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Preface

The 12th International Symposium on Graph Drawing (GD 2004) was held dur-
ing September 29–October 2, 2004, at City College, CUNY, in the heart of
Harlem, New York City. GD 2004 attracted 94 participants from 19 countries.

In response to the call for papers, the program committee received 86 regu-
lar submissions describing original research and/or system demonstrations. Each
submission was reviewed by at least three program committee members and com-
ments were returned to the authors. Following extensive e-mail discussions, the
program committee accepted 39 long papers (11 pages each in the proceedings)
and 12 short papers (6 pages each). In addition, 4 posters were displayed and
discussed in the conference exhibition room (2 pages each in the proceedings).

The program committee of GD 2004 invited two distinguished lecturers. Pro-
fessor Paul Seymour from Princeton University presented a new characterization
of claw-free graphs (joint work with Maria Chudnovsky). Professor Erik Demaine
from MIT reported on his joint work with Fedor Fomin, MohammadTaghi Ha-
jiaghayi and Dimitrios Thilikos, concerning fast (often subexponential) fixed-
parameter algorithms and polynomial approximation schemes for broad classes
of NP-hard problems in topological graph theory. A survey of the subject by
Professors Demaine and Hajiaghayi is included in this volume.

As usual, the annual graph drawing contest was held during the conference.
This time the contest had two distinct tracks: the graph drawing challenge and
the freestyle contest. A report is included in the proceedings.

Many people in the graph drawing community contributed to the success of
GD 2004. First of all, special thanks are due to the authors of submitted papers,
demos, and posters, and to the members of the program committee as well as
to the external referees. Many thanks to organizing committee members Gary
Bloom, Peter Brass, Stephen Kobourov, and Farhad Shahrokhi. My very special
thanks go to Hanna Seifu who was in charge of all local arrangements, Robert
Gatti who developed the software used for registration and paper submission,
and John Weber and Eric Lim who designed the logo, the webpage, and the
brochures of the conference. I am very much indebted to Dr. Joseph Barba and
Dr. Mohammad Karim, present and former Deans of the School of Engineering,
and to Dr. Gregory H. Williams, President of the City College of New York, for
their continuing support.

Thanks are due to our “gold” sponsors, the City College of New York, the
University of North Texas at Denton, and Tom Sawyer Software, and to our
“silver” sponsors, ILOG, the DIMACS Center for Discrete Mathematics and
Theoretical Computer Science, and the Computer Science Program at the CUNY
Graduate Center. Springer and World Scientific Publishing contributed to the
success of GD 2004 by sending selections of their recent publications in the
subject.



VI Preface

The 13th International Symposium on Graph Drawing (GD 2005) will be
held in Limerick, Ireland, 12–14 September, 2005, with Peter Eades and Patrick
Healy as conference co-chairs.

December 2004 János Pach
New York and Budapest
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An Efficient Implementation of Sugiyama’s Algorithm
for Layered Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann

Random Geometric Graph Diameter in the Unit Disk with �p Metric . . . . 167
Robert B. Ellis, Jeremy L. Martin, and Catherine Yan

Algorithms for Drawing Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
David Eppstein

Confluent Layered Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng

Simultaneous Embedding of Planar Graphs with Few Bends . . . . . . . . . . . . 195
Cesim Erten and Stephen G. Kobourov

A Fast and Simple Heuristic
for Constrained Two-Level Crossing Reduction . . . . . . . . . . . . . . . . . . . . . . . 206

Michael Forster

Contact and Intersection Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Hubert de Fraysseix and Patrice Ossona de Mendez

Dynamic Graph Drawing of Sequences
of Orthogonal and Hierarchical Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Carsten Görg, Peter Birke, Mathias Pohl, and Stephan Diehl

Graph Drawing by Stress Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Emden R. Gansner, Yehuda Koren, and Stephen North

Computing Radial Drawings on the Minimum Number of Circles . . . . . . . . 251
Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer

Hamiltonian-with-Handles Graphs
and the k-Spine Drawability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta,
and Matthew Suderman

Distributed Graph Layout for Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . 273
Craig Gotsman and Yehuda Koren

Drawing Large Graphs
with a Potential-Field-Based Multilevel Algorithm . . . . . . . . . . . . . . . . . . . . 285

Stefan Hachul and Michael Jünger

Building Blocks of Upward Planar Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Patrick Healy and Karol Lynch



Table of Contents XI

A Linear Time Algorithm for Constructing Maximally Symmetric
Straight-Line Drawings of Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Seok-Hee Hong and Peter Eades

Train Tracks and Confluent Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Peter Hui, Marcus Schaefer, and Daniel Štefankovič
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Attila Pór and David R. Wood

Visual Navigation of Compound Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Marcus Raitner

Layout Volumes of the Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Lubomir Torok and Imrich Vrt’o

New Theoretical Bounds of Visibility Representation of Plane Graphs . . . 425
Huaming Zhang and Xin He

Software Demonstrations

Visualizing Large Graphs
with Compound-Fisheye Views and Treemaps . . . . . . . . . . . . . . . . . . . . . . . . 431

James Abello, Stephen G. Kobourov, and Roman Yusufov

A Compound Graph Layout Algorithm for Biological Pathways . . . . . . . . . 442
Ugur Dogrusoz, Erhan Giral, Ahmet Cetintas, Ali Civril,
and Emek Demir



XII Table of Contents

Curvilinear Graph Drawing Using the Force-Directed Method . . . . . . . . . . 448
Benjamin Finkel and Roberto Tamassia

Graphael: A System for Generalized Force-Directed Layouts . . . . . . . . . . . . 454
David Forrester, Stephen G. Kobourov, Armand Navabi,
Kevin Wampler, and Gary V. Yee

QUOGGLES: Query On Graphs –
A Graphical Largely Extensible System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Paul Holleis and Franz J. Brandenburg

Visualisation of Large and Complex Networks Using PolyPlane . . . . . . . . . 471
Seok-Hee Hong and Tom Murtagh

The Metro Map Layout Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Seok-Hee Hong, Damian Merrick, and Hugo A.D. do Nascimento

An Interactive Multi-user System for Simultaneous Graph Drawing . . . . . . 492
Stephen G. Kobourov and Chandan Pitta

Posters

Gravisto: Graph Visualization Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Christian Bachmaier, Franz J. Brandenburg, Michael Forster,
Paul Holleis, and Marcus Raitner

DNA Secondary Structures for Probe Design . . . . . . . . . . . . . . . . . . . . . . . . . 504
Yanga Byun and Kyungsook Han

Open Problems Wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Marcus Raitner

Visualization and ILOG CPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Georg Sander and Adrian Vasiliu

Graph Drawing Contest

Graph-Drawing Contest Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Franz J. Brandenburg, Christian A. Duncan, Emden R. Gansner,
and Stephen G. Kobourov

Invited Talk

Fast Algorithms for Hard Graph Problems:
Bidimensionality, Minors, and Local Treewidth . . . . . . . . . . . . . . . . . . . . . . . 517

Erik D. Demaine and MohammadTaghi Hajiaghayi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535



Reconfiguring Triangulations
with Edge Flips and Point Moves�

Greg Aloupis1, Prosenjit Bose2, and Pat Morin2

1 School of Computer Science, McGill University
athens@cs.mcgill.ca

2 School of Computer Science, Carleton University
{jit,morin}@scs.carleton.ca

Abstract. We examine reconfigurations between triangulations and
near-triangulations of point sets, and give new bounds on the number
of point moves and edge flips sufficient for any reconfiguration. We show
that with O(n log n) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-
triangulation on n possibly different points. This improves the previously
known bound of O(n2) edge flips and point moves.

1 Introduction

An edge flip is a graph operation that is defined on (near)-triangulations1. An
edge flip on a triangulation is simply the deletion of an edge, followed by the
insertion of another edge such that the resulting graph remains a triangulation.
The definition of an edge flip gives rise to several natural questions: Does there
always exist a sequence of flips that reconfigures a given triangulation to any
other triangulation? Are there bounds on the lengths of such sequences if they
exist? Can these sequences be computed? These questions have been studied in
the literature in many different settings. In particular, Wagner [19] proved that
given any two n-vertex triangulations G1 and G2, there always exists a finite
sequence of edge flips that reconfigures G1 into a graph isomorphic to G2. Sub-
sequently, Komuro [10] showed that in fact O(n) edge flips suffice. Recently, Bose
et al. [2] showed that O(log n) simultaneous edge flips suffice and are sometimes
necessary. This setting of the problem is referred to as the combinatorial setting
since the triangulations are only embedded combinatorially, i.e. only the cyclic
order of edges around each vertex is defined.

In the geometric setting, the graphs are embedded in the plane with edges
represented by straight line segments. Pairs of edges can only intersect at their
endpoints. Edge flips are still valid operations in this setting, except that now
the edge that is added must be a line segment that cannot properly intersect any
of the existing edges of the graph. This implies that there are valid edge flips
� Research supported in part by the Natural Science and Engineering Council of

Canada.
1 A triangulation is a plane graph where every face is a triangle. In a near-

triangulation, the outer face may not be a triangle.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 1–11, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Greg Aloupis, Prosenjit Bose, and Pat Morin

in the combinatorial setting that are no longer valid in the geometric setting.
Lawson [12] showed that given any two geometric near-triangulations N1 and
N2 embedded on the same n points in the plane, there always exists a finite
sequence of edge flips that transforms the edge set of N1 to the edge set of N2.
Hurtado, Noy and Urrutia [9] showed that O(n2) flips are always sufficient and
that Ω(n2) flips are sometimes necessary.

Note that in the geometric setting, only the near-triangulations that are
defined on the specified point set can be attained via edge flips. For example, no
planar K4 can be drawn on a convex set of four points without introducing a
crossing.

In order to resolve the discrepancy between the combinatorial and geometric
settings, Abellanas et al. [1] introduced a geometric operation called a point
move. A point move on a geometric triangulation is simply the modification of
the coordinates of one vertex such that after the modification the graph remains
a geometric triangulation. That is, the move is valid provided that after moving
the vertex to a new position, no edge crossings are introduced. They also showed
that with O(n2) edge flips and O(n) point moves, any geometric triangulation on
n points can be transformed to any other geometric triangulation on n possibly
different points.

The question which initiated our investigation is whether or not O(n2) edge
flips are necessary. In this paper, we show that with O(n log n) edge flips and
point moves, we can transform any geometric near-triangulation on n points to
any other geometric near-triangulation on n possibly different points. Next, we
show that if we restrict our attention to geometric near-triangulations defined
on a fixed point set of size n, the problem is just as difficult even with the use
of point moves. Finally, we show that with a slightly more general point move,
we can remove the extra log factor from our main result.

2 Results

In the remainder of the paper, all triangulations and near-triangulations are ge-
ometric. It is assumed that the outer face any given near-triangulation is convex,
and that any two near-triangulations involved in a reconfiguration have the same
number of points on the convex hull.

We assume that the n vertices of any given triangulation are in general po-
sition. It is not difficult to see that O(n) point moves can reconfigure a triangu-
lation to this form. We begin with some basic building blocks that will allow us
to prove the main theorems.

Lemma 1. [2] A reconfiguration between two triangulations of the same point
set that is in convex position can be done with O(n) edge flips.

Lemma 2. [9] Let v1, v2 and v3 be three consecutive vertices on the outer face
of a near-triangulation T1. Let C be the path from v1 to v3 on the convex hull
of all vertices but v2. A near-triangulation T2 containing all edges of C may be
constructed from T1 with t edge flips, where t is the number of edges initially
intersecting C in T1.
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Lemma 3. Given a near-triangulation T , any vertex p ∈ T with degree d > 3
that is inside the convex hull of the vertices of T can have its degree reduced to
3 with d− 3 edge flips.

Proof. Let P be the polygon that is the union of all triangles incident to p. By
Meister’s two-ears theorem [13], if P has more than three vertices, then it has at
least two disjoint ears2. At most one of them can contain p. Therefore p and one
of the ears form a convex quadrilateral. We may flip the edge from p to the tip of
the ear, effectively cutting the ear from P and reducing the number of vertices
of P by one. This process may be continued until P is reduced to a triangle that
contains p as desired. ��

Lemma 4. Given a near-triangulation T , any vertex p ∈ T with degree 3 that is
inside the convex hull of the vertices of T can be moved to a new position in the
triangulation along a straight path crossing t edges, using at most 2t edge flips
and 2t + 1 point moves, assuming the path does not cross through any vertices.

Proof. Suppose that p is joined by edges to vertices v1, v2 and v3. Without loss
of generality, let edge v2v3 intersect the path that p must follow, and let this
path continue into triangle v2v3v4, as shown in Figure 1.

Clearly p can be moved anywhere within triangle v1v2v3 without the need
of any edge flips. Then it can be moved along its path, as close to edge v2v3 as
necessary, so that the quadrilateral pv2v3v4 becomes convex. This allows edge
v2v3 to be flipped into edge pv4. Now p may continue along its path. As soon as
it enters v2v3v4, edge pv1 may be flipped into v2v3. Now, with two edge flips and
two point moves, p has crossed through the first edge intersecting its path, and
still has degree 3. By the same argument, p may traverse its entire path with two
edge flips and two point moves for each intersecting edge. One additional point
move is required in the last triangle. Note that only three edges in the original
and final triangulations will be different. ��

v1

v2

v3

v4

p

Fig. 1. A vertex p and a straight path that it must move along (dashed). p can pass
through any edge with two edge flips.

2 A triangle, defined by three consecutive vertices of a polygon, is an ear if it is empty
and the vertices form a convex angle. The second vertex is the tip of the ear.



4 Greg Aloupis, Prosenjit Bose, and Pat Morin

Lemmata 3 and 4 imply the following result:

Lemma 5. Given a near-triangulation T , any vertex in the interior of the con-
vex hull of the vertices of T with degree d can be moved to a new position in the
triangulation along a path crossing t edges, using O(d + t) edge flips and point
moves.

Lemma 6. An edge can be constructed between a convex hull vertex and any
other vertex in a triangulation using O(n) edge flips, with the aid of one moving
point that is moved O(n) times.

Proof. Let v1 be the hull vertex. First suppose that the second vertex is an
interior point. Then it will play the role of the moving point, and we will label
it p. We can move p directly towards v1, until it is located within a triangle that
has v1 as a vertex. Now v1 and p must be joined with an edge. Next we move p
back along the same line to its original position, always maintaining edge v1p. To
do this, we consider the set of triangles that intersect p’s path, as in Lemma 4.
The point p can always enter a triangle intersecting the path back to its original
location. The difference is that once it has crossed an intersecting edge, we do
not restore the edge. This means that p will accumulate edge degree. An issue
that needs to be taken care of is that of maintaining a triangulation when p is
about to lose visibility to another vertex. This occurs when one of its incident
edges is about to overlap with another edge in the triangulation, as shown in
Figure 2.

Suppose that edge pv3 is about to overlap with edge v3v4. Vertices v3 and
v4 cannot be on opposite sides of the remaining path that p must traverse,
otherwise v3v4 may be flipped. The point p must share an edge with v4 in this
configuration. Points p and v3 are also part of another triangle, along with some
vertex v∗ which may be anywhere on the path from v1 to v3. These two triangles
must form a convex quadrilateral pv∗v3v4, otherwise p would have already lost
visibility to v∗. Thus pv3 may be flipped into v4v

∗, which means that v3 is
removed from the polygon that intersects p’s path. The result is that when p
reaches its original position, it leaves a fan3 behind it, which includes edge v1p.

v2

v3

v1

v4

p

Fig. 2. Maintaining a triangulation while extending edge v1p: p has moved from a
position close to v1 (shown white), and still has to traverse the dashed segment to its
original position. Edge pv3 causes a problem if p is to continue.

3 A fan is a star-shaped polygon with a vertex as its kernel.
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Overall one edge flip is used when p enters a new triangle, and at most one flip
is used for every edge that attaches to p.

If both vertices of the edge that we wish to construct are on the hull, then
we can take any point p within the hull and move it close to v1 and onto the
segment between the two hull vertices. p can then move along this segment to
the second hull vertex until it is connected to both. At this moment, p may be
perturbed so that the three vertices form a triangle. This triangle might contain
other edges incident to p. Lemma 2 implies that these edges may be removed so
that the desired edge can be constructed with O(n) edge flips. ��

2.1 Triangulations

With the basic building blocks in place, we now prove one of our main results.

Theorem 1. With O(n log n) edge flips and point moves, we can transform any
geometric triangulation on n points to any other geometric triangulation on n
possibly different points.

Proof. We transform one triangulation to another via a canonical configuration.
As shown in Figure 3, the interior vertices form a backbone (i.e. their induced
subgraph is a path). The top of the backbone is joined to the topmost hull vertex
v1, and all interior vertices are joined to the other two hull vertices, vL and vR.

The canonical configuration is constructed in a divide-and-conquer manner.
We perform a radial sweep from v1, to find the median vertex interior to the
convex hull, vM . After constructing edge v1vM we move vM directly away from
v1 towards the base vLvR, maintaining v1vM until triangle vMvLvR contains no
interior points. By Lemma 6, we use O(n) operations to accomplish this. Now, we
transform v1vMvL and v1vMvR into backbone configurations by induction since
they are smaller instances of the same problem. The resulting configuration is
shown in Figure 4.

We now show that the two sides may be merged using O(n) operations.
As shown in Figure 5a, we first move the lowest vertex of a backbone into a
position that is close to the base and is along the extension of edge v1vM . This
requires one edge flip. The vertices on the left/right backbones are processed in

vR

v1

vL

Fig. 3. The canonical configuration used for triangulations.
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vM

v1

vL vR

Fig. 4. The configuration of a triangulation prior to merging the backbones on each
side of the median vertex vM .

(a) (b)

Fig. 5. Merging two backbones into one.

ascending order, and are always moved just above the previous processed vertex,
as shown in Figure 5b. Each vertex will require two point moves and one edge
flip. Thus v1vLvR is reconfigured into canonical form, and by a simple recurrence
the number of edge flips and point moves used is O(n log n). It is trivial to move
a canonical triangulation to specific coordinates using n point moves. Thus the
transformation between any two triangulations may be completed. ��

2.2 Near-Triangulations

If the initial graph is a near-triangulation, Theorem 1 does not directly apply.
Some care must be taken to handle a non-triangular outer face. Details are given
in the proof of the following theorem:

Theorem 2. With O(n log n) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-triangula-
tion on n possibly different points.

Proof. As in the case with triangulations, we transform one near-triangulation
to another via a canonical configuration. In the primary canonical configuration,
shown in Figure 6, one chosen hull vertex (v1) is joined by chords to all other
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v1

T

Fig. 6. The primary canonical configuration used for near-triangulations.

hull vertices. Thus v1 is in the kernel of a convex fan. Every triangle of the fan,
except for one, is empty. All interior vertices, located in the non-empty triangle
T , are in the canonical configuration of a triangulation.

We first construct all edges of the top-level fan configuration, leaving interior
vertices in their original positions. Then within each triangle of the fan, we
rearrange the interior vertices into a canonical triangulation. Finally, we merge
all triangles of the fan, so that all interior points move to a single triangle and
are in canonical form.

To construct the fan chords, we always divide the problem into two roughly
equal parts. We begin by constructing two chords as follows: perform a radial
sweep from v1 to successive hull vertices vi {2 ≤ i ≤ n − 1}, always keeping
fewer than n

2 vertices in the swept region. Let vj be the last hull vertex for which
this holds. Construct chords v1vj and v1vj+1. The unswept region not including
triangle v1vjvj+1 contains fewer than n

2 vertices. The swept region contains fewer
than n

2 vertices. Triangle v1vjvj+1 may contain an arbitrary number of vertices,
but this is not a sub-problem (we will not look at this region again during the
construction of the fan). Now we can continue a new sweep on each side of
v1vjvj+1. Construction of the two chords could take O(n) edge flips and point
moves, as described in Lemma 6. However the even split of the sub-problems
ensures that the total number of operations is O(n log n).

Each fan triangle v1vivi+1, containing ki interior points, can be reconfigured
into a backbone structure with O(ki log ki) operations, by Theorem 1. Thus the
total number of edge flips and point moves used to reconfigure all triangles of
the fan into backbone structures is O(n log n).

Now we are left only with the task of merging the fan triangles so that only
one of them will contain all interior points. We can add ki interior points of a
canonical triangulation to an adjacent canonical triangulation using O(ki) edge
flips and point moves. The ki points are processed in descending order and are
always added to the top of the adjacent triangulation, as shown in Figure 7.

Thus we obtain one triangle in canonical form next to an empty triangle. It
is just as easy to merge two canonical triangles separated by an empty triangle.
If we encounter two or more adjacent empty fan triangles, we may use Lemma 1
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Fig. 7. Merging two adjacent fan triangles.

TT TT

Fig. 8. Handling multiple adjacent empty fan triangles. Triangles marked (T) contain
triangulations.

to reconfigure them so that they will not affect the fan-merging process (see
Figure 8). By the above arguments, once we select the triangle that is to finally
contain all of the interior points (the median triangle is a good choice), we can
iteratively merge its neighboring triangles onto it using a total of O(n) edge flips
and point moves.

Finally we are left with a single triangle containing all interior points in
canonical form. On either side, we may have an arbitrary triangulation (resulting
from handling multiple adjacent empty fan triangles), but the vertices will be in
convex position. By Lemma 1 they may be moved to our desired configuration
using O(n) edge flips.

We must still show that this primary canonical configuration can be moved
to specific coordinates. This can be done with O(n) point moves, though space
restrictions prevent us from going into any detail. ��

2.3 Remarks

Our algorithms also work for labeled triangulations, with minor care needed.
Constructing the canonical configuration resembles merge-sort.

If two triangulations have the same point set, the problem is no easier than
the general problem. Suppose that there exists an algorithm that can transform
a triangulation T1 on a given n-point set to a triangulation T2 on the same point
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(a)
(b) (c)

(d)(e)

Fig. 9. Problem on fixed point set is not easier.

set using Fn = o(n log n) edge flips and point moves. Then this algorithm can
be used to transform a triangulation on one point set to any other triangulation
on a possibly different point set with Fn +O(n) edge flips and point moves. This
argument is summarized in Figure 9. Let Figure 9a be the input triangulation.
With Fn flips and moves, move to the triangulation in Figure 9b where every
vertex is adjacent to the lower left vertex v� of the outer face.

Now consider the triangulated polygon, P , that consists of edges not adjacent
to v�. Notice that if we perform a radial sweep from v�, the boundary of P is
monotonic. At least two of the triangles in P are disjoint ears, which means there
must exist an ear tip that is an interior vertex and is also joined to v� by an edge
in the original triangulation. We may move this point directly towards v� and
cut the ear from P . This still leaves a monotone polygon P ′. By continuously
locating such ears, and moving them to a predefined convex position, we can
obtain the configuration illustrated in Figure 9c. The monotonicity of P (and
its descendants) and the convexity of the final configuration of interior points
guarantee that no edge crossings will occur. This process requires a linear number
of point moves.

Next, by Lemma 1, we can use O(n) edge flips to obtain the triangulation
where the lower right vertex of the outer face is adjacent to every vertex, as
illustrated in Figure 9d. From here, it is trivial to move to the canonical config-
uration.

We conclude with the following:

Theorem 3. If an algorithm exists that can reconfigure between any two geo-
metric triangulations of the same point set with o(n log n) edge flips and point



10 Greg Aloupis, Prosenjit Bose, and Pat Morin

moves, then we can also transform any geometric triangulation on n points to
any other geometric triangulation on n different points with o(n log n) flips and
moves.

It is tempting to try to find a fast algorithm that will construct a monotone
path, as illustrated in the transition from Figure 9a to Figure 9b. Consider
the polygon that is the union of all triangles incident to the lower left vertex
of Figure 9b. By continuously cutting ears of this polygon, we may get to a
triangulation that is similar to that of Figure 9a, using O(n) edge flips. The
similarity is that all neighbors of the lower left vertex will be in convex position.
However, we have little control over the resulting positions of the remaining
edges if we use only O(n) operations. It is possible to create triangulations for
which the reversal of this ear-cutting technique is not possible. In fact, Figure 9c
serves as an example, if we add a few more vertices inside the large triangle. In
this figure none of the edges directly visible from the lower left vertex can be
flipped, so there is no obvious way to achieve a monotone path with fewer than
O(n log n) operations.

We finally consider the following more powerful point move as an alternative
to the point move studied so far. In this more powerful point move, we can
delete an interior vertex of degree three (and all its incident edges), and create
a new vertex of degree three inside another triangle of the triangulation. With
this type of move we can reconfigure triangulations using O(n) operations. We
simply select a triangle incident to a hull edge and create a backbone inside.
This is done by continuously selecting a vertex of constant degree from outside
the triangle, reducing its degree to three, and moving it to the lower end of the
backbone.
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Drawing Power Law Graphs

Reid Andersen, Fan Chung�, and Lincoln Lu

University of California, San Diego

Abstract. We present methods for drawing graphs that arise in various
information networks. It has been noted that many realistic graphs have
a power law degree distribution and exhibit the small world phenomenon.
Our methods are influenced by recent developments in the modeling of
such graphs.

1 Introduction

Several research groups have observed that many networks, including Internet
graphs, call graphs and social networks, have a power law degree distribution,
where the fraction of nodes with degree k is proportional to k−β for some pos-
itive exponent β [8]. Many networks also exhibit a so-called “small world phe-
nomenon” consisting of two distinct properties — small average distance between
nodes, and a clustering effect where two nodes sharing a common neighbor are
more likely to be adjacent. It was shown in [2] that a random power law graph
has small average distance and small diameter. However, random power law
graphs do not adequately capture the clustering effect.

To model the small world phenomenon, several researchers have introduced
random graph models with additional geometric structure. Kleinberg [7] pro-
posed a model where a grid graph G is augmented with random edges between
nodes u, v with probability proportional to [dG(u, v)]−r for some constant r.
Fabrikant, Koutsoupias and Paradimitriou [4] proposed a model where vertices
are points in the Euclidean plane and edges are added by optimizing a function
involving both Euclidean distance and graph distance to a central node.

Chung and Lu [3] introduced a hybrid graph model where a random power law
graph called the “global” graph is added to a “local graph” having a certain kind
of local connectivity. In [1] an efficient algorithm was presented for extracting a
highly connected local graph from an arbitrary graph. For a graph generated by
the hybrid model, this algorithm recovers the original local graph up to a small
error.

In this paper, we present a drawing method using the algorithm for extracting
local graphs. This algorithm may be useful for drawing graphs similar to those
produced by the hybrid model. A graph from the hybrid model contains a random
power law graph which will not be amenable to most drawing methods, but also
contains a local graph which can be more geometric in nature. The recovery
theorem in [1] guarantees that when applied to a graph from the hybrid model,
our algorithm produces a layout which depends largely on the local graph.
� Research supported in part by NSF Grants DMS 0100472 and ITR 0205061.
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2 Preliminaries

2.1 Weighted Graphs and Quotient Graphs
Although our input graphs are unweighted, our algorithm will form weighted
graphs by collapsing connected components into single vertices. A weighted
graph is a simple graph G together with a vertex weight function wG(v) and
an edge weight function φG(e). Suppose that V (G) has a partition V (G) =
C1 ∪ C2 ∪ · · · ∪ Ck. The quotient graph Q is defined as follows. The vertices of
Q are communities C1, . . . Ck, and we set

wQ(Ck) =
∑

u∈Ci

wG(u).

φQ(Ci, Cj) =
∑

u∈Ci,v∈Cj

φG(u, v).

There is an edge between Ci and Cj if φQ(Ci, Cj) > 0.

2.2 Local Flow and Local Graphs
Given a weighted graph with edge capacity function φ, we will define a notion
of local connectivity between vertices. We will say a path is short if it has length
less than or equal to �. A short flow is a positive linear combination of short
paths where no edge carries more than its capacity. The maximum short flow
problem can be viewed as a linear program, and can be computed in polynomial
time using nontrivial but relatively efficient algorithms for fractional packing
(See 2.3).
Definition 1 (Short Flow). A short flow is a feasible solution to the following
linear program. The flow connectivity f(u, v) between two vertices is the maxi-
mum value of any short flow, which is the optimum value of the following LP
problem. Let P� be the collection of short u-v paths, and let Pe be the collection
of short u-v paths which intersect the edge e.

maximize
∑

p∈P�

fp (1)

subject to
∑

p∈Pe

fp ≤ φ(e) for each e ∈ L

fp ≥ 0 for each p ∈ P�

We say two vertices u and v are (f, �)-connected if there exists a short flow
between them of size at least f . We a say a graph L is an (f, �)-local graph if
for each edge e = (u, v) in L, the vertices u and v are (f, �)-connected in L.

2.3 Computing the Maximum Short Flow
Finding the maximum short flow between u and v in a graph G with given edge
capacities φ(e) can be viewed as a fractional packing problem, which has the form

max{ cTx | Ax ≤ b,x � 0 }.
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To view the maximum short flow as a fractional packing problem, first let
G(u, v) be a subgraph containing all short paths from u to v. For example, we
may take G(u, v) = N�/2(u)∪N�/2(v). Let A be the incidence matrix where each
row represents an edge in G(u, v) and each column represents a short path from
u to v. Let b = φ, and c = 1.

Using the algorithm of Garg and Könemann in [5] for general fractional
packing problems, one can obtain a (1 − ε)−2-approximation to the maximum
short flow in time O(M2�� 1ε log1+εM�), where M is the number of edges in
G(u, v).

3 Extracting the Local Graph

For a given graph, we wish to extract the largest (f, �)-local subgraph. We define
Lf,�(G) to be the union of all (f, �)-local subgraphs in G. By definition, the union
of two (f, �)-local graphs is an (f, �)-local graph, and so Lf,�(G) is in fact the
unique largest (f, �)-local subgraph in G. We remark that Lf,�(G) is not neces-
sarily connected. The simple greedy algorithm Extract computes Lf,�(G) in any
graph G using O(m2) max-short-flow computations, where m is the number of
edges in G. The number of max-short-flow computations can be reduced by using
a standard random sampling approach if we are willing to accept approximate
local graphs. We say L is an α-approximate (f, �)-local graph if L(f, �) ⊆ L, and
at most an α-fraction of the edges in L are not (f, �)-connected. The algorithm
Approximate Extract computes a series of approximate local graphs.

Extract:
Input: G,f ,�
If there is an edge e = (u, v) ∈ G where u,v are not (f, �)-connected in G,

remove e from G.
When no further edges can be removed, output G.

Approximate Extract:
Input: G,�,{f1 ≤ · · · ≤ fk}
Let m be the number of edges in G.
For i = 1 . . . k:

Repeat until no edge is removed for 1
α log mk

δ consecutive attempts:
Pick an edge e = (u, v) from G uniformly at random.
If u, v are not (fi, �)-connected, remove (u, v) from G.

Let Li = G, reset m to be the number of edges in Li,
and proceed to compute Li+1.

Stop when graphs L1 ⊇ · · · ⊇ Lk have been output.

Since at most m edges are removed from G and there are at most 1
α log mk

δ
attempted removals for every edge removed, Approximate Extract performs at
most m

α log mk
δ max-short-flow computations.

Theorem 1. Given G, �, and {f1 ≤ · · · ≤ fk}, let L1 ⊇ · · · ⊇ Lk be the output
of Approximate Extract. With probability at least 1− δ, each of the graphs Li

is an α-approximate (fi, �)-local graph.
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Proof: Given i ∈ [1, k], let e1 . . . eJ be the edges removed from Li−1 to obtain
Li. Let mi be the number of edges in Li−1 and note that J ≤ mi. Let Tj be
the number of attempts between the removal of the ej−1 and ej. If Li is not an
α-approximate local graph, then some Tj must be at least 1

α log mik
δ when at

least an α-fraction of the edges remaining in Li were not (fi, �)-connected. For
a given j, this occurs with probability at most

(1− α)Tj ≤ e−αTj ≤ e− log
mik

δ ≤ δm−1
i /k.

Since J ≤ mi, the probability that this occurs for any Tj is at most δ/k. The
probability that a bad Tj occurs for any Li is at most δ, and the result follows.

4 An Algorithm for Drawing Power Law Graphs

In this section we describe a framework for producing drawings of power law
graphs that reflect local connectivity. In the algorithm Local Draw below, a local
subgraph is used to determine the layout of the vertices. Our algorithm uses
as a subroutine a standard force-directed drawing method which we describe
in section 4.2, but other methods can be used in its place. The algorithm is
motivated by the structure of power law graphs, but can be applied to general
graphs as well.

4.1 The Algorithm

Local Draw:
Given an input graph G, compute the local graph Lf,� for some choice of f and
� using Extract or Approximate Extract. Let Πf,� be the partition induced by
the connected components C1 . . . Ck of Lf,�, and let Q be the quotient graph of G
with respect to this partition. Use the force-based drawing algorithm to produce
drawings of each component C1 . . . Ck and Q separately. To combine into a single
drawing, let q1 . . . qk be the coordinates of the vertices in Q corresponding to
C1 . . . Ck, and let

ri =
1
2
min

j
‖qi − qj‖.

Scale each drawing of Ci by ri, and place at location qi to create a new drawing
which only contains edges in Lf,�. Apply the force-based algorithm to this draw-
ing to determine the final layout of the vertices, and then add back the edges in
G \ Lf,�.

4.2 A Force-Directed Drawing Method

Our algorithms use a standard force-based drawing method, modified for use on
graphs with vertex weights w(v) and edge weights φ(e). We define a repulsive
force between every pair of vertices, where the force acting on vertex u due to
vertex v is

Ru,v =
1
n2

u− v

‖u− v‖2 w(u)w(v)
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Each edge also acts as a spring, with the force on a vertex u from the edge
e = (u, v) defined to be

Su,v =
1
n

(v − u)φ(e)

To keep the drawing in a bounded area, we place all vertices within the unit
circle and define a force between each vertex and the boundary of the circle.

Bu = − u

‖u‖
1

(1− ‖u‖)w(u)

The standard force-based approach is to compute the sum of the forces acting
on each vertex and move in the resulting direction at each time step.

Fig. 1. Local Draw applied to the giant
component of random graph G(n, p) with
n = 500 and p = 0.004.

Fig. 2. Local Draw applied to the in-
duced subgraph of G: the collaboration
graph on authors with Erdős number ex-
actly 2.

Fig. 3. The quotient graph of G. Fig. 4. The largest connected component
in the local graph of G, of size 15.
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5 Implementation and Examples

We have implemented Extract and Local Draw and experimented on several
examples. Figure 1 is a drawing of a sparse random graph, generated from the
Erdős-Rényi model G(n, p) with n = 500 and p = .004. Jerry Grossman [6] has
graciously provided data from a collaboration graph of the second kind, where
each vertex represents an author and each edge represents a joint paper with two
authors. Our example graph G is the largest component of the induced subgraph
on authors with Erdős number exactly 2. This graph contains 834 vertices. We
applied Local Draw to G with parameters (f = 2, � = 3), obtaining the drawing
in Figure 2, and in the process obtaining the quotient graph shown in Figure
3 and the local graph. The largest connected component of the local graph is
shown in Figure 4.
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Abstract. We study drawings of graphs of maximum degree six on the
hexagonal (triangular) grid, with the main focus of keeping the number
of bends small. We give algorithms that achieve 3.5n + 3.5 bends for
all simple graphs. We also prove optimal lower bounds on the number
of bends for K7, and give asymptotic lower bounds for graph classes of
varying connectivity.

1 Introduction

There are numerous algorithms to draw 4-graphs (graphs of maximum degree of
at most four) on the 2D rectangular (orthogonal) grid [3, 8–11]. All 4-graphs can
be drawn with at most 2n + 2 bends [3], and there are arbitrarily large graphs
that need 11

6 n bends [1]. In 3D, orthogonal drawings exist for all 6-graphs [4,
13–15]. In this paper, we study hexagonal drawings, which are embeddings of
6-graphs in the 2D hexagonal grid. We consider the hexagonal grid to consist
of horizontal gridlines (rows), vertical gridlines (columns) and diagonals; this is
the same grid as the “standard” hexagonal grid (with 60◦ angles) after a shear
in the x-direction. See also Fig. 1.

Only few results are known for hexagonal drawings. The algorithm by Tamas-
sia [10] to obtain bend-minimum orthogonal drawings of planar graphs can be
extended to the hexagonal grid as well. Kant [6] showed how to draw 3-connected

(a) (b) (d)(c)

Fig. 1. Different types of grid drawings of K5: (a) 2D orthogonal, (b) 3D orthogonal,
(c) hexagonal with 60◦ angles, (d) hexagonal with diagonals.

� Research supported by NSERC. These results appeared as part of the MMath thesis
of the first author at University of Waterloo.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 18–24, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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cubic planar graphs on the hexagonal grid. Tollis [12] uses a similar grid called
tri-hexagonal grid for wiring VLSI layouts.

In this paper, we provide an algorithm that draws all graphs with maximum
degree 6 on the hexagonal grid, and achieves 3.5n + 3.5 bends. We also study
lower bounds on the number of bends for K7 and for larger graphs.

2 Algorithms

Our algorithms are inspired by the algorithm of Biedl and Kant [3] for drawing
biconnected 4-graphs on the orthogonal grid. They use a vertex ordering known
as st-ordering, which is an ordering v1, v2, . . . , vn of the vertices such that each
vi, 2 ≤ i ≤ n−1, has at least one predecessor, i.e., a neighbour vh with h < i and
at least one successor, i.e., a neighbour vj with j > i. The edges from vi to its
predecessors [successors] are called incoming [outgoing] edges of vi. The number
of incoming [outgoing] edges of vertex vi are denoted by indeg(vi) [outdeg(vi)].
For any biconnected graph, and any two vertices s, t, an st-ordering exists with
v1 = s and vn = t [7] and can be computed in linear time [5].

Assume from now on that G is a biconnected 6-graph without loops, and
v1, . . . , vn is an st-ordering of G. Let Gj be the graph induced by v1, . . . , vj . An
edge (vi, vk) with i ≤ j < k is called an unfinished edge of Gj . For j = 1, . . . , n,
we create a drawing of Gj such that every unfinished edge ends in a free ray,
i.e., every unfinished edge is drawn up to a point, and there exists a ray (along a
grid line) from this point that does not contain any vertex or edge segment in it,
and is the free ray for only one unfinished edge. These rays must go in direction
north (N), north-west (NW) or west (W). Fig. 2 shows a suitable drawing of G1

and illustrates the invariant.

Gj

edges
unfinished
rays of

drawing of

Fig. 2. Embedding of the first vertex, and the maintained invariant.

Now assume that we have a suitable drawing of Gj−1. If (vi, vj) is an incoming
edge of vj , then there is an unfinished edge at vi, and hence a ray associated
with it. (We choose one arbitrarily if there is more than one ray.) We add (if
needed) bends in these rays, and new line segments in new grid lines that are
fully outside the drawing of Gj−1 in such a way that all incoming edges meet
in one grid point at which we place vj . Then we assign rays to outgoing edges
of vj , adding more bends (if needed) to enforce that rays go into one of the
three allowed directions. The specific drawing of vj depends on the number and
directions of rays of incoming edges of vj . There are many cases here; Fig. 3
shows some of them.

Studying all cases yields that each vertex v �=v1, vn needs at most indeg(v)+1
bends, which leads to a bound of m + n + O(1) ≤ 4n + O(1). But this is not
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# of bends= 3
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��
��
��
��

# of bends= 6# of bends= 2 # of bends= 3 # of bends= 5

indegree 1 indegree 2 indegree 3 indegree 4 indegree 5

Fig. 3. Some of the cases of embedding vertices. Dotted lines indicate new grid lines.

tight. To obtain a better bound on the number of bends, we developed a potential
function argument, which to our knowledge is a new idea in graph drawing. We
assign potential pd, d ∈ {N, NW, W} to each unfinished edge whose free ray
ends in direction d. Let φ(j) be the sum of the potentials of the drawing of Gj .
Then the amortized cost of a vertex vj , 1 ≤ j ≤ n, is,

ĉ(vj) = number of bends added when placing vertex vj + φ(j)− φ(j − 1).

Hence the total number of bends is
∑

v∈V ĉ(v).

Theorem 1. Any biconnected 6-graph without loops has a hexagonal grid draw-
ing with at most 3.5n + 3.5 bends.

Proof. We choose as potentials pN = pW = 5
8 and pNW = 1

8 . The amortized cost
at vi is determined uniquely from the number of bends needed when placing vi

and the directions of the incoming and outgoing edges. Let ĉi be the maximum
amortized cost of a vertex with indegree i. Going through the cases, one obtains
ĉ0 = 5.25, ĉ1 = 3.5, ĉ2 = 3.25, ĉ3 = 3, ĉ4 = 3.25, ĉ5 = 3.5 and ĉ6 = 5.25. (The
cases in Fig. 3 are some of those where these bounds are tight.) So the number
of bends is

∑

v∈V

ĉ(v) ≤
6∑

i=0

ĉini = 5.25n0+3.5n1+3.25n2+3n3+3.25n4+3.5n5+5.25n6.

Since n0 = 1 and n6 ≤ 1 for an st-ordering of a 6-graph, this yields the
desired bound.

Our algorithm can be expanded with similar techniques as in [3] to handle
graphs that are not biconnected or that have loops. The proofs of the following
theorems are omitted.

Theorem 2. Any connected 6-graph without loops with n ≥ 3 can be drawn on
the hexagonal grid with at most 4.2n bends.

Theorem 3. Every simple connected 6-graph can be drawn on the hexagonal
grid with at most 3.5n + 3.5 bends.

Theorem 4. Any biconnected 6-graph can be drawn on the hexagonal grid with
at most 3.5n + 3.5 + 1

4� bends, where � is the number of loops in the graph.
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The area of our construction may be exponential, since in some cases we add
O(w) new rows to a drawing of width w, or O(h) many columns to a drawing of
height h. The area can be reduced to quadratic if we allow more bends.

Theorem 5. Every biconnected 6-graph without loops can be drawn on the hexa-
gonal grid with at most 6n + 2 bends and area O(n2).

3 Lower Bounds

We now turn to lower bounds on the number of bends of hexagonal grid drawings.
We start with K7, the complete graph on 7 vertices. This graph requires 20 bends
in a 3D orthogonal layout [14]. In the hexagonal grid, it can be drawn with 18
bends (see Fig. 4), and as we show now, this bound is tight. So assume that an
arbitrary drawing of K7 is fixed. Let r be the number of rows that are truly used,
i.e., they contain either a vertex or a segment of an edge. Similarly let c and d be
the number of truly used columns and diagonals. We first show r + c + d ≥ 18,
for which by symmetry it suffices to show r + d ≥ 12.

Lemma 1. In any hexagonal drawing of K7, r + d ≥ 12.

Proof. We use a cut-argument similar as in [1]. A (vertical) cut is a vertical line
that does not coincide with a column. An (x, y)-cut is a cut with x vertices on
one side and y vertices on the other. The edges between vertices on different
sides are called cut-edges. Each cut-edge has at least one segment crossed by
the cut, and hence truly uses a grid line that crosses the cut (i.e., a row or a
diagonal). A (3, 4)-cut in K7 has 12 cut-edges, and hence immediately implies
that r+d ≥ 12. However, such a cut need not always exist. We distinguish cases.

Assume there is a column c6 with exactly six vertices in it. We consider two
cuts; one cut cl immediately to the left of c6 and one cut cr immediately to the
right of c6. We assume that the seventh vertex is to the left of c6, so cl has 6
cut-edges. Let (u, v) be an edge for which u, v are both in c6, but not consecutive
in c6. Then (u, v) cannot be drawn as a straight line. We call (u, v) a non-straight
edge and note that there are

(
6
2

)− 5 = 10 non-straight edges. See also Fig. 4.
The drawing of each non-straight edge thus must leave column c6 and then

return to it. Say it leaves towards the left side, then it crosses the cut cl when
it leaves, and crosses the cut cl again when it returns. If a non-straight edges go

Non-straight edge

Cut-edge

c6
cl cr

Fig. 4. K7 drawn with 18 bends, and the case with 6 vertices in the same column.
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left, then there are therefore at least 2a edge segments that cross cut cl and truly
use a row or a diagonal. Since cl also has 6 cut-edges, we have r + d ≥ 2a + 6.

The other 10 − a non-straight edges go right and cross cr twice, so r +
d ≥ 2(10 − a). Altogether therefore r + d ≥ max{2a + 6, 2(10 − a)}. Since the
value of a is unknown, we take the minimum over all possible values, and get
r + d ≥ min0≤a≤10 max{2a + 6, 2(10− a)} = 14.

All other cases are treated similarly: we count how many cut-edges are on
cl and cr and how many non-straight edges there are, and apply the formula to
compute the lower bound on r + d. In all cases, we get r + d ≥ 12. For space
reasons, we omit the details of these cases, but list the cases so the reader can
verify that all cases have been covered.

– A column c contains 7 vertices.
– A column c contains 5 vertices, and there are 2 vertices on one side of c.
– A column c contains 5 vertices, and there is 1 vertex on each side of c.
– A column c contains 4 vertices, and there are 3 vertices on one side of c. (In

this case cl or cr is a (3, 4)-cut.)
– A column c contains 4 vertices, and there are 1 or 2 vertices on one side of c.
– A column c contains 3 vertices, and there are 3 or 4 vertices on one side of c.

(In this case cl or cr is a (3, 4)-cut.)
– A column c contains 3 vertices, and there are 2 vertices on each side of c.
– All columns contain at most 2 vertices. Applying a scan from left to right,

one can show that then there must exist a (3, 4)-cut. �

We can relate r + c + d to the number of bends, similarly as in [2].

Lemma 2. In a hexagonal drawing of a graph with n vertices and m edges, let
b be the number of bends and let r, c, d be the number of truly used rows, columns
and diagonals. Then b ≥ r + c + d− 3n + m.

Combining this with r + c + d ≥ 18 give the lower bounds for K7.

Theorem 6. Any hexagonal drawing of K7 has at least 18 bends.

Using K7 and other small graphs, we can build arbitrarily large graphs that
also have a large lower bound on the number of bends, similarly as done in [1]
for orthogonal 2D drawings and in [14] for orthogonal 3D drawings. We give the
detailed construction for one (illustrative) case.

Theorem 7. For any n, there is a 3-connected simple graph on n′ > n vertices
that requires at least 1.87n′ bends.

Proof. The graph for this lower bound is illustrated in the bottom left entry of
Table 1. We take an even number c of copies of K7 and place half of them in the
first row and half of them in the second row. In each copy of K7, we subdivide one
edge; then we identify the subdivision vertex in the first row with the one in the
second row. Also, in each copy we delete an edge (not incident to the subdivision
vertex). Then we add an edge between the ith and the ((i mod c

2 ) + 1)st copy
of K7 in each row.
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Table 1. Lower bounds for arbitrarily large graphs.

Simple Multigraph Graph with loops

1-connected 34
15

n = 2.27n 16
5

n = 3.2n 4n
K7

_ e K7
_ e K7

_ e

K7
_ e K7

_ e K7
_ e

�
�
�
�

�
�
�
�

��
��
��
��

2-connected 15
7

n = 2.14n 3n 4n

K7
_ e K7

_ e K7
_ e

3-connected 28
15

n = 1.87n 2n 2.5n

K7
_ e K7

_ e K7
_ e

K7
_ e K7

_ e K7
_ e

�
�
�
�

��
��
��
��

��
��
��
��

Recall that K7 needs 18 bends. Subdividing an edge lowers this to 17 bends,
because the subdivision vertex could take the place of a bend. Deleting an edge
lowers this to 14 bends since one can show that in any hexagonal drawing, we
can add an edge while adding at most 3 bends. Thus each copy needs at least
14 bends, so in total we need at least 28c bends for n = 15c vertices, and the
total number of bends is 28n

15 = 1.87n. �

Similar (and often easier) constructions can be used to obtain lower bounds
for various types of graphs and connectivity; see Table 1.
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Abstract. We use circular sequences to give an improved lower bound
on the minimum number of (≤ k)-sets in a set of points in general po-
sition. We then use this to show that if S is a set of n points in general
position, then the number �(S) of convex quadrilaterals determined by
the points in S is at least 0.37553

(
n
4

)
+ O(n3). This in turn implies that

the rectilinear crossing number cr(Kn) of the complete graph Kn is at
least 0.37553

(
n
4

)
+ O(n3). These improved bounds refine results recently

obtained by Ábrego and Fernández-Merchant, and by Lovász, Veszter-
gombi, Wagner and Welzl.

1 Introduction

Our aim in this work is to present some selected results and sketches of proofs
of our recent work [5] on the use of circular sequences in the problems described
in the title. For the reader familiar with the application of circular sequences to
these closely related problems, we give in Subsection 1.4 a brief account of what
we perceive is the main achievement hereby reported.

It is well-known that the rectilinear crossing number cr(Kn) of the complete
graph Kn is closely related to the minimum number �(S) of convex quadrilat-
erals in a set S of n points in general position.

Observation 1 For each positive integer n,

cr(Kn) = min
|S|=n

�(S),

with the minimum taken over all point sets S with n elements in general position.
� Supported by NSF Grant DMS-0302804. Partially supported by City of Morahalom,
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Working independently, Ábrego and Fernández-Merchant [1], and Lovász,
Vesztergombi, Wagner and Welzl [13] recently explored the close connection
between �(S) and the number η≤k(S) of (≤ k)-sets of S. The following result
is implicitly proved in [1], and the connection with (≤ k)-sets was particularly
emphasized in [13].

Theorem 1 ([1] and [13]). Let S be a set of n points in the plane in general
position. Then

�(S) =
∑

1≤k<(n−2)/2

(
n− 2k − 3

)
η≤k+1(S) + O(n3),

where η≤j(S) denotes the number of (≤ j)-sets of S.

We recall that the rectilinear crossing number cr(G) of a graph G is the
minimum number of pairwise intersections of edges in a drawing of G in the
plane in which every edge is drawn as a straight segment. We also recall that if
S is a set of points in the plane in general position, then a k-set is a subset T
of S with |T | = k, and such that T can be separated from its complement T \ S
by a line. An i-set with 1 ≤ i ≤ k is a (≤ k)-set. As we mentioned above, we use
η≤k(S) to denote the number of (≤ k)-sets of S.

In this paper we follow the approach, via circular sequences, used by Ábrego
and Fernández-Merchant and (independently) by Lovász, Vesztergombi, Wagner
and Welzl, to give improved lower bounds for η≤k(S). In view of Observation 1
and Theorem 1, these refined bounds immediately imply improved bounds for
�(S) (for any set S) and for cr(Kn).

1.1 The Relationship Between �(S) and Circular Sequences

Let S be a set of n points in general position in the plane. In [1] and [13], it is
shown that �(S) is closely related to η≤k(S).

While the important problem of determining, for each k, the maximum num-
ber of k-sets remains tantalizingly open (the best current bounds are O(nk1/3)
and neΩ(log k) (see [8] and [18], respectively), it is known that the maximum
number of (≤ k)-sets of an n-point set S in the plane is nk (this is attained iff
S is in convex position; see [3] and [21]).

In [13] and [21], it is shown that if S is a collection of points in general
position, then �(S) is a linear combination of {η≤j(S)}. Indeed, Theorem 1
above is a direct consequence of Lemma 9 in [13].

Theorem 1 is exploited in [13] by finding a nontrivial lower bound for η≤k(S)
for every k < n/2 and every set S of n points in general position (and using an
even better bound for k close to n/2, which follows from the results in [20]). See
Theorems 2 and 4 in [13]. To obtain the bound in their Theorem 2, they follow
the approach of circular sequences.

A circular sequence on n elements Π is a sequence (π0, π1, . . . , π(n
2)) of permu-

tation of the set {1, 2, . . . , n}, where π0 is the identity permutation (1, 2, . . . , n),
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π(n
2) is the reverse permutation (n, n−1, . . . , 1), and any two consecutive permu-

tations differ by exactly one transposition of two elements in adjacent positions.
A transposition that occurs between elements in positions i and i+1, or between
elements in positions n − i and n − i + 1 is i-critical. A transposition is (≤ k)-
critical if it is critical for some i ≤ k. We denote the number of (≤ k)-critical
transpositions in Π by χ≤k(Π)), and use X≤k(n) to denote the minimum of
χ≤k(Π) taken over all circular sequences Π on n elements.

Circular sequences can be used to encode any set S of points in general
position as follows (see [12]). Let L be a (directed) line that is not orthogonal
to any of the lines defined by pairs of points in S. We label the points in S
as p1, p2, . . . , pn, according to the order in which their orthogonal projections
appear along L. As we rotate L (say counterclockwise), the ordering of the
projections changes precisely at the positions where L passes through a position
orthogonal to the line defined by some pair of points r, s in S. At the time the
projection change occurs, r and s are adjacent in the ordering. and the ordering
changes by transposing r and s. By keeping track of all permutations of the
projections as L is rotated by 180o, we obtain a circular sequence ΠS .

The crucial observation is that (≤ k)-sets are in one-to-one correspondence
with (≤ k)-critical transpositions of ΠS .

Observation 2 Let S be a set of n points in the plane in general position, and
let k < n/2. Then

η≤k(S) = χ≤k(ΠS).

Combining Theorem 1 and Observation 2 and recalling the definition of
X≤k(n), one immediately obtains the following statement, obtained indepen-
dently in [1] and [13].

Theorem 2 ([1] and [13]). Let S be a set of n points in the plane in general
position. Then

�(S) =
∑

1≤k<(n−2)/2

(
n− 2k − 3

)
χ≤k+1(ΠS) + O(n3)

≥
∑

1≤k<(n−2)/2

(
n− 2k − 3

)
X≤k+1(n) + O(n3).

Having reduced the problem of bounding �(S) to the problem of bound-
ing X≤k(n), Ábrego and Fernández-Merchant [1], and independently Lovász,
Vesztergombi, Wagner and Welzl [13], then proceeded to the (combinatorial)
problem of deriving good estimates for X≤k(n).

1.2 Previous Estimates for X≤k(n) and Their Consequences

In [1] and [13], the following was proved:

X≤k(n) ≥ 3
(

k + 1
2

)
, for every positive n and every k < n/2. (1)

In [1], this result is applied together with Theorem 2, to obtain the following.
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Theorem 3 (Ábrego and Fernández-Merchant [1]). If S is any set of n
points in general position, then

�(S) ≥ 1
4

⌊
n

4

⌋ ⌊
n− 1

4

⌋⌊
n− 2

4

⌋ ⌊
n− 3

4

⌋
= 0.375

(
n

4

)
+ O(n3). (2)

As a corollary, they obtain cr(Kn) ≥ 0.375
(
n
4

)
+ O(n3).

We observe that the bound X≤k(n) ≥ 3
(
k+1
2

)
is sharp for k ≤ n/3 (see

Example 3 in [13]). Therefore, any improvement on �(S) based on the approach
of circular sequences must necessarily rely on bounds for X≤k(n) that are strictly
better than 3

(
k+1
2

)
for (some subset of) the interval n/3 < k < (n− 2)/2. Prior

to the present paper, the only such bound reported is the following, which is
derived in [13] using a result from [20]:

X≤k(n) ≥ n2

2
− n
√

n2 − 4k2 + O(n). (3)

Now (3) is strictly better than (1) for k sufficiently close to n/2, namely for

k > k0(n) :=
√

(2
√

13− 5)/9n ≈ 0.4956n + O(
√

n). Combining (1) (which is
also proved in [13] independently of [1]) and (3), and applying Theorem 2, the
following was proved in [13].

Theorem 4 (Lovász, Vesztergombi, Wagner and Welzl [13]). If S is any
set of n points in general position, then

�(S) > 0.37501
(

n

4

)
+ O(n3).

Again, in view of Observation 1 this immediately yields an improved bound
for cr(Kn).

Although numerically the improvement (of roughly 1.088 · 10−5) given in
Theorem 4 over 0.375 may seem marginal, conceptually it is most relevant,
since it shows that the rectilinear and the ordinary crossing number of Kn

(which considers drawings in which the edges are not necessarily straight seg-
ments) are different on the asymptotically relevant term n4. This last obser-
vation follows since there are (non-rectilinear) drawings of Kn with exactly
(1/4)�n/4��(n− 1)/4��(n− 2)/4��(n− 3)/4� = 0.375

(
n
4

)
+ O(n3) crossings. No

better (non-rectilinear) drawings of Kn are known, and consequently the (non-
rectilinear) crossing number of Kn has been long conjectured to be exactly
(1/4)�n/4��(n− 1)/4��(n− 2)/4��(n− 3)/4� (see for instance [10]).

1.3 Our Results: Improved Bound for X≤k(n) and Its Consequences

The core of this paper is an improved bound on the minimum number X≤k(n) of
(≤ k)-critical transpositions in any circular sequence on n elements. Our bound
is given in terms of two functions F (k, n) and s(k, n) defined as follows.
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For all positive integers k, n such that k < n, let

F (k, n) :=
(

2− 1
s(k, n)

)
k2 −

(
(s(k, n)− 1)2

s(k, n)

)
k(n− 2k − 1)

+
(

s(k, n)4 − 7s(k, n)2 + 12s(k, n)− 6
12s(k, n)

)
(n− 2k − 1)2,

where

s(k, n) :=


1
2



1 +

√√√√√√√

1 + 6
(

k

n

)
−
(

9
n

)

1− 2
(

k

n

)
−
(

1
n

)





 .

Using this notation, our main result is the following.

Theorem 5 (Main result). For every positive integer n and every k < n/2,

X≤k(n) ≥ F (k, n) + O(n).

This bound is better than the bounds in (1) and (3) for k > k1(n) :=
(1/162)

(−71 + 71n +
√

19n2 − 38n + 19
) ≈ 0.465178n + O(

√
n) (see [5]).

The full proof of Theorem 5 is given in [5]. We present a sketch of the general
ideas in the proof in Section 2.

By Observation 2, the refined bound for X≤k(n) given in Theorem 5 imme-
diately implies improved bounds for η≤k(S), for k ≥ k1(n).

Moreover, in view of Theorem 2, Theorem 5 also gives improved bounds for
�(S), for any set S of n points in general position.

The corresponding calculations (which are somewhat tedious but by no means
difficult) are sketched in Section 3, where the following is established.

Proposition 1. For every positive integer n and every k < n/2,

∑

1≤k<(n−2)/2

(
n− 2k− 3

) ·max
{

3
(

k + 2
2

)
, F (k + 1, n)

}
≥ 0.37553

(
n

4

)
+ O(n3).

By applying Theorem 5 and Proposition 1 to Theorem 2, we obtain the
following.

Corollary 1. If S is a set of n points in the plane in general position, then

�(S) ≥ 0.37553
(

n

4

)
+ O(n3).

In view of Observation 1, we also have the following.

Corollary 2. For each positive integer n,

cr(Kn) ≥ 0.37553
(

n

4

)
+ O(n3).
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To put this improved lower bound on cr(Kn) into context, first we should
point out that the lower bounds on cr(Kn) proved in [1] and [13] represent a
remarkable improvement over the previous best general lower bounds. Previous
to the successful use of the approach of circular sequences (Edelsbrunner et al. [9]
also claimed to have proved that X≤k(n) ≥ 3

(
k+1
2

)
, but their argument seems

to have a gap), the best lower bound known was cr(Kn) ≥ 0.3288
(
n
4

)
[19].

The improved lower bounds on cr(Kn) reported in [1] and [13] are partic-
ularly attractive since they are remarkably close to the best upper bound cur-
rently known, namely cr(Kn) ≤ 0.3807

(
n
4

)
[2]. This bound was obtained using a

computer-generated base case. The best known upper bound derived “by hand”
(quoting [13]), namely cr(Kn) ≤ 0.3838

(
n
4

)
, was obtained by Brodsky, Durocher,

and Gethner [6].
We also mention that the exact crossing number of Kn is known for n ≤ 16.

For all n ≤ 9, the exact value of cr(Kn) can be found for instance in [22]. For
n = 10 it was determined by Brodsky, Durocher, and Gethner [7], for n = 11
and 12 it was calculated by Aichholzer, Aurenhammer, and Krasser [2], and
quite recently Aichholzer and Krasser determined it for n = 13, 14, 15, 16 (pri-
vate communication). The most current information on the rectilinear crossing
number of Kn for specific values of n is given in Aichholzer’s comprehensive web
page http://www.igi.tugraz.at/oaich/triangulations/crossing.html.

From Corollary 2, the best bounds currently known for cr(Kn) are as follows:

0.37553
(

n

4

)
+ O(n3) ≤ cr(Kn) ≤ 0.3807

(
n

4

)
+ O(n3).

1.4 A Brief Discussion on the Main New Results
From our own perspective, the most important contribution of this work is per-
haps not the closing of the gap between the lower and upper bounds for �(S)
and cr(Kn), but the evidence that the technique of circular sequences can be
further pushed to yield (substantial, we think) improved results. Indeed, by us-
ing exclusively circular sequences we could show that the number of (≤ k)-sets
is strictly greater than 3

(
k+1
2

)
for k ≥ k1n ≈ 0.465n, thus closing the gap for

roughly 20% of the interval for which this was previously unknown. This success
gives us hope that even better results can be obtained by alternative approaches
within the technique of circular sequences.

2 Bounding the Number of (≤ k)-Critical Transpositions:
Sketch of Proof of Theorem 5

Our strategy to prove Theorem 5 is as follows. First we show that the number of
(≤ k)-critical transpositions in any circular sequence Π on n elements is bounded
by below by a function that depends on the solution of a maximization problem
over a certain family of digraphs. This is done in Section 2.1 (see Proposition 2).
Then, in Section 2.2, we find an upper bound for the solution of the maximization
problem over this set of digraphs (see Proposition 5).

We will conclude this section with the (by then obvious) observation that
Theorem 5 follows from Propositions 2 and 5.
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2.1 Bounding the Number of (≤ k)-Critical Transpositions
in Terms of the Solution of a Digraph Optimization Problem

Our lower bound for the number of (≤ k)-critical transpositions in a circular
sequence is given in terms of the maximum of an objective function taken over a
certain set of digraphs which we now proceed to define. We use −→uv to denote the
directed edge from vertex u to vertex v. The indegree and outdegree of vertex u
in the digraph D are denoted [u]−D and [u]+D, respectively.

Definition. Let k, m be integers such that 2 ≤ m < k. A digraph D with vertex
set {v1, v2, . . . , vk} is a (k, m)-digraph if it satisfies the following conditions:

(i) There is some vertex vi such that [vi]−D = 0.
(ii) For every i ∈ {1, . . . , k}, [vi]+D ≤ [vi]−D + (m− 1).
(iii) There is a one-to-one ordering map fD : {1, 2, . . . , k} → {1, 2, . . . , k}, such

that, for all i, j ∈ {1, 2, . . . , k}, if −−→vivj is in D then fD(i) < fD(j).

We let Dk,m denote the set of all (k, m)-digraphs.
The following is one of the core statements of this work. For the sake of

brevity, we omit its proof (see [5]).

Proposition 2. Let Π be any circular sequence on n elements and let k < n/2.
Define m := n− 2k. Then

χ≤k(Π) ≥ 2k2 + km

− max
D∈Dk,m




2
∑

1≤i≤k

[vi]−D +
∑

1≤i≤k

min
{
[vi]−D − [vi]+D + (m− 1), m

}



 .

2.2 Bounding the Solution of the Digraph Optimization Problem

The next step is to find a (good) upper bound for the maximization problem in
Proposition 2. We achieve this in two steps. First we find a digraph D0(k, m) in
which the maximum is attained, and then we estimate the value of the objective
function at D0(k, m).

Given the nature of the maximization problem in Proposition 2, it is natu-
ral to expect that the objective function is maximized in the digraph D0(k, m)
(with vertex set {v1, v2, . . . , vk}) in which [vi]+D0(k,m) is maximum possible for
each i (subject to the conditions that define Dk,m), and in which the [vi]+D0(k,m)

directed edges leaving each vi have endpoints vi+1, vi+2, . . . , vi+[vi]
+
D0(k,m)

(infor-

mally speaking, “there are no gaps”). It can be proved that this is indeed the
case, but the proof is long and somewhat technical. For the sake of brevity, we
omit the proof of the following statement, and refer the interested reader to [5].

Proposition 3. The optimal value of the maximization problem in Proposi-
tion 2 is attained at the digraph D0(k, m) with vertex set {v1, v2, . . . , vk} defined
as follows:
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(1) [v1]−D0(k,m) = 0;

(2) [vi]+D0(k,m) = min{[vi]−D0(k,m) + (m− 1), k − i}, for every i ≥ 1; and

(3) For all i, j such that 1 ≤ i < j ≤ k, the directed edge −−→vivj is in D0(k, m)
if and only if i + 1 ≤ j ≤ i + [vi]+D0(k,m).

For the rest of the section, we denote D0(k, m) simply by D0.
In view of this and Proposition 2, our next goal is to estimate a bound for

2
∑

1≤i≤k [vi]−D0(k,m) +
∑

1≤i≤k min
{
[vi]−D0(k,m) − [vi]+D0(k,m) + (m− 1), m

}
.

We note that this expression is given in terms of [vi]−D0
and [vi]+D0

. Moreover,
in view of the properties of D0, each [vi]+D0

is fully determined by [vi]−D0
. Thus

our first step is to determine (exactly) [vi]−D0
for each i. The value of [vi]−D0

is
given in terms of functions Sm and Tm defined as follows.

For each real number x ≥ 1, we let Sm(x) denote the (unique) positive integer
such that 1 + (Sm(x) − 1)Sm(x)(m − 1)/2 ≤ x < Sm(x)(Sm(x) + 1)(m − 1)/2.
If i ≥ 1 is an integer, then we let Tm(i), Um(i) denote the (unique) integers
that satisfy 0 ≤ Tm(i) ≤ m − 2, 0 ≤ Um(i) ≤ Sm(i) − 1, and such that i =
1 + (Sm(i)− 1)Sm(i)(m− 1)/2 + Sm(i)Tm(i) + Um(i).

The following statement can be proved by induction on i (see [5]).

Proposition 4. For each integer i such that 1 ≤ i ≤ k, we have [vi]−D0
=

(Sm(i)− 1)(m− 1) + Tm(i).

Once we have the exact value of [vi]−D0
for every i, we then proceed to estimate

an upper bound for the objective function in Proposition 2, evaluated at D0.
The arguments and calculations needed to prove this bound are not difficult,
but somewhat technical and long. We omit the proof of this statement, and refer
once again the interested reader to [5]. The upper bound obtained is the right
hand side in the inequality in our next statement. Since the objective function
is maximized at D0, we finally conclude the following.

Proposition 5.

max
D∈Dk,m




2
∑

1≤i≤k

[vi]−D +
∑

1≤i≤k

min
{
[vi]−D − [vi]+D + (m− 1), m

}



 ≤

k2

Sm(k)
+

(Sm(k)2 − Sm(k) + 1)
Sm(k)

(m− 1)k

−
(

Sm(k)4 − 7Sm(k)2 + 12Sm(k)− 6
12Sm(k)

)
(m− 1)2 + O(k),

where

Sm(k) =


1 +

√
1 +

8(k − 1)
m− 1

2

 .
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2.3 Proof of Theorem 5

We recall that m = n − 2k, and so s(k, n) = Sm(k). Therefore Theorem 5 is
an immediate consequence of Propositions 2 and 5 (note that we also used the
obvious inequality km ≥ k(m− 1)).

3 Proof of Proposition 1

Our first observation is that, for sufficiently large n, F (k, n) > 3
(
k+1
2

)
for every

k > k1(n) (see Appendix in [5]). We also note that if we define

s̃ (x) :=

⌊
1
2

(
1 +

√
1 + 6x

1− 2x

)⌋
,

then it is easy to check that s̃(k/n) = s(k, n) (and, moreover, s̃(k/n)=s(k+1, n))
for all but at most O(

√
n) values of k.

These observations imply that

(n−2)/2−1∑

k=1

(
n− 2k − 3

) ·max
{

3
(

k + 2
2

)
, F (k + 1, n)

}

≥ 3
�k1(n)�∑

k=1

(
n− 2k − 3

)(k + 2
2

)
+

(n−2)/2−1∑

k=�k1(n)�+1

(
n− 2k − 3

)
F (k + 1, n)

≥ 3
2
n3 ·



�k1(n)�∑

k=1

(
1− 2

(
k

n

))(
k

n

)2


+

n3 ·



(n−2)/2−1∑

k=�k1(n)�+1

(
1− 2

(
k

n

))
F (k + 1, n)

n2



+ O(n3)

3
2
n4 ·
(∫ c1

0

(1− 2x)x2 dx

)
+ n4 ·

(∫ 1/2

c1

(1− 2x)f̃(x) dx

)
+ O(n3),

where c1 := 0.465178 (recall that k1(n) ≈ 0.465178n + O(
√

n)), and

f̃(x) :=
(

2− 1
s̃(x)

)
x2 −

(
(s̃(x) − 1)2

s̃(x)

)
x(1 − 2x)

+
(

s̃(x)4 − 7s̃(x)2 + 12s̃(x)− 6
12s̃(x)

)
(1 − 2x)2.
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To complete the proof, we note that a numerical evaluation of the integrals
in the previous inequality yields

3
2

∫ c1

0

(1− 2x)x2 dx +
∫ 1/2

c1

(1 − 2x)f̃(x) dx ≈ 0.37553
24

.
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Abstract. We prove that the number of distinct weaving patterns pro-
duced by n semi-algebraic curves in R

3 defined coordinate-wise by poly-
nomials of degrees bounded by some constant d, is bounded by 2O(n log n),
where the implied constant in the exponent depends on d. This general-
izes a similar bound obtained by Pach, Pollack and Welzl [3] for the case
when d = 1.

1 Introduction

In [3], Pach, Pollack and Welzl considered weaving patterns of n lines in R
3

and showed that asymptotically only a negligible fraction of possible weaving
patterns are realizable by straight lines in R

3 (see Remark 2 below). In this
paper, we consider weaving patterns produced by polynomial curves in R

3. Since,
such curves are much more flexible than lines, it is reasonable to expect a much
bigger number of realizable weaving patterns. In this paper, we prove that the
number of distinct weaving patterns, realized by polynomial curves with degrees
bounded by some constant d, is still asymptotically negligible.

Crossing patterns of semi-algebraic sets of fixed description complexity were
considered in [1], where Ramsey type results are proved for such arrangements.
However, since semi-algebraic curves in R

3 (unlike lines) need not satisfy sim-
ple above-below relationships and can intertwine in complicated ways, it is not
immediately clear whether the framework in [1] is applicable in our setting.

The rest of the paper is organized as follows. In Section 2, we define weaving
patterns for polynomial curves and state the main result of the paper (Theo-
rem 1). Since, the projections to the plane of curves defined by polynomials in R

3

can have complicated patterns of intersection, defining what is meant by a weav-
ing pattern for such curves requires some care. In Section 3, we recall some basic
facts from [2]. The main tools used in the proof of Theorem 1, are Cylindrical
Algebraic Decomposition, and a bound on the number of connected components
of the realizations of all realizable sign conditions on a family of polynomials
� Supported in part by NSF Career Award 0133597 and a Sloan Foundation Fellow-
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(see Theorem 2). We give here the basic definitions, and state the results that
we need, referring the reader to [2] for details. In Section 4 we prove Theorem 1.
Finally, in Section 5 we compare the number of weaving patterns realizable by
polynomial curves of fixed degrees with the total number of weaving patterns.

2 Weaving Patterns in R
3

Let γ1, . . . , γn : (−∞,∞)→ R
3 be n semi-algebraic curves given by

γi(s) = (xi(s), yi(s), zi(s)), 1 ≤ i ≤ n,

where xi, yi, zi are polynomials whose degrees are bounded by d. We will assume
that the curves are not self-intersecting in R

3 and the images of γi and γj do
not intersect, unless i = j.

Let π : R
3 → R

2 denote the projection sending (x, y, z) �→ (x, y). For 1 ≤
i < j ≤ n, let

Mij = {π(γi(s1
ij)), . . . , π(γi(s

�ij

ij ))} ⊂ R
2, s1

ij < · · · < s
�ij

ij ,

denote the finite set of �ij isolated points of intersections of π(image(γi)) and
π(image(γj)). Also, let

Mii = {π(γi(s1
ii)), . . . , π(γi(s�ii

ii ))} ⊂ R
2, s1

ii < · · · < s�ii

ii ,

and such that π(γi(sk
ii)) = π(γi(s)), s �= sk

ii ⇒ s > sk
ii.

We assume that each of the intersection points correspond to a normal cross-
ing. In particular, for p ∈ Mij (respectively, p ∈ Mii) π−1(p) ∩ (image(γi) ∪
image(γj)) (respectively, π−1(p) ∩ image(γi)) consists of exactly two points.
This is not a very strong assumption, since for every finite family of smooth al-
gebraic curves, almost all linear projections, π, satisfy these assumptions. The set
of bad projections is a Zariski closed subset in the space of all linear projections.

For 1 ≤ i < j ≤ n, and 1 ≤ k ≤ �ij , we define V k
ij ∈ {+1,−1} in the following

way.

V k
ij = +1 if zi(sk

ij) > zj(s) where s ∈ R is such that π(γj(s)) = π(γi(sk
ij)),

= −1 else.

In other words, V k
ij is +1 if image(γi) lies above image(γj) over π(γi(sk

ij)), which
is a point of intersection of the projections of the images of the two curves, γi, γj ,
to the XY -plane.

Similarly, we define for each 1 ≤ i ≤ n, and 1 ≤ k ≤ �ii, V k
ii ∈ {+1,−1} as

follows.

V k
ii = +1 if zi(sk

ii) > zj(s) where s �= sk
ii is such that π(γi(s)) = π(γi(sk

ij)),
= −1 else.

Now consider the union of the projections of the images of the curves, namely

π(image(γ1)), . . . , π(image(γn)),
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as a planar embedding of a planar graph (self loops allowed), whose vertices are
at the points, Mk

ij , 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ �ij , and whose edges are the various
curve segments joining the vertices. Two such graph embeddings are said to be
equivalent, if one can be mapped to the other by a homeomorphism of the plane.
Given an ordered set of curves, Γ = {γ1, . . . , γn}, satisfying the assumptions
stated above, we denote by G(Γ ) the equivalence class of the corresponding
embedded graph in the XY -plane. Finally, we call G(Γ ) along with the labeling
of each of its vertex, Mk

ij by V k
ij ∈ {+1,−1}, to be the weaving pattern produced

by Γ.
In this paper we address the following question. How many distinct weaving

patterns can be produced by n algebraic curves, γ1, . . . , γn : (−∞,∞) → R
3

where γi(s) = (xi(s), yi(s), zi(s)), and xi, yi, zi are polynomials whose degrees
are bounded by some constant d ?

We prove the following theorem.

Theorem 1. The number of distinct weaving patterns produced by Γ is bounded
by 2O(n log n), where the constant in the exponent depends on d.

