> is reached. As a result of this, the in
verter, and then the NAND gate, also change as shown in Figure 7.2. 
Thus the result of the ternary simulation is the binary state 1·1101. 

The transition we have analyzed above corresponds to the GMW 
analysis shown in Figure 7.3, where we used the input- and gate
state model. Here the two methods of analysis give the same result, 
because the outcome of the GMW analysis is also the state 1·1101. 

1101 

() 
FIGURE 7.3. GMW analysis for Example 1. 
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Example 2 

For our second example, consider the circuit of Figure 7.4, first with
out the wire delay, i.e., with excitation functions Y1 = x EB x, and 
Y2 = Yl + Y2· If the circuit is in stable total state X'XYIY2 = 0·000 
and the input changes to 1, we can carry out the analysis starting in 
state 1·000. If we do so, we find 

Algorithm A: 

1·000 -- 1·~00 -- 1·~~0 -- 1·~~~. 

Algorithm B: 

1·~~~ -- 1·1~~ -- 1·1O~. 

Here, the ternary simulation result disagrees with the GMW analy
sis in the input- and gate-state model; the latter predicts the stable 
state 1·100 as the final outcome, as contrasted with 1·1O~ predicted 
above by Algorithm B. If the wire delay z is added, however, and the 
network's total state is X'XYIY2Z, we have 

Algorithm A: 

1·0000 -- 1·~000 -- 1·~~0~ -- 1·~~~~. 

Algorithm B: 

1·~~~~ -- 1·1~~~ -- 1·1~~1 -- 1·1O~1. 

It is easy to see that a GMW analysis of this extended network pre
dicts two stable states, 1·1001 and 1·1011, for this transition. If we 
accept the ternary state 1·10~1 as representing both of these binary 
states, then the results of ternary simulation agree with the GMW 
analysis. 

FIGURE 7.4. Circuit for Example 2. 

Example 3 

In our third example, the input delay to the circuit is stable, but an 
internal gate is unstable. It may appear unusual to start in a state 
in which the input has not changed, but there is some internal insta
bility. In practice, however, such situations occur quite frequently. In 
particular, when power is applied to a circuit, it is usually impossible 
to know its starting state. 
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x 
x------~--+-~ 

z 

FIGURE 7.5. Circuit for Example 3. 

Consider the circuit of Figure 7.5 started in unstable total state X· 
x YIY2Y3Y4Y5 Z = 0·001010 1. Note that only gate Y2 is unstable in 
this state. The analysis yields 

Algorithm A: 

0·001010 1 ----+ 0·0 OellOlO 1 ----+ 0·0 o ell 0 ell 0 1 ----+ 0·0 OellOellell ell. 

Algorithm B: 

0·0 OellOellell ell. 

Suppose we now perform a GMW analysis; the result shows that the 
circuit is not guaranteed to reach a unique stable state. For example, 
the nontransient cycle 

0·0 01010 1 ----+ 0·0 000101 ----+ 0·0 OOOOQl ----+ 

0·00Q0011 ----+ 0·001OQ11 ----+ 0·0010111 ----+ 0·0010101 

is in the outcome. From this observation, and the fact that the wire z 

is unstable in three of the states in the nontransient oscillation (and 
can therefore become 0), one has 

0·0 o ell 0 ell ell ell!;;; lub out(Ra (0·00101O 1)). 

For convenience, an input-, gate-, and wire-state network model of a 
circuit C is called the complete network of C. The main theorem of this 
chapter states that ternary simulation of a complete network N agrees with 
the results of the GMW analysis, Le., ternary simulation computes the lub 
of the GMW outcome. We postpone the formal statement of this theorem 
until more background has been established. 
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7.2 Algorithm A 

For ternary simulation we use the ternary domain in the network model. 
To distinguish two versions of the same network, one with a binary do
main and the other with a ternary domain, we denote them by Nand 
N, respectively. Let N = ({O,I},X,S,£,F) be a binary network, and 
N = ({ 0, <Ii, I}, X, S, £ , F) its ternary counterpart, called the ternary ex
tension of N. There are n inputs and m state variables in Nand N. We 
use the convention that state variable vectors in the ternary domain are 
denoted by s and the input and vertex excitation function vectors by X 
and S. Let a·b be a (binary) total state of N. We remind the reader that 
the ternary excitation function Si associated with each state variable Si 

satisfies the monotonicity property 

a!;;; b implies Si(a) !;;; Si(b), 

for all a, b E {O, <Ii, l}n. This is true because Si is always the ternary 
extension of a Boolean function, and the monotonicity property holds for 
ternary extensions (see Section 2.3). 

The first algorithm of ternary simulation is formally defined as follows: 

Algorithm A 
h :=OJ 
so:= bj 
repeat 

h:= h + Ij 
sh := lub{sh-l, S(a·sh-1)}j 

until sh = sh-l j 

In the following, we use A (roman) to denote the name of the algorithm 
and A (italic) to denote the length of the sequence of states that the algo
rithm generates. Propositions 7.1 and 7.2 below are based on [26). 

Proposition 7.1 Algorithm A generates a finite sequence so, ... , sA of 
states, where A ::; m. Furthermore, this sequence is monotonically increas
ing, i.e., 

sh c: sh+l, for 0 ::; h < A. 

Proof: First, by the fact that t !;;;; lub{t, t'}, for all t and t', it follows that 

Sh !;;; lub{ sh, S( a·sh)} = Sh+l, for 0 ::; h < A. 

Second, in each step of the algorithm, at least one state variable must 
become <Iij otherwise the algorithm terminates. Since there are m state 
variables, it now follows that A cannot exceed m. 0 

Let N be a network in state b with inputs held constant at a. Define the 
set of all states reachable from b in the GMW analysis as: reach(Ra(b)) = 
{c I bR~c}. In the following, if h > A, by Sh we mean SA. 
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Proposition 7.2 The least upper bound of the set of all the states reach
able in the GMWanalysis of a network N is covered by the result of Algo
rithm A for N, i.e., 

lubreach(Ra(b)) ~ sA. 

Moreover, 

b(Ra)hc implies c ~ Sh. 

Proof: The proof of the second claim is by induction on h. For h = 0, 
we have b(Ra)Oc implies c = b. But also sO = b. Hence b(Ra)Oc implies 
c ~ so. Assume now that b(Ra)hc implies c ~ sh, and suppose that cRad. 
By definition of Ra , each component di of d has either the value of the 
corresponding component Ci in c or it is equal to the excitation Si(a·c). 
Thus d ~ lub{ c, S( a·c)}. The latter expression is equal to lub{ c, S( a·c)}, 
since the ternary extension S agrees with S on binary arguments. Using 
the induction hypothesis, the monotonicity of S, and the monotonicity of 
lub, we find d ~ lub{ Sh, S( a·sh)} = Sh+l. Thus the second claim holds. 
By Proposition 7.1, sA covers sh for every hj hence the main claim is 
established. D 

The formulation of Algorithm A above is very general, in the sense that it 
makes no assumptions about the starting state a·b. However, if the network 
starts in a stable total state, then only input-delay vertices are unstable 
after an input change. In this case it is convenient to use a slightly simpler 
formulation of Algorithm A; we cl1ll this version Algorithm A. Assume N is 
started in the stable total state &·b and the input changes to a. Algorithm A 
is defined as follows: 

Algorithm A 
h :=OJ 
a:= lub{&, a}j 
So:= bj 
repeat 

h:= h+ 1j 
Sh := S(a.sh - 1); 

until Sh = sh-l j 

The reader can verify that the monotonicity result of Proposition 7.1 
holds also for Algorithm A. Thus we have 

Proposition 7.3 Algorithm A generates a finite sequence so, ... , sA of 
states, where A :::; m. Furthermore, this sequence is monotonically increas
ing, i.e., 

sh C sh+l, forO:::; h < A. 
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The reader can also verify that Algorithm A applied to the network of 
Figure 7.1 yields exactly the same results as those of Figure 7.2. 

The next lemma shows that the simpler version of the first algorithm 
is sufficient when the network N has input delays and is in a stable total 
state initially. For convenience, we assume that the first n state variables 
are the n input-delay variables, i.e., that Sj = Xj for j = 1, ... ,n. 

Lemma 7.1 Let N be a ternary network with input delays started in the 

stable total (binary) state a·b and let the input change to a. Let sA denote 
the result of Algorithm A. Similarly, let sA denote the result of Algorithm A 
when N is started in the total state a·b. Then sA = sA. 

Proof: Let sh, 0 ~ h ~ A and sh, 0 ~ h ~ A be the results of Algorithms A 
and A, after h steps. We prove that sj = sj for h ~ o. The lemma then 
follows immediately by Propositions 7.1 and 7.3. Consider first an input
delay vertex j; its excitation is Xj. Note that bj = aj, since a·b is a stable 
total state. There are two sub cases to consider. If aj = aj, then aj = aj 
and it follows trivially that sj = bj and sj = bj for h ~ o. On the other 
hand, if aj -::j:. aj, then 

if h = 0, 
otherwise. 

Altogether, if j is an input-delay vertex, then sj = sj for h ~ o. 
We now show by induction on h, that Sh = sh for h ~ O. Since sa = sa = 

b, the basis follows trivially. Assume inductively that sh = sh holds for some 
h ~ O. If j is an input vertex, we already know from the above that SJ+l = 

sJ+1. If j is an internal vertex, then Sj (a·c) = Sj (a'·c) for every a, a' E 

{O, <P, l}n and c E {O, <P, l}m. In particular, Sj(a.sh ) = Sj(a·sh ). This, 
together with the induction hypothesis, implies that Sj(a.sh) = Sj(a.sh ) = 
sJ+1. We now claim that Sj(a.sh ) = lub{sj, Sj(a.sh)}. From the properties 

of lub, it follows that Sj(a·sh)!;;; lub{sj, Sj(a·sh)}. If Sj(a·sh) = <P then, 
trivially, lub{ sj, Sj (a.sh)} ~ Sj( a·sh). 

This leaves the case where Sj(a·sh) E {O, I}. Recall that Sj is a mono
tonic function of its arguments. Recall also that the network is started in 
a stable total state a·b in which all the arguments of Sj are binary, and 
in which Sj = Sj(a·b) = bj . Note that each Sj can either remain at its 
initial binary value throughout the algorithm or it can change to <P. The 
latter can only occur if Sj has changed to <P in the previous step. In sum
mary, if Sj(a·sh) E {O, I}, then sj = Sj(a·sh), and we have proved our 
claim that Sj(a.sh) = lub{sj, Sj(a·sh)}. Using this claim and the fact that 

Sj(a·sh) = Sj(a.sh ), we now have 

sJ+1 = lub{sj,Sj(a.sh)} = Sj(a.sh) = Sj(a.sh ) = sJ+1. 

Thus the induction step goes through, and the claim follows. D 



Section 7.3. Algorithm B 121 

The main result of this section is the following [9, 21]. 

Theorem 7.1 Let N = ({ 0, I}, X, S, £, F) be a complete binary network, 
and let N = ({ 0, <P, I}, X, S, £, F) be its ternary counterpart. If N is started 
in total state a·b, then the result sA of Algorithm A for N is equal to the 
lub of the set of all the states reachable from the initial state in the GMW 
analysis of N, i. e., 

sA = lub reach(Ra(b)). 

Proof: By Proposition 7.2, lUbreach(Ra(b)) is covered by the result of 
Algorithm A for N. It remains to be shown that the lub of the reachable 
states of N covers sA. This follows from Corollary 7.2 on page 136. In the 
corollary, it is shown that, for every vertex j, there is a state sj E {O, l}m 
such that bR~ sj and s1 r; lub{ bj , s;}. This sufices to prove the result. 0 

7.3 Algorithm B 

In Algorithm B, we see how much of the uncertainty introduced by Al
gorithm A is eventually removed; hence we start the network in the state 
generated by Algorithm A. 

Algorithm B 
h:= 0; 
to := sA; 

repeat 
h:= h+ 1; 
t h := S(a.th- 1); 

until t h = t h - 1 ; 

Proposition 7.4 Algorithm B generates a finite sequence to, ... , t B of 
states, where B ::; m. Furthermore, this sequence is monotonically decreas
ing, i.e., 

t h ::J th+1, for 0 ::; h < B. 

Proof: We first prove by induction on h that t h ;;J th+1. For the basis, 
observe that sA = lub{ sA, S (a.sA )}. It follows from the properties of lub 
that to = SA ;;J S( a.sA ) = t 1 . Now assume inductively that t h ;;J th+!o By 
the monotonicity of S it follows that t h+1 = S( a·th) ;;J S( a·th+!) = t h+2 

and the induction step goes through. 
In view of this result, at least one state variable must change from <P 

to a binary value in each step of the algorithm; otherwise the algorithm 
terminates. Since there are m state variables, B cannot exceed m, and the 
proposition follows. 0 
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Proposition 7.5 The least upper bound of the set of all the states in the 
outcome of the GMWanalysis of a network N is covered by the result of 
Algorithm B for N, i.e., 

lub out(Ra(b)) ~ t B . 

Moreover, for every h ~ 0, 

lub out(Ra(b)) ~ tho 

Proof: We prove the latter claim by induction on h. If h = 0, then t h = sA. 

Since out(Ra(b)) ~ reach(Ra(b)), we have lubout(Ra(b)) ~ sA by Theo
rem 7.1, and the basis holds. Now suppose that h > 0 and that t h satisfies 
the claim, but t h+1 does not. Then there must exist c E out(Ra(b)) and a 
vertex i such that Ci ~ (t h+1k Since Ci E {0,1}, this can only happen if 
(t h+1)i = Ci. We now assert that the excitation Si(a·d) is equal to (t h+1)i 
for every state din out(Ra(b)). First note that 

S(a·d) = S(a·d) ~ S(a.th) = t h+1, 

where the inequality follows from the inductive assumption (which im
plies d ~ t h ) and the monotonicity of S. Now, since (th+1)i is binary 
and ;;;J Si(a·d), it must be equal to Si(a·d), as claimed. Now consider any 
nontransient cycle in out(Ra(b)). Since the excitation of the i-th variable 
is constant throughout the cycle, the value of the variable must be con
stant throughout the cycle. Since the cycle is nontransient, that value must 
be equal to the excitation. Thus di = (th+1)i = Ci for every state d in 
the cycle. Since the nontransient cycle was arbitrary, we have shown that 
di = (th+1)i = Ci for every state d in every nontransient cycle in out(Ra(b)). 
This, together with the fact that Si(a·e) = Ci for every state e in out(Ra(b)), 
implies that every state d E out(Ra(b)) reachable from a nontransient cycle 
will also have di = (t h+1)i = Ci. However, these results together imply 
that di = Ci for every d E out(Ra(b)), contradicting the assumption that 
C E out(Ra(b)). Hence, the induction step goes through. The main claim of 
the proposition now follows in view of Proposition 7.4. D 

The characterization of the results of Algorithm B is given by: 

Theorem 7.2 Let N = ({O,l},X,S,£,F) be a complete binary network, 
and let N = ({ 0, ~, I}, X, S, £, F} be its ternary counterpart. If N is started 
in total state a·b, then the result t B of Algorithm B is equal to the lub of 
the outcome of the GMWanalysis, i.e., 

t B = lub out(Ra(b)). 

Proof: By Proposition 7.5, lub out(Ra(b)) is covered by the result of Al
gorithm B. It remains to be shown that the lub of all the states in the 
outcome of N covers t B . This follows from Lemma 7.9 given on page 141. 
In the lemma it is shown that there exists a nontransient cycle Z reachable 
from the initial state and such that the lub of all the states in Z covers t B • 

This suffices to prove the theorem. D 
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7.4 Feedback-Delay Models 

We have seen in Section 6.5 that the feedback-delay model used in con
junction with the GMW analysis is not quite correct; while it predicts 
the correct stable states, it does not predict the correct transitions among 
them. We show in this section that the feedback-delay model is completely 
correct when used in conjunction with ternary simulation. 

Recall that a set F of vertices of a directed graph g is called a feedback
vertex set if the removal from g of all the vertices in F, along with all 
their incident edges, results in an acyclic graph. We show that, to obtain 
the same results as does the GMW analysis of a complete network, it is 
sufficient to associate state variables with inputs and any feedback-vertex 
set, if ternary simulation is used. The results are independent of the choice 
of the vertex set. First, however, we describe the process of removing one 
state variable from the ternary network. 

Without loss of generality, we assume that the variable to be removed is 
variable m-if some other variable is to be removed, we can always renum
ber the vertices. Let N = ({O, cJI, I}, X, S, e, F) be any ternary network in 
which 8 m is a state variable with excitation function 8m that does not de
pend on any input excitation function nor on the value 8 m itself. Since 8m is 
independent of 8m, we have 8 m(X·81· ··8m-1·8m) = 8m(X·81···8m-1·cJI) 
for every X and Si, 1:::; i :::; m. 

Given N we now define N = ({O, cJI, I}, X,S,e,F) as follows: S = S
{m} with labels 5 = 51 ... 5m-1 and excitation functions 8 = 81 ... 8m-I> 

where 

8i = 8 i (X.5·8m(X·5.cJI)) for 1 :::; i < m, 

and with circuit equations 

if i = m, 
otherwise. 

As usual, the edge set defines the dependencies. It should be noted that e 
can contain new edges introduced by this process. Note also that we must 
use ternary, and not Boolean, algebra in manipulating and simplifying the 
expressions for the excitation functions and circuit equations. 

To illustrate the removal of a state variable, consider the network N in 
Figure 7.6, with excitation functions 

8 1 = Xl, 8 2 = (81 + 84) 83 = X 2, 84 = (82 + 83), 

and circuit equations 

F1 = 81, F2 = 82, F3 = 83, F4 = 84, F5 = S2, F6 = 84· 

We remove the state variable 84. The reduced network N is shown in 
Figure 7.6. 



124 Chapter 7. Ternary Simulation 

Network N Network N 

FIGURE 7.6. Illustrating state removal. 

Here the excitation functions are 

81 = Xl, 82 = (81 + (82 + S3)), 83 = X 2, 

and the circuit equations are 

Fl = Sl, F2 = S2, F3 = S3, 
-;-:--~ 

F4 = (S2 + S3), F5 = S2, F6 = (S2 + S3). 

Proposition 7.6 Assume a·b is a (binary) total state of network N such 
that vertex m is stable, i.e., bm = Sm(a·b). Let sA (t B ) be the result of 
Algorithm A (B) for N, when N is started in state a·b. Similarly, let sA 
·B . . 

(t ) be the result of Algorithm A (B) for N, when N is started in state 
a·b, where bj = bj for 1 ~ j ~ m - 1. Then, for 1 ~ j ~ m - 1, 

A.A B·B 
Sj = Sj and tj = tj . 

Proof: Consider Algorithm A for network N. If the excitation of m never 
changes, i.e., if Sm(a·s i ) = s~ = bm , for 0 ~ i ~ A, the proposition holds 
trivially. Hence, assume Sm(a·s i ) changes for the first time at step r > o. 
From the monotonicity of Algorithm A, the fact that Sm does not depend 
on any input excitation, and the assumption that m was stable in the total 
state a·b, we can conclude that 

if i < r, 
if i ~ r. 

From this and the definition of Algorithm A it follows that 

if i < r + 1, 
ifi~r+l. 

Clearly, s~ = S} for 1 ~ j ~ m - 1 and 0 ~ i ~ r. Since Sm(a·s) does not 
depend on Sm, it follows that for i ~ r we have 

if i < r, 
if i = r. 
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However, by Proposition 7.1, ~,r ~ Si for i 2: r; since Sm is monotone, it 
follows that 

Sm(a.si.<r» = { ~m 

Consequently, 

if i < r, 
ifi2:r. 

si C S (a.s i .<r» C si+l. m - m _ m 

We now proceed by induction on i to show that 

(7.1) 

Si. C Si. C Si+l for 1 < J. < m - 1. (7.2) 
J-J-J --

For the basis, observe that s~ = bj and s~ = bj for 1 S j S m - 1. 
By Proposition 7.1, SO ~ SI and the basis holds. Assume inductively that 
s; ~ s; ~ S~+1 for 1 S j S m - 1. This hypothesis, the monotonicity of lub 
and of S, and (7.1), yield for 1 S j S m - 1 

S~+1 lub{s;, Sj(a·si )} 

C lub{s;, Sj(a·si.s~)} 

C lub{sj, Sj(a.si.Sm(a.si.<r»)} = lub{s;, Sj(a·si )} = s;+l 
C lub{s;,Sj(a.si.s~l)} 

C lub{s;+l,Sj(a.si+l)} = S;+2, 

and the induction goes through. 
Given (7.2) and the fact that Algorithm A converges (Proposition 7.1), 

it follows immediately that sf = sf, for 1 S j S m - 1. The proof of the 
second claim follows in a dual fashion. 0 

Given any feedback-vertex set, we can construct a corresponding reduced 
network, as is shown in the next result. 

Proposition 7.7 For any feedback-vertex set F of a complete network N 
there exists a reduced network N with vertex set equal to X U I U F, where 
I is the set of input-delay vertices. 

Proof: By definition of feedback-vertex set, an acyclic graph results when 
the feedback vertices are removed from N. The vertices in N can be clas
sified as follows. Feedback vertices, input vertices, and input-delay vertices 
are all of rank o. Inductively, the vertices with incoming edges only from 
vertices in ranks 0 to i-I, which are not of rank 0 through i-I, are rank 
i vertices. Use the vertex removal process to remove all vertices of rank 
1. Note that no feedback is introduced by this construction in the acyclic 
graph consisting of the vertices that are not in F. Thus vertices that were 
of rank 2 are now of rank 1 in the new graph. This process can be repeated 
until all the vertices not in X U I U F have been removed. 0 
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Intuitively, one might think that the converse of Proposition 7.7 holds, 
i.e., that the vertices remaining after a network has been reduced constitute 
a feedback vertex set of the original network. This is not the case, however, 
as the following example shows. Consider the network in Figure 7.7, where 
the excitation functions are 

SI =X, S2 = 81, 

S4 = 8283 + 8284 + 8384, S5 = 84 + 85· 

If we first remove vertex 82, we get the reduced network N shown in 
Figure 7.7 with excitation functions 

SI = X, S3 = 81, 

S4 = 8183 + 8184 + 8384, S5 = 84 + 85. 

Network N 

Network N 

Network N 

NetworkN 

FIGURE 7.7. Reduction below feedback vertex set. 
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We now remove vertex 83, obtaining the network N shown in Figure 7.7 
with excitation functions 

8 1 = X, 84 = 8181 + 8184 + 8184 = 81, 8 5 = S4 + 85· 

Note that the dependency on vertex 84 was removed from 8 4 in this tran
formation. Finally, we remove vertex 84, and obtain network N shown in 
Figure 7.7 with excitation functions 

81 = X, 85 = Sl + 85· 

Reductions below the minimal feedback vertex set, such as the one de
scribed here, are possible because some of the excitation functions become 
degenerate. On the other hand, the feedback vertex set reflects only the 
structure of the graph. 

We are now ready to state the main theorem of this section. 

Theorem 7.3 The results of Algorithm A for a network N and for any 
reduced version N of N are equal with respect to the feedback variables. The 
same is true for Algorithm B. 

Proof: Proposition 7.6 states that the results are equal for the remaining 
vertices if only one vertex is removed. The result now follows by induction 
on the number of vertices not in X U I u:F and by Proposition 7.7. 0 

Corollary 7.1 The results of Algorithm A for a network N and for any 
feedback-vertex model of N are equal with respect to the feedback variables. 
The same is true for Algorithm B. 

7.5 Hazards 

Until now, our main concern in the analysis of a network has been its 
outcome (in the case of GMW analysis) or the least upper bound of the 
outcome (in the case of ternary simulation). While it is true that the final 
stable state reached by a network is of great importance, there are other 
concerns that must be addressed. Typical examples of such secondary con
straints are the so-called static hazards, where a network output has the 
same value after a transition as it did before the transition, but may re
ceive the complementary value for a short time during the transition. In 
this chapter we consider two types of hazard phenomena that have been 
studied in the classical theory of switching circuits. 

7.5.1 Static Hazards 

We illustrate the phenomenon of static hazards with a simple example. 
Consider the network of Figure 7.8. The output Y4 is defined by the Boolean 
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Xl----~----------------~ 

Y4 

X3 ----I 

FIGURE 7.8. Circuit with a static hazard. 

expression Y4 = XlX2+XlX3 • One verifies that Y4 is 1 when Xl = 0, X 2 = 
I,X3 = 1, and also when Xl = I,X2 = I,X3 = 1. Suppose that the 
network is started in the stable total state X·y = 111·0101, and that Xl 
changes to 0. From the equation for Y4, one would expect the value of Y4 
to remain 1. If the delay of the inverter is appreciable, however, gate Y2 
may become ° before the state of the inverter changes and Y3 becomes 1. 
Thus Y4 may become temporarily 0; this situation is called a static hazard 
in the output Y4. Static hazards are undesirable whenever a circuit is used 
as a component of a larger system. In this case, a second component of the 
system may incorrectly respond to the short pulse that may appear on the 
output of the first component, thus causing an error in the outcome of the 
second component. 

Since Huffman [68] first defined the static hazard in 1957, many methods 
have been proposed for finding static hazards in both combinational and 
sequential circuits. A majority of these, including those proposed by [68] 
and [92], operate in the well-known domain of Boolean algebra and have 
exponential time complexity in the worst case, while others [52, 99] use 
complex multivalued algebra. These methods are suitable only for small 
combinational circuits, but ternary simulation [23, 49, 148] provides us with 
a powerful algorithm that has polynomial time complexity for detecting 
static hazards on any state variable in a sequential circuit. 

The fact that ternary algebra can be used to detect static hazards was 
first shown by [148] in 1964, but only for single input changes and combi
national circuits. The work in [49] expanded this method into an algorithm 
that is able to detect all static hazards in sequential circuits during multi
ple input changes. We now describe the algorithm of [49] adapted to our 
notation. 

Let N = ({O, I}, .1',S, £, F) be a binary network, and let N = ({O, <1>, I}, 
.1',S,£,F) be its ternary extension. Let a E {O,l}n, bE {O,I}m, and let 
Ra be the GMW relation for N. 

A network N is said to have a static hazard on a state variable Si from 
state a·b if and only if 

• bi = Ci, for every C E out(Ra(b)), but 

• there exists a state d such that bR;; d and di = b;. 
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Theorem 7.4 A complete network N has a static hazard on variable Si 

from state a·b if and only if its ternary extension N has the following prop
erty: The result sf of Algorithm A applied to a·b is <I> , while the result tf 
of Algorithm B is equal to the initial value bi . 

Proof: The initial binary value bi is the same as the result of Algorithm 
B if and only if the value in any state of the outcome is also that binary 
value. The result of Algorithm A gives the least upper bound of all the 
states reachable from b. The result of Algorithm A is <I>, if and only if there 
exists a state d reachable from b such that di i- bi . Hence the theorem 
follows. 0 

7.5.2 Dynamic Hazards 

Informally, a network N is said to have a dynamic hazard if and only if there 
is a variable that has one value in the initial state, the complementary value 
in all the states of the outcome, and changes more than once in going from 
the initial state to some state in the outcome. Formally, N has a dynamic 
bi to bi hazard on a state variable Si from state a·b if and only if 

• Ci = li;, for every c E out(Ra(b)), but 

• there exist states d and e such that bHtd, dHte, di = li;, and ei = bi . 

The network of Figure 7.9 has a dynamic hazard on state variable S4 from 
state 1·1000. One verifies that, in the GMW model using the gate-state net
work, the variables may change in the following order: S3, S4, S1 , 83, 84, 82, 84. 

The outcome of the transition is stable state 1·0101. 

x 

1------------------~ 

FIGURE 7.9. Circuit with a dynamic hazard. 

To the best of our knowledge, there are no efficient methods for finding 
dynamic hazards. 

7.6 Ternary Simulation and the GSW Model 

We now show that, if a sufficient number of delays is included in the network 
model, a GSW analysis yields the same outcome as a GMW analysis. This 



130 Chapter 7. Ternary Simulation 

shows that concurrency can be simulated by the interleaving of actions in 
gate networks. Also, this result provides another illustration of the trade
off between the power of the race model and the amount of detail in the 
network model. This section is based on [48]. 

Consider a complete network N = ({O, I}, X,S, £, F), and a related net
work N= ({O,I},X,S,£,F), where we have added a (wire) state variable 
s~ for every state variable Si in N as follows. If the state of N is denoted 
by X ·s, then the state of N is denoted by X ·ss', where s = S1, ... ,Sm and 
s' = s~, ... , s~. Furthermore, if the excitation vector S of N is S(X·s), 
then the excitation vector S of Nis S(X·s')S'(s), where S' is the identity 
function taking an m-tuple as argument. In other words, S: = Si, for all 
i = 1, ... , m. A similar change is made in all the circuit equations. We 
denote by Ra(bb) the GMW relation of N, and by Ra(bb) the GSW relation 
of N. 
Proposition 7.8 Suppose N is started in state a·b. For each path beginning 
with b in the Ra(b) relation of N, there is a similar path beginning with bb 
in the Ra(bb) relation of N, where each total state x.s of N corresponds to 
the total state X ·ss of N. 
Proof: The proof is by induction on the path length 1. Clearly the result 
holds trivially for 1 = 0, by construction of N. Now suppose state c has 
been reached in N and state ee in N. We show that, for each possible one
step transition from e to d, there is a multistep transition from ee to dd. 
In the transition of N, some nonempty set V of unstable variables has been 
changed. Corresponding to this change, we obtain a sequence of transitions 
in N from ss' = ce, by first changing the unstable variables of V in the vector 
s one by one. It is easily seen that these variables are indeed unstable, and 
that changing one of them does not affect the instability of the others, since 
that is determined by the variables in s'. Thus we reach the state de. All 
the variables in s' corresponding to set V are now unstable. We proceed to 
change them one at a time, thus reaching state dd in N. 0 

From this result it follows that the GSW model with an extra wire delay 
for each original state variable of N can simulate each behavior in the GMW 
analysis of N. 

Next, we define the outcome of the GSW analysis of any network in 
the same way as we have defined it in the GMW analysis, except that the 
relation graph Ra(bb) is used. For convenience let out(Ra(bb)) ! s denote 
the set {q E {o,l}m I qq' E out(Ra(bb)) for some q' E {o,l}m}. We are 
now in a position to prove the main result of this section. 

Theorem 7.5 The outcome of the GSW analysis of N restricted to the 
first m state components is equal to the outcome of the GMWanalysis of 
N, i.e., 

out(Ra(bb)) ! s = out(Ra(b)). 
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Proof: Using the construction in the proof of Proposition 7.8, we see that, 
for each state c in a cycle of the Ra(b) relation graph of N, state cc also 
occurs as a state of a cycle in the Ra(bb) relation graph of N. Moreover, 
from the definition of nontransient cycle, it follows that the cycle in Ra(bb) 
constructed as above to correspond to a nontransient cycle of N is also 
nontransient. Consequently, the outcome of the GMW analysis of N is a 
subset of the outcome of the GSW analysis of N restricted to the first m 
state components. In symbols, 

out(Ra(b)) ~ out(Ra(bb)) 1 s. 

Clearly, the outcome of the GMW analysis of N contains the outcome of 
the GSW analysis of N, i.e., 

out(Ra(bb)) ~ out(Ra(bb)). 

This relationship is preserved under the restriction to s, i.e., 

out(Ra(bb)) 1 s ~ out(Ra(bb)) 1 s. 

Note that the variables of N constitute a feedback vertex set, because we 
have assumed that N is a complete network. Consequently, Theorem 7.3 
applies, implying that the outcome of the GMW analysis of N restricted to 
the first m variables is equal to the outcome of the GMW analysis of N. In 
symbols, out(Ra(bb)) 1 s = out(Ra(b)). Our claim now follows. 0 

7.7 Ternary Simulation and the XMW Model 

The extended multiple-winner (XMW) race model defined in Section 6.6 is 
particularly appropriate for analyzing the behavior of switch-level circuits, 
since the network model for such circuits is usually defined using a ternary 
domain. Like the GMW race model, however, the XMW model is computa
tionally intractable. In this section we show that ternary simulation can be 
used to determine the outcome of the XMW analysis. First we prove that 
the result of Algorithm A computes the lub of all the reachable states in the 
XMW relation. Second, we show that the result of Algorithm B is equal to 
the lub of the outcome of the XMW analysis. A major difference between 
these results and those of Sections 7.2 and 7.3 is that the correspondence 
is not limited to complete networks. Thus, for example, determining the 
lub of the outcome of the XMW analysis for an input- and feedback-state 
network model can be carried out by performing ternary simulation. 

Theorem 7.6 Let N = ({O,<p,l},X,S,£,F) be a ternary network. IfN 
is started in binary total state a·b, then the result sA of Algorithm A for N 
is equal to the lub of the set of all the states reachable from the initial state 
in the XMW analysis ofN, i.e., sA = lub{s E {O, <P, l}m I bR:s}. 
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Proof: First we claim that sA ~ lub{s E {O, tP, l}m I bR:s}. To verify this, 
it is sufficient to establish that consecutive states in Algorithm A are Ra 
related, i.e., that bRaSh, for h ~ 0. This would imply, in particular, that 
sA E {s E {O, tP, l}m I bR:s}. Our claim follows by induction on h. By the 
definition of the Ra relation in Section 6.6, one of the possible successor 
states is the lub of the current state and the excitation-precisely the value 
used by Algorithm A. 

To show the converse, we claim that 

lub{c E {O, tP, l}m I bR~c} ~sA. 
This follows by induction on h and the observation that, if e, dE {O, tP, l}m 
and cRad, then d ~ lub{ e, S(a·en. 0 

Theorem 7.7 Let N = ({O, tP, I}, X, S, £, F) be a ternary network. If N 
is started in binary total state a·b, then the result t B of Algorithm B for N 
is equal to the lub of the outcome of the XMWanalysis, i.e., 

t B = lubout(Ra(b)). 

Proof: We begin by establishing that t B ~ lubout(Ra(b)). Since to = sA 
and, bR:sA (as shown above), we have bR:to. By the definition of the 
XMW relation, it follows that thRath+!, for ° ::; h < B. Altogether, we 
have bRatB. Since t B is a stable state, it must be in the outcome of the 
XMW relation. Hence, the claim follows. 

To prove the converse, we show that lubout(Ra(b)) ~th, for h ~ 0, 
by induction on h. The basis follows trivially from Theorem 7.6 and the 
observation that the outcome is a subset of the set of reachable states. For 
the induction step, assume that s is an arbitrary state in the outcome of the 
XMW analysis and that s ~ th. We now claim that s ~ th+!o Note first that 
t h+! = S(a·t h). By the monotonicity ofS, it follows that S(a·s) ~ S(a·th) = 
th+!o Consider any vertex j. If tJ+! = tP, then Sj ~ tJ+! holds trivially. 

Therefore, suppose that tJ+! = a E {O, I}. We have shown above that 
S( a·s) ~ th+!o Thus, the excitation of vertex j is equal to a in state s. 
Because s is an arbitrary state in the outcome, the excitation of vertex j 
is equal to a in every state in the outcome. Since a is binary, it follows 
that Sj = a; thus Sj ~ tJ+l. Since j was arbitrary, we can conclude that 

s ~ t h +!, and the induction step goes through. 0 

7.8 Proofs of Main Results 

Let Nand N be as in Theorem 7.1. Note that they are complete networks. 
Let 9 denote the set of gate vertices and let W denote the set of wire 
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vertices. It is often necessary to select the fan-in and fan-out vertices for a 
given vertex. Thus, for any gate vertex i, let its fan-in vertices be 

o:i = {j I (j,i) E £}. 

Note that o:i no:j = 0 if i =F j. With a slight abuse of notation, given a vector 
v of length m and o:i =F 0, we write o:i(V) to denote the components of the 
vector corresponding to the fan-in vertices; thus, if o:i = {0:1, 0:2, . •• ,O:r}, 
then o:i (v) = Val' Va2 , ..• , var • Similarly, for any gate vertex i, let its fan
out vertices be 

{3i = {j I (i,j) E £}. 

Again, note that {3i n {3j = 0 if i =F j. Given a vector v of length m and {3i =F 
0, we write (3i (v) to denote the components of the vector corresponding to 
the fan-out vertices of vertex i. Finally, if sh , ° ::; h ::; A, denotes the results 
of Algorithm A after h steps, and vertex s1 = cP, let 'Yj denote the step in 
which this vertex changes to cP, i.e., if sj-l = bj and sj = cP then 'Yj = k. 

The following technical result will be needed in the proof of Lemma 7.2. 

Proposition 7.9 Let Nand N be as in Theorem 7.1. Let j be a gate 
vertex with in degree dj and fan-in set o:j. Given s E {a, cP, l}m, such that 
Sj = bj E {O,l} and lub{sj, Sj(a·s)} = cP, there exists of E {O,l}dj such 
that of ~ o:j(s) and Sj(a·s) = bj for every s E {O,l}m such that o:j (s) = of. 

Proof: We prove the claim by contradiction. Assume that, for all of E 
{O,l}dj such that of ~o:j(s), there is some state s E {O,l}m such that 
of = o:j (s) and Sj (a·s) = bj . Since Sj depends only on the vertices in o:j, we 
can conclude that Sj(a·s) = bj implies Sj(a.s') = bj for every s' E {O,l}m 
such that o:j(s) = o:j(s'). Altogether, we have that Sj(a·s) = bj for every 
s E {a, l}m such that o:j(s) ~ o:j(s). However, by the definition of ternary 
extension, this implies that Sj(s) = bj , which means that lub{sj, Sj(a·s)} = 
lub{ bj , bj } = bj , contradicting the assumption that lub{ Sj, S j (a·s)} = cP. 0 

In showing that ternary simulation is covered by GMW analysis, the 
following lemma is the key result for Algorithm A. 

Lemma 7.2 Let Nand N be as in Theorem 7.1, and let s\ ° ::; h ::; A 
be the result of Algorithm A after h steps. Then, for each h, there exists 
Sh E {O,l}m such that 

2. if j is an input-delay or gate vertex then 

s~ = ..l... {
b. 

3 bj 

ifsj = bj , 

if sj = cPj 
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3. if j is a wire vertex in the fan-out set of vertex i and in the fan-in 
set of vertex k (i = k is possible), and s~ = bk then 

if sf = bi and sJ = bj , 
i/sh = cP or sh = cPo 

'01 • J' 

4. if j is a wire vertex in the fan-out set of vertex i and in the fan-in 
set of vertex k (i = k is possible), and sf = s~ = cP then 

'Yi ~ 'Yk implies s7 = Sj(a·sh ). 

Proof: We prove the lemma by induction on h. The reader may find it 
useful to follow the construction in the proof of the lemma in parallel with 
the construction in Figure 7.11 for the circuit of Figure 7.10 started in the 
(unstable) total state 1·00101110000011. 

S1 x--....... -I 

FIGURE 7.10. Circuit used to illustrate Lemma 7.2. 

Algorithm A 
sO 01 0 10 01 10 01 10 01 10 0 0 1 1 0 

S3 cP1 cP cP cP cP cP cP cP cP cP cP cP 1~ cP 

s4 cP1 cP cP cP cP cP cP cP cP cP cP cP cP cP 

GMW 
sO Q 0 1 Q 1 Q 1 Q 1 0 0 1 1 0 
S1 Q 0 1 Q 1 Q 0 Q 1 0 0 11 0 
S1 1 QQ 1 QIQIQQQ 110 
~ lQQIQlQlQQQI10 
s2 1 Q Q 1 Q 1 Q 1 Q Q Q 11 0 
~ lQQIQlQlQl11IQ 
~ lQQIQlQlQI1011 
~ lQQIQlQlQI1011 
~ lQQIQlQlQI1011 

FIGURE 7.11. Illustrating Lemma 7.2. 

The basis, h = 0, follows trivially since SO = b E {O, l}m. Assume induc
tively that state sh has been reached and that sh satisfies Properties 1-4. 
We show how to reach a state sh+1 that satisfies all four properties. We do 
this in two steps. We first show that there is a state sh+1 reachable from 
sh in which all input-delay and gate vertices that change to cP in step h + 1 
in Algorithm A are unstable. We then conclude the proof by showing how 
Sh+1 can be reached from sh+1. 

It is convenient to introduce the following shorthand. Let Ch+1 be the 
set of gate and input-delay vertices that change to cP in step h + 1, i.e., 

Ch+1 = {j E I U g I s1 = bj and s7+1 = cP}. 
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Now, let sJ+1 = sJ for every input-delay and gate vertex. If j E Ch+ I , let 

a j (sh+1) = cj , where cj E {O, 1 }dj is such that cj ~ a j (sh) and Sj (a·s) = bj 
for all s E {O,l}m such that aj(s) = cj . By Proposition 7.9 such cj is 
guaranteed to exist. If j rt Ch+I, let a j (sh+I) = aj(sh). Note that this 
completely determines sh+1. We first claim that every vertex in Ch+1 is 
unstable in sh+1. To verify this, we consider two cases. First, if j is an 
input-delay vertex, then h must be 0 and the input-delay excitation function 
Xj must be bj . Thus input-delay vertex j is unstable at h = O. Since, by 
construction, no input-delay vertex changes in going from sh to sh+1 , input
delay vertex j must still be unstable in Sh+1. On the other hand, if j is a gate 
vertex, then a j (sh+1) = cj . But cj was chosen so that Sj (a·sh+1) = bj . By 
Property 2 of the induction hypothesis, sJ = bj ; thus vertex j is unstable 
in sh+1. 

We now claim that sh R~ sh+1. Clearly, the claim holds if sh+1 = sh. 
Hence, assume sh+1 i= sh. It is sufficient to show that each vertex that 
changes in going from sh to sh+1 is unstable in total state a·sh. Let j be 
such a vertex, i.e., assume sJ+1 i= sJ. By construction, it follows that j 

must be a wire vertex in the fan-in set of some vertex k E Ch+1 and in the 
fan-out set of some vertex i. However, a k (sh+1) = ck and, by definition, 
ck c::: a k (sh) In particular ck = sh+1 c::: sh If sh = b· and Sh = b· then by _. 'J J - J. Z Z J J , 

Property 3 of the induction hypothesis, sJ = bj . However, sJ = bj implies 

that sJ+1 = bj and thus in this case sJ+1 = sJ. On the other hand, if 
sf = <I> or sJ = <I> then, again by Property 3 of the induction hypothesis, 

we have sJ = Sj(a·sh), and thus vertex j is unstable in total state a·sh. 

Altogether, sJ+1 is either equal to sJ or Sj(a.sh) for 1 ~ i ~ m; thus 
sh R~sh+1. 

We are now ready to construct Sh+1. If j E Ch+1 let sJ+1 = Sj (a·sh+1) 

and ,8j (sh+1) = ,8j (S (a· sh+1 )). If j rt Ch+1 , let sJ+1 = sJ+1 and ,8j (sh+1) = 

,8j(sh+1). Note that this uniquely determines sh+1. We now must verify 
that sh+1 satisfies Properties 1-4. First, it follows immediately from the 
construction that Sh+I R~sh+1. From the fact that sh R~Sh+I and from the 
induction hypothesis, it follows that bR~sh+I and Property 1 holds. Second, 
by construction, SJ+I = sJ for every input-delay and gate vertex and the 
only gate and input-delay vertices that are changed in going from sh+1 to 
Sh+1 are those that change to <I> at step h + 1 in Algorithm A; hence it 
follows from the induction hypothesis that Property 2 holds for every gate 
and input-delay vertex in sh+1 . 

Now, consider any wire vertex j that is in the fan-out set of vertex i 
and in the fan-in set of vertex k and for which SZ+I = bk . If s~+1 = sf 
and sh+1 = sh then by the construction sh+1 = sh and sh+1 = sh Thus J J' 'z Z J J. , 

by the induction hypothesis, Property 3 holds for j. On the other hand, 
if i E Ch+1, the construction of sh+1 ensures that each wire vertex in the 
fan-out set of gate i is unstable, since we simultaneously set its output to 
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its current excitation and change its input. Hence, Property 3 holds in this 
case too. Finally, if s7+1 = bi but sj+1 = <P, it follows immediately that h 
must be ° and that the circuit was started in a state in which wire vertex 
j was unstable, i.e., bj = Sj(a·b). Since neither i nor k is in C1 , it follows 
that s} = s? = bi and that sJ = s~ = bj . Since the excitation of wire vertex 
j is completely determined by the value on a gate or input-delay vertex i, 
it follows that wire vertex j will remain unstable in total state a·sh+1 and 
Property 3 holds. 

Finally, consider any wire vertex j such that j E fJ i , j E o.k, s7+1 = 
s~+1 = <P and Ii :::: Ik' There are two cases to consider. If i E Ch +1 then, 
by the construction of sh+1, we have sj+1 = Sj(a·sh+1). On the other hand, 

if i ~ Ch+1, then k ~ Ch+l, since otherwise Ik > Ii' However, if neither i 
nor k is in Ch+ 1 then none of i, j, and k changes in going from sh to sh+ 1• 

Since j is a wire vertex, its excitation depends only on the value on vertex 
i. Consequently, the excitation of vertex j does not change in going from 
sh to sh+1. By Property 4 of the induction hypothesis, it therefore follows 
that sj+1 = Sj(a·sh+1). 0 

From this result, we immediately obtain the following: 

Corollary 7.2 Let Nand N be as in Theorem 7.1. Then, for 1:::; j :::; m, 
there exists a state sj E {a, l}m such that bR~sj and 

. A 
lub{bj,sD;;;) Sj' 

Proof: If s1 = bj , the result follows trivially. So assume s1 = <P. If j 
is an input-delay or gate vertex, then the result follows immediately from 
Lemma 7.2, Property 2. So assume j is a wire vertex between vertices i and 
k, i.e., (i, j) E £ and (j, k) E £. If vertex j is unstable in total state a·b, then 
we can reach a state in which s j = bj . Hence, assume wire vertex j is stable 
in state a·b. The excitation of wire vertex j is completely determined by the 
value on vertex i; thus Sj(a·s) = bj for every s E {a, l}m such that Si = bi' 
Assume vertex j changes to <P at step r in Algorithm A. This implies that 
vertex i must have changed to <P in step r - 1, and thus sf = <P. By 
Lemma 7.2, Property 2, this implies that we can reach a state s E {a, l}m 
such that Si = bi. This means that Sj(a·s) = bj ; thus we can reach a state 
8 in which 8j = bj . 0 

Given the result t B of Algorithm B if tf = <P, we say that vertex j 
is an indefinite vertex; otherwise it is a definite vertex. Note that every 
input-delay vertex is definite since we assume that the inputs to the circuit 
are always binary. Let D denote the set of definite vertices and .:J the set 
of indefinite vertices. 

Assuming there is at least one indefinite vertex j (i.e., Algorithm B 
does not yield a binary result), there must be some other vertex i E o.j 

that is also indefinite. Otherwise, all inputs to vertex j would be binary 
and its excitation could not be <P. Since the network N is finite, we must 
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have at least one cycle of indefinite vertices; such a cycle will be called 
indefinite. Note that, since the network is complete-and thus every loop 
in the network is of length at least two-there must be at least one gate 
vertex and one wire vertex in every indefinite cycle. 

Eventually we want to show that if the result of Algorithm B contains 
at least one CP, there exists a nontransient cycle of length ~ 2 (Le., an 
oscillation) in the graph of the relation Ra for N such that all indefinite 
vertices "take part" in the oscillation, Le., each vertex variable takes on 
both values ° and 1 in the cycle. Furthermore, that cycle is reachable from 
the initial state of N. 

The following definitions help to simplify the proofs. A total state a·c of 
N is compatible with a·tB if c ~ t B . Also, a total state a·c of N is definite
stable if all the definite vertices are stable in that state. Finally, a total 
state a·c of N is loop-unstable if there is at least one unstable wire vertex 
in each indefinite cycle of N. 

Lemma 7.3 Let Nand N be as in Theorem 7.1 and let sA E {O, I}m be a 
state derived as in the prool 01 Lemma 7.2. 11th is the result 01 Algorithm 
B after h steps, Os h S B, then there is a state th E {O,I}m such that 

I. bR:th, II. th ~th, III. i/tJ = cP then tJ = s1 

Proof: We proceed by induction on h. For the basis, let to = sA. Properties 
I-III follow trivially from the fact that to = sA, from Proposition 7.2, and 
from the assumption that sA satisfies Properties 1-3 of Lemma 7.2. 

Assume inductively that th has been constructed and let 

t~+1 = {Sj(a.th) iftJ+1 E {O, I}, 
J tJ otherwise. 

Clearly, th R~th+1. Together with the induction hypothesis Property I, it 
follows that bR~th+l. For Property II, consider any vertex j. If tJ+1 = CP, 

then it follows trivially that tJ+1 ~ tJ+1. Hence assume that tJ+1 E {O, I}. 

By definition of Algorithm B, tJ+1 = Sj(a·th). By the induction hypothesis 
Property II and the monotonicity of S, it follows that Sj(a.th) ~ Sj(a.th) = 
tJ+1. But Sj(a·th) = Sj(a·th), since the ternary extension S agrees with S 

on binary arguments. By construction, tJ+1 E {O, I} implies that tJ+1 = 
Sj(a.th). Thus, it follows that tJ+1 ~ tJ+1. Since j was arbitrary, Property 
II follows. Finally, by the monotonicity of Algorithm B (Proposition 7.4) if 
tJ+1 = CP, then tJ = CP. However, by construction, if tJ+1 = CP, then tJ+1 = 
tJ. This, together with the induction hypothesis Property III, implies that 
if tJ+1 = CP, then tJ+1 = tJ = s1 and Property III follows. Since Properties 
I-III hold for th +1 , the induction goes through and the lemma follows. 0 

Lemma 7.4 Let t E {O,I}m be any state such that t ~ t B . Then t is 
definite-stable. 
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Proof: By Proposition 7.4, t B = S(a·t B ). Now consider any definite ver
tex j. By the definition of definite it follows that tf E {a, I} and thus 
tf = Sj(a.t B ) E {a,I}. However, by assumption, t!;;;tB , and by the 
monotonicity of S, it follows that Sj(a·t)!;;; Sj(a.t B ) = tf E {a, I} and 
therefore Sj(a·t) = tf. But Sj(a·t) = Sj(a·t), since the ternary exten
sion S agrees with S on binary arguments. Altogether, if tf E {a, I} then 

Sj(a·t) = tf = tf, where the last equality follows from the fact that 

tf !;;;tf. 0 

Corollary 7.3 Let t B be a state derived as in the proof of Lemma 7.3. 
Then t B is definite-stable. 

Proof: The proof follows immediately from Lemma 7.4 and by Property II 
of Lemma 7.3. 0 

Lemma 7.5 Let t B be a state derived as in the proof of Lemma 7.3. Then 
t B is loop-unstable. 

Proof: It is sufficient to prove the claim for each indefinite simple cycle, 
where a cycle is simple if it has no repeated vertices except for the first and 
the last vertex in the cycle. Let C be an arbitrary indefinite simple cycle in 
N. Note that C only contains gate and wire vertices, since no input-delay 
vertex can be indefinite. A gate vertex i in C is said to be terminating if no 
other gate vertex in C becomes ~ in Algorithm A after vertex i. Clearly, 
there must be at least one terminating vertex in C. Assume vertex i is 
terminating in C and that it became ~ at step r of Algorithm A. Since i is 
in C, one of the wire vertices in f3i must be the successor vertex to i in C; 
assume this is vertex j. We now claim that j is unstable in t B . Note first 
that since i and j are indefinite vertices, i.e., tf = tf = ~, by Property III 
of Lemma 7.3, we can conclude that tf = sf and tf = s1. Furthermore, 
since j is a wire vertex, its excitation is completely determined by the value 
on gate vertex i. Thus, if j is unstable in sA, then it is also unstable in t B . 

Finally, since i is terminating, it follows that Ii 2 I k for every other gate 
vertex in C. In particular, if j E a k (k = i is possible), then Ii 2 Ik' By 
Property 4 of Lemma 7.2 it follows that s1 = Sj (a·s A ). 0 

The proof now proceeds as follows. Starting with a state s E {a, l}m we 
first exhibit a sequence of states 

where r is the number of indefinite gate vertices, and, for a ::; k ::; r, exactly 
k indefinite gate vertices in sk have values complementary to those in s, and 
the other indefinite gate vertices are the same as in s. Note that we do not 
say anything about the indefinite wire vertices. For convenience, we will say 
that k indefinite vertices have been "marked" in this way. By repeating this 
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process of marking (i.e., complementing) all of the indefinite gate vertices, 
we show the existence of an oscillation involving all the indefinite gate 
vertices. We then show that every indefinite wire vertex also oscillates in 
the constructed cycle. 

Lemma 7.6 Let t B be the result of Algorithm B and let a·s be any total 
state compatible with a.t B , definite-stable, and loop-unstable. Assume that 
zero or more, but not all, indefinite gate vertices are marked. Assume also 
that every wire vertex between a marked and an unmarked indefinite gate 
vertex is unstable. Then there exists at least one unmarked indefinite gate 
vertex k, such that all indefinite wire vertices in o:k are unstable. 

Proof: Consider the directed graph G = (V', £/), where 

V' {i E S I tf = <I>}, and 

£' = {(i,j) E £ liE g or Si = Si(a·s)} n (V' x V'). 

G can be obtained from the network graph by retaining only the indefinite 
vertices and those edges between indefinite vertices that either leave a gate 
vertex or leave a wire vertex that is stable in a·s. G has two important 
properties: 

1. there is no path from a marked vertex to an unmarked vertex, and 

ll. there is no cycle in G. 

Both properties follow from the construction of G and the assumptions in 
the lemma. 

Now consider a reverse path in G. Start at some unmarked gate vertex 
k E V' and traverse G backward. From (ii) and the fact that G is finite, 
it follows that a reverse path in G started at vertex k must stop at some 
vertex, say j. Note that j must be a gate vertex, and, by (i), must be 
unmarked. Furthermore, since each indefinite gate vertex has at least one 
indefinite wire vertex in its fan-in set, it follows that all indefinite wire 
vertices in o:j must be unstable; otherwise the reverse path would not have 
stopped at j. 0 

Lemma 7.7 Let t B be the result of Algorithm B and let a·s be any total 
state compatible with a·t B , definite-stable, and loop-unstable. If, for some 
gate vertex j, all indefinite vertices in o:j are unstable, then there exists 
a state s reachable from s, compatible with t B , definite-stable and loop
unstable,such that 

i. Sj = Sj, and 

ii. all indefinite wire vertices in {3j are unstable in s. 



140 Chapter 7. Ternary Simulation 

Proof: We construct s in a two-step process. First we show that there is 
a state s reachable from s such that Sj = Sj(a·s). We then show how to 
reach s from S. 

For every input and gate vertex k, let Sk = Sk. If k =I- j, let o;k(S) = 
o;k(s). Let o;j(s) = d, where d E {O,l}dj is such that d ~o;j(tB) and 
Sj(a·c) = bj for all c E {O,l}m such that o;j(c) = d. We claim that 
such d is guaranteed to exist. Suppose it did not, i.e., assume that, for 
all d E {O,l}dj such that d~o;j(tB), there is some state wE {O,l}m 
such that d = o;j(w) and Sj(a.w) = Wj' Since Sj depends only on the 
vertices in o;j, we can conclude that Sj(a·w) = Wj implies Sj(a·w' ) = Wj 
for every w' E {o,l}m such that o;j(w) = o;j(w' ). Altogether, we have 
that Sj(a·w) = Wj for every W E {o,l}m such that o;j(w)~o;j(tB). By 
the definition of ternary extension, this implies that Sj(tB ) = Wj' But, 
by Lemma 7.4, S(tB) = t B; thus tf = Wj E {O, I}. This contradicts the 
assumption that j is an indefinite gate vertex. Hence, our claim that such 
d exists is true. 

It remains to be shown that sR;s. This follows from the fact that 

d ~o;j(tB), 

the fact that all indefinite vertices in o;j are unstable, and the fact that s 
is compatible with t B • 

We now are ready to construct s. For every input and gate vertex i let 

and 

if i = j, 
otherwise, 

if i = j, 
otherwise. 

Clearly, sR;s and thus sR;s. By construction, Sj = Sj(a·s) = Sj, and 
Property (i) holds. On the other hand, the construction of s ensures that 
each wire vertex in the fan-out set of gate i is unstable, since we simulta
neously set its output to its current excitation and change its input. Thus 
Property (ii) follows. If gate vertex j is indefinite, then each wire vertex in 
j3j is also indefinite. Consequently, it is straightforward to verify that s is 
definite-stable, loop-unstable, and compatible with t B . 0 

Lemma 7.8 Let t B be the result of Algorithm B and let a·s be any total 
state compatible with a·tB, definite-stable, and loop-unstable. Assume there 
are r indefinite gate vertices. Then, for each k, ° ::; k ::; r, there is a state 
sk E {O, l}m with k vertices marked such that sR;sk and a·sk is compatible 
with a·tB, definite-stable, loop-unstable, and every wire vertex between a 
marked and an unmarked indefinite gate vertex is unstable. 
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Proof: We proceed by induction on the number of indefinite gate vertices 
that have been marked, i.e., complemented. For the basis, k = 0, let sO = s 
and the claim follows trivially. Now assume inductively that the claim holds 
for k ~ 0. By Lemma 7.6, it follows that there exists an unmarked indefinite 
gate vertex j such that all indefinite gate vertices in a j are unstable in 
a·sk. But Lemma 7.7 guarantees the existence of a state sk+1, such that 
sk R~Sk+l and a·sk+l is compatible with a·tB , definite-stable, and loop
unstable. Furthermore, gate vertex j is complemented, and all the indefinite 
wire vertices in (3j are unstable in a·sk+l. Now mark vertex j, and note 
that all indefinite wire vertices between marked and unmarked indefinite 
gate vertices are still unstable. Hence, the induction step goes through and 
the lemma follows. D 

Corollary 7.4 Let t B be the result of Algorithm B and let a·s be any total 
state compatible with a·tB , definite-stable, and loop-unstable. Then there is 
a state s reachable from s and such that a·s is compatible with a·tB , definite
stable, loop-unstable, and all indefinite gate vertices have complementary 
values in sand s. 

Proof: This follows immediately from Lemma 7.8 for k equal to the number 
of indefinite gate vertices. D 

We are now ready to state and prove the main result of this section: 

Lemma 7.9 Let Nand N be as in Theorem 7.2. Then there exists a non
transient cycle Z that is reachable from the initial state b such that 

lub{s I s E Z} ;;;) t B . 

Proof: By Lemmas 7.3 and 7.5, and Corollary 7.3, it follows that a·tB 

is compatible with a·tB , definite-stable, and loop-unstable. Hence, Corol
lary 7.4 can be applied. Since Corollary 7.4 can be applied any number of 
times and there is only a finite number of possible states, there must exist 
a cycle in the Ra graph. By the construction of Corollary 7.4 it follows that 
each indefinite gate vertex oscillates. By the construction in Lemmas 7.7 
and 7.8, it is also easy to see that every indefinite wire vertex in the fan-out 
sets of the indefinite gate vertices also oscillates. However, a wire vertex j 
in the fan-out set (3i of some gate vertex i is indefinite if and only if gate 
vertex j is indefinite. Hence, every indefinite vertex is oscillating. Since all 
definite vertices are stable, it follows that the cycle is nontransient. D 



Chapter 8 

Bi-Bounded Delay Models 
The race models discussed so far correspond to delays that are only bounded 
from above; consequently, the ratio between two delays can be arbitrarily 
large. The use of such models often leads to very conservative results. For 
example, suppose a GMW analysis indicates a possible timing problem, say 
a critical race. It may be the case that, unless the delay in one particular 
gate is greater than the sum of the delays in a large number of other gates, 
this critical race will always be resolved in the same way. To obtain more 
realistic results, we must place some constraints on the relative values of 
gate and wire delays. 

