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Preface

The 12th International Symposium on Graph Drawing (GD 2004) was held dur-
ing September 29-October 2, 2004, at City College, CUNY, in the heart of
Harlem, New York City. GD 2004 attracted 94 participants from 19 countries.

In response to the call for papers, the program committee received 86 regu-
lar submissions describing original research and/or system demonstrations. Each
submission was reviewed by at least three program committee members and com-
ments were returned to the authors. Following extensive e-mail discussions, the
program committee accepted 39 long papers (11 pages each in the proceedings)
and 12 short papers (6 pages each). In addition, 4 posters were displayed and
discussed in the conference exhibition room (2 pages each in the proceedings).

The program committee of GD 2004 invited two distinguished lecturers. Pro-
fessor Paul Seymour from Princeton University presented a new characterization
of claw-free graphs (joint work with Maria Chudnovsky). Professor Erik Demaine
from MIT reported on his joint work with Fedor Fomin, MohammadTaghi Ha-
jlaghayi and Dimitrios Thilikos, concerning fast (often subexponential) fixed-
parameter algorithms and polynomial approximation schemes for broad classes
of NP-hard problems in topological graph theory. A survey of the subject by
Professors Demaine and Hajiaghayi is included in this volume.

As usual, the annual graph drawing contest was held during the conference.
This time the contest had two distinct tracks: the graph drawing challenge and
the freestyle contest. A report is included in the proceedings.

Many people in the graph drawing community contributed to the success of
GD 2004. First of all, special thanks are due to the authors of submitted papers,
demos, and posters, and to the members of the program committee as well as
to the external referees. Many thanks to organizing committee members Gary
Bloom, Peter Brass, Stephen Kobourov, and Farhad Shahrokhi. My very special
thanks go to Hanna Seifu who was in charge of all local arrangements, Robert
Gatti who developed the software used for registration and paper submission,
and John Weber and Eric Lim who designed the logo, the webpage, and the
brochures of the conference. I am very much indebted to Dr. Joseph Barba and
Dr. Mohammad Karim, present and former Deans of the School of Engineering,
and to Dr. Gregory H. Williams, President of the City College of New York, for
their continuing support.

Thanks are due to our “gold” sponsors, the City College of New York, the
University of North Texas at Denton, and Tom Sawyer Software, and to our
“silver” spomnsors, ILOG, the DIMACS Center for Discrete Mathematics and
Theoretical Computer Science, and the Computer Science Program at the CUNY
Graduate Center. Springer and World Scientific Publishing contributed to the
success of GD 2004 by sending selections of their recent publications in the
subject.



VI Preface

The 13th International Symposium on Graph Drawing (GD 2005) will be
held in Limerick, Ireland, 12—14 September, 2005, with Peter Eades and Patrick
Healy as conference co-chairs.
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Reconfiguring Triangulations
with Edge Flips and Point Moves*

Greg Aloupis', Prosenjit Bose?, and Pat Morin?

1 School of Computer Science, McGill University
athens@cs.mcgill.ca
2 School of Computer Science, Carleton University
{jit,morin}@scs.carleton.ca

Abstract. We examine reconfigurations between triangulations and
near-triangulations of point sets, and give new bounds on the number
of point moves and edge flips sufficient for any reconfiguration. We show
that with O(nlogn) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-
triangulation on n possibly different points. This improves the previously
known bound of O(n?) edge flips and point moves.

1 Introduction

An edge flip is a graph operation that is defined on (near)-triangulations®. An
edge flip on a triangulation is simply the deletion of an edge, followed by the
insertion of another edge such that the resulting graph remains a triangulation.
The definition of an edge flip gives rise to several natural questions: Does there
always exist a sequence of flips that reconfigures a given triangulation to any
other triangulation? Are there bounds on the lengths of such sequences if they
exist? Can these sequences be computed? These questions have been studied in
the literature in many different settings. In particular, Wagner [19] proved that
given any two n-vertex triangulations G; and Gs, there always exists a finite
sequence of edge flips that reconfigures (G; into a graph isomorphic to G5. Sub-
sequently, Komuro [10] showed that in fact O(n) edge flips suffice. Recently, Bose
et al. [2] showed that O(logn) simultaneous edge flips suffice and are sometimes
necessary. This setting of the problem is referred to as the combinatorial setting
since the triangulations are only embedded combinatorially, i.e. only the cyclic
order of edges around each vertex is defined.

In the geometric setting, the graphs are embedded in the plane with edges
represented by straight line segments. Pairs of edges can only intersect at their
endpoints. Edge flips are still valid operations in this setting, except that now
the edge that is added must be a line segment that cannot properly intersect any
of the existing edges of the graph. This implies that there are valid edge flips

* Research supported in part by the Natural Science and Engineering Council of
Canada.

L A triangulation is a plane graph where every face is a triangle. In a near
triangulation, the outer face may not be a triangle.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 1-11, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Greg Aloupis, Prosenjit Bose, and Pat Morin

in the combinatorial setting that are no longer valid in the geometric setting.
Lawson [12] showed that given any two geometric near-triangulations N; and
Ny embedded on the same n points in the plane, there always exists a finite
sequence of edge flips that transforms the edge set of N7 to the edge set of Ns.
Hurtado, Noy and Urrutia [9] showed that O(n?) flips are always sufficient and
that §2(n?) flips are sometimes necessary.

Note that in the geometric setting, only the near-triangulations that are
defined on the specified point set can be attained via edge flips. For example, no
planar K4 can be drawn on a convex set of four points without introducing a
crossing.

In order to resolve the discrepancy between the combinatorial and geometric
settings, Abellanas et al. [1] introduced a geometric operation called a point
move. A point move on a geometric triangulation is simply the modification of
the coordinates of one vertex such that after the modification the graph remains
a geometric triangulation. That is, the move is valid provided that after moving
the vertex to a new position, no edge crossings are introduced. They also showed
that with O(n?) edge flips and O(n) point moves, any geometric triangulation on
n points can be transformed to any other geometric triangulation on n possibly
different points.

The question which initiated our investigation is whether or not O(n?) edge
flips are necessary. In this paper, we show that with O(nlogn) edge flips and
point moves, we can transform any geometric near-triangulation on n points to
any other geometric near-triangulation on n possibly different points. Next, we
show that if we restrict our attention to geometric near-triangulations defined
on a fixed point set of size n, the problem is just as difficult even with the use
of point moves. Finally, we show that with a slightly more general point move,
we can remove the extra log factor from our main result.

2 Results

In the remainder of the paper, all triangulations and near-triangulations are ge-
ometric. It is assumed that the outer face any given near-triangulation is convex,
and that any two near-triangulations involved in a reconfiguration have the same
number of points on the convex hull.

We assume that the n vertices of any given triangulation are in general po-
sition. It is not difficult to see that O(n) point moves can reconfigure a triangu-
lation to this form. We begin with some basic building blocks that will allow us
to prove the main theorems.

Lemma 1. [2] A reconfiguration between two triangulations of the same point
set that is in convez position can be done with O(n) edge flips.

Lemma 2. [9] Let vy, vo and vs be three consecutive vertices on the outer face
of a near-triangulation Th. Let C be the path from vi to vs on the convex hull
of all vertices but vy. A near-triangulation Ty containing all edges of C may be
constructed from Ty, with t edge flips, where t is the number of edges initially
intersecting C in 1.
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Lemma 3. Given a near-triangulation T, any vertex p € T with degree d > 3
that is inside the convex hull of the vertices of T' can have its degree reduced to
3 with d — 3 edge flips.

Proof. Let P be the polygon that is the union of all triangles incident to p. By
Meister’s two-ears theorem [13], if P has more than three vertices, then it has at
least two disjoint ears?. At most one of them can contain p. Therefore p and one
of the ears form a convex quadrilateral. We may flip the edge from p to the tip of
the ear, effectively cutting the ear from P and reducing the number of vertices
of P by one. This process may be continued until P is reduced to a triangle that
contains p as desired. a

Lemma 4. Given a near-triangulation T', any vertex p € T with degree 3 that is
inside the convexr hull of the vertices of T' can be moved to a new position in the
triangulation along a straight path crossing t edges, using at most 2t edge flips
and 2t 4+ 1 point moves, assuming the path does not cross through any vertices.

Proof. Suppose that p is joined by edges to vertices v, vo and vs3. Without loss
of generality, let edge vovs intersect the path that p must follow, and let this
path continue into triangle vovsvy, as shown in Figure 1.

Clearly p can be moved anywhere within triangle vivovs without the need
of any edge flips. Then it can be moved along its path, as close to edge vyvs as
necessary, so that the quadrilateral pvsvsvy becomes convex. This allows edge
vov3 to be flipped into edge pvs. Now p may continue along its path. As soon as
it enters vov3vy, edge pv; may be flipped into vovs. Now, with two edge flips and
two point moves, p has crossed through the first edge intersecting its path, and
still has degree 3. By the same argument, p may traverse its entire path with two
edge flips and two point moves for each intersecting edge. One additional point
move is required in the last triangle. Note that only three edges in the original
and final triangulations will be different. O

Fig. 1. A vertex p and a straight path that it must move along (dashed). p can pass
through any edge with two edge flips.

2 A triangle, defined by three consecutive vertices of a polygon, is an ear if it is empty
and the vertices form a convex angle. The second vertex is the tip of the ear.



4 Greg Aloupis, Prosenjit Bose, and Pat Morin

Lemmata 3 and 4 imply the following result:

Lemma 5. Given a near-triangulation T', any vertex in the interior of the con-
vex hull of the vertices of T' with degree d can be moved to a new position in the
triangulation along a path crossing t edges, using O(d + t) edge flips and point
moves.

Lemma 6. An edge can be constructed between a convexr hull vertex and any
other vertex in a triangulation using O(n) edge flips, with the aid of one moving
point that is moved O(n) times.

Proof. Let vy be the hull vertex. First suppose that the second vertex is an
interior point. Then it will play the role of the moving point, and we will label
it p. We can move p directly towards vy, until it is located within a triangle that
has v as a vertex. Now v and p must be joined with an edge. Next we move p
back along the same line to its original position, always maintaining edge v1p. To
do this, we consider the set of triangles that intersect p’s path, as in Lemma 4.
The point p can always enter a triangle intersecting the path back to its original
location. The difference is that once it has crossed an intersecting edge, we do
not restore the edge. This means that p will accumulate edge degree. An issue
that needs to be taken care of is that of maintaining a triangulation when p is
about to lose visibility to another vertex. This occurs when one of its incident
edges is about to overlap with another edge in the triangulation, as shown in
Figure 2.

Suppose that edge puvs is about to overlap with edge vsvy. Vertices vs and
vg cannot be on opposite sides of the remaining path that p must traverse,
otherwise v3vs may be flipped. The point p must share an edge with v, in this
configuration. Points p and v3 are also part of another triangle, along with some
vertex v* which may be anywhere on the path from v; to vs. These two triangles
must form a convex quadrilateral pv*vzvy, otherwise p would have already lost
visibility to v*. Thus pvs may be flipped into vsv*, which means that vz is
removed from the polygon that intersects p’s path. The result is that when p
reaches its original position, it leaves a fan® behind it, which includes edge v1p.

Fig. 2. Maintaining a triangulation while extending edge vip: p has moved from a
position close to v1 (shown white), and still has to traverse the dashed segment to its
original position. Edge pvs causes a problem if p is to continue.

3 A fan is a star-shaped polygon with a vertex as its kernel.
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Overall one edge flip is used when p enters a new triangle, and at most one flip
is used for every edge that attaches to p.

If both vertices of the edge that we wish to construct are on the hull, then
we can take any point p within the hull and move it close to v; and onto the
segment between the two hull vertices. p can then move along this segment to
the second hull vertex until it is connected to both. At this moment, p may be
perturbed so that the three vertices form a triangle. This triangle might contain
other edges incident to p. Lemma 2 implies that these edges may be removed so
that the desired edge can be constructed with O(n) edge flips. O

2.1 Triangulations
With the basic building blocks in place, we now prove one of our main results.

Theorem 1. With O(nlogn) edge flips and point moves, we can transform any
geometric triangulation on n points to any other geometric triangulation on n
possibly different points.

Proof. We transform one triangulation to another via a canonical configuration.
As shown in Figure 3, the interior vertices form a backbone (i.e. their induced
subgraph is a path). The top of the backbone is joined to the topmost hull vertex
v1, and all interior vertices are joined to the other two hull vertices, vy, and vg.

The canonical configuration is constructed in a divide-and-conquer manner.
We perform a radial sweep from v, to find the median vertex interior to the
convex hull, vys. After constructing edge vivy; we move vy directly away from
v1 towards the base vy vg, maintaining vyvys until triangle vysvr,vr contains no
interior points. By Lemma 6, we use O(n) operations to accomplish this. Now, we
transform vyvprvr, and vivpvR into backbone configurations by induction since
they are smaller instances of the same problem. The resulting configuration is
shown in Figure 4.

We now show that the two sides may be merged using O(n) operations.
As shown in Figure 5a, we first move the lowest vertex of a backbone into a
position that is close to the base and is along the extension of edge vivys. This
requires one edge flip. The vertices on the left/right backbones are processed in

1

VL R

Fig. 3. The canonical configuration used for triangulations.
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Yi

VL VR

Fig. 4. The configuration of a triangulation prior to merging the backbones on each
side of the median vertex vas.

(a) (b)

Fig. 5. Merging two backbones into one.

ascending order, and are always moved just above the previous processed vertex,
as shown in Figure 5b. Each vertex will require two point moves and one edge
flip. Thus vivpvg is reconfigured into canonical form, and by a simple recurrence
the number of edge flips and point moves used is O(nlogn). It is trivial to move
a canonical triangulation to specific coordinates using n point moves. Thus the
transformation between any two triangulations may be completed. a

2.2 Near-Triangulations

If the initial graph is a near-triangulation, Theorem 1 does not directly apply.
Some care must be taken to handle a non-triangular outer face. Details are given
in the proof of the following theorem:

Theorem 2. With O(nlogn) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-triangula-
tion on n possibly different points.

Proof. As in the case with triangulations, we transform one near-triangulation
to another via a canonical configuration. In the primary canonical configuration,
shown in Figure 6, one chosen hull vertex (v1) is joined by chords to all other
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|

Fig. 6. The primary canonical configuration used for near-triangulations.

hull vertices. Thus v is in the kernel of a convex fan. Every triangle of the fan,
except for one, is empty. All interior vertices, located in the non-empty triangle
T, are in the canonical configuration of a triangulation.

We first construct all edges of the top-level fan configuration, leaving interior
vertices in their original positions. Then within each triangle of the fan, we
rearrange the interior vertices into a canonical triangulation. Finally, we merge
all triangles of the fan, so that all interior points move to a single triangle and
are in canonical form.

To construct the fan chords, we always divide the problem into two roughly
equal parts. We begin by constructing two chords as follows: perform a radial
sweep from vy to successive hull vertices v; {2 < ¢ < n — 1}, always keeping
fewer than 7 vertices in the swept region. Let v; be the last hull vertex for which
this holds. Construct chords v;v; and v1vj4+1. The unswept region not including
triangle v1v;v;41 contains fewer than 5 vertices. The swept region contains fewer
than % vertices. Triangle v1v;vj11 may contain an arbitrary number of vertices,
but this is not a sub-problem (we will not look at this region again during the
construction of the fan). Now we can continue a new sweep on each side of
v1v;0j41. Construction of the two chords could take O(n) edge flips and point
moves, as described in Lemma 6. However the even split of the sub-problems
ensures that the total number of operations is O(nlogn).

Each fan triangle v1v;v;41, containing k; interior points, can be reconfigured
into a backbone structure with O(k; log k;) operations, by Theorem 1. Thus the
total number of edge flips and point moves used to reconfigure all triangles of
the fan into backbone structures is O(nlogn).

Now we are left only with the task of merging the fan triangles so that only
one of them will contain all interior points. We can add k; interior points of a
canonical triangulation to an adjacent canonical triangulation using O(k;) edge
flips and point moves. The k; points are processed in descending order and are
always added to the top of the adjacent triangulation, as shown in Figure 7.

Thus we obtain one triangle in canonical form next to an empty triangle. It
is just as easy to merge two canonical triangles separated by an empty triangle.
If we encounter two or more adjacent empty fan triangles, we may use Lemma 1
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Fig. 7. Merging two adjacent fan triangles.

Fig. 8. Handling multiple adjacent empty fan triangles. Triangles marked (T) contain
triangulations.

to reconfigure them so that they will not affect the fan-merging process (see
Figure 8). By the above arguments, once we select the triangle that is to finally
contain all of the interior points (the median triangle is a good choice), we can
iteratively merge its neighboring triangles onto it using a total of O(n) edge flips
and point moves.

Finally we are left with a single triangle containing all interior points in
canonical form. On either side, we may have an arbitrary triangulation (resulting
from handling multiple adjacent empty fan triangles), but the vertices will be in
convex position. By Lemma 1 they may be moved to our desired configuration
using O(n) edge flips.

We must still show that this primary canonical configuration can be moved
to specific coordinates. This can be done with O(n) point moves, though space
restrictions prevent us from going into any detail. a

2.3 Remarks

Our algorithms also work for labeled triangulations, with minor care needed.
Constructing the canonical configuration resembles merge-sort.

If two triangulations have the same point set, the problem is no easier than
the general problem. Suppose that there exists an algorithm that can transform
a triangulation 77 on a given n-point set to a triangulation 75 on the same point
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Fig. 9. Problem on fixed point set is not easier.

set using F,, = o(nlogn) edge flips and point moves. Then this algorithm can
be used to transform a triangulation on one point set to any other triangulation
on a possibly different point set with F,, + O(n) edge flips and point moves. This
argument is summarized in Figure 9. Let Figure 9a be the input triangulation.
With F,, flips and moves, move to the triangulation in Figure 9b where every
vertex is adjacent to the lower left vertex v, of the outer face.

Now consider the triangulated polygon, P, that consists of edges not adjacent
to ve. Notice that if we perform a radial sweep from vy, the boundary of P is
monotonic. At least two of the triangles in P are disjoint ears, which means there
must exist an ear tip that is an interior vertex and is also joined to vy by an edge
in the original triangulation. We may move this point directly towards v, and
cut the ear from P. This still leaves a monotone polygon P’. By continuously
locating such ears, and moving them to a predefined convex position, we can
obtain the configuration illustrated in Figure 9c. The monotonicity of P (and
its descendants) and the convexity of the final configuration of interior points
guarantee that no edge crossings will occur. This process requires a linear number
of point moves.

Next, by Lemma 1, we can use O(n) edge flips to obtain the triangulation
where the lower right vertex of the outer face is adjacent to every vertex, as
illustrated in Figure 9d. From here, it is trivial to move to the canonical config-
uration.

We conclude with the following:

Theorem 3. If an algorithm exists that can reconfigure between any two geo-
metric triangulations of the same point set with o(nlogn) edge flips and point
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moves, then we can also transform any geometric triangulation on n points to
any other geometric triangulation on n different points with o(nlogn) flips and
moves.

It is tempting to try to find a fast algorithm that will construct a monotone
path, as illustrated in the transition from Figure 9a to Figure 9b. Consider
the polygon that is the union of all triangles incident to the lower left vertex
of Figure 9b. By continuously cutting ears of this polygon, we may get to a
triangulation that is similar to that of Figure 9a, using O(n) edge flips. The
similarity is that all neighbors of the lower left vertex will be in convex position.
However, we have little control over the resulting positions of the remaining
edges if we use only O(n) operations. It is possible to create triangulations for
which the reversal of this ear-cutting technique is not possible. In fact, Figure 9c
serves as an example, if we add a few more vertices inside the large triangle. In
this figure none of the edges directly visible from the lower left vertex can be
flipped, so there is no obvious way to achieve a monotone path with fewer than
O(nlogn) operations.

We finally consider the following more powerful point move as an alternative
to the point move studied so far. In this more powerful point move, we can
delete an interior vertex of degree three (and all its incident edges), and create
a new vertex of degree three inside another triangle of the triangulation. With
this type of move we can reconfigure triangulations using O(n) operations. We
simply select a triangle incident to a hull edge and create a backbone inside.
This is done by continuously selecting a vertex of constant degree from outside
the triangle, reducing its degree to three, and moving it to the lower end of the
backbone.
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Drawing Power Law Graphs

Reid Andersen, Fan Chung*, and Lincoln Lu

University of California, San Diego

Abstract. We present methods for drawing graphs that arise in various
information networks. It has been noted that many realistic graphs have
a power law degree distribution and exhibit the small world phenomenon.
Our methods are influenced by recent developments in the modeling of
such graphs.

1 Introduction

Several research groups have observed that many networks, including Internet
graphs, call graphs and social networks, have a power law degree distribution,
where the fraction of nodes with degree k is proportional to k~° for some pos-
itive exponent § [8]. Many networks also exhibit a so-called “small world phe-
nomenon” consisting of two distinct properties — small average distance between
nodes, and a clustering effect where two nodes sharing a common neighbor are
more likely to be adjacent. It was shown in [2] that a random power law graph
has small average distance and small diameter. However, random power law
graphs do not adequately capture the clustering effect.

To model the small world phenomenon, several researchers have introduced
random graph models with additional geometric structure. Kleinberg [7] pro-
posed a model where a grid graph G is augmented with random edges between
nodes u, v with probability proportional to [dg(u,v)]”™" for some constant r.
Fabrikant, Koutsoupias and Paradimitriou [4] proposed a model where vertices
are points in the Euclidean plane and edges are added by optimizing a function
involving both Euclidean distance and graph distance to a central node.

Chung and Lu [3] introduced a hybrid graph model where a random power law
graph called the “global” graph is added to a “local graph” having a certain kind
of local connectivity. In [1] an efficient algorithm was presented for extracting a
highly connected local graph from an arbitrary graph. For a graph generated by
the hybrid model, this algorithm recovers the original local graph up to a small
error.

In this paper, we present a drawing method using the algorithm for extracting
local graphs. This algorithm may be useful for drawing graphs similar to those
produced by the hybrid model. A graph from the hybrid model contains a random
power law graph which will not be amenable to most drawing methods, but also
contains a local graph which can be more geometric in nature. The recovery
theorem in [1] guarantees that when applied to a graph from the hybrid model,
our algorithm produces a layout which depends largely on the local graph.

* Research supported in part by NSF Grants DMS 0100472 and ITR 0205061.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 12-17, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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2 Preliminaries

2.1 Weighted Graphs and Quotient Graphs

Although our input graphs are unweighted, our algorithm will form weighted
graphs by collapsing connected components into single vertices. A weighted
graph is a simple graph G together with a vertex weight function wg(v) and
an edge weight function ¢g(e). Suppose that V(G) has a partition V(G) =
C1 UC5U---UCk. The quotient graph @ is defined as follows. The vertices of

@ are communities C1, ...C}, and we set
we(Cr) = Y we(u).
ueC;
¢Q(Ci>cj) = Z ¢G(u7v)'
ucCivelj

There is an edge between C; and Cj if ¢g(C;, C;) > 0.

2.2 Local Flow and Local Graphs

Given a weighted graph with edge capacity function ¢, we will define a notion
of local connectivity between vertices. We will say a path is short if it has length
less than or equal to £. A short flow is a positive linear combination of short
paths where no edge carries more than its capacity. The maximum short flow
problem can be viewed as a linear program, and can be computed in polynomial
time using nontrivial but relatively efficient algorithms for fractional packing
(See 2.3).

Definition 1 (Short Flow). A short flow is a feasible solution to the following
linear program. The flow connectivity f(u,v) between two vertices is the maxi-
mum value of any short flow, which is the optimum value of the following LP
problem. Let P, be the collection of short u-v paths, and let P, be the collection
of short u-v paths which intersect the edge e.

mazimize Z fp (1)
PEP,

subject to Z fp < 9le) for each e € L
pEPe
fr=0 for each p € Py

We say two vertices u and v are (f, ¢)-connected if there exists a short flow
between them of size at least f. We a say a graph L is an (f,¢)-local graph if
for each edge e = (u,v) in L, the vertices u and v are (f,¢)-connected in L.

2.3 Computing the Maximum Short Flow

Finding the maximum short flow between « and v in a graph G with given edge
capacities ¢(e) can be viewed as a fractional packing problem, which has the form

max{cTx | Ax <b,x > 0}.
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To view the maximum short flow as a fractional packing problem, first let
G(u,v) be a subgraph containing all short paths from u to v. For example, we
may take G(u,v) = Ny/o(u)UNy/2(v). Let A be the incidence matrix where each
row represents an edge in G(u,v) and each column represents a short path from
u tov. Let b= ¢, and c = 1.

Using the algorithm of Garg and Kénemann in [5] for general fractional
packing problems, one can obtain a (1 — €)™ 2-approximation to the maximum
short flow in time O(M?([1logi; M), where M is the number of edges in
G(u,v).

3 Extracting the Local Graph

For a given graph, we wish to extract the largest (f, £)-local subgraph. We define
Ly ¢(G) to be the union of all (f, ¢)-local subgraphs in G. By definition, the union
of two (f,¥)-local graphs is an (f,¢)-local graph, and so Ly ,(G) is in fact the
unique largest (f, £)-local subgraph in G. We remark that L ,(G) is not neces-
sarily connected. The simple greedy algorithm Extract computes Ly ¢(G) in any
graph G using O(m?) max-short-flow computations, where m is the number of
edges in G. The number of max-short-flow computations can be reduced by using
a standard random sampling approach if we are willing to accept approximate
local graphs. We say L is an a-approximate (f, ¢)-local graph if L(f,¢) C L, and
at most an a-fraction of the edges in L are not (f,¢)-connected. The algorithm
Approximate Extract computes a series of approximate local graphs.

Extract:

Input: G, f.¢

If there is an edge e = (u,v) € G where u,v are not (f,£)-connected in G,
remove e from G.

When no further edges can be removed, output G.

Approximate Extract:
Input: G4 {f1 <--- < fr}
Let m be the number of edges in G.
Fori=1.. .k
Repeat until no edge is removed for élog mTk consecutive attempts:
Pick an edge e = (u,v) from G uniformly at random.
If u, v are not (f;, £)-connected, remove (u,v) from G.
Let L; = G, reset m to be the number of edges in L;,
and proceed to compute L;41.
Stop when graphs Ly O --- O L have been output.

Since at most m edges are removed from G and there are at most élog mTk
attempted removals for every edge removed, Approximate Extract performs at
most 7+ log mTk max-short-flow computations.

Theorem 1. Given G, £, and {f1 <--- < f}, let L1 D --- D Ly, be the output
of Approximate Extract. With probability at least 1 — §, each of the graphs L;
is an a-approzimate (f;,£)-local graph.
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Proof: Given i € [1,k], let e1 ...es be the edges removed from L;_; to obtain
L;. Let m; be the number of edges in L;_; and note that J < m;. Let T} be
the number of attempts between the removal of the e;_; and e;. If L; is not an
o-approximate local graph, then some T; must be at least élog mTik when at
least an a-fraction of the edges remaining in L; were not (f;,¢)-connected. For
a given j, this occurs with probability at most

(1- a)TJ' <e T < eilongik < (5mi_1/k.

Since J < m;, the probability that this occurs for any T} is at most §/k. The
probability that a bad T} occurs for any L; is at most ¢, and the result follows.

4 An Algorithm for Drawing Power Law Graphs

In this section we describe a framework for producing drawings of power law
graphs that reflect local connectivity. In the algorithm Local Draw below, a local
subgraph is used to determine the layout of the vertices. Our algorithm uses
as a subroutine a standard force-directed drawing method which we describe
in section 4.2, but other methods can be used in its place. The algorithm is
motivated by the structure of power law graphs, but can be applied to general
graphs as well.

4.1 The Algorithm

Local Draw:

Given an input graph G, compute the local graph L, for some choice of f and
¢ using Extract or Approximate Extract. Let II;, be the partition induced by
the connected components C} ... C}, of Ly ¢, and let Q) be the quotient graph of G
with respect to this partition. Use the force-based drawing algorithm to produce
drawings of each component C ... Cy and @) separately. To combine into a single
drawing, let ¢ ...qx be the coordinates of the vertices in @ corresponding to
Cy...Ck, and let

1 .
T = §m1n\|qi — gl
J

Scale each drawing of C; by r;, and place at location g; to create a new drawing
which only contains edges in Ly . Apply the force-based algorithm to this draw-
ing to determine the final layout of the vertices, and then add back the edges in

4.2 A Force-Directed Drawing Method

Our algorithms use a standard force-based drawing method, modified for use on
graphs with vertex weights w(v) and edge weights ¢(e). We define a repulsive
force between every pair of vertices, where the force acting on vertex u due to

vertex v is 1
u—v
Ry, = w(u)w(v)

n? fJu —o|?
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Each edge also acts as a spring, with the force on a vertex u from the edge
e = (u,v) defined to be

Su,v = %(/U - u)qb(e)

To keep the drawing in a bounded area, we place all vertices within the unit
circle and define a force between each vertex and the boundary of the circle.

u 1

B =l =)

The standard force-based approach is to compute the sum of the forces acting
on each vertex and move in the resulting direction at each time step.

Fig. 1. Local Draw applied to the giant Fig.2. Local Draw applied to the in-

component of random graph G(n,p) with duced subgraph of G: the collaboration

n = 500 and p = 0.004. graph on authors with Erd6s number ex-
actly 2.

Fig. 3. The quotient graph of G. Fig. 4. The largest connected component
in the local graph of G, of size 15.
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5 Implementation and Examples

We have implemented Extract and Local Draw and experimented on several
examples. Figure 1 is a drawing of a sparse random graph, generated from the
Erdds-Rényi model G(n,p) with n = 500 and p = .004. Jerry Grossman [6] has
graciously provided data from a collaboration graph of the second kind, where
each vertex represents an author and each edge represents a joint paper with two
authors. Our example graph G is the largest component of the induced subgraph
on authors with Erdds number exactly 2. This graph contains 834 vertices. We
applied Local Draw to G with parameters (f = 2,¢ = 3), obtaining the drawing
in Figure 2, and in the process obtaining the quotient graph shown in Figure
3 and the local graph. The largest connected component of the local graph is
shown in Figure 4.
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Hexagonal Grid Drawings:
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Abstract. We study drawings of graphs of maximum degree six on the
hexagonal (triangular) grid, with the main focus of keeping the number
of bends small. We give algorithms that achieve 3.5n + 3.5 bends for
all simple graphs. We also prove optimal lower bounds on the number
of bends for K7, and give asymptotic lower bounds for graph classes of
varying connectivity.

1 Introduction

There are numerous algorithms to draw 4-graphs (graphs of maximum degree of
at most four) on the 2D rectangular (orthogonal) grid [3,8-11]. All 4-graphs can
be drawn with at most 2n 4+ 2 bends [3], and there are arbitrarily large graphs
that need in bends [1]. In 3D, orthogonal drawings exist for all 6-graphs [4,
13-15]. In this paper, we study hezagonal drawings, which are embeddings of
6-graphs in the 2D hexagonal grid. We consider the hexagonal grid to consist
of horizontal gridlines (rows), vertical gridlines (columns) and diagonals; this is
the same grid as the “standard” hexagonal grid (with 60° angles) after a shear
in the a-direction. See also Fig. 1.

Only few results are known for hexagonal drawings. The algorithm by Tamas-
sia [10] to obtain bend-minimum orthogonal drawings of planar graphs can be
extended to the hexagonal grid as well. Kant [6] showed how to draw 3-connected

(@) (b) (c) (d)

Fig. 1. Different types of grid drawings of Ks: (a) 2D orthogonal, (b) 3D orthogonal,
(¢) hexagonal with 60° angles, (d) hexagonal with diagonals.

* Research supported by NSERC. These results appeared as part of the MMath thesis
of the first author at University of Waterloo.
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cubic planar graphs on the hexagonal grid. Tollis [12] uses a similar grid called
tri-hexagonal grid for wiring VLSI layouts.

In this paper, we provide an algorithm that draws all graphs with maximum
degree 6 on the hexagonal grid, and achieves 3.5n + 3.5 bends. We also study
lower bounds on the number of bends for K7 and for larger graphs.

2 Algorithms

Our algorithms are inspired by the algorithm of Biedl and Kant [3] for drawing
biconnected 4-graphs on the orthogonal grid. They use a vertex ordering known
as st-ordering, which is an ordering vy, ve, ..., v, of the vertices such that each
vi, 2 <1 < n—1, has at least one predecessor, i.e., a neighbour vy, with h < ¢ and
at least one successor, i.e., a neighbour v; with j7 > i. The edges from v; to its
predecessors [successors] are called incoming [outgoing] edges of v;. The number
of incoming [outgoing] edges of vertex v; are denoted by indeg(v;) [outdeg(v;)].
For any biconnected graph, and any two vertices s,t, an st-ordering exists with
vy = s and v, =t [7] and can be computed in linear time [5].

Assume from now on that G is a biconnected 6-graph without loops, and
v1,...,Uy is an st-ordering of G. Let G; be the graph induced by v1,...,v;. An
edge (v, vx) with ¢ < j < k is called an unfinished edge of Gj. For j =1,...,n,
we create a drawing of G; such that every unfinished edge ends in a free ray,
i.e., every unfinished edge is drawn up to a point, and there exists a ray (along a
grid line) from this point that does not contain any vertex or edge segment in it,
and is the free ray for only one unfinished edge. These rays must go in direction
north (N), north-west (NW) or west (W). Fig. 2 shows a suitable drawing of G

rays of

and illustrates the invariant.
unfinished
edges drawing of
N Gj

Fig. 2. Embedding of the first vertex, and the maintained invariant.

Now assume that we have a suitable drawing of G;_1. If (v;, v,) is an incoming
edge of v;, then there is an unfinished edge at v;, and hence a ray associated
with it. (We choose one arbitrarily if there is more than one ray.) We add (if
needed) bends in these rays, and new line segments in new grid lines that are
fully outside the drawing of G;_; in such a way that all incoming edges meet
in one grid point at which we place v;. Then we assign rays to outgoing edges
of v, adding more bends (if needed) to enforce that rays go into one of the
three allowed directions. The specific drawing of v; depends on the number and
directions of rays of incoming edges of v;. There are many cases here; Fig. 3
shows some of them.

Studying all cases yields that each vertex v# vy, v, needs at most indeg(v)+1
bends, which leads to a bound of m +n + O(1) < 4n + O(1). But this is not
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\ ) #ofbends=3 - #ofbends=3 #of bends:} X # of bends= ﬂ :

“indcgroc 1 indegree 2 indegree 3 indegree 4 indegree 5

Fig. 3. Some of the cases of embedding vertices. Dotted lines indicate new grid lines.

tight. To obtain a better bound on the number of bends, we developed a potential
function argument, which to our knowledge is a new idea in graph drawing. We
assign potential pg, d € {N, NW, W} to each unfinished edge whose free ray
ends in direction d. Let ¢(j) be the sum of the potentials of the drawing of G,.
Then the amortized cost of a vertex v;, 1 < j < n, is,

¢(vj) = number of bends added when placing vertex v; + ¢(j) — ¢(j — 1).

Hence the total number of bends is 3, .y ¢(v).

Theorem 1. Any biconnected 6-graph without loops has a hexagonal grid draw-
ing with at most 3.5n + 3.5 bends.

Proof. We choose as potentials py = pw = % and pyw = %. The amortized cost
at v; is determined uniquely from the number of bends needed when placing v;
and the directions of the incoming and outgoing edges. Let ¢; be the maximum
amortized cost of a vertex with indegree . Going through the cases, one obtains
¢o = 5.25,¢4 = 3.5,é = 3.25,¢3 = 3,64 = 3.25,¢5 = 3.5 and & = 5.25. (The
cases in Fig. 3 are some of those where these bounds are tight.) So the number
of bends is

6
D é(v) < émy = 5.25n0+3.5n1+3.25n2+3n3+3.25n4+3.5n5+5.25n.
veV =0

Since ng = 1 and ng < 1 for an st-ordering of a 6-graph, this yields the
desired bound.

Our algorithm can be expanded with similar techniques as in [3] to handle
graphs that are not biconnected or that have loops. The proofs of the following
theorems are omitted.

Theorem 2. Any connected 6-graph without loops with n > 3 can be drawn on
the hexagonal grid with at most 4.2n bends.

Theorem 3. Fvery simple connected 6-graph can be drawn on the hexagonal
grid with at most 3.5n + 3.5 bends.

Theorem 4. Any biconnected 6-graph can be drawn on the hexagonal grid with
at most 3.5n + 3.5 + %E bends, where £ is the number of loops in the graph.
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The area of our construction may be exponential, since in some cases we add
O(w) new rows to a drawing of width w, or O(h) many columns to a drawing of
height h. The area can be reduced to quadratic if we allow more bends.

Theorem 5. Ewvery biconnected 6-graph without loops can be drawn on the hexa-
gonal grid with at most 6n + 2 bends and area O(n?).

3 Lower Bounds

We now turn to lower bounds on the number of bends of hexagonal grid drawings.
We start with K7, the complete graph on 7 vertices. This graph requires 20 bends
in a 3D orthogonal layout [14]. In the hexagonal grid, it can be drawn with 18
bends (see Fig. 4), and as we show now, this bound is tight. So assume that an
arbitrary drawing of K7 is fixed. Let r be the number of rows that are truly used,
i.e., they contain either a vertex or a segment of an edge. Similarly let ¢ and d be
the number of truly used columns and diagonals. We first show r + ¢+ d > 18,
for which by symmetry it suffices to show r +d > 12.

Lemma 1. In any hexagonal drawing of K7, v+ d > 12.

Proof. We use a cut-argument similar as in [1]. A (vertical) cut is a vertical line
that does not coincide with a column. An (z,y)-cut is a cut with x vertices on
one side and y vertices on the other. The edges between vertices on different
sides are called cut-edges. Each cut-edge has at least one segment crossed by
the cut, and hence truly uses a grid line that crosses the cut (i.e., a row or a
diagonal). A (3,4)-cut in K7 has 12 cut-edges, and hence immediately implies
that r+d > 12. However, such a cut need not always exist. We distinguish cases.
Assume there is a column cg with exactly six vertices in it. We consider two
cuts; one cut ¢; immediately to the left of cg and one cut ¢, immediately to the
right of cg. We assume that the seventh vertex is to the left of cg, so ¢; has 6
cut-edges. Let (u, v) be an edge for which u, v are both in ¢g, but not consecutive
in ¢g. Then (u, v) cannot be drawn as a straight line. We call (u, v) a non-straight
edge and note that there are (g) — 5 = 10 non-straight edges. See also Fig. 4.
The drawing of each non-straight edge thus must leave column cg and then
return to it. Say it leaves towards the left side, then it crosses the cut ¢; when
it leaves, and crosses the cut ¢; again when it returns. If a non-straight edges go

I 3 Non-straight edge

Cut-edge

c Cr

Fig.4. K drawn with 18 bends, and the case with 6 vertices in the same column.
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left, then there are therefore at least 2a edge segments that cross cut ¢; and truly
use a row or a diagonal. Since ¢; also has 6 cut-edges, we have r + d > 2a + 6.

The other 10 — a non-straight edges go right and cross ¢, twice, so r +
d > 2(10 — a). Altogether therefore r + d > max{2a + 6,2(10 — a)}. Since the
value of a is unknown, we take the minimum over all possible values, and get
r+d > ming<g<10 max{2a + 6,2(10 — a)} = 14.

All other cases are treated similarly: we count how many cut-edges are on
c; and ¢, and how many non-straight edges there are, and apply the formula to
compute the lower bound on 7 + d. In all cases, we get » + d > 12. For space
reasons, we omit the details of these cases, but list the cases so the reader can
verify that all cases have been covered.

— A column ¢ contains 7 vertices.

— A column ¢ contains 5 vertices, and there are 2 vertices on one side of c.

— A column ¢ contains 5 vertices, and there is 1 vertex on each side of c.

— A column c contains 4 vertices, and there are 3 vertices on one side of ¢. (In
this case ¢; or ¢, is a (3,4)-cut.)

— A column ¢ contains 4 vertices, and there are 1 or 2 vertices on one side of c.

— A column c contains 3 vertices, and there are 3 or 4 vertices on one side of c.
(In this case ¢ or ¢, is a (3,4)-cut.)

— A column ¢ contains 3 vertices, and there are 2 vertices on each side of c.

— All columns contain at most 2 vertices. Applying a scan from left to right,
one can show that then there must exist a (3,4)-cut. a

We can relate r 4+ ¢ + d to the number of bends, similarly as in [2].

Lemma 2. In a hexagonal drawing of a graph with n vertices and m edges, let
b be the number of bends and let r, c,d be the number of truly used rows, columns
and diagonals. Then b >r +c+d —3n+ m.

Combining this with r + ¢+ d > 18 give the lower bounds for K.
Theorem 6. Any hexagonal drawing of K7 has at least 18 bends.

Using K7 and other small graphs, we can build arbitrarily large graphs that
also have a large lower bound on the number of bends, similarly as done in [1]
for orthogonal 2D drawings and in [14] for orthogonal 3D drawings. We give the
detailed construction for one (illustrative) case.

Theorem 7. For any n, there is a 3-connected simple graph on n' > n vertices
that requires at least 1.87n’ bends.

Proof. The graph for this lower bound is illustrated in the bottom left entry of
Table 1. We take an even number c of copies of K7 and place half of them in the
first row and half of them in the second row. In each copy of K7, we subdivide one
edge; then we identify the subdivision vertex in the first row with the one in the
second row. Also, in each copy we delete an edge (not incident to the subdivision
vertex). Then we add an edge between the ith and the ((: mod §) + 1)st copy
of K7 in each row.
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Table 1. Lower bounds for arbitrarily large graphs.

|| Simple | Multigraph |Graph with loops
1-connected %n =2.27Tn %n =3.2n in
& <> <)
2-connected %n = 2.14n 3n in
e — [ o—p——— R )

2n 2.5n

1

Recall that K7 needs 18 bends. Subdividing an edge lowers this to 17 bends,
because the subdivision vertex could take the place of a bend. Deleting an edge
lowers this to 14 bends since one can show that in any hexagonal drawing, we
can add an edge while adding at most 3 bends. Thus each copy needs at least
14 bends, so in total we need at least 28¢ bends for n = 15¢ vertices, and the

total number of bends is 25—5" = 1.87n. O

3-connected

Similar (and often easier) constructions can be used to obtain lower bounds
for various types of graphs and connectivity; see Table 1.
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Abstract. We use circular sequences to give an improved lower bound
on the minimum number of (< k)-sets in a set of points in general po-
sition. We then use this to show that if S is a set of n points in general
position, then the number [J(S) of convex quadrilaterals determined by
the points in S is at least 0.37553(2) + O(n®). This in turn implies that
the rectilinear crossing number ¢r(K,) of the complete graph K, is at
least 0.37553(:) + O(n?®). These improved bounds refine results recently
obtained by Abrego and Fernandez-Merchant, and by Lovész, Veszter-
gombi, Wagner and Welzl.

1 Introduction

Our aim in this work is to present some selected results and sketches of proofs
of our recent work [5] on the use of circular sequences in the problems described
in the title. For the reader familiar with the application of circular sequences to
these closely related problems, we give in Subsection 1.4 a brief account of what
we perceive is the main achievement hereby reported.

It is well-known that the rectilinear crossing number ¢r(K,,) of the complete
graph K, is closely related to the minimum number J(S) of convex quadrilat-
erals in a set S of n points in general position.

Observation 1 For each positive integer n,

a([(n) = gnin D(S)7

|=n
with the minimum taken over all point sets S with n elements in general position.
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Working independently, Abrego and Ferndndez-Merchant [1], and Lovész,
Vesztergombi, Wagner and Welzl [13] recently explored the close connection
between J(S) and the number n<x(S) of (< k)-sets of S. The following result
is implicitly proved in [1], and the connection with (< k)-sets was particularly
emphasized in [13].

Theorem 1 ([1] and [13]). Let S be a set of n points in the plane in general
position. Then

0S) = Y, (n—2k=3)n<k1(S) +O(n®),

1<k<(n—2)/2
where 1<;(S) denotes the number of (< j)-sets of S.

We recall that the rectilinear crossing number Tr(G) of a graph G is the
minimum number of pairwise intersections of edges in a drawing of G in the
plane in which every edge is drawn as a straight segment. We also recall that if
S is a set of points in the plane in general position, then a k-set is a subset T
of S with |T'| = k, and such that T can be separated from its complement T\ S
by a line. An i-set with 1 <i < k is a (< k)-set. As we mentioned above, we use
N<k(S) to denote the number of (< k)-sets of S.

In this paper we follow the approach, via circular sequences, used by Abrego
and Ferndndez-Merchant and (independently) by Lovész, Vesztergombi, Wagner
and Welzl, to give improved lower bounds for n<(S). In view of Observation 1
and Theorem 1, these refined bounds immediately imply improved bounds for
0O(S) (for any set S) and for Tr(K,,).

1.1 The Relationship Between [J(S) and Circular Sequences

Let S be a set of n points in general position in the plane. In [1] and [13], it is
shown that [(S) is closely related to n<x(.S).

While the important problem of determining, for each &k, the maximum num-
ber of k-sets remains tantalizingly open (the best current bounds are O(nk/3)
and ne?1°8%) (see [8] and [18], respectively), it is known that the maximum
number of (< k)-sets of an n-point set S in the plane is nk (this is attained iff
S is in convex position; see [3] and [21]).

In [13] and [21], it is shown that if S is a collection of points in general
position, then CI(S) is a linear combination of {n<;(S)}. Indeed, Theorem 1
above is a direct consequence of Lemma 9 in [13].

Theorem 1 is exploited in [13] by finding a nontrivial lower bound for n<y(S)
for every k < n/2 and every set S of n points in general position (and using an
even better bound for k close to n/2, which follows from the results in [20]). See
Theorems 2 and 4 in [13]. To obtain the bound in their Theorem 2, they follow
the approach of circular sequences.

A circular sequence onn elements II is a sequence (g, 1, - . - ,71'(3)) of permu-

tation of the set {1,2,...,n}, where 7 is the identity permutation (1,2,...,n),
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7r(n) is the reverse permutation (n,n—1,...,1), and any two consecutive permu-
2

tations differ by exactly one transposition of two elements in adjacent positions.
A transposition that occurs between elements in positions i and i+ 1, or between
elements in positions n — ¢ and n — i + 1 is é-critical. A transposition is (< k)-
critical if it is critical for some ¢ < k. We denote the number of (< k)-critical
transpositions in IT by x<r(II)), and use X<(n) to denote the minimum of
X<k(IT) taken over all circular sequences II on n elements.

Circular sequences can be used to encode any set S of points in general
position as follows (see [12]). Let L be a (directed) line that is not orthogonal
to any of the lines defined by pairs of points in S. We label the points in S
as pi1,DP2, - --,Pn, according to the order in which their orthogonal projections
appear along L. As we rotate L (say counterclockwise), the ordering of the
projections changes precisely at the positions where L passes through a position
orthogonal to the line defined by some pair of points 7, s in S. At the time the
projection change occurs, r and s are adjacent in the ordering. and the ordering
changes by transposing r and s. By keeping track of all permutations of the
projections as L is rotated by 180°, we obtain a circular sequence Ilg.

The crucial observation is that (< k)-sets are in one-to-one correspondence
with (< k)-critical transpositions of ITg.

Observation 2 Let S be a set of n points in the plane in general position, and
let k <n/2. Then

n<k(S) = x<k(Is).

Combining Theorem 1 and Observation 2 and recalling the definition of
X<k(n), one immediately obtains the following statement, obtained indepen-
dently in [1] and [13].

Theorem 2 ([1] and [13]). Let S be a set of n points in the plane in general
position. Then

a(s) = Z (n—Qk—S)X§k+1(HS) +O(n3)
1<k<(n—2)/2

> Z (n—2k—3)X§k+1(n) —|—O(n3)
1<k<(n—2)/2

Having reduced the problem of bounding 0J(S) to the problem of bound-
ing X< (n), Abrego and Fernandez-Merchant [1], and independently Lovasz,
Vesztergombi, Wagner and Welzl [13], then proceeded to the (combinatorial)
problem of deriving good estimates for X< (n).

1.2 Previous Estimates for X<;(n) and Their Consequences

In [1] and [13], the following was proved:
E+1 -
X<k(n) >3 5 ) for every positive n and every k < n/2. (1)

In [1], this result is applied together with Theorem 2, to obtain the following.
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Theorem 3 (Abrego and Fernandez-Merchant [1]). If S is any set of n
points in general position, then

0(s) > H%J V;J VXQJ {”;1 _0.375<Z) rom). (2

As a corollary, they obtain ¢r(K,) > 0.375()}) + O(n®).

We observe that the bound X<p(n) > 3(’“‘51) is sharp for k < n/3 (see
Example 3 in [13]). Therefore, any improvement on [J(S) based on the approach
of circular sequences must necessarily rely on bounds for X< (n) that are strictly
better than 3(’“;1) for (some subset of) the interval n/3 < k < (n — 2)/2. Prior
to the present paper, the only such bound reported is the following, which is
derived in [13] using a result from [20]:

X<k(n) > %2 —nyvn? —4k% + O(n). (3)

Now (3) is strictly better than (1) for k sufficiently close to n/2, namely for

k > ko(n) := /(2V/13 = 5)/9n ~ 0.4956n + O(y/n). Combining (1) (which is
also proved in [13] independently of [1]) and (3), and applying Theorem 2, the
following was proved in [13].

Theorem 4 (Lovasz, Vesztergombi, Wagner and Welzl [13]). If S is any
set of n points in general position, then

0(S) > 0.37501 (Z) +0(nd).

Again, in view of Observation 1 this immediately yields an improved bound
for er(K,).

Although numerically the improvement (of roughly 1.088 - 107%) given in
Theorem 4 over 0.375 may seem marginal, conceptually it is most relevant,
since it shows that the rectilinear and the ordinary crossing number of K,
(which considers drawings in which the edges are not necessarily straight seg-
ments) are different on the asymptotically relevant term n*. This last obser-
vation follows since there are (non-rectilinear) drawings of K, with exactly
(1/4)[n/4][(n —1)/4][(n — 2)/4] [ (n — 3)/4] = 0.375(}) + O(n?) crossings. No
better (non-rectilinear) drawings of K,, are known, and consequently the (non-
rectilinear) crossing number of K, has been long conjectured to be exactly

(1/4)[n/4][(n — 1)/4]|(n — 2)/4] | (n — 3)/4] (see for instance [10]).

1.3 Our Results: Improved Bound for X<;(n) and Its Consequences

The core of this paper is an improved bound on the minimum number X< (n) of
(< k)-critical transpositions in any circular sequence on n elements. Our bound
is given in terms of two functions F(k,n) and s(k,n) defined as follows.
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For all positive integers k,n such that k < n, let

F(k,n) = (2 — S(kl’n)> E? — (%) E(n —2k—1)

s(k,n)* — 7s(k,n)? s\, ) —
+( (k,n) 7(1135(27;)12 (k,n) 6>(n—2k—1)2,

sthn) = |2 |1+ 1+6(§>_<%)
1 \=0-0)

Using this notation, our main result is the following.

where

Theorem 5 (Main result). For every positive integer n and every k < n/2,
X<i(n) > F(k,n) + O(n).

This bound is better than the bounds in (1) and (3) for k& > ki(n) :=
(1/162) (—71 + 71n +V19n? — 38n + 19) ~ 0.465178n + O(y/n) (see [5]).

The full proof of Theorem 5 is given in [5]. We present a sketch of the general
ideas in the proof in Section 2.

By Observation 2, the refined bound for X<(n) given in Theorem 5 imme-
diately implies improved bounds for n<x(S), for k > ki (n).

Moreover, in view of Theorem 2, Theorem 5 also gives improved bounds for
0(.S), for any set S of n points in general position.

The corresponding calculations (which are somewhat tedious but by no means
difficult) are sketched in Section 3, where the following is established.

Proposition 1. For every positive integer n and every k < n/2,
k+2
> (n—2k-3) max {3( ; ),F(k +1, n)} > 0.37553 (Z) +0(n?).
1<k<(n—2)/2

By applying Theorem 5 and Proposition 1 to Theorem 2, we obtain the
following.

Corollary 1. If S is a set of n points in the plane in general position, then
0(S) > 0.37553 (Z) +0(nd).

In view of Observation 1, we also have the following.
Corollary 2. For each positive integer n,

n

e (K,) > 0.37553 <4> +0(n?).
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To put this improved lower bound on ¢r(K,) into context, first we should
point out that the lower bounds on ¢r(K,) proved in [1] and [13] represent a
remarkable improvement over the previous best general lower bounds. Previous
to the successful use of the approach of circular sequences (Edelsbrunner et al. [9]
also claimed to have proved that X<y(n) > 3(k‘£1), but their argument seems
to have a gap), the best lower bound known was r(K,,) > 0.3288(7) [19].

The improved lower bounds on Tr(K,,) reported in [1] and [13] are partic-
ularly attractive since they are remarkably close to the best upper bound cur-
rently known, namely cr(K,) < 0.3807();) [2]. This bound was obtained using a
computer-generated base case. The best known upper bound derived “by hand”
(quoting [13]), namely er(K,) < 0.3838(’;), was obtained by Brodsky, Durocher,
and Gethner [6].

We also mention that the exact crossing number of K, is known for n < 16.
For all n < 9, the exact value of €r(K,,) can be found for instance in [22]. For
n = 10 it was determined by Brodsky, Durocher, and Gethner [7], for n = 11
and 12 it was calculated by Aichholzer, Aurenhammer, and Krasser [2], and
quite recently Aichholzer and Krasser determined it for n = 13,14, 15,16 (pri-
vate communication). The most current information on the rectilinear crossing
number of K, for specific values of n is given in Aichholzer’s comprehensive web
page http://www.igi.tugraz.at/oaich/triangulations/crossing.html.

From Corollary 2, the best bounds currently known for r(K,) are as follows:

0.37553 (Z) +On®) <r(K,) < 0.3807 (Z) +O(n?).

1.4 A Brief Discussion on the Main New Results

From our own perspective, the most important contribution of this work is per-
haps not the closing of the gap between the lower and upper bounds for ()
and ¢r(K,), but the evidence that the technique of circular sequences can be
further pushed to yield (substantial, we think) improved results. Indeed, by us-
ing exclusively circular sequences we could show that the number of (< k)-sets
is strictly greater than 3(’“‘51) for k > kin =~ 0.465n, thus closing the gap for
roughly 20% of the interval for which this was previously unknown. This success
gives us hope that even better results can be obtained by alternative approaches

within the technique of circular sequences.

2 Bounding the Number of (< k)-Critical Transpositions:
Sketch of Proof of Theorem 5

Our strategy to prove Theorem 5 is as follows. First we show that the number of
(< k)-critical transpositions in any circular sequence IT on n elements is bounded
by below by a function that depends on the solution of a maximization problem
over a certain family of digraphs. This is done in Section 2.1 (see Proposition 2).
Then, in Section 2.2, we find an upper bound for the solution of the maximization
problem over this set of digraphs (see Proposition 5).

We will conclude this section with the (by then obvious) observation that
Theorem 5 follows from Propositions 2 and 5.
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2.1 Bounding the Number of (< k)-Critical Transpositions
in Terms of the Solution of a Digraph Optimization Problem

Our lower bound for the number of (< k)-critical transpositions in a circular
sequence is given in terms of the maximum of an objective function taken over a
certain set of digraphs which we now proceed to define. We use w0 to denote the
directed edge from vertex u to vertex v. The indegree and outdegree of vertex u
in the digraph D are denoted [u]}, and [u]};, respectively.

Definition. Let k, m be integers such that 2 < m < k. A digraph D with vertex
set {v1,va, ..., v} is a (k, m)-digraph if it satisfies the following conditions:

(i) There is some vertex v; such that [v;], = 0.
(ii) For every i € {1,...,k}, [v;]}, < [vi]p + (m —1).
(iii) There is a one-to-one ordering map fp : {1,2,...,k} — {1,2,... k}, such
that, for all 4,5 € {1,2,...,k}, if v;0; is in D then fp(i) < fp(4).

We let Dy, ,, denote the set of all (k, m)-digraphs.
The following is one of the core statements of this work. For the sake of
brevity, we omit its proof (see [5]).

Proposition 2. Let IT be any circular sequence on n elements and let k < n/2.
Define m :=n — 2k. Then

X<k (IT) > 2k* + km

— max {2 Z [vi]p + Z min {[v;], — [vi]}, + (m —1),m}

DEDrm
k 1<i<k 1<i<k

2.2 Bounding the Solution of the Digraph Optimization Problem

The next step is to find a (good) upper bound for the maximization problem in
Proposition 2. We achieve this in two steps. First we find a digraph Dy(k, m) in
which the maximum is attained, and then we estimate the value of the objective
function at Dg(k, m).

Given the nature of the maximization problem in Proposition 2, it is natu-
ral to expect that the objective function is maximized in the digraph Dg(k, m)
(with vertex set {vi,ve,...,vx}) in which [vi]—go(hm) is maximum possible for

each i (subject to the conditions that define Dy ,,,), and in which the [vi]go(k m)

directed edges leaving each v; have endpoints v;11,viya, ... (infor-

) Ui_;,_[v,];

*1Dq (k,m)
mally speaking, “there are no gaps”). It can be proved that this is indeed the
case, but the proof is long and somewhat technical. For the sake of brevity, we
omit the proof of the following statement, and refer the interested reader to [5].

Proposition 3. The optimal value of the mazximization problem in Proposi-
tion 2 is attained at the digraph Do(k, m) with vertex set {vi,va,..., v} defined
as follows:
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(1) [”1]50(1@7,%) =0;

(2) [/Ui]go(k:,m) = min{[vi] p (4 ) + (M = 1),k — i}, for every i > 1; and

(8) Foralli,j suchthat 1 <i<j<k, the directed edge v;v; isin Do(k,m)
ifand only if i+1<j<i+ [vi]go(k m)-

For the rest of the section, we denote Dy(k, m) simply by Dy.

In view of this and Proposition 2, our next goal is to estimate a bound for

2 2199 [”i]BO(k,m) + Zlgigk min {[”i]Bo(k,m) - [UirDro(k,m) + (m—1), m}-

We note that this expression is given in terms of [v;], and [”i]EO- Moreover,
in view of the properties of Dy, each [vi}go is fully determined by [v;]5 . Thus
our first step is to determine (exactly) [v;]p, for each i. The value of [v;]p, is
given in terms of functions S,, and T, defined as follows.

For each real number x > 1, we let Sy, () denote the (unique) positive integer
such that 1 + (Sp(x) — 1)Sp(x)(m —1)/2 < z < Sy (2)(Sp(x) + 1)(m — 1) /2.
If i > 1 is an integer, then we let T,,(¢), Up, (i) denote the (unique) integers
that satisfy 0 < Th,,(i) < m —2,0 < Up,(d) < Sp(i) — 1, and such that ¢ =
14 (Sm(i) = 1)Sm (@) (m — 1)/2 + S (1) T (3) + Upn(4).

The following statement can be proved by induction on i (see [5]).

Proposition 4. For each integer i such that 1 < ¢ < k, we have [vi]BO =
(Sm(l) - 1)(m - 1) + Tm(l) [ |

Once we have the exact value of [v;], for every i, we then proceed to estimate
an upper bound for the objective function in Proposition 2, evaluated at Dy.
The arguments and calculations needed to prove this bound are not difficult,
but somewhat technical and long. We omit the proof of this statement, and refer
once again the interested reader to [5]. The upper bound obtained is the right
hand side in the inequality in our next statement. Since the objective function
is maximized at Dg, we finally conclude the following.

Proposition 5.

max { 2 Z [vil p + Z min {[v;] 5 — [vi]}, + (m —1),m} 3 <

DE/Dk,m

1<i<k 1sisk
k2 (Sm(k)? = S (k) + 1)
4 _ 2 -
- (Sm(k) 751”2(;2”(; 125, (k) 6) (m —1)? + O(k),
where
o ST
Sin(k) = sl :
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2.3 Proof of Theorem 5

We recall that m = n — 2k, and so s(k,n) = Sy, (k). Therefore Theorem 5 is
an immediate consequence of Propositions 2 and 5 (note that we also used the
obvious inequality km > k(m — 1)). ]

3 Proof of Proposition 1

Our first observation is that, for sufficiently large n, F(k,n) > 3(
k > ki(n) (see Appendix in [5]). We also note that if we define

~ 1 1+ 6z
S(x) = {5 <1+ 1_2$>J7
then it is easy to check that $(k/n) = s(k,n) (and, moreover, s(k/n)=s(k+1,n))

for all but at most O(y/n) values of k.
These observations imply that

(n—2)/2—1
Z (n — 2k — 3) ~max{3(k;2>,F(k+l,n)}
k=1

E+1
5 ) for every

(n—2)/2—1

>3 (n—Qk—S)(k;2)+ > (n—2k-3)F(k+1n)
k=L ()] 41

Lk1(n)] 2
(B 0)):
2 n n
k=1

3. (1—2(%)) 7F(k;l’”) +O(nd)

st ([0 2maar) ot ( / 11/2<1 —20)f() dx> +0(®)

where ¢; := 0.465178 (recall that ki (n) ~ 0.465178n 4+ O(y/n)), and

Jw) = (2 - %) 2 - (%) o1 - 20)

5(x)* — 75(x)? s(x) —
(BT ) 6 e
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To complete the proof, we note that a numerical evaluation of the integrals

in the previous inequality yields

3 [ 12 = 0.37553
—/ (1—2x)x2dx+/ (1-22)f(z)de m ——. 1
2 Jo o 24
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Abstract. We prove that the number of distinct weaving patterns pro-
duced by n semi-algebraic curves in R® defined coordinate-wise by poly-
nomials of degrees bounded by some constant d, is bounded by 2°(*1°8™)
where the implied constant in the exponent depends on d. This general-
izes a similar bound obtained by Pach, Pollack and Welzl [3] for the case
when d = 1.

1 Introduction

In [3], Pach, Pollack and Welzl considered weaving patterns of n lines in R®
and showed that asymptotically only a negligible fraction of possible weaving
patterns are realizable by straight lines in R® (see Remark 2 below). In this
paper, we consider weaving patterns produced by polynomial curves in R®. Since,
such curves are much more flexible than lines, it is reasonable to expect a much
bigger number of realizable weaving patterns. In this paper, we prove that the
number of distinct weaving patterns, realized by polynomial curves with degrees
bounded by some constant d, is still asymptotically negligible.

Crossing patterns of semi-algebraic sets of fixed description complexity were
considered in [1], where Ramsey type results are proved for such arrangements.
However, since semi-algebraic curves in R? (unlike lines) need not satisfy sim-
ple above-below relationships and can intertwine in complicated ways, it is not
immediately clear whether the framework in [1] is applicable in our setting.

The rest of the paper is organized as follows. In Section 2, we define weaving
patterns for polynomial curves and state the main result of the paper (Theo-
rem 1). Since, the projections to the plane of curves defined by polynomials in R3
can have complicated patterns of intersection, defining what is meant by a weav-
ing pattern for such curves requires some care. In Section 3, we recall some basic
facts from [2]. The main tools used in the proof of Theorem 1, are Cylindrical
Algebraic Decomposition, and a bound on the number of connected components
of the realizations of all realizable sign conditions on a family of polynomials
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J. Pach (Ed.): GD 2004, LNCS 3383, pp. 36-42, 2004.
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(see Theorem 2). We give here the basic definitions, and state the results that
we need, referring the reader to [2] for details. In Section 4 we prove Theorem 1.
Finally, in Section 5 we compare the number of weaving patterns realizable by
polynomial curves of fixed degrees with the total number of weaving patterns.

2 Weaving Patterns in R®

Let Y1, ., : (—00,00) — R? be n semi-algebraic curves given by

Yi(s) = (xl(8)7yz(s)7zl(8))7 I<i<n,

where x;, y;, z; are polynomials whose degrees are bounded by d. We will assume
that the curves are not self-intersecting in R® and the images of ~; and 7, do
not intersect, unless i = j.

Let m : R® — R? denote the projection sending (z,y,2) — (z,y). For 1 <
1 <73 <n,let

fij

M;ij = {7"(%‘(5}]‘))7 e 771'(%(51‘]']))} CR? sjj<---< Sij

)

denote the finite set of ¢;; isolated points of intersections of w(image(~y;)) and
m(image(y;)). Also, let

Mii = {m(yi(sh)), -+ m(vi(s5))} CR?, sfy <o < st
and such that 7(v;(s%)) = 7(7i(s)), s # sk = s > sk.

We assume that each of the intersection points correspond to a normal cross-
ing. In particular, for p € M;; (respectively, p € M;;) 7= (p) N (image(y;) U
image(;)) (respectively, 7=!(p) N image(v;)) consists of exactly two points.
This is not a very strong assumption, since for every finite family of smooth al-
gebraic curves, almost all linear projections, 7, satisfy these assumptions. The set
of bad projections is a Zariski closed subset in the space of all linear projections.

For1<i<j<n,and1 <k < /{;;, we define Vl’; € {41, —1} in the following
way.

Vh = —|—} if1 zi(s};) > zj(s) where s € R is such that m(y;(s)) = 7(vi(s};)),
= —1 else.

In other words, V}¥ is +1 if image(y;) lies above image(y;) over m(v;(s¥;)), which
is a point of intersection of the projections of the images of the two curves, v;, 7y;,
to the XY -plane.
Similarly, we define for each 1 < i <mn, and 1 < k < {;;, V¥ € {+1,-1} as
follows.
Vi =41 if zi(sf) > zj(s) where s # s, is such that m(yi(s)) = 7(vi(s};)),
= —1 else.

Now consider the union of the projections of the images of the curves, namely

m(image(y1)), .. ., w(image(yn)),
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as a planar embedding of a planar graph (self loops allowed), whose vertices are
at the points, Mi@-,l <1< j<n,1<k <Y, and whose edges are the various
curve segments joining the vertices. Two such graph embeddings are said to be
equivalent, if one can be mapped to the other by a homeomorphism of the plane.
Given an ordered set of curves, I' = {v1,...,7n}, satisfying the assumptions
stated above, we denote by G(I") the equivalence class of the corresponding
embedded graph in the XY-plane. Finally, we call G(I") along with the labeling
of each of its vertex, MZE by Vll; € {41, —1}, to be the weaving pattern produced
by I.

In this paper we address the following question. How many distinct weaving
patterns can be produced by n algebraic curves, v1,...,7, : (—00,00) — R3
where v;(s) = (2:(), yi(s), z:(s)), and x;,y;, z; are polynomials whose degrees
are bounded by some constant d ?

We prove the following theorem.

Theorem 1. The number of distinct weaving patterns produced by I" is bounded
by 20(n1ogn) “where the constant in the exponent depends on d.

This generalizes the bound proved in [3], which is the special case when d = 1.
Also, note that 7(image(v1)), ..., m(image(v,)), can have (3)d? crossing points
and hence the number of possible weaving patterns could be potentially as large

as 2(5)2°, However, its clear from Theorem 1 only a negligible fraction of these
are realizable by curves defined by polynomials with degrees bounded by d.

3 Preliminaries

In this section, we recall a few notions from semi-algebraic geometry that we
will need in the proof of Theorem 1. More details, including proofs of the results
stated below, can be found in [2].

3.1 Realizable Sign Conditions and Associated Bounds
A sign condition is an element of {0,1,—1}. We denote for x € R
sign(z) =0  iff x =0,
sign(z) =1 iff x >0,
sign(z) = -1 iff x <0.

Let Q C R[Xy,...,Xy], A sign condition on Q is an element of {0, 1, —1}<.
We say that Q realizes the sign condition o at x € R¥ if

A sign(@() = o(@).
QeQ
The realization of the sign condition o is

R(o) =f{z e R" | N sign(Q(x)) = 0(Q)}.

QeQ
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The sign condition o is realizable if R(c) is non-empty. The set Sign(Q) C
{0,1, -1} is the set of all realizable sign conditions for Q over R*.
For o € Sign(Q), let by(c) denote the number of connected components of

R(o) = {z e R | /\ sign(Q(2)) = 0(Q)}-

QeQ

Let by(Q) = >, bo(o). We write by(d, k, s) for the maximum of by(Q) over
all Q, where Q is a finite subset of R[X1, ..., X;] whose elements have degree
at most d, #(Q) = s.

The following theorem [2] gives an upper bound on by(d, k, s) which we will
use later in the paper.

Theorem 2.

bo(d, kys) < > (;)4jd(2d—1)k1.

1<j<k

3.2 Cylindrical Decomposition

Cylindrical Algebraic Decomposition is a classical tool used in the study of,
as well as in algorithms for computing, topological properties of semi-algebraic
sets. We give here the basic definitions and properties of Cylindrical Algebraic
Decomposition referring the reader to [2] for greater details.

A cylindrical decomposition of R¥ is a sequence Si,...,S; where, for each
1 <i<k,S;is a finite partition of R? into semi-algebraic subsets, called the
cells of level i, which satisfy the following properties:

Each cell S € §; is either a point or an open interval.
For every 1 < i < k and every S € §;, there are finitely many continuous
semi-algebraic functions

fS,1<...<§S,gSZS—>R

such that the cylinder S x R C R*! is the disjoint union of cells of S;
which are:
either the graph of one of the functions {g ;, for j =1,...,¢g:

{(2',2541) € S xR | 2j41 = €s,5(2")}

or a band of the cylinder bounded from below and from above by the
graphs of the functions &g ; and &g 41, for j =0,...,fg, where we take
£s,0 = —00 and & r541 = +00:

{(@",2511) € SXR| &g j(2") < xjy1 < Esjpa(a’)} .

A cylindrical decomposition adapted to a finite family of semi-algebraic sets
Ti,...,Ty is a cylindrical decomposition of R* such that every T} is a union of
cells.
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Given a finite set P of polynomials in R[X1,..., X;], a subset S of R¥ is
P-semi-algebraic if S is the realization of a quantifier free formula with atoms
P=0,P>0o0r P<0with P& P. A subset S of R¥ is P-invariant if every
polynomial P € P has a constant sign (> 0, < 0, or = 0) on S. A cylindrical
decomposition of R* adapted to P is a cylindrical decomposition for which each
cell C € Sy is P-invariant. It is clear that if S is P-semi-algebraic, a cylindrical
decomposition adapted to P is a cylindrical decomposition adapted to S.

Given a family of polynomials P C R[X}, ..., Xj], there exists another family
of polynomials Elimy, (P) (see [2], page 145, for the precise definition of Elim)
having the following property.

We denote, fori =k —1,...,1,

G (P) = Elimle (Ci-‘rl (P))>
with Ci(P) = P, so that
CZ(P) C R[Xl, ce ,Xi].

The semi-algebraically connected components of the sign conditions on the fam-
ily,

C(P) = Ui<kCi(P)
are the cells of a cylindrical decomposition adapted to P. We call C(P) the
cylindrifying family of polynomials associated to P .

Moreover, if s is a bound on #(P), and d a bound on the degrees of the
elements of P, #(Elim, (P)) is bounded by O(s?d?). Moreover, the the degrees
of the polynomials in Elimx, (P) with respect to Xi,..., X;_1 is bounded by
2d2.

Remark 1. The set C;(P) has the following additional property. For o €

sign(C;(P)) and C a connected component of R(c, R?), for each x = (z1, ..., x;) €

C, the family U C;(P)(z1, ..., x;) is the cylindrifying family of polynomials as-
i<j<k

sociated to P(x1,...,2;), and moreover the induced cylindrical decompositions

have the same structure. More precisely, this means that there is a 1-1 corre-

spondence between the cylindrical cells as x varies over C.

4 Proof of the Main Result

For 1 <i<n, let

d
R; = ZAMJ? S R[AZ7TZL
=0
d . —
Qi =) Bi;T] €R[B;T],
=0
d

R, = ZC%]TZ] S R[C_’Z,TZ},

=0
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where we denote by A; (respectively, B;, C;) the vector of variables, (A;q, ..., A;.q)
(respectively, (Bio,---,Bia), (Cio;---,Cia))

Similarly, we denote by A (respectively, B, C) the vector of variables,
(A1,00- -5 Ay -3 Apos ooy Anoa)

(respectively, (BLO? ceey Bl,da veey Bmo, veey Bn,d)a (0170, veey Ol,da D) On,O7 ceey Cn,d))~
We denote by ; the triple (P;, Q;, R;). For fixed values (@, b;,¢;), the triples
vi(@i, b, &) = (Pi(a;, T;), Qi(bs, Ty), Ri (€, T;)), 1 < i < n gives rise to an ordered
set of curves in R®, which we denote by I'(@,b,¢). Let W P(a,b,¢) denote the
weaving pattern produced by I'(a, b, ¢). We want to bound the cardinality of the
set,

{WP(@a,b,e) | (a,b,e) e R+
Now, consider the following family of polynomials:
A ={X-Pi(A,Ty),Y —Qi(B;,T;), Z — Ri(C;, T;)} C R[A;, By, Ci, X, Y, Z,T5).

Let B; = Elimr, (A;) C R[A;, B;,C;, X, Y, Z], and let

B= |J B.

1<i<n

Notice, if we specialize (A;, B;, C;) to some (a;, b;,¢;) € R3@HD | the image
of the curve 7;(a;, b;, &) € R3 is a B;(as, b;, ¢;)-semi-algebraic set.

The following proposition relates the weaving pattern, W P(a, b, ) to a cylin-
drical decomposition of R? adapted to the family B(a, b, ¢).

Proposition 1. Let (a,b,¢) € R34V The weaving pattern, WP (a,b,c) is
determined by the cylindrical decomposition induced by the cylindrifying family
of polynomials associated to B(a, b, ).

In particular, if two points (a,b,¢), (@b, &) € R , are such that the
cylindrical decompositions induced by the cylindrifying families of polynomials
associated to B(a,b,¢) and B(a', V', &) have the same structure, then W P(a,b,¢) =
WP@@,v,e).

d+1)n

Proof. The proposition is a consequence of the definition of weaving pattern, the
definition of cylindrifying families of polynomials, and the fact that the images
of the curves, ~;(a;, b;, ¢;), are all B(a, b, ¢)-semi-algebraic sets.

We now prove Theorem 1.

Proof. Let C; = Elimz(B),Cy = Elimy (C1), and C3 = Elimyx (Cs).

The set C3 has the following property which is a consequence of Remark 1
in Section 3. Let C be a connected component of the realization of a realizable
sign condition of Cs. Then, for each (a, b, ¢) € C, B(a, b, &) UCy(a, b,¢)UCx(a, b, &)

is the cylindrifying family of polynomials associated to B(a,b,¢) and moreover
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the cylindrical decompositions induced have the same structure as (a, b, ¢) varies
over C.

Since, by Proposition 1, for fixed (@,b,¢) € R3*@+D" the weaving pattern
of I'(@,b, ) is determined by any Cylindrical Decomposition of R? adapted to
B(a,b,¢), then by the previous observation, the number of distinct weaving pat-
terns is clearly bounded by by(Cs), which we now proceed to bound from above.

From the bounds stated in Section 3, we have that for 1 < i < n, #(B;) =
O(d?) and the degrees of the polynomials in B; are bounded by O(d?). Hence,
#(B) = O(nd?®). Since, Cs is obtained from B after three successive Elim opera-
tions, we get that, #C3 = (nd)°(") and the degrees of the polynomials in Cs is
bounded by d°™1). The number of variables in the polynomials in Cz is 3(d-+1)n.
Using the bound in Theorem 2, we get that bg(Cz2) is bounded by

(nd)O(dn) _ 20(n logn) )

5 Most Weaving Patterns Are Not Realizable

We have the following theorem which generalizes Theorem 3 in [3].

Theorem 3. The number of weaving patterns realizable by polynomial curves of
degrees bounded by a constant, divided by the total number of weaving patterns
of n curves whose projections are allowed to intersect at most a constant number
of times, tends to 0 exponentially fast, as n — oo.

Proof. By Theorem 1, the number of distinct weaving patterns produced by
such curves is bounded by 2°("1°6™) On the other hand, considering n lines in
the plane in general position, and counting all possible ways of labeling the (g)

crossings, we see that there are at least 2(3) possible weaving patterns.

Remark 2. The proof of the upper bound in Theorem 3 in [3] does not seem
to consider the fact that the projections of different sets of n lines in R?® to
the plane, can produce arrangements which are combinatorially distinct, and
these would produce distinct weaving patterns by definition. In fact, obtaining
good control on this number complicates the proof of Theorem 1 in this paper.
However, since the number of combinatorially distinct arrangements of n lines
in R? is still bounded by 2€(*1°27) the proof of the theorem in [3] is still valid.

References

1. N. Aron, J. PAacH, R. PincHASI, R. RADpoicic, M. SHARIR, Crossing Patterns of
Semi-algebraic Sets, Preprint.

2. S. Basu, R. PoLLAck, M.-F. Roy, Algorithms in Real Algebraic Geometry,
Springer-Verlag, 2003.

3. J. PAcH, R. PoLLACK, E. WELZL, Weaving Patterns of Lines and Line Segments
in Space, Algorithmica, 9:561-571, 1993.



Drawing the AS Graph in 2.5 Dimensions*

Michael Baur!, Ulrik Brandes?, Marco Gaertler!, and Dorothea Wagner!

L University of Karlsruhe, Department of Computer Science,
76128 Karlsruhe, Germany
{baur,gaertler,dwagner}@ilkd.uni-karlsruhe.de
2 University of Konstanz, Department of Computer & Information Science,
78457 Konstanz, Germany
Ulrik.Brandes@uni-konstanz.de

Abstract. We propose a method for drawing AS graph data using 2.5D
graph visualization. In order to bring out the pure graph structure of the
AS graph we consider its core hierarchy. The k-cores are represented by
2D layouts whose interdependence for increasing k is displayed by the
third dimension. For the core with maximum value a spectral layout is
chosen thus emphasizing on the most important part of the AS graph.
The lower cores are added iteratively by force-based methods. In con-
trast to alternative approaches to visualize AS graph data, our method
illustrates the entire AS graph structure. Moreover, it is generic with
regard to the hierarchy displayed by the third dimension.

1 Introduction

Current research activities in computer science and physics are aiming at under-
standing the dynamic evolution of large and complex networks like the physical
internet, World Wide Web, peer-to-peer systems and the relation between au-
tonomous systems (AS). The design of adequate visualization methods for such
networks is an important step towards this aim. As these graphs are on one
hand large or even huge, on the other hand evolving, customized visualizations
concentrating on their intrinsic structural characteristics are required.

In this paper we propose a layout method that brings out the pure structure
of an autonomous systems (AS) graph. More precisely, we focus on the core
hierarchy of AS graphs. A 2D layout is obtained by first choosing a spectral
layout to display the core with maximum value and then adding the lower cores
iteratively by force-based methods. Using 2.5D graph visualization, we then rep-
resent the core hierarchy by stacking the induced 2D layouts of the k-cores for
increasing k on top of each other in the third dimension. Visualizations in 2.5D
have been proposed frequently for network data, for example to display other
graph hierarchies [6, 9] or evolving graphs over time [4].

A few samples of visualizations of AS graphs are already available. However,
they either focus on the geographic location of the AS [8], on the routing struc-
ture seen from a selected AS [2,7] or on a high level view created by clustering
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654/13-2 and BR 2158/1-2, and from the European Commission within FET Open
Projects COSIN (IST-2001-33555) and DELIS (contract no. 001907).
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the nodes [13]. In contrast, our method displays the entire AS graph structure
without using external information. Previous attempts to analyze the structure
of the AS graph propose the existence of meaningful central nodes that are highly
connected to a large fraction of the graph [11]. It seems that this structural pe-
culiarity is interpreted very well by the notion of k-cores [14, 1]. This concept is
already rudimentary used for initial cleaning in [12]. Accordingly, our approach
is based on the hierarchical core decomposition of the AS graph. Moreover, other
kind of hierarchies can be used instead.

We consider AS graphs from different dates between 2001 and 2003 to demon-
strate the usefulness of our method as means for analyzing the relation between
ASes. Also graphs obtained by the Internet Topology Generator INET 3.0 [15]
are consulted.

The new 2.5D visualization method for AS graphs is explained in Section 2.
In Section 3 we present and discuss the results obtained for various AS graph
data sets and Section 4 gives the conclusions.

2 Layout Method

Layout Paradigm. We assume a hierarchical decomposition based on the k-
core concept. The k-core of a graph is defined as the unique subgraph obtained
by recursively removing all nodes of degree less than k. A node has coreness £,
if it belongs to the f-core but not to the (£ + 1)-core. The £-core layer is the
collection of all nodes having coreness ¢. The core of a graph is the k-core such
that the (k + 1)-core is empty. In general, the core decomposition can result in
disconnected parts. For the AS graph, all k-cores stay connected which is an
advantage of the core hierarchy.

However, abstraction to the levels of hierarchy is normally accompanied by a
loss of information that should be avoided. Therefore, we establish the following
layout paradigm: First, all nodes and edges are displayed, second, the levels of
hierarchy are emphasized, and third, the inter- and intra-level connections are
made clear.

We propose an incremental algorithm to produce a 2D layout satisfying our
layout paradigm. This layout is afterwards transformed into 2.5D in a canonical
way using the core hierarchy. First a generic method to generate a 2D layout of a
hierarchical decomposition of the graph is introduced, followed by the specifica-
tion of parameters that can be chosen to fulfill certain requirements and requests
induced by the structure of AS graphs.

Generic Algorithm. The first step of the algorithm constructs a spectral lay-
out for the highest level of the hierarchy. Then, iteratively, the lower levels are
added using a combination of barycentric and force-directed placement. Algo-
rithm 1 gives a formal description of this procedure based on the core hierarchy.

Preliminary studies indicate that a spectral placement does not lead to a
satisfactory layout of the AS graph as a whole. However, the results improve for
increasing core value. We therefore choose a spectral layout as initial placement
for the core of the graph. Then, for the iterative addition of the other level of
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Algorithm 1: Generic AS layout algorithm.
Input: graph G = (V, E)
let k «+ maximum coreness, GG; < the [-core, C; < [-core layer
calculate spectral layout for Gy,
for|—k—1,...,1do
if C; # () then
\; calculate barycentric layout for C; in (i, keeping Gi41 fixed

calculate force-directed layout for C; in Gy, keeping G;4+1 fixed
calculate force-directed layout for G;

hierarchy, we first calculate a barycentric placement in which all new nodes are
placed in the barycenter of their neighbors in this level. Unfortunately, barycen-
tric layouts also have a number of drawbacks. Firstly, nodes that are structurally
equivalent in the current subgraph are assigned to the same position. Secondly,
all nodes are placed inside the convex hull of the already positioned nodes. In
particular this means that the outermost placed nodes are those having highest
coreness which is clearly contradictory to the intuition of importance. To over-
come these difficulties, we use the barycentric layout as an initial placement for
a subsequent force-directed refinement step, where only newly added nodes are
displaced. In addition, a force-directed approach is applied for all nodes in or-
der to relax the whole graph layout. However, the number of iterations and the
maximal movement of the nodes is carefully restricted not to destroy the pre-
viously computed layout. A special feature of this relaxation step is the use of
non-uniform natural spring lengths I(u, v), where [(u,v) scales with the smaller
core value of the two incident nodes u and v. Thus, the effect of a barycentric
layout is modeled, since edges between nodes of high coreness are longer than
edges between nodes of low coreness. Accordingly, these springs prevent nodes
with high coreness from drifting into the center of the layout.