This generalizes the bound proved in [3], which is the special case when d = 1.
Also, note that π(image(γ1)), . . . , π(image(γn)), can have

(
n
2

)
d2 crossing points

and hence the number of possible weaving patterns could be potentially as large
as 2(n

2)d2
. However, its clear from Theorem 1 only a negligible fraction of these

are realizable by curves defined by polynomials with degrees bounded by d.

3 Preliminaries

In this section, we recall a few notions from semi-algebraic geometry that we
will need in the proof of Theorem 1. More details, including proofs of the results
stated below, can be found in [2].

3.1 Realizable Sign Conditions and Associated Bounds

A sign condition is an element of {0, 1,−1}. We denote for x ∈ R






sign(x) = 0 iff x = 0,

sign(x) = 1 iff x > 0,

sign(x) = −1 iff x < 0.

Let Q ⊂ R[X1, . . . , Xk], A sign condition on Q is an element of {0, 1,−1}Q.
We say that Q realizes the sign condition σ at x ∈ R

k if
∧

Q∈Q
sign(Q(x)) = σ(Q).

The realization of the sign condition σ is

R(σ) = {x ∈ R
k |

∧

Q∈Q
sign(Q(x)) = σ(Q)}.
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The sign condition σ is realizable if R(σ) is non-empty. The set Sign(Q) ⊂
{0, 1,−1}Q is the set of all realizable sign conditions for Q over R

k.
For σ ∈ Sign(Q), let b0(σ) denote the number of connected components of

R(σ) = {x ∈ R
k |

∧

Q∈Q
sign(Q(x)) = σ(Q)}.

Let b0(Q) =
∑

σ b0(σ). We write b0(d, k, s) for the maximum of b0(Q) over
all Q, where Q is a finite subset of R[X1, . . . , Xk] whose elements have degree
at most d, #(Q) = s.

The following theorem [2] gives an upper bound on b0(d, k, s) which we will
use later in the paper.

Theorem 2.

b0(d, k, s) ≤
∑

1≤j≤k

(
s

j

)
4jd(2d− 1)k−1.

3.2 Cylindrical Decomposition

Cylindrical Algebraic Decomposition is a classical tool used in the study of,
as well as in algorithms for computing, topological properties of semi-algebraic
sets. We give here the basic definitions and properties of Cylindrical Algebraic
Decomposition referring the reader to [2] for greater details.

A cylindrical decomposition of R
k is a sequence S1, . . . ,Sk where, for each

1 ≤ i ≤ k, Si is a finite partition of R
i into semi-algebraic subsets, called the

cells of level i, which satisfy the following properties:

Each cell S ∈ S1 is either a point or an open interval.
For every 1 ≤ i < k and every S ∈ Si, there are finitely many continuous

semi-algebraic functions

ξS,1 < . . . < ξS,�S : S −→ R

such that the cylinder S × R ⊂ R
i+1 is the disjoint union of cells of Si+1

which are:
either the graph of one of the functions ξS,j, for j = 1, . . . , �S:

{(x′, xj+1) ∈ S × R | xj+1 = ξS,j(x′)} ,

or a band of the cylinder bounded from below and from above by the
graphs of the functions ξS,j and ξS,j+1, for j = 0, . . . , �S, where we take
ξS,0 = −∞ and ξi,�S+1 = +∞:

{(x′, xj+1) ∈ S × R | ξS,j(x′) < xj+1 < ξS,j+1(x′)} .

A cylindrical decomposition adapted to a finite family of semi-algebraic sets
T1, . . . , T� is a cylindrical decomposition of R

k such that every Ti is a union of
cells.
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Given a finite set P of polynomials in R[X1, . . . , Xk], a subset S of R
k is

P-semi-algebraic if S is the realization of a quantifier free formula with atoms
P = 0, P > 0 or P < 0 with P ∈ P . A subset S of R

k is P-invariant if every
polynomial P ∈ P has a constant sign (> 0, < 0, or = 0) on S. A cylindrical
decomposition of R

k adapted to P is a cylindrical decomposition for which each
cell C ∈ Sk is P-invariant. It is clear that if S is P-semi-algebraic, a cylindrical
decomposition adapted to P is a cylindrical decomposition adapted to S.

Given a family of polynomials P ⊂ R[X1, . . . , Xk], there exists another family
of polynomials ElimXk

(P) (see [2], page 145, for the precise definition of Elim)
having the following property.

We denote, for i = k − 1, . . . , 1,

Ci(P) = ElimXi+1(Ci+1(P)),

with Ck(P) = P , so that

Ci(P) ⊂ R[X1, . . . , Xi].

The semi-algebraically connected components of the sign conditions on the fam-
ily,

C(P) = ∪i≤kCi(P)

are the cells of a cylindrical decomposition adapted to P . We call C(P) the
cylindrifying family of polynomials associated to P .

Moreover, if s is a bound on #(P), and d a bound on the degrees of the
elements of P , #(ElimXk

(P)) is bounded by O(s2d3). Moreover, the the degrees
of the polynomials in ElimXk

(P) with respect to X1, . . . , Xk−1 is bounded by
2d2.

Remark 1. The set Ci(P) has the following additional property. For σ ∈
sign(Ci(P)) and C a connected component ofR(σ, Ri), for each x = (x1, ..., xi) ∈
C, the family

⋃

i<j≤k

Cj(P)(x1, ..., xi) is the cylindrifying family of polynomials as-

sociated to P(x1, ..., xi), and moreover the induced cylindrical decompositions
have the same structure. More precisely, this means that there is a 1-1 corre-
spondence between the cylindrical cells as x varies over C.

4 Proof of the Main Result

For 1 ≤ i ≤ n, let

Pi =
d∑

j=0

Ai,jT
j
i ∈ R[Āi, Ti],

Qi =
d∑

j=0

Bi,jT
j
i ∈ R[B̄i, Ti],

Ri =
d∑

j=0

Ci,jT
j
i ∈ R[C̄i, Ti],
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wherewe denote by Āi (respectively, B̄i, C̄i) the vector of variables, (Ai,0, ..., Ai,d)
(respectively, (Bi,0, . . . , Bi,d), (Ci,0, . . . , Ci,d)).

Similarly, we denote by Ā (respectively, B̄, C̄) the vector of variables,

(A1,0, . . . , A1,d, . . . , An,0, . . . , An,d)

(respectively, (B1,0, ..., B1,d, ..., Bn,0, ..., Bn,d), (C1,0, ..., C1,d, ..., Cn,0, ..., Cn,d)).
We denote by γi the triple (Pi, Qi, Ri). For fixed values (āi, b̄i, c̄i), the triples
γi(āi, b̄i, c̄i) = (Pi(āi, Ti), Qi(b̄i, Ti), Ri(c̄i, Ti)), 1 ≤ i ≤ n gives rise to an ordered
set of curves in R

3, which we denote by Γ (ā, b̄, c̄). Let WP (ā, b̄, c̄) denote the
weaving pattern produced by Γ (ā, b̄, c̄). We want to bound the cardinality of the
set,

{WP (ā, b̄, c̄) | (ā, b̄, c̄) ∈ R
3(d+1)n}.

Now, consider the following family of polynomials:

Ai = {X−Pi(Āi, Ti), Y −Qi(B̄i, Ti), Z−Ri(C̄i, Ti)} ⊂ R[Āi, B̄i, C̄i, X, Y, Z, Ti].

Let Bi = ElimTi(Ai) ⊂ R[Āi, B̄i, C̄i, X, Y, Z], and let

B =
⋃

1≤i≤n

Bi.

Notice, if we specialize (Āi, B̄i, C̄i) to some (āi, b̄i, c̄i) ∈ R
3(d+1), the image

of the curve γi(āi, b̄i, c̄i) ∈ R
3 is a Bi(āi, b̄i, c̄i)-semi-algebraic set.

The following proposition relates the weaving pattern, WP (ā, b̄, c̄) to a cylin-
drical decomposition of R3 adapted to the family B(ā, b̄, c̄).

Proposition 1. Let (ā, b̄, c̄) ∈ R
3(d+1)n. The weaving pattern, WP (ā, b̄, c̄) is

determined by the cylindrical decomposition induced by the cylindrifying family
of polynomials associated to B(ā, b̄, c̄).

In particular, if two points (ā, b̄, c̄), (ā′, b̄′, c̄′) ∈ R
3(d+1)n, are such that the

cylindrical decompositions induced by the cylindrifying families of polynomials
associated to B(ā, b̄, c̄) and B(ā′, b̄′, c̄′) have the same structure, then WP (ā,b̄,c̄)=
WP (ā′, b̄′, c̄′).

Proof. The proposition is a consequence of the definition of weaving pattern, the
definition of cylindrifying families of polynomials, and the fact that the images
of the curves, γi(āi, b̄i, c̄i), are all B(ā, b̄, c̄)-semi-algebraic sets.

We now prove Theorem 1.

Proof. Let C1 = ElimZ(B), C2 = ElimY (C1), and C3 = ElimX(C2).
The set C3 has the following property which is a consequence of Remark 1

in Section 3. Let C be a connected component of the realization of a realizable
sign condition of C3. Then, for each (ā, b̄, c̄) ∈ C, B(ā, b̄, c̄)∪C1(ā, b̄, c̄)∪C2(ā, b̄, c̄)
is the cylindrifying family of polynomials associated to B(ā, b̄, c̄) and moreover
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the cylindrical decompositions induced have the same structure as (ā, b̄, c̄) varies
over C.

Since, by Proposition 1, for fixed (ā, b̄, c̄) ∈ R
3(d+1)n the weaving pattern

of Γ (ā, b̄, c̄) is determined by any Cylindrical Decomposition of R
3 adapted to

B(ā, b̄, c̄), then by the previous observation, the number of distinct weaving pat-
terns is clearly bounded by b0(C3), which we now proceed to bound from above.

From the bounds stated in Section 3, we have that for 1 ≤ i ≤ n, #(Bi) =
O(d3) and the degrees of the polynomials in Bi are bounded by O(d2). Hence,
#(B) = O(nd3). Since, C3 is obtained from B after three successive Elim opera-
tions, we get that, #C3 = (nd)O(1) and the degrees of the polynomials in C3 is
bounded by dO(1)). The number of variables in the polynomials in C3 is 3(d+1)n.
Using the bound in Theorem 2, we get that b0(C2) is bounded by

(nd)O(dn) = 2O(n log n).

5 Most Weaving Patterns Are Not Realizable

We have the following theorem which generalizes Theorem 3 in [3].

Theorem 3. The number of weaving patterns realizable by polynomial curves of
degrees bounded by a constant, divided by the total number of weaving patterns
of n curves whose projections are allowed to intersect at most a constant number
of times, tends to 0 exponentially fast, as n→∞.

Proof. By Theorem 1, the number of distinct weaving patterns produced by
such curves is bounded by 2O(n log n). On the other hand, considering n lines in
the plane in general position, and counting all possible ways of labeling the

(
n
2

)

crossings, we see that there are at least 2(n
2) possible weaving patterns.

Remark 2. The proof of the upper bound in Theorem 3 in [3] does not seem
to consider the fact that the projections of different sets of n lines in R

3 to
the plane, can produce arrangements which are combinatorially distinct, and
these would produce distinct weaving patterns by definition. In fact, obtaining
good control on this number complicates the proof of Theorem 1 in this paper.
However, since the number of combinatorially distinct arrangements of n lines
in R

2 is still bounded by 2O(n log n), the proof of the theorem in [3] is still valid.
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Abstract. We propose a method for drawing AS graph data using 2.5D
graph visualization. In order to bring out the pure graph structure of the
AS graph we consider its core hierarchy. The k-cores are represented by
2D layouts whose interdependence for increasing k is displayed by the
third dimension. For the core with maximum value a spectral layout is
chosen thus emphasizing on the most important part of the AS graph.
The lower cores are added iteratively by force-based methods. In con-
trast to alternative approaches to visualize AS graph data, our method
illustrates the entire AS graph structure. Moreover, it is generic with
regard to the hierarchy displayed by the third dimension.

1 Introduction

Current research activities in computer science and physics are aiming at under-
standing the dynamic evolution of large and complex networks like the physical
internet, World Wide Web, peer-to-peer systems and the relation between au-
tonomous systems (AS). The design of adequate visualization methods for such
networks is an important step towards this aim. As these graphs are on one
hand large or even huge, on the other hand evolving, customized visualizations
concentrating on their intrinsic structural characteristics are required.

In this paper we propose a layout method that brings out the pure structure
of an autonomous systems (AS) graph. More precisely, we focus on the core
hierarchy of AS graphs. A 2D layout is obtained by first choosing a spectral
layout to display the core with maximum value and then adding the lower cores
iteratively by force-based methods. Using 2.5D graph visualization, we then rep-
resent the core hierarchy by stacking the induced 2D layouts of the k-cores for
increasing k on top of each other in the third dimension. Visualizations in 2.5D
have been proposed frequently for network data, for example to display other
graph hierarchies [6, 9] or evolving graphs over time [4].

A few samples of visualizations of AS graphs are already available. However,
they either focus on the geographic location of the AS [8], on the routing struc-
ture seen from a selected AS [2, 7] or on a high level view created by clustering
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the nodes [13]. In contrast, our method displays the entire AS graph structure
without using external information. Previous attempts to analyze the structure
of the AS graph propose the existence of meaningful central nodes that are highly
connected to a large fraction of the graph [11]. It seems that this structural pe-
culiarity is interpreted very well by the notion of k-cores [14, 1]. This concept is
already rudimentary used for initial cleaning in [12]. Accordingly, our approach
is based on the hierarchical core decomposition of the AS graph. Moreover, other
kind of hierarchies can be used instead.

We consider AS graphs from different dates between 2001 and 2003 to demon-
strate the usefulness of our method as means for analyzing the relation between
ASes. Also graphs obtained by the Internet Topology Generator INET 3.0 [15]
are consulted.

The new 2.5D visualization method for AS graphs is explained in Section 2.
In Section 3 we present and discuss the results obtained for various AS graph
data sets and Section 4 gives the conclusions.

2 Layout Method

Layout Paradigm. We assume a hierarchical decomposition based on the k-
core concept. The k-core of a graph is defined as the unique subgraph obtained
by recursively removing all nodes of degree less than k. A node has coreness �,
if it belongs to the �-core but not to the (� + 1)-core. The �-core layer is the
collection of all nodes having coreness �. The core of a graph is the k-core such
that the (k + 1)-core is empty. In general, the core decomposition can result in
disconnected parts. For the AS graph, all k-cores stay connected which is an
advantage of the core hierarchy.

However, abstraction to the levels of hierarchy is normally accompanied by a
loss of information that should be avoided. Therefore, we establish the following
layout paradigm: First, all nodes and edges are displayed, second, the levels of
hierarchy are emphasized, and third, the inter- and intra-level connections are
made clear.

We propose an incremental algorithm to produce a 2D layout satisfying our
layout paradigm. This layout is afterwards transformed into 2.5D in a canonical
way using the core hierarchy. First a generic method to generate a 2D layout of a
hierarchical decomposition of the graph is introduced, followed by the specifica-
tion of parameters that can be chosen to fulfill certain requirements and requests
induced by the structure of AS graphs.

Generic Algorithm. The first step of the algorithm constructs a spectral lay-
out for the highest level of the hierarchy. Then, iteratively, the lower levels are
added using a combination of barycentric and force-directed placement. Algo-
rithm 1 gives a formal description of this procedure based on the core hierarchy.

Preliminary studies indicate that a spectral placement does not lead to a
satisfactory layout of the AS graph as a whole. However, the results improve for
increasing core value. We therefore choose a spectral layout as initial placement
for the core of the graph. Then, for the iterative addition of the other level of
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Algorithm 1: Generic AS layout algorithm.
Input: graph G = (V, E)

let k← maximum coreness, Gl ← the l-core, Cl ← l-core layer
calculate spectral layout for Gk

for l← k − 1, . . . , 1 do
if Cl �= ∅ then

calculate barycentric layout for Cl in Gl, keeping Gl+1 fixed
calculate force-directed layout for Cl in Gl, keeping Gl+1 fixed
calculate force-directed layout for Gl

hierarchy, we first calculate a barycentric placement in which all new nodes are
placed in the barycenter of their neighbors in this level. Unfortunately, barycen-
tric layouts also have a number of drawbacks. Firstly, nodes that are structurally
equivalent in the current subgraph are assigned to the same position. Secondly,
all nodes are placed inside the convex hull of the already positioned nodes. In
particular this means that the outermost placed nodes are those having highest
coreness which is clearly contradictory to the intuition of importance. To over-
come these difficulties, we use the barycentric layout as an initial placement for
a subsequent force-directed refinement step, where only newly added nodes are
displaced. In addition, a force-directed approach is applied for all nodes in or-
der to relax the whole graph layout. However, the number of iterations and the
maximal movement of the nodes is carefully restricted not to destroy the pre-
viously computed layout. A special feature of this relaxation step is the use of
non-uniform natural spring lengths l(u, v), where l(u, v) scales with the smaller
core value of the two incident nodes u and v. Thus, the effect of a barycentric
layout is modeled, since edges between nodes of high coreness are longer than
edges between nodes of low coreness. Accordingly, these springs prevent nodes
with high coreness from drifting into the center of the layout.

Fitting the Parameters. Beside the choice of the hierarchical decomposition,
the algorithm offers a few more degrees of freedom that allow an adjustment to
a broad range of applications. Our choice of parameters are originated from the
core structure of the AS graph. For the spectral layout we propose a modified
Laplacian matrix L′ = 1/4 · D − A [5]. Our experiments showed that the nor-
malized adjacency matrix results in comparably good layouts while the standard
Laplacian matrix performs significantly worse.

The force-directed placement is computed by a variant of the algorithm
from [10]. Unlike the original algorithm, we calculate the displacement only for
one vertex at a time and update its position immediately. Furthermore, we use
the original forces but with non-uniform natural edge lengths l(u, v) proportional
to min{level(u), level(v)}2. For the local refinement step we perform at most 50
iterations and for the global roughly 20 iterations.
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(a) 2D layout. (b) Level projection. (c) 1-core layer only.

(d) 2-core layer only. (e) 3-core layer only.

Fig. 1. 2D layout and level projection of the AS graph (06/01/02).

3 Results

We illustrate the results of our method for real AS data sets as well as for
generated graphs. For a more detailed discussion, we also refer to [3]. The section
is concluded by techniques to aid the human perception.

Our real world data consist of three AS graphs collected by the Oregon
Routeview Project (http://www.routeviews.org) on different dates, i.e June,
1st 2001 (11,211 nodes, 23,689 edges, 19 levels), June, 1st 2002 (13,315 nodes,
27,703 edges, 20 levels), and June, 1st 2003 (15,415 nodes, 34,716 edges, 25
levels). In addition, we used INET 3.0 to generate artifical graphs that should
exhibit a similar topology. We discuss two different two-dimensional types of
figures, the 2D layout produced by Algorithm 1 and the projection of the 2.5D
layout into one of the full dimensions, also referred to as level projection. Nodes
are represented by ellipses of size decreasing according to the coreness and with
colors fading from black to white. Edges are always drawn as straight lines.

Real AS Graph. The 2D layouts are dominated by the nodes with small core-
ness leading to a huge periphery (Fig. 1(a)). On the other hand, most nodes with
higher coreness are contained in the convex hull of the core, which is apparent
in Figure 1(b) and documents the relation between importance and coreness. A
closer examination reveals three almost separated radial areas around the center.
The first one mainly contains the 3-core layer, while the 2-core layer forms the
second and third area that are distinguished by their density (see Fig. 1(c)–1(e)).
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(a) 2D layout. (b) Level projection.

Fig. 2. Layouts of the generated graph with 11,211 nodes.

This reflects the heterogenous importance distribution within these areas. In con-
trast, a large part of the 1-core layer is attracted to the central region. These
properties can be observed for all three instances. The well-known growth of the
AS graph affects especially the 2- and 3-core layers. We observe that the spatial
distances of these two layers decreases over time.

Generated Graphs. There are significant differences of the generated graphs
to the real AS graphs, e.g. in the number of edges (35,300 vs. 23,700) and core
levels (8 vs. 19). An obvious difference of the generated graph is the more uniform
distribution of cardinalities of the core layers (Fig 2). Accordingly, the separation
of the different core layers is less visible in the layout.

Supporting Perception. There are several means for visual aid in 2.5D lay-
outs, i.e. choice of perspective (in 3D), additional geometric objects emphasizing
the levels of hierarchy, and colors. The choice of perspective is very powerful. We
have already used this feature when presenting only the 2D layout and the level
projection respectively. More general, a user can focus on individual aspects,
i.e. a global oriented view, a hierarchical version, or a mixture of both. A benefi-
cial consequence might be that unintended information is automatically masked
out by the perspective. In order to simplify navigation in the three dimensional
space, one can also introduce additional objects that mark the levels of hierar-
chy, i.e. rectangles, discs, or planes. Transparency or filters might even increase
their effectiveness. Color can be used in various ways, to highlight nodes and
edges of special interest, to code the levels of hierarchy, or to improve the overall
perception. We used transparent rectangles that absorbed light to draw layers
and colored the nodes accordingly to their coreness. The color of the edges are
determined by a linear interpolation of their incident nodes’ color (see Fig. 3).

4 Conclusion

Core based 2.5D visualizations of the AS graph support the recognition of its
detailed hierarchy. Especially, it emphasizes the characteristics of the lower core
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(a) Small example. (b) AS graph (06/01/03).

Fig. 3. Visual support features.

layers and their connections with the highest layers. The evolution of the AS
graph has an observable effect on the layout. Also there is a significant difference
in the layouts of real AS graphs and generated ones.
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Abstract. In this paper, we present boundary labeling, a new approach
for labeling point sets with large labels. We first place disjoint labels
around an axis-parallel rectangle that contains the points. Then we con-
nect each label to its point such that no two connections intersect. Such
an approach is common e.g. in technical drawings and medical atlases,
but so far the problem has not been studied in the literature. The new
problem is interesting in that it is a mixture of a label-placement and a
graph-drawing problem.

1 Introduction

Label placement is one of the key tasks in the process of information visualiza-
tion. In diagrams, maps, technical or graph drawings, features like points, lines,
and polygons must be labeled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting technol-
ogy and the amount of information to be visualized. Due to the computational
complexity of the label-placement problem, which is NP-hard in general [5], car-
tographers, graph drawers, and computational geometers have suggested numer-
ous approaches, such as expert systems, zero-one integer programming, approx-
imation algorithms, simulated annealing, and force-driven algorithms to name
only a few. An extensive bibliography about label placement can be found at [14].
The ACM Computational Geometry Impact Task Force report [3] denotes label
placement as an important research area.

In this paper, we deal with labeling dense point sets with large labels. This is
common e.g. in medical atlases where certain features of a drawing or photo are
explained by blocks of text that are arranged around the drawing. Our model
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is as follows: we assume that we are given a set P = {p1, . . . , pn} of points and
an axis-parallel rectangle R that contains P . Each point, or site, pi is associated
with an axis-parallel rectangular open label. The labels have to be placed and
connected to their corresponding sites by polygonal lines, so-called leaders, such
that (a) no two labels intersect, (b) no two leaders intersect, and (c) the labels
lie outside R but touch R. We investigate various constraints concerning the
location of the labels and the type of leaders. More specifically we either allow
to attach labels to one, two or all four sides of R, and we either use straight-
line or rectilinear leaders. We propose efficient algorithms that find some non-
intersecting leader-label placement, but we also consider two natural objectives:
minimize the total length of the leaders and, if leaders are not straight lines,
minimize the total number of bends over all leaders.

These new problems are combinations of label-placement and graph-drawing
problems. Due to the complexity of either step there are still very few pub-
lications that combine graph drawing and label placement. Klau and Mutzel
[11] have coined the term “graph labeling” for this discipline and have given a
mixed-integer program for computing orthogonal graph layouts with node labels.

Leaders have so far only been used by Zoraster [15], Freeman et al. [6], and
Fekete and Plaisant [4]. Zoraster [15] uses simulated annealing to label points
and lines in seismic survey maps, while Freeman et al. [6] use an iterative raster-
based method to determine positions for area labels in soil survey maps. Fekete
and Plaisant [4] extend the infotip paradigm to cope with labeling dense point
sets interactively. They draw a circle of fixed radius around the current cursor
position, the so-called focus circle, and label only the sites that fall into the
circle. Labels are left-aligned and placed in two stacks to the left and the right
of the circle. To connect sites to their labels, Fekete and Plaisant use non-crossing
leaders that consist of two or three line segments: one segment goes radially from
the site to its projection on the focus circle and one or two axis-aligned segments
go from there to the corresponding label.

Iturriaga and Lubiw [10] give an O(n4)-time decision algorithm for attaching
elastic labels to n points on the perimeter of a rectangle. An elastic label models
a block of text of fixed area, but varying width and height. Iturriaga and Lubiw
place their labels inside the rectangle. Iturriaga [9] also briefly investigates the
inverse problem, where elastic labels must be attached to the sites outside the
given rectangle R. She presents an algorithm that finds a label placement that
uses the minimum-width strip around R. If n sites are given in order around R,
her algorithm takes O(n) time.

This paper is structured as follows. In Section 2 we model and define our
problem. In Section 3 we are concerned with rectilinear leaders. We investi-
gate algorithms for non-intersecting leader-label placement, for leader-bend and
leader-length minimization. In Section 4 we consider straight-line leaders. For
the one-side and the four-side case, we compute legal leader-label placements
and we minimize (with a slower algorithm) the total leader length. We have
implemented some of our algorithms. In Section 5 we give an example layout. A
full version of this paper with more examples and proofs is available at [2].
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2 Defining and Modeling the Problem

We consider the following problem. Given an axis-parallel rectangle R=[lR, rR]×
[bR, tR] of width W = rR − lR and height H = tR − bR, and a set P ⊂ R of n
points pi = (xi, yi), each associated with an axis-parallel rectangular open label
li of width wi and height hi, our task is to find a legal or an optimal leader-label
placement. Our criteria for a legal leader-label placement are the following:

1. Labels have to be disjoint.
2. Labels have to lie outside R but touch the boundary of R.
3. Leader ci connects point pi with label li for 1 ≤ i ≤ n.
4. Intersections of leaders with other leaders, points or labels are not allowed.
5. The ports where leaders touch labels may be prescribed (the center of a label

edge, say) or may be arbitrary.

In this paper we present algorithms that compute legal leader-label placements
for various types of leaders defined below, but we also approach optimal place-
ments according to the following two objective functions:

– short leaders (minimum total length) and
– simple leader layout (minimum number of bends).

These criteria have been adopted from the area of graph drawing since leaders
do not play a significant role in the label-placement literature. We will evaluate
the two criteria under two models for drawing leaders. In the first model we
require that each leader is rectilinear, i.e. a connected sequence of orthogonal
line segments. In the second model each leader is drawn straight-line. Clearly,
minimizing the number of bends does not make sense for straight-line leaders.

A rectilinear leader consists of a sequence of axis-parallel segments that con-
nects a site with its label. These segments are either parallel (p) or orthogonal
(o) to the side of the bounding rectangle R to which the label is attached. This
notation yields a classification scheme for rectilinear leaders: let a type be an
alternating string over the alphabet {p, o}. Then a leader of type t = t1 . . . tk
consists of an x- and y-monotone connected sequence (e1, . . . , ek) of segments
from site to label, where each segment ei has the direction that the letter ti pre-
scribes. In this paper we focus on leaders of the types opo and po, see Figures 1
and 2, respectively. We consider type-o leaders to be of type opo and of type po
as well. We refer to straight-line leaders as type-s leaders.

In this paper we assume that input points are in general position, i.e. no
three points lie on a line and no two points have the same x- or y-coordinate.

We start with a negative result. Assume that not all label heights are equal,
that labels must be attached either to the right or left side of the rectangle R, and
that the heights sum up to twice the height of R. Clearly the task of assigning
the labels to the two sides corresponds to the well-known problem Partition,
which is weakly NP-complete [7]. Due to this observation we first make some
simplifying assumptions like uniform labels and then generalize our algorithms
by adding more requirements.
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3 Rectilinear Leaders

In this section we investigate different ways of drawing rectilinear leaders. We pre-
sent algorithms for legal leader-label placement, leader-bend and leader-length
minimization. We consider attaching labels to one, two, and four sides of the
rectangle R and connecting sites to their labels with leaders of type opo and po,
see Figures 1 and 2, respectively.

3.1 Leader-Bend Minimization

One-Side Labeling with Type-opo Leaders. We first consider the problem
of attaching labels to one, say the right, side of the rectangle R. We assume
that the sum of the label heights is at most the height of R and that the sites
are sorted according to non-decreasing y-coordinate. If we use a slightly wider
rectangle R′ and leaders of type opo, then we can attach labels to the right side
of R′ and place non-crossing leaders in R′ as follows. We first stack the labels on
top of each other such that the lower left corner of l1 is incident to the lower right
corner of R′. Then we connect each site pi by a horizontal segment yi × [xi, rR]
to the right side of R. Finally we use the gap between the right sides of R and
R′ to lay out the remaining parts of the leaders from the right side of R to the,
say, midpoints of the left label edges, see Figure 1. This can be done with at
most two bends per leader and without any crossing, since the vertical orders
of sites and labels are identical and since we assume that no two sites have the
same y-coordinate. Thus a legal one-side type-opo leader-label placement can be
computed in O(n log n) time.

Clearly this approach is not optimal in terms of the total number of leader
bends. Given the restriction to leaders of type opo and the trick with the extra
space at the right side of R, routing the leaders is easy, and the remaining
problem is a one-dimensional label-placement problem. There has been work
on similar problems where labels are not restricted to a constant number of
positions, but can slide. Our problem is new in that labels do not necessarily
have to contain the point they label, but even if they do not (and thus contribute
to the objective function in a negative way), they must be placed within an
interval whose length is restricted (by the height of R).

Theorem 1. A legal one-side type-opo leader-label placement with the minimum
number of bends can be computed in O(n2) time and space.

Proof. We use dynamic programming with a table T of size n × (n + 1). For
k ≤ i the entry T [i, k] will contain the minimum y-coordinate that is needed
to accommodate the first i labels such that at least k of them use horizontal
leaders. If it is impossible to connect k out of the first i labels with horizontal
leaders, we set T [i, k] to∞. As usual, the table entries are computed bottom-up.

To compute a new entry T [i, k], observe that there are only three interesting
positions of the label li: (a) directly on top of li−1 using a horizontal leader,
(b) directly on top of li−1 using a 2-bend leader, and (c) such that the top edge
of li lies on the horizontal line through the i-th site. These cases and the case
T [i, k] = ∞ can be distinguished in constant time. Thus T can be computed
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in O(n2) time. Given T , the number of horizontal leaders is the largest k that
fulfills T [n, k] ≤ tR. By using an extra table of the same size as T , label and
leader positions of an optimal solution can be computed as well. ��
3.2 Legal Leader-Label Placement

Four-Side Labeling with Type-opo Leaders. Our approach for attaching
labels to all sides of the rectangle R is very simple. We partition R into four
disjoint regions such that the algorithms from the previous subsection can be
applied to each region separately. Points that lie on boundaries of our partition
in the interior of R can be connected to a side of R via both incident regions.
Thus we ignore the problem of how to distribute these boundaries.

We have two requirements for a region A in the partition of R: (a) A must
be adjacent to a specific side sA of R and (b) each point in A must see the point
with the same x- or y-coordinate on sA. Requirement (b) is a consequence of
using type-opo leaders. If we manage to find a partition of R into four regions
such that each region A contains the side sA of R and A is monotone in the
direction of sA then obviously both requirements are fulfilled.

To avoid an NP-hard partition problem as discussed in Section 2 we assume
that we know how many labels have to be attached to which side of R. To simplify
the presentation, we assume uniform square labels. Let n1, . . . , n4 be the number
of labels that have to be attached to the respective sides and let n = n1+· · ·+n4.
We want to partition R into four regions A1, . . . , A4 as described above, such
that |Ai ∩ P | = ni for i = 1, . . . , 4. We do this by rotating rays around the
rectangle corners until these conditions are fulfilled, see Figure 3.

The rotations can be implemented by sorting the sites according to the angles
they enclose with the horizontal or vertical lines through the appropriate corners
of R. Using the O(n log n)-time algorithm of the previous subsection we have the
following result:

Lemma 1. Given a rectangle R of sufficient size, a set P ⊂ R of n points in
general position, square uniform labels, one per point, and numbers n1, . . . , n4

that express how many labels are to be attached to which side of R, there is an
O(n log n)-time algorithm that attaches the labels to R and connects them to the
corresponding points with non-intersecting type-opo leaders.

One-Side Labeling with Type-po Leaders. In this subsection we describe
how to compute a legal labeling with leaders of type-po, see Figure 2. We restrict
ourselves to attaching labels to one side s of R. W.l.o.g., we assume that s is
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the right vertical side of R, and that the sites p1, . . . , pn are sorted according to
increasing y-coordinate. We consider uniform labels. Since we do not attempt to
minimize the number of bends, we simply stack labels to the right of s in the
same vertical order as the corresponding sites.

Our algorithm is very simple: we go through the sites from bottom to top.
Assume we have already placed non-intersecting leaders for the first i− 1 sites.
Then we connect pi to li by a leader ci of type po, i.e. by a vertical segment
(possibly of length zero) followed by a horizontal segment. Clearly ci can be
routed such that ci does not contain any sites except pi. Now we go through the
sites p1, . . . , pi−1 from right to left and test their leaders for intersection with ci.
Let pj be the rightmost site pj whose leader cj intersects ci. Then we reroute
as in Figure 4: we connect pj to li and pi to lj . We observe that the new leader
c′j of pj does not intersect any other leader and that the new leader c′i of pi can
only intersect leaders of sites to the left of pj . For placing the leader of pi we
have to reroute at most i − 1 times, and after this process of rerouting no two
leaders intersect any more. Thus we have:

Theorem 2. A legal one-side type-po leader-label placement can be computed in
O(n2) time given uniform labels.

3.3 Leader-Length Minimization

In the remainder of this section we focus on obtaining label placements of min-
imum total leader length. We attach labels to the left and the right side of the
rectangle R, and we treat uniform and non-uniform labels.

Type-opo Leaders and Uniform Labels. Labels are placed on opposite
sides of the rectangle, say sleft and sright, n/2 labels on each side. The labels
are assumed to be uniform in the sense that they all are of identical height. The
n/2 labels are of maximum height, covering the full length of the side of the
rectangle they reside, and hence their position at each side is determined. We
are given points p1, . . . , pn that have to be connected with leaders to labels on
sleft and sright so that the total leader length is minimized.

We consider type-opo leaders. Here we ignore the subproblem of routing. This
can be done as for the one-side label placement in Section 3.1. Again we assume
the existence of a slightly wider rectangle R′. The i-th point p which is assigned
to sleft is connected to the i-th label of sleft with a type-opo leader. Since the
location of each label is determined (and fixed) the length of the leader to the
i-th label of sleft is defined. Call it Left[p, i]. We define Right[p, i] analogously.

Theorem 3. Given a rectangle R with n/2 uniform labels of maximum height
on its left and on its right side, and a set P ⊂ R of n points in general position,
there is an O(n2)-time algorithm that connects all points to their labels with
non-intersecting type-opo leaders such that the total leader length is minimum.

Proof. To compute a label placement of minimum total leader length, we use
a dynamic programming algorithm. We assume that n is even. The case that
n is odd is slightly more involved, see [2]. The algorithm constructs a table
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T [0 : n/2, 0 : n/2]. Entry T [l, r] contains the minimum total leader length for
the l + r lowest points where l of them have labels on sleft and r on sright. It is
easy to prove by induction that T [l, r] satisfies the following recurrence relation
for l, r ≤ n/2:

T [0, 0] = 0 (1)
T [0, r] = T [0, r − 1] + Right[pr, r] (2)
T [l, 0] = T [l− 1, 0] + Left[pl, l] (3)
T [l, r] = min{ T [l, r − 1] + Right[pl+r, r], T [l− 1, r] + Left[pl+r, l] } (4)

Having computed table T , entry T [n/2, n/2] corresponds to a label placement
of minimum total leader length. The actual placement can be easily recovered
by maintaining an additional table. The running time is obvious. ��
Type-po Leaders and Uniform Labels. Our next result also deals with
two-side placement of uniform labels.

Theorem 4. Given a rectangle R with n/2 uniform labels of maximum height
on each of its left and right side, and a set P ⊂ R of n points in general position,
there is an O(n2)-time algorithm that attaches each point to a label with non-
intersecting type-po leaders such that the total leader length is minimum.

Proof. We use the dynamic-programming algorithm of Theorem 3 for the case
of type-opo leaders to get the label placement. It runs in O(n2) time. Observe
that connecting a site to its label (at a fixed port) with a type-opo or a type-po
leader requires the same leader length, namely, the Manhattan distance of site
and port. So after obtaining the label placement (for type-opo leaders) we use
type-po leaders routed in the way described in Section 3.2. Possible crossings of
leaders to the same side are resolved as in Section 3.2 without changing the total
length, while crossings of leaders that go to opposites sides cannot occur. This
is due to the fact that swapping labels between a pair of points with crossing
leaders would result in a solution with smaller total leader length.

Four-Side Labeling with Type-opo Leaders. We give a polynomial-time
algorithm which finds type-opo leaders of minimum total length when the labels
can be placed on all four sides of the boundary of the rectangle. We only assume
that the labels have uniform size, the positions of the labels are disjoint, and the
label ports are predefined. We have the following planarity result:

Lemma 2. For any one-side solution of type-opo leaders with crossings there
exists a crossing-free one-side solution of type-opo leaders which does not have
a larger total leader length.

Now we can use Vaidya’s algorithm [13] for minimum-cost bipartite matching
for points in the plane under the Manhattan metric. It runs in O(n2 log3 n) time
and finds a matching between sites and ports that minimizes the total Manhattan
distance of the matched pairs.

Theorem 5. A crossing-free four-side solution of type-opo leaders with mini-
mum total length can be computed in polynomial time.
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Proof. Assume now that the solution of the minimum-weight matching implies
a crossing between two leaders. Clearly this crossing is between two segments
inside of the rectangle. Replacing the crossing by an appropriate “knock-knee”
[12] gives two leaders which might not be of type-opo. Rerouting the leaders in
type-opo shape does not increase the leader lengths, and applying Lemma 2 to
each of the two affected sides of the rectangle will provide a new solution of
type-opo with at most the same total leader length. An argument similar to that
used for the crossing resolution for type-po leaders shows that the process of
crossing resolution terminates in polynomial time. ��
Type-opo Leaders and Non-uniform Labels. We focus on two-side label
placement of type-opo leaders. We are given n points pi = (xi, yi), i = 1, 2, . . . , n,
each associated with a label li of height hi which can be placed on either the left
side (sleft) or the right side (sright) of rectangle R. Observe that the height of
rectangle R must be large enough to accommodate the labels. In the event that
the height of rectangle R is equal to half the sum of the label heights, managing to
place the labels accounts to solving the partition problem. So, we cannot expect
an algorithm that runs in polynomial time only to the number of points. Instead
we get an algorithm that runs in polynomial time to the height of rectangle R,
which can be considered to be the equivalent of the pseudo-polynomial solution
to the partition problem.

Here we again ignore the routing of the type-opo leaders and assume the
existence of a slightly wider rectangle R′.

Theorem 6. Given a rectangle R of height H, a set P ⊂ R of n points in
general position where point pi is associated with label li of height hi, there is
an O(nH2)-time algorithm that places the labels to the sides of the rectangle and
attaches the corresponding points with non-intersecting type-opo leaders such that
the total leader length is minimum.

Proof. We say that label l is placed at height h if its bottom edge has y-coordinate
h. Assume that the i-th point pi is connected to sleft and its label li is placed
at height y then the length of the edge from pi to li leftward is defined. Call it
Left[pi, y]. Similarly, we define Right[pi, y].

We denote by T [i, yL, yR] the total length of the type-opo leaders of the i
lowest points, where the left side of the rectangle is occupied up to yL and the
right side is occupied up to yR. By TL[i, yL, yR] we denote the total leader length
for the case where the i-th point has its label on the left side, the left side of the
rectangle is occupied up to yL (including label li) and the right side is occupied
up to yR. Similarly we define TR[i, yL, yR]. Then, by induction we can show that
the following recurrence relations hold (we omit the boundary conditions):

T [i, yL, yR] = min{TL[i, yL, yR], TR[i, yL, yR]} (5)
TL[i, yL + hi, yR] = T [i− 1, yL, yR] + Left[pi, yL] (6)
TR[i, yL, yR + hi] = T [i− 1, yL, yR] + Right[pi, yR] (7)

Based on them, we can compute table T by dynamic programming. After this
computation, the minimum table entry of the form T [n, a, b], where 0 < a, b ≤ H ,
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gives the minimum total leader length. We can recover the label placement which
realizes the computed total leader length by maintaining an additional table with
dimensions equal to those of T . The dynamic programming algorithm will use
O(nH2) time and space. ��

4 Straight-Line Leaders

In this section we investigate straight-line or type-s leaders, i.e. we allow skewed
lines but forbid bends. We first give a simple algorithm that computes a legal
one-side labeling. Then we show how this algorithm can be improved either in
terms of runtime or in terms of total leader length. Finally we sketch how it can
be applied to four-side labeling.

One-Side Labeling. We adopt the scenario of Section 3.1. Let R be the bound-
ing rectangle. We want to attach labels to the right side of R. We assume that
labels are uniform and that their heights add up to the height of R. We also
assume that the port mi where the leader is connected to its label li is fixed, say
mi is in the middle of the left label edge. Thus the only task is to assign ports
to points such that no two leaders intersect.

Let M = {m1, . . . , mn} be the ports sorted by y-coordinate from bottom to
top. For i = 1, . . . , n we assign to mi the first unlabeled point p ∈ P that is hit
by a ray ri that emanates from mi and is rotated around mi in clockwise order.
Initially ri is pointing vertically downwards. The proof of correctness is trivial.

Clearly the algorithm can be implemented in O(n2) time, but we can do
better. Let CH be the convex hull of P ∪M . Note that CH has an edge between
the lowest port m1 and the first point p reached by the rotating ray r1. This
edge is the first leader. Removing p and m1 from CH yields the next leader and
so on. Using a semi-dynamic convex-hull data structure [8] yields a total running
time of O(n log n). This algorithm is correct since it mimics the slow one.

To compute an assignment that is minimum in terms of total leader length
we proceed as described just before Theorem 5, except now we use Euclidean
minimum-cost bipartite matching for the sets of sites and ports. This takes
O(n2+δ) time [1], where δ > 0 can be chosen arbitrarily small. For type-s leaders
length minimization automatically ensures planarity. Thus we have:
Theorem 7. A legal one-side type-s leader-label placement can be computed in
O(n log n) time. Minimizing total leader length takes O(n2+δ) time for any δ > 0.

Four-Side Labeling. In this subsection, we partition the rectangle into convex
polygons, such that the sites in each polygon can be connected to the labels on
the boundary of the polygon using the one-side routing algorithm of the previous
subsection. We assume uniform labels. Note that the only assumption we used
about the relative position of sets P and M of sites and ports, respectively, was
that M is contained in an edge of the convex hull of P ∪M . To make the one-
side routing algorithm work, the convex polygons must be chosen such that they
contain exactly as many sites as there are labels on their boundary. We construct
in O(n log n) time eight polygons with this property by rotating �, moving �top

and �bot, and rotating �1 to �4 as indicated in Figure 5.
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Fig. 4. Rerouting of crossing leaders. Fig. 5. Partition for straight-line leaders.

As in the one-side case Euclidean minimum-cost bipartite matching yields a
placement of minimum total leader-length. Thus we conclude:

Theorem 8. A legal four-side type-s leader-label placement can be computed in
O(n log n) time. Minimizing total leader length takes O(n2+δ) time for any δ > 0.

5 Examples

We have implemented some of the presented algorithms, but due to space con-
straints we can give only one example here. Figure 6 depicts a relatively small
medical map of a skeleton. The original labels and leaders are on the right side
of the drawing. We have mirrored the sites at the vertical line through the spine
and have applied our algorithm for type-opo leaders such that labels were placed
to the left of the drawing. For more examples, see [2].
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Abstract. We use Schnyder woods of 3-connected planar graphs to pro-
duce convex straight line drawings on a grid of size (n−2−∆)×(n−2−∆).
The parameter ∆ ≥ 0 depends on the the Schnyder wood used for the
drawing. This parameter is in the range 0 ≤ ∆ ≤ n

2
− 2.

1 Introduction

We investigate crossing-free straight-line drawings of planar graphs with the
restriction that the vertices of the graph have to be located at integer grid
points. The aim is to keep the area of an axis-aligned rectangle which covers the
complete drawing as small as possible. It is known that a square of side-length
n− 2, i.e., a (n− 2)× (n− 2) grid is enough to host every planar graph.

A drawing with the property that the boundary of every face (including the
outer face) is a convex polygon is called a convex drawing. Convex drawings
exist for every 3-connected planar graph. Again the aim is to keep the area of
such a drawing as small as possible.

It is important to distinguish between convex drawings and strictly convex
drawings. A drawing is strictly convex if every interior angle is less than 180◦ and
every outer angle greater than 180◦. In this paper we deal with convex drawings.
The grid size for strictly convex drawings was recently studied by Rote [1], he
proves that an O(n7/3)×O(n7/3) grid is enough for strictly convex drawings of
planar graphs with n vertices.

The question whether every planar graph has a straight line embedding on
a grid of polynomial size was raised by Rosenstiehl and Tarjan [2]. Unaware
of the problem Schnyder [3] constructed a barycentric representation which im-
mediately translates to an embedding on the (2n − 6) × (2n − 6) grid. The
first explicit answer to the question was given by de Fraysseix, Pach and Pol-
lack [4, 5]. They construct straight line embeddings on an (2n− 4)× (n− 2) grid
and show that the embedding can be computed in O(n log n). De Fraysseix et al.
also observed a lower bound of (2

3n − 1)× (2
3n− 1) for grid embeddings of the

n vertex graph containing a nested sequence of n/3 triangles. It is conjectured
that this is the worst case, i.e., that every planar graph can be embedded on the

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 60–70, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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(2
3n−1)× (2

3n−1) grid. 4-connected planar graphs with at least four vertices on
the outer face can be drawn even more compactly. Work of He [6] and Miura et
al. [7] shows that these graphs can be embedded on the n

2 × n
2 grid.

In his second paper Schnyder proves the existence of an embedding on the
(n−2)×(n−2) grid which can be computed in O(n) time. In general Schnyder’s
result from [8] is still unbeaten. Lately, Zhang and He [9] used the minimum
Schnyder wood of a triangulation to prove a bound of (n−1−∆ )×(n−1−∆ ),
where ∆ is the number of cyclic faces in the minimum Schnyder wood.

Though it is implicitly contained in Steinitz’s characterization of 3-connected
planar graphs as the skeleton graphs of 3-dimensional polytopes the existence
of convex drawings for these graphs is known as Tutte’s theorem. The idea for
Tutte’s proof [10, 11] is known as spring-embedding. Technically the embedding is
obtained as solution to a system of linear equations. Kant [12] has extended the
approach of de Fraysseix et al. to construct convex drawings on the (2n−4)×(n−
2) grid. The grid size was reduced to (n−2)× (n−2) by Chrobak and Kant [13].
Schnyder and Trotter [14] have worked on ideas of using Schnyder woods for
convex grid embeddings. The basic approach was independently worked out by
di Battista et al. [15] and Felsner [16] this results in convex grid drawings on the
(f − 1) × (f − 1) grid, where f is the number of faces of the drawing. In this
paper this basic algorithm is used but the size of the required grid is reduced by
some new ideas. Loosely speaking some edges are eliminated which results in the
reduction of f . This can be done until at most n−∆ faces remain. The eliminated
edges can be reinserted in the resulting drawing on the (n−1−∆)× (n−1−∆)
grid, with ∆ ≥ 0. ∆ ≥ n−f . The drawing procedure can be implemented to run
in linear time. The algorithm has been implemented and integrated in PIGALE
library1.

In the next section we introduce Schnyder woods. It is shown how to use
Schnyder woods to obtain convex drawings of 3-connected planar maps. The
lattice of Schnyder woods is discussed and a new operation called merge is intro-
duced as a tool for transforming Schnyder woods and their underlying graphs.

Section 3 contains the generic drawing algorithm. It is shown that this algo-
rithm produces convex drawings and the size of the grid required for the drawing
is analyzed. The main ingredient of this analysis is a bound on the number of
merges applicable to a Schnyder wood. In particular it is shown that starting
with the Schnyder wood of a triangulation a sequence of n−4+∆ −∆ merge
operations is admissible.

Section 4 presents a technique to decrease of the side-length of the grid by
one. This small reduction, however, is crucial to match Schnyder’s (n−2)×(n−2)
bound for planar triangulations.

2 Schnyder Woods

Schnyder defined special colorings and orientations of the inner edges of a trian-
gulation. In [3] and [8] he applied these Schnyder woods to characterize planar
1 http://pigale.sourceforge.net
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graphs and to draw planar graphs on small grid sizes. Here we describe a gener-
alization of Schnyder woods for 3-connected planar graphs. Such generalizations
have been obtained in [15] and [16], in our exposition we follow [17].

A planar map M is a simple planar graph G together with a fixed planar
embedding of G in the plane. A suspension Mσ of M is obtained as follows: Three
different vertices from the outer face of M are specified and named a1, a2, a3 in
clockwise order. (For ease of visualization we identify the indices 1, 2, 3 with
colors red, green, blue). At each of the three special vertices ai, called suspension
vertices, a half-edge reaching into the outer face is attached.

Let Mσ be a suspension of a planar map. A Schnyder wood is an orientation
and coloring of the edges of Mσ with the colors 1, 2, 3 satisfying the following
rules.

(W1) Every edge e is oriented by one or two opposite directions. The directions
of edges are colored such that if e is bi-directed the two directions have
distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.
(W3) Every vertex v has outdegree one in each color. The edges e1, e2, e3 leaving

v in colors 1,2,3 occur in clockwise order. Each edge entering v in color i
enters v in the clockwise sector from ei+1 to ei−1. See Figure 1.

(W4) There is no interior face whose boundary is a directed cycle in one color.

Fact 1 There is a Schnyder wood for Mσ, if Mσ is the suspension Mσ of a
3-connected planar map. Actually, a Schnyder wood for Mσ exists under the
weaker condition that the graph obtained by adding a new vertex v∞ as the second
endpoint for the three half-edges is planar and 3-connected.

Given a Schnyder wood, let Ti be the set of edges colored i with the direction
they have in this color. Since every inner vertex has outdegree one in Ti every v
is the starting vertex of a unique i-path Pi(v) in Ti.

Fact 2 The digraph Ti is acyclic, even more, Ti is a tree with root ai.

v

1

3
2

(a) (b)

Fig. 1. (a) Edge colorings2 and orientations at a vertex. (b) A Schnyder wood and the
regions of vertex v.

2 If you can’t see the colors look up the colorful electronic versions at the authors
homepages.
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2.1 Convex Drawings via Face-Counting

Schnyder and Trotter [14] had some ideas of using Schnyder woods for convex
grid embeddings. The approach has been worked out in [15] and [16]. We describe
the technique omitting some details.

From the vertex condition (W3) it follows that for i �= j the paths Pi(v) and
Pj(v) have v as the only common vertex. Therefore, P1(v), P2(v), P3(v) divide
M into three regions R1(v), R2(v) and R3(v), where Ri(v) denotes the region
bounded by and including the two paths Pi−1(v) and Pi+1(v), see Fig. 1.

Fact 3 (a) Ri(u) ⊆ Ri(v) iff u ∈ Ri(v).
(b) Ri(u) = Ri(v) iff there is a path of bicolored edges in colors i− 1 and i + 1

connecting u and v.
(c) For all u, v there are i and j with Ri(u) ⊂ Ri(v) and Rj(v) ⊂ Rj(u).

The face-count of a vertex v is the vector (v1, v2, v3), where vi is the number of
faces of M contained in region Ri(v).

Fact 4 For every edge {u, w} and vertex v �= u, w there is a color i with {u, w} ∈
Ri(v), hence, ui ≤ vi and wi ≤ vi.

Inclusion properties of the three regions of adjacent vertices imply:

Fact 5 (a) If edge (u, v) is uni-directed in color i, then
ui < vi, ui−1 > vi−1 and ui+1 > vi+1.

(b) If (u, v) is directed in color i− 1 and (v, u) in color i + 1, then
ui = vi, ui−1 > vi−1 and ui+1 < vi+1.

Clearly, each vertex v has v1 + v2 + v3 = f − 1, where f is the number
of faces of M . Hence, we have a mapping of the vertices of the graph to the
plane Tf = {(x1, x2, x3) : x1 + x2 + x3 = f − 1} in IR3. Connecting the points
corresponding to adjacent vertices by the line segment between them yields a
drawing µ(M) of M in the plane Tf .

Color and orientation of edges are nicely encoded in this drawing: Let v be
a vertex with µ(v) = (v1, v2, v3). The three lines x1 = v1, x2 = v2 and x3 = v3

partition the plane Tf into six wedges with apex µ(v). By Fact 5 the color and
orientation of edges incident to v is determined by the wedge containing them,
see Figure 2. In particular the bicolored edges are the edges supported by the
lines defining the wedges.

Theorem 1. The drawing µ(M) is a convex drawing of M in Tf . Dropping the
third coordinate yields a convex drawing of M on the (f − 1)× (f − 1) grid.

2.2 The Lattice of Schnyder Woods

In general the suspension Mσ of a 3-connected planar map will admit many
Schnyder woods. Felsner [18] has shown that the set of all Schnyder woods of
a given Mσ has the structure of a distributive lattice. As we will make use of
some elements of this theory we recall some definitions and the main results.

Think of the three half-edges of Mσ as noncrossing infinite rays. These rays
partition the outer face of M into three parts. The suspension dual Mσ∗ of Mσ
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x1 = v1

x3 = v3 x2 = v2

v

Fig. 2. Wedges and edges at a vertex v in the plane Tf .

is the dual of this map. Thus Mσ
∗

has a triangle b1, b2, b3 corresponding to the
unbounded face of M .

The completion M̃σof a plane suspension Mσ and its dual Mσ∗ is obtained
as follows: Superimpose Mσ and Mσ∗ so that exactly the primal dual pairs of
edges cross (the half edge at ai has a crossing with the dual edge {bj, bk}, for
{i, j, k} = {1, 2, 3}). At each crossing place a new vertex such that this new edge
vertex is subdividing the two crossing edges.

The completion M̃σ is planar, every edge-vertex has degree four and there
are six half-edges reaching into the unbounded face.

A 3-orientation of the completion M̃σ of Mσ is an orientation of the edges
of M̃σ such that:

(O1) outdeg(v) = 3 for all primal- and dual-vertices v.
(O2) indeg(ve) = 3 for all edge-vertices ve (hence, outdeg(ve) = 1).
(O3) All half-edges are out-edges of their vertex.

Theorem 2. Let Mσ be a suspension of a 3-connected plane graph M . The
following structures are in bijection: Schnyder woods of Mσ, Schnyder woods of
the suspension dual Mσ∗ and 3-orientations of the completion M̃σ.

The bijections are illustrated in Figure 3.
The lattice structure of Schnyder woods is best understood by looking at

3-orientations: Let X be a 3-orientation and let C be directed cycle of a X .
Reverting the orientation of all edges of C yields another 3-orientation XC . If
C is a simple cycle it has a connected interior an we can speak of the clockwise
and the counterclockwise order of C. Define X � XC if C is a clockwise cycle
in X . The transitive closure �∗ of this relation is an order relation on the set of
3-orientations.

b2

a1

a2a3

b1

b3

Fig. 3. The bijections for Theorem 2.
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Theorem 3. The relation �∗ is the order relation of a distributive lattice on the
set of 3-orientations of the completion M̃σ of a suspension Mσ of a 3-connected
planar map. The unique minimum 3-orientation contains no clockwise directed
cycles.

In view of Theorem 2 a suspension Mσ has unique minimum Schnyder wood
SMin. Figure 4 shows two sub-structures which are impossible in SMin: an uni-
directed edge incoming at v in color i + 1 such that the counterclockwise next
edge is bi-directed, outgoing at v in color i − 1 and incoming in color i ; and a
clockwise triangle of uni-directed edges, such a triangle must have colors i, i+1,
i + 2 in this clockwise order.

Theorem 4. ([19]) Let G be a 3-connected plane graph. The minimal Schnyder
Wood SMin of G can be computed in linear time.

Fig. 4. Two types of clockwise cycles in 3-orientations and the corresponding sub-
structures of Schnyder woods.

2.3 Merging and Splitting

The operations merge and split introduced in this section operate on Schny-
der woods and the underlying graph. Merge and split can be seen as inverse
operations, corresponding to the deletion and insertion of an edge.

Given a Schnyder wood, a knee at vertex v is a pair of uni-directed edges
adjacent at an angle of v such that one of the edges is incoming and the other
outgoing at v. Knees come in two kinds, if the in-edge of the knee is the clockwise
neighbor of the out-edge at v we speak of a a cw-knee, otherwise, if the in-edge
of the knee is the counterclockwise neighbor of the out-edge it is a ccw-knee.

Let (u, v), (v, w) be a knee at v. Suppose that the color of (v, w) is i by the
vertex condition the color of (u, v) is i − 1 if it is a cw-knee and i + 1 if it is a
ccw-knee. The merge of the knee consist of the deletion of the out-edge (v, w)
while making (u, v) a bi-directed edge outgoing at v in color i and incoming
in the same color as before. Depending on the type of the knee we distinguish
between clockwise and counterclockwise merge operations. Figure 5 illustrates
the definition.

Lemma 1. Let S be a Schnyder wood, the coloring and orientation of edges
after merging a knee is again a Schnyder wood.

A split of a bi-directed edge is the inverse operation of a merge. In the context
of this paper we only need one very specific type of split. The short cw-split is
the inverse of a cw-merge with the additional property that (u, w) is an edge,
i.e., u, v, w is a triangle.
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u
v

w

u

w

v
cw-split ccw-split

cw-merge ccw-merge

Fig. 5. Clockwise and counterclockwise merge and split.

3 The Drawing Algorithm

Let M be a 3-connected planar map with n vertices and f faces. The steps of
the drawing algorithm with input M are the following:

(A1) Choose three vertices from the outer face for the suspension Mσ.
(A2) Compute the minimum Schnyder wood SMin for Mσ and let S0 = SMin.
(A3) Compute a maximal cw-merge sequence S0 → S1 → . . . Sk of Schnyder

woods, i.e., Si+1 is obtained from Si by a cw-merge and Sk contains no
cw-knee.

(A4) Use face-counting to draw Sk on the (f − k − 1)× (f − k − 1) grid.
(A5) Reinsert all edges which have been deleted by merge operations into the

drawing from the previous step.

With Figure 6 we illustrate step A3 of the algorithm.

Fig. 6. (a) A Schnyder wood S0, cw-knees are indicated by arcs. (b) The final Schnyder
wood of a merge sequence. (c) The example graph with n = f = 9 drawn on the 6× 6
grid.

3.1 The Drawing Is Convex

Theorem 5. Reinserting all the edges which have been deleted by a sequence of
cw-merge operations into the drawing of Sk obtained in A4 keeps the drawing
planar and convex.

The drawing steps of the algorithm (A4 and A5) are illustrated in Figure 6.
Essential for the proof of the theorem is the following lemma:

Lemma 2. Given a Schnyder wood of a suspended map Mσ and let F be an
interior face. The orientation and color of edges around F obeys the following
rule (see Figure 7):
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Fig. 7. The generic structure of a face as described by Lemma 2 and two concrete
instances.

• In clockwise order the types of edges at the boundary of the face can be
described as follows (in case of bi-directed edges the clockwise color is noted
first): One edge from the set {red-cw, blue-ccw, red-blue}, any number (may
be 0) of edges green-blue, one edge from the set {green-cw, red-ccw, green-
red}, any number of edges blue-red, one edge from the set {blue-cw, green-
ccw, blue-green}, any number of edges red-green.

3.2 The Number of Merges

Essential for the grid-size required for the drawing produced by the algorithm is
the length k of the merge sequence computed in step A3. The main result in this
subsection is a lower bound for k in terms of easily recognizable substructures
of the initial Schnyder wood S computed in step A2 of the algorithm.

As a warm-up let us consider the case where M is a triangulation and S is
an arbitrary Schnyder wood of M . Consider the (2n−4)−4 triangles of S which
are bounded by three uni-directed edges. These triangles can be partitioned into
two classes: Class one are those with at least two clockwise oriented edges on the
boundary and class two are those with at least two counterclockwise edges on the
boundary. Suppose that the number C1 of triangles of class one is the larger one,
i.e., C1 ≥ n−4 ≥ C2. In a triangle T of class one there is a knee of two consecutive
clockwise edges of T , this knee is a candidate for a clockwise merge. Since every
edge is clockwise only for one of its neighboring triangles these C1 merges can
be performed independently. It follows that starting from S there is a merge
sequence of length k ≥ C1 ≥ n−4. This estimate yields drawing of triangulations
on grids of size at most (f − (n− 4)− 1)× (f − (n− 4)− 1) = (n− 1)× (n− 1).

The following proposition gives a better result.

Proposition 1. Let S be a Schnyder wood with ∆S clockwise and ∆S coun-
terclockwise triangles. The number of cw-merges applicable in a merge sequence
starting with S is at least n− 4−∆S + ∆S .

To estimate the number of merges that can be applied to a Schnyder wood S
of a non-triangulated map we need more terminology. Let ∆S be the number of
faces, with a counterclockwise edge in each of the three colors and not adjacent
to a suspension vertex. These edges do not need to be uni-directed.
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∆S counts the number of clockwise triangles of uni-directed edges together
with patterns of the following type: an uni-directed edge incoming at v in color
i + 1 such that the counterclockwise next edge is bi-directed, outgoing at v in
color i− 1 and incoming in color i (see Figure 4).

Theorem 6. Let S be a Schnyder wood of a 3-connected planar map. The num-
ber of cw-merges that can be applied to S is at least f − n + ∆ −∆ .

Given an arbitrary Schnyder wood the contribution of ∆ −∆ in the above
formula may well be negative. However, the choice of S = SMin guarantees that
∆ = 0. The findings of this section can be summarized as follows.

Theorem 7. A 3-connected planar map M with n vertices has a convex drawing
on a grid of size (n− 1−∆SMin

)× (n− 1−∆SMin
), where ∆SMin

≥ 0 is the number
of faces with a counterclockwise edge in each color in SMin. Such drawing can be
computed in linear time.

4 Improvements and Limitations

Our ambition was to design an algorithm for convex drawings of 3-connected pla-
nar graphs which at least matches all known algorithms for this task. Theorem 7
shows that we are very close. Still, there is Schnyder’s (n−2)×(n−2) bound for
triangulations which is not completely matched by (n−1−∆SMin

)×(n−1−∆SMin
)

since there are triangulations with ∆SMin
= 0. An example of such a triangulation

is shown in Figure 8.

(a) (b)

Fig. 8. (a) A stacked triangulation on the (n− 1) × (n− 1) grid. (b) The same graph
drawn with the improved method.

It is indeed the case that with any specialization of the algorithm from Sec-
tion 3 the graph of Figure 8 (a) requires a grid of size (n− 1)× (n− 1).
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4.1 From n − 1 to n − 2

In the standard algorithm, the face-count of the vertices a1 is (f − k − 1, 0, 0),
a2 is (0, f − k − 1, 0) and a3 is (0, 0, f − k − 1). In order to reduce the grid
size, we change the face-count of these two vertices to the following ones: a1 is
(f −k−2, 0, 1), a2 is (1, f −k−2, 0) and a3 is (0, 1, f−k−2).3 The consequence
on the final drawing is the following one: moving a3 one unit to the left and one
unit to the top, moving a1 one unit down and moving a3 one unit to the left.
Figure 8 (b) gives and example of such drawing.

Using the technique of this section we then obtain:

Theorem 8. A 3-connected planar map M with n vertices has a convex drawing
on a grid of size (n− 2−∆SMin

)× (n− 2−∆SMin
), where ∆SMin

≥ 0 is the number
of faces with a counterclockwise edge in each color in SMin.

Concluding Remarks

As mentioned before, for some graphs, ∆SMin
can be equal to zero. In [20] the

asymptotic average value over n-vertices triangulations is given: E(∆SMin
) =

n/8+ o(n). Hence the average grid size is significantly lower than the one of the
existing algorithms.
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Abstract. Consider the following open problem: does every complete
geometric graph K2n have a partition of its edge set into n plane span-
ning trees? We approach this problem from three directions. First, we
study the case of convex geometric graphs. It is well known that the
complete convex graph K2n has a partition into n plane spanning trees.
We characterise all such partitions. Second, we give a sufficient condition,
which generalises the convex case, for a complete geometric graph to have
a partition into plane spanning trees. Finally, we consider a relaxation
of the problem in which the trees of the partition are not necessarily
spanning. We prove that every complete geometric graph Kn can be
partitioned into at most n − √

n/12 plane trees.

1 Introduction

A geometric graph G is a pair (V (G), E(G)) where V (G) is a set of points in
the plane in general position (that is, no three are collinear), and E(G) is a
set of closed segments with endpoints in V (G). Elements of V (G) are vertices
and elements of E(G) are edges. An edge with endpoints v and w is denoted
by {v, w} or vw when convenient. A geometric graph can be thought of as a
straight-line drawing of its underlying (abstract) graph. A geometric graph is
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plane if no two edges cross. A tree is an acyclic connected graph. A subgraph H
of a graph G is spanning if V (H) = V (G). We are motivated by the following
beautiful question.

Open Problem 1. Does every complete geometric graph with an even number
of vertices have a partition of its edge set into plane spanning trees?

Since Kn, the complete graph on n vertices, has 1
2n(n − 1) edges and a

spanning tree has n− 1 edges, there are n/2 trees in such a partition, and n is
even. We approach this problem from three directions. In Section 2 we study the
case of convex geometric graphs. We characterise the partitions of the complete
convex graph into plane spanning trees. Section 3 describes a sufficient condition,
which generalises the convex case, for a complete geometric graph to have a
partition into plane spanning trees. In Section 4 we consider a relaxation of
Open Problem 1 in which the trees of the partition are not necessarily spanning.

It is worth mentioning that decompositions of (abstract) graphs into trees
have attracted much interest. In particular, Nash-Williams [5] obtained nec-
essary and sufficient conditions for a graph to admit k edge-disjoint spanning
trees, and Ringel’s Conjecture and the Graceful Tree Conjecture about ways of
decomposing complete graphs into trees are among the most outstanding open
problems in the field. Nevertheless the non-crossing property that we require in
our geometric setting changes the problems drastically.

2 Convex Graphs

A convex graph is a geometric graph with the vertices in convex position. An
edge on the convex hull of a convex graph is called a boundary edge. Two convex
graphs are isomorphic if the underlying graphs are isomorphic and the clockwise
ordering of the vertices around the convex hull is preserved under this isomor-
phism. Suppose that G1 and G2 are isomorphic convex graphs. Then two edges
cross in G1 if and only if the corresponding edges in G2 also cross. That is,
in a convex graph, it is only the order of the vertices around the convex hull
that determines edge crossings—the actual coordinates of the vertices are not
important.

It is well known that Open Problem 1 has an affirmative solution in the case
of convex complete graphs. That is, every convex complete graph K2n can be
partitioned into n plane trees, and since the book thickness of K2n equals n, this
bound is optimal even for partitions into plane subgraphs [2]. In this section we
characterise the solutions to Open Problem 1 in the convex case. In other words,
we characterise the book embeddings of the complete graph in which each page
is a spanning tree.

First some well known definitions. A leaf of a tree is a vertex of degree at
most one. A leaf-edge of a tree is an edge incident to a leaf. A tree has exactly
one leaf if and only if it is a single vertex with no edges. Every tree with at least
one edge has at least two leaves. A tree has exactly two leaves if and only if it is
a path with at least one edge. Let T be a tree. Let T ′ be the tree obtained by
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deleting the leaves and leaf-edges from T . Let �(T ) be the number of leaves in
T ′. A star is a tree with at most one non-leaf vertex. Clearly a tree T is a star if
and only if �(T ) ≤ 1. A caterpillar is a tree T such that T ′ is a path. The path
T ′ is called the spine of the caterpillar. Clearly T is a caterpillar if and only if
�(T ) ≤ 2. Observe that stars are the caterpillars whose spines consist of a single
vertex.

We say a tree T is symmetric if there exists an edge vw of T such that if A
and B are the components of T \ vw with v ∈ A and w ∈ B, then there exists a
(graph-theoretic) isomorphism between A and B that maps v to w.

Theorem 1. Let T1, T2, . . . , Tn be a partition of the edges of the convex complete
graph K2n into plane spanning convex trees. Then T1, T2, . . . , Tn are symmetric
convex caterpillars that are pairwise isomorphic. Conversely, for any symmetric
convex caterpillar T on 2n vertices, the edges of the convex complete graph K2n

can be partitioned into n plane spanning convex copies of T that are pairwise
isomorphic.

We will prove Theorem 1 by a series of lemmas. Garćıa et al. [4] proved:

Lemma 1 ([4]). Let T be a tree with at least two edges. In every plane convex
drawing of T there are at least max{2, �(T )} boundary edges, and there exists a
plane convex drawing of T with exactly max{2, �(T )} boundary edges, such that
if T is not a star then the boundary edges are pairwise non-consecutive.

In what follows {0, 1, . . . , 2n− 1} are the vertices of a convex graph in clock-
wise order around the convex hull. In addition, all vertices are taken modulo 2n.
That is, vertex i refers to the vertex j = i mod 2n. Let G be a convex graph on
{0, 1, . . . , 2n− 1}. For all 0 ≤ i, j ≤ 2n− 1, let G[i, j] denote the subgraph of G
induced by the vertices {i, i + 1, . . . , j}.
Lemma 2. For all n ≥ 2, let T0, T1, . . . , Tn−1 be a partition of the convex com-
plete graph K2n into plane spanning trees. Then (after relabelling the trees) for
each 0 ≤ i ≤ n− 1,

(1) the edge {i, n + i} is in Ti,
(2) Ti is a caterpillar with exactly two boundary edges, and
(3) for every non-boundary edge {a, b} of Ti, there is exactly one boundary edge

of Ti in each of Ti[a, b] and Ti[b, a].

Proof. The edges {{i, n + i} : 0 ≤ i ≤ n − 1} are pairwise crossing. Thus each
such edge is in a distinct tree. Label the trees such that each edge {i, n+ i} is in
Ti. Since n ≥ 2, each Ti has at least three edges, and by Lemma 1, has at least
two boundary edges. There are 2n boundary edges in total and n trees. Thus
each Ti has exactly two boundary edges, and by Lemma 1, �(Ti) = 2. For any
tree T , �(T ) ≤ 2 if and only if T is a caterpillar. Thus each Ti is a caterpillar.
Let {a, b} be a non-boundary edge in some Ti. Then Ti[a, b] has at least one
boundary edge of Ti, as otherwise Ti[a, b] would be a convex tree on at least
three vertices with only one boundary edge (namely, {a, b}), which contradicts
Lemma 1. Similarly Ti[b, a] has at least one boundary edge of Ti. Thus each of
Ti[a, b] and Ti[b, a] has exactly one boundary edge of Ti. ��
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Lemma 3. Let {i, j} be a non-boundary edge of a plane convex spanning cater-
pillar T such that T [i, j] has exactly one boundary edge of T . Then exactly one
of {i, j − 1} and {j, i + 1} is an edge of T .

Proof. If both {i, j−1} and {j, i+1} are in T then they cross, unless j−1 = i+1
in which case T contains a 3-cycle. Thus at most one of {i, j − 1} and {j, i + 1}
is in T .

Suppose, for the sake of contradiction, that neither {i, j − 1} nor {j, i + 1}
are edges of T . Since T is spanning, there is an edge {i, a} or {j, a} in T for
some vertex i + 1 < a < j − 1. Without loss of generality {i, a} is this edge, as
illustrated in Figure 1.

i

j

i + 1

j − 1

a

T [i, a]

T ′

Fig. 1. One of {i, j − 1} and {j, i + 1} is an edge of T .

Since i, i+1 and a are distinct vertices of T [i, a], the subtree T [i, a] has at least
three vertices, and by Lemma 1, has at least two boundary edges, one of which
is {i, a}. Thus T [i, a] has at least one boundary edge that is also a boundary
edge of T . Now consider the subtree T ′ of T induced by {i} ∪ {a, a + 1, . . . , j}.
Then i, a, j−1 and j are distinct vertices of T ′, and T ′ has at least four vertices.
Since {i, j − 1} is not an edge of T , and thus not an edge of T ′, the subtree T ′

is not a star. By Lemma 1, T ′ has at least two non-consecutive boundary edges,
at most one of which is {i, j} or {i, a}. Thus T ′ has at least one boundary edge
that is also a boundary edge of T .

No boundary edge of T can be in both T [i, a] and T ′. Thus we have shown that
T [i, j] has at least two boundary edges of T , which is the desired contradiction.

��
In what follows we say an edge e = {i, j} has span

span(e) = min{(i− j) mod 2n, (j − i) mod 2n} .

That is, span(e) is the number of edges in a shortest path between i and j that
is contained in the convex hull.

Lemma 4. Let {i, j} be an edge of a plane convex spanning caterpillar T such
that 1 ≤ j − i ≤ n, and T [i, j] has exactly one boundary edge of T . Then T [i, j]
has exactly one edge of span k for each 1 ≤ k ≤ j − i. Moreover for each such
k ≥ 2 the edge of span k has an endpoint in common with the edge of span k−1,
and the other two endpoints are consecutive on the convex hull.
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Proof. If j − i = 1 then {i, j} is a boundary edge, and the result is trivial.
Otherwise {i, j} is not a boundary edge. By Lemma 3, exactly one of the edges
{i, j − 1} and {j, i + 1} is in T . Without loss of generality {i, j − 1} is in T .
Thus the edge of span j − i has an endpoint in common with the edge of span
j − i− 1, and the other two endpoints are consecutive on the convex hull. The
result follows by induction (on span) applied to the edge {i, j − 1}. ��

Theorem 2 below is the main theorem of this section, and its proof is illus-
trated in Figure 4. Let e = {a, b} be an edge in the convex complete graph K2n.
Then e + i denotes the edge {a + i, b + i}. For a set X of edges, X + i = {e + i :
e ∈ X}, and X(k) = {e ∈ X, span(e) ≥ k}.
Theorem 2. Let T0, T1, . . . , Tn−1 be a partition of the edges of the convex com-
plete graph K2n into plane spanning convex trees. Then T0, T1, . . . , Tn−1 are
pairwise isomorphic symmetric convex caterpillars.