One possible assumption would be that each component (gate and wire) 
has a fixed nominal delay value, but that value may differ from component 
to component; this is, in fact, what many commercial simulators do. Un
fortunately, in such an approach small perturbations in the delay values 
can change the predicted behavior of the network. In other words, models 
using nominal delays have no ability to detect any race or hazard phe
nomena; hence, they are not very suitable for analyzing the behavior of 
asynchronous networks. 

To overcome the above-mentioned deficiencies, we need models in which 
the delays are not completely known and may, in fact, vary in time, but 
cannot take on arbitrarily small values. In this chapter, we develop models 
in which the delay magnitudes lie between lower and upper bounds, and 
we present algorithms for analyzing networks with the aid of such models. 
All the delays in this chapter are inertial. 

How To Read This Chapter 

Section 8.1 contains several examples and some constructive proofs that 
are not difficult to follow. Sections 8.2-8.4 deal with continuous models 
and can be omitted on first reading. In Section 8.5 we return to discrete 
models, but in the ternary domain. Since there are no proofs in this section, 
it should be relatively accessible. 
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8.1 Discrete Binary Models 

In this section we study several discrete models. To simplify the discussion, 
we associate delays with gates only; it is trivial to generalize the results to 
networks containing also wire delays. 

The simplest approach to bi-bounded delay analysis is to use a "slow" 
mode--in which all the gates have their maximal delays-and a "fast" 
mode, with minimal delays. It is clear that such a model suffers from the 
same problem as the nominal-delay model, i.e., that a small perturbation of 
one of the delays can completely change the behavior of the network. There 
is an even more subtle problem, however. Intuitively, it sounds plausible 
that the transition time predicted by a simulator operated in "slow" mode 
should be an upper bound on the time the network would actually take for 
this transition. Unfortunately, this is not the case. We have already seen 
this in the performance estimation example of Chapter 1. Below we provide 
another simple example of this problem. 

A problem with the slow mode 

Consider the network CS.1 of Figure 8.1 started in stable total state 
X·y = 0·1001 when the input changes to 1 and the delay in each gate 
is between 1 and 3 time units. It is easy to see that only gates 1 and 
2 will change, if we assume that all the gates have a delay of exactly 
3 time units. Thus, according to such an analysis, the maximum time 
it takes for this network to stabilize (by reaching state y = 0101) is 
3 time units. However, if gates 1,2,3, and 4 have delays of 3,1,2 and 
2 time units, respectively, the network will actually take 7 time units 
to reach the same state, as is easily verified. 

[1,3] 

X 

1 

[1,3] 

FIGURE 8.1. Network Cs. 1 . 

The question now arises whether it suffices to analyze a network for all 
possible combinations of lower and upper bounds on the delays. Again, it 
turns out that the answer is negative. 
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A problem with all slow-fast combinations 

Consider gate network CS.2 of Figure 8.2. Assume that it is started 
in the stable state X·y = 0·0111100 and that the input changes to 
X = 1. Furthermore, suppose the delays are bounded as shown in 
Figure 8.2. If we only consider "extreme-case" delays, Le., 1 or 5, it 
can be verified that the only possible nontransient states reachable 
are 1011000, 1010000 and 1011001, i.e., at least one of Y4 and Y7 
does not change. If we also allow the delays to be anywhere between 
the bounds, however, the network can also reach 1010001-a state in 
which both Y4 and Y7 have changed. This can happen if, for example, 
81 = 3, 85 = 5, and the remaining delays are equal to 1. In fact, one 
can verify that this state is reachable only if 2 :S 81 :S 4. 

[1,5] [1,5] 

X Y1 
1 

FIGURE 8.2. Network CS.2 . 

Can a correct analysis be carried out by considering only all the integer 
delay values between the minimum and maximum delays of each compo
nent? Unfortunately, even such an elaborate analysis is not always correct. 

A problem with fixed discrete resolution 

Consider network CS.3 of Figure 8.3 started in the stable state X = 0, 
y = 11100000 with X changing to 1. Assume the delays are bounded 
as shown in the figure. If only integer values are used for the de
lays, the single nontransient state reachable by the network is y = 
00000000, i.e., the "OR-latch" (gate 8) does not change. This can be 
seen as follows. If Ys is to change, it must be unstable for one time 
unit. Hence, Y7 must change to 1 at some time. For this to happen, 
Y4 and Y6 must be 0 and Y5 must be 1. To change gate Y5, gates Y1 
and Y3 must have different values for 'at least one time unit. Since 
1 :S 81(t) :S 2 and 1 :S 83(t) :S 2, however, this implies that one of 
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[1,2] [1,1] 

[1,3] 

X--.---l 

[1,2] 

FIGURE 8.3. Network C8.3. 

Y1 and Y3 must change at time 1 and the other at time 2. Since the 
network is completely symmetric, we may assume that Y1 changes 
at time 1 and Y3 at time 2. To propagate the change in Y5 to the 
OR latch, we must choose the delay of Y2 in such a way that neither 
Y4 nor Y6 changes at the same time as Y5. This is impossible using 
only discrete delay values, since 82 = 1 will cause Y6 to change at the 
same time as Y5, and 82 = 2 or 3 will cause Y4 to change at the same 
time as Y5. Hence, the oR-latch will remain O. On the other hand, if 
we remove the discreteness restriction, the network can reach a state 
where the oR-latch has the value 1. For example, let 81 = 1, 82 = 1.5, 
and 83 = 2. In this case, gates Y4 and Y6 will be unstable for only 
0.5 time units-less than their minimum delays-and thus will not 
change. 

In the example above, we have used only integer values for delays. Would 
a finer (discrete) resolution help? We show below that, no matter how fine 
the resolution, a discrete model can never be as accurate as the continuous 
one. 

A problem with variable discrete resolution 

Consider a binary network N = ({O,l},X,S,£,F). Let the delay 
bounds for variable Si be the nonnegative integers di and D i . Let 
outk(Ra(b)) denote the outcome of a race analysis when the network 
is started in the state b, the input changes to a, and the delay in any 
variable Si is allowed to take on only values from the set {di , di + ~, di + 
~, ... , Di - V· Similarly, let out(Ra(b)) denote the outcome when the 
delays can take on any value in the interval [di , Di). (As usual, [d, D] 
denotes a closed interval, (d, D] and [d, D) denote half-open intervals, 
and (d, D) denotes an open interval.) The next theorem shows that 
this kind of resolution can also fail. 
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Theorem 8.1 For any constant integer k ~ 1, outk(Ra(b)) ~ out(Ra(b)). 
Furthermore, for some networks the inclusion is proper. 

Proof: The first part of the theorem is trivial. The example above shows 
that the inclusion can be proper when k = 1. Hence, we focus on proving 
the claim for k > 1. We prove this by constructing a network with an 
input transition such that a certain final state can be reached only if at 
least one component of the network has a delay strictly greater than 1 
and strictly less than 1 t. In fact, we will construct a network such that 
outk(Ra(b)) C out2k(Ra(b)). 

x 
[1,2) [1,2) 

Y8k+l Y8k+2 Y9k 

FIGURE 8.4. Network construction for Theorem 8.1. 

The construction is shown in Figure 8.4. It consists of two chains of 
delays, of length 2k and k, respectively. The delays of the delay elements in 
the chains are all assumed to be in the interval [1,2). The input and output 
of each delay element in the longer chain are also used by a small network 
consisting of a larger delay, a XOR gate, and an "OR latch." Assume now 
that the network is started in state X·y = X'Y1 ... Y9k+2 = 0·0 ... 0, and 
that the input changes to 1. Can all the OR gates be 0 after this change 
has occurred and the network has reached a stable state? 

Note that, if any OR gate changes to 1 during the transition, it cannot 
change back to 0 later. Note also that, ifaxOR gate feeding an OR gate 
changes to 1 at any time, the OR gate must also change to 1, since the 
minimum delay of the XOR gate is greater than the maximum delay of the 
OR gate. Now consider subnetwork i on the longer delay chain. To avoid 
changing, the XOR gate Y4k+i must be unstable for strictly less than 3 time 
units. Since the delay of Yi is strictly smaller than that of Y2k+i-and the 
delay of Y2k+i is at least 4 time units-it follows that the delay of Yi must 
be strictly greater than 1 for Y4k+i not to change. 

First, we analyze this network using a discrete model with resolution t. 
Since the delay of Yi must be strictly greater than 1, it follows that it must 
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belong to the set {1 i, 1 ~, ... , 2 - D. If all the OR gates in the longer delay 
chain remain 0, the total delay through the longer delay chain must be 
greater than or equal to 2k(li) = 2k + 2. Now consider the shorter delay 
chain. The maximum total delay through this chain must be less than or 
equal to k(2 - i) = 2k - 1. Thus, if all the OR gates in the longer delay 
chain are to remain 0, the XOR gate Y9k+1 must be unstable for at least 
2k + 2 - (2k - 1) = 3 time units and must therefore change. In summary, 
no state in outk(Ra(b)) has Y6k+1 = Y6k+2 = ... = YSk = Y9k+2 = 0. 

TABLE 8.1. Possible delay assignment for tk resolution. 

Yi for 1 SiS 2k 1+1 k 
Y2k+i for 1 SiS 2k 4 

Y4k+i for 1 SiS 2k 3- A 
Y6k+i for 1 SiS 2k 1 
YSk+i for 1 SiS k 2 _.l 

2f 
Y9k+l 3 - 2k 
Y9k+2 1 

On the other hand, if we assume the resolution is A, we would have to 
consider-among many other delay assignments-the case where the delays 
in the different components are as listed in Table 8.1. Since here the delay of 
Yi is 1 i, that of Y2k+i is 4, and that of XOR gate Y4k+i is 3- 21k ' it follows that 
the XOR gate will be unstable for a time shorter than its delay and will not 
change. Similarly, the difference between the total delays through the longer 
and the shorter delay chains will be 2k(1 i) - k(2 - A) = 2 + ! < (3 - A) 
for k > 1. Hence, XOR gate Y9k+1 will not change. Consequently, there is 
a state in out2k(Ra(b)) in which Y6k+1 = Y6k+2 = ... = YSk = Y9k+2 = O. 
Since there was no such state in outk(Ra(b)), the proper inclusion has been 
established and the claim follows. 0 

The result above shows that no fixed resolution is sufficient for every 
circuit. To the best of our knowledge it is still not known whether a dis
crete model with resolution f(n + m), for some function f, is guaranteed 
to be correct for every network with n inputs and m state variables. We 
conjecture that this is indeed the case. It is easy to generalize the proof 
above, however, to show that f must be at least singly exponential in m. 
Hence, the existence of such a resolution function is more of theoretical 
than practical interest. 

8.2 Continuous Binary Model 

As was shown in the previous section, it appears necessary to treat time as 
a continuous quantity, if an accurate bi-bounded delay analysis is desired. 
The model and algorithm described in this section are based on the work 



Section 8.2. Continuous Binary Model 149 

in [45] and [84], which uses an analysis with binary delays. In the next 
section we describe another continuous algorithm, but one that assumes 
the delays are of the extended ternary type. 

In the GMW model, the current state of input-excitation and internal
state variables is sufficient to determine the set of possible successor states 
of the network. Clearly this is not the case in a bi-bounded delay analysis. 
For example, if two gates with nonoverlapping delay bounds, say [1,2) and 
[3,5), become unstable at the same time, the gate with the smaller delay 
must change first. Consequently, we need to record a certain amount of 
previous excitation history for each variable. In fact, we must remember 
either how long an unstable variable has been unstable or how much longer 
the variable can be unstable without changing. In this section we use the 
latter approach and introduce a time-left variable. When a variable becomes 
unstable because of an input or state change, the time-left variable can be 
set to any time consistent with the delay bounds. We use the convention 
that stable variables have an infinite amount of time left. More formally, 
assume we have a binary network N= ({O, l},X,S,£,F), started in stable 
total state i],.b, and wish to study the transition caused by changing the 
input to a at time 0. Assume also that the delay 8j (t) of variable j, 1 :::; 
j :::; m, satisfies dj :::; 8j (t) < D j , for some nonnegative integers dj and D j . 

A race state is a pair (c, r), where c is the current state of the network, 
i.e., c E {O, l}m, and r is a vector of size m such that ri E (0, D i ) for 
unstable variables and ri = 00 for stable variables. Intuitively, the variables 
in r serve as alarm clocks for the unstable variables. When an alarm clock 
goes off (expires), the corresponding variable must change. If a variable 
becomes stable because of some other change, the corresponding alarm 
clock is turned off, i.e., set to 00. This takes care of the inertial nature of 
the delays. 

Let Q denote the (infinite) set of race states that are reachable according 
to the bi-bounded delay race model, and let Ra denote a binary relation 
on Q defining possible successor states. Furthermore, let .:J ~ Q be the 
set of initial race states of network N when it is started in stable total 
state a,·b and the input changes to a at time 0. The choice of starting 
state is very flexible. In fact, the only requirements are that 1) the state 
of the network is b, 2) stable variables have their alarm clocks set to 00, 

and 3) unstable variables have their alarm clocks set to values that are 
consistent with the minimum and maximum delay values of their variables. 
Now, given a race state (c, r), we determine a possible successor state as 
follows: If a·c is a stable total state, the network remains in this state 
indefinitely; thus a stable state has only itself as successor. Otherwise, a 
possible successor state is obtained by waiting until the first alarm clock 
goes off, i.e., waiting for rmin = min{ri I 1 :::; i :::; m} time units. When 
this occurs, the corresponding variables are complemented. (Note that, if 
several alarm clocks have the same value, all of the corresponding variables 
change at the same time.) We then update the alarm clocks. Three cases 
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are possible: First, if a variable is stable in the new network state, its 
alarm clock is turned off, i.e., ri is set to 00. Second, if a variable has been 
unstable for some time, but the alarm clock did not expire in this transition 
(i.e., ri > rmin), then the time left on the alarm clock is simply decreased 
by rmin. Finally, if neither of these two situations applies, the variable 
starts a new race unit; its alarm clock is set to any value consistent with 
its delay bounds. Note that this case includes both the situation when a 
stable variable becoms unstable as well as the situation when an unstable 
variable changes but remains unstable after the change. 

As in Chapter 6, let U(a·c) denote the set of variables that are unstable 
in the total state a·c, i.e., U(a·c) = {Sj I Sj(a·c) =f:. Cj}. 

Formally, :1, Q, and Ra are defined inductively as follows. 

Basis: :1 = Q is defined to be the set of all acceptable starting race states, 
i.e., race states (b, r) such that, for each i, 1 ::; i ::; m, either Si E 
U(a·b) and di ::; ri < Di , or Si is stable and ri = 00. 

Induction step: Given (c, r) E Q: 

1. If U(a·c) = 0, then (c, r)Ra(c, r). 

2. If U(a·c) =f:. 0, then select any P <:;:; U(a·c), P =f:. 0, and any real 
number rmin such that ri > rmin for every Si E U(a·c) - P and 
ri = rmin for every Si E P. Let (c',r') E Q, and (c,r)Ra(c',r'), 
where 

and 

if Si E P, 
otherwise, 

if Si (j. U(a·c'), 
if Si E U(a·c') and ri > rmin, 

otherwise, 

for any choice of Pi such that di ::; Pi < Di . 

Example 1 

To illustrate the definition above, consider network C8 .5 of Figure 8.5. 
Assume that it is started in stable total state 0·11 and the input 

[1,2) 

x------L[>-y' ~ 
[1,3) ~ 

FIGURE 8.5. Network C8.5. 
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changes to 1 at time 0. Two possible race sequences are shown in 
Figure 8.6. The 'numbers to the right of the arrows are the different 
values of rmin. 

[11, (1.359, 1.359)] 

.1.359 

[OQ, (00, 1.7)] 

.1.7 
[01, (00,00)] 

{) 

[11, (2.5, 1)] 

.1 
[1 Q, (1.5, 1.2)] 

.1.2 
[11, (0.3, 1. 7)] 

.0.3 

[01,(00,00)] 

{) 
FIGURE 8.6. Two possible race sequences. 

Let 9 denote a sequence (sO, rO), (s1, r1), . .. of race states such that 
(sO,rO) E :r and (sk,rk}Ra(sk+1,rk+1), for k ~ O. To define the state of 
the network at a particular time according to such a sequence, we need 
to know when the sequence changes from one state to the next. We can 
accomplish this by associating a time sequence with each race sequence; 
this is simply a sequence to, t1, . .. of real numbers defined inductively as 
follows. Let to = 0. Assuming that th has been defined, then th+1 = th, if 
U(a·sh) = 0, and th+1 = th + min1::;i::;m rf, otherwise. 

Let 0 be the set of all race sequences for network N when it is started in 
stable total state Q,·b and the input changes to a at time 0. For 9 E 0 with 
corresponding time sequence to, t1, .. . , the state of the network at time t 
according to this race sequence is written as sg(t) and is equal to 

for t < 0, 
for th $ t < th+1 if U(a.sh) =F 0, 
for th $ t if U(a.sh) = 0. 

The set of possible states of the network at time t is called Reach(t) and is 
defined as 

Reach(t) = {s I s = sg(t) for some 9 EO}. 

In the example above, it is easy to verify that Reach(t) = {ll} for ° $ 
t < 1, that Reach(t) = {OO,Ol,lO,ll} for 1 $ t < 2. It is quite laborious, 
however, to compute Reach(t) for t ~ 2. We will return shortly to the 
question of computing Reach(t) efficiently. Before doing so, we show that 
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the bi-bounded race model captures exactly the behavior of a network 
consisting of ideal delay-free excitation functions connected in series with 
bi-bounded inertial delays, as defined in Section 3.4. We do this by proving 
two rather technical lemmas. The first lemma shows that the behavior of a 
network according to a bi-bounded delay race sequence is consistent with 
the bi-bounded inertial delay model. More precisely: 

Lemma 8.1 Let g = (sO, rO), (S1, r1), ... be an arbitrary bi-bounded delay 
race sequence for network N, when it is started in the stable total state a·b 
and the input changes to a at time o. Furthermore, let 

X(t) = { : 
for t < 0, 
for t 2: o. 

Then the input/output behavior of every variable s j is consistent with the 
bi-bounded inertial delay model, i.e., Sj(X(t),S9(t))/SJ(t) is an acceptable 
input/output waveform according to the bi-bounded inertial delay model. 

Proof: The proof is straightforward but somewhat tedious and is left as 
an exercise for the interested reader. 0 

The converse result is stated in Lemma 2. Let X(t) and s(t) denote the 
input and state of network N at time t. 

Lemma 8.2 Assume that Sj(X(t), s(t))/Sj(t), for 1 ~ j ~ m, is an ac
ceptable input/output waveform according to the bi-bounded inertial delay 
model, when N is started in stable total state a·b and the input changes to 
a at time O. Then we can construct a valid bi-bounded delay race sequence 
corresponding to this input/output waveform. 

Proof: Again, the proof is straightforward but tedious and is left as an 
exercise for the interested reader. 0 

Together, the two lemmas above establish the desired connection between 
the bi-bounded inertial delay model and the behavior of a network accord
ing to the bi-bounded delay race model. Unfortunately, the bi-bounded 
delay race model is not very useful because of its continuous nature. 

8.3 Algorithms for Continuous Binary Analysis 

In the analysis of the previous section, there may be infinitely many starting 
states and, given a race state, there may be infinitely many successor states. 
Since these states may differ only in their r-components, the question arises 
whether it is possible to deal with equivalence classes of race states instead. 
The main result of [45] and [84] is that this is indeed possible. 

Before we can describe the algorithm, we need some properties of inter
vals. Let T denote a time interval. Let LT J (r T 1) denote the lower (upper) 
bound on the interval T. The intersection of two intervals and the addition 
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of two intervals are defined in the obvious way. The subtraction of an in
terval 7" is defined as addition of -7", where -7" is defined by L -7" J = - r 7" 1, 
r -7"1 = - L7" J, and each end of -7" is closed or open according to whether 
the opposite end of 7" is closed or open. The main property of intervals 
that should be emphasized is that, although a nonempty interval repre
sents an infinite number of possible values, if the bounds on the intervals 
are integers, all the operations above can be performed very efficiently. 
Furthermore, the operations yield intervals with integer bounds. 

It is tempting to believe that intervals could be used to bound the pos
sible values of the alarm clocks of the unstable variables, and thus that 
we could remove the continuous parts of the bi-bounded delay race model. 
Unfortunately, this is not as easy as it may first appear. The problem can 
be illustrated by a simple example. Consider a race state in which three 
variables, say S1, S2, and S3, are unstable and the corresponding alarm 
clocks, rb r2, and r3, are bounded by [1,2), [7,8), and [7,8), respectively. 
Assume that variable S1 changes first; this can happen any time in the 
interval [1,2). The question now arises: How much time remains on the 
alarm clocks r2 and r3 after variable S1 has changed? If we simply subtract 
the interval [1,2) we would get the result [5,7) and [5,7), respectively. It is 
true that the time remaining on alarm clocks r2 and r3 can be as small as 
5 and can be almost 7. It is not possible, however, for the time remaining 
on alarm clock r2 to be 5, while the time remaining on alarm clock r3 is 
greater than 6. What we have lost is the relation between the times left 
on alarm clocks r2 and r3. Thus, we must also keep track of bounds on 
the differences between the time remaining on pairs of alarm clocks. One 
of the results of [45] and [84] is that it is sufficient to keep bounds on the 
individual alarm clocks and the differences between all pairs of alarm clocks 
in order to carry out an efficient and accurate bi-bounded delay analysis. 

Let us now return to defining a more efficient bi-bounded delay analysis. 
The basic idea is to associate with each state a convex linear region describ
ing the possible values of the alarm clocks, rather than one specific instance 
of these clocks. Consequently, define a bd-state to be the pair (c, ~), where 
c is the current state of the network and ~ is an m x (m + 1) lower trian
gular matrix of intervals. For 1 :::; j < i :::; m the interval O'ij bounds the 
difference between the times r i and r j remaining on alarm clocks i and j 
when both Si and Sj are unstable variables. For 1 :::; i :::; m the interval O'iO 

bounds the time remaining on alarm clock i. The feasible region for such 
matrix is 

S(~) = {(rl. ... ,rm ) I ri - rj E O'ij for 0 :::; j < i :::; m and ro = O}. 

If S(~) f:. 0 the matrix is said to be a feasible matrix; otherwise it is an 
infeasible matrix. 

There are two difficulties with using such a lower triangular matrix of 
intervals to represent a feasible region: First, there are, in general, many 
different matrices representing the same region. Hence, comparing regions 



154 Chapter 8. Bi-Bounded Delay Models 

can be difficult. Second, it is often difficult to determine whether a matrix 
is feasible or not. One of the keystones in the analysis procedure we will 
describe shortly is Algorithm 1 of Table 8.2. 

TABLE 8.2. Algorithm 1. 

for k = 0 to m such that k = 0 or Sk E U(a·c) 
for i = 1 to m such that i =I k and Si E U(a·c) 

for j = 0 to i-I such that j =I k and j = 0 or Sj E U(a·c) 

{ 
(Tij n ((Tik + (Tkj) if j < k < i, 

(Tij = (Tij n ((Tik - (Tjk) if k < j, 
(Tij n ((Tkj - (Tki) if i < k. 

All other (Tij remain the same. 

Algorithm 1 is an adaptation of the Floyd-Warshall all-pairs shortest
path algorithm for directed graphs. The algorithm can be used to derive 
a canonical matrix for every feasible region, as the following lemma illus
trates: 

Lemma 8.3 Given a state c of a network and a lower triangular matrix I; 

of intervals, the result of Algorithm 1, denoted O( c, I;), is a lower triangular 
matrix of intervals satisfying the following two properties: First, if I; is 
feasible, then O( c, I;) is the unique lower triangular matrix for the feasible 
region for I;. Second, if I; is infeasible, then at least one of the intervals of 
O(c, I;) is empty. 

Proof: We refer the reader to [84] for the proof of this result. o 
It should be pointed out that we are normally interested only in (Tij 

entries for·which both Si and Sj are unstable variables or j = o. Other 
entries are usually (-00,00). 

Let W denote the set of bd-states that are reachable according to the 
bi-bounded delay analysis method, and let 'Ra denote a binary relation 
on the set W denoting the possible successor states. The network starts 
in the bd-state (b, I;), where I; = {(Tij}, is a lower triangular matrix such 
that (TiO = [di , D i ), and (Ti,j is (di - Dj,Di - dj ) when Si,Sj E U(a·b) and 
( -00,00) otherwise. Intuitively, this single state captures every race state 
in the set .J defined earlier. Now given a bd-state (c, I;) E W we progress 
as in the GMW model by choosing some subset P of the unstable variables 
as candidates to be complemented. Not every subset of unstable variables, 
however, is a suitable candidate for change. We must also consider the 
amount of time left on the corresponding alarm clocks. There are three 
conditions that must be satisfied: First, every active alarm clock must be 
positive, since we are trying to compute a successor state, i.e., a state 
reached later in time. Second, every variable in P must have the same 
value on its alarm clock, i.e., (Tij must be equal to [0,0] for every Si and 
Sj in P. Finally, the alarm clock of every unstable variable that does not 
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change must be strictly larger than any of the changing variables' alarm 
clocks. We determine whether such a P is possible by intersecting ~ with 
intervals derived according to these three conditions, and then applying 
Algorithm 1 to deduce whether the matrix obtained is feasible or not. If 
it is, we compute the new state reached as follows. The network state is 
obtained by complementing the variables in P. Computing the new matrix 
is more complex. Intuitively, the computation is to move the reference time 
point, or time ro in the matrix, to the time when the variables in P change. 

More formally, the procedure is defined inductively as follows: 

Basis: (b,O(b,~)) E W, where ~ = {aij} is a lower triangular matrix of 
intervals defined for 0 :S j < i :S m as 

if j = 0, 
otherwise. 

Induction step: Given q = (c,~) E W, 

1. if U(a·c) = 0, then qRaqj 

2. ifU(a·c) of. 0, select any P ~ U(a·c), P of. 0 such that t = O(c, i;) 
is feasible, where i; = {Uij} is defined below. For 0 :S j < i :S m 

1 
aij n (0,00) 
aij n [0,0] 

Uij = aij n (0,00) 
aij n (-00,0) 
aij 

if j = 0, 
if Si E P and Sj E P, 
if Si E U(a·c) - P and Sj E P, 
if Si E P and Sj E U(a·c) - P, 
otherwise. 

Let ij = (c, O(c, f;)) E Wand qRaij, where 

Ci = {Si(a.c) if Si E P, 
Ci otherwise, 

and f; = {(Tij} is defined as follows. For any Sk E P and for 
0< i :S m let 

For 0 < j < i :S m let 

if i E 0 and k < i, 
if i E 0 and k ~ i, 
otherwise. 

_ {aij if i E 0 and j E 0, 
aij = (-00,00) otherwise, 

where 0 = {i I Si E U(a·c) n U(a·c) and Si ~ Pl· 

To illustrate the method, consider circuit C8 .5 of Figure 8.5 started in 
stable total state X·YIY2 = 0·11, with X changing to 1 at time O. Assume 
the delay of the inverter is bounded by [1,3) and the delay of the NAND 
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(ll,[f~:~~ (-2,1)]) 

------------------(OQ, [f~:~~ (-00,00)]) (lQ, [~~:;? (-1,2)]) 

J 

(0,2) ]) 

FIGURE 8.7. Example of bi-bounded delay analysis. 

gate is bounded by [1,2). In Figure 8.7 we show W and na according to 
such a bi-bounded delay analysis. 

To conclude this section we need to show that the method described 
above is both correct and viable. It is easy to convince oneself that the 
method produces a finite number of bd-states in W. The main reason for 
this is that the operations we perform on the matrices are all such that 
the intervals always have integer bounds either between D = maxl:S;i:S;m Di 
and -D, or equal to ±oo. The correctness of the method is shown in the 
following theorem which relates the Wand na with the results predicted 
by the bi-bounded delay race model. 

Theorem 8.2 The outcome computed by the method above is identical to 
the outcome predicted by the bi-bounded delay mce model. Formally, 

{s I (b, t)n; (s, E) and (s, E)nt (s, E)} = 

{s I 37 > 0 such that s E Reach(t) for all t 2:: 7}, 

where (b, t) is the bd-state defined by the basis case in the algorithm. 

Proof: We refer the reader to [45] or [84] for the proof. 0 

8.4 Continuous Ternary Model 

The main problem with the analysis method described in the previous 
section is its large computational requirement; the algorithm is significantly 
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more time-consuming than even a GMW analysis. Thus, the method is only 
useful for very small networks. In this section, which is based on the work 
in [122], we present a bi-bounded delay race model related to the extended 
bi-bounded inertial delay model, and an efficient analysis method for this 
model. 

The underlying race model is called the extended bi-bounded delay (XED) 
model and is defined for ternary networks. Assume that a ternary network 
N = ({O,<P,l},X,S,£,F) is started in stable total state a·b, and that 
the input changes to a at time O. Note that we always assume the inputs 
are binary; thus, both a and a belong to {O, l}n. We also assume that the 
delay t5j (t) of variable Sj, 1 :::; j :::; m, satisfies dj :::; t5j (t) < D j , for some 
nonnegative integers dj and D j. 

A certain amount of previous excitation history is needed in the XBD 
race model. Define a race state to be a 4-tuple [c, u, v, tJ as follows. The first 
component, c E {O, <P, 1} m, is the current state of the network. The second 
component, u, is a vector of m real numbers and is used to remember how 
long an unstable variable with a binary value has been unstable. The third 
component, v, serves a similar purpose, but is used to remember how long 
an unstable variable has had a binary excitation. The last component, t, 
is a real number denoting the time at which this state was reached. Note 
that the input is assumed to change (from a to a) at time O. 

Let Q denote the set of race states reachable according to the XBD race 
model, and let Ra denote a binary relation (to be defined) on the set Q 
denoting the possible successor states. An XED race sequence is an infinite 
sequence [sO, uo, vO, to], [sl, u1, VI, t1 J, ... of race states such that 

and 

[sh,uh,vh,thJRa[Sh+1,Uh+1,Vh+1,th+1], for h ~ O. 

One can view an XBD race sequence as a sequence of "snapshots" of the 
network. The network starts in state [b, (0, ... ,0), (0, ... ,0), OJ of Q at time 
O. Given some state [c, u, v, tJ in Q, we determine a possible successor state 
as follows. If a·c is a stable total state, the network remains in this state 
indefinitely; thus a stable state has only itself as successor. Otherwise, we 
take a new snapshot of the network at time t + t5 for some t5 > O. Since 
this snapshot is to capture the next change of the network state, t5 must be 
chosen carefully. Because a variable with a binary value must be unstable 
for at least dj units of time before it can change to <P, and an unstable 
variable must have the same binary excitation for at least dj units of time 
before it can change to this excitation, t5 must be chosen so that there exists 
at least one unstable variable Sj for which Uj + t5 or Vj + t5 is greater than 
or equal to dj . On the other hand, since a variable cannot be unstable and 
have a binary value, or be unstable and have a binary excitation, for D j 
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units of time without changing, 6 must be chosen so that each of Uj + 6 
and Vj + 6 is strictly smaller than Dj for all unstable variables Sj. 

Once 6 has been selected, two sets, cct> and CB , are computed. The set 
cct> contains all the variables that, for this 6, are candidates for changing 
to ct>, i.e., it contains all the variables that are binary, unstable, and for 
which Uj + 6 is greater than or equal to dj . The set CB contains all the 
variables that, for this 6, are candidates for changing from ct> to a binary 
value, i.e., all the variables that are ct>, are unstable, and for which Vj + 6 
is greater than or equal to dj . Finally, some nonempty subset of cct> u C B 

is chosen, the appropriate variable values are changed, and U and v are 
updated accordingly. 

It is important to note that, if a state in Q is unstable, it has infinitely 
many possible successor race states, though the number of S values is, of 
course, finite. 

As before, let U(a·c) denote the set of vertices that are unstable in the 
total state a·c, i.e., 

U(a·c) = {Sj I Sj(a.c) =1= Cj}. 

Define the set of vertices that have a binary value in state c to be 

B(c) = {Sj I Cj E {O, I}}. 

Also, let the set of vertices that have a binary excitation in the total state 
a·c be 

Bt:(a·c) = {Sj I Sj(a·c) E {O, I}}. 

Now Q and Ra are formally defined inductively as follows: 

Basis: Let [b, (0, ... ,0), (0, ... ,0),0] E Q. 

Induction step: Given q = [c, U, v, t] E Q, 

1. if U(a·c) = 0, then qRaqj 

2. if U(a·c) =1= 0, then for any 6> ° such that 6min ~ 6 < 6max , where 

Omin = min{min{dj - uj,dj - Vj} I Sj E U(a·c)}, 

and 

omax = min{min{Dj -:- Uj, Dj - Vj} I Sj E U(a·c)}, 

let 

cct> = U(a·c) n B(c) n {Sj I Uj + 62:: dj } 

and 

CB = U(a·c) n {Sj I Cj = ct>} n {Sj I Vj + 62:: dj }. 
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Finally, for any P ~ e<I> u eB , Pi=- 0, let q' = [c' , u' , v' , t + 8] E Q 
and qRaq', where 

and 

vj = { 

Example 2 

Uj +8 
o 

if 8j E P n e<I>, 
if 8j E P neB, 
otherwise, 

if 8j E U(a·c) n 6(c) n U(a·c') n 6(c'), 
otherwise, 

vj+8 if 8j EU(a·c) n 6£(a·c) n U(a·c') n 6£(a·c'), 
o otherwise. 

To illustrate the definition above, consider network es.s of Figure 8.8 
started in stable total state 1·100 when the input changes to O. Two 
possible XBD race sequences are shown in Figure 8.9. We use the 
notation 0<I>' (01, <I>o, etc.) to denote a variable that currently has the 
value 0 (0, <I> , etc.) and excitation <I> (1, 0, etc.). The numbers to the 
left of an arrow denote the limits for 8, and the number to the right 
of an arrow corresponds to the 15 chosen. 

To illustrate some steps in the computation, consider the left XBD 
race sequence of Figure 8.9. We start in state [1000, (0,0,0), (0,0,0), 
0], where U(0·100) = {8d. Now, for all the unstable variables 8j (in 
this case variable 81 only), we compute the values of dj - Uj, dj - Vj, 

D j -Uj, and D j -Vj in order to find the lower and the upper bounds 
on 15. We get I5min = 1 and I5max = 3. In our example, we choose 

8 = 2. Once 8 has been chosen, we must determine the set e<I> of 
variables that, for this choice of 8, are candidates for changing to 
<I> , and the set eB of candidates for changing from <I> to a binary 
value. More specifically, the variables in e<I> are all unstable, all have 

X 

1 

[1,3) 

[1,3) 

[1,3) 

FIGURE 8.8. Network es.s. 
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[10 ,0,0,(0,0,0),(0,0,0),0] 

1::; 8 < 3+2 

[tPo, 0<1>, 0<1>, (0,0,0), (2, 0, 0), 2] 

0<8<1+0.5 

[0,01,01, (0,0.5,0.5), (0,0,0),2.5] 

0.5 ::; 8 < 2.5+0.5 

[0, tPl> 0<1>, (0,0,1), (0,0.5,0),3] 

0<8<2+1 

[0,1,0, (0,0,0), (0,0,0),4] 

{) 

[10,0,0),(0,0,0),(0,0,0),0] 

1 ::; 8 < 3+1.3 

[tPo, 0<1>, 0<1>, (0,0,0), (1.3, 0, 0),1.3] 

0< 8 ::; 1.7+1.5 

[tPo, tP, 0<1>, (0,0,1.5), (2.8,0,0),2.8] 

o < 8 < 0.2+0.1 

[0, tP1, 0<1>, (0,0,1.6), (0,0,0),2.9] 

0<8 < 1.4+1.2 

[0,1<1>, tPo, (0, 0, 0), (0,0,0),4.1] 

1 ::; 8 < 3+2.3 

[0, tP, tP, (0,0,0), (0, 0, 0), 6.4] 

{) 
FIGURE 8.9. Two possible XBD sequences. 

a binary value, and for all of them Uj +82: dj . The set C B is defined 

similarly. In the present situation C tP = {Sl} and C B = 0. Once 
C tP and C B have been computed, we have to choose some nonempty 
subset of C tP U CB as the set P. Here there is no choice; P must 
be equal to {sd Given P and 8, we now proceed as follows. The 

state of variable Sj is changed to tP if Sj is in C tP n P, and to its 
excitation value if Sj is in CB np. No other variables are changed. In 
our example, only Sl is changed, and it is changed to tP. When this 
is done, the vectors U and v are updated as follows: If a variable Sj 

was unstable and had a binary excitation in the previous state and 
the same situation holds in this new state, then Uj is incremented by 
8. Otherwise, Uj is set to O. Similarly, a variable that was unstable 
and had a binary excitation in the previous as well as the new state, 
gets Vj incremented by 8 ; all other variables get Vj set to O. In our 
example, variable Sl is not binary in the new state and thus U'l = o. 
On the other hand, variable Sl satisfies all the conditions for getting 
V1 incremented, and thus V'l = 8 = 2. Variables S2 and S3 were not 
unstable in the previous race state; thus u' 2 = U' 3 = v' 2 = v' 3 = o. 
Hence, a possible successor state is [tPo0tP0tP' (0,0,0), (2,0,0),2]. 

Next we determine a successor state to [tPo0tP0tP' (0,0,0), (2,0,0),2]. 
First, U(O·tPOO) = {Sl,S2,S3}. We then find that 8min = -1 and 
8max = 1. Since 8 must be nonnegative, it must be in the open interval 
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(0,1). In our example, 6 is chosen to be 0.5. It is easy to verify that, 
for this choice of 6, C(p = 0 and C B = {Sl}. Although variables S2 

and S3 are unstable, they have only been unstable from time 2. Since 
the maximum delay in variable Sl must be less than 3, it follows 
that only variable Sl will be a candidate for changing. As above, we 
get P = {sd. The reader can verify that the network reaches state 
[00101 , (0, 0.5, 0.5), (0, 0, 0), 2.5]. 

Let g be the set of all XBD race sequences for network N, when N is 
started in stable total state d·b and the input changes to a at time O. For 
g E g, the state of the network according to this race sequence is written 
as S9(t), and is equal to 

S9(t) = { ~ 
s' 

for t < 0, 
for t i ~ t < ti+1 if U(a·s i ) -:j:. 0, 
for t i ~ t if U(a·s i ) = 0. 

The set of possible states of the network at time t is called Reach(t) and is 
defined as 

Reach(t) = {s I s = S9(t) for some g E g}. 

In the example above, it is easy to verify that Reach(t) = {100} for 0 ~ 
t < 1, that Reach(l) = {IOO, (POO} , and that Reach(t) = {IOO, (POO, OOO} 
for 1 < t < 2. It is very laborious, however, to compute Reach(t) for t ~ 2. 
We will return shortly to the question of computing Reach(t) efficiently. 
Before doing this, we establish that the XBD race model captures exactly 
the behavior of a network consisting of ideal, delay-free excitation functions 
connected in series with extended bi-bounded inertial delays. We do this by 
proving two lemmas. The first lemma shows that the behavior of a network 
according to an XBD sequence is consistent with the extended bi-bounded 
inertial-delay model. More precisely: 

Lemma 8.4 Let g = [SO, uO, vO, to], [Sl, u\ VI, t 1], ••• be an arbitrary XBD 
race sequence for network N, when N is started in stable total state d·b 
and the input changes to a at time O. Furthermore, let 

X(t) = { : for t < 0, 
for t ~ o. 

Then the input/output behavior of every variable Sj is consistent with the 
extended bi-bounded inertial-delay model, i.e., Sj(X(t), S9 (t))/S} (t) is an 
acceptable input/output waveform according to the XID model. 

Proof: The proof is straightforward but quite lengthy. Hence, it is not 
included here and we refer the interested reader to [122]. 0 

The converse result is stated in Lemma 2. Let X(t) and s(t) denote the 
input and state of network N at time t. 
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Lemma 8.5 Assume that Sj(X(t), s(t))/Sj(t), for 1 :::: i :::: m, is an ac
ceptable input/output waveform according to the XID model, when N is 
started in stable total state d·b and the input changes to a at time O. Then 
we can construct a valid XED sequence corresponding to this input/output 
waveform. 

Proof: Again, the proof is straightforward but lengthy and the interested 
reader is referred to [122]. 0 

In summary, the two lemmas above establish a direct link between the 
extended bi-bounded inertial-delay model and the behavior of a network 
according to the extended bi-bounded delay race model. 

8.5 Discrete Ternary Model 

The XBD race model is more of theoretical interest than of practical use, 
since each state can have infinitely many successor states. We now define 
an efficient algorithm, called the ternary bi-bounded delay algorithm (TBD 
algorithm), for simulating a network. We will show that the results obtained 
by applying this method summarize the outcome predicted by the extended 
bi-bounded delay race model. 

The basic idea behind the TBD algorithm is quite simple and is given in 
the following two rules: 

1. Change an unstable variable to <I> as soon as allowed by its minimum 
delay. 

2. Change a variable from <I> to a binary value as late as possible. 

An informal description of a similar algorithm was given by [32] in 1971. 
In the TBD algorithm, as in the XBD race model, it is necessary to 

remember a certain amount of previous excitation history. For this reason, 
define a tbd-state to be the triple (z, U, V). The first component, z, is the 
current "summarized" state of the network. The second component, U, is a 
vector of m integer values. For a stable variable Sj, Uj = 0, whereas for an 
unstable variable with a binary value, Uj denotes the current "race unit" 
of the variable. For example, in the starting state, every unstable binary 
variable will have Uj = 1, denoting that the variable is currently in its first 
unstable time slot. Similarly, V is used like U, but here the criterion is 
that the variable is unstable and has a binary excitation. The summarized 
state of the network is computed at times 1,2,3, ... , in a two-step process. 
Given the state (zh-l, Uh - 1 , V h - 1 ), we first compute an intermediate state 
(zh, Uh, Vh). Intuitively, this state is the summarized state of the network 
at time h - f for an arbitrarily small f. To compute zh, we change only 
the variables that have to change to their binary excitation. These are 
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the variables that have ~h-l = Dj . Owing to these changes, some other 
variables may become stable, and they are removed from U and V. 

Once the intermediate tbd-state is calculated, we compute the new "next" 
state, i.e., the summarized state of the network at time h. First, to obtain 
zh, we change all the variables that may change to <P. These are the vari
ables that have U'; = dj . All other variables are unchanged. Second, the 
vectors U and V are updated. This time the update consists of increment
ing Uj and Vj by 1, if variable Sj satisfies the conditions below, and setting 
them to 0 otherwise. For example, a variable Sj that is unstable and has a 
binary value in zh will get Ujh = U'; + 1, whereas a variable that became 
stable in zh will get U'; = o. 

Formally, the TBD algorithm is defined inductively as follows: 

Basis: ZO = h. 

UJ = { ~ 

~o = { ~ 

if Sj E U(a·zO) n B(zO), 
otherwise; 

if Sj E U(a·zO) n B£(a·zO), 
otherwise. 

Induction step: Given (zh-l, Uh - 1 , V h - 1 ), we first compute the interme
diate tbd-state (zh, Uh, Vh) as follows: 

V h - 1 
J 

o 

·f V h - 1 D 1 j = j, 

otherwise; 

if Sj E U(a.zh) n B(zh), 
otherwise; 

if Sj E U(a·zh) n B£(a.zh), 
otherwise. 

Once this intermediate state is known, the state (zh, uk, Vh) is com
puted as follows: 

if Sj E U(a.zh) n B(zh), 
otherwise; 

if Sj E U(a·zh) n B£(a.zh), 
otherwise. 
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Example 3 

To illustrate the algorithm, consider network Cs.s of Figure 8.8 started 
in stable total state 1·100, when the input changes to X = o. In 
Figure 8.10 we show the results of the TBD algorithm. It is easy to 
verify that Z3 is stable; hence the algorithm terminates at this point. 

Zo : (1000, (1,0,0), (1,0,0)) 

t 
Zl : (1000, (1,0,0), (1, 0, 0)) 

t 
Zl : (<1>004>04>, (0, 1, 1), (2,0,0)) 

t 
Z2 : (<1>004>04>, (0, 1, 1), (2,0,0)) 

t 
Z2 : (<1>0<1><1>, (0, 0, 0), (3,0,0)) 

t 
Z3 : (0<1><1>, (0,0,0), (0,0,0)) 

t 
Z3 : (0<1><1>, (0,0,0), (0,0,0)) 

{) 
FIGURE 8.10. TBD analysis of Cs.s. 

Example 4 

Our next example is more complicated. Consider the network CS.11 

of Figure 8.11 started in stable total state X = 0, s = 0000001, 

X 

1 

FIGURE 8.11. Network CS.11. 
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0: 0000001 0: 0000001 

• • 3: if>000001 7: if>000001 

• • 5: 1000001 13 : 1000001 

• • 6: 1000if>01 14 : 1000if>01 

• • 7: 10if>0if>01 21 : 10 if> 0 if> 01 

• • 10: 10 if> 0 10 1 26 : 10 if> 0 10 1 

• • 12 : 1 if> if> if> 10 1 28 : 1 if> if> if> 101 

• • 15 : 1 if> 1 if> 1 if> if> 35 : 1 if> if> if> 1 if> if> 

• • 18 : 1 if> 1 if> if> if> if> 39 : 1 if> 1 if> 1 if> if> 

• • 20 : 1111 if> if> if> 42 : 1 if> 1 if> if> if> if> 

• • 25 : 1111if>1O 49 : 1 if> if> if> if> if> if> 

• {) 
30 : 1111010 

{) 
FIGURE 8.12. TBD analyses with ±25% and ±30% deviation. 

when the input changes to X = 1 at time O. In Figure 8.12 we have 
summarized the TBD analyses of this transition when the delay in 
each gate is bounded by [3,5) and [7,13), respectively. To clarify the 
picture, we only show zh when zh #- zh-l. If the base time is in ns, 
then, if the delay is bounded by [7,13), we are analyzing a situation 
where the gate delays are 10 ns ±30%. Similarly, if the base time 
corresponds to 2.5 ns, then, if the delays are bounded by [3,5), the 
gate delays are 10 ns ±25%. 
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We are now ready to characterize the results obtained by a TBD analysis. 
Let zO, Zl , zl , ... be the sequence of states computed by the TBD algorithm 
and let Reach( t) be the outcome according to the extended bi-bounded 
delay race model. The following theorem shows that the TBD algorithm 
can be used to get essentially the same information as that found by the 
XBD race model. 

Theorem 8.3 zr = lub Reach(r) for r = 0,1, .... 

Proof: The proof of this result is too lengthy to include here, and we refer 
the reader to [122]. 0 

We are now in a position to interpret the results of the TBD analyses of 
CS.ll shown in Figure 8.12. By Theorem 2, we can conclude that, according 
to the extended bi-bounded delay race model, the circuit can tolerate a 
±25% variation of the gate delays but not a ±30% variation. 

One of the main attractions of the TBD algorithm is its computational 
efficiency. A TBD analysis usually requires at most twice the computa
tional effort required by a nominal delay analysis. If we start with a binary 
network and use its ternary extension as our network for the analysis, how
ever, we obtain this computational efficiency at a price. In particular, if we 
compare with a (continuous) binary bounded delay analysis, we may get 
"false negatives," i.e., our analysis in the ternary domain may not be an 
exact summary of a binary analysis. Although the TBD analysis result is 
correct with respect to an extended bi-bounded race analysis, it is more 
conservative than the binary bi-bounded delay analysis. A possible multi
level approach to analyzing a transition would be to start with ternary 
simulation. If the result of ternary simulation is binary, then we are done. 
Otherwise, use the TBD algorithm to analyze the transition. Again, if this 
yields a binary final state, we are done. Finally, if all else fails, use the 
binary bi-bounded delay analysis algorithm to analyze the transition. By 
using the most efficient but most pessimistic analysis techniques first, we 
can reduce the number of transitions that need to be analyzed by the com
putationally very expensive methods. In Chapter 14 we return to this topic 
and show how we can analyze several transitions at once by using symbolic 
formulations of the algorithms discussed so far in the book. 



Chapter 9 

Complexity of Race Analysis 
Two questions naturally arise in connection with the analysis of a transition 
caused by an input change: 1) Will the network eventually reach a unique 
(binary) stable state? 2) Will the network be in a unique (binary) state 
at time t? We call the first question the "stable-state reachability" (SSR) 
problem and the second the "limited reachability" (LR) problem. Both 
questions can be answered by using the race analysis algorithms presented 
in earlier chapters. Some of these algorithms are highly efficient, whereas 
others appear to require time exponential in the size of the network to be 
analyzed. In this chapter we explore the inherent computational complex
ity of these analysis problems. We assume the reader is familiar with the 
standard terminology for NP-completeness, as described in [55]. The work 
given here is based mainly on [122, 123]. 

How To Read This Chapter 

This chapter can be omitted on first reading since no subseqeuent material 
depends directly on it. For a summary of the main results, the reader is 
directed to Tables 9.1 and 9.2 on pages 181 and 185, respectively. 

9.1 Stable-State Reachability 

Assume that N is a network started in stable total state a·b. The stable
state reachability (SSR) problem is: If the input changes to a at time 0 and 
is kept at that value, does the network eventually reach a unique stable 
binary state? 

Before studying the computational complexity of this question, we need 
to make a rather fundamental assumption. Unless otherwise stated, we 
henceforth assume that the excitation function Sj, 1 ~ j ~ m, can be com
puted using at most O(mk) space and in time O(mk) for some constant 
k > O. This assumption is quite reasonable. Also, if it does not hold, even 
the problem of determining whether a given state is unstable is intractable. 
In fact, for many types of circuits it is reasonable to assume that the ex
citation functions can be computed in constant time. Gate circuits with 
bounded fan-in provide a typical example. 
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In the following we study the complexity of the SSR problem for different 
race models. We start with the simplest case-the unit-delay model. 

Theorem 9.1 The SSR problem is PSPACE-complete for the unit-delay 
race model. 

Proof: For the unit-delay model, SSR is clearly in PSPACE, since we can 
simulate the circuit and use a counter to keep track of the number of state 
changes. If the circuit has not reached a stable state within 2m steps, it must 
have entered an oscillation and will never reach a stable state. Since the 
simulation requires only enough space to compute the excitation functions, 
i.e., space polynomial in m, and the counter needs only space linear in m, 
it follows that the unit-delay SSR (UD-SSR) problem is in PSPACE. 

To prove the theorem, it is therefore sufficient to establish that a known 
PSPACE-complete problem can be reduced to the UD-SSR problem. The 
quantified Boolean formula (QBF) problem turns out to be appropriate. 
Following [65] a QBF is defined as follows: 

1. If x is a variable, then it is a QBF. The occurrence of x is free. 

2. If El and E2 are QBFs, then so are ,(Ed, (Ed 1\ (E2), and (E1 ) V 
(E2 ). An occurrence of x is free or bound, depending on whether the 
occurrence is free or bound in El or E 2 . Redundant parentheses can 
be omitted. 

3. If E is a QBF, then 3x(E) and Vx(E) are QBFs. The scopes of 3x 
and "Ix are all the free occurrences of x in E. Free occurrences of x in 
E are bound in 3x(E) and Vx(E). All other occurrences of variables 
in Vx(E) and 3x(E) are free or bound, depending on whether they 
are free or bound in E. 

A QBF with no free variables has a value of either true or false, denoted 
by 1 and 0, respectively. The value of such a QBF is obtained by replacing 
each sub expression of the form 3x(E) by EO V El and each sub expression 
of the form Vx(E) by EO 1\ El, where EO (El) is E with all the occurrences 
of x in the scope of the quantifier replaced by 0 (1). The QBF problem is 
to determine whether a QBF with no free variables has the value true. It 
was shown in [65, 131] that the QBF problem is PSPACE-complete. 

Given a QBF E with no free variables, we design a circuit with one 
input; this circuit, started in a stable state (to be defined) and with the 
input changing from 0 to 1, reaches a new stable state if and only if E is 
true. If E is false, the circuit oscillates. Thus the basic idea is to design 
a sequential circuit that evaluates E. We must ensure, however, that the 
size of this circuit-and thus the size of the UD-SSR problem-remains 
polynomial in the size of the QBF problem. Hence, we cannot simply take 
two copies of a circuit that evaluates E, use them to evaluate E for x = 0 
and x = 1, and compute the OR of the results in order to compute 3x(E), 
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since this could generate a circuit of size exponential in the size of E. 
We can design a small control circuit, however, that first evaluates E for 
x = 0, stores the result, and then evaluates E for x = 1 and combines the 
two results. This is the basic idea, but the construction we actually present 
is more complicated and far from minimal in size. We do this in order to 
simplify the correctness proof. 

D-._-------I 

~...----Q 

r ------+----1 

c------.----1 

FIGURE 9.1. A D flip-flop with completion and reset signals. 

Before we describe how to transform E into N, we present our basic 
building block-a D flip-flop (DFF) with completion signals and an asyn
chronous reset input. The circuit is shown in Figure 9.1; it is an ordinary 
D flip-flop with reset input, but it also has eight extra inverters. These 
inverters function as delays, making sure that the completion signal, called 
Ca , for the store signal, c, does not occur before the output Q has obtained 
the value of the input D. The reset signal r and the reset completion sig
nal r a are treated similarly. The signals that arrive on the store input and 
reset input consist of pulses (0 -+ 1 -+ 0) 3 unit delays long. Furthermore, 
there is at most one pulse propagating through the flip-flop at any given 
time. The reader can easily verify that the circuit of Figure 9.1 does indeed 
behave as described under these assumptions, if every gate is assumed to 
have a unit delay. 

Assume that E is a given QBF with no free variables, and let N denote 
the circuit to be constructed. We first define a sub circuit N recursively as 
follows: 

Basis: If E = x, then N is the circuit shown in Figure 9.2(a). 

Induction step: Assume that circuits Nl and N2 corresponding to the 
QBFs El(X) and E 2 (x) have been constructed. 



170 Chapter 9. Complexity of Race Analysis 

C 

x 

C 

y 

C 

: DFF: 
y . . . . 

: D Q :Out 

r 

.... 9 .... 

(a) 

.-- ................................... --_ .. _-

:C 

~ y Out I-----l 

DFF 

"X)--~D Q . Out 

r 

o 

(b) 

FIGURE 9.2. Construction for (a) a variable Xj (b) ,E1 (y). 

ra 

C Ca C Ca C Ca 
Ca 

Nl N2 DFF: 

* y Out y Out D Q 
: Out 

r 

0 

FIGURE 9.3. Construction for E 1 (y) V E 2 (y). 

1) If E = ,(Ed, then N is the circuit shown in Figure 9.2(b). 

2) If E = (Ed V (E2 ), then N is the circuit shown in Figure 9.3. 
Similarly, if E = (El ) 1\ (E2)' then N is the circuit obtained by 
replacing the *-marked OR gate in Figure 9.3 by an AND gate. 

3) If E = 3x(El ), then N is the circuit shown in Figure 9.4. Simi
larly, if E = TtX(El)' then N is the circuit obtained by replacing 
the *-marked OR gate in Figure 9.4 by an AND gate. 

Finally, if N is the circuit that corresponds to E, then N is the circuit 
shown in Figure 9.5. 

The main idea of the construction of N is to separate the "control" 
path from the "data" path. Furthermore, we make sure that only one pulse 
propagates through the control path of the circuit, and that no signal from 
the data path can affect the control path. The "combinational" parts of 
E are rather obvious, and are shown in Figures 9.2-9.3. For example, the 
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.... ----.----_ ... _-_ ........... -_ ........ _-_ ........................ - ..... ----

ra 
C Ca 

DFF 

DQ 
r 

0 

ra 
C Ca 

C Ca 

NI 
DFF 

Y 

Out 
DQ 

y 

Out 

r 
x 

ra 0 

C Ca 

DFF 

D Q~---+----------~ 
r 

C 

FIGURE 9.4. Construction for 3x. El (x, y). 

in - .... ------1 ra 
C Ca CCa 

N 
Out 

FIGURE 9.5. Complete construction for Theorem 9.1. 

circuit of Figure 9.2(b) corresponds to a sub expression -,E1 (y), and works 
as follows: When a pulse arrives at the "start" input (c), it is immediately 
sent to the start input of the subcircuit that evaluates El(Y). When the 
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completion signal arrives from this subcircuit, a pulse is delayed 2 units 
of time in order to allow the inversion of the result in the data path. Fi
nally, this inverted result is latched in the D flip-flop. When this is done, a 
pulse arrives at the completion output (ca ) of the entire circuit. The other 
combinational circuits can be verified using similar arguments. 

The circuits corresponding to the expressions 3x. El (x, y) and \Ix. El (x, y) 
are more complicated. We discuss only the circuit shown in Figure 9.4, 
which evaluates 3x. E1(x, y). The circuit for \Ix. E1(x, y) works similarly. 
The basic idea is as follows: We want the circuit to evaluate El (0, y), store 
the result, evaluate E I (l, y), OR the two results together, and latch the final 
result. The left-most D flip-flop serves as a "status register" keeping track 
of the current value of x. The topmost D flip-flop is used to remember the 
result of El (0, y), and the right-most D flip-flop is used to latch the final 
result. When a pulse arrives at the start input c, the status register is reset. 
This causes x to be set to O. Once the status register has been reset, the 
completion signal (ra) is fed via the left-most OR gate to the start input 
(c) of the sub circuit NI evaluating EI(x,y). When this result E(O,y) be
comes available (i.e., when a pulse arrives at the Ca output), it is latched 
in the topmost D flip-flop. This follows because the completion output (ca ) 

from NI is directed to the store input of the topmost D flip-flop, when x 
is O. After the value has been latched in the topmost D flip-flop, a pulse 
goes back to the status register. Since the D input of the status register is 
connected to 1, the output (Q) changes to 1, causing x to become 1. Now, 
when the output of the latch (Q) has obtained the value 1, the completion 
signal (ca ) is fed via the left-most OR gate to the C input of NI . This time 
x = 1, and NI evaluates E1(1, y). When the result of EI(l, y) is available, it 
is combined with the stored value of EI (0, y) and latched in the right-most 
D flip-flop. The completion signal is then used to signal to the remain
ing circuit that the result of 3x. EI (x, y) is available at the output. It is 
straightforward to convince oneself that the circuit of Figure 9.4 behaves 
as described if the unit-delay model is assumed. We leave the details to the 
interested reader. 

The figures above have shown how to convert a QBF E with no free 
variables into a sequential circuit N. Note that, for each operator in the 
QBF, we need only a constant number of gates. For a QBF of length r, we 
get a circuit with at most 44r gates. We are not quite done, however. The 
final part of the circuit, shown in Figure 9.5, must be put "around" N in 
order to correctly introduce a pulse into N and also to interpret the final 
result. The idea is to use a NOR gate feeding back to itself as an oscillator. 
The only time a stable state can be reached in the complete circuit when 
the input changes from 0 to 1, occurs when the final latch gets the value 1. 
This can happen if and only if QBF E is true. 

Our final task is to assign a starting state to this circuit. This is simply 
the state in which all the flip-flops are storing the value 0, and the input 
in is O. The reader can easily verify that this total state is stable. 
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In summary, the construction described above takes an arbitrary QBF 
E of size r, with no free variables, and yields a gate circuit with at most 
44r+19 gates. If this circuit is started in the stable total state defined above, 
and the input changes from 0 to 1, then the circuit eventually reaches a 
stable state if and only if E is true. Hence, if we can solve the UD-SSR 
problem in polynomial time, then we can solve all problems in PSPACE in 
polynomial time. This, together with the fact that the UD-SSR problem is 
in PSPACE, implies that it is PSPACE-complete. 0 

Since the unit-delay version of SSR is PSPACE-complete and unit-delay 
analysis is a special case of nominal delay analysis, it follows trivially that 
the SSR problem for the nominal delay model is also PSPACE-complete. 