Fitting the Parameters. Beside the choice of the hierarchical decomposition,
the algorithm offers a few more degrees of freedom that allow an adjustment to
a broad range of applications. Our choice of parameters are originated from the
core structure of the AS graph. For the spectral layout we propose a modified
Laplacian matrix L' = 1/4- D — A [5]. Our experiments showed that the nor-
malized adjacency matrix results in comparably good layouts while the standard
Laplacian matrix performs significantly worse.

The force-directed placement is computed by a variant of the algorithm
from [10]. Unlike the original algorithm, we calculate the displacement only for
one vertex at a time and update its position immediately. Furthermore, we use
the original forces but with non-uniform natural edge lengths I(u, v) proportional
to min{level(u),level(v)}2. For the local refinement step we perform at most 50
iterations and for the global roughly 20 iterations.
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(a) 2D layout. (b) Level projection. (c) 1-core layer only.

(d) 2-core layer only. (e) 3-core layer only.

Fig. 1. 2D layout and level projection of the AS graph (06/01/02).

3 Results

We illustrate the results of our method for real AS data sets as well as for
generated graphs. For a more detailed discussion, we also refer to [3]. The section
is concluded by techniques to aid the human perception.

Our real world data consist of three AS graphs collected by the Oregon
Routeview Project (http://www.routeviews.org) on different dates, i.e June,
1st 2001 (11,211 nodes, 23,689 edges, 19 levels), June, 1st 2002 (13,315 nodes,
27,703 edges, 20 levels), and June, 1st 2003 (15,415 nodes, 34,716 edges, 25
levels). In addition, we used INET 3.0 to generate artifical graphs that should
exhibit a similar topology. We discuss two different two-dimensional types of
figures, the 2D layout produced by Algorithm 1 and the projection of the 2.5D
layout into one of the full dimensions, also referred to as level projection. Nodes
are represented by ellipses of size decreasing according to the coreness and with
colors fading from black to white. Edges are always drawn as straight lines.

Real AS Graph. The 2D layouts are dominated by the nodes with small core-
ness leading to a huge periphery (Fig. 1(a)). On the other hand, most nodes with
higher coreness are contained in the convex hull of the core, which is apparent
in Figure 1(b) and documents the relation between importance and coreness. A
closer examination reveals three almost separated radial areas around the center.
The first one mainly contains the 3-core layer, while the 2-core layer forms the
second and third area that are distinguished by their density (see Fig. 1(c)-1(e)).
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(a) 2D layout. (b) Level projection.

Fig. 2. Layouts of the generated graph with 11,211 nodes.

This reflects the heterogenous importance distribution within these areas. In con-
trast, a large part of the 1-core layer is attracted to the central region. These
properties can be observed for all three instances. The well-known growth of the
AS graph affects especially the 2- and 3-core layers. We observe that the spatial
distances of these two layers decreases over time.

Generated Graphs. There are significant differences of the generated graphs
to the real AS graphs, e.g. in the number of edges (35,300 vs. 23,700) and core
levels (8 vs. 19). An obvious difference of the generated graph is the more uniform
distribution of cardinalities of the core layers (Fig 2). Accordingly, the separation
of the different core layers is less visible in the layout.

Supporting Perception. There are several means for visual aid in 2.5D lay-
outs, i.e. choice of perspective (in 3D), additional geometric objects emphasizing
the levels of hierarchy, and colors. The choice of perspective is very powerful. We
have already used this feature when presenting only the 2D layout and the level
projection respectively. More general, a user can focus on individual aspects,
i.e. a global oriented view, a hierarchical version, or a mixture of both. A benefi-
cial consequence might be that unintended information is automatically masked
out by the perspective. In order to simplify navigation in the three dimensional
space, one can also introduce additional objects that mark the levels of hierar-
chy, i.e. rectangles, discs, or planes. Transparency or filters might even increase
their effectiveness. Color can be used in various ways, to highlight nodes and
edges of special interest, to code the levels of hierarchy, or to improve the overall
perception. We used transparent rectangles that absorbed light to draw layers
and colored the nodes accordingly to their coreness. The color of the edges are
determined by a linear interpolation of their incident nodes’ color (see Fig. 3).

4 Conclusion

Core based 2.5D visualizations of the AS graph support the recognition of its
detailed hierarchy. Especially, it emphasizes the characteristics of the lower core
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(a) Small example. (b) AS graph (06/01/03).

Fig. 3. Visual support features.

layers and their connections with the highest layers. The evolution of the AS
graph has an observable effect on the layout. Also there is a significant difference
in the layouts of real AS graphs and generated ones.
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Abstract. In this paper, we present boundary labeling, a new approach
for labeling point sets with large labels. We first place disjoint labels
around an axis-parallel rectangle that contains the points. Then we con-
nect each label to its point such that no two connections intersect. Such
an approach is common e.g. in technical drawings and medical atlases,
but so far the problem has not been studied in the literature. The new
problem is interesting in that it is a mixture of a label-placement and a
graph-drawing problem.

1 Introduction

Label placement is one of the key tasks in the process of information visualiza-
tion. In diagrams, maps, technical or graph drawings, features like points, lines,
and polygons must be labeled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting technol-
ogy and the amount of information to be visualized. Due to the computational
complexity of the label-placement problem, which is NP-hard in general [5], car-
tographers, graph drawers, and computational geometers have suggested numer-
ous approaches, such as expert systems, zero-one integer programming, approx-
imation algorithms, simulated annealing, and force-driven algorithms to name
only a few. An extensive bibliography about label placement can be found at [14].
The ACM Computational Geometry Impact Task Force report [3] denotes label
placement as an important research area.

In this paper, we deal with labeling dense point sets with large labels. This is
common e.g. in medical atlases where certain features of a drawing or photo are
explained by blocks of text that are arranged around the drawing. Our model
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WO 758/4-1, by the German-Greek cooperation program GRC 01/048 and the
EPEAEK program Pythagoras 89181(28).
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is as follows: we assume that we are given a set P = {p1,...,p,} of points and
an axis-parallel rectangle R that contains P. Each point, or site, p; is associated
with an axis-parallel rectangular open label. The labels have to be placed and
connected to their corresponding sites by polygonal lines, so-called leaders, such
that (a) no two labels intersect, (b) no two leaders intersect, and (c) the labels
lie outside R but touch R. We investigate various constraints concerning the
location of the labels and the type of leaders. More specifically we either allow
to attach labels to one, two or all four sides of R, and we either use straight-
line or rectilinear leaders. We propose efficient algorithms that find some non-
intersecting leader-label placement, but we also consider two natural objectives:
minimize the total length of the leaders and, if leaders are not straight lines,
minimize the total number of bends over all leaders.

These new problems are combinations of label-placement and graph-drawing
problems. Due to the complexity of either step there are still very few pub-
lications that combine graph drawing and label placement. Klau and Mutzel
[11] have coined the term “graph labeling” for this discipline and have given a
mixed-integer program for computing orthogonal graph layouts with node labels.

Leaders have so far only been used by Zoraster [15], Freeman et al. [6], and
Fekete and Plaisant [4]. Zoraster [15] uses simulated annealing to label points
and lines in seismic survey maps, while Freeman et al. [6] use an iterative raster-
based method to determine positions for area labels in soil survey maps. Fekete
and Plaisant [4] extend the infotip paradigm to cope with labeling dense point
sets interactively. They draw a circle of fixed radius around the current cursor
position, the so-called focus circle, and label only the sites that fall into the
circle. Labels are left-aligned and placed in two stacks to the left and the right
of the circle. To connect sites to their labels, Fekete and Plaisant use non-crossing
leaders that consist of two or three line segments: one segment goes radially from
the site to its projection on the focus circle and one or two axis-aligned segments
go from there to the corresponding label.

Iturriaga and Lubiw [10] give an O(n*)-time decision algorithm for attaching
elastic labels to n points on the perimeter of a rectangle. An elastic label models
a block of text of fixed area, but varying width and height. Iturriaga and Lubiw
place their labels inside the rectangle. Iturriaga [9] also briefly investigates the
inverse problem, where elastic labels must be attached to the sites outside the
given rectangle R. She presents an algorithm that finds a label placement that
uses the minimum-width strip around R. If n sites are given in order around R,
her algorithm takes O(n) time.

This paper is structured as follows. In Section 2 we model and define our
problem. In Section 3 we are concerned with rectilinear leaders. We investi-
gate algorithms for non-intersecting leader-label placement, for leader-bend and
leader-length minimization. In Section 4 we consider straight-line leaders. For
the one-side and the four-side case, we compute legal leader-label placements
and we minimize (with a slower algorithm) the total leader length. We have
implemented some of our algorithms. In Section 5 we give an example layout. A
full version of this paper with more examples and proofs is available at [2].
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2 Defining and Modeling the Problem

We consider the following problem. Given an axis-parallel rectangle R=[lg, rr] X
[br,tr| of width W = rg — I and height H = tg — bg, and a set P C R of n
points p; = (2;,y;), each associated with an axis-parallel rectangular open label
l; of width w; and height h;, our task is to find a legal or an optimal leader-label
placement. Our criteria for a legal leader-label placement are the following:

Labels have to be disjoint.

Labels have to lie outside R but touch the boundary of R.

Leader ¢; connects point p; with label [; for 1 <i < n.

Intersections of leaders with other leaders, points or labels are not allowed.
The ports where leaders touch labels may be prescribed (the center of a label
edge, say) or may be arbitrary.

CUp W

In this paper we present algorithms that compute legal leader-label placements
for various types of leaders defined below, but we also approach optimal place-
ments according to the following two objective functions:

— short leaders (minimum total length) and
— simple leader layout (minimum number of bends).

These criteria have been adopted from the area of graph drawing since leaders
do not play a significant role in the label-placement literature. We will evaluate
the two criteria under two models for drawing leaders. In the first model we
require that each leader is rectilinear, i.e. a connected sequence of orthogonal
line segments. In the second model each leader is drawn straight-line. Clearly,
minimizing the number of bends does not make sense for straight-line leaders.

A rectilinear leader consists of a sequence of axis-parallel segments that con-
nects a site with its label. These segments are either parallel (p) or orthogonal
(0) to the side of the bounding rectangle R to which the label is attached. This
notation yields a classification scheme for rectilinear leaders: let a type be an
alternating string over the alphabet {p,o}. Then a leader of type t = ¢1 ...t
consists of an z- and y-monotone connected sequence (e, ..., ex) of segments
from site to label, where each segment e; has the direction that the letter ¢; pre-
scribes. In this paper we focus on leaders of the types opo and po, see Figures 1
and 2, respectively. We consider type-o leaders to be of type opo and of type po
as well. We refer to straight-line leaders as type-s leaders.

In this paper we assume that input points are in general position, i.e. no
three points lie on a line and no two points have the same z- or y-coordinate.

We start with a negative result. Assume that not all label heights are equal,
that labels must be attached either to the right or left side of the rectangle R, and
that the heights sum up to twice the height of R. Clearly the task of assigning
the labels to the two sides corresponds to the well-known problem PARTITION,
which is weakly NP-complete [7]. Due to this observation we first make some
simplifying assumptions like uniform labels and then generalize our algorithms
by adding more requirements.
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3 Rectilinear Leaders

In this section we investigate different ways of drawing rectilinear leaders. We pre-
sent algorithms for legal leader-label placement, leader-bend and leader-length
minimization. We consider attaching labels to one, two, and four sides of the
rectangle R and connecting sites to their labels with leaders of type opo and po,
see Figures 1 and 2, respectively.

3.1 Leader-Bend Minimization

One-Side Labeling with Type-opo Leaders. We first consider the problem
of attaching labels to one, say the right, side of the rectangle R. We assume
that the sum of the label heights is at most the height of R and that the sites
are sorted according to non-decreasing y-coordinate. If we use a slightly wider
rectangle R’ and leaders of type opo, then we can attach labels to the right side
of R’ and place non-crossing leaders in R’ as follows. We first stack the labels on
top of each other such that the lower left corner of /; is incident to the lower right
corner of R’. Then we connect each site p; by a horizontal segment y; x [z;,7g]
to the right side of R. Finally we use the gap between the right sides of R and
R’ to lay out the remaining parts of the leaders from the right side of R to the,
say, midpoints of the left label edges, see Figure 1. This can be done with at
most two bends per leader and without any crossing, since the vertical orders
of sites and labels are identical and since we assume that no two sites have the
same y-coordinate. Thus a legal one-side type-opo leader-label placement can be
computed in O(nlogn) time.

Clearly this approach is not optimal in terms of the total number of leader
bends. Given the restriction to leaders of type opo and the trick with the extra
space at the right side of R, routing the leaders is easy, and the remaining
problem is a one-dimensional label-placement problem. There has been work
on similar problems where labels are not restricted to a constant number of
positions, but can slide. Our problem is new in that labels do not necessarily
have to contain the point they label, but even if they do not (and thus contribute
to the objective function in a negative way), they must be placed within an
interval whose length is restricted (by the height of R).

Theorem 1. A legal one-side type-opo leader-label placement with the minimum
number of bends can be computed in O(n?) time and space.

Proof. We use dynamic programming with a table T of size n x (n + 1). For
k < i the entry T'[i, k] will contain the minimum y-coordinate that is needed
to accommodate the first 7 labels such that at least k& of them use horizontal
leaders. If it is impossible to connect k out of the first ¢ labels with horizontal
leaders, we set T[i, k| to co. As usual, the table entries are computed bottom-up.

To compute a new entry T'[i, k], observe that there are only three interesting
positions of the label I;: (a) directly on top of l;_; using a horizontal leader,
(b) directly on top of I;_1 using a 2-bend leader, and (c) such that the top edge
of [; lies on the horizontal line through the i-th site. These cases and the case
Ti,k] = oo can be distinguished in constant time. Thus 7' can be computed
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Fig. 1. Type-opo leaders. Fig. 2. Type-po leaders. Fig. 3. Partition into

monotone regions.

in O(n?) time. Given T, the number of horizontal leaders is the largest k that
fulfills T'[n, k] < tg. By using an extra table of the same size as T, label and
leader positions of an optimal solution can be computed as well. a

3.2 Legal Leader-Label Placement

Four-Side Labeling with Type-opo Leaders. Our approach for attaching
labels to all sides of the rectangle R is very simple. We partition R into four
disjoint regions such that the algorithms from the previous subsection can be
applied to each region separately. Points that lie on boundaries of our partition
in the interior of R can be connected to a side of R via both incident regions.
Thus we ignore the problem of how to distribute these boundaries.

We have two requirements for a region A in the partition of R: (a) A must
be adjacent to a specific side s4 of R and (b) each point in A must see the point
with the same z- or y-coordinate on s4. Requirement (b) is a consequence of
using type-opo leaders. If we manage to find a partition of R into four regions
such that each region A contains the side sy of R and A is monotone in the
direction of s then obviously both requirements are fulfilled.

To avoid an NP-hard partition problem as discussed in Section 2 we assume
that we know how many labels have to be attached to which side of R. To simplify
the presentation, we assume uniform square labels. Let nq, ..., n4 be the number
of labels that have to be attached to the respective sides and let n = ny+- - -+ng4.
We want to partition R into four regions Aj, ..., Ay as described above, such
that |[A; N P| = n; for i = 1,...,4. We do this by rotating rays around the
rectangle corners until these conditions are fulfilled, see Figure 3.

The rotations can be implemented by sorting the sites according to the angles
they enclose with the horizontal or vertical lines through the appropriate corners
of R. Using the O(nlogn)-time algorithm of the previous subsection we have the
following result:

Lemma 1. Given a rectangle R of sufficient size, a set P C R of n points in
general position, square uniform labels, one per point, and numbers ny,...,ny
that express how many labels are to be attached to which side of R, there is an
O(nlogn)-time algorithm that attaches the labels to R and connects them to the
corresponding points with non-intersecting type-opo leaders.

One-Side Labeling with Type-po Leaders. In this subsection we describe
how to compute a legal labeling with leaders of type-po, see Figure 2. We restrict
ourselves to attaching labels to one side s of R. W.l.o.g., we assume that s is
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the right vertical side of R, and that the sites p1,...,p, are sorted according to
increasing y-coordinate. We consider uniform labels. Since we do not attempt to
minimize the number of bends, we simply stack labels to the right of s in the
same vertical order as the corresponding sites.

Our algorithm is very simple: we go through the sites from bottom to top.
Assume we have already placed non-intersecting leaders for the first i — 1 sites.
Then we connect p; to I; by a leader ¢; of type po, i.e. by a vertical segment
(possibly of length zero) followed by a horizontal segment. Clearly ¢; can be
routed such that ¢; does not contain any sites except p;. Now we go through the
sites p1,...,p;—1 from right to left and test their leaders for intersection with ¢;.
Let p; be the rightmost site p; whose leader ¢; intersects ¢;. Then we reroute
as in Figure 4: we connect p; to [; and p; to [;. We observe that the new leader
¢} of p; does not intersect any other leader and that the new leader c; of p; can
only intersect leaders of sites to the left of p;. For placing the leader of p; we
have to reroute at most ¢ — 1 times, and after this process of rerouting no two
leaders intersect any more. Thus we have:

Theorem 2. A legal one-side type-po leader-label placement can be computed in

O(n?) time given uniform labels.

3.3 Leader-Length Minimization

In the remainder of this section we focus on obtaining label placements of min-
imum total leader length. We attach labels to the left and the right side of the
rectangle R, and we treat uniform and non-uniform labels.

Type-opo Leaders and Uniform Labels. Labels are placed on opposite
sides of the rectangle, say siere and Sright, 7/2 labels on each side. The labels
are assumed to be uniform in the sense that they all are of identical height. The
n/2 labels are of maximum height, covering the full length of the side of the
rectangle they reside, and hence their position at each side is determined. We
are given points pi,...,p, that have to be connected with leaders to labels on
Stett and spight SO that the total leader length is minimized.

We consider type-opo leaders. Here we ignore the subproblem of routing. This
can be done as for the one-side label placement in Section 3.1. Again we assume
the existence of a slightly wider rectangle R’. The i-th point p which is assigned
to Slet 18 connected to the i-th label of s with a type-opo leader. Since the
location of each label is determined (and fixed) the length of the leader to the
i-th label of sief, is defined. Call it Left[p,i]. We define Right[p, ] analogously.

Theorem 3. Given a rectangle R with n/2 uniform labels of maximum height
on its left and on its right side, and a set P C R of n points in general position,
there is an O(n?)-time algorithm that connects all points to their labels with
non-intersecting type-opo leaders such that the total leader length is minimum.

Proof. To compute a label placement of minimum total leader length, we use
a dynamic programming algorithm. We assume that n is even. The case that
n is odd is slightly more involved, see [2]. The algorithm constructs a table
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T[0 : n/2,0 : n/2]. Entry T[l,r] contains the minimum total leader length for
the [ + 7 lowest points where [ of them have labels on sjey and 7 on syjgne. It is
easy to prove by induction that T'[l, r] satisfies the following recurrence relation
for I,r < mn/2:

700,01 =0 (1)
T[0,7] = T[0,r — 1] + Right[p,,r] (2)
T[l,0] = T[l — 1,0] + Left[p, ] (3)
T, 7] = min{ T[l,r — 1] + Right[pi+r,7], T[l —1,7] + Left[pi+r, 1] } (4)

Having computed table T, entry T'[n/2,n/2] corresponds to a label placement
of minimum total leader length. The actual placement can be easily recovered
by maintaining an additional table. The running time is obvious. a

Type-po Leaders and Uniform Labels. Our next result also deals with
two-side placement of uniform labels.

Theorem 4. Given a rectangle R with n/2 uniform labels of maximum height
on each of its left and right side, and a set P C R of n points in general position,
there is an O(n?)-time algorithm that attaches each point to a label with non-
intersecting type-po leaders such that the total leader length is minimum.

Proof. We use the dynamic-programming algorithm of Theorem 3 for the case
of type-opo leaders to get the label placement. It runs in O(n?) time. Observe
that connecting a site to its label (at a fixed port) with a type-opo or a type-po
leader requires the same leader length, namely, the Manhattan distance of site
and port. So after obtaining the label placement (for type-opo leaders) we use
type-po leaders routed in the way described in Section 3.2. Possible crossings of
leaders to the same side are resolved as in Section 3.2 without changing the total
length, while crossings of leaders that go to opposites sides cannot occur. This
is due to the fact that swapping labels between a pair of points with crossing
leaders would result in a solution with smaller total leader length.

Four-Side Labeling with Type-opo Leaders. We give a polynomial-time
algorithm which finds type-opo leaders of minimum total length when the labels
can be placed on all four sides of the boundary of the rectangle. We only assume
that the labels have uniform size, the positions of the labels are disjoint, and the
label ports are predefined. We have the following planarity result:

Lemma 2. For any one-side solution of type-opo leaders with crossings there
exists a crossing-free one-side solution of type-opo leaders which does not have
a larger total leader length.

Now we can use Vaidya’s algorithm [13] for minimum-cost bipartite matching
for points in the plane under the Manhattan metric. It runs in O(n? log® n) time
and finds a matching between sites and ports that minimizes the total Manhattan
distance of the matched pairs.

Theorem 5. A crossing-free four-side solution of type-opo leaders with mini-
mum total length can be computed in polynomial time.
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Proof. Assume now that the solution of the minimum-weight matching implies
a crossing between two leaders. Clearly this crossing is between two segments
inside of the rectangle. Replacing the crossing by an appropriate “knock-knee”
[12] gives two leaders which might not be of type-opo. Rerouting the leaders in
type-opo shape does not increase the leader lengths, and applying Lemma 2 to
each of the two affected sides of the rectangle will provide a new solution of
type-opo with at most the same total leader length. An argument similar to that
used for the crossing resolution for type-po leaders shows that the process of
crossing resolution terminates in polynomial time. O

Type-opo Leaders and Non-uniform Labels. We focus on two-side label
placement of type-opo leaders. We are given n points p; = (x;,y;),i = 1,2,...,n,
each associated with a label [; of height h; which can be placed on either the left
side (sieft) or the right side (Sright) of rectangle R. Observe that the height of
rectangle R must be large enough to accommodate the labels. In the event that
the height of rectangle R is equal to half the sum of the label heights, managing to
place the labels accounts to solving the partition problem. So, we cannot expect
an algorithm that runs in polynomial time only to the number of points. Instead
we get an algorithm that runs in polynomial time to the height of rectangle R,
which can be considered to be the equivalent of the pseudo-polynomial solution
to the partition problem.

Here we again ignore the routing of the type-opo leaders and assume the
existence of a slightly wider rectangle R’

Theorem 6. Given a rectangle R of height H, a set P C R of n points in
general position where point p; is associated with label l; of height h;, there is
an O(nH?)-time algorithm that places the labels to the sides of the rectangle and
attaches the corresponding points with non-intersecting type-opo leaders such that
the total leader length is minimum.

Proof. We say that label [ is placed at height h if its bottom edge has y-coordinate
h. Assume that the i-th point p; is connected to st and its label I; is placed
at height y then the length of the edge from p; to I; leftward is defined. Call it
Left[p;,y]. Similarly, we define Right[p;,y].

We denote by T'[i,yr,yr] the total length of the type-opo leaders of the i
lowest points, where the left side of the rectangle is occupied up to yz and the
right side is occupied up to ygr. By TL[é, YL, yr] we denote the total leader length
for the case where the i-th point has its label on the left side, the left side of the
rectangle is occupied up to y, (including label [;) and the right side is occupied
up to yg. Similarly we define Tr[i, yr, yr].- Then, by induction we can show that
the following recurrence relations hold (we omit the boundary conditions):

Tli,yr,yr|] = min{Tr[i,yr,yr], Tr[i,yr,yr]} (5)
Trli,yr + hisyr] = Tli—1,y5,yr] + Left[pi, yr] (6)
TR[LyLny‘f‘hi] = T[/L_ 171UL>Z/R] +R29ht£puyR] (7)

Based on them, we can compute table T' by dynamic programming. After this
computation, the minimum table entry of the form T'[n, a, b], where 0 < a,b < H,
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gives the minimum total leader length. We can recover the label placement which
realizes the computed total leader length by maintaining an additional table with
dimensions equal to those of T. The dynamic programming algorithm will use
O(nH?) time and space. 0

4 Straight-Line Leaders

In this section we investigate straight-line or type-s leaders, i.e. we allow skewed
lines but forbid bends. We first give a simple algorithm that computes a legal
one-side labeling. Then we show how this algorithm can be improved either in
terms of runtime or in terms of total leader length. Finally we sketch how it can
be applied to four-side labeling.

One-Side Labeling. We adopt the scenario of Section 3.1. Let R be the bound-
ing rectangle. We want to attach labels to the right side of R. We assume that
labels are uniform and that their heights add up to the height of R. We also
assume that the port m; where the leader is connected to its label [; is fixed, say
m; is in the middle of the left label edge. Thus the only task is to assign ports
to points such that no two leaders intersect.

Let M = {m1,...,m,} be the ports sorted by y-coordinate from bottom to
top. For ¢ = 1,...,n we assign to m; the first unlabeled point p € P that is hit
by a ray r; that emanates from m; and is rotated around m; in clockwise order.
Initially r; is pointing vertically downwards. The proof of correctness is trivial.

Clearly the algorithm can be implemented in O(n?) time, but we can do
better. Let C'H be the convex hull of PUM . Note that CH has an edge between
the lowest port m; and the first point p reached by the rotating ray r;. This
edge is the first leader. Removing p and m; from C'H yields the next leader and
so on. Using a semi-dynamic convex-hull data structure [8] yields a total running
time of O(nlogn). This algorithm is correct since it mimics the slow one.

To compute an assignment that is minimum in terms of total leader length
we proceed as described just before Theorem 5, except now we use Fuclidean
minimum-cost bipartite matching for the sets of sites and ports. This takes
O(n**?) time [1], where § > 0 can be chosen arbitrarily small. For type-s leaders
length minimization automatically ensures planarity. Thus we have:

Theorem 7. A legal one-side type-s leader-label placement can be computed in
O(nlogn) time. Minimizing total leader length takes O(n?*?) time for any 6 > 0.

Four-Side Labeling. In this subsection, we partition the rectangle into convex
polygons, such that the sites in each polygon can be connected to the labels on
the boundary of the polygon using the one-side routing algorithm of the previous
subsection. We assume uniform labels. Note that the only assumption we used
about the relative position of sets P and M of sites and ports, respectively, was
that M is contained in an edge of the convex hull of P U M. To make the one-
side routing algorithm work, the convex polygons must be chosen such that they
contain exactly as many sites as there are labels on their boundary. We construct
in O(nlogn) time eight polygons with this property by rotating ¢, moving liop
and {04, and rotating ¢1 to £4 as indicated in Figure 5.
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reroute(7, j)
_>

Fig. 4. Rerouting of crossing leaders. Fig. 5. Partition for straight-line leaders.

As in the one-side case Fuclidean minimum-cost bipartite matching yields a
placement of minimum total leader-length. Thus we conclude:

Theorem 8. A legal four-side type-s leader-label placement can be computed in
O(nlogn) time. Minimizing total leader length takes O(n>0) time for any § > 0.

5 Examples

We have implemented some of the presented algorithms, but due to space con-
straints we can give only one example here. Figure 6 depicts a relatively small
medical map of a skeleton. The original labels and leaders are on the right side
of the drawing. We have mirrored the sites at the vertical line through the spine
and have applied our algorithm for type-opo leaders such that labels were placed
to the left of the drawing. For more examples, see [2].
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Abstract. We use Schnyder woods of 3-connected planar graphs to pro-
duce convex straight line drawings on a grid of size (n—2—A)x (n—2—A).
The parameter A > 0 depends on the the Schnyder wood used for the
drawing. This parameter is in the range 0 < A < 3 —

1 Introduction

We investigate crossing-free straight-line drawings of planar graphs with the
restriction that the vertices of the graph have to be located at integer grid
points. The aim is to keep the area of an axis-aligned rectangle which covers the
complete drawing as small as possible. It is known that a square of side-length
n—2,ie.,a(n—2)x (n—2) grid is enough to host every planar graph.

A drawing with the property that the boundary of every face (including the
outer face) is a convex polygon is called a convex drawing. Convex drawings
exist for every 3-connected planar graph. Again the aim is to keep the area of
such a drawing as small as possible.

It is important to distinguish between convex drawings and strictly convex
drawings. A drawing is strictly convex if every interior angle is less than 180° and
every outer angle greater than 180°. In this paper we deal with convex drawings.
The grid size for strictly convex drawings was recently studied by Rote [1], he
proves that an O(n"/3) x O(n"/3) grid is enough for strictly convex drawings of
planar graphs with n vertices.

The question whether every planar graph has a straight line embedding on
a grid of polynomial size was raised by Rosenstiehl and Tarjan [2]. Unaware
of the problem Schnyder [3] constructed a barycentric representation which im-
mediately translates to an embedding on the (2n — 6) x (2n — 6) grid. The
first explicit answer to the question was given by de Fraysseix, Pach and Pol-
lack [4,5]. They construct straight line embeddings on an (2n —4) x (n — 2) grid
and show that the embedding can be computed in O(nlogn). De Fraysseix et al.
also observed a lower bound of (2n — 1) x (2n — 1) for grid embeddings of the
n vertex graph containing a nested sequence of n/3 triangles. It is conjectured
that this is the worst case, i.e., that every planar graph can be embedded on the

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 60-70, 2004.
© Springer-Verlag Berlin Heidelberg 2004



Convex Drawings of 3-Connected Plane Graphs 61

(%n —-1)x (%n —1) grid. 4-connected planar graphs with at least four vertices on
the outer face can be drawn even more compactly. Work of He [6] and Miura et
al. [7] shows that these graphs can be embedded on the § x % grid.

In his second paper Schnyder proves the existence of an embedding on the
(n—2) x (n—2) grid which can be computed in O(n) time. In general Schnyder’s
result from [8] is still unbeaten. Lately, Zhang and He [9] used the minimum
Schnyder wood of a triangulation to prove a bound of (n—1— A7) x (n—1- A7),
where A7 is the number of cyclic faces in the minimum Schnyder wood.

Though it is implicitly contained in Steinitz’s characterization of 3-connected
planar graphs as the skeleton graphs of 3-dimensional polytopes the existence
of convex drawings for these graphs is known as Tutte’s theorem. The idea for
Tutte’s proof [10, 11] is known as spring-embedding. Technically the embedding is
obtained as solution to a system of linear equations. Kant [12] has extended the
approach of de Fraysseix et al. to construct convex drawings on the (2n—4) x (n—
2) grid. The grid size was reduced to (n —2) x (n —2) by Chrobak and Kant [13].
Schnyder and Trotter [14] have worked on ideas of using Schnyder woods for
convex grid embeddings. The basic approach was independently worked out by
di Battista et al. [15] and Felsner [16] this results in convex grid drawings on the
(f —1) x (f = 1) grid, where f is the number of faces of the drawing. In this
paper this basic algorithm is used but the size of the required grid is reduced by
some new ideas. Loosely speaking some edges are eliminated which results in the
reduction of f. This can be done until at most n— A faces remain. The eliminated
edges can be reinserted in the resulting drawing on the (n—1—A) x (n—1—A)
grid, with A > 0. A > n— f. The drawing procedure can be implemented to run
in linear time. The algorithm has been implemented and integrated in PIGALE
library'.

In the next section we introduce Schnyder woods. It is shown how to use
Schnyder woods to obtain convex drawings of 3-connected planar maps. The
lattice of Schnyder woods is discussed and a new operation called merge is intro-
duced as a tool for transforming Schnyder woods and their underlying graphs.

Section 3 contains the generic drawing algorithm. It is shown that this algo-
rithm produces convex drawings and the size of the grid required for the drawing
is analyzed. The main ingredient of this analysis is a bound on the number of
merges applicable to a Schnyder wood. In particular it is shown that starting
with the Schnyder wood of a triangulation a sequence of n — 4+ A~ — A% merge
operations is admissible.

Section 4 presents a technique to decrease of the side-length of the grid by
one. This small reduction, however, is crucial to match Schnyder’s (n—2) x (n—2)
bound for planar triangulations.

2 Schnyder Woods

Schnyder defined special colorings and orientations of the inner edges of a trian-
gulation. In [3] and [8] he applied these Schnyder woods to characterize planar

! http://pigale.sourceforge.net
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graphs and to draw planar graphs on small grid sizes. Here we describe a gener-
alization of Schnyder woods for 3-connected planar graphs. Such generalizations
have been obtained in [15] and [16], in our exposition we follow [17].

A planar map M is a simple planar graph G together with a fixed planar
embedding of G in the plane. A suspension M7 of M is obtained as follows: Three
different vertices from the outer face of M are specified and named a1, as, az in
clockwise order. (For ease of visualization we identify the indices 1,2,3 with
colors red, green, blue). At each of the three special vertices a;, called suspension
vertices, a half-edge reaching into the outer face is attached.

Let M7 be a suspension of a planar map. A Schnyder wood is an orientation
and coloring of the edges of M? with the colors 1,2, 3 satisfying the following
rules.

(W1) Every edge e is oriented by one or two opposite directions. The directions
of edges are colored such that if e is bi-directed the two directions have
distinct colors.

(W2) The half-edge at a; is directed outwards and colored .

(W3) Every vertex v has outdegree one in each color. The edges ey, ea, e3 leaving
v in colors 1,2,3 occur in clockwise order. Each edge entering v in color ¢
enters v in the clockwise sector from e;41 to e;—1. See Figure 1.

(W4) There is no interior face whose boundary is a directed cycle in one color.

Fact 1 There is a Schnyder wood for M, if M is the suspension M? of a
3-connected planar map. Actually, a Schnyder wood for M7 exists under the
weaker condition that the graph obtained by adding a new vertex v, as the second
endpoint for the three half-edges is planar and 3-connected.

Given a Schnyder wood, let T; be the set of edges colored ¢ with the direction
they have in this color. Since every inner vertex has outdegree one in T; every v
is the starting vertex of a unique i-path P;(v) in T;.

Fact 2 The digraph T; is acyclic, even more, T; is a tree with root a;.

A

(a) (b)
Fig. 1. (a) Edge colorings® and orientations at a vertex. (b) A Schnyder wood and the
regions of vertex v.

2 If you can’t see the colors look up the colorful electronic versions at the authors
homepages.
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2.1 Convex Drawings via Face-Counting

Schnyder and Trotter [14] had some ideas of using Schnyder woods for convex
grid embeddings. The approach has been worked out in [15] and [16]. We describe
the technique omitting some details.

From the vertex condition (W3) it follows that for ¢ # j the paths P;(v) and
Pj(v) have v as the only common vertex. Therefore, P;(v), P2(v), Ps(v) divide
M into three regions Ry (v), Rz2(v) and Rs(v), where R;(v) denotes the region
bounded by and including the two paths P,_;(v) and P41 (v), see Fig. 1.

Fact 3 (a) R;(u) C R;(v) iff u € R;(v).
(b) R;(u) = R;(v) iff there is a path of bicolored edges in colors i —1 and i + 1
connecting u and v.

(c) For all u, v there are i and j with R;(u) C R;(v) and R;(v) C R;(u).

The face-count of a vertex v is the vector (v1,vq,v3), where v; is the number of
faces of M contained in region R;(v).

Fact 4 For every edge {u,w} and vertex v # u,w there is a color i with {u,w} €
R;(v), hence, u; < v; and w; < v;.

Inclusion properties of the three regions of adjacent vertices imply:

Fact 5 (a) If edge (u,v) is uni-directed in color i, then
Uy < Vi, Uj—1 > Vi—1 and Ujtr1 > Vig1-

(b) If (u,v) is directed in color i — 1 and (v,u) in color i+ 1, then
U; = Vi, Uj—1 > Vi—1 and Ujtr1 < Vjg1-

Clearly, each vertex v has vy +vo +v3 = f — 1, where f is the number
of faces of M. Hence, we have a mapping of the vertices of the graph to the
plane Ty = {(x1,22,73) : 21 + 22 + 23 = f — 1} in IR®. Connecting the points
corresponding to adjacent vertices by the line segment between them yields a
drawing u(M) of M in the plane T7.

Color and orientation of edges are nicely encoded in this drawing: Let v be
a vertex with u(v) = (v1,v9,v3). The three lines 1 = vy, 22 = v2 and z3 = v3
partition the plane T into six wedges with apex p(v). By Fact 5 the color and
orientation of edges incident to v is determined by the wedge containing them,
see Figure 2. In particular the bicolored edges are the edges supported by the
lines defining the wedges.

Theorem 1. The drawing (M) is a convexr drawing of M in Ty. Dropping the
third coordinate yields a convex drawing of M on the (f —1) x (f — 1) grid.

2.2 The Lattice of Schnyder Woods

In general the suspension M7 of a 3-connected planar map will admit many
Schnyder woods. Felsner [18] has shown that the set of all Schnyder woods of
a given M7 has the structure of a distributive lattice. As we will make use of
some elements of this theory we recall some definitions and the main results.
Think of the three half-edges of M7 as noncrossing infinite rays. These rays
partition the outer face of M into three parts. The suspension dual M7 of M°
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Fig. 2. Wedges and edges at a vertex v in the plane T.

is the dual of this map. Thus M7 has a triangle by, ba, bs corresponding to the
unbounded face of M.

The completion M?of a plane suspension M7 and its dual M 7" is obtained
as follows: Superimpose M? and M 7" so that exactly the primal dual pairs of
edges cross (the half edge at a; has a crossing with the dual edge {b;, by}, for
{4,4,k} ={1,2,3}). At each crossing place a new vertex such that this new edge
vertex is subdividing the two crossing edges.

The completion M? is planar, every edge-vertex has degree four and there
are six half-edges reaching into the unbounded face.

A 3-orientation of the completion M7 of M? is an orientation of the edges
of M? such that:

(O1) outdeg(v) = 3 for all primal- and dual-vertices v.
(02) indeg(v.) = 3 for all edge-vertices v, (hence, outdeg(ve) = 1).
(03) All half-edges are out-edges of their vertex.

Theorem 2. Let M7 be a suspension of a 3-connected plane graph M. The
following structures are in bijection: Schnyder woods of M?, Schnyder woods of
the suspension dual M7 and 3-orientations of the completion M©°.

The bijections are illustrated in Figure 3.

The lattice structure of Schnyder woods is best understood by looking at
3-orientations: Let X be a 3-orientation and let C be directed cycle of a X.
Reverting the orientation of all edges of C yields another 3-orientation X¢. If
C is a simple cycle it has a connected interior an we can speak of the clockwise
and the counterclockwise order of C. Define X = X¢ if C is a clockwise cycle
in X. The transitive closure >=* of this relation is an order relation on the set of
J-orientations.

\

§
S

Fig. 3. The bijections for Theorem 2.
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Theorem 3. The relation =* is the order relation of a distributive lattice on the
set of 3-orientations of the completion M of a suspension M? of a 3-connected
planar map. The unique minimum 3-orientation contains no clockwise directed
cycles.

In view of Theorem 2 a suspension M? has unique minimum Schnyder wood
Swmin- Figure 4 shows two sub-structures which are impossible in Suj,: an uni-
directed edge incoming at v in color ¢ 4+ 1 such that the counterclockwise next
edge is bi-directed, outgoing at v in color ¢ — 1 and incoming in color ¢ ; and a
clockwise triangle of uni-directed edges, such a triangle must have colors i, i+ 1,
1+ 2 in this clockwise order.

Theorem 4. ([19]) Let G be a 3-connected plane graph. The minimal Schnyder
Wood Swin of G can be computed in linear time.

S AN

Fig. 4. Two types of clockwise cycles in 3-orientations and the corresponding sub-
structures of Schnyder woods.

2.3 Merging and Splitting

The operations merge and split introduced in this section operate on Schny-
der woods and the underlying graph. Merge and split can be seen as inverse
operations, corresponding to the deletion and insertion of an edge.

Given a Schnyder wood, a knee at vertexr v is a pair of uni-directed edges
adjacent at an angle of v such that one of the edges is incoming and the other
outgoing at v. Knees come in two kinds, if the in-edge of the knee is the clockwise
neighbor of the out-edge at v we speak of a a cw-knee, otherwise, if the in-edge
of the knee is the counterclockwise neighbor of the out-edge it is a ccw-knee.

Let (u,v), (v,w) be a knee at v. Suppose that the color of (v,w) is ¢ by the
vertex condition the color of (u,v) is ¢ — 1 if it is a cw-knee and ¢ 4 1 if it is a
ccw-knee. The merge of the knee consist of the deletion of the out-edge (v, w)
while making (u,v) a bi-directed edge outgoing at v in color ¢ and incoming
in the same color as before. Depending on the type of the knee we distinguish
between clockwise and counterclockwise merge operations. Figure 5 illustrates
the definition.

Lemma 1. Let S be a Schnyder wood, the coloring and orientation of edges
after merging a knee is again a Schnyder wood.

A split of a bi-directed edge is the inverse operation of a merge. In the context
of this paper we only need one very specific type of split. The short cw-split is
the inverse of a cw-merge with the additional property that (u,w) is an edge,
i.e., u,v,w is a triangle.
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Cw-merge CCW- merge

U CW- spht /O cews I t

Fig. 5. Clockwise and counterclockwise merge and split.

3 The Drawing Algorithm

Let M be a 3-connected planar map with n vertices and f faces. The steps of
the drawing algorithm with input M are the following:

(A1) Choose three vertices from the outer face for the suspension M?.

(A2) Compute the minimum Schnyder wood Swmin for M and let Sy = Smin.

(A3) Compute a maximal cw-merge sequence Sy — S; — ...Sk of Schnyder
woods, i.e., S;4+1 is obtained from S; by a cw-merge and Sy contains no
cw-knee.

(A4) Use face-counting to draw S on the (f —k —1) x (f —k — 1) grid.

(A5) Reinsert all edges which have been deleted by merge operations into the
drawing from the previous step.

With Figure 6 we illustrate step A3 of the algorithm.

> / / /Q
AN T °

(@) ®) ©)

Fig. 6. (a) A Schnyder wood Sy, cw-knees are indicated by arcs. (b) The final Schnyder
wood of a merge sequence. (¢) The example graph with n = f =9 drawn on the 6 X 6
grid.

3.1 The Drawing Is Convex

Theorem 5. Reinserting all the edges which have been deleted by a sequence of
cw-merge operations into the drawing of Sy obtained in A4 keeps the drawing
planar and convez.

The drawing steps of the algorithm (A4 and A5) are illustrated in Figure 6.
Essential for the proof of the theorem is the following lemmas:

Lemma 2. Given a Schnyder wood of a suspended map M and let F' be an
interior face. The orientation and color of edges around F obeys the following
rule (see Figure 7):
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Fig. 7. The generic structure of a face as described by Lemma 2 and two concrete
instances.

o In clockwise order the types of edges at the boundary of the face can be
described as follows (in case of bi-directed edges the clockwise color is noted
first): One edge from the set {red-cw, blue-ccw, red-blue}, any number (may
be 0) of edges green-blue, one edge from the set {green-cw, red-ccw, green-
red}, any number of edges blue-red, one edge from the set {blue-cw, green-
ccw, blue-green}, any number of edges red-green.

3.2 The Number of Merges

Essential for the grid-size required for the drawing produced by the algorithm is
the length k of the merge sequence computed in step A3. The main result in this
subsection is a lower bound for k in terms of easily recognizable substructures
of the initial Schnyder wood S computed in step A2 of the algorithm.

As a warm-up let us consider the case where M is a triangulation and S is
an arbitrary Schnyder wood of M. Consider the (2n —4) —4 triangles of S which
are bounded by three uni-directed edges. These triangles can be partitioned into
two classes: Class one are those with at least two clockwise oriented edges on the
boundary and class two are those with at least two counterclockwise edges on the
boundary. Suppose that the number C; of triangles of class one is the larger one,
i.e., C1 > n—4 > Cs. In a triangle T of class one there is a knee of two consecutive
clockwise edges of T', this knee is a candidate for a clockwise merge. Since every
edge is clockwise only for one of its neighboring triangles these C; merges can
be performed independently. It follows that starting from S there is a merge
sequence of length k > C7 > n—4. This estimate yields drawing of triangulations
on grids of size at most (f—(n—4)— 1) x(f—=(n—4)—1)=(n—-1) x (n—1).

The following proposition gives a better result.

Proposition 1. Let S be a Schnyder wood with Ag' clockwise and A@ coun-
terclockwise triangles. The number of cw-merges applicable in a merge sequence
starting with S is at least n — 4 — A% + A7

To estimate the number of merges that can be applied to a Schnyder wood S
of a non-triangulated map we need more terminology. Let A? be the number of
faces, with a counterclockwise edge in each of the three colors and not adjacent
to a suspension vertex. These edges do not need to be uni-directed.
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A/*; counts the number of clockwise triangles of uni-directed edges together
with patterns of the following type: an uni-directed edge incoming at v in color
t + 1 such that the counterclockwise next edge is bi-directed, outgoing at v in
color ¢ — 1 and incoming in color i (see Figure 4).

Theorem 6. Let S be a Schnyder wood of a 3-connected planar map. The num-
ber of cw-merges that can be applied to S is at least f —n+ A — AR

Given an arbitrary Schnyder wood the contribution of A~ — A" in the above
formula may well be negative. However, the choice of S = Sy, guarantees that
A" = 0. The findings of this section can be summarized as follows.

Theorem 7. A 3-connected planar map M with n vertices has a convex drawing
on a grid of size (n—1— A@Min) x(n—1- A‘?Min), where A@Min > 0 is the number
of faces with a counterclockwise edge in each color in Swin. Such drawing can be
computed in linear time.

4 Improvements and Limitations

Our ambition was to design an algorithm for convex drawings of 3-connected pla-
nar graphs which at least matches all known algorithms for this task. Theorem 7
shows that we are very close. Still, there is Schnyder’s (n —2) x (n—2) bound for
triangulations which is not completely matched by (n—1— A@Min) x(n—1- A?Min)
since there are triangulations with A?Min = 0. An example of such a triangulation
is shown in Figure 8.

N
[RANN NN
A\ A\,

[
n\

L~

(b)

Fig. 8. (a) A stacked triangulation on the (n — 1) x (n — 1) grid. (b) The same graph
drawn with the improved method.

It is indeed the case that with any specialization of the algorithm from Sec-
tion 3 the graph of Figure 8 (a) requires a grid of size (n — 1) x (n — 1).
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4.1 Fromn—1ton — 2

In the standard algorithm, the face-count of the vertices a1 is (f — k —1,0,0),
az is (0,f — k —1,0) and a3 is (0,0, f — k — 1). In order to reduce the grid
size, we change the face-count of these two vertices to the following ones: a; is
(f—k—2,0,1), a2 is (1, f —k—2,0) and a3 is (0, 1, f — k—2).3 The consequence
on the final drawing is the following one: moving as one unit to the left and one
unit to the top, moving a; one unit down and moving as one unit to the left.
Figure 8 (b) gives and example of such drawing.
Using the technique of this section we then obtain:

Theorem 8. A 3-connected planar map M with n vertices has a convex drawing
on a grid of size (n—2 — AOM )X (n—2— A‘?Min), where A@Min > 0 is the number
of faces with a counterclockwise edge in each color in Swin-

Concluding Remarks

As mentioned before, for some graphs, A?M_ can be equal to zero. In [20] the

asymptotic average value over m-vertices triangulations is given: E(AQM ) =
n/8+ o(n). Hence the average grid size is significantly lower than the one of the
existing algorithms.
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Abstract. Consider the following open problem: does every complete
geometric graph Kb», have a partition of its edge set into n plane span-
ning trees? We approach this problem from three directions. First, we
study the case of convex geometric graphs. It is well known that the
complete convex graph K, has a partition into n plane spanning trees.
‘We characterise all such partitions. Second, we give a sufficient condition,
which generalises the convex case, for a complete geometric graph to have
a partition into plane spanning trees. Finally, we consider a relaxation
of the problem in which the trees of the partition are not necessarily
spanning. We prove that every complete geometric graph K, can be
partitioned into at most n — \/ n/12 plane trees.

1 Introduction

A geometric graph G is a pair (V(G), E(G)) where V(G) is a set of points in
the plane in general position (that is, no three are collinear), and E(G) is a
set of closed segments with endpoints in V(G). Elements of V(G) are vertices
and elements of E(G) are edges. An edge with endpoints v and w is denoted
by {v,w} or vw when convenient. A geometric graph can be thought of as a
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plane if no two edges cross. A tree is an acyclic connected graph. A subgraph H
of a graph G is spanning if V(H) = V(G). We are motivated by the following
beautiful question.

Open Problem 1. Does every complete geometric graph with an even number
of vertices have a partition of its edge set into plane spanning trees?

Since K, the complete graph on n vertices, has %n(n — 1) edges and a

spanning tree has n — 1 edges, there are n/2 trees in such a partition, and n is
even. We approach this problem from three directions. In Section 2 we study the
case of convex geometric graphs. We characterise the partitions of the complete
convex graph into plane spanning trees. Section 3 describes a sufficient condition,
which generalises the convex case, for a complete geometric graph to have a
partition into plane spanning trees. In Section 4 we consider a relaxation of
Open Problem 1 in which the trees of the partition are not necessarily spanning.

It is worth mentioning that decompositions of (abstract) graphs into trees
have attracted much interest. In particular, Nash-Williams [5] obtained nec-
essary and sufficient conditions for a graph to admit & edge-disjoint spanning
trees, and Ringel’s Conjecture and the Graceful Tree Conjecture about ways of
decomposing complete graphs into trees are among the most outstanding open
problems in the field. Nevertheless the non-crossing property that we require in
our geometric setting changes the problems drastically.

2 Convex Graphs

A convex graph is a geometric graph with the vertices in convex position. An
edge on the convex hull of a convex graph is called a boundary edge. Two convex
graphs are isomorphic if the underlying graphs are isomorphic and the clockwise
ordering of the vertices around the convex hull is preserved under this isomor-
phism. Suppose that G; and G2 are isomorphic convex graphs. Then two edges
cross in (7 if and only if the corresponding edges in G5 also cross. That is,
in a convex graph, it is only the order of the vertices around the convex hull
that determines edge crossings—the actual coordinates of the vertices are not
important.

It is well known that Open Problem 1 has an affirmative solution in the case
of convex complete graphs. That is, every convex complete graph K, can be
partitioned into n plane trees, and since the book thickness of K, equals n, this
bound is optimal even for partitions into plane subgraphs [2]. In this section we
characterise the solutions to Open Problem 1 in the convex case. In other words,
we characterise the book embeddings of the complete graph in which each page
is a spanning tree.

First some well known definitions. A leaf of a tree is a vertex of degree at
most one. A leaf-edge of a tree is an edge incident to a leaf. A tree has exactly
one leaf if and only if it is a single vertex with no edges. Every tree with at least
one edge has at least two leaves. A tree has exactly two leaves if and only if it is
a path with at least one edge. Let T be a tree. Let 7" be the tree obtained by
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deleting the leaves and leaf-edges from T'. Let ¢(T") be the number of leaves in
T’'. A star is a tree with at most one non-leaf vertex. Clearly a tree T is a star if
and only if ¢(T) < 1. A caterpillar is a tree T such that T” is a path. The path
T’ is called the spine of the caterpillar. Clearly T is a caterpillar if and only if
£(T) < 2. Observe that stars are the caterpillars whose spines consist of a single
vertex.

We say a tree T' is symmetric if there exists an edge vw of T such that if A
and B are the components of T'\ vw with v € A and w € B, then there exists a
(graph-theoretic) isomorphism between A and B that maps v to w.

Theorem 1. LetTy,Ts,...,T, be a partition of the edges of the convex complete
graph Ko, into plane spanning convex trees. Then T1,Ts, ..., T, are symmetric
convez caterpillars that are pairwise isomorphic. Conversely, for any symmetric
convez caterpillar T on 2n vertices, the edges of the convex complete graph Koy,
can be partitioned into m plane spanning convex copies of T that are pairwise
isomorphic.

We will prove Theorem 1 by a series of lemmas. Garcia et al. [4] proved:

Lemma 1 ([4]). Let T be a tree with at least two edges. In every plane convex
drawing of T there are at least max{2,¢(T)} boundary edges, and there exists a
plane convex drawing of T with exactly max{2,¢(T)} boundary edges, such that
if T is not a star then the boundary edges are pairwise non-consecutive.

In what follows {0, 1,...,2n — 1} are the vertices of a convex graph in clock-
wise order around the convex hull. In addition, all vertices are taken modulo 2n.
That is, vertex i refers to the vertex j =i mod 2n. Let G be a convex graph on
{0,1,...,2n —1}. For all 0 < ¢,j < 2n — 1, let G[i, j] denote the subgraph of G
induced by the vertices {i,i+ 1,...,7}.

Lemma 2. For alln > 2, let Ty, T1,...,Th—1 be a partition of the convexr com-
plete graph Ks, into plane spanning trees. Then (after relabelling the trees) for
each 0<i<n-—1,

(1) the edge {i,n + i} is in T;,

(2) T; is a caterpillar with exactly two boundary edges, and

(8) for every non-boundary edge {a,b} of T;, there is exactly one boundary edge
of T; in each of T;[a,b] and T;[b,al.

Proof. The edges {{i,n+ i} :0 <1i <n— 1} are pairwise crossing. Thus each
such edge is in a distinct tree. Label the trees such that each edge {¢,n+14} is in
T;. Since n > 2, each T; has at least three edges, and by Lemma 1, has at least
two boundary edges. There are 2n boundary edges in total and n trees. Thus
each T; has exactly two boundary edges, and by Lemma 1, ¢(T;) = 2. For any
tree T, £(T) < 2 if and only if T is a caterpillar. Thus each T; is a caterpillar.
Let {a,b} be a non-boundary edge in some T;. Then T;[a,b] has at least one
boundary edge of T;, as otherwise T;[a,b] would be a convex tree on at least
three vertices with only one boundary edge (namely, {a,b}), which contradicts
Lemma 1. Similarly 7;[b, a] has at least one boundary edge of T;. Thus each of
T;[a,b] and T;[b, a] has exactly one boundary edge of T;. a
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Lemma 3. Let {i,j} be a non-boundary edge of a plane convex spanning cater-
pillar T such that Ti, j] has exactly one boundary edge of T. Then exactly one
of {i,j— 1} and {j,i + 1} is an edge of T.

Proof. Tt both {i,j—1} and {j,i+1} are in T then they cross, unless j—1 =i+1
in which case T contains a 3-cycle. Thus at most one of {i,7 — 1} and {j,¢+ 1}
isin T.

Suppose, for the sake of contradiction, that neither {i,j — 1} nor {j,7 + 1}
are edges of T'. Since T is spanning, there is an edge {i,a} or {j,a} in T for
some vertex i + 1 < a < j — 1. Without loss of generality {i,a} is this edge, as
illustrated in Figure 1.

v i+ 1
Ti,a)
o
T Pa
Jjoa—-1

Fig. 1. One of {i,5 — 1} and {j,7 + 1} is an edge of T

Since 4, i+1 and a are distinct vertices of T[4, a], the subtree T[4, a] has at least
three vertices, and by Lemma 1, has at least two boundary edges, one of which
is {i,a}. Thus T[i,a] has at least one boundary edge that is also a boundary
edge of T. Now consider the subtree T” of T induced by {i} U {a,a +1,...,j}.
Then 4, a, j — 1 and j are distinct vertices of T”, and T" has at least four vertices.
Since {i,7 — 1} is not an edge of T', and thus not an edge of 7", the subtree T”
is not a star. By Lemma 1, 7" has at least two non-consecutive boundary edges,
at most one of which is {7, j} or {¢,a}. Thus 7" has at least one boundary edge
that is also a boundary edge of T.

No boundary edge of T can be in both T'[¢, a] and T’. Thus we have shown that
T1i, j] has at least two boundary edges of T', which is the desired contradiction.

O

In what follows we say an edge e = {4, j} has span
span(e) = min{(¢ — j) mod 2n, (j — i) mod 2n} .

That is, span(e) is the number of edges in a shortest path between ¢ and j that
is contained in the convex hull.

Lemma 4. Let {i,j} be an edge of a plane convexr spanning caterpillar T such
that 1 < j —i <mn, and T[i,j] has exactly one boundary edge of T. Then Ti, j]
has exactly one edge of span k for each 1 < k < j —i. Moreover for each such
k > 2 the edge of span k has an endpoint in common with the edge of span k—1,
and the other two endpoints are consecutive on the convexr hull.
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Proof. If j —i = 1 then {4,j} is a boundary edge, and the result is trivial.
Otherwise {i,j} is not a boundary edge. By Lemma 3, exactly one of the edges
{i,j — 1} and {j,7 + 1} is in T. Without loss of generality {i,j — 1} is in 7.
Thus the edge of span j — ¢ has an endpoint in common with the edge of span
7 —1— 1, and the other two endpoints are consecutive on the convex hull. The
result follows by induction (on span) applied to the edge {i,j — 1}. O

Theorem 2 below is the main theorem of this section, and its proof is illus-
trated in Figure 4. Let e = {a, b} be an edge in the convex complete graph Ko,,.
Then e + i denotes the edge {a+i,b+i}. For a set X of edges, X +i={e+i:
e€ X}, and X®) = {e € X,span(e) > k}.

Theorem 2. Let Ty, T4, ...,T,—1 be a partition of the edges of the convex com-
plete graph Ko, into plane spanning convex trees. Then Ty, Ti,...,Th—1 are
pairwise isomorphic symmetric convex caterpillars.

Proof. By Lemma 2, for each 0 < i < n—1, T; is a caterpillar with two boundary
edges, the edge {i,n+ i} is in T;, and for every non-boundary edge {a,b} of T;,
there is exactly one boundary edge of T; in each of T;[a, b] and T;[b, a).

Let H = Tp[0,n]. Since {0,n} is an edge of H, by Lemma 4, H has exactly
one edge of span k for each 1 < k < n. Furthermore, for each 1 < k < n —1, the
edge of span k has an endpoint in common with the edge of span k4 1, and the
other two endpoints are consecutive on the convex hull. Let hy = {ag, 2 + k}
denote the edge of span k in H. For each 1 <k <n—1,if hy Nhgt1 = xx + k
(= xp41 + k + 1) then we say the k-direction is ‘clockwise’. Otherwise, hy N
hi+1 =z (= xp41), and we say the k-direction is ‘anticlockwise’, as illustrated
in Figure 2.

We will prove that H determines the structure of all the trees Ty, 1, ..., Tp,—1.
We proceed by downwards induction on £ =n,n —1,...,1 with the hypothesis
that forall0 <i<n-—1,

T® = (H® 10y U (H® +n+i) (1)

Consider the base case with k& = n. The only edge in H of span n is {0,n}.
Thus H™ = {0,n}, which implies that H" +4 = {i,n+1i}, and H"™ 4+ n+i =

Tht1 Tk = Tk+1
T
hi
hiy1 | [l B
r+k
Th+1 +hk+1

Tp+k=xp1 +hk+1
(a) (b)

Fig. 2. k-direction is (a) clockwise and (b) anticlockwise.
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{n+1i,2n+1i} = {i,n+i}. Thus the right-hand side of (1) is {¢,n+4}. The only
edge in T; of span n is {i,n + ¢}. Thus TZ—(") = {i,n+ i}, and (1) is satisfied for
k=n.

Now suppose that (1) holds for some k£ + 1 > 2. We will prove that (1)
holds for k. Suppose that the k-direction is clockwise. (The case in which the
k-direction as anticlockwise is symmetric.) We proceed by induction on j =
0,1,...,2n — 1 with the hypothesis:

the edge {xr + j,zx + k + j} is in the tree T mod n - (2)

The base case with j = 0 is immediate since by definition, {xy,zr + k} €
E(Tp). Suppose that {zx +j, 2k +k+ 7} € E(T} mod n) for some 0 < j < 2n—1.
Consider the edge e = {x, + j, 2 + k+j + 1}. Since the k-direction is clockwise,
xp=ap1+1land xp+k=ap1+k+1. Thuse = {zpp1 + 14+ j, 2541 +E+ 14+
j+1} ={zps1, k41 +k+1}+j+1=hr+j+1. Hence e € H+j+1, and since
e has span k+ 1, e € H**+Y 4 j 4+ 1. By induction from (1), e € Ty

(+1) mod n’ as
illustrated in Figure 3.

zr+7J wp+j+1 xp+5+1 x4

T+ k+j e +k+j+1
xr+k+j5+1 xk+k+7g
(a) (b)

Fig. 3. k-direction is (a) clockwise and (b) anticlockwise.

By Lemma 3 applied to e, which is a non-boundary edge of T(;11) mod ns
exactly one of {zy + j,zr +k+j} and {zr +j+ 1,2, + K+ j+ 1} is an edge
of T(j41) mod n- By induction from (2), {zx + j,zx + k + j} € T} mod n. Thus
{or+j+ 1Lz +k+j+1} € Tj11) mod n- That is, (2) holds for j + 1. Therefore
for all 0 < j <2n—1, the edge {zr +j,zx +k+ 7} is in T} mod »n- That is, hy +j
is in T} mod n- By (1) for k + 1 we have that (1) holds for k.

By (1) with k = 1, each tree T; can be expressed as T; = (H+i)U(H +n+1).
Clearly HU(H+n) is a symmetric convex caterpillar. Thus each T; is a translated
copy of the same symmetric convex caterpillar. Therefore Ty, T4, ...,T,—1 are
pairwise isomorphic symmetric convex caterpillars. a

Theorem 3. For any symmetric convex caterpillar T on 2n vertices, the edges
of the convex complete graph Ka, can be partitioned into n plane spanning pair-
wise isomorphic convex copies of T.

Proof. Say V(Kay,) = {0,1,...,2n — 1} in clockwise order around the convex
hull. Let {0,n} be the edge of T such that after deleting {0,n}, A and B are
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! L
7 1 7 1
© K ha = {0,4}
66 Yo 6 , hs=1{0,3} 3-direction is anticlockwise
he = {1,3}  2-direction is clockwise
5° o3 5 3 hi1 ={1,2} 1-direction is anticlockwise
(o} (o}
4 4

Fig. 4. Illustration for Theorem 2 with n = 4.
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the components with 0 € A and n € B, and there exists a (graph-theoretic)
isomorphism between A and B that maps 0 to n. It is easily seen that A has

a plane representation on the vertices {0,1,...,n}. For each 0 < i <n —1, let
T,=(A+i)U(A+n+1i). Then as in Theorem 2, Ty, T1,...,T,—1 is partition
of K5, into plane spanning pairwise isomorphic convex copies of T a

Observe that Theorems 2 and 3 together prove Theorem 1.

3 A Sufficient Condition

In this section we prove the following sufficient condition for a complete geomet-
ric graph to have an affirmative solution to Open Problem 1. A double star is a
tree with at most two non-leaf vertices.

Theorem 4. Let G be a complete geometric graph Ka,. Suppose that there is
a set L of pairwise non-parallel lines with exactly one vertex of G in each open
unbounded region formed by L. Then E(G) can be partitioned into plane spanning
double stars (that are pairwise graph-theoretically isomorphic).

Observe that in a double star, if there are two non-leaf vertices v and w then
they must be adjacent, in which case we say vw is the root edge.

Lemma 5. Let P be a set of points in general position. Let L be a line with
LNP =0. Let Hy and Hs be the half-planes defined by L. Let v and w be points
such that v € PN Hy and w € PN Hy. Let T(P, L,v,w) be the geometric graph
with verter set P and edge set

{vw}U{ve:z e (P\{v}) NHi} U{wy:y e (P\{w}) NHs} .
Then T'(P,L,v,w) is a plane double star with root edge vw.

Proof. The set of edges incident to v form a star. Regardless of the point set, a
geometric star is always plane. Thus no two edges incident to v cross. Similarly
no two edges incident to w cross. No edge incident to v crosses an edge incident
to w since such edges are separated by L, as illustrated in Figure 5. a

N

Fig. 5. A plane double star separated by a line.
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Lemma 6. Let P be a set of points in general position. Let Ly and Lo be non-
parallel lines with Ly N P = Lo NP = 0. Let v,w,z,y be points in P such
that v, w, z,y are in distinct quarter-planes formed by L1 and Lo, with each pair
(v,w) and (x,y) in opposite quarter-planes. (Note that this does not imply that
vw and zy cross.) Let Ty and Ty be the plane double stars Ty = T(P, L1,v,w)
and Ty = T(P, Lo, z,y). Then E(Ty) N E(Ty) = 0.

Proof. Suppose, for the sake of contradiction, that there is an edge e € E(T1) N
E(T»). All edges of Ty are incident to v or w, and all edges of Ty are incident
to « or y. Thus e € {vz,vw, vy, zw,xy, wy}. By assumption, v,w,x,y are in
distinct quarter-planes formed by L; and Lo, with each pair (v,w) and (z,y)
in opposite quarter-planes. Thus e crosses at least one of Ly and L,. Without
loss of generality e crosses Lj. Since e € F(T1), and the only edge of T; that
crosses L1 is the root edge vw, we have e = vw. Since all edges of T, are incident
to x or y and v,w,z,y are distinct, we have e ¢ E(T»), which is the desired
contradiction. Therefore E(Ty) N E(Tz) = @, as illustrated in Figure 6. a

Proof (of Theorem 4). As illustrated in Figure 7, let C' be a circle such that
the vertices of G and the intersection point of any two lines in £ are in the
interior of C. The intersection points of C' and the lines in £ partition C into
2n consecutive components Cy, C1,...,Cs,_1, each corresponding to a region
containing a single vertex of G. Let ¢ be the vertex in the region corresponding
to C;. Label the lines Lo, L1,...,L,_1 so that for each 0 < 7 < n — 1, the
components C; and Cji,, Tun from C N L; to C' N Lj41) mod n in the clockwise
direction.

For each 0 < i < n — 1, let T; be the double star T(V(G), L;,4,i + n). By
Lemma 5, each T; is plane. Since V(T;) = V(G), T; is a spanning tree of G. For
all 0 < ¢ < 5 <n—1, the points 4,7 + n, j,j + n are in distinct quarter-planes

|
x f— W
T [
fop
// I
:I/ | Y,
4 A
maN vz
] //'ZJ/
/ /7 i ////
| o’!
—
I
Ly

Fig. 6. Plane spanning double stars are edge-disjoint.
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Fig. 7. Example of Theorem 4 with n = 4.

formed by L; and L, with each pair (¢,i+n) and (j, j +n) in opposite quarter-
planes. Thus, by Lemma 6, E(T;) N E(T;) = (. Since each T; has 2n — 1 edges,
and there are n(2n — 1) edges in total, Ty, T4, ..., Th—1 is the desired partition
of E(G). O

Note that each line in £ in Theorem 4 is a halving line. Pach and Solymosi [6]
proved a related result: a complete geometric graph on 2n vertices has n pairwise
crossing edges if and only if it has precisely n halving lines.

4 Relaxations

‘We now drop the requirement that our plane trees be spanning. Thus we need not
restrict ourselves to complete graphs with an even number of vertices. Theorem 4
generalises as follows.

Theorem 5. Let G be a complete geometric graph K,,. Suppose that there is a
set L of pairwise non-parallel lines with at least one vertex of G in each open
unbounded region formed by L. Then E(G) can be partitioned into n — |L| plane
trees.

Proof. Let P be a set consisting of exactly one vertex in each open unbounded
region formed by L. Then |P| = 2|£|. By Theorem 4, the induced subgraph
G[P] can be partitioned into %|P| plane double stars. The edges incident to a
vertex not in P can be covered by n — |P| spanning stars, one rooted at each of
the vertices not in P. Clearly a star is plane regardless of the vertex positions.
Edges with both endpoints not in P can be placed in the star rooted at either
endpoint. In total we have £|P|+ (n— |P|) = n— $|P| = n—|L| plane trees. O

Lemma 7. Every complete geometric graph K, with k pairwise crossing edges
can be partitioned into n — k plane trees.
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Proof. Let E = {e; : 1 < < k} be a set of k pairwise crossing edges. For each
1 <14 <k, let L; be the line obtained by extending the segment e;, and rotating
it about the midpoint of e; by some angle of ¢ degrees. Clearly there exists an
e such that each edge e; crosses every line L;. Thus there is one endpoint of an
edge in E in each open unbounded region formed by Lq, Ls, ..., Lx. The result
follows from Theorem 5. O

Aronov et al. [1] proved that every complete geometric graph K, has at least
\/n/12 pairwise crossing edges. Thus Lemma 7 implies:

Corollary 1. FEvery complete geometric graph K, can be partitioned into at

most n — \/n/12 plane trees. O

We conclude with a seemingly easier problem than Open Problem 1.

Open Problem 2. Can the edges of every complete geometric graph K,, be
partitioned into at most n/c plane subgraphs, for some constant ¢ > 17

Of course ¢ < 2 since n/2 edges may be pairwise crossing. Dillencourt et al. [3]
defined the geometric thickness of an (abstract) graph G to be the minimum k&
such that G has a representation as a geometric graph whose edges can be
partitioned into k plane subgraphs. They proved that the geometric thickness of
K, is between [(n/5.646) + 0.342] and [n/4].
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Abstract. Recent research efforts have produced new algorithms for
solving planarity-related problems. One such method performs vertex
addition using the PC-tree data structure, which is similar to but sim-
pler than the well-known PQ-tree. For each vertex, the PC-tree is first
checked to see if the new vertex can be added without violating certain
planarity conditions; if the conditions hold, the PC-tree is adjusted to
add the new vertex and processing continues. The full set of planarity
conditions are required for a PC-tree planarity tester to report only pla-
nar graphs as planar. This paper provides further analyses and new pla-
narity conditions needed to produce a correct planarity algorithm with
a PC-tree.

1 Introduction

The first linear-time planarity tests [1, 2] represent significant achievements but
are also quite complex. Recent research has produced simpler linear-time pla-
narity algorithms [3-5]. This paper discusses the planarity method of Shih and
Hsu [5], which is based on a data structure called a PC-tree. The PC-tree method
is a vertex addition method that adds each vertex to a partial planar embedding
once it determines that planarity can be preserved while adding the vertex and
all edges that connect it to other vertices in the partial embedding.

The PC-tree method processes the vertices in a post-order traversal of the
depth first search (DFS) tree of the graph. Thus, there is a path of unprocessed
vertices from every vertex to the root of the DFS-tree. If the graph is planar,
then it must be possible to embed of the first k& vertices so that all vertices
with direct back edge connections to their unprocessed DFS ancestors are on
the external face of the partial embedding. For each vertex ¢, the algorithm first
checks the PC-tree for a number of defined planarity conditions. If all conditions
are met, then a planarity reduction is applied to the PC-tree for vertex i.

If one or more planarity conditions were missing, then a planarity reduction
would be applied when it should not be, ultimately causing a planar result to
be reported on some non-planar graphs. The literature on PC-trees have not
presented additional planarity conditions, instead focusing on the consecutive
ones problem [6,7] or on equating PQ-tree and PC-tree reductions [8]. A sub-
mitted book chapter [9] presents an alternate graph-theoretic view that shows
the correctness of the general approach, but it uses constructs that are diffi-
cult to apply directly to a PC-tree. This paper presents the additional required
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planarity conditions that arise directly on the PC-tree, thus allowing more rea-
sonable comparisons of complexity and empirical performance to be made with
other planarity methods. In particular, although it is reasonable to assume that
the ‘batch’ operations of vertex addition methods are more cumbersome to im-
plement and less efficient than a finer grain edge addition method [4], proper
comparisons cannot be done with only the planarity conditions in [5].

Section 2 provides some definitions and preliminary remarks. Sections 3, 4
and 5 present additional planarity conditions and further analyses for the PC-
tree. Finally, Section 6 presents some concluding remarks.

2 Preliminaries

A PC-tree represents a partial planar embedding of a graph, with C-nodes rep-
resenting all biconnected components and P-nodes representing cut vertices in
the partial embedding and vertices with direct back edge connections that have
not been embedded yet. Every P-node is associated with a vertex of the input
graph. The neighbors of a C-node are P-nodes, which form the representative
bounding cycle (RBC) of the C-node. The RBC corresponds to the external face
cycle of the biconnected component represented by the C-node (for efficiency,
nodes are removed from the RBC if they represent neither cut vertices in the
partial embedding nor the endpoints of unembedded back edges). The P-nodes
of the RBC are connected into a cycle. Traversal through a C-node occurs on
one of the two paths along the RBC cycle between two neighbors of the C-node.

The PC-tree is denoted T', and T;. denotes a subtree of T' rooted by node r.
The current vertex being processed is denoted i. An i-subtree T,, is a PC-subtree
of T; that is rooted by the P-node for w with lowpoint(w) equal to i (i.e. the
unembedded back edges from w and its descendants connect to ). An i*-subtree
T, is a PC-subtree of T; that is rooted by the P-node for  with lowpoint(z)
< ¢ and that contains no vertex adjacent to ¢ in the input graph (so, every
unembedded back edge connects to an ancestor of 7). To simplify discussion, the
direct back edges to 7 and its ancestors are considered to be degenerate i-subtrees
and ¢*-subtrees. If the root node of an i-subtree or i*-subtree is the child of a
given PC-tree node, then we say that the i-subtree or i*-subtree is a child of
that node. A terminal node is a P-node or C-node of the PC-tree that has one
or more i-subtree children, one or more i*-subtree children, and no descendants
in the PC-tree with both i-subtree and i*-subtree children.

For each vertex i (in post-order of the DFS tree), the PC-tree is tested for
planarity conditions before adding ¢ to the partial embedding. Because three or
more terminal nodes implies non-planarity, much of the discourse in [5] focuses
on the one or two terminal node cases. Shih and Hsu present four necessary
conditions for maintaining planarity in the one and two terminal node cases: “In
Lemma 2.5, Corollary 2.6, [and] Lemmas 3.1 and 3.2 we made the assumption
that graph G is planar in deriving at those conclusions. We shall show that
if these conclusions hold at each iteration, then G must be planar by showing
that these conditions imply a feasible internal embedding for each 2-connected
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component.” [5, p. 188]. Then, the proof presented only describes how to perform
the one and two terminal node planarity reductions, which does not prove that
those reductions can always be performed if only the given planarity conditions
are met. The remaining sections describe additional required planarity conditions
and indicate how their violation implies non-planarity.

3 The ¢-7* Subtree Patterns Around a Terminal C-Node

Lemma 3.2 of [5] seeks to characterize the allowable pattern of child i-subtrees
and ¢*-subtrees around a terminal C-node. It states that for the root j of any
child i-subtree of a terminal C-node, one of the two RBC paths from j to the
parent of the C-node must contain only i-subtrees. This condition is necessary
but only sufficient in the one terminal node case when the terminal node has no
proper ancestor with a child ¢*-subtree. In the two terminal node case and the one
terminal node case where the terminal node has a proper ancestor with a child
1*-subtree, it is possible to be compliant with the statement of the lemma yet
still have a non-planarity condition. Theorem 1 states the additional restriction
required on terminal C-nodes, and Figure 1 shows PC-trees that violate the
restriction, along with the resulting Kz 3 minor.

Theorem 1. If a terminal C-node ¢ has a proper ancestor r with a child v such
that T, excludes ¢ and is or contains an i*-subtree, then ¢ must have a child w
for which an RBC path from w to the parent of ¢ contains all of the i-subtree
children of c.

Fig.1. (a) A K33 non-planarity minor from [3]. (b) A corresponding PC-tree with
one terminal C-node having the forbidden pattern of i-subtrees (dark triangles) and
i*-subtrees (light triangles). (c¢) An example with two terminal C-nodes, only one of
which need be in the depicted state. Note the use of graph minors for simplification; in
these examples, r could be any node on the path between i and the terminal C-node.
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4 The i-1* Subtree Patterns for an Intermediate C-Node

Given an intermediate C-node ¢ along the path P between two terminal nodes,
we consider the two RBC paths strictly between neighbors v and v’ of ¢ in P. The
proof of Lemma 3.1 of [5] attempts to prove the following: neither RBC path of
¢ can contain both an i-subtree and an ¢*-subtree. It does not show the necessity
of the broader planarity condition stated the lemma: of the two RBC paths
strictly between v and v’, one must contain only child i-subtrees and the other
must contain only child i*-subtrees. There are four issues. First, the proof of
the simpler condition fails when the terminal node and the intermediate C-node
are neighbors; the author has found other K3 3 patterns (not depicted) for this
case. Second, the proof is by contradiction but does not fully negate the lemma
statement: the simpler condition (described above) can hold while still violating
the lemma statement’s planarity condition if both RBC paths contain only ¢*-
subtrees (see Figure 2(a)) or i-subtrees (reduces to Figure 1(c)). Third, stricter
conditions are required if the intermediate C-node is m, the closest common
ancestor of the terminal nodes, because it cannot be flipped. The graph is non-
planar if an i-subtree appears below P on the RBC of m (see Figure 2(b)) or
if an i*-subtree appears on the RBC of m above P (resulting in a K33 that
edge contracts to the K5 minor of Figure 3(a)). Theorem 2 states the required
planarity conditions. A fourth problem is that analogous planarity conditions
are required for one terminal node, producing the same non-planarity minors
except the last case does not edge contract to a K5 minor but still produces a
K3 3 (not depicted). Theorem 3 states the additional planarity conditions.

Theorem 2. Let P denote the path between two terminal nodes u and v’ with
closest common ancestor m. Let ¢ denote a C-node in P — {u,u’} with neighbors
v and v’ in P. Of the two RBC paths strictly between v and v', one must contain
no child i-subtrees and the other no child i*-subtrees. Further, if c = m, then the
RBC path containing the child i-subtrees must also contain the parent of c.

Theorem 3. Given one terminal node u, let P denote the path from wu to the
farthest ancestor u' with a child i*-subtree. Let ¢ be an intermediate C-node in
path P — {u}. For ¢ # 4/, let v and v’ denote the neighbors of ¢ in P. For
c =/, let v denote the neighbor of ¢ in P and let v' denote the closest child
1*-subtree along either RBC path from the parent p of c. The following conditions
must hold: 1) The children of ¢ in one RBC path strictly between v and v' must
contain only child i-subtrees; 2) The opposing RBC path strictly between v and v’
must contain only child i*-subtrees; 3) If ¢ = v/, then the RBC path containing
the child i-subtrees must also contain p.

5 Finding Non-planarity of K3 s3-Less Graphs

Consider extending Lemma 2.5 in [5] to a PC-tree that contains C-nodes. Specif-
ically, suppose the closest common ancestor m of the two terminal nodes is a
C-node whose parent has the only child i*-subtree along the path P’. Figure 3
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Fig. 2. (a) The intermediate C-node has child ¢*-subtrees along both RBC paths be-
tween its parent (labelled m here) and the next node in path P (labelled u here). (b)
The C-node labelled m has a child i-subtree below the path P between the terminal
nodes. (c) The K3 3 for these planarity condition violations; the labels m, x, y and u
are the mapping for part (a), and the labels 7, u, v’ and w are for part (b).

depicts an example PC-tree and the corresponding K5 minor pattern from [3].
In this case, the K33 shown in the proof of Lemma 2.5 in [5] cannot be found,
illustrating that the proof does not “go through for the case of general trees
without any changes provided that the paths through a C-node are interpreted
correctly” [5, p. 185]. Theorem 4 states the relevant planarity condition from
Lemma 2.5 of [5], relying for its proof of necessity on both [5] and Figure 3.

Theorem 4. Suppose there are two terminal nodes u and v’ in Ty, and let m
be their closest common ancestor. Let P’ be the unique path from m to r. Every
proper ancestor of m in T, must have no child i*-subtrees.

This case is also important because it shows the method by which K5 sub-
divisions and other K3 3-less graphs are found by the PC-tree algorithm. In [5],
the case of three terminal nodes is shown to produce a either a (subgraph home-
omorphic to) K3 3, or “we could have three terminal nodes being neighbors of a
C-node, in which case we would get a subgraph homeomorphic to K5 ...” Tech-
nically, the result is a K5 minor, which could produce a subgraph homeomorphic
to K33 or Ks. Of greater importance, though, is the fact that a K33 can also
always be found in this case (though not the same one indicated for the three
terminal node case in [5]). However, this case of three terminal node neighbors
of a C-node is the only case mentioned in [5] for finding a K35, yet there are
many non-planar graphs that do not contain a K3 3. Therefore, there must be
some other condition that detects non-planarity for graphs that contain a Kj
but not a K33 (e.g. all K5 subdivisions). The K5 in Figure 6 of [5] is equivalent
to Figure 3(b). It does not result in three terminal nodes as stated in [5], but is
instead discovered by violation of the planarity condition in Theorem 4.
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(b)

Fig. 3. (a) A PC-tree in which the closest common ancestor of terminal nodes u and
is a C-node with a proper ancestor that has a child i*-subtree. (b) The corresponding
K5 minor from [3]. Note: Due to the difference in definitions between graph minors and
subgraph homeomorphism, this case implies a subgraph homeomorphic to K33 or Ks.

6 Conclusion and Future Work

This paper presented the additional planarity conditions required to create a
correct planarity algorithm using a PC-tree, allowing fair comparison with other
recent approaches to planarity. While the August 2003 version of the implemen-
tation in [10] could not be empirically compared due to frequent incorrect results,
Hsu also requested that a subsequent version with fixes not be empirically com-
pared as he felt the implementation was only a proof of concept. However, there
is strong evidence from [11] that a simplified vertex addition method can achieve
far better performance than most prior methods, although those results also sug-
gest that the edge addition methods in [4,12] are faster. Future work must use
the results of this paper to create correct, efficient PC-tree implementations for
empirical comparisons, especially with [4, 12]. The results of this paper are also
important for creating a Kuratowski subgraph isolator based on the PC-tree, the
full exposition of which should translate from the graph minors used to express
planarity condition violations to homeomorphic subgraphs.
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Abstract. The efforts put into XML-related technologies have exciting
consequences for XML-based graph data formats such as GraphML. We
here give a systematic overview of the possibilities offered by XSLT style
sheets for processing graph data, and illustrate that many basic tasks
required for tools used in graph drawing can be implemented by means of
style sheets, which are convenient to use, portable, and easy to customize.

1 Introduction

Among the multitude of software packages that process graphs, some are ded-
icated graph packages while others operate on graph structures implicitly. All
of them have in common the need to input existing data and to output their
computation results in files or streams. GraphML (Graph Markup Language) is
an XML-based format for the description of graph structures, designed to im-
prove tool interoperability and reduce communication overhead [1]. It is open
to user-defined extensions for application-specific data. Thanks to its XML syn-
tax, GraphML-aware applications can take advantage of a growing number of
XML-related technologies and tools, such as parsers and validators.

It is straightforward to provide access to graphs represented in GraphML
by adding input and output filters to an existing software application. However,
we find that Extensible Stylesheet Language Transformations (XSLT) [7] offer
a more natural way of utilizing XML formatted data, in particular when the
resulting format of a computation is again based on XML. The mappings that
transform input GraphML documents to output documents are defined in XSLT
style sheets and can be used stand-alone, as components of larger systems, or
in, say, web services.