Proof. By Lemma 2, for each 0 ≤ i ≤ n−1, Ti is a caterpillar with two boundary
edges, the edge {i, n + i} is in Ti, and for every non-boundary edge {a, b} of Ti,
there is exactly one boundary edge of Ti in each of Ti[a, b] and Ti[b, a].

Let H = T0[0, n]. Since {0, n} is an edge of H , by Lemma 4, H has exactly
one edge of span k for each 1 ≤ k ≤ n. Furthermore, for each 1 ≤ k ≤ n− 1, the
edge of span k has an endpoint in common with the edge of span k + 1, and the
other two endpoints are consecutive on the convex hull. Let hk = {xk, xk + k}
denote the edge of span k in H . For each 1 ≤ k ≤ n− 1, if hk ∩ hk+1 = xk + k
(= xk+1 + k + 1) then we say the k-direction is ‘clockwise’. Otherwise, hk ∩
hk+1 = xk (= xk+1), and we say the k-direction is ‘anticlockwise’, as illustrated
in Figure 2.

We will prove that H determines the structure of all the trees T0, T1, ..., Tn−1.
We proceed by downwards induction on k = n, n− 1, . . . , 1 with the hypothesis
that for all 0 ≤ i ≤ n− 1,

T
(k)
i = (H(k) + i) ∪ (H(k) + n + i) (1)

Consider the base case with k = n. The only edge in H of span n is {0, n}.
Thus H(n) = {0, n}, which implies that H(n) + i = {i, n+ i}, and H(n) +n+ i =

xk + k = xk+1 + k + 1

xk

xk+1

hkhk+1

(a)

xk = xk+1

xk+1 + k + 1

xk + k

hk

hk+1

(b)

Fig. 2. k-direction is (a) clockwise and (b) anticlockwise.
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{n+ i, 2n+ i} = {i, n+ i}. Thus the right-hand side of (1) is {i, n+ i}. The only
edge in Ti of span n is {i, n + i}. Thus T

(n)
i = {i, n + i}, and (1) is satisfied for

k = n.
Now suppose that (1) holds for some k + 1 ≥ 2. We will prove that (1)

holds for k. Suppose that the k-direction is clockwise. (The case in which the
k-direction as anticlockwise is symmetric.) We proceed by induction on j =
0, 1, . . . , 2n− 1 with the hypothesis:

the edge {xk + j, xk + k + j} is in the tree Tj mod n . (2)

The base case with j = 0 is immediate since by definition, {xk, xk + k} ∈
E(T0). Suppose that {xk + j, xk + k + j} ∈ E(Tj mod n) for some 0 ≤ j < 2n− 1.
Consider the edge e = {xk + j, xk +k+ j +1}. Since the k-direction is clockwise,
xk = xk+1 +1 and xk +k = xk+1 +k +1. Thus e = {xk+1 +1+ j, xk+1 +k +1+
j +1} = {xk+1, xk+1 +k+1}+ j+1 = hk + j +1. Hence e ∈ H + j +1, and since
e has span k + 1, e ∈ H(k+1) + j + 1. By induction from (1), e ∈ T

(k+1)
(j+1) mod n, as

illustrated in Figure 3.

xk + j xk + j + 1

xk + k + j
xk + k + j + 1

e

(a)

xk + j + 1 xk + j

xk + k + j + 1
xk + k + j

e

(b)

Fig. 3. k-direction is (a) clockwise and (b) anticlockwise.

By Lemma 3 applied to e, which is a non-boundary edge of T(j+1) mod n,
exactly one of {xk + j, xk + k + j} and {xk + j + 1, xk + k + j + 1} is an edge
of T(j+1) mod n. By induction from (2), {xk + j, xk + k + j} ∈ Tj mod n. Thus
{xk + j +1, xk + k + j +1} ∈ T(j+1) mod n. That is, (2) holds for j +1. Therefore
for all 0 ≤ j ≤ 2n− 1, the edge {xk + j, xk + k + j} is in Tj mod n. That is, hk + j
is in Tj mod n. By (1) for k + 1 we have that (1) holds for k.

By (1) with k = 1, each tree Ti can be expressed as Ti = (H +i)∪(H +n+i).
Clearly H∪(H+n) is a symmetric convex caterpillar. Thus each Ti is a translated
copy of the same symmetric convex caterpillar. Therefore T0, T1, . . . , Tn−1 are
pairwise isomorphic symmetric convex caterpillars. ��
Theorem 3. For any symmetric convex caterpillar T on 2n vertices, the edges
of the convex complete graph K2n can be partitioned into n plane spanning pair-
wise isomorphic convex copies of T .

Proof. Say V (K2n) = {0, 1, . . . , 2n − 1} in clockwise order around the convex
hull. Let {0, n} be the edge of T such that after deleting {0, n}, A and B are
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Fig. 4. Illustration for Theorem 2 with n = 4.
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the components with 0 ∈ A and n ∈ B, and there exists a (graph-theoretic)
isomorphism between A and B that maps 0 to n. It is easily seen that A has
a plane representation on the vertices {0, 1, . . . , n}. For each 0 ≤ i ≤ n − 1, let
Ti = (A + i) ∪ (A + n + i). Then as in Theorem 2, T0, T1, . . . , Tn−1 is partition
of K2n into plane spanning pairwise isomorphic convex copies of T . ��

Observe that Theorems 2 and 3 together prove Theorem 1.

3 A Sufficient Condition

In this section we prove the following sufficient condition for a complete geomet-
ric graph to have an affirmative solution to Open Problem 1. A double star is a
tree with at most two non-leaf vertices.

Theorem 4. Let G be a complete geometric graph K2n. Suppose that there is
a set L of pairwise non-parallel lines with exactly one vertex of G in each open
unbounded region formed by L. Then E(G) can be partitioned into plane spanning
double stars (that are pairwise graph-theoretically isomorphic).

Observe that in a double star, if there are two non-leaf vertices v and w then
they must be adjacent, in which case we say vw is the root edge.

Lemma 5. Let P be a set of points in general position. Let L be a line with
L∩P = ∅. Let H1 and H2 be the half-planes defined by L. Let v and w be points
such that v ∈ P ∩H1 and w ∈ P ∩H2. Let T (P, L, v, w) be the geometric graph
with vertex set P and edge set

{vw} ∪ {vx : x ∈ (P \ {v}) ∩H1} ∪ {wy : y ∈ (P \ {w}) ∩H2} .

Then T (P, L, v, w) is a plane double star with root edge vw.

Proof. The set of edges incident to v form a star. Regardless of the point set, a
geometric star is always plane. Thus no two edges incident to v cross. Similarly
no two edges incident to w cross. No edge incident to v crosses an edge incident
to w since such edges are separated by L, as illustrated in Figure 5. ��

v w

Fig. 5. A plane double star separated by a line.



Partitions of Complete Geometric Graphs into Plane Trees 79

Lemma 6. Let P be a set of points in general position. Let L1 and L2 be non-
parallel lines with L1 ∩ P = L2 ∩ P = ∅. Let v, w, x, y be points in P such
that v, w, x, y are in distinct quarter-planes formed by L1 and L2, with each pair
(v, w) and (x, y) in opposite quarter-planes. (Note that this does not imply that
vw and xy cross.) Let T1 and T2 be the plane double stars T1 = T (P, L1, v, w)
and T2 = T (P, L2, x, y). Then E(T1) ∩ E(T2) = ∅.
Proof. Suppose, for the sake of contradiction, that there is an edge e ∈ E(T1) ∩
E(T2). All edges of T1 are incident to v or w, and all edges of T2 are incident
to x or y. Thus e ∈ {vx, vw, vy, xw, xy, wy}. By assumption, v, w, x, y are in
distinct quarter-planes formed by L1 and L2, with each pair (v, w) and (x, y)
in opposite quarter-planes. Thus e crosses at least one of L1 and L2. Without
loss of generality e crosses L1. Since e ∈ E(T1), and the only edge of T1 that
crosses L1 is the root edge vw, we have e = vw. Since all edges of T2 are incident
to x or y and v, w, x, y are distinct, we have e 	∈ E(T2), which is the desired
contradiction. Therefore E(T1) ∩E(T2) = ∅, as illustrated in Figure 6. ��
Proof (of Theorem 4). As illustrated in Figure 7, let C be a circle such that
the vertices of G and the intersection point of any two lines in L are in the
interior of C. The intersection points of C and the lines in L partition C into
2n consecutive components C0, C1, . . . , C2n−1, each corresponding to a region
containing a single vertex of G. Let i be the vertex in the region corresponding
to Ci. Label the lines L0, L1, . . . , Ln−1 so that for each 0 ≤ i ≤ n − 1, the
components Ci and Ci+n run from C ∩ Li to C ∩ L(i+1) mod n in the clockwise
direction.

For each 0 ≤ i ≤ n − 1, let Ti be the double star T (V (G), Li, i, i + n). By
Lemma 5, each Ti is plane. Since V (Ti) = V (G), Ti is a spanning tree of G. For
all 0 ≤ i < j ≤ n − 1, the points i, i + n, j, j + n are in distinct quarter-planes

Fig. 6. Plane spanning double stars are edge-disjoint.
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C0

C1 C2

C3

C4
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L0 L0
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L2

L2

L3
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1
2
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Fig. 7. Example of Theorem 4 with n = 4.

formed by Li and Lj, with each pair (i, i+n) and (j, j + n) in opposite quarter-
planes. Thus, by Lemma 6, E(Ti) ∩ E(Tj) = ∅. Since each Ti has 2n− 1 edges,
and there are n(2n− 1) edges in total, T0, T1, . . . , Tn−1 is the desired partition
of E(G). ��

Note that each line in L in Theorem 4 is a halving line. Pach and Solymosi [6]
proved a related result: a complete geometric graph on 2n vertices has n pairwise
crossing edges if and only if it has precisely n halving lines.

4 Relaxations

We now drop the requirement that our plane trees be spanning. Thus we need not
restrict ourselves to complete graphs with an even number of vertices. Theorem 4
generalises as follows.

Theorem 5. Let G be a complete geometric graph Kn. Suppose that there is a
set L of pairwise non-parallel lines with at least one vertex of G in each open
unbounded region formed by L. Then E(G) can be partitioned into n− |L| plane
trees.

Proof. Let P be a set consisting of exactly one vertex in each open unbounded
region formed by L. Then |P | = 2|L|. By Theorem 4, the induced subgraph
G[P ] can be partitioned into 1

2 |P | plane double stars. The edges incident to a
vertex not in P can be covered by n− |P | spanning stars, one rooted at each of
the vertices not in P . Clearly a star is plane regardless of the vertex positions.
Edges with both endpoints not in P can be placed in the star rooted at either
endpoint. In total we have 1

2 |P |+(n− |P |) = n− 1
2 |P | = n− |L| plane trees. ��

Lemma 7. Every complete geometric graph Kn with k pairwise crossing edges
can be partitioned into n− k plane trees.
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Proof. Let E = {ei : 1 ≤ i ≤ k} be a set of k pairwise crossing edges. For each
1 ≤ i ≤ k, let Li be the line obtained by extending the segment ei, and rotating
it about the midpoint of ei by some angle of ε degrees. Clearly there exists an
ε such that each edge ei crosses every line Lj . Thus there is one endpoint of an
edge in E in each open unbounded region formed by L1, L2, . . . , Lk. The result
follows from Theorem 5. ��

Aronov et al. [1] proved that every complete geometric graph Kn has at least√
n/12 pairwise crossing edges. Thus Lemma 7 implies:

Corollary 1. Every complete geometric graph Kn can be partitioned into at
most n−√

n/12 plane trees. ��
We conclude with a seemingly easier problem than Open Problem 1.

Open Problem 2. Can the edges of every complete geometric graph Kn be
partitioned into at most n/c plane subgraphs, for some constant c > 1?

Of course c < 2 since n/2 edges may be pairwise crossing. Dillencourt et al. [3]
defined the geometric thickness of an (abstract) graph G to be the minimum k
such that G has a representation as a geometric graph whose edges can be
partitioned into k plane subgraphs. They proved that the geometric thickness of
Kn is between 
(n/5.646) + 0.342� and 
n/4�.
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Abstract. Recent research efforts have produced new algorithms for
solving planarity-related problems. One such method performs vertex
addition using the PC-tree data structure, which is similar to but sim-
pler than the well-known PQ-tree. For each vertex, the PC-tree is first
checked to see if the new vertex can be added without violating certain
planarity conditions; if the conditions hold, the PC-tree is adjusted to
add the new vertex and processing continues. The full set of planarity
conditions are required for a PC-tree planarity tester to report only pla-
nar graphs as planar. This paper provides further analyses and new pla-
narity conditions needed to produce a correct planarity algorithm with
a PC-tree.

1 Introduction

The first linear-time planarity tests [1, 2] represent significant achievements but
are also quite complex. Recent research has produced simpler linear-time pla-
narity algorithms [3–5]. This paper discusses the planarity method of Shih and
Hsu [5], which is based on a data structure called a PC-tree. The PC-tree method
is a vertex addition method that adds each vertex to a partial planar embedding
once it determines that planarity can be preserved while adding the vertex and
all edges that connect it to other vertices in the partial embedding.

The PC-tree method processes the vertices in a post-order traversal of the
depth first search (DFS) tree of the graph. Thus, there is a path of unprocessed
vertices from every vertex to the root of the DFS-tree. If the graph is planar,
then it must be possible to embed of the first k vertices so that all vertices
with direct back edge connections to their unprocessed DFS ancestors are on
the external face of the partial embedding. For each vertex i, the algorithm first
checks the PC-tree for a number of defined planarity conditions. If all conditions
are met, then a planarity reduction is applied to the PC-tree for vertex i.

If one or more planarity conditions were missing, then a planarity reduction
would be applied when it should not be, ultimately causing a planar result to
be reported on some non-planar graphs. The literature on PC-trees have not
presented additional planarity conditions, instead focusing on the consecutive
ones problem [6, 7] or on equating PQ-tree and PC-tree reductions [8]. A sub-
mitted book chapter [9] presents an alternate graph-theoretic view that shows
the correctness of the general approach, but it uses constructs that are diffi-
cult to apply directly to a PC-tree. This paper presents the additional required
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planarity conditions that arise directly on the PC-tree, thus allowing more rea-
sonable comparisons of complexity and empirical performance to be made with
other planarity methods. In particular, although it is reasonable to assume that
the ‘batch’ operations of vertex addition methods are more cumbersome to im-
plement and less efficient than a finer grain edge addition method [4], proper
comparisons cannot be done with only the planarity conditions in [5].

Section 2 provides some definitions and preliminary remarks. Sections 3, 4
and 5 present additional planarity conditions and further analyses for the PC-
tree. Finally, Section 6 presents some concluding remarks.

2 Preliminaries

A PC-tree represents a partial planar embedding of a graph, with C-nodes rep-
resenting all biconnected components and P-nodes representing cut vertices in
the partial embedding and vertices with direct back edge connections that have
not been embedded yet. Every P-node is associated with a vertex of the input
graph. The neighbors of a C-node are P-nodes, which form the representative
bounding cycle (RBC) of the C-node. The RBC corresponds to the external face
cycle of the biconnected component represented by the C-node (for efficiency,
nodes are removed from the RBC if they represent neither cut vertices in the
partial embedding nor the endpoints of unembedded back edges). The P-nodes
of the RBC are connected into a cycle. Traversal through a C-node occurs on
one of the two paths along the RBC cycle between two neighbors of the C-node.

The PC-tree is denoted T , and Tr denotes a subtree of T rooted by node r.
The current vertex being processed is denoted i. An i-subtree Tw is a PC-subtree
of Ti that is rooted by the P-node for w with lowpoint(w) equal to i (i.e. the
unembedded back edges from w and its descendants connect to i). An i∗-subtree
Tx is a PC-subtree of Ti that is rooted by the P-node for x with lowpoint(x)
< i and that contains no vertex adjacent to i in the input graph (so, every
unembedded back edge connects to an ancestor of i). To simplify discussion, the
direct back edges to i and its ancestors are considered to be degenerate i-subtrees
and i∗-subtrees. If the root node of an i-subtree or i∗-subtree is the child of a
given PC-tree node, then we say that the i-subtree or i∗-subtree is a child of
that node. A terminal node is a P-node or C-node of the PC-tree that has one
or more i-subtree children, one or more i∗-subtree children, and no descendants
in the PC-tree with both i-subtree and i∗-subtree children.

For each vertex i (in post-order of the DFS tree), the PC-tree is tested for
planarity conditions before adding i to the partial embedding. Because three or
more terminal nodes implies non-planarity, much of the discourse in [5] focuses
on the one or two terminal node cases. Shih and Hsu present four necessary
conditions for maintaining planarity in the one and two terminal node cases: “In
Lemma 2.5, Corollary 2.6, [and] Lemmas 3.1 and 3.2 we made the assumption
that graph G is planar in deriving at those conclusions. We shall show that
if these conclusions hold at each iteration, then G must be planar by showing
that these conditions imply a feasible internal embedding for each 2-connected
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component.” [5, p. 188]. Then, the proof presented only describes how to perform
the one and two terminal node planarity reductions, which does not prove that
those reductions can always be performed if only the given planarity conditions
are met. The remaining sections describe additional required planarity conditions
and indicate how their violation implies non-planarity.

3 The i-i∗ Subtree Patterns Around a Terminal C-Node

Lemma 3.2 of [5] seeks to characterize the allowable pattern of child i-subtrees
and i∗-subtrees around a terminal C-node. It states that for the root j of any
child i-subtree of a terminal C-node, one of the two RBC paths from j to the
parent of the C-node must contain only i-subtrees. This condition is necessary
but only sufficient in the one terminal node case when the terminal node has no
proper ancestor with a child i∗-subtree. In the two terminal node case and the one
terminal node case where the terminal node has a proper ancestor with a child
i∗-subtree, it is possible to be compliant with the statement of the lemma yet
still have a non-planarity condition. Theorem 1 states the additional restriction
required on terminal C-nodes, and Figure 1 shows PC-trees that violate the
restriction, along with the resulting K3,3 minor.

Theorem 1. If a terminal C-node c has a proper ancestor r with a child v such
that Tv excludes c and is or contains an i∗-subtree, then c must have a child w
for which an RBC path from w to the parent of c contains all of the i-subtree
children of c.

Fig. 1. (a) A K3,3 non-planarity minor from [3]. (b) A corresponding PC-tree with
one terminal C-node having the forbidden pattern of i-subtrees (dark triangles) and
i∗-subtrees (light triangles). (c) An example with two terminal C-nodes, only one of
which need be in the depicted state. Note the use of graph minors for simplification; in
these examples, r could be any node on the path between i and the terminal C-node.
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4 The i-i∗ Subtree Patterns for an Intermediate C-Node

Given an intermediate C-node c along the path P between two terminal nodes,
we consider the two RBC paths strictly between neighbors v and v′ of c in P . The
proof of Lemma 3.1 of [5] attempts to prove the following: neither RBC path of
c can contain both an i-subtree and an i∗-subtree. It does not show the necessity
of the broader planarity condition stated the lemma: of the two RBC paths
strictly between v and v′, one must contain only child i-subtrees and the other
must contain only child i∗-subtrees. There are four issues. First, the proof of
the simpler condition fails when the terminal node and the intermediate C-node
are neighbors; the author has found other K3,3 patterns (not depicted) for this
case. Second, the proof is by contradiction but does not fully negate the lemma
statement: the simpler condition (described above) can hold while still violating
the lemma statement’s planarity condition if both RBC paths contain only i∗-
subtrees (see Figure 2(a)) or i-subtrees (reduces to Figure 1(c)). Third, stricter
conditions are required if the intermediate C-node is m, the closest common
ancestor of the terminal nodes, because it cannot be flipped. The graph is non-
planar if an i-subtree appears below P on the RBC of m (see Figure 2(b)) or
if an i∗-subtree appears on the RBC of m above P (resulting in a K3,3 that
edge contracts to the K5 minor of Figure 3(a)). Theorem 2 states the required
planarity conditions. A fourth problem is that analogous planarity conditions
are required for one terminal node, producing the same non-planarity minors
except the last case does not edge contract to a K5 minor but still produces a
K3,3 (not depicted). Theorem 3 states the additional planarity conditions.

Theorem 2. Let P denote the path between two terminal nodes u and u′ with
closest common ancestor m. Let c denote a C-node in P −{u, u′} with neighbors
v and v′ in P . Of the two RBC paths strictly between v and v′, one must contain
no child i-subtrees and the other no child i∗-subtrees. Further, if c = m, then the
RBC path containing the child i-subtrees must also contain the parent of c.

Theorem 3. Given one terminal node u, let P denote the path from u to the
farthest ancestor u′ with a child i∗-subtree. Let c be an intermediate C-node in
path P − {u}. For c �= u′, let v and v′ denote the neighbors of c in P . For
c = u′, let v denote the neighbor of c in P and let v′ denote the closest child
i∗-subtree along either RBC path from the parent p of c. The following conditions
must hold: 1) The children of c in one RBC path strictly between v and v′ must
contain only child i-subtrees; 2) The opposing RBC path strictly between v and v′

must contain only child i∗-subtrees; 3) If c = u′, then the RBC path containing
the child i-subtrees must also contain p.

5 Finding Non-planarity of K3,3-Less Graphs

Consider extending Lemma 2.5 in [5] to a PC-tree that contains C-nodes. Specif-
ically, suppose the closest common ancestor m of the two terminal nodes is a
C-node whose parent has the only child i∗-subtree along the path P ′. Figure 3
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Fig. 2. (a) The intermediate C-node has child i∗-subtrees along both RBC paths be-
tween its parent (labelled m here) and the next node in path P (labelled u here). (b)
The C-node labelled m has a child i-subtree below the path P between the terminal
nodes. (c) The K3,3 for these planarity condition violations; the labels m, x, y and u
are the mapping for part (a), and the labels r, u, u′ and w are for part (b).

depicts an example PC-tree and the corresponding K5 minor pattern from [3].
In this case, the K3,3 shown in the proof of Lemma 2.5 in [5] cannot be found,
illustrating that the proof does not “go through for the case of general trees
without any changes provided that the paths through a C-node are interpreted
correctly” [5, p. 185]. Theorem 4 states the relevant planarity condition from
Lemma 2.5 of [5], relying for its proof of necessity on both [5] and Figure 3.

Theorem 4. Suppose there are two terminal nodes u and u′ in Tr, and let m
be their closest common ancestor. Let P ′ be the unique path from m to r. Every
proper ancestor of m in Tr must have no child i∗-subtrees.

This case is also important because it shows the method by which K5 sub-
divisions and other K3,3-less graphs are found by the PC-tree algorithm. In [5],
the case of three terminal nodes is shown to produce a either a (subgraph home-
omorphic to) K3,3, or “we could have three terminal nodes being neighbors of a
C-node, in which case we would get a subgraph homeomorphic to K5 . . . ” Tech-
nically, the result is a K5 minor, which could produce a subgraph homeomorphic
to K3,3 or K5. Of greater importance, though, is the fact that a K3,3 can also
always be found in this case (though not the same one indicated for the three
terminal node case in [5]). However, this case of three terminal node neighbors
of a C-node is the only case mentioned in [5] for finding a K5, yet there are
many non-planar graphs that do not contain a K3,3. Therefore, there must be
some other condition that detects non-planarity for graphs that contain a K5

but not a K3,3 (e.g. all K5 subdivisions). The K5 in Figure 6 of [5] is equivalent
to Figure 3(b). It does not result in three terminal nodes as stated in [5], but is
instead discovered by violation of the planarity condition in Theorem 4.
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Fig. 3. (a) A PC-tree in which the closest common ancestor of terminal nodes u and u′

is a C-node with a proper ancestor that has a child i∗-subtree. (b) The corresponding
K5 minor from [3]. Note: Due to the difference in definitions between graph minors and
subgraph homeomorphism, this case implies a subgraph homeomorphic to K3,3 or K5.

6 Conclusion and Future Work

This paper presented the additional planarity conditions required to create a
correct planarity algorithm using a PC-tree, allowing fair comparison with other
recent approaches to planarity. While the August 2003 version of the implemen-
tation in [10] could not be empirically compared due to frequent incorrect results,
Hsu also requested that a subsequent version with fixes not be empirically com-
pared as he felt the implementation was only a proof of concept. However, there
is strong evidence from [11] that a simplified vertex addition method can achieve
far better performance than most prior methods, although those results also sug-
gest that the edge addition methods in [4, 12] are faster. Future work must use
the results of this paper to create correct, efficient PC-tree implementations for
empirical comparisons, especially with [4, 12]. The results of this paper are also
important for creating a Kuratowski subgraph isolator based on the PC-tree, the
full exposition of which should translate from the graph minors used to express
planarity condition violations to homeomorphic subgraphs.
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Abstract. The efforts put into XML-related technologies have exciting
consequences for XML-based graph data formats such as GraphML. We
here give a systematic overview of the possibilities offered by XSLT style
sheets for processing graph data, and illustrate that many basic tasks
required for tools used in graph drawing can be implemented by means of
style sheets, which are convenient to use, portable, and easy to customize.

1 Introduction

Among the multitude of software packages that process graphs, some are ded-
icated graph packages while others operate on graph structures implicitly. All
of them have in common the need to input existing data and to output their
computation results in files or streams. GraphML (Graph Markup Language) is
an XML-based format for the description of graph structures, designed to im-
prove tool interoperability and reduce communication overhead [1]. It is open
to user-defined extensions for application-specific data. Thanks to its XML syn-
tax, GraphML-aware applications can take advantage of a growing number of
XML-related technologies and tools, such as parsers and validators.

It is straightforward to provide access to graphs represented in GraphML
by adding input and output filters to an existing software application. However,
we find that Extensible Stylesheet Language Transformations (XSLT) [7] offer
a more natural way of utilizing XML formatted data, in particular when the
resulting format of a computation is again based on XML. The mappings that
transform input GraphML documents to output documents are defined in XSLT
style sheets and can be used stand-alone, as components of larger systems, or
in, say, web services.

This article is organized as follows. Section 2 provides some background on
GraphML, XSLT and their combination. Basic means and concepts of trans-
formations are outlined in Sect. 3, while different types of transformations are
discussed in Sect. 4. The integration of XSLT extension mechanisms is described
in Sect. 5, and results are discussed and summarized in Section 6.
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2 Background

A key feature of GraphML is the separation into structural and data layer, both
conceptually and syntactically; this enables applications to extend the stan-
dard GraphML vocabulary by custom data labels that are transparent to other
applications not aware of the extension. Furthermore, applications are free to
ignore unknown concepts appearing in the structural layer, such as <port>s,
<hyperedge>s or nested <graph>s.

Thanks to its XML syntax, GraphML can be used in combination with other
XML based formats: On the one hand, its own extension mechanism allows to at-
tach <data> labels with complex content (possibly required to comply with other
XML content models) to GraphML elements, such as Scalable Vector Graph-
ics [5] describing the appearance of the nodes and edges in a drawing; on the
other hand, GraphML can be integrated into other applications, e.g. in SOAP
messages [6].

Since GraphML representations of graphs often need to be preprocessed or
converted to other XML formats, it is convenient to transform them using XSLT,
a language specifically designed for transforming XML documents; while origi-
nally created for formatting and presenting XML data, usually with HTML, it
also allows general restructuring, analysis, and evaluation of XML documents.
To reduce parsing overhead and to allow for XML output generation in a natural
and embedded way, XSLT itself is in XML syntax.

Basically, the transformations are defined in style sheets (sometimes also
called transformation sheets), which specify how an input XML document gets
transformed into an output XML document in a recursive pattern matching
process. The underlying data model for XML documents is the Document Object
Model (DOM), a tree of DOM nodes representing the elements, attributes, text
etc., which is held completely in memory. Fig. 1 shows the basic workflow of a
transformation.

Fig. 1. Workflow of an XSLT transformation. First, XML data is converted to a tree
representation, which is then used to build the result tree as specified in the style sheet.
Eventually, the result tree is serialized as XML.
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DOM trees can be navigated with the XPath language, a sublanguage of
XSLT: It expresses paths in the document tree seen from a particular context
node (similar to a directory tree of a file system) and serves to address sets of its
nodes that satisfy given conditions. For example, if the context node is a <graph>
element, all node identifiers can be addressed by child::node/attribute::id,
or node/@id as shorthand. Predicates can be used to specify more precisely
which parts of the DOM tree to select; for example, the XPath expression
edge[@source=’n0’]/data selects only those <data> children of <edge>s start-
ing from the <node> with the given identifier.

The transformation process can be roughly described as follows: A style sheet
consists of a list of templates, each having an associated pattern and a template
body containing the actions to be executed and the content to be written to the
output. Beginning with the root, the processor performs a depth-first traversal
(in document order) through the DOM tree. For each DOM node it encounters, it
checks whether there is a template whose pattern it satisfies; if so, it selects one of
the templates and executes the actions given in that template body (potentially
with further recursive pattern matching for the subtrees), and does not do any
further depth-first traversal for the DOM subtree rooted at that DOM node;
else, it automatically continues the depth-first traversal recursively at each of its
children.

3 Basic Means of Transformation

The expressivity and usefulness of XSLT transformations goes beyond their orig-
inal purpose of only “adding style” to the input. The following is an overview of
some important basic concepts of XSLT and how these concepts can particularly
be employed in order to formulate advanced GraphML transformations that also
take into account the underlying combinatorial structure of the graph instead of
only the DOM tree. For some example style sheets, see Sect. 4.

3.1 Parameterization

Especially when integrated as component of a larger system, it is desirable or
necessary to parameterize the transformations. Therefore, style sheets can be
given an arbitrary number of global parameters <xsl:param> that serve as an
interface to the outside world. When used autonomously, parameters are passed
to the processor as command line parameters.

Such parameters are often used to determine which part of the source doc-
ument is to be processed. For example, a GraphML file might contain multiple
<graph>s; a parameter can express the unique identifier of a particular graph
that is to be selected. Newer versions of XSLT even allow passing complex XML
subtree structures to the transformation.

3.2 Recursion

In the pattern matching process described in Sect. 2, templates were instantiated
and executed implicitly or explicitly, when a matching DOM node was encoun-
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tered in the tree traversal. However, templates can also be given unique names
and called like functions together with arbitrary scalar or complex arguments,
independently from the tree traversal.

For implementation of more advanced computations, such as graph algo-
rithms, templates may recursively call themselves, typically passing local pa-
rameters as function arguments. Similar to the global parameters (see Sect. 3.1),
local parameters can represent both scalar values and complex tree fragments.
With some limitations, XSLT can be considered a functional language, since
templates (and the style sheet as a whole) define functions that are applied to
subtrees of the input document and return fragments of the output document.

Due to the lack of assignment statements and side-effects, conventional im-
perative graph algorithms have to be formulated solely in terms of functions;
states, data structures, and intermediate results must be expressed as parame-
ters of function calls. For example, in a breadth-first search the set of all unvis-
ited nodes is passed to a recursive incarnation of the BFS template, instead of
becoming marked (see Sect. 4.3).

3.3 Modularization

To make transformations more flexible, they are not necessarily defined in one
single file, but can be distributed over a set of modules. The main style sheet
imports all templates from another style sheet with <xsl:import>, with its
own templates having a higher priority, or includes them textually using an
<xsl:include> tag. Alternatively, style sheets can be composed in advance in-
stead of being imported and included at transformation runtime. Since XSLT is
XML, it is even possible for style sheets to compose and transform other style
sheets.

Another way of modularizing large transformations is to split them up into
several smaller exchangeable style sheets that define successive steps of the trans-
formation, each of which operates on the GraphML result produced in the pre-
vious step.

In effect, modularizing transformations facilitates implementing a family of
general-purpose and specialized style sheets. Users are free to use specialized
modules, or to design new custom templates that extend the general ones.

3.4 External Code

XSLT is designed to be an open, extensible system. While parameterization is
one way of using an interface to the outside world when XSLT serves as a com-
ponent, another even more powerful mechanism is the integration of extension
functions into XSLT, i.e. code external to the style sheet. This is especially use-
ful when pure XSLT implementations are inefficient to run or too complicated
to use, especially when the input document is large, or when XSLT does not
provide necessary functionality at all, e.g. when random numbers, mathematical
operations, date functions, or complex string manipulations are needed.

It is important to note that extension functions and classes may violate the
declarative, functional design idea of XSLT, since instance-level methods can pro-
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vide information about mutable states, thus making side-effects possible because
a template may now produce different output at different times of execution.

The mechanism is described in more detail in Sect. 5, where we present an
extension to be used with GraphML.

4 Transformation Types

Since GraphML is designed as a general format not bound to a particular area
of application, an abundance of XSLT use cases exist. However, we found that
transformations can be filed into three major categories, depending on the actual
purpose of transformation. Note that transformations may correspond to more
than one type.

4.1 Internal

While one of GraphML’s design goals is to require a well-defined interpretation
for all GraphML files, there is no uniqueness the other way round, i.e. there
are various GraphML representations for a graph; for example, its <node>s and
<edge>s may appear in arbitrary order. However, applications may require their
GraphML input to satisfy certain preconditions, such as the appearance of all
<node>s before any <edge> in order to set up a graph in memory on-the-fly while
reading the input stream.

Generally, some frequently arising transformations include

– pre- and postprocessing the GraphML file to make it satisfy given conditions,
such as rearranging the markup elements or generating unique identifiers,

– inserting default values where there is no explicit entry, e.g. edge directions
or default values for <data> tags,

– resolving XLink references in distributed graphs,
– filtering out unneeded <data> tags that are not relevant for further process-

ing and can be dropped to reduce communication or memory cost, and
– converting between graph classes, for example eliminating hyperedges, ex-

panding nested graphs, or removing multiedges.

For such GraphML-to-GraphML transformations that operate on the syn-
tactical representation rather than on the underlying combinatorial structure,
XSLT style sheets are a very useful and lightweight tool. Often, the source code
fits on one single page. See, e.g., Fig. 2 and Fig. 3.

4.2 Format Conversion

Although in recent years GraphML and similar formats like GXL [9] became
increasingly used in various areas of interest, there are still many applications
and services not (yet) capable of processing them. To be compatible, formats
need to be translatable to each other, preserving as much information as possible.

In doing so, it is essential to take into account possible structural mismatch
in terms of both the graph models and concepts that can be expressed by the
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involved formats, and their support for additional data. Of course, the closer
the conceptual relatedness between source and target format is, the simpler the
style sheets typically are.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:template match="data|desc|key|default"/> <!-- empty template-->

<xsl:template match="/graphml">
<graphml>

<xsl:copy-of select="key|desc|@*"/>
<xsl:apply-templates match="graph"/> <!-- process graph(s) -->

</graphml>
</xsl:template>

<xsl:template match="graph"> <!-- override template -->
<graph>

<xsl:copy-of select="key|desc|@*"/>
<xsl:copy-of select="node"/> <!-- nodes first -->
<xsl:copy-of select="edge"/> <!-- then edges -->

</graph>
</xsl:template>

</xsl:stylesheet>

Fig. 2. This transformation rearranges the graph so that the nodes appear before the
edges. All subtrees related to data extensions (data and key tags) are omitted.

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:import href="rearrange.xsl"/> <!-- import templates -->

<xsl:template match="graph">
<graph>

<xsl:copy-of select="key|desc|@*"/>
<xsl:copy-of select="node"/>
<xsl:apply-templates match="edge"/>

</graph>
</xsl:template>

<xsl:template match="edge"> <!-- new template rule for edges-->
<xsl:copy>

<xsl:copy-of select="@*[name()!=’id’]|*"/>
<xsl:attribute name="id"> <!-- create new ID attribute -->
<xsl:value-of select="generate-id()"/> <!-- XPath-generated ID -->

</xsl:attribute>
</xsl:copy>

</xsl:template>
</xsl:stylesheet>

Fig. 3. The transformation in Fig. 2 is extended by importing its templates and over-
riding the template for graphs, as described in Sect. 3.3. Edges are copied to the output
document, except for their identifiers, which are generated anew.
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While conversion will be necessary in various settings, two use cases appear
to be of particular importance:

– Conversion into another graph format: We expect GraphML to be used in
many applications to archive attributed graph data and in Web services
to transmit aspects of a graph. While it is easy to output GraphML, style
sheets can be used to convert GraphML into other graph formats and can
thus be utilized in translation services like GraphEx [3]. Converting between
GraphML and GXL is discussed in [2].

– Export to some graphics format: Of course, graph-based tools in general
and graph drawing tools in particular will have to export graphs in graphics
formats for visualization purposes. In fact, this is the most natural use of style
sheets, and we give an example tranformation to SVG (see Appendix A).

The transformation need not be applied to a filed document, but can also be
carried out in memory by applications that ought to be able to export in some
target format. Note that, even though XSLT is typically used for mapping be-
tween XML documents, it can also be utilized to generate non-XML output.

4.3 Algorithmic

Algorithmic style sheets appear in transformations which create fragments in
the output document that do not directly correspond to fragments in the input
document, i.e. when there is structure in the source document that is not explicit
in the markup. This is typical for GraphML data: For example, it is not possible
to determine whether or not a given <graph> contains cycles by just looking at
the markup; some algorithm has to be applied to the represented graph.

To get a feel for the potential of algorithmic style sheets, we implemented
some basic graph algorithms using XSLT, and with recursive templates outlined
in Sect. 3.2, it proved powerful enough to formulate even more advanced algo-
rithms. For example, a style sheet can be used to compute the distances from a
single source to all other nodes or execute a layout algorithm, and then attach
the results to <node>s in <data> labels. See Fig. 4 and Appendix A.

5 Java Language Binding

We found that pure XSLT functionality is expressive enough to solve even more
advanced GraphML related problems. However, it suffers from some general
drawbacks:

– With growing problem complexity, the style sheets tend to become dispro-
portionately verbose.

– Algorithms must be reformulated in terms of recursive templates, and there
is no way to use existing implementations.

– Computations may perform poorly, especially for large input. This is often
due to excessive DOM tree traversal and overhead generated by template
instantiation internal to the XSLT processor.

– There is no direct way of accessing system services, such as date functions
or data base connectivity.
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<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:param name="source">s</xsl:param> <!-- global parameter -->

<xsl:template match="data|desc|key"/>

<xsl:template match="/graphml/graph">
<graphml>

<graph>
<xsl:copy-of select="@*|*[name()!=’node’]"/>
<key for="node" name="distance"/>
<xsl:variable name="bfsnodes">

<xsl:call-template name="bfs">
<xsl:with-param name="V" select="node[@id!=$source]"/>
<xsl:with-param name="W" select="node[@id=$source]"/>
<xsl:with-param name="dist" select="number(0)"/>

</xsl:call-template>
</xsl:variable>
<xsl:copy-of select="$bfsnodes/node"/>
<xsl:for-each select="node[not(@id=$bfsnodes/node/@id)]">

<xsl:copy>
<xsl:copy-of select="*|@*"/>
<data key="distance">-1</data> <!-- not reachable -->

</xsl:copy>
</xsl:for-each>

</graph>
</graphml>

</xsl:template>

<xsl:template name="bfs">
<xsl:param name="dist"/> <!-- current distance to source -->
<xsl:param name="V"/> <!-- unvisited nodes -->
<xsl:param name="W"/> <!-- BFS front nodes -->
<xsl:for-each select="$W">

<xsl:copy>
<xsl:copy-of select="*|@*"/>
<data key="distance"><xsl:value-of select="$dist"/></data>

</xsl:copy>
</xsl:for-each>
<xsl:variable name="new" select="$V[@id=../edge[@source=$W/@id]/@target]"/>
<xsl:if test="$new"> <!-- newly visited nodes? -->

<xsl:call-template name="bfs"> <!-- start BFS from them -->
<xsl:with-param name="V" select="$V[count(.|$new)!=count($new)]"/>
<xsl:with-param name="W" select="$new"/>
<xsl:with-param name="dist" select="$dist+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Fig. 4. An algorithmic style sheet that starts a breath-first search from a source speci-
fied in a global parameter. The computed distances from that source node are attached
to the nodes as data tags with a newly introduced key.

Therefore, most XSLT processors allow the integration of extension functions
implemented in XSLT or some other programming language. Usually, they sup-
port at least their native language. For example, Saxon [4] can access and use
external Java classes since itself is written entirely in Java. In this case, exten-
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sion functions are methods of Java classes available on the class path when the
transformation is being executed, and get invoked within XPath expressions.
Usually, they are static methods, thus staying compliant with XSLT’s design
idea of declarative style and freeness of side-effects. However, XSLT allows to
create objects and to call their instance-level methods by binding the created
objects to XPath variables.

Fig. 5 shows the architecture of a transformation integrating external classes.
See Appendix A for a style sheet that makes use of extension functions for
random graph generation.

Fig. 5. Extending a transformation with Extension Functions. The box around the
Java classes may represent a wrapper class.

In particular, this technique enables developers to implement extensions for
graph algorithms. They can either implement extension functions from scratch,
or make use of already existing off-the-shelf graph libraries. We implemented a
prototype extension for GraphML that basically consists of three layers:

– Java classes for graph data structures and algorithms.
– A wrapper class (the actual XSLT extension) that converts GraphML

markup to a wrapped graph object, and provides computation results.
– The style sheet that instantiates the wrapper and communicates with it.

Thus, the wrapper acts as a mediator between the graph object and the style
sheet. The wrapper instantiates a graph object corresponding to the GraphML
markup, and, for instance, applies a graph drawing algorithm to it. In turn, it
provides the resulting coordinates and other layout data in order for the style
sheet to insert it into the XML (probably GraphML) result of the transformation,
or to do further computations.
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The approach presented here is only one of many ways of mapping an ex-
ternal graph description file to an internal graph representation. A stand-alone
application could integrate a GraphML parser, build up its graph representation
in memory apart from XSLT, execute a transformation, and serialize the result
as GraphML output. However, the intrinsic advantage of using XSLT is that it
generates output in a natural and embedded way, and that the output generation
process can be customized easily.

6 Discussion

We have presented a simple, lightweight approach to processing graphs repre-
sented in GraphML. XSLT style sheets have proven to be useful in various areas
of application, both when the target format of a transformation is GraphML,
and in other formats with a similar purpose where the structure of the output
does not vary too much from the input.

They are even powerful enough to specify advanced transformations that go
beyond mapping XML elements directly to other XML elements or other simple
text units. However, advanced transformations may result in long-winded style
sheets that are intricate to maintain, and most likely to be inefficient. Extension
functions appear to be the natural way out of such difficulties.

We found that, as rule-of-thumb, XSLT should be used primarily to do the
structural parts of a transformation, such as creating new elements or attributes,
whereas specialized extensions are better for complex computations that are
difficult to express or inefficient to run using pure XSLT.
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A Supplement

Due to space limitations, we do not give extensive examples for style sheets. The
following examples are referred to in this paper and can be obtained from the
GraphML homepage (graphml.graphdrawing.org):

GraphML → SVG. An example for conversion into an XML-based graphics
format (requires coordinates).

Spring Embedder. A computational style sheet computing coordinates using
a popular layout algorithm.

Random Graph Generator. Generates random graphs in the Erdős-Rényi
model by calling an external random number generator (Java language bind-
ing).
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Abstract. In this paper we study the clustered graphs whose underlying graph
is a cycle. This is a simple family of clustered graphs that are “highly non con-
nected”. We start by studying 3-cluster cycles, that are clustered graphs such that
the underlying graph is a simple cycle and there are three clusters all at the same
level. We show that in this case testing the c-planarity can be done efficiently
and give an efficient drawing algorithm. Also, we characterize 3-cluster cycles in
terms of formal grammars. Finally, we generalize the results on 3-cluster cycles
considering clustered graphs that at each level of the inclusion tree have a cy-
cle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms.

1 Introduction

Consider the following problem. A cycle is given where each vertex has a label. Is it
possible to add new edges so that: (i) the new graph (i.e. cycle plus new edges) is planar
and (ii) for each label, the subgraph induced by the vertices with that label is connected?
An example is in Fig. 1.a. In this case the problem admits a solution, depicted in Fig. 1.b.

In this paper we tackle problems of the above type. Such kind of problems arise in
the field of clustered planarity [9, 8]. Given a graph, a cluster is a non empty subset of
its vertices. A clustered graph consists of a graph G and a rooted tree T such that the
leaves of T are the vertices of G. Each node ν of T corresponds to the cluster V (ν) of
G whose vertices are the leaves of the subtree rooted at ν. The subgraph of G induced
by V (ν) is denoted as G(ν). An edge e between a vertex of V (ν) and a vertex of
V − V (ν) is said to be incident on ν. Graph G and tree T are called underlying graph
and inclusion tree, respectively. A clustered graph is connected if for each node ν of T
we have that G(ν) is connected.

In a drawing of a clustered graph each vertex of G is a point and each edge is a
simple curve between its end-vertices. For each node ν of T , G(ν) is drawn inside a
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Fig. 1. (a) An example of a cycle with labels in {a, b, c}. (b) The cycle with extra edges. (c) The
corresponding clustered drawing of the cycle.

simple closed region R(ν) such that: (i) for each node µ of T that is neither an ancestor
nor a descendant of ν, R(µ) is completely contained in the exterior of R(ν); (ii) an
edge e incident on ν crosses the boundary of R(ν) exactly once. We say that edge e
and region R have an edge-region crossing if both endpoints of e are outside R and e
crosses the boundary of R. A drawing of a clustered graph is c-planar if it does not
have edge crossings and edge-region crossings. A clustered graph is c-planar if it has a
c-planar drawing.

Consider again the example of Fig. 1 according to the above definitions. The cycle
is the underlying graph of a clustered graph. Vertices with the same label are in the
same cluster. The inclusion tree consists of a root with three children, denoted a, b,
and c. The children of node x are the vertices labeled x. The edges added to the cycle
are used to “simulate” the closed regions containing the clusters (See Fig. 1.c). In this
paper we call saturator such set of edges. The clustered graph of the example is c-
planar. Further, the problem of adding extra edges to a labeled cycle admits a solution
iff the corresponding clustered graph is c-planar. Observe that the clustered graph of the
example is not connected.

Clustered planarity, because of its practical impact and because of its theoretical
appeal, attracted many research contributions. Feng, Cohen, and Eades devised the first
polynomial time c-planarity testing algorithm for connected clustered graphs [9]. A
planarization algorithm for connected clustered graph is shown in [5]. However, the
complexity of the problem for a non connected clustered graph is still unknown.

A contribution on this topic has been given by Gutwenger et al. that presented
a polynomial time algorithm for c-planarity testing for almost connected clustered
graphs [10]. In almost connected clustered graphs either all nodes corresponding to non
connected clusters are in the same path in T starting at the root of T , or for each non
connected cluster its parent and all its siblings are connected. Also, the works in [1, 2]
by Biedl, Kaufmann, and Mutzel can be interpreted as a linear time c-planarity test for
non connected clustered graphs with exactly two clusters at the same level.

Another contribution studying the interplay between c-planarity and connectivity
has been presented in [3] by Cornelsen and Wagner. They show that a completely con-
nected clustered graph is c-planar iff its underlying graph is planar. A completely con-
nected clustered graph is so that not only each cluster is connected but also its comple-
ment is connected.
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In this paper we study the clustered graphs whose underlying graph is a cycle. This
is a simple family of clustered graphs that are “highly non connected”. The paper is
organized as follows.

Section 2 contains preliminaries. In Section 3 we study 3-cluster cycles, that are
clustered graphs such that the underlying graph is a simple cycle and there are three
clusters all at the same level. We show that, in this case, testing the c-planarity can be
done efficiently. We also give an efficient drawing algorithm. Further, we show that in
this specific case if the c-planarity problem admits a solution then a saturator exists
that is composed only by simple paths. In Section 4 we generalize the results on 3-
cluster cycles considering clustered graphs that on each level of the inclusion tree have
a cycle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms. Section 5 contains conclusions and open problems.

2 Preliminaries

We assume familiarity with connectivity and planarity of graphs [7, 6]. We also assume
familiarity with formal grammars [11].

Given a c-planar non connected clustered graph C(G, T ), a saturator of C is a set
of edges that can be added to the underlying graph G so that C becomes connected
without loosing its c-planarity. Finding a saturator of a clustered graph is important
since it allows to apply to C the same drawing techniques that have been devised for
connected clustered graphs.

We call 3-cluster cycle a clustered graph such that the underlying graph is a simple
cycle and there are exactly three clusters all at the same level (plus the root cluster). In
a 3-cluster cycle the inclusion tree consists of a root node with three children and each
vertex of the underlying cycle is a child of one of these three nodes. Given a 3-cluster
cycle, we associate a label in {a, b, c} to each of the three clusters.

Consider a 3-cluster cycle and arbitrarily select a starting vertex and a direction.
We can visit the cycle and denote it by the sequence σ of labels associated with the
clusters encountered during the visit. The same clustered cycle is also denoted by any
cyclic permutation of σ and by any reverse sequence of such permutations. We use
Greek letters to denote general sequences and Roman letters to identify single-character
sequences. Given a sequence σ, we denote with σ its reverse sequence.

A non c-planar c-cluster cycle is abcabc, while a c-planar one is abcbac.
It is easy to see that repeated consecutive labels can be collapsed into a single label

without affecting the c-planarity property of a 3-cluster cycle. Hence, in the following
we consider only 3-cluster cycles where consecutive vertices belong to distinct clusters.
Also, since clusters can not be empty, in a 3-cluster cycle at least one occurrence of
each label can be found.

We assign a cyclic order to the clusters so that a ≺ b, b ≺ c, and c ≺ a. A sequence
σ is monotonic increasing (decreasing) if for each pair x, y of consecutive labels of σ
x ≺ y (y ≺ x). A sequence is cyclically increasing (decreasing) monotonic if all its
cyclic permutations are increasing (decreasing) monotonic.

Given a 3-cluster cycle σ, Balance(σ) is a number defined as follows. Select a
starting vertex and a direction. Set counter c to zero. Visit σ adding (subtracting) one
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unit to c when passing from x to y, where x ≺ y (y ≺ x). Observe that, when the start-
ing vertex is reached again, c is a multiple of 3 that can be positive, negative, or zero. If
we selected a different starting vertex, while preserving the direction, we would obtain
the same value. On the contrary, if σ was visited in the opposite direction the opposite
value would be obtained for c. Balance(σ) = |c|. For example, Balance(ababc) = 3
and Balance(cbacba) = 6.

Observe that, when representing a 3-cluster cycle with a sequence of labels, by
reading the sequence from left to right, we implicitly choose a direction for visiting the
cycle. For simplicity, we adopt the convention of representing a 3-cluster cycle with a
sequence σ such that, when the vertices of the cycle are visited according to the order
induced by σ, a non negative value for c is obtained.

3 Cycles with Three Clusters

In this section we address the problem of testing the c-planarity of a 3-cluster cycle.
The following lemma introduces transformations that can be used to simplify 3-cluster
cycles without affecting their c-planarity properties.

Lemma 1. Let σ = σ1xαyαxαyσ2 be a 3-cluster cycle such that σ1, σ2, and α are
possibly empty and xαy is monotonic. The 3-cluster cycle σ′ = σ1xαyσ2 is c-planar if
and only if σ is c-planar. Balance(σ) = Balance(σ′).

Proof Sketch: Suppose there exists a c-planar drawing of σ′. The black line in Fig. 2.a
shows an example of such a drawing for the portion concerning subsequence xαy.
Such a drawing can be modified by replacing the edge between y and the first vertex
of σ2 with the sequence αxαy. Such sequence can be drawn arbitrarily close to xαy
preserving c-planarity. Finally, the just added instance of y may be connected to the first
vertex of σ2. The result is shown in Fig. 2.a where the added part is drawn gray.

Now, suppose that there exists a c-planar drawing of σ. Fig. 2.b shows an example
of such a drawing for the part concerning subsequence xαyαxαy. The inlet formed
by xαyαx may contain parts of σ that are denoted by Q in Fig. 2.b. The parts of σ
that are contained in the inlet formed by yαxαy are denoted by P . The embedding of
P and Q may be rearranged preserving c-planarity as in Fig. 2.c. Path αxαy can now
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Fig. 2. Illustration of the proof of Lemma 1. (a) Necessary condition. (b) and (c) Sufficient con-
dition.
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be deleted and substituted by an edge connecting vertex y with the first vertex of σ2.
Finally, observe that, since we have removed from σ two monotonic sub-sequences, one
increasing and one decreasing, with the same length, Balance(σ′) = Balance(σ). �

For example, Lemma 1 allows to study the c-planarity of cabcab instead of the c-
planarity of cabcacbabcab (by taking σ1 = c, x = a, α = bc, y = a, and σ2 = b).

Lemma 2. Let σ be a 3-cluster cycle. There exists a 3-cluster cycle σ′ such that:
Balance(σ′) = Balance(σ), σ′ is c-planar iff σ is c-planar, and either σ′ is cycli-
cally monotonic or σ′ = xαyβ, where

1. α and β are non empty,
2. xαy is maximal monotonic increasing, and
3. yβx is maximal monotonic decreasing.

Because of space limitation, the proof for this Lemma is omitted. This proof is based
on the main idea of repeatedly applying Lemma 1 starting from the shortest monotonic
subsequences [4].

The following two lemmas (Lemma 3 and Lemma 4) study the c-planarity of the
simple families of 3-cluster cycles cited in Lemma 2.

Lemma 3. A 3-cluster cycle σ such that σ is cyclically monotonic is c-planar if and
only if Balance(σ) = 3.

Proof Sketch: Since σ is monotonic we have that Balance(σ) �= 0. Recall that
Balance(σ) is a multiple of 3. If Balance(σ) = 3, then it can only be the case that
σ = abc or σ = bca or σ = cab and it is trivial to see that σ is c-planar.

Suppose that Balance(σ) ≥ 6. We show that σ is not c-planar. Suppose by con-
tradiction that there exists a c-planar drawing Γσ of σ. Consider the vertices v1, v2, v3,
v4, v5 and v6 of σ as drawn in Γσ (see Fig. 3.b). The two edges incident to v4 separate
v1 from the rest of the vertices of its cluster. Thus, it is possible to add an edge (v1, v4)
preserving the planarity of the drawing. For similar reasons, it is possible to add the
edges (v2, v5) and (v3, v6). A contradiction arises from the fact that a subdivision of
a K3,3 can be found in the drawing. Consider, the vertices v1, v2, v3, v4, v5 and v6.
Vertex v1 is connected to v6 with a path in σ and it is directly connected to v2 and v4.
Vertices v3 and v5 are directly connected to v2, v4, and v6. �
Lemma 4. Let σ = xαyβ be a 3-cluster cycle, where α and β are non empty, xαy
is maximal monotonic increasing, and yβx is maximal monotonic decreasing. We have
that σ is c-planar iff Balance(σ) is in {0, +3}.
Proof Sketch: Let Balance(σ) = 3k, with k non negative integer. Suppose k is equal
to 0 or 1. A c-planar drawing of σ can be constructed by placing the vertices on three
half-lines as in the examples shown in Fig. 4.a and 4.b, respectively. The vertices of
each half-line can be enclosed into a region representing their cluster.

Suppose that k > 1. We show that σ is not c-planar. Suppose for a contradiction
that σ is c-planar and let Γ (σ) be a c-planar drawing of σ. Denote with v1, . . . , vn the
vertices of σ starting from the first vertex of α and suppose, without loss of generality,
that the length of α is greater or equal than the length of β.
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Fig. 3. Illustrations for the proofs of Lemma 2 (a), Lemma 3 (b) and of Lemma 4 (c).
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Fig. 4. The construction of a c-planar drawing for a cycle σ when Balance(σ) = 0 (a) and when
Balance(σ) = 3 (b).

Consider the relative position of v1 and v4 in Γ in their cluster X (see Fig. 3.c). We
have that the two edges incident on v4 separate v1 from the rest of the vertices of X .
Thus, it is possible to join v1 and v4 with an edge (v1, v4) that is entirely contained into
the cluster X and that preserves the planarity of the drawing. Analogously, it is possible
to join vertices v2 and v5 in cluster Y with the edge (v2, v5) and vertices v3 and v6 in
cluster Z with the edge (v3, v6).

A contradiction arises since a subgraph that is a subdivision of K3,3 can be found
in the drawing. In fact, exploiting the edges of σ and the edges introduced above, each
vertex in {v1, v3, v5} is connected to all vertices in {v2, v4, v6}. Vertex v1 is directly
connected to v2 and to v6 with edges of σ, while it is connected to v4 with edge (v1, v4);
vertex v3 is directly connected to v2 and to v4 with edges of σ, while it is connected to
vn with edge (v3, vn); finally, vertex v5 is directly connected to v4 with an edge of σ, it
is connected to vn with a path in σ, and it is connected to v2 with edge (v2, v5). �

Because of Lemma 2, Lemma 3, and Lemma 4, the problem of testing whether a
3-cluster cycle σ is c-planar can be reduced to the problem of computing Balance(σ).
Since it is easy to compute Balance(σ) in linear time (see Section 2), the following
theorem holds.

Theorem 1. Given an n-vertex 3-cluster cycle, there exists an algorithm to test if it is
c-planar in O(n) time.

In what follows we introduce a simple algorithm which guarantees the computation
of a c-planar drawing of a 3-cluster cycle, if it admits one, in linear time. Consider a
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3-cluster cycle σ with Balance(σ) ∈ {0, +3}. Set a counter to zero. Visit σ starting
from the first vertex and adding (subtracting) one unit to the counter when passing from
x to y, where x ≺ y (y ≺ x). Without loss of generality we will assume that the counter
never reaches a negative value. Otherwise, we can replace σ with an equivalent cyclic
permutation of it that has the above property and that can be obtained in linear time. Let
K be the maximum value assumed by the counter during the visit.

We say that a vertex of σ belongs to the k-th level iff the counter has value k when
reaching such a vertex. The first vertex of σ belongs to level 0. Note that each level
contains vertices of the same cluster. Also, vertices belonging to level k and level k + 3
belong to the same cluster. We denote with σ|k the sequence σ restricted to level k,
obtained from σ by deleting all the vertices not belonging to the k-th level.

We construct a saturator in the following way. For each level k ∈ {0, . . . , K},
we connect with an edge each pair of consecutive vertices of σ|k . For each level k ∈
{0, . . . , K − 3}, we insert an edge connecting the first vertex of σ|k with the last vertex
of σ|k+3.

Now we show that the graph composed by the cycle and the saturator is planar by
providing a planar drawing of it (see Fig. 5). First, we arrange all the vertices of σ on
a grid: the x-coordinate of a vertex is its position in σ and the y-coordinate is its level.
Then, we draw each edge of the cycle (excluding the one connecting the first and the
last vertex of σ) with a straight segment without introducing intersections. Second, for
each level k ∈ {0, . . . , K}, we draw those edges of the saturator that connect pairs
of consecutive vertices of σ|k with straight segments without introducing intersections.
Note that, the sequence of the clusters at levels 0, . . . , K − 3 is the same sequence
as that of the clusters at levels 3, . . . , K . Also, at this point of the construction, for
each k ∈ {0, . . . , K} the first and the last vertices of σ|k are on the external face.
Hence, the drawing can be completed without intersections by adding, for each level
k ∈ {0, . . . , K − 3}, the edge of the saturator connecting the first vertex of σ|k with

1

0

2

4

5

6

7

3

Level

c c c

a

a

b

b b b

a

b

b

b

c

a aa a

a

a

a a

c c c

b b

b

c

Fig. 5. The construction of a c-planar drawing of a 3-cluster cycle σ in the case in which
Balance(σ) = 3.
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the last vertex of σ|k+3 as shown in the example of Fig. 5. Finally, since the first and
the last vertex of σ are on the same face, they can be connected with a curve contained
into such a face without introducing intersections. To explicitly represents clusters as
simple closed regions starting from the saturator we select a region of the plane at small
distance (strictly greater than zero) from each saturator edge and delete the saturator.

It is easy to implement the above algorithm to work in linear time by building the
lists of vertices for each level while visiting σ. Notice that K is bounded by the number
of the vertices of the cycle.

Hence, we can state the following result.

Theorem 2. Given an n-vertex c-planar 3-cluster cycle σ, there exists an algorithm
that computes a c-planar drawing of σ in O(n) time.

From the above construction we also have the following.

Theorem 3. A c-planar 3-cluster cycle admits a saturator that is the collection of three
disjoint paths.

If we consider the representation of 3-cluster cycles as strings, it is possible to show,
in terms of formal grammars, that the set of 3-cluster cycles is a regular set, while the
set of c-planar 3-cluster cycles is generated by a context-free grammar [4].

4 Cycles in Cycles of Clusters

In this section we present a generalization of the results of Section 3. First, we general-
ize the results on 3-cluster cycles to the case of clusters that form a cycle whose length
is greater than three. Second, we tackle the general problem of testing the c-planarity
of a cycle that is clustered into a cycle of clusters that is in turn clustered into another
cycle of clusters, and so on. Fig. 6.a shows c-planar clustered graph whose underlying
graph is a cycle for which two levels of clusters are defined. Fig. 6.b puts in evidence the
inclusion relationship between clusters of a given level and clusters of the level directly
above it. The same figure shows also that the clusters of each level form a cycle.

We start by introducing preliminary assumptions and definitions. We consider clus-
tered graphs C(G, T ) in which all the leaves of the inclusion tree T have the same dis-
tance from the root (we call depth that distance). A clustered graph which has not this
property can be easily reduced to this case by inserting “dummy” nodes in T . Hence,
from now on we consider only inclusion trees whose leaves are all at the same depth.
We define as Gl(V l, El) the graph whose vertices are the nodes of T at distance l from
its root, and an edge (µ, ν) exists if and only if an edge of G exists incident to both µ
and ν.

For example, G0 has only one vertex and GL, where L is the depth of the tree,
is the underlying graph G of C(G, T ). We label each vertex ν of Gl with the cluster
(corresponding to a vertex of Gl−1) which ν belongs to. If Gl is a cycle, then it is
possible to identify Gl with the cyclic sequence of the labels of its vertices. If also
Gl−1 is a cycle, we consider the labels of Gl cyclically ordered according to the order
they appear in Gl−1. At this point, Balance(Gl) can be defined as in Section 3 and can
assume values 0, k, 2k, 3k, . . . where k is the length of Gl−1.
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Fig. 6. A clustered graph where at each level of the inclusion tree the nodes form a cycle. (a) A c-
planar drawing. (b) The inclusion tree augmented with edges that put in evidence the adjacencies
between nodes at the same level.

According to the above definitions a 3-cluster cycle is a clustered graph where T as
depth 2, G2 is a cycle and G1 is a cycle of length 3. In fact, the results of Section 3 can
be extended to the case in which G1 is a cycle of an arbitrary length.

Theorem 4. Given an n-vertex clustered graph C(G, T ), such that T has depth 2 and
G1 and G2 are cycles, there exists an algorithm to test if C is c-planar in O(n) time. If
C is c-planar, a c-planar drawing of C can be computed in O(n) time.

Proof Sketch: The proof exploits the same considerations and constructions of Theo-
rems 1 and 2. If the length of G1 is k then C is c-planar iff Balance(G2) ∈ {0, k}.
In order to find a c-planar drawing of C, if it exists, the same strategy described in
Section 3 can be applied, where, since in the construction depicted in Fig. 5 vertices
belonging to level j and level j + k belong to the same cluster, an edge of the saturator
is added between the first vertex of level j and the last vertex of level j + k instead of
between the first vertex of level j and the last vertex of level j + 3. �

Let C(G, T ) be a clustered graph and l be an integer between 1 and L, where L is
the depth of T . Clustered graph Cl(G, T l) is obtained from C by replacing T with a
tree T l obtained from T by connecting all the nodes at depth l with the root and deleting
all the nodes having depth greater than zero and less than l. The c-planarity of Cl can
be used to study the c-planarity of Cl−1, as is shown in the following lemma.

Lemma 5. Let C(G, T ) be a clustered graph and l be an integer between 1 and L,
where L is the depth of T . Let Cl be c-planar, Gl be a cycle, and Gl−1 be a cycle of
length k. Cl−1 is c-planar iff Balance(Gl) ∈ {0, k}.
Proof Sketch: First, we prove that if Balance(Gl) ∈ {0, k}, then Cl−1 is c-planar.
Since Balance(Gl) ∈ {0, k}, then it exists a planar drawing of Gl augmented with



Clustering Cycles into Cycles of Clusters 109

the edges of a saturator connecting vertices of Gl with the same label. Those edges
can be added to the internal or external face of cycle Gl according to the output of
the algorithm described in Section 3. Let ΓCl be a c-planar drawing of Cl. Since Gl

is a cycle, there exist in ΓCl exactly two faces containing vertices belonging to all the
clusters corresponding to vertices of Gl−1. Call such faces internal and external face
arbitrarily. A c-planar drawing ΓCl−1 can be constructed by adding to ΓCl an edge for
each edge of the saturator of Gl in such a way to place on the internal (external) face of
ΓCl the edges of the saturator that are added to the internal (external) face of Gl.

The second part of the proof shows that if Balance(Gl) is not in {0, k} then then
Cl−1 is not c-planar. Assume for a contradiction that Balance(Gl) is not in {0, k} and
a c-planar drawing of ΓCl−1 exists.

By using similar arguments as in the proofs of Lemmas 3 and 4, a subdivision of a
K3,3 can be found where the vertices of the subdivision are actually vertices of Gl, that
is, clusters of C. �

Lemma 6. Let C = (G, T ) be a clustered graph and let be l an integer between 1 and
L, where L is the depth of T . If Cl is not c-planar, then C0 = C is not c-planar.

Proof Sketch: If Cl is not c-planar, there is a subdivision of K3,3 or K5 in the graph G
augmented with the edges of the saturator of Cl. The same obstruction can be found in
the graph G augmented with the edges of saturator of C0; hence C0 can not be c-planar.

�

Theorem 5. Given an n-vertex clustered graph C(G, T ), such that T has depth L and,
for l > 0, Gl is a cycle, there exists an algorithm to test if C is c-planar in O(Ln) time.

Proof Sketch: The proof is based on iteratively applying, level by level, Lemma 5 to
the clustered graphs Cl for l = L, L − 1, . . . , 2. Since each test can be performed in
O(n) time, the statement follows. �

Theorem 6. Given an n-vertex clustered graph C(G, T ), such that T has depth L and,
for l > 0, Gl is a cycle, if C is c-planar there exists an algorithm to compute a c-planar
drawing of C in O(Ln) time.

Proof Sketch: The proof of Lemma 5 is a constructive one. Thus, by applying, level
by level, Lemma 5 starting from level L to level 1, a c-planar drawing of C can be
obtained. Since each step may be performed in O(n) the statement follows. �

5 Conclusions and Open Problems

In this paper we studied a peculiar family of non-connected clustered graphs. Namely,
we studied clustered graphs whose underlying graph is a simple cycle. Besides the
general problem of stating the complexity of the c-planarity testing of non-connected
clustered graphs, several other problems remain open.

Are there other families of non-connected clustered graphs whose c-planarity can be
efficiently assessed and whose underlying graph has a simple structure? For example,
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what happens if the underlying graph is a tree? It is easy to show that a two-level
clustered graph whose underlying graph G2 is a path and such that graph G1 is a cycle,
is c-planar. It is also easy to find an example of a two level clustered graph whose
underlying graph G2 is a tree, such that G1 is a cycle and that is not c-planar.

Suppose that the underlying graph has a fixed embedding. Can this hypothesis sim-
plify the c-planarity testing?

Can the techniques introduced in this paper be combined with techniques known
in the literature for devising tools able to handle the c-planarity testing and embedding
problem for more complex families of clustered graphs?
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Abstract. A triangulated polygon is a 2-connected maximal outerpla-
nar graph. A unit bar-visibility graph (UBVG for short) is a graph whose
vertices can be represented by disjoint, horizontal, unit-length bars in
the plane so that two vertices are adjacent if and only if there is a non-
degenerate, unobstructed, vertical band of visibility between the corre-
sponding bars. We give combinatorial and geometric characterizations of
the triangulated polygons that are UBVGs. To each triangulated poly-
gon G we assign a character string with the property that G is a UBVG
if and only if the string satisfies a certain regular expression. Given a
string that satisfies this condition, we describe a linear-time algorithm
that uses it to produce a UBV layout of G.

1 Introduction

A bar-visibility layout of a graph G is a representation of G in the plane by disjoint
horizontal line segments (‘bars’) in which each vertex corresponds to a bar and
two vertices are adjacent if and only if there is an unobstructed, non-degenerate
vertical visibility band between the corresponding bars. If G has such a layout it
is called a bar-visibility graph (BVG for short). A BVG layout induces a plane
embedding of G in a natural way, by placing each vertex on its corresponding bar
and drawing edges between pairs of vertices whose bars have vertical visibility. A
BVG and its corresponding layout are shown in Fig. 1. The original motivation
for studying BVGs was the design of electronic circuits; another application is
the display of data, using bars ‘fattened’ into rectangles that hold labels, with
relations between data items represented by visibility bands.

Bar-visibility graphs were fully characterized in the mid-1980s [9, 12, 13] as
those planar graphs having a planar embedding with all cutpoints on a com-
mon face, and linear-time recognition and layout algorithms were given. Gen-
eralizations of bar-visibility graphs have also been studied, including visibility
representations using different objects like rectangles and with different rules for
visibility between objects [1, 5, 6, 8, 10, 11].

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 111–121, 2004.
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Fig. 1. A triangulated polygon and its UBV layout.

The usefulness of bar-visibility layouts diminishes when the relative lengths
of bars vary widely. The simplest way to restrict the relative lengths of bars
is to require all bars to have equal length; such a graph is called a unit bar-
visibility graph (or UBVG). Fundamental results concerning these graphs appear
in [7]; however, in contrast to BVGs, no full characterization of these graphs has
been found. We characterize a significant subclass of UBVGs, the triangulated
polygons.

A triangulated polygon is a 2-connected, maximal outerplanar graph; in other
words, a graph with a plane embedding as a simple, closed curve whose interior
is subdivided by diagonals into triangles. The graph in Fig. 1 is a triangulated
polygon, and the layout is a UBV layout. To each triangulated polygon G we
associate a character string called the internal spine string that encodes enough
information about G to determine whether or not G is a UBVG and, if it is, to
produce a UBV layout of G. The layout algorithm runs in linear time.

In Section 2 we define the maximal and internal spine strings corresponding
to triangulated polygon. In Section 3 we state a series of necessary conditions on
the maximal and internal spine strings, leading to our main theorem character-
izing those triangulated polygons that are UBVGs, and we outline the proof of
necessity. In Section 4 we use the internal spine string to give a linear-time algo-
rithm that produces a UBV layout of the corresponding triangulated polygon.

2 Spine Strings and Clumps

If G is a plane graph, we call the unbounded face of G the external face, and the
other faces are called internal. G∗ denotes the dual of G, in which the vertices
are the faces of G, and two vertices are adjacent if and only if the corresponding
faces of G share an edge. The internal dual of G, denoted G∗

I , is the subgraph
of G∗ induced by the internal faces of G. A graph G is outerplanar if it has a
plane embedding in which all vertices lie on the external face; such an embedded
graph is called outerplane. A straightforward but key observation is that a 2-
connected graph is outerplane if and only if its internal dual G∗

I is a tree. Lastly a
maximal outerplanar graph is one in which each internal face is a triangle, hence
the internal dual of such a graph has maximum degree at most 3. If a maximal
outerplanar graph is 2-connected, then it has a unique outerplane embedding as
a triangulated polygon, and we generally do not distinguish between the graph
and its outerplane embedding.
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A caterpillar is a tree containing a path P , called a spine, such that all vertices
have distance at most 1 from P . A subdivided caterpillar, in which each edge is
replaced by a path, has a path P , also called a spine, that contains all vertices of
degree 3 or more. It follows from results of [7] that if a triangulated polygon G
is induced by a UBV layout, then its internal dual G is a subdivided caterpillar.
This condition is necessary but not sufficient. Given a triangulated polygon G
whose internal dual is a subdivided caterpillar, we define below a character string
that encodes key aspects of the embedding of G. The central result of this paper
is that this string encodes necessary and sufficient information to determine if
G is a UBVG.
Definition 1. 1. Let G be a triangulated polygon G whose internal dual G∗

I is
a subdivided caterpillar (necessarily of maximum degree 3). Choose a max-
imal spine of G∗

I , P ∗ = F0, F1, . . . , Fk, Fk+1. As P ∗ is traversed in order
of increasing i, each face Fi, i = 1, . . . , k, shares one edge with Fi−1 and
another with Fi+1. Denote the vertex incident with these two edges by vi,
and denote the third edge of Fi, which is not incident with any other face
on P ∗, by ei. If P ∗ is oriented left-to-right in order of traversal, then ei lies
either above or below vi; we say briefly that ei lies above (resp., below) P ∗.
Define a string SM of length k, composed of the four symbols A, NA, B, NB,
as follows. If ei lies above P ∗, then the ith character of SM is either A or
NA, depending on whether Fi does or does not have a leg-neighbor above P ∗.
Similarly, if ei lies below P ∗, then the ith character of SM is either B or
NB, depending on whether Fi does or does not have a leg-neighbor below P ∗.
The string SM is called a maximal spine string for G.

2. Given any string composed of the symbols A, NA, B, NB, an A-clump (resp.
B-clump) is a maximal length substring using only the symbols A and NA

(resp., B and NB). A trivial clump is an A-clump or B-clump comprised
entirely of NA or NB terms.

3. If SM is a maximal spine string, then the internal spine string SI is the
substring obtained by deleting all symbols including and preceding those in
the first non-trivial clump of SM , and also all symbols including and following
those in the last non-trivial clump of SM . It is possible that SI is the empty
string.

The triangulated polygon in Fig. 1 has (non-unique) maximal spine string SM =
NBBNBNAANAANANBBNB, comprising three clumps. The corresponding in-
ternal spine string is SI = NAANAANA. In what follows we write an arbitrary
maximal spine string SM as a string of clumps, SM = T0C1C2 . . . CkTk+1, k ≥ 0,
where T0 is the union of all trivial clumps at the beginning of SM , Tk+1 is the
union of all trivial clumps at the end of SM , and C1, . . . , Ck are the remaining
clumps of SM , where C1 and Ck are necessarily non-trivial. The corresponding
internal spine string is SI = C2 . . . Ck−1.

3 Necessity and the Characterization Theorem

Given a triangulated polygon G whose internal dual is a subdivided caterpil-
lar, we choose a maximal spine string SM and divide it into clumps, SM =
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T0C1 . . . CkTk+1, as described in Def. 1. Certain graphs can be eliminated im-
mediately if their clumps have too many non-trivial terms, or if two non-trivial
terms in a single clump are too far apart, as given below in Thm. 2. For the re-
maining, ‘feasible’ graphs, additional parsing of the clumps is required, as given
in Thm. 6. Analysis of this parsing applied to the internal spine string deter-
mines whether a UBV layout exists; Thm. 8 gives the full characterization in
terms of valid maximal and internal spine strings.