In the models above we have knowledge of the exact sizes of the delays. 
In contrast to this, the GMW and XMW race models below use delays that 
are (almost) completely unknown. The complexity of the SSR problem for 
the GMW model depends on where we assume delays. 

Theorem 9.2 If the network has input-, gate-, and wire-delays, the SSR 
problem is solvable in polynomial time for the GMW race model. 

Proof: Since the network is complete, we can use the ternary simulation 
algorithm described in Chapter 7. To determine the answer to this SSR 
problem, it is sufficient to consider the result sB of ternary simulation. If 
sB is binary, then it follows by Theorem 7.2 that the circuit must eventually 
reach this state according to a GMW analysis. On the other hand, if sB is 
not binary, then, again by Theorem 7.2, we can conclude that the circuit 
does not reach a unique binary state; thus it can oscillate and/or have 
a critical race. The polynomial time result follows from the fact that the 
ternary simulation algorithm produces, in the worst case, a sequence of 
2m states, each requiring at most m excitation function evaluations. This, 
together with the assumption that the excitation functions can be evaluated 
in time polynomial in the size of the circuit, implies the required result. 0 

In view of Theorems 7.6 and 7.7, we can also conclude, using similar 
arguments, that the following theorem holds. 

Theorem 9.3 For any network with input delays, the SSR problem is solv
able in polynomial time for the XMW race model. 

Surprisingly, if we gain more information about the delays-in particular, 
that there are no wire delays-the SSR problem for the GMW race model 
becomes intractable (assuming P "# NP) as the following theorem shows. 

Theorem 9.4 In the gate-delay model and in the input- and gate-delay 
model the SSR problem for the GMW race model is NP-hard. 

Proof: We prove the claim for the gate-delay model. The input- and gate
delay model result can be shown using virtually identical arguments and 
is left as an exercise for the interested reader. To prove NP-hardness, we 
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show how to transform the Boolean tautology problem to the GMW-SSR 
problem. The Boolean nontautology problem is defined as follows: Given a 
Boolean expression E over {Xl, ... ,xn } using the connectives ..." V, and 1\, 
is E not a tautology, i.e., is there a truth assignment for the variables that 
makes E false. Cook [39] showed in 1971 that the nontautology problem 
is NP-complete. This result implies that the Boolean tautology problem, 
defined dually, is NP-hard. Hence, to prove that the GMW-SSR problem 
is NP-hard, it is sufficient to transform the Boolean tautology problem to 
the GMW-SSR problem. 

Given any Boolean expression E over {XI. ... ,xn } using the connectives 
..." V, and 1\, we show how to construct a circuit N with one input. When 
this circuit is started in a stable state (to be defined) and the input changes 
from 0 to 1, the outcome according to a GMW analysis consists of a single 
state if and only if E is a tautology. The basic idea is quite similar to 
the construction in [116]. We use a "race-generating" circuit, shown in 
Figure 9.6, for every input variable Xi. In Figure 9.7 we show a GMW 

)O-----ca 

in ---4t---l 
YI 

Y4 

FIGURE 9.6. Critical-race generating circuit. 

lQOO 

FIGURE 9.7. GMW analysis of the critical-race generating circuit. 
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analysis of the race-generating circuit when it is started in stable state 
Y = Yl ... Y4 = 1000, kill = 0 and in changes from 0 to 1. There are two 
important properties of the circuit: first, that there are two stable states 
reachable (0010 and 0011), and, second, that when the NOR gate changes 
from 0 to 1, all other gates in the circuit are stable. Thus, output Ca acts 
as a completion signal for this circuit. 

Assume that E is a given Boolean expression. We first construct a sub
circuit N defined recursively as follows: 

Basis: If E = Xi then N is the (trivial) circuit shown in Figure 9.8. 

Induction step: Assume that circuits Nl and N2 , corresponding to Boolean 
expressions El(X) and E2(X), respectively, have been constructed. 

1) If E = -,El(x) then N is the circuit shown in Figure 9.9. 

2) If E = El(X)I\E2(X) then N is the circuit shown in Figure 9.10. 

3) If E = El(X)V E2(X) then N is the circuit shown in Figure 9.11. 

The circuit N has n inputs, labeled Xl, ... , X n , a "compute" input c, an 
output Out, and a "compute-acknowledge" output Ca. We will design N in 
such a way that the inputs Xl, ... , Xn are stable by the time C changes. N 
is started in the stable state implied by C = 0 and C changes to 1 at some 

C -------..;...-- Ca 

Xl~ . . 
Xi-:-:~---~--Out 

Xn~ 

FIGURE 9.8. Circuit for E = Xi. 

C 
C Cal-+--'-l 

X 
Ca 

X Out 
xr~---------r------~~Out 

FIGURE 9.9. Circuit for ,El(X), 
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............................................ __ ...................... _-_ ...... . 

C 
--....... -jC 

x 
· . · . . x OutH---.-t-I · . 

C Ca 

N2 

• x Out 1--*------1--1 

FIGURE 9.lD. Circuit for E1{x) 1\ E2(X). 

· : x Out 1-+--..... -+-1 

C Ca 

~ !O~ 
x Outl--~---I 

FIGURE 9.11. Circuit for El(X) V E2(x). 

point in time. We claim that N satisfies the following two properties: The 
output Out of N has the value E(x) when the Ca output changes from 0 
to 1, and neither Out nor Ca changes again if the inputs are held fixed. We 
prove this claim by induction. 



Section 9.1. Stable-State Reachability 177 

Basis: It is trivial to verify that the circuit of Figure 9.8 satisfies both 
properties. 

Induction step: Assume that the claim holds for the circuits Nl and N2 
corresponding to the Boolean expressions El (x) and E2 (x), respec
tively. 

1) If E = -.E1(x), we need to verify the claim for the circuit shown 
in Figure 9.9. Note that, if the Ca output of Nl is 0, then the 
outputs of the gates shown in Figure 9.9 are uniquely deter
mined. By the induction hypothesis, it is sufficient to perform 
a GMW analysis for the gates shown in Figure 9.9 for different 
values of Out from Nl when the Ca signal of Nl changes from 0 
to 1. There are two cases to consider. First, suppose that Out 
of Nl is 1. This implies that the NOR gate has the value 0 and 
remains stable no matter which other gates change. Hence, the 
output Out of N is 0, i.e., has the same value as -.E1(x). The 
output Ca of N can change from 0 to 1 only when the Ca signal 
from Nl has propagated through both inverters, the topmost 
AND gate, the OR gate, and the last AND gate. It follows that 
Ca changes only once, and the claim holds. Second, consider the 
case when Out from Nl is O. In this case the topmost AND gate 
is stable with the value o. The output Ca of N can change from 
o to 1 only when the Ca signal from Nl has propagated through 
both inverters, the NOR gate, the OR gate, and the final AND 

gate. It follows that Out of N has the value 1 (i.e., the value of 
-.E(x)) before Ca of N changes, and that Ca changes only once. 
Hence the claim follows. 

2) If E = El (x) 1\ E2 (x), we need to verify the claim for the circuit 
shown in Figure 9.10. In order for Ca of N to change from 0 to 
1, the Ca signals from both Nl and N2 must have changed to 
1, and this change must have propagated through the topmost 
AND gate and both inverters. If at least one of the Out outputs 
of Nl and N2 is 0, then the three-input AND gate must be stable 
with the value 0 = El(X)I\E2(X). If both Out outputs are 1, then 
for Ca of N to become 1 requires that the output of the three
input AND gate changes to 1 first. With these observations, it 
is straightforward to verify the claim. 

3) If E = El(X) V E2(x), we need to verify the claim for the circuit 
of Figure 9.11. This is similar to case 2), and we leave the details 
to the interested reader. 

In summary, N is a circuit that evaluates E(x) when the "compute" signal 
C changes to high. When the correct value is available on the Out output, 
the Ca output changes to high. Note that N works correctly no matter what 
the gate delays are (as long as they are finite). 
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Finally, in Figure 9.12, we show how to use n race-generating circuits 
and N to construct N. The basic idea is as follows. The circuit is started 
in the stable state in which in = 0 and all OR gates with self-loops have 
the value o. There is one race-generating circuit for each input variable 
to E. When in changes from 0 to 1, each of these race-generating circuits 
settles down with either the value 0 or 1 on its output Xi. Since the Ca 

outputs of all the race-generating circuits are connected via a chain of AND 

gates, the c input to N does not change to 1 until all the race-generating 
circuits have reached a stable state. There are two cases to consider: If E(x) 
is a tautology, then-irrespective of the state of each input variable-the 
output Out of N is 1 when its Ca output changes to high. This implies that 
the last AND gate eventually changes to 1 causing the right-most OR gate 
also to change to 1. Once this happens, the OR gate remains stable. After 
the output of the OR gate changes to high, the oscillation in the NAND gate 
eventually stops. Furthermore, this sets all the input variables to 1 (since 
the kill signal causes the OR gates with self-loops in the race-generating 
circuits to change to 1). This uniquely determines the values of all the gates 
in N and of the right-most AND gate. Hence, if E(x) is a tautology, the 
circuit N eventually reaches a unique stable state. 

Xl 

X2 

X3 . 
Xn Out 

N Ca 

}----+-lC 

in 

FIGURE 9.12. Complete circuit for Theorem 9.4. 
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On the other hand, assume E(x) is not a tautology. Then, for some 
Boolean vector a E {O, l}n, E(a) is false. Since each race-generating cir
cuit can reach the state 0 or 1 independently, there must exist some delay 
assignment such that Xl = ab X2 = a2, ... , Xn = an. For this delay as
signment, the result on Out from N is 0 when its Ca output changes from 
o to 1. This implies that the right-most AND gate, and therefore also the 
right-most OR gate, will never change. Thus the circuit never reaches a sta
ble state, since the NAND gate continues to oscillate. In summary, if E(x) 
is not a tautology, then the outcome of the GMW analysis of N contains 
more than one state. 

Because the circuit N contains O(l(E)) gates, where l(E) denotes the 
length of the Boolean expression, E is a tautology if and only if the out
come of the GMW analysis of N contains a single state. Since the Boolean 
tautology problem is NP-hard, so is the GMW-SSR problem. 0 

Next we consider the inherent complexity of the SSR question for the 
bi-bounded race models of Chapter 8. 

Theorem 9.5 The SSR problem is NP-hard for the bi-bounded binary de
lay race model. 

Proof: The proof parallels the proof of Theorem 9.4 with the addition 
that each gate used in the construction is assumed to have delays bounded 
by [1,2). For these delay bounds, it is easy to see that the race-generating 
circuit of Figure 9.6 still satisfies the two crucial properties, i.e., that output 
Y4 can end up being either 0 or 1, and that output Y3 changes from 0 to 1 
after all the other gates in the circuit have reached a stable state. Also, it 
is easy to verify that the construction used in the remainder of the proof 
ensures that the circuit reaches a unique stable binary state if and only if 
the expression E is a tautology. 0 

The complexity of the SSR problem for the extended bi-bounded delay 
race model is less clear. For the special case in which the delay bounds can 
grow with the size of the circuit, we have the following result: 

Theorem 9.6 If the lower delay bounds of the gates are of size O(3m ), 

where m is the size of the circuit, the SSR problem for the extended bi
bounded delay model is PSPACE-hard. 

Proof: We show how to transform the unit-delay SSR problem into the 
general extended bi-bounded delay SSR problem. In view of Theorem 9.1, 
the result then follows immediately. For convenience, we refer to the two 
SSR problems as the UD-SSR and XBD-SSR problems. Let N be the orig
inal network, containing m state variables, for which we try to answer 
the unit-delay SSR question. Transform N to N by adding a wire delay 
in every edge of N. This can increase the circuit size by at most O(m2 ) 

state variables. Let the delay t5j (t) in every variable be bounded as follows: 
(D -1) ::; t5j (t) < D, for D = 2 x 3m + 2. We now argue that the answer to 
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the XBD-SSR problem for N is yes if and only if the answer to the UD-SSR 
problem for N is yes. Note that all the delays have the same bounds in N
thus they could be exactly the same-and there is a delay in every wire. 
It follows that, if there is an oscillation in the UD analysis of N, then the 
same oscillation must exist in an XBD analysis of N. Hence, if the answer 
to the UD-SSR question for N is no, then so is the answer to the XBD-SSR 
question for N. If the answer to the UD-SSR question for N is yes, then 
the sequence of states computed by the UD analysis of N must be of length 
less than or equal to 3m (and the last state must be stable). This implies 
that the unit-delay analysis of N also reaches the same stable state, but 
that the length of the sequence is less than or equal to 2 x 3m ---every odd 
state corresponding to an input or gate variable change and every even 
state corresponding to a wire variable change. On the other hand, it is easy 
to convince oneself that the XBD analysis of N yields the same result as 
the UD analysis of N, as long as we do not carry out the analysis for too 
many steps. In fact, the two correspond exactly for r steps, if the time to 
complete r + 1 of the fastest possible transitions is strictly greater than 
the time to complete r of the slowest possible transitions. In other words, 
the UD and XBD analyses of N correspond exactly for r steps as long as 
(r + 1)(D - 1) > rD, i.e., as long as r < D - 1. Since D = 2 x 3m + 2, 
we can conclude that the XBD analysis of N corresponds exactly to the 
UD analysis of N, if the length of the UD sequence is at most 2 x 3m . 

Altogether, we have shown that, if the answer to the UD-SSR question for 
N is yes, then so is the answer to the XBD-SSR question for N. 0 

The assumption that the maximum delay can grow exponentially fast 
with the size of the network was crucial in the proof of Theorem 9.6. This is 
a very unrealistic assumption. A more interesting question is the complexity 
of the XBD-SSR problem when the maximum delay is constant or can grow 
only polynomially in the size of the circuit. The complexity of this restricted 
XBD-SSR problem is still open. 

In Table 9.1 we summarize the results of this section. The following obser
vations can be made: When the delay in each component is known exactly 
or almost exactly, the SSR problem is intractable (assuming PSPACE# 
PTIME, of course). On the other hand, when the delays can be arbitrary 
and changes can go through <I> (i.e., when the XMW model is used), the 
SSR problem can be solved very efficiently. It is interesting to note that, for 
the GMW model, the difficulty of the SSR problem depends on whether 
both wires and gates or only gates have delays. In the former case the 
GMW-SSR problem is solvable in polynomial time, whereas in the latter 
case it is NP-hard. For the binary bi-bounded delay models, the SSR prob
lem is intractable. In general, the SSR problem is intractable for all binary 
race models, except the GMW model on complete networks. 

The results of this section are rather negative, showing that the SSR 
problem is intractable for many realistic race and delay models. In the next 
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TABLE 9.1. Complexity of the stable-state reach ability problem. 

Race model Complexity 
UD PSPACE-complete 
BD NP-hard 
XBD PSPACE-hard 
restricted XBD unknown 
XMW polynomial time 
GMW1 polynomial time 
GMW2 NP-hard 
1 assuming both gate and wire delays. 
2 assuming gate delays only. 

section we study the more practical version of the SSR problem, where we 
impose a condition on the length of time required for the circuit to reach 
a stable state. 

9.2 Limited Reachability 

The limited reachability (LR) problem is to determine whether a network 
with m state variables reaches a unique binary stable state within time r( m) 
for some function r. If r is exponential in m, the LR problem degenerates 
into essentially the SSR problem. Thus we henceforth assume that r(m) is 
O(mk) for some constant k> O. 

Theorem 9.1 The limited reachability problem is solvable in polynomial 
time for the unit-delay model and the extended bi-bounded delay model. 

Proof: For the unit-delay model, simulate the circuit for r steps. Each step 
requires at most m excitation-function evaluations, each using time at most 
polynomial in m. Since r is assumed to be bounded by some polynomial in 
m, the first claim follows immediately. For the extended bi-bounded delay 
model, carry out r steps of the TBD algorithm. By Theorem 8.3, the result 
of the TBD algorithm is equal to the lub of all the states the network can 
be in at time r. If this result is a binary stable state, the answer to the LR 
problem is yes, otherwise it is no. Each step of the TBD algorithm requires 
at most 2m excitation function evaluations plus some bookkeeping. Since 
r is assumed to be bounded by some polynomial in m, the claim follows. D 

Our next two results are perhaps more of theoretical than practical inter
est, but they illustrate how different assumptions made about the network 
affect the complexity of the limited reachability problem. First we consider 
a constant fan-in network and a constant r. 
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Theorem 9.8 If the maximum in degree of a state vertex is some constant 
c, and r(m) = ro for some constant ro, then the limited reachability problem 
is solvable in time polynomial in the size of the circuit fOT the binary bi
bounded delay model. 

Proof: Assume that d is the minimum delay of any vertex in the network. 
The crucial observation is that an input change can propagate through at 
most '!:f vertices when each vertex has a delay of at least d units and we 
want to know the value of a vertex after TO time units. Hence, to determine 
whether a vertex i will have a unique binary value and be stable at time TO, 
it is sufficient to consider the values on the vertices that are within distance 
'!:f from vertex i. Since we assumed a constant maximum indegree of the 
state vertices this implies that there are at most 

c!f+1 -1 

c-l 

vertices that can affect the value and excitation of vertex i at time TO' In 
other words, to determine vertex i's value and excitation at time TO, it is 
sufficient to perform an extended bounded delay analysis on a subnetwork 
containing a constant (though normally very large) number of vertices. 
Thus, the computational effort required to determine the value and excita
tion of vertex i at time TO does not depend on the size m of the complete 
network. Using this procedure for each vertex in N immediately gives the 
answer to the LR problem: If each vertex reaches a unique stable state then 
the answer to the LR problem is yes, otherwise it is no. We leave the details 
of the proof to the interested reader. 0 

In the following theorems we consider the complexity of the LR problem 
for the binary bi-bounded delay model with more liberal conditions on the 
maximum indegree of state vertices or on the number of time units we are 
willing to wait. 

Theorem 9.9 If the maximum in degree of a state vertex is O(m) and 
r(m) is 0(1), the limited reachability problem is NP-hard for the binary 
bi-bounded delay model. 

Proof: We transform the 3-satisfiability problem into the LR problem. 
Given a Boolean formula E in 3-conjunctive normal form (i.e., a formula 
that is a product of clauses, each clause containing three literals), we show 
how to construct a network N with one input. If N is started in a stable 
total state (to be defined) and the input changes from 0 to 1, then a binary 
bi-bounded delay analysis of this transition, carried out for at least 64 time 
units, indicates that N reaches a single stable state if and only if E is not 
satisfiable. In other words, the answer to the LR problem for N is yes if 
and only if E is not satisfiable. Since the size of N is polynomial in the size 
of E, and the 3-satisfiability problem is NP-complete [39], it follows that 
the LR problem is NP-hard. 
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Out 

FIGURE 9.13. Construction of N for Theorem 9.9. 

The construction of N is very similar to the construction in the proof 
of Theorem 9.4. We use the race-generating circuit of Figure 9.6. However, 
we now assume that the delay in each gate is bounded by [3,4). The reader 
can easily verify that, if in changes from 0 to 1 at time 0, then, according 
to the bi-bounded delay model, the race-generating circuit can only reach 
stable states 0010 or 0011; in either case, the value of Xi is stable before 
the Ca signal changes from 0 to 1. Also, it is easy to verify that Ca and Xi 

are guaranteed to be stable at time 12 and 8, respectively. 
Let E be a given Boolean expression in 3-conjunctive normal form. We 

first construct a sub circuit N that evaluates the complement of E. In 
Figure 9.13 we outline how such a circuit can be constructed given that 
all the gates have delay bounds [3,4). First the inverters compute ti, then 
the OR gates compute the values of the clauses, the multi-input AND gate 
computes the product of all the clauses, and the topmost inverter comple
ments the result. The row of inverters at the bottom is used to delay the 
"compute" signal C so that the Ca signal cannot change from 0 to 1 until 
the value of -,E(x) is available on Out. If the various XiS are stable by the 
time C changes from 0 to 1, it is easy to verify that Ca does not change from 
o to 1 before Out has taken on the value of -,E(x). 

Finally, in Figure 9.14 we show how to use n race-generating circuits and 
N to construct N. Again, all the gates are assumed to have delay bounds 
[3,4). The basic idea is as follows. The circuit is started in the stable state 
in which in = 0 and all the OR gates with self-loops have the value O. There 
is one race-generating circuit for each input variable to E. When in changes 
from 0 to 1, each of these circuits settles down with either the value 0 or 
1 on its output. Since the Ca outputs of all these circuits are connected to 
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Xn Out 

N Ca 
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in 

FIGURE 9.14. Complete circuit for Theorem 9.9. 

an AND gate, it follows that the c input to N does not change to 1 until 
all the race-generating circuits have reached a stable state. There are two 
cases to consider: If E(x) is not satisfiable, then, irrespective of the state 
of each input variable, the output Out of N is 1 when Ca rises in N. This 
implies that the last AND gate changes to 1, causing the right-most OR 

gate to change to 1 also. Once the OR gate changes to 1, it remains stable. 
When the output of this OR gate rises, the oscillation in the NAND gate 
stops. Furthermore, all the input variables will be set to 1 (since the kill 
signal causes the OR gates with self-loops in the race-generating circuits to 
change to 1). This uniquely determines the values of all the gates in Nand 
of the right-most AND gate. Hence, if E(x) is not satisfiable, the circuit N 
terminates in a unique stable state. In fact, it is easy to verify that N takes 
at most 64 time units to reach this stable state. 

In case E(x) is satisfiable there must exist some Boolean vector a E 

{O, l}n, such that E(a) is true. Since each race-generating circuit can reach 
the state 0 or 1 independently, there must exist some delay assignment such 
that Xl = aI, x2 = a2, ... , Xn = an. For this delay assignment, the result 
on Out from N is 0 when Ca changes from 0 to 1 on N. This implies that the 
right-most AND gate never changes; consequently, neither does the right
most OR gate. Since the NAND gate can continue to oscillate, the circuit 
never reaches a stable state. In summary, if E(x) is not satisfiable, the 
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outcome of the binary bi-bounded race analysis carried out for at least 64 
time steps contains more than one state. 

We have shown that E is not satisfiable if and only if the outcome of the 
binary bi-bounded delay analysis of N, carried out for at least 64 time units, 
contains a single state, where the circuit N contains O(l(E)) gates, l(E) 
being the size of the Boolean expression. Since the 3-satisfiability problem 
is NP-complete, it follows that the LR problem for the binary bi-bounded 
delay model is NP-hard. 0 

Although the unbounded indegree assumption above is not very realistic, 
it allowed us to compute the AND of O( m) signals in one gate delay. A more 
realistic assumption is that the indegree of every state vertex is bounded 
by some relatively small constant. It is then quite reasonable to allow a 
circuit O{logm) time units to settle down. Consider, for example, a one
output combinational network having m vertices. Such a network may take 
o (log m) time units to reach stability. If we assume bounded indegree and 
allow a (relatively slowly) growing r(m) we get the following result: 

Theorem 9.10 If the maximum in degree of a state vertex is c for some 
constant c, and if r is O(log m), then the limited reachability problem is 
NP-hard for the binary bi-bounded delay model. 

Proof: The proof is similar to the proof of Theorem 9.9, except that the 
big AND gates are replaced by trees of c-input AND gates. Since the heights 
of these trees are bounded by O{logm), it is easy to verify that, if E is 
not satisfiable, circuit N reaches a unique stable state within O(log m) 
time units. On the other hand, if E is satisfiable, then N can reach an 
oscillation. 0 

TABLE 9.2. Complexity of the limited reachability problem. 

Race model Complexity 
UD polynomial time 
BDI polynomial time 
BD2 NP-hard 
BD3 NP-hard 
XBD polynomial time 
1 assuming bounded indegree and r(m) = ro. 
2 assuming unbounded indegree and that r(m) is 0(1). 
3 assuming bounded indegree and that r(m) is O{logm). 

In Table 9.2 we summarize the results of this section. The LR problem 
is solvable in time polynomial in the size of the circuit for the unit-delay 
model and the extended bi-bounded race model. For binary race models, 
even the LR problem is almost always intractable. 



Chapter 10 

Regular Languages and 
Finite Automata 
This chapter provides an introduction to the theory of regular languages 
and finite automata. These concepts will be used in the following chapters 
for describing behaviors of asynchronous circuits and for specifying abstract 
behaviors. The theory of regular languages and finite automata is now 
well established as one of the important basic tools of computer science. 
We present this theory in a somewhat different way than is done in most 
textbooks, because we feel that our approach is more general and permits us 
to establish the relationship between regular languages and finite automata 
in a very natural way. For a general introduction to regular languages and 
finite automata, see one of the many texts on this subject, for example 
[65,77,100,120]; for material closer to our treatment see [16, 17, 20]. 

10.1 Regular Languages 

10.1.1 Semigroups 

A semigroup is an algebraic system S = (X, 0), where X is a set and ° is a 
binary operation on X that satisfies the associative law 

x ° (y ° z) = (x ° y) ° z, 

for all x, y, z E X. The binary operation is often called multiplication, 
and the symbol ° is usually omitted. If Y is a subset of X, then (Y,o) is a 
subsemigroup of S if Y is closed under 0, i.e., if xoy is in y, for all x, y E y. 

A monoid is an algebraic system M = (X,0,1M), where (.1',0) is a 
semigroup and 1M is an element of X, called unit, that satisfies the unit 
law 

x ° 1M = 1M ° X = x, 

for all x EX. It is easily verified that a semigroup can have only one 
element satisfying the unit law, i.e., the unit element is unique. If Y is a 
subset of X, then (y, 0, 1 M ), is a submonoid of M if 1 M E Y and Y is closed 
under 0. 
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As an example, consider any set X. Then the systems (P(X), U, 0) and 
(P(X), n, X) are both monoids. Also, if N is the set of nonnegative integers, 
then (N, +,0) and (N, x, 1) are monoids, where + and x denote ordinary 
addition and multiplication. 

10.1.2 Languages 

Let 1; be a nonempty set. We normally assume that the set 1; is a fixed, 
finite set; we refer to it as an alphabet and to the elements of 1; as letters. 
Any finite sequence of letters is called a word. For example, if I; = {a, b}, 
then a and babb are words. Note that we make no distinction between a 
letter and the word consisting of that letter; the meaning is clear from the 
context. The number of letters in a word x is called its length and is denoted 
by Ix!- Thus lal = 1 and Ibabbl = 4. A word of length n may be viewed as 
an ordered n-tuple of letters. It is also convenient to introduce the O-tuple 
of letters, called the empty word and denoted by E. Note that lEI = O. 

Given two words x = al ... an and y = bl ... bm , we define the product 
or concatenation of x and y to be the word xy = al ... anbl ... bm . It is 
clear that concatenation is associative, and that the empty word E acts 
as a unit since EX = XE = x, for any word x. Let 1;* be the set of all 
the words, including the empty word E, over alphabet 1;. It follows that 
(I;*, concatenation, E) is a monoid. This monoid of all the words over I; is 
called the free monoid generated by 1;. 

If w is a word, we denote the concatenation of n copies of w by wn . If 
n = 0, we have WO = E for all w. Thus, for example, the infinite set of words 
X = {b, ab, aab, . .. } is conveniently denoted by {anb I n 2: O}, i.e., it is the 
set of all the words of the form "zero or more a's followed by b." 

A language over an alphabet 1; is any subset of 1;*, i.e., any set of words. 
Given a family of languages over I;, we can form new languages by applying 
certain operations. To begin with, we have the usual set operations such as 
union, intersection, and complement with respect to I;*. Other operations 
arise naturally because languages are subsets of a special universal set 1;*, 

which is a monoid. Thus we can extend the operation of concatenation from 
I;* to P(I;*), the set of all languages over 1;, as follows: For X,Y ~ 1;*, 

Xy = {w I w = xy,x E X,y E Y}. 

It is easily verified that concatenation of languages is associative and 
that the language {E} satisfies 

{E}X = X{E} = X, 

for all X ~ 1;*. Thus the system (P(1;*), concatenation, {E}) is again a 
monoid. 

To illustrate concatenation of languages, let I; = {a, b}, X = {bab, baba} 
and Y = {E, a, bb}; then XY = {bab, baba, babaa, babbb, bababb}. Note that 
a word in a product may be generated in more than one way; for example, 
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baba = (baba)(c) = (bab)(a). Some basic properties of concatenation of 
languages are given below; the concatenation operator has precedence over 
union and intersection. 

C1 X(YZ) = (XY)Z, 
C2 X{c} = X, 
C3 X0 = 0, 
C4 X(yuZ)=xyuxz, 
C5 x(ynz) ~ xynxz, 

C2' {c}X = X, 
C3' 0X = 0, 
C4' (yuZ)x=yxuzx, 
C5' (ynz)x~yxnzx. 

The following example shows that C5 cannot be strengthened to an 
equality. Let X = {c, a}, y = {aa}, and Z = {a}. Then X(YnZ) = 0, but 
xy n xz = {aa}. A similar example shows that C5' cannot be strength
ened. 

We next define two closely related unary operations on languages. For 
X~ ~*, the language 

is the subsemigroup of ~* generated by X. Thus X+ is the set of all the 
words of the form w = Xl ... X n , n ~ 1, Xi E X, i = 1, ... , n. Similarly, the 
language 

X* = U Xn 
n~O 

is the submonoid of ~* generated by X. 
We refer to the + and * operations as plus and star, respectively. Some 

properties of these operations are listed below. 

P1 X+ = XX*, 
P2 (X+)+ = X+, 
P3 0+ = 0, 
P4 {c}+ = {c}, 
P5 X+X=XX+, 
P6 X ~ Y implies X+ ~ y+, 

10.1.3 Regular Languages 

S1 X*=X+u{c}, 
S2 (X*)*=X*, 
S3 0* = {c}, 
S4 {c}* = {c}, 
S5 X*X = XX*, 
S6 X ~ Y implies X* ~ Y*. 

We now restrict our attention to a particular family of languages, namely 
to the family R£g of "regular" languages; this turns out to be precisely 
the family of languages recognizable by finite automata. 

First, given an alphabet ~, we define a letter language to be any language 
C consisting of a single word oflength one, i.e., C = {a}, where a E ~. The 
family R£g~ of regular languages over ~ is the smallest family of languages 
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containing the letter languages, and closed under union, complementation, 
concatenation, and star. Thus we have 

Definition 10.1 The family R£gro of regular languages over ~ is defined 
inductively as follows: 

Basis: {a} E R£9ro for each a E ~. 

Induction step: If X and Y are in R£gro, then so are Xu y, X, XY, 
and X*. 

Every language in R£gE can be constructed by a finite number of applica
tions of the two rules above. 

In view of the fact that X n Y = XU:y, the family R£gro is closed under 
intersection. Similarly, R£9ro is closed under the difference operation and 
the symmetric difference operation. 

Suppose the alphabet is ~ = {a, b}; then the following are examples of 
regular languages over ~: 

• Rl = ({a} U {b})* = {a} U {a} = ~*-the set of all words over the 
alphabet ~. 

• R2 = ~* = 0-the empty language. 

• R3 = (~*)* = 0* = {c}-the language consisting of the empty word. 

• R4 = {a}{b}{a}({a} U {b})*-the set of all words that begin with 
aba. 

• R5 = ({a }U{b} )*{ a}{ a}( {a }U{b} )*-the set ofaB words that contain 
two consecutive a's. 

• R6 = {a}~* n ~*{b} n ~*{b}{b}~*-the set of all words that begin 
with a, end with b, and do not contain two consecutive b's. 

• R7 = ({a} U {b}{a}*{b})*-the set of all words that have an even 
number of b's. 

10.1.4 Quotients of Languages 

We now introduce the notion of "left quotient," or simply "quotient," of a 
language by a word. This notion will playa key role in the characterization 
of regular languages. 

Let X ~ ~* be a language and let W E ~* be a word. The (left) quotient 
of X by W is denoted by w-1 X, and is defined by 

w-1X={xlwXEX}. 
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The quotient w-1X may be viewed as the set of all words that can "follow 
w in X:" To construct w-1X we can first take the set y of all the words 
of X that begin with w. (Note that w itself also begins with w.) If w 
is then removed from each word wx in y leaving the word x, the set of 
words so obtained is precisely w- I X. In a sense, this is a division of X 
by w on the left, hence the name "left quotient." As an example, consider 
X = {ba,aba,abb}. Then a-lX = {ba,bb} and (ba)-IX = {c}. 

We often need to determine whether a given regular language contains 
the empty word. This can be done with the aid of the 8 operator defined 
by 

if c E X, 
otherwise. 

The use of the left quotient and the 8 operator permits us to determine 
whether an arbitrary word w is in X, because 

wE X if and only if 8(w- IX) = {c}. 

Some basic properties of left quotients with respect to letters are given 
below. For all a, b E ~,a -=J b and X, Y ~ ~*, we have 

a- l0 = a-l{c} = a-I{b} = 0, 

a-l{a} = {c}, 

a-l(X U Y) = (a- I X) U (a-ly), 

a-l(X n y) = (a-lX) n (a-Iy), 

a-lX = a-lX, 

a-I(X - y) = (a-IX) _ (a-Iy), 

a-I(X~Y) = (a-lX)~(a-Iy), 

a-l(XY) = (a-lX)y U 8(X)(a- l y), 

a-IX* = (a-lX)X*. 

The verification of these properties is straightforward. The following ob
servations permit us to calculate the quotients of a language with respect 
to arbitrary words: 

c-IX = X, 

and for all w E ~* and a E ~: 

(wa)-IX = a-l(w-IX). 

We will show that a language is regular if and only if it has a finite 
number of distinct quotients. Before we do this, however, we will simplify 
our notation for regular languages by introducing regular expressions. 
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10.2 Regular Expressions 

10.2.1 Extended Regular Expressions 

In view of Definition 10.1, the only way we have for representing a regular 
language X consists of specifying how X is formed from the letter languages 
by the application of union, complement, concatenation, and star. This 
amounts to writing an expression for X. We formalize this as follows: 

Definition 10.2 The family ERXr, of extended regular expressions over 
an alphabet ~ is defined inductively as follows: 

Basis: 0, e, and each a E ~ are in ERX r,. 

Induction step: If X and Yare in ERXE, then so are (X U Y), X, 
(XY), and X*. 

Every extended regular expression in ERX E can be constructed by a finite 
number of applications of the two rules above. 

At this point, extended regular expressions are strings of symbols formed 
by starting with some basic symbols and combining these symbols with the 
use of a finite number of operations, as specified in the induction step. For 
example, (((aUb*)(aa))*Ub) is an extended regular expression, whereas aub 
and ab are not. Of course, we intend to use extended regular expressions 
to denote regular languages. The two concepts are related below. 

Definition 10.3 The mapping L : ERXr, -> REQr, is defined inductively 
as follows: 

Basis: L(0) = 0, L(e) = {e}, and for each a E~, L(a) = {a}. 

Induction step: 

L(X U Y) = L(X) U L(Y), 
L(X) = L(X), 
L(XY) = L(X)L(Y), and 
L(X*) = (L(X))*. 

The mapping L associates with each extended regular expression X the 
language L(X). For example, for ~ = {a, b}, 

L(((a U b)*b)) = L((a U b)*)L(b) = (L(a U b))* L(b) 

= (L(a) U L(b))* L(b) = ({a} U {b} )*{b}. 

Whereas each extended regular expression defines a unique regular lan
guage, each regular language may be represented by an infinite number of 
extended regular expressions. We say that extended regular expressions X 
and Yare equivalent if and only if L(X) = L(Y). To simplify notation, we 



Section 10.2. Regular Expressions 193 

denote this equivalence by equality and write X = Y if L(X) = L(Y). All 
the laws applicable to languages are now also applied to extended regular 
expressions. Thus we write XU Y U Z instead of (X U (Y U Z)) since union 
is associative for languages, etc. Also, we write x E X and X ~ Y instead 
of x E L(X) and L(X) ~ L(Y). This simplifies the notation considerably. 
For example, for ({a} U {b})*{a}{a} we can now write (a U b)*aa. It is 
also convenient to include (X n Y), (X - Y), (X ~Y), and X+ as extended 
regular expressions. 

10.2.2 Quotients of Regular Expressions 

We now define a quotient operator for extended regular expressionsj the 
quotient of an extended regular expression by a word denotes the quotient 
of the language denoted by that expression. First we need a method for 
computing 8(L(X)) from an extended regular expression X. 

Definition 10.4 If X is an extended regular expression, 8(X) is defined 
inductively as follows: 

Basis: 8(0) = 0; 8(c) = c; 8(a) = 0, for each a E ~. 

Induction step: 

8(X U Y) = 8(X) U 8(Y), 

8(X) = {c if 8(X) = 0 
o if8(X) = c, 

8(XY) = 8(X)8(Y), 

8(X*) = c. 

One easily verifies that L(8(X)) = 8(L(X)). 

The quotient of an extended regular expression X with respect to a letter 
a is defined as follows: 

Basis: a-I0 = a-Ic = a-1b = 0, where a # bj a-1a = c. 

Induction step: 

a-I X* = (a- I X)X*. 
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The quotient of an extended regular expression with respect to a word is 
defined as follows. If Iwl = 0 then w = c and w- 1 X = X. If Iwl = 1, then 
w is a letter, and w- 1 X is computed as above. If Iwl > 0, then w = xa, for 
some x E ~*,a E~, and 

(xa)-l X = a-1(x- 1 X). 

One now verifies that 

Definition 10.5 Two extended regular expressions X and X' are said to 
be similar (and this is denoted by X "" Y) if one can be obtained from 
the other using only a finite number of applications of the following rules, 
called similarity laws: 

X0 = 0X = 0, 

xu0 = 0ux = X, 

Xc=cX=X, 

XUX=X, 

XUY = YUX, 

Xu (Y U Z) = (X U Y) U Z, 

where X, Y, and Z are any extended regular expressions. 

The similarity relation"" is an equivalence relation on fRX I:, and X "" Y 
implies L(X) = L(Y). However, L(X) = L(Y) does not imply X"" Y. For 
example, this is the case if ~ = {a, b}, X = ~*a and Y = (bUaa*b)*aa*, or 
if X = a* and Y = ~*b~*. Even with the relatively weak set of similarity 
laws, we can prove that the number of quotients of a regular language is 
finite. 

Theorem 10.1 The number of dissimilar quotients of an extended regular 
expression is finite. 

Proof: The proof is beyond the scope of this book, and we refer the reader 
to [16, 17] for further details. However, the following sketch indicates the 
structure of the proof. We proceed by induction on the number n(X) of 
regular operators (union, concatenation, complement, and star) in X. Let 
q(X) be the number of dissimilar quotients of an extended regular expres
sion X. 

Basis: If n(X) = 0, then X is one of 0, c, or a E ~. One verifies that 
q(0) = 1, q(c) = 2, and q(a) = 3. 

Induction step: If n(X) > 0 then X must have one of the forms below. 
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If X = Y U Z, then q(X) ~ q(Y)q(Z), 

if X = Y, then q(X) = q(Y), 

if X = YZ, then q(X) ~ q(Y)2Q(Zl, 

if X = Y*, then q(X) ~ 2Q(Yl. 

From this it follows that the number of dissimilar quotients is always 
finite. D 

Corollary 10.1 If X has q(X) dissimilar quotients, then they can all be 
found by taking quotients with respect to words of length ~ q(X) - 1. 

Proof: Arrange the words of ~* in order of increasing length, and alpha
betically for words of the same length. Find the quotients of X in that 
order. If, for some n, all the quotients with respect to words of length n 
already have similar counterparts with respect to words of shorter length, 
then no new dissimilar quotients will ever be found, and the process ter
minates. Thus at least one new quotient must be found for each n or the 
process terminates. In the worst case, only one quotient is found for each 
n E {O,l,oo.,q(X) -I}. D 

Corollary 10.2 Every regular language has a finite number of distinct 
quotients. 

Proof: This follows, because similarity implies equivalence. D 

We now present some examples of the process of quotient construction. 

Example 1 

In the divide-by-2 counter described in Chapter 1, an output change 
occurs for every two input changes. Suppose we let a and b repre
sent input and output changes, respectively. Then the possible input
output sequences-such sequences are sometimes called traces--that 
may occur when the counter is started in a stable state are: 

c,a,aa,aab,aaba,aabaa,aabaab, ... , 

i.e., at any particular time, there may have been no signal changes at 
all (c), or there may have been exactly one input change (a), or two in
put changes (aa), or two input changes followed by an output change 
(aab), etc. One can verify that this set of sequences is conveniently 
represented by the extended regular expression X = (aab)*(cUaUaa). 
For the purposes of illustrating precisely the inductive nature of the 
quotient construction process, we will assume that the expression is 
parenthesized as follows: 

X = (((aa)b)*((c U a) U (aa))). 
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Suppose we wish to compute a-I X. Since X is the concatenation of 
two expressions, X = YZ, where Y = ((aa)b)* and Z = ((c U a) U 
(aa)), we use the law for concatenation first: 

since 8(Y) = c. Next, we use the law for star to obtain 

The law for concatenation would then be applied to the subexpression 
((aa)b). However, if we use the similarity laws, the computation can 
proceed much more quickly. It is clear that a-I((aa)b) = a-I(aab) = 
abo Therefore, a-Iy = abY. Similarly, it is easy to see that a-IZ = 
c U a. Altogether, 

a-I X = abYZ U c U a = abX U c U a. 

Using similar reasoning, we find all the dissimilar quotients of X as 
follows: 

c- I X = X = (aab)*(c U a U aa), 

a-IX = abX UcU a, 

(ab)-I X = b-I(a- I X) = 0 = b- I X, 

(ba)-I X = a-I(b- I X) = 0 = b- I X, 

Since no new quotients arise with respect to words of length three, 
the process terminates here. There are four dissimilar quotients: X, 
abX U c U a, 0, and bX U C. It is easy to see that each quotient 
corresponds to a distinct language. We will return to this example 
shortly. 
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Example 2 

Consider a set-reset latch in which sand r represent changes on 
the set and reset inputs, respectively. Suppose the latch starts in a 
stable state with both inputs at o. We then wish to restrict the latch 
operation as follows: (a) the set and reset inputs are never to change 
at the same time; (b) only input pulses on the set and reset inputs 
are allowed, i.e., if the signal s occurs, it must be followed by another 
s before r can change, and vice versa; (c) the input sequence cannot 
begin with a reset. The first condition is automatically taken care of 
if we assume that the input alphabet is ~ = {r, s}. For the second 
condition we must restrict the input changes to the set (ssUrr)*. The 
third condition can be expressed by r~*, where ~ = sUr. Altogether, 
the desired behavior may be described by 

x = r~* n (ss U rr)*. 

The quotients are computed as shown below. To shorten the example, 
we use some obvious additional simplification rules like X n ~* = X. 

c:- 1X = X = r~* n (ss Urr)*, 

r- 1 X = ~* n r(ss U rr)* = 0 n r(ss U rr)* = 0, 

S-l X = 0" n s(ss U rr)* = ~* n s(ss U rr)* = s(ss U rr)*, 

(rr)-l X = 0 = r- 1 X, 

(rs)-l X = 0 = r- 1 X, 

(SS)-lX = (ssUrr)*, 

(ssr)-l X = r(ss U rr)*, 

(SSS)-l X = s(ss U rr)* = S-l X, 

(ssrr)-l X = (ss U rr)* = (SS)-l X, 

Altogether, there are five dissimilar quotients; one verifies that no two 
of them denote the same language. We will return to this example 
shortly. 
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10.3 Quotient Equations 

A word in any language is either empty or must begin with some letter. 
The set of all words that begin with the letter a in a language X is clearly 
{a}(a-IX). Hence we have the following disjoint decomposition for any 
language: 

X= U{a}(a- IX)U8(X). 
aEE 

Each quotient can also be expressed in this form because 

w-IX = U {a}((wa)-IX) U 8(w- IX). 
aEE 

If X is regular and is denoted by X, then the dissimilar quotients of X 
satisfy a finite set of equations derived from the form above. 

Example 1 (continued) 

Let Xw denote w-I X. Then the quotient equations for X = (aab)*(€U 
aUaa) are 

X = aXa U bXb U €, 

Xa = aXaa UbXb U€, 

Xaa = aXb U bX U€. 

Example 2 (continued) 

For X = rA* n (ss U rr)*, we have the equations 

X=rXrUsXsU€, 

Xss = r Xssr U sXs U €, 

Xssr = r Xss U sXr. 



Section 10.3. Quotient Equations 199 

r S 

~X Xr Xs e 

Xr Xr Xr 0 
Xs Xr Xss 0 
Xss Xssr Xs e 

Xssr Xss Xr 0 

FIGURE 1O.l. Representation of quotient equations by a table. 

r,s 

FIGURE 10.2. Representation of quotient equations by a graph. 

It is useful to represent the set of quotient equations in two different 
forms. The tabular form for Example 2 is shown in Figure 10.1, where 
the correspondence is self-explanatory. The incoming arrow designates the 
given expression. The graphical form is shown in Figure 10.2, where quo
tients correspond to the vertices of the graph. An incoming arrow designates 
the expression X. A double circle denotes a quotient containing the empty 
word. The rest is self-explanatory. 

Up to this point we have shown that every extended regular expression 
has a finite number of dissimilar quotients that satisfy a set of equations. 
We now show that every such set of equations can be solved, and that the 
solution is always a regular language. 

Theorem 10.2 Let Y and Z be arbitrary languages over some alphabet E. 
Suppose further that e (j. Y. Then the equation 

X=YXUZ 

has the unique solution X = Y* Z. 
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Proof: First note that every solution must contain Z. But, if X ;2 Z, then 
YX ;2 YZ; thus X also contains YZ. Continuing this argument, we see 
that X ;2 Z U YZ U YYZ U ... = Y* Z. Thus every solution must contain 
Y* Z. Now suppose that Y* Z U W is a solution for some W. Without loss 
of generality, we can assume that Y* Z n W = 0. Substituting Y* Z n W for 
X in the equation, we get 

Y*ZUW = Y(Y*ZUW) UZ = YY*ZUZUYW = Y*ZUYW. 

Let w be a shortest word of Wand let Iwl = r. We must have w E Y* Z U 
YW. Also, w rt Y* Z, since we have assumed that Y* Z n W = 0. Thus 
w E YW. Because we have assumed that the empty word is not in y, a 
shortest word of YW is of length at least r + 1. This is a contradiction, 
showing that W = 0. Thus, if there is a solution, it cannot be smaller than 
Y* Z and it cannot be larger. One easily verifies that Y* Z is a solution, for 

Y(Y* Z) U Z = (YY* U c)Z = (Y+ U c)Z = Y* Z. o 
Corollary 10.3 Any set of quotient equations can be solved for all the 
quotients by repeated application of Theorem 10.2. 

Example 2 (continued) 

First note that the equation for Xr has the form Xr = r Xr U sXr = 
(r U S )Xr U 0. Its solution is (r U s)*0 = 0. Hence, the set of equations 
can be simplified to 

x = sXs Uc, 

Xs = sXss , 

Xss = sXs U r Xssr U C. 

Substituting the second and fourth equations into the first and third 
yields 

x = ssXss Uc, 

Xss = ssXss U rr Xss U c = (ss U rr)Xss U c. 

Solving for Xss we have Xss = (ss U rr)*. The remaining quotients 
are X = ss(ss U rr)* U c, Xs = s(ss U rr)*, and Xssr = r(ss U rr)*. 

We have shown that each extended regular expression X has a finite 
number of distinct quotients that satisfy the quotient equations. Conversely, 
the quotient equations can be solved to recover L(X), although the new 
expression may be different from X. We can thus state 
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Theorem 10.3 A language is regular if and only if it has a finite number 
of quotients. 

Using the theorem above, we can easily verify that the language {anbn I 
n 2: I} is not regular. The quotient of this language with respect to the 
word ai is {an-ibn I n 2: i}. This quotient contains the word bi and it 
contains no other word consisting of b's only. Hence all the quotients with 
respect to words of the form ai are distinct, and there is an infinite number 
of them. Therefore, the language cannot be regular. 

Define a regular expression to be an extended regular expression that does 
not use the complementation operator, but only union, concatenation, and 
star. From our method for solving quotient equations we have 

Theorem 10.4 A language is regular if and only if it can be denoted by a 
regular expression. 

This result shows that we could have defined regular languages without 
using complementation, and we would have obtained the same family. We 
have allowed complement to be used because it is often convenient. 

We next consider the problem of deciding the equivalence of two extended 
regular expressions. The solution to this problem allows us to reduce the 
quotient equations to a set in which all quotients are distinct. 

Theorem 10.5 Let X, Y, and Z be extended regular expressions over ~. 
Then 

• X = 0 if and only if no quotient of X contains c. 

• X = ~* if and only if every quotient of X contains c. 

• Y:2 Z if and only if Y u Z = ~* . 

• Y = Z if and only ifYLlZ = 0. 

The verification of these properties is straightforward. We now have the 
following procedures. 

To test whether X = 0 or X = ~*, construct the quotients of X. The 
equivalence of two quotients may not always be recognized, but we are 
assured that the number of dissimilar quotients is finite. Find 8(Xw) for 
each quotient Xw. Then use Part 1 or 2 of the theorem above. To test 
whether Y :2 Z, test whether the expression Y U Z is equivalent to ~*. To 
test whether Y = Z, test whether the expression Y LlZ is equivalent to the 
empty set. 
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10.4 Finite Automata 

10.4.1 Basic Concepts 

We now define finite automata and characterize their behavior by regu
lar expressions. Finite automata have numerous applications in computer 
science; we will use them for describing behaviors. A finite automaton, or 
simply automaton, is a system of the form a = (:E, Q, ql,F, f), where 

• E is a finite, nonempty input alphabet; 

• Q is a finite, nonempty set, called the state set; 

• ql E Q is the initial state; 

• F ~ Q is the set of accepting states (the set Q - F is the set of 
rejecting states); 

• I: Q x E --+ Q is the transition junction. 

A typical step in the operation of a finite automaton is as follows: Suppose 
the automaton is in a state q E Q. If it receives an input a E E, it computes 
its next state as I(q, a) and moves to that state. We assume that it is 
possible for us to know whether the present automaton state is an accepting 
state or not. In fact, it is convenient to define an output function 9 : Q --> 

{a, I}, where g(q) = 1 if q E F and g(q) = ° otherwise. 
The transition function is extended to a mapping from Q x E* to Q as 

described below; we use the same symbol 1 for the extended function. 

I(q,c) = q, 

I(q, wa) = l(f(q, w), a), 

for all q E Q, w E E*, and a E E. Thus the application of the empty 
word does not change the state and, for w E E+, 1 (q, w) denotes the state 
reached from q after the letters of w have been applied in succession. 

An incomplete automaton is the same as an automaton, except that its 
transition function is partial. This means effectively that for some pairs 
(q, a) the transition function is not defined. An incomplete automaton a f 

is used as a simpler form of a (complete) automaton a. The automaton a 
has one additional rejecting "sink" state s. The transition function of a is 
the same as that of a f , except that unspecified transitions of a f go to the 
sink state s in a and I(s, a) = s for all a E E. 

The language accepted by a finite automaton a is denoted by L( a) and 
is defined as 

L(a) = {w E E* I l(ql,W) E F}. 

To illustrate these definitions, consider the automaton 

a = ({O, I}, {a, 1, 2}, 0, {2},j), 
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where f(q,O) = q and f(q, 1) = q + 1 (modulo-3) for all q E {O, 1, 2}. We 
can represent the automaton by the table of Figure 10.3. The states (0, 
1, and 2) are listed as rows of the table. The arrow indicates that state 
o is the initial state. The input symbols (0 and 1) are listed as the first 
two columns. The entry in row q and column a gives the next state f (q, a). 
The right-most column gives the value g(q) of the output function, showing 
that state 2 is the only accepting state. The automaton accepts any input 
word in which the total number of 1'8 is 2 modulo-3. 

a 
q 0 1 g(q) 

----. 0 0 1 0 

1 1 2 0 

2 2 0 1 

FIGURE 10.3. State table of a modulo-3 counter. 

An alternative, but equivalent, representation is shown in Figure 10.4. 
Here, states are represented as vertices. The initial state has an incom
ing short arrow, and accepting states are indicated by double circles. If 
f ( q, a) = q', then there is a directed edge from vertex q to vertex q'; fur
thermore, this edge is labeled by a. 

000 

~8~ 
1 

FIGURE lOA. State graph of a modulo-3 counter. 

It is evident that the three ways of describing an automaton (as a 5-
tuple, a state table, and a state graph) are equivalent, and one description 
is easily reconstructed from another. 

An automaton (E', Q', qI, F', f') is a subautomaton of the automaton 
(E, Q, qI, F, f) if E' ~ E, Q' ~ Q, F' = F n Q', and f' is the restriction of 
f to Q' x E'. A state q of an automaton a = (E, Q, q1, F, f) is accessible if 
there exists a word w E E* such that f (qI, w) = q. The connected subau
tomaton aeon of a is the subautomaton aeon = (E, Q', qI, F', f'), where Q' 
is the set of all the accessible states, F' is the set of all the accessible ac
cepting states, and f' is the restriction of f to Q' x E. Normally, we assume 
that the automata we are dealing with are connected, i.e., that aeon = a. 
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10.4.2 Recognizable Languages 

A language X ~ ~. is called recognizable by a finite automaton if there ex
ists a finite automaton a such that X = L( a). We now show that the family 
of recognizable languages is the same as the family of regular languages. 

Let a = (~, Q, q1, F, J) be a finite automaton, and let qi be a state in Q. 
Denote byai the automaton a with the initial state changed to qi, i.e., let 
ai = (~, Q,qi,F,J). (Note that ai need not be connected, even if a is.) In 
this notation a = a1. If the cardinality of Q is n, we have n automata of the 
form ai. Let Xi = L(ai), for i = 1, ... , n. The set Xi can be thought of as 
the language accepted by state qi of a; in fact, L(ai) = {w I f(qi, w) E F}. 
These n languages are related as follows: 

Proposition 10.1 Let a = (~, Q, q1, F, f) be a connected automaton with 
X = L(a) and, for each i, let Wi E ~. be such that qi = f(q!, Wi). Then 
Xi = wi1X. 

Proof: We have wE Xi if and only if f(qi, w) E F ifand only if f(q1, WiW) E 
F if and only if wE wi1 X. 0 

Theorem 10.6 A language is recognizable if and only if it is regular. 

Proof: Suppose X ~ ~. is recognizable by automaton a. Consider any 
W E ~. and the quotient w-IX. By the proposition above, if w takes 
q1 to qi, then w-1X = Xi. Hence each quotient of X is equal to one 
of the languages of the form Xi. Since the automaton is finite, it follows 
that X has a finite number of quotients. Hence it is regular. Conversely, 
suppose X ~ ~. is regular and let X = Xl, X 2, ... , X n be all the distinct 
quotients of X. Consider the automaton a = (~,{X!"",Xn},X1,F,J), 
where Xi E F if and only if e: E Xi, and f(Xi,a) = a-IXi . One verifies 
that f(Xi,w) = W- 1X i , for any w E ~'. Now w E L(a) if and only if 
f ( Xl, w) E F if and only if w -1 X 1 E F if and only if e: E w -1 X 1 if and 
only if w E Xl. Hence L( a) = X, and X is recognizable. 0 

The proof above establishes a one-to-one correspondence between the 
quotients of a regular language and the states of the automaton recognizing 
that language. This provides very direct methods for constructing a finite 
automaton recognizing a given regular language, and for finding a regular 
expression for the language accepted by a finite automaton. 

To illustrate the correspondence between states and quotients, consider 
the modulo-3 counter of Figure 10.3. If Xi corresponds to state i, we im
mediately obtain the following set of equations: 

Xo = OXo U IX!, 

Xl = OX1 U lX2 , 

X 2 =OX2 UIXo Ue:. 
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We can solve these equations for X 1 = L( a). Thus, 

X 2 = 0* IX 0 U 0* , 

Xl = OX1 U 1O*IXo U 10* = 0*1O*IXo UO*10*, 

Xo = OXo U 10* 10* 1Xo U 10*10* = (0 U 10*10*1)*10*10*. 

Conversely, given an extended regular expression, one needs only to 
construct its quotient equations to obtain a finite automaton recogniz
ing the expression. We have already illustrated this with the example of 
Figure 10.2. 

10.5 Equivalence and Reduction of Automata 

Consider two automata a = (~, Q, q1, F, J) and a' = (~, Q', q~, F', 1') 
with output functions 9 and g', connected as shown in Figure 10.5. Apply 
the same input sequence to both automata and observe the outputs at the 
end of the sequence. If the outputs differ, then the two automata are said 
to be distinguishable; in fact, they are distinguishable by that sequence. If, 

for all w E ~*,g(f(q1'W)) = g'(f'(q~,w)), 

then L( a) = L( 0') and a and a' are said to be indistinguishable or equiv
alent. 

a 9 

w E ~* 

a' g' 

FIGURE 10.5. Parallel connection of automata. 

The test described above involves an infinite number of words, namely, 
all the words in ~*. We can reduce this test to one involving a finite number 
of steps. Define the automaton 

o.~o.' = (~,Q x Q',(q1,qD,H,h), 

where h((q, q'), cr) = (f(q, cr), f'(q', cr)), and (q, q') E 1i if and only if (q E F 
and q' rf- F') or (q rf- F and q' E F'). The automaton o.~o.' corresponds 
to the automaton obtained from the parallel connection of a and a' by 
combining the outputs 9 and g' with a XOR gate to obtain output h. It 
is clear that a and a' are indistinguishable if and only if the output h is 
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always O. This is equivalent to testing whether L( o~o') = 0. If 0 has n 
states and 0:' has n' states, then o~o:' has at most nn' states. It follows 
that, if two automata are distinguishable, then they can be distinguished 
by a word of length not greater that nn'. 

Consider now the problem of testing whether two states qi and qj of a 
given automaton 0 = (~, Q, qI, F, f) are equivalent. If they are equiva
lent, i.e., indistinguishable, then we will write qi '" qj. Indistinguishability 
is an equivalence relation on Q. Testing for indistinguishability amounts 
to testing whether L(Oi) = L(oj). (Recall that 0i is 0 with initial state 
changed to qi.) We could test for the equivalence of every pair of states by 
the method described above. A more efficient algorithm will be described 
below in a somewhat more general setting. 

A Moore machine [104] is a 6-tuple f..L = (~, r, Q, qI, f,g), where~, Q, qI, 
and f are as in a finite automaton, r is a finite, nonempty output alphabet, 
and 9 : Q -+ r is the output function. A Moore machine is therefore a 
generalization of the concept of finite automaton. An automaton can have 
at most two output values, whereas a Moore machine may have any finite 
number of output values. 

Two states qi and qj of a Moore machine are k-distinguishable if there 
exists a word w E ~* of length::; k such that g(f(qi'W)) -j. g(f(qj,w)). 
In particular, qi and qj are O-distinguishable if and only if g(qi) -j. g(qj). 
Two states are distinguishable if they are k-distinguishable for some k ~ O. 
They are indistinguishable or equivalent, written qi '" qj, if they are not 
distinguishable. Call qi and qj k-equivalent if they are not k-distinguishable; 
in that case we write qi "'k qj. The relation k-equivalence is indeed an 
equivalence relation on the set Q of states, and defines a partition Pk on 
Q; the blocks of this partition are the k-equivalence classes. Since qi '" k+! qj 
implies qi "'k qj, it follows that PHI is a refinement of Pk· 

Theorem 10.7 Let f..L = (~,r,Q,qI,f,g), be a Moore machine with n 
states. If two states qi and qj are distinguishable, then they are distinguish
able for some k ::; n - 2. 