This article is organized as follows. Section 2 provides some background on
GraphML, XSLT and their combination. Basic means and concepts of trans-
formations are outlined in Sect. 3, while different types of transformations are
discussed in Sect. 4. The integration of XSLT extension mechanisms is described
in Sect. 5, and results are discussed and summarized in Section 6.
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2 Background

A key feature of GraphML is the separation into structural and data layer, both
conceptually and syntactically; this enables applications to extend the stan-
dard GraphML vocabulary by custom data labels that are transparent to other
applications not aware of the extension. Furthermore, applications are free to
ignore unknown concepts appearing in the structural layer, such as <port>s,
<hyperedge>s or nested <graph>s.

Thanks to its XML syntax, GraphML can be used in combination with other
XML based formats: On the one hand, its own extension mechanism allows to at-
tach <data> labels with complex content (possibly required to comply with other
XML content models) to GraphML elements, such as Scalable Vector Graph-
ics [5] describing the appearance of the nodes and edges in a drawing; on the
other hand, GraphML can be integrated into other applications, e.g. in SOAP
messages [6].

Since GraphML representations of graphs often need to be preprocessed or
converted to other XML formats, it is convenient to transform them using XSLT,
a language specifically designed for transforming XML documents; while origi-
nally created for formatting and presenting XML data, usually with HTML, it
also allows general restructuring, analysis, and evaluation of XML documents.
To reduce parsing overhead and to allow for XML output generation in a natural
and embedded way, XSLT itself is in XML syntax.

Basically, the transformations are defined in style sheets (sometimes also
called transformation sheets), which specify how an input XML document gets
transformed into an output XML document in a recursive pattern matching
process. The underlying data model for XML documents is the Document Object
Model (DOM), a tree of DOM nodes representing the elements, attributes, text
etc., which is held completely in memory. Fig. 1 shows the basic workflow of a
transformation.

RS

Stylesheet

i , output
Dl::\fr‘]nlenl Er— XSLT Transformation Serlalizer Doanlnmenl

Fig. 1. Workflow of an XSLT transformation. First, XML data is converted to a tree
representation, which is then used to build the result tree as specified in the style sheet.
Eventually, the result tree is serialized as XML.
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DOM trees can be navigated with the XPath language, a sublanguage of
XSLT: It expresses paths in the document tree seen from a particular context
node (similar to a directory tree of a file system) and serves to address sets of its
nodes that satisfy given conditions. For example, if the context node is a <graph>
element, all node identifiers can be addressed by child: :node/attribute: :id,
or node/@id as shorthand. Predicates can be used to specify more precisely
which parts of the DOM tree to select; for example, the XPath expression
edge [@source="n0’]/data selects only those <data> children of <edge>s start-
ing from the <node> with the given identifier.

The transformation process can be roughly described as follows: A style sheet
consists of a list of templates, each having an associated pattern and a template
body containing the actions to be executed and the content to be written to the
output. Beginning with the root, the processor performs a depth-first traversal
(in document order) through the DOM tree. For each DOM node it encounters, it
checks whether there is a template whose pattern it satisfies; if so, it selects one of
the templates and executes the actions given in that template body (potentially
with further recursive pattern matching for the subtrees), and does not do any
further depth-first traversal for the DOM subtree rooted at that DOM node;
else, it automatically continues the depth-first traversal recursively at each of its
children.

3 Basic Means of Transformation

The expressivity and usefulness of XSLT transformations goes beyond their orig-
inal purpose of only “adding style” to the input. The following is an overview of
some important basic concepts of XSLT and how these concepts can particularly
be employed in order to formulate advanced GraphML transformations that also
take into account the underlying combinatorial structure of the graph instead of
only the DOM tree. For some example style sheets, see Sect. 4.

3.1 Parameterization

Especially when integrated as component of a larger system, it is desirable or
necessary to parameterize the transformations. Therefore, style sheets can be
given an arbitrary number of global parameters <xsl:param> that serve as an
interface to the outside world. When used autonomously, parameters are passed
to the processor as command line parameters.

Such parameters are often used to determine which part of the source doc-
ument is to be processed. For example, a GraphML file might contain multiple
<graph>s; a parameter can express the unique identifier of a particular graph
that is to be selected. Newer versions of XSLT even allow passing complex XML
subtree structures to the transformation.

3.2 Recursion

In the pattern matching process described in Sect. 2, templates were instantiated
and executed implicitly or explicitly, when a matching DOM node was encoun-
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tered in the tree traversal. However, templates can also be given unique names
and called like functions together with arbitrary scalar or complex arguments,
independently from the tree traversal.

For implementation of more advanced computations, such as graph algo-
rithms, templates may recursively call themselves, typically passing local pa-
rameters as function arguments. Similar to the global parameters (see Sect. 3.1),
local parameters can represent both scalar values and complex tree fragments.
With some limitations, XSLT can be considered a functional language, since
templates (and the style sheet as a whole) define functions that are applied to
subtrees of the input document and return fragments of the output document.

Due to the lack of assignment statements and side-effects, conventional im-
perative graph algorithms have to be formulated solely in terms of functions;
states, data structures, and intermediate results must be expressed as parame-
ters of function calls. For example, in a breadth-first search the set of all unvis-
ited nodes is passed to a recursive incarnation of the BFS template, instead of
becoming marked (see Sect. 4.3).

3.3 Modularization

To make transformations more flexible, they are not necessarily defined in one
single file, but can be distributed over a set of modules. The main style sheet
imports all templates from another style sheet with <xsl:import>, with its
own templates having a higher priority, or includes them textually using an
<xsl:include> tag. Alternatively, style sheets can be composed in advance in-
stead of being imported and included at transformation runtime. Since XSLT is
XML, it is even possible for style sheets to compose and transform other style
sheets.

Another way of modularizing large transformations is to split them up into
several smaller exchangeable style sheets that define successive steps of the trans-
formation, each of which operates on the GraphML result produced in the pre-
vious step.

In effect, modularizing transformations facilitates implementing a family of
general-purpose and specialized style sheets. Users are free to use specialized
modules, or to design new custom templates that extend the general ones.

3.4 External Code

XSLT is designed to be an open, extensible system. While parameterization is
one way of using an interface to the outside world when XSLT serves as a com-
ponent, another even more powerful mechanism is the integration of extension
functions into XSLT, i.e. code external to the style sheet. This is especially use-
ful when pure XSLT implementations are inefficient to run or too complicated
to use, especially when the input document is large, or when XSLT does not
provide necessary functionality at all, e.g. when random numbers, mathematical
operations, date functions, or complex string manipulations are needed.

It is important to note that extension functions and classes may violate the
declarative, functional design idea of XSLT, since instance-level methods can pro-
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vide information about mutable states, thus making side-effects possible because
a template may now produce different output at different times of execution.

The mechanism is described in more detail in Sect. 5, where we present an
extension to be used with GraphML.

4 Transformation Types

Since GraphML is designed as a general format not bound to a particular area
of application, an abundance of XSLT use cases exist. However, we found that
transformations can be filed into three major categories, depending on the actual
purpose of transformation. Note that transformations may correspond to more
than one type.

4.1 Internal

While one of GraphML’s design goals is to require a well-defined interpretation
for all GraphML files, there is no uniqueness the other way round, i.e. there
are various GraphML representations for a graph; for example, its <node>s and
<edge>s may appear in arbitrary order. However, applications may require their
GraphML input to satisfy certain preconditions, such as the appearance of all
<node>s before any <edge> in order to set up a graph in memory on-the-fly while
reading the input stream.
Generally, some frequently arising transformations include

— pre- and postprocessing the GraphML file to make it satisfy given conditions,
such as rearranging the markup elements or generating unique identifiers,

— inserting default values where there is no explicit entry, e.g. edge directions
or default values for <data> tags,

— resolving XLink references in distributed graphs,

— filtering out unneeded <data> tags that are not relevant for further process-
ing and can be dropped to reduce communication or memory cost, and

— converting between graph classes, for example eliminating hyperedges, ex-
panding nested graphs, or removing multiedges.

For such GraphML-to-GraphML transformations that operate on the syn-
tactical representation rather than on the underlying combinatorial structure,
XSLT style sheets are a very useful and lightweight tool. Often, the source code
fits on one single page. See, e.g., Fig. 2 and Fig. 3.

4.2 Format Conversion

Although in recent years GraphML and similar formats like GXL [9] became
increasingly used in various areas of interest, there are still many applications
and services not (yet) capable of processing them. To be compatible, formats
need to be translatable to each other, preserving as much information as possible.

In doing so, it is essential to take into account possible structural mismatch
in terms of both the graph models and concepts that can be expressed by the
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involved formats, and their support for additional data. Of course, the closer
the conceptual relatedness between source and target format is, the simpler the
style sheets typically are.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:template match="dataldescl|keyl|default"/> <!-- empty template-->

<xsl:template match="/graphml">
<graphml>
<xsl:copy-of select="keyl|desc|@*"/>
<xsl:apply-templates match="graph"/> <!-- process graph(s) -->
</graphml>
</xsl:template>

<xsl:template match="graph"> <!-- override template -->
<graph>
<xsl:copy-of select="keyl|desc|@*"/>
<xsl:copy-of select="node"/> <!-- nodes first -->
<xsl:copy-of select="edge"/> <!-- then edges -->
</graph>

</xsl:template>
</xsl:stylesheet>

Fig. 2. This transformation rearranges the graph so that the nodes appear before the
edges. All subtrees related to data extensions (data and key tags) are omitted.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:import href="rearrange.xsl"/> <!-- import templates -->

<xsl:template match="graph">
<graph>
<xsl:copy-of select="keyl|desc|@*"/>
<xsl:copy-of select="node"/>
<xsl:apply-templates match="edge"/>
</graph>
</xsl:template>

<xsl:template match="edge"> <!-- new template rule for edges——>
<xsl:copy>
<xsl:copy-of select="@+[name()!=’id’]|*"/>
<xsl:attribute name="id"> <!-- create new ID attribute -->
<xsl:value-of select="generate-id()"/> <!-- XPath-generated ID -->

</xsl:attribute>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Fig. 3. The transformation in Fig. 2 is extended by importing its templates and over-
riding the template for graphs, as described in Sect. 3.3. Edges are copied to the output
document, except for their identifiers, which are generated anew.
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While conversion will be necessary in various settings, two use cases appear
to be of particular importance:

— Conversion into another graph format: We expect GraphML to be used in
many applications to archive attributed graph data and in Web services
to transmit aspects of a graph. While it is easy to output GraphML, style
sheets can be used to convert GraphML into other graph formats and can
thus be utilized in translation services like GraphEx [3]. Converting between
GraphML and GXL is discussed in [2].

— Export to some graphics format: Of course, graph-based tools in general
and graph drawing tools in particular will have to export graphs in graphics
formats for visualization purposes. In fact, this is the most natural use of style
sheets, and we give an example tranformation to SVG (see Appendix A).

The transformation need not be applied to a filed document, but can also be
carried out in memory by applications that ought to be able to export in some
target format. Note that, even though XSLT is typically used for mapping be-
tween XML documents, it can also be utilized to generate non-XML output.

4.3 Algorithmic

Algorithmic style sheets appear in transformations which create fragments in
the output document that do not directly correspond to fragments in the input
document, i.e. when there is structure in the source document that is not explicit
in the markup. This is typical for GraphML data: For example, it is not possible
to determine whether or not a given <graph> contains cycles by just looking at
the markup; some algorithm has to be applied to the represented graph.

To get a feel for the potential of algorithmic style sheets, we implemented
some basic graph algorithms using XSLT, and with recursive templates outlined
in Sect. 3.2, it proved powerful enough to formulate even more advanced algo-
rithms. For example, a style sheet can be used to compute the distances from a
single source to all other nodes or execute a layout algorithm, and then attach
the results to <node>s in <data> labels. See Fig. 4 and Appendix A.

5 Java Language Binding

We found that pure XSLT functionality is expressive enough to solve even more
advanced GraphML related problems. However, it suffers from some general
drawbacks:

— With growing problem complexity, the style sheets tend to become dispro-
portionately verbose.

— Algorithms must be reformulated in terms of recursive templates, and there
is no way to use existing implementations.

— Computations may perform poorly, especially for large input. This is often
due to excessive DOM tree traversal and overhead generated by template
instantiation internal to the XSLT processor.

— There is no direct way of accessing system services, such as date functions
or data base connectivity.
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<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:param name="source">s</xsl:param> <!-- global parameter -->
<xsl:template match="datal|descl|key"/>

<xsl:template match="/graphml/graph">
<graphml>
<graph>
<xsl:copy-of select="@x|*[name()!=’node’]"/>
<key for="node" name="distance"/>
<xsl:variable name="bfsnodes">
<xsl:call-template name="bfs">
<xsl:with-param name="V" select="node[@id!=$source]"/>
<xsl:with-param name="W" select="node[@id=$source]"/>
<xsl:with-param name="dist" select="number(0)"/>
</xsl:call-template>
</xsl:variable>
<xsl:copy-of select="$bfsnodes/node"/>
<xsl:for-each select="node[not(@id=$bfsnodes/node/@id)]">
<xsl:copy>
<xsl:copy-of select="*|@x"/>
<data key="distance">-1</data> <!-- not reachable -->
</xsl:copy>
</xsl:for-each>
</graph>
</graphml>
</xsl:template>

<xsl:template name="bfs">

<xsl:param name="dist"/> <!-- current distance to source -->
<xsl:param name="V"/> <!-- unvisited nodes -->
<xsl:param name="W"/> <!-- BFS front nodes -->
<xsl:for-each select="$W">

<xsl:copy>

<xsl:copy-of select="x|@x"/>
<data key="distance"><xsl:value-of select="$dist"/></data>
</xsl:copy>
</xsl:for-each>
<xsl:variable name="new" select="$V[Q@id=../edge[@source=$W/@id]/@target]"/>
<xsl:if test="$new"> <!-- newly visited nodes? -->
<xsl:call-template name="bfs"> <!-- start BFS from them -->
<xsl:with-param name="V" select="$V[count(.|$new)!=count ($new)]"/>
<xsl:with-param name="W" select="$new"/>
<xsl:with-param name="dist" select="$dist+1"/>
</xsl:call-template>
</xsl:if>
</xsl:template>
</xsl:stylesheet>

Fig. 4. An algorithmic style sheet that starts a breath-first search from a source speci-
fied in a global parameter. The computed distances from that source node are attached
to the nodes as data tags with a newly introduced key.

Therefore, most XSLT processors allow the integration of extension functions
implemented in XSLT or some other programming language. Usually, they sup-
port at least their native language. For example, Saxon [4] can access and use
external Java classes since itself is written entirely in Java. In this case, exten-
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sion functions are methods of Java classes available on the class path when the
transformation is being executed, and get invoked within XPath expressions.
Usually, they are static methods, thus staying compliant with XSLT’s design
idea of declarative style and freeness of side-effects. However, XSLT allows to
create objects and to call their instance-level methods by binding the created
objects to XPath variables.

Fig. 5 shows the architecture of a transformation integrating external classes.
See Appendix A for a style sheet that makes use of extension functions for
random graph generation.

Style-
sheet

AN

GraphML XSLT Engine Gl

file

creates objects,

return results
calls methods

Java Classes

Fig. 5. Extending a transformation with Extension Functions. The box around the
Java classes may represent a wrapper class.

In particular, this technique enables developers to implement extensions for
graph algorithms. They can either implement extension functions from scratch,
or make use of already existing off-the-shelf graph libraries. We implemented a
prototype extension for GraphML that basically consists of three layers:

— Java classes for graph data structures and algorithms.

— A wrapper class (the actual XSLT extension) that converts GraphML
markup to a wrapped graph object, and provides computation results.

— The style sheet that instantiates the wrapper and communicates with it.

Thus, the wrapper acts as a mediator between the graph object and the style
sheet. The wrapper instantiates a graph object corresponding to the GraphML
markup, and, for instance, applies a graph drawing algorithm to it. In turn, it
provides the resulting coordinates and other layout data in order for the style
sheet to insert it into the XML (probably GraphML) result of the transformation,
or to do further computations.
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The approach presented here is only one of many ways of mapping an ex-
ternal graph description file to an internal graph representation. A stand-alone
application could integrate a GraphML parser, build up its graph representation
in memory apart from XSLT, execute a transformation, and serialize the result
as GraphML output. However, the intrinsic advantage of using XSLT is that it
generates output in a natural and embedded way, and that the output generation
process can be customized easily.

6 Discussion

We have presented a simple, lightweight approach to processing graphs repre-
sented in GraphML. XSLT style sheets have proven to be useful in various areas
of application, both when the target format of a transformation is GraphML,
and in other formats with a similar purpose where the structure of the output
does not vary too much from the input.

They are even powerful enough to specify advanced transformations that go
beyond mapping XML elements directly to other XML elements or other simple
text units. However, advanced transformations may result in long-winded style
sheets that are intricate to maintain, and most likely to be inefficient. Extension
functions appear to be the natural way out of such difficulties.

We found that, as rule-of-thumb, XSLT should be used primarily to do the
structural parts of a transformation, such as creating new elements or attributes,
whereas specialized extensions are better for complex computations that are
difficult to express or inefficient to run using pure XSLT.
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A Supplement

Due to space limitations, we do not give extensive examples for style sheets. The
following examples are referred to in this paper and can be obtained from the
GraphML homepage (graphml.graphdrawing.org):

GraphML — SVG. An example for conversion into an XML-based graphics
format (requires coordinates).

Spring Embedder. A computational style sheet computing coordinates using
a popular layout algorithm.

Random Graph Generator. Generates random graphs in the Erdds-Rényi
model by calling an external random number generator (Java language bind-

ing).
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Abstract. In this paper we study the clustered graphs whose underlying graph
is a cycle. This is a simple family of clustered graphs that are “highly non con-
nected”. We start by studying 3-cluster cycles, that are clustered graphs such that
the underlying graph is a simple cycle and there are three clusters all at the same
level. We show that in this case testing the c-planarity can be done efficiently
and give an efficient drawing algorithm. Also, we characterize 3-cluster cycles in
terms of formal grammars. Finally, we generalize the results on 3-cluster cycles
considering clustered graphs that at each level of the inclusion tree have a cy-
cle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms.

1 Introduction

Consider the following problem. A cycle is given where each vertex has a label. Is it
possible to add new edges so that: (i) the new graph (i.e. cycle plus new edges) is planar
and (ii) for each label, the subgraph induced by the vertices with that label is connected?
An exampleis in Fig. 1.a. In this case the problem admits a solution, depicted in Fig. 1.b.

In this paper we tackle problems of the above type. Such kind of problems arise in
the field of clustered planarity [9, 8]. Given a graph, a cluster is a non empty subset of
its vertices. A clustered graph consists of a graph GG and a rooted tree 7" such that the
leaves of T are the vertices of G. Each node v of T' corresponds to the cluster V() of
G whose vertices are the leaves of the subtree rooted at v. The subgraph of GG induced
by V(v) is denoted as G(v). An edge e between a vertex of V(v) and a vertex of
V — V(v) is said to be incident on v. Graph G and tree T are called underlying graph
and inclusion tree, respectively. A clustered graph is connected if for each node v of T'
we have that G(v) is connected.

In a drawing of a clustered graph each vertex of GG is a point and each edge is a
simple curve between its end-vertices. For each node v of T, G(v) is drawn inside a

* Work partially supported by European Commission — Fet Open project COSIN — COevolution
and Self-organisation In dynamical Networks — IST-2001-33555, by European Commission —
Fet Open project DELIS — Dynamically Evolving Large Scale Information Systems — Con-
tract no 001907, by “ALGO-NEXT: Algorithms for the Next Gen. Internet and Web”, MIUR
Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, and by “The Multichannel
Adaptive Information Systems (MAIS) Project”, MIUR-FIRB.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 100-110, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Clustering Cycles into Cycles of Clusters 101

Fig. 1. (a) An example of a cycle with labels in {a, b, c¢}. (b) The cycle with extra edges. (c) The
corresponding clustered drawing of the cycle.

simple closed region R(v) such that: (i) for each node p of T that is neither an ancestor
nor a descendant of v, R() is completely contained in the exterior of R(v); (ii) an
edge e incident on v crosses the boundary of R(v) exactly once. We say that edge e
and region R have an edge-region crossing if both endpoints of e are outside R and e
crosses the boundary of R. A drawing of a clustered graph is c-planar if it does not
have edge crossings and edge-region crossings. A clustered graph is c-planar if it has a
c-planar drawing.

Consider again the example of Fig. 1 according to the above definitions. The cycle
is the underlying graph of a clustered graph. Vertices with the same label are in the
same cluster. The inclusion tree consists of a root with three children, denoted a, b,
and c. The children of node x are the vertices labeled x. The edges added to the cycle
are used to “simulate” the closed regions containing the clusters (See Fig. 1.c). In this
paper we call saturator such set of edges. The clustered graph of the example is c-
planar. Further, the problem of adding extra edges to a labeled cycle admits a solution
iff the corresponding clustered graph is c-planar. Observe that the clustered graph of the
example is not connected.

Clustered planarity, because of its practical impact and because of its theoretical
appeal, attracted many research contributions. Feng, Cohen, and Eades devised the first
polynomial time c-planarity testing algorithm for connected clustered graphs [9]. A
planarization algorithm for connected clustered graph is shown in [5]. However, the
complexity of the problem for a non connected clustered graph is still unknown.

A contribution on this topic has been given by Gutwenger et al. that presented
a polynomial time algorithm for c-planarity testing for almost connected clustered
graphs [10]. In almost connected clustered graphs either all nodes corresponding to non
connected clusters are in the same path in 7' starting at the root of 7, or for each non
connected cluster its parent and all its siblings are connected. Also, the works in [1, 2]
by Biedl, Kaufmann, and Mutzel can be interpreted as a linear time c-planarity test for
non connected clustered graphs with exactly two clusters at the same level.

Another contribution studying the interplay between c-planarity and connectivity
has been presented in [3] by Cornelsen and Wagner. They show that a completely con-
nected clustered graph is c-planar iff its underlying graph is planar. A completely con-
nected clustered graph is so that not only each cluster is connected but also its comple-
ment is connected.
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In this paper we study the clustered graphs whose underlying graph is a cycle. This
is a simple family of clustered graphs that are “highly non connected”. The paper is
organized as follows.

Section 2 contains preliminaries. In Section 3 we study 3-cluster cycles, that are
clustered graphs such that the underlying graph is a simple cycle and there are three
clusters all at the same level. We show that, in this case, testing the c-planarity can be
done efficiently. We also give an efficient drawing algorithm. Further, we show that in
this specific case if the c-planarity problem admits a solution then a saturator exists
that is composed only by simple paths. In Section 4 we generalize the results on 3-
cluster cycles considering clustered graphs that on each level of the inclusion tree have
a cycle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms. Section 5 contains conclusions and open problems.

2 Preliminaries

We assume familiarity with connectivity and planarity of graphs [7, 6]. We also assume
familiarity with formal grammars [11].

Given a c-planar non connected clustered graph C(G,T'), a saturator of C'is a set
of edges that can be added to the underlying graph G so that C' becomes connected
without loosing its c-planarity. Finding a saturator of a clustered graph is important
since it allows to apply to C' the same drawing techniques that have been devised for
connected clustered graphs.

We call 3-cluster cycle a clustered graph such that the underlying graph is a simple
cycle and there are exactly three clusters all at the same level (plus the root cluster). In
a 3-cluster cycle the inclusion tree consists of a root node with three children and each
vertex of the underlying cycle is a child of one of these three nodes. Given a 3-cluster
cycle, we associate a label in {a, b, ¢} to each of the three clusters.

Consider a 3-cluster cycle and arbitrarily select a starting vertex and a direction.
We can visit the cycle and denote it by the sequence o of labels associated with the
clusters encountered during the visit. The same clustered cycle is also denoted by any
cyclic permutation of o and by any reverse sequence of such permutations. We use
Greek letters to denote general sequences and Roman letters to identify single-character
sequences. Given a sequence o, we denote with 7 its reverse sequence.

A non c-planar c-cluster cycle is abcabc, while a c-planar one is abcbac.

It is easy to see that repeated consecutive labels can be collapsed into a single label
without affecting the c-planarity property of a 3-cluster cycle. Hence, in the following
we consider only 3-cluster cycles where consecutive vertices belong to distinct clusters.
Also, since clusters can not be empty, in a 3-cluster cycle at least one occurrence of
each label can be found.

We assign a cyclic order to the clusters so thata < b, b < ¢, and ¢ < a. A sequence
o is monotonic increasing (decreasing) if for each pair x, y of consecutive labels of o
rz <y (y < ). A sequence is cyclically increasing (decreasing) monotonic if all its
cyclic permutations are increasing (decreasing) monotonic.

Given a 3-cluster cycle o, Balance(o) is a number defined as follows. Select a
starting vertex and a direction. Set counter c to zero. Visit o adding (subtracting) one
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unit to ¢ when passing from z to y, where < y (y < z). Observe that, when the start-
ing vertex is reached again, c is a multiple of 3 that can be positive, negative, or zero. If
we selected a different starting vertex, while preserving the direction, we would obtain
the same value. On the contrary, if ¢ was visited in the opposite direction the opposite
value would be obtained for ¢. Balance(c) = |c|. For example, Balance(ababc) = 3
and Balance(cbacba) = 6.

Observe that, when representing a 3-cluster cycle with a sequence of labels, by
reading the sequence from left to right, we implicitly choose a direction for visiting the
cycle. For simplicity, we adopt the convention of representing a 3-cluster cycle with a
sequence o such that, when the vertices of the cycle are visited according to the order
induced by o, a non negative value for c is obtained.

3 Cycles with Three Clusters

In this section we address the problem of testing the c-planarity of a 3-cluster cycle.
The following lemma introduces transformations that can be used to simplify 3-cluster
cycles without affecting their c-planarity properties.

Lemma 1. Let 0 = ogixayaxayos be a 3-cluster cycle such that o1, o2, and o are
possibly empty and xawy is monotonic. The 3-cluster cycle o’ = oyxayoy is c-planar if
and only if o is c-planar. Balance(c) = Balance(d”).

Proof Sketch: Suppose there exists a c-planar drawing of ¢’. The black line in Fig. 2.a
shows an example of such a drawing for the portion concerning subsequence zay.
Such a drawing can be modified by replacing the edge between y and the first vertex
of oy with the sequence axary. Such sequence can be drawn arbitrarily close to zay
preserving c-planarity. Finally, the just added instance of y may be connected to the first
vertex of oo. The result is shown in Fig. 2.a where the added part is drawn gray.

Now, suppose that there exists a c-planar drawing of o. Fig. 2.b shows an example
of such a drawing for the part concerning subsequence rayazay. The inlet formed
by xayax may contain parts of ¢ that are denoted by @ in Fig. 2.b. The parts of o
that are contained in the inlet formed by yaxay are denoted by P. The embedding of
P and @ may be rearranged preserving c-planarity as in Fig. 2.c. Path azay can now

Fig. 2. Illustration of the proof of Lemma 1. (a) Necessary condition. (b) and (c) Sufficient con-
dition.
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be deleted and substituted by an edge connecting vertex y with the first vertex of os.
Finally, observe that, since we have removed from ¢ two monotonic sub-sequences, one
increasing and one decreasing, with the same length, Balance(o’) = Balance(o). O

For example, Lemma 1 allows to study the c-planarity of cabcab instead of the c-
planarity of cabcacbabcab (by taking 01 = ¢, x = a, a = be, y = a, and o2 = b).

Lemma 2. Let o be a 3-cluster cycle. There exists a 3-cluster cycle o’ such that:
Balance(o’) = Balance(o), o' is c-planar iff o is c-planar, and either ¢’ is cycli-
cally monotonic or o' = xay(3, where

1. «and (3 are non empty,
2. xay is maximal monotonic increasing, and
3. yBz is maximal monotonic decreasing.

Because of space limitation, the proof for this Lemma is omitted. This proofis based
on the main idea of repeatedly applying Lemma 1 starting from the shortest monotonic
subsequences [4].

The following two lemmas (Lemma 3 and Lemma 4) study the c-planarity of the
simple families of 3-cluster cycles cited in Lemma 2.

Lemma 3. A 3-cluster cycle o such that o is cyclically monotonic is c-planar if and
only if Balance(o) = 3.

Proof Sketch: Since o is monotonic we have that Balance(o) # 0. Recall that
Balance(o) is a multiple of 3. If Balance(o) = 3, then it can only be the case that
o = abcor o = bca or 0 = cab and it is trivial to see that o is c-planar.

Suppose that Balance(o) > 6. We show that o is not c-planar. Suppose by con-
tradiction that there exists a c-planar drawing I, of o. Consider the vertices vy, v2, v3,
vy, Vs and vg of o as drawn in [, (see Fig. 3.b). The two edges incident to v, separate
vy from the rest of the vertices of its cluster. Thus, it is possible to add an edge (v1, v4)
preserving the planarity of the drawing. For similar reasons, it is possible to add the
edges (v2,v5) and (vs, vg). A contradiction arises from the fact that a subdivision of
a K3 3 can be found in the drawing. Consider, the vertices v1, v2, v3, V4, v5 and vs.
Vertex vy is connected to vg with a path in ¢ and it is directly connected to v, and vy4.
Vertices v3 and vs are directly connected to v, v4, and vg. Il

Lemma 4. Let 0 = zayf be a 3-cluster cycle, where o and 3 are non empty, xoy
is maximal monotonic increasing, and yBz is maximal monotonic decreasing. We have
that o is c-planar iff Balance(o) is in {0, +3}.

Proof Sketch: Let Balance(o) = 3k, with k non negative integer. Suppose k is equal
to 0 or 1. A c-planar drawing of o can be constructed by placing the vertices on three
half-lines as in the examples shown in Fig. 4.a and 4.b, respectively. The vertices of
each half-line can be enclosed into a region representing their cluster.

Suppose that £ > 1. We show that ¢ is not c-planar. Suppose for a contradiction
that o is c-planar and let I' (o) be a c-planar drawing of o. Denote with vy, . .., v, the
vertices of o starting from the first vertex of o and suppose, without loss of generality,
that the length of « is greater or equal than the length of .
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Fig. 4. The construction of a c-planar drawing for a cycle o when Balance(o) = 0 (a) and when
Balance(o) = 3 (b).

Consider the relative position of v; and vy in I in their cluster X (see Fig. 3.c). We
have that the two edges incident on v4 separate v; from the rest of the vertices of X.
Thus, it is possible to join v; and v4 with an edge (v1, v4) that is entirely contained into
the cluster X and that preserves the planarity of the drawing. Analogously, it is possible
to join vertices vo and v; in cluster Y with the edge (v, v5) and vertices v3 and vg in
cluster Z with the edge (vs, vg).

A contradiction arises since a subgraph that is a subdivision of K3 3 can be found
in the drawing. In fact, exploiting the edges of o and the edges introduced above, each
vertex in {v1,vs,v5} is connected to all vertices in {vg, v4, vg}. Vertex vy is directly
connected to v2 and to vg with edges of o, while it is connected to v4 with edge (v1,v4);
vertex vs is directly connected to vs and to vy with edges of o, while it is connected to
v, with edge (vs, vy,); finally, vertex vs is directly connected to v4 with an edge of o, it
is connected to v,, with a path in o, and it is connected to vy with edge (v, vs). O

Because of Lemma 2, Lemma 3, and Lemma 4, the problem of testing whether a
3-cluster cycle o is c-planar can be reduced to the problem of computing Balance(o).
Since it is easy to compute Balance(o) in linear time (see Section 2), the following
theorem holds.

Theorem 1. Given an n-vertex 3-cluster cycle, there exists an algorithm to test if it is
c-planar in O(n) time.

In what follows we introduce a simple algorithm which guarantees the computation
of a c-planar drawing of a 3-cluster cycle, if it admits one, in linear time. Consider a
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3-cluster cycle o with Balance(o) € {0,+3}. Set a counter to zero. Visit o starting
from the first vertex and adding (subtracting) one unit to the counter when passing from
ztoy, where z < y (y < x). Without loss of generality we will assume that the counter
never reaches a negative value. Otherwise, we can replace o with an equivalent cyclic
permutation of it that has the above property and that can be obtained in linear time. Let
K be the maximum value assumed by the counter during the visit.

We say that a vertex of o belongs to the k-th level iff the counter has value k when
reaching such a vertex. The first vertex of o belongs to level 0. Note that each level
contains vertices of the same cluster. Also, vertices belonging to level £ and level k + 3
belong to the same cluster. We denote with o, the sequence o restricted to level k,
obtained from o by deleting all the vertices not belonging to the k-th level.

We construct a saturator in the following way. For each level k € {0,..., K},
we connect with an edge each pair of consecutive vertices of o|j. For each level k €
{0,..., K — 3}, we insert an edge connecting the first vertex of o, with the last vertex
of o ‘ k+3-

Now we show that the graph composed by the cycle and the saturator is planar by
providing a planar drawing of it (see Fig. 5). First, we arrange all the vertices of o on
a grid: the x-coordinate of a vertex is its position in ¢ and the y-coordinate is its level.
Then, we draw each edge of the cycle (excluding the one connecting the first and the
last vertex of o) with a straight segment without introducing intersections. Second, for
each level k € {0,..., K}, we draw those edges of the saturator that connect pairs
of consecutive vertices of o, with straight segments without introducing intersections.
Note that, the sequence of the clusters at levels 0, ..., K — 3 is the same sequence
as that of the clusters at levels 3,..., K. Also, at this point of the construction, for
each k € {0,..., K} the first and the last vertices of o are on the external face.
Hence, the drawing can be completed without intersections by adding, for each level
k € {0,..., K — 3}, the edge of the saturator connecting the first vertex of o|;, with

Level
7

6

Fig.5. The construction of a c-planar drawing of a 3-cluster cycle o in the case in which
Balance(o) = 3.
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the last vertex of o|;45 as shown in the example of Fig. 5. Finally, since the first and
the last vertex of ¢ are on the same face, they can be connected with a curve contained
into such a face without introducing intersections. To explicitly represents clusters as
simple closed regions starting from the saturator we select a region of the plane at small
distance (strictly greater than zero) from each saturator edge and delete the saturator.

It is easy to implement the above algorithm to work in linear time by building the
lists of vertices for each level while visiting o. Notice that K is bounded by the number
of the vertices of the cycle.

Hence, we can state the following result.

Theorem 2. Given an n-vertex c-planar 3-cluster cycle o, there exists an algorithm
that computes a c-planar drawing of o in O(n) time.

From the above construction we also have the following.

Theorem 3. A c-planar 3-cluster cycle admits a saturator that is the collection of three
disjoint paths.

If we consider the representation of 3-cluster cycles as strings, it is possible to show,
in terms of formal grammars, that the set of 3-cluster cycles is a regular set, while the
set of c-planar 3-cluster cycles is generated by a context-free grammar [4].

4 Cycles in Cycles of Clusters

In this section we present a generalization of the results of Section 3. First, we general-
ize the results on 3-cluster cycles to the case of clusters that form a cycle whose length
is greater than three. Second, we tackle the general problem of testing the c-planarity
of a cycle that is clustered into a cycle of clusters that is in turn clustered into another
cycle of clusters, and so on. Fig. 6.a shows c-planar clustered graph whose underlying
graph is a cycle for which two levels of clusters are defined. Fig. 6.b puts in evidence the
inclusion relationship between clusters of a given level and clusters of the level directly
above it. The same figure shows also that the clusters of each level form a cycle.

We start by introducing preliminary assumptions and definitions. We consider clus-
tered graphs C(G, T') in which all the leaves of the inclusion tree 7" have the same dis-
tance from the root (we call depth that distance). A clustered graph which has not this
property can be easily reduced to this case by inserting “dummy” nodes in 7". Hence,
from now on we consider only inclusion trees whose leaves are all at the same depth.
We define as G'(V!, E') the graph whose vertices are the nodes of T at distance [ from
its root, and an edge (u, v) exists if and only if an edge of G exists incident to both p
and v.

For example, GO has only one vertex and GL, where L is the depth of the tree,
is the underlying graph G of C(G,T). We label each vertex v of G' with the cluster
(corresponding to a vertex of G'~!) which v belongs to. If G! is a cycle, then it is
possible to identify G! with the cyclic sequence of the labels of its vertices. If also
G'~1is a cycle, we consider the labels of G! cyclically ordered according to the order
they appear in G'~1. At this point, Balance(G") can be defined as in Section 3 and can
assume values 0, k, 2k, 3k, . . . where k is the length of G'~ .
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Fig. 6. A clustered graph where at each level of the inclusion tree the nodes form a cycle. (a) A c-
planar drawing. (b) The inclusion tree augmented with edges that put in evidence the adjacencies
between nodes at the same level.

According to the above definitions a 3-cluster cycle is a clustered graph where T" as
depth 2, G2 is a cycle and G is a cycle of length 3. In fact, the results of Section 3 can
be extended to the case in which G is a cycle of an arbitrary length.

Theorem 4. Given an n-vertex clustered graph C(G,T), such that T has depth 2 and
G and G? are cycles, there exists an algorithm to test if C' is c-planar in O(n) time. If
C'is c-planar, a c-planar drawing of C' can be computed in O(n) time.

Proof Sketch: The proof exploits the same considerations and constructions of Theo-
rems 1 and 2. If the length of G* is k then C is c-planar iff Balance(G?) € {0, k}.
In order to find a c-planar drawing of C, if it exists, the same strategy described in
Section 3 can be applied, where, since in the construction depicted in Fig. 5 vertices
belonging to level 5 and level j + k belong to the same cluster, an edge of the saturator
is added between the first vertex of level 5 and the last vertex of level j + & instead of
between the first vertex of level j and the last vertex of level j + 3. O

Let C(G,T) be a clustered graph and [ be an integer between 1 and L, where L is
the depth of T'. Clustered graph C'(G,T") is obtained from C' by replacing 7' with a
tree T obtained from 7' by connecting all the nodes at depth [ with the root and deleting
all the nodes having depth greater than zero and less than . The c-planarity of C! can
be used to study the c-planarity of C'~!, as is shown in the following lemma.

Lemma 5. Let C(G,T) be a clustered graph and | be an integer between 1 and L,
where L is the depth of T. Let C' be c-planar, G' be a cycle, and G~ be a cycle of
length k. C'~Y is c-planar iff Balance(G') € {0, k}.

Proof Sketch: First, we prove that if Balance(G') € {0, k}, then C'~! is c-planar.
Since Balance(G') € {0,k}, then it exists a planar drawing of G' augmented with
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the edges of a saturator connecting vertices of G! with the same label. Those edges
can be added to the internal or external face of cycle G according to the output of
the algorithm described in Section 3. Let I'c: be a c-planar drawing of C!. Since G'
is a cycle, there exist in I'-: exactly two faces containing vertices belonging to all the
clusters corresponding to vertices of G'~1. Call such faces internal and external face
arbitrarily. A c-planar drawing I'ci—1 can be constructed by adding to I': an edge for
each edge of the saturator of G! in such a way to place on the internal (external) face of
T'c: the edges of the saturator that are added to the internal (external) face of G'.

The second part of the proof shows that if Balance(G") is not in {0, k} then then
C'=1 is not c-planar. Assume for a contradiction that Balance(G') is not in {0, k} and
a c-planar drawing of I'-i—1 exists.

By using similar arguments as in the proofs of Lemmas 3 and 4, a subdivision of a
K3 3 can be found where the vertices of the subdivision are actually vertices of G, that
is, clusters of C. [l

Lemma 6. Let C = (G, T) be a clustered graph and let be | an integer between 1 and
L, where L is the depth of T. If C" is not c-planar, then C° = C'is not c-planar.

Proof Sketch: If C' is not c-planar, there is a subdivision of K3 3 or K5 in the graph G
augmented with the edges of the saturator of C'. The same obstruction can be found in
the graph G augmented with the edges of saturator of C”; hence C° can not be c-planar.

0

Theorem 5. Given an n-vertex clustered graph C(G,T'), such that T has depth L and,
forl >0, G' is a cycle, there exists an algorithm to test if C' is c-planar in O(Ln) time.

Proof Sketch: The proof is based on iteratively applying, level by level, Lemma 5 to
the clustered graphs C! for | = L,L — 1,...,2. Since each test can be performed in
O(n) time, the statement follows. O

Theorem 6. Given an n-vertex clustered graph C(G, T), such that T has depth L and,
forl >0, Gl is a cycle, if C is c-planar there exists an algorithm to compute a c-planar
drawing of C in O(Ln) time.

Proof Sketch: The proof of Lemma 5 is a constructive one. Thus, by applying, level
by level, Lemma 5 starting from level L to level 1, a c-planar drawing of C' can be
obtained. Since each step may be performed in O(n) the statement follows. 0

5 Conclusions and Open Problems

In this paper we studied a peculiar family of non-connected clustered graphs. Namely,
we studied clustered graphs whose underlying graph is a simple cycle. Besides the
general problem of stating the complexity of the c-planarity testing of non-connected
clustered graphs, several other problems remain open.

Are there other families of non-connected clustered graphs whose c-planarity can be
efficiently assessed and whose underlying graph has a simple structure? For example,
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what happens if the underlying graph is a tree? It is easy to show that a two-level
clustered graph whose underlying graph G? is a path and such that graph G is a cycle,
is c-planar. It is also easy to find an example of a two level clustered graph whose
underlying graph G2 is a tree, such that G is a cycle and that is not c-planar.

Suppose that the underlying graph has a fixed embedding. Can this hypothesis sim-
plify the c-planarity testing?

Can the techniques introduced in this paper be combined with techniques known
in the literature for devising tools able to handle the c-planarity testing and embedding
problem for more complex families of clustered graphs?
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Abstract. A triangulated polygon is a 2-connected maximal outerpla-
nar graph. A unit bar-visibility graph (UBVG for short) is a graph whose
vertices can be represented by disjoint, horizontal, unit-length bars in
the plane so that two vertices are adjacent if and only if there is a non-
degenerate, unobstructed, vertical band of visibility between the corre-
sponding bars. We give combinatorial and geometric characterizations of
the triangulated polygons that are UBVGs. To each triangulated poly-
gon GG we assign a character string with the property that G is a UBVG
if and only if the string satisfies a certain regular expression. Given a
string that satisfies this condition, we describe a linear-time algorithm
that uses it to produce a UBV layout of G.

1 Introduction

A bar-visibility layout of a graph G is a representation of GG in the plane by disjoint
horizontal line segments (‘bars’) in which each vertex corresponds to a bar and
two vertices are adjacent if and only if there is an unobstructed, non-degenerate
vertical wvisibility band between the corresponding bars. If G has such a layout it
is called a bar-visibility graph (BVG for short). A BVG layout induces a plane
embedding of G in a natural way, by placing each vertex on its corresponding bar
and drawing edges between pairs of vertices whose bars have vertical visibility. A
BVG and its corresponding layout are shown in Fig. 1. The original motivation
for studying BVGs was the design of electronic circuits; another application is
the display of data, using bars ‘fattened’ into rectangles that hold labels, with
relations between data items represented by visibility bands.

Bar-visibility graphs were fully characterized in the mid-1980s [9,12,13] as
those planar graphs having a planar embedding with all cutpoints on a com-
mon face, and linear-time recognition and layout algorithms were given. Gen-
eralizations of bar-visibility graphs have also been studied, including visibility
representations using different objects like rectangles and with different rules for
visibility between objects [1, 5,6, 8,10, 11].
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Fig. 1. A triangulated polygon and its UBV layout.

The usefulness of bar-visibility layouts diminishes when the relative lengths
of bars vary widely. The simplest way to restrict the relative lengths of bars
is to require all bars to have equal length; such a graph is called a unit bar-
visibility graph (or UBVG). Fundamental results concerning these graphs appear
in [7]; however, in contrast to BVGs, no full characterization of these graphs has
been found. We characterize a significant subclass of UBVGs, the triangulated
polygons.

A triangulated polygon is a 2-connected, maximal outerplanar graph; in other
words, a graph with a plane embedding as a simple, closed curve whose interior
is subdivided by diagonals into triangles. The graph in Fig. 1 is a triangulated
polygon, and the layout is a UBV layout. To each triangulated polygon G we
associate a character string called the internal spine string that encodes enough
information about G to determine whether or not G is a UBVG and, if it is, to
produce a UBV layout of G. The layout algorithm runs in linear time.

In Section 2 we define the maximal and internal spine strings corresponding
to triangulated polygon. In Section 3 we state a series of necessary conditions on
the maximal and internal spine strings, leading to our main theorem character-
izing those triangulated polygons that are UBVGs, and we outline the proof of
necessity. In Section 4 we use the internal spine string to give a linear-time algo-
rithm that produces a UBV layout of the corresponding triangulated polygon.

2 Spine Strings and Clumps

If G is a plane graph, we call the unbounded face of G the external face, and the
other faces are called internal. G* denotes the dual of GG, in which the vertices
are the faces of G, and two vertices are adjacent if and only if the corresponding
faces of G share an edge. The internal dual of G, denoted G7, is the subgraph
of G* induced by the internal faces of G. A graph G is outerplanar if it has a
plane embedding in which all vertices lie on the external face; such an embedded
graph is called outerplane. A straightforward but key observation is that a 2-
connected graph is outerplane if and only if its internal dual G7 is a tree. Lastly a
mazimal outerplanar graph is one in which each internal face is a triangle, hence
the internal dual of such a graph has maximum degree at most 3. If a maximal
outerplanar graph is 2-connected, then it has a unique outerplane embedding as
a triangulated polygon, and we generally do not distinguish between the graph
and its outerplane embedding.
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A caterpillar is a tree containing a path P, called a spine, such that all vertices
have distance at most 1 from P. A subdivided caterpillar, in which each edge is
replaced by a path, has a path P, also called a spine, that contains all vertices of
degree 3 or more. It follows from results of [7] that if a triangulated polygon G
is induced by a UBV layout, then its internal dual G is a subdivided caterpillar.
This condition is necessary but not sufficient. Given a triangulated polygon G
whose internal dual is a subdivided caterpillar, we define below a character string
that encodes key aspects of the embedding of G. The central result of this paper
is that this string encodes necessary and sufficient information to determine if
G is a UBVG.

Definition 1. 1. Let G be a triangulated polygon G' whose internal dual G7 is
a subdivided caterpillar (necessarily of mazimum degree 3). Choose a max-
imal spine of G}, P* = Fy, F1,...,Fi, Fiyy1. As P* is traversed in order
of increasing i, each face F;, i = 1,...,k, shares one edge with F;_1 and
another with F;11. Denote the verter incident with these two edges by v;,
and denote the third edge of F;, which is not incident with any other face
on P*, by e;. If P* is oriented left-to-right in order of traversal, then e; lies
either above or below v;; we say briefly that e; lies above (resp., below) P*.
Define a string Syr of length k, composed of the four symbols A, Na, B, Ng,
as follows. If e; lies above P*, then the i*" character of Sy is either A or
Ny, depending on whether F; does or does not have a leg-neighbor above P*.
Similarly, if e; lies below P*, then the it" character of Sy is either B or
Np, depending on whether F; does or does not have a leg-neighbor below P*.
The string Sy is called a maximal spine string for G.

2. Given any string composed of the symbols A, Na, B, Ng, an A-clump (resp.
B-clump) is a maximal length substring using only the symbols A and N
(resp., B and Ng). A trivial clump is an A-clump or B-clump comprised
entirely of Nao or Np terms.

3. If Sy is a mazimal spine string, then the internal spine string Sy is the
substring obtained by deleting all symbols including and preceding those in
the first non-trivial clump of Syr, and also all symbols including and following
those in the last non-trivial clump of Sps. It is possible that St is the empty
string.

The triangulated polygon in Fig. 1 has (non-unique) maximal spine string Sy; =

NpBNpNAANoAAN yNpBNpg, comprising three clumps. The corresponding in-

ternal spine string is S; = NaANa4AN 4. In what follows we write an arbitrary

maximal spine string Sy as a string of clumps, Sy = ToC1Cs ... CyTr41,k > 0,

where Ty is the union of all trivial clumps at the beginning of Sy, Tiy1 is the

union of all trivial clumps at the end of Sy, and C,...,C) are the remaining
clumps of Sy, where C and C}, are necessarily non-trivial. The corresponding
internal spine string is S; = Cs...Cyk_1.

3 Necessity and the Characterization Theorem

Given a triangulated polygon G whose internal dual is a subdivided caterpil-
lar, we choose a maximal spine string Sy; and divide it into clumps, Sy =
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ToCq ... CxT41, as described in Def. 1. Certain graphs can be eliminated im-
mediately if their clumps have too many non-trivial terms, or if two non-trivial
terms in a single clump are too far apart, as given below in Thm. 2. For the re-
maining, ‘feasible’ graphs, additional parsing of the clumps is required, as given
in Thm. 6. Analysis of this parsing applied to the internal spine string deter-
mines whether a UBV layout exists; Thm. 8 gives the full characterization in
terms of valid maximal and internal spine strings.

Theorem 2. Let G be a triangulated polygon whose internal dual is a subdivided
caterpillar with maximal spine Syy = ToCh ... CxTry1, as described in Def. 1.
Each of the following conditions is necessary for G to be a UBVG.

1. If k =1, then Ci1 contains at most four A- or B-terms.

2. If k > 2, then Cy and Cy each contain at most three A- or B-terms, and C;,
fori=2,...,k—1, contains at most two A- or B-terms.

3. If k> 3, then no Cy, 2 < i < k — 1, contains any substring of the form
ANX+A or BNEJFB, where the notation ++ indicates an exponent that is
at least two.

A triangulated polygon G that satisfies the conditions of Thm. 2 is called
UBVG-feasible or feasible. Having eliminated all ‘infeasible’ graphs from con-
sideration, we do a further parsing of the clumps, leading to an analysis of the
internal spine string that characterizes those feasible graphs having UBV layouts.

The relation of the spine string to a UBV layout of the triangulated polygon
G comes from the fact that in both settings there are notions of the directions
left, Tight, up, and down. For the spine string the directions are defined relative
to a traversal of the spine. For a UBV layout the directions indicate relative
positions of bars for adjacent faces, as defined below. G is a UBVG if and only
if these two notions of direction are compatible.

Definition 3. Suppose that the triangulated polygon G is a UBVG with UBV
layout U(G). We assume henceforth that each bar in a UBV layout has length 1
and is at a unique vertical level, usually at integer heights.

1. We denote the height of a bar b by y(b), and its left x-coordinate by x(b)
(thus its right x-coordinate is x(b)+1). Two bars in a UBV layout are called
collinear if a common x-value is shared by an endpoint of each bar; if the
two bars have the same left x-coordinate (and hence also the same right
x-coordinate), then they are called flush.

2. If B is any set of bars of U(G), we define the rectangle Rec(B) to be
the smallest rectangle containing all the bars of B. The left and right x-
coordinates of Rec(B) are denoted x1(B) and x2(B), and its bottom and top
y-coordinates are denoted y1(B) and y2(B). Cor(B) denotes the two-way
infinite vertical corridor bounded by the lines © = x1(B) and © = x2(B).

3. Let f and f' be internal faces of G, and let f be a neighbor of ' in G5 (i.e.,
the two faces share an edge). If x1(f) < xz1(f") (resp., x2(f) > x2(f")), we
call f aleft-neighbor (resp. right-neighbor) of f’.
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4. If f is a neighbor of f’, but is neither a left- nor right-neighbor, then either
() <y1(f) ory2(f) > y2(f"), but not both, since G is outerplanar. In the
former case we call f a down-neighbor of f', and in the latter case we call it
an up-neighbor of f'. In both cases either z1(f) = z1(f") or x2(f) = z2(f'),
and we call f aleft-flush or right-flush neighbor of f’ accordingly. Note that,
if f is a left neighbor of f', then f' cannot be a left neighbor of f, although
it could be an up-, down-, or right-neighbor of f.

Two important geometric lemmas follow from results of [6]. Lemma 4 says
that no path of faces in the internal dual of a triangulated polygon can have a
UBV layout that proceeds left-to-right (‘increases’) and then later proceeds right-
to-left (‘decreases’), or vice-versa; we refer to this as the ‘No U-Turn’ property.

Lemma 4 (No U-Turn Lemma). Let G be a triangulated polygon induced
by a UBV layout, and let P* = Fi,...,F} be a path in G7. Then the sequence
{z1(F;)} comprises a (monotone) decreasing subsequence followed by a (mono-
tone) increasing subsequence, either of which may be empty. Similarly the se-
quence {x2(F;)} comprises an increasing subsequence followed by a decreasing
subsequence.

Applying the No-U-Turn Lemma to the spine S); and the legs incident with
faces of Sy, we see that at most one leg may protrude to left of its spine neighbor,
and at most one may protrude to the right. In [4] it is shown that the first
two conditions in Thm. 2 guarantee that the beginning and ending clumps can
always be laid out if Sjs is feasible. The remaining clumps, contained in the
internal spine string, must have legs composed entirely of up-neighbors or down-
neighbors, when traversed starting at the face on the spine. The question then
becomes whether there is space enough, using only bars of unit length, to lay
out multiple legs on the internal spine.

As we move along a path P* in the maximal spine, in order of increasing i,
there is a path of vertices below P* that we denote ag,ai,..., and a path of
vertices above P*, denoted bg, b, . ... A single clump C in P* comprises a path
of faces all incident with a common vertex; assume, without loss of generality,
that C is an A-clump, and that this vertex is a;, for some j. The opposite edges
of the triangles in C' form a path of b-vertices, by, . .., by, so that the i*" triangle
of C, i = 0,...,k — 1, has vertices aj,b;,bit1. If the i'" face is non-trivial,
then vertices b; and b;y; are incident with another vertex, c;, so that the three
vertices b;, b;11, ¢; form the initial triangle on a leg of the subdivided caterpillar
G7. We always use ¢; for the first leg-vertex off an A-triangle and d; for the first
leg-vertex off a B-triangle. This labeling is used in Fig. 1.

In [4] it shown that, if P* is a path in the internal spine, then we may make
additional assumptions, without loss of generality, about the bars representing
the paths of a-,b-,c-, and d-vertices in any UBV layout of G:

1. For each of the paths of a-,b-,c-, and d-vertices, the left z-coordinates of the
corresponding bars form a strictly increasing sequence.

2. The set of d-bars lies fully below the set of a-bars, the set of a-bars is fully
below the set of b-bars, and the set of b-bars is fully below the set of c-bars.
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The second geometric lemma gives further restrictions on the paths of a-,
b-, and c-bars in a single A-clump (and by symmetry, the paths of a-, b-, and
d-vertices in a B-clump) in the layout of the internal spine. In particular, the
heights of the path of b-vertices in a single A-clump form a sequence with a
single relative maximum; we refer to this as the ‘one extremum property.’

Lemma 5 (One Extremum Lemma). Suppose by, b1, ..., by is a path of bars
i a UBV layout of a triangulated polygon, all visible to a single bar ag, such
that x(b;—1) < x(b;) and y(b;) > y(ao) for all i. Assume, as usual, that the bars
representing the b;-vertices are all at distinct heights y(b;).

1. There is a single value m, 0 < m < k, such that the sequence of heights y(b;)
increases for 0 < i < m and decreases for m < i < k.

2. For 0 < i <k-—1, let Xa,; denote the triangle {b;, bi11,a0}, and suppose
for some i that X 4 ; has an up-neighbor U;. If {y(b;),y(bi+1)} is increasing,
then Cor(b;) does not intersect Cor(b;y2). If {y(b;),y(bit1)} is decreasing,
then Cor(bi1+1) does not intersect Cor(b;_1).

3. If Xa,; has an up-neighbor, then it is incident with one of the vertices
bm—1,bm, bm+1; in other words, i € {m —2,m — 1, m,m + 1}.

Theorem 6. Let G be a triangulated polygon with a UBV layout. Let Sy be an
internal spine string, and let C be a clump in Sy. If C is an A-clump (resp.,
B-clump), let y(bo), . ..,y(br) (resp., y(ao),...,y(ar)) be the sequence of heights
of the b-bars (resp., a-bars) of C in the UBV layout of S;. If C is an A-clump
(resp., B-clump), then it follows from the One Extremum Lemma that C has a
unique relative mazimum by, (resp., unique relative minimum a,, ). The position
of by, (o1 ar,) in the sequence is determined by which of the following classes C
belongs to. Below the exponents x,#,+, and ++, respectively, represent integer
powers that are at least 0, equal to 0 or 1, at least 1, and at least 2.

1. ForcedMax = {NJTANI*, NZANXEANZ}: The sequence {y(b;)} is nei-
ther strictly increasing nor strictly decreasing. The value by, s a maximum
that does not occur at m = 0 or m = k. In other words, 1 < m < k — 1.
An analogous statement holds for the class ForcedMin = {N§+BN§+,
NEBNEBNg}: The sequence {y(b;)} is neither strictly increasing nor
strictly decreasing. The value by, is a minimum that does not occur at m =0
orm = k. In other words, 1 <m <k —1.

2. MazOrIncrease = {NTYAN%}: The sequence {y(b;)} is not strictly de-
creasing. The value b, is a maximum that does not occur at m = 0. In other
words, 1 < m < k. Analogously, MinOrDecrease = {NgBNE"‘}.

3. MaxOrDecrease = {NfANX“‘}: The sequence {y(b;)} is not strictly in-
creasing. The value by, is a maximum that does not occur at m = k. In
other words, 0 < m < k — 1. Analogously, MinOrIncrease = {NEJFBN?}.

4. Wilds = {NfANf, Ni}: The sequence {y(b;)} may be strictly increasing,
strictly decreasing, or increasing followed by decreasing. The value by, is a
maximum that may occur anywhere in the sequence. Analogously, Wildg =
(NEBN}, NEY. Elements of Wilda and Wildg are called wildcards. The
class of A-singletons, Sy = {A, Na}, is a subset of Wilds. Analogously, the
B-singletons comprise a subset of Wildg.
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Based on simple principles of calculus, e.g., that two consecutive relative
maxima on the graph of a continuous function must have between them at least
one relative minimum, it might appear that Thm. 6 eliminates some feasible tri-
angulated polygons as candidates for being UBVGs. A closer examination of the
classes reveals that the feasibility conditions have already eliminated these cases.
However, there is a subtle condition that two successive ‘ForcedMax’ clumps, or
other such ‘special needs’ pairs of clumps, must satisfy to provide sufficient space
to lay out the clumps between. Filling in that final condition yields the main
result of the paper, given in Thm. 8 below.

Definition 7. Let G be a feasible triangulated polygon with internal spine string
Sr, parsed into clumps that are then classified as in Thm. 6. Let C; and Cj,
1 < j, be two successive, non-wildcard clumps in Sy. In other words, neither C;
nor C; is a wildcard, but every clump between C; and Cj; is a wildcard. The
ordered pair (C;,Cj) is called a special needs pair if it is one of the following
pairs of A-clumps or the corresponding B-clump twin: (ForcedMazx, ForcedMaz ),
(ForcedMaz, MazOrIncrease), (MaxOrDecrease, ForcedMazx ), (MaxzOrDecrease,
MazOrlIncrease).

For example, the string N{AN3 NpN°° BN3 A is parsed as (ForcedMaz, Sg,
Wilda, Sp, MazOrlncrease), and it contains the special needs pair (ForcedMaz,
MazOrIncrease).

Theorem 8 (Main Theorem). Let G be a feasible triangulated polygon with
internal spine string S;. G is a UBVG if and only if the following condition
holds (or its equivalent with the roles of A and B interchanged): between every
special needs pair (C;,C;), there is either at least one wildcard A-clump that
is the singleton clump N or at least one wildcard B-clump with two or more
terms, namely NEBNg,NgBNE, or Ng"".

Section 4 outlines the sufficiency proof and layout algorithm for graphs sat-
isfying the conditions of Thm. 8.

4 Sufficiency and the Layout Algorithm

In this section we outline an efficient algorithm that accepts as input any feasible
spine string whose internal spine string has at least two non-wildcard clumps and
satisfies Thm. 8, and that produces as output a set of coordinate pairs that are
the left endpoints of a corresponding UBV layout. We assume for simplicity
that the legs of the caterpillar are not subdivided. The more general case in
which the internal spine string satisfies the remaining conditions in Thm. 8, and
the caterpillar legs may be subdivided departs only slightly from the upcoming
treatment: complete details are included in [4]. The proof of the sufficiency of
Thm. 8 contains three main components: (a) parsing and labeling the clumps
of St in accordance with Thm. 6, which, under the conditions of Thm. 8, leads
in a natural way to (b) a description of a UBV layout algorithm, and finally
(c) verification that the resulting UBV layout corresponds to the original input
spine string. We outline these three ideas next.
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Fig. 2. (a) ForcedMaz — ForcedMaz (b) MinOrDecrease — MaxOrDecrease.

Parsing and Labeling the Internal Spine String. We begin by parsing
the internal spine string S into a sequence of alternating A- and B-clumps and
assigning class labels to the clumps as described in Thm. 6. Denote the resulting
sequence by C(Sy) (for clumped spine string). The conditions in Thm. 8 guide
the layout of the bars corresponding to G one clump at a time in between and
including special needs pairs of clumps. The layout between successive pairs of
non-wildcard clumps that are not special needs pairs is simpler to accomplish
(see Fig. 2(b)). All layouts between successive non-wildcard clumps are captured
in a set of clump labelers: we represent a clump labeler between each pair of
successive non-wildcard clumps as a directed graph, where each node is labeled
by the name of a clump and each directed edge is labeled with either I (for
increase) or D (for decrease). Fig. 2 shows two of the 36 possible clump labelers.
Let S be a substring of C'(S7) that begins and ends on non-wildcard clumps and
has only wildcard clumps in between. Feed string S one clump at a time from left
to right into the appropriate clump labeler. After traversing the clump labeler,
each clump in S is marked with exactly one of Max, Min, Increase or Decrease.
A trace of S = N}‘OOANAANE‘NBABNABNBAA fed through the clump labeler
in Fig. 2(a) is shown in Table 1.

After the entire string C(S7) has visited the appropriate clump labelers, all
clumps have been marked with one of Mazx, Min, Increase, and Decrease so that

Table 1. Trace for S = NA°ANsAN3Np ABN4BNpAA using Fig. 2(a).

Current In Next Exit Next Clump
Clump Node Clump|Direction Node Label

1 NAUUANAAN;‘; ForcedMax Ng D Ss Max
2 Ng Ss A D NTL or N% AN |Decrease
3 A N or N;AN%L| B D S Decrease
4 B Ss Na I Na Min
5 Na Na BNp I Wildg Increase
6 BNg Wildg AA 1 ForcedMax Increase
7 AA ForcedMax D Mazx
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the clumped spine string is an alternation of Maxz, Decrease®, Min, Increase’, or
Min, Increase’, Maz, Decrease’, or simply Increase’ or Decrease’, where 1,7 > 0.
With this information in hand, the left endpoint coordinates of the bars corre-
sponding to each clump are computed. We make use of Thm. 8 to sketch the
UBYV layout algorithm.

UBV LAYOUT ALGORITHM
Input: A feasible internal spine string S; with at least two non-wildcard clumps
Output: A set of coordinate pairs, each of which represents the left endpoint of
a unit bar
Initialization: coordinatePairs= @; input clump labelers

Step 1: Relabel Sy as C(S) and extract the sequence of non-wildcard clumps
Ci,...,Cy.

Step 2: for i =1tou—1do

follow the clump labeler from C; to Cjy1; mark each clump including and

between C; and C;41 with one of Max, Min, Increase, or Decrease.

Step 3: Compute left endpoints of coordinates of bars before and during each
direction change and store in coordinatePairs; return coordinatePairs.

Coordinates of Bars. Suppose C(Sy) contains a total of ¢ clumps and let k =
min{ﬁ, %} We construct a generic increasing sequence of wildcard clumps,
where the left endpoint coordinates of the associated bars are each a function
of k; the construction can then be modified to accommodate any increasing
sequence of (not necessarily wildcard) clumps and subsequently translated to
any location in the plane. We then construct the layout of clump NaAN4 AN 4;
any Maz that is not of the form S4 can be modified from the latter construction.
The layouts for a generic decreasing sequence and any Min not of the form
Sp are accomplished by laying out the twin of the previous two constructions.
The constructions lend themselves to interlocking any combination of sequences.
Thus, the locations of bars in each clump are computed in the algorithm after
the assignments of Mazx, Min, Increase, and Decrease to all of the clumps in
C(Sr). The parameter k is chosen to guarantee sufficient room to lay out the
bars corresponding to the legs of the caterpillar.

Generic Increasing Sequence of Clumps. Any increasing sequence of clumps
consists of (a) an alternation of elements from S4 and Sp, (b) an alternation of
elements from MinOrlncrease and MazOriIncrease, (c) the same as (a) with one
element from MinOrIncrease or MaxOrIncrease in the interior of the sequence,
(d) the same as (b) with one singleton clump in the interior of the sequence,
(e) an alternation of elements from MinOrlncrease and S4, (f) an alternation
of elements from MazOriIncrease and Sp, or finally (g) any combination of con-
catenations of (a)-(f). The constructions of the layouts in (a)-(f) are similar, and
can all be modified from alternations of No4AN4 and NgBNpg laid out as an
increasing sequence; the modifications consist of adding or removing bars to each
clump (left to right) and translating subsets of the bars as required to maintain
or create the needed visibilities. As such, for this note, we illustrate the layout
for alternations of Na4AN4 and NgBNp in an increasing sequence.
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The left endpoints of the bars for such a sequence of m clumps are given by
the union of aBars = {(|4] + (|4] + (i mod 3))k, i) : i=0,1,...,3m — 1},
bBars = {(| 4]+ 1+ (4] =3+ (i mod 3))k,i—3):i=0,1,...,3m—1}, cBars
={[Z] + (%] + (i +1 mod 3)k,i+6):i=0,3,...,3m — 3}, and dBars
{41+ ([H] -3+ (i+1 mod 3)k,i—7):i=0,3,...,3m — 3}, where
|z] denotes the floor of x.

By construction, cs; is flush with as; and is visible only to as; and as;41;
similarly, ds; is flush with b3; 41 and is visible only to bs; and bs;41.

Generic Max. Any clump that is not of the form S4 and that is to be
laid out as a Maxz can be modified from Ng4ANAAN4 € ForcedMazr and then
translated to any location in the plane. The following set of left endpoints,
each of which is a function of k, represents such a Maz: mazBars = {(1 —
k,—1),(0,0),(k,1),(2k,2),(1 + 3%, 3),(1 + k,4),(2 — 4k, 1),(k, 5),(1 4+ 2k, 6) }. Note
that there is room on the left side to attach an incoming increasing sequence
and room on the right side to attach an outgoing decreasing sequence.

Singleton Min. Finally, at times the singleton Sp must be laid out as a Min
and the singleton S4 must be laid out as a Maz (see Thm. 6 and Thm. 8). We give
a generic construction, parameterized by k, for the layout of NAAN4ANASpN4
SpNAAN AN 4, which shows the layout of Sp as a Min in between two Forced-
Mazes (note the occurrence of N4 contiguous with Sp). Let singetonMin =
{(2-2k,0),(1 —k,1),(3—3k,1),(0,2), (4 — 4k, 2), (k, 3), (2 — 4k, 3), (4 — Bk, 3),
(2k,4), (3 — 8k,4), (4 — 6k,4), (1 + 3k,5), (3 —T7k,5), (1 + k,6), (3 — 5k,6), (k,7),
(14 2k,7),(3—6Kk,7),(4—5k,7)}. Any layout that requires an Sp to be used
as a Min can be modified from this construction; similarly, the twin gives the
construction for laying out S4 as a Max.

Example. Fig. 3 illustrates the ideas from this abstract by showing a UBV
layout for a triangulated polygon with 67 vertices whose spine string is BNp
(NAANsNBNp)?NA4ANsNgBNpNAABABNsANAANANBABNANgNAA
NAANANBNsNpABN 4.

Proving the sufficiency of Thm. 8 is equivalent to proving the correctness of
the UBV Layout Algorithm. It is easy to see that the UBV Layout algorithm
takes O(n)-time, where n is the length of the input spine string.

- Sg=Min

— ForcedMax

Fig. 3. UBV layout of a triangulated polygon with 67 vertices.
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We conclude by noting that these techniques should also be useful for charac-

terizing outerplanar near-triangulations (not 2-connected), near-triangulations
(not outerplanar), and outerplanar near-quadrangulations. Other questions of
interest include determining the computational complexity of UBVG testing,
classification results for layouts in which bars are permitted to have two or more
distinct lengths [2], and layouts in which visibility is permitted to extend past a
fixed number of obstructing bars [3].
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Abstract. We study straight-line drawings of graphs with few segments
and few slopes. Optimal results are obtained for all trees. Tight bounds
are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove
that every 3-connected plane graph on n vertices has a plane drawing
with at most 5n/2 segments and at most 2n slopes, and that every cubic
3-connected plane graph has a plane drawing with three slopes (and three
bends on the outerface). Drawings of non-planar graphs with few slopes
are also considered. For example, it is proved that graphs of bounded
degree and bounded treewidth have drawings with O(logn) slopes.

1 Introduction

A common requirement for an aesthetically pleasing drawing of graph is that
the edges are straight. This paper studies the following additional requirements
of straight-line graph drawings:

1. minimise the number of segments in the drawing
2. minimise the number of distinct edge slopes in the drawing

First we formalise these notions. Consider a mapping of the vertices of a
graph to distinct points in the plane. Now represent each edge by the closed
line segment between its endpoints. Such a mapping is a (straight-line) drawing
if each edge does not intersect any vertex, except for its own endpoints. By a
segment in a drawing, we mean a maximal set of edges that form a line segment.
The slope of a line L is the angle swept from the X-axis in an anticlockwise
direction to L (and is thus in [0,7)). The slope of an edge or segment is the
slope of the line that extends it. A crossing in a drawing is a pair of edges that
intersect at some point other than a common endpoint. A drawing is plane if
it has no crossings. A plane graph is a planar graph with a fixed combinatorial
embedding and a specified outerface. We emphasise that a plane drawing of a
plane graph must preserve the embedding and outerface. That every plane graph
has a plane drawing is a classical result independently due to Wagner and Fary.
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NSERC and COMBSTRU.
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It is easily seen that a graph has a (plane) drawing on two slopes if and
only if it has a (plane) drawing on any two slopes [3]. Garg and Tamassia [§]
proved that it is NP-complete to decide whether a graph has a rectilinear planar
drawing (that is, with vertical and horizontal edges). Thus it is N'P-complete to
decide whether a graph has a plane drawing with two slopes.

Our results include lower and upper bounds on the minimum number of
segments and slopes in plane drawings of graphs, as summarised in Table 1. Due
to space limitations, a number of auxiliary results and most proofs are omitted
from this paper; see [3] for all the details. We refer the reader to the survey of
Bodlaender [1] for the definition of treewidth, pathwidth, and k-tree.

First observe that the minimum number of slopes in a drawing of (plane)
graph G is at most the minimum number of segments in a drawing of G. Upper
bounds for plane graphs are stronger than for planar graphs, since for planar
graphs one has the freedom to choose the embedding and outerface. On the other
hand, lower bounds for planar graphs are stronger than for plane graphs. For
example, consider the n-vertex planar triangulation illustrated in Figure 1. It
has at least n + 2 slopes in every plane drawing. Now fix the outerface to that
illustrated in (a). Then there are at least 2n — 2 slopes in every plane drawing.
However, using the embedding shown in (b), there is a plane drawing with only
[3n/2] slopes.

Section 2 studies plane drawings of 3-connected plane and planar graphs. In
the case of slope-minimisation for plane graphs we obtain a bound that is tight in
the worst case. However, our lower bound examples have linear maximum degree.
In Section 3 we (drastically) improve this result in the case of cubic graphs, by
proving that every 3-connected plane cubic graph has a plane drawing with
three slopes, except for three edges on the outerface that have their own slope.
As a corollary we prove that every 3-connected plane cubic graph has a plane
‘drawing’ with three slopes and three bends on the outerface. Section 4 considers
non-plane drawings of arbitrary graphs with few slopes. For example, we prove
that every graph with bounded degree and bounded treewidth has a drawing
with O(log n) slopes.

Before continuing, we outline some related research from the literature.

— Eppstein [6] characterised those planar graphs that have plane drawings with
a segment between every pair of vertices. In some sense, these are the plane
drawings with the least number of slopes.

— The geometric thickness of a graph G is the minimum % such that G has a
drawing in which every edge receives one of k colours, and monochromatic
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Table 1. Summary of results (ignoring additive constants). Here n is the number of
vertices, 1 is the number of vertices of odd degree, and A is the maximum degree. The
lower bounds are existential, except for trees, for which the lower bounds are universal.

graph family # segments # slopes

> < > <
trees n/2 n/2 [A/2] [A/2]
maximal outerplanar n n - n
plane 2-trees 2n 2n 2n 2n
plane 3-trees 2n 2n 2n 2n
plane 2-connected 5n/2 - 2n -
planar 2-connected 2n - n -
plane 3-connected 2n 5n/2 2n 2n
planar 3-connected 2n 5n/2 n 2n
plane 3-connected cubic - n—+2 3 3

edges do not cross (see [5,7]). In any drawing, edges with the same slope
do not cross. Thus the geometric thickness of G is a lower bound on the
minimum number of slopes in a drawing of G.

— A drawing is convez if all the vertices are on the convex hull, and no three
vertices are collinear. The book thickness of a graph (also called pagenumber
and stacknumber) is the same as geometric thickness except that the drawing
must be convex (see [4] for numerous references). Since edges with the same
slope do not cross, the book thickness of G is a lower bound on the minimum
number of slopes in a convex drawing of G.

— Plane orthogonal drawings with two slopes (and few bends) have been exten-
sively studied (see [12]). For example, Ungar [14] proved that every cyclically
4-edge-connected plane cubic graph has a plane drawing with two slopes
and four bends on the outerface. Thus our above-mentioned result for 3-
connected plane cubic graphs nicely complements this theorem of Ungar.

— A drawing of the complete graph K, is defined by a set of n points with no
three collinear. Jamison [9] proved that the minimum number of slopes in a
drawing of K, is n. The upper bound is obtained by positioning the vertices
of K, on the vertices of a regular n-gon, as illustrated in Figure 2(a) and (b).
In fact, Jamison [9] proved that every drawing of K, with exactly n slopes is
affinely equivalent to a regular n-gon. In [3] we study drawings of complete
multi-partite graphs. For example, we prove that the minimum number of
slopes in a convex drawing of K, ,, is n, as illustrated in Figure 2(c).

— Wade and Chu [15] recognised that drawing arbitrary graphs with few slopes
is an interesting problem. They defined the slope-number of a graph G to be
the minimum number of slopes in a drawing of G. However, the results of
Wade and Chu only pertain to K,. Seemingly unaware of the earlier work
of Scott and Jamison, they rediscovered that the minimum number of slopes
in a drawing of K, is n. In addition, they presented an algorithm to test if
K, can be drawn using a given set of slopes.
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(a) K,, (n even) (b) K,, (n odd) (¢) Knn

’

Fig. 2. Drawings of K,, and K, 6, with n slopes.

2 3-Connected Plane Graphs

Theorem 1. Fvery 3-connected plane graph with n vertices has a plane drawing
with at most 5n/2 — 3 segments and at most 2n — 10 slopes.

The proof of Theorem 1 is based on the canonical ordering of Kant [10].
Let G be a 3-connected plane graph. Kant [10] proved that G has a canonical
ordering defined as follows. Let 0 = (V4, V4, ..., Vk) be an ordered partition of
V(G). That is, Vi UVa U---U Vg = V(G) and V; N V; = 0 for all i # j. Define
G; to be the plane subgraph of G induced by Vi UVo U --- U V;. Let C; be the
subgraph of G induced by the edges on the boundary of the outerface of Gj.
Then o is a canonical ordering of G if:

— Vi = {v1,v2}, where v; and vy lie on the outerface and vivs € E(G).

— Vi = {v,}, where v, lies on the outerface, v1v,, € E(G), and v,, # vs.
Each C; (i > 1) is a cycle containing vy vs.

— Each G is biconnected and internally 3-connected; that is, removing any
two interior vertices of GG; does not disconnect it.

For each ¢ € {2,3,..., K — 1}, one of the following condition holds:

1. V; = {v;} where v; is a vertex of C; with at least three neighbours in
C;—1, and v; has at least one neighbour in G \ G;.

2. Vi = (s1,82,..-,8¢,0i), £ > 0, is a path in C;, where each vertex in V;
has at least one neighbour in G \ G;. Furthermore, the first and the last
vertex in V; have one neighbour in C;_1, and these are the only two edges
between V; and G;_1.

The vertex v; is called the representative vertex of V;, 2 < ¢ < K. The vertices
{s1,82,...,8¢} CV; are called division vertices. Let S C V(G) be the set of all
division vertices. A vertex u is a successor of a vertex w € V; if uw is an edge
and u € G\ Gy, and u is a predecessor of w € V; if ww is an edge and u € V; for
some j < 7. We also say that v is a predecessor of V;. Let P(V;) = (p1,p2,---,Dq)
be the set of predecessors of V; ordered by the path from vy to ve in Cj—1 \ v1ve.
Vertex p; and p, are the left and right predecessors of V; respectively, and vertices
D2,D3, - ..pg—1 are called middle predecessors of V;.
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Theorem 2. Let o be a canonical ordering of an m-vertex m-edge plane 3-
connected graph G. Define S as above. Then G has a plane drawing D with at
most m—max {[n/2] — |S| — 3, |S|} segments, and at most m—max{n—|S|—4,
|S|} slopes.

Proof Construction. For every vertex v, let X (v) and Y (v) denote the x and
y coordinates of v, respectively. If a vertex v has a neighbour w, such that
X(w) < X(v) and Y(w) < Y (v), then we say vw is a left edge of v. Similarly, if
v has a neighbour w, such that X (w) > X (v) and Y (w) < Y (v), then we say vw
is a right edge of v. If vw is an edge such that X (v) = X (w) and Y (v) < Y (w),
than we say vw is a wertical edge above v and below w.

We define D inductively on o = (V4,Va,...,Vk) as follows. Let D; denote
a drawing of G;. A vertex v is a peak in D;, if each neighbour w of v has
Y(w) < Y(v) in D;. We say that a point p in the plane is visible in D; from
vertex v € D, if the segment 7T does not intersect D; except at v. At the "
induction step, 2 < ¢ < K, D; will satisfy the following invariants:

Invariant 1: C; \ vive is strictly X-monotone; that is, the path from vy to ve
in C; \ v1ve has (strictly) increasing X-coordinates.

Invariant 2: Every peak in D;, i < K, has a successor.

Invariant 3: Every representative vertex v; € V;, 2 < j < i has a left and a
right edge. Moreover, if |P(V;)| > 3 then there is a vertical edge below v;.

Invariant 4: D; has no edge crossings.

For the base case i = 2, position the vertices v1, vo and vz at the corners of
an equilateral triangle so that X (v1) < X(vs) < X(v2) and Y(v1) < Y(v2) <
Y (v3). Draw the division vertices of V2 on the segment vy vs. This drawing of Da
satisfies all four invariants. Now suppose that we have a drawing of D;_; that
satisfies the invariants. There are two cases to consider in the construction of
D;, corresponding to the two cases in the definition of the canonical ordering.

Case 1. |P(V;)| > 3: If v; has a middle predecessor v; with |P(V;)| > 3, let
w = v;. Otherwise let w be any middle predecessor of v;. Let L be the open
ray {(X(w),y) : y > Y(w)}. By invariant 1 for D;_4, there is a point in L that
is visible in D;_; from every predecessor of v;. Represent v; by such a point,
and draw segments between v; and each of its predecessors. That the resulting
drawing D; satisfies the four invariants can be immediately verified.

Case 2. |P(V;)| = 2: Suppose that P(V;) = {w,u}, where w and u are the
left and the right predecessors of V;, respectively. Suppose Y (w) > Y (u). (The
other case is symmetric.) Let P be the path between w and u on C;_1 \ vyvs.
As illustrated in Figure 3, let A; be the region {(z,y) : y > Y (w) and X (w) <
x < X(u)}. Assume on the contrary that D;_; N A; # (. By the monotonicity of
D;_1, PNA; #0. Let p € PNA,;. Since Y (p) > Y (w) > Y (u), P is X-monotone
and thus has a vertex between w and u that is a peak. By the definition of the
canonical ordering o, the addition of V; creates a face of G, since V; is added
in the outerface of GG;_1. Therefore, each vertex between w and u on P has no
successor, and is thus not a peak in D;_; by invariant 2, which is the desired
contradiction. Therefore D;_; N A; = 0.
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Fig. 3. Illustration for Case 2.

Let L be the open ray {(X (u),y) : y > Y (u)}. If w ¢ S, then by invariant 3,
w has a left and a right edge in D;_1. Let ¢ be the point of intersection between
L and the line extending the left edge at w. If w € S, then let ¢ be any point
in A; on L. By invariant 1, there is a point ¢ € {¢,w} on we such that ¢’ is
visible in D;_; from u. Represent v; by ¢/, and draw two segments v;u and v;w.
These two segments do not intersect any part of D;_; (and neither is horizontal).
Represent any division vertices in V; by arbitrary points on the open segment
wv; N A;. Therefore, in the resulting drawing D;, there are no crossings and the
remaining three invariants are maintained. This completes the construction of
D. The analysis for the number of segments and slopes is in [3]. O

Proof (of Theorem 1). Whenever a set V; is added to G;_1, at least |V;] — 1
edges that are not in G can be added so that the resulting graph is planar. Thus
|S| =3>",(IVi] = 1) < 3n — 6 — m. Hence Theorem 2 implies that G has a plane
drawing with at most m — n/2 + |S| + 3 < 5n/2 — 3 segments, and at most
m—n+|S| —4 < 2n — 10 slopes. a

Since deleting an edge from a drawing cannot increase the number of slopes,
and every plane graph can be triangulated to a 3-connected plane graph, Theo-
rem 1 implies that every n-vertex plane graph has a plane drawing with at most
2n — 10 slopes. Note that we cannot draw the same conclusion for segments,
since deleting an edge in a drawing may increase the number of segments. The
famous ‘nested-triangles’ planar graph leads to the following lower bound.

Lemma 1. For all n = 0 (mod 3), there is an n-vertex planar triangulation
with maximum degree six that has at least 2n—6 segments in every plane drawing,
regardless of the choice of outerface.

3 Cubic 3-Connected Plane Graphs

A graph in which every vertex has degree three is cubic.

Theorem 3. Fvery cubic 3-connected plane graph has a plane drawing in which
every edge has slope in {w/4,7/2,3w/4}, except for three edges on the outerface.
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Proof. Let o = (V1,Va,...,Vk) be a canonical ordering of G. We re-use the
notation from Theorem 2, except that a representative vertex of V; may be the
first or last vertex in V;. Since G is cubic, |P(V;)| = 2 forall 1 < ¢ < K, and every
vertex not in {v1,vs, v, } has exactly one successor. We proceed by induction on
1 with the hypothesis that G; has a plane drawing D; that satisfies:

Invariant 1: C;\viv2 is X -monotone; that is, the path from vy to vy in C;\v1v9
has non-decreasing X-coordinates.

Invariant 2: Every peak in D;, i < K, has a successor.

Invariant 3: If there is a vertical edge above v in D;, then all the edges of G
that are incident to v are in Gj.

Invariant 4: D; has no edge crossings.

Let Dy be the drawing of G5 constructed as follows. Draw vvy horizon-
tally with X (v1) < X(v2). This accounts for one edge whose slope is not in
{n/4,7/2,3n/4}. Now draw vjvs with slope 7/4, and draw vpvs with slope
3m/4. Add any division vertices on the segment v1v3. Now v3 is the only peak
in Dy, and it has a successor by the definition of the canonical ordering. Thus
all the invariants are satisfied for the base case Ds.