Theorem 2. Let G be a triangulated polygon whose internal dual is a subdivided
caterpillar with maximal spine SM = T0C1 . . . CkTk+1, as described in Def. 1.
Each of the following conditions is necessary for G to be a UBVG.

1. If k = 1, then C1 contains at most four A- or B-terms.
2. If k ≥ 2, then C1 and Ck each contain at most three A- or B-terms, and Ci,

for i = 2, . . . , k − 1, contains at most two A- or B-terms.
3. If k ≥ 3, then no Ci, 2 ≤ i ≤ k − 1, contains any substring of the form

AN++
A A or BN++

B B, where the notation ++ indicates an exponent that is
at least two.

A triangulated polygon G that satisfies the conditions of Thm. 2 is called
UBVG-feasible or feasible. Having eliminated all ‘infeasible’ graphs from con-
sideration, we do a further parsing of the clumps, leading to an analysis of the
internal spine string that characterizes those feasible graphs having UBV layouts.

The relation of the spine string to a UBV layout of the triangulated polygon
G comes from the fact that in both settings there are notions of the directions
left, right, up, and down. For the spine string the directions are defined relative
to a traversal of the spine. For a UBV layout the directions indicate relative
positions of bars for adjacent faces, as defined below. G is a UBVG if and only
if these two notions of direction are compatible.

Definition 3. Suppose that the triangulated polygon G is a UBVG with UBV
layout U(G). We assume henceforth that each bar in a UBV layout has length 1
and is at a unique vertical level, usually at integer heights.

1. We denote the height of a bar b by y(b), and its left x-coordinate by x(b)
(thus its right x-coordinate is x(b)+1). Two bars in a UBV layout are called
collinear if a common x-value is shared by an endpoint of each bar; if the
two bars have the same left x-coordinate (and hence also the same right
x-coordinate), then they are called flush.

2. If B is any set of bars of U(G), we define the rectangle Rec(B) to be
the smallest rectangle containing all the bars of B. The left and right x-
coordinates of Rec(B) are denoted x1(B) and x2(B), and its bottom and top
y-coordinates are denoted y1(B) and y2(B). Cor(B) denotes the two-way
infinite vertical corridor bounded by the lines x = x1(B) and x = x2(B).

3. Let f and f ′ be internal faces of G, and let f be a neighbor of f ′ in G∗
I (i.e.,

the two faces share an edge). If x1(f) < x1(f ′) (resp., x2(f) > x2(f ′)), we
call f a left-neighbor (resp. right-neighbor) of f ′.
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4. If f is a neighbor of f ′, but is neither a left- nor right-neighbor, then either
y1(f) < y1(f ′) or y2(f) > y2(f ′), but not both, since G is outerplanar. In the
former case we call f a down-neighbor of f ′, and in the latter case we call it
an up-neighbor of f ′. In both cases either x1(f) = x1(f ′) or x2(f) = x2(f ′),
and we call f a left-flush or right-flush neighbor of f ′ accordingly. Note that,
if f is a left neighbor of f ′, then f ′ cannot be a left neighbor of f , although
it could be an up-, down-, or right-neighbor of f .

Two important geometric lemmas follow from results of [6]. Lemma 4 says
that no path of faces in the internal dual of a triangulated polygon can have a
UBV layout that proceeds left-to-right (‘increases’) and then later proceeds right-
to-left (‘decreases’), or vice-versa; we refer to this as the ‘No U-Turn’ property.

Lemma 4 (No U-Turn Lemma). Let G be a triangulated polygon induced
by a UBV layout, and let P ∗ = F1, . . . , Fk be a path in G∗

I . Then the sequence
{x1(Fi)} comprises a (monotone) decreasing subsequence followed by a (mono-
tone) increasing subsequence, either of which may be empty. Similarly the se-
quence {x2(Fi)} comprises an increasing subsequence followed by a decreasing
subsequence.

Applying the No-U-Turn Lemma to the spine SM and the legs incident with
faces of SM , we see that at most one leg may protrude to left of its spine neighbor,
and at most one may protrude to the right. In [4] it is shown that the first
two conditions in Thm. 2 guarantee that the beginning and ending clumps can
always be laid out if SM is feasible. The remaining clumps, contained in the
internal spine string, must have legs composed entirely of up-neighbors or down-
neighbors, when traversed starting at the face on the spine. The question then
becomes whether there is space enough, using only bars of unit length, to lay
out multiple legs on the internal spine.

As we move along a path P ∗ in the maximal spine, in order of increasing i,
there is a path of vertices below P ∗ that we denote a0, a1, . . ., and a path of
vertices above P ∗, denoted b0, b1, . . .. A single clump C in P ∗ comprises a path
of faces all incident with a common vertex; assume, without loss of generality,
that C is an A-clump, and that this vertex is aj , for some j. The opposite edges
of the triangles in C form a path of b-vertices, b0, . . . , bk, so that the ith triangle
of C, i = 0, . . . , k − 1, has vertices aj , bi, bi+1. If the ith face is non-trivial,
then vertices bi and bi+1 are incident with another vertex, ci, so that the three
vertices bi, bi+1, ci form the initial triangle on a leg of the subdivided caterpillar
G∗

I . We always use ci for the first leg-vertex off an A-triangle and di for the first
leg-vertex off a B-triangle. This labeling is used in Fig. 1.

In [4] it shown that, if P ∗ is a path in the internal spine, then we may make
additional assumptions, without loss of generality, about the bars representing
the paths of a-,b-,c-, and d-vertices in any UBV layout of G:

1. For each of the paths of a-,b-,c-, and d-vertices, the left x-coordinates of the
corresponding bars form a strictly increasing sequence.

2. The set of d-bars lies fully below the set of a-bars, the set of a-bars is fully
below the set of b-bars, and the set of b-bars is fully below the set of c-bars.
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The second geometric lemma gives further restrictions on the paths of a-,
b-, and c-bars in a single A-clump (and by symmetry, the paths of a-, b-, and
d-vertices in a B-clump) in the layout of the internal spine. In particular, the
heights of the path of b-vertices in a single A-clump form a sequence with a
single relative maximum; we refer to this as the ‘one extremum property.’

Lemma 5 (One Extremum Lemma). Suppose b0, b1, . . . , bk is a path of bars
in a UBV layout of a triangulated polygon, all visible to a single bar a0, such
that x(bi−1) < x(bi) and y(bi) > y(a0) for all i. Assume, as usual, that the bars
representing the bi-vertices are all at distinct heights y(bi).

1. There is a single value m, 0 ≤ m ≤ k, such that the sequence of heights y(bi)
increases for 0 ≤ i ≤ m and decreases for m ≤ i ≤ k.

2. For 0 ≤ i ≤ k − 1, let XA,i denote the triangle {bi, bi+1, a0}, and suppose
for some i that XA,i has an up-neighbor Ui. If {y(bi), y(bi+1)} is increasing,
then Cor(bi) does not intersect Cor(bi+2). If {y(bi), y(bi+1)} is decreasing,
then Cor(bi+1) does not intersect Cor(bi−1).

3. If XA,i has an up-neighbor, then it is incident with one of the vertices
bm−1, bm, bm+1; in other words, i ∈ {m− 2, m− 1, m, m + 1}.

Theorem 6. Let G be a triangulated polygon with a UBV layout. Let SI be an
internal spine string, and let C be a clump in SI . If C is an A-clump (resp.,
B-clump), let y(b0), . . . , y(bk) (resp., y(a0), . . . , y(ak)) be the sequence of heights
of the b-bars (resp., a-bars) of C in the UBV layout of SI . If C is an A-clump
(resp., B-clump), then it follows from the One Extremum Lemma that C has a
unique relative maximum bm (resp., unique relative minimum am). The position
of bm (or am) in the sequence is determined by which of the following classes C
belongs to. Below the exponents ∗, #, +, and ++, respectively, represent integer
powers that are at least 0, equal to 0 or 1, at least 1, and at least 2.

1. ForcedMax = {N++
A AN++

A , N∗
AAN#

A AN∗
A}: The sequence {y(bi)} is nei-

ther strictly increasing nor strictly decreasing. The value bm is a maximum
that does not occur at m = 0 or m = k. In other words, 1 ≤ m ≤ k − 1.
An analogous statement holds for the class ForcedMin = {N++

B BN++
B ,

N∗
BBN#

B BN∗
B}: The sequence {y(bi)} is neither strictly increasing nor

strictly decreasing. The value bm is a minimum that does not occur at m = 0
or m = k. In other words, 1 ≤ m ≤ k − 1.

2. M axOrIncrease = {N++
A AN#

A }: The sequence {y(bi)} is not strictly de-
creasing. The value bm is a maximum that does not occur at m = 0. In other
words, 1 ≤ m ≤ k. Analogously, M inOrDecrease = {N#

B BN++
B }.

3. M axOrDecrease = {N#
A AN++

A }: The sequence {y(bi)} is not strictly in-
creasing. The value bm is a maximum that does not occur at m = k. In
other words, 0 ≤ m ≤ k − 1. Analogously, M inOrIncrease = {N++

B BN#
B }.

4. W ildA = {N#
A AN#

A , N+
A }: The sequence {y(bi)} may be strictly increasing,

strictly decreasing, or increasing followed by decreasing. The value bm is a
maximum that may occur anywhere in the sequence. Analogously, W ildB =
{N#

B BN#
B , N+

B }. Elements of W ildA and W ildB are called wildcards. The
class of A-singletons, SA = {A, NA}, is a subset of WildA. Analogously, the
B-singletons comprise a subset of WildB .
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Based on simple principles of calculus, e.g., that two consecutive relative
maxima on the graph of a continuous function must have between them at least
one relative minimum, it might appear that Thm. 6 eliminates some feasible tri-
angulated polygons as candidates for being UBVGs. A closer examination of the
classes reveals that the feasibility conditions have already eliminated these cases.
However, there is a subtle condition that two successive ‘ForcedMax’ clumps, or
other such ‘special needs’ pairs of clumps, must satisfy to provide sufficient space
to lay out the clumps between. Filling in that final condition yields the main
result of the paper, given in Thm. 8 below.

Definition 7. Let G be a feasible triangulated polygon with internal spine string
SI , parsed into clumps that are then classified as in Thm. 6. Let Ci and Cj ,
i < j, be two successive, non-wildcard clumps in SI . In other words, neither Ci

nor Cj is a wildcard, but every clump between Ci and Cj is a wildcard. The
ordered pair (Ci, Cj) is called a special needs pair if it is one of the following
pairs of A-clumps or the corresponding B-clump twin: (ForcedMax , ForcedMax),
(ForcedMax , MaxOrIncrease), (MaxOrDecrease, ForcedMax), (MaxOrDecrease,
MaxOrIncrease).

For example, the string N4
AAN2

ANBN100
A BN5

AA is parsed as (ForcedMax, SB ,
WildA, SB , MaxOrIncrease), and it contains the special needs pair (ForcedMax,
MaxOrIncrease).

Theorem 8 (Main Theorem). Let G be a feasible triangulated polygon with
internal spine string SI . G is a UBVG if and only if the following condition
holds (or its equivalent with the roles of A and B interchanged): between every
special needs pair (Ci, Cj), there is either at least one wildcard A-clump that
is the singleton clump NA or at least one wildcard B-clump with two or more
terms, namely N+

B BN#
B , N#

B BN+
B , or N++

B .

Section 4 outlines the sufficiency proof and layout algorithm for graphs sat-
isfying the conditions of Thm. 8.

4 Sufficiency and the Layout Algorithm

In this section we outline an efficient algorithm that accepts as input any feasible
spine string whose internal spine string has at least two non-wildcard clumps and
satisfies Thm. 8, and that produces as output a set of coordinate pairs that are
the left endpoints of a corresponding UBV layout. We assume for simplicity
that the legs of the caterpillar are not subdivided. The more general case in
which the internal spine string satisfies the remaining conditions in Thm. 8, and
the caterpillar legs may be subdivided departs only slightly from the upcoming
treatment: complete details are included in [4]. The proof of the sufficiency of
Thm. 8 contains three main components: (a) parsing and labeling the clumps
of SI in accordance with Thm. 6, which, under the conditions of Thm. 8, leads
in a natural way to (b) a description of a UBV layout algorithm, and finally
(c) verification that the resulting UBV layout corresponds to the original input
spine string. We outline these three ideas next.
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Fig. 2. (a) ForcedMax → ForcedMax (b) MinOrDecrease → MaxOrDecrease .

Parsing and Labeling the Internal Spine String. We begin by parsing
the internal spine string SI into a sequence of alternating A- and B-clumps and
assigning class labels to the clumps as described in Thm. 6. Denote the resulting
sequence by C(SI) (for clumped spine string). The conditions in Thm. 8 guide
the layout of the bars corresponding to G one clump at a time in between and
including special needs pairs of clumps. The layout between successive pairs of
non-wildcard clumps that are not special needs pairs is simpler to accomplish
(see Fig. 2(b)). All layouts between successive non-wildcard clumps are captured
in a set of clump labelers: we represent a clump labeler between each pair of
successive non-wildcard clumps as a directed graph, where each node is labeled
by the name of a clump and each directed edge is labeled with either I (for
increase) or D (for decrease). Fig. 2 shows two of the 36 possible clump labelers.
Let S be a substring of C(SI) that begins and ends on non-wildcard clumps and
has only wildcard clumps in between. Feed string S one clump at a time from left
to right into the appropriate clump labeler. After traversing the clump labeler,
each clump in S is marked with exactly one of Max, Min, Increase or Decrease.
A trace of S = N100

A ANAAN3
ANBABNABNBAA fed through the clump labeler

in Fig. 2(a) is shown in Table 1.
After the entire string C(SI) has visited the appropriate clump labelers, all

clumps have been marked with one of Max, Min, Increase, and Decrease so that

Table 1. Trace for S = N100
A ANAAN3

ANBABNABNBAA using Fig. 2(a).

Current In Next Exit Next Clump
Clump Node Clump Direction Node Label

1 N100
A ANAAN3

A ForcedMax NB D SB Max

2 NB SB A D N++
A or N∗

AAN∗
A Decrease

3 A N++
A or N∗

AAN∗
A B D SB Decrease

4 B SB NA I NA Min

5 NA NA BNB I WildB Increase

6 BNB WildB AA I ForcedMax Increase

7 AA ForcedMax D Max
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the clumped spine string is an alternation of Max, Decreasei, Min, Increasej , or
Min, Increasej , Max, Decreasei, or simply Increasei or Decreasei, where i, j ≥ 0.
With this information in hand, the left endpoint coordinates of the bars corre-
sponding to each clump are computed. We make use of Thm. 8 to sketch the
UBV layout algorithm.

UBV LAYOUT ALGORITHM
Input: A feasible internal spine string SI with at least two non-wildcard clumps
Output: A set of coordinate pairs, each of which represents the left endpoint of
a unit bar
Initialization: coordinatePairs= ∅; input clump labelers
Step 1: Relabel SI as C(SI) and extract the sequence of non-wildcard clumps

C1, . . . , Cu.
Step 2: for i = 1 to u− 1 do
follow the clump labeler from Ci to Ci+1; mark each clump including and

between Ci and Ci+1 with one of Max, Min, Increase, or Decrease.
Step 3: Compute left endpoints of coordinates of bars before and during each

direction change and store in coordinatePairs; return coordinatePairs.

Coordinates of Bars. Suppose C(SI) contains a total of � clumps and let k =
min{ 1

2�−2 , 1
12}. We construct a generic increasing sequence of wildcard clumps,

where the left endpoint coordinates of the associated bars are each a function
of k; the construction can then be modified to accommodate any increasing
sequence of (not necessarily wildcard) clumps and subsequently translated to
any location in the plane. We then construct the layout of clump NAANAANA;
any Max that is not of the form SA can be modified from the latter construction.
The layouts for a generic decreasing sequence and any Min not of the form
SB are accomplished by laying out the twin of the previous two constructions.
The constructions lend themselves to interlocking any combination of sequences.
Thus, the locations of bars in each clump are computed in the algorithm after
the assignments of Max, Min, Increase, and Decrease to all of the clumps in
C(SI). The parameter k is chosen to guarantee sufficient room to lay out the
bars corresponding to the legs of the caterpillar.

Generic Increasing Sequence ofClumps. Any increasing sequence of clumps
consists of (a) an alternation of elements from SA and SB, (b) an alternation of
elements from MinOrIncrease and MaxOrIncrease, (c) the same as (a) with one
element from MinOrIncrease or MaxOrIncrease in the interior of the sequence,
(d) the same as (b) with one singleton clump in the interior of the sequence,
(e) an alternation of elements from MinOrIncrease and SA, (f) an alternation
of elements from MaxOrIncrease and SB, or finally (g) any combination of con-
catenations of (a)-(f). The constructions of the layouts in (a)-(f) are similar, and
can all be modified from alternations of NAANA and NBBNB laid out as an
increasing sequence; the modifications consist of adding or removing bars to each
clump (left to right) and translating subsets of the bars as required to maintain
or create the needed visibilities. As such, for this note, we illustrate the layout
for alternations of NAANA and NBBNB in an increasing sequence.
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The left endpoints of the bars for such a sequence of m clumps are given by
the union of aBars = {(� i

3� + (� i
3� + (i mod 3))k, i) : i = 0, 1, . . . , 3m − 1},

bBars = {(� i
3�+ 1+ (� i

3�− 3 + (i mod 3))k, i− 3) : i = 0, 1, . . . , 3m− 1}, cBars
= {� i+1

3 � + (� i+1
3 � + (i + 1 mod 3)k, i + 6) : i = 0, 3, . . . , 3m − 3}, and dBars

={� i+1
3 �+ 1 + (� i+1

3 � − 3 + (i + 1 mod 3)k, i− 7) : i = 0, 3, . . . , 3m− 3}, where
�x� denotes the floor of x.

By construction, c3i is flush with a3i and is visible only to a3i and a3i+1;
similarly, d3i is flush with b3i+1 and is visible only to b3i and b3i+1.

Generic Max. Any clump that is not of the form SA and that is to be
laid out as a Max can be modified from NAANAANA ∈ ForcedMax and then
translated to any location in the plane. The following set of left endpoints,
each of which is a function of k, represents such a Max: maxBars = {(1 −
k,−1), (0, 0),(k, 1),(2k, 2),(1+3k, 3),(1+ k, 4),(2− 4k, 1),(k, 5),(1+2k, 6)}. Note
that there is room on the left side to attach an incoming increasing sequence
and room on the right side to attach an outgoing decreasing sequence.

Singleton Min. Finally, at times the singleton SB must be laid out as a Min
and the singleton SA must be laid out as a Max (see Thm. 6 and Thm. 8). We give
a generic construction, parameterized by k, for the layout of NAANAANASBNA

SBNAANAANA, which shows the layout of SB as a Min in between two Forced-
Maxes (note the occurrence of NA contiguous with SB). Let singetonMin =
{(2− 2k, 0), (1− k, 1), (3− 3k, 1), (0, 2), (4− 4k, 2), (k, 3), (2− 4k, 3), (4− 5k, 3),
(2k, 4), (3− 8k, 4), (4− 6k, 4), (1 + 3k, 5), (3− 7k, 5), (1 + k, 6), (3− 5k, 6), (k, 7),
(1 + 2k, 7), (3− 6k, 7), (4− 5k, 7)}. Any layout that requires an SB to be used
as a Min can be modified from this construction; similarly, the twin gives the
construction for laying out SA as a Max.

Example. Fig. 3 illustrates the ideas from this abstract by showing a UBV
layout for a triangulated polygon with 67 vertices whose spine string is BNB

(NAANANBBNB)2NAANANBBNBNAABABNAANAANANBABNANBNAA
NAANANBNANBABNA.

Proving the sufficiency of Thm. 8 is equivalent to proving the correctness of
the UBV Layout Algorithm. It is easy to see that the UBV Layout algorithm
takes O(n)-time, where n is the length of the input spine string.

ForcedMax

SB�Min

Fig. 3. UBV layout of a triangulated polygon with 67 vertices.



Unit Bar-Visibility Layouts of Triangulated Polygons 121

We conclude by noting that these techniques should also be useful for charac-
terizing outerplanar near-triangulations (not 2-connected), near-triangulations
(not outerplanar), and outerplanar near-quadrangulations. Other questions of
interest include determining the computational complexity of UBVG testing,
classification results for layouts in which bars are permitted to have two or more
distinct lengths [2], and layouts in which visibility is permitted to extend past a
fixed number of obstructing bars [3].
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Abstract. We study straight-line drawings of graphs with few segments
and few slopes. Optimal results are obtained for all trees. Tight bounds
are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove
that every 3-connected plane graph on n vertices has a plane drawing
with at most 5n/2 segments and at most 2n slopes, and that every cubic
3-connected plane graph has a plane drawing with three slopes (and three
bends on the outerface). Drawings of non-planar graphs with few slopes
are also considered. For example, it is proved that graphs of bounded
degree and bounded treewidth have drawings with O(log n) slopes.

1 Introduction

A common requirement for an aesthetically pleasing drawing of graph is that
the edges are straight. This paper studies the following additional requirements
of straight-line graph drawings:

1. minimise the number of segments in the drawing
2. minimise the number of distinct edge slopes in the drawing

First we formalise these notions. Consider a mapping of the vertices of a
graph to distinct points in the plane. Now represent each edge by the closed
line segment between its endpoints. Such a mapping is a (straight-line) drawing
if each edge does not intersect any vertex, except for its own endpoints. By a
segment in a drawing, we mean a maximal set of edges that form a line segment.
The slope of a line L is the angle swept from the X-axis in an anticlockwise
direction to L (and is thus in [0, π)). The slope of an edge or segment is the
slope of the line that extends it. A crossing in a drawing is a pair of edges that
intersect at some point other than a common endpoint. A drawing is plane if
it has no crossings. A plane graph is a planar graph with a fixed combinatorial
embedding and a specified outerface. We emphasise that a plane drawing of a
plane graph must preserve the embedding and outerface. That every plane graph
has a plane drawing is a classical result independently due to Wagner and Fáry.
� Research initiated at the International Workshop on Fixed Parameter Tractability

in Geometry and Games, organised by Sue Whitesides; Bellairs Research Institute
of McGill University, Holetown, Barbados, Feb. 7-13, 2004. Research supported by
NSERC and COMBSTRU.
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It is easily seen that a graph has a (plane) drawing on two slopes if and
only if it has a (plane) drawing on any two slopes [3]. Garg and Tamassia [8]
proved that it is NP-complete to decide whether a graph has a rectilinear planar
drawing (that is, with vertical and horizontal edges). Thus it is NP-complete to
decide whether a graph has a plane drawing with two slopes.

Our results include lower and upper bounds on the minimum number of
segments and slopes in plane drawings of graphs, as summarised in Table 1. Due
to space limitations, a number of auxiliary results and most proofs are omitted
from this paper; see [3] for all the details. We refer the reader to the survey of
Bodlaender [1] for the definition of treewidth, pathwidth, and k-tree.

First observe that the minimum number of slopes in a drawing of (plane)
graph G is at most the minimum number of segments in a drawing of G. Upper
bounds for plane graphs are stronger than for planar graphs, since for planar
graphs one has the freedom to choose the embedding and outerface. On the other
hand, lower bounds for planar graphs are stronger than for plane graphs. For
example, consider the n-vertex planar triangulation illustrated in Figure 1. It
has at least n + 2 slopes in every plane drawing. Now fix the outerface to that
illustrated in (a). Then there are at least 2n− 2 slopes in every plane drawing.
However, using the embedding shown in (b), there is a plane drawing with only
�3n/2� slopes.

Section 2 studies plane drawings of 3-connected plane and planar graphs. In
the case of slope-minimisation for plane graphs we obtain a bound that is tight in
the worst case. However, our lower bound examples have linear maximum degree.
In Section 3 we (drastically) improve this result in the case of cubic graphs, by
proving that every 3-connected plane cubic graph has a plane drawing with
three slopes, except for three edges on the outerface that have their own slope.
As a corollary we prove that every 3-connected plane cubic graph has a plane
‘drawing’ with three slopes and three bends on the outerface. Section 4 considers
non-plane drawings of arbitrary graphs with few slopes. For example, we prove
that every graph with bounded degree and bounded treewidth has a drawing
with O(log n) slopes.

Before continuing, we outline some related research from the literature.

– Eppstein [6] characterised those planar graphs that have plane drawings with
a segment between every pair of vertices. In some sense, these are the plane
drawings with the least number of slopes.

– The geometric thickness of a graph G is the minimum k such that G has a
drawing in which every edge receives one of k colours, and monochromatic

v1

v2 (a)

v3
v8

v1

v2v3
v8

v4

v7

v5

v6 (b)

Fig. 1.
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Table 1. Summary of results (ignoring additive constants). Here n is the number of
vertices, η is the number of vertices of odd degree, and ∆ is the maximum degree. The
lower bounds are existential, except for trees, for which the lower bounds are universal.

graph family # segments # slopes
≥ ≤ ≥ ≤

trees η/2 η/2 �∆/2� �∆/2�
maximal outerplanar n n - n
plane 2-trees 2n 2n 2n 2n
plane 3-trees 2n 2n 2n 2n
plane 2-connected 5n/2 - 2n -
planar 2-connected 2n - n -
plane 3-connected 2n 5n/2 2n 2n
planar 3-connected 2n 5n/2 n 2n
plane 3-connected cubic - n + 2 3 3

edges do not cross (see [5, 7]). In any drawing, edges with the same slope
do not cross. Thus the geometric thickness of G is a lower bound on the
minimum number of slopes in a drawing of G.

– A drawing is convex if all the vertices are on the convex hull, and no three
vertices are collinear. The book thickness of a graph (also called pagenumber
and stacknumber) is the same as geometric thickness except that the drawing
must be convex (see [4] for numerous references). Since edges with the same
slope do not cross, the book thickness of G is a lower bound on the minimum
number of slopes in a convex drawing of G.

– Plane orthogonal drawings with two slopes (and few bends) have been exten-
sively studied (see [12]). For example, Ungar [14] proved that every cyclically
4-edge-connected plane cubic graph has a plane drawing with two slopes
and four bends on the outerface. Thus our above-mentioned result for 3-
connected plane cubic graphs nicely complements this theorem of Ungar.

– A drawing of the complete graph Kn is defined by a set of n points with no
three collinear. Jamison [9] proved that the minimum number of slopes in a
drawing of Kn is n. The upper bound is obtained by positioning the vertices
of Kn on the vertices of a regular n-gon, as illustrated in Figure 2(a) and (b).
In fact, Jamison [9] proved that every drawing of Kn with exactly n slopes is
affinely equivalent to a regular n-gon. In [3] we study drawings of complete
multi-partite graphs. For example, we prove that the minimum number of
slopes in a convex drawing of Kn,n is n, as illustrated in Figure 2(c).

– Wade and Chu [15] recognised that drawing arbitrary graphs with few slopes
is an interesting problem. They defined the slope-number of a graph G to be
the minimum number of slopes in a drawing of G. However, the results of
Wade and Chu only pertain to Kn. Seemingly unaware of the earlier work
of Scott and Jamison, they rediscovered that the minimum number of slopes
in a drawing of Kn is n. In addition, they presented an algorithm to test if
Kn can be drawn using a given set of slopes.
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Fig. 2. Drawings of Kn and Kn,n with n slopes.

2 3-Connected Plane Graphs

Theorem 1. Every 3-connected plane graph with n vertices has a plane drawing
with at most 5n/2− 3 segments and at most 2n− 10 slopes.

The proof of Theorem 1 is based on the canonical ordering of Kant [10].
Let G be a 3-connected plane graph. Kant [10] proved that G has a canonical
ordering defined as follows. Let σ = (V1, V2, . . . , VK) be an ordered partition of
V (G). That is, V1 ∪ V2 ∪ · · · ∪ VK = V (G) and Vi ∩ Vj = ∅ for all i �= j. Define
Gi to be the plane subgraph of G induced by V1 ∪ V2 ∪ · · · ∪ Vi. Let Ci be the
subgraph of G induced by the edges on the boundary of the outerface of Gi.
Then σ is a canonical ordering of G if:

– V1 = {v1, v2}, where v1 and v2 lie on the outerface and v1v2 ∈ E(G).
– VK = {vn}, where vn lies on the outerface, v1vn ∈ E(G), and vn �= v2.
– Each Ci (i > 1) is a cycle containing v1v2.
– Each Gi is biconnected and internally 3-connected; that is, removing any

two interior vertices of Gi does not disconnect it.
– For each i ∈ {2, 3, . . . , K − 1}, one of the following condition holds:

1. Vi = {vi} where vi is a vertex of Ci with at least three neighbours in
Ci−1, and vi has at least one neighbour in G \Gi.

2. Vi = (s1, s2, . . . , s�, vi), � ≥ 0, is a path in Ci, where each vertex in Vi

has at least one neighbour in G \Gi. Furthermore, the first and the last
vertex in Vi have one neighbour in Ci−1, and these are the only two edges
between Vi and Gi−1.

The vertex vi is called the representative vertex of Vi, 2 ≤ i ≤ K. The vertices
{s1, s2, . . . , s�} ⊆ Vi are called division vertices. Let S ⊂ V (G) be the set of all
division vertices. A vertex u is a successor of a vertex w ∈ Vi if uw is an edge
and u ∈ G \Gi, and u is a predecessor of w ∈ Vi if uw is an edge and u ∈ Vj for
some j < i. We also say that u is a predecessor of Vi. Let P (Vi) = (p1, p2, . . . , pq)
be the set of predecessors of Vi ordered by the path from v1 to v2 in Ci−1 \ v1v2.
Vertex p1 and pq are the left and right predecessors of Vi respectively, and vertices
p2, p3, . . . pq−1 are called middle predecessors of Vi.
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Theorem 2. Let σ be a canonical ordering of an n-vertex m-edge plane 3-
connected graph G. Define S as above. Then G has a plane drawing D with at
most m−max {�n/2� − |S| − 3, |S|} segments, and at most m−max{n−|S|−4,
|S|} slopes.

Proof Construction. For every vertex v, let X(v) and Y (v) denote the x and
y coordinates of v, respectively. If a vertex v has a neighbour w, such that
X(w) < X(v) and Y (w) < Y (v), then we say vw is a left edge of v. Similarly, if
v has a neighbour w, such that X(w) > X(v) and Y (w) < Y (v), then we say vw
is a right edge of v. If vw is an edge such that X(v) = X(w) and Y (v) < Y (w),
than we say vw is a vertical edge above v and below w.

We define D inductively on σ = (V1, V2, . . . , VK) as follows. Let Di denote
a drawing of Gi. A vertex v is a peak in Di, if each neighbour w of v has
Y (w) ≤ Y (v) in Di. We say that a point p in the plane is visible in Di from
vertex v ∈ Di, if the segment pv does not intersect Di except at v. At the ith

induction step, 2 ≤ i ≤ K, Di will satisfy the following invariants:

Invariant 1: Ci \ v1v2 is strictly X-monotone; that is, the path from v1 to v2

in Ci \ v1v2 has (strictly) increasing X-coordinates.
Invariant 2: Every peak in Di, i < K, has a successor.
Invariant 3: Every representative vertex vj ∈ Vj , 2 ≤ j ≤ i has a left and a

right edge. Moreover, if |P (Vj)| ≥ 3 then there is a vertical edge below vj .
Invariant 4: Di has no edge crossings.

For the base case i = 2, position the vertices v1, v2 and v3 at the corners of
an equilateral triangle so that X(v1) < X(v3) < X(v2) and Y (v1) < Y (v2) <
Y (v3). Draw the division vertices of V2 on the segment v1v3. This drawing of D2

satisfies all four invariants. Now suppose that we have a drawing of Di−1 that
satisfies the invariants. There are two cases to consider in the construction of
Di, corresponding to the two cases in the definition of the canonical ordering.

Case 1. |P (Vi)| ≥ 3: If vi has a middle predecessor vj with |P (Vj)| ≥ 3, let
w = vj . Otherwise let w be any middle predecessor of vi. Let L be the open
ray {(X(w), y) : y > Y (w)}. By invariant 1 for Di−1, there is a point in L that
is visible in Di−1 from every predecessor of vi. Represent vi by such a point,
and draw segments between vi and each of its predecessors. That the resulting
drawing Di satisfies the four invariants can be immediately verified.

Case 2. |P (Vi)| = 2: Suppose that P (Vi) = {w, u}, where w and u are the
left and the right predecessors of Vi, respectively. Suppose Y (w) ≥ Y (u). (The
other case is symmetric.) Let P be the path between w and u on Ci−1 \ v1v2.
As illustrated in Figure 3, let Ai be the region {(x, y) : y > Y (w) and X(w) ≤
x ≤ X(u)}. Assume on the contrary that Di−1∩Ai �= ∅. By the monotonicity of
Di−1, P ∩Ai �= ∅. Let p ∈ P ∩Ai. Since Y (p) > Y (w) ≥ Y (u), P is X-monotone
and thus has a vertex between w and u that is a peak. By the definition of the
canonical ordering σ, the addition of Vi creates a face of G, since Vi is added
in the outerface of Gi−1. Therefore, each vertex between w and u on P has no
successor, and is thus not a peak in Di−1 by invariant 2, which is the desired
contradiction. Therefore Di−1 ∩Ai = ∅.
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Fig. 3. Illustration for Case 2.

Let L be the open ray {(X(u), y) : y > Y (u)}. If w �∈ S, then by invariant 3,
w has a left and a right edge in Di−1. Let c be the point of intersection between
L and the line extending the left edge at w. If w ∈ S, then let c be any point
in Ai on L. By invariant 1, there is a point c′ �∈ {c, w} on wc such that c′ is
visible in Di−1 from u. Represent vi by c′, and draw two segments viu and viw.
These two segments do not intersect any part of Di−1 (and neither is horizontal).
Represent any division vertices in Vi by arbitrary points on the open segment
wvi ∩Ai. Therefore, in the resulting drawing Di, there are no crossings and the
remaining three invariants are maintained. This completes the construction of
D. The analysis for the number of segments and slopes is in [3]. �

Proof (of Theorem 1). Whenever a set Vi is added to Gi−1, at least |Vi| − 1
edges that are not in G can be added so that the resulting graph is planar. Thus
|S| = ∑

i(|Vi| − 1) ≤ 3n− 6−m. Hence Theorem 2 implies that G has a plane
drawing with at most m − n/2 + |S| + 3 ≤ 5n/2 − 3 segments, and at most
m− n + |S| − 4 ≤ 2n− 10 slopes. �


Since deleting an edge from a drawing cannot increase the number of slopes,
and every plane graph can be triangulated to a 3-connected plane graph, Theo-
rem 1 implies that every n-vertex plane graph has a plane drawing with at most
2n − 10 slopes. Note that we cannot draw the same conclusion for segments,
since deleting an edge in a drawing may increase the number of segments. The
famous ‘nested-triangles’ planar graph leads to the following lower bound.

Lemma 1. For all n ≡ 0 (mod 3), there is an n-vertex planar triangulation
with maximum degree six that has at least 2n−6 segments in every plane drawing,
regardless of the choice of outerface.

3 Cubic 3-Connected Plane Graphs

A graph in which every vertex has degree three is cubic.

Theorem 3. Every cubic 3-connected plane graph has a plane drawing in which
every edge has slope in {π/4, π/2, 3π/4}, except for three edges on the outerface.
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Proof. Let σ = (V1, V2, . . . , VK) be a canonical ordering of G. We re-use the
notation from Theorem 2, except that a representative vertex of Vi may be the
first or last vertex in Vi. Since G is cubic, |P (Vi)| = 2 for all 1 < i < K, and every
vertex not in {v1, v2, vn} has exactly one successor. We proceed by induction on
i with the hypothesis that Gi has a plane drawing Di that satisfies:

Invariant 1: Ci\v1v2 is X-monotone; that is, the path from v1 to v2 in Ci\v1v2

has non-decreasing X-coordinates.
Invariant 2: Every peak in Di, i < K, has a successor.
Invariant 3: If there is a vertical edge above v in Di, then all the edges of G

that are incident to v are in Gi.
Invariant 4: Di has no edge crossings.

Let D2 be the drawing of G2 constructed as follows. Draw v1v2 horizon-
tally with X(v1) < X(v2). This accounts for one edge whose slope is not in
{π/4, π/2, 3π/4}. Now draw v1v3 with slope π/4, and draw v2v3 with slope
3π/4. Add any division vertices on the segment v1v3. Now v3 is the only peak
in D2, and it has a successor by the definition of the canonical ordering. Thus
all the invariants are satisfied for the base case D2.

Now suppose that 2 < i < K and we have a drawing of Di−1 that satisfies the
invariants. Suppose that P (Vi) = {u, w}, where u and w are the left and the right
predecessors of Vi, respectively. Without loss of generality, Y (w) ≤ Y (u). Let
the representative vertex vi be last vertex in Vi. Position vi at the intersection
of a vertical segment above w, and a segment of slope π/4 from u, and add any
division vertices on uvi, as illustrated in Figure 4(a). Note that there is no vertical
edge above w by invariant 3 for Di−1. (For the case in which Y (u) < Y (w), we
take the representative vertex vi to be the first vertex in Vi, and the edge wvi

has slope 3π/4, as illustrated in Figure 4(b).)
Clearly the resulting drawing Di is X-monotone. Thus invariant 1 is main-

tained. The vertex vi is the only peak in Di that is not a peak in Di−1. Since vi

has a successor by the definition of the canonical ordering, invariant 2 is main-
tained. The vertical edge wvi satisfies invariant 3, since vi is the sole successor
of w. Thus invariant 3 is maintained. No vertex between u and w (on the path
from u to w in Ci−1 \ v1v2) is higher than the higher of u and w. Otherwise
there would be a peak, not equal to vn, with no successor, and thus violating
invariant 2 for Di−1. Thus the edges in Di \Di−1 do not cross any edges in Di.
In particular, there is no edge ux in Di−1 with slope π/4 and Y (x) > Y (u). The
vertex vn can be easily added to the drawing to complete the construction. �


u
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w
(a)

w

vi

u
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Fig. 4. Construction of a 3-slope drawing of a cubic 3-connected plane graph.
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It is easily seen that the bound of six on the number of slopes in Theorem 3
is optimal for any 3-connected cubic plane graph whose outerface is a triangle.
An easy variation on the algorithm in Theorem 3 gives:

Corollary 1. Every cubic 3-connected plane graph has a plane ‘drawing’ with
three slopes and three bends on the outerface.

4 Drawings of General Graphs with Few Slopes

This section is motivated by the following fundamental open problem: Is there
a function f such that every graph with maximum degree ∆ has a drawing with
at most f(∆) slopes? This is open even for ∆ = 3. Note that:

– The best lower bound that we are aware of is ∆ + 1 for the complete graph.
– There is no such function f for convex drawings. Malitz [11] proved that

there are ∆-regular n-vertex graphs with book thickness Ω(
√

∆n1/2−1/∆).
Since book thickness is a lower bound on the number of slopes in a convex
drawing, every convex drawing of such a graph has Ω(

√
∆n1/2−1/∆) slopes.

– An affirmative solution to this problem would imply that geometric thick-
ness is bounded by maximum degree, which is an open problem due to Epp-
stein [7]. Duncan et al. [5] recently proved that graphs with maximum degree
at most four have geometric thickness at most two.

Let H be a (host) graph. The vertices of H are called nodes. An H-partition
of a graph G is a function f : V (G)→ V (H) such that for every edge vw ∈ E(G)
we have f(v) = f(w) or f(v)f(w) ∈ E(H). In the latter case, we say vw is mapped
to the edge f(v)f(w). The width of f is the maximum of |f−1(x)|, taken over
all nodes x ∈ V (H), where f−1(x) = {v ∈ V (G) : f(v) = x}. In the following
result, we describe how to produce a drawing of a graph G given an H-partition
of G and a drawing D of H . The general approach is to scale D appropriately,
and then replace each node of H by a copy of the drawing of Kk on a regular
k-gon. The only difficulty is to scale D so that we obtain a valid drawing of G.

Lemma 2 ([3]). Let H be a graph admitting a drawing D with s distinct slopes
and � distinct edge lengths. Let G be a graph admitting an H-partition of width k.
Then G has a drawing with ks�(k − 1) + k + s slopes.

Lemma 2 suggests looking at host graphs that admit drawings with few slopes
and few edge lengths. Obviously a path has a drawing with one slope and one
edge length. Based on this idea, we prove that every graph with bandwidth b has
a drawing with at most 1

2b(b+1)+1 slopes. Based on results from the literature
that bound bandwidth in terms of maximum degree ∆, we conclude:

– Every interval graph has a drawing with at most 1
2∆ (∆ + 1) + 1 slopes.

– Every co-comparability graph (which includes the permutation graphs) has
a drawing with at most ∆ (2∆− 1) + 1 slopes.

– Every AT-free graph has a drawing with at most 3
2∆ (3∆ + 1) + 1 slopes.
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Lemma 2 motivates the study of drawings of trees with few slopes and few
distinct edge lengths.

Lemma 3. Every tree T with pathwidth k ≥ 1 has a plane drawing with
max{∆(T )− 1, 1} slopes and 2k − 1 distinct edge lengths.

Lemma 4 ([13]). Every tree T has a path P , called a “backbone”, such that
T \ V (P ) has smaller pathwidth than T , and the endpoints of P are leaves of T .

Proof (of Lemma 3). We refer to T as T0. Let n0 be the number of vertices in
T0, and let ∆0 = ∆(T0). The result holds trivially for ∆0 ≤ 2. Now assume
that ∆0 ≥ 3. Let S be the set of slopes S = {π

2 (1 + i
∆0−2 ) : 0 ≤ i ≤ ∆0 − 2}.

We proceed by induction on n with the hypothesis: “There is a real number
� = �(n0, ∆0), such that for every tree T with n ≤ n0 vertices, maximum degree
at most ∆0, and pathwidth k ≥ 1, and for every vertex r of T with degree less
than ∆0, T has a plane drawing D in which:

– r is at the top of D (that is, no point in D has greater Y-coordinate than r),
– every edge of T has slope in S,
– every edge of T has length in {�0, �1, . . . , �2k−1}, and
– if r is contained in some backbone of T , then every edge of T has length in
{�0, �1, . . . , �2k−2}.”
The result follows from the induction hypothesis, since we can take r to be

the endpoint of a backbone of T0, in which case deg(r) = 1 < ∆0, and thus every
edge of T0 has length in {�0, �1, . . . , �2k−2}.

The base case with n = 1 is trivial. Now suppose that the hypothesis is true
for trees on less than n vertices, and we are given a tree T with n vertices and
pathwidth k, and r is a vertex of T with degree less than ∆0.

If r is contained in some backbone B of T , then let P = B. Otherwise, let
P be a path from r to an endpoint of a backbone B of T . Note that P has at
least one edge. As illustrated in Figure 5, draw P horizontally with unit-length
edges. Every vertex in P has at most ∆0−2 neighbours in T \V (P ), since r has
degree less than ∆0 and the endpoints of a backbone are leaves. At each vertex
x ∈ P , the children {y0, y1, . . . , y∆0−3} of x are positioned below P and on the
unit-circle centred at x, so that each edge xyj has slope π

2 (1 + j/(∆0 − 2)) ∈ S.
Every connected component T ′ of T \ V (P ) is a tree rooted at some vertex

r′ adjacent to a vertex in P . Thus r′ has already been positioned in the drawing
of T . If T ′ is a single vertex, then we no longer need to consider this T ′.

We consider two types of subtrees T ′, depending on whether the pathwidth
of T ′ is less than k. Suppose that the pathwidth of T ′ is k (it cannot be more).
Then T ′ ∩ B �= ∅ since B is a backbone of T . Thus T ′ ∩ B is a backbone of T ′

containing r′. Thus we can apply the stronger induction hypothesis in this case.
Every T ′ has less vertices than T , and every r′ has degree less than ∆0 in T ′.

Thus by induction, every T ′ has a drawing with r′ at the top, and every edge of
T ′ has slope in S. Furthermore, if the pathwidth of T ′ is less than k, then every
edge of T ′ has length in {�0, �1, . . . , �2k−3}. Otherwise r′ is in a backbone of T ′,
and every edge of T ′ has length in {�0, �1, . . . , �2k−2}.
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P

Fig. 5. Drawing of T with few slopes and few edge lengths.

There exists a scale factor � < 1, depending only on n0 and ∆0, so that
by scaling the drawings of every T ′ by �, the widths of the drawings are small
enough so that there is no crossings when the drawings are positioned with each
r′ at its already chosen location. (Note that � is the same value at every level of
the induction.) Scaling preserves the slopes of the edges. An edge in any T ′ that
had length �i before scaling, now has length �i+1.

Case 1. r is contained in some backbone B of T : By construction, P = B.
So every T ′ has pathwidth at most k − 1, and thus every edge of T ′ has length
in {�1, �2, . . . , �2k−2}. All the other edges of T have unit-length. Thus we have a
plane drawing of T with edge lengths {�0, �1, . . . , �2k−2}, as claimed.

Case 2. r is not contained in any backbone of T : Every edge in every T ′ has
length in {�1, �2, . . . , �2k−1}. All the other edges of T have unit-length. Thus we
have a plane drawing of T with edge lengths {�0, �1, . . . , �2k−1}, as claimed. �

Theorem 4. Let G be a graph with n vertices, maximum degree ∆, and tree-
width k. Then G has a drawing with O(k3∆4 log n) slopes.

Proof. Ding and Oporowski [2] proved that for some tree T , G has a T -partition
of width at most max{24k∆, 1}. Let w = max{24k∆, 1}. For each node x ∈
V (T ), there are at most w∆ edges of G incident to vertices mapped to x. Hence
we can assume that T is a forest with maximum degree at most w∆, as otherwise
there is an edge of T with no edge of G mapped to it, in which case the edge of T
can be deleted. Similarly, T has at most n vertices. Now, T has pathwidth at most
log(2n + 1) (see [1]). By Lemma 3, T has a drawing with at most w∆− 1 slopes
and at most 2 log(2n+1)−1 distinct edge lengths. By Lemma 2, G has a drawing
in which the number of slopes is at most w(w∆ − 1)(2 log(2n + 1)− 1)(w − 1)+
(w∆ − 1) + w ∈ O(w3∆ log n) ⊆ O(k3∆4 log n). �

Corollary 2. Every n-vertex graph with bounded degree and bounded treewidth
has a drawing with O(log n) slopes. �
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Abstract. A k-stack layout (respectively, k-queue layout) of a graph
consists of a total order of the vertices, and a partition of the edges into
k sets of non-crossing (non-nested) edges with respect to the vertex or-
dering. A k-track layout of a graph consists of a vertex k-colouring, and
a total order of each vertex colour class, such that between each pair
of colour classes no two edges cross. The stack-number (respectively,
queue-number, track-number) of a graph G, denoted by sn(G) (qn(G),
tn(G)), is the minimum k such that G has a k-stack (k-queue, k-track)
layout. This paper studies stack, queue, and track layouts of graph sub-
divisions. It is known that every graph has a 3-stack subdivision. The
best known upper bound on the number of division vertices per edge in a
3-stack subdivision of an n-vertex graph G is improved from O(log n) to
O(log min{sn(G), qn(G)}). This result reduces the question of whether
queue-number is bounded by stack-number to whether 3-stack graphs
have bounded queue number. It is proved that every graph has a 2-
queue subdivision, a 4-track subdivision, and a mixed 1-stack 1-queue
subdivision. All these values are optimal for every non-planar graph. In
addition, we characterise those graphs with k-stack, k-queue, and k-track
subdivisions, for all values of k. The number of division vertices per edge
in the case of 2-queue and 4-track subdivisions, namely O(log qn(G)), is
optimal to within a constant factor, for every graph G. Applications to
3D polyline grid drawings are presented. For example, it is proved that
every graph G has a 3D polyline grid drawing with the vertices on a
rectangular prism, and with O(log qn(G)) bends per edge.

1 Introduction

This paper studies stack, queue and track layouts of subdivisions of graphs. The
contributions of this paper are three-fold. First, we characterise those graphs
admitting k-stack, k-queue or k-track subdivisions, for all k. In addition, we
prove bounds on the number of division vertices per edge that are asymptoti-
cally tight in a number of cases. These results are presented in Section 3. Second,
we use these subdivision layouts to reduce two of the major open problems in
the theory of stack and queue layouts to certain special cases. These results,
along with relationships amongst various thickness parameters, are presented in
� Research supported by NSERC and COMBSTRU.
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Section 4. As the third contribution, we apply our results concerning track lay-
outs of subdivisions to the study of three-dimensional polyline graph drawings.
These results are presented in Section 5. Due to space limitations, many proofs
and some references are omitted – see [7] for all the details. All logarithms are
base 2 unless stated otherwise.

2 Preliminaries

We consider undirected, finite, and simple graphs G with vertex set V (G) and
edge set E(G). The number of vertices and edges of G are respectively denoted
by n = |V (G)| and m = |E(G)|. A subdivision of G is a graph obtained from
G by replacing each edge vw ∈ E(G) by a path with at least one edge whose
endpoints are v and w. Internal vertices on this path are called division vertices.
Let G′ be the subdivision of G with one division vertex per edge.

A graph parameter is a function α that assigns to every graph G a non-
negative integer α(G). Let G be a class of graphs. By α(G) we denote the function
f : N→ N, where f(n) is the maximum of α(G), taken over all n-vertex graphs
G ∈ G. We say G has bounded α if α(G) ∈ O(1). A graph parameter α is bounded
by a graph parameter β (for some class G), if there exists a binding function g
such that α(G) ≤ g(β(G)) for every graph G (in G). If α is bounded by β (in G)
and β is bounded by α (in G) then α and β are tied (in G).

A vertex ordering of a graph G is a total order σ of the vertex set V (G). Let
L(e) and R(e) denote the endpoints of each edge e ∈ E(G) such that L(e) <σ

R(e). Consider two edges e, f ∈ E(G) with no common endpoint such that
L(e) <σ L(f). If L(e) <σ L(f) <σ R(e) <σ R(f) then e and f cross, and if
L(e) <σ L(f) <σ R(f) <σ R(e) then e and f nest. A stack (respectively, queue)
is a set of edges E′ ⊆ E(G) such that no two edges in E′ cross (nest). Observe
that when traversing the vertex ordering, edges in a stack (queue) appear in
LIFO (FIFO) order – hence the names. A k-stack (queue) layout of G consists
of a vertex ordering σ of G and a partition {E� : 1 ≤ � ≤ k} of E(G), such that
each E� is a stack (queue) in σ. A graph admitting a k-stack (queue) layout
is called a k-stack (queue) graph. The stack-number of a graph G, denoted by
sn(G), is the minimum k such that G is a k-stack graph. The queue-number of a
graph G, denoted by qn(G), is the minimum k such that G is a k-queue graph.
For a summary of results regarding stack and queue layouts see [8].

A vertex t-colouring of a graph G is a partition {Vi : 1 ≤ i ≤ t} of V (G)
such that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj then i �= j. Suppose
that <i is a total order of each colour class Vi. Then the pair (Vi, <i) is called
a track, and {(Vi, <i) : 1 ≤ i ≤ t} is a t-track assignment of G. We denote
track assignments by {Vi : 1 ≤ i ≤ t} when the ordering on each colour class is
implicit. An X-crossing in a track assignment consists of two edges vw and xy
such that v <i x and y <j w, for distinct colours i and j. A (k, t)-track layout
of G consists of a t-track assignment of G and a (non-proper) edge k-colouring
of G with no monochromatic X-crossing. (1, t)-track layouts (that is, with no
X-crossing) are of particular interest due to applications in three-dimensional
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graph drawing (see Section 5). A (1, t)-track layout is called a t-track layout. A
graph admitting a t-track layout is called a t-track graph. The track-number of
G, denoted by tn(G), is the minimum t such that G is a t-track graph. For a
summary of bounds on the track-number see [6].

3 Layouts of Subdivisions

Stack and queue layouts of graph subdivisions are a central topic of this paper.
That every graph has a 3-stack subdivision has been observed by many authors
[10, 17, 11, 1]. Note that 3-stack layouts are important in complexity theory, and
3-stack layouts of knots and links, so called Dynnikov digrams, have also recently
been considered (see the references in [7]). It is interesting to determine the
minimum number of division vertices in a 3-stack subdivision of a given graph.
The previously best known bounds are due to Enomoto and Miyauchi [10], who
proved that every graph has a 3-stack subdivision with O(log n) division vertices
per edge. Moreover, Enomoto et al. [12] proved that this bound is tight up
to a constant factor for Kn (and some slightly more general families). Thus
Enomoto et al. [12] claimed that the O(log n) upper bound is ‘essentially best
possible’. We prove the following refinement of the upper bound of Enomoto and
Miyauchi [10], in which the number of division vertices per edge depends on the
stack-number or queue-number of the given graph. Moreover, we characterise
those graphs admitting k-stack subdivisions for all k.

Theorem 1. (a) Every graph G has a 3-stack subdivision with
O(log min{sn(G), qn(G)}) division vertices per edge.

(b) A graph has a 2-stack subdivision if and only if it is planar. Every planar
graph has a 2-stack subdivision with at most one division vertex per edge.

(c) A graph has a 1-stack subdivision if and only if it is outerplanar. Every
outerplanar graph has a 1-stack layout (with no division vertices).

Proof Outline. Let H be the subdivision of G with 2�log sn(G)� − 2 division
vertices per edge. As illustrated in Figure 1, we now prove that H has a 3-stack
subdivision. Consider a sn(G)-stack layout of G. Let T be the complete binary
tree of height �log sn(G)�. Consider each stack of G to correspond to a distinct
leaf of T . Now define a mapping of the vertices of H into the nodes of T such that
adjacent vertices of H are mapped to adjacent nodes of T or to the same leaf
of T . In particular, the original vertices of G are mapped to the root, and each
subdivided edge e is mapped to a walk from the root to the leaf corresponding
to the stack containing e, and then back to the root. A depth-first ordering of
V (T ) gives a 3-stack layout of T in which edges with a common endpoint are in
distinct stacks. From this layout of T we can obtain the desired 3-stack layout of
H by appropriately ordering the vertices of H that are mapped to a single node
of T , and by assigning each edge e of H to the same stack as the edge of T that
e is mapped to. The proof that G has a 3-stack subdivision with O(log qn(G))
division vertices per edge is similar. Parts (b) and (c) are easy extensions of
known results. �	
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Fig. 1. 3-stack subdivision of a 16-stack graph; one edge is indicated.

Since sn(G) and qn(G) are both no more than n, our bound in Theorem 1(a)
is at most the O(log n) bound of Enomoto and Miyauchi [10] (ignoring constant
factors). We prove the following analogous result for queue layouts, in which,
additionally, the number of division vertices per edge is optimal.

Theorem 2. (a) Every graph G has a 2-queue subdivision with O(log qn(G))
division vertices per edge, and every 2-queue subdivision of G has an edge
with Ω(log qn(G)) division vertices per edge.

(b) A graph has a 1-queue subdivision if and only if it is planar.

Thus, at least for the representation of graph subdivisions, two queues suffice
rather than three stacks. In this sense, queues are more powerful than stacks.
We have the following analogous result for track layouts.

Theorem 3. (a) Every graph G has a 4-track subdivision with O(log qn(G))
division vertices per edge, and every 4-track subdivision of G has an edge
with Ω(log qn(G)) division vertices.

(b) A graph has a 3-track subdivision if and only if it is planar.
(c) A graph has a 2-track subdivision if and only if it is a forest of caterpillars.

A trade-off between the number of stacks and the number of division vertices
in 3-stack subdivisions was observed by Enomoto and Miyauchi [11], who proved
that for all s ≥ 3, every graph has an s-stack subdivision with O(logs−1 n)
division vertices per edge. Again Enomoto et al. [12] proved that this bound is
tight up to a constant factor for Kn. As described in Table 1, our results for
3-stack subdivisions, 2-queue subdivisions, and 4-track subdivisions generalise
in a similar fashion to the result of Enomoto and Miyauchi [11]. Moreover, we

Fig. 2. A 2-queue subdivision of an 8-queue graph.
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Table 1. Layouts of a subdivision of a graph G.

graph type of layout # division vertices per edge

arbitrary s-stack (s ≥ 3) O(logs−1 sn(G))
arbitrary s-stack (s ≥ 3) O(logs−1 qn(G))
planar 2-stack 1

arbitrary q-queue (q ≥ 2) Θ(logq qn(G))
planar 1-queue n− 2

arbitrary s-stack q-queue (s ≥ 1, q ≥ 1) O(log(s+q)q sn(G))

arbitrary s-stack q-queue (s ≥ 1, q ≥ 1) O(log(s+q)q qn(G))

planar 1-stack 1-queue 4

arbitrary (d + 1, 2)-track (d ≥ 2) Θ(logd qn(G))
arbitrary (d, 3)-track (d ≥ 2) Θ(logd qn(G))
arbitrary (d + 2)-track (d ≥ 2) Θ(logd qn(G))
planar 3-track n− 2

generalise stack and queue layouts through the notion of a mixed layout. Here
each edge is assigned to a stack or to a queue, defined with respect to a common
vertex ordering. We speak of an s-stack q-queue mixed layout and an s-stack q-
queue graph. Part of the motivation for studying mixed stack and queue layouts
is that they model the double-ended queue (dequeue) data structure, since a
dequeue may be simulated by two stacks and one queue.

4 Relationships

The following lemma highlights the fundamental relationship between track lay-
outs, and queue and stack layouts. Its proof follows immediately from the defi-
nitions, and is illustrated in Figure 3 for k = 1.

Lemma 1. Let {A, B} be a track assignment of a bipartite graph G. Then the
following are equivalent:

(a) {A, B} admits a (k, 2)-track layout of G,
(b) the vertex ordering with A followed by B admits a k-queue layout of G, and
(c) the vertex ordering with A followed by the reversal of B admits a k-stack

layout of G.

The relationship between queue and track layouts in Lemma 1 was extended
by Dujmović et al. [6] who proved that queue-number and track-number are
tied. Despite a wealth of research on stack and queue layouts, the following
fundamental questions of Heath et al. [15] remain unanswered1.
1 Heath et al. [15], in their study of the relationship between stack- and queue-number,

restricted themselves to linear binding functions. For example, for stack-number to
be bounded by queue-number meant that sn(G) ∈ O(qn(G)) for every graph G.
Thus Heath et al. [15] considered Open Problem 1 to be solved in the negative by
displaying an infinite class of graphs G, such that sn(G) ∈ Ω(3qn(G)). In our more
liberal definition of a binding function, this result merely provides a lower bound on
a potential binding function.
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(a) (b) (c)

Fig. 3. Layouts of a caterpillar: (a) 2-track, (b) 1-queue, (c) 1-stack.

Open Problem 1. [15] Is stack-number bounded by queue-number?

Open Problem 2. [15] Is queue-number bounded by stack-number?

Suppose that stack-number is bounded by queue-number, but queue-number
is not bounded by stack-number. This would happen, for example, if there exists
a constant s such that for every q there exists an s-stack graph with no q-queue
layout. Then we would consider stacks to be more ‘powerful’ than queues. In
the remainder of this section we show that the study of stack, queue and track
layouts of subdivisions provides insights into these open problems.

Let α be a graph parameter. Let sub-α be the graph parameter defined by
sub-α(G) = α(G′) for every graph G. We say α is topological if α and sub-α are
tied. For example, chromatic number is not topological since G′ is bipartite. On
the other hand tree-width is topological. In fact, the tree-width of G equals the
tree-width of every subdivision of G. Similarly crossing number is topological.

The thickness of a graph G, denoted by θ(G), is the minimum number of sub-
graphs in a partition of E(G) into planar subgraphs. Thickness is not topological
since it is easily seen that θ(G′) ≤ 2. The geometric thickness of a graph G, de-
noted by θ(G), is the minimum number of colours such that G can be drawn
in the plane with edges as coloured straight-line segments, such that monochro-
matic edges do not cross. Eppstein [13] proved that θ(G′) ≤ 2 for every graph G.
Thus geometric thickness is not topological.

Stack-number (or book-thickness) is equivalent to geometric thickness with
the additional requirement that the vertices are in convex position. Thus

∀ graph G, θ(G) ≤ θ(G) ≤ sn(G) . (1)

Blankenship and Oporowski [1], Enomoto and Miyauchi [10], and Eppstein [13]
independently proved that sn(Kn) is bounded by sn(K ′

n). The proofs by Blanken-
ship and Oporowski [1] and Eppstein [13] use essentially the same Ramsey-
theoretic argument. Since θ(K ′

n) = 2, Eppstein [13] observed that stack-number
is not bounded by geometric thickness. Using a more elaborate Ramsey-theoretic
argument, Eppstein [13] proved that geometric thickness is not bounded by thick-
ness. In particular, for every t there exists a graph with thickness three and
geometric thickness at least t. Blankenship and Oporowski [1] conjecture that
their result for complete graphs extends to all graphs.

Conjecture 1. [1] There exists a function f , such that for every graph G and
every subdivision H of G with at most one division vertex per edge, we have
sn(G) ≤ f(sn(H)).

We now prove that Conjecture 1 is related to Open Problem 1.
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Theorem 4. If Conjecture 1 is true then stack-number is topological, and stack-
number is bounded by queue-number.

Proof Outline. Conjecture 1 would imply that sn is bounded by sub-sn, which
would imply that stack-number is topological since it is easily seen that sn(G′) ≤
sn(G)+ 1. It follows from Conjecture 1 that there exists a function f∗ such that
for any s-stack subdivision of a graph G with k division vertices per edge, G has a
f∗(s, k)-stack layout. By Theorem 1(a), every graph G has a 3-stack subdivision
with O(log qn(G)) division vertices per edge. Thus sn(G) ≤ f∗(3,O(log qn(G))),
and stack-number is bounded by queue-number. �	

We now turn our attention to the question of whether queue-number is topo-
logical. The next lemma is proved by repeated application of the Erdös-Szekeres
Theorem regarding monotone subsequences.

Lemma 2. If a q-queue subdivision of a graph G has at most k division vertices
per edge, then qn(G) ∈ O(q2k).

Lemma 2 is used to prove the lower bounds on the number of division vertices
per edge in Theorem 2(a) and Theorem 3(a). It follows from Lemma 2 that:

Theorem 5. Queue-number is topological (for all graphs), and track-number is
topological for any proper minor-closed graph family.

We now relate queue-number to a new thickness parameter. Let the 2-track
thickness of a bipartite graph G, denoted by θ2(G), be the minimum k such that
G has a (k, 2)-track layout. By (1) and Lemma 1(c),

∀ bipartite graphs G, θ(G) ≤ θ(G) ≤ sn(G) ≤ θ2(G) .

Let the 2-track sub-thickness of a graph G, denoted by sub-θ2(G), be the
2-track thickness of G′. This is well-defined since G′ is bipartite.

Theorem 6. Queue-number is tied to 2-track thickness for bipartite graphs, and
queue-number is tied to 2-track sub-thickness (for all graphs).

Theorem 6 is somewhat counterintuitive since, at first glance, queue layouts
may have many crossings, as opposed to the various thickness parameters. The
immediate implication for Open Problem 1 is that stack-number is bounded by
queue-number if and only if stack-number is bounded by 2-track sub-thickness.
While it is an open problem whether stack number is bounded by track-number
or by queue-number, in [6] we prove the weaker result that geometric thickness
is bounded by track-number, which implies that geometric thickness is bounded
by queue-number. We have the following reductions for Open Problem 2.

Theorem 7. The following are equivalent:

(a) queue-number is bounded by stack-number,
(b) bipartite 3-stack graphs have bounded queue-number,
(c) bipartite 3-stack graphs have bounded 2-track thickness.

Moreover, if queue-number is bounded by stack-number then queue-number is
bounded by a polynomial function of stack-number.
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Proof Outline. That (a) implies (b) is immediate. Theorem 6 proves that (b) and
(c) are equivalent. It remains to prove that (b) implies (a). Suppose that every
bipartite 3-stack graph has queue-number at most some constant q. Consider
an arbitrary graph G. An easy extension of Theorem 1(a) proves that G has
a 3-stack bipartite subdivision D with O(log sn(G)) division vertices per edge.
By assumption, qn(D) ≤ q. By Lemma 2, and with an abuse of O( ) notation,
qn(G) ∈ O(qO(log sn(G))) ∈ O(sn(G)O(q)). Thus queue-number is bounded by a
polynomial function of stack-number. �	

For Theorem 7 to hold, it is essential that the number of division vertices per
edge in Theorem 1(a) is some function of sn(G), thus emphasising the significance
of our bound in comparison with previous results.

5 Three-Dimensional Polyline Drawings

A 3D polyline drawing of a graph represents the vertices by distinct points in Z
3

(called gridpoints), and represents each edge as a polyline between its endpoints
with bends (if any) also at gridpoints, such that distinct edges only intersect at
common endpoints, and each edge only intersects a vertex that is an endpoint
of that edge. A 3D polyline drawing with at most b bends per edge is called a
3D b-bend drawing. A 3D 0-bend drawing is called a 3D straight-line drawing. Of
course, a 3D b-bend drawing of a graph G is precisely a 3D straight-line drawing
of a subdivision of G with at most b division vertices per edge. The bounding
box of a 3D polyline drawing is the minimum axis-aligned box containing the
drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then we
speak of an X × Y × Z polyline drawing with volume X · Y · Z. That is, the
volume of a 3D drawing is the number of gridpoints in the bounding box.

This paper initiates the study of upper bounds on the volume and number
of bends per edge in arbitrary 3D polyline drawings. The volume of 3D straight-
line drawings has been widely studied [4, 3, 14, 19, 2]. Table 2 summarises the
best known upper bounds on the volume and bends per edge, including those
established in this paper. Our upper bound of O(m log q) is within a factor of
O(log q) of being optimal for all q-queue graphs, since Bose et al. [2] proved that
3D polyline drawings have at least 1

8 (n + m) volume.
Track layouts have previously been used to produce 3D drawings with small

volume (see [5]). The principle idea is to position the vertices in a single track
on a vertical ‘rod’. Since there are no X-crossings in the track layout, no edges
between the same pair of tracks can cross.
Theorem 8. [9, 5] Let G be a c-colourable t-track graph. Then
(a) G has a O(t) ×O(t)×O(n) straight-line drawing with O(t2n) volume, and
(b) G has a O(c)×O(c2t)×O(c4n) straight-line drawing with O(c7tn) volume.
Moreover, if G has an X×Y ×Z straight-line drawing then G has track-number
tn(G) ≤ 2XY .

By Theorem 3(a), every graph has a 4-track subdivision with O(log n) di-
vision vertices per edge, and hence a 3D polyline drawing with O(n + m log n)
volume by Theorem 8(a). We have the following specific results.
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Table 2. Volume of 3D polyline drawings of graphs with n vertices and m ≥ n edges.

graph family bends per edge volume reference

arbitrary 0 O(n3) Cohen et al. [3]

arbitrary 0 O(m4/3n) Dujmović and Wood [9]
maximum degree ∆ 0 O(∆mn) Dujmović and Wood [9]

bounded maximum degree 0 O(m1/2n) Dujmović and Wood [9]
bounded chromatic number 0 O(n2) Pach et al. [19]

bounded chromatic number 0 O(m2/3n) Dujmović and Wood [9]

H-minor free (H fixed) 0 O(n3/2) Dujmović and Wood [9]
bounded tree-width 0 O(n) Dujmović et al. [5]
c-colourable q-queue 1 O(cqm) Theorem 9(a)
arbitrary 1 O(nm) Theorem 9(b)
q-queue 2 O(qn) Theorem 9(c)
q-queue (constant ε > 0) O(1) O(mqε) Theorem 10
q-queue O(log q) O(m log q) Theorem 12

Theorem 9. Every c-colourable q-queue graph has: (a) a 2× c(q +1)× (n+m)
polyline 1-bend drawing, (b) an n × m × 2 polyline 1-bend drawing, and (c) a
2× 2q × (2n− 3) polyline 2-bend drawing.

The next result highlights the apparent trade-off between few bends and
small volume.

Theorem 10. For every ε > 0, every q-queue graph has a 2×O(qε)×O(n+m/ε)
polyline drawing with O(1/ε) bends per edge.

Felsner et al. [14] introduced 3D straight-line graph drawings with the vertices
positioned on the edges of a triangular or rectangular prism.

Theorem 11. Every planar graph has a 2 × 2 × O(n2) polyline drawing on a
triangular prism with at most n − 2 bends per edge. Only planar graphs have
polyline drawings on a triangular prism.

Theorem 12. Every q-queue graph G has a 2 × 2 × O(n + m log q) polyline
drawing on a rectangular prism with O(log q) bends per edge.

Proof. By Theorem 3(a), G has a 4-track subdivision D with O(log q) divi-
sion vertices per edge. The number of vertices of D is O(n + m log q). Let
{V1, V2, V3, V4} be the tracks. Let n′ = max{|V1|, |V2|, |V3|, |V4|}. Position the ith

vertex in V1 at (0, 0, 2i). Position the ith vertex in V2 at (1, 0, 2i). Position the
ith vertex in V3 at (0, 1, 2i). Position the ith vertex in V4 at (1, 1, 2i + 1). Clearly
the only possible crossing is between edges vw and xy with v ∈ V1, w ∈ V4,
x ∈ V2, and y ∈ V3. Such a crossing point is on the line L = {(1

2 , 1
2 , z) : z ∈ R}.

However, vw intersects L at (1
2 , 1

2 , α+ 1
2 ) for some integer α, and xy intersects L

at (1
2 , 1

2 , β) for some integer β. Thus vw and xy do not intersect. The bounding
box is 2× 2× 2n′, which is 2× 2×O(n + m log q). �	

Note that Di Giacomo and Meijer [4] proved that a 4-track graph has a
2× 2× n drawing. When n′ < n

2 the above construction has less volume.
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6 Planar Graphs

Felsner et al. [14] asked the following question (in their conference paper).

Open Problem 3. [14] Does every n-vertex planar graph have a 3D straight-
line drawing with O(n) volume?

By Theorem 8, this question has an affirmative answer if planar graphs have
bounded track-number. Whether planar graphs have bounded track-number is
an open problem due to Hubert de Fraysseix [private communication, 2000], and
since queue-number is tied to track-number for planar graphs [5, 6], is equivalent
to the following open problem due to Heath et al. [15]. Note that the best known
upper bound on the queue-number of planar graphs is O(

√
n).

Open Problem 4. [15] Do planar graphs have bounded queue-number?

We make the following contribution to the study of this problem, which is
analogous to Theorem 7, since 2-stack graphs are precisely the subgraphs of
Hamiltonian planar graphs.

Theorem 13. Let F(n) be the family of functions O(1) or O(polylog n). The
following are equivalent:

(a) n-vertex planar graphs have queue-number in F(n),
(b) n-vertex bipartite Hamiltonian planar graphs have queue-number in F(n),
(c) n-vertex bipartite Hamiltonian planar graphs have 2-track thickness in F(n).
(d) n-vertex planar graphs have O(1)×O(1)×O(n) polyline O(1)-bend drawings.
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Abstract. We consider the NP-hard label number maximization prob-
lem lnm: Given a set of rectangular labels, each of which belongs to a
point feature in the plane, the task is to find a labeling for a largest
subset of the labels. A labeling is a placement such that none of the
labels overlap and each is placed so that its boundary touches the corre-
sponding point feature. The purpose of this paper is twofold: We present
a new force-based simulated annealing algorithm to heuristically solve
the problem and we provide the results of a very thorough experimental
comparison of the best known labeling methods on widely used bench-
mark sets. The design of our new method has been guided by the goal
to produce labelings that are similar to the results of an experienced hu-
man performing the same task. So we are not only looking for a labeling
where the number of labels placed is high but also where the distribution
of the placed labels is good.

Our experimental results show that the new algorithm outperforms the
other methods in terms of quality while still being reasonably fast and
confirm that the simulated annealing method is well-suited for map la-
beling problems.

1 Introduction

The growing amount of data for which informational graphics have to be pro-
duced leads to an increasing need for automatic labeling procedures.

Several criteria have been developed that characterize a high-quality labeling:

(C1) On a good map the placement of labels is unambiguous. This implies that
labels are close to the point features they belong to.

(C2) The information of the labels is legible.
(C3) No or only a few labels overlap. Obviously, overlaps decrease the legibility

of a map.
(C4) The number of omitted labels is low.

The cartographic literature contains more rules, see, e.g., the papers by Imhof [6]
and Yoeli [14]. Yet, the overall aim in automatic map labeling is to devise algo-
rithms that produce labelings of maximum legibility.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 144–154, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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(d) Four-slider (e) Two-slider (f) One-slider

(a) Four-position (b) Two-position (c) One-position

Fig. 1. Axis-parallel rectangular labeling models. A label can be placed in any of the
positions indicated by the rectangles and can slide in the directions of the arrows.

An instance of a labeling problem consists of a set of point features, infor-
mation about the label sizes, and a mapping from labels to point features. In
general it is not possible to place all the given labels in their original size with-
out any overlap. The literature suggests several possibilities to deal with this
problem; among these are decreasing the size of the labels to allow a placement
of all labels without any overlap (label size maximization), and keeping the sizes
of the labels fix while looking for the maximum number of labels that can be
placed (label number maximization problem, LNM).

Research in automated map labeling has mainly focused on the six labeling
models shown in Figure 1, the most popular of which are the four-position and
the four-slider model. The dots in the figure represent the point feature to be
labeled.

Definition 1 (LNM in the 4-slider model). Given a set Λ = {λ1, . . . , λk}
(the labels), two functions w, h : L → IR, and a function a : Λ → IR2, find a
subset Λ′ ⊆ Λ of largest cardinality and a function ρ : Λ′ → R, where R is the
set of axis-parallel rectangles in the plane, so that the following conditions hold:

(L1) Rectangle ρ(λ) has width w(λ) and height h(λ) for every λ ∈ Λ′.
(L2) Point a(λ) lies on the boundary of ρ(λ) for all λ ∈ Λ′.
(L3) The open intersection ρ(λ) ∩ ρ(µ) is empty for all λ, µ ∈ Λ′, λ �= µ.

An assignment of labels to rectangles that satisfies the three properties (L1)–
(L3) is called a labeling. Properties (L1) and (L2) make sure that each label λ is
drawn with the given size in the 4-slider model. Property (L3) forbids overlaps
between the labels.

Force-directed methods have originally been developed for drawing graphs.
In practice, these techniques often perform remarkably well on medium-sized
instances and are easy to implement. Further, the resulting drawings typically
capture symmetries while avoiding the expensive computations to look for them
explicitly.

These algorithms, going back to Eades [3] and Kruskal and Seery [10], view
the input graph as a system of objects with forces acting between them. Con-
figurations of the objects with low energy correspond to aesthetically pleasing
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layouts of the graph. Algorithms for this task are mostly variations of iterative
gradient-based methods such as the Newton-Raphson method.