Proof: Consider the partitions Po, PI"'" etc. Suppose, for some m, Po,· .. , 
Pm are all distinct, i.e., Pi is a proper refinement of Pi- I for 1 :s; i :s; 
m, but Pm+I = Pm- We claim that qi "'m qj implies qi '" qj. Suppose, 
to the contrary, that there exists w E ~* with Iwl = r > m such that 
g(f(qi' w)) -j. g(f(qj, w)). Without loss of generality, suppose that w is the 
shortest such word. Let w = uv with Ivl = m + 1, and let Pi = f(qi,u) 
and Pj = f(qj, u). Then Pi and Pj are (m + I)-distinguishable. By the 
assumption that Pm+! = Pm, Pi and Pj are m-distinguishable. Hence qi 
and qj are (r - I)-distinguishable. This contradicts the fact that w was a 
shortest distinguishing word. 

We have assumed that qi and qj are distinguishable; hence the partition 
Po must have at least two nonempty blocks. For i > 0, if Pi is a proper 
refinement of Pi-I, then Pi has at least i + 2 blocks. In particular, Pn - 2 
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has at least n blocks if it is a proper refinement of Pn - 3 . Thus the longest 
possible sequence of partitions is Po, . .. , Pn - 2 • Hence any two states that 
are distinguishable are in different blocks of Pn - 2 , and the claim follows.o 

To illustrate the construction above, consider the Moore machine of 
Figure 10.6. The partition Po is Po = {I, 2, 3}{ 4, 5}. Examine the tran
sitions from block {I, 2, 3} under input a; the resulting states are {2, 3, 2}. 
Since 2 and 3 are O-equivalent, no new information is found. Next exam
ine transitions under b; now the states are {3, 4, 4}. Since 3 and 4 are 
O-distinguishable, the pairs {1,2} and {1,3} are I-distinguishable. A sim
ilar examination of block {4, 5} yields no new information. Hence PI 
{1}{2,3}{4,5}. In the next step, block {4,5} can be refined and P2 

{1}{2,3}{4}{5}. One verifies that P2 = P3 , and the process stops here. 

1 

2 

3 
4 

5 

a 

2 

3 

2 

5 

4 

b 

3 

4 

4 

3 

1 

1 

1 

1 

o 
o 

FIGURE 10.6. Illustrating equivalent states. 

A Moore machine is reduced if no two of its states are equivalent. A re
duced machine corresponding to a given machine can always be constructed 
by using the equivalence classes (blocks of the final partition) of the rela
tion '" on Q as states of the reduced machine. The reduced machine for 
our example above is shown in Figure 10.7. 

{I} 
{2,3} 

{4} 
{5} 

a 

{2,3} 

{2,3} 

{5} 
{4} 

b 

{2,3} 

{4} 
{2,3} 

{I} 

1 

1 

o 
o 

FIGURE 10.7. Illustrating a reduced machine. 

10.6 Nondeterministic Automata 

The automata and Moore machines defined so far were deterministic in 
the sense that the next state was uniquely determined by the present state 
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and input. The notion of transition function can be generalized to permit a 
choice of several next states. Such a concept arises naturally in the context 
of quotient equations. For example, consider the equations 

Xl = aX 2 U bX 1 U eX 3 U c, 

X 2 = aX 2 U bX 2 U eX 2 U c, 

X 3 = aX 3 U bX 2 U eX 1· 

Since X 2 = (aUbUe)X2 Uc, we have X 2 = ~*. Also, 

a(X2 U X 3) U b(X1 U X 2) U e(X1 U X 3) U c 

a~' U b~* U e(X1 U X 3 ) U c. 

Since every quotient of Xl U X 3 contains c, we also have Xl U X 3 = ~*, 
i.e., X 2 = Xl U X 3. The three quotient equations can be replaced by the 
following two equations: 

Xl = a( X 1 U X 3) U bX 1 U eX 3 U c, 

X3 = aX3 U b(X1 U X 3 ) U eX1. 

The state graph corresponding to the new set of equations is shown in 
Figure 10.8. 

a,b a,b 

FIGURE 10.8. A nondeterministic automaton. 

A nondeterministic finite automaton II is a 5-tuple II = (~, Q, I, F, 1), 
where ~, Q, and F are as in a deterministic automaton, I ~ Q is the set 
of initial states, and f : Q x ~ -+ P( Q) is the transition function specifying 
a set (possibly empty) of next states. 

As in the deterministic case, we extend the transition function to words. 
For all q E Q, w E ~*, and (J' E~, f(q,c) = {q}, and 

f(q,w(J') = U f(q',(J'). 
q'E!(q,w) 

We also extend the transition function to sets of states. For Q' ~ Q, 
f (Q' , w) = U qE Q' f (q, w). The language accepted by a nondeterministic 
automaton is £(11) = {w I f(I, w) n F =j;0}. 
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Theorem 10.8 Let v be a nondeterministic automaton. Then L( v) is a 
regular language. 

Proof: As in the deterministic case, we associate a nondeterministic au
tomaton Vi with each state qi of v, where Vi = (~,Q,{qd,F,f). Let 
Xi = L(Vi)' as before. Then one can write a set of quotient equations 
for the Xi and solve them as in the deterministic case. D 

A deterministic automaton equivalent to a given nondeterministic au
tomaton can be found using the so-called subset construction given in the 
following theorem. 

Theorem 10.9 Let v = (~, Q, I, F, f) be a nondeterministic automaton. 
Let 0: = (~, P(Q),I,9,f') be the deterministic automaton with Q' E 9 if 
and only if Q' n F i= 0 for all Q' <:::; Q, and f'(Q',O") = f(Q',O"). Then 
L(o:) = L(v). 

Proof: The verification of this is routine. D 

The concept of nondeterministic automaton is easily generalized to Moore 
machines. We leave the details to the reader. 

10.7 Expression Automata 

Expression automata are useful generalizations of nondeterministic au
tomata. In particular, we use them here in order to describe an easy al
gorithm for finding regular expressions accepted by finite automata. The 
following is based on [20] and an improvement introduced in [144]. 

An expression automaton is a quintuple Tf = (~, Q, I, F, R), where ~, Q, 
F, and I are as in a nondeterministic automaton, and R, the transition 
relation, is a finite subset of Q x R£XE X Q, where R£XE is the family of 
regular expressions over~. If (q,X,q') E R, then we draw a directed edge 
from q to q' and label it with X. We interpret such an edge as follows: The 
automaton Tf can move from q to q' whenever any word W E X is applied 
to it. A word W E ~* is accepted by Tf if and only if there are the following 
items: a state q E Ii a state q' E Fi words WI, W2, ... , Wk in ~* such that 
W = WI W2 ... Wki states ql = q, q2, ... , qk, qk+l = q' in Qi and expressions 
Xl,X2,· .. ,Xk such that Wi E Xi and (qi, Xi, qi+d E R for 1::; i::; k. In 
case all these conditions are satisfied, we say that there is a successful path 
spelling W from q to q'. The language accepted by Tf is the set of all words 
accepted by Tf. 

An expression automaton is said to be normalized if there is at most 
one transition of the type (q, X, q') for every pair (q, q') of states from 
Q. Given any expression automaton Tf we can easily find a normalized 
expression automaton Tf' that accepts the same language as Tf. Suppose 
(q, Xl, q'), ... , (q, X m , q') are all the transitions from q to q' in Tf. We remove 
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them all, and add the transition (q, X, q'), where X = X1U ... UXm. Clearly, 
the language accepted is not changed by this transformation. 

We now describe an algorithm for finding a regular expression for the 
language accepted by a normalized expression automaton. Given a normal
ized expression automaton TI = (2;, Q,I,F,R), we first enlarge TI by adding 
two states to it. The resulting expression automaton Ti' is defined by 

Ti' = (2;, Q U {i, t}, {i}, {t}, R'), 

where 

R' = R U {( i, c, q) I q E I} U {( q, c, t) I q E F}. 

It is clear that the language accepted by Ti' is the same as that accepted 
by TI. We have merely introduced a new initial state i from which every 
state of I can be reached by an empty-word transition, and a new terminal 
state t that is reachable from each accepting state in F by an empty-word 
transition. There is a successful path spelling w from i to t in Ti' if and only 
if there is a successful path spelling w from one of the initial states in I to 
one of the final states in F. This can be easily formalized. 

Next we show that any state of Ti' that belongs to Q can be removed 
without changing the language accepted. States i and t are not removed. 
We apply this procedure of removing states from Q until none is left; the 

a 
(a) 

b 

(b) 

ab 

(c) 

FIGURE 10.9. Finding a regular expression by state elimination. 
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final expression automaton so obtained has only the two states i and t 
and only one entry (i, X, t) in R. The language accepted by the original 
automaton", is precisely L(X). 

The removal of a single state p from Q is done as follows: For each 
triple of transitions of the type ((q,X,p), (p,Y,p), (p,Z,q')), we remove 
the transitions (q, X,p) and (p, Z, q') and add the transition (q, Xy* Z, q'). 
Finally, state p and the transition (p, Y, p) are also removed. If there are no 
transitions of the type (p,Y,p), then, for each pair ((q,X,p),(p,Z,q')) of 
transitions, we remove (q, X, p) and (p, Z, q') and add (q, X Z, q'). We claim 
that we have not changed the language accepted by doing this removal of 
state p. First, any path from q to q' that does not go through p still exists 
after the modification. Second, any path that does go through p has been 
accounted for by the expression XY* Z, or by the expression X Z. No paths 
have been added unless equivalent paths existed in the original automaton. 
Hence the language accepted is the same. 

We illustrate this construction with the example of Figure 10.9 and 
Figure 10.10. The original automaton of Figure 10.9(a) is deterministic. 
First, we add the initial and terminal states i and t as in Figure 10.9(b). The 

(a) 

ab 

--0 ~~ a 

:0 (b) c 

(b U aa)b* 

(b U aa)b*a 

(c) aU(bUaa)b* CD 
ab U (b U aa)b*a 

(d) --0 (ab U (b U aa)b*a)*(a U (b U aa)b*) ~0 
FIGURE 10.10. Figure 10.9 continued. 
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elimination of state 2 yields the graph of Figure 10.9(c). The normalized 
version of Figure 1O.9(c) is shown in Figure 1O.1O(a). Next, we eliminate 
state 3, normalize, and finally eliminate state 1, as shown in Figure 10.10. 
Thus a regular expression for the language accepted by the automaton is 

(ab U (b U aa)b*a)*(a U (b U aa)b*). 



Chapter 11 

Behaviors and Realizations 
In previous chapters we have discussed the analysis of a network when it 
is started in a stable state and some inputs are changed, and then held 
constant at their new values. This is only part of the analysis problem. 
A complete analysis also involves the network behavior in response to a 
sequence of input changes, some of which may occur while the network 
is unstable, if fundamental-mode operation is not used. We consider such 
behaviors in this chapter. 

We define the concept of "realization" of a specification behavior by an 
implementation behavior; this includes deadlock and livelock phenomena 
in candidate implementations, and choice in specifications. The concept of 
realization is needed in Chapter 13, where we show that some specifications 
are not realizable under certain delay assumptions. This concept is also 
required in Chapter 14, where we discuss the verification process. 

The early work on asynchronous circuits used the so-called primitive flow 
tables to describe behaviors [66, 67J. The problem of realizing a flow table 
by a logic circuit has been studied by many researchers; see, for example, 
[135J and the more recent work of [38, 109J. Many modern asynchronous 
design techniques do not use flow tables; see Chapter 15 for references to 
these techniques. Our approach has been influenced by the work of [19J 
and [146, 147J. Some related work can also be found in [62J and [101], 
but there are considerable differences in our approach. We develop a model 
closely related to finite automata; this allows us to exploit some well-known 
ideas from automaton and language theory. Also, we remove some of the 
possible ambiguities of flow tables by making transitions between states 
explicit. This will be discussed further in Chapter 12. 

How To Read This Chapter 

Section 11.3 involves relatively simple ideas, but is rather technical. It can 
be omitted on first reading; instead, the reader may assume that the spec
ification and implementation have identical input alphabets and identical 
output alphabets. Section 11. 7 deals with choice in specifications. This topic 
requires further research; consequently, this section is primarily of interest 
to the researcher. 
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11.1 Motivation 

The following intuitive distinction is made between implementations and 
specifications: An implementation describes what might happen in a circuit, 
whereas a specification states what should happen. 

To motivate our definitions of specification and implementation, we begin 
with some very simple informal examples from combinational logic design. 
We have in mind a scenario where a designer is given some sort of specifi
cation and is to design a circuit satisfying this specification. 

We assume that any combinational circuit is adequately modeled by a 
Boolean function; we call this a (proposed) implementation (function) fB. 
In the simplest case, the specification is also modeled by a Boolean function 
fA. To check whether an implementation fB realizes a specification fA, we 
need to compare the two functions. Thus "realizes" is a binary relation on 
Boolean functions; in this case the relation is simply equality. For example, 
suppose the specification requires that there be a binary input X and a 
binary output 0, and that the function fA be complementation, Le., 0 
is to be equal to X. An inverter circuit is an acceptable implementation, 
because its Boolean function fB is also complementation. 

Consider now a parallel situation where we are to design an asynchronous 
circuit to meet some specification. We assume that any asynchronous cir
cuit is adequately represented by a formal model we call "behavior,,;l we 
call this a (proposed) implementation (behavior) B. In the simplest case, 
the specification is also modeled by a behavior A. To check whether an 
implementation B realizes a specification A, we need to compare the two 
behaviors. Thus "realizes" is a binary relation on behaviors; in general, this 
relation is much more complex than equality. 

The next example raises some issues concerning the inputs and outputs 
of an implementation as they relate to a specification. For every input of a 
specification, there must be a corresponding input in the implementation. 
In general, however, the implementation B may have more inputs than the 
specification A. Such inputs of B are simply "not used" if B is to realize 
A. More precisely, each such input is fixed at either 0 or 1. Similarly, for 
every output of a specification, there must be a corresponding output in 
the implementation, but the implementation may also have some other 
outputs. We simply "do not look" at the unused outputs. 

To illustrate this, suppose the specification is the complementation func
tion, and the proposed implementation is a half-adder. The half-adder 
has inputs Xl and X 2 and produces outputs 0 1 = Xl EB X2 (sum) and 
O2 = X lX 2 (carry). If we set the input Xl to 1 permanently and ignore 

1 In general, it is not a simple problem to determine an appropriate behavior 
from a circuit. Such a behavior depends on the network model, on the race model, 
and on the restrictions placed on the environment. In Chapters 12 and 14 we show 
how to derive certain types of behaviors. 
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the output O2 , then the output 0 1 = 1E9X2 = X2 realizes the complement 
of X 2 . Similar ideas are introduced for asynchronous circuits. 

The remainder of the chapter is structured as follows. Our formal concept 
of behavior is introduced in Section 11.2; it models all the signal transitions 
that might occur in a network. In Section 11.3 we handle "unused" inputs 
and outputs of one behavior (considered as the implementation) when it 
realizes another behavior (considered as the specification). In Sections 11.4-
11.6 we formalize the concept of realization. In Section 11.7, we briefly 
discuss specifications with choice. 

11.2 Behaviors 

From now on, the word "behavior" means the formal mathematical object 
defined below, unless explicitly stated otherwise. This definition is intended 
to model all the possible signal transitions that might occur in a network. It 
is consistent with the formal definition given in Chapter 4 of a network with 
a binary domain, but (a) it represents the network states by an abstract 
set rather than by a set of binary vectors, and (b) it explicitly introduces 
the external outputs of the network. 2 

Example 1 

The following running example is used to motivate and explain our 
definitions. Suppose we wish to describe the possible changes that 
might occur in the binary network model of an inverter. Figure 11.1 (a) 
shows the inverter circuit, together with a set of variables that permit 
us to define its circuit graph. Since we need to deal with external out
puts now, we modify the definition of circuit graph slightly by adding 
output vertices and output wires. Thus the circuit graph of the in
verter consists of a single input vertex Xl, an input-delay vertex Xl, 

gate vertex SI, wire vertices WI and W2, and an output vertex 0 1 . 

X-1-X-1-W-1--I[>o-S-1-W-2-0-1 

(a) (b) 

FIGURE 11.1. Inverter circuit and its network model. 

2 Previously, the external outputs did not playa major role and were not 
mentioned very often. Any gate or wire variable in a circuit graph of Chapter 4 
may be considered as an external output. Its dependence on the input excitations 
and state variables is given by one of the circuit equations in the network model. 
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Suppose we select only vertex variable Sl to be the state variable. 
Then we have the binary network model of Figure 11.1(b): 

N= ({O,I},{Xd,{Sl},£,F), 

where the excitation function (£ in the network model) is 8 1 = Xl 
and the output 0 1 is given by the circuit equation (F in the model) 
0 1 = Sl· 

A behavior is a 7-tuple B = (X, 'R, 0, Q,q1, T, 1/J), where 

• X = (Xl, ... , X n ), n ~ 0, is a vector of input excitation variables, 
and the corresponding set of variables is X = {Xb ... , X n}; 

• 'R is a finite, nonempty set of internal states; 

• 0 = (01, ... , Op), P ~ 0, is a vector of output variables and the 
corresponding set of variables is 0 = {Ob ... , Op}; 

• Q = {O, l}n x 'R is the set of total states,3 where the first component 
of a total state is of the form (a1' ... ,an) and the binary value ai is 
associated with the variable Xi, for i = 1, ... ,n; 

• q1 E Q is the initial (total) state; 

• T ~ (Q x Q) - {(q,q) I q E Q} is the set of transitions; 

• 1/J is the output /unction, 1/J : Q --t {O, I}P, where, for any q E Q, 1/J(q) 
is of the form (ab . .. ,ap ), and the binary value ai is associated with 
the variable Oi, for i = 1, ... ,po 

Example 1 (continued) 

Let B = (X, 'R, 0, Q, q1, T, 1/J), where X = (Xd, 'R = {O, I}, 0 = 
(Od, Q = {O, I} x {O, I}, q1 = (0,1), the transitions are as shown 
in Figure 11.2, and the output function 1/J is given by the expression 
1/J(a, b» = b, i.e., the output value is equal to the state value. In 
Figure 11.2, we show the initial state by an incoming arrow. An edge 
between q and q' with two arrowheads represents two transitions: 
from q to q' and from q' to q. 

The behavior B may be derived from the inverter network of Figure 
11.1 (b) operated in an unrestricted environment. The following is 
an informal description of that behavior: The behavior state (0,1) 
corresponds to a stable state of the network. When the input changes 

3St rictly speaking, the concept of total state is redundant, since it is de
rived from the size of X and the set 'R. We retain this concept for notational 
convenience. 
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FIGURE 11.2. Behavior of inverter. 

in this state, the state becomes (1,1). Now the internal state may 
change since the inverter is unstable, and state (1,0) can be reached. 
In state (1,1), the environment may change the input excitation. If 
that happens, the state can become (0,1) again-if the input pulse 
was very short and was ignored by the inertial delay of the inverter
or the input excitation and the internal state may both change-if 
the pulse was long enough to be recognized; this would result in state 
(0,0). The remaining transitions are similarly explained. 

Let V = Xu 0 be the set of (external) variables of the behavior. The set 
~ = P(V) - {0}, where P(V) is the power set of V, is called the alphabet 
of B. 

Let 1 : Q -+ {O, I} n X {O, I}P be a function that associates a state label 
l(q) E {o,l}n x {O,I}P with each state q = (a,r) E Q, where a E {O,l}n 
and r E n. The label of q = (a, r) is the input excitation state a together 
with the output state 'lj;(q); we may think of the label of a total state as 
the externally visible information about that state. A label is denoted by 
a vector c = a·b = al" .an·bl ... bp , where ai, bj E {O, I} for i = 1, ... ,n 
and j = 1, ... ,po We also write the label of q as l(q) = X(q)·'lj;(q), where 
X(q) is the input component of q and 'lj;(q) is the output associated with 
q. Note that two or more distinct total states may have the same label. 

The expanded state of a behavior is an element of Q x {O, I}P = ({O, l}n x 
n) x {O, l}p. We frequently use the expanded state in order to have the 
output vector associated with a total state easily available. For convenience, 
we write the expanded state ((a,b),c) as a·b·c. The label of an expanded 
state a·b·c consists of its first and third components, i.e., it is a·c. 

A change in the input component or in the internal-state component (or 
in both) of a total state is represented by a transition to another total state. 
We stress that each transition (q, q') involves a change in at least one of 
the two components of q; thus transitions of the form (q, q) are not allowed. 
In a transition, we may have an input change, an internal state change, or 
both. Note, however, that the output cannot change by itself in a transition; 
either the input or the internal state must change if the output changes. 
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A transition is said to be an invisible transition if only the internal state 
changes but not the input nor the output, i.e., if l(q) = l(q'); otherwise, it 
is a visible transition. We define the "tag mapping" T from T to ~ U {c} as 
follows. The tag of a visible transition (q,q') is denoted by T(q,q'), and is 
that element (j E ~ that consists of all the external variables that change 
in that transition. The value of T(q, q') for an invisible transition (q, q') is 
the empty word c. Note that c is not a letter of ~. 

Example 1 (continued) 

In Figure 11.3 we show the expanded-state behavior corresponding to 
the behavior of Figure 11.2. The transition tags are redundant, since 
they can be deduced from the two states connected by each edge; 
however, these tags are shown for convenience. 

{Od 

FIGURE 11.3. Expanded-state behavior of inverter. 

A transition (q, q') is said to be an input transition if the input changes in 
going from q to q', but the internal state does not change. (The output may 
or may not change in an input transition.) A transition is called an intemal
state transition if the internal state changes but not the input. (The output 
mayor may not change in an internal-state transition.) We also talk about 
X transitions, 0 transitions, XO transitions, and c transitions-depending 
on the tag of the transition. In summary, the transitions can be classified 
as shown in Table 11.1. 

TABLE 11.1. Types of transitions. 

what changes: transition tag visible 
X R 0 type type 

yes no no input X yes 
yes no yes input XO yes 
no yes no internal-state c no 
no yes yes internal-state 0 yes 
yes yes no mixed X yes 
yes yes yes mixed XO yes 
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A state of a behavior is said to be static if it has no outgoing internal
state transitions; otherwise, it is dynamic. Note that a behavior cannot 
leave a static state unless the input changes. In contrast to this, a dynamic 
state has at least one transition not involving any input change. 

Example 1 (continued) 

In Figure 11.3, the transition (ql> q2) is an input transition of type 
X, (q2, q3) is an internal-state transition of type 0, and (q4, q2) is a 
mixed transition of type XO. States ql and q3 are static, and q2 and 
q4 are dynamic. 

Given any behavior B (X, R, 0, Q, ql, T, 'l/J), we associate with it a 
nondeterministic finite automaton (3 with empty-word transitions; this au
tomaton is called the behavior automaton of B and is defined as follows: 
(3 = (L;, Q, ql, F, I), where 

• L;, the behavior's alphabet, is the input alphabet of (3; 

• Q, the behavior's state set, is the state set4 of (3; 

• ql E Q, the behavior's initial state, is the initial state of (3; 

• F is the set of accepting states and it is always equal to Q; 

• f ~ QX(L;U{c:})xQ is the automaton's transition relation: (q,O",q') E 
f if and only if (q, q') E T and T(q, q') = 0". 

Example 1 (continued) 

The behavior of Figure 11.3 redrawn as a behavior automaton is 
shown in Figure 11.4. Since all the states are accepting, they are 
not marked in any special way. 

{Xd 
q2 

{Od {Od 

{Xd 

FIGURE 11.4. A behavior automaton. 

4Here Q is viewed as an abstract set of elements, i.e., the fact that Q 
{a, l}n x n in the behavior is irrelevant in its automaton. 
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The set of all the words accepted by a behavior automaton {3, i.e., its 
language, is denoted by L({3). This language is obviously regular since Q 
is finite. Because each state is an accepting state, this language is prefix
closed, i.e., satisfies L = pref L, where pref L is the set of all prefixes of 
words in L. 

The language of a behavior B is denoted by L(B) and is defined to be 
the language L({3) of the corresponding automaton {3. 

11.3 Projections of Implementations to 
Specifications 

In this section we formalize the concepts of "unused" inputs and outputs of 
an implementation behavior with respect to a given specification behavior. 
This section may be omitted on first reading. 

If an implementation B' is to realize a specification A, then each input of 
A must be represented by an input of B'. Thus, we need to map a subset of 
the set of inputs of B' to the set of inputs of A. We need a similar mapping 
for the outputs. Also the starting state q~ of B' must represent the starting 
state ql of A, i.e., we require that l'(qD projected to A should equall(ql). 
In case these conditions are satisfied, we say that there is a projection of 
B' to A. 

Once we have selected the appropriate inputs of an implementation 
B', we fix the unused inputs at the value they have in the initial to
tal state; clearly, we are not allowed to change these inputs as long as 
B' is realizing specification A. This operation is formalized as follows. 
Let A = (X, R, 0, Q, ql! T, 'IjJ) be a specification behavior, where X = 
(Xl, ... ,Xh), h ~ 0, and 0= (Ol! ... ,Ok), k ~ 0. Let B' = (X', R', 0', Q', 
q~,T','IjJ') be an implementation behavior, where X' = (Xr, ... ,X~), n ~ 
h, and 0' = (O~, ... ,O~), P ~ k. 

Without loss of generality, we suppose that input XI of the implemen
tation represents input Xi of the specification, for i = 1, ... , h. Then 
we may assume that X' = X X", where X = (Xl! ... , Xh), and X" = 
(X~+1' ... ,X~). Thus X" represents the unused inputs. Now each state 
q' E Q' has the form q' = aa"·r', where a E {O,l}h, a" E {O,l}n-h and 
r' E R'. In this notation, the initial state is denoted by q~ = bb" ·r;' . 

The input projection of an implementation behavior 

B' - (X' - X X" '0' 0' Q' q' - bb" ·r' T' "") - - ,,,, , , ,1 - 17' 'P 

to the subvector X of X' is now defined as follows: 

B' .tJ.x= (X,n',O',Q' .tJ.x,q~ .tJ.x,T' .tJ.x,'IjJ' .tJ.x) 
where 

• Q' .tJ.x= {a·r' I ab"·r' E Q'}, 
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• q~ .ij.x= b·r~, 

• T' .ij.x= {(a·r,a.f) I (ab"·r,ab"·f) E T'}, 

• ('ljJ' .ij.x)(a·r') = 'ljJ'(ab"·r'). 

Basically, all the inputs not in X are removed. The second part (the last 
n - h components) of the input vector is first fixed at the value b" that 
this part has in the initial state q~. All the states that differ from b" in 
the second part of the input are removed, along with all the transitions 
from and to these states. Since the second part of the input vector is now 
fixed at b" in all the states that remain, the components from the second 
part can be dropped. Thus the new state label is the old label with all the 
components in X' - X removed. 

TABLE 11.2. Transition table for NOR latch. 

ql 00·01·01 q4 q9 q12 - - -
q2 00·10·10 qll q3 q13 - - -

q3 01·10·10 q13 q2 qll - - -
q4 10·01·01 ql q12 q9 - - -
q5 11·00·00 q8 qlO q6 - - -
q6 00·00·00 - - - q2 ql q7 
q7 00·11·11 - - - ql q2 q6 
q8 01·00·00 - - - q3 - -
q9 01·01·01 - - - - q8 -

qlO 10·00·00 - - - - q4 -
qll 10·10·10 - - - qlO - -

q12 11·01·01 - - - - q5 -

q13 11·10·10 - - - q5 - -

Example 2 

To illustrate input projection, consider the behavior of Table 11.2. 
(In the next chapter, we show how this behavior is derived from a 
network model; for now its meaning is of no significance.) This is an 
implementation behavior represented-because of its size-by a table, 
rather than a graph. The total state consists of two input variables 
and two internal-state variables, which are also the output variables. 
(Thus the output component is always equal to the internal-state 
component.) The initial state is q6. 

To illustrate the removal of unused inputs, suppose that only input 
Xl is needed for some specification. Then we would remove all the 
transitions in columns {X2 } and {Xl ,X2 }. We also remove all the 
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TABLE 11.3. Illustrating input projection. 

ql 0·01·01 q4 - - -
q2 0·10·10 ql1 - - -
q4 1·01·01 ql - - -
q6 0·00·00 - q2 ql q7 
q7 0·11·11 - ql q2 q6 
qlO 1·00·00 - - q4 -
ql1 1·10·10 - qlO - -

states in which X 2 has the value 1, because they are not reachable 
from the initial state q6 in which X2 has the value O. Finally, we 
remove the X 2 component from the labels, obtaining Table 11.3. 

We may also "erase" unused outputs, since we never look at them. With
out loss of generality, suppose that output Oi of the specification is rep-
resented by output O~ of the implementation, for i = 1, ... , k. Conse-
quently, we may assume that 0' = 00", where 0 = (01, ... , Ok), and 
0" = (0~+1' ... ' O~). Thus 0" represents the unused outputs. Each out
put vector now has the form 0 = ee", where c E {a, l}k, and c" E {a, 1 }p-k 
The output projection of an implementation behavior 

B' - (X' '0' 0' - 00" Q' q' T' 01,1) - ,,,,, ,- ,,1,,0/ 

to the subvector 0 of 0' is now defined as follows: 

B' !o= (X',R',O,Q',q~,T','¢' to), 

where ('¢' !o)(q) = c if'¢'(q) = ce". 
Note that the state labels are now changed: the new label is the old label 

with all the components in 0' - 0 removed. Also, the transition tags will be 
modified. The outputs not in 0 are removed from each tag; if the resulting 
set is empty, the transition becomes invisible, and the new tag is IS. 

Example 2 (continued) 

Consider the behavior of Table 11.3. Suppose that only output 02 
is used for some specification. Consequently, we remove the 0 1 com
ponent from the labels, and erase 0 1 from the transition tags. This 
results in one IS column and a second column labeled {02} as shown 
in Table 11.4. 

It is easily verified that the input and output projections can be done 
in either order and produce the same result. Let B' .u.x·o-the behav
ior resulting from B' after the appropriate removal of unused inputs and 
outputs-be defined as 

B' .u.x·o= (B' .u.x) !o= (B' !o).u.x . (11.1) 
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TABLE 11.4. Illustrating output projection. 

I q I 
ql 0·01·1 q4 - - -
q2 0·10·0 qll - - -
q4 1·01·1 ql - - -
q6 0·00·0 - q2 ql q7 
q7 0·11·1 - ql q2 q6 

qlO 1·00·0 - - q4 -
qll 1·10·0 - qlO - -

For later use, we also define the removal of certain letters from a language. 
The restriction of a letter cr of an alphabet ~ = P(V) - {0} to a subset U 
of V is defined as follows: 

{ c if cr n U = 0, 
crtu = cr n U otherwise. 

This operation is extended to words as follows: ctu = c, and, for w i- c, 
(wcr)tu = (wtu)(crtu). Finally, the operation is also extended to languages 
byLtu={wtul wEL}. 

The restriction operation has the following interpretation. Suppose we 
have a network with variable set V, but we only look at the variables in 
U and ignore all the others. Then, if the network history is represented by 
some word w E V*, we would only see the word wtu. 

11.4 Relevant Words 

In defining the notion of realization of A by B', we need to check, among 
other things, that B' does not produce any outputs not permitted by A. For 
this purpose, we need not consider all the words of L(B'), but only those 
that are "relevant" to A. In general, a specification behavior imposes some 
constraints on the environment in which the implementation is operated. 
To illustrate this, suppose X 20 l X I 0 2 is in L(B'), but no word in L(A) 
allows X2 to precede Xl. Then the word X20 l X I 0 2 is not relevant to A. 

11.4.1 Same Input and Output Alphabets 

Let A = (X, R, 0, Q, ql, T, 'lj;) be a specification behavior, and let B' = 
(X', R', 0', Q', qi, T', 'lj;') be an implementation behavior. In the interest 
of clarity, we first define the concept of relevant words under the assumption 
that A and B' have the same input and output alphabets, i.e., that X' = X 
and 0' = O. Thus B' = (X, R', 0, Q', qi, T', 'lj;'), and also ~ = ~'. This 
restriction is removed later. 
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Let x E E* be a word in L(A). A set y of input variables, Y ~ X, 
is applicable in A after x if Y = 0 or if there exists a a E E such that 
xa E L(A) and a n X = y. In other words, suppose an input/output word 
x occurs in A. Suppose further that it is possible to apply the input change 
Y after x according to the specification Aj this input change mayor may 
not be accompanied by some output change. Then the input change Y is 
applicable in A after x. Note that the empty subset of X is applicable after 
Xj in that case there mayor may not be a a ~ 0 such that xa E L(A). 

We say that w' E L(B') is relevant to A ifw' E L(A), or w' = x'a', where 
x' E L(A), a' E E, and a' n X is applicable to A after x'. Let L(B' /A) be 
the set of all the words of B' that are relevant to A. 

The motivation for this definition is as follows. Suppose we change the 
inputs in the set Y (possibly empty) in both A and B' after input/output 
word x has occurred in A and in B'. Consider now any a' such that a' nx = 
y. We need to consider xa', because the outputs accompanying the input 
change Y in B' may not be permitted by Aj in that case B' would not be 
a good realization of A. Note that we are looking for the first violation of 
the specificationj any word with xa' as prefix violates the specification if 
xa'does. 

11.4.2 Different Input and Output Alphabets 

The definition of relevant words is now generalized to the case where the 
alphabets of A and B' are not equal. The reader who omitted Section 11.3 
may now proceed to Section 11.5. Our main goal in the remainder of this 
section is to show that input and output projections preserve relevant words 
in a certain sense. Therefore, we can perform the input and output projec
tions first and then consider relevant words. 

Let A = (X, 'R, 0, Q, ql, 'I, 'IjJ) be a specification behavior, and let B' = 
(X', 'R', 0', Q', q~, 'I', 'IjJ') be an implementation behavior. We say that a 
word x' EL(B') is consistent with A if the word x=x't(X'UO) obtained from 
x' by erasing the unused outputs (Le., the outputs in 0' -0) is in L(A). 
Under these circumstances, the input/output word x of the specification is 
represented by the word x' of the implementation. Note that if a word w 
is consistent with A, then every prefix of w is also consistent with A. 

We say that w' E L(B') is relevant to A if w' = c or w' = x'a', where x' 
is consistent with A, and either a' = c or a' E E' and a' n X' is applicable 
to A after x't(X'UO)' Note that every word of L(B') that is consistent with 
A is relevant to A. 

Observe that the set of words of B' that are relevant to A is preserved 
under input projection, Le., 

L(B' /A) = L(B' .\J.x /A). (11.2) 

Certainly, the right-hand side is a subset of the left-hand side, since the 
input projection can only remove paths in the graph of B'. On the other 
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hand, every word in L(B' jA) uses only inputs from X. Hence it is not 
removed by the projection operation. One also verifies that 

L(B')to = L(B' 10) 

and 

(L(B' jA))to = L(B' 10 jA). (11.3) 

The language (L(B' jA))to is the set of all words of B' relevant to A, 
from which the unused outputs have been erased. The following propo
sition shows that this set of words is preserved by the input and output 
projections. 

Proposition 11.1 (L(B' jA))to = L(B' .JJ.x.o jA). 

Proof: By 11.2 we have 

(L(B' jA))to = (L(B' .JJ.x jA)) to. 

By 11.3 

(L(B' .JJ.x jA))to = L((B' .JJ.x) 10 jA). 

Finally, by 11.1 

L((B' .JJ.x) 10 jA) = L(B' .JJ.x·o jA). o 
From now on, we assume that the appropriate input and output projec

tions have been performed. Consequently, we assume that the input exci
tation and output vectors of B' are identical to those of A. 

11.5 Proper Behaviors 

So far we have not imposed any restrictions on behaviors, but we are about 
to do so now. 

A behavior B = (X, R, 0, Q, ql, T, 'lj;) is deterministic if and only if its 
associated automaton is (incomplete) deterministic. 5 Note that the word 
"deterministic" is used here in the automaton-theoretic sense. Being de
terministic does not prevent a behavior from producing anyone of several 
outputs in a given state. 

We write q ~ q' if state q' can be reached from state q by a path spelling 
w in B. A behavior is said to be proper if, whenever ql ~ q2 and ql ~ q~, 
and q2 .!!..,. q3, for some a E ~, then we also have q~ .!!..,. q~, for some q~ E Q. 
Note that every deterministic behavior is proper. 

5Recall that an incomplete deterministic automaton has no c transitions and 
for each state q E Q and each letter a E ~ there is at most one transition (q, q') 
with r(q,q') = a. 
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If a behavior B is proper, we can construct a deterministic behavior D 
such that L(D) = L(B). This is done using a sort of subset construction. 
For any w E ~*, let [w] denote the set of all total states reachable by w 
from q1, i.e., let [w] = {q E Q I q1 ~ q}. Note that all the states in [wl 
have the same input component, i.e., q, q' E [wl implies X(q) = X(q'). This 
is true because we start in the initial state and change exactly the same 
inputs in order to get to q as we do to get to q'. By the same argument, the 
output vectors associated with q and q' are the same. Altogether, q and q' 
must have the same label. Let X([w]) denote the input component of each 
state in [w], and let 1/I([w]) be the output component of each state in [wl. 
Furthermore, let n([w]) = {r E n I q1 ~ X([w])·r}. This is the set of all 
internal states of B that are reachable by w from q1. Let 

D = (X, n', 0, Q', q~, T', 1/1'), 

where 

• n' = {n([w]) I w E L(B)}; 

• Q' = {[wll w E L(B)}; 

• q1 = [El; 

• T' = {([w], [WtT]) I for some (q, q') E T, q E [w], q' E [WtT] and 
T(q,q') = tT}; 

• 1/I'([w]) = 1/I([w]). 

One verifies that D is well defined and that L(D) = L(B). In view of 
this, every proper behavior can be replaced by a deterministic behavior 
with the same language. 

We require that all specification behaviors be deterministic (and there
fore proper) for the following reasons. When we describe the behavior of 
a circuit, we treat it as a "black box"; consequently, we can only observe 
a sequence of symbols from ~. Consider the behaviors in Figure 11.5. One 
can certainly design a circuit in which first output 0 1 is produced, and 
then the circuit makes the decision whether to produce O2 or 0 3 , as in 
Figure 11.5(a). One can also design a circuit in which the decision whether 
O2 or 0 3 will eventually be produced is made before 0 1 appears, as in 
Figure 11.5(b). However, in any history of operation of either circuit, one 
can only have the following words: E, 0 1, 0 10 2 , and 0 10 3 . Thus the dis
tinction made by the two behaviors of Figure 11.5 cannot be tested by any 
input/output experiment. Therefore such properties are structural, not be
havioral, and we consider the behaviors of Figure 11.5 equivalent. 

The specification of Figure 11.6 is not proper. According to this specifi
cation, the circuit could produce the output word {Od{ 02} and stop, or 
it could produce just the word {0 1 } and stop. There would then be two 
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(a) 

(b) 

FIGURE 11.5. Indistinguishable behaviors. 

FIGURE 11.6. An improper specification. 

distinct states reached by {Ol}, and these two states would have differ
ent outgoing transitions. We will be able to represent such situations by 
specifications with choice, which are the treated in Section 11.7. 

We place a somewhat weaker restriction on implementation behaviors. 
A behavior is said to be input-proper if, whenever ql ~ q2 and ql ~ q~, 
and there exists (q2, q3) E T with r(q2' q3) n X :1= 0, then there also exists 
q~ E Q such that (q~, q~) E T and r(q~, q~) n X = r(q2' q3) n X. In other 
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words, whether or not an input change is permitted in a given state should 
depend only on the word w leading to that state. 

We argue that implementation behaviors should be input-proper. (This 
should apply to words relevant to a specification; we need not place any 
restrictions on words that are not relevant.) If an implementation does not 
satisfy this condition, then, with the same word, it can reach a state q in 
which an input change is permitted, or a state q' in which such a change is 
not permitted. However, the actions of the environment cannot depend on 
the invisible internal state of a circuit. Consequently, implementations that 
are not input-proper (with respect to words relevant to the specification) 
will not be considered. 

On the other hand, implementations need not be "output-proper," be
cause distinctions like those of Figure 11.5 can be made by some internal 
variables. 

We illustrate the definitions with some examples. The following behavior 
is input-proper. 

{Xd {O} {Xd {X2} 
Al : ql --+ q2 --+ q3 --+ q4 --+ q5· 

In contrast to this, the behavior below is not input-proper. 

e {X} 
A2 : ql --+ q2 --+ q3· 

The environment is not permitted to apply X in state ql, but it is allowed 
to do so in state q2. However, no information is provided by the circuit 
whether it is in state ql or q2. 

We remark that a behavior like that in the last example can be made 
input-proper by providing some timing information. Thus, the behavior 

{IOns} {X} 
A3 : ql --+ q2 --+ q3 

is acceptable. Here, the environment waits for 10 ns; after that, it is free 
to change the input X. We will not be introducing any special notation for 
such timing information, but we may simply view this information as an 
additional input symbol. 

In summary, we assume from now on that all specification behaviors are 
deterministic and all implementation behaviors are input-proper (with re
spect to relevant words). 

We have the following order among the families of behaviors that we 
have defined: 

behaviors 

:::> input-proper behaviors 

:::> proper behaviors 

:::> deterministic behaviors. 
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The following examples show that all the inclusions are indeed proper. The 
behavior 

e {X} 
ql ---+ q2 ---+ q3 

is not input-proper. The behavior 

e {O} 
ql ---+ q2 ---+ q3 

is input-proper, but not proper. The behavior with the transitions 

{X} {X} 
ql ---+ q2 and ql ---+ q3 

is proper, but not deterministic. 

11.6 Realization 

We now consider only deterministic specifications. The main question stud
ied in this section is how to make precise the notion that an implementation 
behavior realizes a specification behavior. 

11.6.1 Safety and Capability 

Assuming that a projection of an implementation to a specification exists, 
we now introduce the second condition for an implementation to realize a 
specification. Suppose w' is a word of L(B') relevant to A. Intuitively, w' 
is an input/output word that may occur in the implementation when an 
allowable sequence of input changes is applied to B'. If w' is not in L(A), 
the implementation is capable of producing a sequence of transitions that 
does not exist in the specification. We say that such an implementation is 
"unsafe" for A. 

Definition 11.1 An implementation B' is safe for a specification A if 
L(B' /A) ~ L(A). 

For our third condition, we need to ensure that every word in the lan
guage of A is in L(B'). Otherwise, the specification would have input/output 
words that the implementation is not capable of producing. 

Definition 11.2 An implementation B' has the capability of a specifica
tion A if L(A) ~ L(B'). 

Note that the condition L(A) ~ L(B') is equivalent to the condition L(A) ~ 
L(B' /A). Thus the basic requirement for an implementation B' to realize 
a specification A is the following language equality: 

L(B' /A) = L(A). 
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As we shall see, this condition-which is based solely on language proper
ties-is not sufficient. We add two more conditions defined on the behaviors, 
rather than just on their languages. 

11.6.2 Deadlock 

An implementation may fail to be a realization of a specification because 
a "deadlock" situation may arise, as we now illustrate. 

Example 3 

Consider the network of Figure 11.7 and its implementation be
havior B' derived in the general single-winner model (for simplicity), 
shown in Figure 11.8. First the input changes, and then there is a 
critical race. If 81 wins the race, an output is produced. However, 
if 82 is faster, no output is produced. Here, the language of B' is 
{c, {X}, {X}{O}}. Suppose A is defined by 

Then B' is safe for A and has the same capability. However, should 
the network take the path in which 82 wins the race, the required 
output would never be produced. 

X 

FIGURE 11.7. Network for deadlock example. 

{O} 

1·00·0 
{X} 

0·00·0 

FIGURE 11.8. Behavior with deadlock. 
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Example 4 

Consider now the network of Figure 11.9 and its behavior in Figure 
11.10, derived in the general single-winner model. Is this a realization 
of the behavior in Figure 11.11? In state 0·010·00 there is no possibil
ity of output 0 1 . Should this be considered as deadlock? We can state 
the condition given by the specification of Figure 11.11 as follows: Af
ter the environment applies the input X, the circuit should produce 
either 0 1 or O2 , and both responses should be possible. It is clear 
that the implementation does what is intended. It just happens that, 
in case O2 is produced, an internal-state change takes place first. 

X 

FIGURE 11.9. A network with two outputs. 

0·000·00 

0·011·01 

FIGURE 11.10. Behavior of network with two outputs. 

{X} 

FIGURE 11.11. A specification with two outputs. 
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To discover the appropriate definition of deadlock, consider a specifi
cation A = (X, R, 0, Q, ql, T, 'Ij;}. We would like to describe the output 
words that need to be produced by A from each state. For this purpose we 
consider the input projection A .u.x=O of A to the empty vector of input 
variables. The alphabet of this projection is n = P(O) - {0}. Let Lo(q) be 
the language accepted by state q in A .u.x=(} , i.e., let Lo(q) be the language 
of the behavior A .u.x=O with initial state changed to q. 

Since A is deterministic, each word w E L(A) takes A to a unique state 
qw. The language Lo (qw) can be thought of as the response of A to w. 

Suppose now that B' is an implementation with the same input and 
output alphabets as A. Consider a fixed word w of L(A)j then wLo(qw) 
describes the set of all words in L(A) that begin with wand involve no 
input transitions other than those present in w itself. Note that w may 
take B' to several different states from q~. As we did for A, we also define 
the input projection B' .u.x=O of B', and the languages Lo(q') for all the 
states of B'. 

A state q' of an implementation behavior B' is said to be terminal if 
Lo (q') = {c}. A similar definition applies to specification behaviors. 

Definition 11.3 An implementation behavior B' has deadlock with respect 
to a specification behavior A if there exists a word w E L(B') n L(A) that 
leads to a terminal state in B', but to a nonterminal state in A. Otherwise, 
B' is deadlock-free with respect to A. 

11.6.3 Livelock 

A problem may also arise if there is "livelock," as illustrated below. 

Example 5 

Consider the behavior Al shown in Figure 11.12, the network NI of 
Figure 11.13 in the gate-state model, and the behavior of NI shown 

{X} {O} 

FIGURE 11.12. Behavior AI. 

X 

FIGURE 11.13. Network N I . 
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FIGURE 11.14. Behavior of N1 . 

in Figure 11.14. We would like to determine whether Nl can realize 
AI, when the state variable Sl is used as the output O. The initial 
state of Nl that is to represent the initial state of Al is the sta
ble state (1·000·0). The first transition (l·rl·O, O'rl ·0) corresponds to 
(1·000·0,0·000·0). The labels of Nl and Al agree in the new states, 
so this transition is properly implemented. Next, there should occur 
the transition (0·rl·0,0·r2·l) in AI. In Figure 11.14, the network has 
a nontransient (match-dependent) oscillation and a critical race. If 
S3 wins the race, the network moves to (0·001·0); this change is ex
ternally invisible. The network will then move to (0.101·1), and an 
output change will be observed, as required. Similarly, if S2 wins the 
race from state 0·000·0, the output will change in the next step, as 
required. There is, however, a third possibility, namely, the match
dependent oscillation. Should the network enter that oscillation and 
remain in it indefinitely, the output change would not occur. This is 
an example of livelock. 

We define livelock as follows: 

Definition 11.4 An implementation B' has livelock with respect to a spec
ification A if there is a word w E L(B') n L(A), leading to a nonterminal 
state in A, and to a state in B' that has a cycle spelling € around it. Oth
erwise, B' is livelock-free with respect to A. 

Note that the definition applies well to Example 5 above. The following 
example, however, illustrates a difficulty with the general multiple-winner 
model with respect to livelock. 

Example 6 

The GMW analysis of the network of Figure 11.15 when it is started 
in state 1·00·0 and the input changes to 0 is shown in Figure 11.16. 
There is a nontransient oscillation starting in the initial state; this os
cillation is invisible. If the input changes, the network moves to either 
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FIGURE 11.15. Network N2. 

{X} {O} 

1·01·0 {X} {O} 

FIGURE 11.16. Behavior of N2. 

0·00·0 or 0·01·0, and the oscillation involving S2 continues. However, 
the output is also unstable and will change eventually; thus the cycle 
(0·00·0,0·01·0) is transient. If the delay of variable SI were infinite, 
then livelock would occur and the output change would not be pro
duced. In reality, however, every delay has an upper bound, and the 
network must leave the transient cycle. When that happens, an out
put change occurs as required. In fact, the output may change in four 
different ways, as shown in the figure. The visible behavior is then 
just the word {X}{O}. Consequently, N2 realizes AI. Of course, it is 
clear from Figure 11.15 that this should be so. 

The inconsistency above is caused by the fact that the GMW model does 
not assume any specific upper bound on the delays in the network, but only 
that such a bound exists. In a more accurate model, one would have to 
take the elapsed time into account in each state. This would lead to a more 
complicated model, which we do not pursue. 

11.6·4 Definition of Realization 

We are finally ready to define the concept of realization. 

Definition 11.5 An implementation behavior B' realizes a specification 
behavior A if 

• There exists a projection of B' to A such that each variable of A is 
represented by a distinct variable of B', and the projection of q~ is ql . 
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Assuming now that the unused inputs and outputs have been removed, 
we require four conditions for realization. 

• B' is safe for A, 

• B' has the capability of A, 

• B' is deadlock-free with respect to A, and 

• B' is livelock-free with respect to A. 

Example 2 (continued) 

The behavior B' of Table 11.4 is shown in Figure 11.17. Consider the 
specification A with L(A) equal 

The proposed implementation B' is not safe for A, because, for ex
ample, {02}{02}{02} is relevant to A, but it is not in L(A). On the 
other hand, B' has the capability of A, because every word of L(A) is 
also in L(B'). The implementation B' has deadlock; for example, the 
word € leads to state q2, which is terminal. The same word, however, 
leads to a nonterminal state in A. The same applies also to the word 
O2 . There is no livelock present. 

{Xd 

{Xd 

FIGURE 11.17. Behavior of Table 11.4. 

11.7 Behavior Schemas 

To motivate this section, let us return to our earlier example from combi
national logic design. Frequently, a specification of a combinational circuit 
is not a Boolean function but a partial Boolean function. For example, 
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we may have a specification for a one-input, one-output circuit, where the 
output should be 0 when the input is 1, but the output is a "don't care" 
when the input is O. Here, the specification is no longer a function, but 
could be viewed as a set of Boolean functions. In our example we would 
have two Boolean functions: fA = X (if the value 1 is chosen for the don't 
care entry), and 9A = 0 (if the value 0 is chosen). We view a partial func
tion specification as a "schema" describing a set of acceptable Boolean 
functions, called "options." Consider the inverter circuit again as a possi
ble implementation. This implementation realizes the specification because 
the inverter function f B realizes one of the options fA. 

Return now to asynchronous circuits. We want to permit some choice 
in the specification. In general, any set of behaviors could be used as a 
specification, and the designer would choose to implement one of them. 
It is convenient, however, to use a compact representation for such a set 
of behaviors. As in the combinational circuit example, a specification is 
a schema describing a set of behaviors called options. An implementation 
realizes such a schema provided that it realizes one of its options. 

Before we proceed with the formal definition, we contrast the concept 
of choice with the concept of nondeterminism. If a state of a behavior 
representing a network has a single outgoing transition, and that transition 
has a tag of type 0, then we expect the network to produce output 0 
after entering that state. Here the output is chosen deterministically. On 
the other hand, we also need the ability to specify arbitration. Consider 
the case of specifying an arbiter with inputs Xl and X2 and outputs 0 1 

and O2 . A request is represented by an input change, and a grant by an 
output change. If the two requests arrive simultaneously, one of them should 
be granted. The request-granting aspect of the specification is illustrated 
in Figure 11.18(a). We do not accept as a valid implementation of such 
an arbiter a behavior in which only output 0 1 is produced in the state 
corresponding to q. An acceptable implementation would be provided, for 
example, by a network (single-winner model) in which there is a two-way 
critical race between two gates, resulting in 0 1 if one gate wins and in O2 

if the other gate wins. 

(a) (b) 

FIGURE 11.18. Arbitration and choice. 
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In contrast to the arbitration example above, a specification with "choice" 
does not require that both outputs be possible. Choice is indicated by an 
arc across outgoing transitions, as illustrated Figure 11.18(b). Here the de
signer, rather than the network, has the freedom to choose only output 01, 
only output O2 , or both. In the last case, where both outputs are retained, 
the designer is in fact leaving the choice to the network, which, in turn, 
realizes the arbitration by a critical race each time the situation arises. 

We now present a rather general definition of choice in specifications. A 
behavior schema is an 8-tuple 

A = (X, R, 0, Q, ql, T,~, C), 

where 

• (X, R, 0, Q, q1, T,~) is a behavior, and 

• C = {Cq I q E Q}, is a set of choice sets Cq , where Cq = {B1 , ... , B jq } 

is a set of nonempty subsets, called blocks, of the set 

T q = {t E Tit = (q, q') for some q' E Q} 

of transitions leaving state q; furthermore, the union of all the blocks 
Bi of Q is T q • 

Note that the blocks of a choice set need not be disjoint. A behavior schema 
is said to be choice-free if, for every q E Q, each block Bi of Cq has exactly 
one transition; in effect, such a schema degenerates to a behavior. 

Example 7 

The idea behind the choice set is illustrated by the example of Figure 
11.19, which is a specification of a "fork" with input X and outputs 
0 1 and O2 . In static states, the two outputs have the same value as 
the input. In Figure 11.19, blocks of the choice set are denoted by 
arcs across the corresponding transitions. Blocks consisting of single 
transitions are not marked in any way. Starting with static state 
O'rl'OO, we can change the input and reach the dynamic state l·rl·OO. 
Here, the output variables are both required to change, but they may 
do so in any order whatsoever. The second half of the specification 
schema is similar. 

A possible implementation for this specification would be one that 
always gives preference to 0 1 , In that case, the implementation would 
have the transitions 
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FIGURE 11.19. A specification for a fork. 

An equally acceptable solution would be provided by the following 
set of transitions, where 0 1 rises first but falls second: 

A third choice would be to implement the transitions by allowing 
a race between the two variables. In that case, the implementation 
behavior would be exactly like the specification schema, but without 
the choice-set arcs. 

In the examples above, some transitions from each block are selected at 
design time, and these transitions are the ones implemented. The same set 
of transitions is used every time a particular state is visited. One could also 
envision an implementation that selects transitions dynamically, and may 
use different selections for different visits to the same state. Consider the 
following implementation behavior for the fork of Example 7: 

0·r1·00 --t l·r1·00 --t l·r3·l0 --t l·r4·11 --t 0·r4·11 --t 

0·r2·0l --t O·r~ ·00 --t l·r~ ·00 --t l·r;·Ol --t l·r~·11 --t 

O·r~.11 --t O·r~.l0 --t 0·r1·00. 

Here, variable 0 1 changes first during the first "pass" through the specifi
cation, but it changes second during the second pass. 



Section 11.7. Behavior Schemas 239 

Given a behavior schema A = (X,R,0,Q,q1,T,'lj;,C) and a behavior 
A' = (X, R', 0, Q', qi, T', 'lj;'), we say that A' is an option of A if there 
exists a function p : Q' ---+ Q satisfying the following conditions: 

• p(qi) = qI, and l(qi) = 1(q1)' This ensures that both A and A' start 
in states with the same input/output label. 

• For every state q' E Q' and for every block B of Cp(ql), there exists 
a transition (q',p') E T' such that (p(q'),p(p')) is a transition in B, 
and T(q',p') = T(p(q'),p(p')). This ensures that every block of the 
choice set of the state p( q') is represented by at least one transition 
of A'. 

• For every transition (q',p') E T', we have (p(q'),p(p')) in T, and 
T(q',p') = T(p(q'), p(p')). 

Example 7 (continued) 
Consider Figure 11.19 again. An option for the fork specification is 
shown in Figure 11.20. The first time we change the two variables se
quentially in either order, but we do not allow a simultaneous change. 
The second and third times we select the simultaneous change. The 
fourth time we select only 0 1 followed by O2 . 

FIGURE 11.20. An implementation of a fork. 
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With each schema A = (X, R, 0, Q, ql, T, 'lj;, C), we associate a behavior 
B = (X, R, 0, Q, q!, T, 'lj;). The language of a schema A is defined as the 
language of its associated behavior B. One can verify that options satisfy 
the following properties: 

Proposition 11.2 Let A be a behavior schema and let B be one of its 
options. Then 

• L(A) = UB L(B), where the union is over all options B of A; 

• L(B) ~ L(A); 

• If A is choice-free, then L(B) = L(A). 

We can now reduce the problem of realizing specifications with choice to a 
problem of realizing choice-free specifications. 

Definition 11.6 A behavior B realizes a behavior schema A if there exists 
an option A' of A such that B realizes A'. 

11.8 Concluding Remarks 

In this chapter we have defined some important concepts, which will be 
applied in later chapters. In particular, in Chapter 12 we discuss a num
ber of behaviors that can be associated with a given network. We also 
compare our definitions of schemas and behaviors with the classical flow 
table techniques. In Chapter 13 we use our formal notions of behaviors 
and realizations to prove that certain specifications are not realizable. In 
Chapter 14, we deal with symbolic behaviors and the verification problem. 
Finally, in Chapter 15 we use some of the notation developed here. 



Chapter 12 

Types of Behaviors 
In this chapter, we consider several types of behaviors that may be used 
for specifying and analyzing asynchronous circuits. Section 12.1 shows how 
a number of behaviors may be associated with a simple OR gate. In Sec
tion 12.2, we consider the classical primitive flow table specifications. We 
point out some deficiencies of the flow table approach, and we compare 
it with our formal model of behaviors. In Section 12.3 we discuss the 
derivation of behaviors of networks operated in fundamental mode. General 
fundamental-mode behaviors can be abbreviated to the "direct" behaviors 
described in Section 12.4, if transient states are of no interest. Moreover, 
many behaviors encountered in practice are even more restricted. For this 
reason, we introduce in Section 12.5 the class of "serial" behaviors. These 
behaviors will be used again in Chapters 13 and 14. 

12.1 Introductory Examples 

The most general environment one could provide for a network is the unre
stricted environment. We will use the GMW model as the underlying race 
model for the analysis of a network Nj thus, let Ra be the GMW relation 
of N. To derive the network behavior in an unrestricted environment we 
define a binary relation Ru on the set of total states of N as follows: Let 
a, a' E {O, 1}n and b, b' E {O, 1}m be such that a·b i= a' ·b'. Then 

a·bRua'·b' if and only if b = b' or bRab'. 

This means that the input excitation vector may change arbitrarily at any 
time, and the state component may change according to the Ra relation, 
where a is the present input vector. 

Throughout this section, we use an OR gate as the running example. 
We will introduce various types of behaviors by using this example. The 
network model of the OR gate is N = ({0,l},{Xl,X2},{S},£,F), where 
Xl and X2 are the two input excitation variables, s is the state variable 
with excitation function S = Xl + X 2 , and 0 is the output variable given 
by the circuit equation 0 = s. 