Now suppose that 2 < ¢ < K and we have a drawing of D;_; that satisfies the
invariants. Suppose that P(V;) = {u,w}, where u and w are the left and the right
predecessors of V;, respectively. Without loss of generality, Y (w) < Y (u). Let
the representative vertex v; be last vertex in V;. Position v; at the intersection
of a vertical segment above w, and a segment of slope 7/4 from u, and add any
division vertices on wwy;, as illustrated in Figure 4(a). Note that there is no vertical
edge above w by invariant 3 for D,_;. (For the case in which Y (u) < Y'(w), we
take the representative vertex v; to be the first vertex in V;, and the edge wv;
has slope 37/4, as illustrated in Figure 4(b).)

Clearly the resulting drawing D; is X-monotone. Thus invariant 1 is main-
tained. The vertex v; is the only peak in D; that is not a peak in D;_;. Since v;
has a successor by the definition of the canonical ordering, invariant 2 is main-
tained. The vertical edge wv; satisfies invariant 3, since v; is the sole successor
of w. Thus invariant 3 is maintained. No vertex between v and w (on the path
from uw to w in C;_1 \ v1v2) is higher than the higher of w and w. Otherwise
there would be a peak, not equal to v,, with no successor, and thus violating
invariant 2 for D;_1. Thus the edges in D; \ D;_1 do not cross any edges in D;.
In particular, there is no edge ux in D;_; with slope /4 and Y (z) > Y (u). The
vertex v, can be easily added to the drawing to complete the construction. 0O

V; U

(a) N (b) ©

Fig. 4. Construction of a 3-slope drawing of a cubic 3-connected plane graph.
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It is easily seen that the bound of six on the number of slopes in Theorem 3
is optimal for any 3-connected cubic plane graph whose outerface is a triangle.
An easy variation on the algorithm in Theorem 3 gives:

Corollary 1. FEvery cubic 3-connected plane graph has a plane ‘drawing’ with
three slopes and three bends on the outerface.

4 Drawings of General Graphs with Few Slopes

This section is motivated by the following fundamental open problem: Is there
a function f such that every graph with maximum degree A has a drawing with
at most f(A) slopes? This is open even for A = 3. Note that:

— The best lower bound that we are aware of is A + 1 for the complete graph.

— There is no such function f for convex drawings. Malitz [11] proved that
there are A-regular n-vertex graphs with book thickness £2(v/An!/2-1/4).
Since book thickness is a lower bound on the number of slopes in a convex
drawing, every convex drawing of such a graph has 2(v/An'/2=1/4) slopes.

— An affirmative solution to this problem would imply that geometric thick-
ness is bounded by maximum degree, which is an open problem due to Epp-
stein [7]. Duncan et al. [5] recently proved that graphs with maximum degree
at most four have geometric thickness at most two.

Let H be a (host) graph. The vertices of H are called nodes. An H -partition
of a graph G is a function f : V(G) — V(H) such that for every edge vw € E(G)
we have f(v) = f(w) or f(v)f(w) € E(H). In the latter case, we say vw is mapped
to the edge f(v)f(w). The width of f is the maximum of |f~!(x)|, taken over
all nodes € V(H), where f~'(z) = {v € V(G) : f(v) = x}. In the following
result, we describe how to produce a drawing of a graph G given an H-partition
of G and a drawing D of H. The general approach is to scale D appropriately,
and then replace each node of H by a copy of the drawing of Kj on a regular
k-gon. The only difficulty is to scale D so that we obtain a valid drawing of G.

Lemma 2 ([3]). Let H be a graph admitting a drawing D with s distinct slopes
and ¢ distinct edge lengths. Let G be a graph admitting an H -partition of width k.
Then G has a drawing with kst(k — 1) + k + s slopes.

Lemma 2 suggests looking at host graphs that admit drawings with few slopes
and few edge lengths. Obviously a path has a drawing with one slope and one
edge length. Based on this idea, we prove that every graph with bandwidth b has
a drawing with at most %b(b—l— 1) + 1 slopes. Based on results from the literature
that bound bandwidth in terms of maximum degree A, we conclude:

— Every interval graph has a drawing with at most £A (A + 1) + 1 slopes.

— Every co-comparability graph (which includes the permutation graphs) has
a drawing with at most A (24 — 1) + 1 slopes.

— Every AT-free graph has a drawing with at most 2A (34 + 1) 4 1 slopes.
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Lemma 2 motivates the study of drawings of trees with few slopes and few
distinct edge lengths.

Lemma 3. FEvery tree T with pathwidth k > 1 has a plane drawing with
max{A(T) — 1,1} slopes and 2k — 1 distinct edge lengths.

Lemma 4 ([13]). Every tree T has a path P, called a “backbone”, such that
T\ V(P) has smaller pathwidth than T, and the endpoints of P are leaves of T

Proof (of Lemma 3). We refer to T as Tp. Let ng be the number of vertices in
To, and let Ag = A(Tp). The result holds trivially for Ag < 2. Now assume
that Ag > 3. Let S be the set of slopes S = {Z(1 + ﬁ) 0<i< Ay -2}
We proceed by induction on n with the hypothesis: “There is a real number
£ = {(ng, Ag), such that for every tree T with n < ng vertices, maximum degree
at most Ag, and pathwidth & > 1, and for every vertex r of T' with degree less
than Ag, T has a plane drawing D in which:

— ris at the top of D (that is, no point in D has greater Y-coordinate than r),

every edge of T has slope in 5,

— every edge of T has length in {£°, ¢!, ... =1} and

— if r is contained in some backbone of T', then every edge of T has length in
{00 0. p2k=2)

The result follows from the induction hypothesis, since we can take r to be
the endpoint of a backbone of Ty, in which case deg(r) = 1 < Ay, and thus every
edge of Ty has length in {0 ¢ ... ¢2k=2}

The base case with n = 1 is trivial. Now suppose that the hypothesis is true
for trees on less than n vertices, and we are given a tree T with n vertices and
pathwidth &, and r is a vertex of T with degree less than Ag.

If r is contained in some backbone B of T', then let P = B. Otherwise, let
P be a path from r to an endpoint of a backbone B of T. Note that P has at
least one edge. As illustrated in Figure 5, draw P horizontally with unit-length
edges. Every vertex in P has at most Ag — 2 neighbours in 7'\ V(P), since r has
degree less than Aj and the endpoints of a backbone are leaves. At each vertex
x € P, the children {yo,y1,...,ya,—3} of z are positioned below P and on the
unit-circle centred at x, so that each edge xy; has slope Z(1 +j/(A¢ —2)) € S.

Every connected component 7" of T\ V(P) is a tree rooted at some vertex
r’ adjacent to a vertex in P. Thus 7’ has already been positioned in the drawing
of T. If T is a single vertex, then we no longer need to consider this 7".

We consider two types of subtrees T’, depending on whether the pathwidth
of T" is less than k. Suppose that the pathwidth of T” is k (it cannot be more).
Then T' N B # () since B is a backbone of T'. Thus 7’ N B is a backbone of T’
containing r’. Thus we can apply the stronger induction hypothesis in this case.

Every T” has less vertices than T', and every r’ has degree less than A in T".
Thus by induction, every T” has a drawing with 7’ at the top, and every edge of
T’ has slope in S. Furthermore, if the pathwidth of T” is less than k, then every
edge of T' has length in {¢°, ¢!, ... ¢?:=3) Otherwise r’ is in a backbone of T",
and every edge of T has length in {£° ¢ ... ¢2F=2}
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Fig. 5. Drawing of T with few slopes and few edge lengths.

There exists a scale factor ¢ < 1, depending only on ny and Ay, so that
by scaling the drawings of every T” by ¢, the widths of the drawings are small
enough so that there is no crossings when the drawings are positioned with each
r’ at its already chosen location. (Note that £ is the same value at every level of
the induction.) Scaling preserves the slopes of the edges. An edge in any T” that
had length ¢¢ before scaling, now has length ¢+,

Case 1. r is contained in some backbone B of T: By construction, P = B.
So every T’ has pathwidth at most k — 1, and thus every edge of T’ has length
in {¢', 02 ... =2} All the other edges of T have unit-length. Thus we have a
plane drawing of T with edge lengths {£0, ¢!, ... ¢?*72} as claimed.

Case 2. r is not contained in any backbone of T: Every edge in every T has
length in {¢',¢2,...,¢2*=1}. All the other edges of T' have unit-length. Thus we
have a plane drawing of T with edge lengths {¢°, ¢!, ... ¢?*=1} as claimed. O

Theorem 4. Let G be a graph with n vertices, maximum degree A, and tree-
width k. Then G has a drawing with O(k®A*logn) slopes.

Proof. Ding and Oporowski [2] proved that for some tree T', G has a T-partition
of width at most max{24kA,1}. Let w = max{24kA, 1}. For each node x €
V(T), there are at most wA edges of G incident to vertices mapped to x. Hence
we can assume that 7 is a forest with maximum degree at most wA, as otherwise
there is an edge of T' with no edge of G mapped to it, in which case the edge of T’
can be deleted. Similarly, T" has at most n vertices. Now, T" has pathwidth at most
log(2n+1) (see [1]). By Lemma 3, T has a drawing with at most wA — 1 slopes
and at most 2log(2n+1)—1 distinct edge lengths. By Lemma 2, G has a drawing
in which the number of slopes is at most w(wA — 1)(2log(2n+ 1) — 1)(w — 1)+

(wA —1) +w € O(w3Alogn) C O(k3A*logn). O
Corollary 2. FEvery n-vertex graph with bounded degree and bounded treewidth
has a drawing with O(logn) slopes. a
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Abstract. A k-stack layout (respectively, k-queue layout) of a graph
consists of a total order of the vertices, and a partition of the edges into
k sets of non-crossing (non-nested) edges with respect to the vertex or-
dering. A k-track layout of a graph consists of a vertex k-colouring, and
a total order of each vertex colour class, such that between each pair
of colour classes no two edges cross. The stack-number (respectively,
queue-number, track-number) of a graph G, denoted by sn(G) (qn(G),
tn(G)), is the minimum k such that G has a k-stack (k-queue, k-track)
layout. This paper studies stack, queue, and track layouts of graph sub-
divisions. It is known that every graph has a 3-stack subdivision. The
best known upper bound on the number of division vertices per edge in a
3-stack subdivision of an n-vertex graph G is improved from O(logn) to
O(log min{sn(G),qn(G)}). This result reduces the question of whether
queue-number is bounded by stack-number to whether 3-stack graphs
have bounded queue number. It is proved that every graph has a 2-
queue subdivision, a 4-track subdivision, and a mixed 1-stack 1-queue
subdivision. All these values are optimal for every non-planar graph. In
addition, we characterise those graphs with k-stack, k-queue, and k-track
subdivisions, for all values of k. The number of division vertices per edge
in the case of 2-queue and 4-track subdivisions, namely O(log qn(G)), is
optimal to within a constant factor, for every graph G. Applications to
3D polyline grid drawings are presented. For example, it is proved that
every graph G has a 3D polyline grid drawing with the vertices on a
rectangular prism, and with O(log qn(G)) bends per edge.

1 Introduction

This paper studies stack, queue and track layouts of subdivisions of graphs. The
contributions of this paper are three-fold. First, we characterise those graphs
admitting k-stack, k-queue or k-track subdivisions, for all k. In addition, we
prove bounds on the number of division vertices per edge that are asymptoti-
cally tight in a number of cases. These results are presented in Section 3. Second,
we use these subdivision layouts to reduce two of the major open problems in
the theory of stack and queue layouts to certain special cases. These results,
along with relationships amongst various thickness parameters, are presented in

* Research supported by NSERC and COMBSTRU.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 133-143, 2004.
© Springer-Verlag Berlin Heidelberg 2004



134 Vida Dujmovié¢ and David R. Wood

Section 4. As the third contribution, we apply our results concerning track lay-
outs of subdivisions to the study of three-dimensional polyline graph drawings.
These results are presented in Section 5. Due to space limitations, many proofs
and some references are omitted — see [7] for all the details. All logarithms are
base 2 unless stated otherwise.

2 Preliminaries

We consider undirected, finite, and simple graphs G with vertex set V(G) and
edge set E(G). The number of vertices and edges of G are respectively denoted
by n = |V(G)| and m = |E(G)|. A subdivision of G is a graph obtained from
G by replacing each edge vw € FE(G) by a path with at least one edge whose
endpoints are v and w. Internal vertices on this path are called division vertices.
Let G’ be the subdivision of G with one division vertex per edge.

A graph parameter is a function « that assigns to every graph G a non-
negative integer a(G). Let G be a class of graphs. By a(G) we denote the function
f:N =N, where f(n) is the maximum of a(G), taken over all n-vertex graphs
G € G. We say G has bounded « if a(G) € O(1). A graph parameter « is bounded
by a graph parameter § (for some class G), if there exists a binding function g
such that a(G) < g(B(G)) for every graph G (in G). If « is bounded by g (in G)
and S is bounded by « (in G) then « and (3 are tied (in G).

A wvertex ordering of a graph G is a total order o of the vertex set V(G). Let

L(e) and R(e) denote the endpoints of each edge e € E(G) such that L(e) <

R(e). Consider two edges e, f € E(G) with no common endpoint such that

L(e) <, L(f). If L(e) < L(f) <, R(e) <o R(f) then e and f cross, and if
L(e) <

e L(f) <o R(f) <g R(e) then e and f nest. A stack (respectively, queue)
is a set of edges E' C F(G) such that no two edges in E’ cross (nest). Observe
that when traversing the vertex ordering, edges in a stack (queue) appear in
LIFO (FIFO) order — hence the names. A k-stack (queue) layout of G consists
of a vertex ordering o of G and a partition {Ey : 1 < ¢ < k} of F(G), such that
each Fy is a stack (queue) in o. A graph admitting a k-stack (queue) layout
is called a k-stack (queue) graph. The stack-number of a graph G, denoted by
sn(@G), is the minimum k& such that G is a k-stack graph. The queue-number of a
graph G, denoted by qn(G), is the minimum k such that G is a k-queue graph.
For a summary of results regarding stack and queue layouts see [8].

A wvertex t-colouring of a graph G is a partition {V; : 1 < i < t} of V(G)
such that for every edge vw € E(G), if v € V; and w € V; then ¢ # j. Suppose
that <; is a total order of each colour class V;. Then the pair (V;, <;) is called
a track, and {(V;,<;) : 1 < i < t} is a t-track assignment of G. We denote
track assignments by {V; : 1 <14 < ¢} when the ordering on each colour class is
implicit. An X-crossing in a track assignment consists of two edges vw and zy
such that v <; = and y <; w, for distinct colours ¢ and j. A (k,t)-track layout
of G consists of a t-track assignment of G and a (non-proper) edge k-colouring
of G with no monochromatic X-crossing. (1,t)-track layouts (that is, with no
X-crossing) are of particular interest due to applications in three-dimensional
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graph drawing (see Section 5). A (1,t)-track layout is called a t-track layout. A
graph admitting a ¢-track layout is called a t-track graph. The track-number of
G, denoted by tn(G), is the minimum ¢ such that G is a t-track graph. For a
summary of bounds on the track-number see [6].

3 Layouts of Subdivisions

Stack and queue layouts of graph subdivisions are a central topic of this paper.
That every graph has a 3-stack subdivision has been observed by many authors
[10,17,11,1]. Note that 3-stack layouts are important in complexity theory, and
3-stack layouts of knots and links, so called Dynnikov digrams, have also recently
been considered (see the references in [7]). It is interesting to determine the
minimum number of division vertices in a 3-stack subdivision of a given graph.
The previously best known bounds are due to Enomoto and Miyauchi [10], who
proved that every graph has a 3-stack subdivision with O(logn) division vertices
per edge. Moreover, Enomoto et al. [12] proved that this bound is tight up
to a constant factor for K, (and some slightly more general families). Thus
Enomoto et al. [12] claimed that the O(logn) upper bound is ‘essentially best
possible’. We prove the following refinement of the upper bound of Enomoto and
Miyauchi [10], in which the number of division vertices per edge depends on the
stack-number or queue-number of the given graph. Moreover, we characterise
those graphs admitting k-stack subdivisions for all k.

Theorem 1. (a) Every graph G has a 3-stack subdivision with
O(log min{sn(G),qn(G)}) division vertices per edge.

(b) A graph has a 2-stack subdivision if and only if it is planar. Every planar
graph has a 2-stack subdivision with at most one division vertexr per edge.

(c) A graph has a 1-stack subdivision if and only if it is outerplanar. Every
outerplanar graph has a 1-stack layout (with no division vertices).

Proof Outline. Let H be the subdivision of G with 2[logsn(G)] — 2 division
vertices per edge. As illustrated in Figure 1, we now prove that H has a 3-stack
subdivision. Consider a sn(G)-stack layout of G. Let T be the complete binary
tree of height [logsn(G)]. Consider each stack of G to correspond to a distinct
leaf of T'. Now define a mapping of the vertices of H into the nodes of T' such that
adjacent vertices of H are mapped to adjacent nodes of T' or to the same leaf
of T'. In particular, the original vertices of G are mapped to the root, and each
subdivided edge e is mapped to a walk from the root to the leaf corresponding
to the stack containing e, and then back to the root. A depth-first ordering of
V(T) gives a 3-stack layout of T in which edges with a common endpoint are in
distinct stacks. From this layout of T' we can obtain the desired 3-stack layout of
H by appropriately ordering the vertices of H that are mapped to a single node
of T', and by assigning each edge e of H to the same stack as the edge of T" that
e is mapped to. The proof that G has a 3-stack subdivision with O(logqn(G))
division vertices per edge is similar. Parts (b) and (c) are easy extensions of
known results. O
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Fig. 1. 3-stack subdivision of a 16-stack graph; one edge is indicated.

Since sn(G) and qn(G) are both no more than n, our bound in Theorem 1(a)
is at most the O(log n) bound of Enomoto and Miyauchi [10] (ignoring constant
factors). We prove the following analogous result for queue layouts, in which,
additionally, the number of division vertices per edge is optimal.

Theorem 2. (a) Every graph G has a 2-queue subdivision with O(logqn(G))
division wvertices per edge, and every 2-queue subdivision of G has an edge
with 2(logqn(G)) division vertices per edge.

(b) A graph has a 1-queue subdivision if and only if it is planar.

Thus, at least for the representation of graph subdivisions, two queues suffice
rather than three stacks. In this sense, queues are more powerful than stacks.
We have the following analogous result for track layouts.

Theorem 3. (a) Every graph G has a 4-track subdivision with O(logqn(G))
division vertices per edge, and every 4-track subdivision of G has an edge
with 2(logqn(G)) division vertices.

(b) A graph has a 3-track subdivision if and only if it is planar.

(¢) A graph has a 2-track subdivision if and only if it is a forest of caterpillars.

A trade-off between the number of stacks and the number of division vertices
in 3-stack subdivisions was observed by Enomoto and Miyauchi [11], who proved
that for all s > 3, every graph has an s-stack subdivision with O(log,_; n)
division vertices per edge. Again Enomoto et al. [12] proved that this bound is
tight up to a constant factor for K,. As described in Table 1, our results for
3-stack subdivisions, 2-queue subdivisions, and 4-track subdivisions generalise
in a similar fashion to the result of Enomoto and Miyauchi [11]. Moreover, we

Fig. 2. A 2-queue subdivision of an 8-queue graph.
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Table 1. Layouts of a subdivision of a graph G.

graph type of layout # division vertices per edge
arbitrary s-stack (s > 3) O(log,_,sn(G))
arbitrary s-stack (s > 3) O(log,_, qn(Q))
planar 2-stack 1
arbitrary g-queue (g >2) O(log, an(G))
planar 1-queue n—2
arbitrary  s-stack g-queue (s>1,¢>1) O(log544)q SN (G))
arbitrary  s-stack g-queue (s>1,¢>1) O(10g (s4q)q an(G))
planar 1-stack 1-queue 4
arbitrary  (d+ 1,2)-track (d > 2) O(log,qn(Q))
arbitrary (d,3)-track (d > 2) O(log,an(Q))
arbitrary (d + 2)-track (d > 2) O(log,qn(Q))
planar 3-track n—2

generalise stack and queue layouts through the notion of a mized layout. Here
each edge is assigned to a stack or to a queue, defined with respect to a common
vertex ordering. We speak of an s-stack q-queue mized layout and an s-stack q-
queue graph. Part of the motivation for studying mixed stack and queue layouts
is that they model the double-ended queue (dequeue) data structure, since a
dequeue may be simulated by two stacks and one queue.

4 Relationships

The following lemma highlights the fundamental relationship between track lay-
outs, and queue and stack layouts. Its proof follows immediately from the defi-
nitions, and is illustrated in Figure 3 for k = 1.

Lemma 1. Let {A, B} be a track assignment of a bipartite graph G. Then the
following are equivalent:

(a) {A, B} admits a (k,2)-track layout of G,

(b) the vertex ordering with A followed by B admits a k-queue layout of G, and

(c) the vertex ordering with A followed by the reversal of B admits a k-stack
layout of G.

The relationship between queue and track layouts in Lemma 1 was extended
by Dujmovié et al. [6] who proved that queue-number and track-number are
tied. Despite a wealth of research on stack and queue layouts, the following
fundamental questions of Heath et al. [15] remain unanswered!.

! Heath et al. [15], in their study of the relationship between stack- and queue-number,
restricted themselves to linear binding functions. For example, for stack-number to
be bounded by queue-number meant that sn(G) € O(qn(G)) for every graph G.
Thus Heath et al. [15] considered Open Problem 1 to be solved in the negative by
displaying an infinite class of graphs G, such that sn(G) € 2(3"(9). In our more
liberal definition of a binding function, this result merely provides a lower bound on
a potential binding function.
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(a) (b) (c)

Fig. 3. Layouts of a caterpillar: (a) 2-track, (b) 1-queue, (c) 1-stack.

Open Problem 1. [15] Is stack-number bounded by queue-number?
Open Problem 2. [15] Is queue-number bounded by stack-number?

Suppose that stack-number is bounded by queue-number, but queue-number
is not bounded by stack-number. This would happen, for example, if there exists
a constant s such that for every ¢ there exists an s-stack graph with no g-queue
layout. Then we would consider stacks to be more ‘powerful’ than queues. In
the remainder of this section we show that the study of stack, queue and track
layouts of subdivisions provides insights into these open problems.

Let a be a graph parameter. Let sub-a be the graph parameter defined by
sub-a(G) = a(G’) for every graph G. We say « is topological if a and sub-a are
tied. For example, chromatic number is not topological since G’ is bipartite. On
the other hand tree-width is topological. In fact, the tree-width of G equals the
tree-width of every subdivision of G. Similarly crossing number is topological.

The thickness of a graph G, denoted by 6(G), is the minimum number of sub-
graphs in a partition of F(G) into planar subgraphs. Thickness is not topological
since it is easily seen that (G’) < 2. The geometric thickness of a graph G, de-
noted by 6(G), is the minimum number of colours such that G can be drawn
in the plane with edges as coloured straight-line segments, such that monochro-
matic edges do not cross. Eppstein [13] proved that §(G’) < 2 for every graph G.
Thus geometric thickness is not topological.

Stack-number (or book-thickness) is equivalent to geometric thickness with
the additional requirement that the vertices are in convex position. Thus

V graph G, 0(G) < 0(G) < sn(G) . (1)

Blankenship and Oporowski [1], Enomoto and Miyauchi [10], and Eppstein [13]
independently proved that sn(K,,) is bounded by sn(K7,). The proofs by Blanken-
ship and Oporowski [1] and Eppstein [13] use essentially the same Ramsey-
theoretic argument. Since §(K,) = 2, Eppstein [13] observed that stack-number
is not bounded by geometric thickness. Using a more elaborate Ramsey-theoretic
argument, Eppstein [13] proved that geometric thickness is not bounded by thick-
ness. In particular, for every t there exists a graph with thickness three and
geometric thickness at least t. Blankenship and Oporowski [1] conjecture that
their result for complete graphs extends to all graphs.

Conjecture 1. [1] There exists a function f, such that for every graph G and
every subdivision H of G with at most one division vertex per edge, we have

sn(G) < f(sn(H)).

We now prove that Conjecture 1 is related to Open Problem 1.
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Theorem 4. If Conjecture 1 is true then stack-number is topological, and stack-
number is bounded by queue-number.

Proof Outline. Conjecture 1 would imply that sn is bounded by sub-sn, which
would imply that stack-number is topological since it is easily seen that sn(G’) <
sn(G) + 1. It follows from Conjecture 1 that there exists a function f* such that
for any s-stack subdivision of a graph G with k division vertices per edge, G has a
f*(s, k)-stack layout. By Theorem 1(a), every graph G has a 3-stack subdivision
with O(log qn(G)) division vertices per edge. Thus sn(G) < f*(3, O(log qn(G))),
and stack-number is bounded by queue-number. a

We now turn our attention to the question of whether queue-number is topo-
logical. The next lemma is proved by repeated application of the Erdos-Szekeres
Theorem regarding monotone subsequences.

Lemma 2. If a q-queue subdivision of a graph G has at most k division vertices
per edge, then qn(G) € O(¢?F).

Lemma 2 is used to prove the lower bounds on the number of division vertices
per edge in Theorem 2(a) and Theorem 3(a). It follows from Lemma 2 that:

Theorem 5. Queue-number is topological (for all graphs), and track-number is
topological for any proper minor-closed graph family.

We now relate queue-number to a new thickness parameter. Let the 2-track
thickness of a bipartite graph G, denoted by 62(G), be the minimum & such that
G has a (k,2)-track layout. By (1) and Lemma 1(c),

V bipartite graphs G, 6(G) < 0(G) <sn(G) < 02(G) .

Let the 2-track sub-thickness of a graph G, denoted by sub-62(G), be the
2-track thickness of G’. This is well-defined since G’ is bipartite.

Theorem 6. Queue-number is tied to 2-track thickness for bipartite graphs, and
queue-number is tied to 2-track sub-thickness (for all graphs).

Theorem 6 is somewhat counterintuitive since, at first glance, queue layouts
may have many crossings, as opposed to the various thickness parameters. The
immediate implication for Open Problem 1 is that stack-number is bounded by
queue-number if and only if stack-number is bounded by 2-track sub-thickness.
While it is an open problem whether stack number is bounded by track-number
or by queue-number, in [6] we prove the weaker result that geometric thickness
is bounded by track-number, which implies that geometric thickness is bounded
by queue-number. We have the following reductions for Open Problem 2.

Theorem 7. The following are equivalent:

(a) queue-number is bounded by stack-number,
(b) bipartite 3-stack graphs have bounded queue-number,
(c) bipartite 3-stack graphs have bounded 2-track thickness.

Moreover, if queue-number is bounded by stack-number then queue-number is
bounded by a polynomial function of stack-number.
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Proof Outline. That (a) implies (b) is immediate. Theorem 6 proves that (b) and
(c) are equivalent. It remains to prove that (b) implies (a). Suppose that every
bipartite 3-stack graph has queue-number at most some constant g. Consider
an arbitrary graph G. An easy extension of Theorem 1(a) proves that G has
a 3-stack bipartite subdivision D with O(logsn(G)) division vertices per edge.
By assumption, qn(D) < ¢. By Lemma 2, and with an abuse of O() notation,
an(G) € O(gPMeen(@)) ¢ O(sn(G)°@D). Thus queue-number is bounded by a
polynomial function of stack-number. O

For Theorem 7 to hold, it is essential that the number of division vertices per
edge in Theorem 1(a) is some function of sn(G), thus emphasising the significance
of our bound in comparison with previous results.

5 Three-Dimensional Polyline Drawings

A 3D polyline drawing of a graph represents the vertices by distinct points in Z3
(called gridpoints), and represents each edge as a polyline between its endpoints
with bends (if any) also at gridpoints, such that distinct edges only intersect at
common endpoints, and each edge only intersects a vertex that is an endpoint
of that edge. A 3D polyline drawing with at most b bends per edge is called a
3D b-bend drawing. A 3D 0-bend drawing is called a 3D straight-line drawing. Of
course, a 3D b-bend drawing of a graph G is precisely a 3D straight-line drawing
of a subdivision of G with at most b division vertices per edge. The bounding
boz of a 3D polyline drawing is the minimum axis-aligned box containing the
drawing. If the bounding box has side lengths X —1, Y —1 and Z — 1, then we
speak of an X X Y x Z polyline drawing with volume X -Y - Z. That is, the
volume of a 3D drawing is the number of gridpoints in the bounding box.

This paper initiates the study of upper bounds on the volume and number
of bends per edge in arbitrary 3D polyline drawings. The volume of 3D straight-
line drawings has been widely studied [4,3,14,19,2]. Table 2 summarises the
best known upper bounds on the volume and bends per edge, including those
established in this paper. Our upper bound of O(mlogq) is within a factor of
O(log q) of being optimal for all g-queue graphs, since Bose et al. [2] proved that
3D polyline drawings have at least & (n + m) volume.

Track layouts have previously been used to produce 3D drawings with small
volume (see [5]). The principle idea is to position the vertices in a single track
on a vertical ‘rod’. Since there are no X-crossings in the track layout, no edges
between the same pair of tracks can cross.

Theorem 8. [9,5] Let G be a c-colourable t-track graph. Then

(a) G has a O(t) x O(t) x O(n) straight-line drawing with O(t*n) volume, and
(b) G has a O(c) x O(c?t) x O(c*n) straight-line drawing with O(c"tn) volume.
Moreover, if G has an X XY X Z straight-line drawing then G has track-number
tn(G) < 2XY.

By Theorem 3(a), every graph has a 4-track subdivision with O(logn) di-
vision vertices per edge, and hence a 3D polyline drawing with O(n + mlogn)
volume by Theorem 8(a). We have the following specific results.
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Table 2. Volume of 3D polyline drawings of graphs with n vertices and m > n edges.

graph family bends per edge volume reference

arbitrary 0 O(n®) Cohen et al. [3]
arbitrary 0 O(m*3n)  Dujmovié¢ and Wood [9]
maximum degree A 0 O(Amn) Dujmovié and Wood [9]
bounded maximum degree 0 O(m'?n)  Dujmovié¢ and Wood [9]
bounded chromatic number 0 O(n?) Pach et al. [19]
bounded chromatic number 0 O(m?n)  Dujmovié and Wood [9]
H-minor free (H fixed) 0 O(n®?) Dujmovié¢ and Wood [9]
bounded tree-width 0 O(n) Dujmovié et al. [5]
c-colourable g-queue 1 O(cgm) Theorem 9(a)

arbitrary 1 O(nm) Theorem 9(b)

g-queue 2 O(gn) Theorem 9(c)

g-queue (constant € > 0) o) O(mg°) Theorem 10

g-queue O(log q) O(mlogq) Theorem 12

Theorem 9. Every c-colourable q-queue graph has: (a) a2 x c(g+1) x (n+m)
polyline 1-bend drawing, (b) an n X m x 2 polyline 1-bend drawing, and (c) a
2 X 2¢q X (2n — 3) polyline 2-bend drawing.

The next result highlights the apparent trade-off between few bends and
small volume.

Theorem 10. For everye > 0, every q-queue graph has a 2x O(q) x O(n+m/e)
polyline drawing with O(1/€) bends per edge.

Felsner et al. [14] introduced 3D straight-line graph drawings with the vertices
positioned on the edges of a triangular or rectangular prism.

Theorem 11. Every planar graph has a 2 x 2 x O(n?) polyline drawing on a
triangular prism with at most n — 2 bends per edge. Only planar graphs have
polyline drawings on a triangular prism.

Theorem 12. Every q-queue graph G has a 2 X 2 x O(n + mlogq) polyline
drawing on a rectangular prism with O(logq) bends per edge.

Proof. By Theorem 3(a), G has a 4-track subdivision D with O(loggq) divi-
sion vertices per edge. The number of vertices of D is O(n + mloggq). Let
{V1, Vi, V3, Vy} be the tracks. Let n’ = max{|V|, |Vz|,|V3], |Va|}. Position the i‘®
vertex in V; at (0,0,24). Position the i" vertex in V4 at (1,0,24). Position the
ith vertex in V3 at (0, 1,24). Position the it! vertex in Vj at (1,1,2i +1). Clearly
the only possible crossing is between edges vw and xy with v € Vi, w € Vj,
z € Vo, and y € V3. Such a crossing point is on the line L = {(3,1,2) : z € R}.
However, vw intersects L at (%, %, a+ %) for some integer «a, and xy intersects L
at (%, %, () for some integer 5. Thus vw and xy do not intersect. The bounding

box is 2 x 2 x 2n/, which is 2 x 2 x O(n + mlogq). O

Note that Di Giacomo and Meijer [4] proved that a 4-track graph has a
2 x 2 x n drawing. When n’ < % the above construction has less volume.
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6 Planar Graphs

Felsner et al. [14] asked the following question (in their conference paper).

Open Problem 3. [14] Does every n-vertex planar graph have a 3D straight-
line drawing with O(n) volume?

By Theorem 8, this question has an affirmative answer if planar graphs have
bounded track-number. Whether planar graphs have bounded track-number is
an open problem due to Hubert de Fraysseix [private communication, 2000], and
since queue-number is tied to track-number for planar graphs [5, 6], is equivalent
to the following open problem due to Heath et al. [15]. Note that the best known
upper bound on the queue-number of planar graphs is O(y/n).

Open Problem 4. [15] Do planar graphs have bounded queue-number?

We make the following contribution to the study of this problem, which is
analogous to Theorem 7, since 2-stack graphs are precisely the subgraphs of
Hamiltonian planar graphs.

Theorem 13. Let F(n) be the family of functions O(1) or O(polylogn). The
following are equivalent:

(a) n-vertex planar graphs have queuwe-number in F(n),
) m-vertex bipartite Hamiltonian planar graphs have queue-number in F(n),
(¢c) n-vertex bipartite Hamiltonian planar graphs have 2-track thickness in F(n).
) n-vertex planar graphs have O(1)x O(1) x O(n) polyline O(1)-bend drawings.
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Abstract. We consider the NP-hard label number maximization prob-
lem LNM: Given a set of rectangular labels, each of which belongs to a
point feature in the plane, the task is to find a labeling for a largest
subset of the labels. A labeling is a placement such that none of the
labels overlap and each is placed so that its boundary touches the corre-
sponding point feature. The purpose of this paper is twofold: We present
a new force-based simulated annealing algorithm to heuristically solve
the problem and we provide the results of a very thorough experimental
comparison of the best known labeling methods on widely used bench-
mark sets. The design of our new method has been guided by the goal
to produce labelings that are similar to the results of an experienced hu-
man performing the same task. So we are not only looking for a labeling
where the number of labels placed is high but also where the distribution
of the placed labels is good.

Our experimental results show that the new algorithm outperforms the
other methods in terms of quality while still being reasonably fast and
confirm that the simulated annealing method is well-suited for map la-
beling problems.

1 Introduction

The growing amount of data for which informational graphics have to be pro-
duced leads to an increasing need for automatic labeling procedures.
Several criteria have been developed that characterize a high-quality labeling:

(C1) On a good map the placement of labels is unambiguous. This implies that
labels are close to the point features they belong to.

(C2) The information of the labels is legible.

(C3) No or only a few labels overlap. Obviously, overlaps decrease the legibility
of a map.

(C4) The number of omitted labels is low.

The cartographic literature contains more rules, see, e.g., the papers by Imhof [6]
and Yoeli [14]. Yet, the overall aim in automatic map labeling is to devise algo-
rithms that produce labelings of maximum legibility.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 144-154, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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L[] ||

(a) Four-position (b) Two-position (c) One-position
? - * - -
‘ -1 + -1

(d) Four-slider (e) Two-slider (f) One-slider

Fig. 1. Axis-parallel rectangular labeling models. A label can be placed in any of the
positions indicated by the rectangles and can slide in the directions of the arrows.

An instance of a labeling problem consists of a set of point features, infor-
mation about the label sizes, and a mapping from labels to point features. In
general it is not possible to place all the given labels in their original size with-
out any overlap. The literature suggests several possibilities to deal with this
problem; among these are decreasing the size of the labels to allow a placement
of all labels without any overlap (label size mazimization), and keeping the sizes
of the labels fix while looking for the maximum number of labels that can be
placed (label number mazimization problem, LNM).

Research in automated map labeling has mainly focused on the six labeling
models shown in Figure 1, the most popular of which are the four-position and

the four-slider model. The dots in the figure represent the point feature to be
labeled.

Definition 1 (LNM in the 4-slider model). Given a set A = {A1,..., A}
(the labels), two functions w,h : L — R, and a function a : A — R?, find a
subset A" C A of largest cardinality and a function p : A" — R, where R is the
set of axis-parallel rectangles in the plane, so that the following conditions hold:

(L1) Rectangle p(\) has width w(\) and height h(X\) for every X € A'.
(L2) Point a(X) lies on the boundary of p(\) for all X € A’.
(L3) The open intersection p(X\) N p(u) is empty for all \,u € A, X # p.

An assignment of labels to rectangles that satisfies the three properties (L1)—
(L3) is called a labeling. Properties (L1) and (L2) make sure that each label X is
drawn with the given size in the 4-slider model. Property (L3) forbids overlaps
between the labels.

Force-directed methods have originally been developed for drawing graphs.
In practice, these techniques often perform remarkably well on medium-sized
instances and are easy to implement. Further, the resulting drawings typically
capture symmetries while avoiding the expensive computations to look for them
explicitly.

These algorithms, going back to Eades [3] and Kruskal and Seery [10], view
the input graph as a system of objects with forces acting between them. Con-
figurations of the objects with low energy correspond to aesthetically pleasing
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layouts of the graph. Algorithms for this task are mostly variations of iterative
gradient-based methods such as the Newton-Raphson method.

Davidson and Harel consider in [2] the number of edge crossings in a drawing
as an additional, discrete term in the objective function and can therefore not
apply gradient methods to find an equilibrium. The authors propose the simu-
lated annealing approach. This approach defines for each configuration a finite
set of neighboring configurations and tries one of them at random. New config-
urations are always accepted if they decrease the energy of the system but even
if they increase the energy, they are accepted with a probability that decreases
with time. As we will point out in Section 2, we will use simulated annealing for
similar reasons as Davidson and Harel.

Van Kreveld, Strijk, and Wolff [13] show NP-completeness of the decision
problem in the four-slider model (independently, Marks and Shieber have shown
this in [11]). The main result in [13] is a 2-approximation algorithm that is able to
find a solution of LNM in any of the slider-models with unit height rectangles. The
algorithm is a ©(nlog n)-time greedy sweep-line algorithm. For the same models,
the authors develop a polynomial time approximation scheme. Strijk and van
Kreveld extend the above mentioned %—approximation algorithm for the slider
models in [12] to labels with different heights. If r denotes the number of different
label heights, the running time of the algorithm is O(rnlogn). The algorithm
is based on the simple greedy strategy of iteratively placing the leftmost label
until no more points can be labeled without intersections. The leftmost label is
defined to be the label, whose right edge is leftmost among all label candidates,
which are those labels that have not been placed yet minus a set of labels that
are already known to be unplaceable in the current configuration.

Klau and Mutzel present in [9] an exact algorithm for the label number
maximization problem that works in any of the labeling models. The method is
based on a pair of so-called constraint graphs that code horizontal and vertical
positioning relations. The key idea is to link the two graphs by a set of additional
constraints, thus characterizing all feasible solutions of LNM. This combinatorial
description enables the formulation of a zero-one integer linear program whose
solution leads to an optimal labeling.

The paper [1] by Christensen, Marks, and Shieber contains an extensive com-
putational study of labeling methods in the four-position model. The authors
also present a simulated annealing method for this problem that is the clear
winner of the study in terms of labeling quality while still being reasonably fast.
Furthermore, they propose a procedure for randomly creating labeling instances.
We use this benchmark generator, which has become a widely used tool in map
labeling research, for our computational experiments in Section 3.

Already in 1982, Hirsch introduced a model that is similar to the four-slider
model and proposed an algorithmic labeling method that can be interpreted as
a force-directed approach. The algorithm starts with an initial label placement
and tests for overlaps. Based on the amount of intersecting area, overlap vec-
tors are computed for labels involved in an overlap conflict. For each label, the
summation of these vectors helps in heuristically deciding where to move the
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label. Successive movements of all labels in conflict, which Hirsch calls a map
sweep, is done by using one of the following two methods: (a) Moving labels in
the direction of the computed vectors with sequential stops at preferred posi-
tions. This method allows the label to be placed at any possible position. (b)
Performing a discrete jump to a position indicated by the vector angle. Here, the
primary aim is to solve an overlap situation where the first method fails. Hirsch
does not consider the number maximization problem explicitly. Also, although
his overlap vectors resemble the intersection-proportional component within our
force system, he does not consider distance-related forces and suggests a differ-
ent method for finding an equilibrium of minimum energy. His approach can be
seen as a gradient-driven heuristic.

2 Force-Directed Map Labeling

In this section we describe our force-based simulated annealing algorithm for the
label number maximization problem. Our approach uses repulsive forces between
labels, which are used to compute a force vector for each label. The length and
direction of these vectors gives us an idea of where to place individual labels
and how to solve potential conflicts between two or more labels. As a side-
effect we achieve another important benefit, which makes the method usable
for practical applications: Our forces are defined to grow super linearly with
decreasing distance between two labels. Therefore, labels are not placed close to
each other if possible and the method achieves a good distribution of the labels
in the available space. This improves the readability of the labels and results in
an aesthetically pleasing arrangement. To avoid being trapped in local minima
of the energy function, we combine the purely force directed method with the
simulated annealing approach.

Every force-directed algorithm consists of two major parts: (a) a force-system
between the objects and (b) a method that seeks an equilibrium of minimum
energy. In our case a low energy equilibrium configuration should correspond to
a pleasing labeling. In contrast to applications in graph drawing labels are bound
to their point feature and may not be positioned freely in the available space. We
only allow intermediate positions that satisfy at least the first condition, hence
we do not need any attractive forces between points and labels. Furthermore we
restrict the computation of forces to pairs of labels that might intersect. We call
the set of those labels for each label A the neighborhood

NQ) ={pe AlwA) +w(p) = [zx —zu[ ARA) + h() = [yx —yul}

Our main goal is to place as many labels as possible in the available space
without any intersections. Therefore the decisive factor in our force system is the
amount of intersection between two labels. We call this force the intersection-
proportional component. The amount of the second force acting in our model,
the so-called distance-related part, depends on the distance between two labels
and grows, if two rectangles are placed close to each other. If labels overlap a
very small area e the intersection-proportional component can become arbitrary
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small. Thus we add a constant value to the force function if and only if two
labels overlap to punish overlaps stronger. The distance-related part is not the
significant value in our model, its only purpose is to guide the algorithm to a
well distributed labeling.

For every two labels A\, 4 € A, we define dyin : A x A — 1R as

0 if A and p overlap

dmin(>‘a l‘) = {

min{||p,q|| | p € \,q € p} otherwise .

The function ||p, q|| : R* x R?* — TR denotes the Euclidean distance between the
two points p and ¢ in the Euclidean plane IR

We can now define the force function f = (fy, f,) for each label in the
following way: For each label A\ € A with center point ¢y = (zx,y»), the -
component of the force function f, : A — IR is defined as

Fo) = Y0 (i) + faO ) + faQs 1)) (@n = 2) [(llexscull)

HEN(X)
where  fi(A, p) = 01 ix (A, p)iy(N p)

0o
max (g, dmin (A, 1))

03 if A and p overlap
Ja(r ) = ’

0 otherwise .

5, and fa()\,,u):{

The y-component f, is defined analogously. The constants d1, d2,d3 € IR control
the influence of the particular term on the force function f. Note that the di-
rection of the force between two labels is defined by the location of their center
points and that € limits the amount of f; to a value of 62/52.

“Force has no place where there is need of skill.” [4]

A purely force directed method performs poorly if the labels take a significant
fraction of the available drawing area. There is only little space for manoeuvre
when seeking an equilibrium, especially if incremental methods are used. Often,
real-world labeling instances contain dense areas that do not leave much space
for moving labels around without producing new intersections. The problem is
aggravated by the fact that we only allow horizontal and vertical moves around
the label’s border. The same observation holds for the algorithm proposed by
Hirsch in [5] and is well described by Christensen, Marks, and Shieber in [1].

Figure 2(a) shows an example of a bad local minimum that is difficult to
escape from by using incremental moves. It is not possible to transform the bad
labeling on the left continuously into the good labeling on the right without a
temporary increase of overlaps and thus of the overall energy of the system.

Another problem arises from the direction of the forces. Since labels have
non uniform size and they are bound to their point features, the direction of
our resulting force vector does not always indicate a solution for the conflict.
Figure 2(b) shows a very simple example consisting of just two point features.
Any algorithm that strictly follows the direction of the force vector is not able to
resolve the shown configuration, even though the optimal solution is self-evident.
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1 E:TSS
B e e

(a) Bad local minimum vs. optimal labeling. (b) Forces cannot alwyas re-
solve overlaps.

Fig. 2. Problems with forces.

Therefore, we need to accept worse intermediate configurations to be able to
escape local minima and we propose to use the simulated annealing method for
this purpose.

Simulated annealing is a very flexible optimization method and can be used
in a wide range of combinatorial optimization problems. It has been proposed
in [7] and is derived from the following observation: When cooling down a liquid
rapidly to a crystal form, the system results in amorphous structures with a high
energy while slow cooling results in a crystal structure with lower energy.

The general simulated annealing procedure applies a series of sequential
moves while simultaneously decreasing the temperature. The main idea is that
the probability with which the change from a state with energy E; to a state
with energy FEs will be accepted is e’%, where k is a positive constant.
Thus the probability for moves that increase the energy decreases with a falling
temperature.

The hybrid force-based simulated annealing algorithm for the label number
maximization problem works as follows:

1: compute random initial labeling ¢ in the eight-pos. model
2: initialize temperature 7" and cooling rate o
3: compute forces for current conf. and init. set of active labels @
4: Mmax < 30|A4]; taken < rejected «— 0;
5: repeat
6: G« o;
7:  choose random candidate A € @
8 if [fz(A)| > Fmin V |fy(A)| > Fmin then
9: change o by moving ) in the direction indicated by its force vector
10: if |f2(A)] > Fmin V |fy(A)] > Fnin then
11: change o by moving A to a random position
12:  else
13: change o by moving A to a random position
14:  if force(o) < force(6) V random r € [0...1] < ¢ then
15: taken « taken + 1
16: update set of active labels @
17:  else
18: rejected « rejected + 1
19: o «— b;
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20:  if taken + rejected > M4, then

21: if taken = 0 then

22: if point selection is disabled V —3 overlapping label \ € & then
23: return current labeling o

24: else

25: c—o\A

26: update set of active labels @

27: T=aol

28: Mpax = max(]A|, min(10| 4], 50|P|)); taken « rejected «— 0

29: until || =0
30: return current labeling o

The algorithm performs a series of temperature stages. After each stage the
temperature is decreased by a constant precomputed factor, which decreases the
probability of accepting moves that lead to a higher energy state. To speed up
convergence we compute a set of active labels @, which either intersect at least
one other label or their associated force vector indicates movement to a new
position with lower energy. The algorithm returns the current solution if |¢| = 0
and chooses the label with the most overlaps for removal if no move has been
accepted for a full temperature stage.

In each iteration we randomly choose a label A € @ and try to move it
according to its force vector. If this move does not lead to an equilibrium or
the force vector does not indicate movement even though the label is involved
in an overlap, we move the label to a random position in the eight-position
model instead. The new position is always accepted if it decreases the energy
and may be accepted if it does not increase the energy by more than the current
temperature allows.

At each temperature stage we perform My,.x moves. We initialize this value
with 30|A| and perform max(|A|, min(10|A[,50|®|)) moves in all subsequent
stages. The initial temperature is chosen such that we accept an increase in
the overall force of faye with a probability of 30%, where fays represents the
amount of force for an overlap of 50% of two average sized labels. The cooling
rate « is chosen such that the temperature T becomes less than 1 after 15 stages.
The parameter « should be changed to adjust the trade-off between quality and
speed. The above settings yield high-quality labelings in reasonable computation
time.

Whenever we move a label A to a different position or remove it from the
labeling in line 25, the forces on all labels A € N(X) change. Since a simple
approach takes time O(n?) in the worst case we store the forces between each
pair of labels in a quadratic matrix. This enables us to update the forces in
linear time by recalculating only the change of the particular addend for each
neighbor N (A). Furthermore we have to update the set of active labels &, since
some labels A’ € N(A) may have to be added to or removed from this set.

Since labels have to be placed according to the four-slider model, moving a
label alongside its force vector becomes more difficult than moving, e.g., zero-
sized nodes in a graph drawing application. A position that corresponds to an
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equilibrium of the forces is not always valid with respect to the point. Fur-
thermore our forces depend on a combination of the overlapping area and the
distance between two labels, which are both defined differently depending on the
specific domain, and are thus not continuous. Thus we can not apply numerical
algorithms like the Newton-Raphson method or similar techniques, since they
require at least the first derivation of the function. In place of this we start mov-
ing the label by 20% of the remaining width/height in the particular direction
and halve the amount of movement if the indicated direction changes until we
achieve an equilibrium or the maximum number of moves has been performed.
We perform at least |A| moves before removing a heuristically chosen label.
Thus the running time depends to a great extent on the number of labels that
the algorithm cannot place. Most problem instances in our test suits of real world
labeling problems do not contain many of these unplaceable labels. Therefore,
our method performs well on these problems. However, if running time is a
critical criterion, this step can be replaced through a faster cleanup heuristic.

3 Computational Study

In this section we report on the extensive computational experiments we have
performed to evaluate quality and resource requirements of our new method
in comparison to the best-known algorithms for label number maximization.
We want to emphasize that both the data we used and our implementation of
the evaluated algorithms are publicly available under the Gnu General Public
License at http://www.ads.tuwien.ac.at/research/labeling.

We have implemented all major map labeling algorithms that we found in the
literature on point feature map labeling in the slider model. All computations
were done on a Pentium 4 with 2.8GHz and 2GB of RAM. For each run, we set
a limit of 30 minutes computation time.

— The algorithm RANDOM, which places labels randomly, if possible, has been
incorporated into the study only for comparative reasons.

— Christensen, Marks and Shieber present in [1] a simulated annealing ap-
proach that beats most other algorithms in both speed and quality. Since
their implementation uses the four-position model, in general, the quality of
their solutions cannot be as good as those of algorithms for the four-slider
model. Nevertheless we decided to include this algorithm in our computa-
tional study to compare one of the best known labeling methods in the
four-position model to the remaining algorithms. We isolated configuration
changes to either obstructed or deleted labels, since this causes the algorithm
to converge much faster.

— We followed the suggestion of Christensen, Marks, and Shieber in [1] and
reduced the radius of the circle in Hirsch’s algorithm (HIRSCH) to zero. Fur-
thermore we neglect any cartographic preferences.

— APPROX is our implementation of the algorithm described in [13,12] that
runs in O(n?), does not rely on unique label heights, and is quite fast in
practice.
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— We computed optimal labelings in the 4-slider model using OPT, an imple-
mentation of the algorithm presented in [9]. Note that, due to the running
time limit, only instances up to maximally 850 labels could be computed.

— Finally, FDL is our JAVA implementation of the new force-directed method.

We ran the implementations on different data sets. Among them are (a)
instances generated with the widely used benchmark generator by Christensen,
Marks, and Shieber and (b) instances derived from real world data giving the
positions of ground water drill holes in Munich.

We generated 25 random problem instances of type (a) for each instance size
in {100,150, ...,1450,1500} labels, resulting in 685 instances, as in the study
on the four-position model [1]. The numbers of labels in the real-world problem
set (b) are in the set {250,500, 750, ...,2750,3000} and there are 30 instances
for each number of labels.

Figure 3(a) illustrates the performance of the evaluated algorithms in terms
of quality, whereas Figure 3(b) displays their running time behavior. Of course,
OPT performs best in terms of quality but also needs the largest amount of
resources. Among the heuristic methods, our new algorithm produces the best
scores but also takes more time to compute them — especially for large instances.
We want to remark, however, that the random instances larger than 1000 labels
do not resemble real-world instances since they get very dense (see the discussion
on the real-world Munich drill hole instances below). The plots also reveal that
the approximation algorithm performs surprisingly well in terms of quality (for
very large instances it becomes as good as FDL) with the advantage that its
running time does not explode.

We then compared the heuristic methods on the easier real-world instances.
Figures 4(a) and 4(b) show the results. It can be seen that all methods apart
from RANDOM have quite good results with FDL being the winner. In fact, these
instances have been generated so that always 100% of the labels can be placed
— even in the four-position model. FDL is the only method that achieved the
perfect score on all instances. As already mentioned, the running time of FDL
depends heavily on the number of labels that cannot be placed. As this number
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(a) Percentage of labeled point features. (b) Runtime of the algorithms in seconds.

Fig. 3. Results for the random benchmark set.
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Fig. 4. Results for the real-world benchmark set.

is zero for these instances, the running time behavior is very good for FDL as for
all other methods apart from the approximation algorithm.

Our computational results confirm the outcome of the 1995 study [1]: simu-
lated annealing is very well-suited for labeling problems and outperforms other
methods in terms of quality.

4 Conclusions

We have presented a new hybrid heuristical approach for the label number max-
imization problem. Our algorithm uses an underlying force system that serves
two purposes. First, a minimum energy configuration of this system corresponds
to placements with evenly distributed labels that is appealing to a human ob-
server. The second task of the force system is to determine which labels should be
left out to obtain a labeling without overlaps. We combine this with a simulated
annealing algorithm to escape local minima.

Our extensive computational experiments on widely used benchmark data
show that our algorithm finds labelings that are close to optimality in a short
amount of computing time. We find that our results often look similar to those
of a human cartographer.

Future lines of research might include to adapt the approach to line and area
labeling. We will also investigate how to combine force-based graph drawing with
our approach to attack the combined drawing and labeling problem. Further, we
want to integrate the approach into the Human-Guided Search (HuGS) system,
see [8], to allow for human interaction.
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Abstract. Sugiyama’s algorithmic framework for layered graph drawing
is commonly used in practical software. The extensive use of dummy
vertices to break long edges between non-adjacent layers often leads to
unsatisfactorial performance. The worst-case running-time of Sugiyama’s
approach is O(|V||E|log |E|) requiring O(|V||E|) memory, which makes
it unusable for the visualization of large graphs. By a conceptually simple
new technique we are able to keep the number of dummy vertices and
edges linear in the size of the graph and hence reduce the worst-case
time complexity of Sugiyama’s approach by an order of magnitude to
O((|[V]| + |E|) log | E|) requiring O(|V| + |E|) space.

1 Introduction

Most approaches for drawing directed graphs used in practice follow the same
framework developed by Sugiyama et al. [17], which produces layered layouts [3].
This framework consists of four phases: In the first phase, called Cycle Remowal,
the directed input graph G = (V, E) is made acyclic by reversing appropriate
edges. During the second phase, called Layer Assignment, the vertices are as-
signed to horizontal layers. Before the third phase starts, long edges between
vertices of non-adjacent layers are replaced by chains of dummy vertices and
edges between the corresponding adjacent layers. Hence in the third phase, called
Crossing Reduction, an ordering of the vertices within a layer is computed such
that the number of edge crossings is reduced. Finally, the fourth phase, called
Horizontal Coordinate Assignment, calculates an x-coordinate for each vertex.
Now the dummy vertices introduced after the layer assignment are removed and
replaced by bends.

Unfortunately, almost all problems occuring during the single phases of this
approach are NP-hard: Feedback-arc set [12], Precedence Constrained Multi-
processor Scheduling [5], 2-layer crossing minimization [8], etc. Nevertheless, for
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all these problems appropriate heuristics have been developed and nearly all
practical graph drawing software use this approach, mostly enriched by mod-
ifications required in practice like large vertices, same-layer-edges, clustering,
etc.

In the following, we review Sugiyama’s framework for drawing directed graphs
in more detail and give the necessary definitions and results. Then we use this
as basis for our new approach. In the rest of this work we assume that the input
graph is already acyclic.

1.1 Layer Assignment and Normalization

Let Ly,..,Ly, be a partition of V with L; ¢ V, 1 <i < hand J]_, L, = V
(h denotes the number of layers). Such a partition is called a layering of G if for
all e = (v,w) with v € L; and w € L; holds ¢ < j. The number of vertices in a
layer L; is denoted with n,;. The span of edge e is j — . In a layered drawing,
all vertices v € L; are drawn on a horizontal line (same y-coordinate). We call
the layering proper if span(e) = 1 for all edges e € E. In most applications the
layers of the vertices can be assigned arbitrarily and, in some cases, the layer
assignment is even part of the input.

For edges e = (u,v) with span(e) > 1 and for which the endpoints v and
v lie on layers L; and Lj;, we replace edge e by a chain of dummy vertices
u = di,di—1,...,dj41,d; = v where any two consecutive dummy vertices are
connected by a dummy edge. Vertex di for i < k < j is placed on layer Ly.
This process is called normalization and the result the normalized graph Gy =
(Vn, Enx). With this construction, the next phase starts with a proper layering.

Gansner et al. [10] presented an algorithm, which calculates a layer assign-
ment of the vertices such that the total number of dummy vertices is minimized.
The algorithm for minimizing the number of dummy vertices is a network sim-
plex method and no polynomial time bound has been proven for it, but several
linear time heuristics for this problem work well in practice [14, 15]. In the worst
case V| = O(V||E|) and [Ex| = O(|V| E]).

After the final layout of the modified graph, we replace the chains of dummy
edges by polygonal chains in which the former dummy vertices become bends.

1.2 Crossing Reduction

The vertices within each layer L; are stored in an ordered list, which gives the
left-to-right order of the vertices on the corresponding horizontal line. Such an
ordering is called a layer ordering. We will often identify the layer with the
corresponding list L;. The ordering of the vertices within adjacent layers L;
and L; determines the edge crossings with endpoints on both layers.

Crossing reduction is usually done by a layer-by-layer sweep where each step
minimizes the number of edge crossings for a pair of adjacent layers. This layer-
by-layer sweep is performed as follows: We start by choosing an arbitrary vertex
order for the first layer L; (we number the layers from top to bottom). Then
iteratively, while the vertex ordering of layer L;_; is kept fixed, the vertices of
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L; are put in an order that minimizes crossings. This step is called one-sided
two-layer crossing minimization and is repeated for ¢ = 2, .., h. Then the sweep
direction is reversed and repeated until no further crossings can be saved.

Many heuristics have been proposed to attack the one-sided two-layer cross-
ing minimization problem [3, 6]. Most important are the median and the barycen-
ter heuristic, where the new position of each vertex v in list L; is chosen relative
to the position of the adjacent vertices from list L;_1.

To decide whether we improved the number of crossings by a sweep, we
have to count this number. This important subproblem, called the bilayer cross
counting problem, has to be solved in each of the steps. The naive sweep-line
algorithm needs time O(|E’| 4+ |C'|) where |E’| is the number of edges between
the two layers and |C”| the number of crossings between these edges [15]. It has
recently been improved to O(|E’|log [V']) by Waddle [19] and Barth et al. [2].

The algorithm reduces the bilayer cross counting problem to the problem of
counting the inversions in the vertex sequences of layers L; ;1 and L; respectively.
The number of inversions are counted by means of an efficient data structure,
called the accumulator tree 7.

1.3 Horizontal Coordinate Assignment

The horizontal coordinate assignment computes the x-coordinate for each vertex

with respect to the layer ordering computed by the crossing reduction phase.

There are two objectives to consider to get nice drawings. First the drawings

should be compact and second the edges should be as vertical as possible.
Gansner et al. [10] model this problem as a linear program:

min Z Qv,w) - |z(v) — z(w)]

(v,w)EE

st.  x(b) —xz(a) > §(a,b) a,bconsecutive in L;, 1 <i<h

where 2(v,w) denotes the priority to draw edge (v, w) vertical and §(a,b) de-
notes the minimum distance of consecutive vertices a and b. This linear pro-
gram can be interpreted as a rank assignment problem on a compaction graph
G, = (V. {(a,b) : a,b consecutive in L;, 1 < i < h}) with length function 0.
Each valid rank assignment corresponds to a valid drawing. The above objective
function can be modeled by adding vertices and edges to G, [10].

The drawback of the above approach is, that edges can have as many bends
as dummy vertices. This creates sometimes a “spaghetti” effect which reduces
the readability. To avoid this negative behaviour the linear segments model was
proposed, where each edge is drawn as polyline with at most three segments.
The middle segment is always drawn vertical. In general, linear segment drawings
have less bends but need more area than drawings in other models. There have
been a number of algorithms proposed for this model [4,15]. The approach of
Brandes and Kopf [4] produces pleasing results in linear time.
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1.4 Drawbacks

The complexity of algorithms in the Sugiyama framework heavily depends on the
number of dummy vertices inserted. Although this number can be minimized ef-
ficiently, it may still be in the order of O(|V||E|) [9]. Assume we use an algorithm
based on the Sugiyama framework which uses the fastest available algorithms
for each phase. Then this algorithm has running time O(|V||E|log|E|) and uses
O(|V||E|) memory.

To improve the running time and space complexity we avoid introducing
dummy vertices for each layer that an edge spans. We rather split edges only in
a limited number of segments. As a result, there may be edges which traverse
layers without having a dummy vertex in it. We will extend the existing crossing
reduction and coordinate assignment algorithms to handle this case.

A similar idea is used in the Tulip-software described in [1]. Unfortunately, no
details are given. However, in this approach, only the proper edges are considered
in the crossing reduction phase and the long edges are ignored. This leads to
drawings which have many more crossings than drawings using the traditional
Sugiyama approach. In contrast, we will show that our approach yields the same
results as the methods traditionally used in practice.

2 The New Approach

The basic idea of our new approach is the following: Since in the linear segments
model each edge consists of at most two bends, all corresponding dummy vertices
in the middle layers have the same x-coordinate. We combine them into one
segment and therefore reduce the size of the normalized graph dramatically. More
precisely, if edge e = (v, w) spans between layers L; and L; with [j — i > 2,
we introduce only two dummy vertices: p. at layer L; 1 (called p-vertex) and g
at layer L;_1 (called g-vertex), as well as three edges: (v,pe), Se = (Pes e ), and
(ge,w). The first and the last edge are proper while s., called the segment of e, is
not necessarily proper. If |j — i| = 2 we insert a single dummy vertex r.. We call
this transformation sparse mormalization and the result the sparse normalized
graph Gs = (Vs, Eg). The size of the sparse normalized graph is linear with
respect to the size of the input graph.

A layer L of a sparse normalized graph contains vertices and segments. A
layer ordering of a sparse normalized graph is a linear ordering of the vertices
and segments in a layer and is called a sparse layer ordering. For a graph G,
there is a one-to-one correspondence between layer orderings of the normalized
graph Gy and sparse layer orderings of the sparse normalized graph Gg.

Let us look at the layer orderings of normalized graphs: instead of stor-
ing the layer ordering in lists, we can store it in a directed graph D. This
graph has an edge between vertices v and w if and only if these two vertices
are in the same layer ¢ and are consecutive in L;. The ordering < defined as
v < w if and only if there is a directed path from v to w in D, is a complete or-
dering for the vertices of a layer, i.e., either v < w or w < v for v,w € L;.
In fact D is the compaction graph G, mentioned in the preceding section. The
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Fig. 1. In the left figure a sparse normalized graph is shown. Thick lines denote the
segments. The right figure shows the corresponding compaction graph.

graph D has |Viy| vertices and O(|Vy|) edges, which results in a worst case size
of O(|V||E)).

We want to reduce the size of D to O(|V|+ |E|) without losing the property
that < defines a total layer ordering. The key observation therefor is that the
edges between two segments in D can be omitted if no two segments cross.

Given a layer L;, we partition the layer in the following way:

Sioyvi0>si1>vi17Si27vi2>‘"7S’

In,;_

1’7 ,Ui”ifl ? Si

in,
The list 5;, contains the segments which are between vertices v;, , and v;, for
1 <k <n;—1, 85, contains the segments before v;, and .S;, the segments after
vi,. - We denote the first element of a non-empty list S as head(S ) and the last
element as tail(S). Furthermore, let v be a vertex in Vg. We denote with s(v)
the segment to which v is incident if v is a p- or g-vertex, otherwise s(v) = v.
Definition 1. Given a directed acyclic graph G = (V,E) and a sparse layer
ordering in which no two segments cross. The sparse compaction graph (N, A)
of the sparse normalized graph Gs = (Vs, Es) of G is defined as:

={Vs \ {v:v is p- or q-vertex}} U{se : s is segment of e € E'}
—{((vz] Dss(vi) 1< i<h 1<j<ni—1, S, = B} U
{(s(tail(Si;)),s(vi;)) : 1 <i<h,0<j<n;—1,8; #0}U
{(s(vs,_,).s(head(S:,)) : 1 < i < h, 1< <y, S, #0)
If we look at two consecutive layers L,, and L of a sparse normalized graph
we have the following properties:
P1: A segment s, in L, is either also in L or the adjacent g-vertex ¢ is in L.
P2: A segment s, in Ly is either also in L,, or the adjacent p-vertex p. is in L.

Theorem 1. The ordering < induced by the sparse compaction graph (N, A) of
a sparse normalized graph Gg = (Vs, Eg) defines a sparse layer ordering. The
compaction graph (N, A) has linear size with respect to G.

Our new approach is now as follows: In the first phase we create a sparse
normalization of the input graph. In the second phase we perform crossing min-
imization on the sparse normalization. In the third phase we take the resulting
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sparse compaction graph and perform a coordinate assignment in linear time
using an approach similar to the one described in [4]. It remains to show how
we can perform crossing minimization on a sparse normalization efficiently.

3 Efficient Crossing Reduction

In this section we present an algorithm which performs crossing minimization
using the barycenter or median heuristic on a sparse normalization. The output
is a sparse compaction graph which induces a sparse layer ordering with the
same number of crossings as these heuristics would produce for a normalization.
For our algorithm it is not important which strategy we choose as long as it
conforms to some rules.

Definition 2. A measure m defines for each vertex v in a layer L;+1 a non-
negative value m(v). If v has only one neighbor w in L;, then m(v) = pos(w),
where pos(w) is the position of w in layer L;.

Clearly the barycenter and median heuristic define such a measure.
Lemma 1. Using such a measure m there are no segments crossing each other.

Proof. A segment represents a chain of dummy vertices. Each dummy vertex v
on a layer L; has exactly one neighbor w in layer L; ;. Hence when we use a
measure m then m(v) = pos(w). Thus two segments never change their relative
ordering and thus never produce a crossing with each other. O

3.1 2-Layer Crossing Minimization

The input of our two-layer crossing minimization algorithm is an alternating
layer L; and the sparse compaction graph for the layers Ly, ..., L;. An alternat-
ing layer consists of an alternating sequence of vertices and containers, where
each container represents a maximal sequence of segments. The output is an al-
ternating layer L;;1 and the sparse compaction graph for Ly, ..., L;;1, in which
the vertices and segments are ordered by some measure. Note that the represen-
tation of layer L; will be lost, since the containers are reused for layer L; 1.

The containers correspond to the lists S of the previous section. The segments
in the container are ordered. The data structure implementing the container must
support the following operations:

S = create() : Creates an empty container S.

append(S,s) : Appends segment s to the end of container S.

join(S1,S2) : Appends all elements of container Sy to container Sy.
(S1,S2) = split(S, s) : Split container S at segment s into containers S; and
So. All elements less than s are in container S; and those who are greater
than s in S3. Element s is neither in S nor Ss.

(S1,S2) = split(S, k) : Split container S at position k. The first k& elements
in container S are in S; and the remainder in Ss.

size(S) : Returns the number of elements in container S.
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Layer 4:
Layer 5:
L4Z m O . O D
St p1 S22 vy S3 P2
) 1 e (1]
S’ Vi S>
2) Ls: pos(vi)=3, pos(S’1)=0, pos(Sh)=4
S, @
3) LV'SI’SZ»‘”H'“”‘
L:vi S, vi S,

4) split(q, S7) =g E d m © m
Sy

vioSh a7

5) count crossings: 0
o I e 1o (1)
Si v S g sy

Fig. 2. The six steps applied to layers 4 and 5 from figure 1.

Our algorithm Crossing_Minimization(L;, L;1+1) consists of six steps:

e In the first step we append the segment s(v) for each p-vertex v in layer L; to
the container preceding v. Then we join this container with the succeeding
container. The result is again an alternating layer (p-vertices are omitted).

e In the second step we compute the measure values for the elements in L;;1.
First we assign a position value pos(v;;) to all vertices v;; in L;. pos(v;,) =
size(S,) and pos(vi;) = pos(v,_, ) + size(S;;) + 1. Note that the pos values
are the same as they would be in the median or barycenter heuristic if each
segment was represented as dummy vertex. Each non-empty container S;,
has pos value pos(v;; —1) + 1. If container S;, is non-empty it has pos value
0. Now we assign the measure to all non-g-vertices and containers in L; 1.
Recall that the measure of a container is its old position.

e In the third step we calculate an initial ordering of L; ;. We sort all non-g-
vertices in L;y; according to their measure in a list LY. We do the same for
the containers and store them in a list L. Then we merge these two sorted
lists in the following way:
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if m(head(L")) < pos(head(L®)) then v =pop(L"), append(Lit1,v)

if m(head(L")) > (pos(head(L”)) + size(head(L%)) — 1)
then S = pop(L®), append(Lii1,S)

else S=pop(L®), v=rpop(LY), k= [m(v)—pos(S)], (Si,S2) = split(S, k),
append(Li+1,51), append(Lit1,v), pos(S2) = pos(S)+k, push(L*,S2).

e In the fourth step we place the g-vertices according to the position of their
segment. We do this by calling split(s(v)) for all ¢ vertices v in layer L; 4.

e In the fifth step we perform cross counting according to the scheme proposed
by Barth et al. Using the size(S) operation, we put appropriate weights on
the container S, such that the number of segments in the container can be
taken into account without any loss of performance.

e In the sixth step we perform a scan on L;;; and insert empty containers
between two consecutive vertices, and call join(Si,S2) on two consecutive
containers in the list. This ensures that L;;; is an alternating layer.

Finally we create the edges in the sparse compaction graph for layer L; 1.

3.2 The Overall Algorithm

The first and the last layer never contain segments because of property P1 and
P2. Therefore when we perform a sweep or reverse sweep it is easy to create
the initial alternating layer. During the reverse sweeps we simply have to take
the former p-vertices as g-vertices and vice versa and apply the 2-layer crossing
minimization algorithm of the previous section.

There are no other changes to the original Sugiyama approach except for the
different calculation of the measure m for all vertices in a layer, the normalization
of the layer lists such that the lists are alternating, and the modified counting
scheme for crossings. We summarize this section in the following theorem.

Theorem 2. The approach described above is equivalent to traditional crossing
reduction.

4 An Efficient Data Structure

Let n denote the maximal number of elements in a container. To be competitive,
we need a data structure that supports append, split, join and size operations
in O(logn). Thus we use splay trees, a data structure developed by Sleator und
Tarjan [16]. Splay trees are self-adjusting binary search trees, which are easy to
implement because the tree is allowed to become unbalanced and we need not
keep balance information. Nevertheless we can perform all required operations in
O(logn) amortized time. A single operation might cost O(n) but k consecutive
operations starting from an empty tree take O(klogn) time.

The basic operation on a splay tree is called a ‘splay’. Splaying node z makes
x the root of the tree by a series of special rotations. We use splay trees to
represent containers. So we have to implement the container operations.
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e append(S,s): We search the rightmost element in the tree (last element in
the container) by going from the root down taking always the right child.
Now, we insert s as the right child of the rightmost element and then splay
s. The append operation is performed once for each p-vertex.

e join(Sq,S2): To join two containers, we search the rightmost element of 51,
splay it and then make Ss to the right child of it. This operation can only
be invoked by an append operation or during the normalization of a layer
list. Thus, it is invoked O(|V| + |E|) times.

e size(S): While performing the rotations we have to update the size informa-
tion. Therefore each node knows the size of the subtree rooted by it. So we
can maintain the correct size at no extra cost.

e split(S,s): First we have to search s in the container. We can not perform a
conventional tree search because the elements have only an implicit ordering
(their container position) which is not stored by the element. To avoid a
search operation, we store a pointer to s in the corresponding p-vertex (this
split operation is only used when we are processing the ¢-vertex layer and
the g-vertex knows its corresponding p-vertex). So we just have to splay s
and then take its left and its right child as root for the resulting lists. The
split operation is performed once for each g-vertex.

e split(S,k): First we have to search the element at position k. We use a
conventional binary tree search. Let p(x) denote the parent of x and I(z)
(r(x)) the left (right) child of z. The positions are computed by the following
formula: pos(z) = pos(p(x))+size(l(x))+1, if x is a right child and pos(z) =
pos(p(x)) — size(r(x)) — 1 if = is a left child. If z is the root then pos(x) =
size(l(x))+1. After we have found the element at position k, we just splay it
and then take its right child as root for the second list. This split operation
is performed at most once for each common vertex.

Theorem 3. [16] A sequence of k arbitrary update operations on a collection of
imatially empty splay trees takes O(k—l—Z?:l logn;) time, where nj is the number
of items in the tree or trees involved in operation j.

The update operations include insert, join and split operations; ‘append’ is
a special case of the insert operation and the size operation does not change the
data structure. Each new iteration starts with empty containers and there are
at most O(|E|) elements. Thus we have an overall cost of O((|V| + |E|) log|E]).

5 Conclusion: Complexity and Practical Behaviour

We have given a new technique that leads to a drastic reduction of the complex-
ity of the important algorithm of Sugiyama for automatic graph drawing. We
close with some remarks on the complexity of the algorithm. We first do the nor-
malization of the graph by introducing at most O(|E|) new vertices and edges.
Then we perform the layer-by-layer sweep with the modified two-layer crossing
minimization procedure. Using the splay-tree data structure as well as the cross-
counting scheme by Barth et al., we can ensure that each crossing minimization
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step can be executed in time O(nlogn) where n denotes the number of vertices
and edges involved in this step. Summed up over all layers, the complexity re-
mains O((|V| + |E|)log |E|). The coordinate assignment is performed in time
O(|V] + |E|) using a variant of the algorithm of Brandes and Kopf [4]. Our
approach favourably compares to the previous implementations of Sugiyama’s
algorithm where the complexity might be quadratic in the size of the graph.
We implemented our approach in Java using the yFiles library[20]. We made
some preliminary tests and compared our approach to the results achieved with
other layout tools using Sugiyama’s algorithm. All experiments have been per-
formed on a Pentium IV System with 1.5 GHz and 512 MB main memory running
Redhat Linux 9. For our measurement we used the following types of graphs:

e Long Edge Graphs: These graphs have many long edges. They have n/2
vertical vertices vi,...,v,/2 and n/2 horizontal vertices hy,..., By 2. The
vertical vertices are connected by edges (v, v;y1) for 1 <i < n/2—1. The
graph also have edges (v;, hj;) for 1 <4i,j <n/2.

¢ Random Graphs: They have n vertices and 2.5n random edges.

We run the experiments for VCG [18], Dot [11] and our new approach. We
also added an algorithm ‘Traditional’ which uses the same code as our new
approach but insert the traditional dummy vertices. Table 1 shows the time
taken by the cross counting step, which is given in milliseconds/iteration as
well as the number of dummy vertices in the normalized graph, when applying
the network simplex for layer assignment. The network simplex gives a solution
which minimize the edge length. So the results for other methods are even worse.

Our approach achieved significant improvements in running time for both
graph types. This is due to the enormous increase of the number of dummy
vertices in the common approach. The results show that our improvements are

Table 1. Experimental results for the long edge graphs and the random graphs.

Size (n) Time (ms/iter)” #Dummy vertices
(long edges) VCG | Dot | Traditional | New Common New
60 146 499 116 19 13050 1710
80 455 2852 306 42 31200 3080
100 1040 13346 658 69 61250 4850
120 2060 42414 1219 98 106200 7020
140 3702 103327 2020 158 169050 9590
Size (n) Time (ms/iter)” #Dummy vertices
(random) VCG | Dot | Traditional | New Common New
100 11 33 16 4 2725 295
200 40 275 60 9 9486 596
500 311 4404 416 29 49203 1485
1000 2978 60783 2643 72 233486 3001
2000 14419 n/a** n/a** 190 796653 6019

*

results are averaged over 10 passes

ok

not enough memory
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also relevant for practice, even if the number of dummy vertices is usually far less
than |V|-|E| there. The number of crossings in our new approach is comparable
with the number computed by the other tools. The slight differences are based on
the fact, that each implementation has its own refinements (e.g. how to handle
nodes having the same median weight). Only Dot has noticeable less crossings
but is therefor very slow. This is possibly due to an additional optimization
method. Our improvements made it possible to layout graphs for which this
was formerly not possible because of the enormous memory consumption of
Sugiyama’s algorithm. Our approach has just a linear memory consumption.
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Abstract. Let n be a positive integer, A > 0 a real number, and 1 < p <
oo. We study the unit disk random geometric graph Gp(A,n), defined to
be the random graph on n vertices, independently distributed uniformly
in the standard unit disk in R?, with two vertices adjacent if and only
if their ¢,-distance is at most A. Let A = c\/ln n/n, and let a, be the

ratio of the (Lebesgue) areas of the £p- and f2-unit disks. Almost always,
1/2

Gp(A,n) has no isolated vertices and is also connected if ¢ > a, /7, and

has nlfaPCQ(l + o(1)) isolated vertices if ¢ < a;1/2. Furthermore, we
find upper bounds (involving A but independent of p) for the diameter

of Gp(A, n), building on a method originally due to M. Penrose.

1 Introduction

Let D be the Euclidean unit disk in R? and n a positive integer. Let V,, be a set
of n points in D, distributed independently and uniformly with respect to the
usual Lebesgue measure on R2. For p € [1, 00], the £, metric on R? is defined by

(|o2 — 1P + |y2 — 11|P)*/P  when p € [1,00) ,

max{|ze — z1], [y2 — y1|} when p = 0o .

dp((z1,11), (22,92)) = {

For A € (0, 00), the unit disk random geometric graph G,(\,n) on the vertex set
V., is defined by declaring two vertices u,v € V,, to be adjacent if and only if
dp(u,v) < A. In addition to their theoretical interest, random geometric graphs
have important applications to wireless communication networks; see, e.g., [1-3].

Together with X. Jia, the first and third authors studied the case p = 2
in [4]. In this extended abstract, we generalize to arbitrary p those results of [4]
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Fellowship. The author is also affiliated with Dalian University of Technology.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 167-172, 2004.
© Springer-Verlag Berlin Heidelberg 2004



168 Robert B. Ellis, Jeremy L. Martin, and Catherine Yan

concerning connectedness and graph diameter. Complete results with proofs will
be included in a forthcoming paper.
We will say that G,(\, n) has a property P almost always if
lim Pr[G,(A, n) has the property P] =1 .

Denote by By, (u,r) the £,-ball of radius r with center u € R?. It is not hard to
show that the area of B, (u,r) is 4r*I'((p+1)/p)?/I"((p+2)/p), where I'(-) is the
usual gamma function. We omit the calculation, which uses the beta function;
see [, §12.4]. An important quantity in our work will be the ratio

ety ()

~ Area(Ba(u,r)) T (u)

p

Qp :

By another elementary calculation, the ,-diameter of the unit disk D is

1/2+1/p
diam, (D) := max {dp(u,v)} = {2 [P whenl<p<2,
u,veD 2 when 2 <p <oo .
The diameter is achieved by the points (v/2/2,v/2/2) and (—v/2/2, —v/2/2) when
1<p<2 and by (0,1) and (0,—1) when 2 < p < occ.

Let A = cy/lnn/n. In Sect. 2, we show that almost always, Gp(A,n) has
n!=a<* (14 0(1)) isolated vertices when ¢ < a,?l/
c > ap /2 Penrose [6] has shown that, almost always, G,(A,n) is connected
when it has no isolated points; combining this with our result, it follows that
when ¢ > a,?l/2, the graph Gp(A, n) is almost always connected.

The diameter of a graph G, denoted diam(G), is defined as the maximum
distance in G between any two of its vertices. This graph-theoretic quantity
should not be confused with the diameter of a geometric object with respect to
the £,-metric; we will always denote the latter by diam,,. In Sect. 3, we show that
if ¢ > a;1/2, then almost always diam(Gp(A,n)) < K/, where K ~ 387.17...
is a constant independent of p. In Sect. 4, we show that when c is larger than
a constant depending only on p, we have almost always diam(G,(\,n)) < 2 -
diam, (D)(1 + o(1))/A. In fact, there is a function ¢,(4) > 0 with the following
property: if ¢ > ¢,(J), then almost always diam(G, (A, n)) < diam,(D)(1 + ¢ +

o(1))/A.

2 . .
and no isolated vertices when

2 Isolated Vertices

Theorem 1. Let 1 < p < oo, let A = ¢y/Inn/n, and let X be the number of
isolated vertices in G,(A,n). Then, almost always,

X:{O whenc>a51/2,

n'=m (14 0(1)) when 0 < ¢ < a;1/2 .
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We sketch the proof, which uses the second moment method [7] to show that
the expected number of isolated vertices is E[X] = n!~%¢", and that the variance
is Var[X] = o(E[X]?). When ¢ < a, /2 "an application of Chebyshev’s inequality
yields X = n'=%<*(1 + o(1)). Let A; be the event that vertex v; has degree 0.
Then 4y s ,

?ﬂ'A (14+0(\N) < Area(Bp(vi, A\) N D) < apmA®

where the upper (resp. lower) bound is achieved when Bp(v;,A\) C D (resp.
By (vi, A) € D). Conditioning on the event that By (v;, \) C D, we have

(1 —apA?)" ! < Pr[4;] < Pr[B,(vi, \) € DJ(1 — apA?)"*

+Pr[B,(vi, \) € D] (1 _ C;—pV(l n O()\)))%l

By linearity of expectation, E[X] = n - Pr[4;] = n'=%<"(1 + o(1)). The vari-
ance is Var[X] = O (n%’%af’c? Vin n), computed via Pr[A; A A;], conditioned on
dp(vi, vj). The rest of the proof is a straightforward computation.

Penrose [6, Thm. 1.1] showed that for every ¢ > 0, the d-dimensional unit-
cube random geometric graph simultaneously becomes (¢ + 1)-connected and

achieves minimum degree ¢t + 1. Penrose’s proof remains valid for the unit disk.
The precise statement is as follows: for ¢ > 0 and 1 < p < oo, almost always,

min {\ | Gp(A\,n) is (¢ + 1)-connected}
= min {\ | Gp(A,n) has minimum degree ¢t + 1} .
Penrose’s proof also works for p = 1 in dimension 2, though not for arbitrary

dimension d. Combining Penrose’s theorem for ¢ = 0 with Theorem 1 yields the
following.

Theorem 2. Let 1 < p < oo and A\ = ¢y/Inn/n. Suppose that ¢ > a;1/2. Then,
almost always, the unit disk random geometric graph Gp(A,n) is connected.