Davidson and Harel consider in [2] the number of edge crossings in a drawing
as an additional, discrete term in the objective function and can therefore not
apply gradient methods to find an equilibrium. The authors propose the simu-
lated annealing approach. This approach defines for each configuration a finite
set of neighboring configurations and tries one of them at random. New config-
urations are always accepted if they decrease the energy of the system but even
if they increase the energy, they are accepted with a probability that decreases
with time. As we will point out in Section 2, we will use simulated annealing for
similar reasons as Davidson and Harel.

Van Kreveld, Strijk, and Wolff [13] show NP-completeness of the decision
problem in the four-slider model (independently, Marks and Shieber have shown
this in [11]). The main result in [13] is a 1

2 -approximation algorithm that is able to
find a solution of lnm in any of the slider-models with unit height rectangles. The
algorithm is a Θ(n log n)-time greedy sweep-line algorithm. For the same models,
the authors develop a polynomial time approximation scheme. Strijk and van
Kreveld extend the above mentioned 1

2 -approximation algorithm for the slider
models in [12] to labels with different heights. If r denotes the number of different
label heights, the running time of the algorithm is O(rn log n). The algorithm
is based on the simple greedy strategy of iteratively placing the leftmost label
until no more points can be labeled without intersections. The leftmost label is
defined to be the label, whose right edge is leftmost among all label candidates,
which are those labels that have not been placed yet minus a set of labels that
are already known to be unplaceable in the current configuration.

Klau and Mutzel present in [9] an exact algorithm for the label number
maximization problem that works in any of the labeling models. The method is
based on a pair of so-called constraint graphs that code horizontal and vertical
positioning relations. The key idea is to link the two graphs by a set of additional
constraints, thus characterizing all feasible solutions of lnm. This combinatorial
description enables the formulation of a zero-one integer linear program whose
solution leads to an optimal labeling.

The paper [1] by Christensen, Marks, and Shieber contains an extensive com-
putational study of labeling methods in the four-position model. The authors
also present a simulated annealing method for this problem that is the clear
winner of the study in terms of labeling quality while still being reasonably fast.
Furthermore, they propose a procedure for randomly creating labeling instances.
We use this benchmark generator, which has become a widely used tool in map
labeling research, for our computational experiments in Section 3.

Already in 1982, Hirsch introduced a model that is similar to the four-slider
model and proposed an algorithmic labeling method that can be interpreted as
a force-directed approach. The algorithm starts with an initial label placement
and tests for overlaps. Based on the amount of intersecting area, overlap vec-
tors are computed for labels involved in an overlap conflict. For each label, the
summation of these vectors helps in heuristically deciding where to move the
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label. Successive movements of all labels in conflict, which Hirsch calls a map
sweep, is done by using one of the following two methods: (a) Moving labels in
the direction of the computed vectors with sequential stops at preferred posi-
tions. This method allows the label to be placed at any possible position. (b)
Performing a discrete jump to a position indicated by the vector angle. Here, the
primary aim is to solve an overlap situation where the first method fails. Hirsch
does not consider the number maximization problem explicitly. Also, although
his overlap vectors resemble the intersection-proportional component within our
force system, he does not consider distance-related forces and suggests a differ-
ent method for finding an equilibrium of minimum energy. His approach can be
seen as a gradient-driven heuristic.

2 Force-Directed Map Labeling

In this section we describe our force-based simulated annealing algorithm for the
label number maximization problem. Our approach uses repulsive forces between
labels, which are used to compute a force vector for each label. The length and
direction of these vectors gives us an idea of where to place individual labels
and how to solve potential conflicts between two or more labels. As a side-
effect we achieve another important benefit, which makes the method usable
for practical applications: Our forces are defined to grow super linearly with
decreasing distance between two labels. Therefore, labels are not placed close to
each other if possible and the method achieves a good distribution of the labels
in the available space. This improves the readability of the labels and results in
an aesthetically pleasing arrangement. To avoid being trapped in local minima
of the energy function, we combine the purely force directed method with the
simulated annealing approach.

Every force-directed algorithm consists of two major parts: (a) a force-system
between the objects and (b) a method that seeks an equilibrium of minimum
energy. In our case a low energy equilibrium configuration should correspond to
a pleasing labeling. In contrast to applications in graph drawing labels are bound
to their point feature and may not be positioned freely in the available space. We
only allow intermediate positions that satisfy at least the first condition, hence
we do not need any attractive forces between points and labels. Furthermore we
restrict the computation of forces to pairs of labels that might intersect. We call
the set of those labels for each label λ the neighborhood

N(λ) = {µ ∈ Λ | w(λ) + w(µ) ≥ |xλ − xµ| ∧ h(λ) + h(µ) ≥ |yλ − yµ|} .

Our main goal is to place as many labels as possible in the available space
without any intersections. Therefore the decisive factor in our force system is the
amount of intersection between two labels. We call this force the intersection-
proportional component. The amount of the second force acting in our model,
the so-called distance-related part, depends on the distance between two labels
and grows, if two rectangles are placed close to each other. If labels overlap a
very small area ε the intersection-proportional component can become arbitrary
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small. Thus we add a constant value to the force function if and only if two
labels overlap to punish overlaps stronger. The distance-related part is not the
significant value in our model, its only purpose is to guide the algorithm to a
well distributed labeling.

For every two labels λ, µ ∈ Λ, we define dmin : Λ× Λ→ IR as

dmin(λ, µ) =

{
0 if λ and µ overlap
min{‖p, q‖ | p ∈ λ, q ∈ µ} otherwise .

The function ‖p, q‖ : IR2× IR2 → IR denotes the Euclidean distance between the
two points p and q in the Euclidean plane IR2.

We can now define the force function f = (fx, fy) for each label in the
following way: For each label λ ∈ Λ with center point cλ = (xλ, yλ), the x-
component of the force function fx : Λ→ IR is defined as

fx(λ) =
∑

µ∈N(λ)

(fi(λ, µ) + fa(λ, µ) + fd(λ, µ)) (xλ − xµ) /(‖cλ, cµ‖) ,

where fi(λ, µ) = δ1 ix(λ, µ) iy(λ, µ) ,

fd(λ, µ) =
δ2

max(ε, dmin(λ, µ))2
, and fa(λ, µ) =

{
δ3 if λ and µ overlap
0 otherwise .

The y-component fy is defined analogously. The constants δ1, δ2, δ3 ∈ IR control
the influence of the particular term on the force function f . Note that the di-
rection of the force between two labels is defined by the location of their center
points and that ε limits the amount of fd to a value of δ2/ε2.

“Force has no place where there is need of skill.” [4]

A purely force directed method performs poorly if the labels take a significant
fraction of the available drawing area. There is only little space for manoeuvre
when seeking an equilibrium, especially if incremental methods are used. Often,
real-world labeling instances contain dense areas that do not leave much space
for moving labels around without producing new intersections. The problem is
aggravated by the fact that we only allow horizontal and vertical moves around
the label’s border. The same observation holds for the algorithm proposed by
Hirsch in [5] and is well described by Christensen, Marks, and Shieber in [1].

Figure 2(a) shows an example of a bad local minimum that is difficult to
escape from by using incremental moves. It is not possible to transform the bad
labeling on the left continuously into the good labeling on the right without a
temporary increase of overlaps and thus of the overall energy of the system.

Another problem arises from the direction of the forces. Since labels have
non uniform size and they are bound to their point features, the direction of
our resulting force vector does not always indicate a solution for the conflict.
Figure 2(b) shows a very simple example consisting of just two point features.
Any algorithm that strictly follows the direction of the force vector is not able to
resolve the shown configuration, even though the optimal solution is self-evident.
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(a) Bad local minimum vs. optimal labeling. (b) Forces cannot alwyas re-
solve overlaps.

Fig. 2. Problems with forces.

Therefore, we need to accept worse intermediate configurations to be able to
escape local minima and we propose to use the simulated annealing method for
this purpose.

Simulated annealing is a very flexible optimization method and can be used
in a wide range of combinatorial optimization problems. It has been proposed
in [7] and is derived from the following observation: When cooling down a liquid
rapidly to a crystal form, the system results in amorphous structures with a high
energy while slow cooling results in a crystal structure with lower energy.

The general simulated annealing procedure applies a series of sequential
moves while simultaneously decreasing the temperature. The main idea is that
the probability with which the change from a state with energy E1 to a state
with energy E2 will be accepted is e−

E2−E1
k T , where k is a positive constant.

Thus the probability for moves that increase the energy decreases with a falling
temperature.

The hybrid force-based simulated annealing algorithm for the label number
maximization problem works as follows:

1: compute random initial labeling σ in the eight-pos. model
2: initialize temperature T and cooling rate α
3: compute forces for current conf. and init. set of active labels Φ
4: Mmax ← 30|Λ|; taken← rejected← 0;
5: repeat
6: σ̂ ← σ;
7: choose random candidate λ ∈ Φ
8: if |fx(λ)| > Fmin ∨ |fy(λ)| > Fmin then
9: change σ by moving λ in the direction indicated by its force vector

10: if |fx(λ)| > Fmin ∨ |fy(λ)| > Fmin then
11: change σ by moving λ to a random position
12: else
13: change σ by moving λ to a random position
14: if force(σ) < force(σ̂) ∨ random r ∈ [0 . . . 1] < e

force(σ)−force(σ̂)
T then

15: taken← taken + 1
16: update set of active labels Φ
17: else
18: rejected← rejected + 1
19: σ ← σ̂;
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20: if taken + rejected ≥Mmax then
21: if taken = 0 then
22: if point selection is disabled ∨¬∃ overlapping label λ̂ ∈ Φ then
23: return current labeling σ
24: else
25: σ ← σ \ λ̂
26: update set of active labels Φ
27: T = αT
28: Mmax = max(|Λ|, min(10|Λ|, 50|Φ|)); taken← rejected← 0
29: until |Φ| = 0
30: return current labeling σ

The algorithm performs a series of temperature stages. After each stage the
temperature is decreased by a constant precomputed factor, which decreases the
probability of accepting moves that lead to a higher energy state. To speed up
convergence we compute a set of active labels Φ, which either intersect at least
one other label or their associated force vector indicates movement to a new
position with lower energy. The algorithm returns the current solution if |Φ| = 0
and chooses the label with the most overlaps for removal if no move has been
accepted for a full temperature stage.

In each iteration we randomly choose a label λ ∈ Φ and try to move it
according to its force vector. If this move does not lead to an equilibrium or
the force vector does not indicate movement even though the label is involved
in an overlap, we move the label to a random position in the eight-position
model instead. The new position is always accepted if it decreases the energy
and may be accepted if it does not increase the energy by more than the current
temperature allows.

At each temperature stage we perform Mmax moves. We initialize this value
with 30|Λ| and perform max(|Λ|, min(10|Λ|, 50|Φ|)) moves in all subsequent
stages. The initial temperature is chosen such that we accept an increase in
the overall force of favg with a probability of 30%, where favg represents the
amount of force for an overlap of 50% of two average sized labels. The cooling
rate α is chosen such that the temperature T becomes less than 1 after 15 stages.
The parameter α should be changed to adjust the trade-off between quality and
speed. The above settings yield high-quality labelings in reasonable computation
time.

Whenever we move a label λ to a different position or remove it from the
labeling in line 25, the forces on all labels λ′ ∈ N(λ) change. Since a simple
approach takes time O(n2) in the worst case we store the forces between each
pair of labels in a quadratic matrix. This enables us to update the forces in
linear time by recalculating only the change of the particular addend for each
neighbor N(λ). Furthermore we have to update the set of active labels Φ, since
some labels λ′ ∈ N(λ) may have to be added to or removed from this set.

Since labels have to be placed according to the four-slider model, moving a
label alongside its force vector becomes more difficult than moving, e.g., zero-
sized nodes in a graph drawing application. A position that corresponds to an
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equilibrium of the forces is not always valid with respect to the point. Fur-
thermore our forces depend on a combination of the overlapping area and the
distance between two labels, which are both defined differently depending on the
specific domain, and are thus not continuous. Thus we can not apply numerical
algorithms like the Newton-Raphson method or similar techniques, since they
require at least the first derivation of the function. In place of this we start mov-
ing the label by 20% of the remaining width/height in the particular direction
and halve the amount of movement if the indicated direction changes until we
achieve an equilibrium or the maximum number of moves has been performed.

We perform at least |Λ| moves before removing a heuristically chosen label.
Thus the running time depends to a great extent on the number of labels that
the algorithm cannot place. Most problem instances in our test suits of real world
labeling problems do not contain many of these unplaceable labels. Therefore,
our method performs well on these problems. However, if running time is a
critical criterion, this step can be replaced through a faster cleanup heuristic.

3 Computational Study

In this section we report on the extensive computational experiments we have
performed to evaluate quality and resource requirements of our new method
in comparison to the best-known algorithms for label number maximization.
We want to emphasize that both the data we used and our implementation of
the evaluated algorithms are publicly available under the Gnu General Public
License at http://www.ads.tuwien.ac.at/research/labeling.

We have implemented all major map labeling algorithms that we found in the
literature on point feature map labeling in the slider model. All computations
were done on a Pentium 4 with 2.8GHz and 2GB of RAM. For each run, we set
a limit of 30 minutes computation time.

– The algorithm random, which places labels randomly, if possible, has been
incorporated into the study only for comparative reasons.

– Christensen, Marks and Shieber present in [1] a simulated annealing ap-
proach that beats most other algorithms in both speed and quality. Since
their implementation uses the four-position model, in general, the quality of
their solutions cannot be as good as those of algorithms for the four-slider
model. Nevertheless we decided to include this algorithm in our computa-
tional study to compare one of the best known labeling methods in the
four-position model to the remaining algorithms. We isolated configuration
changes to either obstructed or deleted labels, since this causes the algorithm
to converge much faster.

– We followed the suggestion of Christensen, Marks, and Shieber in [1] and
reduced the radius of the circle in Hirsch’s algorithm (hirsch) to zero. Fur-
thermore we neglect any cartographic preferences.

– approx is our implementation of the algorithm described in [13, 12] that
runs in O(n2), does not rely on unique label heights, and is quite fast in
practice.
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– We computed optimal labelings in the 4-slider model using opt, an imple-
mentation of the algorithm presented in [9]. Note that, due to the running
time limit, only instances up to maximally 850 labels could be computed.

– Finally, fdl is our java implementation of the new force-directed method.

We ran the implementations on different data sets. Among them are (a)
instances generated with the widely used benchmark generator by Christensen,
Marks, and Shieber and (b) instances derived from real world data giving the
positions of ground water drill holes in Munich.

We generated 25 random problem instances of type (a) for each instance size
in {100, 150, . . . , 1450, 1500} labels, resulting in 685 instances, as in the study
on the four-position model [1]. The numbers of labels in the real-world problem
set (b) are in the set {250, 500, 750, . . . , 2750, 3000} and there are 30 instances
for each number of labels.

Figure 3(a) illustrates the performance of the evaluated algorithms in terms
of quality, whereas Figure 3(b) displays their running time behavior. Of course,
opt performs best in terms of quality but also needs the largest amount of
resources. Among the heuristic methods, our new algorithm produces the best
scores but also takes more time to compute them – especially for large instances.
We want to remark, however, that the random instances larger than 1000 labels
do not resemble real-world instances since they get very dense (see the discussion
on the real-world Munich drill hole instances below). The plots also reveal that
the approximation algorithm performs surprisingly well in terms of quality (for
very large instances it becomes as good as fdl) with the advantage that its
running time does not explode.

We then compared the heuristic methods on the easier real-world instances.
Figures 4(a) and 4(b) show the results. It can be seen that all methods apart
from random have quite good results with fdl being the winner. In fact, these
instances have been generated so that always 100% of the labels can be placed
– even in the four-position model. fdl is the only method that achieved the
perfect score on all instances. As already mentioned, the running time of fdl
depends heavily on the number of labels that cannot be placed. As this number
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Fig. 4. Results for the real-world benchmark set.

is zero for these instances, the running time behavior is very good for fdl as for
all other methods apart from the approximation algorithm.

Our computational results confirm the outcome of the 1995 study [1]: simu-
lated annealing is very well-suited for labeling problems and outperforms other
methods in terms of quality.

4 Conclusions

We have presented a new hybrid heuristical approach for the label number max-
imization problem. Our algorithm uses an underlying force system that serves
two purposes. First, a minimum energy configuration of this system corresponds
to placements with evenly distributed labels that is appealing to a human ob-
server. The second task of the force system is to determine which labels should be
left out to obtain a labeling without overlaps. We combine this with a simulated
annealing algorithm to escape local minima.

Our extensive computational experiments on widely used benchmark data
show that our algorithm finds labelings that are close to optimality in a short
amount of computing time. We find that our results often look similar to those
of a human cartographer.

Future lines of research might include to adapt the approach to line and area
labeling. We will also investigate how to combine force-based graph drawing with
our approach to attack the combined drawing and labeling problem. Further, we
want to integrate the approach into the Human-Guided Search (HuGS) system,
see [8], to allow for human interaction.
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72076 Tübingen, Germany
{siebenha,mk}@informatik.uni-tuebingen.de

Abstract. Sugiyama’s algorithmic framework for layered graph drawing
is commonly used in practical software. The extensive use of dummy
vertices to break long edges between non-adjacent layers often leads to
unsatisfactorial performance. The worst-case running-time of Sugiyama’s
approach is O(|V ||E| log |E|) requiring O(|V ||E|) memory, which makes
it unusable for the visualization of large graphs. By a conceptually simple
new technique we are able to keep the number of dummy vertices and
edges linear in the size of the graph and hence reduce the worst-case
time complexity of Sugiyama’s approach by an order of magnitude to
O((|V |+ |E|) log |E|) requiring O(|V |+ |E|) space.

1 Introduction

Most approaches for drawing directed graphs used in practice follow the same
framework developed by Sugiyama et al. [17], which produces layered layouts [3].
This framework consists of four phases: In the first phase, called Cycle Removal,
the directed input graph G = (V, E) is made acyclic by reversing appropriate
edges. During the second phase, called Layer Assignment, the vertices are as-
signed to horizontal layers. Before the third phase starts, long edges between
vertices of non-adjacent layers are replaced by chains of dummy vertices and
edges between the corresponding adjacent layers. Hence in the third phase, called
Crossing Reduction, an ordering of the vertices within a layer is computed such
that the number of edge crossings is reduced. Finally, the fourth phase, called
Horizontal Coordinate Assignment, calculates an x-coordinate for each vertex.
Now the dummy vertices introduced after the layer assignment are removed and
replaced by bends.

Unfortunately, almost all problems occuring during the single phases of this
approach are NP-hard: Feedback-arc set [12], Precedence Constrained Multi-
processor Scheduling [5], 2-layer crossing minimization [8], etc. Nevertheless, for
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all these problems appropriate heuristics have been developed and nearly all
practical graph drawing software use this approach, mostly enriched by mod-
ifications required in practice like large vertices, same-layer-edges, clustering,
etc.

In the following, we review Sugiyama’s framework for drawing directed graphs
in more detail and give the necessary definitions and results. Then we use this
as basis for our new approach. In the rest of this work we assume that the input
graph is already acyclic.

1.1 Layer Assignment and Normalization

Let L1,..,Lh be a partition of V with Li ⊂ V , 1 ≤ i ≤ h and
⋃h

i=1 Li = V
(h denotes the number of layers). Such a partition is called a layering of G if for
all e = (v, w) with v ∈ Li and w ∈ Lj holds i < j. The number of vertices in a
layer Li is denoted with ni. The span of edge e is j − i. In a layered drawing,
all vertices v ∈ Li are drawn on a horizontal line (same y-coordinate). We call
the layering proper if span(e) = 1 for all edges e ∈ E. In most applications the
layers of the vertices can be assigned arbitrarily and, in some cases, the layer
assignment is even part of the input.

For edges e = (u, v) with span(e) > 1 and for which the endpoints u and
v lie on layers Li and Lj , we replace edge e by a chain of dummy vertices
u = di, di−1, . . . , dj+1, dj = v where any two consecutive dummy vertices are
connected by a dummy edge. Vertex dk for i ≤ k ≤ j is placed on layer Lk.
This process is called normalization and the result the normalized graph GN =
(VN , EN ). With this construction, the next phase starts with a proper layering.

Gansner et al. [10] presented an algorithm, which calculates a layer assign-
ment of the vertices such that the total number of dummy vertices is minimized.
The algorithm for minimizing the number of dummy vertices is a network sim-
plex method and no polynomial time bound has been proven for it, but several
linear time heuristics for this problem work well in practice [14, 15]. In the worst
case |VN | = O(|V ||E|) and |EN | = O(|V ||E|).

After the final layout of the modified graph, we replace the chains of dummy
edges by polygonal chains in which the former dummy vertices become bends.

1.2 Crossing Reduction

The vertices within each layer Li are stored in an ordered list, which gives the
left-to-right order of the vertices on the corresponding horizontal line. Such an
ordering is called a layer ordering. We will often identify the layer with the
corresponding list Li. The ordering of the vertices within adjacent layers Li−1

and Li determines the edge crossings with endpoints on both layers.
Crossing reduction is usually done by a layer-by-layer sweep where each step

minimizes the number of edge crossings for a pair of adjacent layers. This layer-
by-layer sweep is performed as follows: We start by choosing an arbitrary vertex
order for the first layer L1 (we number the layers from top to bottom). Then
iteratively, while the vertex ordering of layer Li−1 is kept fixed, the vertices of



An Efficient Implementation of Sugiyama’s Algorithm 157

Li are put in an order that minimizes crossings. This step is called one-sided
two-layer crossing minimization and is repeated for i = 2, .., h. Then the sweep
direction is reversed and repeated until no further crossings can be saved.

Many heuristics have been proposed to attack the one-sided two-layer cross-
ing minimization problem [3, 6]. Most important are the median and the barycen-
ter heuristic, where the new position of each vertex v in list Li is chosen relative
to the position of the adjacent vertices from list Li−1.

To decide whether we improved the number of crossings by a sweep, we
have to count this number. This important subproblem, called the bilayer cross
counting problem, has to be solved in each of the steps. The naive sweep-line
algorithm needs time O(|E′|+ |C′|) where |E′| is the number of edges between
the two layers and |C′| the number of crossings between these edges [15]. It has
recently been improved to O(|E′| log |V ′|) by Waddle [19] and Barth et al. [2].

The algorithm reduces the bilayer cross counting problem to the problem of
counting the inversions in the vertex sequences of layers Li+1 and Li respectively.
The number of inversions are counted by means of an efficient data structure,
called the accumulator tree T .

1.3 Horizontal Coordinate Assignment

The horizontal coordinate assignment computes the x-coordinate for each vertex
with respect to the layer ordering computed by the crossing reduction phase.
There are two objectives to consider to get nice drawings. First the drawings
should be compact and second the edges should be as vertical as possible.

Gansner et al. [10] model this problem as a linear program:

min
∑

(v,w)∈E

Ω(v, w) · |x(v)− x(w)|

s.t. x(b) − x(a) ≥ δ(a, b) a, b consecutive in Li, 1 ≤ i ≤ h

where Ω(v, w) denotes the priority to draw edge (v, w) vertical and δ(a, b) de-
notes the minimum distance of consecutive vertices a and b. This linear pro-
gram can be interpreted as a rank assignment problem on a compaction graph
Ga = (V, {(a, b) : a, b consecutive in Li, 1 ≤ i ≤ h}) with length function δ.
Each valid rank assignment corresponds to a valid drawing. The above objective
function can be modeled by adding vertices and edges to Ga [10].

The drawback of the above approach is, that edges can have as many bends
as dummy vertices. This creates sometimes a “spaghetti” effect which reduces
the readability. To avoid this negative behaviour the linear segments model was
proposed, where each edge is drawn as polyline with at most three segments.
The middle segment is always drawn vertical. In general, linear segment drawings
have less bends but need more area than drawings in other models. There have
been a number of algorithms proposed for this model [4, 15]. The approach of
Brandes and Köpf [4] produces pleasing results in linear time.
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1.4 Drawbacks

The complexity of algorithms in the Sugiyama framework heavily depends on the
number of dummy vertices inserted. Although this number can be minimized ef-
ficiently, it may still be in the order of O(|V ||E|) [9]. Assume we use an algorithm
based on the Sugiyama framework which uses the fastest available algorithms
for each phase. Then this algorithm has running time O(|V ||E| log |E|) and uses
O(|V ||E|) memory.

To improve the running time and space complexity we avoid introducing
dummy vertices for each layer that an edge spans. We rather split edges only in
a limited number of segments. As a result, there may be edges which traverse
layers without having a dummy vertex in it. We will extend the existing crossing
reduction and coordinate assignment algorithms to handle this case.

A similar idea is used in the Tulip-software described in [1]. Unfortunately, no
details are given. However, in this approach, only the proper edges are considered
in the crossing reduction phase and the long edges are ignored. This leads to
drawings which have many more crossings than drawings using the traditional
Sugiyama approach. In contrast, we will show that our approach yields the same
results as the methods traditionally used in practice.

2 The New Approach

The basic idea of our new approach is the following: Since in the linear segments
model each edge consists of at most two bends, all corresponding dummy vertices
in the middle layers have the same x-coordinate. We combine them into one
segment and therefore reduce the size of the normalized graph dramatically. More
precisely, if edge e = (v, w) spans between layers Li and Lj with |j − i| > 2,
we introduce only two dummy vertices: pe at layer Li+1 (called p-vertex) and qe

at layer Lj−1 (called q-vertex), as well as three edges: (v, pe), se = (pe, qe), and
(qe, w). The first and the last edge are proper while se, called the segment of e, is
not necessarily proper. If |j− i| = 2 we insert a single dummy vertex re. We call
this transformation sparse normalization and the result the sparse normalized
graph GS = (VS , ES). The size of the sparse normalized graph is linear with
respect to the size of the input graph.

A layer L of a sparse normalized graph contains vertices and segments. A
layer ordering of a sparse normalized graph is a linear ordering of the vertices
and segments in a layer and is called a sparse layer ordering. For a graph G,
there is a one-to-one correspondence between layer orderings of the normalized
graph GN and sparse layer orderings of the sparse normalized graph GS .

Let us look at the layer orderings of normalized graphs: instead of stor-
ing the layer ordering in lists, we can store it in a directed graph D. This
graph has an edge between vertices v and w if and only if these two vertices
are in the same layer i and are consecutive in Li. The ordering < defined as
v < w if and only if there is a directed path from v to w in D, is a complete or-
dering for the vertices of a layer, i.e., either v < w or w < v for v, w ∈ Li.
In fact D is the compaction graph Ga mentioned in the preceding section. The
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Fig. 1. In the left figure a sparse normalized graph is shown. Thick lines denote the
segments. The right figure shows the corresponding compaction graph.

graph D has |VN | vertices and O(|VN |) edges, which results in a worst case size
of O(|V ||E|).

We want to reduce the size of D to O(|V |+ |E|) without losing the property
that < defines a total layer ordering. The key observation therefor is that the
edges between two segments in D can be omitted if no two segments cross.

Given a layer Li, we partition the layer in the following way:

Si0 , vi0 , Si1 , vi1 , Si2 , vi2 , . . . , Sini−1
, vini−1

, Sini
.

The list Sik
contains the segments which are between vertices vik−1 and vik

for
1 ≤ k ≤ ni− 1, Si0 contains the segments before vi0 and Sini

the segments after
vini−1

. We denote the first element of a non-empty list S as head(S) and the last
element as tail(S). Furthermore, let v be a vertex in VS . We denote with s(v)
the segment to which v is incident if v is a p- or q-vertex, otherwise s(v) = v.
Definition 1. Given a directed acyclic graph G = (V, E) and a sparse layer
ordering in which no two segments cross. The sparse compaction graph (N, A)
of the sparse normalized graph GS = (VS , ES) of G is defined as:

N = {VS \ {v : v is p- or q-vertex}} ∪ {se : se is segment of e ∈ E}
A = {(s(vij−1 ), s(vij )) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni − 1, Sij = ∅} ∪

{(s(tail(Sij)), s(vij )) : 1 ≤ i ≤ h, 0 ≤ j ≤ ni − 1, Sij �= ∅} ∪
{(s(vij−1 ), s(head(Sij ))) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni, Sij �= ∅}

If we look at two consecutive layers Ln and Ls of a sparse normalized graph
we have the following properties:

P1: A segment se in Ln is either also in Ls or the adjacent q-vertex qe is in Ls.
P2: A segment se in Ls is either also in Ln or the adjacent p-vertex pe is in Ln.

Theorem 1. The ordering < induced by the sparse compaction graph (N, A) of
a sparse normalized graph GS = (VS , ES) defines a sparse layer ordering. The
compaction graph (N, A) has linear size with respect to G.

Our new approach is now as follows: In the first phase we create a sparse
normalization of the input graph. In the second phase we perform crossing min-
imization on the sparse normalization. In the third phase we take the resulting
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sparse compaction graph and perform a coordinate assignment in linear time
using an approach similar to the one described in [4]. It remains to show how
we can perform crossing minimization on a sparse normalization efficiently.

3 Efficient Crossing Reduction

In this section we present an algorithm which performs crossing minimization
using the barycenter or median heuristic on a sparse normalization. The output
is a sparse compaction graph which induces a sparse layer ordering with the
same number of crossings as these heuristics would produce for a normalization.
For our algorithm it is not important which strategy we choose as long as it
conforms to some rules.

Definition 2. A measure m defines for each vertex v in a layer Li+1 a non-
negative value m(v). If v has only one neighbor w in Li, then m(v) = pos(w),
where pos(w) is the position of w in layer Li.

Clearly the barycenter and median heuristic define such a measure.

Lemma 1. Using such a measure m there are no segments crossing each other.

Proof. A segment represents a chain of dummy vertices. Each dummy vertex v
on a layer Li has exactly one neighbor w in layer Li−1. Hence when we use a
measure m then m(v) = pos(w). Thus two segments never change their relative
ordering and thus never produce a crossing with each other. �

3.1 2-Layer Crossing Minimization

The input of our two-layer crossing minimization algorithm is an alternating
layer Li and the sparse compaction graph for the layers L1, . . . , Li. An alternat-
ing layer consists of an alternating sequence of vertices and containers, where
each container represents a maximal sequence of segments. The output is an al-
ternating layer Li+1 and the sparse compaction graph for L1, . . . , Li+1, in which
the vertices and segments are ordered by some measure. Note that the represen-
tation of layer Li will be lost, since the containers are reused for layer Li+1.

The containers correspond to the lists S of the previous section. The segments
in the container are ordered. The data structure implementing the container must
support the following operations:

• S = create() : Creates an empty container S.
• append(S, s) : Appends segment s to the end of container S.
• join(S1,S2) : Appends all elements of container S2 to container S1.
• (S1,S2) = split(S, s) : Split container S at segment s into containers S1 and

S2. All elements less than s are in container S1 and those who are greater
than s in S2. Element s is neither in S1 nor S2.
• (S1,S2) = split(S,k) : Split container S at position k. The first k elements

in container S are in S1 and the remainder in S2.
• size(S) : Returns the number of elements in container S.
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Fig. 2. The six steps applied to layers 4 and 5 from figure 1.

Our algorithm Crossing Minimization(Li, Li+1) consists of six steps:

• In the first step we append the segment s(v) for each p-vertex v in layer Li to
the container preceding v. Then we join this container with the succeeding
container. The result is again an alternating layer (p-vertices are omitted).
• In the second step we compute the measure values for the elements in Li+1.

First we assign a position value pos(vij ) to all vertices vij in Li. pos(vi0) =
size(Si0) and pos(vij ) = pos(vij−1 )+ size(Sij)+ 1. Note that the pos values
are the same as they would be in the median or barycenter heuristic if each
segment was represented as dummy vertex. Each non-empty container Sij

has pos value pos(vij−1) + 1. If container Si0 is non-empty it has pos value
0. Now we assign the measure to all non-q-vertices and containers in Li+1.
Recall that the measure of a container is its old position.
• In the third step we calculate an initial ordering of Li+1. We sort all non-q-

vertices in Li+1 according to their measure in a list LV . We do the same for
the containers and store them in a list LS. Then we merge these two sorted
lists in the following way:
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if m(head(LV )) ≤ pos(head(LS)) then v = pop(LV ), append(Li+1, v)
if m(head(LV )) ≥ (pos(head(LS)) + size(head(LS))− 1)

then S = pop(LS), append(Li+1, S)
else S=pop(LS), v = pop(LV ), k = �m(v)−pos(S)�, (S1,S2) = split(S, k),

append(Li+1,S1), append(Li+1, v), pos(S2) = pos(S) + k, push(LS ,S2).

• In the fourth step we place the q-vertices according to the position of their
segment. We do this by calling split(s(v)) for all q vertices v in layer Li+1.
• In the fifth step we perform cross counting according to the scheme proposed

by Barth et al. Using the size(S) operation, we put appropriate weights on
the container S, such that the number of segments in the container can be
taken into account without any loss of performance.
• In the sixth step we perform a scan on Li+1 and insert empty containers

between two consecutive vertices, and call join(S1, S2) on two consecutive
containers in the list. This ensures that Li+1 is an alternating layer.

Finally we create the edges in the sparse compaction graph for layer Li+1.

3.2 The Overall Algorithm

The first and the last layer never contain segments because of property P1 and
P2. Therefore when we perform a sweep or reverse sweep it is easy to create
the initial alternating layer. During the reverse sweeps we simply have to take
the former p-vertices as q-vertices and vice versa and apply the 2-layer crossing
minimization algorithm of the previous section.

There are no other changes to the original Sugiyama approach except for the
different calculation of the measure m for all vertices in a layer, the normalization
of the layer lists such that the lists are alternating, and the modified counting
scheme for crossings. We summarize this section in the following theorem.

Theorem 2. The approach described above is equivalent to traditional crossing
reduction.

4 An Efficient Data Structure

Let n denote the maximal number of elements in a container. To be competitive,
we need a data structure that supports append, split, join and size operations
in O(log n). Thus we use splay trees, a data structure developed by Sleator und
Tarjan [16]. Splay trees are self-adjusting binary search trees, which are easy to
implement because the tree is allowed to become unbalanced and we need not
keep balance information. Nevertheless we can perform all required operations in
O(log n) amortized time. A single operation might cost O(n) but k consecutive
operations starting from an empty tree take O(k log n) time.

The basic operation on a splay tree is called a ‘splay’. Splaying node x makes
x the root of the tree by a series of special rotations. We use splay trees to
represent containers. So we have to implement the container operations.
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• append(S, s): We search the rightmost element in the tree (last element in
the container) by going from the root down taking always the right child.
Now, we insert s as the right child of the rightmost element and then splay
s. The append operation is performed once for each p-vertex.
• join(S1,S2): To join two containers, we search the rightmost element of S1,

splay it and then make S2 to the right child of it. This operation can only
be invoked by an append operation or during the normalization of a layer
list. Thus, it is invoked O(|V |+ |E|) times.
• size(S): While performing the rotations we have to update the size informa-

tion. Therefore each node knows the size of the subtree rooted by it. So we
can maintain the correct size at no extra cost.
• split(S, s): First we have to search s in the container. We can not perform a

conventional tree search because the elements have only an implicit ordering
(their container position) which is not stored by the element. To avoid a
search operation, we store a pointer to s in the corresponding p-vertex (this
split operation is only used when we are processing the q-vertex layer and
the q-vertex knows its corresponding p-vertex). So we just have to splay s
and then take its left and its right child as root for the resulting lists. The
split operation is performed once for each q-vertex.
• split(S,k): First we have to search the element at position k. We use a

conventional binary tree search. Let p(x) denote the parent of x and l(x)
(r(x)) the left (right) child of x. The positions are computed by the following
formula: pos(x) = pos(p(x))+size(l(x))+1, if x is a right child and pos(x) =
pos(p(x)) − size(r(x)) − 1 if x is a left child. If x is the root then pos(x) =
size(l(x))+1. After we have found the element at position k, we just splay it
and then take its right child as root for the second list. This split operation
is performed at most once for each common vertex.

Theorem 3. [16] A sequence of k arbitrary update operations on a collection of
initially empty splay trees takes O(k+

∑k
j=1 log nj) time, where nj is the number

of items in the tree or trees involved in operation j.

The update operations include insert, join and split operations; ‘append’ is
a special case of the insert operation and the size operation does not change the
data structure. Each new iteration starts with empty containers and there are
at most O(|E|) elements. Thus we have an overall cost of O((|V |+ |E|) log |E|).

5 Conclusion: Complexity and Practical Behaviour

We have given a new technique that leads to a drastic reduction of the complex-
ity of the important algorithm of Sugiyama for automatic graph drawing. We
close with some remarks on the complexity of the algorithm. We first do the nor-
malization of the graph by introducing at most O(|E|) new vertices and edges.
Then we perform the layer-by-layer sweep with the modified two-layer crossing
minimization procedure. Using the splay-tree data structure as well as the cross-
counting scheme by Barth et al., we can ensure that each crossing minimization
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step can be executed in time O(n log n) where n denotes the number of vertices
and edges involved in this step. Summed up over all layers, the complexity re-
mains O((|V | + |E|) log |E|). The coordinate assignment is performed in time
O(|V | + |E|) using a variant of the algorithm of Brandes and Köpf [4]. Our
approach favourably compares to the previous implementations of Sugiyama’s
algorithm where the complexity might be quadratic in the size of the graph.

We implemented our approach in Java using the yFiles library[20]. We made
some preliminary tests and compared our approach to the results achieved with
other layout tools using Sugiyama’s algorithm. All experiments have been per-
formed on a Pentium IV System with 1.5 GHz and 512 MB main memory running
Redhat Linux 9. For our measurement we used the following types of graphs:

• Long Edge Graphs: These graphs have many long edges. They have n/2
vertical vertices v1, . . . , vn/2 and n/2 horizontal vertices h1, . . . , hn/2. The
vertical vertices are connected by edges (vi, vi+1) for 1 ≤ i ≤ n/2 − 1. The
graph also have edges (vi, hj) for 1 ≤ i, j ≤ n/2.
• Random Graphs: They have n vertices and 2.5n random edges.

We run the experiments for VCG [18], Dot [11] and our new approach. We
also added an algorithm ‘Traditional’ which uses the same code as our new
approach but insert the traditional dummy vertices. Table 1 shows the time
taken by the cross counting step, which is given in milliseconds/iteration as
well as the number of dummy vertices in the normalized graph, when applying
the network simplex for layer assignment. The network simplex gives a solution
which minimize the edge length. So the results for other methods are even worse.

Our approach achieved significant improvements in running time for both
graph types. This is due to the enormous increase of the number of dummy
vertices in the common approach. The results show that our improvements are

Table 1. Experimental results for the long edge graphs and the random graphs.

Size (n) Time (ms/iter)∗ #Dummy vertices
(long edges) VCG Dot Traditional New Common New

60 146 499 116 19 13050 1710

80 455 2852 306 42 31200 3080

100 1040 13346 658 69 61250 4850

120 2060 42414 1219 98 106200 7020

140 3702 103327 2020 158 169050 9590

Size (n) Time (ms/iter)∗ #Dummy vertices
(random) VCG Dot Traditional New Common New

100 11 33 16 4 2725 295

200 40 275 60 9 9486 596

500 311 4404 416 29 49203 1485

1000 2978 60783 2643 72 233486 3001

2000 14419 n/a∗∗ n/a∗∗ 190 796653 6019
∗ results are averaged over 10 passes ∗∗ not enough memory
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also relevant for practice, even if the number of dummy vertices is usually far less
than |V | · |E| there. The number of crossings in our new approach is comparable
with the number computed by the other tools. The slight differences are based on
the fact, that each implementation has its own refinements (e.g. how to handle
nodes having the same median weight). Only Dot has noticeable less crossings
but is therefor very slow. This is possibly due to an additional optimization
method. Our improvements made it possible to layout graphs for which this
was formerly not possible because of the enormous memory consumption of
Sugiyama’s algorithm. Our approach has just a linear memory consumption.
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Abstract. Let n be a positive integer, λ > 0 a real number, and 1 ≤ p ≤
∞. We study the unit disk random geometric graph Gp(λ,n), defined to
be the random graph on n vertices, independently distributed uniformly
in the standard unit disk in R

2, with two vertices adjacent if and only
if their �p-distance is at most λ. Let λ = c

√
ln n/n, and let ap be the

ratio of the (Lebesgue) areas of the �p- and �2-unit disks. Almost always,

Gp(λ,n) has no isolated vertices and is also connected if c > a
−1/2
p , and

has n1−apc2(1 + o(1)) isolated vertices if c < a
−1/2
p . Furthermore, we

find upper bounds (involving λ but independent of p) for the diameter
of Gp(λ, n), building on a method originally due to M. Penrose.

1 Introduction

Let D be the Euclidean unit disk in R
2 and n a positive integer. Let Vn be a set

of n points in D, distributed independently and uniformly with respect to the
usual Lebesgue measure on R

2. For p ∈ [1,∞], the �p metric on R
2 is defined by

dp((x1, y1), (x2, y2)) =

{
(|x2 − x1|p + |y2 − y1|p)1/p when p ∈ [1,∞) ,

max{|x2 − x1|, |y2 − y1|} when p =∞ .

For λ ∈ (0,∞), the unit disk random geometric graph Gp(λ, n) on the vertex set
Vn is defined by declaring two vertices u, v ∈ Vn to be adjacent if and only if
dp(u, v) ≤ λ. In addition to their theoretical interest, random geometric graphs
have important applications to wireless communication networks; see, e.g., [1–3].

Together with X. Jia, the first and third authors studied the case p = 2
in [4]. In this extended abstract, we generalize to arbitrary p those results of [4]
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concerning connectedness and graph diameter. Complete results with proofs will
be included in a forthcoming paper.

We will say that Gp(λ, n) has a property P almost always if

lim
n→∞ Pr [Gp(λ, n) has the property P ] = 1 .

Denote by Bp(u, r) the �p-ball of radius r with center u ∈ R
2. It is not hard to

show that the area of Bp(u, r) is 4r2Γ ((p+1)/p)2/Γ ((p+2)/p), where Γ (·) is the
usual gamma function. We omit the calculation, which uses the beta function;
see [5, §12.4]. An important quantity in our work will be the ratio

ap :=
Area(Bp(u, r))
Area(B2(u, r))

=
4Γ

(
p+1

p

)2

πΓ
(

p+2
p

) .

By another elementary calculation, the �p-diameter of the unit disk D is

diamp(D) := max
u,v∈D

{dp(u, v)} =

{
21/2+1/p when 1 ≤ p ≤ 2 ,

2 when 2 ≤ p ≤ ∞ .

The diameter is achieved by the points (
√

2/2,
√

2/2) and (−√2/2,−√2/2) when
1 ≤ p ≤ 2, and by (0, 1) and (0,−1) when 2 ≤ p ≤ ∞.

Let λ = c
√

ln n/n. In Sect. 2, we show that almost always, Gp(λ, n) has
n1−apc2

(1+ o(1)) isolated vertices when c < a
−1/2
p and no isolated vertices when

c > a
−1/2
p . Penrose [6] has shown that, almost always, Gp(λ, n) is connected

when it has no isolated points; combining this with our result, it follows that
when c > a

−1/2
p , the graph Gp(λ, n) is almost always connected.

The diameter of a graph G, denoted diam(G), is defined as the maximum
distance in G between any two of its vertices. This graph-theoretic quantity
should not be confused with the diameter of a geometric object with respect to
the �p-metric; we will always denote the latter by diamp. In Sect. 3, we show that
if c > a

−1/2
p , then almost always diam(Gp(λ, n)) ≤ K/λ, where K ≈ 387.17 . . .

is a constant independent of p. In Sect. 4, we show that when c is larger than
a constant depending only on p, we have almost always diam(Gp(λ, n)) ≤ 2 ·
diamp(D)(1 + o(1))/λ. In fact, there is a function cp(δ) > 0 with the following
property: if c > cp(δ), then almost always diam(Gp(λ, n)) ≤ diamp(D)(1 + δ +
o(1))/λ.

2 Isolated Vertices

Theorem 1. Let 1 ≤ p ≤ ∞, let λ = c
√

ln n/n, and let X be the number of
isolated vertices in Gp(λ, n). Then, almost always,

X =

{
0 when c > a

−1/2
p ,

n1−apc2
(1 + o(1)) when 0 < c < a

−1/2
p .
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We sketch the proof, which uses the second moment method [7] to show that
the expected number of isolated vertices is E[X ] = n1−apc2

, and that the variance
is Var[X ] = o(E[X ]2). When c < a

−1/2
p , an application of Chebyshev’s inequality

yields X = n1−apc2
(1 + o(1)). Let Ai be the event that vertex vi has degree 0.

Then
ap

2
πλ2(1 + O(λ)) ≤ Area (Bp(vi, λ) ∩D) ≤ apπλ2 ,

where the upper (resp. lower) bound is achieved when Bp(vi, λ) ⊆ D (resp.
Bp(vi, λ) �⊆ D). Conditioning on the event that Bp(vi, λ) ⊆ D, we have

(1− apλ
2)n−1 ≤ Pr[Ai] ≤ Pr[Bp(vi, λ) ⊆ D](1 − apλ

2)n−1

+ Pr[Bp(vi, λ) �⊆ D]
(
1− ap

2
λ2(1 + O(λ))

)n−1

.

By linearity of expectation, E[X ] = n · Pr[Ai] = n1−apc2
(1 + o(1)). The vari-

ance is Var[X ] = O
(
n

3
2− 3

2 apc2√
ln n

)
, computed via Pr[Ai∧Aj ], conditioned on

dp(vi, vj). The rest of the proof is a straightforward computation.
Penrose [6, Thm. 1.1] showed that for every t ≥ 0, the d-dimensional unit-

cube random geometric graph simultaneously becomes (t + 1)-connected and
achieves minimum degree t + 1. Penrose’s proof remains valid for the unit disk.
The precise statement is as follows: for t ≥ 0 and 1 < p ≤ ∞, almost always,

min {λ | Gp(λ, n) is (t + 1)-connected}
= min {λ | Gp(λ, n) has minimum degree t + 1} .

Penrose’s proof also works for p = 1 in dimension 2, though not for arbitrary
dimension d. Combining Penrose’s theorem for t = 0 with Theorem 1 yields the
following.

Theorem 2. Let 1 ≤ p ≤ ∞ and λ = c
√

ln n/n. Suppose that c > a
−1/2
p . Then,

almost always, the unit disk random geometric graph Gp(λ, n) is connected.

3 Diameter of Gp(λ, n) near the Connectivity Threshold

Suppose that Gp(λ, n) is connected by virtue of Theorem 2. Usually, Gp(λ, n)
will contain two vertices whose �p-distance is close to diamp(D), so that the
graph has diameter at least diamp(D)/λ. It appears to be much more difficult
to obtain an upper bound on diameter. However, there is an upper bound which
is a constant multiple of the lower bound, as we now explain.

Theorem 3. Let 1 ≤ p ≤ ∞ and λ = c
√

ln n/n, where c > a
−1/2
p . Suppose that

K > 256
√

2 + 8π ≈ 387.17 . . . . Then, almost always, diam(Gp(λ, n)) < K/λ.

We sketch the proof of this theorem. For any two points u, v ∈ D, define

Tu,v(k) :=
(
convex hull of B2(u, kλ) ∪B2(v, kλ)

) ∩D .
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We impose upon this lozenge-shaped region a grid composed of squares with
side length proportional to λ. Let An(k) be the event that there exist two points
u, v ∈ Vn such that

(i) at least one of u, v lies in B2(O, 1 − (k +
√

2)λ), and
(ii) there is no path in Gp(λ, n) joining u to v that lies entirely inside Tu,v(k).

We claim that

if k > 128/(π
√

2) ≈ 28.180 . . . , then lim
n→∞Pr[An(k)] = 0. (1)

Indeed, if the event An(k) occurs, then by Penrose’s argument [6, p. 162], there
exists a curve L separating u and v which intersects a large number of grid
squares, none of which contains any vertex of Vn (see Fig. 1). Combining this
fact with a Peierls argument, as in [8, Lemma 3], leads to the bound on k given
in (1).

L
vu

Fig. 1. Two vertices u, v ∈ Vn which are not connected by any path in Tu,v(k), and
the “frontier” L separating them.

Let u, v ∈ Vn. If k is large enough, then (1) guarantees the existence of a path
from u to v inside Tu,v(k). Comparing the total area of Tu,v(k) to the area of
the �p-balls around the vertices in a shortest path from u to v inside Tu,v(k), one
obtains the desired diameter bound on Gp(λ, n), completing the proof. (Minor
adjustments are needed if u or v is close to the boundary of D.)

Corollary 1. Let 1 ≤ p ≤ ∞ and λ = c
√

ln n/n, where c > a
−1/2
p . Suppose that

K > 256
√

2 + 8π ≈ 387.17 . . . . Then, almost always, every two vertices u, v in
the unit disk random geometric graph Gp(λ, n) are joined by a path of length at
most Kdp(u, v)/λ in Gp(λ, n).

4 Diameter of Gp(λ, n) for Larger c

By means of a “spoke overlay” construction, we improve the upper bound in
Theorem 3 by increasing the constant c slightly and reducing the constant K
substantially. Roughly, a spoke consists of a number of evenly spaced, overlapping
�p-balls whose centers lie on a diameter L of the Euclidean unit disk D. We
superimpose several spokes on D so that the regions of intersection of the �p-
balls are distributed fairly evenly around D. The idea is that if the constant
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c is large enough, then, almost always, every region of intersection contains at
least one vertex of Vn, so that Gp(λ, n) contains a path joining vertices near
the antipodes of D on L. The lengths of such paths, which may be calculated
geometrically, give an upper bound for the diameter of Gp(λ, n).

Definition 1 (Spoke construction). Fix 1 ≤ p ≤ ∞, θ ∈ (−π/2, π/2], and
r > 0. Let D be the Euclidean unit disk. For m ∈ Z, put

um = um(r, θ) = ((r/2 + rm) cos θ, (r/2 + rm) sin θ) ∈ R
2 .

The corresponding spoke is defined to be the point set Up,θ(r) = {um} ∩ D,
together with a collection of �p-balls of radius λ/2, one centered at each point
um ∈ Up,θ(r).

The points um lie on the line Lθ through O at angle θ, and the Euclidean
distance d2(um, um′) equals r|m −m′|. By choosing r sufficiently small, we can
ensure that each pair of adjacent �p-balls intersects in a set with positive area
(the shaded rectangles in Fig. 2). Thus the two outermost points on each spoke
are joined by a segmented path of Euclidean length approximately 2, which has
approximately 2 · diamp(D)/λ edges when r = min{λ2−1/2−1/p, λ/2}.

Define A∗
p(r, λ/2) to be the minimum area of intersection between two �p-

balls in R
2 of radius λ/2 whose centers are at Euclidean distance r. The general

formula for this quantity seems to involve integrals that cannot be evaluated
exactly, except for very special cases such as p = 1, 2,∞. However, for fixed r,
it is certainly true that A∗

p(r, λ/2) = Θ(λ2).

Theorem 4. Let 1 ≤ p ≤ ∞, λ = c
√

ln n/n, and r = min{λ2−1/2−1/p, λ/2}.
Suppose that

c >
√

πλ2/(2A∗
p(r, λ/2)) . (2)

Then, almost always, as n→∞,

diam(Gp(λ, n)) ≤ (2 · diamp(D) + o(1))/λ.
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Fig. 2. The spoke overlay construction with p = 1, in the unit disk D. The left-hand
figure shows a single spoke with parameters r,L, θ. The right-hand figure shows how
spokes at different angles are superimposed on D.
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Since A∗
p(r, λ/2) = Θ(λ2), the lower bound (2) for c depends only on p.

We sketch the proof of Theorem 4. The spoke construction uses approxi-
mately ln n spokes Up,θ(r), at evenly spaced angles. Almost always, for each
spoke, every intersection of two consecutive �p-balls of radius λ/2 contains at
least one vertex of Vn, provided that the bound (2) holds.

Let v1, v2 ∈ Vn. For i = 1, 2, by Corollary 1, there is a vertex v′i ∈ Vn lying
inside some spoke Ui, connected to vi by a path in Gp(λ, n) of length o(1/λ).
Moreover, v′i is connected to a vertex near the origin by a path consisting of
vertices in Ui ∩ Vn, lying in successive �p-balls of the spoke. Thus each of these
two paths contains at most diamp(D)/λ vertices, and concatenating these paths
gives the desired upper bound on the diameter of Gp(λ, n).

We can make the average Euclidean distance covered in a path from v′i to
v′j larger by increasing r. This change decreases the area of intersection of con-
secutive �p-balls, which in turn requires an increase in c in order to guarantee a
vertex of Vn in every region of intersection. This leads to the following corollary.

Corollary 2. Let 1 ≤ p ≤ ∞ and let λ = c
√

ln n/n. For every δ ∈ (0, 1], there
exists cp(δ) > 0 such that if c > cp(δ), then Gp(λ, n) is almost always connected,
and has diameter at most diamp(D)(1 + δ + o(1))/λ as n→∞.
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Abstract. We describe algorithms for drawing media, systems of states, tokens
and actions that have state transition graphs in the form of partial cubes. Our al-
gorithms are based on two principles: embedding the state transition graph in a
low-dimensional integer lattice and projecting the lattice onto the plane, or draw-
ing the medium as a planar graph with centrally symmetric faces.

1 Introduction

Media [7, 8] are systems of states, tokens, and actions of tokens on states that arise in
political choice theory and that can also be used to represent many familiar geomet-
ric and combinatorial systems such as hyperplane arrangements, permutations, partial
orders, and phylogenetic trees. In view of their importance in modeling social and com-
binatorial systems, we would like to have efficient algorithms for drawing media as
state-transition graphs in a way that makes the action of each token apparent. In this
paper we describe several such algorithms.

Formally, a medium consists of a finite set of states transformed by the actions of
a set of tokens. A string of tokens is called a message; we use upper case letters to
denote states, and lower case letters to denote tokens and messages, so Sw denotes the
state formed by applying the tokens in message w to state S. Token t is effective for
S if St �= S, and message w is stepwise effective for S if each successive token in the
sequence of transformations of S by w is effective. A message is consistent if it does
not contain the reverse of any of its tokens. A set of states and tokens forms a medium
if it satisfies the following axioms:

1. Each token t has a unique reverse t̃ such that, for any states S �= Q, St = Q iff Qt̃ = S.
2. For any states S �= Q, there exists a consistent message w with Sw = Q.
3. If message w is stepwise effective for S, then Sw = S if and only if the number of

copies of t in w equals the number of copies of t̃ for each token t.
4. If Sw = Qz, w is stepwise effective for S, z is stepwise effective for Q, and both w

and z are consistent, then wz is consistent.

The states and state transitions of a medium can also be viewed as a graph, and
it can be shown that these graphs are partial cubes [12]: that is, their vertices can be
mapped to a hypercube {0,1}d in such a way that graph distance equals L1 distance in
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Fig. 1. 11 of the 12 pentominos represent isometric lattice embeddings of media. The twelfth, the
U pentomino, does not, because a pair of vertices that are three edges apart in the graph have
placements that are only one unit apart.

the hypercube. For media, we can find such a mapping by choosing arbitrarily state S,
and assigning any state S′ a coordinate per token t that is 1 when a consistent path from
S to S′ contains t and 0 otherwise. Conversely, any d-dimensional partial cube gives rise
to a medium with its vertices as states and with 2d tokens; the action of any token is to
change one of the partial cube coordinates to a zero or to a one, if it does not already
have that value and if such a change would produce another vertex of the partial cube.

We assume throughout, as in [7], that we are given as input an explicit description of
the states, tokens, and actions of a medium. However, our algorithms are equally appli-
cable to any partial cube or family of partial cube graphs such as the median graphs. If a
partial cube representation is not given, it can be found (and the corresponding medium
constructed) in time O(mn) via known algorithms [1, 11, 12, 15].

2 Lattice Dimension

As we have seen, media can be embedded isometrically (that is, in a distance-preserving
way) into hypercubes {0,1}d (with L1 distance), and hypercubes can be embedded iso-
metrically into integer lattices Z

d , so by transitivity media can be embedded isometri-
cally onto integer lattices. Conversely any finite isometric subset of an integer lattice
forms a partial cube and corresponds as described above to a medium.

If the dimension of the lattice in which a medium is embedded is low, we may be
able to use the embedding as part of an effective drawing algorithm. For instance, if a
medium M can be embedded isometrically onto the planar integer lattice Z

2, then we
can use the lattice positions as vertex coordinates of a drawing in which each edge is
a vertical or horizontal unit segment (Figure 1). If M can be embedded isometrically
onto the cubic lattice Z

3, in such a way that the projection onto a plane perpendicular to
the vector (1,1,1) projects different vertices to distinct positions in the plane, then this
projection produces a planar graph drawing in which the edges are unit vectors at 60◦
and 120◦ angles (Figure 10, center).

Recently, we showed that the lattice dimension of a medium or partial cube, that is,
the minimum dimension of a lattice Z

d into which it may be isometrically embedded,
may be determined in polynomial time [6]. We now briefly our algorithm for finding
low-dimensional lattice embeddings.

Suppose we are given an undirected graph G and an isometry µ : G �→ {0,1}τ from
G to the hypercube {0,1}τ of dimension τ. Let µi : G �→ {0,1} map each vertex v of
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Fig. 2. A medium, left, and its semicube graph, right. From [6].

Fig. 3. A matching in the semicube graph (left, solid edges) completed to a set of paths by adding
edges from each semicube to its complement (left, dashed edges), and the corresponding lattice
embedding of the original medium (right). From [6].

G to the ith coordinate of µ(v), and assume that each coordinate µi takes on both value
0 and 1 for at least one point . From G and µ we can define 2τ distinct semicubes
Si,χ = {v ∈ V (G) | µi(v) = χ}, for any pair i,χ with 0 ≤ i < τ and χ ∈ {0,1}. We now
construct a new graph Sc(G), which we call the semicube graph of G. We include
in Sc(G) a set of 2τ vertices ui,χ, 0 ≤ i < τ and χ ∈ {0,1}. We include an edge in
Sc(G) between ua,b and uc,d whenever Sa,b ∪ Sc,d = V (G) and Sa,b ∩ Sc,d �= /0; that is,
whenever the corresponding two semicubes cover all the vertices of G non-disjointly.
Although defined from some particular isometry µ, the semicube graph turns out to be
independent of the choice of µ. An example of a partial cube G and its semicube graph
Sc(G) is shown in Figure 2. The main result of [6] is that the lattice dimension of G can
be determined from the cardinality of a maximum matching in Sc(G):

Theorem 1 (Eppstein [6]). If G is a partial cube with isometric dimension τ, then the
lattice dimension of G is d = τ−|M| where M is any maximum matching in Sc(G).

More specifically, we can extend a matching in Sc(G) to a collection of d paths
by adding to the matching an edge from each semicube to its complement. The dth
coordinate of a vertex in the lattice embedding equals the number of semicubes that
contain the vertex in even positions along the dth path.

We can use this result as part of a graph drawing system, by embedding our in-
put medium in the lattice of the lowest possible dimension and then projecting that
lattice onto the plane. For two-dimensional lattices, no projection is needed, and we
have already discussed projection of certain three-dimensional integer lattices onto two-
dimensional triangular lattices. We discuss more general techniques for lattice projec-
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tion in the next section. It is essential for this result that we require the embedding to
be isometric. Even for trees it is NP-complete to find an embedding into Z

2 with unit
length edges that is not required to be distance-preserving [2]. However a tree embeds
isometrically in Z

2 if and only if it has at most four leaves [14].

3 Drawing High-Dimensional Lattice Graphs

Two-dimensional lattice embeddings of media, and some three-dimensional embed-
dings, lead to planar graph drawings with all edges short and well separated by angles.
However, we are also interested in drawing media without low dimensional embed-
dings. We describe here a method for finding drawings with the following properties:

1. All vertices are assigned distinct integer coordinates in Z
2.

2. All edges are drawn as straight line segments.
3. No edge passes closer than unit distance to a vertex that is not one of its endpoints.
4. The line segments representing two edges of the drawing are translates of each

other if and only if the two edges are parallel in the lattice embedding.
5. The medium corresponding to a Cartesian product of intervals [a0,b0]× [a1,b1]×
·· · [ad−1,bd−1] is drawn in area O(n2), where n is the number of its states.

Because of property 4, the lattice embedding and hence the medium structure of
the state transition graph can be read from the drawing. To achieve these properties, we
map Z

d to Z
2 linearly, by choosing wo vectors X and Y ∈ Z

d , and mapping any point
p ∈ Z

d to the point (X · p,Y · p) ∈ Z
2. We now describe how these vectors X and Y

are chosen. If L ⊂ Z
d is the set of vertex placements in the lattice embedding of our

input medium, define a slice Li, j = {p ∈ L | pi = j} to be the subset of vertices having
ith coordinate equal to j. We choose the coordinates Xi sequentially, from smaller i to
larger, so that all slices Li, j are separated from each other in the range of x-coordinates
they are placed in. Specifically, set X0 = 0. Then, for i > 0, define

Xi = max
j

( min
p∈Li, j

i−1

∑
k=0

Xk pk− max
q∈Li, j−1

i−1

∑
k=0

Xkqk),

where the outer maximization is over all j such that Li, j and Li, j−1 are both nonempty.
We define Y similarly, but we choose its coordinates in the opposite order, from larger i
to smaller: Yd−1 = 0, and

Yi = max
j

( min
p∈Li, j

d−1

∑
k=i+1

Xk pk− max
q∈Li, j−1

d−1

∑
k=i+1

Xkqk).

Theorem 2. The projection method described above satisfies the properties 1–5 listed
above. The method’s running time on a medium with n states and τ tokens is O(nτ2).

Proof. Property 2 and property 4 follow immediately from the fact that we our drawing
is formed by projecting Z

d linearly onto Z
2, and from the fact that the formulas used to

calculate X and Y assign different values to different coordinates of these vectors.
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Fig. 4. Left: lattice drawing of six-dimensional hypercube; right: a drawing with geometric thick-
ness two is possible, but the vertex placement is less regular and edges formed by actions of the
same token are not all drawn parallel.

All vertices are assigned distinct coordinates (property 1): for, if vertices p and q
differ in the ith coordinates of their lattice embeddings, they belong to different slices
Li, j and Li, j′ and are assigned X coordinates that differ by at least Xi (unless i = Xi = 0
in which case their Y coordinates differ by at least Yi).

The separation between vertices and edges (property 3) is almost equally easy to
verify: consider the case of three vertices p, q, and r, with an edge pq to be separated
from r. Since p and q are connected by an edge, their lattice embeddings must differ
in only a single coordinate i. If r differs from p and q only in the same coordinate, it
is separated from edge pq by a multiple of (Xi,Yi). Otherwise, there is some coordinate
i′ �= i in which r differs from both p and q. If i′> i, the construction ensures that the slice
Li′, j containing pq is well separated in the x-coordinate from the slice Li′, j′ containing
r, and if i′ < i these slices are well separated in the y coordinate.

Finally, we consider property 5. For Cartesian products of intervals, in the formula
for Xi, the value for the subexpression minp∈Li, j ∑i−1

k=0 Xk pk is the same for all j consid-

ered in the outer maximization, and the value for the subexpression maxq∈Li, j−1 ∑i−1
k=0Xkqk

is also the same for all j considered in the outer maximization, because the slices are
all just translates of each other. Therefore, there is no gap in x-coordinates between
vertex placements of each successive slice of the medium. Since our drawings of these
media have vertices occupying contiguous integer x coordinates and (by a symmetric
argument) y coordinates, the total area is at most n2.

The time for implementing this method is dominated by that for finding a minimum-
dimension lattice embedding of the input graph, which can be done in the stated time
bound [6]. ��

When applied to a hypercube, the coordinates Xi become powers of two, and this
vertex placement algorithm produces a uniform placement of vertices (Figure 4, left)
closely related to the Hammersley point set commonly used in numerical computation
and computer graphics for its low discrepancy properties [16]. Other examples of draw-
ings produced by this method can be seen in Figures 6, 9, and 10(left).
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Fig. 5. Left: a graph with a face-symmetric planar drawing; center: connecting opposite pairs of
edge midpoints produces a weak pseudoline arrangement; right: the arrangement.

4 Face-Symmetric Planar Drawings

Our two-dimensional and projected three-dimensional lattice drawings are planar (no
two edges cross) and each internal face is symmetric (squares for two-dimensional lat-
tices, 60◦-120◦ rhombi and regular hexagons for projected three-dimensional lattices).
We now describe a different type of drawing of the state-transition graphs of media as
planar graphs, generalizing this symmetry property. Specifically, we seek straight-line
planar drawings in which each internal face is strictly convex and centrally symmetric;
we call such a drawing a face-symmetric planar drawing.

A weak arrangement of pseudolines [9] is a collection of curves in the plane, each
homeomorphic to a line, such that any pair of curves in the collection has at most one
point of intersection, and such that if any two curves intersect then they cross prop-
erly at their intersection point. Weak arrangements of pseudolines generalize pseudo-
line arrangements [10] and hyperbolic line arrangements, and are a special case of the
extendible pseudosegment arrangements defined by Chan [3]. Any weak pseudoline
arrangement with n pseudolines partitions the plane into at least n + 1 and at most
n(n + 1)/2 + 1 cells, connected components of the set of points that do not belong
to any pseudoline. Any pseudoline in the arrangement can be partitioned into nodes
(crossing points) and arcs (connected components of the complement of the crossing
points); we use this terminology to avoid confusion with the vertices and edges of the
medium state-transition graphs we hope to draw. Each arc is adjacent to two cells and
two nodes. We define the dual of a weak pseudoline arrangement to be the graph having
a vertex for each cell of the arrangement and an edge connecting the vertices dual to
any two cells that share a common arc; this duality places the graph’s vertices in one-to-
one correspondence with the arrangement’s cells, and the graph’s edges in one-to-one
correspondence with the arrangement’s arcs.

Lemma 1. If G has a face-symmetric planar drawing, then G is the dual of a weak
pseudoline arrangement.

Lemma 2. If G is the dual of a weak pseudoline arrangement, then G is the state tran-
sition graph of a medium.
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Fig. 6. Media with planar state-transition graphs but with no face-symmetric planar drawing.

Fig. 7. Converting a weak pseudoline arrangement into a face-symmetric planar drawing. Left:
arrangement drawn inside a circle O such that crossings with O are equally spaced around the
circle. Right: edges dual to arcs of �i are drawn as unit length and perpendicular to the chord
through the points where �i crosses O.

By these lemmas (the proofs of which we omit due to lack of space), every face-
symmetric planar drawing represents the state transition graph of a medium. However,
not every medium, and not even every medium with a planar state transition graph,
has such a drawing; see for instance Figure 6, the medium in Figure 9(right), and the
permutahedron in Figure 10(left) for media that have planar state transition graphs but
no face-symmetric planar drawing.

Lemma 3. If G is the dual of a weak pseudoline arrangement, then G has a face-
symmetric planar drawing.

Proof. Let G be dual to a weak pseudoline arrangement A ; the duality fixes a choice of
planar embedding of G as well as determining which faces of that embedding are inter-
nal and external. Denote by |A | the number of pseudolines in A . Let O be a circle (the
size and placement of the circle within the plane being irrelevant to our construction),
and deform A as necessary so that each pseudoline crosses O, with all nodes interior to
O, and so that the 2|A | points where pseudolines cross O are spaced at equal distances
around the perimeter of O (Figure 7, left). Then, for each pseudoline �i of A , let ci be
the chord of O connecting the two points where �i crosses O. We will draw G in such
a way that the edges of G that are dual to arcs of �i are drawn as unit length segments
perpendicular to ci (Figure 7, right). To do so, choose an arbitrary starting vertex v0 of
G, and place it arbitrarily within the plane. Then, the placement of any other vertex vi

of G can be found by following a path from v0 to vi in G, and for each edge of the path
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moving unit distance (starting from the location of v0) in the direction determined for
that edge as described above, placing vi at the point reached by this motion when the
end of the path is reached. It is straightforward to show from Lemma 2 and the axioms
defining a medium that this vertex placement does not depend on the choice of the path
from v0 to vi, and that if all vertices are placed in this way then all edges of G will be
unit length and perpendicular to their corresponding chords ci. Thus, we have a drawing
of G, in which we can identify sets of edges corresponding to the faces of G. We omit
the proof that this drawing is face-symmetric planar due to lack of space. ��
Lemma 4. If G is biconnected, at most one planar embedding of G is dual to a weak
pseudoline arrangement. This embedding (if it exists) can be found in time O(n).

Proof. We use a standard technique in graph drawing and planar embedding problems,
the SPQR tree [4, 13]. Each node v in the SPQR tree of G has associated with it a
multigraph Gv consisting of some subset of vertices of G, edges of G, and virtual edges
representing contracted parts of the remaining graph that can be separated from the
edges of Gv by a split pair of vertices (the endpoints of the virtual edge). The non-
virtual edges of G are partitioned among the nodes of the SPQR tree. If two nodes are
connected by an edge in the SPQR tree, each has a virtual edge connecting two vertices
shared by both nodes. We root the SPQR tree arbitrarily; let (sv, tv) denote the split
pair connecting a non-root node v to its parent, and let Hv denote the graph represented
by the SPQR subtree rooted at v. We work bottom up in the rooted tree, showing by
induction on tree size that the following properties hold for each node of the tree:

1. Each graph Hv has at most one planar embedding that can be part of an embedding
of G dual to a weak pseudoline arrangement.

2. If v is a non-root node, and G is dual to a weak pseudoline arrangement, then edge
svtv belongs to the outer face of the embedding of Hv.

3. If v is a non-root node, form the path pv by removing virtual edge svtv from the
outer face of Hv. Then pv must lie along the outer face of any embedding of G dual
to a weak pseudoline arrangement.

SPQR trees are divided into four different cases (represented by the initials S, P, Q,
and R) and our proof follows the same case analysis, in each case showing that the
properties at each node follow from the same properties at the descendant nodes. We
omit the details of each case due to lack of space. ��
Theorem 3. Given an input graph G, we can determine whether G is the dual of a
weak pseudoline arrangement, and if so construct a face-symmetric planar drawing of
G, in linear time.

Proof. If G is biconnected, we choose a planar embedding of G by Lemma 4. Oth-
erwise, each articulation point of G must be on the outer face of any embedding. We
find biconnected components of G, embed each component by Lemma 4, and verify
that these embeddings place the articulation points on the outer faces of each compo-
nent. We then connect the embeddings together into a single embedding having as its
outer face the edges that are outer in each biconnected component; the choice of this
embedding may not be unique but does not affect the correctness of our algorithm.
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Fig. 8. Face-symmetric planar drawings of three irregular media.

Once we have an embedding of G, we must verify that we have the dual of a weak
pseudoline arrangement and construct a face-symmetric planar drawing. We first make
sure all faces of G are even, and apply Lemma 1 to construct an arrangement of curves A
dual to G. We test that A has no closed curves, then apply the construction of Lemma 3
to produce vertex placements for a drawing of G, test for each edge of G that the end-
points of that edge are placed at unit distance apart with the expected slope, and test that
each internal face of G is drawn as a correctly oriented strictly convex polygon. If our
input passes all these tests we have determined that it is the dual of a weak pseudoline
arrangement and found a face-symmetric planar drawing. ��

Our actual implementation is based on a simpler but less efficient algorithm that
uses the known medium structure of the input to construct the dual weak pseudoline ar-
rangement one curve at a time, before applying the construction of Lemma 3 to produce
a face-symmetric planar drawing from the weak pseudoline arrangement. Examples of
drawings produced by our face-symmetric planar drawing code are shown in Figure 8.

5 Implementation and Examples

We implemented our algorithms in Python, with drawings output in SVG format. Our
code allows various standard combinatorial media (such as the collection of permuta-
tions on n items) to be specified on the command line; irregular media may be loaded
from a file containing hypercube or lattice coordinates of each state. We have seen al-
ready examples of our implementation’s output in Figures 4, 6, 8, and 9. Figure 10
provides additional examples. All figures identified as output of our code have been left
unretouched, with the exception that we have decolorized them for better printing.

6 Conclusions and Open Problems

We have shown several methods for drawing the state transition graphs of media. There
are several interesting directions future research in this area could take.
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Fig. 9. Lattice drawings of four irregular media with three-dimensional lattice embeddings,
from [6]. The bottom left drawing is of a medium isomorphic to the weak ordering medium
shown in Figure 10(right).

Fig. 10. Media defined by orderings of n-item sets. Left: Lattice drawing of total orderings (per-
mutations) on four items. Center: Projected three-dimensional lattice drawing of partial orderings
on three items. Right: Face-symmetric planar drawing of weak orderings on three items.

– If a three-dimensional lattice embedding can be projected perpendicularly to the
vector (1,1,1) (or more generally (±1,±1,±1)) without placing two vertices in
the same point, the projection produces a planar drawing with all edges having
equal lengths and angles that are multiples of 60◦ (e.g., Figure 10, center). Our
lattice dimension algorithm can find a three-dimensional embedding, if one exists,
and it is trivial to test the projection property. However, a medium may have more
than one three-dimensional embedding, some of which have the projection property
and some of which don’t. For instance, the medium in the lower right of Figure 9 is
the same weak ordering medium as the one in Figure 10(right), however the former
drawing is from a lattice embedding without the projection property. Is it possible to
efficiently find a projectable three-dimensional lattice embedding, when one exists?
More generally, given an arbitrary dimension lattice embedding of a medium, can
we find a planar projection when one exists?

– Hypercubes have projected lattice drawings with O(n2) area and unit separation
between vertices and nonadjacent edges. Can similar area and separation bounds
be achieved for projected lattice drawings of more general classes of media?

– Our lattice and face-symmetric planar drawings have several desirable qualities;
for instance, all edges corresponding to a single token are drawn as line segments
with the same slope and length, and our lattice drawings have good vertex-vertex
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and vertex-edge separation. However, we have not seriously examined the extent
to which other important graph drawing properties may be achieved. For instance,
d-dimensional hypercubes (and therefore also media with up to 2d tokens) may be
drawn with geometric thickness [5] at most 
d/3� (Figure 4, right) however our
lattice projection methods achieve geometric thickness only 
d/2� while the only
way we know how to achieve the better 
d/3� bound is to use a more irregular
drawing in which edges coming from the same token are no longer parallel.
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Abstract. We combine the idea of confluent drawings with Sugiyama
style drawings, in order to reduce the edge crossings in the resultant
drawings. Furthermore, it is easier to understand the structures of graphs
from the mixed style drawings. The basic idea is to cover a layered graph
by complete bipartite subgraphs (bicliques), then replace bicliques with
tree-like structures. The biclique cover problem is reduced to a special
edge coloring problem and solved by heuristic coloring algorithms. Our
method can be extended to obtain multi-depth confluent layered draw-
ings.