Example 1 

We construct the unrestricted behavior for the OR gate. State 00·1 
has seven possible successor states. Since this state is unstable, the 
state variable may changej this would lead to state 00·0. If input Xl 
changes, the state could become 10·1 or 10·0. Similarly, if X 2 changes, 



242 Chapter 12. Types of Behaviors 

TABLE 12.1. Unrestricted behavior of OR gate. 

q X'r {Xd {X2} {Xl, {O} {Xl {X2, {Xl, 
X 2} O} O} X 2, 

O} 

ql 00·0 10·0 01·0 11·0 - - - -
q2 01·1 11·1 00·1 10·1 - - - -
q3 10·1 00·1 11·1 01·1 - - - -
q4 11·1 01·1 10·1 00·1 - - - -
q5 00·1 10·1 01·1 11-1 00·0 10·0 01·0 11·0 
q6 01·0 11·0 00·0 10·0 01·1 11·1 00·1 10·1 
q7 10·0 00·0 11·0 01·0 10·1 00·1 11·1 01·1 
qs 11·0 01·0 10·0 00·0 11·1 01·1 10·1 00·1 

we might have state 01·1 or 01·0. Finally, both inputs might change, 
leading to state 11·1 or 11·0. The complete transition table for the OR 

gate is shown in Table 12.1. The table is divided into two parts, with 
the first four states being stable and the last four unstable. Since the 
output variable has the same value as the state variable, we don't use 
expanded states. 

Example 2 

The fundamental-mode behavior of the OR gate is shown in Table 12.2. 
The stable states have exactly the same transitions as they do in the 
unrestricted mode. Each unstable state, however, has only a single 
transition, because the input is not allowed to change. Since no XO 
transitions exist, we have deleted the last three columns. 

Example 3 

In some applications, only one input excitation is permitted to change 
at a time. Our third example shows the behavior of the OR gate under 
this restriction; the behavior is given in Table 12.3. 

TABLE 12.2. Fundamental-mode behavior of OR gate. 

ql 00·0 10·0 01·0 11·0 -
q2 01·1 11·1 00·1 10·1 -
q3 10·1 00·1 11·1 01·1 -
q4 11·1 01·1 10·1 00·1 -
q5 00·1 - - - 00·0 
q6 01·0 - - - 01·1 
q7 10·0 - - - 10·1 
qs 11·0 - - - 11·1 
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TABLE 12.3. Single-input-change behavior of OR gate. 

ql 00·0 10·0 01·0 - - -
q2 01·1 11·1 00·1 - - -
q3 10·1 00·1 11·1 - - -
q4 11·1 01·1 10·1 - - -

q5 00·1 10·1 01·1 00·0 10·0 01·0 
q6 01·0 11·0 00·0 01·1 11·1 00·1 
q7 10·0 00·0 11·0 10·1 00·1 11·1 
q8 11·0 01·0 10·0 11·1 01·1 10·1 

Example 4 

Table 12.4 shows a single-input-change behavior with some input 
changes permitted in unstable states [44]. The approach is illustrated 
as follows. Suppose the OR gate starts in stable state 10·1. If the input 
Xl now changes, it is the environment's intention to change the state 
of the OR gate. Suppose state 00·1 is now reached. Applying any in
put change here would negate the original intention because the new 
state would be stable. Hence, no input changes are permitted in state 
00·1. In contrast to this, consider stable state 00·0 and a change in 
X 2 • The new state 01·0 is reached with the intention of changing the 
output. Here, the input Xl can change without affecting the original 
intention: the gate remains unstable. Consequently, the change in X I 
is permitted. Similarly, in state 11·0, the intention is to change the 
output. Changing either input preserves this intention; hence both 
input changes are permitted. 

TABLE 12.4. Dill's single-input-change behavior of OR gate. 

ql 00·0 10·0 01·0 -
q2 01·1 11·1 00·1 -

q3 10·1 00·1 11·1 -
q4 11·1 01·1 10·1 -
q5 00·1 - - 00·0 
q6 01·0 11·0 - 01·1 
q7 10·0 - 11·0 10·1 
q8 11·0 01·0 10·0 11·1 
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TABLE 12.5. Single-input-change fundamental-mode behavior of OR gate. 

I q I X·r II {Xd I {X2 } I {O} I 
ql 00·0 10·0 01·0 -
q2 01·1 11·1 00·1 -
q3 10·1 00·1 11·1 -
q4 11·1 01·1 10·1 -
q5 - - - 00·0 
q6 - - - 01·1 
q7 - - - 10·1 
qs - - - 11·1 

Example 5 

Our last example of Table 12.5 shows the fundamental-mode single
input-change behavior of the OR gate. This is more restricted than 
Dill's single-input-change behavior. 

12.2 Fundamental-Mode Specifications 

We now consider the classical primitive flow tables that have been used 
for fundamental-mode specifications [66, 67, 135]. We will show that such 
flow tables have Some shortcomings; consequently, we will use our behavior 
schema model instead. 

Example 6 

The flow table of Table 12.6 illustrates many of the concepts from 
classical theory [135]. The rows correspond to internal states rl, ... ,r4. 
The columns list the four values of two binary inputs Xl and X 2 • Each 
nonblank entry, except the one in column 11, row rl, contains the next 
internal state and the present output. The output value is assumed to 
be uniquely determined by the total state. The double entry in column 
11, row rl denotes choice: either entry could be implemented and 
the specification would be satisfied. If the internal state of an entry 

TABLE 12.6. A primitive flow table. 

II 00 01 11 10 

rl 6), a r2,0 r3, 0 I r4, 0 r2, 1 

r2 r3, 1 6),0 - r3,0 

r3 rl,O - 6),1 r4, 1 

r4 rl, 1 - @,O rl,O 
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FIGURE 12.1. Schema of primitive flow table. 

agrees with the row state, then the internal state will not change, i.e., 
it is stable. Stable states are indicated by circling the corresponding 
internal-state entries. A flow table is called primitive if there is at 
most one stable state per row. 

Let us illustrate the operation of the flow table by some typical tran
sitions, and also compare the flow table notation to our behavior 
schema model. For example, in column 00, row rl, entry rl, 0 indi
cates that total state X 1X 2 ·r = OO·rl is stable; the flow table remains 
in this state until an input change occurs. In our notation, column 00, 
row rl entry corresponds to expanded static state ql = OO·rl ·0; see 
Figure 12.1. Next, consider the entry in (01, rd; it indicates that the 
next internal state should be r2 and the output should not change. 
Thus the "operating point" that we might associate with the flow 
table starts in (00, rl), and moves horizontally to (01, rd, when X2 is 
changed by the environment. Since fundamental-mode operation does 
not permit any input changes in unstable states, the operating point 
can only move vertically to (01, r2) as the internal state changes. 
In our notation, we also have two transitions: the input transition 
from OO·rl·O to 01·rl·0, where only the input X2 has changed, and an 
internal-state transition from 01·rl·0 to 0l·r2·0. 

Consider now total state X 1X 2·r = 11·r4, which is stable. If the 
input changes to 00, we have the entry rl, 1, showing that both the 
internal state and the output must change. We can model this motion 
of the operating point from (11, r4) through (00, r4) to (00, rd by an 
input transition from 11·r4·0 to 00·r4·1, followed by an internal-state 
transition to OO·rl ·0. 
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Location (11, rt) has two entries. This represents choice: Either the 
operating point can move to state r4-in which case the output 
does not need to change--or it can move to r3-in which case an 
output change is eventually required. We model this by transition 
(OO·rI·O,I1·rI·O), followed by transitions (l1·rI·O,I1·r3·1) and (l1·rI· 
0, l1·r4·0) joined by a choice arc,l as shown in Figure 12.1. Note that 
there are c: transitions in this schema. 

The transition from (00, rI) to (10, rI) leads to an oscillation through 
states rI, r2, r3, r4, rI, r2, .... Now the question arises whether the en
try in (10, r3) is there only because it is necessary for the oscillation, or 
is it possible to reach this state by changing input X 2 , while the flow 
table is in stable state r3 with input 11? (In Figure 12.1 we assume 
that there is no transition from (11, r3) to (10, r3).) There is no way 
of answering such questions in the flow table representation, whereas 
these ambiguities do not arise in our behavior schema representation, 
since each permitted transition has an explicit representation; hence 
we prefer our definition for fundamental-mode specifications. 

A fundamental-mode behavior schema is defined as a schema A = (X, R, 
0, Q, qb T, 'ljJ, C), where qI is static, and each dynamic state has only 
internal-state transitions. This satisfies the fundamental-mode requirement 
that inputs can change only if the present state is stable. 

12.3 Fundamental-Mode Network Behaviors 

In this section we describe a method for finding behaviors of networks 
operated in fundamental mode. 

Let N = ({O, I}, X, S, 0,£, F) be a network with n inputs and m state 
variables. Note that we have added the set 0 of output variables of Nand 
the corresponding output vector 0 = 01. ... , Op. Each output is a Boolean 
function of the input excitations and state variables, as specified by the 
vector F of circuit equations. Let Ra be a race relation for N that specifies 
a set of possible next states for a given unstable state. The exact nature of 
this relation is not important here, as long its outcome is well defined. In all 
of our examples we use the GMW relation for convenience. We remind the 
reader of the difficulty with livelock representation: transient cycles must 
be removed from consideration. 

1 We point out that, if we change the flow table slightly by replacing the T3, 0 
entry in state (H, Tt) with T3, 1, this situation can be modeled by transitions 
(OO·Tl·O, H·Tl·I) and (OO·Tl·O, U·Tl·O) joined by a choice are, and the additional 
transitions (U·Tl·I, U·T3·I) and (H·Tl·O, U·T4·0). 
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The fundamental-mode relation Rfm of a network N on the set {a, 1 }n+m 
of all the total states of N is defined as follows: 

(a·b)Rfm(a'.b') 

if and only if 

(a·b) =I (a'.b'), bRab', and either a = a' or b = b'. 

Thus two states are related by Rfm if either the first is stable and the 
second differs from it only in the input vector, or the first is unstable and 
the second differs from it only in the state vector. 

A fundamental-mode behavior B fm of a network N with fundamental
mode relation Rfm is a behavior defined as follows: 

Bfm = (X, n,o, Q,q!, T,'t/J), where 

• X = (X!, ... ,Xn)j 

• n = {a, l}m, where the internal state has the form (b1 , •.• ,bm), and 
the binary value bi is associated with the network state variable 8i, 

for i = 1, ... , mj 

• 0= (01, ... ,Op)j 

• Q = {a, l}n x{O, l}m, where the total state has the form ((a!, . .. ,an), 
(b1 , ... , bm)), with ai associated with Xi for i = 1, ... , n, and bj 

associated with 8j, for j = 1, ... ,mj 

• q1 E Q is a stable initial state of N j 

• T=Rfmj 

• 't/J: {O,l}n x {a, l}m -+ {a, I}P is the circuit output function. 

Note that, when the fundamental-mode behavior of a network is used to 
realize a specification behavior, one of its stable states is chosen as the 
initial state. Thus we associate with a network as many behaviors as there 
are different stable states. 

Example 7 

To illustrate fundamental-mode behaviors, consider the NOR latch in 
the gate-state model. From the excitation functions 8 1 = Xl + 82 and 
8 2 = X2 + 81, we obtain the Ra relations shown in Figure 12.2. Using 
these relations (and some routine work) we construct the behavior for 
the latch as shown in Table 12.7. We assume that both gate outputs 
are also external outputs. The table is divided into three parts. First 
we list the five stable states. According to the fundamental-mode op
eration [66, 67, 93, 135], we are allowed to change any set of inputs 
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FIGURE 12.2. Ra relations for the NOR latch. 

in any stable state. Dashed entries indicate that there are no transi
tions with the corresponding tags. Next, we list the unstable states 
reachable from the stable states. The successors of unstable states are 
determined by the Rim relation-here based on the GMW relation. 
Finally, we list the unstable states that are not reachable from the 
stable states. Since we assume that the network always starts in a 
stable state, these three states can be omitted. 

TABLE 12.7. Transition table for NOR latch. 

00·01·01 q4 q9 ql2 - - -
00·10·10 ql1 q3 q13 - - -
01·10·10 ql3 q2 ql1 - - -
10·01·01 ql ql2 q9 - - -
11·00·00 qs qIO q6 - - -
00·00·00 - - - q2 ql q7 
00·11·11 - - - ql q2 q6 
01·00·00 - - - q3 - -
01·01·01 - - - - qs -
10·00·00 - - - - q4 -
10·10·10 - - - qIO - -
11·01·01 - - - - q5 -
11·10·10 - - - q5 - -
01·11·11 - - - q9 q3 qs 
10·11·11 - - - q4 ql1 qIO 
11·11·11 - - - ql2 q13 q5 
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12.4 Direct Behaviors 

In a many situations we are interested in specifying only the outcome of 
a transition but not in the many ways by which a state in the outcome 
can be reached. In such cases it is sufficient to consider a restricted class of 
fundamental-mode behaviors in which emphasis is placed on the outcome 
of a transition, and details concerning transient states are suppressed. The 
resulting concise model is useful for describing many practical circuits. 

A behavior is called direct if it is a fundamental-mode behavior and, for 
every dynamic state q, in every transition (q, q'), the state q' is static. Note 
that, in a fundamental-mode behavior, all transitions from a dynamic state 
must be internal-state transitions. Thus, in a direct behavior we specify the 
"final destination" the behavior should reach. Of course, a circuit for which 
a direct behavior is computed may go through a number of intermediate 
states before reaching a circuit state corresponding to the final destination. 
This, however, is not taken into account in a direct-behavior description of 
the circuit. 

Example 8 

In the behavior of Figure 12.3, two output changes (constituting an 
output pulse) are produced for every input change. This behavior is 
fundamental-mode, but it is not direct. 

0·0·0 
{O} 

0·1·1 

{O} 

{X} 
{O} 

1·0·0 

FIGURE 12.3. A behavior that is not direct. 

Proposition 12.1 If B is a direct implementation behavior, then it is 
live lock-free for every specification behavior A. 

Proof: There are no outgoing c transitions from a static state. Hence, every 
path spelling c must begin in a dynamic state. Since each dynamic state 
leads directly to a static state, a direct behavior can have only c paths of 
length one. Since no cycle in a behavior can have length one, there can be 
no cycles spelling c. Thus a direct behavior is livelock-free with respect to 
every specification. 0 
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We now describe a construction that permits us to find the direct be
havior of a network N. We assume that its fundamental-mode behavior 
Bfm = (X, R, 0, Q, ql, T, 'If;) has already been constructed. 

An unstable state q = a·1' of N is called fresh if there exists an input 
vector a' such that a'·r is a stable state. Thus a state is fresh if it is unstable 
and can be reached from a stable state in one step of the relation Rfm. 

We assume here that we are interested in designing a class of circuits 
in which an input change applied to a stable state results in a "reliable" 
transition to another stable state. Thus oscillations are not permitted. Fur
thermore, we want to ensure that no hazards are present in any of the 
circuit outputs; otherwise, other circuits using the outputs of the circuit 
being designed might reach incorrect states. A state q = a·1' is stabilizing if 
out(Ra(1')) contains only stable states. A state q = a·1' is Oi-haza1'd-J1'ee if, 
in any Ra-sequence of states leading from l' to a state 1" in out(Ra(1')), the 
output variable Oi changes at most once. A state q is output-haza1'd-J1'ee if 
it is Oi-hazard-free for every Oi E O. 

FIGURE 12.4. Direct behavior for the NOR latch. 
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The direct behavior of network N with fundamental mode behavior B fm 
is Bdir = (X,n,O,Q,ql,'LLir,'lf;), where 'LLir S;;; (Q X Q) is defined as 
follows: If q = a·r is stable, qRfmq', and q' is both stabilizing and output
hazard-free, then (q, q') E 'LLir and (q', q") E 'LLir for all q" E out(Rfm(q')). 
No other pairs of states are related. 

Example 9 

We illustrate the concept of direct behavior for the NOR latch with 
the fundamental-mode behavior of Table 12.7. The direct behavior 
is shown in Figure 12.4. Since the outputs are the same as the state 
variables, they are not shown. Static states are shown shaded. Note 
that a double output change occurs in the transition from state 10·10 
to state 10·01. This does not imply that the two outputs change 
simultaneously in the network; in fact, from the relation RIO it is clear 
that O2 must change before 0 1 , No transition is included for state 
11·00 under {Xl, X 2 } because the resulting state is not stabilizing. 

12.5 Serial Behaviors 

The types of behaviors that we have defined above are rather general; 
in many practical cases the model can be even simpler than the direct 
behaviors. In this section we study a class of restricted direct behaviors, 
called "serial behaviors." These behaviors have some desirable properties 
with respect to deadlock, and have simple representations. 

A behavior is serial if it is direct and satisfies the following three addi
tional conditions: 

1. It has no X ° transitions; 

2. For each X' ~ X and for each state q, there is at most one transition 
leaving q with tag X'; 

3. Each dynamic state has exactly one outgoing transition. 

Consider the possible transitions in a serial behavior. The initial state is 
static and can only have input or mixed transitions of type X. Consider a 
transition (q, q') from any static state. If q' is static, it also can only have 
X transitions. On the other hand, if q' is dynamic, we must have exactly 
one (internal-state) transition, say (q', q"), because of Condition 3. This 
transition (q', q") may be an c transition or an ° transition. In both cases 
q" is static, because the behavior is direct. In summary, we can describe 
the behavior as follows. It starts in a static state. In every static state, 
the environment may supply an input change. There is exactly one input 
transition corresponding to this input change. The circuit then responds 
by either "doing nothing" (if the state reached by the transition is static) 
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or by moving to a new static state with or without an output change (if the 
state reached is dynamic). Note that "doing nothing" permits the circuit 
to change its internal state. 

Example 10 

The behavior in Figure 12.5 has one input, two state variables and 
two outputs. In the initial state 0·00·00, the input may change. The 
behavior then randomly selects one of the two outputs and changes 
it. A second input change may then occur, causing the second output 
to change. No further actions are permitted in state 0·11·11. This 
behavior is direct, but it is not serial. 

1·01·01 
{X} 

0·01·01 

FIGURE 12.5. A behavior that is direct but not serial. 

Example 11 

The direct behavior of the latch of Figure 12.4 is serial provided the 
input {X1 ,X2 } is not used in state 11·00. 

Proposition 12.2 Let B be a serial implementation behavior, and A a 
specification behavior. If B has the capability of A, then it is deadlock-free 
forA. 

Proof: We claim that at most two states can be reached in B by any word 
w. Furthermore, we claim that, if two distinct states of B are reached by 
the same word w, then one of them, say q, is dynamic, and the other, called 
q', is static; furthermore, there is a transition (q, q') with tag c. We prove 
our claim by induction on the length Iwl of w. 

If Iwl = 0, the only state reached by w is the initial state ql. Hence our 
claim holds. 

Suppose that only one state q can be reached by w, and consider wcr. If 
q is static, then cr must be a subset of X, because B has no X 0 transi
tions. Only one state can be reached by wcr, because of Condition 2. If q 
is dynamic, then cr must be a subset of 0, because of Condition 3. In case 
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a is nonempty, again, only one state can be reached by wa. In case a is 
c, two states can be reached by wa: q, and the static state q' that is the 
destination of the single transition from q. Hence the induction step goes 
through, if only one state can be reached by w. 

Suppose now that both q and q' can be reached by wand satisfy the 
inductive assumption, with q being dynamic. Consider wa. Since the single 
transition from the dynamic state q is already used to get to static state 
q', the only state reachable by wa is the one that can be reached from q', 
and a must necessarily be a subset of X. Therefore the induction step goes 
through in this case also. 

Suppose now that deadlock occurs for the word w. If only one state is 
reached in B by w, then that state must be terminal, and the state reached 
in A by w must be nonterminal. Thus there is some word wa, a ~ 0, in 
L(A), but there is no such word in L(B). Therefore B does not have the 
capability of A, and we have a contradiction. 

In case two states q and q' can be reached by w, it follows from the claims 
that LO(q) = LO(q') = {c}. Thus both states are terminal, and the same 
argument applies as above. 0 

Suppose B is a serial behavior realizing some specification A. It is possible 
to remove the c transitions without affecting L(B) and without introducing 
deadlock or livelock by the following process. If q is static, (q, q') is an input 
transition, and (q', q") is an c transition, remove both of these transitions 
from B and add the transition (q, q"). Clearly, such a construction preserves 
L(B). Since the resulting behavior is still serial, it is also livelock-free and 
deadlock-free. Therefore, the modified B with c transitions removed still 
realizes A. Note that c-free serial behaviors are deterministic. 

Let B = (X, R, 0, Q, ql, T, 'IjJ) be a serial c-free behavior. A word of L(B) 
is said to be complete if it leads from the initial state to a static state. In 
serial behaviors we can simplify the notation by eliminating dynamic states 
entirely. The complete-word behavior of a serial behavior B is defined as 
follows: 

iJ = (X, R, 0, Qstatic, ql, T, -J;), 
where 

• if (q,q') E T and q' is static, then (q,q') E T; 

• if (q,q') E T and q' is dynamic, and if (q',q") E T, then (q,q") E T. 

• There are no other transitions in T. 

• -J; is the restriction of'IjJ to Qstatic' 

It is clear that the original c-free serial behavior can be uniquely recon
structed from a complete-word behavior, by reversing the construction, i.e., 
by introducing a dynamic state whenever there is an XO transition. 
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FIGURE 12.6. Complete-word behavior of NOR latch. 

Example 12 

The complete-word behavior corresponding to the direct behavior of 
Figure 12.4 for the latch is shown in Figure 12.6. It is assumed that 
the input {XI,X2 } is not used in state 11·00. 



Chapter 13 

Limitations of Up-Bounded 
Delay Models 
In this chapter we study the behavior of the so-called delay-insensitive 
(DI) circuits in response to sequences of input changes. The correctness 
of the behaviors of such circuits is independent of the relative delays in 
their components and wires. It will be shown that the class of behaviors 
realizable by delay-insensitive circuits is quite restricted. 

The basic result concerning fundamental-mode circuits dates from 1959 
and is due to Unger [134, 135]. Unger considered circuits with single input 
changes. He defined an "essential hazard" in a flow table as follows: Suppose 
a circuit is in a stable state Q,·b and the input changes first to a, then back 
to a and again to a. The circuit has an essential hazard if the state reached 
after the first input change is different from that reached after three input 
changes. Unger showed that no flow table with an essential hazard can 
have a delay-insensitive realization. In this chapter, we give a new proof of 
Unger's theorem. Our proof is based on the equivalence of the results of 
ternary simulation and GMW analysis in the input-, gate-, and wire-state 
model. This proof originally appeared in [122]; see also [124]. 

In modern design approaches, asynchronous circuits are not operated in 
fundamental mode. Several such approaches use some sort of "input/output 
mode" [18, 19, 44, 103]. We will not be defining any precise notion of 
input/output mode, but will later use one very simple version of this mode. 
Roughly speaking, in this mode the environment does not have to wait until 
the network has stabilized completely to give the next input change; a new 
input can be applied as soon as the network has given an appropriate 
output response. Thus the input/output mode is more "demanding" than 
fundamental mode. It is not surprising, therefore, that even fewer behaviors 
have delay-insensitive realizations when operated in this mode. 

Some results about the limitations of the input/output mode circuits 
seem to have been "folk theorems" for quite a long time. For example, 
one such folk theorem is that the C-ELEMENT has no delay-insensitive 
input/output-mode realization. To the best of our knowledge the first proof 
of this was given in [19]. Here we present a somewhat more general definition 
of input/output-mode operation and a somewhat more general version of 
that result. We also show that it is impossible to design a delay-insensitive 
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arbiter, thus providing a new proof of a result of [2]. The results concern
ing the input/output mode are also based on the equivalence of ternary 
simulation and GMW analysis. 

For some related work concerning other limitations of delay-insensitive 
circuits, we refer the reader to [90]. That work deals with a different set of 
components rather than gates. 

13.1 Delay-Insensitivity in Fundamental Mode 

Delay-insensitive circuits are highly desirable, since they are very robust 
with respect to manufacturing variations, changes in operating conditions, 
etc. In this section we define delay-insensitive network behaviors in funda
mental mode. 

In a delay-insensitive network, each gate and wire must have a state 
variable associated with it. Thus every output variable coincides with some 
state variable. For this reason, it is not possible to have an input transition 
in which the output also changes, and every letter associated with an input 
transition is a subset of X. 

A transition of a network N, from a stable state a·b under new input 
vector a, is said to be delay-insensitive in fundamental mode if and only if 
out(Ra(b)) contains a single state, where out(Ra(b)) is the outcome of the 
GMW analysis in the gate-and-wire-delay model. In terms of our definitions 
in the previous chapter, a delay-insensitive fundamental-mode network will 
be represented by a serial behavior, or the corresponding complete-word 
behavior. 

In general, not all of the transitions of a network are delay-insensitive. To 
illustrate this-and also to give an example of a nontrivial delay-insensitive 
behavior-we introduce the circuit of Figure 13.1. It is clear from Chap
ter 7 that ternary simulation is the correct tool for determining whether a 
transition is delay-insensitive. In fact, ternary simulation of an input- and 
feedback-state model of the circuit is sufficient. We choose to carry out the 
reduction procedure using {Y3, Y7} as the feedback-vertex set. This yields 

FIGURE 13.1. Gate circuit C with nontrivial delay-insensitive behavior. 
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FIGURE 13.2. Reduced network corresponding to circuit C. 

the reduced network of Figure 13.2 with excitation functions Xl, X 2 and 

We summarize the delay-insensitive transitions of a network in the form 
of a serial behavior. The complete-word behavior for the serial behavior of 
the network of Figure 13.2 is shown in Figure 13.3. Since all the states in
volved are stable, and there is a state variable Xi associated with each input 
Xi, the first two components of the total state are identical to the second 
two components. For this reason, we omit the input excitation part X 1X 2 

of total state X 1X 2 ·X1X2Y3Y7, and show only the internal state X1X2Y3Y7. 

Since we will not be concerned with outputs for a while, we do not show 
them either. This is equivalent to assuming that 0 is empty. Although the 
transition tags on the edges are redundant, we show the set of inputs that 
change, for convenience. 

In Figure 13.3 we show all the transitions that are delay-insensitive for 
our example network when it is started in stable state 0011. Note that 
no transition caused by a multiple-input change is delay-insensitive in this 
example. It is also interesting to note that, for any state reachable from 
the initial state for which an input change a is allowed, any odd number 
f . {Xd 

o a's takes the machme to the same state. For example, 0011 ---+ 1001, 

1001 ~ 0001, and 0001 ~ 1001. We will show that this is not a coin
cidence but a fundamental property of delay-insensitive networks. 

FIGURE 13.3. Delay-insensitive complete-word behavior. 
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13.2 Composite Functions 

Before deriving certain properties that are common to all delay-insensitive 
networks, we introduce a technique that significantly simplifies the proofs 
of our results. When analyzing synchronous circuits it is quite common to 
use a method called "unfolding." The basic idea is to replicate the com
binational part of the circuit a number of times instead of feeding back 
the output values; we then iteratively compute the next state. For our ap
plication, we do the unfolding using ternary extensions of the excitation 
functions rather than the binary functions. The idea is to form a ternary 
function that directly computes the results of Algorithm A and Algorithm 
B. (Since the network always starts in a stable total state in fundamental 
mode, Algorithm A is indeed applicable.) Since Algorithms A and B require 
at most m iterations, we only need to unfold the circuit m times. 

More formally, given a ternary network N, define its composite function 
F : {a, <1>, l}n+m -+ {O, <1>, l}m as F(X·8) = s(m)(X.8) , where S(h) is 
defined recursively as follows: 

(h) _ { 8 
S (X·8) - S(X.S(h-1)(X.8)) 

if h = 0, 
if h ~ 1. 

To illustrate this idea, consider the network of Figure 13.4, where Sl = X 
and S2 = 81 (81 + 82). Since the network has two state variables, we unfold 
it into two levels. This yields 

S (O) - 8 
1 - 1, 

S (O) - 8 
2 - 2, 

S(1) - X 1 - , 

S(l) -( ) 2 = 81 81 + 82 , 

S(2) -X 
1 - , 

Thus, for example, F 2(X, 8) = S~2) above. 
From the definition of the composite function, it follows that it is mono

tonic, i.e., if a·b I;;; c·d then F(a·b) I;;; F(c·d). Furthermore, it is trivial to 
show that if a·b is a stable state of N, i.e., if b = S(a·b), then F(a·b) = b. 
Finally, assume that network N is started in stable total state a·b and the 

FIGURE 13.4. Network N. 
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input is changed to a. Let SA and t B be the results of Algorithms A and 
B for this input change, respectively, and let a = lub{ a, a}. Then, by the 
definition of F and Propositions 7.3 and 7.4, it can be shown that 

(i) F(a.b) = b 
(ii) F(a·b) = sA 

(iii) F(a.sA)=sA 
(iv) F(a·sA ) = t B 

(v) F(a·t B ) = t B 

(stability) 
(result of Alg. A) 
(stability) 
(result of Alg. B) 
(stability) 

For example, if Sh denotes the hth state of the network reached during 
algorithm A, establishing property (ii) is accomplished by showing that 
S(h)(a.b) = sh for 0 ~ h ~ A. 

13.3 Main Theorem for Fundamental Mode 

We are now ready to derive some (quite restrictive) properties that are 
common to all delay-insensitive circuits. Our main result is summarized in 
the following theorem: 

Theorem 13.1 Let N be any network and let a·b be a stable state of N. 
If (a.b, a·b), and (a.b, a.b) are delay-insensitive tmnsitions of N, then so is 
the tmnsition from a·b under input a, and the result of this tmnsition is 
again the state a·b. See Figure 13.5. Furthermore, if some vertex j has the 
same value in state b as in state b, i.e., bj = bj = a, and there is no static 
hazard on this vertex during this tmnsition, then the vertex will have the 
same value in b, i.e., bj = a. 

0' 

0' 

FIGURE 13.5. Illustrating the main theorem. 

The theorem states that any odd number of changes of the same set of 
inputs must leave a delay-insensitive network in the same state. further
more, suppose we only consider transitions that are free of static hazards; 
if an output does not change value for some input change 0', then it will 
not change for any sequence of a's. 

An interesting special case of the theorem occurs when the network has 
only one input. From the theorem it follows that the state graph showing all 
the delay-insensitive transitions for such a network can have at most three 
states, assuming that we consider only the component of the state graph 
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that is reachable from some initial state. Since the value of the input vertex 
(stored in the input-delay variable) is part of the state of the network, any 
such graph must have at least two states. Hence, it is easy to see that the 
only possible graphs are the ones shown in Figure 13.6. From this we can 
conclude, for example, that there does not exist a delay-insensitive divide
by-2 counter such as the one discussed in Chapter 1. In fact, there does not 
exist a delay-insensitive mod-k counter for any k > 1. 

{Xd {Xd 

o 
{Xd {Xd 

(a) (b) 

FIGURE 13.6. Delay-insensitive transitions for one-input circuit. 

We prove the theorem with the aid of a series of lemmas. The following 
assumptions are used for Lemmas 13.1-13.3 below. Let N be the ternary 
network obtained from any Boolean network N. Assume N is operated ac
cording to the fundamental-mode assumption. Let F denote the composite 
network functions as defined above. Furthermore, assume that the input 
sequence is given by aO, a1, a2 , a3 , ... = ii, a, ii, a, ... , i.e., that the input is 
cycled between the binary input vectors ii and a. Assume that ii·bo is a 
stable total state of N. Let b i,i+1 denote the result of Algorithm A for 
the transition from the stable state ai·bi when the input changes to ai+l. 
Similarly, let bi+l denote the result of Algorithm B for the same transition. 
Note that we do not assume that b i,i+1 and bi+l are binary. 

The following lemma is the key lemma to all subsequent results. The 
lemma states that if, at some point, a vertex with a binary value does not 
react to an input change, it will never react thereafter. 

Lemma 13.1 If there exists an integer k 2: 1 such that b;-l = b7-1,k = 

b; = 0: E {O,1}, then bj-l,i = b; = 0: for all i 2: k. 

Proof: We prove this by induction on i. The basis, i = k, holds trivially by 
the assumptions in the lemma. Thus assume inductively that br1,i = b; = 

0: for some i 2: k. First note that lub{ ai-I, ai } = lub{ ai, ai+l} = lub{ a, a} = 
a. By the monotonicity of Algorithm B (Proposition 7.4), it follows that 
bi-1,i ;;! b i and hence, by the monotonicity of the composite network 
function, that Ff(a.bi-1,i);;! Ff(a.bi ). By Property (iii) of the composite 
network functions, FA(a.bi-1,i) = bi-1,i and, in particular, FJ(a.bi-1,i) = 
b~-l,i which is equal to 0: by the induction hypothesis. Hence, 0: = b~-l,i ;;! 

b; = Ff(a.bi ), and thus Ff(a.bi ) = 0:. Furthermore, by Property (ii) of 
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the composite network functions, it follows that b~,i+1 = F1(a.bi ) and 

hence b~,i+1 = Q. In other words, the value of vertex j after Algorithm A 
for the input change ai to ai+l will be Q. Finally, by the monotonicity of 
Algorithm B (Proposition 7.4), it follows immediately that b i,i+1 ;;;:! b i+1 
and therefore that b~+1 = Q. Hence, the induction step goes through and 
the lemma follows. 0 

From Lemma 13.1 we get the following corollary. 

Corollary 13.1 (Monotonicity for change sequences) For all k ~ 1, 

bk-1,k ;;;:! b k,k+1. 

Proof: It suffices to show that whenever bJ-l,k is binary, then bJ,k+1 has 

the same value. Suppose bJ-l,k = Q E {a, I} . From the monotonicity 

of Algorithm A (Proposition 7.1 and proof of Lemma 7.1) and the mono
tonicity of Algorithm B (Proposition 7.4), it follows that b1-1 = b1 = Q. 

Hence, b1-1 = bJ-l,k = b1 = Q E {a, I} and Lemma 13.1 applies. Thus, 
b i- 1 i b i £ all' > k d' t' 1 b k k+l 0 j , = j = Q or z _ an, In par ICU ar, / = Q. 

The following two lemmas give conditions on the values of a vertex after 
an odd and an even number of input changes, respectively. The first lemma 
states that if a vertex has a binary value after one input change, then it has 
the same value after any odd number of input changes. The second lemma 
is similar, but for an even number of changes. 

Lemma 13.2 lfb} = Q E {a, I}, then b~i-l = Q for all i ~ 1. 

Proof: We show this by induction on i. The basis (i = 1) holds trivially 
by the assumption in the lemma. Thus assume inductively that b~i-l = Q 

for some i ~ 1. Since i ~ 1, and thus 2i - 2 ~ 0, the state b 2i- 2,2i-l is 
well defined. By Property (iv) of the composite network function, it fol
lows that b 2i- 1 = F(a2i-l.b2i-2,2i-l) and, in particular, that b~i-l = 

Fj(a2i-l.b2i-2,2i-l). By the same arguments, b~i+l = Fj(a2i+1.b2i,2i+1). 

However, by Corollary 13.1 it follows that b 2i- 2,2i-l ;;;:! b 2i- 1,2i ;;;;) b 2i,2i+l. 
Also, by assumption, a 2i- 1 = a 2i+1 = a and thus a2i-l·b2i-2,2i-l ;;;:! 
a2i+1·b2i ,2i+1. This, together with the monotonicity of F, shows that 

F(a2i-l.b2i-2,2i-l) ;;;:! F(a2i+1.b2i,2i+1). 

Thus, 

b~i-l = Fj(a2i-l.b2i-2,2i-l) ;;;;) Fj(a2i+1.b2i,2i+1) = b~i+1, 

and since b~i-l = Q by the induction hypothesis, it follows that b~i+l = Q 

and the induction step goes through. 0 

Lemma 13.3 lfb~ = a E {a, I}, then b~i = Q for all i ~ 1 . 
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Proof: The arguments are similar to those in the proof of Lemma 13.2.0 

We are now in a position to prove Theorem 13.1. 

Proof of Theorem 13.1: There are two cases to consider. If b = b, the 
theorem follows immediately. Hence consider the case where b i= b. The 
dotted edge in Figure 13.5 illustrates this case. Now consider the ternary 
simulation of the transition caused by the input changing from a to a 
when the network is started in stable state a·b. Since this transition is 
assumed to be delay-insensitive, out(Ra(b)) contains a single state. In view 
of Theorem 7.2, it therefore follows that the ternary simulation of this 
transition must yield b E {O, l}m+n. Hence, Lemma 13.2 applies for each 
vertex of the circuit establishing the first claim of the theorem. 

For the second half of the theorem, consider again the first transition, 
i.e., the case where the network is started in stable state a·b and the in
put changes to a. First, using the same arguments as above, the ternary 
simulation of the transition yields a binary state. In particular, bj = 0: E 
{O,l}m+n. Second, by Theorem 7.4 and the fact that the transition is 
hazard-free, the value on vertex j after Algorithm A is 0: too. This, to
gether with Lemma 13.1, implies that vertex j remains 0: for any sequence 
of input changes between a and a, and in particular that bj = 0:. 0 

Using the results above, it is easy to verify that the following six types of 
vertex behaviors are the only ones possible for a vertex in a delay-insensitive 
network when the input alternates between the two binary input vectors a 
and a: 

1. The vertex never reacts. 

2. The vertex changes value on the first input change and keeps this 
value from then on. 

x 

° 
FIGURE 13.7. Gate circuit G. 
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3. The vertex changes value for every input change. 

4. The vertex keeps the same value, although there may be a short pulse 
during every input change. 

5. The vertex keeps the same value, although there may be a short pulse 
during the first input change. 

6. The vertex keeps the same value for the first input change, except 
that there may be a short pulse during this change. For the remaining 
changes, the vertex changes value for every input change. 

Note that only behaviors 1-3 are normally acceptable for an output vertex. 
The gate circuit G of Figure 13.7 contains gates of all the above types if 

it is started in stable state X = 0, Y = Yl ... Y7 = 1010100, and the input 
oscillates between 1 and o. In particular, gate 1 is of type 1, gates 2 and 3 
are of type 2, gate 4 is of type 5, gate 5 is of type 3, gate 6 is of type 4, 
and finally gate 7 is of type 6. 

13.4 Delay-Insensitivity in Input/Output Mode 

In this section, we show that delay-insensitive networks operated in in
put/output mode are even more restricted than those in fundamental mode. 

13.4-1 The Main Lemma 

We will show that the very simple behavior of Figure 13.8 does not have a 
delay-insensitive realization operated in the input/output mode, although 
it has a delay-insensitive realization operated in the fundamental mode. To 
prove this result, it suffices to consider a very limited class of behaviors. 

Recall that a behavior is serial if it is direct, has no XO transitions, has at 
most one transition with tag X' for each subset X' of X, and each dynamic 
state has at most one outgoing transition. Furthermore, we may assume 
that it has no e transitions, i.e., that it is deterministic. For the purposes of 
this section, we restrict such behaviors even further. A simple deterministic 
behavior is a deterministic serial behavior A = (X, R, 0, Q, ql, T, 1/J), with 
one additional condition: At most one external variable changes in each 
transition. 

We need to define how a network N in the input-, gate-, and wire-state 
model is operated in the input/output mode with respect to a specification 
A. Assume that we have performed the appropriate projection of N to 
A, i.e., that N has the input vector X and the output vector O. The 
network must have an initial state q~ representing ql. Rather than finding 
the general behavior under all possible input sequences-as we have done 
for fundamental mode-we will attempt to simulate the specification by 
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applying to the network only the relevant input sequences. We define the 
input/output-mode behavior of N to be B' = (X, R, 0, Q', q~, T', 'lj;'), where 
R' ~ {O,I}m and T' will be defined later. 

{O} {X} 

FIGURE 13.8. Behavior AI. 

We begin by an example that illustrates the main ideas and also points 
out the differences between the fundamental mode and the input/output 
mode. Consider the behavior Al of Figure 13.8. The simulation of Al by 
a network N is illustrated in Figure 13.9. In the fundamental mode, the 
initial state of a network N realizing Al must be stable. No such condition 
is imposed on N if it is operated in the input/output mode. Thus N could 
start in any state q~ = O·b such that 'lj;'(q~) = O. Note, however, that any 
state q' = O'c with c E reach(Ro(b)) would also have to have 'lj;'(q') = O. 
This has to hold because the network output is not permitted to change, 
if the environment chooses not to apply any input changes for a while. 

It follows that every state c E reach(Ro(b)) must have an input transition 
to represent the first transition of AI. The state reached by this transition 
must be of the form l·d with 'lj;'(I·d) = O. Observe that the internal state 
d may differ from c: Since O·c need not be stable, it is conceivable that the 
internal state can change at the instant the input change occurs. However, 
the output cannot change instantly because the output wire has a delay 
associated with it. 

Every network state l·d as above must be unstable, because the speci
fication now expects an output change. Furthermore, in any RI-sequence 

FIGURE 13.9. Simulation of Al by a network. 
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starting in d and terminating in some state in out( R 1 (d)), the output must 
change exactly once. In such a sequence, every state with the old output 
value 0 still represents state l·rl·O of the specification, and every state with 
the new output value 1 represents 1·r2·1. 

Consider now any state e that is reachable from d by an R1-sequence and 
that has ~'(l·e) = 1. In fundamental mode, the environment would have to 
wait until a stable state is reached. There is no such condition here, and the 
input is allowed to change again as soon as the new output value appears. 
Let 0-1 be the state immediately after the input changej then ~'(O·J) = 1. 

Finally, we must ensure that the output does not change again. Thus, 
every state 9 reachable from f by an Ro-sequence must have ~'(O·g) = 1. 

The properties of any network N realizing Al are now summarized for 
convenience: 

P1 If q~ = O·b, every state c (including b) reachable by an Ro-sequence 
from b must have ~'(O·c) = O. 

P2 The input is allowed to change in any state O·c, defined as above, and 
the state l·d reached after this input change must be unstable and 
must satisfy ~'(l·d) = O. 

P3 In every R1-sequence starting with d and ending with a state in out(Rb 
d), 0 changes exactly once. 

P4 Let e be any state that can be reached by an R1-sequence from d and 
that has ~'(l, e) = 1. Then the input is allowed to change again. The 
state 0-1 so reached must have ~'(O, J) = 1. 

P5 Every state 9 reached from f by an Ro-sequence must have ~'(O·g) = 1. 

In general, we define a set Q' of states of N that is used in the simula
tion of a simple deterministic behavior Aj the definition is by induction. We 
also define inductively a function ¢ : Q -- P( Q')j this function specifies, 
for each q, the set ¢(q) of all the states of the network that have to behave 
like q. 

Induction step: Suppose q' = a·b E Q', and q' E ¢(q), where q = a·T. 

• If q is static, we have two cases: 

1. If p' = a·b and bRab, add p' to Q' and to ¢(q). 

2. If q is static, p = ii·r, and (q,p) E T, let b be any state Ra-related 
to bin N, and let p' = ii·b. Add p' to Q' and to ¢(p). 
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• If q is dynamic, then there is a unique transition (q,p) in which one 
output variable changes. If p' = a.b, bRab, we have the following two 
cases: 

1. If 'IjJ'(p') ='IjJ(p), add p' to Q' and to ¢(p). 

2. If 'IjJ'(p'):f:. 'IjJ(p), then N is rejected, since it is unable to realize 
A. 

This construction is continued until N is rejected as above, or Q' cannot 
be enlarged any further. 

Assuming that N has not been rejected, we are now in a position to state 
the basic rule for the input/output mode of operation: The environment 
may change the input only if the network N is in a state q' representing 
a static state of the behavior A, i.e., if q' E ¢(q) and q is static. More 
precisely, we define the transition set T' of B': 

• If q' E ¢(q), q is dynamic, and q' = a·b, then (q',p') E T' for all 
p' = a·b, where bRab. 

• If q' E ¢(q), q is static, q' = a·b, q = a·r, p = a·r and (q,p) is an 
allowed input transition in A, then (q',p') E T', where p' = a·b and 
bRab. 

x 

FIGURE 13.10. Network CI3.1O. 

We illustrate the construction using the network I of Figure 13.10. First, 
we show that this network operated in the fundamental mode realizes be
havior AI. We use stable state X'S I S 2S 3 = X'SI S20 = 0·000 as the initial 
state. If the input changes to 1, we have the following sequence of states: 

{X} e {O} e 
0·000 --t 1·000 --t 1·100 --t 1·101 --t 1·111. 

The last state reached is stable. Now the second input change can be ap
plied; this results in the sequence 

{X} e 
1·111 --t 0·111 --t 0·011. 

Thus we see that the specification behavior Al is indeed implemented. 

IFormally, in the input-, gate-, and wire-state model, we should have one delay 
for the input X and another for the wire from the input delay to the OR gate. One 
can easily verify that the extra delay would not change any of the conclusions 
that are about to be made. 
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Now consider the input/output mode. First, we have Q' = {O·OOO}, 
and 0·000 E ¢(O·rl·O). Next, since (O·rl·O,l·rl·O) E T, we have Q' = 
{O·OOO, 1·000}, and 1·000 E ¢(l·rl·O). We then add 1·100, HOI, and 1·111 
to Q'. We also add 1·100 to ¢(1·rl·O), and 1·101 and 1·111 to ¢(1·r2·1). The 
input is permitted to change in states 1·101 and 1·111, since they represent 
the static state 1·r2·1. Hence we also add the states 0·101 and 0·111, to Q' 
and to ¢(0·r2·1). From state 0·101, we can reach 0·001 and hence 0·000. 
Here the output is incorrect. Hence G13.lO fails to realize AI. 

We are now in a position to prove that there does not exist any network 
that realizes Al when operated in the input/output mode. 

Lemma 13.4 The behavior Al does not have a DI input/output-mode re
alization. 

Proof: If gate network N with initial state q~ is a delay-insensitive in
put/output realization of behavior AI, then it must have the properties 
PI - P5 listed above. 

We show that if a delay-insensitive input/output-mode realization (N, q~) 
of Al existed, then we could construct a network G13.11 that would have 
contradictory properties. 

o 
N 

FIGURE 13.11. Network CI3.11' 

Consider the network G13.11 that uses N as shown in Figure 13.11. Notice 
that a delay element is introduced for every wire. 2 Since Network N also 
contains a delay element for each wire, we have an input-, gate-, and wire
state network model for GI3 .11 . Let s' denote the vector of internal state 
variables of N, except for the output variable, which is denoted by O. 

The initial state of GI3 .11 is )(·ss'O = )('SIS2S3XS'O = O·lOOObO. We 
then have the following Ro-sequence: 

1000bO --+ OOOOb'O --+ 0010cO --+ 0011dO. 

Note that, in all the steps above, the output 0 of N has been stable, as 
guaranteed by conditions PI and P2 . Condition P2 also requires state l·dO 

2 As before we omit the input delay since it has no effect on the conclusions 
we will draw. 
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of N to be unstable. By P3 , N eventually reaches a state 1·e1, for some 
vector e. Thus we must have an Ro-sequence 

OOlldO --+ * OOlle1. 

From P4 and P5 it now follows that 0 cannot change any more, even if X 
becomes 0 again; this has to hold for all possible values that s' may reach. 
Thus, the s'-component of the state of G13.U becomes irrelevant, and we 
replace it by # from now on. We have the following Ro-sequence: 

001le1 --+ 0111#1 --+ 0101#1 --+ 0100#1. 

In the last state, the variables SI, S2, S3, X, and 0 are stable and will not 
become unstable again. It follows that the outcome of the GMW analysis of 
G13.11 started in state 0·1000bO, always yields states of the form 0·0100#1, 
i.e., 

hE out(Ro(1000bO)) implies the 0 component of his 1. 

Consequently, even in the presence of arbitrary gate and wire delays, the 
final outcome of the transition yields 0 = 1. We also observe that, in 
the analysis above, N is operated in input/output mode with respect to 
behavior AI. 

Next we show that ternary simulation of GI3.U contradicts the conclusion 
reached above. Note that, by condition PI, as long as the input X of N is 
0, the excitation of the output delay must be o. Hence the output delay is 
initially stable. Algorithm A produces the following sequence: 

0·1000bO --+ 0·<1>000#0 --+ 0·<1>0<1>0#0 --+ 0·<1>0<1><1>#0, 

where the # here indicates that we don't know the values of the s' portion of 
the state. We trivially have 1000bORo 1000bO, and we have shown above that 
1000bO Ro * 001le1, i.e., both 1000bO and 001le1 are reachable from 1000bO 
(in zero or more steps). Consequently, the output 0 can take the values 0 
and 1 in the GMW analysis of the network. But then, by Proposition 7.2, 
Algorithm A of the ternary simulation must produce 0 = <1>. Subsequently, 
S2 becomes <1>, and the final result of Algorithm A has the form O·<1><1><1><1>t<1> 
for some vector t of ternary values. 

Applying Algorithm B to state O·<1><1><1><1>t<1>, we find that it terminates in 
the second step with state O·O<1><1><1>t<1>. Consequently, Algorithm B predicts 
that 0 has the value <1>. But then, by Theorem 7.2, there exists a state in 
the outcome of the GMW analysis where 0 = O. This contradicts the GMW 
analysis above. Therefore, the network N with the postulated properties 
cannot exist, and we have proved that behavior Al does not have a delay
insensitive gate realization operated in the input/output mode. 0 
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13.4-2 Some Behaviors Without DI Realizations 

With the lemma above it is easy to verify that the behaviors of the NOR 

latch, and two basic components of delay-insensitive design, namely, the 
JOIN and the TOGGLE [46, 107], do not have delay-insensitive realizations 
in the input/output mode. 

First, the latch of Figure 12.4 has the following sub-behavior: 

00.10·10 ~ 10·10·10 {O~a} 10·01·01 ~ 00·01·01. 

Thus, simply by setting X2 to 0 and ignoring the output 0 1 , we obtain the 
behavior 

0·10·0 ~ 1·10·0 ~ 1·01·1 ~ 0·01·1, 

which is isomorphic to AI, if we identify X with Xl and 0 with O2 • 

{O} 

{O} 

FIGURE 13.12. Behavior of JOIN. 

In Figure 13.12 we show a behavior of the JOIN with inputs Xl and X 2 
and output O. Starting from state 00·r1·0 or H·r5·1, the JOIN produces no 
output when only one input changes. When the second input changes, the 
JOIN then changes its output to agree with the two inputs. The JOIN has 
the sub-behavior: 

{X2 } {oJ {Xa} 
1O·r2·0 ~ H·r4·0 ~ H·r5·1 ~ 1O·r6·1. 

If we set the input Xl to 1 and associate X 2 with X, we obtain a behavior 
isomorphic to AI. 

Figure 13.13 shows a behavior of a TOGGLE with input X and outputs 
0 1 and O2 • If we count the input changes starting from the initial state 
0·r1 ·00, each odd input change causes a change in output 0 1 and each 
even input change causes a change in output O2 • The TOGGLE contains the 
behavior 

0·r1·00 ~ l·rI·OO ~ 1·r2·10 ~ 0·r2·10 ~ 0·r3·H, 

and we obtain a behavior with the same language as Al by ignoring the 
second output. 
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{X} {Od 

{X 

{Od {X} 

FIGURE 13.13. Behavior of TOGGLE. 

FIGURE 13.14. A generalized version of AI. 

By means of slight modifications in the proof of Lemma 13.4, we can 
show that three other behaviors also lack delay-insensitive input/output
mode realizations. 

Lemma 13.5 Any behavior having the form shown in Figure 13.14, where 
a, bE {O, I}, does not have a DI gate realization in input/output mode. 

Proof: In case ab = 10, repeat the arguments of Lemma 13.4, but with 
network C13.11 modified as follows. Insert an inverter in series with a delay 
in the wire leading to the input X of network N. 

In case ab = 01, modify network CI3.11 by the addition of an inverter in 
series with a delay in the wire leaving output 0 of network N. 

In case ab = 11, modify network CI3.11 by the addition of two inverters 
with delays as indicated in the two cases above. D 

13.4.3 Nontrivial Sequential Behaviors 

An example of a simple deterministic behavior that does have a delay
insensitive input/output-mode realization is shown below. It is realizable 
by an inverter with input X and output O. The behavior is rather triv
ial, however, since every input vector uniquely determines the static state 
eventually reached by the behavior. 

{X} {O} {X} {O} 
O·r!"l ----+ 1·rl·1 ----+ l·rz·O ----+ O·rz·O ----+ O·rl·l. 
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To eliminate such trivial cases, we impose the following condition on 
simple deterministic behaviors: 

A behavior A = (X, R, 0, Q, ql, T, t/J) is nontrivial if there exists at least 
one input vector X = a for which there are at least two static states a·rl·b 
and a·r2·b' where b =f. b' and one of the states is reachable from the other. 

We have the following result: 

Theorem 13.2 No nontrivial simple deterministic behavior A with a bi
nary input has a delay-insensitive gate realization in the input/output mode. 

Proof: Suppose a·r2 ·b' is reachable from a·rl ·b. Since b =f. b', they must 
differ in at least one component. Without loss of generality, assume that 
these two output vectors differ in their last component, i.e., that b = cd 
and b' = c'd, where d E {O, I}. 

In case ad = 00, we can apply the following reasoning: Start in state 
O·rl·cO, which is stable. For 0·r2·c'l to be reachable from O·rl·cO, we must 
change X to 1 and then back to 0 some finite number of times. At some 
point in this sequence we must have a state 0·r3·eO, where the output has 
not yet changed, but from which we can reach state 0·r2·c'l with two input 
changes. Thus, we must have the sub-behavior 

{X} {X} , 
0·r3·eO --+ l·r3·eO --+ l·r4·fg --+ 0·r4·fg --+ 0·r2·c l. 

We can now consider two subcases. 

Case 1: If 9 = 1, then the sequence above projects to the behavior AI, if we 
ignore all but the first and the last components. By Lemma 13.4, A cannot 
be realized. 

Case 2: 9 = O. We now have the following sequence: 

{X} {X} , 
0·r3·eO --+ l·r3·eO --+ l·r4-f0 --+ 0·r4·fO --+ 0·r2·c 1, 

where state l·r4·fO represents a static state in behavior A, because the 
output is not changing, by assumption. By Theorem 13.1, since the output 
does not change in the first step, it cannot change in the second step. Hence, 
this behavior is not realizable by any network, even if it is operating in the 
fundamental mode. 

The other cases, where ad = 10 or ad = 01 or ad = 11 are all dealt with 
similarly, using Lemma 13.5. D 

We close by proving that it is impossible to construct a delay-insensitive 
gate circuit that would act as an arbiter. This problem was considered 
by [2], where a proof of this was given in a totally different formalism. 
Consider the behavior of Figure 13.15. It represents the essential function 
in the arbitration process. The two inputs represent requests for the use of 
a single resource. When Xl and X2 are both 1, only one of them can be 
served. The arbiter then has to decide whether to grant the resource to Xl 



272 Chapter 13. Limitations of Up-Bounded Delay Models 

FIGURE 13.15. An arbiter behavior. 

by setting 0 1 = 1,02 = 0, or to X 2 by setting 0 1 = 0,02 = 1. The arbiter 
is not allowed to always give preference to one of its inputs but must, in 
fact, implement the critical race. Note that the behavior of Figure 13.15 
satisfies the condition that there are two distinct static states for one input 
vector. However, one state need not be reachable from the other; thus we 
are unable to apply Theorem 13.2. Nevertheless, we are able to prove the 
following result. 

Theorem 13.3 Suppose a direct behavior A has an initial dynamic state 
qo = a·ro·bc, where band c are the values of one-bit output vectors 0 1 
and O2. Suppose further that q1 = a·r1bc and q2 = a·r2·bc are two static 
states such that (qO, qd, (qo, q2) E T and that no output sequences other 
than E:, { 0 1}, and {02} are allowed. Then this behavior does not have a 
delay-insensitive realization in the input/output mode. 

Proof: Assume that a delay-insensitive realization N exists. This means 
that we can use the input-, gate-, and wire-state network model to analyze 
N. By Theorem 7.2, we know that the outcome of Algorithm B must yield 
0 1 = 02 = <P. By Lemma 7.9, there exists a nontransient cycle reachable 
from the network state representing ro in which the variables 0 1 and O2 

take both values. Thus, N is capable of producing output sequences that 
are not allowed. 0 

13.5 Concluding Remarks 

In this chapter, we have confined ourselves to networks of gates. Conse
quently, basic elements like the JOIN, C-ELEMENT,3 TOGGLE, and ARBITER 

were not allowed. This choice was made because we wanted to investigate 
the basic limitations of gate circuits, in view of the well-established use of 
gates as primitive elements for the design of synchronous circuits. 

3The C-ELEMENT is similar to the JOIN, but permits the environment to "with
draw" an input change; it will be treated in more detail in Chapter 15. 
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Delay-insensitivity needs to be redefined for switch-level models of CMOS 
circuits, since the "components" and "wires" are not as easily identified. 
One could consider the components to be transistors, but it may be more 
practical to consider complex cells as components. Similarly, which wires 
should be taken into account and which can be ignored is arguable. How
ever, the most important decision is which race model should be used. Since 
CMOS circuits may produce intermediate voltage levels during operation, 
it is natural to require that the XMW race model be used. In view of The
orems 7.6 and 7.7 it thus follows that our results about nonrealizability 
apply to these more more modern technologies as well. Furthermore, since 
these theorems apply both to feedback delay models as well as to more 
elaborate network models, it follows that these results are quite insensitive 
to the exact definition of "components" and "wires" in a CMOS network. 

We may draw the following two conclusions from the present chapter: 

• If one wants to realize components like JOINS, C-ELEMENTS, TOGGLES, 

or latches by circuits using only gates, then one has to make some 
assumptions about the gate and wire delays. 

• A set of components different from the set of logic gates is needed for 
the realization of any significant class of delay-insensitive behaviors. 

Sets of primitive components for particular classes of delay-insensitive be
haviors have been suggested in [46, 146], for example. We will return to 
this in Chapter 15. 



Chapter 14 

Symbolic Analysis 

The race analysis algorithms and the behaviors introduced so far in this 
book all use the tacit assumption that the states of a network are repre
sented ~licitly. Since the state space grows exponentially with the size 
of the network, such a representation can only be used for relatively small 
circuits. In this chapter we consider representing states and other similar 
objects symbolically. 

In Section 14.1 we discuss a method, based on ordered binary decision 
diagrams (OBDDs), for representing Boolean functions. This method over
comes, in practice, many of the drawbacks of the more traditional ways 
of representing such functions, since it permits a compact representation 
for complex Boolean functions. In Section 14.2 we show how mathematical 
objects like sets, relations, and behaviors can be represented concisely by 
OBDDs. We also demonstrate how traditional algorithms can be rephrased 
in terms of OBDD manipulations. 

In Sections 14.3 and 14.4 we derive a symbolic representation of a be
havior directly from a network. In particular, in Section 14.4 we convert 
some of the race analysis algorithms discussed earlier in the book to sym
bolic form. As a side effect, we derive an efficient and practical algorithm for 
computing the minimum and maximum delays in a combinational network, 
finally providing a solution to the problem introduced in Section 1.2. 

We next explore algorithms for determining whether a symbolic behavior 
realizes another symbolic behavior. In Section 14.5 we give an algorithm 
which, if successful, guarantees that a behavior realizes another one. How
ever, there are situations in which our algorithm can be overly cautious, 
reporting failure when the realization relation actually holds. 

Finally, in Section 14.6 we discuss a method, called "model checking," 
which can be used to determine the validity of a temporal-logic formula 
with respect to a behavior. This technique is invaluable for checking that a 
specification satisfies some desirable properties. Furthermore, for systems 
in which the only specification consists of a collection of properties that 
the system should satisfy, model checking can be used directly to verify 
that an implementation behavior extracted from a network satisfies these 
properties. 
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14.1 Representing Boolean Functions 

An efficient method for representing and manipulating symbolic expressions 
constitutes a corner-stone in symbolic analysis. In the context of digital 
circuits, such a method usually involves representing and manipulating 
Boolean functions. For this reason, we begin with a brief digression into 
methods of representing Boolean functions. 

Ideally, a representation of Boolean functions should satisfy the following 
requirements: 

1. It should allow an efficient test for the equality of two functions. 

2. It should be able to represent Boolean functions of a large number of 
variables. To be of practical significance, the representation must be 
able to handle functions of at least 30-40 variables. 