3 Diameter of G,(A,n) near the Connectivity Threshold

Suppose that Gp(A, n) is connected by virtue of Theorem 2. Usually, G, (A, n)
will contain two vertices whose £,-distance is close to diam,(D), so that the
graph has diameter at least diam,(D)/\. It appears to be much more difficult
to obtain an upper bound on diameter. However, there is an upper bound which
is a constant multiple of the lower bound, as we now explain.

Theorem 3. Let 1 < p < oo and X = cy/Ilnn/n, where ¢ > a;1/2. Suppose that
K > 256v/2 + 87 ~ 387.17.... Then, almost always, diam(G,(\,n)) < K/\.

We sketch the proof of this theorem. For any two points u,v € D, define

Tu,o(k) := (convex hull of By(u,k\) U By(v, kX)) N D .
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We impose upon this lozenge-shaped region a grid composed of squares with
side length proportional to A. Let A, (k) be the event that there exist two points
u,v € V, such that

(i) at least one of u,v lies in By(O,1 — (k 4+ v/2))), and
ii) there is no path in G, (A, n) joining u to v that lies entirely inside Ty, ., (k).
P J g Y ;

We claim that

if k> 128/(7v2) ~ 28.180..., then lim Pr[A,(k)] = 0. (1)
Indeed, if the event A, (k) occurs, then by Penrose’s argument [6, p. 162], there
exists a curve L separating u and v which intersects a large number of grid
squares, none of which contains any vertex of V,, (see Fig. 1). Combining this

fact with a Peierls argument, as in [8, Lemma 3], leads to the bound on k given
in (1).

Fig. 1. Two vertices u,v € V;, which are not connected by any path in T\ .(k), and
the “frontier” L separating them.

Let u,v € V,,. If k is large enough, then (1) guarantees the existence of a path
from u to v inside Ty, (k). Comparing the total area of T, ,(k) to the area of
the ¢,-balls around the vertices in a shortest path from w to v inside T, ,, (k), one
obtains the desired diameter bound on G,(A,n), completing the proof. (Minor
adjustments are needed if u or v is close to the boundary of D.)

Corollary 1. Let1 <p < oo and A = cy/Inn/n, where ¢ > a;1/2. Suppose that
K > 256v/2 + 87 ~ 387.17.... Then, almost always, every two vertices u,v in

the unit disk random geometric graph Gp(\,n) are joined by a path of length at
most Kdp(u,v)/X\ in Gp(A,n).

4 Diameter of G,(A,n) for Larger c

By means of a “spoke overlay” construction, we improve the upper bound in
Theorem 3 by increasing the constant ¢ slightly and reducing the constant K
substantially. Roughly, a spoke consists of a number of evenly spaced, overlapping
£,-balls whose centers lie on a diameter L of the Euclidean unit disk D. We
superimpose several spokes on D so that the regions of intersection of the £,-
balls are distributed fairly evenly around D. The idea is that if the constant
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c is large enough, then, almost always, every region of intersection contains at
least one vertex of V,,, so that G,(A,n) contains a path joining vertices near
the antipodes of D on L. The lengths of such paths, which may be calculated
geometrically, give an upper bound for the diameter of G, (), n).

Definition 1 (Spoke construction). Fiz 1 < p < oo, 0§ € (—7/2,7/2], and
r > 0. Let D be the Fuclidean unit disk. For m € Z, put

Up, = U (1,0) = ((r/2 4+ rm) cos b, (r/2+rm)sinf) € R? .

The corresponding spoke is defined to be the point set Upgo(r) = {um} N D,
together with a collection of £y-balls of radius \/2, one centered at each point
Um € Upo(r).

The points u,, lie on the line Ly through O at angle 8, and the Euclidean
distance da(um, um/) equals r|m — m/|. By choosing r sufficiently small, we can
ensure that each pair of adjacent £,-balls intersects in a set with positive area
(the shaded rectangles in Fig. 2). Thus the two outermost points on each spoke
are joined by a segmented path of Euclidean length approximately 2, which has
approximately 2 - diam, (D)/\ edges when r = min{\2~1/2-1/7 )\ /2}.

Define A7(r,A/2) to be the minimum area of intersection between two /-
balls in R? of radius A\/2 whose centers are at Euclidean distance r. The general
formula for this quantity seems to involve integrals that cannot be evaluated
exactly, except for very special cases such as p = 1,2, 00. However, for fixed r,
it is certainly true that A%(r,A/2) = O(A\?).

Theorem 4. Let 1 < p < oo, A = cy/Inn/n, and r = min{\2~1/2-1/7_\/2}.
Suppose that

> \/WAQ/(QA;(T, A/2)) . 2)
Then, almost always, as n — 00,

diam(G,(\,n)) < (2 - diam,(D) + o(1))/A.

AN
5 Sl TR
"’32»‘«
EIXS
RO O

Fig. 2. The spoke overlay construction with p = 1, in the unit disk D. The left-hand
figure shows a single spoke with parameters r, L, 6. The right-hand figure shows how
spokes at different angles are superimposed on D.
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Since A%(r, A/2) = O(A?), the lower bound (2) for ¢ depends only on p.

We sketch the proof of Theorem 4. The spoke construction uses approxi-
mately Inn spokes Upg(r), at evenly spaced angles. Almost always, for each
spoke, every intersection of two consecutive ¢,-balls of radius A/2 contains at
least one vertex of V;,, provided that the bound (2) holds.

Let v1,v2 € V,,. For i = 1,2, by Corollary 1, there is a vertex v, € V,, lying
inside some spoke U;, connected to v; by a path in Gp(A,n) of length o(1/X).
Moreover, v} is connected to a vertex near the origin by a path consisting of
vertices in U; NV, lying in successive £-balls of the spoke. Thus each of these
two paths contains at most diam,(D)/\ vertices, and concatenating these paths
gives the desired upper bound on the diameter of G, (A, n).

We can make the average Euclidean distance covered in a path from v, to
v;- larger by increasing r. This change decreases the area of intersection of con-
secutive £,-balls, which in turn requires an increase in ¢ in order to guarantee a
vertex of V,, in every region of intersection. This leads to the following corollary.

Corollary 2. Let 1 < p < oo and let A = ¢y/Inn/n. For every § € (0,1], there
exists ¢, () > 0 such that if ¢ > ¢,(0), then Gp(\,n) is almost always connected,
and has diameter at most diam,(D)(1 + 6 4+ o(1))/X as n — 0.
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Algorithms for Drawing Media

David Eppstein*

Computer Science Department,
School of Information & Computer Science,
University of California, Irvine
eppstein@uci.edu

Abstract. We describe algorithms for drawing media, systems of states, tokens
and actions that have state transition graphs in the form of partial cubes. Our al-
gorithms are based on two principles: embedding the state transition graph in a
low-dimensional integer lattice and projecting the lattice onto the plane, or draw-
ing the medium as a planar graph with centrally symmetric faces.

1 Introduction

Media [7, 8] are systems of states, tokens, and actions of tokens on states that arise in
political choice theory and that can also be used to represent many familiar geomet-
ric and combinatorial systems such as hyperplane arrangements, permutations, partial
orders, and phylogenetic trees. In view of their importance in modeling social and com-
binatorial systems, we would like to have efficient algorithms for drawing media as
state-transition graphs in a way that makes the action of each token apparent. In this
paper we describe several such algorithms.

Formally, a medium consists of a finite set of states transformed by the actions of
a set of fokens. A string of tokens is called a message; we use upper case letters to
denote states, and lower case letters to denote tokens and messages, so Sw denotes the
state formed by applying the tokens in message w to state S. Token ¢ is effective for
S if St # S, and message w is stepwise effective for S if each successive token in the
sequence of transformations of S by w is effective. A message is consistent if it does
not contain the reverse of any of its tokens. A set of states and tokens forms a medium
if it satisfies the following axioms:

1. Each token? has a unique reverse f such that, for any states S £ Q, St = Q iff Of = S.

2. For any states S # Q, there exists a consistent message w with Sw = Q.

3. If message w is stepwise effective for S, then Sw = S if and only if the number of
copies of t in w equals the number of copies of 7 for each token z.

4. If Sw = Qz, w is stepwise effective for S, z is stepwise effective for O, and both w
and z are consistent, then wz is consistent.

The states and state transitions of a medium can also be viewed as a graph, and
it can be shown that these graphs are partial cubes [12]: that is, their vertices can be
mapped to a hypercube {0, 1} in such a way that graph distance equals L; distance in
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Fig. 1. 11 of the 12 pentominos represent isometric lattice embeddings of media. The twelfth, the

U pentomino, does not, because a pair of vertices that are three edges apart in the graph have
placements that are only one unit apart.

the hypercube. For media, we can find such a mapping by choosing arbitrarily state S,
and assigning any state S” a coordinate per token 7 that is 1 when a consistent path from
Sto S contains t and 0 otherwise. Conversely, any d-dimensional partial cube gives rise
to a medium with its vertices as states and with 2d tokens; the action of any token is to
change one of the partial cube coordinates to a zero or to a one, if it does not already
have that value and if such a change would produce another vertex of the partial cube.

We assume throughout, as in [7], that we are given as input an explicit description of
the states, tokens, and actions of a medium. However, our algorithms are equally appli-
cable to any partial cube or family of partial cube graphs such as the median graphs. If a
partial cube representation is not given, it can be found (and the corresponding medium
constructed) in time O(mn) via known algorithms [1,11,12,15].

2 Lattice Dimension

As we have seen, media can be embedded isometrically (that is, in a distance-preserving
way) into hypercubes {0, 1}¢ (with L; distance), and hypercubes can be embedded iso-
metrically into integer lattices Z¢, so by transitivity media can be embedded isometri-
cally onto integer lattices. Conversely any finite isometric subset of an integer lattice
forms a partial cube and corresponds as described above to a medium.

If the dimension of the lattice in which a medium is embedded is low, we may be
able to use the embedding as part of an effective drawing algorithm. For instance, if a
medium M can be embedded isometrically onto the planar integer lattice Z2, then we
can use the lattice positions as vertex coordinates of a drawing in which each edge is
a vertical or horizontal unit segment (Figure 1). If M can be embedded isometrically
onto the cubic lattice Z3, in such a way that the projection onto a plane perpendicular to
the vector (1,1, 1) projects different vertices to distinct positions in the plane, then this
projection produces a planar graph drawing in which the edges are unit vectors at 60°
and 120° angles (Figure 10, center).

Recently, we showed that the lattice dimension of a medium or partial cube, that is,
the minimum dimension of a lattice Z¢ into which it may be isometrically embedded,
may be determined in polynomial time [6]. We now briefly our algorithm for finding
low-dimensional lattice embeddings.

Suppose we are given an undirected graph G and an isometry u: G — {0, 1}* from
G to the hypercube {0,1}* of dimension t. Let y; : G — {0,1} map each vertex v of
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Fig. 3. A matching in the semicube graph (left, solid edges) completed to a set of paths by adding
edges from each semicube to its complement (left, dashed edges), and the corresponding lattice
embedding of the original medium (right). From [6].

G to the ith coordinate of u(v), and assume that each coordinate y; takes on both value
0 and 1 for at least one point . From G and u we can define 27 distinct semicubes
Siy ={v€V(G) | ui(v) = x}, for any pair i, with 0 <i < tand ) € {0,1}. We now
construct a new graph Sc(G), which we call the semicube graph of G. We include
in Sc(G) a set of 21 vertices u;y, 0 <i < 1 and x € {0,1}. We include an edge in
Sc(G) between u, p and u. g whenever S, , UScq = V(G) and S, NS 4 # 0; that is,
whenever the corresponding two semicubes cover all the vertices of G non-disjointly.
Although defined from some particular isometry u, the semicube graph turns out to be
independent of the choice of . An example of a partial cube G and its semicube graph
Sc(G) is shown in Figure 2. The main result of [6] is that the lattice dimension of G can
be determined from the cardinality of a maximum matching in Sc(G):

Theorem 1 (Eppstein [6]). If G is a partial cube with isometric dimension 1T, then the
lattice dimension of G is d = T — |M| where M is any maximum matching in Sc(G).

More specifically, we can extend a matching in Sc(G) to a collection of d paths
by adding to the matching an edge from each semicube to its complement. The dth
coordinate of a vertex in the lattice embedding equals the number of semicubes that
contain the vertex in even positions along the dth path.

We can use this result as part of a graph drawing system, by embedding our in-
put medium in the lattice of the lowest possible dimension and then projecting that
lattice onto the plane. For two-dimensional lattices, no projection is needed, and we
have already discussed projection of certain three-dimensional integer lattices onto two-
dimensional triangular lattices. We discuss more general techniques for lattice projec-
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tion in the next section. It is essential for this result that we require the embedding to
be isometric. Even for trees it is NP-complete to find an embedding into Z> with unit
length edges that is not required to be distance-preserving [2]. However a tree embeds
isometrically in Z? if and only if it has at most four leaves [14].

3 Drawing High-Dimensional Lattice Graphs

Two-dimensional lattice embeddings of media, and some three-dimensional embed-
dings, lead to planar graph drawings with all edges short and well separated by angles.
However, we are also interested in drawing media without low dimensional embed-
dings. We describe here a method for finding drawings with the following properties:

. All vertices are assigned distinct integer coordinates in Z2.

. All edges are drawn as straight line segments.

. No edge passes closer than unit distance to a vertex that is not one of its endpoints.

. The line segments representing two edges of the drawing are translates of each
other if and only if the two edges are parallel in the lattice embedding.

5. The medium corresponding to a Cartesian product of intervals [ag,bo] X [a1,b1] X

-+ [ag_1,b4—1] is drawn in area O(n?), where 7 is the number of its states.

RO R S

Because of property 4, the lattice embedding and hence the medium structure of
the state transition graph can be read from the drawing. To achieve these properties, we
map Z? to Z? linearly, by choosing wo vectors X and Y € Z¢, and mapping any point
p € Z¢ to the point (X - p,Y - p) € Z*. We now describe how these vectors X and Y
are chosen. If L C Z¢ is the set of vertex placements in the lattice embedding of our
input medium, define a slice L; j = {p € L | p; = j} to be the subset of vertices having
ith coordinate equal to j. We choose the coordinates X; sequentially, from smaller i to
larger, so that all slices L; ; are separated from each other in the range of x-coordinates
they are placed in. Specifically, set Xo = 0. Then, for i > 0, define

i—1 i—1
X; = max( min Z X, pr — max Z Xiqr)-
JoopeLiji= q<Lij-1 =,

where the outer maximization is over all j such that L; ; and L; ;1 are both nonempty.
We define Y similarly, but we choose its coordinates in the opposite order, from larger i
to smaller: Y; | =0, and

d—1 d—1
Y; = max( min Z X;pr — max Z Xkqr)-
Joorelij i 9€lij-1 S

Theorem 2. The projection method described above satisfies the properties 1-5 listed
above. The method’s running time on a medium with n states and 7T tokens is O(nt?).

Proof. Property 2 and property 4 follow immediately from the fact that we our drawing
is formed by projecting Z¢ linearly onto Z?, and from the fact that the formulas used to
calculate X and Y assign different values to different coordinates of these vectors.
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Fig. 4. Left: lattice drawing of six-dimensional hypercube; right: a drawing with geometric thick-
ness two is possible, but the vertex placement is less regular and edges formed by actions of the
same token are not all drawn parallel.

All vertices are assigned distinct coordinates (property 1): for, if vertices p and g
differ in the ith coordinates of their lattice embeddings, they belong to different slices
L; j and L; ;7 and are assigned X coordinates that differ by at least X; (unless i = X; =0
in which case their Y coordinates differ by at least Y;).

The separation between vertices and edges (property 3) is almost equally easy to
verify: consider the case of three vertices p, g, and r, with an edge pqg to be separated
from r. Since p and g are connected by an edge, their lattice embeddings must differ
in only a single coordinate i. If r differs from p and g only in the same coordinate, it
is separated from edge pg by a multiple of (X;,Y;). Otherwise, there is some coordinate
i’ # i in which r differs from both p and ¢. If ' > i, the construction ensures that the slice
Ly ; containing pgq is well separated in the x-coordinate from the slice Ly i containing
r, and if i’ < i these slices are well separated in the y coordinate.

Finally, we consider property 5. For Cartesian products of intervals, in the formula
for X;, the value for the subexpression minpey, ; 2};% Xipr 1s the same for all j consid-

ered in the outer maximization, and the value for the subexpression max ¢ Lij 2;;%&%
is also the same for all j considered in the outer maximization, because the slices are
all just translates of each other. Therefore, there is no gap in x-coordinates between
vertex placements of each successive slice of the medium. Since our drawings of these
media have vertices occupying contiguous integer x coordinates and (by a symmetric
argument) y coordinates, the total area is at most n°.

The time for implementing this method is dominated by that for finding a minimum-
dimension lattice embedding of the input graph, which can be done in the stated time
bound [6]. O

When applied to a hypercube, the coordinates X; become powers of two, and this
vertex placement algorithm produces a uniform placement of vertices (Figure 4, left)
closely related to the Hammersley point set commonly used in numerical computation
and computer graphics for its low discrepancy properties [16]. Other examples of draw-
ings produced by this method can be seen in Figures 6, 9, and 10(left).



178 David Eppstein

Fig. 5. Left: a graph with a face-symmetric planar drawing; center: connecting opposite pairs of
edge midpoints produces a weak pseudoline arrangement; right: the arrangement.

4 Face-Symmetric Planar Drawings

Our two-dimensional and projected three-dimensional lattice drawings are planar (no
two edges cross) and each internal face is symmetric (squares for two-dimensional lat-
tices, 60°-120° rhombi and regular hexagons for projected three-dimensional lattices).
We now describe a different type of drawing of the state-transition graphs of media as
planar graphs, generalizing this symmetry property. Specifically, we seek straight-line
planar drawings in which each internal face is strictly convex and centrally symmetric;
we call such a drawing a face-symmetric planar drawing.

A weak arrangement of pseudolines [9] is a collection of curves in the plane, each
homeomorphic to a line, such that any pair of curves in the collection has at most one
point of intersection, and such that if any two curves intersect then they cross prop-
erly at their intersection point. Weak arrangements of pseudolines generalize pseudo-
line arrangements [10] and hyperbolic line arrangements, and are a special case of the
extendible pseudosegment arrangements defined by Chan [3]. Any weak pseudoline
arrangement with n pseudolines partitions the plane into at least n + 1 and at most
n(n+1)/2+ 1 cells, connected components of the set of points that do not belong
to any pseudoline. Any pseudoline in the arrangement can be partitioned into nodes
(crossing points) and arcs (connected components of the complement of the crossing
points); we use this terminology to avoid confusion with the vertices and edges of the
medium state-transition graphs we hope to draw. Each arc is adjacent to two cells and
two nodes. We define the dual of a weak pseudoline arrangement to be the graph having
a vertex for each cell of the arrangement and an edge connecting the vertices dual to
any two cells that share a common arc; this duality places the graph’s vertices in one-to-
one correspondence with the arrangement’s cells, and the graph’s edges in one-to-one
correspondence with the arrangement’s arcs.

Lemma 1. If G has a face-symmetric planar drawing, then G is the dual of a weak
pseudoline arrangement.

Lemma 2. If G is the dual of a weak pseudoline arrangement, then G is the state tran-
sition graph of a medium.
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Fig. 6. Media with planar state-transition graphs but with no face-symmetric planar drawing.

Fig.7. Converting a weak pseudoline arrangement into a face-symmetric planar drawing. Left:
arrangement drawn inside a circle O such that crossings with O are equally spaced around the
circle. Right: edges dual to arcs of ¢; are drawn as unit length and perpendicular to the chord
through the points where ¢; crosses O.

By these lemmas (the proofs of which we omit due to lack of space), every face-
symmetric planar drawing represents the state transition graph of a medium. However,
not every medium, and not even every medium with a planar state transition graph,
has such a drawing; see for instance Figure 6, the medium in Figure 9(right), and the
permutahedron in Figure 10(left) for media that have planar state transition graphs but
no face-symmetric planar drawing.

Lemma 3. If G is the dual of a weak pseudoline arrangement, then G has a face-
symmetric planar drawing.

Proof. Let G be dual to a weak pseudoline arrangement A4; the duality fixes a choice of
planar embedding of G as well as determining which faces of that embedding are inter-
nal and external. Denote by | 4| the number of pseudolines in 4. Let O be a circle (the
size and placement of the circle within the plane being irrelevant to our construction),
and deform A4 as necessary so that each pseudoline crosses O, with all nodes interior to
O, and so that the 2| 4| points where pseudolines cross O are spaced at equal distances
around the perimeter of O (Figure 7, left). Then, for each pseudoline ¢; of 4, let ¢; be
the chord of O connecting the two points where ¢; crosses O. We will draw G in such
a way that the edges of G that are dual to arcs of ¢; are drawn as unit length segments
perpendicular to ¢; (Figure 7, right). To do so, choose an arbitrary starting vertex vo of
G, and place it arbitrarily within the plane. Then, the placement of any other vertex v;
of G can be found by following a path from vy to v; in G, and for each edge of the path
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moving unit distance (starting from the location of vp) in the direction determined for
that edge as described above, placing v; at the point reached by this motion when the
end of the path is reached. It is straightforward to show from Lemma 2 and the axioms
defining a medium that this vertex placement does not depend on the choice of the path
from vg to v;, and that if all vertices are placed in this way then all edges of G will be
unit length and perpendicular to their corresponding chords c;. Thus, we have a drawing
of G, in which we can identify sets of edges corresponding to the faces of G. We omit
the proof that this drawing is face-symmetric planar due to lack of space. g

Lemma 4. If G is biconnected, at most one planar embedding of G is dual to a weak
pseudoline arrangement. This embedding (if it exists) can be found in time O(n).

Proof. We use a standard technique in graph drawing and planar embedding problems,
the SPQR tree [4, 13]. Each node v in the SPQR tree of G has associated with it a
multigraph G, consisting of some subset of vertices of G, edges of G, and virtual edges
representing contracted parts of the remaining graph that can be separated from the
edges of G, by a split pair of vertices (the endpoints of the virtual edge). The non-
virtual edges of G are partitioned among the nodes of the SPQR tree. If two nodes are
connected by an edge in the SPQR tree, each has a virtual edge connecting two vertices
shared by both nodes. We root the SPQR tree arbitrarily; let (sy,#,) denote the split
pair connecting a non-root node v to its parent, and let H, denote the graph represented
by the SPQR subtree rooted at v. We work bottom up in the rooted tree, showing by
induction on tree size that the following properties hold for each node of the tree:

1. Each graph H, has at most one planar embedding that can be part of an embedding
of G dual to a weak pseudoline arrangement.

2. If v is a non-root node, and G is dual to a weak pseudoline arrangement, then edge
syt, belongs to the outer face of the embedding of H,,.

3. If v is a non-root node, form the path p, by removing virtual edge s,#, from the
outer face of H,. Then p, must lie along the outer face of any embedding of G dual
to a weak pseudoline arrangement.

SPQR trees are divided into four different cases (represented by the initials S, P, Q,
and R) and our proof follows the same case analysis, in each case showing that the
properties at each node follow from the same properties at the descendant nodes. We
omit the details of each case due to lack of space. g

Theorem 3. Given an input graph G, we can determine whether G is the dual of a
weak pseudoline arrangement, and if so construct a face-symmetric planar drawing of
G, in linear time.

Proof. If G is biconnected, we choose a planar embedding of G by Lemma 4. Oth-
erwise, each articulation point of G must be on the outer face of any embedding. We
find biconnected components of G, embed each component by Lemma 4, and verify
that these embeddings place the articulation points on the outer faces of each compo-
nent. We then connect the embeddings together into a single embedding having as its
outer face the edges that are outer in each biconnected component; the choice of this
embedding may not be unique but does not affect the correctness of our algorithm.
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Fig. 8. Face-symmetric planar drawings of three irregular media.

Once we have an embedding of G, we must verify that we have the dual of a weak
pseudoline arrangement and construct a face-symmetric planar drawing. We first make
sure all faces of G are even, and apply Lemma 1 to construct an arrangement of curves 4
dual to G. We test that 4 has no closed curves, then apply the construction of Lemma 3
to produce vertex placements for a drawing of G, test for each edge of G that the end-
points of that edge are placed at unit distance apart with the expected slope, and test that
each internal face of G is drawn as a correctly oriented strictly convex polygon. If our
input passes all these tests we have determined that it is the dual of a weak pseudoline
arrangement and found a face-symmetric planar drawing. g

Our actual implementation is based on a simpler but less efficient algorithm that
uses the known medium structure of the input to construct the dual weak pseudoline ar-
rangement one curve at a time, before applying the construction of Lemma 3 to produce
a face-symmetric planar drawing from the weak pseudoline arrangement. Examples of
drawings produced by our face-symmetric planar drawing code are shown in Figure 8.

S Implementation and Examples

We implemented our algorithms in Python, with drawings output in SVG format. Our
code allows various standard combinatorial media (such as the collection of permuta-
tions on n items) to be specified on the command line; irregular media may be loaded
from a file containing hypercube or lattice coordinates of each state. We have seen al-
ready examples of our implementation’s output in Figures 4, 6, 8, and 9. Figure 10
provides additional examples. All figures identified as output of our code have been left
unretouched, with the exception that we have decolorized them for better printing.

6 Conclusions and Open Problems

We have shown several methods for drawing the state transition graphs of media. There
are several interesting directions future research in this area could take.
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Fig.9. Lattice drawings of four irregular media with three-dimensional lattice embeddings,
from [6]. The bottom left drawing is of a medium isomorphic to the weak ordering medium

shown in Figure 10(right).

Fig. 10. Media defined by orderings of n-item sets. Left: Lattice drawing of total orderings (per-
mutations) on four items. Center: Projected three-dimensional lattice drawing of partial orderings
on three items. Right: Face-symmetric planar drawing of weak orderings on three items.

— If a three-dimensional lattice embedding can be projected perpendicularly to the
vector (1,1,1) (or more generally (+1,+1,+1)) without placing two vertices in
the same point, the projection produces a planar drawing with all edges having
equal lengths and angles that are multiples of 60° (e.g., Figure 10, center). Our
lattice dimension algorithm can find a three-dimensional embedding, if one exists,
and it is trivial to test the projection property. However, a medium may have more
than one three-dimensional embedding, some of which have the projection property
and some of which don’t. For instance, the medium in the lower right of Figure 9 is
the same weak ordering medium as the one in Figure 10(right), however the former
drawing is from a lattice embedding without the projection property. Is it possible to
efficiently find a projectable three-dimensional lattice embedding, when one exists?
More generally, given an arbitrary dimension lattice embedding of a medium, can
we find a planar projection when one exists?

— Hypercubes have projected lattice drawings with O(n?) area and unit separation
between vertices and nonadjacent edges. Can similar area and separation bounds
be achieved for projected lattice drawings of more general classes of media?

— Our lattice and face-symmetric planar drawings have several desirable qualities;
for instance, all edges corresponding to a single token are drawn as line segments
with the same slope and length, and our lattice drawings have good vertex-vertex
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and vertex-edge separation. However, we have not seriously examined the extent
to which other important graph drawing properties may be achieved. For instance,
d-dimensional hypercubes (and therefore also media with up to 2d tokens) may be
drawn with geometric thickness [5] at most [d/3] (Figure 4, right) however our
lattice projection methods achieve geometric thickness only [d/2] while the only
way we know how to achieve the better [d/3] bound is to use a more irregular
drawing in which edges coming from the same token are no longer parallel.
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Abstract. We combine the idea of confluent drawings with Sugiyama
style drawings, in order to reduce the edge crossings in the resultant
drawings. Furthermore, it is easier to understand the structures of graphs
from the mixed style drawings. The basic idea is to cover a layered graph
by complete bipartite subgraphs (bicliques), then replace bicliques with
tree-like structures. The biclique cover problem is reduced to a special
edge coloring problem and solved by heuristic coloring algorithms. Our
method can be extended to obtain multi-depth confluent layered draw-
ings.

1 Introduction

Layered drawings visualize hierarchical graphs in a way such that vertices are ar-
ranged in layers and edges are drawn as straight lines or curves connecting these
layers. A common method was introduced by Sugiyama, Tagawa and Toda [25]
and by Carpano [4]. Several closely related methods were proposed later (see
e.g. [12,19,15,22,6,20,11].)

Crossing reduction is one of the most important objectives in layered draw-
ings. But it is well known that for two-layer graphs the straight-line crossing
minimization problem is NP-complete [14]. The problem remains NP-complete
even when one layer is fixed. Jiinger and Mutzel [16] present exact algorithms for
this problem, and perform experimental comparison of their results with various
heuristic methods. Recently new methods related to crossing reduction ([26,1,
8,23,10]) have been proposed.

However when the given two-layer graph is dense, even in an optimum solu-
tion, there are still a large number of crossings. Then the resulting straight-line
drawing will be hard to read, since edge-crossing minimization is one of the most
important aesthetic criteria for visualizing graphs [24]. This give us a motivation
for exploring new approaches to reduce the crossings in a drawing other than
the traditional methods.

In addition, it is sometime of interest to find the bicliques between two layers.
For example in the drawing of a call graph, it is interesting to find out which set

* Work by the first author is supported by NSF grant CCR-9912338. Work by the sec-
ond and the third author is supported by NSF grants CCR-0098068, CCR-0225642,
and DUE-0231467.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 184-194, 2004.
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of modules are calling a common set of functions and what are those common
functions. Call graphs are usually visualized as layered drawings. However it is
hard to learn this information from layered drawings by traditional Sugiyama-
style approaches, especially when the input graphs are dense.

Our previous work [5] introduces the concept of confluent drawings. In [5]
we talk about the confluent drawability of several classes of graphs and give a
heuristic for finding confluent drawings of graphs with bounded arboricity. In
this paper we experiment with an implementation of confluent drawings for the
layered graphs. However we relax the constraint of planarity and allow crossings
in the drawings, while it is not allowed to have crossings in a confluent drawing
in our previous definitions.

We are aware of the Edge Concentration method by Newbery [21]. Edge Con-
centration and our method share a same idea of covering by bicliques. But in
Newbery’s method, dummy nodes (edge concentrators) are explicit in the draw-
ing and treated equally as original nodes, which causes the nodes’ original levels
to change. In our method dummy nodes are implicit in the curve representation
of edges and the original levels are preserved. Furthermore, our method uses a
very different algorithm to compute the biclique covers.

2 Definitions

In this section we give definitions for confluent layered drawings. The definitions
almost remain the same as in our previous confluent drawing paper, except that
the planarity constraints are dropped. Fig. 1 gives an idea of confluent layered
drawings. Edges in the drawing are represented as smooth curves.

A curve is locally monotone if it contains no sharp turns, that is, it contains
no point with left and right tangents that forms a angle less than or equal to 90
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Fig. 1. An example confluent layered drawing.
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degrees. Intuitively, a locally-monotone curve is like a single train track, which
can make no sharp turns. Tracks are the union of locally-monotone curves. They
are formed by merging edges together.

A drawing A formed by a collection of tracks on the plane is called a confluent
drawing for an undirected graph G if and only if

— There is a one-to-one mapping between the vertices in G and A, so that,
for each vertex v € V(QG), there is a corresponding vertex v’ € A, and all
vertices of G are assigned to distinct points in the plane.

— There is an edge (v;,v;) in E(G) if and only if there is a locally-monotone
curve e’ connecting v; and v} in along tracks in A.

The directed version of a confluent drawing is defined similarly, except that
in such a drawing the locally-monotone curves are directed and in every track
formed by the union of directed curves, the curves must be oriented consistently.

Self loops and parallel edges of G are not allowed in our definitions, although
multiple ways of realizing the same edge are allowed. Namely, for an edge in
the original graph, there could be more than one locally monotone path in the
drawing corresponding to this edge.

We apply the idea of confluent drawings on layered graphs. Particularly, in
the resultant confluent drawing, we replace bicliques in a biclique cover of a two-
layer graph G = (U, L, E) by tree-like structures and draw them with smooth
curves. As we can see in Fig. 1, our method can greatly reduce the crossings in
the drawings of dense bipartite graphs. Additionally, nodes of a biclique can be
easily identified by following the smooth curve paths.

Since it is valid to have more than one confluent path between two nodes u
and [ in the confluent drawing when (u,l) € FE, as defined above, it is straightfor-
ward that a confluent layered drawing can be obtained by computing a biclique
cover C of G, then visualizing each biclique in C as a tree-like structure. We
show how to compute a biclique cover of G in the next section.

3 Computing Biclique Cover of Bipartite Graphs

Fishburn and Hammer [9] show that the biclique cover problem is equivalent to
a restricted edge coloring problem. This coloring is not much useful for general
graphs. However, it has a nice result for triangle-free graphs, and since bipartite
graphs belong to the class of triangle-free graphs, an immediate result is that
this type of edge coloring can be used to find a biclique cover of a bipartite
graph. This result is useful in layered drawing because the edges between any
two layers in such a drawing induce a bipartite subgraph.

An edge coloring ¢: E — {1,2,...,k} for G = (V, E) is simply-restricted if
no induced K3 is monochromatic and the vertex-disjoint edges in an induced
P, or Cf have different colors. Fig. 2 shows the conditions that such induced
subgraphs of a simply-restricted edge coloring must satisfy.

Let d(G) denote the bipartite dimension of G, which is the minimum cardi-
nality of a biclique cover of G. Let xs(G) be the chromatic number of a simply-
restricted edge coloring of G. x5(G) is 0 if E = §); otherwise, it is the minimum &
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Fig. 2. The required conditions of induced subgraphs of a simply edge coloring.

for which G has a simply-restricted coloring ¢: E «— {1,2,...,k}. The following
theorem states the equivalence of d(G) and xs(G) for triangle-free graphs.

Theorem 1 Fishburn and Hammer [9])
d(G) = xs(Q) for every triangle-free graph.

Let E; be the set of edges with color j in a simply-restricted edge coloring
for a triangle-free graph GG. As we can see in the second part of the proof of The-
orem 1 (omitted here, included in the full version of this paper), E; is included
in the edge set of a biclique subgraph of G. Therefore, every edge set of a single
color induces a biclique subgraph of G. By computing a simply restricted edge
coloring we can get a biclique cover of G.

Because it is known that the problem of COVERING BY COMPLETE BIPAR-
TITE SUBGRAPHS is NP-hard (Garey and Johnson [13] GT18), it is unlikely to
have efficient optimization algorithms for finding the minimum biclique cover of
a bipartite graph. Thus we only focus on fast heuristics for computing a near-
optimal biclique cover.

The simply-restricted edge coloring problem can be transformed into a vertex
coloring problem. So, instead of devising a special algorithm for the simply-
restricted edge coloring, we can choose to use one of the existing vertex coloring
algorithms. Well known heuristic algorithms for vertex coloring include Recursive
Largest First (RLF) algorithm of Leighton [18], DSATUR algorithm of Brélaz [2].
For more about heuristics on graph coloring, see Campers et al. [3].

The above method of computing a biclique cover by coloring doesn’t distin-
guish between two kinds of bicliques: K, and K ,, where p,q,r > 1. So if
we are more interested in finding out the set of common callers and callees, we
would need to give higher priority to K, 4 than K; , when covering the edges.

After the biclique cover of the two-layer bipartite graph is computed, each
biclique in the cover is drawn as a tree-like structure in the final drawing. Doing
this repeatedly for every two adjacent layers, we can get the drawings for multi-
layer graphs.

The time complexity of the algorithm depends on the coloring heuristic sub-
routines. For a graph with a set of vertices V', both the RLF algorithm and the
DSATUR algorithm run in worst case O(|V|3) time. There are some other faster
coloring heuristics with O(|V|?) time, but their output qualities are worse. Sup-
pose we have a two-layer bipartite graph G = (V, E). The transformation from
the simply-restricted edge coloring into vertex coloring version takes O(|E|2)
time. Using RLF or DSATUR costs O(|E|?), thus the total time is O(|E|?).
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4 Layout of the Bicliques

We described how to compute a biclique cover of a two-layer bipartite graph in
the previous section. Now it is time to show how the bicliques are laid out. In
the confluent layered drawings, each biclique in the biclique cover is visualized
as a tree-like structure, as in Fig. 1. Now here are the questions. What are the
best positions to place the centers of the tree-like structures? How to arrange
the curves so that they form confluent tracks defined in Section 27

4.1 Barycenter Method to Place Centers

In the case where the positions of nodes in the upper level and lower level are
fixed, one would like to put the center of a tree to the center of the nodes
belonging to the corresponding biclique. For example, in Fig. 3, the drawing on
the left is visually better than the drawing on the right. Firstly it has better
angular resolution and better edge separation. Secondly it is easier for people to
see the biclique as a whole. Then the next question is: what does the center of
those nodes mean? In our method, the natural candidate position for a center
of the tree-like structure is the barycenter, i.e., the average position, of all the
nodes in this biclique.

It looks bad too if these tree centers stay very close to each other. So we need
to specify a minimum separation between two centers.

The above requirements can be formulated into constraints:

1. A tree center stays within the range of its leaves.
minw;; < x; < max i,
J J
where x; is the z-coordinate of the i*" tree center ¢;, and 245 is the z-
coordinate of the jt leaf of ¢;.

2. The distance between any two centers is greater than or equal to the mini-

mum separation. S
Yi# 7, |z; — ;] >0

where § is some pre-specified minimum distance.

Under these constraints, we want a tree center to stay as close as possible to
the barycenter of all its leaf nodes. i.e., we want to minimize ), (z; —avg;(z))?,

Fig. 3. Good-looking tree and bad-looking tree with centers placed differently.
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subject to the above constraints. This is a Quadratic Programming problem, and
unfortunately it is NP-hard (Garey and Johnson [13], MP2).

Since it is unlikely to have efficient algorithms for solving this optimization
problem, and a small deviation of a tree center from the perfect position won’t
cause too much displeasure, we use instead a very simple heuristic method to
place the tree centers. We first assign to each tree center the z-coordinate of the
barycenter of its leaves. Then we sort tree centers by their z-value. The third step
is to try to place these tree centers at their xz-coordinates one by one. Assume
we have k centers to place. Start from the ;! center, where j = LgJ Place
center j at its barycenter, then try to place centers one by one in the following
order: j —1,7—2,...,1. If constraint 2 is violated, the violating center is placed
the minimum distance away from the previous placed center. Tree centers to the
right of center j are placed similarly in the order of j+1,5+2,..., k. It is easy to
see that the running time of the barycenter method is dominated by the sorting
of the tree centers.

4.2 Placing Tree Centers to Reduce Crossings

Alternatively, one might want to place these centers on positions such that the
total number of edge crossings is as few as possible, especially in the case where
nodes of upper level and lower level are not fixed. If this is the main concern, we
can place the tree centers in another way in order to reduce the edge crossings.

After the biclique cover of a two-layer graph G = (U, L, E) is computed, we
construct a new three-layer graph G’. We treat these tree centers as nodes of a
middle layer. The set of vertices includes three levels: an upper layer U' = U, a
middle layer M consisting of tree centers, and a lower layer L’ = L. The edges
of G’ are added as follows: for each biclique B; in the biclique cover, add one
edge between the tree center node m; and each node u € U that belongs to B;.
Similarly add one edge between m; and each node [ € L that belongs to B;.

Now a two-layer graph of the original problem is transformed into a three-
layer graph G’. Straight-line crossing reduction algorithms can be applied on G’.
After the crossing reduction, we obtain the ordering of nodes in each of the three
layers. The orderings will be used to compute the positions of nodes and tree
centers in the final drawings. Note that when crossing reduction method is used
to place tree centers, it is not always true that a tree center always stays within
the z-range of its leaves, i.e., bad centers like the one in Fig. 3 could appear.

Here we are using straight-line edge crossing reduction algorithms for our
confluent layered drawings with curve edges. Readers may suspect the equality
of the crossing number in the straight-line drawing for the new three-layer graph
G’ and the crossing number of our curve edge drawings. We will confirm this
equality after we describe the generation of curves in the next section.

4.3 Curves

After the positions of tree centers (and the positions of nodes if not given) are
computed, we are now ready to place the confluent tracks for the edges.
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We use Bézier curves to draw the curve edges in confluent drawings. Given
a set of control points Py, P, ..., P,, the corresponding Bézier curve is given by

C(u)=> PiBrn(u) 0<u<l, (1)
k=0

where By, (u) is a Bernstein polynomial

n!

AR =R uk(l - u)"71C ) (2)

Bkm(u) =

Bézier curves have some nice properties that are suitable for our confluent
tracks. The first property is that a Bézier curve always passes its first and last
control point. The second is that a Bézier curve always stays within the convex
hull formed by its control points. In addition, the tangents of a Bézier curve at
the endpoints are P, — Py and P,, — P,,_1. Thus it is easy to connect two Bézier
curves while still maintaining the first order continuity: just let P,, = P and let
the control points P,_1,P, = Pj,and P| co-linear.

The confluent track between each node and the tree center is drawn as a
Bézier curve. In our program we use cubic Bézier curves (n = 4 in Equation 2).
Each such a curve has four control points, chosen as shown in Fig. 4.

More formally, assume we are given the following input for a biclique B;:
Yu,Yi, and y. are the y-coordinates of the upper, lower, and tree center levels,
respectively. x; is the z-coordinate of the tree center for B;. x;;’s are the x-
coordinates of nodes in biclique B;. Let Ay be a distance parameter that controls
the shape of the curve edges. When node j is in the upper level, the four control
points are Py = (Zij,yu), P1 = (zij, Yu + Ay), Po = (2;,y. — Ay), and P3 =
(zi,yc). When node j is in the lower level, the four control points are Py =
(i, Ye), P = (i, ye + Ay), P2 = (zij,y1 — Ay), and P3 = (z45, y1).

From Equation 1, it is not hard to verify that in a confluent layered drawing,
two Bézier curves cross each other if and only if the corresponding straight-line

Fig. 4. Bézier curves.
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edges (dashed lines in Fig. 4) of the bicliques cross each other, given that the
control points are chosen as above. This should clear the doubt that appears at
the end of Section 4.2.

5 Multi-depth Confluent Layered Drawings

So far we have introduced the method of confluent layered drawings: replacing
subsets of edges in a two-layer graph by tree-like structures. This method can
be extended to obtain drawings that display richer information. The extended
drawings are called multi-depth confluent layered drawings.

The idea is as follows: after the biclique cover for a two-layer graph G =
(U, L, E) is computed, the tree center nodes are viewed as a middle layer M,
and a new three layer graph G’ = (U, M, L, E') is constructed as in Section 4.2.
The same biclique cover algorithm is then applied to G’ twice, once for the
subgraph induced by U U M; once for the subgraph induced by M U L. By
applying this approach recursively, we get biclique covers at different depth.
In the final drawing, only biclique covers at the largest depth are replaced by
sets of tree-like structures. The final drawing is a multi-depth confluent layered
drawing. The drawings discussed before this section are all depth-one (confluent
layered) drawings.

In a depth-one drawing, we compute a biclique cover and lay out the biclique
cover. In general, for a depth-i drawing, we need to compute 2° — 1 biclique
covers and 2°~! biclique covers are laid out.

An example drawing of depth-two is shown in Fig. 5.

Because the control points for the Bézier curves are chosen in a way such
that the tangents at the endpoints of the Bézier curves are all vertical, it is
guaranteed that all segments of a path are connected seamlessly and smoothly in

Fig. 5. Depth-two confluent drawing (on same input as the drawing of Fig. 1).
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multi-depth drawings. Readers probably have already noticed some wavy edges
in the drawing of Fig. 5. It is because a single edge biclique (K7,1) is also drawn
as two Bézier curves. We offer an option in our program to do a simple treatment
for these single edge bicliques: draw them as a single Bézier curves instead of two.
But after this special treatment is applied, the crossing property is not preserved
any more. That means two curve segments could have crossing(s), even though
their corresponding edges in G’ don’t cross each other in a straight-line drawing.

Multi-depth drawings may further reduce the number of crossings. They also
show a richer structure than the depth-one drawings, which only display bi-
cliques. For example we can observe relationships between bicliques in a depth-
two confluent layered drawing. However higher depth requires more computa-
tions of biclique covers, and generates more dummy centers. The former leads
to the increasing of time and space complexity, while the latter could result in
a more complicate confluent drawing. We feel that drawings with depth higher
than two are not very practically useful.

6 Real-World Examples

We list two example drawings of real-world graphs in Fig. 6. We implemented the
algorithm of computing biclique cover using the RLF heuristic. For the center
placement we implemented the barycenter method. We assume that besides the

[esiopte]| [aetoptn] [ustmcinacsdion] [ mame | ] [ — fypest | [Josmeinacrsysnt | [maverse<]

traverse.o

(a) “Derives” relation for the Shar program

‘ cmdsh ‘ | fust/include/strings.h ‘ | /usr/i.nclude/ctypc.h| ‘ fust/include/stdio.h ‘ ‘ cIools.hH texchkh ‘ | texchars.h

‘ ctools.c | ‘ texchk ¢ ‘ ‘ verbatim ¢ ‘ ‘ eITors.c | ‘ texchars ¢

(b) “Includes” relation for the Texchk program

Fig. 6. Confluent drawing for examples of Newbery [21].
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two-layer graph, the input also includes the positions of (fixed) nodes in upper
and lower levels (possibly output by other algorithms that take labels and other
information into account.) The result drawing is written into a file of DOT
format [17]. The neato program in the Graphviz package [7] is then used to
generate the graphic file in a desired format. Fig. 6 (a) is a depth-one drawing.
Fig. 6 (b) is a depth-two drawing with the special smoothing treatment applied.

7 Conclusions and Acknowledgments

In this paper we introduce a new method — confluent layered drawing, for visual-
izing layered graphs. It combines the layered drawing technique with the relaxed
confluent drawing approach. There are still interesting open problems, e.g., how
to test whether a layered graph has a crossing-free confluent layered drawing?
How to minimize the crossing of the drawing among all possible biclique covers?
It is also useful to investigate better ways for visualizing confluent tracks.

We would like to thank anonymous referees for their helpful comments.
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Abstract. We present an O(n) time algorithm for simultaneous em-
bedding of pairs of planar graphs on the O(n?) x O(n?) grid, with at
most three bends per edge, where n is the number of vertices. For the
case when the input graphs are both trees, only one bend per edge is
required. We also describe an O(n) time algorithm for simultaneous em-
bedding with fixed-edges for tree-path pairs on the O(n) x O(n?) grid
with at most one bend per tree-edge and no bends along path edges.

1 Introduction

Traditional problems in graph drawing involve the layout of a single graph.
Problems in simultaneous graph drawing, involve the layout of multiple related
graphs. Visualization of multiple related graphs, that is, graphs that are defined
on the same set of vertices, arise in many applications. Software engineering,
databases, and social network analysis, are all examples of areas where multiple
relationships on the same set of objects are often studied.

Consider the case where a pair of related graphs is given and the goal is
to visualize them so as to compare the two. If drawings for the two graphs are
obtained independently, there would be little correspondence between the two
layouts, since the viewer has no “mental map” between the two graphs. When
examining a graph the user constructs a mental view of it, for example, using the
positions of the vertices relative to each other. When viewing multiple graphs
the user has to reconstruct this mental view after examining each graph and our
goal should be to aid the user in this reconstruction while providing a readable
drawing for each graph individually.

In simultaneous graph embedding, the vertices are placed in the exact same
locations in all the graphs. Fixing the vertex positions in all the graphs preserves
the mental map, but at the expense of readability of the individual drawings,
if edges are to be drawn with straight-line segments. With this in mind, in this
paper we consider the problem of drawing planar graphs on the same point-set
using few bends. We describe efficient algorithms for simultaneous drawing of
pairs of general planar graphs on small integer grids. We also describe better
results for pairs of trees or tree-path pairs.

* This work is partially supported by the NSF under grant ACR-0222920 and by
ITCDI under grant 003297.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 195-205, 2004.
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1.1 Previous Work

The existence of simultaneous geometric embeddings for pairs of paths, cycles,
and caterpillars is shown in [2]. Counter-examples for pairs of general planar
graphs, pairs of outer-planar graphs, and triples of paths are also presented
there. Modified force-directed algorithms are used in [1,8] to simultaneously
visualize general graphs, while attempting to preserve the user’s mental map
and obtaining readable individual drawings.

A related notion is that of graph thickness [12], defined as the minimum
number of planar subgraphs whose union yields the given graph. If a graph
has thickness two then it can be drawn on two layers such that each layer is
crossing-free and the corresponding vertices of different layers are placed in the
same locations. Geometric thickness is a version of the thickness problem where
the edges are required to be straight-line segments [6]. Thus, if two graphs have
a simultaneous geometric embedding, then their union has geometric thickness
at most two. Similarly, the union of any two planar graphs has graph thickness
at most two. Simultaneous geometric embedding techniques are used in [7] to
show that degree-four graphs have geometric thickness two.

The existence of straight-line, crossing-free drawings for planar graphs is
well known [9, 15, 17]. It is also known that every 3-connected planar graph has
a convex drawing [16]. These techniques, however, do not guarantee anything
about the resolution of the drawing and thus are not well-suited for automated
graph drawing. The vertex resolution problem is addressed in [5,14] where it is
shown that any planar graph can be drawn with straight-lines and no crossings
on a grid of size O(n) x O(n).

Simultaneous drawing of multiple graphs is also related to the problem of
embedding planar graphs on a fixed set of points in the plane. Several variations
of this problem have been studied. If the mapping between the vertices V' and
the points P is not fixed, then the graph can be drawn without crossings using
two bends per edge in polynomial time [11]. However, if the mapping between V'
and P is fixed, then O(n) bends per edge are necessary to guarantee planarity,
where n is the number of vertices in the graph [13].

1.2 Our Results

Formally, the drawing D of a graph G = (V, E) is a function that maps each
vertex u € V to a distinct point D(u) in the plane, and each edge (u,v) € E
to a simple Jordan curve D(u,v) with endpoints D(u) and D(v). The problem
of simultaneously embedding two planar graphs Gy, G2 is the problem of find-
ing drawings Dy, Dy with corresponding vertices of G; and G2 mapped to the
same points in the plane. The following are three variations of the simultaneous
embedding problem for pairs of planar graphs:

Definition 1. Given two planar graphs G; = (V, Ey) and G2 = (V, Es) si-
multaneous geometric embedding of G1 and G2 is the problem of finding plane
straight-line drawings D1 and Dy of G1 and (s, respectively, such that every
vertex is mapped to the same point in the plane in both Dy and Ds.
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Definition 2. Given two planar graphs G; = (V,Ey) and G2 = (V, Es) si-
multaneous embedding of G1 and Go with fized edges is the problem of finding
plane drawings D; and Ds of G; and (s, respectively, such that every vertex
is mapped to the same point in the plane in both D; and D5 and every shared

edge e € G1 N G> is represented with the same simple open Jordan curve in Dy
and Ds.

Definition 3. Given two planar graphs G; = (V, E1) and Go = (V, E3) simul-
taneous embedding of G1 and G is the problem of finding plane drawings D1
and Ds of G; and Gs, respectively, such that every vertex is mapped to the same
point in the plane in both Dy and Ds.

The definitions are inclusive in the given order: simultaneous geometric em-
bedding is a special case of simultaneous embedding with fixed edges, which is
in turn a special case of simultaneous embedding.

In Section 2 we present a simple non-existence proof for simultaneous geo-
metric embedding of a pair of graphs. Next, we present an O(n) time algorithm
for simultaneous embedding of pairs of planar graphs on the O(n?) x O(n?) grid,
with at most three bends per edge, where n is the number of vertices. For the
case when the input graphs are both trees, we only need one bend per edge. We
also describe an O(n) time algorithm for simultaneous embedding with fixed-
edges for tree-path pairs on the O(n) x O(n?) grid with at most one bend per
tree-edge and no bends along the path edges. In Section 3 we briefly describe
the implementation of these algorithms, show some of the resulting layouts, and
conclude with several open problems.

2 Simultaneous Embedding

Simultaneous geometric embeddings are easy to find on small integer grids for
pairs of paths, pairs of cycles, pairs of caterpillars, and others [2]. For pairs of
general planar graphs, and even for pairs of outer-planar graphs, simultaneous
geometric embeddings do not always exist. This is the main motivation for relax-
ing the conditions of simultaneous geometric embeddings, to just simultaneous
embedding, by dropping the straight-line edge constraint. Under these weaker
constraints, we can obtain simultaneous drawings with few bends per edge. Such
drawings are also useful for pairs of trees, as it is not known whether simultane-
ous geometric embedding of pairs of trees is always possible.

2.1 Simultaneous Geometric Embedding

Here we briefly describe a simple case of a pair of planar graphs that do not
admit simultaneous geometric embedding.

Theorem 1. There exists a planar graph G and a path P such that there is no
simultaneous geometric embedding of G and P.
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Fig. 1. Planar graph G and path P that do not allow a simultaneous geometric em-
bedding.

Proof Sketch: Consider graph G and path P as shown in Fig. 1. Let G’ be the
subgraph of G induced on vertices {1,2,3,4,5}, and G” be the subgraph of G
induced on vertices {2,6,7,8,9}. Since G is 3-connected fixing the outer-face
fixes an embedding for G. With the given outer-face of G, the path P contains
two crossings: one involving (2, 4), and the other one involving (6,8). Graph G’
has six faces and unless we change the outer-face of G’ such that it contains
the edge (1,3) or (3,5), the edge (2,4) is involved in a crossing in the path.
Similarly for G”, unless we change its outer-face such that it contains (2,7) or
(7,9), the edge (6, 8) is involved in a crossing in the path. However G’ and G” do
not share any faces and removing both crossings depends on taking two different
outer-faces, which is impossible. Thus, regardless of the choice for the outer-face
of G, path P contains a crossing. g

2.2 Relaxing the Constraints

While some classes of planar graphs allow simultaneous geometric embedding,
there are other classes that do not, and still others for which it is not known
whether simultaneous geometric embeddings exist. Since the latter two categories
contain a large number of planar graph classes (trees, outer-planar graphs, gen-
eral planar graphs), it is natural to look for simultaneous drawings with weaker
constraints. One possible solution for larger classes of graphs is to relax the
constraints on the edges. Instead of restricting the edges to be straight-line seg-
ments we allow each edge to be drawn as a sequence of straight-line segments.
Recall that such embeddings are called simultaneous embeddings (rather than
simultaneous geometric embeddings).

Note that it is trivial to find a simultaneous embedding of any two planar
graphs, if we are willing to accept a large number of bends per edge. Given a
point-set P of size n in the plane and a planar graph G with n vertices, together
with a one-to-one mapping between the vertices of G and the points in P, we
can find a crossing-free drawing of G on P using edges with bends [13]. This
allows us to embed any number of planar graphs simultaneously. However, the
resulting drawings contain O(n) bends per edge. Next, we describe methods to
simultaneously embed any two planar graphs so that each edge has at most three
bends.
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Fig.2. (a) H, and H> drawn simultaneously. (b) Only the edges of G are shown.
Edges not in the hamiltonian cycle have the same slopes as the outermost edge.

2.3 Simultaneous Embedding with Few Bends

Since in this version of the problem we no longer insist on straight-line edges, the
problem of simultaneously embedding two graphs boils down to finding a point-
set in the plane and a mapping between the vertices of graphs and the points,
with as few bends per edge as possible. The following theorem summarizes our
results for pairs of general planar graphs.

Theorem 2. Given two planar graphs G1 and Gy and a mapping between their
vertices, we can simultaneously embed G1 and Ga using at most three bends per
edge. The resulting drawing requires an integer grid of size O(n?) x O(n?) such
that each vertex is placed on a grid point, and the algorithm requires O(n) time,
where n is the number of vertices.

Proof Sketch: Vertex Placement: We make use of two techniques described in [2,
11]. Initially, we assume the graphs are 4-connected. We show how to remove
this assumption later in the proof. First we find a hamiltonian cycle H; of G
and a hamiltonian cycle Hs of G5. We can do this in linear time using the
algorithm of [4]. Starting at a random vertex in H; we traverse its vertices,
assigning increasing z—coordinates to each vertex visited. Starting at a random
vertex in Ho we traverse its vertices, assigning increasing y—coordinates to each
vertex visited. Not considering the final edges enclosing the cycles, this gives us
an xz—monotone path for H; and a y—monotone path for Hs; see Fig. 2(a).
Since both paths are monotone the edges of the paths are crossing-free. Let
6 be the largest slope of the edges on the path defined by H;. We complete the
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Fig. 3. (a) Removing separating triangles. (a) Edge e is part of the separating triangle
(u, v, w). The two faces containing e are (u, v, s) and (u, v, t). (b) The separating triangle
is removed by deleting e, introducing z and connecting it to u, v, s, and t.

drawing of the cycle H; by drawing the final edge between the leftmost vertex
and the rightmost vertex. It is drawn with two segments such that the slope
of the initial segment starting at the leftmost vertex is ¢’ and the slope of the
second segment ending at the rightmost vertex is —d’, where ¢ is slightly larger
than §. Since (G; is hamiltonian, the cycle H; divides the edges into two groups:
inside and outside edges (with respect to Hi). Then each of the inside edges
is drawn with two line segments with slopes ¢’ and —¢’ on the inside of Hj.
Similarly, the outside edges are drawn with the same slopes on the outside of
H,. Note that some edges will overlap but postprocessing rotation can be used
to remove the overlaps; see Fig. 2(b).

The edges of G5 are handled in the same way with respect to Hs. It is easy to
see that the vertex set requires grid size n x n. The overall area of the drawing
is larger, as the bend points lie outside the original grid. It is easy to show,
however, that the entire drawing fits inside an O(n?) x O(n?) grid.

Making the Graphs 4-Connected: For the case when the input graphs are not
4-connected, we use techniques introduced in [11] to augment them. Given a 3-
connected planar graph G we create a 4-connected planar graph by introducing
new vertices. This is done by removing all the separating triangles in G. A
separating triangle is a cycle of length 3 such that the removal of the vertices
of the cycle disconnects GG. Separating triangles of G can be easily found by the
algorithm of [3]. Let e = (u,v) be an edge of a separating triangle in G such
that e is adjacent to the faces (u,v,s) and (u,v,t); see Fig. 3. We remove the
separating triangle by inserting a dummy vertex z on e, deleting the edge e,
and introducing four new edges: (u, 2), (v, 2), (s, 2), (¢, z). The newly introduced
vertex z is not part of any separating triangle, so each time we introduce such a
vertex we decrease the number of separating triangles. Doing the same operation
on all the separating triangles gives us a 4-connected planar graph.

Once G and G2 have been augmented to 4-connected graphs, we obtain
the hamiltonian cycles H; and Hy of G; and G3. We augment the edges of
H, with the extra vertices of G; and augment the edges of H; with the extra
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vertices of Go. The placement of the hamiltonian cycles and the drawing of
the remaining edges is done as before. After finishing the placement we treat the
dummy vertices as bend points and ignore the edges inserted in the augmentation
phase. As a result, an edge e = (u,v) that got split with a dummy vertex z ends
up having three bend points: one between u and z, one at the location of z, and
finally one between v and z. As there are O(n) dummy vertices, the bounds for
the integer grid remain unchanged.

Running Time: The two non-trivial operations are finding the separating tri-
angles and finding the hamiltonian cycles. Finding the separating triangles and
making the graphs 4-connected takes linear time [3]. A Hamiltonian cycle in a
4-connected planar graphs can be found in linear time [4]. a

The corollary below follows from the above theorem by fixing the slopes of
all the edges and refining the grid.

Corollary 1. Given two planar graphs G1 and Go and a mapping between their
vertices, we can simultaneously embed G1 and Ga using at most three bends per
edge on an integer grid of size O(n®) x O(n3), with all the vertices and bend-
points at grid-points.

Proof Sketch: Consider the original n x n grid where H; and Ha are placed.
Let the slope 6 = n, where § and —9 are the slopes of all edge segments among
edges drawn with bends. Let e = (u,v) € Gy such that u is placed to the left of
v and e is drawn with a bend point p. Let xg4;st, Yaist be the xz-coordinate and
y-coordinate distances between w and v. The z-coordinate distance between u
and the point p is (n X xaist — Yaist)/2n. If we place a 2n x 2n grid inside each
unit square of the original grid, then the z-coordinate distance between u and p
is an integer. Since the slope of the segment up is n, the y-coordinate distance
between u and p is also an integer, and p is on a grid point. Similar argument
applies to the edges of G as well. The final grid area is O(n?®) x O(n?). O

If both input graphs are trees then it is easy to reduce the number of bends
required to only one per edge. The Theorem below follows from Theorem 2 and
the above corollary.

Theorem 3. Given two trees Th and Ts and a mapping between their vertices,
they can be simultaneously embedded in linear time, using at most one bend per
edge, on an integer grid of size O(n?) x O(n?) (or O(n®) x O(n?), if both the
vertices and bend-points are on grid points).

2.4 Simultaneous Embedding with Fixed Edges

The algorithm from the previous section simultaneously embeds two planar
graphs with the corresponding vertices mapped on the same positions and thus
preserves the mental map for the vertex set. There is a significant drawback
with respect to preserving the mental map for the edge set. In particular, edges
common to both graphs are drawn differently in the two drawings unless they
happen to be on the paths defined by the hamiltonian cycles.
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Wn W’m

Fig. 4. Constructing the hamiltonian cycle Hr from H; and H>. The common edges
are shown in red.

Simultaneous embedding with fixed edges, requires that shared edges be rep-
resented the same way in both drawings. We describe an algorithm for simulta-
neous embedding with fixed edges for a tree and a path below.

Theorem 4. Given a tree T, a path P, and a mapping between their vertices
they can be simultaneously embedded with fized edges in linear time, using at most
one bend per edge, on an integer grid of size O(n) x O(n?) (or O(n?) x O(n?),
if both the vertices and bend-points are on the grid).

Proof Sketch: The main idea is the same as that in Theorem 2, except that
we ensure that the edges common to both 7" and P belong to the hamiltonian
cycle for the tree. Then the path and the hamiltonian cycle have a simultaneous
geometric embedding. The rest of the tree edges are routed as before using one
bend per edge, thus yielding a simultaneous embedding with fixed edges for T
and P.

Let E7 p be the set of edges common to both T" and P. In order to obtain
a hamiltonian cycle for the tree T" we augment it with edges until the resulting
graph T’ has a hamiltonian cycle Hy that contains all edges that are in common
with the path. We use a recursive divide-and-conquer procedure to construct Hrp:
the input to the recursive call is a subtree T" and the output is the hamiltonian
cycle Hy and the modified graph T”.

The base case for the recursion is a tree with just one node, T = {u}. In
this case, let Hr = (u,u), and T’ = T. For all other cases, we take an edge
e = (u,v) € Epp from T if such an edge exists. If not we take an arbitrary
edge e = (u,v) € T. Let Ty, T5 be the two trees obtained after the removal of e
from T'. Assume we can construct hamiltonian cycles Hy, and Hs of T7 and T5,
respectively. Let 77 and T3 be the graphs that we get after these constructions,
corresponding to 77 and Ts, respectively. We merge the two subgraphs into the
new graph 7" = T{ U T, by adding e to T".

In order to combine the hamiltonian cycles of the two subgraphs into a hamil-
tonian cycle for union, we need to add one more edge between the two subgraphs
(as the edge e is a bridge). We add an edge between a neighbor e, of u to a
neighbor vy,e,,, of v and combine the two cycles by dropping the edges (u, tnew)
and (v, Upew)-

Let Hy = (u,w1,wa,...,wy,u) and Hy = (v,wi,wh,...,w), v). If T] has
only one vertex u we assign Upew = U, and if it has two vertices w and v’ we
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assign Upew = u'. We do similar assignments for v,e, if T3 has one or two
vertices. In order to find Upew, Unew for all other cases, we check the first and
the last edges of the hamiltonian cycles.

Since P is a path, either (u,w:1) ¢ Er p, or (u,w,) ¢ Er p (otherwise, vertex
u must have degree greater than 2 in the path). Without loss of generality,
assume (u,w1) ¢ Epp. We assign tney = wi. The same holds for Hs, that
is, either (v,w}) ¢ Ep p or (v,w),) ¢ Ep p. Without loss of generality, assume
(v,w)) ¢ Epp. We assign vpe, = wj. We insert edge (Unew,Vnew) in T, if
€ # (Unew, Unew)- As a result of this insertion the new hamiltonian cycle becomes,

’ ’ ’ . .
Hy = (u,v,w),,wh, _1,..., W, w1, Ws, ..., w,,u); see Fig. 4.

Planarity: The above recursive procedure augments the tree T' to a graph T” that
has a hamiltonian cycle which contains all the edges that 7" has in common with
the path P. We still need to show that the resulting graph 7" is planar. Recall
the recursive procedure above and let us assume that 7] and T, are planar.
Then there exists a planar embedding for T} so that the edge (u,w;) is on the
outer-face and a planar embedding for T3 so that the edge (v, w}) is on the outer-
face. Since all the vertices u, w1, v, w] are on the outer-faces of their graphs, the
inserted edges (u,v) and (w1, w}) do not have any crossings with the edges of
T| and T4. The resulting graph T’ is planar, and the resulting embedding is a
planar embedding.

Running Time: We only need to show that the hamiltonian cycle construction
takes linear time, since the rest of the algorithm is the same as the one described
in the previous section. Note that we do not have to explicitly find planar em-
beddings of T] and Tj at each level of the recursion. The planar embedding of
the final graph T’ suffices and we can find it in linear time [10]. The merging
of the two hamiltonian cycles requires constant number of operations at each
recursive step and thus the overall running time of the algorithm is O(n). O

3 Conclusion and Future Work

We implemented the algorithms described above using the LEDA library in C++.
Fig. 5 shows the layouts obtained for a path and tree. All of the algorithms in this
paper rely on the approach of augmenting planar graphs to hamiltonian planar
graphs, so as to obtain simultaneous embeddings and simultaneous embeddings
with fixed edges, using one or three bends. However, for simultaneous embedding
with fixed edges, this technique cannot be extended from the path and tree
case to pairs of trees (and hence cannot be extended to larger classes of planar
graphs). We do not know of an algorithm for fixed-edge simultaneous embedding
of pairs of trees. Neither do we have a counter-example. Similarly, the problem
of simultaneous geometric embedding of pairs of trees is still open.
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Fig. 5. A simultaneous embedding with fixed edges for a tree and a path. The path
(0,1,...,10) is shown on the top left. The tree is shown on the bottom left. Note that
the path and the tree share the edge (0,1). The combined view of the tree and the path
is shown on the right.
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A Fast and Simple Heuristic
for Constrained Two-Level Crossing Reduction

Michael Forster

University of Passau, 94030 Passau, Germany
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Abstract. The one-sided two-level crossing reduction problem is an
important problem in hierarchical graph drawing. Because of its NP-
hardness there are many heuristics, such as the well-known barycenter
and median heuristics. We consider the constrained one-sided two-level
crossing reduction problem, where the relative position of certain vertex
pairs on the second level is fixed. Based on the barycenter heuristic, we
present a new algorithm that runs in quadratic time and generates fewer
crossings than existing simple extensions. It is significantly faster than
an advanced algorithm by Schreiber [12] and Finnocchi [1, 2, 6], while it
compares well in terms of crossing number. It is also easy to implement.

1 Introduction

The most common algorithm for drawing directed acyclic graphs is the algo-
rithm of Sugiyama, Tagawa, and Toda [13]. The vertex set is partitioned into
parallel horizontal levels such that all edges point downwards. For every inter-
section between an edge and a level line, a dummy vertex is introduced that may
later become an edge bend. In a second phase, a permutation of the vertices on
each level is computed that minimizes the number of edge crossings. Finally,
horizontal coordinates are computed, retaining the vertex order on each level.

A small number of crossings is very important for a drawing to be understand-
able. Thus, the crossing reduction problem is well studied. The minimization of
crossings is NP-hard [4, 8], and many heuristics exist for crossing reduction.
Most of them reduce the problem to a sequence of one-sided two-level crossing
reduction problems. Starting with an arbitrary permutation of the first level, a
permutation of the second level is computed that induces a small number of edge
crossings between the first two levels. Then the permutation of the second level
is fixed and the third level is reordered. This is repeated for all levels, alternately
top down and bottom up, until some termination criterion is met.

A simple and efficient heuristic for the one-sided two-level crossing reduction
problem is the barycenter heuristic. For every vertex v on the second level, its
barycenter value b(v) is defined as the arithmetic mean of the relative positions
of its neighbors N (v) on the first level b(v) = m >_ven(v) Pos(v). The vertices
on the second level are then sorted by their barycenter value. In practice this
strategy gives good results, while keeping the running time low. An alternative
is the median heuristic, which works similar but uses median values instead of

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 206-216, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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(a) The constraint is violated. (b) The constraint is satisfied.

Fig. 1. The constrained crossing reduction problem.

the barycenter. The median heuristic can be proven [3,5] to miss the minimum
number of crossings by a factor of at most three. However, in experimental results
[9,10] it is outperformed by the barycenter heuristic.

As a variant of the crossing reduction problem we consider the constrained
one-sided two-level crossing reduction problem. In addition to the permutation
of the first level, some pairs of vertices on the second level have a fixed relative
position. Figure 1 shows a two-level graph with one constraint ¢ = (w,v), visu-
alized by the bold arrow. The constraint means that its source vertexr w must
be positioned on the left of its target vertex v. In Fig. 1(a), the constraint is
violated, and in Fig. 1(b) it is satisfied. Obviously, constraints may increase the
number of crossings, in this case from two to five.

Formally, an instance of the constrained one-sided two-level crossing reduc-
tion problem counsists of a two-level graph G = (V1, Vo, E), E C V; x V5 with a
fixed permutation of the first level V7 and a set C' C V5 x V5 of constraints. It is
our objective to find a permutation of the vertices on the second level V5 with
few edge crossings and all constraints satisfied. Clearly, this problem is NP-hard
as well. A solution only exists if the constraint graph Go = (Va, C) is acyclic.

While the constrained crossing reduction problem has many direct practical
applications, it also appears as a subproblem in other graph drawing problems.
An example is the application of the Sugiyama algorithm to graphs with vertices
of arbitrary size [12] or to clustered graphs [7]. When vertices or clusters span
multiple levels, constraints can be used to prevent overlap. Another application
is preserving the mental map when visualizing a sequence of related graphs.

This paper is organized as follows: We survey existing approaches for the
constrained two-level crossing reduction problem in the next section. In Sect. 3
we present our heuristic and prove its correctness in Sect. 4. Section 5 gives
experimental results that compare our heuristic to the existing algorithms. We
close with a short summary in Sect. 6.

2 Previous Work

The constrained crossing reduction problem has been considered several times.
Sander [11] proposes a simple strategy to extend iterative two-level crossing
reduction algorithms to handle constraints. Starting with an arbitrary admissible
vertex permutation, updates are only executed if they do not violate a constraint.
Together with the barycenter heuristic a modified sorting algorithm is used: The
positions of two vertices are only swapped, if no constraint is violated. Waddle
[14] presents a similar algorithm. After the calculation of the barycenter values
it is checked for each constraint whether its target has a lower barycenter value
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than its source. In that case the constraint would be violated after sorting the
vertices by the barycenter values. To avoid this, the barycenter value of the
source vertex is changed to the barycenter value of the target vertex plus some
small value. The result of both heuristics is a vertex permutation that satisfies
all constraints. However, the extensions are rather restrictive and often prevent
the algorithm from finding a good permutation. Accordingly, the results are
significantly worse than in graphs without constraints.

Schreiber [12] and Finnocchi [1,2,6] have independently presented an ad-
vanced algorithm that considers constraints and crossing minimization simulta-
neously. Their main idea is to reduce the constrained crossing reduction problem
to the weighted feedback arc set problem, which is also NP-hard [3]. First the
so-called penalty graph is constructed. Its vertices are the vertices of the second
level. For each pair (u,v) of vertices the number of crossings in the two relative
orders of u and v is compared. For this, only edges incident to u or v are consid-
ered. If the number of crossings ¢, in the relative order ..., u,...,v,... is less
than the number of crossings ¢, in the reverse order ...,v,...,u,..., then an
edge e = (u,v) with weight w(e) = ¢y — Cyy is inserted. Constraints are added
as edges with infinite (or very large) weight. Figure 2 shows the penalty graph
of the two-level graph in Fig. 1.

Then a heuristic for the weighted feedback arc set problem is applied to the
penalty graph. It is important that the used heuristic guarantees that the edges
with infinite weight are not reversed, or constraints may be violated. Finally,
the vertices of the now acyclic penalty graph are sorted topologically, and the
resulting permutation defines the order of the second level. If no edges had to
be reversed, the number of crossings meets the obvious lower bound cpi, =
Zu,vEV min{cyy, ¢y }- Each reversed edge e increments the number of crossings
by its weight. This implies that an optimal solution of the weighted feedback arc
set problem is also optimal for the constrained crossing reduction problem.

Comparing the approaches of Sander [11] and Waddle [14] with those of
Schreiber [12] and Finnocchi [1,2,6] shows a direct trade-off between quality
and execution time. Schreiber presents detailed experimental results which show
that the penalty graph approach generates significantly less crossings than the
barycenter heuristic extensions. This is especially evident, if there are many
constraints. The running times, however, are considerably higher. This is not
very surprising due to the O(|Vz|* + |E|?) time complexity.

3 A Modified Barycenter Heuristic

The goal of our research is to build an algorithm that is as fast as the existing
barycenter extensions while delivering a quality comparable to the penalty graph

Fig. 2. The penalty graph of Fig. 1.
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approach. To achieve this we use a new extension of the barycenter heuristic. We
could have used the median heuristic as well, but we did not, because it is exper-
imentally worse and in our algorithm median values are more difficult to handle.

We start by computing the barycenter values of all vertices. As long as the
source of each constraint has a lower barycenter value than the target, all con-
straints are satisfied automatically. In the reverse case the permutation has to
be corrected. In this context, we call a constraint ¢ = (s, t) satisfied if b(s) < b(t)
and wviolated otherwise.

Our algorithm is based on a simple assumption: If a constraint is violated
as in Fig. 3(a), the greater barycenter value of the source vertex indicates more
edges “to the right” than “to the left”, |E3| > |E1|. The inverse is true for
the target vertex, |Ey4| < |E2|. In this situation we assume that in the corrected
permutation no other vertices should be positioned in between. This seems plau-
sible, because between s and ¢ larger subsets of adjacent edges have to be crossed
than outside. Using median values it can be proven that for a vertex with only
one incident edge there is always an optimal position beyond any violated con-
straint. This is not generally true, however, for vertices of higher degree or for
the barycenter heuristic as Fig. 3(b) shows. The optimal position for vertex v
is in the middle, where its edges generate 6 crossings as opposed to 8 crossings
at the other two positions. Nevertheless, adopting the assumption is justified by
good experimental results presented in Sect. 5.

Our heuristic, shown in Algorithm 1, partitions the vertex set V5 into totally
ordered vertex lists. Initially there is one singleton list L(v) = (v) per vertex wv.
In the course of the algorithm these lists are pairwise concatenated into longer
lists according to violated constraints. Concatenated lists are represented by new
dummy vertices and associated barycenter values. As long as there are violated
constraints, each violated constraint ¢ = (s,¢) is removed one by one and the
lists containing s and t are concatenated in the required order. They are then
treated as a cluster of vertices. This guarantees that the constraint is satisfied
but prevents other vertices from being placed between s and t. Following our
assumption, this does no harm. A new vertex v, replaces s and ¢ to represent the
concatenated list L(v.) = L(s) o L(t). The barycenter value of v, is computed as
if all edges that are incident to a vertex in L(v.) were incident to v.. This can be
done in constant time as demonstrated in lines 8 and 9 of the algorithm. Note
that this is not doable for the median value.

(a) Vertices with a single edge should (b) In general, the optimal position for
not be positioned between the vertices a vertex may be between the vertices of
of a violated constraint (b(s) > b(t)). a violated constraint.

Fig. 3. The Basic Assumption of Our Algorithm.
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Algorithm 1: CONSTRAINED-CROSSING-REDUCTION.

Input: A two-level graph G = (V1, Vo, E) and acyclic constraints C C V2 x Va
Output: A permutation of V5

begin
1 foreach v € V» do
2 b(v) — > en(w) POs(u)/ deg(v) //barycenter of v
3 L(v) < (v) //new singleton list
4 V—{st|(s,t)eC} // constrained vertices
5 ViV -V //unconstrained vertices
6 | while (s,t) — FIND-VIOLATED-CONSTRAINT(V,C) # L do
7 create new vertex v.
8 deg(v.) < deg(s) + deg(t) //update barycenter value
0 b(ve) — (b(s) - deg(s) + bi() - deg(t))/ deg(ve)
10 L(ve) < L(s) o L(t) // concatenate vertex lists
11 forall c € C' do
12 if c is incident to s or ¢ then
13 | make ¢ incident to v, instead of s or ¢
14 C — C —{(ve,ve)} //remove self loops
15 V—V—{st}
16 if ve has incident constraints then V «— V U {v.}
17 | else V' — V' U{vc}
18 V' —vuv’
19 sort V" by b()
20 L) // concatenate vertez lists
21 foreach v € V"' do
22 | L+ LoL(v)
23 return L
end

When no violated constraints are left, the remaining vertices and vertex lists
are sorted by their barycenter value as in the standard barycenter heuristic. The
concatenation of all vertex lists results in a vertex permutation that satisfies all
constraints. We claim that it has few crossings as well.

For the correctness of the algorithm it is important to consider the violated
constraints in the right order. In Fig. 4 the constraints are considered in the
wrong order and c is processed first. This leads to a cycle in the resulting con-
straint graph which makes it impossible to satisfy all remaining constraints,
although the original constraint graph was acyclic. If ¢ is violated, at least one
of the other constraints is also violated. Processing this constraint first leads to
a correct result.

Thus, we must avoid generating constraint cycles. We use a modified topo-
logical sorting algorithm on the constraint graph. The constraints are considered
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(a) Before the merge all constraints are  (b) After merging s and ¢ the generated
satisfiable by the given order. Let ¢ be constraint cycle makes it impossible to
violated. satisty all constraints.

(c) Starting with ¢’ leads to a correct result.

Fig. 4. Considering constraints in the wrong order.

sorted lexicographically by the topsort numbers of the target and source vertices
in ascending and descending order, respectively. Using Algorithm 2 this traver-
sal can be implemented in O(|C|) time. The vertices are traversed in topological
order. The incoming constraints of a vertex t are stored in an ordered list I(t)
that is sorted by the reverse traversal order of the source vertices. If a traversed
vertex has incoming violated constraints, the topological sorting is cancelled and
the first of them is returned. Note that the processing of a violated constraint
can lead to newly violated constraints. Thus, the traversal must be restarted for
every violated constraint.

4 Theoretical Analysis

In this section we analyse the correctness and running time of our algorithm.
For the correctness we have to show that the vertex permutation computed by
our algorithm satisfies all constraints. We start by analyzing Algorithm 2:

Lemma 1. Let ¢ = (s,t) be a constraint returned by Algorithm 2. Then merging
of s and t does not introduce a constraint cycle of two or more constraints.

Proof. Assume that merging of s and ¢ generates a cycle of at least two con-
straints. Because there was no cycle before, the cycle corresponds to a path p in
G from s to ¢t with a length of at least two. Because of the specified constraint
traversal order, any constraint in p has already been considered, and thus is sat-
isfied. This implies that b(t) > b(s), and therefore contradicts the assumption.
O

Theorem 1. The permutation computed by Algorithm 1 satisfies all constraints.

Proof. Algorithm 1 maintains the invariant that the constraint graph is acyclic.
Because of Lemma 1 no nontrivial cycles are introduced, and self loops are
explicitly removed in line 14.

Next we analyse whether the removed self loop constraints are satisfied by
the algorithm. Any such self loop ¢’ has been generated by the lines 11-13 from
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Algorithm 2: FIND-VIOLATED-CONSTRAINT.
Input: An acyclic constraint graph G¢o = (V, C) without isolated vertices

Output: A violated constraint ¢, or L if none exists

begin
1 S0 // active vertices
2 foreach v € V do
3 I(v) < () // empty list of incoming constraints
4 if indeg(v) = 0 then
5 | S~ Su{v} //vertices without incoming constraints
6 while S # () do
7 choose v € S
8 S—S—{v}
9 foreach ¢ = (s,v) € I(v) in list order do
10 if b(s) > b(v) then
11 L return c
12 foreach outgoing constraint ¢ = (v,t) do
13 I(t) <« (c) o I(t)
14 if |I(t)| = indeg(t) then
15 | S—Su{t}
16 return L
end

a constraint between s and ¢. Because of the constraint ¢ = (s,t), the invariant
implies that ¢’ was not directed from ¢ to s. Therefore, ¢’ = (s,t) is explicitly
satisfied by the list concatenation in line 10.

Each remaining constraint has not been returned by Algorithm 2. Thus, the
barycenter value of its source vertex is less than that of its target vertex. Then
the constraint is satisfied by line 19. a

The rest of this section analyses the running time of our algorithm. Again,
we start with the analysis of Algorithm 2.

Lemma 2. Algorithm 2 runs in O(|C|) time.

Proof. The initialization of the algorithm in lines 1-5 runs in O(|V]) time. The
while-loop is executed at most |V| times. The nested foreach-loops are both
executed at most once per constraint. The sum of these time bounds is O(|V| +
|C|). Because the constraint graph does not contain isolated vertices, the overall
running time of the algorithm is bounded by O(|CY). O

Theorem 2. Algorithm 1 runs in O(|Va|log |Va| + |E| + |C|?) time.

Proof. The initialization of the algorithm in lines 1-3 considers every vertex and
edge once and therefore needs O(|Va| + |E|) time. The while-loop is executed at
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most once per constraint. It has an overall running time of O(|C|?) because the
running time of one loop execution is bounded by the O(|C|) running time of
Algorithm 2. Finally, the sorting in line 19 needs O(|Vz|log |Vz]|) time. The sum
of these time bounds is O(|Vz|log |Va| + |E| + |C|?). All other statements of the
algorithm do not increase the running time. a

5 Experimental Analysis

To analyse the performance of our heuristic, we have implemented both our
algorithm and the penalty graph approach in Java. We have tested the im-
plementations using a total number of 37,500 random graphs: 150 graphs for
every combination of the following parameters: |Vz| € {50,100, 150,200, 250},
|E|/|V2] € {1,2,3,4,5,6,7,8,9,10}, |C|/|V2| € {0,0.25,0.5,0.75,1.0}.

Figure 5 displays a direct comparison. The diagrams show, how the results
vary, when one of the three parameters is changed. Because the number of cross-
ings grows very fast in the number of edges, we do not compare absolute crossing
numbers, but the number of crossings divided by the number of crossings before
the crossing reduction. As expected, the penalty graph approach gives strictly
better results than our heuristic. But the graphs also show that the difference is
very small. For a more detailed comparison, we have also analyzed the quotient
of the crossing numbers in Fig. 6. These graphs show that our algorithm is never
more than 3% worse than the penalty graph approach. Mostly the difference is
below 1%. Only for very sparse graphs there is a significant difference.

This is a very encouraging result, considering the running time difference
of both algorithms: Figure 7 compares the running time of the algorithms. As
expected, our algorithm is significantly faster than the penalty graph approach.
Because of the high running time of the penalty graph approach we have not
compared the algorithms on larger graphs, but our algorithm is certainly capable
of processing larger graphs. For example, graphs with |V2| = 1000, |E| = 2000,
and |C| = 500 can be processed in less than a second, although our implemen-
tation is not highly optimized.