1 Introduction

Layered drawings visualize hierarchical graphs in a way such that vertices are ar-
ranged in layers and edges are drawn as straight lines or curves connecting these
layers. A common method was introduced by Sugiyama, Tagawa and Toda [25]
and by Carpano [4]. Several closely related methods were proposed later (see
e.g. [12, 19, 15, 22, 6, 20, 11].)

Crossing reduction is one of the most important objectives in layered draw-
ings. But it is well known that for two-layer graphs the straight-line crossing
minimization problem is NP-complete [14]. The problem remains NP-complete
even when one layer is fixed. Jünger and Mutzel [16] present exact algorithms for
this problem, and perform experimental comparison of their results with various
heuristic methods. Recently new methods related to crossing reduction ([26, 1,
8, 23, 10]) have been proposed.

However when the given two-layer graph is dense, even in an optimum solu-
tion, there are still a large number of crossings. Then the resulting straight-line
drawing will be hard to read, since edge-crossing minimization is one of the most
important aesthetic criteria for visualizing graphs [24]. This give us a motivation
for exploring new approaches to reduce the crossings in a drawing other than
the traditional methods.

In addition, it is sometime of interest to find the bicliques between two layers.
For example in the drawing of a call graph, it is interesting to find out which set
� Work by the first author is supported by NSF grant CCR-9912338. Work by the sec-

ond and the third author is supported by NSF grants CCR-0098068, CCR-0225642,
and DUE-0231467.
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of modules are calling a common set of functions and what are those common
functions. Call graphs are usually visualized as layered drawings. However it is
hard to learn this information from layered drawings by traditional Sugiyama-
style approaches, especially when the input graphs are dense.

Our previous work [5] introduces the concept of confluent drawings. In [5]
we talk about the confluent drawability of several classes of graphs and give a
heuristic for finding confluent drawings of graphs with bounded arboricity. In
this paper we experiment with an implementation of confluent drawings for the
layered graphs. However we relax the constraint of planarity and allow crossings
in the drawings, while it is not allowed to have crossings in a confluent drawing
in our previous definitions.

We are aware of the Edge Concentration method by Newbery [21]. Edge Con-
centration and our method share a same idea of covering by bicliques. But in
Newbery’s method, dummy nodes (edge concentrators) are explicit in the draw-
ing and treated equally as original nodes, which causes the nodes’ original levels
to change. In our method dummy nodes are implicit in the curve representation
of edges and the original levels are preserved. Furthermore, our method uses a
very different algorithm to compute the biclique covers.

2 Definitions

In this section we give definitions for confluent layered drawings. The definitions
almost remain the same as in our previous confluent drawing paper, except that
the planarity constraints are dropped. Fig. 1 gives an idea of confluent layered
drawings. Edges in the drawing are represented as smooth curves.

A curve is locally monotone if it contains no sharp turns, that is, it contains
no point with left and right tangents that forms a angle less than or equal to 90

Fig. 1. An example confluent layered drawing.
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degrees. Intuitively, a locally-monotone curve is like a single train track, which
can make no sharp turns. Tracks are the union of locally-monotone curves. They
are formed by merging edges together.

A drawing A formed by a collection of tracks on the plane is called a confluent
drawing for an undirected graph G if and only if

– There is a one-to-one mapping between the vertices in G and A, so that,
for each vertex v ∈ V (G), there is a corresponding vertex v′ ∈ A, and all
vertices of G are assigned to distinct points in the plane.

– There is an edge (vi, vj) in E(G) if and only if there is a locally-monotone
curve e′ connecting v′i and v′j in along tracks in A.

The directed version of a confluent drawing is defined similarly, except that
in such a drawing the locally-monotone curves are directed and in every track
formed by the union of directed curves, the curves must be oriented consistently.

Self loops and parallel edges of G are not allowed in our definitions, although
multiple ways of realizing the same edge are allowed. Namely, for an edge in
the original graph, there could be more than one locally monotone path in the
drawing corresponding to this edge.

We apply the idea of confluent drawings on layered graphs. Particularly, in
the resultant confluent drawing, we replace bicliques in a biclique cover of a two-
layer graph G = (U, L, E) by tree-like structures and draw them with smooth
curves. As we can see in Fig. 1, our method can greatly reduce the crossings in
the drawings of dense bipartite graphs. Additionally, nodes of a biclique can be
easily identified by following the smooth curve paths.

Since it is valid to have more than one confluent path between two nodes u
and l in the confluent drawing when (u, l) ∈ E, as defined above, it is straightfor-
ward that a confluent layered drawing can be obtained by computing a biclique
cover C of G, then visualizing each biclique in C as a tree-like structure. We
show how to compute a biclique cover of G in the next section.

3 Computing Biclique Cover of Bipartite Graphs

Fishburn and Hammer [9] show that the biclique cover problem is equivalent to
a restricted edge coloring problem. This coloring is not much useful for general
graphs. However, it has a nice result for triangle-free graphs, and since bipartite
graphs belong to the class of triangle-free graphs, an immediate result is that
this type of edge coloring can be used to find a biclique cover of a bipartite
graph. This result is useful in layered drawing because the edges between any
two layers in such a drawing induce a bipartite subgraph.

An edge coloring c: E ← {1, 2, . . . , k} for G = (V, E) is simply-restricted if
no induced K3 is monochromatic and the vertex-disjoint edges in an induced
P4 or Cc

4 have different colors. Fig. 2 shows the conditions that such induced
subgraphs of a simply-restricted edge coloring must satisfy.

Let d(G) denote the bipartite dimension of G, which is the minimum cardi-
nality of a biclique cover of G. Let χs(G) be the chromatic number of a simply-
restricted edge coloring of G. χs(G) is 0 if E = ∅; otherwise, it is the minimum k
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c1 c1c1 c2 c2 c2

c3

induced P4 induced Cc
4

|{c1, c2, c3}| ≥ 2 c1 �= c2 c1 �= c2

Fig. 2. The required conditions of induced subgraphs of a simply edge coloring.

for which G has a simply-restricted coloring c: E ← {1, 2, . . . , k}. The following
theorem states the equivalence of d(G) and χs(G) for triangle-free graphs.

Theorem 1 Fishburn and Hammer [9])
d(G) = χs(G) for every triangle-free graph.

Let Ej be the set of edges with color j in a simply-restricted edge coloring
for a triangle-free graph G. As we can see in the second part of the proof of The-
orem 1 (omitted here, included in the full version of this paper), Ej is included
in the edge set of a biclique subgraph of G. Therefore, every edge set of a single
color induces a biclique subgraph of G. By computing a simply restricted edge
coloring we can get a biclique cover of G.

Because it is known that the problem of Covering by Complete Bipar-
tite Subgraphs is NP-hard (Garey and Johnson [13] GT18), it is unlikely to
have efficient optimization algorithms for finding the minimum biclique cover of
a bipartite graph. Thus we only focus on fast heuristics for computing a near-
optimal biclique cover.

The simply-restricted edge coloring problem can be transformed into a vertex
coloring problem. So, instead of devising a special algorithm for the simply-
restricted edge coloring, we can choose to use one of the existing vertex coloring
algorithms. Well known heuristic algorithms for vertex coloring include Recursive
Largest First (RLF) algorithm of Leighton [18], DSATUR algorithm of Brélaz [2].
For more about heuristics on graph coloring, see Campers et al. [3].

The above method of computing a biclique cover by coloring doesn’t distin-
guish between two kinds of bicliques: Kp,1 and K1,r, where p, q, r > 1. So if
we are more interested in finding out the set of common callers and callees, we
would need to give higher priority to Kp,q than K1,r when covering the edges.

After the biclique cover of the two-layer bipartite graph is computed, each
biclique in the cover is drawn as a tree-like structure in the final drawing. Doing
this repeatedly for every two adjacent layers, we can get the drawings for multi-
layer graphs.

The time complexity of the algorithm depends on the coloring heuristic sub-
routines. For a graph with a set of vertices V , both the RLF algorithm and the
DSATUR algorithm run in worst case O(|V |3) time. There are some other faster
coloring heuristics with O(|V |2) time, but their output qualities are worse. Sup-
pose we have a two-layer bipartite graph G = (V, E). The transformation from
the simply-restricted edge coloring into vertex coloring version takes O(|E|2)
time. Using RLF or DSATUR costs O(|E|3), thus the total time is O(|E|3).
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4 Layout of the Bicliques

We described how to compute a biclique cover of a two-layer bipartite graph in
the previous section. Now it is time to show how the bicliques are laid out. In
the confluent layered drawings, each biclique in the biclique cover is visualized
as a tree-like structure, as in Fig. 1. Now here are the questions. What are the
best positions to place the centers of the tree-like structures? How to arrange
the curves so that they form confluent tracks defined in Section 2?

4.1 Barycenter Method to Place Centers

In the case where the positions of nodes in the upper level and lower level are
fixed, one would like to put the center of a tree to the center of the nodes
belonging to the corresponding biclique. For example, in Fig. 3, the drawing on
the left is visually better than the drawing on the right. Firstly it has better
angular resolution and better edge separation. Secondly it is easier for people to
see the biclique as a whole. Then the next question is: what does the center of
those nodes mean? In our method, the natural candidate position for a center
of the tree-like structure is the barycenter, i.e., the average position, of all the
nodes in this biclique.

It looks bad too if these tree centers stay very close to each other. So we need
to specify a minimum separation between two centers.

The above requirements can be formulated into constraints:

1. A tree center stays within the range of its leaves.

min
j

xij ≤ xi ≤ max
j

xij ,

where xi is the x-coordinate of the ith tree center ci, and xij is the x-
coordinate of the jth leaf of ci.

2. The distance between any two centers is greater than or equal to the mini-
mum separation.

∀ i �= j, |xi − xj | ≥ δ

where δ is some pre-specified minimum distance.

Under these constraints, we want a tree center to stay as close as possible to
the barycenter of all its leaf nodes. i.e., we want to minimize

∑
i(xi−avgj(xij))2,

Fig. 3. Good-looking tree and bad-looking tree with centers placed differently.
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subject to the above constraints. This is a Quadratic Programming problem, and
unfortunately it is NP-hard (Garey and Johnson [13], MP2).

Since it is unlikely to have efficient algorithms for solving this optimization
problem, and a small deviation of a tree center from the perfect position won’t
cause too much displeasure, we use instead a very simple heuristic method to
place the tree centers. We first assign to each tree center the x-coordinate of the
barycenter of its leaves. Then we sort tree centers by their x-value. The third step
is to try to place these tree centers at their x-coordinates one by one. Assume
we have k centers to place. Start from the jth center, where j = �k

2 	. Place
center j at its barycenter, then try to place centers one by one in the following
order: j− 1, j− 2, . . . , 1. If constraint 2 is violated, the violating center is placed
the minimum distance away from the previous placed center. Tree centers to the
right of center j are placed similarly in the order of j+1, j+2, . . . , k. It is easy to
see that the running time of the barycenter method is dominated by the sorting
of the tree centers.

4.2 Placing Tree Centers to Reduce Crossings

Alternatively, one might want to place these centers on positions such that the
total number of edge crossings is as few as possible, especially in the case where
nodes of upper level and lower level are not fixed. If this is the main concern, we
can place the tree centers in another way in order to reduce the edge crossings.

After the biclique cover of a two-layer graph G = (U, L, E) is computed, we
construct a new three-layer graph G′. We treat these tree centers as nodes of a
middle layer. The set of vertices includes three levels: an upper layer U ′ = U , a
middle layer M consisting of tree centers, and a lower layer L′ = L. The edges
of G′ are added as follows: for each biclique Bi in the biclique cover, add one
edge between the tree center node mi and each node u ∈ U that belongs to Bi.
Similarly add one edge between mi and each node l ∈ L that belongs to Bi.

Now a two-layer graph of the original problem is transformed into a three-
layer graph G′. Straight-line crossing reduction algorithms can be applied on G′.
After the crossing reduction, we obtain the ordering of nodes in each of the three
layers. The orderings will be used to compute the positions of nodes and tree
centers in the final drawings. Note that when crossing reduction method is used
to place tree centers, it is not always true that a tree center always stays within
the x-range of its leaves, i.e., bad centers like the one in Fig. 3 could appear.

Here we are using straight-line edge crossing reduction algorithms for our
confluent layered drawings with curve edges. Readers may suspect the equality
of the crossing number in the straight-line drawing for the new three-layer graph
G′ and the crossing number of our curve edge drawings. We will confirm this
equality after we describe the generation of curves in the next section.

4.3 Curves

After the positions of tree centers (and the positions of nodes if not given) are
computed, we are now ready to place the confluent tracks for the edges.
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We use Bézier curves to draw the curve edges in confluent drawings. Given
a set of control points P1, P2, . . . , Pn, the corresponding Bézier curve is given by

C(u) =
n∑

k=0

Pk Bk,n(u) 0 ≤ u ≤ 1 , (1)

where Bk,n(u) is a Bernstein polynomial

Bk,n(u) =
n!

k! (n− k)!
uk(1− u)n−k . (2)

Bézier curves have some nice properties that are suitable for our confluent
tracks. The first property is that a Bézier curve always passes its first and last
control point. The second is that a Bézier curve always stays within the convex
hull formed by its control points. In addition, the tangents of a Bézier curve at
the endpoints are P1 −P0 and Pn −Pn−1. Thus it is easy to connect two Bézier
curves while still maintaining the first order continuity: just let Pn = P ′

0 and let
the control points Pn−1,Pn = P ′

0,and P ′
1 co-linear.

The confluent track between each node and the tree center is drawn as a
Bézier curve. In our program we use cubic Bézier curves (n = 4 in Equation 2).
Each such a curve has four control points, chosen as shown in Fig. 4.

More formally, assume we are given the following input for a biclique Bi:
yu,yl, and yc are the y-coordinates of the upper, lower, and tree center levels,
respectively. xi is the x-coordinate of the tree center for Bi. xij ’s are the x-
coordinates of nodes in biclique Bi. Let ∆y be a distance parameter that controls
the shape of the curve edges. When node j is in the upper level, the four control
points are P0 = (xij , yu), P1 = (xij , yu + ∆y), P2 = (xi, yc − ∆y), and P3 =
(xi, yc). When node j is in the lower level, the four control points are P0 =
(xi, yc), P1 = (xi, yc + ∆y), P2 = (xij , yl −∆y), and P3 = (xij , yl).

From Equation 1, it is not hard to verify that in a confluent layered drawing,
two Bézier curves cross each other if and only if the corresponding straight-line
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Fig. 4. Bézier curves.
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edges (dashed lines in Fig. 4) of the bicliques cross each other, given that the
control points are chosen as above. This should clear the doubt that appears at
the end of Section 4.2.

5 Multi-depth Confluent Layered Drawings

So far we have introduced the method of confluent layered drawings: replacing
subsets of edges in a two-layer graph by tree-like structures. This method can
be extended to obtain drawings that display richer information. The extended
drawings are called multi-depth confluent layered drawings .

The idea is as follows: after the biclique cover for a two-layer graph G =
(U, L, E) is computed, the tree center nodes are viewed as a middle layer M ,
and a new three layer graph G′ = (U, M, L, E′) is constructed as in Section 4.2.
The same biclique cover algorithm is then applied to G′ twice, once for the
subgraph induced by U ∪ M ; once for the subgraph induced by M ∪ L. By
applying this approach recursively, we get biclique covers at different depth.
In the final drawing, only biclique covers at the largest depth are replaced by
sets of tree-like structures. The final drawing is a multi-depth confluent layered
drawing. The drawings discussed before this section are all depth-one (confluent
layered) drawings .

In a depth-one drawing, we compute a biclique cover and lay out the biclique
cover. In general, for a depth-i drawing, we need to compute 2i − 1 biclique
covers and 2i−1 biclique covers are laid out.

An example drawing of depth-two is shown in Fig. 5.
Because the control points for the Bézier curves are chosen in a way such

that the tangents at the endpoints of the Bézier curves are all vertical, it is
guaranteed that all segments of a path are connected seamlessly and smoothly in

Fig. 5. Depth-two confluent drawing (on same input as the drawing of Fig. 1).
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multi-depth drawings. Readers probably have already noticed some wavy edges
in the drawing of Fig. 5. It is because a single edge biclique (K1,1) is also drawn
as two Bézier curves. We offer an option in our program to do a simple treatment
for these single edge bicliques: draw them as a single Bézier curves instead of two.
But after this special treatment is applied, the crossing property is not preserved
any more. That means two curve segments could have crossing(s), even though
their corresponding edges in G′ don’t cross each other in a straight-line drawing.

Multi-depth drawings may further reduce the number of crossings. They also
show a richer structure than the depth-one drawings, which only display bi-
cliques. For example we can observe relationships between bicliques in a depth-
two confluent layered drawing. However higher depth requires more computa-
tions of biclique covers, and generates more dummy centers. The former leads
to the increasing of time and space complexity, while the latter could result in
a more complicate confluent drawing. We feel that drawings with depth higher
than two are not very practically useful.

6 Real-World Examples

We list two example drawings of real-world graphs in Fig. 6. We implemented the
algorithm of computing biclique cover using the RLF heuristic. For the center
placement we implemented the barycenter method. We assume that besides the

(a) “Derives” relation for the Shar program

(b) “Includes” relation for the Texchk program

Fig. 6. Confluent drawing for examples of Newbery [21].
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two-layer graph, the input also includes the positions of (fixed) nodes in upper
and lower levels (possibly output by other algorithms that take labels and other
information into account.) The result drawing is written into a file of DOT
format [17]. The neato program in the Graphviz package [7] is then used to
generate the graphic file in a desired format. Fig. 6 (a) is a depth-one drawing.
Fig. 6 (b) is a depth-two drawing with the special smoothing treatment applied.

7 Conclusions and Acknowledgments

In this paper we introduce a new method – confluent layered drawing, for visual-
izing layered graphs. It combines the layered drawing technique with the relaxed
confluent drawing approach. There are still interesting open problems, e.g., how
to test whether a layered graph has a crossing-free confluent layered drawing?
How to minimize the crossing of the drawing among all possible biclique covers?
It is also useful to investigate better ways for visualizing confluent tracks.

We would like to thank anonymous referees for their helpful comments.
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Abstract. We present an O(n) time algorithm for simultaneous em-
bedding of pairs of planar graphs on the O(n2) × O(n2) grid, with at
most three bends per edge, where n is the number of vertices. For the
case when the input graphs are both trees, only one bend per edge is
required. We also describe an O(n) time algorithm for simultaneous em-
bedding with fixed-edges for tree-path pairs on the O(n) × O(n2) grid
with at most one bend per tree-edge and no bends along path edges.

1 Introduction

Traditional problems in graph drawing involve the layout of a single graph.
Problems in simultaneous graph drawing, involve the layout of multiple related
graphs. Visualization of multiple related graphs, that is, graphs that are defined
on the same set of vertices, arise in many applications. Software engineering,
databases, and social network analysis, are all examples of areas where multiple
relationships on the same set of objects are often studied.

Consider the case where a pair of related graphs is given and the goal is
to visualize them so as to compare the two. If drawings for the two graphs are
obtained independently, there would be little correspondence between the two
layouts, since the viewer has no “mental map” between the two graphs. When
examining a graph the user constructs a mental view of it, for example, using the
positions of the vertices relative to each other. When viewing multiple graphs
the user has to reconstruct this mental view after examining each graph and our
goal should be to aid the user in this reconstruction while providing a readable
drawing for each graph individually.

In simultaneous graph embedding, the vertices are placed in the exact same
locations in all the graphs. Fixing the vertex positions in all the graphs preserves
the mental map, but at the expense of readability of the individual drawings,
if edges are to be drawn with straight-line segments. With this in mind, in this
paper we consider the problem of drawing planar graphs on the same point-set
using few bends. We describe efficient algorithms for simultaneous drawing of
pairs of general planar graphs on small integer grids. We also describe better
results for pairs of trees or tree-path pairs.
� This work is partially supported by the NSF under grant ACR-0222920 and by

ITCDI under grant 003297.
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1.1 Previous Work

The existence of simultaneous geometric embeddings for pairs of paths, cycles,
and caterpillars is shown in [2]. Counter-examples for pairs of general planar
graphs, pairs of outer-planar graphs, and triples of paths are also presented
there. Modified force-directed algorithms are used in [1, 8] to simultaneously
visualize general graphs, while attempting to preserve the user’s mental map
and obtaining readable individual drawings.

A related notion is that of graph thickness [12], defined as the minimum
number of planar subgraphs whose union yields the given graph. If a graph
has thickness two then it can be drawn on two layers such that each layer is
crossing-free and the corresponding vertices of different layers are placed in the
same locations. Geometric thickness is a version of the thickness problem where
the edges are required to be straight-line segments [6]. Thus, if two graphs have
a simultaneous geometric embedding, then their union has geometric thickness
at most two. Similarly, the union of any two planar graphs has graph thickness
at most two. Simultaneous geometric embedding techniques are used in [7] to
show that degree-four graphs have geometric thickness two.

The existence of straight-line, crossing-free drawings for planar graphs is
well known [9, 15, 17]. It is also known that every 3-connected planar graph has
a convex drawing [16]. These techniques, however, do not guarantee anything
about the resolution of the drawing and thus are not well-suited for automated
graph drawing. The vertex resolution problem is addressed in [5, 14] where it is
shown that any planar graph can be drawn with straight-lines and no crossings
on a grid of size O(n) ×O(n).

Simultaneous drawing of multiple graphs is also related to the problem of
embedding planar graphs on a fixed set of points in the plane. Several variations
of this problem have been studied. If the mapping between the vertices V and
the points P is not fixed, then the graph can be drawn without crossings using
two bends per edge in polynomial time [11]. However, if the mapping between V
and P is fixed, then O(n) bends per edge are necessary to guarantee planarity,
where n is the number of vertices in the graph [13].

1.2 Our Results

Formally, the drawing D of a graph G = (V, E) is a function that maps each
vertex u ∈ V to a distinct point D(u) in the plane, and each edge (u, v) ∈ E
to a simple Jordan curve D(u, v) with endpoints D(u) and D(v). The problem
of simultaneously embedding two planar graphs G1, G2 is the problem of find-
ing drawings D1, D2 with corresponding vertices of G1 and G2 mapped to the
same points in the plane. The following are three variations of the simultaneous
embedding problem for pairs of planar graphs:

Definition 1. Given two planar graphs G1 = (V, E1) and G2 = (V, E2) si-
multaneous geometric embedding of G1 and G2 is the problem of finding plane
straight-line drawings D1 and D2 of G1 and G2, respectively, such that every
vertex is mapped to the same point in the plane in both D1 and D2.
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Definition 2. Given two planar graphs G1 = (V, E1) and G2 = (V, E2) si-
multaneous embedding of G1 and G2 with fixed edges is the problem of finding
plane drawings D1 and D2 of G1 and G2, respectively, such that every vertex
is mapped to the same point in the plane in both D1 and D2 and every shared
edge e ∈ G1 ∩G2 is represented with the same simple open Jordan curve in D1

and D2.

Definition 3. Given two planar graphs G1 = (V, E1) and G2 = (V, E2) simul-
taneous embedding of G1 and G2 is the problem of finding plane drawings D1

and D2 of G1 and G2, respectively, such that every vertex is mapped to the same
point in the plane in both D1 and D2.

The definitions are inclusive in the given order: simultaneous geometric em-
bedding is a special case of simultaneous embedding with fixed edges, which is
in turn a special case of simultaneous embedding.

In Section 2 we present a simple non-existence proof for simultaneous geo-
metric embedding of a pair of graphs. Next, we present an O(n) time algorithm
for simultaneous embedding of pairs of planar graphs on the O(n2)×O(n2) grid,
with at most three bends per edge, where n is the number of vertices. For the
case when the input graphs are both trees, we only need one bend per edge. We
also describe an O(n) time algorithm for simultaneous embedding with fixed-
edges for tree-path pairs on the O(n) × O(n2) grid with at most one bend per
tree-edge and no bends along the path edges. In Section 3 we briefly describe
the implementation of these algorithms, show some of the resulting layouts, and
conclude with several open problems.

2 Simultaneous Embedding

Simultaneous geometric embeddings are easy to find on small integer grids for
pairs of paths, pairs of cycles, pairs of caterpillars, and others [2]. For pairs of
general planar graphs, and even for pairs of outer-planar graphs, simultaneous
geometric embeddings do not always exist. This is the main motivation for relax-
ing the conditions of simultaneous geometric embeddings, to just simultaneous
embedding, by dropping the straight-line edge constraint. Under these weaker
constraints, we can obtain simultaneous drawings with few bends per edge. Such
drawings are also useful for pairs of trees, as it is not known whether simultane-
ous geometric embedding of pairs of trees is always possible.

2.1 Simultaneous Geometric Embedding

Here we briefly describe a simple case of a pair of planar graphs that do not
admit simultaneous geometric embedding.

Theorem 1. There exists a planar graph G and a path P such that there is no
simultaneous geometric embedding of G and P .
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Fig. 1. Planar graph G and path P that do not allow a simultaneous geometric em-
bedding.

Proof Sketch: Consider graph G and path P as shown in Fig. 1. Let G′ be the
subgraph of G induced on vertices {1, 2, 3, 4, 5}, and G′′ be the subgraph of G
induced on vertices {2, 6, 7, 8, 9}. Since G is 3-connected fixing the outer-face
fixes an embedding for G. With the given outer-face of G, the path P contains
two crossings: one involving (2, 4), and the other one involving (6, 8). Graph G′

has six faces and unless we change the outer-face of G′ such that it contains
the edge (1, 3) or (3, 5), the edge (2, 4) is involved in a crossing in the path.
Similarly for G′′, unless we change its outer-face such that it contains (2, 7) or
(7, 9), the edge (6, 8) is involved in a crossing in the path. However G′ and G′′ do
not share any faces and removing both crossings depends on taking two different
outer-faces, which is impossible. Thus, regardless of the choice for the outer-face
of G, path P contains a crossing. ��

2.2 Relaxing the Constraints

While some classes of planar graphs allow simultaneous geometric embedding,
there are other classes that do not, and still others for which it is not known
whether simultaneous geometric embeddings exist. Since the latter two categories
contain a large number of planar graph classes (trees, outer-planar graphs, gen-
eral planar graphs), it is natural to look for simultaneous drawings with weaker
constraints. One possible solution for larger classes of graphs is to relax the
constraints on the edges. Instead of restricting the edges to be straight-line seg-
ments we allow each edge to be drawn as a sequence of straight-line segments.
Recall that such embeddings are called simultaneous embeddings (rather than
simultaneous geometric embeddings).

Note that it is trivial to find a simultaneous embedding of any two planar
graphs, if we are willing to accept a large number of bends per edge. Given a
point-set P of size n in the plane and a planar graph G with n vertices, together
with a one-to-one mapping between the vertices of G and the points in P , we
can find a crossing-free drawing of G on P using edges with bends [13]. This
allows us to embed any number of planar graphs simultaneously. However, the
resulting drawings contain O(n) bends per edge. Next, we describe methods to
simultaneously embed any two planar graphs so that each edge has at most three
bends.
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(a) (b)

Fig. 2. (a) H1 and H2 drawn simultaneously. (b) Only the edges of G1 are shown.
Edges not in the hamiltonian cycle have the same slopes as the outermost edge.

2.3 Simultaneous Embedding with Few Bends

Since in this version of the problem we no longer insist on straight-line edges, the
problem of simultaneously embedding two graphs boils down to finding a point-
set in the plane and a mapping between the vertices of graphs and the points,
with as few bends per edge as possible. The following theorem summarizes our
results for pairs of general planar graphs.

Theorem 2. Given two planar graphs G1 and G2 and a mapping between their
vertices, we can simultaneously embed G1 and G2 using at most three bends per
edge. The resulting drawing requires an integer grid of size O(n2)× O(n2) such
that each vertex is placed on a grid point, and the algorithm requires O(n) time,
where n is the number of vertices.

Proof Sketch: Vertex Placement: We make use of two techniques described in [2,
11]. Initially, we assume the graphs are 4-connected. We show how to remove
this assumption later in the proof. First we find a hamiltonian cycle H1 of G1

and a hamiltonian cycle H2 of G2. We can do this in linear time using the
algorithm of [4]. Starting at a random vertex in H1 we traverse its vertices,
assigning increasing x–coordinates to each vertex visited. Starting at a random
vertex in H2 we traverse its vertices, assigning increasing y–coordinates to each
vertex visited. Not considering the final edges enclosing the cycles, this gives us
an x–monotone path for H1 and a y–monotone path for H2; see Fig. 2(a).

Since both paths are monotone the edges of the paths are crossing-free. Let
δ be the largest slope of the edges on the path defined by H1. We complete the
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Fig. 3. (a) Removing separating triangles. (a) Edge e is part of the separating triangle
(u, v, w). The two faces containing e are (u, v, s) and (u, v, t). (b) The separating triangle
is removed by deleting e, introducing z and connecting it to u, v, s, and t.

drawing of the cycle H1 by drawing the final edge between the leftmost vertex
and the rightmost vertex. It is drawn with two segments such that the slope
of the initial segment starting at the leftmost vertex is δ′ and the slope of the
second segment ending at the rightmost vertex is −δ′, where δ′ is slightly larger
than δ. Since G1 is hamiltonian, the cycle H1 divides the edges into two groups:
inside and outside edges (with respect to H1). Then each of the inside edges
is drawn with two line segments with slopes δ′ and −δ′ on the inside of H1.
Similarly, the outside edges are drawn with the same slopes on the outside of
H1. Note that some edges will overlap but postprocessing rotation can be used
to remove the overlaps; see Fig. 2(b).

The edges of G2 are handled in the same way with respect to H2. It is easy to
see that the vertex set requires grid size n× n. The overall area of the drawing
is larger, as the bend points lie outside the original grid. It is easy to show,
however, that the entire drawing fits inside an O(n2)×O(n2) grid.

Making the Graphs 4-Connected: For the case when the input graphs are not
4-connected, we use techniques introduced in [11] to augment them. Given a 3-
connected planar graph G we create a 4-connected planar graph by introducing
new vertices. This is done by removing all the separating triangles in G. A
separating triangle is a cycle of length 3 such that the removal of the vertices
of the cycle disconnects G. Separating triangles of G can be easily found by the
algorithm of [3]. Let e = (u, v) be an edge of a separating triangle in G such
that e is adjacent to the faces (u, v, s) and (u, v, t); see Fig. 3. We remove the
separating triangle by inserting a dummy vertex z on e, deleting the edge e,
and introducing four new edges: (u, z), (v, z), (s, z), (t, z). The newly introduced
vertex z is not part of any separating triangle, so each time we introduce such a
vertex we decrease the number of separating triangles. Doing the same operation
on all the separating triangles gives us a 4-connected planar graph.

Once G1 and G2 have been augmented to 4-connected graphs, we obtain
the hamiltonian cycles H1 and H2 of G1 and G2. We augment the edges of
H2 with the extra vertices of G1 and augment the edges of H1 with the extra
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vertices of G2. The placement of the hamiltonian cycles and the drawing of
the remaining edges is done as before. After finishing the placement we treat the
dummy vertices as bend points and ignore the edges inserted in the augmentation
phase. As a result, an edge e = (u, v) that got split with a dummy vertex z ends
up having three bend points: one between u and z, one at the location of z, and
finally one between v and z. As there are O(n) dummy vertices, the bounds for
the integer grid remain unchanged.

Running Time: The two non-trivial operations are finding the separating tri-
angles and finding the hamiltonian cycles. Finding the separating triangles and
making the graphs 4-connected takes linear time [3]. A Hamiltonian cycle in a
4-connected planar graphs can be found in linear time [4]. ��

The corollary below follows from the above theorem by fixing the slopes of
all the edges and refining the grid.

Corollary 1. Given two planar graphs G1 and G2 and a mapping between their
vertices, we can simultaneously embed G1 and G2 using at most three bends per
edge on an integer grid of size O(n3) × O(n3), with all the vertices and bend-
points at grid-points.

Proof Sketch: Consider the original n × n grid where H1 and H2 are placed.
Let the slope δ = n, where δ and −δ are the slopes of all edge segments among
edges drawn with bends. Let e = (u, v) ∈ G1 such that u is placed to the left of
v and e is drawn with a bend point p. Let xdist, ydist be the x-coordinate and
y-coordinate distances between u and v. The x-coordinate distance between u
and the point p is (n × xdist − ydist)/2n. If we place a 2n× 2n grid inside each
unit square of the original grid, then the x-coordinate distance between u and p
is an integer. Since the slope of the segment up is n, the y-coordinate distance
between u and p is also an integer, and p is on a grid point. Similar argument
applies to the edges of G2 as well. The final grid area is O(n3)×O(n3). ��

If both input graphs are trees then it is easy to reduce the number of bends
required to only one per edge. The Theorem below follows from Theorem 2 and
the above corollary.

Theorem 3. Given two trees T1 and T2 and a mapping between their vertices,
they can be simultaneously embedded in linear time, using at most one bend per
edge, on an integer grid of size O(n2) × O(n2) (or O(n3) × O(n3), if both the
vertices and bend-points are on grid points).

2.4 Simultaneous Embedding with Fixed Edges

The algorithm from the previous section simultaneously embeds two planar
graphs with the corresponding vertices mapped on the same positions and thus
preserves the mental map for the vertex set. There is a significant drawback
with respect to preserving the mental map for the edge set. In particular, edges
common to both graphs are drawn differently in the two drawings unless they
happen to be on the paths defined by the hamiltonian cycles.
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Fig. 4. Constructing the hamiltonian cycle HT from H1 and H2. The common edges
are shown in red.

Simultaneous embedding with fixed edges, requires that shared edges be rep-
resented the same way in both drawings. We describe an algorithm for simulta-
neous embedding with fixed edges for a tree and a path below.

Theorem 4. Given a tree T , a path P , and a mapping between their vertices
they can be simultaneously embedded with fixed edges in linear time, using at most
one bend per edge, on an integer grid of size O(n) × O(n2) (or O(n2) ×O(n3),
if both the vertices and bend-points are on the grid).

Proof Sketch: The main idea is the same as that in Theorem 2, except that
we ensure that the edges common to both T and P belong to the hamiltonian
cycle for the tree. Then the path and the hamiltonian cycle have a simultaneous
geometric embedding. The rest of the tree edges are routed as before using one
bend per edge, thus yielding a simultaneous embedding with fixed edges for T
and P .

Let ET,P be the set of edges common to both T and P . In order to obtain
a hamiltonian cycle for the tree T we augment it with edges until the resulting
graph T ′ has a hamiltonian cycle HT that contains all edges that are in common
with the path. We use a recursive divide-and-conquer procedure to construct HT :
the input to the recursive call is a subtree T and the output is the hamiltonian
cycle HT and the modified graph T ′.

The base case for the recursion is a tree with just one node, T = {u}. In
this case, let HT = (u, u), and T ′ = T . For all other cases, we take an edge
e = (u, v) ∈ ET,P from T if such an edge exists. If not we take an arbitrary
edge e = (u, v) ∈ T . Let T1, T2 be the two trees obtained after the removal of e
from T . Assume we can construct hamiltonian cycles H1, and H2 of T1 and T2,
respectively. Let T ′

1 and T ′
2 be the graphs that we get after these constructions,

corresponding to T1 and T2, respectively. We merge the two subgraphs into the
new graph T ′ = T ′

1 ∪ T ′
2 by adding e to T ′.

In order to combine the hamiltonian cycles of the two subgraphs into a hamil-
tonian cycle for union, we need to add one more edge between the two subgraphs
(as the edge e is a bridge). We add an edge between a neighbor unew of u to a
neighbor vnew of v and combine the two cycles by dropping the edges (u, unew)
and (v, vnew).

Let H1 = (u, w1, w2, . . . , wn, u) and H2 = (v, w′
1, w

′
2, . . . , w

′
m, v). If T ′

1 has
only one vertex u we assign unew = u, and if it has two vertices u and u′ we
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assign unew = u′. We do similar assignments for vnew if T ′
2 has one or two

vertices. In order to find unew, vnew for all other cases, we check the first and
the last edges of the hamiltonian cycles.

Since P is a path, either (u, w1) /∈ ET,P , or (u, wn) /∈ ET,P (otherwise, vertex
u must have degree greater than 2 in the path). Without loss of generality,
assume (u, w1) /∈ ET,P . We assign unew = w1. The same holds for H2, that
is, either (v, w′

1) /∈ ET,P or (v, w′
m) /∈ ET,P . Without loss of generality, assume

(v, w′
1) /∈ ET,P . We assign vnew = w′

1. We insert edge (unew, vnew) in T ′, if
e �= (unew , vnew). As a result of this insertion the new hamiltonian cycle becomes,
HT = (u, v, w′

m, w′
m−1, . . . , w

′
1, w1, w2, . . . , wn, u); see Fig. 4.

Planarity: The above recursive procedure augments the tree T to a graph T ′ that
has a hamiltonian cycle which contains all the edges that T has in common with
the path P . We still need to show that the resulting graph T ′ is planar. Recall
the recursive procedure above and let us assume that T ′

1 and T ′
2 are planar.

Then there exists a planar embedding for T ′
1 so that the edge (u, w1) is on the

outer-face and a planar embedding for T ′
2 so that the edge (v, w′

1) is on the outer-
face. Since all the vertices u, w1, v, w′

1 are on the outer-faces of their graphs, the
inserted edges (u, v) and (w1, w

′
1) do not have any crossings with the edges of

T ′
1 and T ′

2. The resulting graph T ′ is planar, and the resulting embedding is a
planar embedding.

Running Time: We only need to show that the hamiltonian cycle construction
takes linear time, since the rest of the algorithm is the same as the one described
in the previous section. Note that we do not have to explicitly find planar em-
beddings of T ′

1 and T ′
2 at each level of the recursion. The planar embedding of

the final graph T ′ suffices and we can find it in linear time [10]. The merging
of the two hamiltonian cycles requires constant number of operations at each
recursive step and thus the overall running time of the algorithm is O(n). ��

3 Conclusion and Future Work

We implemented the algorithms described above using the LEDA library in C++.
Fig. 5 shows the layouts obtained for a path and tree. All of the algorithms in this
paper rely on the approach of augmenting planar graphs to hamiltonian planar
graphs, so as to obtain simultaneous embeddings and simultaneous embeddings
with fixed edges, using one or three bends. However, for simultaneous embedding
with fixed edges, this technique cannot be extended from the path and tree
case to pairs of trees (and hence cannot be extended to larger classes of planar
graphs). We do not know of an algorithm for fixed-edge simultaneous embedding
of pairs of trees. Neither do we have a counter-example. Similarly, the problem
of simultaneous geometric embedding of pairs of trees is still open.
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Fig. 5. A simultaneous embedding with fixed edges for a tree and a path. The path
(0, 1, . . . , 10) is shown on the top left. The tree is shown on the bottom left. Note that
the path and the tree share the edge (0,1). The combined view of the tree and the path
is shown on the right.
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Abstract. The one-sided two-level crossing reduction problem is an
important problem in hierarchical graph drawing. Because of its NP-
hardness there are many heuristics, such as the well-known barycenter
and median heuristics. We consider the constrained one-sided two-level
crossing reduction problem, where the relative position of certain vertex
pairs on the second level is fixed. Based on the barycenter heuristic, we
present a new algorithm that runs in quadratic time and generates fewer
crossings than existing simple extensions. It is significantly faster than
an advanced algorithm by Schreiber [12] and Finnocchi [1, 2, 6], while it
compares well in terms of crossing number. It is also easy to implement.

1 Introduction

The most common algorithm for drawing directed acyclic graphs is the algo-
rithm of Sugiyama, Tagawa, and Toda [13]. The vertex set is partitioned into
parallel horizontal levels such that all edges point downwards. For every inter-
section between an edge and a level line, a dummy vertex is introduced that may
later become an edge bend. In a second phase, a permutation of the vertices on
each level is computed that minimizes the number of edge crossings. Finally,
horizontal coordinates are computed, retaining the vertex order on each level.

A small number of crossings is very important for a drawing to be understand-
able. Thus, the crossing reduction problem is well studied. The minimization of
crossings is NP-hard [4, 8], and many heuristics exist for crossing reduction.
Most of them reduce the problem to a sequence of one-sided two-level crossing
reduction problems. Starting with an arbitrary permutation of the first level, a
permutation of the second level is computed that induces a small number of edge
crossings between the first two levels. Then the permutation of the second level
is fixed and the third level is reordered. This is repeated for all levels, alternately
top down and bottom up, until some termination criterion is met.

A simple and efficient heuristic for the one-sided two-level crossing reduction
problem is the barycenter heuristic. For every vertex v on the second level, its
barycenter value b(v) is defined as the arithmetic mean of the relative positions
of its neighbors N(v) on the first level b(v) = 1

|N(v)|
∑

v∈N(v) pos(v). The vertices
on the second level are then sorted by their barycenter value. In practice this
strategy gives good results, while keeping the running time low. An alternative
is the median heuristic, which works similar but uses median values instead of
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(a) The constraint is violated. (b) The constraint is satisfied.

Fig. 1. The constrained crossing reduction problem.

the barycenter. The median heuristic can be proven [3, 5] to miss the minimum
number of crossings by a factor of at most three. However, in experimental results
[9, 10] it is outperformed by the barycenter heuristic.

As a variant of the crossing reduction problem we consider the constrained
one-sided two-level crossing reduction problem. In addition to the permutation
of the first level, some pairs of vertices on the second level have a fixed relative
position. Figure 1 shows a two-level graph with one constraint c = (w, v), visu-
alized by the bold arrow. The constraint means that its source vertex w must
be positioned on the left of its target vertex v. In Fig. 1(a), the constraint is
violated, and in Fig. 1(b) it is satisfied. Obviously, constraints may increase the
number of crossings, in this case from two to five.

Formally, an instance of the constrained one-sided two-level crossing reduc-
tion problem consists of a two-level graph G = (V1, V2, E), E ⊆ V1 × V2 with a
fixed permutation of the first level V1 and a set C ⊆ V2 ×V2 of constraints. It is
our objective to find a permutation of the vertices on the second level V2 with
few edge crossings and all constraints satisfied. Clearly, this problem is NP-hard
as well. A solution only exists if the constraint graph GC = (V2, C) is acyclic.

While the constrained crossing reduction problem has many direct practical
applications, it also appears as a subproblem in other graph drawing problems.
An example is the application of the Sugiyama algorithm to graphs with vertices
of arbitrary size [12] or to clustered graphs [7]. When vertices or clusters span
multiple levels, constraints can be used to prevent overlap. Another application
is preserving the mental map when visualizing a sequence of related graphs.

This paper is organized as follows: We survey existing approaches for the
constrained two-level crossing reduction problem in the next section. In Sect. 3
we present our heuristic and prove its correctness in Sect. 4. Section 5 gives
experimental results that compare our heuristic to the existing algorithms. We
close with a short summary in Sect. 6.

2 Previous Work

The constrained crossing reduction problem has been considered several times.
Sander [11] proposes a simple strategy to extend iterative two-level crossing
reduction algorithms to handle constraints. Starting with an arbitrary admissible
vertex permutation, updates are only executed if they do not violate a constraint.
Together with the barycenter heuristic a modified sorting algorithm is used: The
positions of two vertices are only swapped, if no constraint is violated. Waddle
[14] presents a similar algorithm. After the calculation of the barycenter values
it is checked for each constraint whether its target has a lower barycenter value
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than its source. In that case the constraint would be violated after sorting the
vertices by the barycenter values. To avoid this, the barycenter value of the
source vertex is changed to the barycenter value of the target vertex plus some
small value. The result of both heuristics is a vertex permutation that satisfies
all constraints. However, the extensions are rather restrictive and often prevent
the algorithm from finding a good permutation. Accordingly, the results are
significantly worse than in graphs without constraints.

Schreiber [12] and Finnocchi [1, 2, 6] have independently presented an ad-
vanced algorithm that considers constraints and crossing minimization simulta-
neously. Their main idea is to reduce the constrained crossing reduction problem
to the weighted feedback arc set problem, which is also NP-hard [3]. First the
so-called penalty graph is constructed. Its vertices are the vertices of the second
level. For each pair (u, v) of vertices the number of crossings in the two relative
orders of u and v is compared. For this, only edges incident to u or v are consid-
ered. If the number of crossings cuv in the relative order . . . , u, . . . , v, . . . is less
than the number of crossings cvu in the reverse order . . . , v, . . . , u, . . . , then an
edge e = (u, v) with weight w(e) = cvu − cuv is inserted. Constraints are added
as edges with infinite (or very large) weight. Figure 2 shows the penalty graph
of the two-level graph in Fig. 1.

Then a heuristic for the weighted feedback arc set problem is applied to the
penalty graph. It is important that the used heuristic guarantees that the edges
with infinite weight are not reversed, or constraints may be violated. Finally,
the vertices of the now acyclic penalty graph are sorted topologically, and the
resulting permutation defines the order of the second level. If no edges had to
be reversed, the number of crossings meets the obvious lower bound cmin =∑

u,v∈V min{cuv, cvu}. Each reversed edge e increments the number of crossings
by its weight. This implies that an optimal solution of the weighted feedback arc
set problem is also optimal for the constrained crossing reduction problem.

Comparing the approaches of Sander [11] and Waddle [14] with those of
Schreiber [12] and Finnocchi [1, 2, 6] shows a direct trade-off between quality
and execution time. Schreiber presents detailed experimental results which show
that the penalty graph approach generates significantly less crossings than the
barycenter heuristic extensions. This is especially evident, if there are many
constraints. The running times, however, are considerably higher. This is not
very surprising due to the O(|V2|4 + |E|2) time complexity.

3 A Modified Barycenter Heuristic

The goal of our research is to build an algorithm that is as fast as the existing
barycenter extensions while delivering a quality comparable to the penalty graph

Fig. 2. The penalty graph of Fig. 1.
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approach. To achieve this we use a new extension of the barycenter heuristic. We
could have used the median heuristic as well, but we did not, because it is exper-
imentally worse and in our algorithm median values are more difficult to handle.

We start by computing the barycenter values of all vertices. As long as the
source of each constraint has a lower barycenter value than the target, all con-
straints are satisfied automatically. In the reverse case the permutation has to
be corrected. In this context, we call a constraint c = (s, t) satisfied if b(s) < b(t)
and violated otherwise.

Our algorithm is based on a simple assumption: If a constraint is violated
as in Fig. 3(a), the greater barycenter value of the source vertex indicates more
edges “to the right” than “to the left”, |E3| > |E1|. The inverse is true for
the target vertex, |E4| < |E2|. In this situation we assume that in the corrected
permutation no other vertices should be positioned in between. This seems plau-
sible, because between s and t larger subsets of adjacent edges have to be crossed
than outside. Using median values it can be proven that for a vertex with only
one incident edge there is always an optimal position beyond any violated con-
straint. This is not generally true, however, for vertices of higher degree or for
the barycenter heuristic as Fig. 3(b) shows. The optimal position for vertex v
is in the middle, where its edges generate 6 crossings as opposed to 8 crossings
at the other two positions. Nevertheless, adopting the assumption is justified by
good experimental results presented in Sect. 5.

Our heuristic, shown in Algorithm 1, partitions the vertex set V2 into totally
ordered vertex lists. Initially there is one singleton list L(v) = 〈v〉 per vertex v.
In the course of the algorithm these lists are pairwise concatenated into longer
lists according to violated constraints. Concatenated lists are represented by new
dummy vertices and associated barycenter values. As long as there are violated
constraints, each violated constraint c = (s, t) is removed one by one and the
lists containing s and t are concatenated in the required order. They are then
treated as a cluster of vertices. This guarantees that the constraint is satisfied
but prevents other vertices from being placed between s and t. Following our
assumption, this does no harm. A new vertex vc replaces s and t to represent the
concatenated list L(vc) = L(s) ◦L(t). The barycenter value of vc is computed as
if all edges that are incident to a vertex in L(vc) were incident to vc. This can be
done in constant time as demonstrated in lines 8 and 9 of the algorithm. Note
that this is not doable for the median value.

(a) Vertices with a single edge should
not be positioned between the vertices
of a violated constraint (b(s) > b(t)).

(b) In general, the optimal position for
a vertex may be between the vertices of
a violated constraint.

Fig. 3. The Basic Assumption of Our Algorithm.
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Algorithm 1: CONSTRAINED-CROSSING-REDUCTION.

Input: A two-level graph G = (V1, V2, E) and acyclic constraints C ⊆ V2 × V2

Output: A permutation of V2

begin
1 foreach v ∈ V2 do
2 b(v)←∑

u∈N(v) pos(u)/ deg(v) //barycenter of v

3 L(v)← 〈v〉 //new singleton list

4 V ← { s, t | (s, t) ∈ C } //constrained vertices
5 V ′ ← V2 − V //unconstrained vertices

6 while (s, t)← FIND-VIOLATED-CONSTRAINT(V,C) �= ⊥ do
7 create new vertex vc

8 deg(vc)← deg(s) + deg(t) //update barycenter value
9 b(vc)←

(
b(s) · deg(s) + b(t) · deg(t)

)
/ deg(vc)

10 L(vc)← L(s) ◦ L(t) //concatenate vertex lists

11 forall c ∈ C do
12 if c is incident to s or t then
13 make c incident to vc instead of s or t

14 C ← C − {(vc, vc)} //remove self loops
15 V ← V − {s, t}
16 if vc has incident constraints then V ← V ∪ {vc}
17 else V ′ ← V ′ ∪ {vc}
18 V ′′ ← V ∪ V ′

19 sort V ′′ by b()

20 L← 〈〉 //concatenate vertex lists
21 foreach v ∈ V ′′ do
22 L← L ◦ L(v)

23 return L
end

When no violated constraints are left, the remaining vertices and vertex lists
are sorted by their barycenter value as in the standard barycenter heuristic. The
concatenation of all vertex lists results in a vertex permutation that satisfies all
constraints. We claim that it has few crossings as well.

For the correctness of the algorithm it is important to consider the violated
constraints in the right order. In Fig. 4 the constraints are considered in the
wrong order and c is processed first. This leads to a cycle in the resulting con-
straint graph which makes it impossible to satisfy all remaining constraints,
although the original constraint graph was acyclic. If c is violated, at least one
of the other constraints is also violated. Processing this constraint first leads to
a correct result.

Thus, we must avoid generating constraint cycles. We use a modified topo-
logical sorting algorithm on the constraint graph. The constraints are considered
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(a) Before the merge all constraints are
satisfiable by the given order. Let c be
violated.

(b) After merging s and t the generated
constraint cycle makes it impossible to
satisfy all constraints.

(c) Starting with c′ leads to a correct result.

Fig. 4. Considering constraints in the wrong order.

sorted lexicographically by the topsort numbers of the target and source vertices
in ascending and descending order, respectively. Using Algorithm 2 this traver-
sal can be implemented in O(|C|) time. The vertices are traversed in topological
order. The incoming constraints of a vertex t are stored in an ordered list I(t)
that is sorted by the reverse traversal order of the source vertices. If a traversed
vertex has incoming violated constraints, the topological sorting is cancelled and
the first of them is returned. Note that the processing of a violated constraint
can lead to newly violated constraints. Thus, the traversal must be restarted for
every violated constraint.

4 Theoretical Analysis

In this section we analyse the correctness and running time of our algorithm.
For the correctness we have to show that the vertex permutation computed by
our algorithm satisfies all constraints. We start by analyzing Algorithm 2:

Lemma 1. Let c = (s, t) be a constraint returned by Algorithm 2. Then merging
of s and t does not introduce a constraint cycle of two or more constraints.

Proof. Assume that merging of s and t generates a cycle of at least two con-
straints. Because there was no cycle before, the cycle corresponds to a path p in
GC from s to t with a length of at least two. Because of the specified constraint
traversal order, any constraint in p has already been considered, and thus is sat-
isfied. This implies that b(t) > b(s), and therefore contradicts the assumption.

��
Theorem 1. The permutation computed by Algorithm 1 satisfies all constraints.

Proof. Algorithm 1 maintains the invariant that the constraint graph is acyclic.
Because of Lemma 1 no nontrivial cycles are introduced, and self loops are
explicitly removed in line 14.

Next we analyse whether the removed self loop constraints are satisfied by
the algorithm. Any such self loop c′ has been generated by the lines 11–13 from
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Algorithm 2: FIND-VIOLATED-CONSTRAINT.

Input: An acyclic constraint graph GC = (V, C) without isolated vertices

Output: A violated constraint c, or ⊥ if none exists

begin
1 S ← ∅ //active vertices

2 foreach v ∈ V do
3 I(v)← 〈〉 //empty list of incoming constraints
4 if indeg(v) = 0 then
5 S ← S ∪ {v} //vertices without incoming constraints

6 while S �= ∅ do
7 choose v ∈ S
8 S ← S − {v}
9 foreach c = (s, v) ∈ I(v) in list order do

10 if b(s) ≥ b(v) then
11 return c

12 foreach outgoing constraint c = (v, t) do
13 I(t)← 〈c〉 ◦ I(t)
14 if |I(t)| = indeg(t) then
15 S ← S ∪ {t}

16 return ⊥
end

a constraint between s and t. Because of the constraint c = (s, t), the invariant
implies that c′ was not directed from t to s. Therefore, c′ = (s, t) is explicitly
satisfied by the list concatenation in line 10.

Each remaining constraint has not been returned by Algorithm 2. Thus, the
barycenter value of its source vertex is less than that of its target vertex. Then
the constraint is satisfied by line 19. ��

The rest of this section analyses the running time of our algorithm. Again,
we start with the analysis of Algorithm 2.

Lemma 2. Algorithm 2 runs in O(|C|) time.

Proof. The initialization of the algorithm in lines 1–5 runs in O(|V |) time. The
while-loop is executed at most |V | times. The nested foreach-loops are both
executed at most once per constraint. The sum of these time bounds is O(|V |+
|C|). Because the constraint graph does not contain isolated vertices, the overall
running time of the algorithm is bounded by O(|C|). ��
Theorem 2. Algorithm 1 runs in O(|V2| log |V2|+ |E|+ |C|2) time.

Proof. The initialization of the algorithm in lines 1–3 considers every vertex and
edge once and therefore needs O(|V2|+ |E|) time. The while-loop is executed at
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most once per constraint. It has an overall running time of O(|C|2) because the
running time of one loop execution is bounded by the O(|C|) running time of
Algorithm 2. Finally, the sorting in line 19 needs O(|V2| log |V2|) time. The sum
of these time bounds is O(|V2| log |V2|+ |E|+ |C|2). All other statements of the
algorithm do not increase the running time. ��

5 Experimental Analysis

To analyse the performance of our heuristic, we have implemented both our
algorithm and the penalty graph approach in Java. We have tested the im-
plementations using a total number of 37,500 random graphs: 150 graphs for
every combination of the following parameters: |V2| ∈ {50, 100, 150, 200, 250},
|E|/|V2| ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, |C|/|V2| ∈ {0, 0.25, 0.5, 0.75, 1.0}.

Figure 5 displays a direct comparison. The diagrams show, how the results
vary, when one of the three parameters is changed. Because the number of cross-
ings grows very fast in the number of edges, we do not compare absolute crossing
numbers, but the number of crossings divided by the number of crossings before
the crossing reduction. As expected, the penalty graph approach gives strictly
better results than our heuristic. But the graphs also show that the difference is
very small. For a more detailed comparison, we have also analyzed the quotient
of the crossing numbers in Fig. 6. These graphs show that our algorithm is never
more than 3% worse than the penalty graph approach. Mostly the difference is
below 1%. Only for very sparse graphs there is a significant difference.

This is a very encouraging result, considering the running time difference
of both algorithms: Figure 7 compares the running time of the algorithms. As
expected, our algorithm is significantly faster than the penalty graph approach.
Because of the high running time of the penalty graph approach we have not
compared the algorithms on larger graphs, but our algorithm is certainly capable
of processing larger graphs. For example, graphs with |V2| = 1000, |E| = 2000,
and |C| = 500 can be processed in less than a second, although our implemen-
tation is not highly optimized.

6 Summary

We have presented a new fast and simple heuristic for the constrained one-
sided two-level crossing reduction problem. In practice, the algorithm delivers
nearly the same quality as existing more complex algorithms, while its running
time is significantly better. For further improvement, a traversal of the violated
constraints is desired that runs faster than O(|C|2).
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Contact and Intersection Representations

Hubert de Fraysseix and Patrice Ossona de Mendez

UMR 8557, CNRS, Paris, France

Abstract. A necessary and sufficient condition is given for a connected
bipartite graph to be the incidence graph of a family of segments and
points. We deduce that any 4-connected 3-colorable plane graph is the
contact graph of a family of segments and that any 4-colored planar
graph without an induced C4 using 4 colors is the intersection graph of
a family of straight line segments.

To Chantal. Her life crossed mine on a too short path.

1 Introduction

Touchings and crossings of arcs in the plane have been the subject of lively
interest, giving rise to astonishingly complex problems, albeit easy to state. As
an example, the Gauss problem on the characterization of crossing sequences of
self-intersecting closed curves [12], which has been fully solved only recently [6,
23]. The algebraic matroidal properties used to solve this problem further led to
a characterization of bipartite circle graphs [3] and then to a characterization of
general circle graphs à la Whitney [4].

Intersection graphs of arcs, the so-called string graphs, have been indepen-
dently introduced by Sinden [27], Ehrlich, Even and Tarjan [11]. Their approach
appeared to be quite complex [15, 17]. The recognition problem has been proven
to be NP-hard [16] and, more recently, NP-complete [21, 24].

The particular cases of intersection graphs of pseudo-segments and intersec-
tion graphs of segments [18] are of special interest, as shown by the following
question by Scheinerman [25]: Is every planar graph the intersection graph of a
set of segments in the plane?

This question is still open even for pseudo-segments, but some partial results
have been obtained:

– the recognition problem of contact graphs of segments is NP-complete, even
when restricted to planar graphs [14],

– bipartite planar graphs are contact graphs of a set of orthogonal segments
[9, 13] (see also [1]),

– triangle-free planar graphs are necessarily contact graphs of a set of segments
in three directions [2],

– 4-connected 3-colorable plane graphs are contact graphs of a set of pseudo-
segments [5],

– 4-colored plane graphs without C4-separator using 4 colors are intersection
graphs of a set of pseudo-segments [5] (see Fig.1 to 2).

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 217–227, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Using a coloration, a graph G0 gives rise to a bipartite plane graph.

Fig. 2. From the bipartite plane graph shown in Fig 1, we obtain a contact family of
pseudo-segments, which by local deformation gives rise to a representation of the graph
G0 of Fig. 1 as the intersection graph of a family of pseudo-segments.

Using the arc-stretching techniques presented in [7, 8], the last two results
may be strengthened (see Fig. 3):

Theorem 1. 4-connected 3-colorable plane graphs are contact graphs of a set of
segments.
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Fig. 3. Using stretching techniques, from the bipartite graph of Fig. 1, we obtain a
contact family of segments. By local perturbations, this contact system gives rise to a
representation of the graph G0 of Fig 1 as the intersection graph of a family of segments
(here in 4 directions).

Theorem 2. 4-colored plane graphs without C4-separator using 4 colors are in-
tersection graphs of a set of segments.

We shall present a sketch of the proof of these theorems using the following
characterization of incidence graphs of a family of segments, which we shall also
prove:

Theorem 3. A connected bipartite graph G = (V � , V • , E) is the incidence graph
of a (one-sided) contact family of segments and points if and only if

– G is planar,
– the minimum degree of the vertices in V � is at least 2
– ∀X ⊆ V such that |X ∩ V � | ≥ 2,

|E(GX)| ≤ 2 |X ∩ V � | + |X ∩ V • | − 3 (1)

Fig. 4. Representation of K4 by a non-stretchable contact family of pseudo-segments.
The corresponding incidence graph (V � is represented with white vertices, V • with
black ones), so that |E| > 2 |V � | + |V • | − 3.
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2 Contact Systems of Pseudo-segments and Points

A finite set of Jordan arcs is called a family of pseudo-segments if every pair
of arcs in the set intersects in at most one point. A one-sided contact family of
pseudo-segments and points is defined by a couple (A, P ), where:

– A is a family of pseudo-segments that may touch (on one side only at each
contact point) but may not cross, and whose union is connected,

– P is a set of points in the union of the pseudo-segments, including all the
extremities of the pseudo-segments.

Such a contact family defines a connectedbipartite plane graph G=(V � ,V • ,E),
its incidence graph, where:

– V � corresponds to the pseudo-segment set,
– V • corresponds to the point set,
– E corresponds to the set of incidences between points and pseudo-segments.

Notice that vertices in V � have minimal degree at least 2.
Moreover, the contact family also defines an orientation of G: if x ∈ V •

corresponds to a point p on a pseudo-segment S corresponding to y ∈ V � , {x, y}
is oriented from x to y if p is an extremity of S and from y to x, otherwise. The
orientation thus obtained is such that the indegree of a vertex in V � is exactly
2 and the indegree of a vertex in V • is at most 1. We call such an orientation a
(2, ≤1)-orientation.

The following theorem is quite simple to prove (see [5]):

Theorem 4. A bipartite graph G = (V � , V • , E) is the incidence graph of a
(one-sided) contact family of pseudo-segments and points if and only if

– G is planar,
– G has girth at least 6,
– the minimum degree of the vertices in V � is at least 2
– ∀X ⊆ V ,

|E(GX)| ≤ 2 |X ∩ V � | + |X ∩ V • | (2)

In general, representations by contacts of straight line segments raise impor-
tant difficulties that may be collected into what we call the stretching problem:

Problem 1. When is a contact system of pseudo-segments stretchable, that is:
when is it homeomorphic to a contact system of straight line segments?

This problem has been addressed in [8, 7], with the following characterization
theorem:

Theorem 5. Let A be a contact system of pseudo-segments. Then, the following
conditions are equivalent:

1. A is stretchable,
2. each subsystem of A has at least 3 extremal points, unless it has cardinality

at most one ,
3. A is extendible.
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where

– An extremal point of a contact system of arcs is a point of the union of the
arcs which is interior to no arc.

– A contact system of pseudo-segments is extendible if there exists an arrange-
ment of pseudo-lines such that each pseudo-segment of the contact system is
included in a corresponding pseudo-line of the family.

Notice that the equivalence of extendibility and stretchability for contact
systems of pseudo-segments is in strong contrast with the difficulty of the decid-
ability problem concerning the stretching of arrangements of pseudo-lines (this
problem is NP-hard, as proved by Mnëv [19, 20]; see also Shor [26] and Richter-
Gebert [22]).

3 Deficiency and (2, ≤1)-Orientation

In order to make use of Theorem 5 to characterize those bipartite graphs that
are representable by a contact family of segments, we first need to prove an
orientation theorem. For that, we need few definitions and lemmas.

In the following, we consider a connected bipartite graph G = (V � , V • , E).
Let V = V � ∪V • . Given a subset A ⊆ V , we introduce the notation A � = A∩V �
and A • = A∩V • . By extension, if f(x) is a subset of V , we employ the notation
f � (x) = f(x) ∩ V � and f • (x) = f(x) ∩ V • . We denote by N the neighborhood
function defined by N (X) = X ∪ {y ∈ V, ∃x ∈ X : {x, y} ∈ E}. Observe that
X ⊆ N (X).

3.1 Deficiency

Definition 1.

the deficiency ρ of a subset X ⊆ V is ρ(X) = 2 |X � | + |X • | − |E(GX)|
the minimal deficiency ρmin of X is ρmin(X) = min

X⊆Y
ρ(Y )

the deficiency closure Clos of X is Clos(X) =
⋃

X⊆Y
ρ(Y )=ρmin(X)

Y

Lemma 1. The function ρ is semimodular, that is, ∀X1, X2 ⊆ V :

ρ(X1 ∪X2) + ρ(X1 ∩X2) ≤ ρ(X1) + ρ(X2) (3)

Proof. This is a direct consequence of the inequality

|E(GX1∪X2)| ≥ |E(GX1 )| + |E(GX2 )| 	

Lemma 2. Let X ⊆ V . Then ρ(Clos(X)) = ρmin(X).
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Proof. Assume X1, X2 are subsets of V containing X such that ρ(X1) = ρ(X2) =
ρmin(X). Then, as X ⊆ X1 ∩X2, we get ρ(X1 ∩X2) ≥ ρmin(X) and, according
to (3), ρ(X1 ∪ X2) ≤ ρmin(X). Thus ρ(X1 ∪ X2) = ρmin(X). By induction we
deduce that ρ(Clos(X)) = ρmin(X). 	

Lemma 3. For any A ⊆ V � ,

N (A) ⊆ N (Clos � (A)) = Clos(A)

Proof. For any X ∈ V , we have ρ(N (X � )) ≤ ρ(X), as the addition to X of a
vertex in V • having at least one neighbor in X doesn’t increase ρ(X) and as the
deletion of a vertex in V • having no neighbor in X decreases ρ(X) by 1. Hence
ρ(N (X � )) ≤ ρ(X) and equality may only occur if X ⊆ N (X � ).

According to this property, as ρ(N (Y � )) ≤ ρ(Y ) and as equality implies
Y ⊆ N (Y � ), we have:

Clos(A) =
⋃

A⊆Y
ρ(Y )=ρmin(A)

Y =
⋃

A⊆Y
ρ(Y )=ρmin(A)

N (Y � ) = N ( ⋃

A⊆Y
ρ(Y )=ρmin(A)

Y �
)

= N (Clos � (A))

Moreover, as A ⊆ Clos � (A),N (A) ⊆ N (Clos � (A)). 	


3.2 (2, ≤1)-Orientation

Definition 2. A (2, ≤1)-orientation O of a bipartite graph G is an orientation
such that each vertex in V � has indegree exactly 2 and every vertex in V • has
indegree at most 1. A source of the (2, ≤1)-orientation is a vertex with null
indegree. Given a subset X ⊆ V , a vertex x ∈ X is a relative source of X for
O if it has a null indegree in GX . We note Source(O, X) the set of the relative
sources of X for O.

The two following lemmas justify the term of deficiency for ρ.

Lemma 4 ([5]). A connected bipartite graph G has a (2, ≤1)-orientation if and
only the minimal degree of vertices in V � is at least 2 and if

∀X ⊆ V, |E(GX)| ≤ 2 |X � | + |X • | (4)

Lemma 5. Let G be a bipartite planar graph and a (2, ≤1)-orientation of G.
Let X ⊆ V . Then ρ(X) is equal to the sum of the number of sources of G in X
and of the number of arcs entering X from V \X.

Proof. The result is easily obtained by summing up the indegrees of the vertices
in X . 	

Lemma 6. Let O be a (2, ≤1)-orientation of G and let X ⊆ V . Then there
exists a (2, ≤1)-orientation O′ of G such that

Source(O, Clos(X)) ⊆ Source(O′, Clos(X)) ⊆ Source(O′, V )
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Proof. Let Y be the subset of V \Clos(X) formed by the vertices y such that there
exists a directed path from y to a vertex x ∈ Clos(X). We proceed iteratively,
while decreasing the number of sources of G in Y .

If Y includes no source of O, then any vertex in Y has its incoming edges in-
cident to vertices in Y ∪Clos(X). Thus ρ(Clos(X)∪Y ) ≤ ρ(Clos(X)) = ρmin(X),
a contradiction. Hence Y is empty, thus Source(O′, Clos(X)) ⊆ Source(O′, V ).

Otherwise, let y be source of G in Y . By assumption, there exists a directed
path from y to a vertex x ∈ X . According to Lemma 3, Clos(X) = N (Clos � (X)).
Thus if the directed path has minimal length, x ∈ Clos • (X). Reorienting the
directed path from x to y decreases the number of sources in Y , decreases
Y and gives rise to a new (2, ≤1)-orientation of G. As the reorientation may
not have killed a relative source of Clos(X), we have Source(O, Clos(X)) ⊆
Source(O′, Clos(X)). 	

Lemma 7. Let O be a (2, ≤1)-orientation of G and let X ⊆ V . Assume that any
vertex x ∈ X � which has a neighbor out of X has at least two neighbors in X and
that Source(O, Clos(X)) ⊆ Source(O, V ). Then there exists a (2, ≤1)-orientation
O′ of G, which differs with O only on E(Clos(X)), such that:

Source(O, Clos(X)) ∩X ⊆ Source(O′, Clos(X)) ⊆ Source(O′, V ) ∩X

Proof. We proceed by induction on the cardinality of Source(O, Clos(X)) \X .
If Source(O, Clos(X)) ⊆ X , we are done. Otherwise, let s ∈ Source(O,

Clos(X)) \X . Let Y be the subset of the vertices x ∈ Clos(X) reachable from s
by a directed path. If Y ∩X = ∅, then ρ(Clos(X) \ Y ) < ρ(Clos(X)) although
X ⊆ Clos(X) \ Y , contradicting the minimality of ρ(Clos(X)). Thus Y ∩X �= ∅.
Let v1 = s, . . . , vk be a minimal length directed path from s to a vertex in
X . If vk ∈ X � , there exists an outgoing arc at vk to a vertex vk+1 ∈ X • , as
vk has degree at least 2 in X by assumption, as the indegree of vk is 2 and
as vk has an incoming edge from vk−1 �∈ X . Reversing the orientation of the
path v1, . . . , vk (resp. v1, . . . , vk+1) if vk ∈ X • (resp. vk ∈ X � ), we obtain a
new (2, ≤1)-orientation O′ of G. As this orientation differs with O on GClos(X)

only, we still have Source(O′, Clos(X)) ⊆ Source(O′, V ). As we may not have
killed a source in X , Source(O, Clos(X))∩X ⊆ Source(O′, Clos(X)). Moreover,
| Source(O, Clos(X)) \X| decreased by one. 	

Definition 3. A subset X of vertices of a connected plane graph G is a disk if
any vertex of X having a neighbor out of X belongs to the outer face of GX and
X = N (X � ).

Theorem 6. Assume G = (V � , V • , E) is a connected bipartite plane graph such
that the minimum degree of vertices in V � is at least 2 and such that ∀X ⊆ V ,

|X � | ≥ 2 =⇒ |E(GX)| ≤ 2 |X � | + |X • | − 3 (5)

Then G has a (2, ≤1)-orientation O such that, for any disk X with |X � | ≥ 2,
we have

| Source(O, X) ∩ Extr(X)| ≥ 3 (6)

where Extr(X) denotes the vertex set of the outer face of GX .
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Proof. According to Lemma 4, G has a (2, ≤1)-orientation O0.
We prove by induction over ( |V | , |V \ Extr(V )| ) that the required (2, ≤1)-

orientation O may be found, with the additional properties that the sources of
O0 in Extr(V ) are also sources of O.

Let A = Extr(V ). According to Lemmas 6 and 7, there exists a (2, ≤1)-
orientation O1 of G, such that

Source(O0, V ) ∩A ⊆ Source(O1, Clos(A)) ⊆ Source(O1, V ) ∩A

Let B1 = V \ Clos(A), B2 = N (B1) \ B1 and B3 = N (B2) \ B2. According to
Lemma 3, B2 ⊆ V • and B3 ⊆ V � . Moreover, B3 ⊆ Extr(B1 ∪ B2 ∪ B3). Let
G′ be the directed bipartite plane graph obtained from G as follows: First, we
remove all the vertices not in B1 ∪ B2 ∪ B3 and all the arcs oriented from B2

to B3. Finally, for every v ∈ B3, we add two new vertices v1 and v2 on the
outer face with arcs (v1, v) and (v2, v). Let C be the corresponding set of added
black vertices. Then, B3 ∪ C belong to the outer face of G′ and the orientation
of G′ is a (2, ≤1)-orientation having every vertex in C as a source. As V � (G′) is
either strictly included in V � (G) or is equal but then |Extr � (V (G′))| is strictly
greater than |Extr � (V (G))| , the induction applies. Thus there exists a (2, ≤1)-
orientation O2 of G′, such that any vertex in C is a source of O2 and such that
(6) holds for any disk X with |X � | ≥ 2.

LetO be the orientation of G induced byO1 on GV \B1 andO2 on GB1∪B2 . By
construction,O is a (2, ≤1)-orientation of G such that Source(O0, V )∩Extr(V ) ⊆
Source(O, V ) and Source(O, Clos(A)) ⊆ Source(O, V ) ∩ Extr(V ).

Let X be a disk of G such that |X � | ≥ 2 and let Y = X ∩ Clos(A).
Assume |Y � | ≥ 2. According to (5), we get |E(GY )| ≤ 2 |Y � | + |Y • | − 3.

According to Lemma 5, | Source(O, Y )| ≥ 3. Moreover, as X is a disk and as
Clos(A) has no entering arc, every relative source of Y belongs to the outer face
of GX . Thus | Source(O, X) ∩ Extr(X)| ≥ | Source(O, Y ) ∩ Extr(X)| ≥ 3.

Otherwise, X � is included in the vertex set of G′. In G′ we thus get

| Source(O2, X) ∩ Extr(X)| ≥ 3.

By construction of G′ and O, we deduce | Source(O, X) ∩ Extr(X)| ≥ 3. 	

Theorem 7. A connected bipartite graph G = (V � , V • , E) is the incidence graph
of a (one-sided) contact family of segments and points if and only if

– G is planar,
– the minimum degree of the vertices in V � is at least 2
– ∀X ⊆ V such that |X ∩ V � | ≥ 2,

|E(GX)| ≤ 2 |X ∩ V � | + |X ∩ V • | − 3 (7)

Proof. According to Theorem 4, G is the contact graph of a family of pseudo-
segments A. According to Theorem 6, G has a (2, ≤1)-orientation O, such that
any disk X with |X � | ≥ 2 has at least 3 relative sources on the outer face of
GX . Thus, according to Theorem 5, A is stretchable into a contact family of
segments. 	
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Corollary 1. A graph G = (V, E) is the intersection graph of a (one-sided)
simple contact family of segments if and only if

– G is planar,
– any subgraph H ⊆ G of order nH ≥ 2 has its size bounded by: mH ≤ 2nH−3.

Proof. Apply Theorem 7 to the bipartite graph obtained by subdividing each
edge of G exactly once. 	


In [2], it is proved that any 4-connected 3-colorable plane graphs is the contact
graphs of a set of pseudo-segments. It is also proved in [2] that the assumptions
of Theorem 6 hold for the incidence graph of the contact system. Thus, we get:

Corollary 2. Any 4-connected 3-colorable plane graphs is the contact graphs of
a family of segments.

In [2], representations of planar graphs by intersection of pseudo-segments are
obtained using local perturbations of contact systems of pseudo-segments. The
assumptions of Theorem 6 are proved to hold for the contact system in [2].
Thus, using Theorem 7 and a perturbation argument, this theorem may be
strengthened:

Corollary 3. Any 4-colored planar graph without induced C4 using 4 colors is
the intersection graph of a family of straight line segments.

4 Open Problems

It is not difficult to prove that any contact family of pseudo-segments is home-
omorphic to a contact family of polylines composed by three segments.