3. It should permit efficient computation of common operations, such as 
complement, product, and sum of Boolean functions. Also, functional 
composition and quantification over a set of variables is often needed. 

4. It should not require excessive amounts of storage for common func
tions. 

Unfortunately, the existence of a representation satisfying these require
ments would imply the existence of an efficient solution to the Boolean 
tautology problem-a well-known NP-hard problem. Therefore, unless P = 
NP, no such representation exists. Consequently, we have to be satisfied 
with some heuristic method that works well in practice but has an expo
nential worst-case behavior. 

A common way of representing a Boolean function is by a Boolean expres
sion, such as a sum-of-products. This representation has the disadvantage 
that a sum-of-products denoting the complement of a sum-of-products E 
can be exponentially larger than E. Other common representations, like 
expression trees or expression DAGs (directed acyclic graphs), solve the 
problem of exponential blowup when performing a single operation, but 
pay the price of making comparisons extremely time-consuming. 

The OBDD is a Boolean function representation that satisfies many of 
the requirements listed above. OBDDs were originally proposed by [82] 
and [1], further refined by [53], and made practical and popular by [11]. 
An OBDD represents a collection of Boolean functions as a forest of rooted 
DAGs. This is illustrated by the example of Figure 14.1, where four distinct 
Boolean functions are represented. There are two leaf vertices (represented 
as squares): one labeled 0 and the other labeled 1. Each internal vertex 
(represented as a circle) is labeled with a variable. It has two outgoing 
edges, one corresponding to 1 and the other to O. The I-edge represents 
the Boolean function for the case where the variable is 1, and the O-edge 
corresponds to the case where the variable is o. In Figure 14.1 the I-edges 
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b+c ab+ ac+ be bc 

FIGURE 14.1. Example of ordered binary decision diagram. 

are shown as solid lines, whereas the O-edges are dotted. For a given assign
ment of binary values to the variables, the value of the function is found 
by following the path (corresponding to the assignment) from its root to 
one of the leaves. 

The order in which variables are tested in the OBDD follows a global 
total order in which each variable occurs only once. In Figure 14.1 the order 
is a, b, c. If we ensure that no OBDD vertex is created with its I-edge 
leading to the same successor vertex as its O-edge and that no two OBDD 
vertices with the same variable label have the same O-successors (vertices 
reached by the O-edges) and the same I-successors, we can show that no 
two vertices define the same Boolean function. Consequently, testing two 
Boolean functions for equality is trivial: the functions are equal if and only 
if they are represented by the same OBDD vertex. 

Computing the product or sum of two Boolean functions represented by 
OBBDs can be done efficiently by a recursive procedure. The size of the 
resulting OBDD is bounded by the product of the sizes of the OBDDs 
representing the two functions. In practice, the resulting OBDD is often 
significantly smaller. The size of the OBDD representing the complement 
of a Boolean function is exactly the same as that representing the function. 

In the OBDD representation, it is straightforward to perform universal 
and existential quantification of some of the variables of a Boolean function. 
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Also, the operation of substitution of functions for some of the variables of a 
given function can be performed efficiently. We use the following notation: 1 

'<IVi. f( VI, ... , Vi-I, Vi, Vi+l, ... , Vn) = 
f( VI, ... , Vi-I, 0, Vi+l, ... , Vn ) * f( VI, ... , Vi-I, 1, Vi+l, ... , Vn ) 

and 

3Vi·f(VI"",Vi-I,Vi,Vi+I,""Vn) = 

f( VI, ... , Vi-I, 0, Vi+l,· .. , Vn )+ f( VI,·· . , Vi-I, 1, Vi+l, ... , vn ). 

If it is understood that V is one of the variables of f, we write '<Iv. f and 
3v. f for short. We also extend this notation to quantifications over vectors 
of Boolean variables. For example, if V is the vector (VI, V2) then we write 

f(0,0,V3,""Vn )+ 
f(0,1,V3,""Vn)+ 
f(1,0,V3,""Vn)+ 
f(1, 1, V3, ... , vn). 

FIGURE 14.2. OBDDs for a1b1 + a2b2 + a3 b3 using different orderings. 

The variable order can have a significant effect on the size of the OBDD 
of a function. For example, in Figure 14.2 we show the function albl + 
a2b2 + a3b3 for two different variable orderings. If we generalize this expres
sion to albl + a2b2 + ... + anbn , we see that the OBDD using the ordering 

1 To avoid ambiguity, in this chapter we return to the use of the explicit symbol 
* for Boolean multiplication. 
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at, bl , a2, b2, ... , an, bn is of size 2n+2, whereas the OBDD using the order
ing al, a2, ... , an, bl , b2, ... , bn is of size 2n+l. In general, finding an optimal 
ordering is an NP-hard problem; thus heuristics must be used. Fortunately, 
in most OBDD implementations, it is possible to change the order of ad
jacent variables efficiently. By repeating this procedure, one can devise re
ordering schemes that find local minima. In practice, such dynamic schemes 
are quite useful, although they are slow. Finally, it should be pointed out 
that there are Boolean functions for which no variable ordering yields a 
small OBDD. The classical example here is the nth output of an n-bit by 
n-bit binary multiplier. It has been shown [14] that the OBDD representing 
this function is of size exponential in n for every variable ordering. Surpris
ingly, although most Boolean functions have OBDDs of exponential size (as 
can be seen by a simple counting argument), most functions encountered in 
computer-aided design algorithms have small OBDD representations. It is 
this pragmatic observation that has lead to the widespread use of OBDDs. 

In summary, as a practical way of representing Boolean functions, OB
DDs meet most of the requirements listed in the beginning of this section. 
For a more thorough treatment of OBDDs, including more efficient rep
resentations and various applications, the reader is referred to the survey 
article [15]. In the remainder of this chapter, we develop algorithms under 
the assumption that all Boolean functions are represented by OBDDs. 

14.2 Symbolic Representations 

Given that we can represent, manipulate, and compare Boolean functions 
efficiently, an attractive way of solving many problems is to represent the 
objects involved as Boolean functions and to phrase the relevant algorithms 
in terms of operations on Boolean functions. In this section we describe 
some of the common encoding techniques that we use in the remainder of 
the chapter. It should be emphasized that the techniques we discuss do not 
rely on the OBDD representation of Boolean functions. Any representation 
will suffice, as long as it supports efficient equality checking, composition, 
and quantification. 

14.2.1 Finite Domains 

A common approach to mapping a problem concerning objects drawn from 
some finite domain into a problem phrased in terms of Boolean functions 
is to encode the domain as a vector of Boolean functions. If the domain V 
has n elements, we can encode its elements as pog2 n l-bit binary numbers. 
Sometimes the encoding is obvious-as is the case of numbers drawn from 
some finite subset of the integers. In other cases, the mapping can be chosen 
arbitrarily. For simplicity, the mapping is usually a one-to-one function, 
i.e., there is a unique binary number associated with every element dE V. 
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Let 71': 'D _ {O, I}n denote such a function, and let 71'i denote the ith bit 
of the encoding. A function F: 'D _ 'D is encoded in the obvious way, 
i.e., as a function I: {O, I}n - {O, I}n such that I = (II, 12, ... ,In) and 
li(7I'(d)) = 71'i(F(d)), for all d E 'D and 1 :::; i :::; n. 

To illustrate the process of encoding a finite domain-and also to intro
duce an important encoding used in the remainder of the chapter--consider 
representing the domain {O, <I>,I}. Since there are three elements, the en
coding must use at least two bits. One possibility is a "dual-rail" encod
ing in which the ternary value a is encoded as pair (a.I, a.O), as shown 
in Table 14.1. Note that pair (0,0) is not used. We use the convention 

TABLE 14.1. Dual-rail encoding of ternary values. 

Ternary value Encoded value 
a (a.I, a.O) 
0 (0,1) 
<I> (1,1) 
1 (1,0) 

that variables like ai, bi, etc., have encoded versions (ai.I, ai.O), (bi.I, bi.O), 
etc., and that ternary functions, like SO, TO, etc., have encoded versions 
(8.10,8.0()), (T.10, T.O()) , etc. In Table 14.2 we show the encoded ver
sions of the ternary extensions of the Boolean functions ID, NOT, AND, OR, 

and lub of two ternary values. One verifies that, if 71'(a) = (a.I, a.O) and 
71'(b) = (b.I, b.O), then a!; b if and only if b.h b.O + a.h b.O + a.O * b.1 = 1. 

TABLE 14.2. Dual-rail versions of ternary operations. 

Ternary operation Encoded version 
f() /.10 /.00 
a a.1 a.O 
-a a.O a.I 
a*b a.I * b.I a.O+ b.O 
a+b a.1 +"b.I a.O * b.O 
Zubia, b} a.I + b.I a.O+ b.O 

14.2.2 Sets 

Given a finite domain 'D and a binary encoding 71' of'D, we have two natural 
ways of representing subsets of 'D: as characteristic functions or as para
metric representations [71]. For our purposes, the former representation 
suffices. The characteristic /unction, Xs, of a set S ~ 'D is a membership 
predicate, i.e., given an element s E 'D, we have Xs(7I'(s)) = 1 if and only if 
s E S. Characteristic functions are useful, because operations on sets have 
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operations on characteristic functions as natural counterparts, as is shown 
in Table 14.3. Recall that 101 and 111 denote the Boolean functions that are 
identically 0 and 1, respectively. 

TABLE 14.3. Set operations on characteristic function representation. 

Set and operations Corresponding function and operation 
0 101 
V 111 

SuT xs + XT 
SnT XS*XT 
S-T -

XS*XT 
Sc.;T "Iz. Xs(z) + XT(Z) 

14-2.3 Relations 

Since relations can be viewed as sets, characteristic functions can also be 
used to represent relations compactly and to perform efficiently such oper
ations as intersection, union, and difference of relations. By using function 
composition and quantification, we can also compute the composition of 
relations efficiently. For example, suppose that P c.; S x T and R c.; T x U 
are two binary relations with characteristic functions XP and XR, respec
tively. Then the characteristic function XPoR of the composition of the two 
relations can be computed as 

XPoR(X, y) = 3z. Xp(x, z) * XR(Z, y). 

Thus, as long as substitution and quantification can be performed effi
ciently, so can the composition of relations. 

Another useful operation is the reflexive and transitive closure of a rela
tion. The algorithm for this computation illustrates a common technique in 
symbolic computations-the use of fixed-point calculations. Here we intro
duce only the basic ideas of fixed-point calculations; for a more complete 
treatment of the underlying theory, the reader is referred to [61]. 

The system (1'(S), c.;), where S is any set, is a partially ordered set. 
Because the least upper bound and the greatest lower bound of any set 
T of elements from 1'( S) are both defined,2 the system is also a complete 
lattice. 

A function f: 1'(S) ~ 1'(S) is said to be continuous if for every nonde
creasing sequence S1 c.; S2 c.; ... , where Si E 1'(S), we have f(Ui?1Si) = 
Ui>d(Si) and f(ni>1Si) = ni>d(Si). For finite sets, every monotonic 
fu~ction is continuous [61]. For a continuous function f: 1'(S) ~ 1'(S) 

2The least upper bound is the union of the sets in T and the greatest lower 
bound is their intersection. 
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1. (a) I has a unique least fixed point £, E P(S), i.e., there exists an 
element £, that satisfies I(£') = £, and, if I(C) = C for some 
C E P(S), then £, ~ C. 

(b) The least fixed point of the function I, written lfp S./(S), is 
defined by Ui~0Ii(0), where Ii is the composition of i copies of 

I· 
2. (a) I has a unique greatest fixed point 9 E P(S), i.e., there exists 

an element 9 that satisfies I(Q) = 9 and, if I(C) = C for some 
C E P(S), then C ~ g. 

(b) The greatest fixed point of the function I, written glp S·/(S), 
is defined by ni~oli(S). 

If S is finite and I is monotonic, the least fixed point can be derived by 
iteratively computing SO = 0, and Si+l = I(Si) for i :2: O. Eventually 
some iteration step yields Si = Si-\ this value is the least fixed point [61]. 
Similarly, starting with SO = S, the sequence of sets Si converges to a fixed 
point, which is the greatest fixed point. 

To illustrate the use of fixed-point calculation, consider any binary rela
tion R ~ V x V, where V is a finite domain. Let I = {(a, a) I a E V} and 
define the function I: P(V x V) ----+ P(V x V) by 

I(S)=IURoS. 

One verifies that I is monotonic. Consequently, I is continuous and has a 
unique least fixed point. We claim that this fixed point is the relation R*. 
To see this, first note that R* is a fixed point of I. Thus we need only show 
that it is the least fixed point. For suppose that R* is not the least fixed 
point. Then there is an element (x, y) E R* such that (x, y) f/. lip S·/(S). 
Note that x =F y, since I = {(a,a) I a E V} ~ lfp S./(S). On the other 
hand, if x =F y, there must exist a finite sequence xO, xl, ... , xk, such that 
xO = x, xk = y, and (Xi,xi+l) E R for 0::::: i < k. It is a routine exercise to 
show, by induction on the length of the sequence, that every pair (x, y) such 
that y is reachable from x by a finite sequence as above is in lfp S./(S). 
Thus, R* = lfp S./(S). 

For the function I above, if the cardinality of V x V is N, then the 
fixed point will be reached in at most N steps. By modifying the iteration 
slightly, a significantly faster convergence can be achieved. The technique 
is usually referred to as iterative squaring [28] and is based on the following 
definition: 

I(S)=IURUSoS. 

Again, it can be shown that R* = lfp S./(S), and that the fixed point is 
now reached in at most flog2 Nl steps. For symbolically encoded sets, this 
reduction in the number of iterations can sometimes significantly speed up 
the fixed-point calculation. 
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The reflexive and transitive closure of a relation can now be computed 
using characteristic functions to perform relation composition and fixed
point calculations. The success of this method relies heavily on the ability 
to perform substitutions, quantifications, and equality checking efficiently. 
We shall return to other fixed-point calculations later in this chapter. 

14.2.4 Behaviors 

Behaviors were formally defined in Chapter 11 as 7-tuples. Since all the 
components of a behavior are finite, we can encode them like any other 
finite domain. For example, consider a behavior A = (X, R, 0, Q, ql, T, 'l/J), 
where X has n components and R has cardinality h. Let k = flog2 h 1, and 
define a mapping 71': Q ---+ {a, 1 }n+k. We can now define the characteristic 
function t: {a, l}n+k x {a, l}n+k ---+ {a, I} for the transition set as follows. 
For every q, '1' E Q, 

t(71'(q) , 71'('1')) = { ~ if (q, '1') E T, 
otherwise. 

(14.1) 

Note that, in general, t is not uniquely defined, since 71' may not be onto the 
set {O,l} n+k. As a result, the user is free to choose any Boolean function 
that satisfies (14.1). If the function is represented as an OBDD, choosing 
a function with a compact representation is important. For an automatic 
procedure that often works quite well in practice, the reader is referred 
to [40]. 

In summary, the symbolic representation of a behavior is also a 7-tuple, 
but the internal state set is encoded as a set of binary vectors and the 
transition set is replaced by a Boolean function serving as the characteristic 
function of the set. More formally, a symbolic behavior is a 7-tuple 

B = (X, R, 0, Q, q1, t, 'l/J), 

where 

• X = (Xl, ... ,Xn ), n ~ 0, as in a behavior; 

• R ~ {O,l}k for some k ~ 0; 

• 0 = (01, ... , Op), P ~ 0, as in a behavior; 

• ql E Q; 

• t: {a, l}n+k X {a, l}n+k ---+ {a, I} is the transition predicate; 

• 'l/J: {a, l}n x {a, l}k ---+ {a, l}p. 
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14.3 Deriving Symbolic Behaviors 

For the symbolic representation of a behavior to be practical, we need some 
way of deriving it directly from a given network, race model, and environ
ment assumptions, without having to compute the conventional behavior 
first. In this section we show how various types of behaviors can be derived 
when the underlying race model is GMW or GSW. In particular, we illus
trate how to derive the unrestricted behavior and how this behavior can be 
restricted to yield, for example, the fundamental-mode behavior. Finally 
we show how a direct behavior can be derived from the fundamental-mode 
behavior. 

To simplify the notation in the remainder of the chapter, we introduce 
some shorthand. First, for any Boolean values a and b, let a=:} b denote 
the expression a + b. Similarly, let a == b denote the expression a E9 b, and 
let a t=. b denote a == b == a E9 b. Thus == denotes the complement of the XOR 

function; this is sometimes called the equivalence function or the exclusive 
NOR function. We extend this notation to vectors in the obvious way, i.e., for 
vectors a, b E {O, l}n, we write a == b and a t=. b instead of I1~=1 (ai == bi) 
and I1~=l(ai==bi)' respectively. Similarly, for a,c E {O,l}n and b,d E 
{O, l}m, we write a·b == c·d and a·b t=. c·d rather than (a == c) * (b == d) and 
(a == c) * (b == d). 

Assume that we are given a binary network N == ({O, I}, X,S, £, F) with 
n input excitations and m state variables. Let A == (X, 'R-, 0, Q, ql, T, 1/J) 
denote the unrestricted behavior of N under the GMW race model. Ac
cording to the definition of unrestricted behavior, we have (a·b, c·d) E T if 
and only if a·b =f:. c·d and b == d or bRad, where Ra is the GMW relation. 
We first derive the characteristic function r for the union over all a of the 
Ra relations as follows: 

r(a·b, c·d) == (a == c) * 
((b t=. S(a·b)) =:} (d t=. b)) * 

(fi ((di == bi) + (di == Si(a.b)))) . 

Using r, we can express the characteristic predicate tu of the unrestricted 
behavior's transition set T as 

tu(a·b, c·d) = (a·b t=. c·d) * ((b == d)+r(a·b, a·d)) , 

where the first product corresponds to the constraint a·b =f:. c·d, and the 
second product asserts that the next internal state value is either the same 
as the current one or is Ra-related with the current one. 

Example 1 

The unrestricted behavior of the network of Figure 14.3 illustrates 
the efficiency of the symbolic representation. Suppose we are using 
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X2--------------~ 

FIGURE 14.3. Network C14.3. 

the gate-state network model with excitation functions 8 1 = 83 + 82, 

8 2 = X2 + 81, and 83 = Xl and output functions 0 1 = 81 and 
O2 = 82. We use the obvious encoding of internal states, i.e., we 
assume that Q = {O,1}5, where the first two values correspond to 
the input excitations, the next two to the outputs 81 and 82 and 
the last one to the (internal) state variable 83. After expanding the 
shorthand notation and performing some simplifications, we can write 
the characteristic predicate tu(a1a2·b1b2b3, C1C2·d1d2d3) as 

tu = ((a1 EI1 ct) + (a2 EI1 C2) + (b1 EI1 dt) + (b2 EI1 d2) + (b3 EI1 d3)) * 
((b1 EI1 d1) + (d1 EI1 (b2 + b3))) * 
((b2 EI1 d2) + (d2 EI1 (a2 + b1))) * 
((b3 EI1 d3) + (d3 EI1 a1)). 

This Boolean expression can be represented by an OBDD with 65 
vertices. This should be compared with the total number, 412, of 
elements in T. 

Example 2 

For larger circuits, the difference between an explicit representation 
and the implicit symbolic OBDD representation of the transition 
set T is even more striking. For example, the symbolic behavior for 
the unrestricted behavior of the gate-state model of the network in 

FIGURE 14.4. Network C14.4. 
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Figure 14.4 requires 645 OBDD vertices representing a set contain
ing 108, 768 elements. Clearly, representing behaviors symbolically as 
OBDDs makes it possible to deal with much larger circuits than those 
that can be handled by the traditional explicit representations. 

From the characteristic function for the unrestricted behavior, we can 
derive other types of behaviors. For example, consider finding the unre
stricted single-winner (USW) behavior. The additional constraint is that 
at most one internal state variable can change in each transition. We can 
derive the USW behavior by intersecting the transition set of the unre
stricted behavior with the set of transitions in which at most one internal 
state changes. Since the transition set is represented by its characteristic 
function, intersection corresponds to Boolean product. Thus we get 

tusw(a·b,c·d) = tu(a·b,c·d) * (t IT (bj == dj ) ) . 

,=1 j=1 

jf.i 

Performing this operation on the OBDD-based transition predicates for 
Examples 1 and 2 above is straightforward; the resulting OBDDs have 66 
and 462 vertices, respectively. In a similar way, one can derive the required 
operations to compute other types of behaviors, for example, those that 
only allow single input changes, no mixed transitions, etc. 

There are two possible avenues for finding the fundamental-mode be
havior of a network. The most straightforward approach is to derive that 
behavior directly from the network, without first deriving the unrestricted 
behavior. This can be accomplished by adding the constraint that, if a·b is 
not stable, then the input is not allowed to change. Thus 

tFM (a·b, c·d) = (a·b f; c·d) * 
((b == d)+r(a·b,c·d)) * ((a == c)+(b == S(a·b))), 

where the first part ensures freedom from self-loops, the second part ensures 
that state variables either keep their values or change according to the Ra 
relation, and the final part ensures that either the inputs do not change or 
the state a·b is stable. 

The second approach to computing the fundamental-mode behavior fol
lows from the observation that a state of a network is stable if and only if it 
is a static state in the unrestricted behavior, i.e., has no internal-state tran
sitions. Given this observation, we can compute the characteristic function 
for the fundamental-mode transition set as 

tFM(a·b, c·d) = tu(a·b, c·d) * ((a == c)+3f. tu(a·b, a.!)) . 

Note that this computation requires existential quantification over a set of 
Boolean variables. This is a straightforward operation with OBDDs, but 
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whether this added complexity is worthwhile depends on whether the un
restricted environment is also needed. If the goal is to compute only the 
fundamental-mode behavior, the first approach is simpler and computa
tionally more efficient. 

For some applications, the fundamental-mode behavior is unnecessarily 
detailed, and the direct behavior may be preferable. To find this behavior, 
we introduce a set of Boolean functions that allow us to write the final 
computation succinctly. Let r* denote the characteristic function for the 
reflexive and transitive closure of the relation r defined earlier. Note that 
r* (a·b, c·d) = 1 implies that a = c. Given r, we can compute this function 
using the fixed-point algorithm discussed in Section 14.2.3. Also, let r+ 
denote the transitive closure of r. From r* and r, we can find r+ as follows: 

r+(a·b, c·d) = ((b ¢ d) * r*(a·b, c·d))+r(a·b, c·d). 

Next, define the Boolean predicate nontransi(a·b) as 

nontransi(a·b) (bi == Si(a·b))+ 

3d. [(r*(a·b, a·d) * r*(a·d, a·b)) 

'* ((di ¢ bi)+(Si(a·d) ¢ Si(a·b)))J. 

This predicate can be interpreted informally as follows. State variable Si 

is "nontransient" in total state a·b (formally, nontransi(a·b) = 1) if either 
that variable is stable in state a·b, or, if there exists a cycle, say Ci, of the 
Ra relation containing b, and d is any state Ci , then either di is different 
from bi or the excitation Si(a·d) is different from Si(a·b). Now, if every 
variable is nontransient in state a·b, consider the cycle C constructed by 
following the cycles C~, then C~, ... , then C:", of the individual variables, 
where c: is the empty cycle if variable Si is stable in state a·b, and C: = Ci 

if there is a cycle Ci of nonzero length involving Si, as above. Clearly, 
the cycle C so constructed is a nontransient cycle. Hence, a·b appears in 
a nontransient cycle, if and only if each of the state variables satisfies 
the predicate nontransi(a·b). Let nontrans(a·b) = n::l nontransi(a·b). The 
outcome relation is now defined as 

out(a·b, c·d) = 3(e·!). r*(a·b, e·!) * nontrans(e·!) * r*(e-j, c·d). 

Here, state c·d is out-related to state a·b if and only if a = c and internal 
state d is in out( Ra (b)). Finally, define the Boolean predicates stable and 
fresh as 

stable(a·b) = (b == S(a·b)), 

and 

fresh( a·b) = 3c. stable( c·b). 

We are now ready to define a "stabilizing" predicate, i.e., the characteristic 
function of the set of states that only have stable states in their outcomes 

stabilizing( a·b) = 'v'd. [out( a·b, a·d) '* stable( a·d) J. 
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To define an Orhazard-free predicate, we define two relations: The first 
one (unchj ) relates states band d if output OJ has the same value in every 
state in every path from b to d. The second relation (diff) relates band d 
if d can be reached from b by an Ra relation and output OJ is different in 
the two states. Formally, let 

and 

unchj (a·b, c·d) = r* (a.b, c.d) * 
Ve. [(r*(a·b, a·e) * r*(a·e, a·d)) 

=> ('ljJj(a·b) == 'ljJj(a·e))], 

di~ (a·b, c·d) = r* (a·b, c·d) * ('ljJj (a·b) :t 'ljJj (c·d)) , 

hazfreej(a·b) = Vd. r*(a·b, a·d) => (unchj(a·b, a·d)+diffj(a·b, a·d)), 

p 

hazardJree(a·b) = II hazfreej(a.b), 
j=l 

valid(a·b) = stabilizing(a·b) * hazardfree(a·b). 

We now define the transition predicate, tDIR(a·b, c·d), for the direct behavior 
as 

tDIR(a·b, c·d) = (a·b:t c·d) * 
[(b == d) * stable(a·b) * valid(c·d) 

+ 
(a == c) * fresh( a·b) * valid( a·b) * out( a·b, c·d) 1 . 

Intuitively, total states a·b and c·d are related in the direct behavior of a 
network if and only if either b = d, a·b is stable, and c·d is stabilizing and 
output hazard-free, or a = c, a·b is a fresh state that is stabilizing and 
output hazard-free and d E out(Ra(b)). 

14.4 Symbolic Race Analysis 

In the previous section we showed how to derive symbolic representations 
of various behaviors directly from a network. A network's serial behavior 
can be found from its direct behavior using techniques similar to the ones 
used for direct behaviors. However, it is more efficient to compute the serial 
behavior directly, using a symbolic version of the race analysis algorithms 
given in Chapters 7 and 8. In this section we first describe how the sym
bolic serial behavior can be derived for an input-, gate-, and wire-state 
network using symbolic ternary simulation. We then show how the serial 
behavior can be computed when the network is represented by the ternary 
bi-bounded delay model. We accomplish this by devising a symbolic version 
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of the TBD algorithm. As a side effect, we also show how this algorithm can 
be used to determine the minimum and maximum delays of a combinational 
network, finally giving an algorithm for solving the problem discussed in 
Section 1.2. 

All the race analysis algorithms that we discuss in this section are based 
on ternary networks. Let N = ({O,l},X,S,£,F) be a binary network, 
and N = ({O,<I>,l},X,S,£,F) be its ternary extension. Using the dual
rail encoding of Section 14.2.1, we find encoded versions of the excitation 
functions; let Sj.1 and Sj.O denote the high and low rails corresponding to 
ternary excitation function S j. 

We derive the serial behavior of a network by first finding its complete
word behavior taw. The serial behavior can then be computed as follows: 

[(b == d) * 3d'. taw(a·b, c·d')]+ 

[(a == c) * 3a'. taw(a'·b, c·d)]. 

14.4.1 Symbolic Ternary Simulation 

If S = (S1, .•• , sn) is a binary vector, let s denote its bit-by-bit complement, 
i.e., s = (81, ... , sn). Also, the vector (SI.1, ... , sn.1) is denoted by s.l, and 
(SI.0, ... ,sn.O) by s.O. 

Reformulating Algorithms A and B to the symbolic (dual-rail-encoded) 
domain is straightforward; we replace all ternary operations by the encoded 
versions, as given in Table 14.2. More precisely, let c·b be any binary total 
state of the network N. The symbolic version of Algorithm A is given by 

Algorithm A 
h :=0; 
s.l:= b; 
s.O:= Ii; 
repeat 

h:= h + 1; 
sh.1 := sh-l.1+S.1(c.(sh-l.1, sh-l.0)); 
sh.O:= sh-l.0+S.0(c.(sh-l.1,sh-l.0)); 

until (sh.1 = sh-l.1) and (sh.O = sh-l.0); 

and the symbolic version of Algorithm B is defined by 

Algorithm B 
h :=0; 
to.1 := sA.1; 
to.O := sA .0; 
repeat 

h:= h + 1; 
th.1:= S.1(C·(th- l .1,th- 1 .0)); 
th.O:= S.0(c.(th- 1 .1,th- 1 .0)); 

until (th.1 = t h- l .1) and (th.O = th-l.0); 



290 Chapter 14. Symbolic Analysis 

where (SA .1, sA .0) is the dual-rail-encoded version of the fixed point reached 
in Algorithm A. Note that only product, sum, complement, and equality 
checking between Boolean functions are needed to carry out this symbolic 
ternary simulation algorithm. If we represent the Boolean functions by 
OBDDs, all these operations can be performed efficiently. Hence, we can 
compute the vectors tB.1 and tB.O of Boolean functions representing the 
final result t B of ternary simulation when the initial state of the network 
is c·b. 

The complete-word behavior of an input-, gate-, and wire-state network 
analyzed according to the GMW model can now be derived as follows: 

tcw(a·b,c·d) = (a ¢ c) * (b == S(a·b)) * (d == S(c·d)) * 
(tB.1 == d) * (tB.O == (1), 

where (tB .1, tB .0) is the dual-rail-encoded result of symbolic ternary sim
ulation, given c·b as initial state. In other words, two total states are 
complete-word related if they differ in the input vector, they are both 
stable, and the second state is the result of (symbolic) ternary simulation 
applied to state c·b. The serial behavior of a network can be computed from 
the complete-word behavior as described earlier. 

14.4.2 Symbolic Bounded-Delay Analysis 

The reformulation of standard ternary simulation into a symbolic algorithm 
required only that ternary operations be replaced by pairs of binary oper
ations. Creating symbolic versions of other race analysis algorithms can be 
more difficult. The main problem is the dependence of the algorithms on 
data. For example, the TBD algorithm of Section 8.5 contains tests whether 
a variable is currently <I> or binary, etc. Consequently, it is not possible to 
use this algorithm directly in a symbolic environment. In this subsection we 
first restate the TBD algorithm in a format that makes it more amenable to 
symbolic analysis. We then show how the new formulation can be converted 
to symbolic notation. We assume here that there is an input delay for each 
input-excitation variable in the network. The reason for this assumption 
will become clear when we describe the transformation technique used to 
make the TBD algorithm amenable to symbolic manipulation. 

Example 3 

To illustrate the motivation behind the revised TBD (rTBD) algo
rithm, consider the circuit shown in Figure 14.5 with delay bounds as 
illustrated. If this circuit is started in total (stable) state 100·1000000, 
and the input excitations change to 011, we obtain a TBD analysis 
as shown in Figure 14.6. In Figure 14.6 we have also named each 
state reached in the algorithm by zi, for consecutive i's. We make the 
following observations: First, an unstable input vertex j with delay 
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FIGURE 14.5. Circuit to illustrate rTBD algorithm. 

ZO: ZO = (10 01 01 ° ° ° ° ,(1,1,1,0,0,0,0), (1, 1, 1, 0, 0, 0, 0)) 
Zl: zl=(10 0l 01 0 ° 00,(1,1,1,0,0,0,0),(1,1,1,0,0,0,0)) 
Z2: Zl = (<POOl 01 OopO ° ° ,(0,2,2,1,0,0,0), (2,2,2,0,0,0,0)) 
Z3: z2 = (0 01 01 01 ° ° ° ,(0,2,2,1,0,0,0), (0,2,2,0,0,0,0)) 
z4: z2 = (0 <PlOl <PlOopO.pO ,(0,0,3,0,1,1,0),(0,3,3,1,0,0,0)) 
Z5: z3 = (0 <PlOl <PI0opO.p0 ,(0,0,3,0,1,1,0),(0,3,3,1,0,0,0)) 
Z6: Z3 = (0 <PI <PI <PI0opOopO ,(0,0,0,0,2,2,0), (0,4,4,2,0,0,0)) 
z7: z4 = (0 1 1 <PlOlOopO ,(0,0,0,0,2,2,0), (0,0,0,2,0,0,0)) 
Z8: z4 = (0 1 1 <PI <PI <P Oop, (0,0,0,0,0,0,1), (0,0,0,3,1,0,0)) 
Z9: z5 = (0 1 1 1 <Pl<P 0.p,(0,0,0,0,0,0,1),(0,0,0,0,1,0,0)) 
ZlO: z5 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,2,0,0)) 
Zl1: z6 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,2,0,0)) 
Z12: z6 = (0 1 1 1 <Pl<P <P ,(0,0,0,0,0,0,0),(0,0,0,0,3,0,0)) 
Z13: z7 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,3,0,0)) 
Z14: z7 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0, 0, 0, 0, 4, 0, 0)) 
Z15: z8 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,4,0,0)) 
Z16: Z8 = (0 1 1 1 <PI <P <P ,(0,0,0,0,0,0,0), (0,0,0,0,5,0,0)) 
Z17: z9 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,0,0)) 
Z18: z9 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0, 0, 0, 0, 0,1,0)) 
Z19 : z10 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,1,0)) 
Z20: ZlO = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0),(0,0,0,0,0,2,0)) 
Z21 : Zl1 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,2,0)) 
Z22 : Zl1 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,3,0)) 
z23 : z12 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,3,0)) 
Z24 : z12 = (0 1 1 1 1 <P0<P ,(0,0,0,0,0,0,0), (0,0,0,0,0,4,0)) 
Z25: z13 = (0 1 1 1 1 ° <p0,(0,0,0,0,0,0,0),(0,0,0,0,0,0,0)) 
Z26: Z13 = (0 1 1 1 1 ° <p0,(0,0,0,0,0,0,0),(0,0,0,0,0,0,1)) 
Z27 : z14 = (0 1 1 1 1 ° <Po, (0,0,0,0,0,0,0), (0,0,0,0,0,0,1)) 
Z28 : z14 = (0 1 1 1 1 ° <Po, (0, 0, 0, 0, 0, 0, 0), (0,0,0,0,0,0,2)) 
Z29: z15 = (0 1 1 1 1 ° ° ,(0,0,0,0,0,0,0),(0,0,0,0,0,0,0)) 
z30: z15 = (0 1 1 1 1 ° ° ,(0,0,0,0,0,0,0),(0,0,0,0,0,0,0)) 

FIGURE 14.6. Example of TBD analysis. 
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bound [dj , D j) changes to ~ in state z2dj and to its (binary) excita
tion in state z2Dj-l. A state vertex j with delay bound [dj , Dj ) that 
becomes unstable in state Z2k, for some k, and stays unstable until at 
least state Z2k+2dj -l, changes to ~ in state Z2k+2d j • Also, if a state 
vertex j is unstable and gets a binary excitation in state Z2k-l, for 
some k > 0, and the excitation remains at this value for the next 
2Dj - 1 states, then the vertex changes to this excitation in state 
Z2k-1+2D j • Given the behavior of the input vertices, it is easy to see 
that vertices only change to ~ in even states and to binary values 
in odd states. Thus, one can view the input vertices as creating a 
"change-to-~ wave" and a "change-to-binary wave." The first wave 
propagates on even time steps; the second on odd time steps. Note 
that the "speed" of the ~-wave is strictly greater than the speed of 
the binary wave. 

The example above provides an intuitive motivation for the revised TBD 
algorithm, called the rTBD algorithm for short. The rTBD algorithm also 
uses two vectors of counters, in addition to the current state of the network, 
to keep track of how long a vertex has been unstable and how long it has 
had a binary excitation. However, the algorithm uses the odd/even changes 
instead of computing intermediate states, as was done in the original TBD 
algorithm. More formally, the rTBD algorithm is defined inductively as 
follows: 

. ·0· ° . ° Baszs: (z , U , V ) = (b, (0, ... ,0), (0, ... ,0)) 

Induction Step: Given (Zh, Uh, Vh), state (zh+!, Uh+! , Vh+!) 
is computed as follows: 

U,!-+! = Uj + 1 { 
• h 

J 0 

V:~+! = Vj + 1 { 
. h 

J 0 

if Sj E U(a, zh) n B(zh), 
otherwise; 

if Sj E U(a, zh) n Be(a, zh), 
otherwise; 

if 1~j~n and 
if n<j~n+m 
l·f . h+! Uj = 2dj , 

otherwise. 

. h+l Vj = 2Dj -1, 
. h+! 

andVj = 2Dj , 

The following theorem shows that this algorithm produces the same results 
as the TBD algorithm of Chapter 8. 

Theorem 14.1 Suppose that ((zO, UO, VO), (ZI, U\ VI), (zI, UI, VI), ... ) 
0·0·01·1·12·2·2 and ((z , U , V ), (z , U , V ), (z , U , V ), ... ) are the sequences of states 

computed by the TBD and the rTBD algorithms, respectively. Then Z2i-1 = 
Zi for i = 1,2, ... , and Z2i = Zi for i = 0,1, .... 



Section 14.4. Symbolic Race Analysis 293 

Proof: The proof of this result is rather technical and too lengthy to be 
included here. We refer the reader to [125]. 0 

Consider now the rTBD algorithm when the ternary values and excita
tion functions are represented in the dual-rail encoding of Table 14.1. In 
[122] it was shown that a vertex can change only from a binary value to 
<P or from <P to a binary value in the TBD algorithm. Furthermore, except 
for the input vertices, the excitation of a vertex can only change from a 
binary value to <P or from <P to a binary value. In view of Theorem 14.1, 
the same statements hold for the rTBD algorithm. The signal transitions 
possible in the rTBD algorithm are shown in Table 14.4, together with the 
corresponding encoded transitions. 

TABLE 14.4. Possible signal transitions in the rTBD algorithm. 

Ternary values Encoded values 
O-+<P (0,1) -+ (1,1) 
1-+<p (1,0) -+ (1,1) 
<P-+O (1,1) -+ (0,1) 
<p-+1 (1,1) -+ (1,0) 

Note that changing from a binary value to <P requires changing one of the 
rails from 0 to 1, and changing from <P to a binary value requires changing 
one of the rails from 1 to O. This observation can be used to derive a "dual
rail version" of the rTBD algorithm. In Figure 14.7 we show graphically 

~ 0-+1 2dj ~ 1-+0 2Dj -1 

~ 
0-+1 2dj ~ 1-+0 2Dj -1 

(a) 

B- = 
~ 0-+1 2dj ~ • . ....... :!.: ........ 

1-+0 2Dj 

~ 
0-+1 2dj ~ 1-+0 2Dj . Sj.O 

(b) 

FIGURE 14.7. Dual-rail rTBD algorithm: (a) input vertex; (b) state vertex. 



294 Chapter 14. Symbolic Analysis 

how such a transformation can be performed. Each vertex in the TBD 
algorithm is split into two vertices, each with a "delay box" showing the 
delays associated with changing the vertex variable from 0 to 1 and from 
1 to O. Note that the input vertices are treated somewhat differently from 
the state vertices. 

The restatement of the rTBD algorithm transforms the original TBD 
algorithm into two simpler binary-delay modeling problems. However, it 
does not solve the data dependence problem-the delay boxes must still 
test for specific values. What is needed is some way of modifying the delay 
boxes of Figure 14.7 so that they need not test explicitly for O's or l's. To 
introduce the technique of symbolic TBD analysis, we derive a delay box for 
the case where the 0 -+ 1 transition should take two steps, and the 1 -+ 0 
transition should take six steps. To aid the reader's intuition, we develop 
the ideas in terms of a "circuit" that is analyzed using a unit-delay race 
algorithm. The basic construction can be easily generalized and formalized. 

FIGURE 14.8. First attempt to design a delay circuit. 

In Figure 14.8 we show two small "delay circuits" that almost achieve 
the desired data independence. Since the high-rail and the low-rail delay 
circuits are identical, we discuss only one of them. The delay circuit consists 
of a series of unit-delay elements, an AND gate, and an OR gate. Note that 
we assume that the evaluations of the excitation function and the AND 
and OR gates are instantaneous (Le., have zero delay). Thus, we are really 
performing a "unit/zero-delay analysis." Assume that the delay circuit is 
started in a stable state, Le., all element and gate outputs are 0 (1). If 
the excitation function changes to 1 (0), the output will change to its new 
value after 2 (6) unit delays. In other words, if changes of the excitation 
occur so seldom that the delay circuits are always stable when the change 
occurs, the delay circuit delays a 0 -+ 1 transition two steps, and a 1 -+ 0 
transition six steps-exactly as required. 
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The delay circuit of Figure 14.8 works correctly as long as changes of the 
excitation do not occur too often. However, in a real circuit this cannot 
always be guaranteed. Consider for example what would happen if the 
excitation had been 0 for a long time and then changed to 1 at time t 
and back to 0 again at time t + 1. This "glitch" propagates unchanged 
through the delay circuit and appears on the output of the delay circuit at 
time t + 3. On the other hand, in the rTBD algorithm, such a pulse would 
be suppressed. What is needed is a delay circuit that can exhibit inertia, 
i.e., that ignores such short pulses. Since pulses in the rTBD algorithm 
are always of integer length, it is sufficient to find a circuit that can filter 
out glitches of integer length. In Figure 14.9 we show such a delay circuit. 
Again, it is a chain of unit delays and some delay-free AND gates and 
OR gates. For the output of this delay circuit to change from 0 to 1, the 
excitation must be 1 for at least two consecutive steps. Similarly, for the 
output to change from 1 to 0, the excitation function must be 0 for at least 
six consecutive steps. Hence, the delay circuit of Figure 14.9 exhibits the 
desired inertia. Furthermore, it does not contain any data-dependent tests, 
and requires only standard unit-izero-delay simulation. 

FIGURE 14.9. Final version of delay circuit. 

In summary, by reformulating the TBD algorithm and using the dual
rail encoding of Table 14.1 for ternary values, we have shown how a ternary 
network can be transformed into a binary network in such a way that the 
unit-delay analysis of the transformed network corresponds exactly to the 
TBD analysis of the original network. The same transformation technique 
can be used for other delay models. First of all, it is straightforward to 
design a delay circuit that delays a 0 ---+ 1 transition e time units and a 
1 ---+ 0 transition E time units (where e is not necessarily less than E), 
and exhibits inertia. Now assume the high rail has a 0 ---+ 1 delay equal to 
r (for minimum rise delay) and a 1 ---+ 0 delay equal to F (for maximum 
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fall delay), and the low rail has a 0 -+ 1 delay equal to f (for minimum 
fall delay) and a 1 -+ 0 delay equal to R (for maximum rise delay). Note 
that we must have r :S Rand f :S F for proper operation. Otherwise the 
output of the vertex could possibly get the value 0 on both the low and 
the high rails-an illegal situation. In Table 14.5 we show the different race 
models we obtain by using different values of the delay bounds. Note that 
the nominal delay (ND) model can be simplified by using only half as many 
unit-delay elements. However, by using the numbers shown, it is possible 
to have nominal delays on certain vertices and bounded delays on others. 

TABLE 14.5. Race models obtained for different delay circuits. 

Input vertices State vertices Corresponding race model 
r = f = 2dj r = f = 2dj TBD analysis with delays 
R = F = 2Dj -1 R=F = 2Dj d·T < ~ ·(t) < D·T J - J J 

r = R = 2rj r = R = 2rj ND analysis with rise delays 
f = F = 21; f = F = 2fj r j T and fall delays I; T 
r = 2rj r = 2rj TBD analysis with rise delays 
R = 2Rj -1 R=2Rj rjT::; Llj(t) < RjT 
f = 21; f = 2fj and fall delays 
F = 2Fj -1 F=2Fj fjT :S ~{(t) < FjT 

With the ability to perform bi-bounded-delay and nominal-delay race 
analysis symbolically, it is easy to derive the serial behavior of a network. 
There is one difficulty remaining. In the nominal-delay and TBD algo
rithms, the only guarantee we can give, in general, on the maximum length 
of any cycle in the outcome is that it contains fewer than 2m D (3m D) 
states, where D is the maximum delay associated with any vertex. This 
implies that the symbolic versions of these algorithms may have to be car
ried out for exponentially many steps in order to compute the outcome 
of a transition. A pragmatic solution is to impose an upper limit on the 
number of steps the circuit is allowed to take to reach a stable state. Hence, 
we can compute a vector of Boolean functions representing the final result 
of symbolic TBD (or ND) simulation when the initial state of the network 
is G,·b and the input is changed to a. Consequently, the computation of the 
complete-word behavior of a network can be performed as follows: 

tow( a·b, c·d) (a", c) * (b == S(a·b)) * (d == S(c·d)) * 
(r.1 == d) * (r.O == d), 

where (r.1,r.O) represents the final result of symbolic TBD (or ND) simula
tion, depending on the delay/race model used. Intuitively, two total states 
are complete-word-related if they are both stable, they differ in their inputs, 
and the second state is the result obtained by a (symbolic) race analysis 
algorithm. From the symbolic complete-word behavior we can derive the 
serial behavior as discussed earlier. 
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We have demonstrated how nominal-delay and bi-bounded-delay race 
analysis can be performed by carrying out a unit-delay analysis of a trans
formed network. The transformation of the original network consisted of 
two steps. First a binary dual-rail-encoded network was obtained from the 
ternary network. Next, each input- and next-state vertex in the dual-rail 
network was replaced by a delay circuit that was determined by the race 
model and the delay associated with the vertex. By using this transforma
tional technique, we were able to carry out these race analysis algorithms 
symbolically. One important side effect of this is that we can use symbolic
unit-delay analysis to compute the minimum and maximum delays a net
work may exhibit for any input change. In particular, this is a powerful 
technique for determining the minimum and maximum propagation delays 
in a combinational network. We begin by applying the (fully symbolic) in
put vector a. We then simulate the (transformed) network until it reaches 
a stable state. Since the network is combinational, the circuit is guaranteed 
to reach such a state. At this point, we apply a completely new set of (sym
bolic) input values and start simulating. For each step of the (unit-delay) 
simulation, we also compute the XOR of the old and new values of the out
put functions. Given the results above, one verifies that the first time this 
Boolean function differs from 101 determines the minimum delay for any 
input change, and the last time the function differs from 101 determines 
the maximum delay for any input change. In essence, by running two sym
bolic unit-delay simulations, we obtain the same amount of information as 
we would get had we simulated the original network using a nominal or 
bi-bounded race analysis algorithm for every possible input change. More
over, symbolic simulation can often be done in a tiny fraction of the time 
that such an exhaustive simulation would require. 

14.5 Symbolic Verification of Realization 

In the previous sections we have shown how to represent specification be
haviors in symbolic form, and we have derived symbolic representations 
of several implementation behaviors from a given network, environmental 
assumptions, and race model. We now consider algorithms for determin
ing whether a (symbolic) specification behavior is realized by a (symbolic) 
implementation behavior. 

In Chapter 11 five conditions were given for an implementation behav
ior B' to realize a specification behavior A. Here we assume that the first 
condition has been satisfied, i.e., that the initial mapping and removal of 
unused inputs and outputs have been done. The reason for this is our purely 
pragmatic aim to simplify the notation. Thus, following Section 11.3, we 
assume that the input excitation and output vectors of B' are identical 
to those of A, and we focus on the remaining four conditions. Unfortu
nately, these conditions include both language containment properties and 
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structural properties of the behaviors' graphs; thus, a direct adaptation 
to a symbolic domain presents some problems. In particular, the language 
containment conditions are difficult to translate into efficient symbolic algo
rithms, especially when the implementation behavior is nondeterministic. 
Consequently, we first develop a new set of conditions that are amenable 
to symbolic analysis and that imply the original conditions. Unfortunately, 
our decision procedure is not perfect: there are cases where an implemen
tation realizes a specification, but our decision procedure fails to discover 
this. 

Let A = (X, R, 0, Q, ql, T, '¢) be a deterministic (and hence proper) 
specification behavior, and let B' = (X,R',O,Q',qi,T',,¢') denote an 
input-proper implementation behavior.3 

Recall that an empty-word path (or c-path) in B' is a sequence s~, s~, ... , 
s~ of states such that (s~, s~+l) E T' for 0 :S i < k, and l'(sD = l'(s~), for 
0< i :S k. In other words, such a path "spells" the empty word c. For any 
states s', t' E Q', define the predicate c-path( s', t') to hold if and only if 
there is an c-path from s' to t'. Let T~. denote the transition set obtained 
by adding transitions that "bypass" empty-word transitions in T', i.e., let 

T~. = T' U {(q', r') I :ls'. c-path(q', s') and (s', r') E T' }. 

Finally, let T:_ free denote the set obtained from T~. by removing all empty
word transitions, i.e., let 

T:_ free = {(q',r') Il'(q') =I- l'(r') and (q',r') E T:.}. 

The c-free behavior B;_free of an implementation behavior B' is identical 
to B' except the transition set T' is replaced by T:_free • The following 
proposition follows from the construction of T:_free . 

Proposition 14.1 L(B') = L(B;_freJ. 

The c-free behavior B;_free is more convenient than B' for language prop
erties, but does not preserve the deadlock and livelock characteristics of 
B'. Consequently, we need to keep track of these characteristics separately. 
We do this by defining a set, called trap', that contains all the states in 
B' that can reach, through a sequence of empty-word transitions, either 
an empty-word cycle or a terminal state. Intuitively, a trap state is a state 
from which the implementation might never produce an output, unless an 
input change is applied. Formally, let trap' be defined as 

{q' I :lr'. (q', r') E T~., l' (q') = l' (r'), and (r', r') E T:. or r' E term'}, 

3Determining that a symbolic behavior is (input- )proper can be done using 
techniques similar to those of this section. However, the algorithms that we nor
mally use to derive the symbolic behaviors from networks guarantee that the 
behaviors already have the desired property. 



Section 14.5. Symbolic Verification of Realization 299 

where term' is the set of terminal states of B'. One verifies that the terminal 
states of B' are the same as those of B;_f,ee' In view of the fact that B;_f,ee has 
no empty-word transitions, the set term' can be found more conveniently 
from T:_f,ee as follows: 

term' = {q' I 'rip'. (q',p') E T:_f,ee implies X(q') -=I- X(p')}. 

The basic idea behind the decision procedure that tests for realization 
is to find a binary relation between the states in the specification behavior 
and the states in the implementation behavior. Informally, this relation 
identifies "equivalent" states in the sense that words that are relevant to 
the specification take the two behaviors to related states, and related states 
have similar livelock and deadlock behaviors. More formally, we say that 
binary relation M ~ Q x Q' is a state-realization relation if and only if 

1. qlMq~. 
(Initial states correspond.) 

2. If qMq', then l(q) = l'(q'). 
(Corresponding states have the same labels.) 

3. If (q, r) E T and qM q', then there exists r' E Q' such that (q', r') E 

T:_f,ee and r M r'. 
(For each transition in the specification there is a corresponding tran
sition in the implementation.) 

4. Suppose that (q',r') E T:_f,ee' qMq', and either (a) X(q') -=I- X(r'), 
and there exists a state r E Q such that (q, r) E T and X(r) = X(r'), 
or (b) X(q') = X(r'). Then there exists r E Q, such that (q,r) E T 
and rMr'. 
(For each transition of the implementation that is relevant to the 
specification there is a corresponding transition in the specification.) 

5. If q' E trap', and qM q', then q must be a terminal state. 
(Implementation states that might never produce any outputs can 
only be related to specification states that are terminal.) 

Lemma 14.1 Assume that M is a state-realization relation between A and 
B' and that wE L(A) nL(B;_f,eJ. If q E Q is the state reachable by w from 
ql in A and q' E Q' is any state reachable by w from q~ in B;_f,ee' then 
qMq'. 

Proof: We prove the claim by induction on the length of the word w. The 
basis, Iwl = 0, follows trivially from Property 1 of the state-realization rela
tion, since, by construction of B;_f,ee' the only state reachable from q~ by the 
empty word is q~. Assume now that the claim holds for all words of length 
less than n for some n ~ 1. Consider a word w = U(J E L(A) n L(B;_f,eJ 
such that Iwl = n. Since w E L(A), it follows that there must exist a 
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state sequence ql, ... , qn+ 1 E Q that spells w. Note that the sequence 
ql, ... ,qn spells u. Now consider any state q~+1 reachable by w in B~_free. 
Since w = UO", there exists a state q~ reachable by u in B:_free such that 
(q~, q~+1) E T:_free and r(q~, q~+1) = 0". By the induction hypothesis, 
qnMq~; by Property 2 of the state-realization relation, l(qn) = l'(q~). Since 
(qn,qn+1) E T and r(qn,qn+1) = 0", it follows that l(qn+d = l'(q~+1). By 
Property 4 of the state-realization relation, there must exist a state r E Q 
such that (qn, r) E T and r M q~+1. Because A is deterministic, r must be 
qn+1. Altogether, we have shown that qn+1 M q~+1. Thus the induction goes 
through and the claim follows. 0 

Lemma 14.2 If M is a state-realization relation between A and B', then 
B' realizes A. 

Proof: Assume that M is a state-realization relation between A and B'. 
We need to verify that 

i. L(B' /A) s:;; L(A) (safety). 

ii. L(A) s:;; L(B' /A) (capability). 

iii. If w E L(B') n L(A) leads to a terminal state in B', then it also leads 
to a terminal state in A (deadlock-freedom). 

iv. If w E L(B') n L(A), leads to a state in B' that has a cycle spelling c 
around it, then w leads to a terminal state in A (livelock-freedom). 

By Proposition 14.1 we know that L(B') = L(B:_freJ. From the definition 
of relevant words we have L(B' / A) = L(B~_free/ A). Hence, for the language 
containment properties (i) and (ii), we can substitute B:_free for B'. 

We prove (i) by showing, by induction on the length of w, that w E 
L(B~_fre./A) implies w E L(A). If Iwl = 0, i.e., w = c, then w E L(A), 
because the empty word is accepted by every specification behavior. Now 
assume inductively that, for some n 2: 0, we have u E L(B:_fre./A) and 
lui ~ n implies that u E L(A). Consider any word w = UO" E L(B:_free/A) 
such that lui = nand 0" E E. Since w E L(B:_free/A), we can find states 
q' and r' E Q' such that q' is reachable from q~ by u, (q', r') E T:_free , 
and r(q',r') = 0". We now claim that there are corresponding states q 
and r E Q such that q is reachable from the initial state ql by the word 
u, (q,r) E T, and r(q,r) = 0". By the induction hypothesis, it follows 
that u E L(A); let q E Q be the state reachable from ql by u. Because 
u E L(A) n L(B:_free/A) = L(A) n L(B:_free ), it follows by Lemma 14.1 that 
qM q'. Since w is relevant to A, either 0" n X = 0 or 0" is applicable in A after 
u. In either case, Property 4 of the state-realization relation guarantees that 
there is a state r E Q such that (q, r) E T and r M r'. By Property 2 it 
follows that l(r) = l(r') and r(q,r) = r(q',r') = 0". Altogether, we have 
shown that w E L(A); thus the induction step goes through and the claim 
follows. 
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Claim (ii) follows by an inductive argument on the length of a word w in 
L( A) and by Properties 1, 2, and 3 of the state-realization relation. Finally, 
(iii) and (iv) follow from Property 5 of the state-realization relation and 
from the definition of trap'. 0 

We now turn our attention to determining whether a state-realization 
relation exists. Our approach is to compute the most general relation satis
fying Properties 2-5, and then determine whether this relation also satisfies 
Property 1. This most general relation is found by a fixed-point calculation. 
Intuitively, we compute a sequence of approximations to the relation, refin
ing each approximation until we reach the most general relation satisfying 
Properties 2-5. 

Formally, suppose we are given a deterministic specification behavior 
A = (X, R, 0, Q, ql, T, 'IjJ) and an input-proper implementation behavior 
B' = (X,R',O,Q',q~,T','IjJ'). We start with the set Mo = Q X Q'. This 
includes all possible pairs of states that are candidates to be related by 
a state-realization relation. To ensure that corresponding states have the 
same label, we define the set 

label = ((q,q') I q E Q,q' E Q', and l(q) = l'(q')}. 

To enforce Property 5 of a state-realization relation we define 

live = {(q,q') I q E Q,q' E Q', and q' E trap' implies q E term}. 

The next two definitions deal with the language properties of capability 
and safety. For any set M ~ Q X Q', let 

and 

cap(M) = {(q,q') I q E Q,q' E Q', and'tlr E Q. [(q,r) E T implies 
3r' E Q'. [(q',r') E T:.free and (r,r') EM]]} 

safe(M) = {(q,q') I q E Q,q' E Q', and 'tIr' E Q'. 
[( q' , r') E T:.free and (q, q' , r') E appl implies 
3r E Q. [(q,r) E T and (r,r') EM]]}, 

where appl is the set 

{(q, q', r') I X(q') = X(r') or 3f E Q.[ (q, f) E T and X(r) = X(r')]}. 

Now define 

f(M) = labeln cap(M) n safe(M) n live. 

Note that the sets in the expression above correspond directly to Properties 
2-5 of the state-realization relation. Consequently, the following proposition 
holds: 

Proposition 14.2 If M is a solution to the equation M = f(M) and 
(ql, qD EM, then M is a state-realization relation. 
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It is easily verified that f(M) is monotonic; thus the greatest fixed-point 
of the equation M = f(M) is well defined. Altogether, we get the main 
result of this section: 

Theorem 14.2 Let A = (X, R, 0, Q, ql, I, 'ljJ) be a proper specification 
behavior, let B = (X, R', 0, Q', q~, I', 'ljJ') an input-proper implementation 
behavior, and let M = gfp M. f(M). If (ql, qi) E M, then B' realizes A. 

Proof: Assume (ql, q~) E M. Since M = gfp M. f(M), it follows trivially 
that M is a solution to M = f(M). By Proposition 14.2, M is a state
realization relation. Hence Lemma 14.2 applies and the claim follows. 0 

The theorem above provides a straightforward fixed-point algorithm for 
determining whether a behavior is a realization of another behavior. How
ever, it should be noted that the condition of the theorem is only a suf
ficient condition. There are behaviors related by the realization relation 
for which this procedure fails, since we require each specification state to 
correspond to some implementation state. For example, there is no state
realization relation between the behavior of Figure 11.5 (a) and the be
havior of Figure 11.5 (b). Consequently, our decision procedure would in
correctly claim that the behavior of Figure 11.5 (b) is not a realization of 
the behavior of Figure 11.5 (a). It is difficult to guess how common this 
type of state splitting is in practice; thus the degree of applicability of our 
algorithm is still unknown. 

We now turn our attention to a symbolic version of the fixed-point algo
rithm above. We denote all the sets and relations needed in the algorithm by 
their characteristic functions. Assume that A = (X, R, 0, Q, ql, t, 'ljJ) is a de
terministic symbolic specification behavior and that B' = (X, R', 0, Q', q~, 
t', 'ljJ') is an input-proper symbolic implementation behavior. We introduce 
some shorthand to improve the notation. First, we write l(a·b) == l(c·d) to 
denote the expression (a == c) * ('ljJ(a·b) == 'ljJ(c·d)). We also write l'(a'·b') == 
l' (c' ·d') to denote the corresponding expression in which 'ljJ is replaced by 
'ljJ'. We write X(a·b) == X(c·d) instead of (a == c). 

We first need to compute the characteristic functions t~. and t:.free for 
the relations I~. and I:.free , respectively. The function t~. is defined by 
the fixed-point equation 

t~* = lfp m. arm], 

where 

a[m](a', b') = t'(a', b')+ (3c'. t'(a', c') * (l'(a') == l'(c')) * m(c', b')). 

To better understand the fixed-point formulation, consider computing 
t~* by the fixed-point iteration 

i {IOI m = a[mi - 1] 

if i = 0, 
otherwise. 
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It is easy to verify that, for i > 0, mi(a', b') = 1 if and only if there is 
a state c' (a' = c' is possible) such that there is an empty-word path of 
length at most i-I that takes B' from a' to c' and t' (c', b') holds. 