6 Summary

We have presented a new fast and simple heuristic for the constrained one-
sided two-level crossing reduction problem. In practice, the algorithm delivers
nearly the same quality as existing more complex algorithms, while its running
time is significantly better. For further improvement, a traversal of the violated
constraints is desired that runs faster than O(|C|?).
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Abstract. A necessary and sufficient condition is given for a connected
bipartite graph to be the incidence graph of a family of segments and
points. We deduce that any 4-connected 3-colorable plane graph is the
contact graph of a family of segments and that any 4-colored planar
graph without an induced C4 using 4 colors is the intersection graph of
a family of straight line segments.

To Chantal. Her life crossed mine on a too short path.

1 Introduction

Touchings and crossings of arcs in the plane have been the subject of lively
interest, giving rise to astonishingly complex problems, albeit easy to state. As
an example, the Gauss problem on the characterization of crossing sequences of
self-intersecting closed curves [12], which has been fully solved only recently [6,
23]. The algebraic matroidal properties used to solve this problem further led to
a characterization of bipartite circle graphs [3] and then to a characterization of
general circle graphs ¢ la Whitney [4].

Intersection graphs of arcs, the so-called string graphs, have been indepen-
dently introduced by Sinden [27], Ehrlich, Even and Tarjan [11]. Their approach
appeared to be quite complex [15,17]. The recognition problem has been proven
to be NP-hard [16] and, more recently, NP-complete [21, 24].

The particular cases of intersection graphs of pseudo-segments and intersec-
tion graphs of segments [18] are of special interest, as shown by the following
question by Scheinerman [25]: Is every planar graph the intersection graph of a
set of segments in the plane?

This question is still open even for pseudo-segments, but some partial results
have been obtained:

— the recognition problem of contact graphs of segments is NP-complete, even
when restricted to planar graphs [14],

— bipartite planar graphs are contact graphs of a set of orthogonal segments
[9,13] (see also [1]),

— triangle-free planar graphs are necessarily contact graphs of a set of segments
in three directions [2],

— 4-connected 3-colorable plane graphs are contact graphs of a set of pseudo-
segments [5],

— 4-colored plane graphs without Cy-separator using 4 colors are intersection
graphs of a set of pseudo-segments [5] (see Fig.1 to 2).

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 217-227, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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h

Fig. 2. From the bipartite plane graph shown in Fig 1, we obtain a contact family of
pseudo-segments, which by local deformation gives rise to a representation of the graph
Gy of Fig. 1 as the intersection graph of a family of pseudo-segments.

Using the arc-stretching techniques presented in [7, 8], the last two results
may be strengthened (see Fig. 3):

Theorem 1. 4-connected 3-colorable plane graphs are contact graphs of a set of
segments.
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Fig. 3. Using stretching techniques, from the bipartite graph of Fig. 1, we obtain a
contact family of segments. By local perturbations, this contact system gives rise to a
representation of the graph Gy of Fig 1 as the intersection graph of a family of segments
(here in 4 directions).

Theorem 2. 4-colored plane graphs without Cy-separator using 4 colors are in-
tersection graphs of a set of segments.

We shall present a sketch of the proof of these theorems using the following
characterization of incidence graphs of a family of segments, which we shall also
prove:

Theorem 3. A connected bipartite graph G = (V,,V,, E) is the incidence graph
of a (one-sided) contact family of segments and points if and only if

— G is planar,
— the minimum degree of the vertices in V, is at least 2

— VX CV such that | X NV,| > 2,
|E(Gx)| <2|XNVy| + |XNV,| -3 (1)

Fig. 4. Representation of K4 by a non-stretchable contact family of pseudo-segments.
The corresponding incidence graph (V, is represented with white vertices, Vo with
black ones), so that |E| > 2 |V,| + |Ve| — 3.
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2 Contact Systems of Pseudo-segments and Points

A finite set of Jordan arcs is called a family of pseudo-segments if every pair
of arcs in the set intersects in at most one point. A one-sided contact family of
pseudo-segments and points is defined by a couple (A, P), where:

— A is a family of pseudo-segments that may touch (on one side only at each
contact point) but may not cross, and whose union is connected,

— P is a set of points in the union of the pseudo-segments, including all the
extremities of the pseudo-segments.

Such a contact family defines a connected bipartite plane graph G=(V,,V, ,E),
its incidence graph, where:

— V), corresponds to the pseudo-segment set,
— Ve corresponds to the point set,
— F corresponds to the set of incidences between points and pseudo-segments.

Notice that vertices in V, have minimal degree at least 2.

Moreover, the contact family also defines an orientation of G: if x € V,
corresponds to a point p on a pseudo-segment S corresponding to y € V, {z,y}
is oriented from x to y if p is an extremity of S and from y to z, otherwise. The
orientation thus obtained is such that the indegree of a vertex in V, is exactly
2 and the indegree of a vertex in V, is at most 1. We call such an orientation a
(2, <1)-orientation.

The following theorem is quite simple to prove (see [5]):

Theorem 4. A bipartite graph G = (V,,Ve,E) is the incidence graph of a
(one-sided) contact family of pseudo-segments and points if and only if

— G is planar,
— G has girth at least 6,
— the minimum degree of the vertices in V, is at least 2
- VX CV,
|E(Gx)| <2|XnVi| 4+ | XNV, (2)

In general, representations by contacts of straight line segments raise impor-
tant difficulties that may be collected into what we call the stretching problem:

Problem 1. When is a contact system of pseudo-segments stretchable, that is:
when is it homeomorphic to a contact system of straight line segments?

This problem has been addressed in [8,7], with the following characterization
theorem:

Theorem 5. Let A be a contact system of pseudo-segments. Then, the following
conditions are equivalent:

1. A is stretchable,

2. each subsystem of A has at least 3 extremal points, unless it has cardinality
at most one ,

3. A is extendible.
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where

— An extremal point of a contact system of arcs is a point of the union of the
arcs which is interior to no arc.

— A contact system of pseudo-segments is extendible if there exists an arrange-
ment of pseudo-lines such that each pseudo-segment of the contact system is
included in a corresponding pseudo-line of the family.

Notice that the equivalence of extendibility and stretchability for contact
systems of pseudo-segments is in strong contrast with the difficulty of the decid-
ability problem concerning the stretching of arrangements of pseudo-lines (this
problem is NP-hard, as proved by Mnév [19,20]; see also Shor [26] and Richter-
Gebert [22]).

3 Deficiency and (2, <1)-Orientation

In order to make use of Theorem 5 to characterize those bipartite graphs that
are representable by a contact family of segments, we first need to prove an
orientation theorem. For that, we need few definitions and lemmas.

In the following, we consider a connected bipartite graph G = (V,,V,, E).
Let V =V, UV,. Given a subset A C V| we introduce the notation A, = ANV,
and A, = ANV, . By extension, if f(z) is a subset of V', we employ the notation
fy(z) = () NV, and {4 (x) = f(z) N V.. We denote by N the neighborhood
Junction defined by N(X) = X U{y € V,3z € X : {z,y} € E}. Observe that
X CN(X).

3.1 Deficiency

Definition 1.

the deficiency p of a subset X CV is p(X)=2|X,|+ | X.| — | E(Gx)|

the minimal deficiency pupi, of X is Pmin(X) = )I(IlCII}l/ p(Y)

the deficiency closure Clos of X is Clos(X) = U Y
XCY
P(Y):Pmin(x)
Lemma 1. The function p is semimodular, that is, VX1, Xs C V:
p(X1U Xo) + p(X1 N Xp) < p(X3) + p(X2) (3)

Proof. This is a direct consequence of the inequality

| E(Gx,ux)| = [E(Gx,)] + | E(Gx, )]

Lemma 2. Let X C V. Then p(Clos(X)) = pmin(X).
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Proof. Assume X7, X are subsets of V' containing X such that p(X;) = p(X2) =
Pmin(X). Then, as X C X7 N Xs, we get p(X1 N X2) > pmin(X) and, according
to (3), p(X1 U X2) < pmin(X). Thus p(X; U X3) = pmin(X). By induction we
deduce that p(Clos(X)) = pmin(X). O

Lemma 3. For any A CV,,
N(A) C N(Clos, (A)) = Clos(A)

Proof. For any X € V, we have p(N(X,)) < p(X), as the addition to X of a
vertex in V, having at least one neighbor in X doesn’t increase p(X) and as the
deletion of a vertex in Vo having no neighbor in X decreases p(X) by 1. Hence
p(N(X,)) < p(X) and equality may only occur if X C N(X,).

According to this property, as p(N(Y;)) < p(Y) and as equality implies
Y CN(Y,), we have:

Clos(A)= |J v = |J N@)=N( | Y¥;)=N(Clos,(4))

ACY ACY ACY
p(y):Pmin(A) P(Y):Pmin(A) P(Y):pmin(A)
Moreover, as A C Clos, (4), N (4) C N (Clos, (4)). O

3.2 (2, <1)-Orientation

Definition 2. A (2, <1)-orientation O of a bipartite graph G is an orientation
such that each vertex in V, has indegree exactly 2 and every vertex in Vo has
indegree at most 1. A source of the (2, <1)-orientation is a verter with null
indegree. Given a subset X C V', a vertex x € X 1is a relative source of X for
O if it has a null indegree in Gx. We note Source(O, X) the set of the relative
sources of X for O.

The two following lemmas justify the term of deficiency for p.

Lemma 4 ([5]). A connected bipartite graph G has a (2, <1)-orientation if and
only the minimal degree of vertices in V, is at least 2 and if

VX CV, |EGx)| <2[X,] + [ X, (4)

Lemma 5. Let G be a bipartite planar graph and a (2, <1)-orientation of G.
Let X CV. Then p(X) is equal to the sum of the number of sources of G in X
and of the number of arcs entering X from V' \ X.

Proof. The result is easily obtained by summing up the indegrees of the vertices
in X. O

Lemma 6. Let O be a (2, <1)-orientation of G and let X C V. Then there
exists a (2, <1)-orientation O of G such that

Source(O, Clos(X)) C Source(O’, Clos(X)) C Source(O', V)
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Proof. LetY be the subset of V\ Clos(X) formed by the vertices y such that there
exists a directed path from y to a vertex = € Clos(X ). We proceed iteratively,
while decreasing the number of sources of G in Y.

If Y includes no source of O, then any vertex in Y has its incoming edges in-
cident to vertices in Y UClos(X). Thus p(Clos(X)UY) < p(Clos(X)) = pmin(X),
a contradiction. Hence Y is empty, thus Source(O’, Clos(X)) C Source(0’, V).

Otherwise, let y be source of G in Y. By assumption, there exists a directed
path from y to a vertex z € X. According to Lemma 3, Clos(X) = N(Clos, (X)).
Thus if the directed path has minimal length, « € Close (X). Reorienting the
directed path from z to y decreases the number of sources in Y, decreases
Y and gives rise to a new (2, <1)-orientation of G. As the reorientation may
not have killed a relative source of Clos(X), we have Source(O, Clos(X)) C
Source(O’, Clos(X)). O

Lemma 7. Let O be a (2, <1)-orientation of G and let X C V. Assume that any
verter x € X, which has a neighbor out of X has at least two neighbors in X and
that Source(O, Clos(X)) C Source(O, V). Then there exists a (2, <1)-orientation
O’ of G, which differs with O only on E(Clos(X)), such that:

Source(O, Clos(X)) N X C Source(O’, Clos(X)) C Source(O', V) N X

Proof. We proceed by induction on the cardinality of Source(O, Clos(X)) \ X.
If Source(O,Clos(X)) C X, we are done. Otherwise, let s € Source(O,
Clos(X))\ X. Let Y be the subset of the vertices z € Clos(X) reachable from s
by a directed path. If Y N X = (), then p(Clos(X)\Y) < p(Clos(X)) although
X C Clos(X)\ Y, contradicting the minimality of p(Clos(X)). Thus Y N X # (.
Let v1 = s,...,vx be a minimal length directed path from s to a vertex in
X. If vy € X, there exists an outgoing arc at v to a vertex vpy1 € X,, as
v, has degree at least 2 in X by assumption, as the indegree of vy is 2 and
as v; has an incoming edge from vi_1 € X. Reversing the orientation of the
path vy,...,v; (resp. vi,...,v541) if vy € Xo (resp. vy € X,), we obtain a
new (2, <1)-orientation O" of G. As this orientation differs with O on Gcioes(x)
only, we still have Source(0’, Clos(X)) C Source(Q’, V). As we may not have
killed a source in X, Source(O, Clos(X)) N X C Source(¢’, Clos(X)). Moreover,
| Source(O, Clos(X)) \ X| decreased by one. a

Definition 3. A subset X of vertices of a connected plane graph G is a disk if
any vertex of X having a neighbor out of X belongs to the outer face of Gx and

Theorem 6. Assume G = (V,, V., E) is a connected bipartite plane graph such
that the minimum degree of vertices in Vy is at least 2 and such that VX CV,

| X 22= [E(Gx)| <2[X,| + [Xe] =3 (5)

Then G has a (2, <1)-orientation O such that, for any disk X with | X,| > 2,
we have
| Source(O, X) N Extr(X)| >3 (6)

where Extr(X) denotes the vertex set of the outer face of Gx.
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Proof. According to Lemma 4, G has a (2, <1)-orientation O.

We prove by induction over (| V], |V \ Extr(V)|) that the required (2, <1)-
orientation O may be found, with the additional properties that the sources of
Oy in Extr(V) are also sources of O.

Let A = Extr(V). According to Lemmas 6 and 7, there exists a (2, <1)-
orientation 01 of G, such that

Source(Op, V) N A C Source(O1, Clos(A4)) C Source(O1,V)N A

Let By = V \ Clos(4), By = N(B1) \ B1 and B3 = N(B3) \ Bz. According to
Lemma 3, By C V, and Bs C V,. Moreover, Bs C Extr(B; U By U Bg). Let
G’ be the directed bipartite plane graph obtained from G as follows: First, we
remove all the vertices not in By U By U B3 and all the arcs oriented from B,
to Bs. Finally, for every v € Bs, we add two new vertices v; and vy on the
outer face with arcs (v1,v) and (ve, v). Let C be the corresponding set of added
black vertices. Then, B3 U C belong to the outer face of G’ and the orientation
of G' is a (2, <1)-orientation having every vertex in C as a source. As V, (G’) is
either strictly included in V, (G) or is equal but then | Extr, (V(G"))| is strictly
greater than |Extr, (V(G))|, the induction applies. Thus there exists a (2, <1)-
orientation Oy of G’, such that any vertex in C' is a source of Oy and such that
(6) holds for any disk X with | X,| > 2.

Let O be the orientation of G induced by O1 on Gy g, and Oz on Gg,uB,- By
construction, O is a (2, <1)-orientation of G such that Source(Op, V)NExtr(V) C
Source(O, V) and Source(O, Clos(4)) C Source(O, V') N Extr(V).

Let X be a disk of G such that | X,| > 2 and let Y = X N Clos(A).

Assume |Y,| > 2. According to (5), we get | E(Gy)| <2 |Y,| + |Y.| — 3.
According to Lemma 5, |Source(O,Y)| > 3. Moreover, as X is a disk and as
Clos(A) has no entering arc, every relative source of Y belongs to the outer face
of Gx. Thus |Source(O, X) N Extr(X)| > |Source(O,Y) N Extr(X)| > 3.

Otherwise, X, is included in the vertex set of G’. In G’ we thus get

| Source(O2, X) N Extr(X)| > 3.
By construction of G’ and O, we deduce |Source(O, X) N Extr(X)| > 3. a
Theorem 7. A connected bipartite graph G = (V,,V,, E) is the incidence graph
of a (one-sided) contact family of segments and points if and only if

— G is planar,
— the minimum degree of the vertices in V, is at least 2
— VX CV such that | X NV,| > 2,

|E(Gx)| <2 XNV, + |XNV,| -3 (7)

Proof. According to Theorem 4, G is the contact graph of a family of pseudo-
segments A. According to Theorem 6, G has a (2, <1)-orientation O, such that
any disk X with | X,| > 2 has at least 3 relative sources on the outer face of
Gx. Thus, according to Theorem 5, A is stretchable into a contact family of
segments. O



Contact and Intersection Representations 225

Corollary 1. A graph G = (V,E) is the intersection graph of a (one-sided)
simple contact family of segments if and only if

— G is planar,
— any subgraph H C G of order ng > 2 has its size bounded by: my < 2ny—3.

Proof. Apply Theorem 7 to the bipartite graph obtained by subdividing each
edge of G exactly once. O

In [2], it is proved that any 4-connected 3-colorable plane graphs is the contact
graphs of a set of pseudo-segments. It is also proved in [2] that the assumptions
of Theorem 6 hold for the incidence graph of the contact system. Thus, we get:

Corollary 2. Any 4-connected 3-colorable plane graphs is the contact graphs of
a family of segments.

In [2], representations of planar graphs by intersection of pseudo-segments are
obtained using local perturbations of contact systems of pseudo-segments. The
assumptions of Theorem 6 are proved to hold for the contact system in [2].
Thus, using Theorem 7 and a perturbation argument, this theorem may be
strengthened:

Corollary 3. Any 4-colored planar graph without induced Cy using 4 colors is
the intersection graph of a family of straight line segments.

4 Open Problems

It is not difficult to prove that any contact family of pseudo-segments is home-
omorphic to a contact family of polylines composed by three segments.

Problem 2. Is any contact family of pseudo-segments homeomorphic to a contact
family of polylines composed by two segments?

It is known that every planar graph is representable as the contact graph of a
family of triangles[10]. Using stretching techniques, this result might extend:

Problem 3. Is any planar linear hypergraph representable as the contact hyper-
graph of a family of triangles?

Scheinerman’s conjecture may be straightened as follows, as a self-dual state-
ment:

Problem 4. Is any planar linear hypergraph representable as the intersection
hypergraph of a family of segments?

As the coloration seems to play a central role, we may also ask:

Problem 5. Is any planar graph G representable as the intersection graph of a
family of segments in x(G) directions?
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Abstract. In this paper we introduce two novel algorithms for draw-
ing sequences of orthogonal and hierarchical graphs while preserving the
mental map. Both algorithms can be parameterized to trade layout qual-
ity for dynamic stability. In particular, we had to develop new metrics
which work upon the intermediate results of layout phases. We discuss
some properties of the resulting animations by means of examples.

1 Introduction

In many applications graphs are not drawn once and for all, but change over
time. In some cases all changes are even known beforehand, e.g. if we want to
visualize the evolution of a social network based on an email archive, or the
evolution of program structures stored in software archives. In these kinds of ap-
plications each graph can be drawn being fully aware of what graphs will follow.
Unfortunately, to the best of our knowledge there exist only two algorithms that
take advantage of this knowledge, namely TGRIP [6] and Foresighted Layout [8].
See Section 6 for a discussion of these and other approaches. While the former
was restricted to spring embedding, the latter is actually a generic algorithm.

Recently we introduced Foresighted Layout with Tolerance (FLT) [7] for
drawing sequences of graphs while preserving the mental map and trading layout
quality for dynamic stability (tolerance). The algorithm is generic in the sense
that it works with different static layout algorithms with related metrics and
adjustment strategies. As an example we looked at force-directed layout. In this
paper we apply FLT to orthogonal and hierarchical layout, which means that
we have to develop adjustment strategies and metrics for these. We also improve
FLT by introducing the importance-based backbone as a generalization of the
supergraph of a sequence of graphs.

2 Improved Adjusted Foresighted Layout

In our previous work the supergraph, which is the union of all graphs in a graph
sequence played a crucial role. The reason for using the supergraph was that
it provided all information about the graph sequence and that its layout could
be used as a sketch for all graphs in the sequence. However, the supergraph is
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restrictive, as it induces a layout for all nodes without taking into account that
they are of different relevance for the sequence.

To improve that model we now introduce the concept of a backbone of a
sequence. Therefore we need a function that defines the importance of a node in
the sequence gy, ..., gn. In the following we assume that g; = (V;, E;).

Definition 1 (Backbone). Given a sequence of graphs g1, ..., gn, and a map-
ping importance : V. — N, then Vg = {v € ., V; | importance(v) > ép} and
Ep = {(u,v) € U/_, Ei | u,v € Vg} define the backbone B = (Vp, Eg) of a
graph sequence g1, ..., gn with respect to a threshold §p € N.

This concept of the backbone is a generalization of the concept of the su-
pergraph: The backbone is less restrictive and is adjusted to the given graph
sequence. But setting g = 0 will create a backbone that is equal to the super-
graph.

Dependent on the choice of the importance function, the backbone repre-
sents different base models. There are several possibilities for choosing an im-
portance function: We can define the function depending on the structure of
the sequence (for example the number of occurrences of a node in the sequence:
importance(v) = [{i | v € V;}| for a graph sequence g¢i,...,g,). If we know
enough about the semantics of the graphs, we can instead choose an importance
function that takes this information into account, i.e. we can use application-
domain specific importance functions.

The improved algorithm for foresighted layout that uses the backbone instead
of the supergraph now looks as follows:

Algorithm 1 Improved Foresighted Layout with Tolerance.

compute global layout L for the backbone B of g1,...,9gn
for i :=1ton do

L; = L|gi
l; := adjust(...)
end for

animate graph sequence

In this improved version the global layout does not provide initial layout
information for nodes v € V; — Vp, i.e. those that are not part of the backbone.
So the adjustment functions have to assign initial positions to these nodes.

3 Orthogonal Foresighted Layout with Tolerance

Brandes et al. presented in [2] an orthogonal graph drawing algorithm that
produced an orthogonal layout with few bends in the Kandinsky model while
preserving the general appearance of a given sketch. The angle and the bend
changes can be controlled by parameters o and (. In this section, we show
how to extend this approach so that it fits in our framework, i.e. it applies the
backbone concept and is guided by metrics. We assume that the reader is familiar
with the Kandinsky network [2,13].
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First we present the general algorithm. After computing the orthogonal lay-
out for the given backbone and obtaining the corresponding quasi-orthogonal
shape, we build a sketch 5; for each graph of the sequence and adjust it through
the adjustOrth() algorithm. The sketch is a combination of the previous graph’s
layout and the backbone’s layout restricted to the current graph. If a conflict
between the layout of the backbone and the previous graph exists, we choose
the one of the backbone.

Algorithm 2 Orthogonal Foresighted Layout with Tolerance.

compute orthogonal layout Lo for the backbone B of g1,...,gn

Qo := quasiOrthogonalShape(Lo)

fori:=1ton do
S = (Lo@Lif1)|gi // (Li®Lj)(x) is defined as L;(x) if & € dom(L;) and L;(x) otherwise.
(Qi, L;) := adjustOrth(S;, gi, Li—1,Qi—1)

end for

animate graph sequence

The adjustOrth() algorithm first computes the extended network of the sketch.
Since the sketch was restricted to the current graph g¢;, we only have to handle
insertions of new nodes and edges. The insertion of a new node creates a new
vertex-node in the Kandinsky network. How to insert new edges adjacent to
vertex-nodes with a degree greater than 0 is presented in [2]. The insertion of
a new edge adjacent to a vertex-node with a degree of 0 does not create a new
face-node.

We initialize the locally (for every edge) used parameters o and 3. Then we
compute the quasi-orthogonal shape as described in [2]. To compare this shape
with that of the previous graph, we define a new metrics for quasi-orthogonal
shapes. To this end, we extend the definition of a quasi-orthogonal shape given
in [2]. With Q(f, ) we denote the i-th tuple of Q(f), with edge(Q, f, %) the value
of the edge field, with a(Q, f,7) the value of the angle field, and with b(Q, f, %)
the value of the bend field of Q(f, 7). The value of the edge field of the successor

tuple of Q(f,1) is succEdge(Q, f,4) = edge(Q, f, (i + 1) mod |Q(f)]).

Definition 2 (Quasi-orthogonal-shape metrics).
Let Q be the set of quasi-orthogonal shapes. The function diff, : Q@ x Q — P(E),
(Q1,Q2) — {e = edge(Q1, £,1) | 3f',) : = edge(Qa, [',7) A
succEdge(Q1, f, i) = succEdge(Qo, f,7) A a(Qu, f1) # a(Qs, I, )}
defines the set of edges with the same successor edge, but with different angles
in two quasi-orthogonal shapes. The function diffs : Q@ x Q — P(E),
(Q17 QQ) = {6 = edge(Qb f7l) ‘ Vf/,j with e = edge(Q27 f/7j) :
b(Qh f7 Z) 7é b(Q27 f/>j)}
defines the set of edges with different bends in two quasi-orthogonal shapes.
Then the function A, with Ay(Q1, Q2) = |diffy| is called angle metrics and the
function Ag with Ag(Q1,Q2) = |diffg| is called bend metrics.

If the angle metrics does not fulfill the given angle threshold and there is an «
that is lower than the maximal value (the maximal value 6 - |V;| results from the
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construction of the Kandinsky network and [13]), we increment the corresponding
a. We deal analogously with the bend metrics and 3. The construction of the
modified Kandinsky network implies that incrementing § could lead also to a
change of angle between two edges. If angle stability is more important than
bend stability, then both § and a have to be incremented if the bend metrics
does not fulfill the given bend threshold.

The last step concerns compaction. To be able to preserve the edge length of
the sketch S;, we extend the compaction algorithm from [9] by edges of prescribed
length. This extension is done straightforwardly by extending the length function:
let e = (u,v) be an edge and (ug, u,) the position of w in S;, then

1oy ue — vg] + Juy — vy, if e is fixed
length’(c) = {Iength(e)7 otherwise

An edge can be fixed if it is in the current graph as well as in the previous
one, and if the values of the corresponding bend fields are equal. We compute
the final layout by applying the extended compaction algorithm. If the metrics
does not fulfill the given threshold we fix one more edge if there are any left.

Algorithm 3 adjustOrth(S;, g;, Li—1, Qi—1) predecessor dependent.

N; := compute extended network(S;, g;)
Ve€ Ei:ae:=0,0:=0
repeat
Q; := quasiOrthogonalShape(N;, «, 3)
if Aa(Qi,Qi—l) > 0o A de € diﬂ"a(Qi,Qifl) e <6 - |V;| then
Ve € diff : inc(ae)
end if
if A@(Qi,Qifﬂ > 63 A de € dlff@(Qz, Q1'71) : ﬁe <6- |V;| then
Ve € diffg : inc(Be)
end if
until done
fixedEdges := ()
repeat
L; = compact(Q;, S;,fixedEdges)
if A(L;—1,L;) > 6 A fixedEdges C {E; N E;_1} — {diffg} then
extend fixedEdges by one edge of {E; N E;_1} — {diffg}
end if
until done
return (Qs, L)

So far, we have seen how to apply orthogonal layout to the predecessor layout
strategy. But it is also possible to apply it to the simultaneous layout strategy.
In this case the backbone layout is used as sketch and we use global parameters
a and [ instead of local ones to achieve a more uniform adjustment of angles
and bends over the whole sequence. The adjustOrth() algorithm first computes
the quasi-orthogonal shapes for all graphs. If the condition for the angle metrics
Fi o Ap(Qi—1,Q;) > 0a A a < 6-|V;| is not fulfilled, i.e. there is a tuple of
successive shapes which do not hold the angle metrics condition and there is some
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space for improvement, « is increased. Analogously, § is changed depending on
the bend metrics. To compute the final layouts we proceed as in the predecessor-
dependent layout algorithm.

4 Hierarchical Foresighted Layout with Tolerance

The computation of a hierarchical layout of a graph following the Sugiyama
approach needs several phases: First all nodes are distributed in discrete layers
(the ranking phase), then the nodes of each layer are arranged, and finally the
layout is computed from the layers and their arrangements. One of the problems
that occur when trying to apply FLT to hierarchical layout is that there is
no option for global layout adjustment such as temperature annealing in the
force-directed approach. Instead, we have to divide the adjustment in standard
foresighted layout into two different adjustments: an adjustment for the ranking
phase and an adjustment for the rank sorting phase. However, after the ranking
adjustment has been performed, we cannot apply standard metrics, as the graphs
are not fully layouted. Therefore we will introduce a new kind of metrics which
only concerns the rankings of two graphs.

4.1 Predecessor Dependent Layout

In this section we describe the two different adjustment steps of hierarchical
foresighted layout. Starting from the input sequence, we compute the backbone
first. As the nodes of the backbone are of highest importance, we try to preserve
the mental map of the graph sequence by fixing these nodes to a certain rank
for the entire graph sequence. A good approach is to fix the node to the median
of all local rankings, which are computed in advance. So we achieve an optimal
rank for at least one graph.

Definition 3 (Average ranking). A ranking R:V — N is a mapping from a
node set to the set of natural numbers. Given a sequence of graphs g, ..., gn with
rankings R1, ..., Ry, the average ranking R : V — N is defined by the median of
all R;(v).

After that, we compute local rankings for each graph, with respect to the
ranking of the backbone. In the second phase, we try to arrange the nodes on
each rank, such that we preserve the mental map, but try to reduce the edge
crossings at the same time. The general algorithm for hierarchical foresighted
layout using the predecessor dependent adjustment is shown in Algorithm 4.

Rank Assignment. In this section we describe how the ranks are adjusted.
We compute a new ranking by sorting g; topologically, but all nodes of the
backbone are ranked to their given backbone rank. If the metrics of the rank
distance (which we describe below) between the current and the previous ranking
exceeds the given threshold dg, we fix the rank of one more node to the rank of
the previous layout. We choose a node with maximal importance from the node
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Algorithm 4 Hierarchical Foresighted Layout with Tolerance.
compute backbone B of gi,...,gn
compute average ranking Ry of B
fori:=1ton do
R} = Rolg,
R; := adjustRank(R!, Ri_1, gi)
(li, 0'7;) = adjustOrder(gi, Ri—1,Ri,0i-1, lifl) // with dom(oo) = 0 and dom(lp) = 0
end for
animate graph sequence

set with the following properties: the nodes are contained in the current and
previous graph, but not in the backbone. Then we compute a new topological
sorting. We repeat this process until the given threshold is no longer exceeded or
until all nodes have fixed ranks. In the second case, we stop with a result which
has minimal rank distance.

Algorithm 5 adjustRank(R!, R;_1, g;) predecessor dependent.

compute R; by sorting ¢; topologically with respect to R
repeat
if AR(RZ;LRZ‘) > 0r then
add node v € {w | w € (V; N Vi_1) — dom(R}) and Yu € (Vi N Vi_1) — dom(R!) :
importance(w) > importance(u)} to R} and let Ri(v) = Ri—1(v)
compute R; by sorting g; topologically with respect to R}
end if
until (V; NVie1) —dom(R.) = 0V Ar(Ri—1, R:) < 0r
return R;

Mental Distance on Ranks. As described in our previous work, we use several
metrics to check the mental distance between two layouted graphs. In the layer-
assignment phase of hierarchical layout we need a metrics to check the distance
between two layer-assignments, but layered graphs do not provide all necessary
information for a standard metrics. The only known value is in which layer a node
belongs. Therefore we introduce a new kind of metrics for the mental distance,
the rank metrics.

Definition 4 (Rank metrics). Let (g, R) be a graph g with a ranking R. Then
the function Ag that maps ((g, R),(¢’, R')) to a positive real number is called a
rank metrics. In particular, Ag ((9,R,),(¢9’, R')) = 0 means that g and g’ have
a non-distinguishable ranking.

It turns out that there is only a small degree of freedom in the choice of a
reasonable rank metrics. A very general approach for such a metrics could be
the distance-rank metrics.

Definition 5 (Distance-rank metrics). Given (g, R) and (¢', R'), the func-
tion Ap with
Ap (9. R, (0 )= D |R(v) = R(v)
vevnv/
1s called distance-rank metrics.
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The definition of the distance-rank metrics could be changed by using the
term (R(v) — R'(v))? instead of R(v) — R'(v) . This change would cause the
metrics to be more sensitive to nodes that jump over several ranks.

Arrangement of Layers. In this phase we try to minimize edge crossings while
staying as close as possible to the predecessor arrangement of layers. Therefore
we define an order in each layer.

Definition 6 (Order within ranks). Given a ranking R of a graph g = (V, E),
the function o : V' — N denotes the order within ranks, if the following property
holds: Yv,w € V : R(v) = R(w) = o(v) # o(w). From the function o we derive
the partial order <, on nodes: v <, w < o(v) < o(w).

Algorithm 6 computes an initial order ¢; of nodes which fulfills the following
relative orderedness conditions with respect to its predecessor (for i > 1):

1. VoweV;NV,_1 A RZ(D) = Ri_l(ﬂ) AN Rl(w) = Ri_l(w) :
V<, WES U <g, , W
2. YveV,NV,_1 A RZ(’U) =+ Ri_l(ﬂ) :

ou(v) ~ am e e - e Ru(w) = R@)}| <1

The first condition states that the relative order of the nodes in the same rank in
the current and predecessor graph is preserved. The second condition says that
nodes which have changed their rank from the predecessor to the current layout
preserve their relative layout position.

Then we compute &; by smoothly sorting the layers of ¢;, where <;, restricted
to the j-th layer {v|R;(v) = j} forms a total order. As there exists no constraints
for o1, 61 is obtained by sorting the layers of g;.

The layers of g; can be sorted either by the barycenter heuristic or the median
heuristic (see [1]). Sorting smoothly with respect to sortmax means using an
arbitrary comparison-based sorting algorithm! where a < b - sortmax is used
instead of @ < b. Similarly to simulated annealing, we can use linear, logarithmic
or exponential decrease of the factor sortmax.

Definition 7 (Final layout). Given a ranking R and an order of ranks o of
graph g, then L(R, o) is the final hierarchical layout of g.

Computing the final layout includes all remaining phases after sorting the
ranks and yields the absolute positions of all nodes and edges. Thus we can now
check whether the mental map is preserved using some standard metrics. If not,
we decrease sortmax and start over.

4.2 Simultaneous Layout

In this section we illustrate how to apply the simultaneous adjustment strategy
to hierarchical layout. The predecessor adjustment strategy of the previous sec-
tion tries to adjust a layout as much as possible with respect to its predecessor.

1 E.g. bucketsort is one of the rare cases that does not belong to this class.
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Algorithm 6 adjustOrder(g;, R;—1, R;,0:—1,1;—1) predecessor dependent.
sortmax := 1
o; := initialOrder(o;—1, Ri—1, R;)
repeat
&, := smoothSort(g;, s, Rs, sortmax)
l; .= L(Ri, 57)
dec(sortmax)
until A(l;_1,1;) <V sortmax < 0
return (I;,5;)

In contrast the simultaneous adjustment strategy provides a uniform adjust-
ment of all graphs. The main problem in applying the simultaneous adjustment
strategy to hierarchical layout arises in the rank assignment phase. A possible
approach in the rank phase would be to perform a topological sorting on all
graphs simultaneously. But this requires that in each iteration one node in each
graph is ranked and the mental distance on ranks has to be checked. If the check
fails, backtracking has to be performed and the rank of the last node that was
ranked has to be fixed. Indeed, this approach is not a good choice for the layer
assignment of large graph sequences — in that case it is more efficient to limit
the simultaneous adjustment strategy to the layer assignment phase and to use
the predecessor dependent rank assignment phase.

The goal of the simultaneous arrangement of layers is to preserve the relative
node order in ranks over the whole sequence. Nodes which change their ranks
should preserve at least their relative position. To achieve this goal we compute
a global enumeration ¢* of the nodes which is consistent throughout the entire
graph sequence. Therefore we build the supergraph, layout it using a static
hierarchical layout algorithm and after that we retrieve the desired enumeration
by projecting the nodes on the z-axis and reading them from left to right.

A local improved enumeration ¢’ can be derived from o* by adjusting the
enumeration such that nodes which have changed their rank preserve their rela-
tive position (as described in Section 4.1, second relative orderedness condition).
Using o* and o’ we define o = (01,...,0,):

ot ifi=1
g; = U;k, 7> 1 and A(E(Ri,O';‘),E(Rifl,0'1;1))<A(£(Ri,O';-),E(Rifl,(]i,l))

o}, otherwise

In Algorithm 7, starting with this initial order, we now use the same iteration
as in Algorithm 6, except that we use a global sortmax-variable.

5 Examples

In Figure 1 we show snapshots from three different animations of the same
graph sequence, which consists of evolving Hesse-graphs. (Hesse-graphs represent
divisibility on natural numbers: there is an edge between v and w, if w is divisible
by v.) In the graphs 1 to 15 the nodes representing these numbers are inserted
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Algorithm 7 adjustOrder((g1,...,gn), (R1,..., Ry)) simultaneous.
sortmax := 1

o* := initialGlobalOrder((g1,. .., gn))

= initialLocalAdjustedOrder(U (R1,...,Rn))
o := initialSimultaneousOrder(c*, o', (R1, ..., Ry))
repeat

fori:=1ton do
&; = smoothSort(g;, s, Ri, sortmax)
li == L (Ri, 64)
end for
dec(sortmax)
until Vi: A(l;-1,1;) < §Vsortmax < 0
return (I1,...,0,)

successively. In graph 16, node 1 is deleted and node 16 is inserted. In Figure 1a)
the ad-hoc approach is shown: for each graph a new layout is computed by using
a static layout algorithm. The mental map is poorly preserved as all nodes change
their ranks and more than half of the nodes also change their order within the
ranks. In Figure 1b) the predecessor dependent layout strategy with dp = 0 and
a small § is shown: the mental map is well preserved. No node changes its rank,
and the order within the ranks is stable as well. But the local layouts are worse
as there are more edge crossings. In Figure 1c) the predecessor dependent layout
strategy with dr = 2 and a large ¢ is shown: the left graph is equal to that
produced by the ad-hoc approach. But in the next graph, all nodes contained
in the backbone do not change their rank. So it is a good compromise between
preserving the mental map and achieving local layout quality.

Further examples, e.g. visualization of the evolution of call graphs, are avail-
able at http://www.cs.uni-sb.de/~diehl/ganimation.

6 Related Work

Most work on dynamic graph drawing [4] is related to the online problem, which
means that only information about the previous graphs in a sequence is used
for computing a layout. This includes work on hierarchical graph drawing [12],
spring embedding [3], and certain kinds of directed graphs [5]. To the best of
our knowledge, the only two approaches that consider all graphs in the sequence
are TGRIP and Foresighted Layout. TGRIP [6,10] is an extension of the spring
embedder GRIP for large graphs. The basic idea is very intuitive: time is modeled
by springs in the third dimension. To this end each graph of the sequence is
layouted in a 2D plane. Nodes representing the same vertex in subsequent graphs
are connected by additional springs, but each node can only move within the 2D
plane to which it belongs. In contrast to Foresighted Layout, this approach does
not allow using different mental map metrics, because the metrics is built into
the heuristic for minimizing the forces.
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Fig. 1. Layouts of graphs 15 and 16 of evolving Hesse-graph using a) ad-hoc layout,
b) FLT with small §, g = 0 and c¢) FLT with large ¢, dr = 2.

7 Conclusions

While implementing FLT for spring embedding was relatively simple, applying
the approach to orthogonal and hierarchical layout turned out to require many
more changes to the static layout algorithms.

Phased Algorithms. Both algorithms work in phases, and we had to introduce
new metrics which work on the results of these phases instead of on the final
layouts. When the mental distance of two intermediate results exceeds a given
threshold, then we restrict the search space either locally, i.e. for some nodes or
edges, or globally, i.e. for all nodes or edges.

Global Restrictions. For spring embedding, the global temperature was re-
duced to allow fewer position changes of all nodes. Similarly, for hierarchical
layout the variable sortmax influences all nodes in the sorting phase.
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Local Restrictions. In the ranking phase of the hierarchical layout, we fix
the rank of the not yet fixed node of highest importance. Thus, all remaining
nodes can still change their ranks. For orthogonal layout the metrics, in fact, also
gives a hint what to restrict. As a side-effect of computing the quasi-orthogonal-
shape metrics, we do get a set of edges for which we can increment the o and 3
parameters of one or more of these edges, i.e. restrict the number of angle and
bend changes.

Future Work. The theory and implementations of FLT are now at a stage
such that we can start to apply them in different domains. The effectiveness of
the resulting animations is currently being studied as part of a master thesis in
psychology at the Catholic University Eichstétt.

Finally, work is underway to make force-directed, orthogonal and hierarchical
FLT available as web services that produce animations in the SVG format.
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Abstract. One of the most popular graph drawing methods is based on achiev-
ing graph-theoretic target distances. This method was used by Kamada and Kawai
[15], who formulated it as an energy optimization problem. Their energy is known
in the multidimensional scaling (MDS) community as the stress function. In this
work, we show how to draw graphs by stress majorization, adapting a technique
known in the MDS community for more than two decades. It appears that ma-
jorization has advantages over the technique of Kamada and Kawai in running
time and stability. We also found the majorization-based optimization being es-
sential to a few extensions to the basic energy model. These extensions can im-
prove layout quality and computation speed in practice.

1 Introduction

A graph is a structure G(V={1,...,n}, E) representing a binary relation E over a
set of nodes V. Visualizing graphs is a challenging problem, requiring algorithms that
faithfully represent the graph’s structure and the relative similarities of the nodes [4,
16]. Here we will focus on drawing undirected graphs with straight-line edges.

The most popular approach defines, sometimes implicitly, an energy, or cost func-
tion, based on some virtual physical model of the graph. Minimizing this function de-
termines an optimal drawing. In the approach considered here, originally proposed by
Kamada and Kawai [15], a nice drawing relates to good isometry. We have an ideal
distance d;; given for every pair of nodes ¢ and j, modeled as a spring. Given a 2-D
layout, where node 7 is placed at point X, the energy of the system is

> wi (1X: - X5 — dig)? (1)

i<j

We desire a layout that will minimize this function, thereby best approximating the tar-
get distances. Here, the distance d;; is typically the graph-theoretical distance between
nodes ¢ and j. The normalization constant w;; equals d;ja. Kamada and Kawai [15]
chose o = 2, whereas Cohen [6] also considered «« = 0 and o = 1. Moreover, Cohen
suggested setting d;; to the linear-network distance to convey the clustering structure
of the graph.

The function (1), with o = 0, appeared earlier as the stress function in multidimen-
sional scaling (MDS) [5, 6, 18], where it was applied to graph drawing [17]. Whereas
Kamada and Kawai proposed a localized 2-D Newton-Raphson process for minimiz-
ing the stress function, researchers in the MDS field have proposed a different, more

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 239-250, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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global approach called majorization. Majorization seems to offer some distinct advan-
tages over localized processes like Newton-Raphson or gradient descent. These include
guaranteed monotonic decrease of the energy value, improved robustness against local
minima and shorter running times. The main contribution of this work is the introduc-
tion of this technique in the framework of graph layout.

Three useful extensions to stress optimization require the power and flexibility
of majorization optimization. The first extension, described in Section 3, deals with
weighting edge lengths in a way that better utilizes the drawing area, and is espe-
cially useful for drawing real-life graphs whose degree distribution follows a power
law. We have found empirically that traditional stress optimization is unstable under
such a weighting, while majorization works very well. The second extension deals with
sparse stress functions, where only a small fraction of all pairwise distances are consid-
ered. This is essential for reducing the time and space complexity of stress optimization,
and allows in-core layout of much larger graphs. We have found that sparse stress op-
timization is practically impossible when using the Kamada-Kawai technique (unless
one has a very good initialization). Again, with majorization, it is easy to work with
sparse models.

The last extension deals with obtaining an approximate drawing of the graph by
constraining the layout axes to lie within a carefully selected small vector space. Such
a technique was recently introduced by Koren [14] and can be integrated into layout al-
gorithms based on matrix algebra. Fortunately, the algebraic nature of the majorization
process allows us to perform rapid subspace-restricted stress minimization. The two
latter extensions are described in the full version of this work.

2 Stress Majorization

In this section, we review stress majorization as described in the MDS literature [3, 5].
We denote a d-dimensional layout by an n x d matrix X. Thus, node 7 is located at
X; € R? and the axes of the layout are XM . X ¢ R™ The associated stress
function is

stress(X) = Y wy; (| Xi — X, — dij)? . 2)

i<j

We always take w;; = d;jQ, which seems to produce the best drawings in most cases.
Decompose (2) to obtain

StIeSS(X) = Z’wi]‘d?j + ZleHXl - Xj||2 - 225UHX$ - X]H 5 (3)
i<j i<j i<j
def ..
where (5,‘]‘ = wijdij for 1,] = 1, ey .

The first term of (3), ZZ < Wij dfj, is a constant independent of the current layout.

The second term, 3, wi; || X; — X; |2, is a quadratic sum, and can be written using
the quadratic form of the weighted Laplacian L"

D wi | Xi = X5)? = Tr(XTLUX), 4)

i<j
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where the n x n weighted Laplacian has its ij entry, for ¢, = 1, ..., n, defined as
Lw _ { —Wij i #
Zk;ﬁz Wik 1 =7

The third term, >, _; ;5[ Xi — Xj||, is more involved and we will bound it from
below. We will make use of the Cauchy Schwartz inequality

lzllllyll > 2
with equality when « = y. Consequently, given any n X d matrix Z,
1% = X5111Zi = Zjl| = (Xi = X;)"(Xi — Z;)
with equality when X = Z. We can now bound the third term as follows

D 01X = X511 = diyinv((1Z — Z)(Xs — X)) (Zi — Z5) ®)

i<J 1<j

where inv(z) = 1/2 when x # 0 and 0 otherwise.
Inequality (5) can be written in a more convenient matrix form

> 6lIX: = X5l > Te(XTL7 Z)

1<J
where the n x n matrix LZ has its ij entry, for4,j = 1, ..., n, defined as
Lz { —diinv(|Zi - Z) i
" =Y L i = J

Combining all the above, we can bound the stress function using F'Z (X ) defined as

= wijd} + Tr(XTLYX) — 2Tx(X L7 Z). (6)

1<J
Thus, we have
stress(X) < FZ(X) 7
with equality when Z = X.

Note that Z is a constant n X d matrix. This way we have bounded the stress with a
quadratic form F'Z(X). We differentiate by X and find that the minima of FZ(X) are
given by solving

LX =L7Z.
Or, equivalently, for each axis we have to solve
LvX@ =%z  4=1,....d. (8)

The characteristic of the minima is determined by the nature of the weighted Lapla-
cian L, which is known to be positive semi-definite with a one-dimensional null space
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spanned by 1,, = (1,...,1) € R"™. Hence, FZ(X) has only global minima, which are
invariant under translation (addition of « - 1,, is equivalent to translation). This makes
sense, since the stress function is also invariant under translation.

Numerically, it is better to make the minimizer unique. Hence we recommend re-
moving the translation degree-of-freedom by taking X; = 0. Therefore, we can re-
move the first row and column of L%, as well as the first row of LZ Z. The resulting
(n—1) x (n — 1) matrix is strictly diagonal dominant and hence positive definite. This
is very convenient, since methods like conjugate gradient, Gauss-Seidel, and Cholesky
factorization are guaranteed to work [9].

The Optimization Process
The above formulation leads to the following iterative optimization process. Given
some layout X (t), we want to compute a layout X (¢ 4+ 1) so that stress(X (¢ 4+ 1))
< stress(X(t)). We use the function FX(®(X) which satisfies FX® (X (t)) =
stress(X (¢)).

We take X (¢ + 1) as the minimizer of FX®)(X) by solving

L*X(t+1)@ =1XOx 1)@, ¢=1,...,d. 9)
At this point, if X (¢t + 1) = X (¢), we terminate the process. Otherwise, we get
stress(X (£ + 1)) < FXO(X(t 4+ 1)) < FXO(X (1)) = stress(X (t)).

The first inequality is by (7) and the second inequality is by the uniqueness of the
minimum.
In practice we terminate the process when

stress(X (t)) — stress(X (¢ + 1)) <e
stress(X (t)) ’

(10)

where e is the tolerance of the process. Typically, € ~ 1074,

To summarize, the majorization process involves iteratively solving (9). The matrix
L™ is constant throughout the entire process, whereas the matrix LX) would be re-
computed at each iteration.

2.1 Equation Solvers

In practice we recommend using either Cholesky factorization or conjugate gradient
(CG) [9] to solve (9) (by first fixing X; = 0 as discussed above). Using Cholesky
factorization implies that at a preprocessing stage we find the LL” factorization of L™
using n?/3 flops (floating point operations). Then in each iteration we solve the linear
system using back substitution in time O(n?). Hence, the significant cost in Cholesky
factorization is independent of the number of iterations, making it is suitable for graphs
requiring many iterations of process (9).

On the other hand, CG optimization involves no preprocessing and its running time
is evenly distributed among the iterations. Almost the entire solving time is devoted to
performing matrix-vector multiplication. Each such multiplication takes n? flops. Thus,
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if the total number of matrix multiplications is less than about n/3, the CG process is
expected to be faster than Cholesky factorization. Otherwise, Cholesky factorization
is recommended. In practice, for most graphs we have experimented with, CG outper-
formed Cholesky since the total number of matrix-vector multiplications is typically
less than n/3. Note that CG benefits by the fact that we have an initial approximate
solution from the previous iteration. We observed that the overall number of iterations
increases very moderately with the size of the graph. Therefore, for large graphs (over
10,000 nodes), we encountered cases where the total number of matrix-vector multipli-
cations exceeded even n, so Cholesky factorization should do much better. In any case,
all the results reported here employ CG.

2.2 Intuitive Interpretation

Let us concentrate on axis a, and denote the current coordinates by & = X (¢)(). The
majorization process determines the new coordinates x = X (t + 1)(®) by solving the
system of equations (9). Eliminating z; in equation ¢, we rewrite the system in an equiv-
alent form

D Wij (T + dig (2 — 25)inv (|| X (8); — X (8)1]))
ijﬁi Wi

Ty =

. (11)

The intuitive interpretation of this process is simple. A node j located at x; strives

to place node ¢ (on current axis a) at x; + d;; %

Based on the current placement, this is node j’s best strategy to assure that node
¢ will be at distance d;; from j in the full multidimensional layout. To see this, no-
tice that the distance between the nodes depends on all the axes. Therefore, node j’s
estimate of the contribution of axis a for the distance between 4 and j is the fraction
a= \m |. So the magnitude of displacement should be d;; scaled down by
«. Now, after deciding the magnitude of the 1-D displacement, the direction must be
decided: should we place x; at x; + ad;; or at x; — ad;; 7 Again, the decision is based
on the current placement, whether currently £; < &; or vice versa.

This way, each node j votes for its desired placement of x;. The final position is
determined by taking the weighted average of the suggested positions. This intuition

also suggests a localized optimization process, which we next describe.

2.3 Localized Optimization

Following the idea of Kamada and Kawai [15], we can fix the positions of all nodes,
except some node ¢. Then, by the same argument given above for the full majorization
process, it can be shown that the stress function is decreased by setting the position of %
as follows

3wy (X)) 4 diy (X[ — X[ P)inv(1X: - X))

ijﬁi Wi

X.(a) —

B , a=1,...,d

12)
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This way we can iterate through all nodes, and in each iteration relocate all the d coor-
dinates of node ¢ according to (12). Each iteration is guaranteed to strictly decrease the
stress until convergence. Hence, oscillations and non-convergence are impossible.

In practice, we have only used the more involved global process (9) and have no
experience yet with the local version. We provide this local version here mainly because
it is simple and easy to implement, requiring no equation solver!.

2.4 Comparisons

A natural question is whether we should replace the traditional Kamada-Kawai based
optimization with majorization. Based on several months of experimenting with both
approaches, our definite answer is yes. We base this recommendation on several con-
siderations.

We experimented with various example graphs. On each graph, we ran each of the
two algorithms 25 times with different random initializations. At certain times during
each execution, we measured the elapsed running time and the current value of the stress
function, and averaged over all 25 executions. From this we obtained stress-vs.-time
charts for the graphs. While it is impossible to present here all of the charts, we show a
few representative ones in Figures 1-3. We can make some important observations.

Layout Quality. We observed that most of the time, the two methods eventually
achieved about the same stress level. In certain cases, the Kamada-Kawai approach
would yield a slightly better layout in terms of the stress value, but the difference was
always small; see Figure 2. In other cases, however, the majorization approach yielded
significantly better layouts as can be seen in Figure 3. Hence, probably due to its more
global nature, majorization can be considered better in terms of layout quality.

Monotonicity of Convergence. A significant advantage of majorization is that itera-
tions monotonically decrease the stress until convergence. This way, termination of the
process is determined naturally by a condition like (10). However, our experience with
the Kamada-Kawai approach, as implemented in Neato [7], shows that in some cases
the latter process may cycle without converging, while the energy is oscillating. This
requires an artificial or more convoluted termination condition.

Our experiments show that, as expected, the majorization approach was always mo-
notonic in decreasing the stress value. The non-monotonicity problem of the Kamada-
Kawai method was extremely rare (remember that we averaged over 25 executions,
lessening the impact of a single bad non-monotonic execution). We did observe this
non-monotonic behavior when experimenting with the Qh882 graph [1]. The result is
provided in Fig. 1, which compares the average behavior of both approaches on this
graph. We should note that here we weighted edges as explained in Section 3. The
reader can see that after 2 seconds of running, the stress value in the Kamada-Kawai
approach increases for some period. Here, this did not prevent it from converging at
about the same stress level as the majorization process.

! Process (12) should not be confused with the similar Gauss-Seidel process that can be used to
solve (9).
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Running Time. The running time of the majorization process is consistently less than
that of the Kamada-Kawai process. In all runs, it can be observed that majorization
reaches the low stress level much before Kamada-Kawai.

A partial explanation is that majorization’s running time is dominated by matrix
operations (matrix-vector multiplication or Cholesky factorization). These operations
are implemented in libraries like BLAS and LAPACK which are highly optimized on
the machine instruction level for common platforms. We are using the Intel Math Kernel
Library [22]; another well-known implementation is Atlas [23].

For implementations not relying on special matrix software, we found the situation
to be similar to that of the stress function. Sometimes the Kamada-Kawai approach
would be marginally faster; on the other hand, when the majorization process was faster,
it was significantly faster. And as the size of the graphs increased, the advantage swung
completely to majorization.

Qhgs2

Majorization

Stress

Time (sec.)

Fig. 1. Stress function vs. running time for the graph Qh882 [1] (|V|=882, |E|=1533). Here both
methods reached about the same stress. Interestingly, Kamada-Kawai is not monotonic.

Before leaving this topic, we must point out that our implementation of the Kamada
and Kawai process on which we based our comparisons differs slightly from the imple-
mentation originally suggested [15]. We are using the more common implementation
which replaces the two nested loops with a single loop; see [2, 11]. As noted in Bran-
denburg, Himsolt, and Rohrer [2], this leads to a significant speed-up over the original
implementation. This more efficient implementation is also the one used in Neato [7]
and GraphLet [21].

3 Weighting Edge Lengths

In many real life graphs, the degree distribution decays at a much lower rate than in
random graphs. Usually this distribution follows a power law and is proportional to
d~*. Setting desired edge lengths to a uniform length (typically 1) inevitably makes the
neighborhood of high degree nodes too dense in the layout. Consequently, we suggest
weighting edges by their neighborhood size.
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Fig. 2. Stress function vs. running time for the graphs Bespwr07 [1] (|V|=882, |E|=1533) and 516
[19] (|V|=516, [E|=729).

x10° Qh1484 Plsk1919
3 \‘ —*— Kamada-Kawai —+— Kamada-Kawai
|
\ i
|
|
|
25 |
|
|
|
|
|
20 |
|
9
9 §
S 15 " =
& — Kamada-Kawai 131796 0
i
S~ Kamada-Kawai 68854
05f [ —
Majorization 46474 N
Majorization 20382
ok
2 4 6 8 10 12 14 16 18 20 0 5 10 15 20

Time (sec.) Time (sec.)

Fig. 3. Stress function vs. running time for the graphs Qh1484 [1] (|V|=1470, |E|=6420) and
Plsk1919 [1] ([V|=1919, |E|=4831).

Specifically, we set the length of each edge (i, j) € E as
l”:\NlUN]\—\NiﬂN]\, (13)

where N; = {j|(i,j) € E}. Then, each target distance d;; is the length of the shortest
weighted path between ¢ and j.

This simple change is surprisingly effective in many real life irregular graphs that
have highly non-uniform degree distributions. We present here two examples. The first
example is the 1138Bus graph (|V|=1138, |E|=1458) from the Matrix Market repository
[1]. This graph models a network of high-voltage power distribution lines. Figure 4
shows two layouts of this graph. In one layout, edges were weighted according to (13).
The other layout was made with unweighted edges. Nodes are much better dispersed
in the weighted-edge-based layout. By weighting edges, more space is allocated to the
dense areas, avoiding many of the edge crossings.

Another interesting example is a BGP connectivity graph representing communica-
tions between autonomous systems (|V|=3847, |E|=11539). This graph has a few nodes
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Fig. 4. Two layouts of the 1138Bus graph [1].

of high degree (e.g., one node has degree 695 and a few others are around 100), as
well as 3257 nodes of degree 1. We show two layouts of this graph in Figure 5. Again,
it is clear that when weighting edges, the resulting layout is much more informative.
For example, in both layouts the central node is the one of degree 695. In the weighted
version, its neighborhood is placed far enough from it to make it fairly visible. In the un-
weighted version, however, all of its neighbors are positioned densely around it, hiding
its structure completely.

We have frequently found that when there are large deviations in edge lengths, as
in the BGP graph, classic Kamada-Kawai optimization fails to find a nice layout. The
result of Kamada-Kawai optimization on the edge-weighted BGP graph is shown in
Figure 6(a). It is clearly inferior to the majorization result shown in Figure 5. We also
compare the average stress-vs.-time behavior of the two methods in Figure 6(b), where
it is clear the Kamada-Kawai-type optimization is pretty helpless here. Although we do
not fully understand this limitation of Kamada-Kawai optimization, it seems that its lo-
cal nature somehow limits its ability to deal with significantly unbalanced edge lengths.

4 Related Work

Substantial work in statistical MDS deals with the properties of the majorization pro-
cess, including proofs of its convergence rate [3]. The MDS literature suggests solving
equation (9) by computing (Lw)+, the Moore-Penrose inverse of the singular matrix
L™ . Our suggestion to set X; = 0 allows a much faster solution by Cholesky factoriza-
tion.

Several studies in the graph drawing field suggest improving stress computation
by multi-scale extensions [8, 10, 11], which approximate the graph by a smaller one,
to quickly obtain an initial layout. We see these approaches as complementary to our
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Fig. 5. Two majorization-based layouts of BGP connectivity, with a skewed degree distribution.
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Fig. 6. (a) Layout of the edge weighted BGP connectivity graph using Kamada-Kawai optimiza-
tion. (b) Stress-vs.-time behavior of majorization and Kamada-Kawai on weighted BGP connec-
tivity example graph.

proposal, as one can apply majorization to optimizing the stress at each scale. In general,
our recommendation is to get an initial placement either by multi-scale techniques or
by subspace-restricted computation [14].

Recent work by Koren and Harel [13] describes an algorithm for monotonically
decreasing the stress function in 1-D, and a heuristic extension to higher dimensions
whose convergence properties are unknown. It is easy to prove that this 1-D algorithm
is equivalent to 1-D majorization, although derived differently. Majorization, however,
is more powerful as it can be generalized to higher dimensions. Interestingly, the op-
timization process of [13] is equivalent to the full, n-D Newton-Raphson process. Ac-
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cordingly, we conclude that in 1-D, the majorization process is equivalent to the full, n-
D Newton-Raphson process. This is unlike the Kamada-Kawai process which is based
on a localized 2-D Newton-Raphson process.

5 Conclusions

Majorization, a technique developed in studies of statistical MDS, is relevant to practi-
cal graph drawing. The MDS community has studied it extensively from the standpoint
of optimizing the stress function and escaping local minima. Further ideas along these
lines may also prove useful in graph drawing.

The main algorithms discussed here are available in the Neato program in the
Graphviz open source package [20].
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Abstract. A radial drawing is a representation of a graph in which the
vertices lie on concentric circles of finite radius. In this paper we study
the problem of computing radial drawings of planar graphs by using
the minimum number of concentric circles. We assume that the edges
are drawn as straight-line segments and that co-circular vertices can be
adjacent. It is proven that the problem can be solved in polynomial time.

1 Introduction

A radial drawing is a representation of a graph in which the vertices are con-
strained to lie on concentric circles of finite radius. Drawing graphs radially is
relevant in situations where it is important to display a graph with the con-
straint that some vertices are drawn “more central” than others. Examples of
such applications include social networks analysis (visualization of policy net-
works and co-citation graphs), operating systems (visualization of filesystems),
cybergeography (visualization of Web maps and communities), and bioinformat-
ics (visualization of protein-protein interaction diagrams); see e.g. [4,8,9].

This paper investigates crossing-free radial drawings of planar graphs. Let
G be a planar graph. A crossing-free radial drawing of G induces a partition of
its vertices into levels such that vertices in the same level are co-circular in the
drawing; for each level, the planarity of the drawing induces a circular ordering
of the vertices in the level. Conversely, in order to construct a radial drawing of
G a partition of its vertices into levels and a circular ordering within each level
must be found such that vertices of the same level are drawn co-circularly and
the edges can be drawn without intersecting each other.

Bachmaier et al. [1, 2] investigate the radial planarity testing problem: Given
a partition of the vertices of G into levels, they want to test whether there
exists a crossing-free radial drawing of G consistent with the given leveling (i.e.
vertices in the same level can be drawn on the same circle and the edges can
be added without crossing). In [1] it is assumed that the edges are drawn as
strictly monotone curves from inner to outer circles and that no two co-circular

* Research supported in part by “Progetto ALINWEB: Algoritmica per Internet e per
il Web”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale,
and by NSERC.
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vertices are connected by an edge. The elegant linear-time algorithm presented
by Bachmaier et al. tests radial planarity by using an extension of PQ-trees,
called PQR-trees. In [2] the authors extend the algorithm to the case where
edges between co-circular vertices are allowed.

In this paper we study radial drawings of planar graphs from a different
perspective. We assume that the partition of the vertices of GG is not given
and our goal is to compute a partition that minimizes the number of levels,
i.e. that corresponds to a crossing-free straight-line radial drawing of G on the
minimum number of circles. We call such a drawing a minimum radial drawing
of G. In contrast with the drawing conventions adopted in [1], we assume that
the edges are straight-line segments and that vertices on the same level can be
adjacent. These choices are justified by different application-oriented examples
of radial drawings that adopt the straight-line standard (see e.g. [12,13]) and by
the observation that allowing edges among co-circular vertices appears to be a
natural approach for the reduction of the number of levels.

The contribution of the present paper is to characterize those graphs that can
be drawn on a given number of concentric circles and to use this characterization
to solve the above described optimization problem. More precisely:

— We show that every 2-outerplanar graph admits a crossing-free straight-
line radial drawing on two circles. The proof is constructive and the radial
drawing can be computed in linear time. Preliminary results on computing
radial drawing of 2-outerplanar graphs appear in [6].

— We generalize this results and characterize the family of graphs that admit a
crossing-free straight-line radial drawing on at most k& > 2 circles. We recall
that similar characterization problems for straight-line k-layered drawings
are studied for the case of k < 3; see, e.g. [5]. We also recall that a planar
graph admits a drawing on one circle if each edge can bend at most once [7].

— Based on the characterization above, we show that there exists a polynomial
time algorithm to compute a minimum radial drawing of a planar graph. The
drawing has the additional property of being “proper”, i.e. an edge always
connects either co-circular vertices or vertices on consecutive circles.

For reasons of space some proofs are sketched or omitted.

2 Preliminaries

A 1-outerplanar embedded graph (also called I-outerplane graph) is an embedded
planar graph where all vertices are on the external face. An embedded graph
is a k-outerplanar embedded graph (also called k-outerplane graph) (k > 1) if
the embedded graph obtained by removing all vertices of the external face is
a (k — 1)-outerplane graph. The planar embedding of a k-outerplane graph is
called a k-outerplanar embedding. A graph is k-outerplanar if it admits a k-
outerplanar embedding. A planar graph G has outerplanarity k (for an integer
k > 0) if it is k-outerplanar and it is not j-outerplanar for 0 < j < k. In other
words, the outerplanarity of G denotes the minimum value of k£ for which G is
k-outerplanar.
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Let G be a k-outerplane graph with k > 1. We associate a level with each
vertex v of G, denoted as lev(v), according to the following definition: lev(v) = 0
if v is on the external face of G and lev(v) =4 (i = 1,...,k — 1) if v is on the
external face after the removal of every vertex u with lev(u) < i. If lev(v) = 4,
we say that v is a vertex of level i. Let V; be the set of vertices v with lev(v) = 1.
The subgraph induced by V; is denoted by G; = (V;, E;). Notice that G; is a
graph of outerplanarity 1. Let V; ;41 = V;UV; 1. The subgraph induced by V; ;41
is denoted by Gi,i+1 = (‘/i’i+17Ei77;+1).

We use Cy, C,...,Ckr_1 to denote a set of k concentric circles in the plane,
where the radius of C; is greater than the radius of Cy11 (¢ =0,...,k — 2). Let
G be a planar graph and let I" be a crossing-free straight-line drawing of G. The
drawing I" is a radial drawing if the vertices of G are placed on a set of concentric
circles. I' will be called a k-radial drawing of G if it is a radial drawing on
Cy,C1,...,Cx—1. I' is a minimum radial drawing if it uses the minimum number
of circles. An edge (u,v) with u and v on C; is called an intra-level edge. An edge
(u,v) with v and v on on C; and C; with i # j is called an inter-level edge. If all
inter-level edges of a radial drawing I" connect vertices on consecutive circles, I’
is called a proper radial drawing.

Let G be a k-outerplane graph. A radial drawing of G is level-preserving if
it is a k-radial drawing and every vertex v with lev(v) = ¢ is drawn on circle C;.
A level-preserving k-radial drawing of a k-outerplane graph is proper.

3 Overview of the Approach

We study the problem of computing a radial drawing of a planar graph G on the
minimum number of circles. We show that a minimum radial drawing of G can be
computed in polynomial time. Namely: (a) We prove that if a graph has outer-
planarity k then it admits a k-radial drawing; Also if a graph has a radial drawing
on k-circles then it has outerplanarity at most k. (b) We use the above charac-
terization and a result by Bienstock and Monma [3] to show that there exists an
O(n®logn)-time algorithm that computes a minimum radial drawing of G.
The trickiest part is to show that a graph with outerplanarity k has a k-radial
drawing. We provide a linear-time algorithm that receives as input a k-outerplane
graph G and computes a level-preserving k-radial drawing of G. Our approach
can be summarised as follows. We start with Gg, draw the vertices in Vj on
Cp while maintaining their circular ordering in Gy. After placing V; on C; we
compute the radius of C;41 and draw V;y; on C;1; without moving any vertex
from V; with 0 < j < i. For ease of presentation, we will define canonical k-
outerplanar graphs and show how each k-outerplane graph can be transformed
into a canonical k-outerplane graph. We will also show that a k-outerplane graph
has a k-radial drawing if and only if its canonical form has a k-radial drawing.

4 Canonical Graphs and Equipped BC-Trees

Let G be a k-outerplane graph. A mized face of G is a face containing vertices
of two consecutive levels. G is called inter-triangulated if all its mixed faces are
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three-cycles. Assume G is inter-triangulated. Let ¢ be a cut-vertex of G;11. Let B
and B’ be two blocks (i.e. biconnected components) of G;;1 that are consecutive
when going around c in clockwise direction.

Since G is inter-triangulated, there exists at least one edge of E; ;41 incident
on c that is encountered between B and B’ when going around c in the clockwise
direction. Such an edge of E; ;11 is called a separating edge because it separates
blocks B and B’ around c. G is said to be canonical if it is inter-triangulated
and for any ¢ (¢ = 0,...,k — 2) and for any two clockwise consecutive blocks
B, B’ of G;41 around a cut-vertex, there is exactly one separating edge.

Every connected k-outerplane graph can be made canonical as stated by the
following lemma.

Lemma 1. Let G be a connected k-outerplane graph with n vertices. There exists
an O(n)-time algorithm that computes an augmented graph G’ such that: (1) G’
is k-outerplane, (2) G’ is canonical, and (3) the levels of the vertices of G are
preserved in G'.

We now introduce equipped BC-trees. Let G be a k-outerplane graph with
k > 1. We extend the block cut-vertex tree data structure [11] to identify specific
subgraphs of G. Because of Lemma 1, we can (and will) restrict our attention to
canonical graphs. Let K be a connected component of G; with i > 1. An equipped
BC-tree T of K is an embedded rooted tree such that (for an illustration see
Figures 1(a), 1(b), 1(c)):

— T has three types of nodes: (a) A B-node for each block By of K, referred
to as the B-node of Bxk. (b) A C-node for each cut-vertex ¢ of K, referred
to as the C'-node of ¢. (¢) A D-node for each separating edge e of G that is
incident on a cut-vertex of K, referred to as the D-node of e.

— If K is biconnected, T consist of a single B-node. If K is not biconnected,
we choose an arbitrary C-node as the root of T

— The edges of T are of two types: (a) Edges connecting a C-node of a cut-
vertex ¢ to a B-node of a block that contains c. (b) Edges connecting a
C-node of a cut-vertex ¢ to a D-node of a separating edge incident on c.

— The planar embedding of T reflects the embedding of G: if e is a separating
edge incident on a cut-vertex ¢ and e is between blocks B and B’ in clockwise
ordering around ¢, then the D-node of e is between the B-nodes of B and
B’ in clockwise ordering around the C-node of c.

For example cut vertex 1 is chosen as the root of the tree shown in Figure 1(c).
Separating edge (2, b) in Figure 1(b) separates blocks A and D. Correspondingly,
the D-node of (2,b) appears between the B-nodes of A and D in the circular
clockwise ordering around the C-node of cut-vertex 2 in the equipped BC-tree
of Figure 1(c).

Let u be the C-node of a cut-vertex ¢ of K, if p is not the root of T', the
parent of p is a B-node and the leftmost child and the rightmost child of p are
D-nodes. If 1 is the root of T" we arbitrarily choose the leftmost child of p as a
D-node; as a consequence the rightmost child of the root is a B-node. See for
example Figure 1(c) where the rightmost child of the root is the B-node of B,
while the leftmost child is the D-node of (1,e€).
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Fig.1. (a) A 2-outerplane graph G. The blocks of G1 are highlighted and labeled
with capital letters. The cut-vertices of G1 are numbered squares, and their separating
edges are bold. (b) A schematic representation of the structure of G. The skeleton is
highlighted with thick edges. (¢) An equipped BC-tree of G rooted at the C-node of
cut-vertex 1. (d) A drawing of the skeleton of G. The labels of the regions reflect those
of the corresponding blocks. (e) A level-preserving 2-radial drawing of G.
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Let v be a C-node of a cut-vertex ¢ of K that is not the root of T'. Let (¢, v) be
a separating edge of K. Vertex v is called a separating vertex of v. For example,
in Figure 1(c), vertices b, ¢, d are separating vertices of the C-node 2. Let v; and
vy be the leftmost and the rightmost D-node children (also called D-children)
of v, and let (c,v;) and (c,v,) be their associated separating edges; v; and v,
are called the leftmost separating vertex and the rightmost separating vertex of
v, respectively. For example, vertices d and b are the leftmost and rightmost
separating vertices of the C-node 2 in Figure 1(c).

Let p be a B-node whose parent is a node v where v is the C-node of cut
vertex c. Let v,.,v; be the D-children of v that precede and follow p in the
clockwise ordering around v. Let ¢; = (¢, v;) be the separating edge associated
with the D-node v; and e, = (¢,v,) be the separating edge associated with the
D-node v,. Edges e; and e, are called the left separating edge and the right
separating edge of p, respectively. Also, v; and v, are called the left separating
verter and the right separating vertez of u, respectively. For example, (2,d) and
(2,¢) are the left and right separating edges for the B-node F in Figure 1(c). A
separating edge (separating vertez) of p is either its left or right separating edge
(vertex). The following lemma can be proven by using standard techniques for
BC-trees [10].

Lemma 2. Let G be a canonical 2-outerplane graph with n vertices such that
the subgraph G1 induced by the vertices of level 1 is connected. There exists a
O(n)-time algorithm that computes an equipped BC-tree of G .

The equipped block-cut-vertex tree T" of K is used by the drawing algorithm
described in the next section to split G into small subgraphs each of which is
drawn independently of the others. Note that if K is biconnected the equipped
BC-tree of K has only one node, which is a B-node. However, in order to simplify
the description of the drawing algorithm in the following sections, we assume that
K has at least one cut-vertex. The assumption is not restrictive, since we can
always find a triangular mixed face f consisting of one vertex ¢ of K and two
vertices u, w of Gy, attach to ¢ a new dummy vertex v in f, and triangulate the
face again by adding two dummy edges (v, u), (v, w). Vertex v will be temporary
added to V7 and removed at the end of the drawing algorithm. The augmented
graph is still canonical 2-outerplane and ¢ is now a cut-vertex.

5 Radial Drawings of 2-Outerplanar Graphs

Let G be a 2-outerplane graph. In this section we show how to compute a 2-
radial drawing of GG. This result will be a basic building block for the drawing
techniques and the characterization of Section 6.

By Lemma 1 we can assume that G is canonical. Also, from the observation at
the end of the previous section, we may assume that each connected component
of (G1 has at least one cut-vertex. Let K be a connected component of G7. The
subgraph of G consisting of the separating edges of K is called the skeleton of
K and is denoted as skel(K). The skeleton of G is the union of all skel(K), for



Computing Radial Drawings on the Minimum Number of Circles 257

every connected component K of G;. We denote it by skel(G). For example in
Figure 1(a) and 1(b) the bold edges highlight the skeleton of the graph.

In order to use the algorithm as the basic tool to compute a k-radial drawing
of a graph with outerplanarity k (see Section 3), we assume that it receives as
input a drawing I of Gy on a circle Cy and that it computes a drawing I" of G
without changing Iy, i.e. Iy C I'. We do not put any restrictions on the drawing
I'y; the only hypothesis is that it preserves the planar embedding of Gy. The
algorithm consists of four main steps:

1. Choice of Ci: The radius of circle C; is determined.

2. Drawing the Skeleton of G: For each connected component K of G1, the
drawing of skel(K) is computed. Figure 1(d) shows a drawing of the skeleton
of the graph of Figure 1(a).

3. Associating Blocks with Regions: Let Xi be the drawing of skel(K).
X'k induces a set of connected regions in the plane; each region is bounded
by Cy and by two separating edges. Each block is associated with a region
and it will be drawn inside its region. Let Bx be a block of K, let T' be an
equipped BC-tree of K, and let 1 be the B-node of Bg in T'. Let (¢, v;) and
(c,v) be the left and right separating edges of u, respectively; let evy, To,
be the segments representing the separating edges of p in Y. Block By is
associated with the region bounded by ¢vy, ¢v, and by the arc of Cy from v,. to
vy in clockwise direction. For example, let X' be the drawing of Figure 1(d)
and consider block D of Figure 1(b). Block D is associated with the region
bounded in Figure 1(d) by segments 2¢, 2b, and by the arc of C from b to c
in clockwise direction.

4. Drawing the Blocks of Each Connected Component: The drawing of
G is computed by defining the coordinates of the vertices of G; that are
not cut-vertices. To do that, the algorithm draws each connected component
K of GG independently. For each block Bx of K it draws Bk inside its
corresponding region, as defined in the previous step. Figure 1(e) shows a
level-preserving 2-radial drawing of the graph of Figure 1(a).

5.1 Choice of C;

Let K be a connected component of GGy. The radius r; of C; depends on the
drawing of Gy. Radius 7 is chosen so that when a drawing of skel(G) is computed
the region associated with each block contains an arc of C'j. This will be useful
when drawing the vertices of the blocks inside their associated regions.

Let Ko, K1,..., K}y be the connected components of G and let T; be the
equipped BC-tree of K; (j =0,...,h). For each B-node of T; with separating
vertices vy, v, compute the distance between the point representing v; and the
point representing v, in Ij. Let §; be the minimum of these distances over all
B-nodes of T} and let 6 = min{d; : j =0,...,h}. We define the radius of C; to
be such that C intersects the chords of Cy with length §. Computing the radius
of Cy can be performed in a time that is linear in the number of blocks of G,
and therefore linear in the number of vertices of GG, since the graph is planar.
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5.2 Drawing the Skeleton of G

In this section we assume that the root of the equipped BC-tree T of K has at
least three B-children. The case when the root has only two B-children can be
handled similarly. For reasons of space we do not discuss this case.

The algorithm computes a drawing X'x of skel(K) such that Xy is inside
the polygon of Iy representing the face of Gg that contains K in G. The drawing
algorithm computes X'k so that for each block Bp, the separating edges that
define the region associated with Bg form a convex angle inside this region (the
angle is called corner of the region in the following). This invariant will be used
in the next steps of the algorithm and is important to prove the planarity of the
computed drawing of G. The algorithm performs a top-down left-to-right visit
of T. When a C-node v is visited, the associated cut-vertex c¢ is drawn on C}
together with all its incident separating edges. To better describe this algorithm
we need to introduce some more terminology.

Let I" be a 2-radial drawing of G on two circles Cy and C and let p be a
point on Cy. A free arc of p is a maximal arc of Cy having p as one end-point
and containing neither vertices of I" nor crossings between an edge of I" and C1.
Point p has always two free arcs, one moving from p clockwise (the left free arc
of p) and the other moving from p counterclockwise (the right free arc of p).
Given any circle C, and two points a and b on C, the arc of C traversed when
moving from a to b clockwise will be denoted as < a,b >. Points a and b will
be called the first point and the last point of the arc, respectively. Each point of
the arc distinct from a and b will be referred to as an internal point of < a,b >.
Finally, let g be a point outside C. A point p of C is wisible from ¢ if the segment
Pq does not cross C. The set of points of C that are visible from ¢ is an arc
called the wvisible region of q on C. Note that, the first and the last points of the
visible region of ¢ on C' are the intersection points between C and the straight
lines through ¢ tangent to C. The algorithm distinguishes among two cases:

— Node v Is the Root of T. Let 1, ..., up be the B-children of v and let
P be the polygon defined by their separating vertices. From the choice of
C1, every side of P crosses C; in two distinct points. This implies that P
contains a set of arcs of C. Draw ¢ as a point of one of these arcs. See for
example the cut-vertex 1 in Figure 1(d).

— Node v Is Not the Root of T'. Let u; and u, be the leftmost and the rightmost
separating vertices of v, respectively. By the choice of C; (Subsection 5.1),
segment u;u,. crosses circle C in two distinct points; let p be the intersection
point that is closer to u,, and denote by ~ the intersection of the left free arc
of p and the visible region of u,.. Draw ¢ as a point of . It can be proven that
any point in v guarantees that the corners of the regions of the B-children
of v are convex. However, in order to correctly complete the drawing of the
blocks of K without changing the drawing of the skeleton (Subsection 5.4),
the algorithm may need to make v smaller for some cases. Details about how
to reduce « are omitted.
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Lemma 3. Let G be a 2-outerplane graph with n vertices, let Gy C G be the
subgraph of level 0, and let skel(G) be the skeleton of G. Let Iy be an embedding
preserving 1-radial drawing of Go. There exists an O(n)-time algorithm that
computes an embedding preserving 2-radial drawing I' of Go U skel(G) such that
Iy C I'. Also, I is a level-preserving drawing.

5.3 Associating Blocks with Regions

Since G is canonical, the interior of each face f of G contains exactly one
connected component K of G;. K is drawn inside the region f of the plane and
is denoted by Rs. Note that Ry is defined by I'y. Let T be the BC-tree of K; Ry
is recursively subdivided into connected sub-regions R, one for each B-node
of T'. As explained in Subsection 5.4, block p is drawn inside R,. We formally
define the regions induced by X'k in the following.

For each B-node p of T let (c,v;) and (c,v,) be the separating edges of p.
Denote by R}, the region of the plane delimited by the segments cvy, cv,, and by
the arc < v,,v; > of Cy. The drawing technique of Subsection 5.4 will draw the
blocks of the subtree of T" rooted at  inside Rj,. The region R, containing the
single block associated with p is as follows: (a) If  is a leaf, let R, = R};. (b) If 1
is an internal node with grandchildren p1, . .., un, let R, = Ry \ (R}, U---UR],, ).

5.4 Drawing the Blocks

Let Bi be a block of a connected component K of G, and let x4 be the B-node
of T representing Bx. As in Section 5.2, we assume in the following that the
root of T has at least three B-children.

A vertex of G is an internal joint vertez if it is adjacent to at least two
vertices of Go. A vertex u of G is an external joint vertex if it is adjacent to
at least two vertices of GG;. The algorithm that draws By inside its associated
region R, distinguishes among two cases:

Case 1: p Is a Leaf of T'. Let ¢ be the cut-vertex associated with the parent of
w and let ¢ = ag,a1,...,a; be the internal joint vertices of Bg in the clockwise
order they appear on the external face of B . Since G is inter-triangulated then
the internal joint vertices a; and a;41 (I = 0,...,t—1) are adjacent to an external
joint vertex, which is denoted by u;41. Also a; and ag are adjacent to an external
joint vertex, which is denoted as w¢41. Since G is canonical, edges (¢, u;) and
(c,ut41) are the separating edges of p.

The algorithm first places the internal joint vertices ay, ..., a; in this order.
At step ! (I =1,...,t) vertex a; and its incident edges are added to the drawing.
Each vertex q; is placed on C; as follows. If edge (u;, a;—1) crosses C; then let p
be its crossing, otherwise let p be coincident with a;_;. Vertex a; is drawn as an
internal point of the intersection between the right free arc of p and the visible
region of wu;.

Once all the internal joint vertices are placed, the algorithm draws the re-
maining vertices of Bx and their incident edges. More precisely, let v, ..., vy,
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be the vertices that are between vertices a; and a;41 (I =0,...,t —1) in clock-
wise ordering on the external face of Bi. All these vertices are adjacent to the
external joint vertex u;y1. If edge (a;, u;41) crosses Cq then let ¢; be its crossing,
otherwise let ¢; be coincident with a;. Analogously, if edge (a;4+1,u;+1) crosses
C1 then let go be its crossing, otherwise let g2 be coincident with a;1. Vertices
v1,...,vy, are drawn in this order as points of the arc < g1, g2 >.

Case 2: p Is an Internal Node of T'. This case can be handled with techniques
similar to those used for the previous case. We omit the decription of them for
reasons of space.

Theorem 1. Let G be a a 2-outerplane graph with n vertices. G admits a level-
preserving 2-radial drawing that preserves the embedding of G. Also there exists
an O(n)-time algorithm that computes such a drawing.

6 Minimum Radial Drawings of Planar Graphs

In this section we first characterize the family of graphs that admit a radial
drawing on at most k-concentric circles and then use the characterization to
solve in polynomial time the problem of computing a minimum radial drawing
of a planar graph.

Theorem 2. Let G be a graph with outerplanarity k and n vertices. Then G
admits a proper k-radial drawing. Also, there exists an O(n)-time algorithm that
computes such a drawing.