Problem 2. Is any contact family of pseudo-segments homeomorphic to a contact
family of polylines composed by two segments?

It is known that every planar graph is representable as the contact graph of a
family of triangles[10]. Using stretching techniques, this result might extend:

Problem 3. Is any planar linear hypergraph representable as the contact hyper-
graph of a family of triangles?

Scheinerman’s conjecture may be straightened as follows, as a self-dual state-
ment:

Problem 4. Is any planar linear hypergraph representable as the intersection
hypergraph of a family of segments?

As the coloration seems to play a central role, we may also ask:

Problem 5. Is any planar graph G representable as the intersection graph of a
family of segments in χ(G) directions?
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Journal of Computer and System Sciences 67 (2003), no. 2, 365–380.

25. E.R. Scheinerman, Intersection classes and multiple intersection parameters of
graphs, Ph.D. thesis, Princeton University, 1984.

26. P. W. Shor, Stretchability of pseudolines is NP-hard, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 4 (1991), 531–554.

27. F.W. Sinden, Topology of thin RC-circuits, Bell System Tech. J. (1966), 1639–1662.
28. D. West, Opem problems, SIAM J. Discrete Math. Newslett. 2 (1999), no. 1, 10–12.



Dynamic Graph Drawing of Sequences
of Orthogonal and Hierarchical Graphs

Carsten Görg1, Peter Birke1, Mathias Pohl1, and Stephan Diehl2

1 Saarland University, FR Informatik, D-66041 Saarbrücken, Germany
goerg@cs.uni-sb.de

2 Catholic University Eichstätt, Informatik, D-85072 Eichstätt, Germany
diehl@acm.org

Abstract. In this paper we introduce two novel algorithms for draw-
ing sequences of orthogonal and hierarchical graphs while preserving the
mental map. Both algorithms can be parameterized to trade layout qual-
ity for dynamic stability. In particular, we had to develop new metrics
which work upon the intermediate results of layout phases. We discuss
some properties of the resulting animations by means of examples.

1 Introduction

In many applications graphs are not drawn once and for all, but change over
time. In some cases all changes are even known beforehand, e.g. if we want to
visualize the evolution of a social network based on an email archive, or the
evolution of program structures stored in software archives. In these kinds of ap-
plications each graph can be drawn being fully aware of what graphs will follow.
Unfortunately, to the best of our knowledge there exist only two algorithms that
take advantage of this knowledge, namely TGRIP [6] and Foresighted Layout [8].
See Section 6 for a discussion of these and other approaches. While the former
was restricted to spring embedding, the latter is actually a generic algorithm.

Recently we introduced Foresighted Layout with Tolerance (FLT) [7] for
drawing sequences of graphs while preserving the mental map and trading layout
quality for dynamic stability (tolerance). The algorithm is generic in the sense
that it works with different static layout algorithms with related metrics and
adjustment strategies. As an example we looked at force-directed layout. In this
paper we apply FLT to orthogonal and hierarchical layout, which means that
we have to develop adjustment strategies and metrics for these. We also improve
FLT by introducing the importance-based backbone as a generalization of the
supergraph of a sequence of graphs.

2 Improved Adjusted Foresighted Layout

In our previous work the supergraph, which is the union of all graphs in a graph
sequence played a crucial role. The reason for using the supergraph was that
it provided all information about the graph sequence and that its layout could
be used as a sketch for all graphs in the sequence. However, the supergraph is
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restrictive, as it induces a layout for all nodes without taking into account that
they are of different relevance for the sequence.

To improve that model we now introduce the concept of a backbone of a
sequence. Therefore we need a function that defines the importance of a node in
the sequence g1, . . . , gn. In the following we assume that gi = (Vi, Ei).

Definition 1 (Backbone). Given a sequence of graphs g1, . . . , gn, and a map-
ping importance : V → N, then VB = {v ∈ ⋃n

i=1 Vi | importance(v) ≥ δB} and
EB = {(u, v) ∈ ⋃n

i=1 Ei | u, v ∈ VB} define the backbone B = (VB , EB) of a
graph sequence g1, . . . , gn with respect to a threshold δB ∈ N.

This concept of the backbone is a generalization of the concept of the su-
pergraph: The backbone is less restrictive and is adjusted to the given graph
sequence. But setting δB = 0 will create a backbone that is equal to the super-
graph.

Dependent on the choice of the importance function, the backbone repre-
sents different base models. There are several possibilities for choosing an im-
portance function: We can define the function depending on the structure of
the sequence (for example the number of occurrences of a node in the sequence:
importance(v) = |{i | v ∈ Vi}| for a graph sequence g1, . . . , gn). If we know
enough about the semantics of the graphs, we can instead choose an importance
function that takes this information into account, i.e. we can use application-
domain specific importance functions.

The improved algorithm for foresighted layout that uses the backbone instead
of the supergraph now looks as follows:

Algorithm 1 Improved Foresighted Layout with Tolerance.
compute global layout L for the backbone B of g1, . . . , gn

for i := 1 to n do
Li := L|gi

li := adjust(. . . )
end for
animate graph sequence

In this improved version the global layout does not provide initial layout
information for nodes v ∈ Vi − VB , i.e. those that are not part of the backbone.
So the adjustment functions have to assign initial positions to these nodes.

3 Orthogonal Foresighted Layout with Tolerance

Brandes et al. presented in [2] an orthogonal graph drawing algorithm that
produced an orthogonal layout with few bends in the Kandinsky model while
preserving the general appearance of a given sketch. The angle and the bend
changes can be controlled by parameters α and β. In this section, we show
how to extend this approach so that it fits in our framework, i.e. it applies the
backbone concept and is guided by metrics. We assume that the reader is familiar
with the Kandinsky network [2, 13].
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First we present the general algorithm. After computing the orthogonal lay-
out for the given backbone and obtaining the corresponding quasi-orthogonal
shape, we build a sketch Si for each graph of the sequence and adjust it through
the adjustOrth() algorithm. The sketch is a combination of the previous graph’s
layout and the backbone’s layout restricted to the current graph. If a conflict
between the layout of the backbone and the previous graph exists, we choose
the one of the backbone.

Algorithm 2 Orthogonal Foresighted Layout with Tolerance.
compute orthogonal layout L0 for the backbone B of g1, . . . , gn

Q0 := quasiOrthogonalShape(L0)
for i := 1 to n do

Si := (L0⊕Li−1)|gi // (Li⊕Lj)(x) is defined as Li(x) if x ∈ dom(Li) and Lj(x) otherwise.

(Qi, Li) := adjustOrth(Si, gi, Li−1, Qi−1)
end for
animate graph sequence

The adjustOrth() algorithm first computes the extended network of the sketch.
Since the sketch was restricted to the current graph gi, we only have to handle
insertions of new nodes and edges. The insertion of a new node creates a new
vertex-node in the Kandinsky network. How to insert new edges adjacent to
vertex-nodes with a degree greater than 0 is presented in [2]. The insertion of
a new edge adjacent to a vertex-node with a degree of 0 does not create a new
face-node.

We initialize the locally (for every edge) used parameters α and β. Then we
compute the quasi-orthogonal shape as described in [2]. To compare this shape
with that of the previous graph, we define a new metrics for quasi-orthogonal
shapes. To this end, we extend the definition of a quasi-orthogonal shape given
in [2]. With Q(f, i) we denote the i-th tuple of Q(f), with edge(Q, f, i) the value
of the edge field, with a(Q, f, i) the value of the angle field, and with b(Q, f, i)
the value of the bend field of Q(f, i). The value of the edge field of the successor
tuple of Q(f, i) is succEdge(Q, f, i) = edge(Q, f, (i + 1) mod |Q(f)|).
Definition 2 (Quasi-orthogonal-shape metrics).
Let Q be the set of quasi-orthogonal shapes. The function diffα : Q×Q→ P(E),

(Q1, Q2) �→ {e = edge(Q1, f, i) | ∃f ′, j : e = edge(Q2, f
′, j) ∧

succEdge(Q1, f, i) = succEdge(Q2, f
′, j) ∧ a(Q1, f, i) �= a(Q2, f

′, j)}
defines the set of edges with the same successor edge, but with different angles
in two quasi-orthogonal shapes. The function diffβ : Q×Q→ P(E),

(Q1, Q2) �→ {e = edge(Q1, f, i) | ∀f ′, j with e = edge(Q2, f
′, j) :

b(Q1, f, i) �= b(Q2, f
′, j)}

defines the set of edges with different bends in two quasi-orthogonal shapes.
Then the function ∆α with ∆α(Q1, Q2) = |diffα| is called angle metrics and the
function ∆β with ∆β(Q1, Q2) = |diffβ | is called bend metrics.

If the angle metrics does not fulfill the given angle threshold and there is an α
that is lower than the maximal value (the maximal value 6 · |Vi| results from the
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construction of the Kandinsky network and [13]), we increment the corresponding
α. We deal analogously with the bend metrics and β. The construction of the
modified Kandinsky network implies that incrementing β could lead also to a
change of angle between two edges. If angle stability is more important than
bend stability, then both β and α have to be incremented if the bend metrics
does not fulfill the given bend threshold.

The last step concerns compaction. To be able to preserve the edge length of
the sketch Si, we extend the compaction algorithm from [9] by edges of prescribed
length. This extension is done straightforwardly by extending the length function:
let e = (u, v) be an edge and (ux, uy) the position of u in Si, then

length′(e) =
{ |ux − vx|+ |uy − vy|, if e is fixed

length(e), otherwise

An edge can be fixed if it is in the current graph as well as in the previous
one, and if the values of the corresponding bend fields are equal. We compute
the final layout by applying the extended compaction algorithm. If the metrics
does not fulfill the given threshold we fix one more edge if there are any left.

Algorithm 3 adjustOrth(Si, gi, Li−1, Qi−1) predecessor dependent.
Ni := compute extended network(Si, gi)
∀e ∈ Ei : αe := 0, βe := 0
repeat

Qi := quasiOrthogonalShape(Ni, α, β)
if ∆α(Qi, Qi−1) > δα ∧ ∃e ∈ diffα(Qi, Qi−1) : αe < 6 · |Vi| then
∀e ∈ diffα : inc(αe)

end if
if ∆β(Qi, Qi−1) > δβ ∧ ∃e ∈ diffβ(Qi, Qi−1) : βe < 6 · |Vi| then
∀e ∈ diffβ : inc(βe)

end if
until done
fixedEdges := ∅
repeat

Li = compact(Qi, Si,fixedEdges)
if ∆(Li−1, Li) > δ ∧ fixedEdges ⊂ {Ei ∩Ei−1} − {diffβ} then

extend fixedEdges by one edge of {Ei ∩Ei−1} − {diffβ}
end if

until done
return (Qi, Li)

So far, we have seen how to apply orthogonal layout to the predecessor layout
strategy. But it is also possible to apply it to the simultaneous layout strategy.
In this case the backbone layout is used as sketch and we use global parameters
α and β instead of local ones to achieve a more uniform adjustment of angles
and bends over the whole sequence. The adjustOrth() algorithm first computes
the quasi-orthogonal shapes for all graphs. If the condition for the angle metrics
∃i : ∆α(Qi−1, Qi) > δα ∧ α < 6 · |Vi| is not fulfilled, i.e. there is a tuple of
successive shapes which do not hold the angle metrics condition and there is some
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space for improvement, α is increased. Analogously, β is changed depending on
the bend metrics. To compute the final layouts we proceed as in the predecessor-
dependent layout algorithm.

4 Hierarchical Foresighted Layout with Tolerance

The computation of a hierarchical layout of a graph following the Sugiyama
approach needs several phases: First all nodes are distributed in discrete layers
(the ranking phase), then the nodes of each layer are arranged, and finally the
layout is computed from the layers and their arrangements. One of the problems
that occur when trying to apply FLT to hierarchical layout is that there is
no option for global layout adjustment such as temperature annealing in the
force-directed approach. Instead, we have to divide the adjustment in standard
foresighted layout into two different adjustments: an adjustment for the ranking
phase and an adjustment for the rank sorting phase. However, after the ranking
adjustment has been performed, we cannot apply standard metrics, as the graphs
are not fully layouted. Therefore we will introduce a new kind of metrics which
only concerns the rankings of two graphs.

4.1 Predecessor Dependent Layout

In this section we describe the two different adjustment steps of hierarchical
foresighted layout. Starting from the input sequence, we compute the backbone
first. As the nodes of the backbone are of highest importance, we try to preserve
the mental map of the graph sequence by fixing these nodes to a certain rank
for the entire graph sequence. A good approach is to fix the node to the median
of all local rankings, which are computed in advance. So we achieve an optimal
rank for at least one graph.

Definition 3 (Average ranking). A ranking R : V → N is a mapping from a
node set to the set of natural numbers. Given a sequence of graphs g1, . . . , gn with
rankings R1, . . . , Rn, the average ranking R̄ : V → N is defined by the median of
all Ri(v).

After that, we compute local rankings for each graph, with respect to the
ranking of the backbone. In the second phase, we try to arrange the nodes on
each rank, such that we preserve the mental map, but try to reduce the edge
crossings at the same time. The general algorithm for hierarchical foresighted
layout using the predecessor dependent adjustment is shown in Algorithm 4.

Rank Assignment. In this section we describe how the ranks are adjusted.
We compute a new ranking by sorting gi topologically, but all nodes of the
backbone are ranked to their given backbone rank. If the metrics of the rank
distance (which we describe below) between the current and the previous ranking
exceeds the given threshold δR, we fix the rank of one more node to the rank of
the previous layout. We choose a node with maximal importance from the node
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Algorithm 4 Hierarchical Foresighted Layout with Tolerance.
compute backbone B of g1, . . . , gn

compute average ranking R0 of B
for i := 1 to n do

Rl
i := R0|gi

Ri := adjustRank(Rl
i, Ri−1, gi)

(li, σi) := adjustOrder(gi, Ri−1, Ri, σi−1, li−1) // with dom(σ0) = ∅ and dom(l0) = ∅
end for
animate graph sequence

set with the following properties: the nodes are contained in the current and
previous graph, but not in the backbone. Then we compute a new topological
sorting. We repeat this process until the given threshold is no longer exceeded or
until all nodes have fixed ranks. In the second case, we stop with a result which
has minimal rank distance.

Algorithm 5 adjustRank(Rl
i, Ri−1, gi) predecessor dependent.

compute Ri by sorting gi topologically with respect to Rl
i

repeat
if ∆R(Ri−1, Ri) > δR then

add node v ∈ {w | w ∈ (Vi ∩ Vi−1)− dom(Rl
i) and ∀u ∈ (Vi ∩ Vi−1)− dom(Rl

i) :
importance(w) ≥ importance(u)} to Rl

i and let Rl
i(v) = Ri−1(v)

compute Ri by sorting gi topologically with respect to Rl
i

end if
until (Vi ∩ Vi−1)− dom(Rl

i) = ∅ ∨∆R(Ri−1, Ri) ≤ δR

return Ri

Mental Distance on Ranks. As described in our previous work, we use several
metrics to check the mental distance between two layouted graphs. In the layer-
assignment phase of hierarchical layout we need a metrics to check the distance
between two layer-assignments, but layered graphs do not provide all necessary
information for a standard metrics. The only known value is in which layer a node
belongs. Therefore we introduce a new kind of metrics for the mental distance,
the rank metrics.

Definition 4 (Rank metrics). Let (g, R) be a graph g with a ranking R. Then
the function ∆R that maps ((g, R), (g′, R′)) to a positive real number is called a
rank metrics. In particular, ∆R ((g, R, ), (g′, R′)) = 0 means that g and g′ have
a non-distinguishable ranking.

It turns out that there is only a small degree of freedom in the choice of a
reasonable rank metrics. A very general approach for such a metrics could be
the distance-rank metrics.
Definition 5 (Distance-rank metrics). Given (g, R) and (g′, R′), the func-
tion ∆D with

∆D ((g, R), (g′, R′)) =
∑

v∈V ∩V ′
|R(v)−R′(v)|

is called distance-rank metrics.
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The definition of the distance-rank metrics could be changed by using the
term (R(v) − R′(v))2 instead of R(v) − R′(v) . This change would cause the
metrics to be more sensitive to nodes that jump over several ranks.

Arrangement of Layers. In this phase we try to minimize edge crossings while
staying as close as possible to the predecessor arrangement of layers. Therefore
we define an order in each layer.

Definition 6 (Order within ranks). Given a ranking R of a graph g = (V, E),
the function σ : V → N denotes the order within ranks, if the following property
holds: ∀v, w ∈ V : R(v) = R(w)⇒ σ(v) �= σ(w). From the function σ we derive
the partial order <σ on nodes: v <σ w⇔ σ(v) < σ(w).

Algorithm 6 computes an initial order σi of nodes which fulfills the following
relative orderedness conditions with respect to its predecessor (for i > 1):

1. ∀v, w ∈ Vi ∩ Vi−1 ∧Ri(v) = Ri−1(v) ∧Ri(w) = Ri−1(w) :
v <σi w ⇐⇒ v <σi−1 w

2. ∀v ∈ Vi ∩ Vi−1 ∧Ri(v) �= Ri−1(v) :∣∣∣σi(v)− σi−1(v)
|{w|Ri−1(w)=Ri−1(v)}| · |{w | Ri(w) = Ri(v)}|

∣∣∣ ≤ 1

The first condition states that the relative order of the nodes in the same rank in
the current and predecessor graph is preserved. The second condition says that
nodes which have changed their rank from the predecessor to the current layout
preserve their relative layout position.

Then we compute σ̂i by smoothly sorting the layers of gi, where <σ̂i restricted
to the j-th layer {v|Ri(v) = j} forms a total order. As there exists no constraints
for σ1, σ̂1 is obtained by sorting the layers of g1.

The layers of gi can be sorted either by the barycenter heuristic or the median
heuristic (see [1]). Sorting smoothly with respect to sortmax means using an
arbitrary comparison-based sorting algorithm1 where a ≤ b · sortmax is used
instead of a ≤ b. Similarly to simulated annealing, we can use linear, logarithmic
or exponential decrease of the factor sortmax.

Definition 7 (Final layout). Given a ranking R and an order of ranks σ of
graph g, then L(R, σ) is the final hierarchical layout of g.

Computing the final layout includes all remaining phases after sorting the
ranks and yields the absolute positions of all nodes and edges. Thus we can now
check whether the mental map is preserved using some standard metrics. If not,
we decrease sortmax and start over.

4.2 Simultaneous Layout

In this section we illustrate how to apply the simultaneous adjustment strategy
to hierarchical layout. The predecessor adjustment strategy of the previous sec-
tion tries to adjust a layout as much as possible with respect to its predecessor.
1 E.g. bucketsort is one of the rare cases that does not belong to this class.



Dynamic Graph Drawing of Sequences of Graphs 235

Algorithm 6 adjustOrder(gi, Ri−1, Ri, σi−1, li−1) predecessor dependent.
sortmax := 1
σi := initialOrder(σi−1, Ri−1, Ri)
repeat

σ̂i := smoothSort(gi, σi, Ri, sortmax)
li := L(Ri, σ̂i)
dec(sortmax)

until ∆(li−1, li) ≤ δ ∨ sortmax < 0
return (li, σ̂i)

In contrast the simultaneous adjustment strategy provides a uniform adjust-
ment of all graphs. The main problem in applying the simultaneous adjustment
strategy to hierarchical layout arises in the rank assignment phase. A possible
approach in the rank phase would be to perform a topological sorting on all
graphs simultaneously. But this requires that in each iteration one node in each
graph is ranked and the mental distance on ranks has to be checked. If the check
fails, backtracking has to be performed and the rank of the last node that was
ranked has to be fixed. Indeed, this approach is not a good choice for the layer
assignment of large graph sequences – in that case it is more efficient to limit
the simultaneous adjustment strategy to the layer assignment phase and to use
the predecessor dependent rank assignment phase.

The goal of the simultaneous arrangement of layers is to preserve the relative
node order in ranks over the whole sequence. Nodes which change their ranks
should preserve at least their relative position. To achieve this goal we compute
a global enumeration σ∗ of the nodes which is consistent throughout the entire
graph sequence. Therefore we build the supergraph, layout it using a static
hierarchical layout algorithm and after that we retrieve the desired enumeration
by projecting the nodes on the x-axis and reading them from left to right.

A local improved enumeration σ′ can be derived from σ∗ by adjusting the
enumeration such that nodes which have changed their rank preserve their rela-
tive position (as described in Section 4.1, second relative orderedness condition).
Using σ∗ and σ′ we define σ = (σ1, . . . , σn):

σi =






σ∗
1 , if i = 1

σ∗
i , i > 1 and ∆(L(Ri, σ

∗
i ),L(Ri−1, σi−1))<∆(L(Ri, σ

′
i),L(Ri−1, σi−1))

σ′
i, otherwise

In Algorithm 7, starting with this initial order, we now use the same iteration
as in Algorithm 6, except that we use a global sortmax-variable.

5 Examples

In Figure 1 we show snapshots from three different animations of the same
graph sequence, which consists of evolving Hesse-graphs. (Hesse-graphs represent
divisibility on natural numbers: there is an edge between v and w, if w is divisible
by v.) In the graphs 1 to 15 the nodes representing these numbers are inserted
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Algorithm 7 adjustOrder((g1, . . . , gn), (R1, . . . , Rn)) simultaneous.
sortmax := 1
σ∗ := initialGlobalOrder((g1, . . . , gn))
σ′ := initialLocalAdjustedOrder(σ∗, (R1, . . . , Rn))
σ := initialSimultaneousOrder(σ∗, σ′, (R1, . . . , Rn))
repeat

for i := 1 to n do
σ̂i := smoothSort(gi, σi, Ri, sortmax)
li := L (Ri, σ̂i)

end for
dec(sortmax)

until ∀i : ∆(li−1, li) ≤ δ ∨ sortmax < 0
return (l1, . . . , ln)

successively. In graph 16, node 1 is deleted and node 16 is inserted. In Figure 1a)
the ad-hoc approach is shown: for each graph a new layout is computed by using
a static layout algorithm. The mental map is poorly preserved as all nodes change
their ranks and more than half of the nodes also change their order within the
ranks. In Figure 1b) the predecessor dependent layout strategy with δR = 0 and
a small δ is shown: the mental map is well preserved. No node changes its rank,
and the order within the ranks is stable as well. But the local layouts are worse
as there are more edge crossings. In Figure 1c) the predecessor dependent layout
strategy with δR = 2 and a large δ is shown: the left graph is equal to that
produced by the ad-hoc approach. But in the next graph, all nodes contained
in the backbone do not change their rank. So it is a good compromise between
preserving the mental map and achieving local layout quality.

Further examples, e.g. visualization of the evolution of call graphs, are avail-
able at http://www.cs.uni-sb.de/∼diehl/ganimation.

6 Related Work

Most work on dynamic graph drawing [4] is related to the online problem, which
means that only information about the previous graphs in a sequence is used
for computing a layout. This includes work on hierarchical graph drawing [12],
spring embedding [3], and certain kinds of directed graphs [5]. To the best of
our knowledge, the only two approaches that consider all graphs in the sequence
are TGRIP and Foresighted Layout. TGRIP [6, 10] is an extension of the spring
embedder GRIP for large graphs. The basic idea is very intuitive: time is modeled
by springs in the third dimension. To this end each graph of the sequence is
layouted in a 2D plane. Nodes representing the same vertex in subsequent graphs
are connected by additional springs, but each node can only move within the 2D
plane to which it belongs. In contrast to Foresighted Layout, this approach does
not allow using different mental map metrics, because the metrics is built into
the heuristic for minimizing the forces.
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a)

b)

c)

Fig. 1. Layouts of graphs 15 and 16 of evolving Hesse-graph using a) ad-hoc layout,
b) FLT with small δ, δR = 0 and c) FLT with large δ, δR = 2.

7 Conclusions

While implementing FLT for spring embedding was relatively simple, applying
the approach to orthogonal and hierarchical layout turned out to require many
more changes to the static layout algorithms.

Phased Algorithms. Both algorithms work in phases, and we had to introduce
new metrics which work on the results of these phases instead of on the final
layouts. When the mental distance of two intermediate results exceeds a given
threshold, then we restrict the search space either locally, i.e. for some nodes or
edges, or globally, i.e. for all nodes or edges.

Global Restrictions. For spring embedding, the global temperature was re-
duced to allow fewer position changes of all nodes. Similarly, for hierarchical
layout the variable sortmax influences all nodes in the sorting phase.
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Local Restrictions. In the ranking phase of the hierarchical layout, we fix
the rank of the not yet fixed node of highest importance. Thus, all remaining
nodes can still change their ranks. For orthogonal layout the metrics, in fact, also
gives a hint what to restrict. As a side-effect of computing the quasi-orthogonal-
shape metrics, we do get a set of edges for which we can increment the α and β
parameters of one or more of these edges, i.e. restrict the number of angle and
bend changes.

Future Work. The theory and implementations of FLT are now at a stage
such that we can start to apply them in different domains. The effectiveness of
the resulting animations is currently being studied as part of a master thesis in
psychology at the Catholic University Eichstätt.

Finally, work is underway to make force-directed, orthogonal and hierarchical
FLT available as web services that produce animations in the SVG format.
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Abstract. One of the most popular graph drawing methods is based on achiev-
ing graph-theoretic target distances. This method was used by Kamada and Kawai
[15], who formulated it as an energy optimization problem. Their energy is known
in the multidimensional scaling (MDS) community as the stress function. In this
work, we show how to draw graphs by stress majorization, adapting a technique
known in the MDS community for more than two decades. It appears that ma-
jorization has advantages over the technique of Kamada and Kawai in running
time and stability. We also found the majorization-based optimization being es-
sential to a few extensions to the basic energy model. These extensions can im-
prove layout quality and computation speed in practice.

1 Introduction

A graph is a structure G(V ={1, . . . , n}, E) representing a binary relation E over a
set of nodes V . Visualizing graphs is a challenging problem, requiring algorithms that
faithfully represent the graph’s structure and the relative similarities of the nodes [4,
16]. Here we will focus on drawing undirected graphs with straight-line edges.

The most popular approach defines, sometimes implicitly, an energy, or cost func-
tion, based on some virtual physical model of the graph. Minimizing this function de-
termines an optimal drawing. In the approach considered here, originally proposed by
Kamada and Kawai [15], a nice drawing relates to good isometry. We have an ideal
distance dij given for every pair of nodes i and j, modeled as a spring. Given a 2-D
layout, where node i is placed at point Xi, the energy of the system is

∑

i<j

wij (‖Xi −Xj‖ − dij)
2

. (1)

We desire a layout that will minimize this function, thereby best approximating the tar-
get distances. Here, the distance dij is typically the graph-theoretical distance between
nodes i and j. The normalization constant wij equals d−α

ij . Kamada and Kawai [15]
chose α = 2, whereas Cohen [6] also considered α = 0 and α = 1. Moreover, Cohen
suggested setting dij to the linear-network distance to convey the clustering structure
of the graph.

The function (1), with α = 0, appeared earlier as the stress function in multidimen-
sional scaling (MDS) [5, 6, 18], where it was applied to graph drawing [17]. Whereas
Kamada and Kawai proposed a localized 2-D Newton-Raphson process for minimiz-
ing the stress function, researchers in the MDS field have proposed a different, more

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 239–250, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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global approach called majorization. Majorization seems to offer some distinct advan-
tages over localized processes like Newton-Raphson or gradient descent. These include
guaranteed monotonic decrease of the energy value, improved robustness against local
minima and shorter running times. The main contribution of this work is the introduc-
tion of this technique in the framework of graph layout.

Three useful extensions to stress optimization require the power and flexibility
of majorization optimization. The first extension, described in Section 3, deals with
weighting edge lengths in a way that better utilizes the drawing area, and is espe-
cially useful for drawing real-life graphs whose degree distribution follows a power
law. We have found empirically that traditional stress optimization is unstable under
such a weighting, while majorization works very well. The second extension deals with
sparse stress functions, where only a small fraction of all pairwise distances are consid-
ered. This is essential for reducing the time and space complexity of stress optimization,
and allows in-core layout of much larger graphs. We have found that sparse stress op-
timization is practically impossible when using the Kamada-Kawai technique (unless
one has a very good initialization). Again, with majorization, it is easy to work with
sparse models.

The last extension deals with obtaining an approximate drawing of the graph by
constraining the layout axes to lie within a carefully selected small vector space. Such
a technique was recently introduced by Koren [14] and can be integrated into layout al-
gorithms based on matrix algebra. Fortunately, the algebraic nature of the majorization
process allows us to perform rapid subspace-restricted stress minimization. The two
latter extensions are described in the full version of this work.

2 Stress Majorization

In this section, we review stress majorization as described in the MDS literature [3, 5].
We denote a d-dimensional layout by an n × d matrix X . Thus, node i is located at
Xi ∈ R

d and the axes of the layout are X(1), . . . , X(d) ∈ R
n. The associated stress

function is
stress(X) =

∑

i<j

wij (‖Xi −Xj‖ − dij)
2 . (2)

We always take wij = d−2
ij , which seems to produce the best drawings in most cases.

Decompose (2) to obtain

stress(X) =
∑

i<j

wijd
2
ij +

∑

i<j

wij‖Xi −Xj‖2 − 2
∑

i<j

δij‖Xi −Xj‖ , (3)

where δij
def= wijdij for i, j = 1, . . . , n.

The first term of (3),
∑

i<j wijd
2
ij , is a constant independent of the current layout.

The second term,
∑

i<j wij‖Xi −Xj‖2, is a quadratic sum, and can be written using
the quadratic form of the weighted Laplacian Lw

∑

i<j

wij‖Xi −Xj‖2 = Tr(XT LwX) , (4)
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where the n× n weighted Laplacian has its ij entry, for i, j = 1, . . . , n, defined as

Lw
i,j =

{−wij i �= j∑
k �=i wik i = j

.

The third term,
∑

i<j δij‖Xi − Xj‖, is more involved and we will bound it from
below. We will make use of the Cauchy-Schwartz inequality

‖x‖‖y‖ � xT y

with equality when x = y. Consequently, given any n× d matrix Z ,

‖Xi −Xj‖‖Zi − Zj‖ � (Xi −Xj)T (Xi − Zj)

with equality when X = Z . We can now bound the third term as follows
∑

i<j

δij‖Xi −Xj‖ �
∑

i<j

δij inv(‖Zi − Zj‖)(Xi −Xj)T (Zi − Zj) (5)

where inv(x) = 1/x when x �= 0 and 0 otherwise.
Inequality (5) can be written in a more convenient matrix form

∑

i<j

δij‖Xi −Xj‖ � Tr(XT LZZ) ,

where the n× n matrix LZ has its ij entry, for i, j = 1, . . . , n, defined as

LZ
i,j =

{−δij inv(‖Zi − Zj‖) i �= j
−∑

j �=i LZ
i,j i = j

.

Combining all the above, we can bound the stress function using FZ(X) defined as

FZ(X) =
∑

i<j

wijd
2
ij + Tr(XT LwX)− 2Tr(XT LZZ). (6)

Thus, we have
stress(X) � FZ(X) (7)

with equality when Z = X .
Note that Z is a constant n× d matrix. This way we have bounded the stress with a

quadratic form FZ(X). We differentiate by X and find that the minima of FZ(X) are
given by solving

LwX = LZZ .

Or, equivalently, for each axis we have to solve

LwX(a) = LZZ(a), a = 1, . . . , d . (8)

The characteristic of the minima is determined by the nature of the weighted Lapla-
cian Lw, which is known to be positive semi-definite with a one-dimensional null space
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spanned by 1n = (1, . . . , 1) ∈ R
n. Hence, FZ(X) has only global minima, which are

invariant under translation (addition of α · 1n is equivalent to translation). This makes
sense, since the stress function is also invariant under translation.

Numerically, it is better to make the minimizer unique. Hence we recommend re-
moving the translation degree-of-freedom by taking X1 = 0. Therefore, we can re-
move the first row and column of Lw, as well as the first row of LZZ . The resulting
(n− 1)× (n− 1) matrix is strictly diagonal dominant and hence positive definite. This
is very convenient, since methods like conjugate gradient, Gauss-Seidel, and Cholesky
factorization are guaranteed to work [9].

The Optimization Process
The above formulation leads to the following iterative optimization process. Given
some layout X(t), we want to compute a layout X(t + 1) so that stress(X(t + 1))
< stress(X(t)). We use the function FX(t)(X) which satisfies FX(t)(X(t)) =
stress(X(t)).

We take X(t + 1) as the minimizer of FX(t)(X) by solving

LwX(t + 1)(a) = LX(t)X(t)(a), a = 1, . . . , d . (9)

At this point, if X(t + 1) = X(t), we terminate the process. Otherwise, we get

stress(X(t + 1)) � FX(t)(X(t + 1)) < FX(t)(X(t)) = stress(X(t)) .

The first inequality is by (7) and the second inequality is by the uniqueness of the
minimum.

In practice we terminate the process when

stress(X(t))− stress(X(t + 1))
stress(X(t))

< ε , (10)

where ε is the tolerance of the process. Typically, ε ∼ 10−4.
To summarize, the majorization process involves iteratively solving (9). The matrix

Lw is constant throughout the entire process, whereas the matrix LX(t) would be re-
computed at each iteration.

2.1 Equation Solvers

In practice we recommend using either Cholesky factorization or conjugate gradient
(CG) [9] to solve (9) (by first fixing X1 = 0 as discussed above). Using Cholesky
factorization implies that at a preprocessing stage we find the LLT factorization of Lw

using n3/3 flops (floating point operations). Then in each iteration we solve the linear
system using back substitution in time O(n2). Hence, the significant cost in Cholesky
factorization is independent of the number of iterations, making it is suitable for graphs
requiring many iterations of process (9).

On the other hand, CG optimization involves no preprocessing and its running time
is evenly distributed among the iterations. Almost the entire solving time is devoted to
performing matrix-vector multiplication. Each such multiplication takes n2 flops. Thus,
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if the total number of matrix multiplications is less than about n/3, the CG process is
expected to be faster than Cholesky factorization. Otherwise, Cholesky factorization
is recommended. In practice, for most graphs we have experimented with, CG outper-
formed Cholesky since the total number of matrix-vector multiplications is typically
less than n/3. Note that CG benefits by the fact that we have an initial approximate
solution from the previous iteration. We observed that the overall number of iterations
increases very moderately with the size of the graph. Therefore, for large graphs (over
10,000 nodes), we encountered cases where the total number of matrix-vector multipli-
cations exceeded even n, so Cholesky factorization should do much better. In any case,
all the results reported here employ CG.

2.2 Intuitive Interpretation

Let us concentrate on axis a, and denote the current coordinates by x̂ = X(t)(a). The
majorization process determines the new coordinates x = X(t + 1)(a) by solving the
system of equations (9). Eliminating xi in equation i, we rewrite the system in an equiv-
alent form

xi =

∑
j �=i wij (xj + dij(x̂i − x̂j)inv(‖X(t)i −X(t)j‖))∑

j �=i wij
. (11)

The intuitive interpretation of this process is simple. A node j located at xj strives
to place node i (on current axis a) at xj + dij

x̂i−x̂j

‖X(t)i−X(t)j‖ .
Based on the current placement, this is node j’s best strategy to assure that node

i will be at distance dij from j in the full multidimensional layout. To see this, no-
tice that the distance between the nodes depends on all the axes. Therefore, node j’s
estimate of the contribution of axis a for the distance between i and j is the fraction
α = | x̂i−x̂j

‖X(t)i−X(t)j‖ |. So the magnitude of displacement should be dij scaled down by
α. Now, after deciding the magnitude of the 1-D displacement, the direction must be
decided: should we place xi at xj + αdij or at xj − αdij? Again, the decision is based
on the current placement, whether currently x̂i < x̂j or vice versa.

This way, each node j votes for its desired placement of xi. The final position is
determined by taking the weighted average of the suggested positions. This intuition
also suggests a localized optimization process, which we next describe.

2.3 Localized Optimization

Following the idea of Kamada and Kawai [15], we can fix the positions of all nodes,
except some node i. Then, by the same argument given above for the full majorization
process, it can be shown that the stress function is decreased by setting the position of i
as follows

X
(a)
i ←

∑
j �=i wij

(
X

(a)
j + dij(X

(a)
i −X

(a)
j )inv(‖Xi −Xj‖)

)

∑
j �=i wij

, a = 1, . . . , d .

(12)
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This way we can iterate through all nodes, and in each iteration relocate all the d coor-
dinates of node i according to (12). Each iteration is guaranteed to strictly decrease the
stress until convergence. Hence, oscillations and non-convergence are impossible.

In practice, we have only used the more involved global process (9) and have no
experience yet with the local version. We provide this local version here mainly because
it is simple and easy to implement, requiring no equation solver1.

2.4 Comparisons

A natural question is whether we should replace the traditional Kamada-Kawai based
optimization with majorization. Based on several months of experimenting with both
approaches, our definite answer is yes. We base this recommendation on several con-
siderations.

We experimented with various example graphs. On each graph, we ran each of the
two algorithms 25 times with different random initializations. At certain times during
each execution, we measured the elapsed running time and the current value of the stress
function, and averaged over all 25 executions. From this we obtained stress-vs.-time
charts for the graphs. While it is impossible to present here all of the charts, we show a
few representative ones in Figures 1-3. We can make some important observations.

Layout Quality. We observed that most of the time, the two methods eventually
achieved about the same stress level. In certain cases, the Kamada-Kawai approach
would yield a slightly better layout in terms of the stress value, but the difference was
always small; see Figure 2. In other cases, however, the majorization approach yielded
significantly better layouts as can be seen in Figure 3. Hence, probably due to its more
global nature, majorization can be considered better in terms of layout quality.

Monotonicity of Convergence. A significant advantage of majorization is that itera-
tions monotonically decrease the stress until convergence. This way, termination of the
process is determined naturally by a condition like (10). However, our experience with
the Kamada-Kawai approach, as implemented in Neato [7], shows that in some cases
the latter process may cycle without converging, while the energy is oscillating. This
requires an artificial or more convoluted termination condition.

Our experiments show that, as expected, the majorization approach was always mo-
notonic in decreasing the stress value. The non-monotonicity problem of the Kamada-
Kawai method was extremely rare (remember that we averaged over 25 executions,
lessening the impact of a single bad non-monotonic execution). We did observe this
non-monotonic behavior when experimenting with the Qh882 graph [1]. The result is
provided in Fig. 1, which compares the average behavior of both approaches on this
graph. We should note that here we weighted edges as explained in Section 3. The
reader can see that after 2 seconds of running, the stress value in the Kamada-Kawai
approach increases for some period. Here, this did not prevent it from converging at
about the same stress level as the majorization process.

1 Process (12) should not be confused with the similar Gauss-Seidel process that can be used to
solve (9).
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Running Time. The running time of the majorization process is consistently less than
that of the Kamada-Kawai process. In all runs, it can be observed that majorization
reaches the low stress level much before Kamada-Kawai.

A partial explanation is that majorization’s running time is dominated by matrix
operations (matrix-vector multiplication or Cholesky factorization). These operations
are implemented in libraries like BLAS and LAPACK which are highly optimized on
the machine instruction level for common platforms. We are using the Intel Math Kernel
Library [22]; another well-known implementation is Atlas [23].

For implementations not relying on special matrix software, we found the situation
to be similar to that of the stress function. Sometimes the Kamada-Kawai approach
would be marginally faster; on the other hand, when the majorization process was faster,
it was significantly faster. And as the size of the graphs increased, the advantage swung
completely to majorization.
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Fig. 1. Stress function vs. running time for the graph Qh882 [1] (|V|=882, |E|=1533). Here both
methods reached about the same stress. Interestingly, Kamada-Kawai is not monotonic.

Before leaving this topic, we must point out that our implementation of the Kamada
and Kawai process on which we based our comparisons differs slightly from the imple-
mentation originally suggested [15]. We are using the more common implementation
which replaces the two nested loops with a single loop; see [2, 11]. As noted in Bran-
denburg, Himsolt, and Rohrer [2], this leads to a significant speed-up over the original
implementation. This more efficient implementation is also the one used in Neato [7]
and GraphLet [21].

3 Weighting Edge Lengths

In many real life graphs, the degree distribution decays at a much lower rate than in
random graphs. Usually this distribution follows a power law and is proportional to
d−λ. Setting desired edge lengths to a uniform length (typically 1) inevitably makes the
neighborhood of high degree nodes too dense in the layout. Consequently, we suggest
weighting edges by their neighborhood size.
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Fig. 2. Stress function vs. running time for the graphs Bcspwr07 [1] (|V|=882, |E|=1533) and 516
[19] (|V|=516, |E|=729).
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Fig. 3. Stress function vs. running time for the graphs Qh1484 [1] (|V|=1470, |E|=6420) and
Plsk1919 [1] (|V|=1919, |E|=4831).

Specifically, we set the length of each edge 〈i, j〉 ∈ E as

lij = |Ni ∪Nj | − |Ni ∩Nj | , (13)

where Ni = {j|〈i, j〉 ∈ E}. Then, each target distance dij is the length of the shortest
weighted path between i and j.

This simple change is surprisingly effective in many real life irregular graphs that
have highly non-uniform degree distributions. We present here two examples. The first
example is the 1138Bus graph (|V|=1138, |E|=1458) from the Matrix Market repository
[1]. This graph models a network of high-voltage power distribution lines. Figure 4
shows two layouts of this graph. In one layout, edges were weighted according to (13).
The other layout was made with unweighted edges. Nodes are much better dispersed
in the weighted-edge-based layout. By weighting edges, more space is allocated to the
dense areas, avoiding many of the edge crossings.

Another interesting example is a BGP connectivity graph representing communica-
tions between autonomous systems (|V|=3847, |E|=11539). This graph has a few nodes
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weighted edges uniform edges

Fig. 4. Two layouts of the 1138Bus graph [1].

of high degree (e.g., one node has degree 695 and a few others are around 100), as
well as 3257 nodes of degree 1. We show two layouts of this graph in Figure 5. Again,
it is clear that when weighting edges, the resulting layout is much more informative.
For example, in both layouts the central node is the one of degree 695. In the weighted
version, its neighborhood is placed far enough from it to make it fairly visible. In the un-
weighted version, however, all of its neighbors are positioned densely around it, hiding
its structure completely.

We have frequently found that when there are large deviations in edge lengths, as
in the BGP graph, classic Kamada-Kawai optimization fails to find a nice layout. The
result of Kamada-Kawai optimization on the edge-weighted BGP graph is shown in
Figure 6(a). It is clearly inferior to the majorization result shown in Figure 5. We also
compare the average stress-vs.-time behavior of the two methods in Figure 6(b), where
it is clear the Kamada-Kawai-type optimization is pretty helpless here. Although we do
not fully understand this limitation of Kamada-Kawai optimization, it seems that its lo-
cal nature somehow limits its ability to deal with significantly unbalanced edge lengths.

4 Related Work

Substantial work in statistical MDS deals with the properties of the majorization pro-
cess, including proofs of its convergence rate [3]. The MDS literature suggests solving
equation (9) by computing (Lw)+, the Moore-Penrose inverse of the singular matrix
Lw. Our suggestion to set X1 = 0 allows a much faster solution by Cholesky factoriza-
tion.

Several studies in the graph drawing field suggest improving stress computation
by multi-scale extensions [8, 10, 11], which approximate the graph by a smaller one,
to quickly obtain an initial layout. We see these approaches as complementary to our
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Fig. 5. Two majorization-based layouts of BGP connectivity, with a skewed degree distribution.
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Fig. 6. (a) Layout of the edge weighted BGP connectivity graph using Kamada-Kawai optimiza-
tion. (b) Stress-vs.-time behavior of majorization and Kamada-Kawai on weighted BGP connec-
tivity example graph.

proposal, as one can apply majorization to optimizing the stress at each scale. In general,
our recommendation is to get an initial placement either by multi-scale techniques or
by subspace-restricted computation [14].

Recent work by Koren and Harel [13] describes an algorithm for monotonically
decreasing the stress function in 1-D, and a heuristic extension to higher dimensions
whose convergence properties are unknown. It is easy to prove that this 1-D algorithm
is equivalent to 1-D majorization, although derived differently. Majorization, however,
is more powerful as it can be generalized to higher dimensions. Interestingly, the op-
timization process of [13] is equivalent to the full, n-D Newton-Raphson process. Ac-
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cordingly, we conclude that in 1-D, the majorization process is equivalent to the full, n-
D Newton-Raphson process. This is unlike the Kamada-Kawai process which is based
on a localized 2-D Newton-Raphson process.

5 Conclusions

Majorization, a technique developed in studies of statistical MDS, is relevant to practi-
cal graph drawing. The MDS community has studied it extensively from the standpoint
of optimizing the stress function and escaping local minima. Further ideas along these
lines may also prove useful in graph drawing.

The main algorithms discussed here are available in the Neato program in the
Graphviz open source package [20].
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Abstract. A radial drawing is a representation of a graph in which the
vertices lie on concentric circles of finite radius. In this paper we study
the problem of computing radial drawings of planar graphs by using
the minimum number of concentric circles. We assume that the edges
are drawn as straight-line segments and that co-circular vertices can be
adjacent. It is proven that the problem can be solved in polynomial time.

1 Introduction

A radial drawing is a representation of a graph in which the vertices are con-
strained to lie on concentric circles of finite radius. Drawing graphs radially is
relevant in situations where it is important to display a graph with the con-
straint that some vertices are drawn “more central” than others. Examples of
such applications include social networks analysis (visualization of policy net-
works and co-citation graphs), operating systems (visualization of filesystems),
cybergeography (visualization of Web maps and communities), and bioinformat-
ics (visualization of protein-protein interaction diagrams); see e.g. [4, 8, 9].

This paper investigates crossing-free radial drawings of planar graphs. Let
G be a planar graph. A crossing-free radial drawing of G induces a partition of
its vertices into levels such that vertices in the same level are co-circular in the
drawing; for each level, the planarity of the drawing induces a circular ordering
of the vertices in the level. Conversely, in order to construct a radial drawing of
G a partition of its vertices into levels and a circular ordering within each level
must be found such that vertices of the same level are drawn co-circularly and
the edges can be drawn without intersecting each other.

Bachmaier et al. [1, 2] investigate the radial planarity testing problem: Given
a partition of the vertices of G into levels, they want to test whether there
exists a crossing-free radial drawing of G consistent with the given leveling (i.e.
vertices in the same level can be drawn on the same circle and the edges can
be added without crossing). In [1] it is assumed that the edges are drawn as
strictly monotone curves from inner to outer circles and that no two co-circular
� Research supported in part by “Progetto ALINWEB: Algoritmica per Internet e per
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vertices are connected by an edge. The elegant linear-time algorithm presented
by Bachmaier et al. tests radial planarity by using an extension of PQ-trees,
called PQR-trees. In [2] the authors extend the algorithm to the case where
edges between co-circular vertices are allowed.

In this paper we study radial drawings of planar graphs from a different
perspective. We assume that the partition of the vertices of G is not given
and our goal is to compute a partition that minimizes the number of levels,
i.e. that corresponds to a crossing-free straight-line radial drawing of G on the
minimum number of circles. We call such a drawing a minimum radial drawing
of G. In contrast with the drawing conventions adopted in [1], we assume that
the edges are straight-line segments and that vertices on the same level can be
adjacent. These choices are justified by different application-oriented examples
of radial drawings that adopt the straight-line standard (see e.g. [12, 13]) and by
the observation that allowing edges among co-circular vertices appears to be a
natural approach for the reduction of the number of levels.

The contribution of the present paper is to characterize those graphs that can
be drawn on a given number of concentric circles and to use this characterization
to solve the above described optimization problem. More precisely:

– We show that every 2-outerplanar graph admits a crossing-free straight-
line radial drawing on two circles. The proof is constructive and the radial
drawing can be computed in linear time. Preliminary results on computing
radial drawing of 2-outerplanar graphs appear in [6].

– We generalize this results and characterize the family of graphs that admit a
crossing-free straight-line radial drawing on at most k ≥ 2 circles. We recall
that similar characterization problems for straight-line k-layered drawings
are studied for the case of k ≤ 3; see, e.g. [5]. We also recall that a planar
graph admits a drawing on one circle if each edge can bend at most once [7].

– Based on the characterization above, we show that there exists a polynomial
time algorithm to compute a minimum radial drawing of a planar graph. The
drawing has the additional property of being “proper”, i.e. an edge always
connects either co-circular vertices or vertices on consecutive circles.

For reasons of space some proofs are sketched or omitted.

2 Preliminaries

A 1-outerplanar embedded graph (also called 1-outerplane graph) is an embedded
planar graph where all vertices are on the external face. An embedded graph
is a k-outerplanar embedded graph (also called k-outerplane graph) (k > 1) if
the embedded graph obtained by removing all vertices of the external face is
a (k − 1)-outerplane graph. The planar embedding of a k-outerplane graph is
called a k-outerplanar embedding. A graph is k-outerplanar if it admits a k-
outerplanar embedding. A planar graph G has outerplanarity k (for an integer
k > 0) if it is k-outerplanar and it is not j-outerplanar for 0 < j < k. In other
words, the outerplanarity of G denotes the minimum value of k for which G is
k-outerplanar.
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Let G be a k-outerplane graph with k > 1. We associate a level with each
vertex v of G, denoted as lev(v), according to the following definition: lev(v) = 0
if v is on the external face of G and lev(v) = i (i = 1, . . . , k − 1) if v is on the
external face after the removal of every vertex u with lev(u) < i. If lev(v) = i,
we say that v is a vertex of level i. Let Vi be the set of vertices v with lev(v) = i.
The subgraph induced by Vi is denoted by Gi = (Vi, Ei). Notice that Gi is a
graph of outerplanarity 1. Let Vi,i+1 = Vi∪Vi+1. The subgraph induced by Vi,i+1

is denoted by Gi,i+1 = (Vi,i+1, Ei,i+1).
We use C0, C1, . . . , Ck−1 to denote a set of k concentric circles in the plane,

where the radius of Ci is greater than the radius of Ci+1 (i = 0, . . . , k − 2). Let
G be a planar graph and let Γ be a crossing-free straight-line drawing of G. The
drawing Γ is a radial drawing if the vertices of G are placed on a set of concentric
circles. Γ will be called a k-radial drawing of G if it is a radial drawing on
C0, C1, . . . , Ck−1. Γ is a minimum radial drawing if it uses the minimum number
of circles. An edge (u, v) with u and v on Ci is called an intra-level edge. An edge
(u, v) with u and v on on Ci and Cj with i �= j is called an inter-level edge. If all
inter-level edges of a radial drawing Γ connect vertices on consecutive circles, Γ
is called a proper radial drawing.

Let G be a k-outerplane graph. A radial drawing of G is level-preserving if
it is a k-radial drawing and every vertex v with lev(v) = i is drawn on circle Ci.
A level-preserving k-radial drawing of a k-outerplane graph is proper.

3 Overview of the Approach

We study the problem of computing a radial drawing of a planar graph G on the
minimum number of circles. We show that a minimum radial drawing of G can be
computed in polynomial time. Namely: (a) We prove that if a graph has outer-
planarity k then it admits a k-radial drawing; Also if a graph has a radial drawing
on k-circles then it has outerplanarity at most k. (b) We use the above charac-
terization and a result by Bienstock and Monma [3] to show that there exists an
O(n5 log n)-time algorithm that computes a minimum radial drawing of G.

The trickiest part is to show that a graph with outerplanarity k has a k-radial
drawing. We provide a linear-time algorithm that receives as input a k-outerplane
graph G and computes a level-preserving k-radial drawing of G. Our approach
can be summarised as follows. We start with G0, draw the vertices in V0 on
C0 while maintaining their circular ordering in G0. After placing Vi on Ci we
compute the radius of Ci+1 and draw Vi+1 on Ci+1 without moving any vertex
from Vj with 0 ≤ j ≤ i. For ease of presentation, we will define canonical k-
outerplanar graphs and show how each k-outerplane graph can be transformed
into a canonical k-outerplane graph. We will also show that a k-outerplane graph
has a k-radial drawing if and only if its canonical form has a k-radial drawing.

4 Canonical Graphs and Equipped BC-Trees

Let G be a k-outerplane graph. A mixed face of G is a face containing vertices
of two consecutive levels. G is called inter-triangulated if all its mixed faces are
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three-cycles. Assume G is inter-triangulated. Let c be a cut-vertex of Gi+1. Let B
and B′ be two blocks (i.e. biconnected components) of Gi+1 that are consecutive
when going around c in clockwise direction.

Since G is inter-triangulated, there exists at least one edge of Ei,i+1 incident
on c that is encountered between B and B′ when going around c in the clockwise
direction. Such an edge of Ei,i+1 is called a separating edge because it separates
blocks B and B′ around c. G is said to be canonical if it is inter-triangulated
and for any i (i = 0, . . . , k − 2) and for any two clockwise consecutive blocks
B, B′ of Gi+1 around a cut-vertex, there is exactly one separating edge.

Every connected k-outerplane graph can be made canonical as stated by the
following lemma.
Lemma 1. Let G be a connected k-outerplane graph with n vertices. There exists
an O(n)-time algorithm that computes an augmented graph G′ such that: (1) G′

is k-outerplane, (2) G′ is canonical, and (3) the levels of the vertices of G are
preserved in G′.

We now introduce equipped BC-trees. Let G be a k-outerplane graph with
k > 1. We extend the block cut-vertex tree data structure [11] to identify specific
subgraphs of G. Because of Lemma 1, we can (and will) restrict our attention to
canonical graphs. Let K be a connected component of Gi with i > 1. An equipped
BC-tree T of K is an embedded rooted tree such that (for an illustration see
Figures 1(a), 1(b), 1(c)):

– T has three types of nodes: (a) A B-node for each block BK of K, referred
to as the B-node of BK . (b) A C-node for each cut-vertex c of K, referred
to as the C-node of c. (c) A D-node for each separating edge e of G that is
incident on a cut-vertex of K, referred to as the D-node of e.

– If K is biconnected, T consist of a single B-node. If K is not biconnected,
we choose an arbitrary C-node as the root of T .

– The edges of T are of two types: (a) Edges connecting a C-node of a cut-
vertex c to a B-node of a block that contains c. (b) Edges connecting a
C-node of a cut-vertex c to a D-node of a separating edge incident on c.

– The planar embedding of T reflects the embedding of G: if e is a separating
edge incident on a cut-vertex c and e is between blocks B and B′ in clockwise
ordering around c, then the D-node of e is between the B-nodes of B and
B′ in clockwise ordering around the C-node of c.

For example cut vertex 1 is chosen as the root of the tree shown in Figure 1(c).
Separating edge (2, b) in Figure 1(b) separates blocks A and D. Correspondingly,
the D-node of (2, b) appears between the B-nodes of A and D in the circular
clockwise ordering around the C-node of cut-vertex 2 in the equipped BC-tree
of Figure 1(c).

Let µ be the C-node of a cut-vertex c of K, if µ is not the root of T , the
parent of µ is a B-node and the leftmost child and the rightmost child of µ are
D-nodes. If µ is the root of T we arbitrarily choose the leftmost child of µ as a
D-node; as a consequence the rightmost child of the root is a B-node. See for
example Figure 1(c) where the rightmost child of the root is the B-node of B,
while the leftmost child is the D-node of (1, e).



Computing Radial Drawings on the Minimum Number of Circles 255

4

2

1

3

f

h
i

G

F
B

A

D

C

E

j

e
d c

a

b

g

(a)

3

1

2

4

h
i

f

A

B

C

G

F

DE
e

c

a

g

d b

j

(b)

2

2

c

A

D

4

iE

2

d

1

e

2

b

1

a

C

4

h

3

g F

3

f

3

B

1

j

1

G

4

(c)

a

b

f

g

h

i 1

4

3

2

j

B

E

C

G

F

D

de

c

A

(d)

a

f

g

h

i 1

4

3

2

j

de

c

b

(e)

Fig. 1. (a) A 2-outerplane graph G. The blocks of G1 are highlighted and labeled
with capital letters. The cut-vertices of G1 are numbered squares, and their separating
edges are bold. (b) A schematic representation of the structure of G. The skeleton is
highlighted with thick edges. (c) An equipped BC-tree of G rooted at the C-node of
cut-vertex 1. (d) A drawing of the skeleton of G. The labels of the regions reflect those
of the corresponding blocks. (e) A level-preserving 2-radial drawing of G.
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Let ν be a C-node of a cut-vertex c of K that is not the root of T . Let (c, v) be
a separating edge of K. Vertex v is called a separating vertex of ν. For example,
in Figure 1(c), vertices b, c, d are separating vertices of the C-node 2. Let νl and
νr be the leftmost and the rightmost D-node children (also called D-children)
of ν, and let (c, vl) and (c, vr) be their associated separating edges; vl and vr

are called the leftmost separating vertex and the rightmost separating vertex of
ν, respectively. For example, vertices d and b are the leftmost and rightmost
separating vertices of the C-node 2 in Figure 1(c).

Let µ be a B-node whose parent is a node ν where ν is the C-node of cut
vertex c. Let νr, νl be the D-children of ν that precede and follow µ in the
clockwise ordering around ν. Let el = (c, vl) be the separating edge associated
with the D-node νl and er = (c, vr) be the separating edge associated with the
D-node νr. Edges el and er are called the left separating edge and the right
separating edge of µ, respectively. Also, vl and vr are called the left separating
vertex and the right separating vertex of µ, respectively. For example, (2, d) and
(2, c) are the left and right separating edges for the B-node E in Figure 1(c). A
separating edge (separating vertex) of µ is either its left or right separating edge
(vertex). The following lemma can be proven by using standard techniques for
BC-trees [10].

Lemma 2. Let G be a canonical 2-outerplane graph with n vertices such that
the subgraph G1 induced by the vertices of level 1 is connected. There exists a
O(n)-time algorithm that computes an equipped BC-tree of G1.

The equipped block-cut-vertex tree T of K is used by the drawing algorithm
described in the next section to split G into small subgraphs each of which is
drawn independently of the others. Note that if K is biconnected the equipped
BC-tree of K has only one node, which is a B-node. However, in order to simplify
the description of the drawing algorithm in the following sections, we assume that
K has at least one cut-vertex. The assumption is not restrictive, since we can
always find a triangular mixed face f consisting of one vertex c of K and two
vertices u, w of G0, attach to c a new dummy vertex v in f , and triangulate the
face again by adding two dummy edges (v, u), (v, w). Vertex v will be temporary
added to V1 and removed at the end of the drawing algorithm. The augmented
graph is still canonical 2-outerplane and c is now a cut-vertex.

5 Radial Drawings of 2-Outerplanar Graphs

Let G be a 2-outerplane graph. In this section we show how to compute a 2-
radial drawing of G. This result will be a basic building block for the drawing
techniques and the characterization of Section 6.

By Lemma 1 we can assume that G is canonical. Also, from the observation at
the end of the previous section, we may assume that each connected component
of G1 has at least one cut-vertex. Let K be a connected component of G1. The
subgraph of G consisting of the separating edges of K is called the skeleton of
K and is denoted as skel(K). The skeleton of G is the union of all skel(K), for
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every connected component K of G1. We denote it by skel(G). For example in
Figure 1(a) and 1(b) the bold edges highlight the skeleton of the graph.

In order to use the algorithm as the basic tool to compute a k-radial drawing
of a graph with outerplanarity k (see Section 3), we assume that it receives as
input a drawing Γ0 of G0 on a circle C0 and that it computes a drawing Γ of G
without changing Γ0, i.e. Γ0 ⊂ Γ . We do not put any restrictions on the drawing
Γ0; the only hypothesis is that it preserves the planar embedding of G0. The
algorithm consists of four main steps:

1. Choice of C1: The radius of circle C1 is determined.
2. Drawing the Skeleton of G: For each connected component K of G1, the

drawing of skel(K) is computed. Figure 1(d) shows a drawing of the skeleton
of the graph of Figure 1(a).

3. Associating Blocks with Regions: Let ΣK be the drawing of skel(K).
ΣK induces a set of connected regions in the plane; each region is bounded
by C0 and by two separating edges. Each block is associated with a region
and it will be drawn inside its region. Let BK be a block of K, let T be an
equipped BC-tree of K, and let µ be the B-node of BK in T . Let (c, vl) and
(c, vr) be the left and right separating edges of µ, respectively; let cvl, cvr

be the segments representing the separating edges of µ in ΣK . Block BK is
associated with the region bounded by cvl, cvr and by the arc of C0 from vr to
vl in clockwise direction. For example, let ΣK be the drawing of Figure 1(d)
and consider block D of Figure 1(b). Block D is associated with the region
bounded in Figure 1(d) by segments 2c, 2b, and by the arc of C0 from b to c
in clockwise direction.

4. Drawing the Blocks of Each Connected Component: The drawing of
G is computed by defining the coordinates of the vertices of G1 that are
not cut-vertices. To do that, the algorithm draws each connected component
K of G1 independently. For each block BK of K it draws BK inside its
corresponding region, as defined in the previous step. Figure 1(e) shows a
level-preserving 2-radial drawing of the graph of Figure 1(a).

5.1 Choice of C1

Let K be a connected component of G1. The radius r1 of C1 depends on the
drawing of G0. Radius r1 is chosen so that when a drawing of skel(G) is computed
the region associated with each block contains an arc of C1. This will be useful
when drawing the vertices of the blocks inside their associated regions.

Let K0, K1, . . . , Kh be the connected components of G1 and let Tj be the
equipped BC-tree of Kj (j = 0, . . . , h). For each B-node of Tj with separating
vertices vl, vr, compute the distance between the point representing vl and the
point representing vr in Γ0. Let δj be the minimum of these distances over all
B-nodes of Tj and let δ = min{δj : j = 0, . . . , h}. We define the radius of C1 to
be such that C1 intersects the chords of C0 with length δ. Computing the radius
of C1 can be performed in a time that is linear in the number of blocks of G,
and therefore linear in the number of vertices of G, since the graph is planar.
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5.2 Drawing the Skeleton of G

In this section we assume that the root of the equipped BC-tree T of K has at
least three B-children. The case when the root has only two B-children can be
handled similarly. For reasons of space we do not discuss this case.

The algorithm computes a drawing ΣK of skel(K) such that ΣK is inside
the polygon of Γ0 representing the face of G0 that contains K in G. The drawing
algorithm computes ΣK so that for each block BK , the separating edges that
define the region associated with BK form a convex angle inside this region (the
angle is called corner of the region in the following). This invariant will be used
in the next steps of the algorithm and is important to prove the planarity of the
computed drawing of G. The algorithm performs a top-down left-to-right visit
of T . When a C-node ν is visited, the associated cut-vertex c is drawn on C1

together with all its incident separating edges. To better describe this algorithm
we need to introduce some more terminology.

Let Γ be a 2-radial drawing of G on two circles C0 and C1 and let p be a
point on C1. A free arc of p is a maximal arc of C1 having p as one end-point
and containing neither vertices of Γ nor crossings between an edge of Γ and C1.
Point p has always two free arcs, one moving from p clockwise (the left free arc
of p) and the other moving from p counterclockwise (the right free arc of p).
Given any circle C, and two points a and b on C, the arc of C traversed when
moving from a to b clockwise will be denoted as < a, b >. Points a and b will
be called the first point and the last point of the arc, respectively. Each point of
the arc distinct from a and b will be referred to as an internal point of < a, b >.
Finally, let q be a point outside C. A point p of C is visible from q if the segment
pq does not cross C. The set of points of C that are visible from q is an arc
called the visible region of q on C. Note that, the first and the last points of the
visible region of q on C are the intersection points between C and the straight
lines through q tangent to C. The algorithm distinguishes among two cases:

– Node ν Is the Root of T . Let µ1, . . . , µh be the B-children of ν and let
P be the polygon defined by their separating vertices. From the choice of
C1, every side of P crosses C1 in two distinct points. This implies that P
contains a set of arcs of C1. Draw c as a point of one of these arcs. See for
example the cut-vertex 1 in Figure 1(d).

– Node ν Is Not the Root of T . Let ul and ur be the leftmost and the rightmost
separating vertices of ν, respectively. By the choice of C1 (Subsection 5.1),
segment ulur crosses circle C1 in two distinct points; let p be the intersection
point that is closer to ur, and denote by γ the intersection of the left free arc
of p and the visible region of ur. Draw c as a point of γ. It can be proven that
any point in γ guarantees that the corners of the regions of the B-children
of ν are convex. However, in order to correctly complete the drawing of the
blocks of K without changing the drawing of the skeleton (Subsection 5.4),
the algorithm may need to make γ smaller for some cases. Details about how
to reduce γ are omitted.
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Lemma 3. Let G be a 2-outerplane graph with n vertices, let G0 ⊂ G be the
subgraph of level 0, and let skel(G) be the skeleton of G. Let Γ0 be an embedding
preserving 1-radial drawing of G0. There exists an O(n)-time algorithm that
computes an embedding preserving 2-radial drawing Γ of G0 ∪ skel(G) such that
Γ0 ⊂ Γ . Also, Γ is a level-preserving drawing.

5.3 Associating Blocks with Regions

Since G is canonical, the interior of each face f of G0 contains exactly one
connected component K of G1. K is drawn inside the region f of the plane and
is denoted by Rf . Note that Rf is defined by Γ0. Let T be the BC-tree of K; Rf

is recursively subdivided into connected sub-regions Rµ, one for each B-node µ
of T . As explained in Subsection 5.4, block µ is drawn inside Rµ. We formally
define the regions induced by ΣK in the following.

For each B-node µ of T let (c, vl) and (c, vr) be the separating edges of µ.
Denote by R∗

µ the region of the plane delimited by the segments cvl, cvr, and by
the arc < vr, vl > of C0. The drawing technique of Subsection 5.4 will draw the
blocks of the subtree of T rooted at µ inside R∗

µ. The region Rµ containing the
single block associated with µ is as follows: (a) If µ is a leaf, letRµ = R∗

µ. (b) If µ
is an internal node with grandchildren µ1, . . . , µh, letRµ = R∗

µ\(R∗
µ1
∪· · ·∪R∗

µh
).

5.4 Drawing the Blocks

Let BK be a block of a connected component K of G1, and let µ be the B-node
of T representing BK . As in Section 5.2, we assume in the following that the
root of T has at least three B-children.

A vertex of G1 is an internal joint vertex if it is adjacent to at least two
vertices of G0. A vertex u of G0 is an external joint vertex if it is adjacent to
at least two vertices of G1. The algorithm that draws BK inside its associated
region Rµ distinguishes among two cases:

Case 1: µ Is a Leaf of T . Let c be the cut-vertex associated with the parent of
µ and let c = a0, a1, . . . , at be the internal joint vertices of BK in the clockwise
order they appear on the external face of BK . Since G is inter-triangulated then
the internal joint vertices al and al+1 (l = 0, . . . , t−1) are adjacent to an external
joint vertex, which is denoted by ul+1. Also at and a0 are adjacent to an external
joint vertex, which is denoted as ut+1. Since G is canonical, edges (c, u1) and
(c, ut+1) are the separating edges of µ.

The algorithm first places the internal joint vertices a0, . . . , at in this order.
At step l (l = 1, . . . , t) vertex al and its incident edges are added to the drawing.
Each vertex al is placed on C1 as follows. If edge (ul, al−1) crosses C1 then let p
be its crossing, otherwise let p be coincident with al−1. Vertex al is drawn as an
internal point of the intersection between the right free arc of p and the visible
region of ul.

Once all the internal joint vertices are placed, the algorithm draws the re-
maining vertices of BK and their incident edges. More precisely, let v1, . . . , vrl
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be the vertices that are between vertices al and al+1 (l = 0, . . . , t− 1) in clock-
wise ordering on the external face of BK . All these vertices are adjacent to the
external joint vertex ul+1. If edge (al, ul+1) crosses C1 then let q1 be its crossing,
otherwise let q1 be coincident with al. Analogously, if edge (al+1, ul+1) crosses
C1 then let q2 be its crossing, otherwise let q2 be coincident with al+1. Vertices
v1, . . . , vrl

are drawn in this order as points of the arc < q1, q2 >.

Case 2: µ Is an Internal Node of T . This case can be handled with techniques
similar to those used for the previous case. We omit the decription of them for
reasons of space.

Theorem 1. Let G be a a 2-outerplane graph with n vertices. G admits a level-
preserving 2-radial drawing that preserves the embedding of G. Also there exists
an O(n)-time algorithm that computes such a drawing.

6 Minimum Radial Drawings of Planar Graphs

In this section we first characterize the family of graphs that admit a radial
drawing on at most k-concentric circles and then use the characterization to
solve in polynomial time the problem of computing a minimum radial drawing
of a planar graph.

Theorem 2. Let G be a graph with outerplanarity k and n vertices. Then G
admits a proper k-radial drawing. Also, there exists an O(n)-time algorithm that
computes such a drawing.

Proof. Since G has outerplanarity k then it has a k-outerplanar embedding. We
show how to compute a level-preserving k-radial drawing Γ of G that preserves
this embedding. This implies that Γ is proper. An algorithm to compute Γ is
based on first drawing the subgraph induced by the vertices of level 0 on a
circle C0 and then by adding at each step the vertices of level i on a circle Ci

(i = 1, · · ·k− 1). At Step i the subgraph Gi−1,i is drawn by using the algorithm
described in Section 5. Since G =

⋃k−2
i=0 Gi,i+1 the computed drawing is a radial

drawing of G. The fact that no two edges cross is a consequence of Theorem 1. It
follows that the above described algorithm computes a level-preserving k-radial
drawing of G. As for the time complexity, it follows from Theorem 1 that the
computation of drawing Gi−1,i requires O(ni) time where ni is the number of
vertices in Gi−1,i. Therefore the overall time complexity is O(n). ��
Lemma 4. If a graph G admits a k-radial drawing then it has outerplanarity
at most k.

Proof. A k-radial drawing Γ of G defines an embedding of G. All vertices on
the outerface of this embedding are drawn on C0. Removal of all vertices on C0

results in a (k − 1)-radial drawing. So we can use induction to show that Γ is a
k-outerplane graph. It follows that the outerplanarity of G is at most k. ��
Theorem 3. Let G be a planar graph. G admits a radial drawing on at most
k-circles if and only if the outerplanarity of G is at most k.
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Proof. Assume that G has a k-radial drawing. Then by Lemma 4 G has outer-
planarity at most k. Conversely, if G has outerplanarity j ≤ k, by Theorem 2 it
admits a j-radial drawing with j ≤ k. ��
Theorem 4. Let G be a planar graph with n vertices. There exists an
O(n5 log n)-time algorithm that computes a radial drawing of G on the mini-
mum number of concentric circles. Furthermore the computed drawing is proper.

Proof. Bienstock and Monma [3] describe an algorithm to compute the outerpla-
narity k of G and to determine a k-outerplanar embedding of G. This algorithm
takes O(n5 log n) time. The result in [3] together with Theorem 3 imply that k
is the minimum number of circles for which there exists a radial drawing of G.
The fact that such a drawing is proper is a consequence of Theorem 2. Again by
Theorem 2 it follows that the time complexity of the whole algorithm is domi-
nated by the technique in [3]. ��
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Abstract. A planar graph G is k-spine drawable, k ≥ 0, if there exists a
planar drawing of G in which each vertex of G lies on one of k horizontal
lines, and each edge of G is drawn as a polyline consisting of at most two
line segments. In this paper we: (i) Introduce the notion of hamiltonian-
with-handles graphs and show that a planar graph is 2-spine drawable if
and only if it is hamiltonian-with-handles. (ii) Give examples of planar
graphs that are/are not 2-spine drawable and present linear-time drawing
techniques for those that are 2-spine drawable. (iii) Prove that deciding
whether or not a planar graph is 2-spine drawable is NP-Complete. (iv)
Extend the study to k-spine drawings for k > 2, provide examples of
non-drawable planar graphs, and show that the k-drawability problem
remains NP-Complete for each fixed k > 2.

1 Introduction

Many graph drawing applications require that the vertices of the graph be placed
on some set of horizontal lines. Such drawings have applications in visualization,
DNA mapping, and VLSI layout [10, 8]. A common aesthetic requirement is that
it be easy to locate the end-vertices of each edge. One way to achieve this is by
representing edges as polylines composed of a small number of line segments, and
by placing the vertices so that polylines from different edges cross a minimum
number of times, if at all. Hence, we have the k-spine drawability problem: Given
a planar graph G and an integer k ≥ 0, is there a planar drawing of G such that
the vertices of G lie on k horizontal lines called spines and each edge is drawn
as a polyline consisting of at most two line segments? For k ≥ 0, we say that a
graph is k-spine drawable, or has a k-spine planar drawing, if it is a yes-instance
to the k-spine drawability problem.

The k-spine drawability problem for k = 1 is a classic topic in the graph
drawing and computational geometry literature, where 1-spine drawings are
commonly called 2-page book embeddings or 2-stack layouts. Bernhart and
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Kainen [1] show that a planar graph has a 2-page book embedding if and only if
it is sub-hamiltonian, which implies that the 1-spine drawability testing problem
is in general NP -hard. Meaningful subclasses of planar graphs that admit 2-page
book embeddings (i.e. they are 1-spine drawable) are described in the literature
(see, e.g. [1, 3]).

The k-spine drawability problem for k ≥ 1 has also been widely investigated
in the case that the edges cannot bend, i.e they are straight-line segments. There
are several papers devoted to this problem, both under the assumption that no
two vertices on the same spine can be adjacent (see, e.g. [5, 7]) and under the
assumption that there can be intra-spine edges (see, e.g. [4, 6, 9]). In particular,
Cornelsen, Shank, and Wagner [4] characterize the family of graphs that admit a
straight-line 2-spine drawing with intra-spine edges. They show that the graphs
in this family are a proper subset of outerplanar graphs and describe a linear
time test algorithm.

The present paper studies k-spine drawings for k ≥ 2. It is assumed that
edges can bend at most once and that two edges on the same spine can be
adjacent. We are interested in testing whether or not a graph G admits a k-
spine drawing, and, if so, computing such a drawing. The main results in this
paper are as follows:

– We introduce and study the notion of hamiltonian-with-handles planar
graphs. We show that a planar graph admits a 2-spine drawing if and only
if it is sub-hamiltonian-with-handles.

– We study the relationship between hamiltonian-with-handles graphs and pla-
nar graphs. Namely, we show that there exist planar graphs that are not
sub-hamiltonian-with-handles; consequently, they do not admit a 2-spine
drawing. We also prove that every 2-outerplanar graph G is sub-hamiltonian-
with-handles and that an embedding-preserving 2-spine drawing of G can be
computed from a 2-outerplanar embedding in linear time.

– Motivated by these results, we study the problem of deciding whether or
not a planar graph admits a 2-spine drawing. We show that this problem is
NP-Complete.

– We extend the investigation to k > 2 spines and prove that in this case not
all planar graphs are k-spine drawable. We show that the problem of testing
k-spine drawability remains NP-Complete for any fixed integer k > 2.