Now t~.f ••• can be computed from t~.: 

(f .•• ( a', b') = t~. (a', b') * (I' (a') ¢ I' (b')). 

If we define term and term: as 

term(a) = Vb. t(a, b) => (X(a) ¢ X(b)), 

and 

term'(a') = Vb'. t'{a',b') => (X{a') ¢ X(b')), 

we can define tmp' as 

tmp'(a') = 3b'. t~. (a', b') * (I' (a') == I' (b')) * (term'(b')+t~. (b', b')) . 

Finally, the most general state-realization relation (excluding Property 1), 
is given by the fixed-point equation 

m = gfp m. ,6[m] , 

where 

,6[m] {a, a') = label(a, a') * cap[m] (a, a') * safe[m] (a, a') * live(a, a'), 

label(a, a') = (l{a) == l(a')), 

cap[m] {a, a') = Vb. [t{a, b) => (3b'. [t:.fr •• (a', b') * m(b, b')])], 

safe[m] (a, a') = Vb'. [(t~{a', b') * appl{a, a', b')) => 
(3b. [t{a, b) * m{b, b')])] , 

appl(a, a', b') = {X (a') == X(b')) + (3c. [t(a, c) * (X(c) == X(b'))]) , 

and live(a, a') = (tmp'(a') => term(a)). 

In view of Theorem 14.2, if m{ql,qD = 1, then B' is a realization of A. 

14.6 Symbolic Model Checking 

In the previous section, we discussed methods for testing whether one be
havior is a realization of another. Such methods cannot be applied, how
ever, if the correctness of the specification itself is in doubt. One way to 
improve the "quality" of a specification is to check that it satisfies some 
desired properties. For example, we may want to ensure that an arbiter 
specification never allows both requests to be granted at the same time. In 
other circumstances, we may not have a complete specification, but only 
a collection of properties a design should satisfy. Such properties can be 
verified using model checking-an algorithm that can be used to determine 
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the validity of some temporal-logic formulas with respect to a behavior. In 
this section we discuss a simple temporal logic and a decision procedure 
that checks the validity of a formula in a given symbolic behavior. 

We begin with a brief introduction to temporal logic. Propositional logic 
deals with absolute truths in a domain, i.e., with propositions that are 
either true or false. Predicate logic extends this notion of truth to rela
tive truth, depending on the actual arguments involved. Modal logic-a 
special case of which is temporal logic-generalizes this concept of truth 
even further by making it dependent on the "world" currently being exam
ined. Thus, within a world, predicate logic is used, whereas between worlds, 
modal operators are introduced. In the hardware domain, the worlds rep
resent different states of a system, and the movement from one world to 
another represent the dynamic behavior of the system. For this reason, we 
use the word state rather than world in the sequel. 

There are several types of temporal logics; for a comprehensive discussion 
of the temporal logics used in hardware verification, the reader is referred 
to [57]. In this section we highlight only one such logic-computational tree 
logic (CTL)-together with its associated decision procedure [37J. CTL is 
particularly appropriate for stating properties of asynchronous systems. 

A CTL formula is defined with respect to a set of atomic formulas. These 
atomic formulas should be viewed as basic properties of individual states. 
In our context, the atomic formulas constrain the inputs and/or outputs 
to be 1 or O. Formally, the syntax of a CTL lormula is defined as follows: 

1. (a) Input i is 1 (where 1 :::; i :::; n), 

(b) Input i is 0 (where 1 :::; i :::; n), 

(c) Output i is 1 (where 1 :::; i :::; p), 

(d) Output i is 0 (where 1 :::; i :::; p). 

2. If 1 is a CTL formula, then so are 

(a) -,1 (not I), 

(b) AX 1 (for all paths 1 holds in the next state), 

(c) EX 1 (there is a path in which 1 holds in the next state), 

(d) AG 1 (for all paths, 1 holds in every state), 

(e) EG 1 (for some path, 1 holds in every state), 

(f) AFI (for all paths, eventually 1 holds), 

(g) EFI (for some path, eventually 1 holds). 

3. If 1 and 9 are CTL formulas, then so are 

(a) 11\ 9 (J and g), 

(b) A(JUg) (for all paths: 1 until g), 

(c) E(JUg) (for some path: 1 until g), 
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where we have included in parentheses the common way to read the various 
formulas. Other logical connectives like v, *, are defined in the usual way 
in terms of /\ and '. 

Suppose A = (X, R, 0, Q, ql, T, '¢) is a behavior. If q E Q and there does 
not exist apE Q such that (q,p) E T we say that q is a sink in A. With A 
and sEQ we associate an infinite computation tree, with root s and with 
an edge from vertex t to vertex u if and only if (t, u) E T or t is a sink and 
u = t. An infinite path of the tree starting at the root s is an s-path of A. 
In Figure 14.10 we illustrate the construction of the computation tree from 
a simple behavior. Note that the sink (10·rl·10) is repeated indefinitely. 

FIGURE 14.10. Simple behavior and corresponding computation tree. 

Given a CTL formula J, we write A, s F J (or s F J if A is understood), 
to state that the formula J holds in the computation tree derived from A 
and rooted at s. Formally, the semantics of a CTL formula J is defined 
recursively as 

1. (a) SF (input i is 1) holds if and only if Xi(S) = 1. 

(b) sF (input i is 0) holds if and only if Xi(S) = O. 

(c) sF (output i is 1) holds if and only if '¢i(S) = 1. 

(d) sF (output i is 0) holds if and only if '¢i(S) = o. 
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2. (a) S F -,1 if and only if S F I does not hold. 

(b) S FAXI if and only if t F I for every s-path (s, t, ... ) of A. 

(c) SF EXI if and only if t F I for some s-path (s, t, ... ) of A. 

(d) s F AGI if and only if I holds in every state in every s-path of 
A. 

(e) SF EGI if and only if I holds in every state in some s-path of 
A. 

(f) s F AF I if and only if for every s-path of A there is at least 
one state in which I holds. 

(g) s F EF I if and only if for some s-path of A there is at least 
one state in which I holds. 

3. (a) s F I 1\ g if and only if s F I and s F g. 

(b) s F A(fU g) if and only iffor every s-path (so, S1, ..• ) of A there 
exists some j ~ 0 such that Sj F g and Si F I for 0 ::; i < j. 

(c) s F E(fU g) if and only if for some s-path (so, Sl, ... ) of A there 
exists some j ~ 0 such that Sj F g and Si F I for 0 ::; i < j. 

The temporal logic above is useful for describing properties of behaviors. 
To illustrate this, consider the behavior of Figure 14.11, where the (ex
panded) initial state is OOO'TO'O, the inputs are a, b, and c, and the output 
is Out. The behavior specifies a three-input Muller C-ELEMENT operated 
in an environment that may withdraw a request, but only if the behavior is 
in a static state. We can divide the properties we would like the behavior 

FIGURE 14.11. Specification behavior for three-input C-ELEMENT. 
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to exhibit into two types: liveness (something good will eventually happen) 
and safety (nothing bad will ever happen). We give some examples of each 
type of property. 

For a C-ELEMENT to function properly, we should ensure that, if we keep 
all three inputs at the same value, then eventually the output should change 
to this value. We can express this liveness property by the following two 
CTL formulas: 

AG(A((a = 0 /\ b = 0/\ c = 0) U (Out = 0 V a = 1 V b = 1 V c = 1))), 

and 

AG(A((a = 1 /\ b = 1/\ c = 1) U (Out = 1 Va = 0 vb = 0 V c = 0))), 

where we have used the shorthand a = 1 for "input a is 1," etc. The CTL 
formulas state that, in any state s that is reachable from the initial state 
and in which all the inputs are equal, in every path leaving s, either one of 
the inputs must eventually change or the output must eventually change 
to agree with the common input value. 

The following safety condition should hold: If all three inputs and the 
output have the same value, then the output should not change until all 
three inputs have changed to the complementary value. This condition can 
be expressed by the two CTL formulas: 

AG( (a = 0/\ b = 0 /\ c = 0/\ Out = 0) 
=> A( Out = 0 U (a = 1 /\ b = 1 /\ c = 1))) 

and 

AG( (a = 1/\ b = 1/\ c = 1/\ Out = 1) 
=> A( Out = 1 U (a = 0/\ b = 0/\ c = 0))). 

We are interested in CTL not only because it is a concise and powerful 
specification language for desirable properties of a system, but also because 
there is a very efficient algorithm for determining whether a CTL formula 
holds for the initial state of a behavior. The basic algorithm, called the 
model checking algorithm, was introduced in [37]. The original algorithm 
was described in terms of Kripke structures,4 which include behaviors, and 
requires an explicit representation of the state space. Here we present the 
algorithm in terms of fixed-point calculations, making it amenable to a sym
bolic formulation. Our formulation is similar to the one described in [28]. 

4 A Kripke structure is a triple (8, R, L), where 8 is a set of states, R is a 
successor relation, and L is a labeling function associating with each state a 
subset of a given fixed set of atomic formulas. 
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Given a behavior A = (X,R,O,Q,ql,7,'I/J) and a CTL formula f, the 
model checking algorithm computes the set H(f) ~ Q of states that satisfy 
f. Let 

7' = 7 U {(q, q) I q E Q and q is a sink }. 

This ensures that for every q there exists a q' such that (q, q') E 7' by 
adding the self-loops needed to make all computation paths infinite. The 
model checking algorithm is now defined recursively as follows: 

1. (a) H( input i is 1 ) = {q I Xi(q) = 1}. 

(b) H( input i is 0 ) = {q I Xi(q) = O}. 

(c) H( output i is 1 ) = {q I 'l/Ji(q) == 1}. 

(d) H( output i is 0 ) = {q I 'l/Ji(q) == O}. 

2. (a) H(...,f) = Q -H(f). 

(b) H(AXf) = {s I "It. (s,t) E 7' =? t E H(fn. 

(c) H(EXf) = H(...,(AX(...,f))). 

(d) H(AGf) = gfp U.H(f) n {s I "It. (s,t) E 7' =? t E U}. 

(e) H(EGf) = H(...,(AF...,f)). 

(f) H(AFf) = lfp U. H(f) U {s I "It. (s, t) E 7' =? t E U}. 

(g) H(EFf) = H(...,(AG...,f)). 

3. (a) H(f 1\ g) = H(f) n H(g). 

(b) H(A(fUg)) == lfp U. H(g)U(H(f)n{s I "It. (s, t) E 7' =? t E U}. 

(c) H(E(fUg)) = H(...,(A(...,gU(...,f 1\ ...,g)) V AG(...,g))). 

To verify that CTL formula f holds in behavior A, we simply ensure that 
the initial state of A is in H(f). 

The fixed-point calculations above are used to compute the set of states 
that satisfy some of the "global" CTL formulas. For example, consider 
finding the set of states that satisfy the CTL formula AG f when given 
the set H(f) that contains all the states that satisfy f. As stated above, 
this set can be found by computing the greatest fixed point of the function 
g(U) = H(f)n{s I "It. (s, t) E 7' =? t E U}. First, note that 9 is monotone. 
Since Q is finite, it follows that the greatest fixed point is well defined. 
Intuitively, the fixed-point calculation consists of finding the largest subset 
U of Q such that 1) f holds in every state in U, and 2) for every state 
u E U, every successor of u is also in U. Clearly, every element u E U 
satisfies AG f. Conversely, if an element v is not in U, then either f does 
not hold in v or there is some state reachable from v in which f does not 
hold. (Otherwise v would have been in U.) Both cases imply that AG f does 
not hold in v. Altogether, it is straightforward to prove that S F AG f if 
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4 

FIGURE 14.12. Example of behavior for model checking. 

and only if 8 E gfp U. 1i(J) n {8 I 'TIt. (8, t) E T' => t E U}. The other 
fixed-point computations can be motivated using similar arguments. 

To illustrate the model checking algorithm, consider the behavior of 
Figure 14.12, where the outputs are a, b, and c. Consider the CTL for
mula AG((a = 1) V (c = 1)). We would like to compute the subset of Q for 
which this formula holds, i.e., we would like to find the set U such that 

1. every state in U has a = 1 or c = 1, 

2. for every u E U and for every infinite path starting in u, every state 
in this path has a = 1 or c = 1. 

First, we rewrite the formula as one using only the connectives 1\ and -'j 
the new version is AG ( ..., ( ( ..., (a = 1)) 1\ ( ..., (c = 1)))). Since the behavior has 
no sinks, we have T' = T. Using the definition of 1iO we obtain 

1i(AG(...,((...,(a = 1)) 1\ (-,(c = 1))))) = 
gfp U.1i(...,((-,(a = 1)) 1\ (-,(c = 1)))) n {8 I Vt. (8, t) ET' =>tEU}. 

Now, since 

1i(...,((...,(a = 1)) 1\ (-,(c = 1)))) 

we get 

= Q -1i((-,(a = 1)) 1\ (-,(c = 1))) 

Q - (1i((...,(a = 1))) n 1i((...,(c = 1)))) 

= Q - ((Q -1i((a = 1))) n (Q -1i((c = 1)))) 

Q - ((Q - {2,3}) n (Q - {3,4,5})) 

Q - (({1,4,5}) n ({1,2})) 

= {2, 3, 4, 5}, 

1i(AG(-,((...,(a = 1)) 1\ (...,(c = 1))))) = 
gfp U. {2,3,4,5} n {8 I Vt. (8,t) E T' => t E U}. 
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The fixed point can now be computed as 

Uo = Q, 

Thus 

U1 = {2,3,4,5} n {s I 'lit. (s,t) E T' => t E Uo} 

{2,3,4,5} n {1,2,3,4,5} = {2,3,4,5}, 

U2 = {2,3,4,5} n {s I 'lit. (s,t) E T' => t E Ud 

= {2, 3, 4, 5} n {I, 2, 3, 4} = {2, 3, 4}, 

U3 = {2,3,4,5} n {s I 'lit. (s,t) E T' => t E U2 } 

= {2,3,4,5}n{I,2,3,4} = {2,3,4} =U2' 

1i(AG(-.«-,(a = 1))" (-.(c = 1))))) 
= gfp U. {2,3,4,5} n {s I 'lit. (s,t) E T' => t E U} 

= {2,3,4}. 

Hence the formula AG«a = 1) V (c = 1» holds if and only if the initial 
state of the behavior is 2, 3, or 4. 

We now convert the model checking algorithm to symbolic form. For a 
more complete treatment of symbolic model checking, the reader is referred 
to [28]. Given a symbolic behavior A = (X, n, 0, Q, qb t, 'IjJ) and a CTL for
mula I, the symbolic model checking algorithm computes the characteristic 
function, h[/], for the set of states that satisfy I. As before, we need to 
add self-loops to sinks to make the transition predicate complete. Let 

t' ( a, b) = t( a, b)+ ( ( 3c. t( a, c») * (a == b») . 

The symbolic model checking algorithm is now defined recursively as fol
lows: 

1. (a) h[ input i is 1](a) = Xi(a). 

(b) h[ input i is 0 lea) = Xi(a). 

(c) h[ output i is 1](a) = 'ljJi(a). 

(d) h[ output i is 0 ](a) = 'ljJi(a). 

2. (a) h[-'/](a) = hU](a) 

(b) h[AX/](a) = Vb. «t'(a,b» => (h[/](b))). 

(c) h[EX/] = h[-.(AX(-,f)]. 

(d) h[AGI] = gfp s. a[/,s], where 

aU, s](a) = (h[/](a» * (Vb. (t'(a, b) => s(b))). 
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(e) h[EG/] = h[...,(AF...,J)]. 

(f) h[AF I] = lfp s. ,8[/, s], where 

,8[/, s](a) = (h[f](a))+ (Vb. (t'(a, b) '* s(b))). 

(g) h[EFf] = h[...,(AG...,J)]. 

3. (a) h[f 1\ g](a) = (h[f](a)) * (h[g](a)). 

(b) h[A(JUg)] = lfp s. ,[I, g, s], where 

,[f,g,s](a) = h[g](a)+ (h[/] (a) * (Vb. (t'(a,b) '* s(b)))). 

(c) h[E(JUg)] = h[...,(A(...,gU(""1 1\ ...,g)) + AG(...,g))]. 

To determine whether I is satisfied in the symbolic behavior, we check 
whether h[f] (ql) = l. 

One of the main strengths of CTL model checking is the fact that the 
decision procedure is completely automated. The user of the procedure need 
not be aware of the details of the given behavior, but can interact with the 
model checker to determine whether the behavior satisfies some desired 
properties. Also, one can modify the model checking algorithm above to 
produce counterexamples to a formula, Le., sequences of states starting in 
the initial state and leading to states that do not satisfy the formula. This 
capability makes model checking an extremely valuable checking procedure 
in practical applications. 

Temporal logics and model checking have the following drawbacks: In 
this approach to verification, the specification must be a list of desired 
properties. It may be difficult to judge whether the temporal formulas used 
completely characterize the desired behavior of the system. Also, it is easy 
to forget to check some property that one might take for granted. Finally, 
temporal logic formulas can be difficult to understand; this creates a danger 
of misunderstanding the properties that have been verified. 

Although the symbolic approach significantly increases the usefulness of 
model checking, the size of behaviors that can be checked is too small to 
model circuits that include nontrivial data paths. Hence, model checking is 
primarily useful in verifying the control parts of a design. Other methods 
must be used to verify the data path as well as the interactions between 
the data path and the control parts. Alternatively, design techniques that 
guarantee correct operation can also be employed. We return to this topic 
in Chapter 15. 



Chapter 15 

Design of Asynchronous Circuits 
Janusz A. Brzozowski, Scott Hauck, and Carl-Johan H. Seger 

Most of this chapter is based on an article by Scott Hauck. 1 However, we 
have adapted this material to the style of the book, omitted certain topics, 
significantly changed other topics, and added new material. 

The main theme of this book has been the analysis of circuit behavior. 
We have also considered the verification problem-whether an implemen
tation realizes a given specification. However, we have not yet discussed 
the vitally important question of design. Systematic and efficient meth
ods for designing asynchronous circuits are needed if such circuits are to 
be more widely used. As we have already pointed out, the classical meth
ods for designing asynchronous circuits are often inadequate. The interest 
in asynchronous circuit design has increased dramatically in the past ten 
years, and today there are several methodologies that have been used on 
nontrivial design projects. In this chapter we give a brief survey of this 
exciting and fast moving field. Because of space and time limitations, we 
do not consider these design methods in depth, but only give the reader a 
flavor of the approaches together with references that can be pursued for 
additional detail. 

How To Read This Chapter 

In the introductory Section 15.1 we discuss the potential advantages of 
asynchronous design, and also some of the drawbacks. In the remainder of 
the chapter we briefly describe a number of design techniques. The relations 
among these techniques are discussed below. However, most sections are 
relatively independent and could be read separately in order to get a first 
impression of the methods described. 

First, we describe four methods that use the bounded-delay assumption. 
Both gates and wires are assumed to have delays, but such delays are bi
bounded. We begin in Section 15.2 with the classical method of Huffman, 

lScott Hauck, "Asynchronous Design Methodologies: An Overview," Proceed
ings o/the IEEE, Vol. 83, No.1, January 1995. Copyright @1995 by the Institute 
of Electrical and Electronic Engineers, Inc. 
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in which behaviors are specified by flow tables and circuits are assumed 
to operate in the fundamental mode. Next, some of the fundamental-mode 
restrictions are removed in Section 15.3, where Hollaar's approach is de
scribed, and in Section 15.4, where the more recent work on "burst-mode" 
circuits is presented. Section 15.5 discusses the design of modules for delay
insensitive networks to be discussed later in the chapter. Since these mod
ules are designed using the bounded-delay assumption, they are included 
here. The modules are specified by a type of Petri net. 

Second, we present two methodologies for designing speed-independent 
circuits. Here, component delays are permitted to be arbitrary, but wire 
delays are assumed to be negligible. Section 15.6 discusses "signal transition 
graphs," which constitute a specification formalism closely related to Petri 
nets. In Section 15.7 we briefly mention a somewhat different formalism 
called "change diagrams." 

Third, we turn to the design of delay-insensitive circuits. General prob
lems of data representation and synchronization in systems operated with
out a clock are discussed in Section 15.8. We then describe Ebergen's design 
method, which is based on "trace theory" -a language derived from regular 
expressions by the addition of some operators, such as a parallel composi
tion ("weave"), and by the introduction of a distinction between input and 
output alphabets. This method is presented in Section 15.9. 

Fourth, we consider three methodologies that involve a high-level speci
fication language and compilation to lower-level constructs. Section 15.10 
describes Martin's methodology, which has been used in several relatively 
large asynchronous designs, including a microprocessor. Martin uses a high
level language related to communicating sequential processes (CSP) and 
Dijkstra's "guarded command language." Programs are transformed into 
collections of simple statements, which are next expanded into "handshake 
protocols." These protocols are further refined into "production rules," 
which, in turn, are converted directly to CMOS circuits. This methodol
ogy leads to "quasi-delay-insensitive" circuits, in which some forks are as
sumed to have equal delays (are "isochronic"). Section 15.11 discusses van 
Berkel's Tangram language and the intermediate architecture of "hand
shake circuits." Tangram is also related to CSP and to the guarded com
mand language. Brunvand's approach is briefly sketched in Section 15.12. 
Here, a subset of the language OCCAM, also related to CSP, is used. Delay
insensitive modules are designed to correspond to language constructs, such 
as a while loop. The compilation of programs to networks of modules is then 
straightforward. 

Finally, we discuss two methodologies that combine several different fea
tures. In Section 15.13, we mention the design style of Jacobs, Broderson, 
and Meng, which results in "self-timed" circuits. The design uses logic 
blocks implemented in DCVS logic with dual-rail inputs and completion 
signals, connected by "interconnection blocks" that provide control. The in
terconnection blocks are specified by signal transition graphs. Last, but not 
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least, in Section 15.14 we discuss "micropipelines"-a design style in which 
the control functions are implemented delay-insensitively, but the data
path circuits obey the "bundled-data" convention. Micropipelines were the 
topic of the Turing Award lecture by Sutherland. This approach has been 
used for the design of a number of special purpose circuits, including mi
croprocessors [54, 114, 130J. 

Section 15.15 concludes the chapter. As we have mentioned earlier, time 
limitations prevented us from including other promising asynchronous de
sign techniques. The interested reader may wish to refer to [72J for an 
overview of algebraic approaches to the specification of safety and progress 
properties of delay-insensitive circuits. Such approaches make it possible to 
specify circuits concisely and facilitate verification of designs. 

15.1 Introduction 

Much of today's synchronous logic design is based on two major assump
tions: all signals are binary and time is discrete. Both of these assumptions 
are made in order to simplify logic design. The assumption that signals are 
binary permits us to use Boolean algebra to describe and manipulate logic 
circuits. The assumption that time is discrete permits us to ignore hazards 
to a large extent. 

Asynchronous digital circuits keep the assumption that signals are binary 
but remove the assumption that time is discrete. This has the following 
potential benefits: 

No clock skew 

Clock skew is the difference in arrival times of the clock signal at 
different parts of the circuit. Since asynchronous circuits-by defini
tion-have no global clock, there is no need to worry about clock 
skew. In contrast, the designer of a synchronous circuit must often 
slow down its operation in order to accommodate the skew. As VLSI 
feature sizes decrease, clock skew becomes a much greater concern. 

Lower power 

In synchronous circuits, clock lines have to be toggled and circuit 
nodes have to be precharged and discharged even in parts unused in 
the current computation.2 For example, if a floating-point unit in a 
processor is not used in a given instruction stream, it must still be 
operated by the clock. Although asynchronous circuits often require 
more signal transitions in a given computation than do synchronous 
circuits, these transitions usually occur only in areas involved in the 
current computation. 

2In fairness it should be pointed out that in some synchronous designs the 
clock is selectively turned off and on in different subsystems as needed. 
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Average-case instead of worst-case performance 

Synchronous circuits must wait until the slowest possible computation 
has been completed before latching the results; this yields worst-case 
performance. Many asynchronous circuits sense when a computation 
has ended; this gives average-case performance. For circuits such as 
ripple-carry adders-where the worst-case delay is significantly larger 
than the average-case delay-this can result in substantial savings. 

Easing of global timing issues 

In circuits such as synchronous microprocessors, the clock rate, and 
thus performance, is dictated by the slowest (critical) path. Thus, the 
design must be carefully optimized to achieve the highest clock rate; 
this optimization must be applied also to rarely used portions of the 
circuit. Since many asynchronous circuits operate at the speed of the 
path currently in operation, rarely used portions of the circuit can be 
left unoptimized without adversely affecting overall performance. 

Better technology migration potential 

Circuit functions are often implemented in several different technolo
gies during their lifetime. Early circuits might be implemented with 
mask- or field-programmable gate arrays (MPGAs or FPGAs), while 
later production runs might migrate to semi-custom or custom ICs. 
Often, greater performance for synchronous circuits can be achieved 
only by migrating all components to a new technology, since the over
all performance is based on the longest path. In many asynchronous 
circuits, migration of only the more critical components can improve 
average performance, since performance depends only on the cur
rently active path. Also, since many asynchronous circuits sense com
putation completion, components with different delays may be sub
stituted for older components without altering the rest of the circuit. 

Automatic adaptation to physical properties 

The delay through a circuit can change with variations in fabrication, 
temperature, and power-supply voltage. In synchronous circuits one 
must assume that the worst possible combination of factors is present 
and one must clock the circuit accordingly. Asynchronous circuits that 
sense computation completion run as quickly as the current physical 
properties allow. 

Robust mutual exclusion and external input handling 

Elements that guarantee mutual exclusion of independent signals or 
synchronize external signals with a clock are subject to metastabil
ity [31]. A metastable state is a state of unstable equilibrium in which 
a circuit can remain for an unbounded amount of time [96]. For exam
ple, as we have mentioned in Chapter 6, a NOR latch can exhibit this 
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type of behavior. Synchronous circuits require all elements to have 
bounded response time. Thus, there is some chance that mutual ex
clusion elements will fail in a synchronous circuit. Most asynchronous 
circuits can wait an arbitrarily long time for the mutual exclusion ele
ment to leave the metastable state; thus mutual exclusion is robustly 
implemented. Also, since there is no clock with which signals must 
be synchronized, asynchronous circuits accommodate external inputs, 
which are by nature asynchronous, more gracefully. 

With all of the advantages of asynchronous circuits, one might wonder 
why synchronous circuits predominate. The reason is that asynchronous 
circuits have several problems as well. They are more difficult to design in 
an ad hoc fashion than are synchronous circuits. In a synchronous circuit, 
a designer can simply define the combinational logic necessary to compute 
given functions, and add latches to store the results of these computations. 
By providing a long enough clock period, one removes all worries about haz
ards and dynamic states of the circuit. In contrast to this, designers of asyn
chronous circuits must pay a great deal of attention to the dynamic states of 
the circuit. Hazards must be removed from the circuit (or not introduced in 
the first place) to avoid incorrect results. The ordering of operations-fixed 
by the placement of latches in a synchronous circuit-must be carefully en
sured by the asynchronous control logic. For complex circuits, these issues 
become too difficult to handle manually. Unfortunately, in general, the ex
isting CAD tools and implementation alternatives available for synchronous 
circuits cannot be used in asynchronous design. For example, some asyn
chronous methodologies severely limit the transformations permitted for 
logic decomposition. Placement, routing, partitioning, logic synthesis, and 
most other CAD tools either cannot be used at all or require extensive 
modifications in order to be applicable to asynchronous circuits. 

Finally, even though many of the advantages of asynchronous circuits 
relate to higher performance, it is not clear that asynchronous circuits are 
actually faster in practice. Asynchronous circuits generally require extra 
time because of their communication protocols; this increases the average
case delay. It is unclear whether this cost is greater or smaller than the 
benefits listed previously, and more research in this area is necessary. 

Because of all the problems listed above, asynchronous design is an im
portant research area. Regardless of how successful synchronous designs 
are, there will always be a need for asynchronous logic in interface cir
cuits. Also, although ad hoc design of asynchronous circuits is impractical, 
there exist methodologies and CAD algorithms developed specifically for 
asynchronous design. 

Several of the main asynchronous design approaches are surveyed in this 
chapter. Because of space limitations, we do not attempt to include all 
of the existing methodologies, nor do we explore all the subtleties of the 
methodologies that are included. Instead, we discuss the essential aspects of 
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some classical methods and some of the more promising modern methods. 
This should provide the reader with a solid framework on which to base 
further study. Likewise, we do not cover many of the related areas-such as 
testing-which are important to any design, yet too complex to be handled 
adequately here. For an introduction to asynchronous testing, see [69]. 

15.2 Fundamental-Mode Huffman Circuits 

The classical model for asynchronous circuits is quite similar to that used 
for synchronous circuits, except that delays are used in place of clocked 
latches or flip-flops; see Figure 15.1. It is assumed that the delays of all 
the circuit elements and wires are bi-bounded. Circuits designed with this 
model (usually coupled with the fundamental-mode assumption) are gen
erally referred to as Huffman circuits, after D. A. Huffman, who developed 
many of the early concepts [66, 67]. 

The circuit to be synthesized is usually specified by a flow table [135], 
such as those we have used in Chapters 1 and 12. Normally it is assumed 
that each unstable state leads directly to a stable state (i.e., the behavior is 
direct), with at most one transition occurring on each output variable. As 
in synchronous sequential circuit design, the flow table is first reduced, and 
the reduced table is then encoded. Finally, expressions for the excitation 
functions for all state variables are found with the aid of some minimiza
tion programs. The reader may wish to refer to the divide-by-2 counter in 
Chapter 1 to recall some of these design steps. 

Several special concerns not occurring in synchronous circuits arise in 
asynchronous designs. Since there is no clock to synchronize input arrivals, 
the circuit must behave properly in intermediate states caused by multiple 
input changes. For example, suppose the input changes from 00 to 11; then 
it may briefly pass through either 01 or 10. One must ensure that the entries 
in columns 01 and 10 of the flow table are appropriately selected so that 
the transition accompanying the double input change is independent of the 
transient inputs. 

Combinational 
Logic 

Delay Elements 

FIGURE 15.1. Classical asynchronous sequential circuit structure. 
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We must also deal with hazard removal. As we have shown in Chap
ter 7, hazards on circuit outputs may cause unexpected short pulses that 
may result in incorrect behavior of circuits that receive these outputs. All 
static and dynamic hazards corresponding to a single input change can be 
eliminated by adding certain redundant products to a sum-of-products re
alization of a circuit [135]. Unfortunately, this procedure cannot guarantee 
correct operation when several inputs are allowed to change simultaneously. 
The solution generally adopted is to impose the single-change restriction, 
although it may be difficult to impose such a restriction on the environment. 

An important point needs to be made aboat the sum-of-products form. 
As the number of circuit inputs increases, the number of inputs to the AND 

and OR gates increases. Since most technologies either restrict the num
ber of inputs to a gate, or involve long delays in gates with large fan-ins, 
it is important to have methods for decomposing large gates. As proven 
in [135], many algebraic transformations, including the associative, dis
tributive, and DeMorgan's laws, do not introduce any new hazards. Thus, 
a sum-of-products form can be changed by these transformations into a 
multilevel expression involving smaller fan-in. The ability to use logic trans
formations is an important advantage of this methodology, for some other 
methodologies do not allow them. 

Note that some transformations, such as ab + ae + be = ab + be can 
introduce hazards. In the circuit using the expression on the right-hand 
side, there is a static hazard when a = b = e = 1 and b changes to O. Before 
the change, the output is 1 because of the product abo After the change, 
the product be holds the output at 1. But, if the band b inputs are both 
o during the change, because of a slow inverter, the output might become 
o temporarily. This hazard is prevented in the expression on the left-hand 
side by the presence of the product term ae. 

To extend the combinational circuit methodology to sequential circuits, 
we use a model similar to that used for synchronous circuits. See Figure 15.1 
and compare it to Figure 1.2. Since we made the restriction that only one 
input to the combinational logic can change at a time, this forces several 
requirements on the asynchronous circuit. First, we must ensure that the 
combinational logic has settled in response to a new input before a state 
variables changes. This is done by placing delay elements in the feedback 
lines. Also, the same restriction dictates that only one state variable can 
change at a time. State encoding can be done in such a way that only a 
single state bit changes in each state transition; however, these encodings 
sometimes require multiple representations of each state [135], and compli
cate the combinational logic. "One-hot" encodings-in which each state qi 
is represented by a vector Y with Yi = 1 and with Yj = 0 for i i: j-require 
two transitions, but simplify the associated logic. A state transition from 
qi to qj is accomplished by first setting Yj and then resetting Yi. The final 
requirement is that the next external input transition cannot occur until 
the entire circuit settles in a stable state, i.e., fundamental-mode operation 
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is used. For a one-hot encoding, this means that a new input must be de
layed long enough for three change propagations through the combinational 
logic and two through the delay elements. With a one-hot encoding one can 
implement each state variable with the same type of module; state transi
tions are then realized by appropriate connections between modules. The 
bounded-delay design method proposed in [41] illustrates this approach. 

15.3 Hollaar Circuits 

The fundamental-mode assumption, while simplifying logic design, increases 
computation time. As has been mentioned above, the fundamental mode is 
often coupled with the single-input-change assumption. There are certain 
cases in which both restrictions can be removed. For example, suppose an 
output 0 is determined by some function of the form Xl + f(X2 , X 3 , X 4 ). 

When Xl = 0, changes in the remaining inputs could produce hazards in 
O. However, when Xl = 1 the remaining inputs can change in an arbitrary 
fashion without affecting the output, and the total state need not be sta
ble when such changes occur. Clearly, this observation can eliminate the 
fundamental-mode assumption only in certain special cases. 

A method due to Hollaar [63] uses detailed knowledge of the implementa
tion to allow new transitions to arrive earlier than the fundamental-mode 
assumption would allow. A one-hot state assignment is used in this ap
proach, and the value of each state variable is stored in a set-reset NAND 

latch. Suppose first that we have a "straight-line" sequence ql, q2, q3 of 
transitions as shown in Figure 15.2, and the transition into state qi occurs 
when certain conditions defined by the function Ci hold. In Figure 15.2, 
NAND gates 5 and 6 form a set-reset latch for state q2. Suppose that the 
circuit is in state ql; then 81 = 1 and the other state variables are all o. The 
latch with output 82 can be set only if the latch of the previous state ql is 
set, and the conditions C2 for a transition from ql to q2 are satisfied. Once 
82 becomes 1, gate 6 becomes 0 and causes a 0 to 1 transition in gate 3. 
This, in turn, causes 81 to become O. Thus, the "present-state" latch is reset 
after the "next-state" latch has been set. This basic scheme is extended to 
more general types of transitions by the use of FORK and JOIN modules. 

Careful analysis of the implementation in Figure 15.2 shows that the 
fundamental-mode assumption can be relaxed. Suppose that each gate has 
delay 6. The fundamental-mode assumption requires that 66 time units 
must elapse between transitions. For example, after C2 becomes 1 (causing 
a state change from ql to q2), the sequence of gate changes is 4, 5, 6, 3, 2, 
4, before the circuit stabilizes. However, after time 36 (the sequence 4, 5, 
6), state bit 82 is properly set, and C2 can safely change again. This delay 
is half of the delay required by the fundamental-mode assumption. Also, 
after gate 5 becomes 1, gate 7 can change and begin a transition to state 
q3. The time between a change on C2 and a change on C3 would then be 
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FIGURE 15.2. Hollaar's implementation. 

only 28, since only gates 4 and 5 would have changed. This is three times 
faster than the fundamental-mode operation. As long as gate delays are 
approximately equal, state bits 81 and 82 will be eventually 0, and state 
bit 83 will be 1. Although there is a possibility that three state bits might 
be 1 at the same time, the final state will be correct for each transition. 

Unfortunately, Hollaar's method has some disadvantages. First, the gen
eral case where a state can have multiple successors requires five gate delays 
for proper operation. Second, some hazards can occur and the circuit can 
enter an incorrect state. Imagine that the circuit is in state ql, and that 
C2 = Xl and C3 = Xd(X2 , X 3 , X 4 ). Further assume that input Xl is 
changing from 0 to 1, and f(X2 , X 3 , X 4 ) = 1. As expected, C2 becomes 1 
and eventually causes 82 to be 1. However, C3 might take longer to become 
o than it took C2 to become 1. If this difference is greater than the delays 
in gates 4 and 5, gate 7 might produce a hazard pulse that might cause 
state bit 83 to be set. Thus, the circuit would not correctly implement the 
specified transitions. Nevertheless, Hollaar's method permits the relaxation 
of the fundamental-mode requirements in some circuits. 

15.4 Burst-Mode Circuits 
A design methodology called burst-mode attempts to move closer to syn
chronous design styles than Huffman's method. Like Huffman's method, it 
is based on sequential machines, but the circuits designed are hazard-free 
(at the gate level) by construction, and inertial delays are not needed for 
hazard elimination. 



322 Chapter 15. Design of Asynchronous Circuits 

As shown in Figure 15.3, circuits are specified by state graphs in which 
each transition is labeled by a nonempty set of inputs (an input burst), 
and a set of outputs (an output burst). The state labels show the values of 
the input vector, an internal state variable, and the output vector. More 
details about this graph will be given later. When the circuit is in a given 
state, the inputs in one of the input bursts leaving this state can change. 
Such changes of inputs in a burst are allowed to occur in any order, and 
the circuit does not react until the entire input burst has occurred. No 
input burst can be a subset of another input burst leaving the same state. 
This is required so that the circuit can unambiguously determine when a 
complete input burst has occurred, and can react accordingly. For example, 
in the state graph in Figure 15.3, an edge with input burst {XI, X 2 , X 3 } 

could not be added from state ql to state q4, because the other input bursts 
leaving state ql would be subsets of this input burst. 

Once an input burst is complete, the circuit activates the specified output 
burst and enters the specified next state. A new input change is allowed 
only after the circuit has completely reacted to the previous input burst. 
Thus, burst-mode systems still require the fundamental-mode assumption, 
but only between transitions in different input bursts. 

As described in [149, 150], burst-mode circuits can be implemented by 
techniques similar to those used for Huffman circuits. Since burst-mode cir
cuits allow multiple input changes, one would expect to have the same haz
ard problems that motivated the single-in put-change restriction in Huffman 
circuits. However, the burst-mode specification allows outputs to change 
only after an entire input burst, as we now describe. Given two input vec
tors A and B, we say that an input vector C is "between" A and B if, for 
all i, Ci is either equal to Ai or to Bi. A given Boolean function f is said 
to have a burst-mode input transition from input vector A to input vector 

{X1 ,X2 ,X3 , 

Ol,02} 

FIGURE 15.3. Burst-mode specification. 
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B if f(A) = f(C) for every vector C, C ¥- B, between A and B. Thus the 
output of a circuit implementing f is allowed to change only after every 
input (that participates in the transition) has changed. In this synthesis 
method all combinational functions are guaranteed to have burst-mode in
put transitions. 

It is a constraint on the environment that transitions from the next 
input burst are not allowed to arrive until the circuit has finished reacting 
to the previous burst. A technique, similar to that used in Huffman circuits, 
of adding redundant product terms to a sum-of-products form to remove 
hazards is sufficient to implement burst-mode circuits [112]. Finally, burst
mode circuits must use the same special state encodings and delays on the 
feedback lines as do Huffman circuits. 

A different method of implementing burst-mode specifications is de
scribed in [110, 111]. As shown in Figure 15.4, a clock is generated locally 
in each module being designed; this clock is independent of the local clock 
in any other module. This is intended to avoid some of the hazards found 
in the Huffman design style discussed earlier. 

x 1 - Clock Clock 
X 2 - Generator y X 3 -

O~ Dynamic 
---01 

Latch 

X 1 - Combinational O~ Dynamic 
X 2 - Logic Latch ---02 

X 3 -

S Dynamic s' Static s 
-

Latch Latch 

Phase 1 Phase 2 

FIGURE 15.4. Circuit schematic for a locally clocked implementation. 

To understand how a locally clocked module works, consider the example 
of Figure 15.3. This specification requires one state bit s, which is 1 when 
the machine is in state Q4, and 0 otherwise. A complete table of combina
tions for this specification is shown in Table 15.1. Assume that the circuit 
is stable in state ql with all the inputs, all the outputs, and s set to O. In 
a stable state, the local clock is 0, and data can pass through the phase-l 
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TABLE 15.1. Table of combinations for burst-mode specification. 

Xl X 2 X3 S 01 O2 S 
0 - - 0 0 0 0 
1 1 0 0 1 0 0 
1 0 1 0 0 1 0 
1 1 1 0 1 1 1 
1 - - 1 1 1 1 
- 1 - 1 1 1 1 
- - 1 1 1 1 1 
0 0 0 1 0 0 0 

latches. The first transitions to occur are Xl and X2 being set to 1. This 
case is simple because there is no state change, since s is still stable at O. 
Consequently, the local clock remains O. The only effect is that, once both 
the Xl and X 2 transitions occur, the combinational logic generating O~ 
changes its output to 1, and that value propagates through the phase-1 
latch to output 0 1 . A more interesting case occurs when the input X3 then 
changes to 1 as well. In this case, the state variable s must change. First, 
the combinational logic for the output O~ and for the state bit excitation 
S change in response to the change in X 3 , resulting in 0; = 1, and S = 1. 
The conditions for enabling the local clock are now satisfied, but the clock 
is delayed to ensure that the output and state changes propagate through 
the phase-l latches (i.e., until O2 and Sf become 1) before the clock be
comes 1. Once the clock becomes 1, the phase-1 latches are disabled, and 
the phase-2 latches are allowed to pass their values through. This permits 
the new value of the state bit to reach the combinational logic and the clock 
generator. However, since the phase-llatches are disabled, any new values, 
including hazards, are not passed through. The local clock is then reset 
by the arrival of the new state, the phase-2 latches are disabled, and the 
phase-1 latches are again allowed to pass data. This completes the reaction 
of the module to the new data, and the module is now ready for another 
input burst. 

The major advantage claimed for the locally clocked implementation 
is the avoidance of the hazards encountered by normal Huffman circuits. 
Also, standard synchronous state assignment techniques can be employed. 
However, not all hazards can be ignored. In all transitions the outputs 
are generated directly in response to the inputs, and the local clock offers 
no hazard protection. Thus, the redundant products necessary in Huffman 
circuits are also needed for the output logic, and special care must be taken 
to avoid dynamic hazards [112]. The local clock logic may also contain 
hazards. Although the clock signal is not directly seen by the environment, 
a hazard on the clock line could cause the state to change partially or 
completely when no change was intended. 
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15.5 Module Synthesis Using I-Nets 

In contrast to bounded-delay models, delay-insensitive circuit design (to 
be discussed later) assumes that the delays in basic modules as well as 
in wires are unbounded. To make delay-insensitive circuit design practical 
for general computations, we must have a set of basic modules that both 
work properly under the delay-insensitive assumption and provide suffi
cient functionality to implement a wide class of circuits. From Chapter 13 
and [90], we know that standard gates are not suitable. Consequently, we 
must abandon the delay-insensitivity goal when designing basic modules, 
i.e., we must design such modules using the bounded-delay assumption. 
This is not an unreasonable compromise, since a basic module usually in
volves a relatively small area on a chip and its delays can be controlled to 
a large extent. Once the modules are designed, however, we can carry out 
the rest of the design-of networks constructed using such modules-with 
delay-insensitive methods. 

A methodology for the design of modules for use in delay-insensitive 
networks has been proposed in [35, 36, 102, 103, 129]. This methodology 
is founded on I-nets (for interface nets), a model based on Petri nets [108, 
113]. Note that a second methodology based on Petri nets, namely that 
of signal transition graphs (STGs), is discussed in Section 15.6. STGs and 
I-nets have many similarities, which we discuss in Section 15.6. 

I-nets are used as a formalism for specifying behaviors3 of modules. An 
I-net is a directed graph with two types of nodes: places, denoted by circles, 
and transitions, denoted as bars. The graph is bipartite, with places con
nected by directed edges only to transitions and transitions connected only 
to places. A place may hold a finite number of tokens, denoted by small 
black dots inside the place's circle. If there is an edge from a place p to a 
transition t, then p is an input place of t. Similarly, if there is an edge from 
t to p, then p is an output place of t. A marking of an I-net is an assignment 
of tokens to places. Two simple I-nets are shown in Figure 15.5. 

A transition is enabled when each of its input places contains at least one 
token. An enabled transition may fire by removing a token from each of its 
input places, and putting a token in each of its output places. A sequence 
of firings of single transitions in an I-net is called an execution of the I-net. 

The left part of Figure 15.5(a) shows the symbol for a JOIN element with 
inputs Xl and X2 and output O. Starting from a stable state, the element 
produces an output change only after both of its inputs change. Since the 
inputs may change at different times, the JOIN provides a very basic syn
chronization function. The right part of Figure 15.5(a) shows an I-net for 
the JOIN and a simple environment. Similarly, Figure 15.5(b) shows the 

3Here we use the word "behavior" in its intuitive sense and not in the formal 
sense of Chapter 11. 
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(a) (b) 

FIGURE 15.5. Examples of I-nets: (a) JOIN, (b) MERGE. 

symbol for a MERGE element along with an I-net for the MERGE and a sim
ple environment. In the MERGE element a change in either input produces 
a change in the output. More details about the operation of these I-nets 
are provided below. 

In Figure 15.5 the transitions labeled Xl and X 2 are enabled in both 
I-nets. For the JOIN element, once transitions Xl and X 2 have fired, there 
are tokens only in places 3 and 4. At this point the 0 transition is enabled; 
once it fires, the I-net returns to the pictured state. For the MERGE element, 
either Xl or X2 can fire, but not both, because the firing of either transition 
removes the input token, disabling the other transition. After Xl or X 2 

fires, 0 becomes enabled. Its firing returns the graph to the pictured state. 
To relate I-nets to circuits, we associate signal labels with the I-net tran

sitions. Thus every firing of an I-net transition corresponds to a signal 
transition on the corresponding signal wire. Note that a given label may 
appear on several transitions. An I-net not only determines the proper 
functioning of the module being specified, but also determines how the en
vironment of the module must behave. For example, the environment for 
the JOIN element is required to produce exactly one transition on both the 
Xl and the X 2 wires between any two transitions on the 0 output. The 
MERGE element restricts the environment to exactly one transition on one 
of Xl and X 2 between any two 0 transitions. Of course, the I-net is not 
a complete specification of the environment but only a description of its 
interaction with the module in question. Any environment that fulfills the 
specified sequences on the module inputs and outputs may be used. For 
example, one input of a MERGE element could be connected to the out
put of a JOIN, the other input could be kept fixed, and the output of the 
MERGE could be connected to the Xl input of the JOIN, without violating 
the environment specification. 
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o 

(a) 

o 

(b) 

FIGURE 15.6. State graphs for JOIN: (a) ISG, (b) EISG. 

To find a circuit corresponding to an I-net specification, an interface state 
graph (ISG) is first derived from the I-net. This graph shows the states the 
interface can assume and describes the allowed state changes. For example, 
in the JOIN, the initial state of the ISG corresponds to the marking of 
places 1 and 2; this is denoted as state {I, 2}; see Figure 15.6. If Xl fires, 
we reach state {2,3}, and, if X 2 fires, we reach {1,4}. These two states 
have only one possible successor state {3,4} reached after both Xl and X2 

have fired. In turn, state {3, 4} can only be followed by state {1,2}. Each 
edge between two states in an ISG is marked by the transition that causes 
the corresponding state change. Thus, we have the edge labeled Xl from 
state {I, 2} to state {2, 3}, etc. 

The ISG describes all possible transitions of interface signals. This in
formation must be converted to a representation based on logic levels that 
are used in digital circuits. This is done by constructing an encoded ISG 
(EISG) , from the ISG. The designer has to choose an initial state for all 
the signals. In the case of the JOIN, we can use state X l X2·O = 00·0. From 
here on, we follow the ISG in order to develop the state transitions in the 
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TABLE 15.2. Table of combinations for JOIN. 

XI X20 0' 
000 0 
001 0 
010 0 
011 1 
100 0 
101 1 
110 1 
111 1 

EISG. Thus, if a transition of signal Xl occurs, we reach EISG state 10·0. 
Similarly, if X 2 changes, we have state 01·0. The complete EISG is shown 
in Figure 15.6(b). 

The EISG is an expanded version of the ISG. Each state of the ISG 
corresponds to one or more states in the EISG. This "state-splitting" is 
often necessary, because the EISG must make a distinction between a rising 
transition on a wire and a falling transition on the same wire, whereas no 
such distinction is needed in the ISG. In the example of Figure 15.6, every 
state in the ISG is split into two states in the EISG. Finally, there are ISGs 
for which no valid EISG can be created. We will return to this topic shortly. 

Note that, in general, if a valid EISG can be created, it is a restricted type 
of behavior (where we now use the word in the formal sense of Chapter 11). 
The total state is completely determined by the state label. Furthermore, 
only single input changes are permitted. (Concurrent input changes are 
represented as interleaved changes, as demonstrated by the JOIN element.) 
A table of combinations specifying the next value of the output in terms of 
the present values of the inputs and the output can be constructed directly 
from an EISG as follows. In any static state, the output should keep its 
old value. In any dynamic state, the output should change. If an input
output combination does not occur in the EISG, a "don't care" value is 
assigned to the next output. For the case of the JOIN, we find the function 
of Table 15.2. The next value 0' of the output should be the same as its 
present value 0 in the static states 00·0, 01·0, 10·0, 11·1, 01·1, and 10·1. 
For those states, we simply copy the value of 0 to 0'. For the two dynamic 
states, we complement the value of 0 to obtain the value of 0'. From such 
a table, we can find a Boolean expression for the output, using standard 
methods of simplification. In the case of the JOIN we find 

0' = XIX2 + XIO + X 20. 

The module can now be implemented by the two-level combinational circuit 
corresponding to this expression, if we connect the 0' output to the 0 input 
of the circuit. 
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Complete algorithms describing the design steps illustrated above are 
given in [129]. Note that the algorithm for constructing an ISG from an 
I-net can be exponential in the number of places, since all the markings 
might have to be enumerated. This means that this synthesis procedure is 
inappropriate for large circuits with complex I-nets. It is, however, quite 
adequate for designing small modules. 

Before we discuss specific implementation structures, we point out that 
not all I-nets properly represent delay-insensitive circuits. For example, an 
I-net can have two consecutive firings of a transition, and the corresponding 
two consecutive signal transitions on a single wire. This constitutes a hazard 
on that wire, because the second signal transition could "catch up" to 
the first one and cancel its effect. One has to admit such possibilities, if 
no assumptions are made about component and wire delays. A module 
described by an I-net with such a hazard would not be delay-insensitive. 
Consequently, the class of I-nets must be restricted to avoid such problems. 
The so-called foam rubber wmpper constraint [103] provides an appropriate 
restriction. It states that we must be able to attach arbitrary delays to 
the input and output wires of any delay-insensitive circuit, and the new 
interface so created must behave like the original module, with no ha
zards introduced by the added wire delays. If the introduction of these 
delays allows signal-transition sequences not present in the original circuit, 
the circuit is not delay-insensitive. Note that the same requirement can 
be expressed as local constraints on ISGs, as described in [133]. Different 
formalizations have also been given by [47, 121, 140]. 

While the foam rubber wrapper constraint helps identify a specifica
tion as delay-insensitive, there are other problems that might preclude a 
proper implementation. First, as shown in the MERGE specification, an 1-
net can include a mutually exclusive choice. This presents no difficulties 
in the MERGE I-net, since the decision between firing Xl and X 2 is made 
by the environment, and the environment might have extra information 
with which to make this decision deterministically. However, modules in 
which some form of arbitration is needed are not properly handled by this 
methodology and must be handled differently [129]. The second difficulty 
arises because the I-net structures are too powerful and can define lan
guages that are not regular. Such I-nets cannot be implemented as finite
state machines. For example, an I-net can be constructed [108] to accept 
the language {aibi I i ~ O}. Care must be taken to avoid such specifica
tions. Third, the EISG generated by the algorithm may have more than one 
state with the same input/output label. Unless they are equivalent, such 
states must be distinguished by the addition of some binary internal state 
variables. An ad hoc method for doing this is presented in [129], but no 
automatic method for handling these situations is available. Note, however, 
that some of the techniques of state variable insertion developed for STGs 
(discussed in Section 15.6) are also applicable to I-nets. 
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FIGURE 15.7. Implementation structures: (a) clock-free, (b) locally clocked. 

The function obtained for the module output from the EISG is imple
mented by a circuit structure similar to those presented in Sections 15.2 
and 15.4. Two basic structures are used. The clock-free structure of Fig
ure 15. 7( a) does not follow the restrictions of fundamental-mode operation 
and permits some hazards. The effects of the hazards are eliminated in 
two steps [51J. The first step deals with hazards caused by transitions that 
are sequential in the specification but become concurrent because of circuit 
delays. For example, suppose a signal transition at an input of a MERGE 

element causes a signal transition at its output; because of wire delays 
these two transitions may arrive in reverse order in some other part of 
the circuit. The solution is to add delays to both the output and feedback 
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lines [51, 135]. In the second step, hazards due to concurrent transitions 
(i.e., transitions that are unordered in the specification) are removed. Static 
hazards can be eliminated by adding redundant product terms in the two
level realization of Boolean function [135]. Dynamic hazards are handled by 
the insertion of inertial-delay elements [135] at the outputs of certain gates. 
Note that these inertial delays can be combined with the delays necessary 
to eliminate hazards due to sequential transitions. While this approach al
lows multiple input changes (which are necessary in most delay-insensitive 
elements, including the JOIN), it significantly increases the total delay in 
the system. 

The second implementation strategy [103, 117] is similar to the locally 
clocked burst-mode circuits discussed earlier. However, instead of generat
ing a clock only when inputs arrive, a locally clocked module, Q-module, 
constantly clocks its latches, but the clock is totally internal to the module 
and is "pausable." The system behaves like a standard synchronous system. 
Inputs and state variables are latched on a regular basis, and enough time 
is allowed between clock pulses to permit the combinational logic to com
pletely settle after each input change. This structure could have the same 
problems with asynchronous inputs as does a standard synchronous circuit. 
These problems are overcome as follows: First, all flip-flops, called Q-fiops, 
are built with synchronizers-elements that can reliably latch asynchronous 
inputs. Second, since synchronizers can take an unbounded amount of time, 
the Q-flops must inform the Q-clock control when they have completed their 
operation (using the wires labeled A in Figure 15. 7(b)), so that the clock 
can be sufficiently delayed. In this way, a completely synchronous state 
machine can be reliably embedded in an asynchronous environment. 

Each of the two methods above has some disadvantages. The clock-free 
structure adds delays to the system, but it is simple. Since combinational 
modules require only small delays to be added, this model seems to be 
suitable for such modules. On the other hand, the locally clocked module 
has the added logic and delay of a rather complex latching structure. 

15.6 Signal Transition Graphs 

Signal transition graphs (STGs), were introduced in [33, 34]; signal graphs, 
a model almost identical to STGs, were introduced independently in [118]. 
These models have received considerable attention. Like I-nets, STGs spec
ify asynchronous circuits by Petri nets [108, 113] with transitions labeled 
by signal names. When a labeled transition fires, the corresponding sig
nal changes in the circuit. In contrast to I-nets, many STG methodologies 
attempt to achieve greater automation of the synthesis process and avoid 
exponential complexity by restricting the types of Petri nets allowed. It 
should be pointed out that by limiting the class of Petri nets one may also 
limit the class of circuits that can be designed. 
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FIGURE 15.8. Illustrating marked graphs: (a) a marked graph; (b) STG/MG. 

The simplest major class of STGs is the class STG /MG corresponding 
to Petri nets that are marked graphs [64], where a marked graph is a Petri 
net in which each place has at most one input transition and at most one 
output transition. In such a graph, tokens can be removed from a place only 
by firing its one output transition. Therefore, once a transition is enabled, 
it can be disabled only by firing. Consequently, choice cannot be modeled, 
where by choice we mean a situation in which either event A or event B, 
but not both, can occur. 

Consider the marked graph of Figure 15.8(a). The following conventions 
are used when such graphs are treated as STGs. The transition labels in
dicate not just the signal names, but also the transition types, either rising 
(+) or falling (-). Thus, when a transition labeled X+ (respectively X-) 
fires, the signal X changes from 0 to 1 (respectively from 1 to 0). Transi
tions on input signals are also distinguished by underlining; however, we 
need not use this notation, since our inputs are called Xi and our outputs 
are OJ. 

In the graphical representation of an STG, a labeled transition is replaced 
by its label, and places with one input and one output are omitted. Tokens 
in places that are so omitted are placed on the corresponding edges. Thus, 
the Petri net (here also a marked graph) of Figure 15.8(a) is redrawn as an 
STG in Figure 15.8(b). 
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FIGURE 15.9. Illustrating marked graphs, continued: state graph. 

State graphs can be associated with STGs in a manner similar to the one 
we have described for I-nets. The initial state corresponding to the marking 
shown in Figure 15.8(b) is X .010 2 = 1·00. The state graph of this STG is 
shown in Figure 15.9. 

To permit the modeling of choice, STGs can be extended in two ways. In 
an input-choice STG (STGllC), places are allowed to have multiple input 
and output transitions; however, if two transitions share the same input 
place, then they cannot have any other input places, and they must be 
labeled by input signals. These STGs are also known as free-choice STGs. 
An example of an STG/IC is given in Figure 15.10(a). The transitions 
labeled xi and xi share a place. Note that we are not allowed to change 
either of these labels to an output label. Also, we are not permitted to 
add another edge leading from another place to xi or Xi. A non-input
choice STG (STGINC) allows all of the constructs of STG/ICs, as well 
as "non-input" choice. As shown in Figure 15.1O(b), two output-signal or 
internal-signal transitions can share a common input place, but must then 
have no other input places. Moreover, the model is extended by the addition 
of labels on the outgoing edges of places with choice. The label for an edge 
leaving a given place with choice is either a signal name (C in the figure) 
or its complement (C). The transition reached by an edge labeled C can 
fire only if C = 1. In an STG/NC we must ensure that, when a place with 
non-input choice has a token, exactly one of the outgoing edge labels is 1, 



334 Chapter 15. Design of Asynchronous Circuits 

0+ 

A 
x+ X+ 

1 2 

V 
x+ 

A 
0+ 0+ 

1 2 

0-

(a) (b) 

FIGURE 15.10. Choice in STGs: (a) input choice; (b) non-input choice. 

and none of the edge signals can change before the choice is made. Thus, it 
is always clear which of the two transitions should fire. Also, input-signal 
transitions are not allowed as part of a non-input choice, except as edge 
labels, though input choice is allowed in the form described for STG JICs. 