Proof. Since G has outerplanarity k£ then it has a k-outerplanar embedding. We
show how to compute a level-preserving k-radial drawing I" of G that preserves
this embedding. This implies that I" is proper. An algorithm to compute I is
based on first drawing the subgraph induced by the vertices of level 0 on a
circle Cy and then by adding at each step the vertices of level ¢ on a circle C;
(¢=1,---k—1). At Step i the subgraph G;_; ; is drawn by using the algorithm
described in Section 5. Since G = Uf:_g G; i+1 the computed drawing is a radial
drawing of G. The fact that no two edges cross is a consequence of Theorem 1. It
follows that the above described algorithm computes a level-preserving k-radial
drawing of G. As for the time complexity, it follows from Theorem 1 that the
computation of drawing G,_;; requires O(n;) time where n; is the number of
vertices in G;_1,;. Therefore the overall time complexity is O(n). a

Lemma 4. If a graph G admits a k-radial drawing then it has outerplanarity
at most k.

Proof. A k-radial drawing I" of G defines an embedding of G. All vertices on
the outerface of this embedding are drawn on Cj. Removal of all vertices on Cy
results in a (k — 1)-radial drawing. So we can use induction to show that I is a
k-outerplane graph. It follows that the outerplanarity of G is at most k. O

Theorem 3. Let G be a planar graph. G admits a radial drawing on at most
k-circles if and only if the outerplanarity of G is at most k.
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Proof. Assume that G has a k-radial drawing. Then by Lemma 4 G has outer-
planarity at most k. Conversely, if G has outerplanarity j < k, by Theorem 2 it
admits a j-radial drawing with j < k. a

Theorem 4. Let G be a planar graph with n wvertices. There exists an
O(n®logn)-time algorithm that computes a radial drawing of G on the mini-
mum number of concentric circles. Furthermore the computed drawing is proper.

Proof. Bienstock and Monma [3] describe an algorithm to compute the outerpla-
narity k of G and to determine a k-outerplanar embedding of G. This algorithm
takes O(n®logn) time. The result in [3] together with Theorem 3 imply that k
is the minimum number of circles for which there exists a radial drawing of G.
The fact that such a drawing is proper is a consequence of Theorem 2. Again by
Theorem 2 it follows that the time complexity of the whole algorithm is domi-
nated by the technique in [3]. O
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Abstract. A planar graph G is k-spine drawable, k > 0, if there exists a
planar drawing of G in which each vertex of G lies on one of k£ horizontal
lines, and each edge of G is drawn as a polyline consisting of at most two
line segments. In this paper we: (i) Introduce the notion of hamiltonian-
with-handles graphs and show that a planar graph is 2-spine drawable if
and only if it is hamiltonian-with-handles. (ii) Give examples of planar
graphs that are/are not 2-spine drawable and present linear-time drawing
techniques for those that are 2-spine drawable. (iii) Prove that deciding
whether or not a planar graph is 2-spine drawable is N’P-Complete. (iv)
Extend the study to k-spine drawings for £ > 2, provide examples of
non-drawable planar graphs, and show that the k-drawability problem
remains NP-Complete for each fixed k > 2.

1 Introduction

Many graph drawing applications require that the vertices of the graph be placed
on some set of horizontal lines. Such drawings have applications in visualization,
DNA mapping, and VLSI layout [10,8]. A common aesthetic requirement is that
it be easy to locate the end-vertices of each edge. One way to achieve this is by
representing edges as polylines composed of a small number of line segments, and
by placing the vertices so that polylines from different edges cross a minimum
number of times, if at all. Hence, we have the k-spine drawability problem: Given
a planar graph G and an integer k£ > 0, is there a planar drawing of G such that
the vertices of G lie on k horizontal lines called spines and each edge is drawn
as a polyline consisting of at most two line segments? For k£ > 0, we say that a
graph is k-spine drawable, or has a k-spine planar drawing, if it is a yes-instance
to the k-spine drawability problem.

The k-spine drawability problem for £ = 1 is a classic topic in the graph
drawing and computational geometry literature, where 1-spine drawings are
commonly called 2-page book embeddings or 2-stack layouts. Bernhart and
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Kainen [1] show that a planar graph has a 2-page book embedding if and only if
it is sub-hamiltonian, which implies that the 1-spine drawability testing problem
is in general N P-hard. Meaningful subclasses of planar graphs that admit 2-page
book embeddings (i.e. they are 1-spine drawable) are described in the literature
(see, e.g. [1,3]).

The k-spine drawability problem for k£ > 1 has also been widely investigated
in the case that the edges cannot bend, i.e they are straight-line segments. There
are several papers devoted to this problem, both under the assumption that no
two vertices on the same spine can be adjacent (see, e.g. [5,7]) and under the
assumption that there can be intra-spine edges (see, e.g. [4,6,9]). In particular,
Cornelsen, Shank, and Wagner [4] characterize the family of graphs that admit a
straight-line 2-spine drawing with intra-spine edges. They show that the graphs
in this family are a proper subset of outerplanar graphs and describe a linear
time test algorithm.

The present paper studies k-spine drawings for £ > 2. It is assumed that
edges can bend at most once and that two edges on the same spine can be
adjacent. We are interested in testing whether or not a graph G admits a k-
spine drawing, and, if so, computing such a drawing. The main results in this
paper are as follows:

— We introduce and study the notion of hamiltonian-with-handles planar
graphs. We show that a planar graph admits a 2-spine drawing if and only
if it is sub-hamiltonian-with-handles.

— We study the relationship between hamiltonian-with-handles graphs and pla-
nar graphs. Namely, we show that there exist planar graphs that are not
sub-hamiltonian-with-handles; consequently, they do not admit a 2-spine
drawing. We also prove that every 2-outerplanar graph G is sub-hamiltonian-
with-handles and that an embedding-preserving 2-spine drawing of G' can be
computed from a 2-outerplanar embedding in linear time.

— Motivated by these results, we study the problem of deciding whether or
not a planar graph admits a 2-spine drawing. We show that this problem is
NP-Complete.

— We extend the investigation to & > 2 spines and prove that in this case not
all planar graphs are k-spine drawable. We show that the problem of testing
k-spine drawability remains A'P-Complete for any fixed integer k > 2.

For reason of space, some proofs are sketched or omitted.

2 Preliminaries

A k-spine planar drawing of G (k > 1) is a planar drawing of G in which the
vertices of G are drawn as points on one of k horizontal straight lines (called
spines), and the edges of G are drawn as polylines consisting of at most two
segments (i.e. each edge is drawn with at most one bend). If G admits a k-spine
planar drawing, then G is said to be k-spine drawable.

Let I' be a k-spine planar drawing of G. A jumping segment to vertex v is a
straight-line segment pv contained in an edge incident on v in I" such that p and
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v lie on different spines. We say that p is its first endpoint and v is its second
endpoint. A jumping sequence J from a vertex v to a vertex w is a sequence
fo, f1, ..., fn of jumping segments in I" such that:

1. The first endpoint of fy is on the same spine as v, coinciding with v or to
the right of v;

2. The second endpoint of fj is on the same spine as w coinciding with w or
to the left of w;

3. If f; and f; 1 are consecutive segments in J, and p is the second endpoint
of f; and ¢ is the first endpoint of f;11, then p and ¢ lie on the same spine
and p is to the left of q.

The landing segments of J are the horizontal line segments between the second
endpoint of each f; and the first endpoint of its successor in J, along with the
horizontal segment between v and the first endpoint of fy and the horizontal
segment between the second endpoint of f;, and w. Thus, the landing sequence
Ly (J) from v to w of the jumping sequence J is the sequence of landing
segments of J whose order corresponds to the order of the segments in J. The
Jumping vertex sequence V,, ., (J) of jumping sequence J from vertex v to vertex w
is the sequence of vertices that lie on the landing segments of L, ,,(J). The order
of the vertices corresponds to the order that their segments appear in Ly, ,,(J),
and then to their left-to-right order in I". Whenever the jumping vertex sequence
Viw(J) is a simple path with prev(w) = 0 and next(w) = 0, we call it a cutting
path of G in I'. Similarly, if V,, ,,(J) can be augmented by edge addition while
maintaining planarity to be a simple path with prev(w) = () and next(w) = 0,
then we call it an augmenting cutting path of G in I

Cutting paths will be essential to our characterization of 2-spine drawable
graphs later. Very roughly, a cutting path splits the graph into two subgraphs
that are each 1-spine drawable. The following lemma can be proved.

Lemma 1. For each 2-spine planar drawing I' of a planar graph G, there exists
an augmenting cutting path of G in I.

3 Hamiltonian-with-Handles Graphs

In this section we characterize the class of 2-spine drawable graphs. First, we
require a few additional definitions.

Let G be an embedded planar graph. A base path of G is a simple path IT of
G such that the first and the last end-vertices of I are on the external face of G.
Let IT be a base path and let i7 be a simple path of G such that no vertex of 7 is
a vertex of IT. Path n is a handle of II if for each end-vertex of 7 there exists an
edge e, called a bridge, connecting the end-vertex to IT. The end-vertex of e in IT
is called an anchor vertex of n. Its other end-vertex is called an extreme vertex
of 1. The subpath of IT between the anchor vertices of 7 is called the co-handle
of n and is denoted 7. The subgraph of G composed of the cycle C,, formed by
7, its bridge edges and 7, along with any edges and vertices inside C,, is called
the handle graph of n and is denoted Gy,.
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Fig. 1. (a) Illustration of handles along a path II. n; is a non-dangling left handle and
72 is a dangling right handle. Edges (s1,v1) and (¢1,w:) are the bridges of 71, and edges
(s2,v2) and (t2,w2) are the bridges of 2. Vertices s1 and t1 are the anchor vertices of
72, and vertex sa = t2 is the anchor vertex of 72. Vertices v1 and w; are the extreme
vertices of 771, and vertices v2 and w2 are the extreme vertices of 72. (b) Some examples
of interleaving handles.

If the two anchor vertices of a handle coincide, then the handle is called a
dangling handle. If we walk along path IT from one end to the other, then every
edge of G that is not in I7 is either on the left-hand side of IT or on the right-hand
side. Handles on the left-hand side are called left handles, and handles on the
right-hand side are called right handles. Figure 1(a) illustrates these definitions.

Let 11 and 72 be two handles, and let s; and ¢; be the anchor vertices of 7
such that s; is encountered before ¢; when walking along II. Similarly, let so
and t9 be the anchor vertices of 1y such that ss is encountered before to when
walking along I1. Handles 77 and 72 are said to be interleaving if one of the
following two cases holds:

— Gy, and Gy, share more than one vertex or share a vertex that is not an
anchor for 7y or 7y (see, for example, handles 7; and 72 or handles 75 and
1 in Figure 1(b)); or

— m is a left dangling handle, 72 is a right dangling handle, and s; = s2 =
t1 = ta (see, for example, handles 3 and 74 in Figure 1(b)).

A planar graph G is hamiltonian-with-handles if either G has at most two
vertices or, for some planar embedding of G, the vertices of G can be covered
by a cycle C' and a set of paths 11, 12, ... 7, such that: (i) C is a simple cycle,
(ii) C is the union of a base path II and an edge, and (iii) n1, 72, ... 7, are
non-interleaving handles of II. G is sub-hamiltonian-with-handles if it can be
augmented by adding edges in such a way that the resulting augmented graph
is still planar and hamiltonian-with-handles.

4 Characterizing 2-Spine Drawable Graphs

In this section we prove the following characterization:

Theorem 1. A planar graph G is 2-spine drawable if and only if it is sub-
hamiltonian-with-handles.
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4.1 Proof of Necessity

We first prove that if a planar graph G is 2-spine drawable, then G is sub-
hamiltonian-with-handles. Let I" be a 2-spine planar drawing of a planar graph
G. By Lemma 1, there exists an augmenting cutting path II =V, ,,(J) of G in
I'. We will use IT as our base path. It remains then to prove that the vertices of
G outside II can be covered with a set of non-interleaving handles.

Let J = fo, fi, ..., fn, and use A; to denote the landing segment before
each jumping segment f; in the landing sequence L, ,,(J). In addition, let Ap11
denote the landing segment after f;,. We call the first and last vertices, denoted
v; and w;, of each \; its corner vertices. We use m; (i = 0,...,h + 1) to denote
the subpath of II consisting of:

— the vertex immediately preceding v;, if it exists;
— all the vertices in A;; and,
— the vertex immediately following w;, if it exists.

We call each 7; a pocket. Each pocket has an associated portion of a spine called
its pocket lead:

— Pocket lead 7 is the portion of spine that is before Ag;

— Pocket lead 7; (i = 1,...,h) is the portion of spine that is between A;_; and
Ait+1; and,

— Pocket lead 7,11 is the portion of spine that is after \y,.

A maximal sequence of consecutive vertices in a pocket lead is called candidate
handle.

Lemma 2. Let I' be a 2-spine planar drawing of a planar graph G, and let 11
be a cutting path of G in I'. Let m; be a pocket of IT and let 7; be the pocket
lead of m; (0 < i < h+1). Let n be a candidate handle in 7;, and let v, and
wy be the first vertex and the last vertex of n, respectively. Then, there exist two
vertices sy, t, € m; such that either there exist edges (vy, sy) and (wy,ty) in I or
these edges can be added to I' while maintaining the planarity of I'. Furthermore,
vertex s, s on the spine that does not contain the vertices of 1.

Lemma 2 shows that G can be augmented by edge addition so that the
resulting augmented graph can be covered by the cutting path II plus a set of
handles of I1. In order to prove that GG is sub-hamiltonian-with-handles we need
to prove that these handles are pairwise non-interleaving.

Lemma 3. Let I' be a 2-spine planar drawing of a planar graph G, let II be
the cutting path of G in I', and let n1,m2,...,m, be a set of candidate handles
of G in I'. Then, I' can be augmented so that n1,m2,...,m, are pairwise non-
interleaving handles.

Proof. By Lemma 2, I'" can be augmented so that each 7; is a handle, and, if n; is
in pocket lead 7;, then its anchors s; and t; belong to m;. We now prove that each
pair of handles is non-interleaving. Without loss of generality, we consider the
pair 11 and ny. By way of contradiction, assume that n; and 7, are interleaving.
According to the definition there are two cases.
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— Gy, and G, share more than one vertex or share a vertex that is not an
anchor for n; or 7.

By definition, n; and 7 are disjoint so, by Lemma 2, the vertices that G,
and G, share are also shared by the pockets corresponding to 1, and 7.
We first consider the case where 71 and 72 belong to different pockets. Two
pockets share vertices only if they are consecutive so we assume, without
loss of generality, that 7; belongs to pocket m; and 72 belongs to the next
pocket m;11. In that case, the pockets share two vertices, w; and v;41, which
are consecutive on path II. Thus, n; belongs to the same spine as v;4; and
is left of v;11. On the opposite spine, 7, is to the right of w;. By Lemma 2,
so does not belong to the spine of 72 so s; appears after v;41 in path II,
or coincides with v;41. Vertex to appears after so in II or coincide with ss.
Hence Gy, and G, can share at most an anchor vertex. Therefore, 7; and
79 must belong to the same pocket.

Since 11 and 72 belong to the same pocket, we assume, without loss of
generality, that 7; is to the left of 75 on some spine. Let w,, be the last vertex
of 71 and let v;, be the first vertex of 7. The two handles are interleaving
only if the subpaths s; to ¢; of IT and ss to to of II share an edge. This
implies that ¢; is to the right of so. By definition, next(w,, ) is a crossing ¢
and prev(v,,) is also a crossing ¢ to the right of ¢;. In addition, an edge
incident on #; contains the segment c;t; and another edge incident on so
contains the segment ¢383. Since ¢y is left of ¢o and ss is left of ¢1, we have
an edge crossing so 171 and 72 do not interleave.

— m is a left dangling handle, 72 is a right dangling handle, and s; = s2 =
t1 = to. Since 7 is a left dangling handle and 72 is a right dangling handle
then they are on different spines. By Lemma 2 also s; and sy are on different
spines, but this is impossible since they coincide. a

Together, Lemmas 2 and 3 prove the necessary condition of our characteri-
zation:

Lemma 4 (Necessary Condition). If a graph G is 2-spine drawable, then G
s sub-hamiltonian-with-handles.

4.2 Proof of Sufficiency

To prove the sufficiency of the characterization of Theorem 1, we describe an
algorithm that constructs a 2-spine planar drawing of any graph that is sub-
hamiltonian-with-handles. For reasons of space only an outline of the algorithm
is given.

Suppose that G is sub-hamiltonian-with-handles for some planar embedding
and base path II. Thus, IT divides GG into two subgraphs, one to the left of IT
and the other to the right of II. Very roughly, the algorithm first draws the base
path on the two spines so that it is possible to draw the subgraph that is to
the left of II, above the drawing of II, and the subgraph that is to the right
of I1, below the drawing of IT (see also Figure 2). The algorithm performs the
following steps:
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i T,

(a) (b)

Fig. 2. Tllustration of the drawing algorithm. (a) The graph G’, obtained after the
removal of the dangling handles, can be decomposed into two graphs Gies: and Grigne
plus one handle graph for each handle. (b) The drawing technique assigns vertices to
each spine so that the left handles can be drawn on spine 77 and the right handles
can be drawn on spine Tp. Gies¢ is drawn completely above II, and Grignt is drawn
completely below II. The drawings of Gies; and Grign: share only vertices of II.

Drawing the Vertices of II: The algorithm starts by drawing the vertices of
Il in G on the two spines. Each vertex is assigned to one of the two spines
so that each co-handle of a left handle is on the lower spine and each co-
handle of a right handle is on the higher spine. A position on the spine, i.e.
an z-coordinate, is also assigned to each vertex of II.

Removing the Dangling Handles: In order to simplify the algorithm, the
dangling handles are removed and replaced with a set of new edges. The
resulting graph G’ then has only non-dangling handles but may have multiple
edges. The removed handles are re-inserted back into the graph in the last
step of the algorithm.

Drawing the Vertices of the Non-dangling Handles: The vertices of G’
that are not in IT (i.e. the vertices of the non-dangling handles of G) are
assigned an z-coordinate and a spine.

Drawing the Edges of Gicr: and of Grighs: Recall that IT divides G’ into
two subgraphs, one to the left and the other to the right. We roughly define
Gieft to be the subgraph induced by the edges to the left of II minus any
handle graph edges. We similarly roughly define Gyign: to the be the sub-
graph induced by the edges to the right of IT minus any handle graph edges.
Thus, the algorithm draws the edges of Gier: and Grigns separately, using
the same technique for each, and then merges the two drawings together.

Drawing the Edges of the Handle Graph: After the edges of Gy and
Grignt are drawn, the edges of each handle graph are added to the drawing.

Re-inserting the Dangling Handles: Finally, the dangling handles are re-
inserted into the drawing after removing the edges that were inserted earlier
to replace the handle.

Lemma 5 (Sufficient Condition). If a planar graph G is sub-hamiltonian-
with-handles, then G is 2-spine drawable.

Together, Lemmas 4 and 5 prove Theorem 1.
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Fig. 3. (a) Maximal planar graph N; (b) The graph N2 for the proofs of Theorem 2.

5 2-Spine Drawability Testing

The characterization result of Theorem 1 naturally raises two related questions:
(i) Is every planar graph 2-spine drawable? (ii) How hard is it to decide whether
or not a planar graph is 2-spine drawable? In this section we address both ques-
tions.

Theorem 2. There exists a planar graph that is not 2-spine drawable.

Sketch of Proof: Let N! be the maximal planar graph of Figure 3(a). Graph
N'is non-hamiltonian [2] and therefore not 1-spine drawable [1]. Let Hj be the
subgraph of N! obtained by removing the vertices of degree three (the black
vertices) from N'. Given the embedding of Hs in Figure 3(a), let N2 be the
maximal planar graph obtained by inserting a copy of N' into each face of Hj
and then triangulating the result (see Figure 3(b)).

We prove that graph N? is not 2-spine drawable. To this aim we consider
a weaker version of the necessary condition in Theorem 1: if maximal planar
graph G is 2-spine drawable, then G contains a simple cycle C such that G \ C
is 1-spine drawable. If G is 2-spine drawable, then, by Lemma 1, there exists
an augmenting cutting path II for a 2-spine planar drawing I" of G. The end-
vertices of I are on the external face of GG, so, since GG is maximal, they are
adjacent. Therefore, II plus the edge connecting its end-vertices form a simple
cycle C. Since no edge of G crosses I in I', if we remove C from the drawing of
G, we are left with a set of subgraphs of G that are drawn on one spine and are
therefore 1-spine drawable.

We now prove that N? is not 2-spine drawable. Suppose, by way of contra-
diction, that N? is 2-spine drawable. By the above necessary condition, there
exists a simple cycle in N2 such that N2\ C is 1-spine drawable. Since N! is not
1-spine drawable, then C must contain at least one vertex from each copy of N'!.
In the embedding of N2 in Figure 3(b), each copy of N is inside a different face
of Hs. Thus, given any two vertices v; and vy from different copies of Ny, there
must be a vertex of Hs between v; and vy in C. Since there are six copies of N'!
and five vertices in Hs, then all the vertices of Hs are in C. Thus, C contains at
least one vertex from each copy of N' and all the vertices of Hs; however, this
implies that there exists a hamiltonian circuit in N!, a contradiction. O
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While Theorem 2 gives a negative result, the following theorem describes a
meaningful class of 2-spine drawable graphs.

Theorem 3. Every embedded 2-outerplanar graph is 2-spine drawable and a
2-spine planar drawing of G can be computed in linear time.

Sketch of Proof: By Theorem 1 it is sufficient to prove that G is sub-hamilton-
ian-with-handles. We assume that G is biconnected. If it is not biconnected,
then we can easily make it biconnected by edge addition, while maintaining a
2-outerplanar embedding. Since G is biconnected, the external face of G is a
simple cycle C. Let Gy be the subgraph of G induced by the vertices of C. We
choose our base path IT to be C minus an edge. Each internal vertex, that is,
each vertex that is not on the external face, is either adjacent to a vertex of the
external face or can be made adjacent to a vertex of the external face by adding
an edge. Each internal vertex v is a handle of length one and the edge connecting
v to a vertex of the external face is its bridge. As for the time complexity, we
remark that finding C' and the handles takes linear time, and that the drawing
procedure described in Section 4.2 requires linear time if C' and the handles are
given. 0

Based on the above theorem, one can ask whether embedded 2-outerplanar
graphs can be drawn on less than two spines. We observe that the graph of
Figure 3(b) is 2-outerplanar and that, as observed in the proof of Theorem 2, it
is not 1-spine drawable.

Motivated by the results in Theorems 2 and 3, we investigate the complexity
of deciding whether a planar graph is 2-spine drawable. The next theorem states
that this problem is NP-complete. In fact, we prove that the problem is N P-
complete when restricted to embedded maximal planar graphs and embedding-
preserving 2-spine planar drawings. The original problem and this restricted
version are polynomially equivalent because maximal planar graphs have a linear
number of planar embeddings that can be efficiently computed.

The reduction is from HC-EMP: given an embedded maximal planar graph
G, determine whether or not G is external hamiltonian, i.e. G has a hamilto-
nian circuit with an edge on the external face. Wigderson [11] has proved that
HC-MP (the hamiltonian circuit problem for maximal planar graphs) is NP-
Complete. These two problems are polynomially equivalent, once again because
each maximal planar graph has a linear number of embeddings. The proof of the
next theorem is omitted for reasons of space.

Theorem 4. The problem of determining whether or not a planar graph is 2-
spine drawable is N'P-complete.

6 k-Spine Drawability Testing

We extend the study of the 2-spine drawability to the case of the k-spine drawa-
bility. The following results can be proved by inductively generalizing the the
proofs for the 2-spine drawing results.
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Theorem 5. For each fized integer k > 2, there exists a planar graph that is
not k-spine drawable.

Sketch of Proof: The proof of this theorem is an extension of the proof of
Theorem 2 and is based on a necessary condition for a planar graph to be k-
spine drawable: if planar graph G is k-spine drawable, then G contains a simple
cycle C such that G\ C is (k — 1)-spine drawable. We inductively describe a
sequence of maximal planar graphs N* that are not k-spine drawable for k& > 1:
(i) N is the graph of Figure 3(a); (ii) N¥, for k > 2, is obtained from Hs by
inserting a copy of N*~1 into each face of Hs (assuming the embedding of Hj in
Figure 3(a)) and then triangulating. We prove that N* is not k-spine drawable
by induction on k. N is not 1-spine drawable since it is not hamiltonian. Assume
that N*~1 is not (k — 1)-spine drawable and, suppose, by way of contradiction,
that N* is k-spine drawable. By the necessary condition above, there exists a
simple cycle C' of N¥ such that N*\ C is (k — 1)-spine drawable. Since N¥~1 is
not (k — 1)-spine drawable, then C' must contain at least one vertex from each
copy of N¥=1. In the planar embedding of N*, each copy of N¥~1 is inside a
different face of Hs. Thus, given any two vertices v; and vo from different copies
of N5=1 there must be a vertex of Hs between v1 and ve in C. Since there
are six copies of N*~1 and five vertices in Hj, then all the vertices of Hy are
in C. Thus, C contains at least one vertex from each copy of N¥~! and all the
vertices of Hy. This implies that there exists a hamiltonian circuit in N which
is impossible. O

The proof of N’P-Completeness for 2-spine drawability testing can be ex-
tended to k-spine drawability for k > 2.

Theorem 6. For each fized integer k > 2, the problem of determining whether
or not a planar graph is k-spine drawable is N'P-Complete.
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Abstract. Sensor network applications frequently require that the sensors know
their physical locations in some global coordinate system. This is usually achieved
by equipping each sensor with a location measurement device, such as GPS.
However, low-end systems or indoor systems, which cannot use GPS, must lo-
cate themselves based only on crude information available locally, such as inter-
sensor distances. We show how a collection of sensors, capable only of measuring
distances to close neighbors, can compute their locations in a purely distributed
manner, i.e. where each sensor communicates only with its neighbors. This can
be viewed as a distributed graph drawing algorithm. We experimentally show
that our algorithm consistently produces good results under a variety of simu-
lated real-world conditions, and is relatively robust to the presence of noise in the
distance measurements.

1 Introduction

Sensor networks are a collection of (usually miniature) devices, each with limited com-
puting and (wireless) communication capabilities, distributed over a physical area. The
network collects data from its environment and should be able to integrate it and answer
queries related to this data. Sensor networks are becoming more and more attractive in
environmental, military and ecological applications (see [12] for a survey of this topic).

The advent of sensor networks has presented a number of research challenges to the
networking and distributed computation communities. Since each sensor can typically
communicate only with a small number of other sensors, information generated at one
sensor can reach another sensor only by routing it thru the network, whose connectivity
is described by a graph. This requires ad-hoc routing algorithms, especially if the sen-
sors are dynamic. Traditional routing algorithms relied only on the connectivity graph
of the network, but with the introduction of so-called location-aware sensors, namely,
those who also know what their physical location is, e.g. by being equipped with a GPS
receiver, this information can be used to perform more efficient geographic routing. See
[10] for a survey of these routing techniques.

Beyond routing applications, location-aware sensors are important for information
dissemination protocols and query processing. Location awareness is achieved primar-
ily by equipping the sensors with GPS receivers. These, however, may be too expensive,
too large, or too power-intense for the desired application. In indoor environments, GPS

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 273-284, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



274 Craig Gotsman and Yehuda Koren

does not work at all (due to the lack of line-of-sight to the satellites), so alternative solu-
tions must be employed. Luckily, sensors are usually capable of other, more primitive,
geometric measurements, which can aid in this process. An example of such a geo-
metric measurement is the distance to neighboring sensors. This is achieved either by
Received Signal Strength Indicator (RSSI) or Time of Arrival (ToA) techniques. An im-
portant question is then whether it is possible to design a distributed protocol by which
each sensor can use this local information to (iteratively) compute its location in some
global coordinate system.

This paper solves the following sensor layout problem: Given a set of sensors dis-
tributed in the plane, and a mechanism by which a sensor can estimate its distance to
a few nearby sensors, determine the coordinates of every sensor via local sensor-to-
sensor communication. These coordinates are called a layout of the sensor network.

As stated, this problem is not well-defined, because it typically will not have a
unique solution. A unique solution would mean that the system is rigid, in the sense
that the location of any individual sensor cannot be changed without changing at least
one of the known distances. When all (Z) inter-sensor distances are known, the solu-
tion is indeed unique, and is traditionally solved using the Classical Multidimensional
Scaling (MDS) technique [1]. When only a subset of the distances are known, more
sophisticated techniques must be used.

When multiple solutions exist, the main phenomenon observed in the solutions is
that of foldovers, where entire pieces of the graph fold over on top of others, without
violating any of the distance constraints. The main challenge is to generate a solution
which is fold-free. Obviously the result will have translation, orientation and reflection
degrees of freedom, but either these are not important, or can be resolved by assigning
some known coordinates to three sensors.

In real-world sensor networks, noise is inevitable. This manifests in the inter-sensor
noise measurements being inaccurate. Beyond the obvious complication of the dis-
tances possibly no longer being symmetric, thus violating the very essence of the term
“distance”, there may no longer even exist a solution realizing the measured edge
lengths. The best that can be hoped for, in this case, is a layout whose coordinates
are, up to some acceptable tolerance, close to the true coordinates of the sensors.

In order to be easily and reliably implemented on a sensor network, the solution
to the layout problem should be fully distributed (decentralized). This means that each
sensor should compute based on information available only at that sensor and its im-
mediate neighbors. The class of neighbors is typically characterized by a probabilistic
variant of the disk graph model: Any sensor within distance R; is reachable, any sensor
beyond distance R is not reachable, and any sensor at a distance between R; and R
is reachable with probability p. Of course, information from one sensor may eventually
propagate thru the network to any other sensor, but this should not be done explicitly.

2 Related Work

The problem of reconstructing a geometric graph given its edge-lengths has received
some attention in the discrete geometry and computational geometry communities,
where it is relevant for molecule construction and protein folding applications. De-
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ciding whether a given graph equipped with edge lengths is rigid in 2D — i.e. admits a
unique layout realizing the given edge lengths — is possible in polynomial time for the
dense class of graphs known as generic graphs [7]. However, computing such a layout
is in general NP-hard [14]. This does not change even if a layout is known to exist (as
in our case).

The problem of distributed layout of a sensor network has received considerable
attention in the sensor network community. A recent work of Priyantha e al [11] classi-
fies these into anchor-based vs. anchor-free algorithms and incremental vs. concurrent
algorithms. Anchor-based algorithms rely on the fact that a subset of the sensors are
already aware of their locations, and the locations of the others are computed based on
those. In practice a large number of anchor sensors are required for the resulting loca-
tion errors to be acceptable. Incremental algorithms start with a small core of sensors
that are assigned coordinates. Other sensors are repeatedly added to this set by local
trigonometric calculations. These algorithms accumulate errors and cannot escape lo-
cal minima once they are entered. Concurrent algorithms work in parallel on all sensors.
They are better able to avoid local minima and avoid error accumulation. Priyantha et
al [11] review a number of published algorithms and their classifications. All of them,
however, are not fully distributed.

The algorithm we describe in this paper is most similar in spirit to the so-called
Anchor-Free Localization (AFL) algorithm proposed by Priyantha et al [11]. The AFL
algorithm operates in two stages. In the first stage a heuristic is applied to try gener-
ate a well-spread fold-free graph layout which “looks similar” to the desired layout.
The second stage applies a “stress-minimization” optimization procedure to correct and
balance local distance errors, converging to the final result. The heuristic used in the
first stage involves the election of five reference sensors. Four of these sensors are well-
distributed on the periphery of the network, and serve as north, east, south and west
poles. A fifth reference sensor is chosen at the center. Coordinates are then assigned
to all nodes, using these five sensors, reflecting their assumed positions. Unfortunately,
this process does not lend itself easily to distribution. The second stage of the AFL algo-
rithm attempts to minimize the partial stress energy using a gradient descent technique.
At each sensor, the coordinates are updated by moving an infinitesimal distance in the
direction of the spring force operating on the sensor. This is a fully distributed protocol.
It, however, involves a heuristic choice of the infinitesimal step, and can be quite slow.

Our algorithm also involves two stages with similar objectives. The first aims to
generate a fold-free layout. This is done based on a distributed Laplacian eigenvector
computation which typically spreads the sensors well. The second stage uses the result
of the first stage as an initial layout for an iterative stress-minimization algorithm. As
opposed to AFL, it is not based on gradient descent, rather on a more effective ma-
Jjorization technique.

Once again we emphasize that the main challenge is to design algorithms which
are fully distributed. This is a major concern in sensor network applications, and there
is an increasing interest in designing such solutions. These turn out sometimes to be
quite non-trivial. Probably the simplest example is a distributed algorithm to compute
the sum (or average) of values distributed across the network; see [13].
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3 The Problem

We are given a graph G(V = {1,...,n}, F), and for each edge (i, j)€ F - its Eu-
clidean “length” [;;. Denote a 2D layout of the graph by =,y € R", where the coordi-
nates of vertex i are (z;,y;). Denote d;;j=+/(z; — x;)? + (y; — y;)>.

In the non-noisy version of the problem, we know that there exists a layout of the
sensors that realizes the given edge lengths (i.e. d;; = [;;). Our goal is then to reproduce
this layout. This layout is usually not unique. For example consider a 2n X 2n square
grid, where each internal sensor is connected to its four immediate neighbors with an
edge of length one. We can realize all lengths using the degenerate 1D layout where
half of the sensors are placed on 0 and the other half is placed on 1.

Fortunately, there is additional information that we may exploit to eliminate spuri-
ous solutions to the layout problem — we know that the graph is a full description of the
close sensors. Consequently, the distance between each two nonadjacent sensors should
be greater than some constant r, which is larger than the longest edge. This can further
constrain the search space and eliminate most undesired solutions. Formally, we may
pose our problem as follows:

Layout Problem. Given a graph G({1,...,n}, E), and for each edge (i, j) € E —its
length [;;, find an optimal layout (p1,...,p,) (p; € R? is the location of sensor ),
which satisfies for all ¢ # j:

{lpz’ —pjll =l if (i, j) € E
lpi —pjll > R if (i,5) ¢ E

Where R = max; jyecp lij. For the rest of this paper we assume d = 2.

It seems that an optimal layout is unique (up to translation, rotation and reflection)
in many practical situations. For example, it overcomes the problem in the 2n x 2n
grid example described above. An optimal layout is similar to that generated by com-
mon force-directed graph drawing algorithms that place adjacent nodes closely while
separating nonadjacent nodes. Therefore, we may exploit some known graph drawing
techniques. For example, separating nonadjacent sensors can be achieved by solving an
electric-spring system with repulsive forces between these sensors [2, 3]. Another possi-
bility is to somehow estimate the distances [/;; between nonadjacent sensors (e.g., as the

(dij—li;)*
i<j 12,

3

graph-theoretic distance) and then to minimize the full stress energy: >
using an MDS-type technique; see [8].

However, since we aim at a distributed algorithm which should minimize communi-
cation between the sensors, dealing with repulsive forces or long-range target distances
is not practical, as this will involve excessive inter-sensor interaction, which is very ex-
pensive in this scenario. To avoid this, we propose an algorithm which is based only on
direct information sharing between adjacent sensors, avoiding all communication be-
tween nonadjacent sensors or any centralized supervision. Note that such a restriction
rules out all common algorithms for general graph drawing problem; we are not aware
of any layout algorithm that satisfies it.

In the real-life noisy version of the problem, the measured distances /;; are contam-
inated by noise: [;; = d;; + €;;. This means that there might not even exist a solution
to the optimal layout problem. In this case we would like to minimize the difference
between the true location of the sensors and those computed by the algorithm.
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4 Smart Initialization and Eigen-projection

A useful energy function which is minimized by the desired layout is the localized stress
energy:
Stress(x,y) = Z (dij(z,y) — lij)? (1)
(i,J)EE
Note that this energy is not normalized, as opposed to the full stress energy. This non-
convex energy function may have many local minima, which an optimizer may get
stuck in. However, since in the non-noisy case, we are guaranteed the existence of a
layout where d;; = [;;, namely Stress(z,y) achieves the global minimum of zero, it
is reasonable to hope that if we start with the optimization process at a “smart” initial
layout, the process will converge to this global minimum. To construct such an initial
layout, we exploit the fact that nonadjacent sensors should be placed further apart. This
means that we seek a layout that spreads the sensors well. We first deal with the one-
dimensional case. We will design an energy function which is minimized by such a
layout, and can be optimized in a strictly distributed fashion. The function is defined as
follows: )
E(z) = Z(m’)eE wij||zs — x| @)
Zi<j |lzi — ;|2
Here, w;; is some measure for the similarity of the adjacent sensors ¢ and j. It should
be derived from [;;, e.g., w;; = 1/(l;j + «) or w;; = exp(—al;j), @ > 0; in our
experiments we used w;; = exp(—I;;). Minimizing F(x) is useful since it tries to
locate adjacent sensors close to each other while separating nonadjacent sensors. It
can also be solved fairly easily. Denote by D the diagonal matrix whose 7’th diagonal
entry is the sum of the i’th row of W: Dj; = 3. ; iscp wi;. The global minimum
of E(z) is the eigenvector of the related weighted Laplacian matrix L* = D — W
associated with the smallest positive eigenvalue; see [6,9]. In practice, it is better to
work with the closely related eigenvectors of the transition matrix D~1W, which have
some advantages over the eigenvectors of L"; see [9]. Note that the top eigenvalue of
D~'W is \; = 1, associated with the constant eigenvector v; = 1,, = (1,1,...,1), s0
the desired solution is actually the second eigenvector vs.
The vector vy can be computed in a distributed manner by iteratively averaging the
value at each sensor with the values of its neighbors:

o wea
o —a |z + M 3)
2ig)er Wi

Readers familiar with numerical linear algebra will recognize this process as power
iteration of the matrix I + D~'¥/. Power iteration usually converges to the eigenvec-
tor of the iterated matrix corresponding to the eigenvalue with highest absolute value.
However, here we initialize the process by a vector y which is D-orthogonal to vy,
namely y” Dv; = 0, using a distributed method that will be described shortly. Hence,
the process will converge to vy — the next highest eigenvector of I + D~1W; see [9].
D-orthogonality, rather than simple orthogonality, is required because D~1W is not
symmetric. The constant @ > 0 controls the growth of ||z||; in our implementation we
used a = 0.51.
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4.1 Two Dimensional Layout

We now turn our attention to the two-dimensional layout problem. F(z) is defined also
in higher dimensions (where z is short for (x,y)), and a “smart” initial 2D layout is
achieved by taking the x coordinate to be v, — the second eigenvector of D~1W, and
the y coordinate to be v3 — the third eigenvector of D~1WW. Unfortunately, the power
iteration (3) will not detect vs, as it is dominated by vo, unless we start the process (3)
with a vector D-orthogonal to x = vs.

Constrained by the distributed computation requirement, it is not easy to initialize
the process with a vector D-orthogonal to v2. We resort to the following lemma:

Lemma 1. Given two vectors x and y and matrices D and A, the vector Ay is D-
orthogonal to z if AT Dz = 0.

Proof. Since AT Dx = 0, then y" AT Dx = 0. Equivalently (Ay)” Dz = 0 and the
lemma follows. a

Therefore, it suffices to construct a “local matrix” A such that AT Dz = 0. By “local”
we mean that A, ; # 0 only if (¢, j) € E. This will enable a distributed computation.
In our case when D is diagonal, a suitable matrix is the following:

—zj/Di;  (i,j) € E
Ai’j: 0 <Z,j>¢E,Z75j wi=1,...,n
_ZkAiJc =7

It is easy to verify that AT Dz = 0.

To summarize, to obtain y = v3, we pick some random vector u, and initialize y
with Au. Note that the computation of Au involves only local operations, and can be
easily distributed. Then, we run the power iteration (3) on the vector y.

While the initial vector is D-orthogonal to ve, it is not necessarily D-orthogonal
to v; = 1,. Hence, after many iterations, the result will be y = awv; + evs, for some
very small e. While the process ultimately converges to what seems to be an essentially
useless vector, its values near the limit is what is interesting. Since v is the constant
vector — 1, these values are essentially a scaled version of v3 displaced by some fixed
value (o) and they still retain the crucial information we need.

However when the numerical precision is low and the ratio «/e is too high we
might lose the v component. Fortunately, we can work around this by translating and
scaling y during the power iteration. Specifically, every On iterations (we use 5 = 1/2)
compute min; y; and max; y;. A distributed computation is straightforward and can be
completed with number of iterations bounded by the diameter of the graph (at most
n — 1). Then, linearly transform y by setting

Y; — min; y; 1

yi<_ . a0 i:17"'an (4)
max; y; —min; y; 2

After this, min; y; = —0.5 and max; y; = 0.5. Since translation is equivalent to addi-

tion of yv; and scaling cannot change direction, we can still express y as Gv; + €vs.
Now assume, without loss of generality, that max; v3 — min; vs3 = 1, and recall

that v; = (1,1,...,1). The D-orthogonality of v3 to 1,, implies: max; v3 > 0 and
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min; v3 < 0. In turn, min; y; = —0.5 and max; y; = 0.5 imply that |&| < 0.5.
Moreover, since all the variability of y is due to its vs component, we get € = 1.
Therefore, (4) guarantees that the magnitude of the vs component is larger than that of
the v; component, avoiding potential numerical problems.

4.2 Balancing the Axes

Obviously, the process described in Section 4.1 can yield x and y coordinates at very
different scales. Usually, we require that ||z|| = ||y||, but this is difficult to achieve
in a distributed manner. An easier alternative that is more suitable for a distributed
computation is a balanced aspect ratio, i.e.: max; x; — min; r; = max; y; — min; y; .

Since the computation of the y-coordinates already achieved max; y; —min; y; = 1,
it remains to ensure that the x coordinates have the same property. We achieve this by
performing: z; « x;/(max; x; — min; x;), i=1,...,n

5 Optimizing the Localized Stress Energy

At this point we have reasonable initial locations for both the x- and y-coordinates,
and are ready to apply a more accurate 2D optimization process for minimizing the
localized stress energy (1). A candidate could be simple gradient descent, which is
easily distributed, as in [11]. Each sensor would update its z-coordinates as follows:

zi(t+1) =zi(t)+6 Y —(t))(dij(t)—l,»j), (5)

ji{i,5)EE Z(

where d;;(t) = /(z;(t) — z;(t))? + (y;(t) — y;(t))2. The y-coordinates are handled
similarly. This involves a scalar quantity § whose optimal value is difficult to estimate.
Usually a conservative value is used, but this slows down the convergence significantly.

A more severe problem of this gradient descent approach is its sensitivity to the scale
of the initial layout. Obviously the minimum of E(z) is scale-invariant, since E(cz) =
E(z) for ¢ # 0. However, the minimum of Stress(x) is certainly not scale-invariant as
we are given concrete target edge lengths. Therefore before applying gradient descent
we have to scale the minimum of E'(x) appropriately.

Fortunately, we can avoid the scale problem by using a different approach called
majorization. Besides being insensitive to the original scale, it is usually more robust
and avoids having to fix a § for the step size. For a detailed description of this technique,
we refer the interested reader to multidimensional scaling textbooks, e.g., [1]. Here we
provide just a brief description.

Using the Cauchy-Schwartz inequality we can bound the localized 2D stress of a
layout (z, y) by another expression of (z,y) and (a, b), as follows:

Stress(x,y) < 2T Le+yT Ly + 2T L@ g + yTL(‘Lb)b +c, xz,y,a,b€R", (6)

with equality when z = a and y = b. The constant c is independent of x,y, a,b. L is
the graph’s n x n Laplacian matrix (also independent of z, y, a, b) defined as:
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-1 (i,j) € E
Li7j: 0 < >¢ i,j:1,...,n
_Zj;éiLiJ =]

The weighted Laplacian n x n matrix L(*?) is defined as:

o iy - inv (/@ = a7+ B = 57) (i)

L% 0 . G,jY¢E  4,j=1,....n
~ Y Lij i=J

where we define inv(z) = 1/ for x # 0 and inv(z) = 0 otherwise.

Given a layout a, b, we can find another layout (z,y) which minimizes the r.h.s.
2T L+ yT Ly + 2T L@ q + yT L(®Y) b 4 ¢ by solving the linear equations:

Lz = L@bg
Ly = L(avb)b

Using inequality (6) we are guaranteed that the stress of the layout has decreased when
going from (a, b) to (z,y), i.e., Stress(z,y) < Stress(a,b). This induces an iterative
process for minimizing the localized stress. At each iteration, we compute a new layout
(x(t 4+ 1),y(t + 1)) by solving the following linear system:

L-z(t+1) = LEOYO) (1)

L-y(t+1) = LEOYO) ) 0

Without loss of generality we can fix the location of one of the sensors (utilizing the
translation degree of freedom of the localized stress) and obtain a strictly diagonally
dominant matrix. Therefore, we can safely use Jacobi iteration [4] for solving (7), which
is easily performed in a distributed manner as follows.

Assume we are given a layout (x(¢),y(t)) and want to compute a better layout
(x(t + 1),y(t + 1)) by a single iteration of (7). Then we iteratively perform for each

T del i Z (xj + lij (s (t) — x;(¢)) inv(ds; (1))
gi j:{i,j)EE "
Yi — . - > (L (i) =y (1) inv(di (1))
degi J:(ij)EE

Note that z(t), y(t) and d;; (t) are constants in this process which converges to (z(t+1),
y(t+1)). Interestingly, when deriving ((t + 1), y(t + 1)) only the angles between sen-
sors in (z(t),y(t)) are used. Therefore, this process is independent of the scale of the
current layout.

It is possible to simplify the 2D majorization process somewhat. When the iterative
process (8) converges the layout scale issue is resolved. Hence, instead of continuing
with another application of (7) to obtain a newer layout, it is possible to resort to a faster
local process (which, in contrast, is scale-dependent). In this process each sensor uses a
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local version of the energy where all other sensors are fixed. By the same majorization
argument the localized stress decreases when applying the following iterative process:

1
€T; — xi + Ui (2, — x;)inv(d;;
dog. 2 (@it e —ay)inv(d;)
Ji(i,.J)EE
X ©)
yi— — > (g + L (yi — y;)inv(dy))
deg; . “
Ji{i,g)EE

Here, as usual d;; = \/(z; — ;)% + (y; — y;)?. This process is similar to (8), except
that z;, x; and d;; are no longer constants. We have used this in our implementation,
and it seems to accelerate the convergence. Note that this is quite close to the gradient
descent (5) when using § = 1/deg;, a different stepsize per sensor.

6 Experimental Results

We have implemented our algorithm and the AFL algorithm [11], and compared their
performance on a variety of inputs. In the first experiment, we constructed a family of
random graphs containing 1000 sensors distributed uniformly in a 10 x 10 square. Each
two sensors are connected if they are in range R, where we used R = 0.5,0.6,0.7,
0.8,0.9, 1. If the graph is disconnected, the largest connected component was taken.
We measure the sensitivity of the algorithms to noise controlled by the fractional range
measurement error parameter o. The distances fed as input to the algorithms are the true
distances [;;, to which uniformly distributed random noise in the range [—ol;;, + ol;j]
is added; o = 0, 0.05, 0.1, 0.25, 0.5. Consequently, each graph in this family is charac-
terized by the values of R and o. For each pair (R, o) we generated 250 corresponding
random graphs. Some properties of these graphs are given in [5].

It seems that the key to successful results is a good initial layout from which the
stress minimization routine can start. To compare the performance of our algorithm to
that of the AFL algorithm and a more naive method, we ran three different initialization
methods on each input followed by the same stress minimization algorithm: (1) Stress
majorization with random initialization (RND). (2) Stress majorization with AFL ini-
tialization (AFL). (3) Stress majorization with eigen-projection initialization (EIGEN).
For each method the quality of the final solution is measured by its Average Relative
Deviation (ARD), which measures the accuracy of all resulting pairwise distances:

2 \di; — Lij]
ARD = A
n(n — 1) Z min(lij, dl])

i<j
Note that here we sum over a/l distances between sensors, not just the short range dis-
tances, as reflected by the edges of the graph. The results are summarized in Table 1,
where each cell shows the average ARD of RND/AFL/EIGEN for 250 different graphs
characterized by the same (R, o) pair. For all graphs, EIGEN and AFL outperformed
RND by a significant margin. Also, consistently, EIGEN outperformed AFL by a small
margin. As expected, the algorithm performance improves as the graphs become denser,
revealing more information about the underlying geometry. The sparser graphs contain
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nodes of degree smaller than 3, which are inherently non-rigid thereby preventing ac-
curate recovery. We can also see that optimization is quite robust in the presence of
noise and performance deteriorates only moderately as o grows. In Figure 1 we show
typical results of EIGEN, before and after stress minimization. For comparison, we also
provide the original layout and the AFL initialization for the same graph.

In another experiment, we worked with 350 sensors distributed uniformly on a ring,
with external radius 5 and internal radius 4. Again, the graphs are characterized by the
range and noise parameters (R, o), and for each such a pair we generated 250 corre-
sponding random graphs. Here we worked with a different range of I, producing aver-
age degrees similar to those of the previous experiment; see [5]. Note that we avoided
working with R < 0.6 as for these values the largest connected component broke the
ring topology with high probability, making recovery impossible. We ran RND, AFL
and EIGEN on these graphs, the results summarized in Table 2. The topology of the ring

EIGEN initialization — stress minimization

Fig. 1. Reconstructing a 1000-sensor proximity graph using EIGEN; here R = 0.8,0 = 0.
Original layout and alternative AFL initialization are also shown.
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Table 1. Average relative deviation (ARD) of square-based proximity graphs with varying (R, o)
generated by RND / AFL / EIGEN. Each result is averaged over 250 graphs.

c=0 o =0.05 oc=0.1 o =0.25 oc=0.5
RND AFL EIGEN|RND AFL EIGEN|RND AFL EIGEN|RND AFL EIGEN|RND AFL EIGEN
12.6 0.099 0.079 [12.6 0.10 0.079 |12.4 0.10 0.092 |12.3 0.12 0.091 |11.6 0.26 0.22
11.2 0.026 0.0093|11.0 0.028 0.013 |10.8 0.031 0.019 | 11.0 0.046 0.031 {104 0.12 0.10
9.70 0.013 0.0031{9.79 0.015 0.0048|9.77 0.017 0.0076|9.71 0.026 0.018 |9.53 0.060 0.050
8.51 0.0086 0.0016 | 8.52 0.0097 0.0033|8.42 0.012 0.0059|8.58 0.020 0.014 | 8.49 0.041 0.034
7.29 0.0064 0.0011|7.37 0.0082 0.0028|7.28 0.011 0.0051|7.37 0.017 0.013 [7.50 0.033 0.028
6.31 0.0054 0.0008 | 6.40 0.0068 0.0025]6.51 0.0079 0.0047|6.33 0.016 0.012 [6.52 0.030 0.026
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Table 2. Average relative deviation (ARD) of disk-based proximity graphs with varying (R, o)
constructed using RND / AFL / EIGEN. Each result is averaged over 250 graphs.

c=0 o =0.05 oc=0.1 o =0.25 oc=20.5
RND AFL EIGEN|RND AFL EIGEN|RND AFL EIGEN|RND AFL EIGEN|RND AFL EIGEN
496 0.34 0.14 [5.16 0.26 0.13 [4.94 026 0.13 |4.66 0.33 0.15 [4.88 0.39 0.21
7.69 0.19 0.091 |7.53 0.23 0.091 |7.54 0.020 0.090 |7.81 0.19 0.10 [7.41 0.29 0.16
. 7.35 0.16 0.065 |7.56 0.14 0.065 |7.27 0.18 0.080 |7.14 0.22 0.13
6.61 0.10 0.041 |6.62 0.11 0.045 [6.41 0.11 0.046 |6.54 0.13 0.055 [6.40 0.15 0.091
577 0.10 0.029 |5.72 0.098 0.031 [5.69 0.10 0.035 |5.62 0.12 0.044 |5.69 0.14 0.070
497 0.11 0.021 (498 0.11 0.021 [4.88 0.11 0.026 |5.08 0.13 0.032 {4.97 0.16 0.058
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is different than that of the square, and resulted in a lower quality results. However, all
the observations from the square-based experiment still hold here. Note, that in a ring
there is no natural central node. Therefore, the AFL initialization that identifies one
node as the center is less appropriate here. A surprising finding is that the performance
of AFL seems to deteriorate when increasing R from 1.1 to 1.2, instead of improving, as
would be expected. We observed this also with other types of graphs we experimented
with. We believe that this is due to the fact that the first phase of AFL models the net-
work as an unweighted graph. Thus, as the variance of the true edge lengths becomes
larger, this model is less accurate.

7 Conclusion

We have presented an algorithm to generate sensor network layouts in a fold-free man-
ner based on noisy measurements of short-range inter-sensor distances. This algorithm
is fully distributed (decentralized), and relies on no explicit communication other than
that between immediate neighbors. The fully distributed nature of the algorithm is cru-
cial for a practical implementation which avoids excessive communication. To the best
of our knowledge, this is the first fully distributed algorithm for graph drawing. Beyond
this important feature, judging from our experiments, our algorithm seems to be supe-
rior to the state-of-the-art in the sensor network literature. We discuss several extensions
of the basic algorithm in [5].
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Abstract. Force-directed graph drawing algorithms are widely used for
drawing general graphs. However, these methods do not guarantee a
sub-quadratic running time in general. We present a new force-directed
method that is based on a combination of an efficient multilevel scheme
and a strategy for approximating the repulsive forces in the system by
rapidly evaluating potential fields. Given a graph G = (V, E), the asymp-
totic worst case running time of this method is O(|V|log|V| + | E|) with
linear memory requirements. In practice, the algorithm generates nice
drawings of graphs containing 100000 nodes in less than 5 minutes. Fur-
thermore, it clearly visualizes even the structures of those graphs that
turned out to be challenging for some other methods.

1 Introduction

Given a graph G = (V, E), force-directed graph drawing methods generate draw-
ings of G in the plane in which each edge is represented by a straight line con-
necting its two adjacent nodes. The computation of the drawings is based on
associating G with a physical model. Then, an iterative algorithm tries to find
a placement of the nodes so that the total energy of the physical system is
minimal. Such algorithms are quite popular, since they are easy to implement
and often generate nice drawings of general graphs. In practice, classical force-
directed algorithms like [5,12,6, 4] are not well suited for drawing large graphs
containing many thousands of vertices, since their worst case running time is
at least quadratic. Significantly accelerated force-directed algorithms have been
developed by [15,14,7,9,17]. These algorithms generate nice drawings of a big
range of large graphs in reasonable time. Some of these methods guarantee a
sub-quadratic running time in special cases or under certain assumptions but
not in general. Others are not sub-quadratic in any case. Besides force-directed
algorithms other very fast methods for drawing large graphs have been invented
by Harel and Koren [10] and Koren et al. [13] that do not use a physical force
model.

In Section 2 we sketch the most important parts of a new force-directed graph
drawing algorithm that guarantees a sub-quadratic worst case running time. An

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 285-295, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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excerpt of the experimental results is given in Section 3. For space restrictions,
we can neither describe every basic component of this algorithm in detail, nor
compare our method with the existing ones in a satisfactory way. This will be
presented in the full version of this paper.

2 The Fast Multipole Multilevel Method (FM 3)

We describe the most important parts of the new method that is a combination
of an efficient multilevel technique with an O(|V|log|V|) approximation algo-
rithm to obtain the repulsive forces between all pairs of nodes/particles. Other
important parts like a preprocessing step that enables the algorithm to draw
graphs with nodes of different sizes and a part that is designed to handle dis-
connected graphs are not described here. Therefore, we simply assume that the
given graph G is a connected weighted graph. The edge weight of each edge
represents its individual desired edge length.

2.1 The Force Model

First, we must choose a force model. This is done by identifying the nodes with
charged particles that repel each other and by identifying edges with springs, like
in most classical force-directed methods. If in R? two charges u, v are placed at a
distance d from each other, the repulsive forces between u and v are proportional
to 1/d. Our choice of the spring forces is not strictly related to physical reality.
We found that choosing the spring force of an edge e to be proportional to
log(d/ desired_edgelength(e)) - d? gives very good results in practice.

2.2 The Multilevel Strategy

Since in classical force-directed algorithms many iterations are needed to trans-
form an initial (random) drawing of a large graph into the final drawing, one
might hope to reduce the constant factor of force-directed algorithms by us-
ing a multilevel strategy. Multilevel strategies have been introduced into force-
directed graph drawing by [7,9,17] and share the following basic ideas: Given
G = (V,E) =: Gy they create a series of Graphs Gfi,..., G with decreasing
sizes. Then, the smallest graph G}, at level k is drawn using (a variation of)
a classical force-directed (single-level) algorithm. This drawing is used to get
an initial layout of the next larger graph Gj_; that is drawn afterwards. This
process is repeated until the original graph G is drawn.

Unlike previous approaches, we want to design a multilevel algorithm that
has provably the same asymptotic running time as the single-level algorithm
that is used to draw all graphs G; with ¢ =0,... k.

The idea of our multilevel step is as follows: First, we partition the node
set of G into disjoint subsets. The induced connected subgraphs are called solar
systems. A solar system S consists of one central sun node (s-node). Each of
its neighbors is called planet node (p-node) and is also contained in S. The rest



Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 287

of the nodes in a solar system are called moon nodes (m-nodes), and each m-
node is required to have graph-theoretic distance 2 to its associated s-node in G.
Each m-node is assigned to its nearest neighboring p-node in S. This p-node is
relabeled planet with moon node (pm-node), indicating that at least one m-node
is assigned to it. Thus, the subgraph of G that is induced by a solar system has
diameter at most 4.

Fig. 1. (left) Drawing of G = Gy. (right) Drawing of G;.

Figure 1(left) shows an example of a grid graph that is partitioned into 17
solar systems. The sun, planet, and moon nodes are represented by the white big,
grey medium, and black small circles, respectively. The solid edges represent intra
solar system edges, whereas the edges connecting nodes of two different solar
systems (inter solar system edges) are dashed edges. The edges that connect an
m-node and its assigned pm-node are drawn as directed edges, indicating that
the m-node is assigned to this planet node.

We sketch a linear time method for constructing a solar system partitioning
of a graph G that works in three steps: First, we create the sun nodes. We store
a candidate set V’ that is a copy of V' and randomly select a first sun node s;
from V. Then, s; and all nodes that have a graph-theoretic distance at most 2
from s; in G are deleted from V’. We iteratively select the next sun nodes in the
same way, until V’ is empty and Suns = s1,...,s; is the list of all sun nodes.
Second, for each s; € Suns all its neighbors are labeled as planet nodes. Finally,
there might be some nodes in V' that are neither labeled as planet nodes, nor as
sun nodes. These nodes are the moon nodes, and we assign each moon node to
the planet node that is its nearest neighbor in G.

Given a solar system partition of the node set of G = Gy, we construct
a smaller graph G by collapsing (shrinking) the node set of each solar sys-
tem into one single node and deleting parallel edges (see Figure 1(right)). The
smaller graph should reflect the attributes of the bigger graph as much as pos-
sible. Therefore, we initialize the desired edge length of an edge e; = (u1,v1)
in G as follows: Suppose that p-node ug belongs to the solar system Sy with
sun node sy in Gy and p-node vy belongs to the solar system Tj with sun node
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to in Go. Let us also assume that the edge eg = (up,v0) is the unique inter
solar system edge connecting Sy and Ty. Furthermore, we assume that nodes
uy and vy in GGy are obtained by collapsing Sy and Ty. Then, we set the de-
sired edge length of e; to desired_edgelength((so,ug)) + desired_edgelength(eg) +
desired_edgelength((vo, to)). For later use, we denote the corresponding path Py
and its length pg. If more than one inter solar system edge in Gy connects nodes
of Sy with nodes of Ty, we just take the average of the previously calculated
desired edge lengths. The case that up and/or vy is a moon node is treated
similarly.

This partitioning and collapsing process is iterated until the smallest graph
G, contains only a constant number of nodes. Then, this graph is drawn by an
algorithm that is introduced later.

Going upwards to Gx_1, we assign initial positions to the nodes of Gy_; in
two steps: First, we place each sun node s of Gx_; at the position of its an-
cestor (that represents its solar system) in the drawing of Gj. Now, we place
the other nodes of Gj_1. This is done by using information that has been gen-
erated during the collapsing process: Given ug, vg, So, to, Po, and Py like in the
example above, we place ug on the line connecting sy and ty at the position
Pos(sg) + dCSire‘edgel;thh((s‘)’u°)) (Pos(to) — Pos(sg)). If ug belongs to more than
one such path Py, we take the barycenter of all these positions. The case that
up is a moon node is treated similarly.

T {
LS.

(a) (b) ()
Fig. 2. (a) Drawing of G2. (b) Initial placement of G;. (¢) Drawing of G1.

Figure 2 demonstrates this procedure. Figure 2(a) is a drawing of the multi-
level graph G5 of Figure 1(left). Figure 2(b) is the initial position of the drawing
of Gy that is obtained from the drawing of Go. Figure 2(c) shows G; that is
drawn with a new force-directed single-level algorithm.

The total running time of the multilevel strategy is tmu(|V], |E|) = Zf;ol
tcrcatc(“/i|a |E2|) + Zf;()l tinit_pl(|‘/i‘7 ‘Ez‘) + Zi‘c:() tsinglc(“/i|a |E2|) Here, tereate
(IVil, |E;]) denotes the time that is needed to create the multilevel graph G; 1
from Gi. tiniepi(|Vi],|Ei|)) denotes the time that is needed to get an initial
placement of the nodes of the multilevel graph G; from the drawing of G;1.
tsingle(|Vil, | E:|) is the time that the chosen single-level algorithm needs to draw
G;.

Since every node of GG; belongs to a solar system, and a solar system contains
at least two nodes, G; 1 contains at most |V;|/2 nodes. Therefore, k < log |V|.
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Let us assume that |F;11] < |F;|/2 for all ¢ = 0,...,k — 1. Since both
tcreate(|‘/i‘7 ‘El‘) and tinit_pl((“/i|a |E2|) are linear in H/z| + |E2| we get Zf;ol tcrcatc
(IVil, |Ei]) + Zi:ol tinit_pi(|Vil, |Ei]) = O(JV| + |E|). Furthermore, we get the
following estimation on fgingle:

¥ o tange(Vil 1B < Stg tange (1 ) < tuingte (VLB TH o & <
2 tsingle(|V], | E|). The second inequality is true for sufficiently large values of
|V and |E|, since tsingie(|V], |E|) = 2(]V| + | E|). Therefore, tmut(|V], |E|) and
tsingle(|V], | E|) have the same asymptotic running time.

Certainly, it cannot be guaranteed that the number of edges decreases by a
factor 3 as well. This might result in an additional factor k = log |V'| on the parts
of the algorithm that touch edges. However, it can be shown by an analogous
argumentation that ¢ty (|V], |E|) and tsingle(|V], | E|) have the same asymptotic
running time if |E; 1| < |E;|/d for all i = 0,...,k — 1 and a fixed divisor d > 1.
Therefore, it is sufficient to stop the multilevel process, whenever the algorithm
has generated more than a constant number of graphs G; that do not satisfy the
inequality |E;1+1| < |E;|/d for some small 1 < d < 2.

2.3 The Force Calculation Step

In order to save running time, the multilevel algorithms [7,9,17] use the grid-
variant method of [6] or variations of [12] that are comparatively inaccurate
approximative variations of the original single-level algorithms [6, 12].

Unlike this, the single-level algorithm that is used in FM 3 follows the basic
strategy of [15,14] by approximating the repulsive forces between all pairs of
distinct nodes/particles with high accuracy and calculating the forces induced
by the edges/springs exactly. Then, these forces are added, and the nodes are
moved in the direction of the resulting forces. This process is repeated a con-
stant number of iterations. (In practice, we let the constant decrease from 300
iterations for Gy to 30 iterations for Gy, although convergence is reached even
faster for many tested graphs.)

In the following, we concentrate on the calculation of the repulsive forces.
Greengard [8] has invented an N-body simulation method that is based on the
evaluation of the field of the potential energy of N := |V/| particles. This is done
by evaluating multipole expansions using a hierarchical data structure called
quadtree. However, Aluru et al. [1] have shown that the running time of his
method depends on the particle distribution and cannot be bounded in the
number of particles. They also have proven that the running time of the popu-
lar center of mass approximation method of Barnes and Hut [3] that is used in
the graph drawing methods [15,14] cannot be bounded in the number of par-
ticles. Based on the techniques and analytical tools of Greengard [8], Aluru et
al. [1] have presented an O(N log N) approximative multipole algorithm that is
distribution independent.

Based on the work of Greengard [8] and Aluru et al. [1], we have developed
a new O(N log N) multipole method that — in practice — is faster than Aluru
et al.’s [1] method. It works in two steps. Given a distribution of N particles
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in the plane, first a special quadtree data structure is constructed. Then, each
node of the quadtree is assigned information that is used for approximating the
potential energy of the system. In particular, a constant number of coefficients
of a so called multipole expansion (to be introduced later) are associated with
each tree node and are used to obtain the repulsive forces.

Construction of the Reduced Quadtree. Suppose that N particles are
distributed on a square D and we fix a leaf capacity ¢ > 1. (In practice we
choose ¢ = 25.) Furthermore, suppose one recursively subdivides D into four
squares of equal size, until each square contains at most ¢ particles. This process
can be represented by an ordered rooted tree of maximum child degree four
(with the root representing D) that is called quadtree. The particles are stored
in the leaves of the quadtree. A degenerate path P = (v1,...,vp) in a quadtree
is a path in which v; and v, have at least 2 nonempty children and va, ..., v,—1
each have exactly one nonempty child. A reduced quadtree T can be obtained
from a quadtree by shrinking degenerate paths P = (v1,...,v,) to edges (v1, vp).
Figure 3 shows an example.

. 3 J1
'2 3
a7s \E
e 10 4 8
R 9] ®
11]e 5 {6,7}9 1011 5 {6,7}9 1011
(a) (b) (c)

Fig. 3. (a) A distribution of N = 11 particles in the plane. (b) The quadtree with
leaf capacity ¢ = 2 associated with (a). P = (v1,v2,v3) is a degenerate path in the
quadtree. (c¢) The reduced quadtree with leaf capacity ¢ = 2 associated with (a).

A reduced quadtree has only O(N) nodes independently of the distribution
of the particles. This allows the development of a linear time method (excluding
the time needed for constructing the reduced quadtree) for approximating the
repulsive forces, using this structure.

Aluru et al. [1] present an O(N log N) method that constructs a reduced
quadtree with ¢ = 1. As can be shown by a reduction from sorting, it is neither
possible to construct a quadtree nor a reduced quadtree for arbitrary distribu-
tions of the particles in o(N log N) time.

We have developed a new O(N log N) method that is omitted here for brevity,
since it quite technical. Instead, we will explain another new tree construction
method that is conceptionally simpler and in practice faster. But (motivated
by the assumptions in [15]) it restricts the possible particle distributions: We
force the particles to be placed on a large square grid with a resolution that is
polynomial in N. This can be realized by rounding the z,y coordinates of each
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particle to integers in the range [0, P(N)], where P(N) is any whole-numbered
polynomial in N of maximum degree [, and by treating pathological cases in
which particles have same coordinates efficiently. In practice, it is sufficient to
set P(N) = d- N?, with a big constant d, say 1000. This bounds the depth of
the reduced quadtree to O(log(P(N)) = O(l -log N) = O(log N).

10 6 10 5 691011
7 7
(a) (b) (c)

Fig. 4. Building up the reduced quadtree T with leaf capacity ¢ = 2 and N = 11
particles for the distribution of Figure 3(a). (a) First step: Building up the complete
subtree T". (b) Second step: Thinning out 7. (c¢) Recursion: Building up the complete
quadtrees T2 (v3) and T2 (v4).

First, we build up a complete truncated subtree T' with depth max{1,
|log N/c|}. Then, all particles are assigned to the leaves of T. Since T contains
O(N) nodes and its structure is predefined, this step can be performed in linear
time. Figure 4(a) shows an example of T that corresponds to the distribution
of Figure 3(a). In the next step, we thin out 7. This is done by traversing the
tree bottom up and thereby calculating for each internal tree node the num-
ber of particles that are contained in the square region that it represents. This
also needs time linear in IN. Then, we traverse the subtree T top down, delete
all nodes that do not contain particles and shrink degenerate path to edges. If
(during this process) we visit an internal node v that is the root of a subtree con-
taining at most ¢ particles, this subtree is deleted, and all the particles that were
stored in the deleted subtree are assigned to v. Figure 4(b) shows the thinned
out subtree 7.

If none of the leaves of T contains more than c particles, the procedure
ends and 7! = T has been constructed in linear time. Otherwise, we repeat the
previous steps recursively. For example, the nodes v3 and vy in Figure 4(b) both
contain 3 > ¢ particles. Therefore, we build up complete subtrees T?2(v3) rooted
at vz and T?(vy) rooted at v4. Both subtrees have depth max{1, [log3/c|} = 1.
Now, the particles 5,6, 7 are assigned to the leaves of T?%(v4) and the particles
9,10, 11 are assigned to the leaves of T?(v3) (see Figure 4(c)). After thinning out
T?(v3) and T?(vy) the desired tree T (see Figure 3(c)) is created.

What is the total running time of this approach? Building up T needs O(NV)
time. If T is not the reduced quadtree, we build up subtrees T2%(v1), ..., T?%(vx)
for all leaves vy,...,vy of T that contain more than ¢ particles. This needs
O(N) time in total, since the sum of the tree nodes contained in all T2(v;) is at
most O(N). Then, we possibly have to build up subtrees rooted at the leaves of
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the T2 trees and so forth. Since for each j > 1 the sum of the tree nodes of all T/
is bounded above by O(N), the total running time is O(|recursion_levels| - N).
Therefore, the running time is bounded by O(N log N). The construction of the
tree needs linear time whenever |recursion_levels| is a constant.

Evaluating Multipole Expansions. Unlike the construction of the tree, the
calculation of the forces — using the tree data structure — is quite complex.
Therefore, we only sketch the basic ideas. The most essential part is the following
theorem of Greengard [8]. First, we identify each point p = (x,y) € R? with a
point z =z + iy € C.

Theorem 1 (Multipole Expansion) Suppose that m charges of strengths q;,
{i=1,...,m} are located within a circle of radius r around the center zy. Then,
for any z € C with |z — z9| > r, the potential Energy £(z) induced by the m
charged particles is given by:

k

E(z) = Qlog(z—20)+> 1y (z—a—;jo)’” with Q@ =>"1" ¢; andap =Y ;" w

The corresponding force is F(z) = (Re(&'(2)), —Im(E’'(2))). Based on this
theorem, the idea is to develop the infinite series only up to a constant index
p. In practice, choosing p = 4 has turned out to be sufficient to keep the error
of the approximation less than 10~2. The resulting truncated Laurent series is
called p-term multipole expansion. Estimations of the error and several other
fundamental theorems for working with such series can be found in [8].

We demonstrate the use of this theorem for speeding up force-calculation
algorithms on an example: Suppose that m particles are located within a circle
Cy of radius r with center zg. Suppose that another m particles are located
within a circle Cy of radius r with center z1, and let |zg — 21| > 3r (see Figure 5).

CO - Cl

Fig. 5. An example distribution, showing the use of the Multipole Expansion Theorem.

Computing the repulsive forces acting on each particle in Cy due to all parti-
cles in Cj naively would need ©(m?) time. Now, suppose that we first compute
the coefficients of a p-term multipole expansion of the potential due to the par-
ticles in C7. This needs @(pm) time. Evaluating the resulting p-term multipole
expansion for all particles within Cj needs also ©(pm) time. Therefore, we ob-
tain an accurate approximation of the potential energy of all particles placed in
Cy due to the particles placed in C; in ©(m) time. Since we are interested in
the forces rather than the energy, we first calculate the derivative of the p-term
multipole expansion before evaluating it for each particle in Cy. Since the mul-
tipole expansion is a simple Laurent series, the calculation of the derivative of
the p-term multipole expansion needs only O(p) additional time.



Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 293

Now we sketch the idea how this theorem is used for calculating the forces:
First, the p-term multipole expansions of the particles in the leaves of the reduced
quadtree are calculated. Then, the reduced quadtree is traversed bottom up,
and thereby p-term multipole expansions of the interior nodes are obtained.
Afterwards, the tree is traversed top down, and suitable coefficients of p-term
multipole expansions are used to calculate coefficients of special power series
that are called p-term local expansions. Finally, these expansions are evaluated
to obtain the repulsive forces. All these operations together take time linear in
the number of particles.

To get a better impression how this algorithm really works, we refer the
interested reader to [8, 1]. Our method for evaluating the multipole expansions is
an extension of the method of Aluru [1] et al. for the general case in which ¢ > 1.

It is important to note that our multipole method remains O(N log N) —
even if we allow arbitrary particle positions during the computation — if we use
our other tree construction method or the tree construction method of Aluru
et al. [1].

Fig. 6. (a) finan512: |V| = 74752, |E| = 261120, CPU-time = 158.2 seconds. (b)
febody: |V| = 44775, |E| = 163734, CPU-time = 96.5 seconds. (c) besstk31: |V| =
35588, |E| = 572914, edge density = 16.1, CPU-time = 83.6 seconds. (d) dg-1087:
V] = 7602, |E| = 7601, maximum degree = 6566, CPU-time = 18.1 seconds. (e)
ug-380: |V| = 1104, |E| = 3231, maximum degree = 856, CPU-time = 2.1 seconds.



294 Stefan Hachul and Michael Jiinger

3 Remarks on the Experimental Results

The method FM3 has been implemented in C++ within the framework of
AGD [11]. We tested our method on a 2.8 GHz PC running Linux. The tested
graphs are the graphs contained in the graph partitioning archive of C. Wal-
shaw [16] with up to 200000 nodes and the biggest graphs from the AT&T
graph collection [2]. Furthermore, we generated artificial graphs containing up to
100000 nodes. For example, these graphs include grid graphs, sierpinski graphs,
random disconnected graphs, graphs that contain many biconnected compo-
nents, graphs with a very high edge density, and graphs that contain nodes with
a very high degree. The tested graphs containing less than 1000, 10000, and
100000 nodes have been drawn in less than 2, 24, and 263 seconds, respectively.
Figure 6 shows example drawings that are generated by FM 3. Our practical ex-
periments indicate that the combination of our multilevel strategy with a highly
accurate force approximation algorithm increases the quality of the generated
drawings.

4 Conclusions and Future Work

We have developed a new force-directed graph drawing algorithm (FM 3) that
runs in O(|V|log|V| + |E|) time. The practical experiments demonstrate that
FM 3 is very fast and creates nice drawings of even those graphs that turned out
to be challenging for some other tested algorithms. This will be presented in the
full version of this paper.
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Abstract. We show that a digraph is upward planar if and only if its
biconnected components have certain properties.

1 Introduction

A drawing of a digraph is planar if no edges cross and upward if all edges are
monotonically increasing in the vertical direction. A digraph is upward planar
(UP) if it admits a drawing that is both upward and planar. The upward planarity
of digraphs has been much studied and the area is surveyed by Di Battista et
al. [1]. In this paper we show that a digraph is UP if and only if its blocks
have UP drawings satisfying the conditions specified in Theorems 6-8. Following
preliminary definitions in Section 2, lemmas concerned with sufficient conditions
for upward planarity appear in Section 3, lemmas concerned with necessary
conditions for upward planarity appear in Section 4, our main results appear in
Section 5, and we conclude in Section 6.

2 Preliminaries

Let G be a digraph. We denote the node set of G by V(G) and the edge set of
G by E(G). The union of two digraphs G and F, denoted G U F, is the digraph
with node set V(GUF) = V(G)UV(F) and edge set E(GUF) = E(G)UE(F).
A null digraph is a digraph whose node and edge sets are empty. A strongly
embedded digraph G, is an equivalence class of planar drawings of a digraph G
which belong to the same embedded digraph and which have the same outer face.
Such a choice ¢ for an embedding and an outer face is called a strong embedding
of G. A node v of G, is bimodal if the outgoing (or incoming) edges incident on
v appear consecutively around v. If all the nodes of G4 are bimodal then Gy is
bimodal. An upward planar straight line (UPSL) drawing of a digraph is an UP
drawing in which each edge is represented by a straight line segment. Let G
be an embedded digraph with a node v. We use ¢(v) to denote the clockwise
ordering of the edges incident on v in Gg. If e is an edge incident on v we use
¢°(v) to denote the linear sequence of edges with first edge e that is consistent
with the circular sequence of edges ¢(v). The angles of G, are ordered triples
(a,v,b), where a and b are edges and v is a node incident on both a and b, such
that either a directly precedes b in ¢(v) or v is a node of degree 1. An angle
(a,v,b) of Gy is incident on the node v. An angle (a,v,b) is an S-angle (resp.,

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 296-306, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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T-angle) if both a and b leave (resp., enter) v; and an I-angle if one of the edges
a,b leaves v and the other enters v. Let f be a face of G. We use the term facial
boundary of f to refer to the circular sequence of nodes and edges W defined
by traversing the boundary of f such that W contains a subsequence (x,y, z),
where z and z are edges and y is a node if and only if (z,y, z) is an angle in
Gy. A face f is said to contain an edge, angle, or node z if x is a sub-sequence
of the facial boundary of f. The angles of G are mapped to geometric angles
in an UPSL drawing I" of G4. Let (a,v,b) be an angle of I'. If a # b the size of
the corresponding geometric angle of (a,v,b) in I" equals the number of radians
one has to rotate a in the clockwise direction around v in order to reach b. If
a = b the size of the corresponding geometric angle of {(a,v,b) is 2. An angle
of I' is large (resp., small) if its corresponding geometric angle is greater (resp.,
smaller) than 7. If f is a face we use S, (f) (resp., Lo (f)) to represent the number
of S-angles (resp., (large S-angles + large T-angles)) contained by f. If v is a
node we use Ly (v) to represent the number of (large S-angles + large T-angles)
incident on v. A block of a digraph G is a maximal connected subdigraph B of
G such that no node of B is a cut-vertex of B. Let G be a digraph with a node
v. A component of G with respect to v is formed from a connected component
H of G\ v by adding to H the node v and all edges between v and H. Let C
be a component of G with respect to v. We use G \ C to denote the digraph
derived from G by deleting all the nodes in C'\ v from G. C' is an S-component,
T-component, or I-component of G with respect to (w.r.t.) v if v is a source
node, sink node or internal node respectively in C. We use S(v), T'(v), and I(v)
to refer to the subdigraph of G consisting of the union of all S-components, T-
components, and I-components of G with respect to v, respectively. Definition 1
attempts to formalise the intuitive operation of adding two strongly embedded
digraphs by identifying a node from each.

Definition 1. Let G, and F,,. be strongly embedded digraphs such that V(G)N
V(F) = {u}, the outer face E¢ of G, contains the angle (g1,u,g2) and the
face Xp of F,,. contains the angle (fi,u, f2). The result of adding G, and
F,. by inserting (g1,u,g2) within {(f1,u, f2) is the strongly embedded digraph
H, where H = GUF, ¢(v) = ¢g(v),Yv € V(G) \ u,p(v) = ¢p(v), Vv €
V(F)\u, o(u) = (¢& (u),gofFZ (u)), and the outer face is the face of H, whose
facial boundary contains the facial boundary of the outer face of F,,, as a (not
necessarily proper) subsequence.

Property 1. The set of faces of H, contains all the faces of G, except Fg,
all the faces of F,, except the face, X, and the “new” face Xy whose facial
boundary is formed by concatenating the facial boundaries of Fg and Xg. Thus
the facial boundary of X is (u, g2, ..., g1, u, fo, ..., f1), where the list of nodes
and edges from g2 to g1 concatenated with w is the facial boundary of Eg and the
list of nodes and edges from fs to f; concatenated with u is the facial boundary
of Xp. Therefore Xg contains all the angles contained by F¢g except (g1, u, g2),
all the angles contained by Xr except (f1,u, f2), and the new angles (f1,u, g2)

and (g1,u, fa).
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The following four preliminary lemmas have been proved by us previously [4].

Lemma 1. If G and F are acyclic digraphs such that V(G)NV (F) = {u}, then
G U F is acyclic.

Lemma 2. Let H;,i = 1,...,c be the components of a digraph H with respect
to a node u. Let H be a drawing of H and let H; be the sub-drawing induced on
H;;i=1,...,c. H is UP only if at least ¢ — 1 of the sub-drawings H; for i =1
to ¢ are UP drawings whose outer face contains u.

Lemma 3. Let H be a planar digraph with a node u such that there are exactly
two components of H w.r.t. u, which we label G and F. Let H be a planar drawing
of H and let G (resp., F) be the sub-drawing induced on G (resp., F'). Then all
of G (resp., F) lies in a single face of F (resp., G) and at least one of G or F
lies in the outer face of the other.

Lemma 4. Let H be a bimodal planar digraph with an internal node u such that
there are exactly two components, G and F', of H with respect to u. Let H be
a bimodal planar drawing of H and let G (resp., F) be the subdrawing induced
on G (resp., F). If G and F are I-components then all of G (resp., F) lies in a
single face of F (resp., G) which contains an I-angle incident on uw and at least
one of G or F lies in the outer face of the other.

We now present some previously published properties of UP digraphs.
Lemma 5 and Theorem 1 are proved by Bertolazzi et al. [2]. Let G, be a strongly
embedded digraph. Consider an assignment M that maps each source or sink v
of G, to a face M (v) of G, which contains v. Such an assignment M is consistent
if the number of nodes assigned to the outer face h of G, equals S,(h)+ 1 and
the number of nodes assigned to each internal face f of G, equals S,(f)— 1. For
each face z in G, we use M ~!(2) to denote the set of nodes assigned to z by M.

Theorem 1 (Bertolazzi et al.). A strongly embedded digraph G is UP if and
only if it is acyclic, bimodal and admits a consistent assignment of sources and
sinks to its faces.

Lemma 5 (Bertolazzi et al.). The following properties hold for any UPSL
drawing I' of a digraph G. Lo(f) = So(f) + 1 if f is the outer face of I' and
Lo(f) = Sa(f)—1if f is an internal face of I'. Also L, (v) =0 if v is an internal

node of G and L,(v) =1 if v is a source or sink node of G.

3 Sufficient Conditions for Upward Planarity

The same technique is used to prove each of the Lemmas 6-9. We present the
proof of Lemma 6 here; proofs of Lemmas 7-9 can be found in [4]. Although the
proofs of these lemmas are quite detailed the high level strategy is not. Given
two UP strongly embedded digraphs G, and F,, with certain properties we
simply show that the strongly embedded digraph H, that results from adding
G, and F,,, by inserting a certain angle from G, within a certain angle from
the Fi,,. is acyclic, bimodal and has a consistent assignment of sinks and sources
to its faces. It then follows from Theorem 1 that H, is UP.
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Lemma 6. Let G and F be UP digraphs such that V(G)NV (F) = {u} and u is
a source (resp., sink) node in both G and F'. Let H = GUF'. The following three
statements hold. 1. H is UP if at least one of G or F' has an UP drawing whose
outer face contains u. 2. H has an UP drawing whose outer face contains u if
G and F both have an UP drawing whose outer face contains u. 8. H has an
UPSL drawing whose outer face contains a large angle incident on u if G and F
both have UPSL drawings whose outer face contains a large angle incident on u.