To design useful circuits from STGs we often impose some restrictions on 
the STGs. An STG is live if it is possible to fire every transition from every 
reachable marking. The STG in Figure 15.11(a) is not live because once 
transition ot has fired it can never fire again. An STG is safe if no place 
or edge can ever contain more than one token. The STG in Figure 15.11(b) 
is not safe [145], because the edge from xi to ot has two tokens after 
the firing sequence ot, Xi:, 0:;, xi. An STG is persistent if for each edge 
A * -+ B*, where S* denotes either S+ or S-, there must be other edges 
that ensure that B* fires before the opposite transition of A*. The STG in 
Figure 15.11(c) is not persistent, since there is an edge Xi -+ ot, yet Xl 
can fire before ot does. Note that input signals to an STG are generally not 
required to satisfy the persistency condition in the following sense. If A * -+ 

B* , where B is an input, we do not care if the transition opposite to A * fires 
before B*; it is assumed that the environment guarantees the persistency 
of B*. An STG has a consistent state assignment if the transitions of a 
signal S strictly alternate between S+ and S-, i.e., the STG attempts to 
neither raise a signal that is already high nor lower a signal that is already 
low. Consistent state assignment is a necessary condition for realizability. 
The STG in Figure 15.11( d) does not have a consistent state assignment, 
since two 0+ transitions can occur without an intervening 0-. An STG 
has a unique state assignment if no two of its markings have identical values 
for all the signals. Note that the value of a signal can be determined by 
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FIGURE 15.11. STGs violating various properties: (a) liveness; (b) safety; (c) 
persistency; (d) consistency of state assignment; (e) uniqueness of state assign
ment and single-cycle transitions. 

looking at the next reachable transition of that signal. If the next transition 
is S+ (respectively S-), the signal's current value is 0 (respectively 1). The 
STG in Figure 15.11(e) does not have a unique state assignment, since the 
signal values are X 1 X 2 ·0 = 10·0 both in the initial marking and in the 
marking with a token on the edge X:; ---4 0+. Finally, an STG has single
cycle transitions if each signal appears in exactly one rising and exactly 
one falling transition. The STG in Figure 15.11(e) does not satisfy this 
condition, since both 0+ and 0- appear twice. 

Except for the consistent state assignment property, the restrictions 
listed above are not necessary for realizability. However, they often lead 
to efficient circuit generation. As we will see, efficient algorithms for ensur
ing most of these requirements have been developed. 

The substantial restrictions imposed on the allowable Petri-net con
structs-the restricted classes STG/MG, STG/IC, and STG/NC, as well 
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as the conditions illustrated in Figure 15.11-are justified only if they lead 
to better design algorithms. We have seen that I-nets constitute an example 
of automatic generation of circuits from rather general Petri-net specifica
tions, as long as we are willing to pay the cost of potentially exponential-size 
state graphs. The same technique, of generating the underlying state graph 
from a Petri net, then finding the implied functions, and realizing the func
tions represented in it, applies also to STGs. Moreover, techniques have 
been developed to implement STGs without exponential state blowup. 

One of the most intuitive approaches is contraction [33J. From an STG/IC 
we generate a circuit that is live, safe, persistent, and has a consistent 
unique state assignment, and single-cycle transitions. We do this by remov
ing from the STG IIC all the transitions that do not directly impact the 
signal being synthesized. For example, consider the STG of Figure 15.12(a) 
and its state diagram shown in Figure 15.12(b). The incoming arrow at the 
top of Figure 15.12(b) designates the initial state, which is X 1X 2 ·010 2 = 
00·00. To save space, the state labels are not shown; however, they are 
easily reconstructed. 

To reduce the exponential blowup in the size of the state diagram, we will 
synthesize a circuit for each of the two outputs from contracted STGs, as 
described below. First, we synthesize the logic for output 0 1 ; in that case, 
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FIGURE 15.12. Contraction: (a) STG A; (b) state diagram of A. 
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FIGURE 15.13. Contraction: (a) contracted STG for 0 1 ; (b) state diagram. 

output O2 can be ignored, except to the extent that it affects 0 1 • Since 
the transitions xi and Xi do not affect 0 1 directly, they are removed. 
Because there are some sequencing constraints between 0 1 and O2 , the 
transitions ot and 0; are kept; they are shown connected by dashed edges 
in Figure 15.13(a). The state diagram corresponding to the contracted STG 
is shown in Figure 15.13(b). Note that there are only eight states, while the 
original state diagram has 16. 

Next, we contract the original STG with respect to O2 • The result is 
shown in Figure 15.14(a), along with the corresponding state diagram. 
Again, we have eight states instead of 16. In more complex examples one 
can expect more significant savings. The complete circuit implementation 
for the original STG consists of the network of components obtained by 
the contractions. 

An algorithm for converting an STG/NC into an STG/IC has been devel
oped in [33]. This method both requires and preserves all of the restrictions 
listed above, except that single-cycle transitions are no longer guaranteed. 
In cases where transitions remain single-cycle, the contraction strategy can 
be used to implement STG/NC circuits efficiently. 

Several other researchers have developed efficient algorithms for STG 
transformation and synthesis. As described above, the algorithm of [33] 
requires that the STG to be synthesized not only be persistent, but also 
obey several other restrictions, including unique state assignment. In [137] 
algorithms are included to transform a live STG/MG with single-cycle 
transitions to achieve both persistency and unique state encoding. In [87] 
a method is described for transforming a live, safe STG /MG with single-
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FIGURE 15.14. Contraction: (a) contracted STG for O2 ; (b) state diagram. 

cycle transitions to a persistent STG with unique state assignment, and 
then generating an implementation by an efficient algorithm that requires 
no state graph construction. This theory is extended in [86] to test for 
"realizable" state encoding in live, safe STG IICs. Instead of requiring that 
no two states have identical values for all signals-as is the case with unique 
state assignment-realizable state encoding allows two states to have the 
same signal values, as long as the same non-input transitions can occur from 
both states. However, the input transitions can differ, since the environment 
is assumed to have additional information to resolve the ambiguity. 

If the exponential cost of state graph construction can be tolerated, sev
eral other algorithms are of interest. In [3] speed-independent circuits are 
designed from state graphs using simple gates, such as ANDS, ORS, and 
C-ELEMENTs. This removes the difficulty in [33] of computing an arbitrarily 
complex function without internal hazards. The gates used in [3] may have 
high fan-in; this problem is addressed in [4]. Instead of speed-independence, 
[78] presents an approach to implementing live, safe STG/ICs with unique 
state assignments in a bounded-delay model. Note that these STGs do not 
have to be persistent and can have non-single-cycle transitions. These cir
cuits have a structure similar to the Huffman circuits described earlier, with 
sum-of-products expressions implemented with AND and OR gates. These 
sum-of-products circuits are used by RS flip-flops, which are assumed to be 
somewhat immune to dynamic hazards on their inputs. Delays are added 
to avoid some hazards; [80] uses a linear-programming algorithm for op
timal insertion of delays. The problem of delay-fault testing is addressed 
in [75]. Both [79] and [138] handle state-variable insertion, the former per-
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mitting live, safe STGjICs, the latter allowing any state graph that is finite, 
connected, and has a consistent state assignment. Finally, we refer the in
terested reader to [81] for a comprehensive treatment of the STG design 
methodology. 

15.7 Change Diagrams 

Change diagrams (CDs) [76] are similar to STGs. Like an STG, a CD 
has vertices labeled by signal transitions and edges that define the al
lowed sequences of transition firings. However, as shown in Figure 15.15, 
there are two types of edges: "strong-precedence" (solid lines) and "weak
precedence" (dashed lines). Furthermore, strong precedence edges can be 
either ordinary or "disengageable" (solid lines with crosses). Like an STG, 
a CD has an initial marking of tokens on its edges. Note the incoming edge 
to the vertex labeled Xi. It is assumed that such an edge has a token 
initially, and this token is used only to start the operation of the CD. 

(a) (b) 

FIGURE 15.15. Illustrating change diagrams: (a) a CD; (b) its state graph. 
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The input edges to any node are either all strong-precedence or all weak
precedence. Strong edges can be thought of as AND-edges, since a transition 
with strong-precedence input edges cannot fire until all of these edges have 
tokens. Thus, strong-precedence edges are like the edges in STGs. Weak 
edges are oR-edges, in that a transition with weak-precedence input edges 
can fire whenever anyone of these edges has a token. When a transition 
fires, a token is removed from each of its input edges and a token is placed 
on each of its output edges. Since a transition with weak-precedence input 
edges can fire before all these edges have tokens, tokenless edges may have 
negative tokens assigned to them; this is indicated by small open circles. 
When a (positive) token arrives at an edge with a negative token, cancel
lation occurs. Disengageable edges can fire only once; after such an edge 
fires, it is considered removed from the CD. Thus, disengageable edges can 
be used to connect an initial, nonrepeating set of transitions to an infinitely 
repeating cycle. 

We illustrate the operation of a CD by the example of Figure 15.15. 
Initially, only transition xt is enabled. When it fires, Xl will remain 1 for 
as long as the CD is in operation. When the CD is no longer needed, X I 
will be reset by some means that are not part of the model. After xt fires, 
the two disengageable edges have one token each. We see that ot and ot 
are both enabled. If ot fires and then ot, the firing sequence can proceed 
just as it would in an STG. Thus, at can fire and remove both tokens 
from the dashed edges. The transition xi is now enabled, and so on. On 
the other hand, consider the situation after ot has fired, but ot has not. 
Because at has weak-precedence input edges, it can now fire, removing 
the token on the edge ot --+ ot and creating a negative token on the edge 
ot --+ Ot. Now, when at fires, a positive token is introduced on the edge 
at --+ ot, canceling the negative token. The CD specifies that ot may fire 
after at has fired, or at has fired, or both ot and at have fired. But, in 
all these cases, ot should fire only once. If negative tokens were not used, 
the sequence (xt, at, at, at) could be followed by another firing of at· 
The complete state graph corresponding to the CD of Figure 15.15(a) is 
shown in Figure 15.15{b). The state is XIX2·010203, and the edge tags 
are not shown. 

Disengageable edges are an improvement over the STG model, since they 
allow the modeling of initial, nonrepeating transitions; this is not possible 
in STGs. Also, many of the restrictions that are placed on STGs are not 
present in CDs. Thus, liveness-which requires all transitions to potentially 
fire infinitely often-is replaced by the requirement that all transitions must 
be able to fire at least once. Persistency-which requires that the opposite 
transition of a given transition t not fire until all transitions enabled by 
t have fired-is replaced by the requirement that an enabled transition 
can only be disabled by its firing. Other constraints include certain con
nectedness properties and alternation of positive and negative transitions 
on every signal. All of these CD correctness constraints can be checked in 
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time polynomial in the size of the CD. The method used to verify that 
these conditions hold is to unroll a cyclic CD into an acyclic, infinite CD. 
It can be shown that only the first n periods in this unrolling need to be 
considered, where n is the number of vertices in the original CD. 

Unfortunately, the CD model has some disadvantages. For example, it 
cannot represent a XOR gate. Weak-precedence edges can model the fact 
that either input to a gate can cause its output to change, but then the 
other input has to change twice before it can have an effect on the output, 
because the first change serves only to cancel the negative token. Also, CDs 
are unable to specify the type of choice where two different transitions can 
remove a token from a shared place. 

15.8 Protocols in DI Circuits 

As has been stated earlier, delay-insensitive circuit design assumes that 
the delays in both components and wires are unbounded. It should be no 
surprise that this assumption has a great impact on the resulting circuit 
structure. In bounded-delay models, we assume that, given enough time 
after an input change, a circuit will reach a stable state, and a new in
put change can then be safely applied. With a delay-insensitive model, no 
matter how long one waits, there is no guarantee that the input change 
has been properly received and processed by the circuit. This forces the 
receiver of a signal to inform the sender, by an acknowledge signal, that 
the information has been received. The sender, in turn, is required to wait 
until it gets the acknowledge signal before sending a new signal. 

In the so-called two-phase handshaking protocol, a request transition is 
sent from the sender to the receiver, and then an acknowledge transition 
is returned by the receiver to the sender. Assuming the request (r) and 
acknowledge (a) wires are both 0 initially, they both become 1 after one 
cycle of the protocol. Thus the first cycle results in the following r·a states: 
0·0, 1·0, 1·1. The next cycle returns both wires to low: 1·1, 0·1, 0·0. 

Some methodologies use a Jour-phase handshaking protocol in order to 
return the request and acknowledge wires to their original values after every 
cycle. Thus one cycle results in the following r·a states: 0·0,1·0,1·1,0·1,0·0. 
Although four-phase handshaking appears to require twice as much time, 
because twice as many transitions are sent, in most cases computation time 
dominates communication time. In addition, the second half of the four
phase handshaking can often be done concurrently with computations, thus 
improving performance. Finally, since only a rising edge initiates a commu
nication, four-phase circuit structures can be simpler than their two-phase 
counterparts. Altogether, these properties makes four-phase handshaking 
competitive. 

Delay-insensitive design also requires a new way of passing data. In syn
chronous circuits, the value of a wire is assumed to be correct by a given 
time (for example, when the clock pulse arrives), and can be safely used 
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FIGURE 15.16. Data transfer: (a) transition signaling, (b) bundled-data method. 

at that time. In delay-insensitive circuits, there is no guarantee that a wire 
will reach its proper value by any specific time. Thus, a transition must be 
sent to inform the receiver of the new value. With transition signaling, a 
bit of data cannot be transferred by a single wire, because the opposite of a 
transition-no transition-cannot be distinguished from a delayed transi
tion. Thus two wires are required from sender to receiver to transfer a data 
bit, with the wire on which a transition occurs determining the value being 
transmitted. For example, the two wires could be labeled X.O and X.1, with 
a transition on X.O indicating the data bit is a 0, and a transition on X.1 
indicating the data bit is 1; see Figure 15.16(a). Other variations on this 
theme are possible [139], but are beyond the scope of this discussion. Both 
two-phase and four-phase protocols can be implemented with a two-wire 
scheme. A two-phase communication requires a single transition on one of 
the two wires, whereas a four-phase protocol requires two. In both cases 
an additional wire is required to send acknowledgments back to the sender, 
though only one such wire is needed for multi-bit communications. 

The so-called bundled data method of data transfer allows fewer wires to 
be used, but violates the delay-insensitive model. It allows a single wire for 
each data bit, and one extra control line for each data word. It is assumed 
that the delay in the extra control wire is longer than the delay in each 
of the data wires. Thus, when a transition appears on its control wire, the 
receiver knows that the values on the data lines have already arrived; see 
Figure 15.16(b). 

As we have seen, the assumption that element and wire delays are un
bounded leads to complications in the signaling protocols. However, these 
methodologies do overcome some of the problems found in bounded-delay 
models. The unbounded-delay assumption also has the desirable effect of 
separating circuit correctness concerns from concerns about specific delay 
values. Consequently, timing improvements, such as delay optimization by 
transistor sizing, can be applied without affecting circuit correctness. 
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In Section 15.5 we have described a methodology for designing delay
insensitive modules. Once a set of such modules is available, the design 
of asynchronous networks consisting of such modules is free of timing con
straints. Of course, the modules have to be properly operated. For example, 
a JOIN element cannot be used in the same place as a MERGE, since the first 
requires two input transitions between any two output transitions, while 
the second requires only one. However, such restrictions are much simpler 
than those of most other methodologies, and it is usually clear which mod
ule needs to be used from the functionality required. 

In the next three sections we describe techniques for designing delay
insensitive networks, assuming that suitable modules are available. 

15.9 Ebergen's Trace Theory Method 

A method for delay-insensitive circuit design has been proposed by Eber
gen [46, 47]. The method uses a unified model for both module specification 
and circuit design, and is based on trace theory, a model similar to regular 
expressions. In the following, we do not use Ebergen's notation, but one 
that is closer to the notation in this book. 

A trace structure is a triple T = (X, 0, L), where X is the input alphabet 
of T, ° is the output alphabet of T, and the language L ~ (X U 0)*, called 
the trace set of T, describe a desired circuit functionality. The set A = xuO 
is the alphabet of T. Each symbol in the alphabet corresponds to a signal 
in the circuit, and the appearance of the symbol in a word represents a 
transition on that signal. 

The following operations are defined on trace structures. Given trace 
structures T = (X, O,L) and T' = (X', 0', L'), we define 

• concatenation: TT' = (X u X', ° u 0', LL'); 

• union: T U T' = (X u X', ° U 0', L U L'); 

• star: T* = (X,O,L*); 

• pref: prefT = (X,O,prefL), where prefL is the set of all prefixes of 
words in L; 

• restriction to a subalphabet, also called projection: 

TtB = (XnB,OnB,{wtB I w E L}), 

where wtB is w with all the letters that are not in B removed; 

• and weave: TilT' = (X u X', ° U 0', L11), where 

LII = {w E (A U A')* I wtA ELand wtA' E L'). 
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The operations concatenation, union, and star on languages are the same 
as those used in regular expressions. We have already used the prefix oper
ation and the restriction to a subalphabet in Chapter 11. Restriction to a 
subalphabet is an important tool for hierarchical construction of circuits. 
When a circuit is constructed from components, some symbols are used 
internally to interconnect the components, but are not associated with any 
external symbols. Such symbols become internal symbols, and are removed 
when the external properties of the network are described. The weave rep
resents "synchronization on common symbols." To illustrate this, consider 
the trace structures T = ({a}, {c}, {ac}) and T' = ({b}, {c}, {bc}). The 
weave of T and T' is then TilT' = ({a, b}, {c}, {abc, bac}). Note that the 
traces ac from T and bc from T' are both consistent with the trace abc of 
TilT', and that they are synchronized by the occurrence of c. 

To have a convenient finite representation of the set of all possible in
put/output sequences, Ebergen uses the language of commands. Commands 
are similar to regular expressions. The atomic commands are: 0, c, a?, 
a!, and a, for each a E A. They represent the trace structures: (0,0,0), 
(0,0, {c}), ({a}, 0, {a}), (0, {a}, {a}), and ({a}, {a}, {a}), respectively. Gen
eral commands are constructed from atomic commands with the use of the 
trace-structure operators above. We use the following order of operator 
precedence to simplify the notation: star, followed by prej, followed by 
concatenation, followed by union and weave at the lowest level. 

We illustrate the command language with the JOIN element of Figure 
15.5(a). The JOIN can be described by the command prej(Xl ?0!IIX2 ?O!)*. 
The concatenation operations enforce that an input precedes the output. 
The fact that output 0 is shared between two commands in the weave 
synchronizes them, ensuring that both inputs occur before the output can 
occur. The star allows the JOIN to repeat this protocol an arbitrary number 
of times. The prej permits any prefix of the complete protocol to be defined 
as a valid trace. Note that the JOIN element can also be described by the 
commands prej((Xl ?IIX2 ?)O!)* and prej(Xl ?X2 ?O! U X 2 ?X1 ?O!)*. 

As we have stated earlier, one of the advantages of the trace method
ology is that both the circuit to be synthesized and the basic modules 
used to implement it are represented in the same model. Most of the basic 
elements used in this methodology are shown in Figure 15.17. WIRE and 
IWIRE represent connections between two terminals. In a WIRE the envi
ronment must produce the first transition, whereas in the IWIRE the first 
transition comes from the component. Otherwise, the two components are 
very similar in that their input and output transitions alternate. The WIRE 

and IWIRE are specified by the commands prej(X?O!)* and prej(O!X?)*, 
respectively. The FORK is self-explanatory; it can be described by the com
mand prej(X?(01!II02!))*. We have already discussed the JOIN above. The 
TOGGLE element, introduced in Chapter 13, can be specified by the com
mand prej(X?01!X?02!)*. In Figure 15.17, the small dot indicates the 
output that changes in response to the first input transition. We have dis-
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FIGURE 15.17. Basic elements. 

cussed the MERGE earlier in connection with I-nets; it can be specified by 
preJ((X1? UX2 ?)O!)*. Notice that the trace theory representations of com
ponents are more compact than those of our behavior model, since only 
transitions are recorded in trace theory, whereas we also include the signal 
levels in behaviors. Compare, for example, the command specifications of 
the JOIN and TOGGLE elements with the corresponding behaviors in Chap
ter II. 

The C-ELEMENT is similar to the JOIN, except for the fact that an input 
transition can be "withdrawn" by a second transition on the same input. 
The C-ELEMENT can be specified by the command4 

preJ((X1?)2 U (X2?)2 U (Xl?IIX2?)0!)*. 

4Recall that w2 is a shorthand for ww. 



346 Chapter 15. Design of Asynchronous Circuits 

Note that the trace set of the JOIN is a subset of the trace set of the 
C-ELEMENT. The astute reader will note that the C-ELEMENT is not delay
insensitive. This issue is discussed later. The RCEL is a delay-insensitive re
placement for the C-ELEMENT. It has the same functionality as the C-ELEMENT 

but also acknowledges all inputs to Xl and X 2 by outputs 0 1 and O2 , re
spectively. It can be specified by 

prej((Xl ?01!)2 U (X2?02!)2 U (Xl?(Ol!IIO!) II X2?(02!110!)))*. 

The SEQUENCER is a mutual exclusion element that passes a single input 
transition from Xl to 0 1 or from X 2 to O2 for each transition on S. Thus, 
a single output transition is generated for each S transition, and there must 
always be at least as many Xl transitions as 0 1 transitions, and at least 
as many X2 transitions as O2 transitions. The following is a specification 
for the SEQUENCER: 

To synthesize a circuit using trace theory, we first specify the desired 
behavior by a set of traces denoting its input-output sequences. Note that 
trace sets do not necessarily correspond to delay-insensitive behaviors. For 
example, prej(O!O!) has an output hazard. To prevent this, Ebergen has 
proposed a test for delay-insensitivity that is similar to the foam rubber 
wrapper property; he also defined a command grammar that generates only 
delay-insensitive trace sets. Note that, although it is conjectured that this 
grammar cannot represent all possible delay-insensitive circuits (the RCEL 

has not been successfully represented [46]), it seems to handle most circuits. 
Once the desired circuit is specified by a delay-insensitive trace structure, 
it can be realized using the components shown in Figure 15.17 with the aid 
of a syntax-directed translation scheme. In this approach, a complex trace 
structure is decomposed into a network of several simpler trace structures. 
Successive applications of such decomposition eventually yield a set of trace 
structures directly implementable by the basic components. 

To illustrate this approach, we describe a half-adder that would normally 
have 1-bit inputs X and Y and 1-bit outputs S (sum) and C (carry). Each 
of these signals is represented in the two-wire scheme; thus, X is represented 
by X.O and X.1, etc. The half-adder can be specified by the trace structure 

prej((X.O?IIY.O?)(S.O!IIC.O!) U 

(X.O?IIY.1?)(S.1!IIC.O!) U 

(X.1?IIY.O?)(S.1!IIC.O!) U 

(X.1 ?11Y.1 ?)(S.O!lIC.1!))*. 

In this specification, both the two inputs and the two outputs occur in 
parallel. We can decompose this trace structure into a weave AIIB of two 
trace structures A and B (defined below), one without parallel outputs 
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and one without parallel inputs. This is done by introducing the auxiliary 
signals qo, ... ,q3 as follows: 

A = pre/((X.O?IIY.O?)qo! U (X.0?11Y.1?)ql!U 

(X.1?IIYO?)q2! U (X.1?IIY1?)q3!)*; 

B = pref(qo ?(S.0'lIC.O!) U ql ?(S.l!IIC.O!)U 

q2 ?(S.l'1IC.O!) U q3 ?(S.O'lIC.1!))*. 

The command A is recognized as a specification for a 2 x 2 JOIN (also 
called a "decision wait" element); see the left component of Figure 15.18. 
Informally, the 2 x 2 JOIN has two "horizontal" inputs X.O? and X.1? and 
two "vertical" inputs YO? and Y1? It expects one horizontal and one 
vertical input. It has four outputs qo!, ... , q3!; upon receiving X.i? and 
Yj?, the 2 x 2 JOIN produces output qk!, where k is the decimal integer 
represented by the binary pair (i,j). The 2 x 2 JOIN can be decomposed 
further into simpler components; this decomposition is nontrivial, and we 
refer the reader to [46]. 

It can be verified that the command B can be implemented by three 
MERGE elements, as shown in Figure 15.18. 

While trace structures provide a theoretical basis for the design of delay
insensitive circuits, they have some disadvantages. The first has been al
luded to earlier-one of the elements commonly used in the synthesis pro
cedure (the C-ELEMENT) is not delay-insensitive, since two transitions on 
a single input wire may occur without an intervening output. One solu
tion proposed by Ebergen is to replace this with an RCEL, which is similar 
to a C-ELEMENT except that it has two extra outputs to acknowledge all 
input transitions. It is not clear whether the added complexity of this ele
ment would be justified in practical designs. The second solution is to add 
isochronic forks to the model; these are forks in which the difference in the 

YO? Y1? 

X.O? M C.O! 

f--t-*------I~ S.l! 

X.1? S.O! 

L-____ ~ C.1! 
2 x 2 JOIN 

FIGURE 15.18. A decomposition of a half-adder. 
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FIGURE 15.19. Illustrating the use of an isochronic fork. 

delays between the two output branches is negligible. For example, consider 
the command 

It can be implemented by a relatively complex circuit consisting of several 
components [46]. It can also be implemented by two C-ELEMENTs and a 
fork, as shown in Figure 15.19. The fork must be isochronic; otherwise, the 
transition on the Xo? wire going to the C-ELEMENT that has not received 
its second input would not be acknowledged, thus creating the possibility 
of a hazard. With isochronic forks, we can safely use C-ELEMENTS; how
ever, circuits so designed are no longer fully delay-insensitive. We return 
to isochronic forks in Section 15.10. 

The second issue is the low-level nature of the command language, which 
makes command specifications difficult to understand. Most of this diffi
culty can be attributed to the weave operator. The reader should note, 
however, that without the use of some operator like the weave, the size of 
a specification would be exponentially bigger than the size of the corre
sponding specification with weaves. Also, any parallel operator is likely to 
be seen as difficult initially. In any case, the specification of a large circuit, 
such as a microprocessor, at the level of individual transitions is rather 
impractical. Adding a more understandable high-level language above the 
trace structure methodology would significantly increase its attractiveness. 

15.10 Compilation of Communicating Processes 

Martin's methodology [89, 91] starts with a high-level specification in the 
source language of communicating hardware processes (CHP), similar to 
Hoare's communicating sequential processes [62] and Dijkstra's guarded 
commands [43]. The language describes a behavior by specifying the re
quired sequences of communications. Several large asynchronous circuits 
have been designed and implemented using this technique [89, 91]. 

A program in CHP consists of a collection of concurrent processes com
municating over named channels. The channels have no storage capac
ity; thus communication over a channel serves as a synchronization. Each 
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process is described in terms of simple programming language constructs 
that include variables, assignments, conditional branching, looping, and 
sequencing. The only basic data type is Boolean and the only type con
structors are records and (fixed-size) arrays. 

For a Boolean variable a, the assignment a := 1 (a := 0) is abbreviated 
as a i (at). There are two general composition operators: the sequential 
operator ";" and the parallel operator "II". Intuitively, 81 ; 8 2 is interpreted 
as "first execute 81 and then 82 ," whereas 81 1182 is viewed as "execute 81 

and 8 2 concurrently." There are two types of selection operators: determin
istic and nondeterministic. The syntax is [ (G1 ---. 8 1 ) ~ ... ~ (Gn ---. 8n ) 1 
for the deterministic choice, and [ (G1 ---. 8 1) I ... I (Gn ---. 8n ) ] for 
the nondeterministic choice. The G/s are called guards and G i ---. 8 i is a 
guarded command. If a guard evaluates to true in the current state, the 
guarded statement may be executed. If we can guarantee by some means 
(for example, by environmental assumptions) that at most one guard is 
true in any state, then deterministic choice can be used. Otherwise, non
deterministic choice must be specified. Consequently, the introduction of 
arbitration is explicit in the high-level specification. We often write [G], 
instead of [G ---. skip l, where "skip" represents no operation. The state
ment [G 1 simply stands for "wait until G holds." The last programming 
construct is repetition, which is written as *[ 8], and denotes an infinite 
iteration of 8. 

Processes communicate with each other by communication commands 
on ports. A port on one process is paired with a port on another process 
to form a channel. There are one-to-one, one-to-many, and many-to-many 
channels. Normally, communications on channels serve as synchronizations. 
For example, a reader is blocked until a sender sends a message on their 
common channel. However, a probe command can be used by a process to 
determine, without blocking, whether there are data to be read. A probe 
of port A is written as A. Finally, the communication of data over channels 
is specified by input and output commands. An input command on port A 
is written as A?, whereas an output command on port B is written as B!. 

Although the language constructs are more primitive than those used in 
most programming languages, they provide a higher-level abstraction than 
many of the other approaches for describing asynchronous circuits. Further
more, they appear to provide enough flexibility to handle a large class of 
circuits [89, 91]. Unfortunately, although superficially similar to CSP and 
guarded commands, CHP does not have a formal semantics. Consequently, 
the process decomposition and translation rules used in translating a CHP 
program to an asynchronous circuit are not formally proved to be correct. 
This is a current drawback of CHP and the associated design method. 5 

SThis deficiency has been addressed to some extent in [127], where a semantics 
for a small subset of CHP and the associated transformation techniques has been 
given. However, more work is needed before all of CHP is properly defined. 
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The design methodology proceeds as follows: First the abstract specifi
cation program is refined using "semantics-preserving" transformations to 
increase concurrency, etc. For example, a purely sequential specification 
may be rewritten to introduce pipelining. The program is then rewritten 
by syntax-directed transformations into a collection of simple statements. 
Once a desirable intermediate-level program has been derived, the com
munication primitives of CHP are expanded into handshaking protocols 
using dual-rail-encoded signals. These protocols are then further refined to 
"production rules," which are guarded assignments. By imposing certain 
constraints on the production rules, one can implemented them directly as 
networks of CMOS transistors. Thus, there is a direct path from a CHP 
program to a (custom) CMOS circuit. We now illustrate this process by a 
simple example. 

S?---l 

T!---l 

Stack 
ex 
ey 

FIGURE 15.20. Abstract stack circuit. 

The task is to design a one-bit-wide stack of depth two, as illustrated 
in Figure 15.20. We do not carry out a complete design, but we do show 
how parts of the design progress from an abstract program to a transistor 
circuit. For simplicity, we assume that competing requests for pushing and 
popping the stack never arise. 6 Note that in this example, the user of the 
stack must determine whether the stack is empty or full. 

The following is a CHP program describing the stack: 

Stack == process (S? bool, T! bool) 
x,y: bool 

*[ [(5 -> (y := Xj S?x)) ~ (T -> (T!xjx := y)) II 
end 

Intuitively, the CHP program declares a stack process that communicates 
on two ports: the input port S? and the output port T!. It uses the two 
variables x and y to store the content of the stack. The probe construct 
is used to determine whether a push, a pop, or no operation is currently 
requested. If a push is requested, i.e., the probe of S becomes true, the 
process copies the current value in x to y. It then reads the value to be 
pushed and stores it in x. The pop works in a similar fashion. 

The first step in the compilation process is called process decomposi
tion and uses a divide-and-conquer strategy. Complex CHP processes are 

6The reason for this assumption is to avoid the complexity of arbitration. 
The methodology deals quite well with this issue, but the general problem is too 
complicated to discuss here. 
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Stack 
............... __ ....... . . . 

S? ---:-- StackMaster 
T! ---:-- ex 

P! Q? 

p? q! 

Reg 
ey 

.-

FIGURE 15.21. Stack process decomposed into StackMaster and Reg. 

decomposed into smaller processes. By repeatedly applying such transfor
mations, one can derive a collection of processes, each in one of only four 
distinct formats. This greatly simplifies the remaining steps in the compila
tion process. In our example, as illustrated in Figure 15.21, we decompose 
Stack into the processes StackMaster and Reg, which communicate over two 
new channels (P!,p?) and (Q?, q!). Let 

StackMaster == process(S? bool, T! bool, Q? bool, P! bool) 
x: bool 

*[ [(8 -+ (P!x;S?x)) ~ (T -+ (T!x;Q?x)) II 
end 

and 

Reg == process(p? bool, q! bool) 
y: bool 

*[ [ (15 -+ p?y) ~ (q -+ q!y) II 
end 

Altogether, we get 

Stack == process(S? bool, T! bool) 
StackMaster(S, T, Q, P) II Reg(p, q) 
channel (Q, q), (P,p) 

end 

To keep the example simple, from now on we focus on the compilation of 
the Reg process only. 

The next step in the compilation process is handshake expansion. Here, 
all commands of CHP are implemented in terms of actions on wires carrying 
Boolean signals. A four-phase protocol is used for all communication, and 
all data items transmitted through channels are dual-rail-encoded. Since 
Boolean values are to be received on port p?, two data wires and one 
acknowledgment wire are needed, as illustrated in Figure 15.22. The data 
wire pi! is used to receive the value 1, whereas the wire Pia is used to receive 
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pil pio po 
Reg 

qi qOl qoo 
'--"" '--"" 

p? .y q! 

FIGURE 15.22. Handshake expansion of Reg process. 

the value O. Similarly, for port q!, we get request wire qi and (output) data 
wires qOl and qoo. At this point we have a choice as to which process is the 
active agent (the initiator of communication) and which one is the passive 
agent. If the Reg process is active on port q!, then sending a 1 is replaced by 
qOl j; [qi]; qod; [...,qi] and sending a 0 is replaced by qoo j; [qi]; qoo!; [...,qi]. 
Intuitively, the process first raises the appropriate qo wire, waits for the 
receiving process to acknowledge the data, lowers the data signal, and waits 
for the receiver to complete the handshake protocol. On the other hand, 
if the Reg process is passive on q!, then sending a 1 uses the following 
protocol: [qi]; qOl j; [...,qi]; qOl!, and sending a 0 is similarly treated. If Reg 
is passive on p?, then receiving a 1 is replaced by [Pil];poj; [...,pil];po!, and 
receiving 0 is replaced by [Pio]; po j; [""pio]; po!. Finally, a probe of p for 
value 1 (respectively, for value 0) is simply replaced by pil (respectively, 
pio)· 

In our case, we assume that Reg is passive for communication on both 
ports p? and q!. Thus, the handshake expansion of the body of Reg yields: 

*[[ (pil ~ yj; [y];poj; [...,pil];po!) 

]]. 

~ (pio ~ y!; [""y];poj; [""pio]; po!) 
I (( qi /\ y) ~ qOl j; [...,qi]; qOl!) 
I ((qi/\ ...,y) ~ qooj; [...,qi]; qoo!) 

Intuitively, the first guarded command can be interpreted as follows: The 
process continually checks the value on the p~ wire. If pil becomes 1, the 
process assigns 1 to y. It then waits for y to become 1. Once this happens, 
the process raises the acknowledgment signal po and waits for the data 
input signal to return to 0, after which the process concludes by lowering 
po. The other guarded commands can be interpreted similarly. 

After the handshake expansion, further optimizations are often possi
ble. The most important one is the reshuffiing of communication actions. 
Intuitively, reshuffling moves the beginning of some four-phase handshake 
protocols to positions located earlier in the process. Thus processes can 
be started earlier and several processes can work concurrently; this im
proves the performance of the circuit. For brevity, we perform no further 
optimizations of the handshake expansion of Reg. 
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The final transformation of a CHP program translates the handshake 
program into a set of production rules. A production rule, written as G f-t S, 
is a guarded assignment. The guard G is a Boolean expressions and the 
assignment S is either of the form x i or x!, for some variable x. The 
behavior of a set of production rules can be summarized as follows: 

1. Nondeterministically select a production rule. 

2. Evaluate its guard. If the guard is true, update the state of all signals 
according to the assignment. Otherwise, retain the current state. 

3. Go to (1). 

Note that the nondeterministic selection is weakly fair in the sense that 
each production rule is selected infinitely often [89, 91). 

To ensure proper operation, any valid set of production rules must satisfy 
two basic requirements: stability and noninterference. A production rule 
G f-t xi is said to be stable if, whenever G holds in s, then either G or x 
must hold in each possible successor state of s. The stability of a production 
rule G f-t x! is defined similarly. Altogether, a production rule is said to 
be stable if, when its guard becomes valid, the guard continues to hold in 
every valid computation path until the assignment is performed. A set of 
production rules is stable if every production rule in the set is stable. The 
stability requirement implies freedom from hazards in the circuit. 

The second requirement, "noninterference," states that no inconsistent 
production rules are allowed. More formally, two production rules G1 f-t 

xi and G2 f-t x! that assign complementary values to the same variable 
are said to be complementary. Two complementary production rules are 
noninterfering if no state can be reached in which both G1 and G2 hold. A 
set of production rules is said to satisfy the noninterference requirement if 
every pair of complementary production rules in the set is noninterfering. 

The compilation of a handshaking protocol to production rules is the 
most difficult part in the compilation process. Part of the difficulty stems 
from the fact that we are trying to implement a sequential process (albeit 
a simple one) by a collection of very simple concurrent processes. Thus, 
the sequencing must be performed explicitly, and efficiency is difficult to 
achieve. The compilation proceeds as follows. First, the handshake process 
is syntactically translated into a set of production rules. To ensure proper 
sequencing, additional state variables are introduced, along with production 
rules involving these variables. This is done to distinguish different states 
with identical signal values. This step is referred to as state assignment, 
although it is quite different from the traditional state assignment. Once the 
state assignment has been performed, the guards of the production rules are 
strengthened until the set satisfies both the stability and noninterference 
requirements. Finally, the production rules assigning values to the same 
variable are grouped together, and a (complex) transistor cell is derived. 
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This last step is referred to as the operator reduction step. Here, further 
introduction of state variables and production rules can occur to make the 
implementation more efficient. 

In the case of the Reg handshake expansion, one verifies that each hand
shake sequence results in a different variable- and wire-state. Thus, no 
further state variables are needed for the state assignment. The syntax
directed translation of the handshake process yields the following set of 
production rules (listed in the order in which they are produced from the 
program): 

(1) pil f-+ yi 
(2) y f-+ poi 
(3) ""'pil f-+ po! 
(4) p~ f-+ y! 
(5) ....,y f-+ poi 
(6) ....,p~ f-+ po! 
(7) qi /\ Y f-+ qOli 
(8) ....,qi f-+ qOl! 
(9) qi /\ ....,y f-+ qooi 
(10) ....,qi f-+ qoo! 

If the circuit is started in the state in which all signals are 0, then the 
complementary Rules (3) and (5) are interfering. Thus, this set of produc
tion rules is not free of interference. Note that Rules (1) and (4) are not 
interfering since we assume the environment never raises both pil and pio. 
There are several ways of solving these problems, but one of the simplest 
solutions is to strengthen the guard of Rule (2) to pil/\ y, the guard of Rule 
(5) to p~ /\ ....,y, and the guards of Rules (3) and (6) to ""'pil /\ ....,pio. Note 
that these are indeed valid strengthenings since the corresponding states 
in the handshake process all satisfy these stronger conditions. After also 
merging Rules (3) and (6) (since they are now identical) we obtain the set 

(1) pil f-+ yi 
(2') pil /\ Y f-+ poi 
(3') ""'pil /\ ....,p~ f-+ po! 
(4) p~ f-+ y! 
(5') p~ /\""'y f-+ poi 
(7) qi/\ y f-+ qOli 
(8) ....,qi f-+ qOl! 
(9) qi /\ ....,y f-+ qooi 
(10) ....,qi f-+ qoo! 

One can show-using model checking for example-that this set satisfies 
both the noninterference and stability requirements. 

The only remaining step is to design some components that implement 
the production rules derived above. If we can ensure that every guard of a 
rising assignment (xi) is a conjunction of negated terms and every guard 



Section 15.10. Compilation of Communicating Processes 355 

of a falling assignment (x 1) is a conjunction of (positive) terms, then a 
one-output CMOS cell can be used for each variable in the program. In our 
case, we can add five additional variables that take on the complemented 
values of some signals, to arrive at the production rule set given by 

,pil 1--+ pili 
Pit 1--+ pill 

,pio 1--+ pioi 
pio 1--+ pio! 

,x 1--+ yi 
x 1--+ y! 

,qoo 1--+ qOoi 
qao 1--+ qoo! 

,qal 1--+ qOl i 
qal 1--+ qot! 

x 1\ qi 1--+ qal! 
,xV,qi 1--+ qOli 

y 1\ qi 1--+ qao! 
,y V ,qi 1--+ qaoi 

,pil 1--+ xi 
pio 1--+ x! 

(,pil 1\ ,y) V (,p~ 1\ ":) 1--+ poi 
pil 1\ pio 1--+ po! 

where we have deliberately grouped together the production rules that set 
and reset the same variable. We see that the first five pairs of production 
rules can be implemented as inverters, and the next two pairs as two-input 
NAND gates. The last two pairs of production rules are nonstandard. They 
can be implemented as shown in Figure 15.23. Note that there are states in 
which the output nodes are isolated. If we ensure that the stack is operated 
frequently enough (so that charge leakage does not cause any problem in 
the dynamic gates), one can verify that the CMOS cells shown in the figure 
work properly. On the other hand, if we cannot guarantee the operating 
frequency, the cell can be modified by the addition of a "staticizer" as 
was discussed in Chapter 5 in the circuit of Figure 5.9. The final circuit 
implementing Reg is shown in Figure 15.24. 
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(a) (b) 

FIGURE 15.23. CMOS cells for production rules: (a) cell A, (b) cell B. 

pio---------il(lIc 

Cell x 
A 

y 

qi----------------~.---_+----------~ 

Cell 
B 

FIGURE 15.24. Circuit derived for the Reg process. 

po 

It should be emphasized that the design methodology creates speed
independent, but not delay-insensitive, designs, since it is assumed that a 
signal connected to several cells arrives at these cells at the same time, 
i.e., that forks are isochronic. One can first assume that all the wires 
have delays and analyze the circuit under this assumption. Thus, one can 
determine which wires actually need the isochronic assumption. In this 
case, it turns out that only the forks labeled * and ** must be isochronic. In 
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practical terms, even those forks can use a more relaxed delay assumption. 
Basically, as long as the delay from pio to the N-transistor in cell A is less 
than the combined delay of the lower inverter, the complex final cell B, the 
environment, the pil inverter, and the wire to the P-transistor in cell A, the 
circuit functions properly. A similar argument can be made for the upper 
fork. Thus, in practice, the circuit is very close to being delay-insensitive. 

It is important to realize that many of the steps involved in the compi
lation process require subtle choices that may have significant impact on 
circuit area and delay. Although heuristics have been suggested for many 
of the choices, much of the effort is directed toward aiding a skilled de
signer instead of creating automatic tools. This is advantageous, because 
better decisions can often be made by humans than by programs. It does, 
however, require more informed designers than do other methods. Another 
source of problems is that circuits resulting from this synthesis process re
quire complex custom gates, and these gates cannot be easily broken down 
into simpler components. 

Work related to Martin's approach has been reported in [29], where a 
compiler was written to automatically transform concurrent programs writ
ten in a language similar to CHP to circuits consisting of standard building 
blocks, rather than custom CMOS cells. Another approach using standard 
building blocks is described in Section 15.11. 

15.11 Handshake Circuits 

A design methodology developed by van Berkel and his research group at 
Philips Research [136] uses a high-level programming language called Tan
gram and an intermediate architecture of "handshake circuits." Tangram is 
based on Hoare's CSP [62], and Dijkstra's guarded-command language [43]. 
Tangram programs are automatically compiled to handshake circuits. A 
handshake circuit is a delay-insensitive network of special components con
nected by communication channels. A component communicates with other 
components only through Request/Acknowledge messages along the chan
nels. About 20 types of components are used; they are chosen to be in close 
correspondence with operations definable in Tangram. Thus, the transla
tion of a Tangram program to a handshake circuit is "syntax-directed," 
i.e., the structure of a Tangram program is reflected in the structure of 
the corresponding handshake circuit. To complete the design, handshake 
components are implemented as VLSI circuits. 

An important advantage of using components that correspond to Tan
gram statements is the ability to estimate the area, speed, and energy 
consumption of the final VLSI circuit from the Tangram program. A given 
functional specification can be represented by several functionally equiv
alent, but structurally different, Tangram programs. By analyzing these 
programs, the designer may be able to select the most appropriate struc-



358 Chapter 15. Design of Asynchronous Circuits 

ture to match the design goals. For example, in designing a portable CD 
player, one may wish to minimize the energy consumption in order to max
imize the lifetime of the battery. 

We now give some examples to illustrate the flavor of the design method. 
A Tangram program, BUF1(a, b), for a one-place buffer capable of storing 
a Boolean value is as follows: 

(a?bool & b!bool) . I [ x : var bool I #[a?x; b!xlll, 
where the statement in parentheses is a declaration of port and channel 
variables, and the statement after the dot . represents the program behav
ior. The declaration states that a is an input port of the buffer, and b is 
its output port. Both the input and output ports are of type Boolean. The 
centered dot· separates the declaration from the behavior. The behavior, 
in this case, is defined by a "block" command, enclosed in the brackets 
'I [' and 'll'· Within the command, x is declared as a local variable of type 
Boolean, the bar 'I' is a separator, and the remaining Tangram statement 
is a command describing the program actions. The symbol # denotes un
bounded repetition. The command a?x denotes the storing of a (Boolean) 
value received on input port a in internal variable x. The command b!x 
denotes the sending of the value stored in x through port b. The semicolon 
denotes that the second command follows the first. 

Our next example illustrates the modularity of Tangram. A two-place 
buffer, BUF2 (a, c), can be specified by the Tangram program 

(a?bool & c!bool) ·I[ b: chan booll BUF1(a,b) II BUF2 (b,c) ll, 
where b is an internal channel, and BUF1(a,b) and BUF2 (b,c) are two 
instances of the one-place buffer. The output of the first buffer is connected 
to the input of the second through channel b. The communication along b 
follows CSP rules [62], in that it requires the simultaneous participation by 
receiver and sender, and has the effect of copying the value stored in the 
local variable of the first buffer into the local variable of the second. The 
fact that the two buffers operate in parallel is denoted by II. 

The following Tangram program, WA G( a, c) (for "wagging" buffer), is 
functionally equivalent to the two-place buffer: 

(a?bool & c!bool) ·I[ x,Y: var booll a?x; #[(a?y II c!x); (a?x II c!Y)]ll· 
Here, the first data value is placed in variable x and then successive values 
are placed alternately into y and x. Similarly, the output is taken first 
from x, then from y, etc. The two designs, BUF2 (a,c) and WAG(a,c), 
have the same input/output behaviors but differ in structure. Depending 
on the design goals, one may prefer one design over another. For example, 
it has been shown [136l that a shift register designed using the "wagging 
principle" is faster that one using the "ripple structure." 

A handshake circuit for B UF1 (a, b) is shown in Figure 15.25. There are 
five handshake components depicted by large circles. Each component may 
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a b 

FIGURE 15.25. A handshake circuit for BUF1{a,b). 

have active ports, denoted by black dots, and passive ports, denoted by 
small circles. The circuit has three (external) ports, labeled 1>, a, and b. 
There are five channels, labeled c, d, e, wx, and rx. The operation of the 
buffer is started by a request from the environment appearing on the chan
nell>. Since the buffer will operate forever, no acknowledgment will ever 
be sent along 1>. The repeater component (#) sends out an initial request 
on its active port through channel c after the receipt of a communication 
on I> and, subsequently, after each communication received along c; this 
corresponds to the unbounded repetition in the Tangram command for 
B UF! ( a, b). The component marked with; is a sequencer. After the receipt 
of a request along c, it first engages in an exchange of handshakes through 
the port marked *, and then through the other port. After these hand
shakes, it sends an acknowledge signal through channel c. Each of the two 
components marked T is a transferrer. In response to a request along d, the 
left transferrer requests and receives a value along a and passes it along wx. 
Upon receipt of an acknowledgment along wx, it sends an acknowledgment 
along d. The component marked x is a variable. A value passed along wx 
is stored and then acknowledged along wx. A request received by variable 
x along rx results in the sending of the data stored in x along rx. Finally, 
the right transferrer, upon receipt of a request along e, requests a value 
from x, passes that value along b, and reports completion along e. 

For further examples of handshake circuits, the reader is referred to [136]. 
To improve the efficiency of a handshake circuit, one may perform "peep
hole" optimization. Some techniques have been developed for the estima
tion of area, speed, and power of handshake circuits. Once the "best" hand
shake circuit is selected, the design is completed by implementing the hand
shake components involved and interconnecting them as dictated by the 
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handshake circuit. Many of the handshake components, like the repeater, 
are fixed and simple. The implementation of components like variables and 
transferrers depends on the data types involved. 

A discussion of the pros and cons of this methodology, along with a 
number of interesting design examples, can be found in [136]. 

15.12 Module-Based Compilation Systems 

The main advantage of module-based systems is that their use can be 
coupled with a high-level language and automatic translation software. A 
subset of OCCAM-a language invented to describe communicating se
quential processes-has been used by [7]. The approach here is to provide 
a delay-insensitive module for each of the language constructs. For exam
ple, a while loop in the language would require a WHILE element, which has 
connection terminals for a conditional test, a loop body, and an interface to 
the surrounding environment. It is then a straightforward process to con
vert parse trees for the input language into circuit structures built out of 
delay-insensitive modules. Techniques similar to peep-hole optimization in 
software compilers can be applied to the circuit to reduce area and delays. 
For example, a WHILE element with its condition always true can be re
placed by an infinite loop element. Finally, the circuit can be implemented 
by interconnecting the modules as specified by the program translation. 

This approach is very similar to standard cell synthesis and has similar 
advantages and disadvantages. Since modules are standardized, they can 
be precertified. In designing circuits that use such modules, we can safely 
assume the modules are correct, and we need to worry only about the 
logical correctness of the overall network of modules. Also, typical modules 
tend to be simple and can be manually developed by skilled designers. 
Consequently, the methods used to synthesize the modules need not be 
efficient. For example, the exponential algorithm for converting I-nets to 
ISGs is acceptable for module synthesis. On the other hand, since we are 
required to use preset modules, we usually cannot perform optimizations 
on the module structures themselves. Thus, some possible optimizations 
are ruled out, because we do not have the required simpler modules. Also, 
for each implementation technology, we may need to generate a new set 
of modules. While the specific design rules of a different process may not 
introduce so many changes as to require new modules, technologies such as 
mask- and field-programmable gate arrays, and even specific architectures 
within these technologies, may require their own module sets. Finally, while 
strict delay-insensitive designs encapsulate timing issues within modules, 
some methodologies (including that of [7]) use bundled data protocols. Such 
protocols require timing constraints between modules, thus complicating 
circuit implementation. 
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15.13 DCVSL and Interconnection Modules 

In the design methodology of [70, 98, 97], a digital system is composed 
of two types of blocks: computation blocks and interconnection blocks. 
Computation blocks include such functional units as shifters, multipliers, 
arithmetic logic units (ALUs), and other combinational circuits, and also 
random-access memories (RAMs) and read-only memories (ROMs). In
terconnection blocks provide the required handshaking protocols between 
computation blocks and ensure proper timing for data transfers. Thus, they 
may include such data transfer circuits as pipeline registers and mUltiplex
ers. The control blocks are generated from STG specifications described 
in Section 15.6. The computation blocks generate completion information, 
in addition to performing computation. For this reason, the authors refer 
to these systems as self-timed-a term introduced by C. L. Seitz in [96], 
Chapter 7. 

One implementation of the computation blocks uses differential cascode 
voltage switch logic (DCVSL) [60]. The DCVS logic is a precharge logic that 
uses two-rail complementary inputs and provides complementary outputs. 
The circuits use a four-phase protocol, and can easily be made to generate 
completion signals. A typical DVCS cell (with completion signal genera
tion) is shown in Figure 15.26. When the request line Req is 0, the cell is 
precharged, the two outputs are set to 0, and the Done signal is O. When 

Out.1 

Out.O 

Y.1---1 

FIGURE 15.26. A DCVS logic block. 
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the Req line becomes 1 and the inputs have taken on their values, the tree 
of N-transistors implementing the desired function-in this case, the XOR 

function of two variables-pulls one, but only one, of the precharged nodes 
down to 0, causing one of the outputs to become 1. This in turn causes 
the Done signal to become 1. Eventually, Req becomes 0, causing Done 
to follow, and the pattern repeats. Altogether, the (Req ,Done) sequence 
is ((0,0), (1, 0), (1, 1), (0, 1), (0,0)), as required by the four-phase protocol. 
Note that the succeeding circuit must have time to accept the new result 
before Req returns to 0. 

An example of a pipeline constructed with this method is shown in 
Figure 15.27. A typical DCVS logic block consists of a several DCVSL 
cells connected in an acyclic network to compute some complex Boolean 
functions. Only the final DCVSL cells in the DCVS logic block need to 
compute their completion (Done) signals. These separate completion sig
nals are then combined to form a single completion signal, Rin , from the 
DCVSL block. The signal Rout is connected to the individual Req lines in 
the cells. 

The operation of the logic blocks must be controlled by the interconnect 
block. Since individual logic blocks have different and sometimes varying 
delays, the control must ensure that no data is overwritten or used more 
than once. In the methodology described in [97] these control circuits are 
designed using STGs. For more details, we refer the reader to [97]. 
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FIGURE 15.27. A pipeline with DCVSL blocks. 
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15.14 Micropipelines 

Micropipelines were introduced in Ivan Sutherland's Thring Award lec
ture [132] primarily as an asynchronous alternative to synchronous "elastic" 
pipelines, i.e., pipelines in which the amount of data contained can vary. 
However, they also serve as a powerful method for implementing general 
computations. Although often categorized as a delay-insensitive methodol
ogy, they are actually composed of a bounded-delay data path moderated 
by a delay-insensitive control circuit. Note that the timing constraints in 
this system are not simply the bundled-data constraints, since the timing 
of all computation elements is important. 

The basic structure of a micropipeline consists of the control FIFO 
("first-in, first-out" buffer) shown in Figure 15.28( a), where the gates la
beled C are Muller C-ELEMENTs. The FIFO stores transitions sent to it 
through Rin , shifts them to the right, and eventually outputs them through 
Rout. To understand how the circuit works, consider the initial state, in 
which the FIFO is empty and all the wires, except the inverter outputs, 

(a) 

,----Aout 

Rout 

(b) 

FIGURE 15.28. Micropipeline structure: (a) control, (b) computation. 
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are o. A transition from 0 to 1 at Rin is able to pass through all the 
C-ELEMENTS in series, and emerges on Rout. During this process a tran
sition moves completely around each of the small cycles consisting of two 
C-ELEMENTS and an inverter. Except for Aout, the levels of all the signals in 
the circuit change. The next transition, which is from 1 to 0, is able to pass 
through the first two C-ELEMENTS, but not through the third one, which is 
waiting for a transition on A out . This represents the case where the output 
side of the FIFO is not yet ready to accept a new transition. Note that 
new transitions may enter through R in before previous transitions leave 
the FIFO, and they will be held up at successively earlier C-ELEMENTS, 

one transition per C-ELEMENT. Since the sender must wait for a transition 
on Ain before sending the next transition on Rin, when a transition on 
Ain does appear the sender knows that its previous transition has passed 
through the first C-ELEMENT. If a transition appears on Aout, a transition 
will be able to leave through Rout, freeing up a space in the pipeline. We 
require transitions on the receiver side to alternate between Aout and Rout 

to make sure the transitions sent on Aout actually pass through the first 
C-ELEMENT from the right. With these restrictions, the pipeline acts like 
a FIFO for transitions. Note that the structure repeats-there are three 
stages in the pipeline shown, with adjacent stages flipped around the hori
zontal axis-and could be extended by simply connecting additional stages 
to the front or back. 

We can take the simple transition FIFO described above and use it as 
the basis for a complete computation pipeline, as shown in Figure 15.28(b). 
The blocks labeled RG are registers. The register output Cd is a delayed 
version of input C, and output Pd is a delayed version of input P. Thus, 
the transition FIFO of Figure 15.28(a) is embedded in Figure 15.28(b), 
with delays added to some of the lines. The registers are similar to level
sensitive latches from synchronous design, except that they respond to 
transitions on two inputs instead of a single clock input. They are initially 
active, passing data directly from data inputs to data outputs. When a 
transition occurs on the C (capture) wire, data are no longer allowed to 
pass and the current values of the outputs are statically maintained. Then, 
once a transition occurs on the P (pass) input, data are again allowed to 
pass from input to output, and the cycle repeats. As mentioned earlier, 
Cd and Pd are copies of the control signals C and P, delayed so that the 
register completes its response to the control signal transitions before they 
are sent back out. Refer to the figure; if we ignore the logic blocks and the 
explicit delay element, we have a simple data FIFO. Data are first supplied 
by the sender, and then a transition occurs on the Rin wire. Because of 
the delays associated with the control wires passing through the registers, 
the data advance ahead of the control transition. If the control transition is 
forced to wait at any C-ELEMENT, the data wait in the preceding register, 
which is in the capture mode. Thus, the transitions are buffered in the 
FIFO control, and the data are buffered in the registers. 



Section 15.14. Micropipelines 365 

Computation on the data stored in a micropipeline is accomplished by 
adding logic blocks between the register stages. Since these blocks slow 
down the data moving through them, the accompanying control transition 
must also be delayed; this is done by the added delay elements, labeled 8, 
whose delay must be at least as large as the worst-case delay of the logic 
block. The major benefit of the micropipeline structure is that, since the 
registers moderate the flow of data through the pipeline, they also "ab
sorb" hazards. Thus, any logic structures, including the straightforward 
structures used in synchronous designs, can be used in the logic blocks. 
This means that a micropipeline can be constructed from a synchronous 
pipeline by simply replacing the clocked level-sensitive latches with the 
micropipeline control structure. Since the micropipeline removes the re
quirement of operating in lock-step with a global clock, an added benefit 
of a micropipelined version of a FIFO is that it is automatically elastic, in 
that data can be sent to and received from the FIFO at arbitrary times. 

Although micropipelines are a powerful implementation strategy that 
elegantly implements elastic pipelines, they are not without some prob
lems. While the micropipeline removes the hazard considerations of other 
bounded-delay models, it still delivers worst-case performance by adding 
delay elements to the control path to match worst-case computation times. 
Also, since delay assumptions are made, the circuits must be tested for 
delay faults. The final, and probably most significant, problem with mi
cropipelines is the present lack of systematic methods for their use in com
plex systems. Although simple straight-line pipelines without feedback can 
be implemented easily by micropipelines, few designs conform to this sim
ple model. Many applications, like digital signal processing, involve highly 
repetitive computations. Typically, the computation performed depends on 
earlier inputs and previously calculated values. Unfortunately, it is not clear 
how to implement feedback in micropipelines. 

A variation of micropipelines are self-timed rings [142], which are es
sentially micropipelines whose output is connected directly to its input. If 
such a ring contains an odd number of inversions in the control path, it 
will operate indefinitely. Each complete cycle through the pipeline performs 
a step in an iterative computation. If completion signals and handshake 
protocols are used, there can be several computation "waves" progressing 
through the ring simultaneously. Such a ring circuit can achieve very high 
performance. For example, a very fast 54-bit divider circuit was described 
in [143]. In general, however, the design of self-timed ring circuits is not 
straightforward. 

Although the control structure of a micropipeline can be enhanced by 
using additional elements, this is a fairly complex activity. While several 
micropipelined solutions using specific circuit structures have been de
veloped [73, 85, 128], including complete asynchronous microprocessors 
[54, 114, 130], a general, higher-level method for designing micropipeline 
control circuits is yet to be developed. 
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15.15 Concluding Remarks 

In this chapter we have discussed the following synthesis approaches: Huff
man circuits, Hollaar circuits, burst-mode circuits, I-nets, STGs, change 
diagrams, trace theory, communicating process compilation, handshake cir
cuits, module-based compilation, DCVSL-based circuits, and micropipe
lines. Making a thorough comparison of the different approaches, especially 
in the critical issues of performance, area, and power usage, is difficult, and 
very few such comparisons have been done. Moreover, in spite of the fact 
that several impressive asynchronous designs have been carried out, there 
has not been any compelling evidence that asynchronous circuits are better 
than synchronous. The fundamental issue as to which of the asynchronous 
design styles is best in performance, or area, or power, as well as the ques
tion whether any asynchronous approach is preferable over the prevalent 
synchronous model, is still open. 

As we have seen, asynchronous design is a rich area of research, with 
many different approaches to circuit synthesis. We stress that only some 
of the results in this area have been surveyed in this chapter, since our 
goal has been to present an overview of several representative approaches. 
Many interesting techniques have been omitted, important areas such as 
verification and testing largely ignored, and the methodologies that were 
discussed have not been explored in depth. Our hope is, however, that 
this chapter gives sufficient background to put further readings in proper 
context. 
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