Proof. Assume that u is a source node (the case when u is a sink node follows
by symmetry) and that G has an UPSL drawing G whose outer face E¢g contains
the angle (g1,u, ga). Let F be an UPSL drawing of F' and let X be the face of
F that contains (f1,u, f2), the large angle incident on w in F. Thus G (resp., F)
has a strong embedding ¢ (resp., ¢r) such that G, (resp., F,,.) contains G
(resp., F) and has a consistent assignment, Mg (resp., M) of sinks and sources
to faces, such that Mg (resp., Mp) assigns u to a face X¢ (resp., the face Xp)
of Gy (resp., F,.) (Theorem 1). Let H, be the strongly embedded digraph
that results from adding G, and F,, by inserting (g1, u, g2) within (fi, u, f2).
We now show that H,, is acyclic, bimodal and has a consistent assignment. That
H is acyclic follows directly from Lemma 1. It follows from Definition 1 that
o(v) = pa(v),Yv € V(G) \ u and that p(v) = pr(v), Yv € V(F) \ u. But Gy
and F,, are bimodal. Thus all nodes in V(H) \ v are bimodal. As u is a source
node it is also bimodal. Thus all nodes in H, are bimodal. The set of faces of
H,, consists of all the faces of G, except Eg, all the faces of F,,,. except Xp,
and the “new” face Xp (Property 1). We now show that H, has a consistent
assignment M of sinks and sources to faces. M is defined as follows: P1. For each
source or sink v of V(H)NV(G), if Mg (v) # Eg then M (v) = Mg(v); otherwise
M (v) = Xg. P2. For each source or sink v of V(H) NV (F) \ u, if Mp(v) # Xy
then M (v) = Mp(v); otherwise M (v) = Xp. We now show that the assignment
M is consistent. The number of S-angles in each face z # Xy of H, is equal to
the number of S-angles in its corresponding face in either G, or F, .. It follows
from P1 that |[M;'(z)| = |[M~1(z)| for each face z # Xp of H, that is a face in
both Gy, and H,. It follows from P2 that |[M'(z)| = |M~1(z)| for each face
z # Xg of H, that is a face in both F,, and H, (because u was assigned to
Xr by Mp). Thus from the consistency of Mg and Mp that the assignment M
is consistent for each face z # Xy of H,. We now consider the face Xg. All the
S-angles contained by E¢ (resp., X ) except (g1, u, g2) (vesp., (f1,u, f2)) are also
contained by Xy (Property 1). Xy also contains two “new” S-angles (f1, u, g2)
and (g1, u, f2) (Property 1). Therefore So(Xp) = Sa(Eg)— 14 S.(Xp)—14+2 =
So(Fa)+Sq(XF). It follows from the consistency of M¢ that the number of nodes
in V(G)NV (H) that are assigned to Xg by M equals S,(Eg)+1 (from P1). We
separate the cases when Xp is an internal face of Fi,,. and Xr is the outer face
of Fy,,. Case 1. Assume X is an internal face of F,,.. Thus Xy is an internal
face of H,. It follows from the consistency of Mr that the number of nodes in
V(F)NV(H) \ u that are assigned to Xy by M equals S,(XF) — 2 (from P2).
Therefore |M~1(Xy)| = So(Eg) + 1+ So(Xr) —2 = S,(Xr) + Sa(Eg) — 1. So
M is consistent for Xz. Case 2. Assume X is the outer face of Fi,.. Thus Xy
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is the outer face of H,,. It follows from the consistency of Mg that the number
of nodes in V(F) NV (H) \ u that are assigned to Xy by M equals S,(XF)
(from P2). So M is consistent for Xp. Thus M is a consistent assignment of
nodes to the faces of H, for case 1 and for case 2. But H,, is also acyclic and
bimodal. Therefore H, is UP (Theorem 1). Thus H is UP. So Statement 1 is
true. If the outer face of F,, contains u then the outer face of H,, also contains
u (Definition 1). Thus Statement 2 holds. If Mg (Fg) = u and Xp is the outer
face of F,,, then Xy is the outer face of H, (Definition 1) and M(u) = Xg
(from P1). Therefore M assigns u to the outer face of H,. Thus H has an
UPSL drawing whose outer face contains the large angle incident on u and so
Statement 3 holds.

Lemma 7. Let G and F be UP digraphs such that V(G) NV (F) = {u} and
w s an internal node in both G and F. Let H = G U F. Then the following
four statements hold. 1. H is UP if at least one of G or F' has an UP drawing
whose outer face contains an I-angle incident on u. 2. H has an UP drawing
whose outer face contains an I-angle incident on u if G and F both have an UP
drawing whose outer face contains an I-angle incident on w. 3. H has an UP
drawing whose outer face contains u, but does not contain an edge which enters
(resp., leaves) u if at least one of G or F has an UP drawing whose outer face
contains u, but does not contain an edge which enters (resp., leaves) u and the
other has an UP drawing whose outer face contains an I-angle incident on u. 4.
H has an UP drawing whose outer face contains u if at least one of G or F' has
an UP drawing whose outer face contains u and the other has an UP drawing
whose outer face contains an I-angle incident on u.

Lemma 8. Let G and F be UP digraphs such that V(G)NV (F) = {u} and u is
a source node in G and a sink node in F. If H = GUF then H is UP if at least
one of G or F' has an UPSL drawing whose outer face contains a large angle
incident on w and H has an UP drawing whose outer face contains an I-angle
incident on u if G and F both have an UPSL drawing whose outer face contains
a large angle incident on w.

Lemma 9. Let G and F be UP digraphs such that V(G) NV (F) = {u}, u is a
source (resp., sink) node in G, and u is an internal node in F. If H = GUF
then H is UP if G has an UPSL drawing whose outer face contains the large
angle incident on u or F' has an UP drawing whose outer face contains an edge
which leaves (resp., enters) u. H has an UP drawing whose outer face contains
an edge which enters (resp., leaves) u if G has an UPSL drawing whose outer
face contains a large angle incident on w and F has an UP drawing whose outer
face contains an edge which enters (resp., leaves) u.

Lemmas 10 and 11 follow by induction from Lemma 6, whilst Lemma 12
follows by induction from Lemma 7.

Lemma 10. Let G be a digraph with a source or sink node u. G has an UP
drawing whose outer face contains u if every component of G w.r.t. u has an UP
drawing whose outer face contains u.
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Lemma 11. Let G be a digraph with a source (resp., sink) node u. G has an
UPSL drawing whose outer face contains the large angle incident on u if every
component of G w.r.t. uw has an UPSL drawing whose outer face contains the
large angle incident on u.

Lemma 12. Let G be a digraph with an internal node u such that all components
of G w.r.t. u are I-components. G has an UP drawing whose outer face contains
an I-angle incident on u if every component of G w.r.t. u has an UP drawing
whose outer face contains an I-angle incident on u.

Lemma 13. Let G be a digraph with a node u such that all components of G
w.r.t. u are I-components. G has an UP drawing whose outer face contains u,
but no edge which enters (resp., leaves) u if some component G, of G w.r.t. u
has an UP drawing whose outer face contains u, but does not contain an edge
which enters (resp., leaves) u and all other components of G w.r.t. u have an
UP drawing whose outer face contains an I-angle incident on u.

Proof. Let Gz be the union of all components of G w.r.t. u which are distinct
from G,. Gz has an UP drawing whose outer face contains an I-angle incident
on u (Lemma 12). Therefore G = G, UGz has an UP drawing outer face contains
u, but no edge which enters (resp., leaves) u (Lemma 7).

Lemma 14. Let G be a digraph with a node u such that all components of G
w.r.t. uw are I-components. G has an UP drawing whose outer face contains u
if all components of G with respect to u have an UP drawing whose outer face
contains u and at most one component of G w.r.t. u does not have an UP drawing
whose outer face contains an I-angle incident on u.

Proof. If all components of G w.r.t. u have an UP drawing whose outer face
contains an [-angle incident on u then G has an UP drawing whose outer face
contains an I-angle incident on v (Lemma 12). Suppose some component Gy, of
G w.r.t. u has no UP drawing whose outer face contains an I-angle incident on
u, but does have an UP drawing whose external face contains u. Let G be the
union of the all components of G' with respect to u which are distinct from G|,.
If all the components of Gy w.r.t. u have an UP drawing whose external face
contains an [-angle incident on u then G has an UP drawing whose outer face
contains an [-angle incident on u (Lemma 12). It follows from Lemma 7 that
G = Gy U Gy has an UP drawing whose external face contains u.

4 Necessary Conditions for Upward Planarity

Lemma 15. Let G and F be DAGs such that V(G) NV (F) = {u} and u is a
source node in G and a sink node in F. If H = GUF then H is UP only if
at least one of G or F has an UPSL drawing whose outer face contains a large
angle incident on u and the other is UP.

Proof. If neither F nor G admit an UPSL drawing whose external contains a
large angle incident on u then some components F’ of F and G’ of G w.r.t. u do
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not admit an UPSL drawing whose external face contains a large angle incident
on u (Lemma 11). Let H' = F'UG’, let H' be an UPSL drawing of H' and let G’
and F’ be the sub-drawings induced on G’ and F”, respectively by H’. At least
one of G’ or F’ lies in the outer face of the other (Lemma 3). As u is an internal
node in H’ it follows from Lemma 5 that both G’ and F’ must lie in the face of
the other that contains the large angle incident on u. This is a contradiction.

Lemma 16. Let H = G U F where G is an UP digraph with a source node u,
F is an UP digraph with a node u such that all components of F w.r.t. u are
I-components, and V(G)NV (F) = {u}. H is UP only if G has an UPSL drawing
whose outer face contains a large angle incident on w or F' has an UP drawing
whose outer face contains an edge which leaves wu.

Proof. (outline) As in the proof of Lemma 15 we show that if both G and F
do not have drawings with the stated properties then some component G’ of G
w.r.t. u does not admit an UPSL drawing whose outer face contains a large angle
incident on u, and some component F’ of F' w.r.t. does admit an UP drawing
whose external face contains an edge which leaves u. We then use Lemmas 5 and 3
to show that F' UG’ is not upward planar.

Lemma 17. Let G;,i = 1,...,c be the components of a digraph G with respect
to a node u such that all components of G with respect to u are I-components. Let
G be a drawing of G and let G; be the sub-drawing induced on G;, fori=1,...,c.
Then G is an UP drawing whose outer face contains an I-angle incident on u
only if each G; fori=1,...,c is an UP drawing whose external face contains
an I-angle incident on wu.

Proof. Let a be any integer such that 1 < a < ¢. Suppose that G, is not an UP
drawing whose outer face contains an [-angle incident on u. If G, = G then it is
trivially true that G is not an UP drawing whose outer face contains an I-angle
incident on u. Otherwise let b be any integer such that (1 < b < ¢) A (b # a) and
let G, UGy, be the sub-drawing of G induced on G, U Gy. Because the outer face
of G, does not contain an I-angle incident on u it follows from Lemma 4 that
Go U Gy is bimodal planar only if all of G, is drawn within an internal face of
Go- Therefore G, U Gy is UP only if the outer face of G, is also the outer face of
Go U Gp. Therefore G is UP only if the outer face of G, is also the outer face of
G. Therefore G is an UP drawing whose outer face contains an I-angle incident
on u only if each G; for i =1,...,cis an UP drawing whose outer face contains
an I-angle incident on .

Lemma 18. Let G;,i =1,...,c be the components of a digraph G with respect
to a node u. Let G be a drawing of G and let G; be the sub-drawing induced on
Gi,i=1,...,c. G is an UP drawing whose outer face contains u only if each G;
fori=1 to c is an UP drawing whose outer face contains u.

Proof. Let x be any integer such that 1 < z < ¢. Suppose that G, is an UP
drawing whose outer face &£, does not contain u. Therefore u is a point in the
interior of some closed curve &', that is a sub-drawing of £,. But £’ is a sub-
drawing of G. Therefore u is not contained by the outer face of G. Therefore G
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is an UP drawing whose outer face contains u only if each G;, i =1,...,¢, is an
UP drawing whose outer face contains u.

Proofs of the next two lemmas appear previously [4].

Lemma 19. Let G;,i = 1,...,c be the components of a digraph G with respect
to a source (resp., sink) node w. Let G be a drawing of G and let G; be the
sub-drawing induced on G;, fori=1,...,c. Then G is an UPSL drawing whose
outer face contains a large angle incident on w only if each G;, i = 1,...,¢, is
an UPSL drawing whose outer face contains a large angle incident on u.

Lemma 20. Let G;,i=1,...,c be the components of a digraph G w.r.t. a node
u such that all components of G with respect to u are I-components. Let G be a
drawing of G and let G; be the sub-drawing induced on G;, fori=1,...,c. Then
G is an UP drawing whose outer face contains u, but does not contain an edge

which enters (resp., leaves) u only if exactly one of the drawings G;,i =1,...,¢
is an UP drawing whose outer face contains u, but does not contain an edge
which enters (resp., leaves) u and exactly ¢ — 1 of the drawings G;,i = 1,...,¢

are UP drawings whose outer face contains an I-angle incident on u.

5 Main Results

Theorem 2. Let G be a digraph with a source or sink node w. G is UP if and
only if all components of G w.r.t. w are UP and at most one component of G
w.r.t. u does not have an UP drawing whose outer face contains u.

Proof. Suf. If all components of G w.r.t. u have an UP drawing whose outer
face contains u then G is UP (Lemma 10). Suppose some UP component X of G
w.r.t. u does not have an UP drawing whose outer face contains u, but that all
components of G\ X w.r.t. u do have an UP drawing whose outer face contains
u. Therefore G\ X has an UP drawing whose outer face contains « (Lemma 10).
Thus G = X UG\ X is UP (Lemma 6). Nec. Clearly if some component Y of
G w.r.t. u is not UP then G is not UP because Y is a subdigraph of G. Also if
two components Y; and Ys of G with respect to v do not have an UP drawing
whose outer face contains u then it follows from Lemma 2 that G is not UP.

Theorem 3. Let G be a digraph with a internal node u such that all components
of G w.r.t. u are either S-components or T-components. G is UP if and only
if all components of G with respect to u are UP, at most one component of G
w.r.t. u does not have an UP drawing whose outer face contains u and at least
one of S(u) or T(u) has an UP drawing whose outer face contains a large angle
incident on u.

Proof. (outline) The sufficiency follows from Theorem 2 and Lemma 8 whilst
the necessity follows from Lemma 2 and Lemma 15.

Theorem 4. Let G be a digraph with a node u such that all components of G
w.r.t. u are I-components. G is UP if and only if all components of G w.r.t. u
are UP and at most one component of G w.r.t. u does not have an UP drawing
whose outer face contains an I-angle incident on u.
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Proof. Suf. Let X be a component of G w.r.t. u such that all components of
G\ X w.r.t. u admit an UP drawing whose outer face contains an I-angle incident
on u. Therefore G\ X has an UP drawing whose outer face contains an I-angle
incident on v (Lemma 12). Therefore G = X UG\ X is UP if X is UP (Lemma 7).
Nec. Suppose that two components G' and G? of G w.r.t. u have no UP drawing
whose outer face contains an I-angle incident on u. Let H = G1 U G5. Let ‘H be
a planar drawing of H and let G! (resp., G?) be the sub-drawing induced on G*
(resp., G?). It follows from Lemma 4 that H is bimodal planar only if G (resp.,
G?) lies in a face of G! (resp., G?) which contains an I-angle incident on u and
at least one of G* or G? lies in the external face of the other. Therefore H has
no UP drawing. But H is a subgraph of G.

A proof of Theorem 5 appears previously [4].

Theorem 5. Let G be a digraph with an internal node u such that there are no
T-components (resp., S-components) of G w.r.t. u. G is UP if and only if all
components of G w.r.t. u are UP, at most one I-component of G w.r.t. u does
not have an UP drawing whose outer face contains an I-angle incident on u,
and at least one of the following two statements is true:

1. All S-components (resp., T-components) of G w.r.t. u have an UPSL drawing
whose outer face contains the large angle incident on u.

2. All I-components of G w.r.t. u have an UP drawing whose outer face contains
an edge which leaves (resp., enters) u and at most one S-component (resp.,
T-component) of G with respect to u does not have an UP drawing whose
outer face contains u.

Theorem 6. Let G be a digraph and let u be any node in G. G is UP if and
only if all components of G w.r.t. u are UP, at most one I-component of G w.r.t.
u does not have an UP drawing whose outer face contains an I-angle incident
on u, at most one S-component or T-component of G w.r.t. u does not have an
UP drawing whose outer face contains u, and at least one of the following three
statements is true:

1. There are mo S-components or T-components of G w.r.t. u which do not
admit an UP drawing whose outer face contains a large angle incident on u.

2. There are no S-components of G w.r.t. w which do not admit an UP drawing
whose outer face contains a large angle incident on u and there are no I-
components of G w.r.t. u which do not admit an UP drawing whose outer
face contains an edge which enters u.

3. There are no T -components of G w.r.t. u which do not admit an UP drawing
whose outer face contains a large angle incident on u and there are no I-
components of G w.r.t. uw which do not admit an UP drawing whose outer
face contains an edge which leaves .

Proof. Suf. Assume that all components of G w.r.t. v are UP and that at most
one I-component of G w.r.t. u does not have an UP drawing whose outer face
contains an I-angle incident on u. Thus I(u) is UP (Theorem 4). Also assume
that at most one S-component or T-component does not have an UP drawing



Building Blocks of Upward Planar Digraphs 305

whose outer face contains w. Thus S(u) and T(u) are both UP (Theorem 2).
We consider three cases. Case 1. Assume Statement 1 is true. Therefore S(u)
and T'(u) both have an UPSL drawing whose outer face contains a large angle
incident on u (Lemma 11). Thus S(u) U T'(u) has an UP drawing whose outer
face contains an I-angle incident on u (Lemma 8). But I(u) is UP. Therefore
G = I(u)U(S(u)UT(u)) is UP (Lemma 7). Case 2. Assume Statement 2 is true.
Thus S(u) has an UP drawing whose outer face contains a large angle incident on
u (Lemma 11) and I(u) has an UP drawing whose external face contains an edge
which enters v (Lemmas 14 and 20). It follows from Lemma 9 that S(u) U I(u)
has an UP drawing whose outer face contains an edge which enters u. But T'(u) is
UP. Thus G = (S(u)UI(u))UT(u) is UP (Lemma 9). Case 3. Assume Statement
3 is true. It follows by symmetry from the sufficiency of case 2 that G is UP.
Nec. Every component of G w.r.t. u is a subgraph of G. Therefore G is UP
only if all components of G with respect to u are UP. It follows from Theorem 4
that I(uw) is UP only if at most one I-component of G with respect to u does
not have an UP drawing whose outer face contains an I-angle incident on u. It
follows from Lemma 2 that S(u)UT(u) is UP only if at most one S-component
or T-component of G w.r.t. u does not have an UP drawing whose outer face
contains u. We now prove the necessity of at least one of Statements 1, 2 or 3
of Theorem 6 being true. We will need the following four statements. Statement
A (resp., Statement B) is that all components of S(u) (resp., T'(u)) w.r.t. u
have an UPSL drawing whose outer face contains a large angle incident on wu.
Statement C (resp., Statement D) is that all components of I(u) w.r.t. u have
an UP drawing whose outer face contains an edge which leaves (resp., enters)
u. S(u) UT (u) is UP only if at least one of Statement A or Statement B is true
(Theorem 3). I(u)US(u) is UP only if at least one of Statement A or Statement
C is true (Theorem 5). I(u) U T (u) is UP only if at least one of Statement B or
Statement D is true (Theorem 5). Therefore G = I(u) U S(u)UT(u) is UP only
if Statements .4 and B are both true, and/or Statements A and D are both true,
and/or Statements B and C. But (Statement A A Statement B) is equivalent
to Statement 1 of Theorem 6; (Statement A A Statement D) is equivalent
to Statement 2 of Theorem 6; (Statement B A Statement C) is equivalent to
Statement 3 of Theorem 6. Thus G is UP only if at least one of Statements 1, 2
or 3 of Theorem 6 is true.

Proofs of the following two theorems are similar to that of Theorem 6.

Theorem 7. Let G be a digraph with a node u, such that C' is an S-component
(resp., T-component) of G w.r.t. u that contains a node w. G has an UP drawing
whose outer face contains a certain type of angle incident on w if and only if
C has an UP drawing whose outer face contains the same type of angle inci-
dent on w, there are no S-components (resp., T-components) of G\ C w.r.t. u
which do not admit an UP drawing whose outer face contains u, there are no
T-components (resp., S-components) of G\ C with respect to u which do not
admit an UP drawing whose outer face contains a large angle incident on wu,
there are no I-components of G\ C w.r.t. u which do not admit an UP drawing
whose outer face contains an edge which leaves (resp., enters) u and at most one
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I-component of G\ C w.r.t. u does not have an UP drawing whose outer face
contains an I-angle incident on u.

Theorem 8. Let G be a digraph with a node w, such that C is an I-component
of G w.r.t. u that contains a node w. G has an UP drawing whose outer face
contains a certain type of angle incident on w if and only if C' admits an UP
drawing whose outer face contains the same type of angle incident on w, there
are no S-components or T-components of G \ C with respect to u which do not
admit an UP drawing whose outer face contains a large angle incident on wu,
and all I-components of G\ C w.r.t. u have an UP drawing whose external face
contains an I-angle incident on u.

6 Conclusions

Bertolazzi et al.’s algorithm for testing an embedded digraph for upward pla-
narity [2] can be modified to detect for the properties listed in Theorems 6-8. A
divide and conquer approach to upward planarity testing follows that involves
recursively splitting a digraph at its cut-vertices and testing the individual blocks
for the given properties. Bertolazzi et al. also describe a branch-and-bound algo-
rithm that tests the upward planarity of biconnected digraphs [3]. An interesting
question is could their algorithm also be tailored to detect the properties listed
in Theorems 6-8.
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Abstract. This paper presents a linear time algorithm for construct-
ing maximally symmetric straight-line drawings of biconnected and one-
connected planar graphs.

1 Introduction

Symmetry is one of the most important aesthetic criteria that clearly reveals the
structure and properties of a graph. Symmetric drawings of a graph G are clearly
related to the automorphisms of GG, and algorithms for constructing symmetric
drawings have two steps:

1. Find the geometric automorphisms [3], and
2. Draw the graph displaying these automorphisms as symmetries.

This paper presents a linear time algorithm for constructing maximally symmet-
ric straight-line drawings of biconnected and one-connected planar graphs. The
first polynomial time algorithm which runs in quadratic time has appeared [4].
Here we present a linear time algorithm. A linear time algorithm for ¢riconnected
planar graphs [6] and disconnected graphs are dealt with in [9]. The following
theorem summarizes our main result.

Theorem 1. There is a linear time algorithm that constructs mazimally sym-
metric planar drawings of biconnected and one-connected planar graphs, with
straight line edges.

In the next section, we review necessary background. In Section 3 and Sec-
tion 4, we present a linear time algorithm for finding maximum number of
symmetries (planar automorphisms) of biconnected and one-connected planar
graphs. In Section 5, we describe the symmetric drawing algorithms.
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2 Symmetries and Planar Automorphisms

An automorphism of a graph is a permutation of the vertex set that preserves
adjacency. Symmetry in graph drawing is closely related to automorphisms of
graphs: a symmetry of a graph drawing induces an automorphism of the graph.
In this case, we say that the drawing displays the automorphism, and the auto-
morphism is geometric [3]. Note that not every automorphism is geometric.

An automorphism « of a graph G is a planar automorphism if there is a planar
drawing D of G which displays «. Note that not every geometric automorphism
is planar. Further, the product of two planar automorphisms is not necessarily
planar (because they may be displayed by different drawings). An automorphism
group A of a graph is a planar automorphism group if there is a single planar
drawing of the graph that displays every element of A [6]. The central problem
of this paper is to find a planar automorphism group of maximum size.

Planar Automorphism Problem
Input: A planar graph G.
Output: A maximum size planar automorphism group A of G.

Previous research on the Planar Automorphism Problem has concentrated on
subclasses of planar graphs [5,11]. Our aim is to give a linear time algorithm for
planar graphs in general. We use connectivity to divide the problem into cases.

1. Triconnected graphs: a linear time algorithm is presented in [6].
2. Biconnected graphs: this is the topic of this paper.

3. One-connected graphs: this is the topic of this paper.

4. Disconnected graphs: a linear time algorithm is presented in [9].

Note that each case relies on the result of the previous case. The triconnected
case was solved in [6]; the algorithm finds a plane embedding of G that has max-
imum size planar automorphism group. Generators of the planar automorphism
group of G with given plane embedding are then derived. They also give a linear
time drawing algorithm.

3 The Biconnected Case

If the input graph G is biconnected, then we break it into triconnected compo-
nents in a way that is suitable for the task. The overall algorithm is composed
of three steps.

Algorithm Biconnected Planar
1. Construct the SPQR-tree T; of GG, and root T3 at its center.
2. Reduction: For each level i of T (from the lowest level to the root level)
(a) For each leaf node on level ¢, compute labels.
(b) For each leaf node on level 4, label the corresponding virtual edge of the
parent node with the labels.
(¢) Remove the leaf nodes on level i.
3. Compute a maximum size planar automorphism group at the labeled center.
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We briefly describe each step of the algorithm. The first step is to construct the
SPQR-tree for the input biconnected planar graph. The SPQR-tree represents
a decomposition of a biconnected planar graph into triconnected components.
There are four types of nodes in the SPQR-tree 77 and each node v in T3 is
associated with a graph which is called as the skeleton of v (skeleton(v)). The
node types and their skeletons are:

1. @-node: The skeleton consists of two vertices which are connected by two
multiple edges.

2. S-node: The skeleton is a simple cycle with at least 3 vertices.

3. P-node: The skeleton consists of two vertices connected by at least 3 edges.

4. R-node: The skeleton is a triconnected graph with at least 4 vertices.

In fact, we use slightly different version of the SPQR-tree. We use the SPQR-tree
without @ nodes. The SPQR-tree is unique for each biconnected planar graph.
Let v be a node in T} and w a parent node of v. The graph skeleton(u) has one
common virtual edge with skeleton(v), which is called as a virtual edge of v. For
details, see [2].

The second step is the reduction. The reduction process takes the SPQR-tree
of a biconnected graph, rooted at the center, based on the following lemma.

Lemma 1. [1] The center of the SPQR-tree is fized by a planar automorphism
group of a biconnected planar graph.

The reduction process proceeds the SPQR-tree from the leaf nodes to the center
level by level, computing labels. The labels are a pair of integers, and boolean
values that capture some information of the planar automorphisms of the leaf
nodes. First it computes the labels for the leaf nodes. Then it labels the corre-
sponding virtual edge in the parent node and delete each leaf node. The reduction
process stops when it reaches the root.

The reduction process clearly does not decrease the planar automorphism
group of the original graph. This is not enough; we need to also ensure that
the planar automorphism group is not increased by reduction. This is the role
of the labels. As a leaf v is deleted, the algorithm labels the virtual edge e of
v in skeleton(u) where u is a parent of v. Roughly speaking, the labels encode
information about the deleted leaf to ensure that every planar automorphism
of the labeled reduced graph extends to a planar automorphism of the original
graph.

The last step is to compute a maximum size planar automorphism group at
the center using the information encoded on the labels.

3.1 The Labels and Labeling Algorithms

Standard Labels. Let v be an internal node of T7. We say that a virtual edge
e of skeleton(v) is a parent (child) virtual edge if e corresponds to a virtual
edge of u which is a parent (child) node of v. We define a parent separation pair
s = (s1,82) of v as the two endpoints of a parent virtual edge e.

When we compute the labels of v, we need to delete the parent virtual edge e
from skeleton(v). We denote the resulting graph by skeleton™ (v). The union of
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the graphs skeleton™ (u) for all descendants u of v, including v itself, is denoted
by G (v).

Suppose that nodes vy, vs,...vr of the SPQR-tree T are deleted at one
iteration of the reduction process. These nodes correspond to virtual edges
€1, €2,...,¢ex in the level above the current level. For each v, we need to compute
the following standard labels.

1. isomorphism code: a pair I'so(v) of integers.
2. axial codes:
(a) Aswap(v): a boolean label indicating whether G (v) has an axial sym-
metry that swaps the parent separation pair.
(b) Apfiz(v): aboolean label indicating whether G (v) has an axial symmetry
that fixes the parent separation pair.
3. rotation code: a boolean label Rot(v) indicating whether GT(v) has a rota-
tional symmetry of 180 degrees that swaps the parent separation pair.

Note that we need these labels when the virtual edge is fixed by a planar auto-
morphism of the parent node. Further we need to define special labels, which are
motivated by the special case below and plays important role to give a linear
time algorithm.

Special Case. The aim of labeling is to encode information about planar auto-
morphisms of the skeleton™ (v) of the non-root node v of the SPQR tree in the
parent virtual edges. In this way we can find planar automorphisms of the whole
graph by finding planar automorphisms of the labeled skeleton(c) of the root
node c. This strategy has a simple flaw: the edges may not model the topological
properties of the skeleton™(v) correctly. In particular, while skeleton™(v) of a
child node v can enclose skeleton(u) of a parent node u (see Figure 1(a)), the
child virtual edge e in the skeleton(u) of parent node u (see Figure 1(b)) cannot
enclose skeleton(u), since it is purely a one-dimensional curve. An embedding
in which skeleton(u) is on an inside face of G (v), where u is the parent of v,
is called an enclosing composition.

Figure 2(a) shows an example of a drawing constructed by an enclosing com-
position; this shows the maximum number of symmetries of a graph, two ro-
tational and two axial symmetries. Figure 2(b) shows the SPQR tree of the
graph. Here skeleton(c) of the root node ¢ of the SPQR tree is enclosed by the
skeleton(v) of its child node v. The enclosing child node may be in turn en-
closed by one of its children, again fixed setwise. Note that the graph can be

T
G(v)

(a) (b)

Fig. 1. An enclosing composition: v is a child of .
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Fig. 2. The special (enclosing) case.

drawn without enclosing nodes, based on skeleton(c), as in Figure 2(c); but this
displays less symmetry, only one axial symmetry.

Special Labels. To take care of special cases such as that illustrated in Figure 2,
we define special labels. The most important property of this special case is that
the whole planar automorphism group fixes two faces of G*(v): the outside face,
and the internal face containing the separation pair. Thus we define the following
labels.

1. special axial codes:

(a) A%,ap(v): aboolean label indicating whether G* (v) has an axial symme-
try that swaps the parent separation pair and with the parent separation
pair on an inside face.

(b) A}, (v): aboolean label indicating whether G* (v) has an axial symmetry
that fizes the parent separation pair and with the parent separation pair
on an inside face.

2. special rotation code: a boolean label Rot*(v) indicating whether G (v) has

a rotational symmetry that swaps the parent separation pair and with the

parent separation pair on an inside face.

In fact, it is enough to require that the planar automorphism fixes two faces: one
incident to the parent separation pair, and the other not incident to the parent
separation pair, as described in the following lemma.

Lemma 2. Suppose that D is a drawing of a planar graph G and u and w are
vertices of G that share a face in D. Suppose that D displays an axial planar
automorphism ¢ that fizes {u,w}. Then ¢ fizes at least one face not incident to
u and w if and only if there is a drawing D' of G that displays ¢, with w and w
not on the outside face.

*

Lemma 2 implies, for example, that A, .., (v) = true if and only if G*(v) has an
axial planar automorphism that swaps the parent separation pair, fixes a face
incident to the separation pair, and fixes at least one other face.
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Computation of an Isomorphism Code. The isomorphism code Iso(v) con-
sists of a pair of integers, because the skeleton(v) has an orientation with respect
to the parent separation pair. The isomorphism code can be computed in linear
time using a planar graph isomorphism algorithm [10]. For details, see [7].

Computation of Axial Codes. An axial symmetry either swaps the parent
separation pair or fizes the parent separation pair. First we describe an algorithm
for Agwap(v).

Note that the axial symmetry should respect the isomorphism code of the
child virtual edge. Further, if the axial symmetry fixes a child virtual edge, then
we need to test its label. Further, from Lemma 2, A, ., (v) is true if and only if
Aswap(v) is true and the axial symmetry of skeleton™(v) can be extended to an
axial symmetry of G*(v) that fixes more than one face. Thus, we can compute

both Asyap(v) and A%, (v) as follows.

swap

Algorithm Compute_Axial_Code_Swap
1. Test whether skeleton™(v) has an axial symmetry o which swaps the parent
separation pair and respects the isomorphism codes of child virtual edges.
2. If « exists, then
(a) For each child virtual edge e; that is fixed by «, check the followings:
i. if o fixes the endpoints of e;, then Ay, (v,;) = true.
ii. if o swaps the endpoints of e;, then Agyqp(v;) = true.
(b) If one of these properties fails,
then Aswap(v) := false; else Agyap(v) 1= true.
else Aswap(v) := false.
3. If Aswap(v) = false then A, ..(v) := false;
else if either
— « fixes more than one face, or
— a swaps the endpoints of a child virtual edge f such that A7,,,(f) =
true, or
— « fixes the endpoints of a child virtual edge f such that A%, (f) = true,
then A%, .. (v) = true; else A%, .., (v) := false.

swap swap

Algorithms for computing Ay, (v) and Rot(v) are similar to the algorithm for
computing Agyqp(v). Note that the labeling algorithm correctly computes labels
and runs in linear time. For proofs, see [7].

When v is a P-node, we use similar algorithms to the case of parallel com-
positions in series parallel digraphs [5]. When v is an S-node, we use similar
algorithms to the case of series compositions in series parallel digraphs [5]. For
details, see [7].

3.2 Computing a Maximum Size Planar Automorphism Group
at the Center

The center of the SPQR-tree may be a node or an edge. If the center is a node c,
then we can further divide into three cases by its type. If ¢ is a R-node, then we
use the triconnected case [6] to compute a maximum size planar automorphism
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group. If ¢ is a P-node, then we use a similar algorithm to the case of a parallel
composition in series parallel digraphs (see [5,7]). If ¢ is an S-node, then we can
use the algorithm for outerplanar graphs [11].

However, there may exist some other node v which is fixed by a planar
automorphism group as in the special case. Thus to find a maximum size planar
automorphism group at the center ¢, we consider both cases and then find the
maximum. Here we need an algorithm to find a child node which gives the best
result for the enclosing composition. This can be done in linear time by using
generators. For details, see [7].

If the center is an edge, then we find the maximum among three cases: parallel
composition, reduction composition and enclosing composition. Parallel compo-
sition means that we construct a drawing with two labeled edges such as a parallel
composition in series parallel digraphs. Reduction composition means that we
compute labels of one node u and then delete u by labeling the corresponding
virtual edge e of the other node v. Then we compute a planar automorphism
group at v using the center node case. Enclosing composition means that we con-
struct a drawing such as the special case. Each of these cases can be computed
in linear time, see [7].

4 The One-Connected Case

The algorithm for computing a maximum size planar automorphism group of
one-connected planar graph has a similar flavor to the biconnected case: we use
reduction approach. We also use algorithm Biconnected Planar as a subroutine.
The reduction process is similar to the biconnected case. In this case we take the
block-cut vertex tree (BC-tree) and then compute labels at each leaf node (block
or cut vertex). However, the labels are different.

4.1 The Labels and Labeling Algorithms

We need two types of labels: isomorphism code and axial code. However, these
are further divided into the case of a cut vertex or a block. Let B represent a
block and C represent a cut vertex.

1. isomorphism code : an integer Isop(v) (or Isoc(v)).
2. axial code : an integer Ap(v) (or Ac(v)) indicating whether B (or C) has
an axial symmetry which fixes the parent node.

Note that we need these labels when the block or cut vertex is fixed by a planar
automorphism of the parent node.

Computation of an Isomorphism Code of a Block. Suppose that By, Bs,

.., By, are the blocks on the lowest level and pi, ps,...,pn are the parent cut
vertices for the blocks. We compute isomorphism code I'sog(v;) for each B; using
a planar graph isomorphism algorithm which takes linear time [10]. Note that
the isomorphism should respect the isomorphism code of the child cut vertex.
We now describe the algorithm.
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Algorithm Compute_Iso B
for each B;,i=1,2,...,m,
if there is an isomorphism o between B; and Bj; such that
(a) a(p:) = pj, and
(b) for each cut vertex ¢ of B,
i. a(eg) is a cut vertex, and

il. Isoc(ck) = Isoc(alcr)).
then assign isomorphism codes such that Isog(v;) = Isop(v;).

Computation of an Axial Code of a Block. The label Agp(v) represents
whether the block B has an axial symmetry which fixes the parent cut vertex p.
Let ¢1,c¢a,. .., ck be the child cut vertices of B. In fact, the algorithm computes
a ternary value for Ap(v). The interpretation of Ag(v) is:

1.

Ag(v) = 1if GT(v) has an axial symmetry that fixes p and one face incident
to p.

Ag(v) = 2 if GT(v) has an axial symmetry which fixes p and two faces
incident to p.

Ap(v) = 3 if G*(v) has no axial symmetry that fixes p and a face incident
to p.

First we find an axial symmetry « of B which fixes the parent cut vertex using
Biconnected Planar. Then we check whether each fixed child cut vertex c;
preserves the axial symmetry. For this purpose, we need some information about

the
1.

2.

3.

4.

axial code Ac(v). The interpretation of values of Ac(v) is:

Ac(v) = 0 if GT(v) has an axial symmetry which does not fix any G (v;)

for any 1.

Ac(’u) =1if

(a) every axial symmetry of G (v) fixes at least one G (v;), and

(b) there is an axial symmetry « such that if « fixes G* (v;) then Ap(v;) < 3,
and there is at most one j such that o fixes G*(v;) and Ag(v;) = 1.

Ac(v) =2if

(a) every axial symmetry of Gt (v) fixes at least two G (v;) for which
Ap(v;) =1, and

(b) there is an axial symmetry « such that if « fixes GT(v;) then Ag(v;) <
3, and there are at most two indices j such that « fixes G*(v;) and
AB (Uj) =1.

Ac(v) = 3 otherwise.

Finally we assign the value, depending on the fixed faces which are adjacent to p.
We now state the algorithm.

Algorithm Compute Axial B

Apply Biconnected Planar [7] to the labelled graph B; if B has an axial

planar automorphism « such that

(a) « fixes p and respects the isomorphism partition labels on B;

(b) For each child cut vertex ¢; fixed by «, the number of faces incident to
¢; and fixed by o is at least as large as Ac(c; ).

then Ap(v) := the number of faces fixed by « and incident to p.

else Ap(v) := 3.
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Computation of an Isomorphism Code of a Cut Vertex. Suppose that
c1,¢a,...,c are the cut vertices on the lowest level. We compute Isoc(c;) for
each ¢;, i = 1,2, ..., k, which represents an isomorphism code of ¢;. More specif-
ically, I'soc(c;) = Isoc(c;) if and only if the subgraph which is rooted at ¢; is
isomorphic to the subgraph which is rooted at ¢;. We now state the algorithm.

Algorithm Compute_Iso_C

1. For each ¢;:
(a) Let Bj1, Bja, ..., Bin be the child blocks of ¢;.
(b) S(Cl) = (ISOB(Bil),ISOB(BiQ), N 7ISOB(.Bim)).
(c) Sort s(c;).

2. Let @ be the list of s(¢;), i =1,2,... k.

Sort @ lexicographically.

4. For each ¢;, compute Isoc(c;) as follows: Assign the integer 1 to ¢; whose
s(¢;) is the first distinct tuple of the sorted sequence ). Assign the integer
2 to ¢; whose s(c;) is the second distinct tuple, and so on.

@

Computation of an Axial Code of a Cut Vertex. The label Ax(v) rep-
resents whether a cut vertex ¢ has an axial symmetry which fixes the parent
block. Let B, be the parent block of v and By, B»,..., By, be the child blocks
of v. Suppose that « is an axial symmetry which fixes B,. We use Ac(v) to de-
cide whether c preserves o of B,,. More specifically, this indicates that whether
Bi1, B, ..., B, can be attached to ¢, preserving a.

To compute Ac(v), we use Ag(B;). The label Ag(B;) indicates that whether
Bj has an axial symmetry which fixes c. Further, it indicates that whether there
is a fixed face adjacent to c. We now state the algorithm.

Algorithm Compute_Axial C
1. Partition By, Bs, ..., By, into isomorphism classes P; using Isog(B;), and
compute the size s; of each isomorphism class P;.
2. If all sy are even, then Ac(v) := 0; exit.
3. If there is an s; that is odd and Ag(v;) = 3 for each j € Py
then Ac(v) := 3; exit.
4. Let f be the number of odd s, such that if j € P, then Ag(v;) = 1.
(a) If f > 2 then Ac(v) = 3.
(b) If f =2 then Ac(v) := 2.
(¢) If f =1 then Ac(v) := 1.

Note that all the labeling algorithms correctly compute labels and run in linear
time, see [8].

4.2 Computing a Maximum Size Planar Automorphism Group
at the Center

We can compute a maximum size planar automorphism group of the whole graph
by computing a maximum size planar automorphism group at the labeled center,
based on the following lemma.
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Lemma 3. The center of the BC-tree is fixed by a planar automorphism group
of a one-connected planar graph.

The algorithm can be divided into two cases, since the center of the BC tree
may be a block or a cut vertex. Roughly speaking, if the center is a block B,
then we use algorithm Biconnected Planar in Section 3. If the center is a cut
vertex ¢, then we use a similar method that was used in the case of trees [11].
However, the algorithm is not as simple as this, mainly because there are
some special cases. Namely, there may exist a fixed cut vertex when the center
is a block, and there may exist a fixed block when the center is a cut vertex. To
illustrate the special cases, see the graph Figure 3, with its BC tree. The center
of the BC tree is a block B with 5 cut vertices. The symmetries of the drawing
of this block fix the cut vertex ¢ with 4 children in the BC tree. Maximizing
symmetry for the whole graph is not merely a matter of the reduction process
plus maximizing symmetry of B; we must also arrange the children of the fixed
cut vertex in a symmetrical way. Essentially this means merging the symmetries
of GT(c) with the symmetries of G*(B). Similar case can happen when the
center is a cut vertex. Thus to compute the maximum, we need to consider these
special cases. Again, we need an algorithm to find the child vertex of the center
which can gives the maximum. However, this can be done in linear time, see [8].

j
i

Fig. 3. Special case.

=

5 The Drawing Algorithms

The algorithms presented in the preceding sections take a biconnected planar
graph and one-connected planar graph as input and has two outputs: a pla-
nar automorphism group of maximum size, and an embedding of the graph. In
this section, we show how to use this information to construct a straight line
symmetric drawing of the graph.

Given an embedding of a biconnected planar graph, we use “augmentation”:
we increase the connectivity by adding new edges and new vertices to make it
triconnected, while preserving the planar automorphism group. Then we can
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apply the algorithm for constructing symmetric drawings of triconnected pla-
nar graphs with straight-line edges to construct a symmetric drawing [6]. The
algorithm runs in linear time [6]. Finally we delete the added edges and vertices.

Given an embedding of a one-connected planar graph, we use “attachment”:

first, we draw each block using the algorithm for constructing symmetric draw-
ings of biconnected planar graphs with straight-line edges to construct a sym-
metric drawing. Then we attach each drawing at each cut vertex, preserving
planarity. Clearly, this algorithm runs in linear time.
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Abstract. Confluent graphs capture the connection properties of train
tracks, offering a very natural generalization of planar graphs, and —
as the example of railroad maps shows — are an important tool in graph
visualization. In this paper we continue the study of confluent graphs, in-
troducing strongly confluent graphs and tree-confluent graphs. We show
that strongly confluent graphs can be recognized in NP (the complex-
ity of recognizing confluent graphs remains open). We also give a natu-
ral elimination ordering characterization of tree-confluent graphs which
shows that they form a subclass of the chordal bipartite graphs, and can
be recognized in polynomial time.

1 Introduction

The area of graph drawing deals with the visualization of graphs, where the
visualization meets certain aesthetic or technical constraints [1]. Typically, the
goal of the drawing of a graph is to minimize some parameter such as the cross-
ing number, or, for grid drawings, the area, the number of times an edge bends,
or the total length of the edges. Among these parameters, the crossing number
has probably drawn the most attention. A crossing number of zero corresponds
to planarity, for which linear time algorithms are known, but, in general, deter-
mining the crossing number of a graph is NP-complete [4], making it a hard
parameter to minimize. Recently, Dickerson, Eppstein, Goodrich, and Meng [2]
suggested an extension of the notion of planarity called confluency that, while
allowing crossings, hides them in the drawing. At the core is an idea similar to
the train tracks of Thurston [6]: we allow edges in the drawing to merge, like
train tracks, into a single track. The merging device is called a switch. Figure 1
shows how to draw complete graphs and complete bipartite graphs confluently.

Dickerson, Eppstein, Goodrich, and Meng [2] identified several classes and
families of graphs which are confluent, including interval graphs and cographs.
They also gave examples for graphs which are not confluent (their smallest ex-
ample is obtained from the Petersen graph by removing a single vertex), and a
heuristic algorithm to recognize whether a graph is confluent or not. Interest-
ingly, they did not study the complexity of the recognition problem.

The main contribution of this paper is to show that a natural strengthening
of confluency in graphs can be recognized in NP. In Section 2 we define the

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 318-328, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. How to draw Ks and K5 3 confluently.

notions of confluency and strong confluency. Their relationship is investigated in
Section 3 by studying their underlying train tracks. Section 4 shows that strong
confluency can be recognized in NP by giving a polynomial upper bound on the
number of switches necessary to represent a graph. We think it is not unlikely
that the problem will turn out to be NP-complete.

If confluency does turn out to be NP-hard, it will be of interest to identify
large, and natural, subclasses which can be recognized efficiently. One immediate
way of obtaining interesting classes of confluent graphs is by taking well-known
graph classes whose definition depends on planarity, and replace planarity with
confluency. In that manner we obtain outer-confluent graphs (see Section 6), and
tree-confluent graphs, whose confluent drawings are treelike. In Section 5 we will
show that the tree-confluent graphs can be recognized efficiently with the help
of an elimination order characterization.

2 Train Tracks and Confluent Drawings

Definition 1. A curve is a continuous mapping of [0,1] into the Euclidean
plane; we often identify a curve and its image. A curve is smooth, if it is dif-
ferentiable (intuitively, it cannot make sharp turns). A smooth curve which does
not self-intersect is called locally monotone [2].

Definition 2. A train track drawing with vertices V and switches S is a subset
D of the Euclidean plane such that (i) VNS = 0, (i4) there is a injective mapping
of V.U S into D (we identify a point in V U S with its image), (iii) any curve in
D not containing a switch must be smooth, and (iv) any two overlapping curves
in D must have a common tangent at any point of overlap; that is, they have to
join smoothly.

A curve in a train track drawing which shares exactly its two endpoints with
V U S is called a branch.

Based on this notion of a train track drawing, we derive two graph drawing
concepts.

Definition 3. We call a graph G = (V, E) confluent, if there is a train-track
drawing D on V' such that wv € E if and only if there is a locally monotone
curve in D with endpoints u and v that does not contain any other points of V.
In this case we call D a confluent drawing of G.
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Fig.2. K4 or K4 —€?

For an example, consider the train track drawing in Figure 2. We can easily
trace locally monotone curves connecting all pairs of vertices — with the exception
of a and b. There is a smooth curve connecting a to b, but it is not locally
monotone, since it has to self-intersect. Hence, the train track drawing in Figure 2
is a confluent drawing of a K, — e.

When tracing a train track drawing visually, the requirement to avoid self-
intersections seems to force a reader to backtrack to determine whether two
points are connected. Removing this requirement leads to the following notion.

Definition 4. We call a graph G = (V, E) strongly confluent, if there is a train
track drawing D on V such that uv € E if and only if there is a smooth curve in
D with endpoints u and v that does not contain any other points of V. In this
case we call D a strongly confluent drawing of G.

Using this new definition, we would say that the train track drawing in Fig-
ure 2 is a strongly confluent drawing of a Kjy.

Remark 1. The notion of confluency was introduced by Dickerson, Eppstein,
Goodrich, and Meng in [2]; at a first glance it might seem that confluency is
a stronger requirement than strong confluency. The opposite, however, is true;
every strongly confluent graph is confluent (as we will see in Corollary 1), and
there is a confluent graph which is not strongly confluent.

By definition, any point of D at which several curves combine is a switch. A
switch has two sides, each with an arbitrary number of incoming curves. Every
such switch can be replaced by a series of simple switches, where a simple switch
is a switch in which two curves merge into a single curve. For example, the
drawing of Kg in Figure 1 uses simple switches, whereas the drawing of K5 3 in
the same figure uses a single switch which is not simple. Figure 3 shows how to
draw K5 3 using only simple switches.

For the rest of the paper we will use switch synonymously with simple switch,
unless explicitly stated otherwise.

3 Train Tracks

We want to capture the combinatorial structure of a train track drawing D in
graph-theoretic terms, abstracting from the particular embedding. To this end,
we call a vertex-labelled graph H = (V U S, F,0) a train track if the following
holds:
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Fig. 3. How to draw K3 3 using only simple switches.
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(7) The vertex set of H consists of two types of vertices V' and S, we call
vertices and switches of H,
(#4) switches have degree 3,
(iii) o(s) € V U S is one of the three neighbors of s (for every switch s € S).

Remark 2. We will often consider H as a directed graph, for example to specify
in which direction the undirected edge uv is traversed. In that case we will write
(u,v) or (v,u), and we will tacitly consider the graph as symmetric; that is, for
every directed edge, the reverse edge also belongs to the graph.

We think of o(s) as determining the orientation of the switch s: if we enter
the switch s coming from o(s), it forks into two branches. A curve in a train
track drawing now corresponds to a walk in the train track which respects the
orientation of the switches in the sense that for every part (u, s,v) of the walk s
is a switch, and o(s) is either v or v (and w and v are different from each other).
We call such a walk acceptable. We can now rephrase our notions of confluency
and strong confluency in terms of train tracks.

Lemma 1. A graph G = (V, E) is confluent if there is a planar train track H
such that wv € E if and only if there is an acceptable path from u to v in H. The
graph is strongly confluent if there is a planar train track H such that wv € E if
and only if there is an acceptable walk from u to v in H.

Proof. Consider a train track drawing D with vertices V' and switches S. Con-
struct a train track H as follows: V' U S will make up the vertex set of H. Include
an edge (u,v) in F if in D there is a curve from u to v which does not cross
through any vertices or switches. We assumed that switches are simple, hence
there are three branches leaving s. Let o(s) be the endpoint (other than s) of the
edge corresponding to the branch that extends the other two branches smoothly.
Then H is a planar train track in which every acceptable walk corresponds to a
smooth curve in D, and every acceptable path to a locally monotone curve. H

Remark 3. Given a train track, the graph it represents can be found in polyno-
mial time. In the case of strong confluency this is obvious, for confluency the
problem can be reduced to a matching problem [3].

Theorem 1. If G = (V, E) is strongly confluent, then it is represented by a
planar train track H = (V U S, F,0) such that ab € E if and only if there is an
acceptable path Py, in H from a to b.
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We omit the proof of Theorem 1. Together with Lemma 1 it immediately
implies a relationship between the two notions of confluency we introduced.

Corollary 1. Any strongly confluent graph is confluent.

The inclusion is strict, consider for example the graph drawn in Figure 4.
By adding some more vertices and edges on the outside, we can force that all
the switches occur within the circle. The resulting graph is confluent, but not
strongly confluent (since vertex 6 will always be connected to vertex 4 in a
strongly confluent drawing).

8 10

Fig. 4. Construction for graph which is confluent but not strongly confluent.

4 Strong Confluency in NP

Lemma 2. IfG = (V, E) is confluent, then there is a train track H representing
G, and acceptable paths P, for every edge e € E such that the following condition
holds:

If P is a longest path contained in both some P, and some Py, then P
s a single edge.

Proof. We need a measure of overlap between two paths P, and Py. To this end,
we introduce the numbers

Ocf ‘= Z ‘PP

P maximal subpath of P, N Py

With this we can establish the following claim:

Suppose H is chosen to minimize the number o.¢. In that case, if P is a
path contained in both P, and Py, then P is a single edge.

If the conclusion of the claim is false, there is a path (u,x,v) belonging to both
P, and Py. Let y be the endpoint of the third edge incident to z; without loss
of generality, we can assume that o(z) = u. Since P. and P; are paths, the
edge xy cannot belong to either of them. Modify H as follows: remove edges ux
and zv and add two new vertices u’, v’ and edges uu’, u'v’, v'v, v’z and zv’; set
o(u') = u, o(v') = v, and o(z) = «’. Modify P, and Py such that one of them uses
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(u,u,2',v',v) and the other (u,w’,v’,v). This will split the maximal common
subpath of P, N P containing (u,z,v) into two parts. Since (i + j)? > i + 52
for ¢,7 > 1, this strictly reduces o,y showing that H did not minimize it. This
establishes the claim.

In the modification made to H in the proof of the claim, we can route any
other P, through (u,u’,v’,v) if it used (u,z,y) or through (u,u’,z,y) if it used
(u,z,v); in either case the length of another P, path will be increased by at
most one.

More importantly, if any maximal subpath of P; and P}, is an edge, then
the modification to H will not change that: if P, and P, were affected by the
modification and shared a single edge on the vertices u, x, v, and ¥, it must have
been uz, and one of P, and P}, must have used zv and the other zy; hence, after
the modification they will only share uw’.

Let ey f1,eaf2, ..., exfr be an ordering of all pairs of distinct edges of G. The
above observation immediately implies that if we choose H so as to minimize
(in lexicographic ordering) the vector

(Oelfl »Oea fas o Oekfk)
then any paths P, and Py intersect in isolated edges. H

For the rest of this section we will concentrate on strongly confluent graphs.
Because of Corollary 1, we can still apply Lemma 2 in that case, concluding that
overlap between a P, and a Py consists of non-adjacent edges. Moreover, these
overlaps between P, and Py correspond to crossings in a planar drawing of H.
That is, if we have the path (u., s, t,v.), part of P. and (uy,s,t,vy), part of Py
then u. and v, cannot be on the same side of st in the planar drawing of H,
since otherwise we could have reduced o.; by having two separate paths (u., ve)
and (uf,vy) as shown in Figure 5.

There is one scenario which would prohibit the application of the move shown
in Figure 5, namely if there was a third P, making use of the edge st. This,
however, is not possible, since one pair from P, P¢, P, would share a path of
length > 2.( Note that this operation would not be valid if the representation was
just confluent, since lifting the path could introduce new connections between
vertices not possible before.)

Our goal is to show that we can assume the number of switches in H to be
polynomial in the number of vertices. To this end we equip the train track with
an edge labelling that contains connectivity information.

Given a train track H = (V U S, F,0) for G = (V, E) we define a labelling of
the directed edges of H as follows:

L(u,v) = {a € V : there is an acceptable walk from a to v in H

passing through (u,v)}.

Ue Ve Ue @ @ Ve
s t
ur @ ® Uf Uy @& ® Ur

Fig. 5. Lifting a path (in a strongly confluent representation).
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From the definition it follows that ¢ is the minimal labelling fulfilling

(i) a € £(a,u) for any edge (a,u) € FN(V,VUS),
(1) Ne(a) = Uy aer t(u, a) for any a € V, where Ng(a) = {b: ab € E} is
the neighborhood of a in G,
(73i) for any switch s € S and its neighbors u = o(s), v, w:

l(u,s) CL(s,v)NL(s,w), and
L(s,u) D L(s,v) Ul(w,s).

By the results proved so far we know that if G = (V, E) is strongly confluent,
then there is H = (V U S, F,0) such that ab € E if and only if there is an
acceptable path P, from a to b in H.

Lemma 3. If G = (V, E) is strongly confluent, then it is represented by a train
track H with O(|V|)® vertices and switches.

Let uwv € E. Consider a path P,, in H whose inner vertices are all switches,
and the function ¢(€) as we move the directed edge e along P,, from u to v.
This yields a monotone function, namely, if e occurs before f on P,, and both
edges are directed towards v, then £(€) C ¢(f ). Therefore, /() can take on at
most |V|+1 different values along P,,. Similarly, if we move an edge ‘€ directed
towards u along P,, from u to v, the corresponding label sets are monotonously
decreasing, and, hence, also take at most |V| + 1 different values along P,,.
Consequently, the expression (¢(€),£(‘€)) can change value less than 2(|V|+ 1)
times as we travel along P,, from u to v.

For each uwv € E we color those switches at which (¢(€),¢(‘€)) changes red,
and the remaining switches blue. Note that at most (2|V| + 1)|E| switches are
colored red. We call the maximal segments of P,, which do not contain red
switches blue segments. There are at most 4(|V| + 1)|E| blue segments. We will
show that there is a drawing such that any two blue segments intersect at most
once. Hence there is a drawing with at most (2|V|+ 1)|E| +2(4(|V |+ 1)|E|)? =
O(|V'|®) switches.

Consider two edges e and f in H that are adjacent crossings of a blue segment
P with other blue segments. There are two possible scenarios depending on
whether the crossings are parallel or not (as earlier, the sharp angles represent
the forking part of a switch, and thus define o). Figure 6 shows how the order
of two parallel crossings can be swapped.

We can use a similar move for non-parallel crossings, as shown in Figure 7.

.Y . -

Fig. 6. How to swap two parallel crossings.
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Fig. 7. How to swap two non-parallel crossings.

Note that in both cases we can extend the labelling of H to the newly intro-
duced edges so that the graph represented by H remains the same: we simply
label the new edges with (£(€), £(€)).

Suppose that two blue segments P and R cross more than once. Let ey, eq
be crossings of P and R such that there are no crossings of P and R between
e; and e on R. There may be crossings of P and R between e; and e on P.
Label them by ¢ if after cutting R between e; and es they would be in the same
component of R as e;. There is a pair of neighboring crossings f1, f2 labeled by
1,2, respectively. Using the swap moves on edges intersecting R we can make
e1,e2 adjacent on R and then shortcut P eliminating half of the intersections
created by the swap moves. Similarly using the swap moves on edges intersecting
P we can make f1, fo adjacent on P and then shortcut R eliminating half of the
intersection created by the swap moves. In one of the cases we decrease the
total number of intersections while preserving the property that any two paths
intersect in paths of length 1. Hence there is a train track in which any two blue
segments intersect at most once.

Corollary 2. Strong confluency can be tested in NP.

Proof. Corollary 2 shows that if G is strongly confluent, then there is a train
track representing G of size polynomial in |G|. In NP we can guess any such
train track, and verify that it represents G. W

5 Tree-Confluent Graphs

We call a train track drawing D tree-like, if it does not contain a closed curve (the
curve would not have to be smooth or locally monotone). For example, Figure 8
shows a tree-like train track drawing. On the other hand, Figure 1 shows a train
track drawing representing Kg which is not tree-like. We call a confluent graph
which can be represented by a tree-like train track drawing tree-confluent (the
strong case being the same). We will see later that all tree-confluent graphs are
bipartite, so there is no tree-like train track drawing representing K.

In graph theoretic terms, the underlying abstract train track of a tree-con-
fluent graph has to be a tree. A graph is tree-confluent if and only if it is rep-
resented by a planar train track which is a tree. We now give a characterization
of tree confluent graphs in terms of a vertex elimination ordering. This charac-
terization leads to a fast recognition algorithm.

Theorem 2. A graph is tree confluent if and only if repeatedly removing (i)
vertices of degree 1, and (i) vertices u such that there is another vertex v with
N(u) = N(v) # 0, leads to the trivial graph (containing only a single vertex).
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Fig. 8. A tree-like train track drawing.

Proof. First observe that if G is tree confluent then it will still be tree confluent
after the removal of vertices of type (¢) or (i¢). Furthermore, if G is not tree
confluent, it cannot become tree confluent by removing a vertex of type (i) or
(#9): if G — {v} were tree confluent and v has degree 1 in G, then it has degree
1 in the underlying train track, hence G is tree confluent; similarly if G — {v}
is tree confluent, and G contains another vertex u with N(u) = N(v), then we
can replace v in the train track for G — {v} by a switch that branches to v and
v, showing that G is tree confluent (note that G does not contain the edge uwv,
since N(u) = N(v)).

Since the trivial graph is tree confluent, this observation implies that any
graph which can be reduced to the trivial graph by removing vertices of type (4)
and (i) is tree confluent.

Furthermore, for the other direction, the observation shows that the order of
removal is irrelevant, and it is sufficient to show that if G is tree confluent, there
is some order £ in which to remove vertices of type (i) and (¢¢) such that we end
up with the trivial graph.

Suppose G = (V,E) is tree confluent; then there is a planar train track
H = (V U S, F,0) which represents G. Consider F as a set of directed edges. We
define a function p from F' to N as follows:

p(u,v) = [{w € V : there is a walk from v to w that does not use u}|.

Figure 9 shows an example of p.
Using p we define a second function r from S to N. Let the neighbors of s be
u, v, w, then

r(s) = min{p(s,u) + p(s,v), p(s,u) + p(s,w),p(s,v) + p(s,w)}.

Fig. 9. A train track. Every edge is labelled with the number of vertices contained in
the portion of the train track to which the edge points.
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We begin the construction of £ by repeatedly removing vertices of degree 1
in G until there are no such vertices left. If G has not turned into the trivial
graph at that point, it has to contain at least one switch (otherwise it would be
a tree on its vertices and would have to contain a vertex of degree 1).

Choose the switch s with minimal r(s). We claim that r(s) = 2. First note
that r(s) > 2, because p is always at least 1. Now suppose that r(s) > 2. Then
s must be adjacent to at least one edge su such that p(s,u) > 2, since otherwise
r(s) would equal 2. The portion of the train track to which su leads cannot
contain any switches, for if it contained a switch ¢, then r(¢) would be strictly
less than r(s) violating the minimality of r(s). Therefore, the vertices in the
portion of H to which (s,u) leads must form a tree. However, the leaves of this
tree would have degree 1, and we already eliminated all those vertices.

Let s be a switch with r(s) = 2. Then there are v and v such that p(s,u) +
p(s,v) = 2, and therefore p(s,u) = p(s,v) = 1. Hence, u and v have to be
vertices of G. Since neither of them can have degree 1 in G, the switch s must
be oriented to fork into v and v which implies that N(u) = N(v). Hence we can
continue the construction of £ by selecting u, for example.

We continue in this fashion, eliminating vertices of degree 1 as long as pos-
sible, and then identifying leaf vertices of switches s with r(s) = 2. We showed
that the only reason such a switch would not exist is that the graph G has turned
into the trivial graph, which is what we had to show. ®

The elimination characterization of Theorem 2 leads to a randomized linear
time algorithm for recognizing tree-confluent graphs.

In [5], Golumbic and Goss introduced the now well-known class of graphs
known as the chordal bipartite graphs, which are those bipartite graphs in which
every cycle of length at least 6 contains a chord (that is, no cycle of length
at least 6 is induced). Removing a vertex of degree 1 or a vertex u such that
there is another vertex v for which N(u) = N(v) from a graph does not change
the property of a graph being chordal bipartite. This observation gives us the
following lemma.

Lemma 4. FEvery tree confluent graph is chordal bipartite.

The reverse is not true as witnessed by a Cs with a single chord.

6 Open Problems

While we have shown that strong confluency can be recognized in NP, we cur-
rently have no such result for confluency. Although the two notions are very
similar, their combinatorial nature seems to be quite different. At this point we
cannot even rule out the possibility that a confluent graph needs an exponential
number of switches to be realized (although that would not necessarily affect
membership in NP, as witnessed by the example of string graphs [7]).
Identifying large classes of confluent graphs remains a challenging task. We
suggest the notion of outer-confluency (confluent graphs that can be drawn in
a disk with all the vertices on the boundary of the disk). As in the case of
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confluency there are examples of graphs that are outer-confluent but not strongly
outer-confluent (see Figure 4). Dickerson, Eppstein, Goodrich, and Meng [2]
showed — in effect — that all cographs are outer-confluent (even strongly outer-
confluent), thereby also showing that outer-confluency is a strict superclass of
tree-confluency. It does not seem unlikely that outer-confluent graphs can be
recognized in polynomial time.

We seem to have a good understanding of tree-confluent graphs; the main
missing piece is a deterministic linear time recognition algorithm.
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Abstract. We consider the following graph embedding question: given
a graph G, is it possible to map its vertices to points in 3D such that
G is isomorphic to the mutual nearest neighbor graph of the set P of
points to which the vertices are mapped? We show that this problem is
NP-hard. We do this by extending the “logic engine” method to three
dimensions by using building blocks inpired by the structure of diamond
and by constructions of A.G. Bell and B. Fuller.

1 Introduction

Proximity graphs are an important and well studied area of computer science and
find applications, for example, in architecture, pattern recognition, and geogra-
phy. Proximity graphs are defined to capture some kind of spatial relationship
between pairs of points on the plane or in space. Two points, regarded as ver-
tices of a graph, are joined by an edge if, and only if, the points satisfy some
given proximity criterion. Examples of proximity graphs include mutual nearest
neighbour graphs, Gabriel graphs, and the Delauney triangulation. For a review
of proximity graphs, see [11,16].

Given an abstract combinatorial graph whose vertices are labeled, and a
proximity criterion, the recognition problem is to determine whether there is
some set P of points, typically required to lie in 2D or 3D, such that the graph is
isomorphic to the proximity graph on P defined by the given proximity criterion.
The realization problem is to produce such a set P if one exists. This paper proves
that the problem of recognizing mutual nearest neighbour graphs in 3D is NP-
hard, an open problem in graph drawing (see [4]). Our proof builds a 3D version
of a “logic engine”. The building blocks we designed are based on the structure
of diamond; they may prove useful in extending the logic engine approach to
obtain complexity results for other 3D layout and proximity problems studied
previously in two dimensions (e.g., [3,4,6,7,12-14]).

The rest of this section contains background material. Section 2 extends the
logic engine approach to 3D, using the octet truss of Buckminster Fuller, and
gives our NP-hardness result. Section 3 concludes.
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Preliminaries. A mutual nearest neighbour graph of a set P of points is a
proximity graph for which each pair x,y of vertices arising from points x,y is
connected by an edge if, and only if, point x is a nearest neighbor of y, and point
y is a nearest neighbor of x. The set P of points typically lies in 2D or 3D. Note
that in 2D, points x,y determine an edge if the interior of the union of the two
discs centred at x and y, and having radius equal to their separation distance, is
empty of points other than x and y.

A simple example of a 3D mutual nearest neighbor graph is given by the
combinatorial structure of the vertices and edges of the regular tetrahedron.
The four vertices of the regular tetrahedron of unit edge length are positioned at
points in space so that each point is unit distance from each of the other three.
Thus each pair of points gives rise to an edge in the mutual nearest neighbor
graph of the points, which is thus Ky, the complete graph on four vertices.

As we will later see, if we start with a combinatorial graph K4 whose vertices
are labeled and ask whether it can be realized in 3D as the mutual nearest
neighbor graph of some set P of four points, we find that there are exactly
two realizations, up to translation, rotation, and scaling, and that these two
realizations are mirror images of each other.

Similarly, the vertex-edge incidence structure of the regular octahedron can
be thought of as a 3D mutual nearest neighbor graph, and the combinatorial
graph has exactly two realizations, up to translation, rotation, and scaling.

In the early 1900’s, Alexander Graham Bell used rigid tetrahedra and octa-
hedra to construct kites, an unsuccessful flying machine, and a tall tower [1].
The structures that Bell assembled are mutual nearest neighbour graphs, as we
will prove. These structures were later rediscovered by Buckminster Fuller [2],
who patented the octet truss and used it extensively.

Mutual Nearest Neighbour Graph Recognition (MNNGR). Given an
undirected graph G, is G realizable as a mutual nearest neighbour graph?

For 2D, MNNGR was proved NP-Hard by Eades and Whitesides [9], by
a reduction from Not-All-Equal-3-Satisfiability (NAE3SAT) to MNNGR via a
method they called the “logic engine” approach, reviewed below. Recall that
NAE3SAT is NP-complete and that an instance consists of m clauses each con-
taining three distinct literals, and that a satisfying assignment must contain
at least one true and at least one false literal in each clause ([10]). It may be
assumed that no clause contains both a literal and its complement.

The Logic Engine Approach. The logic engine is a virtual mechanical de-
vice that encodes instances of NAE3SAT. The device can be positioned a certain
way in the plane if and only if the instance of NAE3SAT that it encodes can
be satisfied. The idea for obtaining hardness results for proximity graph recog-
nition problems is to design a graph whose only possible realizations imitate the
correctly positioned mechanical device.

The (m,n) logic engine contains a rigid “frame” and a “shaft”. To the shaft
are attached a series of “armatures” A;,1 < j < n, one for each literal x; in the
instance of NAE3SAT. Each armature can rotate about the shaft independently
of the others, although the position of each armature along the shaft is fixed.
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Fig. 1. a) Schematic for a (3,4) logic engine, and b) Encoding for NAE-3SAT instance
c1 = {x1, x5, w3}, c2 = {5, 25}, 3 = {@2, 3,24}

Each armature A; in turn has two “chains” attached to it: a; from one end
of the armature to the shaft, and a;- from the other end of the armature to the
shaft. The length of a chain equals the distance between the shaft and the ends
of its armature. Each chain has at least m links, which are numbered 1,2,....m,
outward from the shaft; the first m links correspond to clauses with the same
indices, respectively.

The a; chain of armature A; represents the uncomplemented literal x;, and
its i*" link represents the possible occurrence of x; in clause ¢;; similarly for link
i of chain @, and the possible occurence of the complemented literal 2 in ¢;. A
“flag” attached to link ¢ of armature chain a; indicates that z; does NOT occur
in clause ¢;; similarly, a flag on link 7 of chain a;. indicates the non-occurence of
x; in ¢;. See Figure 1 for a (3,4) logic engine encoding of a NAE-3SAT instance.

The entire structure can move in the following ways: each armature can lie in
one of two positions, either with a; above the shaft, or with a} above the shaft;
and each flag can face to the right, or can be flipped to face the left.

Although each flag is free to rotate, flags that lie on the same row and lie on
adjacent armatures must not face one another. If they do face each other, the
flags collide. Similarly, any flag in armature A,, collides with the frame if it faces
outward; any flag in armature A; collides with the frame if it faces inward. We
later use the following lemma.

Lemma 1. (from [9]) A given instance of NAE3SAT has a satisfying solution
if, and only if, there exists a collision-free configuration for the logic engine.

2 Mutual Nearest Neighbor Graphs in Three Dimensions

Here we prove the NP-hardness of MNNGR in 3D, settling a problem from [4].
While the result was anticipated in [9], this is the first concrete proof.

3D Nearest Neighbour Rule: Vertex v; is a nearest neighbour of v; if, and
only if, the open sphere of radius d(v;,v;) around v; contains only v;.
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3D Mutual Nearest Neighbour Graph: Suppose that P is a set of points
in 3D. Then a 3DMNNG, defined by a set P of points, is an undirected graph
G with a vertex v; for every point p; € P. For every pair of vertices v;,v; € G,
there is an edge between them if, and only if, v; is a 3D nearest neighbour of v;,
and v; a 3D nearest neighbour of v;.

A graph G is realizable as a 3DMNNG if for some point set P in 3D, the
3DMNNG on P is isomorphic to G. In that case we often use “G” to denote
both the combinatorial graph and its geometric realization in 3D, and we use
the same labels for corresponding points and vertices.

3D Mutual Nearest Neighbour Graph Recognition (3DMNNGR):
Given an undirected connected graph G, is G realizable as a 3SDMNNG?

We will use the logic engine paradigm to transform NAE3SAT to 3DMNNGR
in polynomial time, thus showing that 3DMNNGR is NP-hard.

Lemma 2. (straight-forward from Lemma 2 of [9]) Suppose that G is a con-
nected SDMNNG. Then all edge segments of G have the same length.

From now on, we assume all edges in a connected SDMNNG have unit length.

Lemma 3. (by Lemma 2) Suppose that H is an induced connected subgraph
of a combinatorial graph G. Then any SDMNNG realization of G includes a
3DMNNG realization of H.

Two realizations of a labeled graph are “the same” if, following possible
translation, rotation, and scaling, vertices with the same label coincide. Thus, all
mirror images of a given labeled structure are the same in this sense. However,
mirror images are not, in general, the same as their initial labeled structure.
Taking the mirror image of a vertex-labeled tetrahedron turns it inside out; the
mirror image cannot be superimposed on the original, with labels matching, by
translation and rotation.

In the next lemma, and throughout the paper, we let h = v/6 /3, which is the
distance from the base of a tetrahedron to the top, if all edges are unit length.

Lemma 4. (straight-forward) The labeled graph K, has ezactly two realization
as a SDMNNG, both of which are reqular tetrahedra.

Once we prove a labeled combinatorial graph has exactly two realizations as
a 3DMNNG, we use the term “graph” to refer to either realization.

Lemma 5. (straight-forward) Let H be a labeled graph isomorphic to the com-
binatorial structure of Figure 2c). Then H has exactly two realizations as a
SDMNNG, namely a reqular octahedron and its mirror image.

Lemma 6. Let H be the labeled combinatorial graph (called an octet truss)
arising from the geometric structure in Figure 3a). H can be realized as a
SDMNNG in exactly two ways: points a,b,c,d,e,f must lie on a single base plane,
while points u,v,w must lie on a parallel lid plane at a distance h from the base
plane.
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Fig. 2. a) and b) Two realizations of labeled K4; ¢) and d) Labeled graph H and one
of its realizations as an octahedron.

Proof. By Lemma 2, all edges must have unit length. By Lemma 5, the points
b,c,e,u,v,e construct a regular octahedron. When the plane of b,c,e is viewed
from above, then the plane of u,v,w is parallel to it, and may lie on either side of
it. (In Figure 3a, the plane of u,v,w is shown closer to the viewer than the plane
of b,c,e). Now add the points a,d,f to the graph. These points become members
of tetrahedra. Consider each of a,d,f in turn. Although by Lemma 4, a labeled
tetrahedron has two realizations, one of these would place the point (a,d or f)
inside the octahedron and violate a distance constraint: no vertex in a connected
MNNG can lie distance less than one from another vertex. Hence the remaining
points lie in the plane of b,c,e as shown. |

A base plane is defined by the six coplanar vertices of an octet truss (in
Figure 3a, the plane of a,b,c,d,e,f). The remaining three vertices of the truss
define the lid plane (in Figure 3a, the plane of v,u,w). A base vertex is any
one of the six vertices on the base of an octet truss. A lid vertex is any one
of the three vertices on the lid of an octet truss. The plane parallel to the base
plane, at distance 4h on the same side of the base plane as the lid plane, is the
mid-plane. The plane parallel to the base plane, at distance 8h on the same
side of the base plane as the lid plane, is the sky plane.

Lemma 7. Let H be the labeled combinatorial graph arising from the geometric
structure in Figure 3b) (called the hexagonal octet truss). H can be realized
in exactly two ways. Furthermore, u,v,w and x are coplanar, and the remaining
vertices are coplanar, and these planes are parallel.

)““VHL

A/

Fig. 3. a) Octet truss and b) Extended octet truss.

£
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Proof. By Lemmas 3 and 6, the subgraph induced by vertices a,b,c,d,e,f,u,v,w
must be realized as one of two octet trusses, with the lid plane on either side of
the base plane. Point x lies unit distance from each of v,e,w, with which it forms
a regular tetrahedron. Since it cannot lie inside the octahedron b,c.e,u,v,w, it
must lie as shown in Figure 3b), in the lid plane of the octet truss.

Point g must lie on a circle perpendicular to d,e, centred at the mid-point of
d,e. Likewise, g must lie on a circle centred at the mid-point of x,e. The circles
intersect in two points, so g must lie either as shown in 3b), or at the position
occupied by vertex v, which is clearly not allowed. Similarly for point f. O

ava
ASE SN ASN A
AN AN\ Y S O NLT NN T

VWL,

LanAY SNV g

Fig. 4. a) Link graph b) Flagged link graph c¢) Tower with mid-wire and sky-wire.

The link graph, the flagged link graph and the k-tower are the labeled
graphs having the combinatorial structures shown in Figures 4 a), b), and c),
respectively. All three graphs can be realized as 3DMNNG’s. The next lemma
proves that each graph has exactly two realizations, namely, the realizations
shown in the figure, together with their mirror images. We also define the di-
rection of a link graph realization, or flagged link graph realization, to be the
vector of the directed line segment from the s to the t vertices of the realization.
The line defined by the points s and t is called the s-t axis.

Lemma 8. The link graph, flagged link graph, and k-tower each have only two
realizations.

Proof. The combinatorial structure of the k-tower has the form H; U ... U Hy,
where H; is an octet truss, and for i odd, H; N H;y; consists of three shared
lid vertices, and for i even, H; N H;;1 consists of six shared base vertices. By
Lemma 6, each H; has two realizations. However, once a realization is chosen
for an octet truss, say H;, the remaining realizations are determined. Thus a
k-tower has exactly two realizations, which are mirror images of each other.
The link graph and flagged link graph also have two realizations. By Lemma 7,
the position of each vertex, with the exception of u, v, and t, is determined once a
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realization of the octet truss containing s is determined, since all vertices are con-
nected by extended octet trusses. To place u,v,t, note that points b,w,c,u,v,t form
a regular octahedron for which there are exactly two realizations by Lemma 5.
However, one of these realizations violates a distance constraint with respect to
the rest of the graph, so the octahedron is as shown in Figure 5. O

The k-flagged link graph is a sequence of k link graphs or flagged link
graphs joined together as shown in Figure 5. Each link graph in the k-flagged
link graph is called a block. Since the SDMNNG realization of a flagged link
graph has exactly two realizations, which are mirror images of each other, the
Euclidean distance from vertex s to vertex t is a constant, which we denote by
dflagged_link-

Lemma 9. (from the definition of dfiqgged_tink) If the SDMNNG realization of
a k-flagged link graph spans a distance of k - dt1agged_tink, then the s-t axis of all
link graphs and flagged link graphs must coincide.

Such a realization is a taut realization of a k-flagged link graph.

Lemma 10. In a taut realization of a k-flagged link graph, the base planes of all
the flagged link graph realizations must be the same, and similarly, the lid planes
must be the same.

Proof. To show that all the base planes form a common plane, consider two
joining link graphs X and Y (see Figure 5). Note that t,1,t42,t40,t form a regular
tetrahedron. Fix block X in space, thereby determining the position of points
t,tz1,tz2, and therefore the position of t,9. This prevents the rotation of block
Y about the s-t axis. The midpoint of ¢;; and t,2 must lie on the s-t axis at a
known position. Points t,; and t,» must lie on a circle centred at the midpoint of

Fig. 5. 2-flagged link graph.
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ty1,ty2, and also, on a circle centred at midpoint of t,t,0, which is also a known
position. These two distinct circles intersect in two points, namely the positions
occupied by t,; and t,5 in Figure 5. These positions lie in the base plane of block
X; hence blocks X and Y have the same base plane. Since the position of #,q is
determined by block X, the lid plane of block Y is thus the same as the lid plane
of block X. a

Lemma 11. Any taut realization of a k-flagged link graph has exactly 2% real-
izations as a 3SDMNNG.

Proof. As seen in Lemma 10, a taut realization of a k-flagged link graph must
have a common base plane and a common lid plane. However, any block can have
two realizations, which are mirror images of each other. To see this, consider a
realization of a block, and take its mirror image with respect to the plane con-
taining the s-t axis and perpendicular to the base plane. This second realization
has the same s-t axis, base plane, and lid plane as the first. O

Note that for blocks that are flagged link graphs, the two mirror images
point in opposite directions. We will use the taking of mirror images to imitate
rotations in the virtual logic engine.

Now, we build an (m,n) 3D logic graph, to imitate a logic engine, by con-
structing the following components, as seen in Figure 6. A frame consists of a
series of octet trusses, together with two 8-towers (the locations of which are
shown in gray in Figure 6). Attached to one side of the tower is a mid-wire at
height 4h, and a high wire at height 8h (see Figure 4c). Each wire consists of
a path of vertices and runs between both frame towers. By a similar argument
to that in the proof of Lemma 9, we can ensure that all vertices of the mid-wire
are colinear by forcing them to span a set distance to the other tower. The same
is true for the sky wire.

Each of these wires intersects the towers of each of the armatures in a path
of three vertices. As we will later prove, this ensures that the frame and all the
armatures share a common base plane.

We define the 7 plane to be the plane perpendicular to the base plane, con-
taining the mid-wire and the high wire.

An armature is built with a series of octet truss components forming three
sides of a rectangle (see Figure 6). The last side consists of two m-flagged link
graphs: a; from one end of the armature to the 7 plane, and a) from the other
end of the armature to the 7 plane. The armature also has a tower of height 8h
intersecting the mid-wire and the high-wire in paths of three vertices lying on
the 7 plane.

Lemma 12. The frame component has two realizations, both of which have a
single base, lid, mid, and sky plane. The armature component has a single base,
lid, mid, and sky plane. The base planes of all armatures and the frame are
coplanar. The same is true for the lid, mid, and sky planes.

Proof. The frame is built with overlapping hexagonal octet trusses in such a way
that all trusses must share a common base plane and lid plane. The towers of the
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Fig. 6. A 2D projection of the entire logic engine. Towers project to the gray regions,
and the mid-wire and sky-wire project to a common line. Edges between lid vertices
are not shown, and edges between lid vertices and base vertices are not shown. There is
a distance violation between vertices p and q; however a valid realization results when
flag p is flipped to the right.

frame intersect the rest of the frame in octet trusses, and this also determines the
orientation of the towers. Similarly, within each armature the base, lid, mid, and
sky planes are the same for all but the k-flagged link graph. Since the distance
between the extreme vertices of the k-flagged link graph is determined by the
rest of the armature to be k- dfiagged_tink, Lemma 9 applies to the k-flagged link
graph. The k-flagged link graph is connected to the rest of the armature with
the same connection seen between flagged link graphs.
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The intersections of each armature tower with the mid-wire and sky wire
force the base plane and lid plane of the armature to be the same as the base
plane and lid plane of the frame. O

An (m,n) 3D logic engine graph can now be constructed for any given instance
of NAE3SAT.

Lemma 13. In a SDMNNG realization, two neighbouring flagged link graphs
may not have flags facing one another.

Proof. From Lemma 12, all the base planes of all armatures must be the same. If
a flagged linked graph and its neighbouring flagged link graph point in opposite
directions, then the two vertices at the tips of the flags must be unit distance
apart in the logic engine. This would imply the two vertices would be connected
in the combinatorial version of the graph, which is not the case. Thus, the flags
must not point towards one another. Similarly, the flags on armatures A; and
A, must point away from the frame. |

Lemma 14. (by Lemma 13 and Lemma 1 ) The (m,n) 3D logic graph can be
customized to encode instances of NAE3SAT so that the logic graph is realizable
if, and only if, the NAESSAT instance is satisfiable.

Lemma 15. (straight-forward) There is a polynomial time transformation from

NAE3SAT to SDMNNG.

Theorem 1. (by Lemmas 14, 15 and the NP-completeness of NAE3SAT). The
SDMNNGR problem is NP-hard.

3 Conclusion

The result that 3DMNNGR is NP-hard is not an immediate consequence of the
fact that MNNGR is NP-hard in 2D, in part because of the difficulty pointed out
by Fuller: regular tetrahedra do not fill space. We believe that the 3D building
blocks seen here suggest that the logic engine approach indeed is applicable to
three dimensional problems in graph drawing.
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