For reason of space, some proofs are sketched or omitted.

2 Preliminaries

A k-spine planar drawing of G (k ≥ 1) is a planar drawing of G in which the
vertices of G are drawn as points on one of k horizontal straight lines (called
spines), and the edges of G are drawn as polylines consisting of at most two
segments (i.e. each edge is drawn with at most one bend). If G admits a k-spine
planar drawing, then G is said to be k-spine drawable.

Let Γ be a k-spine planar drawing of G. A jumping segment to vertex v is a
straight-line segment pv contained in an edge incident on v in Γ such that p and
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v lie on different spines. We say that p is its first endpoint and v is its second
endpoint. A jumping sequence J from a vertex v to a vertex w is a sequence
f0, f1, . . . , fh of jumping segments in Γ such that:

1. The first endpoint of f0 is on the same spine as v, coinciding with v or to
the right of v;

2. The second endpoint of fh is on the same spine as w coinciding with w or
to the left of w;

3. If fi and fi+1 are consecutive segments in J , and p is the second endpoint
of fi and q is the first endpoint of fi+1, then p and q lie on the same spine
and p is to the left of q.

The landing segments of J are the horizontal line segments between the second
endpoint of each fi and the first endpoint of its successor in J , along with the
horizontal segment between v and the first endpoint of f0 and the horizontal
segment between the second endpoint of fh and w. Thus, the landing sequence
Lv,w(J) from v to w of the jumping sequence J is the sequence of landing
segments of J whose order corresponds to the order of the segments in J . The
jumping vertex sequence Vv,w(J) of jumping sequence J from vertex v to vertex w
is the sequence of vertices that lie on the landing segments of Lv,w(J). The order
of the vertices corresponds to the order that their segments appear in Lv,w(J),
and then to their left-to-right order in Γ . Whenever the jumping vertex sequence
Vv,w(J) is a simple path with prev(w) = ∅ and next(w) = ∅, we call it a cutting
path of G in Γ . Similarly, if Vv,w(J) can be augmented by edge addition while
maintaining planarity to be a simple path with prev(w) = ∅ and next(w) = ∅,
then we call it an augmenting cutting path of G in Γ .

Cutting paths will be essential to our characterization of 2-spine drawable
graphs later. Very roughly, a cutting path splits the graph into two subgraphs
that are each 1-spine drawable. The following lemma can be proved.

Lemma 1. For each 2-spine planar drawing Γ of a planar graph G, there exists
an augmenting cutting path of G in Γ .

3 Hamiltonian-with-Handles Graphs

In this section we characterize the class of 2-spine drawable graphs. First, we
require a few additional definitions.

Let G be an embedded planar graph. A base path of G is a simple path Π of
G such that the first and the last end-vertices of Π are on the external face of G.
Let Π be a base path and let η be a simple path of G such that no vertex of η is
a vertex of Π . Path η is a handle of Π if for each end-vertex of η there exists an
edge e, called a bridge, connecting the end-vertex to Π . The end-vertex of e in Π
is called an anchor vertex of η. Its other end-vertex is called an extreme vertex
of η. The subpath of Π between the anchor vertices of η is called the co-handle
of η and is denoted η̂. The subgraph of G composed of the cycle Cη formed by
η, its bridge edges and η̂, along with any edges and vertices inside Cη is called
the handle graph of η and is denoted Gη.
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Fig. 1. (a) Illustration of handles along a path Π . η1 is a non-dangling left handle and
η2 is a dangling right handle. Edges (s1, v1) and (t1, w1) are the bridges of η1, and edges
(s2, v2) and (t2, w2) are the bridges of η2. Vertices s1 and t1 are the anchor vertices of
η2, and vertex s2 = t2 is the anchor vertex of η2. Vertices v1 and w1 are the extreme
vertices of η1, and vertices v2 and w2 are the extreme vertices of η2. (b) Some examples
of interleaving handles.

If the two anchor vertices of a handle coincide, then the handle is called a
dangling handle. If we walk along path Π from one end to the other, then every
edge of G that is not in Π is either on the left-hand side of Π or on the right-hand
side. Handles on the left-hand side are called left handles, and handles on the
right-hand side are called right handles. Figure 1(a) illustrates these definitions.

Let η1 and η2 be two handles, and let s1 and t1 be the anchor vertices of η1

such that s1 is encountered before t1 when walking along Π . Similarly, let s2

and t2 be the anchor vertices of η2 such that s2 is encountered before t2 when
walking along Π . Handles η1 and η2 are said to be interleaving if one of the
following two cases holds:
– Gη1 and Gη2 share more than one vertex or share a vertex that is not an

anchor for η1 or η2 (see, for example, handles η1 and η2 or handles η5 and
η6 in Figure 1(b)); or

– η1 is a left dangling handle, η2 is a right dangling handle, and s1 = s2 =
t1 = t2 (see, for example, handles η3 and η4 in Figure 1(b)).

A planar graph G is hamiltonian-with-handles if either G has at most two
vertices or, for some planar embedding of G, the vertices of G can be covered
by a cycle C and a set of paths η1, η2, . . . ηp such that: (i) C is a simple cycle,
(ii) C is the union of a base path Π and an edge, and (iii) η1, η2, . . . ηp are
non-interleaving handles of Π . G is sub-hamiltonian-with-handles if it can be
augmented by adding edges in such a way that the resulting augmented graph
is still planar and hamiltonian-with-handles.

4 Characterizing 2-Spine Drawable Graphs

In this section we prove the following characterization:

Theorem 1. A planar graph G is 2-spine drawable if and only if it is sub-
hamiltonian-with-handles.
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4.1 Proof of Necessity

We first prove that if a planar graph G is 2-spine drawable, then G is sub-
hamiltonian-with-handles. Let Γ be a 2-spine planar drawing of a planar graph
G. By Lemma 1, there exists an augmenting cutting path Π = Vv,w(J) of G in
Γ . We will use Π as our base path. It remains then to prove that the vertices of
G outside Π can be covered with a set of non-interleaving handles.

Let J = f0, f1, . . . , fh, and use λi to denote the landing segment before
each jumping segment fi in the landing sequence Lv,w(J). In addition, let λh+1

denote the landing segment after fh. We call the first and last vertices, denoted
vi and wi, of each λi its corner vertices. We use πi (i = 0, . . . , h + 1) to denote
the subpath of Π consisting of:

– the vertex immediately preceding vi, if it exists;
– all the vertices in λi; and,
– the vertex immediately following wi, if it exists.

We call each πi a pocket. Each pocket has an associated portion of a spine called
its pocket lead :

– Pocket lead π̂0 is the portion of spine that is before λ1;
– Pocket lead π̂i (i = 1, . . . , h) is the portion of spine that is between λi−1 and

λi+1; and,
– Pocket lead π̂h+1 is the portion of spine that is after λh.

A maximal sequence of consecutive vertices in a pocket lead is called candidate
handle.

Lemma 2. Let Γ be a 2-spine planar drawing of a planar graph G, and let Π
be a cutting path of G in Γ . Let πi be a pocket of Π and let π̂i be the pocket
lead of πi (0 ≤ i ≤ h + 1). Let η be a candidate handle in π̂i, and let vη and
wη be the first vertex and the last vertex of η, respectively. Then, there exist two
vertices sη, tη ∈ πi such that either there exist edges (vη, sη) and (wη, tη) in Γ or
these edges can be added to Γ while maintaining the planarity of Γ . Furthermore,
vertex sη is on the spine that does not contain the vertices of η.

Lemma 2 shows that G can be augmented by edge addition so that the
resulting augmented graph can be covered by the cutting path Π plus a set of
handles of Π . In order to prove that G is sub-hamiltonian-with-handles we need
to prove that these handles are pairwise non-interleaving.

Lemma 3. Let Γ be a 2-spine planar drawing of a planar graph G, let Π be
the cutting path of G in Γ , and let η1, η2, . . . , ηp be a set of candidate handles
of G in Γ . Then, Γ can be augmented so that η1, η2, . . . , ηp are pairwise non-
interleaving handles.

Proof. By Lemma 2, Γ can be augmented so that each ηj is a handle, and, if ηj is
in pocket lead π̂i, then its anchors sj and tj belong to πi. We now prove that each
pair of handles is non-interleaving. Without loss of generality, we consider the
pair η1 and η2. By way of contradiction, assume that η1 and η2 are interleaving.
According to the definition there are two cases.
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– Gη1 and Gη2 share more than one vertex or share a vertex that is not an
anchor for η1 or η2.
By definition, η1 and η2 are disjoint so, by Lemma 2, the vertices that Gη1

and Gη2 share are also shared by the pockets corresponding to η1 and η2.
We first consider the case where η1 and η2 belong to different pockets. Two
pockets share vertices only if they are consecutive so we assume, without
loss of generality, that η1 belongs to pocket πi and η2 belongs to the next
pocket πi+1. In that case, the pockets share two vertices, wi and vi+1, which
are consecutive on path Π . Thus, η1 belongs to the same spine as vi+1 and
is left of vi+1. On the opposite spine, η2 is to the right of wi. By Lemma 2,
s2 does not belong to the spine of η2 so s2 appears after vi+1 in path Π ,
or coincides with vi+1. Vertex t2 appears after s2 in Π or coincide with s2.
Hence Gη1 and Gη2 can share at most an anchor vertex. Therefore, η1 and
η2 must belong to the same pocket.
Since η1 and η2 belong to the same pocket, we assume, without loss of
generality, that η1 is to the left of η2 on some spine. Let wη1 be the last vertex
of η1 and let vη2 be the first vertex of η2. The two handles are interleaving
only if the subpaths s1 to t1 of Π and s2 to t2 of Π share an edge. This
implies that t1 is to the right of s2. By definition, next(wη1) is a crossing c1

and prev(vη2) is also a crossing c2 to the right of c1. In addition, an edge
incident on t1 contains the segment c1t1 and another edge incident on s2

contains the segment c2s2. Since c1 is left of c2 and s2 is left of t1, we have
an edge crossing so η1 and η2 do not interleave.

– η1 is a left dangling handle, η2 is a right dangling handle, and s1 = s2 =
t1 = t2. Since η1 is a left dangling handle and η2 is a right dangling handle
then they are on different spines. By Lemma 2 also s1 and s2 are on different
spines, but this is impossible since they coincide. ��
Together, Lemmas 2 and 3 prove the necessary condition of our characteri-

zation:

Lemma 4 (Necessary Condition). If a graph G is 2-spine drawable, then G
is sub-hamiltonian-with-handles.

4.2 Proof of Sufficiency

To prove the sufficiency of the characterization of Theorem 1, we describe an
algorithm that constructs a 2-spine planar drawing of any graph that is sub-
hamiltonian-with-handles. For reasons of space only an outline of the algorithm
is given.

Suppose that G is sub-hamiltonian-with-handles for some planar embedding
and base path Π . Thus, Π divides G into two subgraphs, one to the left of Π
and the other to the right of Π . Very roughly, the algorithm first draws the base
path on the two spines so that it is possible to draw the subgraph that is to
the left of Π , above the drawing of Π , and the subgraph that is to the right
of Π , below the drawing of Π (see also Figure 2). The algorithm performs the
following steps:
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Fig. 2. Illustration of the drawing algorithm. (a) The graph G′, obtained after the
removal of the dangling handles, can be decomposed into two graphs Gleft and Gright

plus one handle graph for each handle. (b) The drawing technique assigns vertices to
each spine so that the left handles can be drawn on spine T1 and the right handles
can be drawn on spine T0. Gleft is drawn completely above Π , and Gright is drawn
completely below Π . The drawings of Gleft and Gright share only vertices of Π .

Drawing the Vertices of Π: The algorithm starts by drawing the vertices of
Π in G on the two spines. Each vertex is assigned to one of the two spines
so that each co-handle of a left handle is on the lower spine and each co-
handle of a right handle is on the higher spine. A position on the spine, i.e.
an x-coordinate, is also assigned to each vertex of Π .

Removing the Dangling Handles: In order to simplify the algorithm, the
dangling handles are removed and replaced with a set of new edges. The
resulting graph G′ then has only non-dangling handles but may have multiple
edges. The removed handles are re-inserted back into the graph in the last
step of the algorithm.

Drawing the Vertices of the Non-dangling Handles: The vertices of G′

that are not in Π (i.e. the vertices of the non-dangling handles of G) are
assigned an x-coordinate and a spine.

Drawing the Edges of Gleft and of Gright: Recall that Π divides G′ into
two subgraphs, one to the left and the other to the right. We roughly define
Gleft to be the subgraph induced by the edges to the left of Π minus any
handle graph edges. We similarly roughly define Gright to the be the sub-
graph induced by the edges to the right of Π minus any handle graph edges.
Thus, the algorithm draws the edges of Gleft and Gright separately, using
the same technique for each, and then merges the two drawings together.

Drawing the Edges of the Handle Graph: After the edges of Gleft and
Gright are drawn, the edges of each handle graph are added to the drawing.

Re-inserting the Dangling Handles: Finally, the dangling handles are re-
inserted into the drawing after removing the edges that were inserted earlier
to replace the handle.

Lemma 5 (Sufficient Condition). If a planar graph G is sub-hamiltonian-
with-handles, then G is 2-spine drawable.

Together, Lemmas 4 and 5 prove Theorem 1.



Hamiltonian-with-Handles Graphs and the k-Spine Drawability Problem 269

2v

v4

v5

v7

v1 v3

v6

v9

v8

v10

s=

v11t=

(a)

v1 v3

v4

2v

v5

s
t s

t

stst

s

t

s

t

s t
s’=

t’=

=N1

(b)

Fig. 3. (a) Maximal planar graph N ; (b) The graph N2 for the proofs of Theorem 2.

5 2-Spine Drawability Testing

The characterization result of Theorem 1 naturally raises two related questions:
(i) Is every planar graph 2-spine drawable? (ii) How hard is it to decide whether
or not a planar graph is 2-spine drawable? In this section we address both ques-
tions.

Theorem 2. There exists a planar graph that is not 2-spine drawable.

Sketch of Proof: Let N1 be the maximal planar graph of Figure 3(a). Graph
N1 is non-hamiltonian [2] and therefore not 1-spine drawable [1]. Let H5 be the
subgraph of N1 obtained by removing the vertices of degree three (the black
vertices) from N1. Given the embedding of H5 in Figure 3(a), let N2 be the
maximal planar graph obtained by inserting a copy of N1 into each face of H5

and then triangulating the result (see Figure 3(b)).
We prove that graph N2 is not 2-spine drawable. To this aim we consider

a weaker version of the necessary condition in Theorem 1: if maximal planar
graph G is 2-spine drawable, then G contains a simple cycle C such that G \ C
is 1-spine drawable. If G is 2-spine drawable, then, by Lemma 1, there exists
an augmenting cutting path Π for a 2-spine planar drawing Γ of G. The end-
vertices of Π are on the external face of G, so, since G is maximal, they are
adjacent. Therefore, Π plus the edge connecting its end-vertices form a simple
cycle C. Since no edge of G crosses Π in Γ , if we remove C from the drawing of
G, we are left with a set of subgraphs of G that are drawn on one spine and are
therefore 1-spine drawable.

We now prove that N2 is not 2-spine drawable. Suppose, by way of contra-
diction, that N2 is 2-spine drawable. By the above necessary condition, there
exists a simple cycle in N2 such that N2 \C is 1-spine drawable. Since N1 is not
1-spine drawable, then C must contain at least one vertex from each copy of N1.
In the embedding of N2 in Figure 3(b), each copy of N1 is inside a different face
of H5. Thus, given any two vertices v1 and v2 from different copies of N1, there
must be a vertex of H5 between v1 and v2 in C. Since there are six copies of N1

and five vertices in H5, then all the vertices of H5 are in C. Thus, C contains at
least one vertex from each copy of N1 and all the vertices of H5; however, this
implies that there exists a hamiltonian circuit in N1, a contradiction. �
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While Theorem 2 gives a negative result, the following theorem describes a
meaningful class of 2-spine drawable graphs.

Theorem 3. Every embedded 2-outerplanar graph is 2-spine drawable and a
2-spine planar drawing of G can be computed in linear time.

Sketch of Proof: By Theorem 1 it is sufficient to prove that G is sub-hamilton-
ian-with-handles. We assume that G is biconnected. If it is not biconnected,
then we can easily make it biconnected by edge addition, while maintaining a
2-outerplanar embedding. Since G is biconnected, the external face of G is a
simple cycle C. Let G0 be the subgraph of G induced by the vertices of C. We
choose our base path Π to be C minus an edge. Each internal vertex, that is,
each vertex that is not on the external face, is either adjacent to a vertex of the
external face or can be made adjacent to a vertex of the external face by adding
an edge. Each internal vertex v is a handle of length one and the edge connecting
v to a vertex of the external face is its bridge. As for the time complexity, we
remark that finding C and the handles takes linear time, and that the drawing
procedure described in Section 4.2 requires linear time if C and the handles are
given. �

Based on the above theorem, one can ask whether embedded 2-outerplanar
graphs can be drawn on less than two spines. We observe that the graph of
Figure 3(b) is 2-outerplanar and that, as observed in the proof of Theorem 2, it
is not 1-spine drawable.

Motivated by the results in Theorems 2 and 3, we investigate the complexity
of deciding whether a planar graph is 2-spine drawable. The next theorem states
that this problem is NP-complete. In fact, we prove that the problem is NP-
complete when restricted to embedded maximal planar graphs and embedding-
preserving 2-spine planar drawings. The original problem and this restricted
version are polynomially equivalent because maximal planar graphs have a linear
number of planar embeddings that can be efficiently computed.

The reduction is from HC-EMP: given an embedded maximal planar graph
G, determine whether or not G is external hamiltonian, i.e. G has a hamilto-
nian circuit with an edge on the external face. Wigderson [11] has proved that
HC-MP (the hamiltonian circuit problem for maximal planar graphs) is NP-
Complete. These two problems are polynomially equivalent, once again because
each maximal planar graph has a linear number of embeddings. The proof of the
next theorem is omitted for reasons of space.

Theorem 4. The problem of determining whether or not a planar graph is 2-
spine drawable is NP-complete.

6 k-Spine Drawability Testing

We extend the study of the 2-spine drawability to the case of the k-spine drawa-
bility. The following results can be proved by inductively generalizing the the
proofs for the 2-spine drawing results.
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Theorem 5. For each fixed integer k > 2, there exists a planar graph that is
not k-spine drawable.

Sketch of Proof: The proof of this theorem is an extension of the proof of
Theorem 2 and is based on a necessary condition for a planar graph to be k-
spine drawable: if planar graph G is k-spine drawable, then G contains a simple
cycle C such that G \ C is (k − 1)-spine drawable. We inductively describe a
sequence of maximal planar graphs Nk that are not k-spine drawable for k ≥ 1:
(i) N1 is the graph of Figure 3(a); (ii) Nk, for k ≥ 2, is obtained from H5 by
inserting a copy of Nk−1 into each face of H5 (assuming the embedding of H5 in
Figure 3(a)) and then triangulating. We prove that Nk is not k-spine drawable
by induction on k. N1 is not 1-spine drawable since it is not hamiltonian. Assume
that Nk−1 is not (k − 1)-spine drawable and, suppose, by way of contradiction,
that Nk is k-spine drawable. By the necessary condition above, there exists a
simple cycle C of Nk such that Nk \C is (k− 1)-spine drawable. Since Nk−1 is
not (k − 1)-spine drawable, then C must contain at least one vertex from each
copy of Nk−1. In the planar embedding of Nk, each copy of Nk−1 is inside a
different face of H5. Thus, given any two vertices v1 and v2 from different copies
of Nk−1, there must be a vertex of H5 between v1 and v2 in C. Since there
are six copies of Nk−1 and five vertices in H5, then all the vertices of H5 are
in C. Thus, C contains at least one vertex from each copy of Nk−1 and all the
vertices of H5. This implies that there exists a hamiltonian circuit in N1 which
is impossible. �

The proof of NP-Completeness for 2-spine drawability testing can be ex-
tended to k-spine drawability for k > 2.

Theorem 6. For each fixed integer k > 2, the problem of determining whether
or not a planar graph is k-spine drawable is NP-Complete.
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Abstract. Sensor network applications frequently require that the sensors know
their physical locations in some global coordinate system. This is usually achieved
by equipping each sensor with a location measurement device, such as GPS.
However, low-end systems or indoor systems, which cannot use GPS, must lo-
cate themselves based only on crude information available locally, such as inter-
sensor distances. We show how a collection of sensors, capable only of measuring
distances to close neighbors, can compute their locations in a purely distributed
manner, i.e. where each sensor communicates only with its neighbors. This can
be viewed as a distributed graph drawing algorithm. We experimentally show
that our algorithm consistently produces good results under a variety of simu-
lated real-world conditions, and is relatively robust to the presence of noise in the
distance measurements.

1 Introduction

Sensor networks are a collection of (usually miniature) devices, each with limited com-
puting and (wireless) communication capabilities, distributed over a physical area. The
network collects data from its environment and should be able to integrate it and answer
queries related to this data. Sensor networks are becoming more and more attractive in
environmental, military and ecological applications (see [12] for a survey of this topic).

The advent of sensor networks has presented a number of research challenges to the
networking and distributed computation communities. Since each sensor can typically
communicate only with a small number of other sensors, information generated at one
sensor can reach another sensor only by routing it thru the network, whose connectivity
is described by a graph. This requires ad-hoc routing algorithms, especially if the sen-
sors are dynamic. Traditional routing algorithms relied only on the connectivity graph
of the network, but with the introduction of so-called location-aware sensors, namely,
those who also know what their physical location is, e.g. by being equipped with a GPS
receiver, this information can be used to perform more efficient geographic routing. See
[10] for a survey of these routing techniques.

Beyond routing applications, location-aware sensors are important for information
dissemination protocols and query processing. Location awareness is achieved primar-
ily by equipping the sensors with GPS receivers. These, however, may be too expensive,
too large, or too power-intense for the desired application. In indoor environments, GPS
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does not work at all (due to the lack of line-of-sight to the satellites), so alternative solu-
tions must be employed. Luckily, sensors are usually capable of other, more primitive,
geometric measurements, which can aid in this process. An example of such a geo-
metric measurement is the distance to neighboring sensors. This is achieved either by
Received Signal Strength Indicator (RSSI) or Time of Arrival (ToA) techniques. An im-
portant question is then whether it is possible to design a distributed protocol by which
each sensor can use this local information to (iteratively) compute its location in some
global coordinate system.

This paper solves the following sensor layout problem: Given a set of sensors dis-
tributed in the plane, and a mechanism by which a sensor can estimate its distance to
a few nearby sensors, determine the coordinates of every sensor via local sensor-to-
sensor communication. These coordinates are called a layout of the sensor network.

As stated, this problem is not well-defined, because it typically will not have a
unique solution. A unique solution would mean that the system is rigid, in the sense
that the location of any individual sensor cannot be changed without changing at least
one of the known distances. When all

(
n
2

)
inter-sensor distances are known, the solu-

tion is indeed unique, and is traditionally solved using the Classical Multidimensional
Scaling (MDS) technique [1]. When only a subset of the distances are known, more
sophisticated techniques must be used.

When multiple solutions exist, the main phenomenon observed in the solutions is
that of foldovers, where entire pieces of the graph fold over on top of others, without
violating any of the distance constraints. The main challenge is to generate a solution
which is fold-free. Obviously the result will have translation, orientation and reflection
degrees of freedom, but either these are not important, or can be resolved by assigning
some known coordinates to three sensors.

In real-world sensor networks, noise is inevitable. This manifests in the inter-sensor
noise measurements being inaccurate. Beyond the obvious complication of the dis-
tances possibly no longer being symmetric, thus violating the very essence of the term
“distance”, there may no longer even exist a solution realizing the measured edge
lengths. The best that can be hoped for, in this case, is a layout whose coordinates
are, up to some acceptable tolerance, close to the true coordinates of the sensors.

In order to be easily and reliably implemented on a sensor network, the solution
to the layout problem should be fully distributed (decentralized). This means that each
sensor should compute based on information available only at that sensor and its im-
mediate neighbors. The class of neighbors is typically characterized by a probabilistic
variant of the disk graph model: Any sensor within distance R1 is reachable, any sensor
beyond distance R2 is not reachable, and any sensor at a distance between R1 and R2

is reachable with probability p. Of course, information from one sensor may eventually
propagate thru the network to any other sensor, but this should not be done explicitly.

2 Related Work

The problem of reconstructing a geometric graph given its edge-lengths has received
some attention in the discrete geometry and computational geometry communities,
where it is relevant for molecule construction and protein folding applications. De-
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ciding whether a given graph equipped with edge lengths is rigid in 2D – i.e. admits a
unique layout realizing the given edge lengths – is possible in polynomial time for the
dense class of graphs known as generic graphs [7]. However, computing such a layout
is in general NP-hard [14]. This does not change even if a layout is known to exist (as
in our case).

The problem of distributed layout of a sensor network has received considerable
attention in the sensor network community. A recent work of Priyantha et al [11] classi-
fies these into anchor-based vs. anchor-free algorithms and incremental vs. concurrent
algorithms. Anchor-based algorithms rely on the fact that a subset of the sensors are
already aware of their locations, and the locations of the others are computed based on
those. In practice a large number of anchor sensors are required for the resulting loca-
tion errors to be acceptable. Incremental algorithms start with a small core of sensors
that are assigned coordinates. Other sensors are repeatedly added to this set by local
trigonometric calculations. These algorithms accumulate errors and cannot escape lo-
cal minima once they are entered. Concurrent algorithms work in parallel on all sensors.
They are better able to avoid local minima and avoid error accumulation. Priyantha et
al [11] review a number of published algorithms and their classifications. All of them,
however, are not fully distributed.

The algorithm we describe in this paper is most similar in spirit to the so-called
Anchor-Free Localization (AFL) algorithm proposed by Priyantha et al [11]. The AFL
algorithm operates in two stages. In the first stage a heuristic is applied to try gener-
ate a well-spread fold-free graph layout which “looks similar” to the desired layout.
The second stage applies a “stress-minimization” optimization procedure to correct and
balance local distance errors, converging to the final result. The heuristic used in the
first stage involves the election of five reference sensors. Four of these sensors are well-
distributed on the periphery of the network, and serve as north, east, south and west
poles. A fifth reference sensor is chosen at the center. Coordinates are then assigned
to all nodes, using these five sensors, reflecting their assumed positions. Unfortunately,
this process does not lend itself easily to distribution. The second stage of the AFL algo-
rithm attempts to minimize the partial stress energy using a gradient descent technique.
At each sensor, the coordinates are updated by moving an infinitesimal distance in the
direction of the spring force operating on the sensor. This is a fully distributed protocol.
It, however, involves a heuristic choice of the infinitesimal step, and can be quite slow.

Our algorithm also involves two stages with similar objectives. The first aims to
generate a fold-free layout. This is done based on a distributed Laplacian eigenvector
computation which typically spreads the sensors well. The second stage uses the result
of the first stage as an initial layout for an iterative stress-minimization algorithm. As
opposed to AFL, it is not based on gradient descent, rather on a more effective ma-
jorization technique.

Once again we emphasize that the main challenge is to design algorithms which
are fully distributed. This is a major concern in sensor network applications, and there
is an increasing interest in designing such solutions. These turn out sometimes to be
quite non-trivial. Probably the simplest example is a distributed algorithm to compute
the sum (or average) of values distributed across the network; see [13].
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3 The Problem

We are given a graph G(V = {1, . . . , n}, E), and for each edge 〈i, j〉∈ E – its Eu-
clidean “length” lij . Denote a 2D layout of the graph by x, y ∈ R

n, where the coordi-
nates of vertex i are (xi, yi). Denote dij=

√
(xi − xj)2 + (yi − yj)2.

In the non-noisy version of the problem, we know that there exists a layout of the
sensors that realizes the given edge lengths (i.e. dij = lij). Our goal is then to reproduce
this layout. This layout is usually not unique. For example consider a 2n × 2n square
grid, where each internal sensor is connected to its four immediate neighbors with an
edge of length one. We can realize all lengths using the degenerate 1D layout where
half of the sensors are placed on 0 and the other half is placed on 1.

Fortunately, there is additional information that we may exploit to eliminate spuri-
ous solutions to the layout problem – we know that the graph is a full description of the
close sensors. Consequently, the distance between each two nonadjacent sensors should
be greater than some constant r, which is larger than the longest edge. This can further
constrain the search space and eliminate most undesired solutions. Formally, we may
pose our problem as follows:

Layout Problem. Given a graph G({1, . . . , n}, E), and for each edge 〈i, j〉 ∈ E – its
length lij , find an optimal layout (p1, . . . , pn) (pi ∈ R

d is the location of sensor i),
which satisfies for all i �= j:

{‖pi − pj‖ = lij if 〈i, j〉 ∈ E
‖pi − pj‖ > R if 〈i, j〉 /∈ E

Where R = max〈i,j〉∈E lij . For the rest of this paper we assume d = 2.
It seems that an optimal layout is unique (up to translation, rotation and reflection)

in many practical situations. For example, it overcomes the problem in the 2n × 2n
grid example described above. An optimal layout is similar to that generated by com-
mon force-directed graph drawing algorithms that place adjacent nodes closely while
separating nonadjacent nodes. Therefore, we may exploit some known graph drawing
techniques. For example, separating nonadjacent sensors can be achieved by solving an
electric-spring system with repulsive forces between these sensors [2, 3]. Another possi-
bility is to somehow estimate the distances lij between nonadjacent sensors (e.g., as the

graph-theoretic distance) and then to minimize the full stress energy:
∑

i<j
(dij−lij)

2

l2ij

using an MDS-type technique; see [8].
However, since we aim at a distributed algorithm which should minimize communi-

cation between the sensors, dealing with repulsive forces or long-range target distances
is not practical, as this will involve excessive inter-sensor interaction, which is very ex-
pensive in this scenario. To avoid this, we propose an algorithm which is based only on
direct information sharing between adjacent sensors, avoiding all communication be-
tween nonadjacent sensors or any centralized supervision. Note that such a restriction
rules out all common algorithms for general graph drawing problem; we are not aware
of any layout algorithm that satisfies it.

In the real-life noisy version of the problem, the measured distances lij are contam-
inated by noise: lij = dij + εij . This means that there might not even exist a solution
to the optimal layout problem. In this case we would like to minimize the difference
between the true location of the sensors and those computed by the algorithm.
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4 Smart Initialization and Eigen-projection

A useful energy function which is minimized by the desired layout is the localized stress
energy:

Stress(x, y) =
∑

〈i,j〉∈E

(dij(x,y) − lij)2 (1)

Note that this energy is not normalized, as opposed to the full stress energy. This non-
convex energy function may have many local minima, which an optimizer may get
stuck in. However, since in the non-noisy case, we are guaranteed the existence of a
layout where dij = lij , namely Stress(x, y) achieves the global minimum of zero, it
is reasonable to hope that if we start with the optimization process at a “smart” initial
layout, the process will converge to this global minimum. To construct such an initial
layout, we exploit the fact that nonadjacent sensors should be placed further apart. This
means that we seek a layout that spreads the sensors well. We first deal with the one-
dimensional case. We will design an energy function which is minimized by such a
layout, and can be optimized in a strictly distributed fashion. The function is defined as
follows:

E(x) =

∑
〈i,j〉∈E wij ||xi − xj ||2∑

i<j ||xi − xj ||2 (2)

Here, wij is some measure for the similarity of the adjacent sensors i and j. It should
be derived from lij , e.g., wij = 1/(lij + α) or wij = exp(−αlij), α � 0; in our
experiments we used wij = exp(−lij). Minimizing E(x) is useful since it tries to
locate adjacent sensors close to each other while separating nonadjacent sensors. It
can also be solved fairly easily. Denote by D the diagonal matrix whose i’th diagonal
entry is the sum of the i’th row of W : Dii =

∑
j:〈i,j〉∈E wij . The global minimum

of E(x) is the eigenvector of the related weighted Laplacian matrix Lw = D − W
associated with the smallest positive eigenvalue; see [6, 9]. In practice, it is better to
work with the closely related eigenvectors of the transition matrix D−1W , which have
some advantages over the eigenvectors of Lw; see [9]. Note that the top eigenvalue of
D−1W is λ1 = 1, associated with the constant eigenvector v1 = 1n = (1, 1, . . . , 1), so
the desired solution is actually the second eigenvector v2.

The vector v2 can be computed in a distributed manner by iteratively averaging the
value at each sensor with the values of its neighbors:

xi ← a

(
xi +

∑
〈i,j〉∈E wijxj∑
〈i,j〉∈E wij

)
(3)

Readers familiar with numerical linear algebra will recognize this process as power
iteration of the matrix I + D−1W . Power iteration usually converges to the eigenvec-
tor of the iterated matrix corresponding to the eigenvalue with highest absolute value.
However, here we initialize the process by a vector y which is D-orthogonal to v1,
namely yT Dv1 = 0, using a distributed method that will be described shortly. Hence,
the process will converge to v2 – the next highest eigenvector of I + D−1W ; see [9].
D-orthogonality, rather than simple orthogonality, is required because D−1W is not
symmetric. The constant a > 0 controls the growth of ‖x‖; in our implementation we
used a = 0.51.
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4.1 Two Dimensional Layout

We now turn our attention to the two-dimensional layout problem. E(x) is defined also
in higher dimensions (where x is short for (x, y)), and a “smart” initial 2D layout is
achieved by taking the x coordinate to be v2 – the second eigenvector of D−1W , and
the y coordinate to be v3 – the third eigenvector of D−1W . Unfortunately, the power
iteration (3) will not detect v3, as it is dominated by v2, unless we start the process (3)
with a vector D-orthogonal to x = v2.

Constrained by the distributed computation requirement, it is not easy to initialize
the process with a vector D-orthogonal to v2. We resort to the following lemma:

Lemma 1. Given two vectors x and y and matrices D and A, the vector Ay is D-
orthogonal to x if AT Dx = 0.

Proof. Since AT Dx = 0, then yT AT Dx = 0. Equivalently (Ay)T Dx = 0 and the
lemma follows. ��
Therefore, it suffices to construct a “local matrix” A such that AT Dx = 0. By “local”
we mean that Ai,j �= 0 only if 〈i, j〉 ∈ E. This will enable a distributed computation.
In our case when D is diagonal, a suitable matrix is the following:

Ai,j =






−xj/Dii 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E, i �= j i, j = 1, . . . , n
−∑k Ai,k i = j

It is easy to verify that AT Dx = 0.
To summarize, to obtain y = v3, we pick some random vector u, and initialize y

with Au. Note that the computation of Au involves only local operations, and can be
easily distributed. Then, we run the power iteration (3) on the vector y.

While the initial vector is D-orthogonal to v2, it is not necessarily D-orthogonal
to v1 = 1n. Hence, after many iterations, the result will be y = αv1 + εv3, for some
very small ε. While the process ultimately converges to what seems to be an essentially
useless vector, its values near the limit is what is interesting. Since v1 is the constant
vector – 1n, these values are essentially a scaled version of v3 displaced by some fixed
value (α) and they still retain the crucial information we need.

However when the numerical precision is low and the ratio α/ε is too high we
might lose the v3 component. Fortunately, we can work around this by translating and
scaling y during the power iteration. Specifically, every βn iterations (we use β = 1/2)
compute mini yi and maxi yi. A distributed computation is straightforward and can be
completed with number of iterations bounded by the diameter of the graph (at most
n− 1). Then, linearly transform y by setting

yi ← yi −mini yi

maxi yi −mini yi
− 1

2
, i = 1, . . . , n (4)

After this, mini yi = −0.5 and maxi yi = 0.5. Since translation is equivalent to addi-
tion of γv1 and scaling cannot change direction, we can still express y as α̂v1 + ε̂v3.

Now assume, without loss of generality, that maxi v3 − mini v3 = 1, and recall
that v1 = (1, 1, . . . , 1). The D-orthogonality of v3 to 1n implies: maxi v3 > 0 and
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mini v3 < 0. In turn, mini yi = −0.5 and maxi yi = 0.5 imply that |α̂| < 0.5.
Moreover, since all the variability of y is due to its v3 component, we get ε̂ = 1.
Therefore, (4) guarantees that the magnitude of the v3 component is larger than that of
the v1 component, avoiding potential numerical problems.

4.2 Balancing the Axes

Obviously, the process described in Section 4.1 can yield x and y coordinates at very
different scales. Usually, we require that ||x|| = ||y||, but this is difficult to achieve
in a distributed manner. An easier alternative that is more suitable for a distributed
computation is a balanced aspect ratio, i.e.: maxi xi −mini xi = maxi yi −mini yi .

Since the computation of the y-coordinates already achieved maxi yi−mini yi = 1,
it remains to ensure that the x coordinates have the same property. We achieve this by
performing: xi ← xi/(maxi xi −mini xi) , i = 1, . . . , n .

5 Optimizing the Localized Stress Energy

At this point we have reasonable initial locations for both the x- and y-coordinates,
and are ready to apply a more accurate 2D optimization process for minimizing the
localized stress energy (1). A candidate could be simple gradient descent, which is
easily distributed, as in [11]. Each sensor would update its x-coordinates as follows:

xi(t + 1) = xi(t) + δ
∑

j:〈i,j〉∈E

(xj(t)− xi(t))
dij(t)

(dij(t)− lij) , (5)

where dij(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2. The y-coordinates are handled
similarly. This involves a scalar quantity δ whose optimal value is difficult to estimate.
Usually a conservative value is used, but this slows down the convergence significantly.

A more severe problem of this gradient descent approach is its sensitivity to the scale
of the initial layout. Obviously the minimum of E(x) is scale-invariant, since E(cx) =
E(x) for c �= 0. However, the minimum of Stress(x) is certainly not scale-invariant as
we are given concrete target edge lengths. Therefore before applying gradient descent
we have to scale the minimum of E(x) appropriately.

Fortunately, we can avoid the scale problem by using a different approach called
majorization. Besides being insensitive to the original scale, it is usually more robust
and avoids having to fix a δ for the step size. For a detailed description of this technique,
we refer the interested reader to multidimensional scaling textbooks, e.g., [1]. Here we
provide just a brief description.

Using the Cauchy-Schwartz inequality we can bound the localized 2D stress of a
layout (x, y) by another expression of (x, y) and (a, b), as follows:

Stress(x, y) � xT Lx + yT Ly + xT L(a,b)a + yT L(a,b)b + c , x, y, a, b ∈ R
n , (6)

with equality when x = a and y = b. The constant c is independent of x, y, a, b. L is
the graph’s n× n Laplacian matrix (also independent of x, y, a, b) defined as:
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Li,j =






−1 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E i, j = 1, . . . , n
−∑j �=i Li,j i = j

The weighted Laplacian n× n matrix L(a,b) is defined as:

L
(a,b)
i,j =






−lij · inv
(√

(ai − aj)2 + (bi − bj)2
)
〈i, j〉 ∈ E

0 〈i, j〉 /∈ E i, j = 1, . . . , n

−∑j �=i L
(a,b)
i,j i = j

where we define inv(x) = 1/x for x �= 0 and inv(x) = 0 otherwise.
Given a layout a, b, we can find another layout (x, y) which minimizes the r.h.s.

xT Lx + yT Ly + xT L(a,b)a + yT L(a,b)b + c by solving the linear equations:

Lx = L(a,b)a
Ly = L(a,b)b

Using inequality (6) we are guaranteed that the stress of the layout has decreased when
going from (a, b) to (x, y), i.e., Stress(x, y) � Stress(a, b). This induces an iterative
process for minimizing the localized stress. At each iteration, we compute a new layout
(x(t + 1), y(t + 1)) by solving the following linear system:

L · x(t + 1) = L(x(t),y(t)) · x(t)
L · y(t + 1) = L(x(t),y(t)) · y(t)

(7)

Without loss of generality we can fix the location of one of the sensors (utilizing the
translation degree of freedom of the localized stress) and obtain a strictly diagonally
dominant matrix. Therefore, we can safely use Jacobi iteration [4] for solving (7), which
is easily performed in a distributed manner as follows.

Assume we are given a layout (x(t), y(t)) and want to compute a better layout
(x(t + 1), y(t + 1)) by a single iteration of (7). Then we iteratively perform for each
i = 1, . . . , n:

xi ← 1
degi

∑

j:〈i,j〉∈E

(xj + lij(xi(t)− xj(t)) inv(dij(t)))

yi ← 1
degi

∑

j:〈i,j〉∈E

(yj + lij(yi(t)− yj(t)) inv(dij(t)))
(8)

Note that x(t), y(t) and dij(t) are constants in this process which converges to (x(t+1),
y(t+1)). Interestingly, when deriving (x(t + 1), y(t + 1)) only the angles between sen-
sors in (x(t), y(t)) are used. Therefore, this process is independent of the scale of the
current layout.

It is possible to simplify the 2D majorization process somewhat. When the iterative
process (8) converges the layout scale issue is resolved. Hence, instead of continuing
with another application of (7) to obtain a newer layout, it is possible to resort to a faster
local process (which, in contrast, is scale-dependent). In this process each sensor uses a
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local version of the energy where all other sensors are fixed. By the same majorization
argument the localized stress decreases when applying the following iterative process:

xi ← 1
degi

∑

j:〈i,j〉∈E

(xj + lij(xi − xj)inv(dij))

yi ← 1
degi

∑

j:〈i,j〉∈E

(yj + lij(yi − yj)inv(dij))
(9)

Here, as usual dij =
√

(xi − xj)2 + (yi − yj)2. This process is similar to (8), except
that xi, xj and dij are no longer constants. We have used this in our implementation,
and it seems to accelerate the convergence. Note that this is quite close to the gradient
descent (5) when using δ = 1/degi, a different stepsize per sensor.

6 Experimental Results

We have implemented our algorithm and the AFL algorithm [11], and compared their
performance on a variety of inputs. In the first experiment, we constructed a family of
random graphs containing 1000 sensors distributed uniformly in a 10×10 square. Each
two sensors are connected if they are in range R, where we used R = 0.5, 0.6, 0.7,
0.8, 0.9, 1. If the graph is disconnected, the largest connected component was taken.
We measure the sensitivity of the algorithms to noise controlled by the fractional range
measurement error parameter σ. The distances fed as input to the algorithms are the true
distances lij , to which uniformly distributed random noise in the range [−σlij , + σlij ]
is added; σ = 0, 0.05, 0.1, 0.25, 0.5. Consequently, each graph in this family is charac-
terized by the values of R and σ. For each pair (R, σ) we generated 250 corresponding
random graphs. Some properties of these graphs are given in [5].

It seems that the key to successful results is a good initial layout from which the
stress minimization routine can start. To compare the performance of our algorithm to
that of the AFL algorithm and a more naive method, we ran three different initialization
methods on each input followed by the same stress minimization algorithm: (1) Stress
majorization with random initialization (RND). (2) Stress majorization with AFL ini-
tialization (AFL). (3) Stress majorization with eigen-projection initialization (EIGEN).
For each method the quality of the final solution is measured by its Average Relative
Deviation (ARD), which measures the accuracy of all resulting pairwise distances:

ARD =
2

n(n− 1)

∑

i<j

|dij − lij |
min(lij , dij)

Note that here we sum over all distances between sensors, not just the short range dis-
tances, as reflected by the edges of the graph. The results are summarized in Table 1,
where each cell shows the average ARD of RND/AFL/EIGEN for 250 different graphs
characterized by the same (R, σ) pair. For all graphs, EIGEN and AFL outperformed
RND by a significant margin. Also, consistently, EIGEN outperformed AFL by a small
margin. As expected, the algorithm performance improves as the graphs become denser,
revealing more information about the underlying geometry. The sparser graphs contain
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nodes of degree smaller than 3, which are inherently non-rigid thereby preventing ac-
curate recovery. We can also see that optimization is quite robust in the presence of
noise and performance deteriorates only moderately as σ grows. In Figure 1 we show
typical results of EIGEN, before and after stress minimization. For comparison, we also
provide the original layout and the AFL initialization for the same graph.

In another experiment, we worked with 350 sensors distributed uniformly on a ring,
with external radius 5 and internal radius 4. Again, the graphs are characterized by the
range and noise parameters (R, σ), and for each such a pair we generated 250 corre-
sponding random graphs. Here we worked with a different range of R, producing aver-
age degrees similar to those of the previous experiment; see [5]. Note that we avoided
working with R � 0.6 as for these values the largest connected component broke the
ring topology with high probability, making recovery impossible. We ran RND, AFL
and EIGEN on these graphs, the results summarized in Table 2. The topology of the ring

Fig. 1. Reconstructing a 1000-sensor proximity graph using EIGEN; here R = 0.8, σ = 0.
Original layout and alternative AFL initialization are also shown.
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Table 1. Average relative deviation (ARD) of square-based proximity graphs with varying (R, σ)
generated by RND / AFL / EIGEN. Each result is averaged over 250 graphs.

σ = 0 σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.5 12.6 0.099 0.079 12.6 0.10 0.079 12.4 0.10 0.092 12.3 0.12 0.091 11.6 0.26 0.22
R = 0.6 11.2 0.026 0.0093 11.0 0.028 0.013 10.8 0.031 0.019 11.0 0.046 0.031 10.4 0.12 0.10
R = 0.7 9.70 0.013 0.0031 9.79 0.015 0.0048 9.77 0.017 0.0076 9.71 0.026 0.018 9.53 0.060 0.050
R = 0.8 8.51 0.0086 0.0016 8.52 0.0097 0.0033 8.42 0.012 0.0059 8.58 0.020 0.014 8.49 0.041 0.034
R = 0.9 7.29 0.0064 0.0011 7.37 0.0082 0.0028 7.28 0.011 0.0051 7.37 0.017 0.013 7.50 0.033 0.028
R = 1.0 6.31 0.0054 0.0008 6.40 0.0068 0.0025 6.51 0.0079 0.0047 6.33 0.016 0.012 6.52 0.030 0.026

Table 2. Average relative deviation (ARD) of disk-based proximity graphs with varying (R, σ)
constructed using RND / AFL / EIGEN. Each result is averaged over 250 graphs.

σ = 0 σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.7 4.96 0.34 0.14 5.16 0.26 0.13 4.94 0.26 0.13 4.66 0.33 0.15 4.88 0.39 0.21
R = 0.8 7.69 0.19 0.091 7.53 0.23 0.091 7.54 0.020 0.090 7.81 0.19 0.10 7.41 0.29 0.16
R = 0.9 7.52 0.14 0.064 7.35 0.16 0.065 7.56 0.14 0.065 7.27 0.18 0.080 7.14 0.22 0.13
R = 1.0 6.61 0.10 0.041 6.62 0.11 0.045 6.41 0.11 0.046 6.54 0.13 0.055 6.40 0.15 0.091
R = 1.1 5.77 0.10 0.029 5.72 0.098 0.031 5.69 0.10 0.035 5.62 0.12 0.044 5.69 0.14 0.070
R = 1.2 4.97 0.11 0.021 4.98 0.11 0.021 4.88 0.11 0.026 5.08 0.13 0.032 4.97 0.16 0.058

is different than that of the square, and resulted in a lower quality results. However, all
the observations from the square-based experiment still hold here. Note, that in a ring
there is no natural central node. Therefore, the AFL initialization that identifies one
node as the center is less appropriate here. A surprising finding is that the performance
of AFL seems to deteriorate when increasing R from 1.1 to 1.2, instead of improving, as
would be expected. We observed this also with other types of graphs we experimented
with. We believe that this is due to the fact that the first phase of AFL models the net-
work as an unweighted graph. Thus, as the variance of the true edge lengths becomes
larger, this model is less accurate.

7 Conclusion

We have presented an algorithm to generate sensor network layouts in a fold-free man-
ner based on noisy measurements of short-range inter-sensor distances. This algorithm
is fully distributed (decentralized), and relies on no explicit communication other than
that between immediate neighbors. The fully distributed nature of the algorithm is cru-
cial for a practical implementation which avoids excessive communication. To the best
of our knowledge, this is the first fully distributed algorithm for graph drawing. Beyond
this important feature, judging from our experiments, our algorithm seems to be supe-
rior to the state-of-the-art in the sensor network literature. We discuss several extensions
of the basic algorithm in [5].
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Abstract. Force-directed graph drawing algorithms are widely used for
drawing general graphs. However, these methods do not guarantee a
sub-quadratic running time in general. We present a new force-directed
method that is based on a combination of an efficient multilevel scheme
and a strategy for approximating the repulsive forces in the system by
rapidly evaluating potential fields. Given a graph G = (V, E), the asymp-
totic worst case running time of this method is O(|V | log |V |+ |E|) with
linear memory requirements. In practice, the algorithm generates nice
drawings of graphs containing 100000 nodes in less than 5 minutes. Fur-
thermore, it clearly visualizes even the structures of those graphs that
turned out to be challenging for some other methods.

1 Introduction

Given a graph G = (V, E), force-directed graph drawing methods generate draw-
ings of G in the plane in which each edge is represented by a straight line con-
necting its two adjacent nodes. The computation of the drawings is based on
associating G with a physical model. Then, an iterative algorithm tries to find
a placement of the nodes so that the total energy of the physical system is
minimal. Such algorithms are quite popular, since they are easy to implement
and often generate nice drawings of general graphs. In practice, classical force-
directed algorithms like [5, 12, 6, 4] are not well suited for drawing large graphs
containing many thousands of vertices, since their worst case running time is
at least quadratic. Significantly accelerated force-directed algorithms have been
developed by [15, 14, 7, 9, 17]. These algorithms generate nice drawings of a big
range of large graphs in reasonable time. Some of these methods guarantee a
sub-quadratic running time in special cases or under certain assumptions but
not in general. Others are not sub-quadratic in any case. Besides force-directed
algorithms other very fast methods for drawing large graphs have been invented
by Harel and Koren [10] and Koren et al. [13] that do not use a physical force
model.

In Section 2 we sketch the most important parts of a new force-directed graph
drawing algorithm that guarantees a sub-quadratic worst case running time. An
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excerpt of the experimental results is given in Section 3. For space restrictions,
we can neither describe every basic component of this algorithm in detail, nor
compare our method with the existing ones in a satisfactory way. This will be
presented in the full version of this paper.

2 The Fast Multipole Multilevel Method (FM 3)

We describe the most important parts of the new method that is a combination
of an efficient multilevel technique with an O(|V | log |V |) approximation algo-
rithm to obtain the repulsive forces between all pairs of nodes/particles. Other
important parts like a preprocessing step that enables the algorithm to draw
graphs with nodes of different sizes and a part that is designed to handle dis-
connected graphs are not described here. Therefore, we simply assume that the
given graph G is a connected weighted graph. The edge weight of each edge
represents its individual desired edge length.

2.1 The Force Model

First, we must choose a force model. This is done by identifying the nodes with
charged particles that repel each other and by identifying edges with springs, like
in most classical force-directed methods. If in R

2 two charges u, v are placed at a
distance d from each other, the repulsive forces between u and v are proportional
to 1/d. Our choice of the spring forces is not strictly related to physical reality.
We found that choosing the spring force of an edge e to be proportional to
log(d/desired edgelength(e)) · d2 gives very good results in practice.

2.2 The Multilevel Strategy

Since in classical force-directed algorithms many iterations are needed to trans-
form an initial (random) drawing of a large graph into the final drawing, one
might hope to reduce the constant factor of force-directed algorithms by us-
ing a multilevel strategy. Multilevel strategies have been introduced into force-
directed graph drawing by [7, 9, 17] and share the following basic ideas: Given
G = (V, E) =: G0 they create a series of Graphs G1, . . . , Gk with decreasing
sizes. Then, the smallest graph Gk at level k is drawn using (a variation of)
a classical force-directed (single-level) algorithm. This drawing is used to get
an initial layout of the next larger graph Gk−1 that is drawn afterwards. This
process is repeated until the original graph G0 is drawn.

Unlike previous approaches, we want to design a multilevel algorithm that
has provably the same asymptotic running time as the single-level algorithm
that is used to draw all graphs Gi with i = 0, . . . , k.

The idea of our multilevel step is as follows: First, we partition the node
set of G into disjoint subsets. The induced connected subgraphs are called solar
systems. A solar system S consists of one central sun node (s-node). Each of
its neighbors is called planet node (p-node) and is also contained in S. The rest
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of the nodes in a solar system are called moon nodes (m-nodes), and each m-
node is required to have graph-theoretic distance 2 to its associated s-node in G.
Each m-node is assigned to its nearest neighboring p-node in S. This p-node is
relabeled planet with moon node (pm-node), indicating that at least one m-node
is assigned to it. Thus, the subgraph of G that is induced by a solar system has
diameter at most 4.
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Fig. 1. (left) Drawing of G = G0. (right) Drawing of G1.

Figure 1(left) shows an example of a grid graph that is partitioned into 17
solar systems. The sun, planet, and moon nodes are represented by the white big,
grey medium, and black small circles, respectively. The solid edges represent intra
solar system edges, whereas the edges connecting nodes of two different solar
systems (inter solar system edges) are dashed edges. The edges that connect an
m-node and its assigned pm-node are drawn as directed edges, indicating that
the m-node is assigned to this planet node.

We sketch a linear time method for constructing a solar system partitioning
of a graph G that works in three steps: First, we create the sun nodes. We store
a candidate set V ′ that is a copy of V and randomly select a first sun node s1

from V ′. Then, s1 and all nodes that have a graph-theoretic distance at most 2
from s1 in G are deleted from V ′. We iteratively select the next sun nodes in the
same way, until V ′ is empty and Suns = s1, . . . , sl is the list of all sun nodes.
Second, for each si ∈ Suns all its neighbors are labeled as planet nodes. Finally,
there might be some nodes in V that are neither labeled as planet nodes, nor as
sun nodes. These nodes are the moon nodes, and we assign each moon node to
the planet node that is its nearest neighbor in G.

Given a solar system partition of the node set of G = G0, we construct
a smaller graph G1 by collapsing (shrinking) the node set of each solar sys-
tem into one single node and deleting parallel edges (see Figure 1(right)). The
smaller graph should reflect the attributes of the bigger graph as much as pos-
sible. Therefore, we initialize the desired edge length of an edge e1 = (u1, v1)
in G1 as follows: Suppose that p-node u0 belongs to the solar system S0 with
sun node s0 in G0 and p-node v0 belongs to the solar system T0 with sun node
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t0 in G0. Let us also assume that the edge e0 = (u0, v0) is the unique inter
solar system edge connecting S0 and T0. Furthermore, we assume that nodes
u1 and v1 in G1 are obtained by collapsing S0 and T0. Then, we set the de-
sired edge length of e1 to desired edgelength((s0, u0)) + desired edgelength(e0) +
desired edgelength((v0, t0)). For later use, we denote the corresponding path P0

and its length p0. If more than one inter solar system edge in G0 connects nodes
of S0 with nodes of T0, we just take the average of the previously calculated
desired edge lengths. The case that u0 and/or v0 is a moon node is treated
similarly.

This partitioning and collapsing process is iterated until the smallest graph
Gk contains only a constant number of nodes. Then, this graph is drawn by an
algorithm that is introduced later.

Going upwards to Gk−1, we assign initial positions to the nodes of Gk−1 in
two steps: First, we place each sun node s of Gk−1 at the position of its an-
cestor (that represents its solar system) in the drawing of Gk. Now, we place
the other nodes of Gk−1. This is done by using information that has been gen-
erated during the collapsing process: Given u0, v0, s0, t0, p0, and P0 like in the
example above, we place u0 on the line connecting s0 and t0 at the position
Pos(s0) + desire edgelength((s0,u0))

p0
(Pos(t0)− Pos(s0)). If u0 belongs to more than

one such path P0, we take the barycenter of all these positions. The case that
u0 is a moon node is treated similarly.
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Fig. 2. (a) Drawing of G2. (b) Initial placement of G1. (c) Drawing of G1.

Figure 2 demonstrates this procedure. Figure 2(a) is a drawing of the multi-
level graph G2 of Figure 1(left). Figure 2(b) is the initial position of the drawing
of G1 that is obtained from the drawing of G2. Figure 2(c) shows G1 that is
drawn with a new force-directed single-level algorithm.

The total running time of the multilevel strategy is tmult(|V |, |E|) =
∑k−1

i=0

tcreate(|Vi|, |Ei|) +
∑k−1

i=0 tinit pl(|Vi|, |Ei|) +
∑k

i=0 tsingle(|Vi|, |Ei|). Here, tcreate
(|Vi|, |Ei|) denotes the time that is needed to create the multilevel graph Gi+1

from Gi. tinit pl(|Vi|, |Ei|)) denotes the time that is needed to get an initial
placement of the nodes of the multilevel graph Gi from the drawing of Gi+1.
tsingle(|Vi|, |Ei|) is the time that the chosen single-level algorithm needs to draw
Gi.

Since every node of Gi belongs to a solar system, and a solar system contains
at least two nodes, Gi+1 contains at most |Vi|/2 nodes. Therefore, k ≤ log |V |.
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Let us assume that |Ei+1| ≤ |Ei|/2 for all i = 0, . . . , k − 1. Since both
tcreate(|Vi|, |Ei|) and tinit pl((|Vi|, |Ei|) are linear in |Vi|+ |Ei| we get

∑k−1
i=0 tcreate

(|Vi|, |Ei|) +
∑k−1

i=0 tinit pl(|Vi|, |Ei|) = O(|V | + |E|). Furthermore, we get the
following estimation on tsingle:∑k

i=0 tsingle(|Vi|, |Ei|) ≤
∑k

i=0 tsingle

(
|V |
2i , |E|

2i

)
≤ tsingle(|V |, |E|)

∑k
i=0

1
2i ≤

2 tsingle(|V |, |E|). The second inequality is true for sufficiently large values of
|V | and |E|, since tsingle(|V |, |E|) = Ω(|V |+ |E|). Therefore, tmult(|V |, |E|) and
tsingle(|V |, |E|) have the same asymptotic running time.

Certainly, it cannot be guaranteed that the number of edges decreases by a
factor 1

2 as well. This might result in an additional factor k = log |V | on the parts
of the algorithm that touch edges. However, it can be shown by an analogous
argumentation that tmult(|V |, |E|) and tsingle(|V |, |E|) have the same asymptotic
running time if |Ei+1| ≤ |Ei|/d for all i = 0, . . . , k− 1 and a fixed divisor d > 1.
Therefore, it is sufficient to stop the multilevel process, whenever the algorithm
has generated more than a constant number of graphs Gi that do not satisfy the
inequality |Ei+1| ≤ |Ei|/d for some small 1 < d ≤ 2.

2.3 The Force Calculation Step

In order to save running time, the multilevel algorithms [7, 9, 17] use the grid-
variant method of [6] or variations of [12] that are comparatively inaccurate
approximative variations of the original single-level algorithms [6, 12].

Unlike this, the single-level algorithm that is used in FM 3 follows the basic
strategy of [15, 14] by approximating the repulsive forces between all pairs of
distinct nodes/particles with high accuracy and calculating the forces induced
by the edges/springs exactly. Then, these forces are added, and the nodes are
moved in the direction of the resulting forces. This process is repeated a con-
stant number of iterations. (In practice, we let the constant decrease from 300
iterations for Gk to 30 iterations for G0, although convergence is reached even
faster for many tested graphs.)

In the following, we concentrate on the calculation of the repulsive forces.
Greengard [8] has invented an N -body simulation method that is based on the
evaluation of the field of the potential energy of N := |V | particles. This is done
by evaluating multipole expansions using a hierarchical data structure called
quadtree. However, Aluru et al. [1] have shown that the running time of his
method depends on the particle distribution and cannot be bounded in the
number of particles. They also have proven that the running time of the popu-
lar center of mass approximation method of Barnes and Hut [3] that is used in
the graph drawing methods [15, 14] cannot be bounded in the number of par-
ticles. Based on the techniques and analytical tools of Greengard [8], Aluru et
al. [1] have presented an O(N log N) approximative multipole algorithm that is
distribution independent.

Based on the work of Greengard [8] and Aluru et al. [1], we have developed
a new O(N log N) multipole method that – in practice – is faster than Aluru
et al.’s [1] method. It works in two steps. Given a distribution of N particles
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in the plane, first a special quadtree data structure is constructed. Then, each
node of the quadtree is assigned information that is used for approximating the
potential energy of the system. In particular, a constant number of coefficients
of a so called multipole expansion (to be introduced later) are associated with
each tree node and are used to obtain the repulsive forces.

Construction of the Reduced Quadtree. Suppose that N particles are
distributed on a square D and we fix a leaf capacity c ≥ 1. (In practice we
choose c = 25.) Furthermore, suppose one recursively subdivides D into four
squares of equal size, until each square contains at most c particles. This process
can be represented by an ordered rooted tree of maximum child degree four
(with the root representing D) that is called quadtree. The particles are stored
in the leaves of the quadtree. A degenerate path P = (v1, . . . , vp) in a quadtree
is a path in which v1 and vp have at least 2 nonempty children and v2, . . . , vp−1

each have exactly one nonempty child. A reduced quadtree T can be obtained
from a quadtree by shrinking degenerate paths P = (v1, . . . , vp) to edges (v1, vp).
Figure 3 shows an example.
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Fig. 3. (a) A distribution of N = 11 particles in the plane. (b) The quadtree with
leaf capacity c = 2 associated with (a). P = (v1, v2, v3) is a degenerate path in the
quadtree. (c) The reduced quadtree with leaf capacity c = 2 associated with (a).

A reduced quadtree has only O(N) nodes independently of the distribution
of the particles. This allows the development of a linear time method (excluding
the time needed for constructing the reduced quadtree) for approximating the
repulsive forces, using this structure.

Aluru et al. [1] present an O(N log N) method that constructs a reduced
quadtree with c = 1. As can be shown by a reduction from sorting, it is neither
possible to construct a quadtree nor a reduced quadtree for arbitrary distribu-
tions of the particles in o(N log N) time.

We have developed a new O(N log N) method that is omitted here for brevity,
since it quite technical. Instead, we will explain another new tree construction
method that is conceptionally simpler and in practice faster. But (motivated
by the assumptions in [15]) it restricts the possible particle distributions: We
force the particles to be placed on a large square grid with a resolution that is
polynomial in N . This can be realized by rounding the x, y coordinates of each
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particle to integers in the range [0,P(N)], where P(N) is any whole-numbered
polynomial in N of maximum degree l, and by treating pathological cases in
which particles have same coordinates efficiently. In practice, it is sufficient to
set P(N) = d · N2, with a big constant d, say 1000. This bounds the depth of
the reduced quadtree to O(log(P(N)) = O(l · log N) = O(log N).
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Fig. 4. Building up the reduced quadtree T with leaf capacity c = 2 and N = 11
particles for the distribution of Figure 3(a). (a) First step: Building up the complete
subtree T 1. (b) Second step: Thinning out T 1. (c) Recursion: Building up the complete
quadtrees T 2(v3) and T 2(v4).

First, we build up a complete truncated subtree T 1 with depth max{1,
�log N/c�}. Then, all particles are assigned to the leaves of T 1. Since T 1 contains
O(N) nodes and its structure is predefined, this step can be performed in linear
time. Figure 4(a) shows an example of T 1 that corresponds to the distribution
of Figure 3(a). In the next step, we thin out T 1. This is done by traversing the
tree bottom up and thereby calculating for each internal tree node the num-
ber of particles that are contained in the square region that it represents. This
also needs time linear in N . Then, we traverse the subtree T 1 top down, delete
all nodes that do not contain particles and shrink degenerate path to edges. If
(during this process) we visit an internal node v that is the root of a subtree con-
taining at most c particles, this subtree is deleted, and all the particles that were
stored in the deleted subtree are assigned to v. Figure 4(b) shows the thinned
out subtree T 1.

If none of the leaves of T 1 contains more than c particles, the procedure
ends and T 1 = T has been constructed in linear time. Otherwise, we repeat the
previous steps recursively. For example, the nodes v3 and v4 in Figure 4(b) both
contain 3 > c particles. Therefore, we build up complete subtrees T 2(v3) rooted
at v3 and T 2(v4) rooted at v4. Both subtrees have depth max{1, �log 3/c�} = 1.
Now, the particles 5, 6, 7 are assigned to the leaves of T 2(v4) and the particles
9, 10, 11 are assigned to the leaves of T 2(v3) (see Figure 4(c)). After thinning out
T 2(v3) and T 2(v4) the desired tree T (see Figure 3(c)) is created.

What is the total running time of this approach? Building up T 1 needs O(N)
time. If T 1 is not the reduced quadtree, we build up subtrees T 2(v1), . . . , T 2(vk)
for all leaves v1, . . . , vk of T 1 that contain more than c particles. This needs
O(N) time in total, since the sum of the tree nodes contained in all T 2(vi) is at
most O(N). Then, we possibly have to build up subtrees rooted at the leaves of
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the T 2 trees and so forth. Since for each j ≥ 1 the sum of the tree nodes of all T j

is bounded above by O(N), the total running time is O(|recursion levels| · N).
Therefore, the running time is bounded by O(N log N). The construction of the
tree needs linear time whenever |recursion levels| is a constant.

Evaluating Multipole Expansions. Unlike the construction of the tree, the
calculation of the forces – using the tree data structure – is quite complex.
Therefore, we only sketch the basic ideas. The most essential part is the following
theorem of Greengard [8]. First, we identify each point p = (x, y) ∈ R

2 with a
point z = x + iy ∈ C.

Theorem 1 (Multipole Expansion) Suppose that m charges of strengths qi,
{i = 1, . . . , m} are located within a circle of radius r around the center z0. Then,
for any z ∈ C with |z − z0| > r, the potential Energy E(z) induced by the m
charged particles is given by:
E(z) = Q log(z−z0)+

∑∞
k=1

ak

(z−z0)k with Q =
∑m

i=1 qi and ak =
∑m

i=1
−qi(zi−z0)

k

k

The corresponding force is F(z) = (Re(E ′(z)),−Im(E ′(z))). Based on this
theorem, the idea is to develop the infinite series only up to a constant index
p. In practice, choosing p = 4 has turned out to be sufficient to keep the error
of the approximation less than 10−2. The resulting truncated Laurent series is
called p-term multipole expansion. Estimations of the error and several other
fundamental theorems for working with such series can be found in [8].

We demonstrate the use of this theorem for speeding up force-calculation
algorithms on an example: Suppose that m particles are located within a circle
C0 of radius r with center z0. Suppose that another m particles are located
within a circle C1 of radius r with center z1, and let |z0−z1| > 3r (see Figure 5).
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Fig. 5. An example distribution, showing the use of the Multipole Expansion Theorem.

Computing the repulsive forces acting on each particle in C0 due to all parti-
cles in C1 naively would need Θ(m2) time. Now, suppose that we first compute
the coefficients of a p-term multipole expansion of the potential due to the par-
ticles in C1. This needs Θ(pm) time. Evaluating the resulting p-term multipole
expansion for all particles within C0 needs also Θ(pm) time. Therefore, we ob-
tain an accurate approximation of the potential energy of all particles placed in
C0 due to the particles placed in C1 in Θ(m) time. Since we are interested in
the forces rather than the energy, we first calculate the derivative of the p-term
multipole expansion before evaluating it for each particle in C0. Since the mul-
tipole expansion is a simple Laurent series, the calculation of the derivative of
the p-term multipole expansion needs only O(p) additional time.
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Now we sketch the idea how this theorem is used for calculating the forces:
First, the p-term multipole expansions of the particles in the leaves of the reduced
quadtree are calculated. Then, the reduced quadtree is traversed bottom up,
and thereby p-term multipole expansions of the interior nodes are obtained.
Afterwards, the tree is traversed top down, and suitable coefficients of p-term
multipole expansions are used to calculate coefficients of special power series
that are called p-term local expansions. Finally, these expansions are evaluated
to obtain the repulsive forces. All these operations together take time linear in
the number of particles.

To get a better impression how this algorithm really works, we refer the
interested reader to [8, 1]. Our method for evaluating the multipole expansions is
an extension of the method of Aluru [1] et al. for the general case in which c ≥ 1.

It is important to note that our multipole method remains O(N log N) –
even if we allow arbitrary particle positions during the computation – if we use
our other tree construction method or the tree construction method of Aluru
et al. [1].

(a) (b)

(c) (d) (e)

Fig. 6. (a) finan512 : |V | = 74752, |E| = 261120, CPU-time = 158.2 seconds. (b)
fe body : |V | = 44775, |E| = 163734, CPU-time = 96.5 seconds. (c) bcsstk31 : |V | =
35588, |E| = 572914, edge density = 16.1, CPU-time = 83.6 seconds. (d) dg 1087 :
|V | = 7602, |E| = 7601, maximum degree = 6566, CPU-time = 18.1 seconds. (e)
ug 380 : |V | = 1104, |E| = 3231, maximum degree = 856, CPU-time = 2.1 seconds.
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3 Remarks on the Experimental Results

The method FM 3 has been implemented in C++ within the framework of
AGD [11]. We tested our method on a 2.8 GHz PC running Linux. The tested
graphs are the graphs contained in the graph partitioning archive of C. Wal-
shaw [16] with up to 200000 nodes and the biggest graphs from the AT&T
graph collection [2]. Furthermore, we generated artificial graphs containing up to
100000 nodes. For example, these graphs include grid graphs, sierpinski graphs,
random disconnected graphs, graphs that contain many biconnected compo-
nents, graphs with a very high edge density, and graphs that contain nodes with
a very high degree. The tested graphs containing less than 1000, 10000, and
100000 nodes have been drawn in less than 2, 24, and 263 seconds, respectively.
Figure 6 shows example drawings that are generated by FM 3. Our practical ex-
periments indicate that the combination of our multilevel strategy with a highly
accurate force approximation algorithm increases the quality of the generated
drawings.

4 Conclusions and Future Work

We have developed a new force-directed graph drawing algorithm (FM 3) that
runs in O(|V | log |V | + |E|) time. The practical experiments demonstrate that
FM 3 is very fast and creates nice drawings of even those graphs that turned out
to be challenging for some other tested algorithms. This will be presented in the
full version of this paper.
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Abstract. We show that a digraph is upward planar if and only if its
biconnected components have certain properties.

1 Introduction

A drawing of a digraph is planar if no edges cross and upward if all edges are
monotonically increasing in the vertical direction. A digraph is upward planar
(UP) if it admits a drawing that is both upward and planar. The upward planarity
of digraphs has been much studied and the area is surveyed by Di Battista et
al. [1]. In this paper we show that a digraph is UP if and only if its blocks
have UP drawings satisfying the conditions specified in Theorems 6–8. Following
preliminary definitions in Section 2, lemmas concerned with sufficient conditions
for upward planarity appear in Section 3, lemmas concerned with necessary
conditions for upward planarity appear in Section 4, our main results appear in
Section 5, and we conclude in Section 6.

2 Preliminaries

Let G be a digraph. We denote the node set of G by V (G) and the edge set of
G by E(G). The union of two digraphs G and F , denoted G∪F , is the digraph
with node set V (G∪F ) = V (G)∪V (F ) and edge set E(G∪F ) = E(G)∪E(F ).
A null digraph is a digraph whose node and edge sets are empty. A strongly
embedded digraph Gϕ is an equivalence class of planar drawings of a digraph G
which belong to the same embedded digraph and which have the same outer face.
Such a choice ϕ for an embedding and an outer face is called a strong embedding
of G. A node v of Gφ is bimodal if the outgoing (or incoming) edges incident on
v appear consecutively around v. If all the nodes of Gφ are bimodal then Gφ is
bimodal. An upward planar straight line (UPSL) drawing of a digraph is an UP
drawing in which each edge is represented by a straight line segment. Let Gφ

be an embedded digraph with a node v. We use φ(v) to denote the clockwise
ordering of the edges incident on v in Gφ. If e is an edge incident on v we use
φe(v) to denote the linear sequence of edges with first edge e that is consistent
with the circular sequence of edges φ(v). The angles of Gφ are ordered triples
〈a, v, b〉, where a and b are edges and v is a node incident on both a and b, such
that either a directly precedes b in φ(v) or v is a node of degree 1. An angle
〈a, v, b〉 of Gφ is incident on the node v. An angle 〈a, v, b〉 is an S-angle (resp.,

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 296–306, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Building Blocks of Upward Planar Digraphs 297

T -angle) if both a and b leave (resp., enter) v; and an I-angle if one of the edges
a, b leaves v and the other enters v. Let f be a face of Gφ. We use the term facial
boundary of f to refer to the circular sequence of nodes and edges W defined
by traversing the boundary of f such that W contains a subsequence 〈x, y, z〉,
where x and z are edges and y is a node if and only if 〈x, y, z〉 is an angle in
Gφ. A face f is said to contain an edge, angle, or node x if x is a sub-sequence
of the facial boundary of f . The angles of Gφ are mapped to geometric angles
in an UPSL drawing Γ of Gφ. Let 〈a, v, b〉 be an angle of Γ . If a �= b the size of
the corresponding geometric angle of 〈a, v, b〉 in Γ equals the number of radians
one has to rotate a in the clockwise direction around v in order to reach b. If
a = b the size of the corresponding geometric angle of 〈a, v, b〉 is 2π. An angle
of Γ is large (resp., small) if its corresponding geometric angle is greater (resp.,
smaller) than π. If f is a face we use Sa(f) (resp., La(f)) to represent the number
of S-angles (resp., (large S-angles + large T -angles)) contained by f . If v is a
node we use La(v) to represent the number of (large S-angles + large T -angles)
incident on v. A block of a digraph G is a maximal connected subdigraph B of
G such that no node of B is a cut-vertex of B. Let G be a digraph with a node
v. A component of G with respect to v is formed from a connected component
H of G \ v by adding to H the node v and all edges between v and H . Let C
be a component of G with respect to v. We use G \ C to denote the digraph
derived from G by deleting all the nodes in C \ v from G. C is an S-component,
T -component, or I-component of G with respect to (w.r.t.) v if v is a source
node, sink node or internal node respectively in C. We use S(v), T (v), and I(v)
to refer to the subdigraph of G consisting of the union of all S-components, T -
components, and I-components of G with respect to v, respectively. Definition 1
attempts to formalise the intuitive operation of adding two strongly embedded
digraphs by identifying a node from each.

Definition 1. Let GϕG and FϕF be strongly embedded digraphs such that V (G)∩
V (F ) = {u}, the outer face EG of GϕG contains the angle 〈g1, u, g2〉 and the
face XF of FϕF contains the angle 〈f1, u, f2〉. The result of adding GϕG and
FϕF by inserting 〈g1, u, g2〉 within 〈f1, u, f2〉 is the strongly embedded digraph
Hϕ where H = G ∪ F , ϕ(v) = ϕG(v), ∀v ∈ V (G) \ u, ϕ(v) = ϕF (v), ∀v ∈
V (F ) \ u, ϕ(u) = 〈ϕg2

G (u), ϕf2
F (u)〉, and the outer face is the face of Hϕ whose

facial boundary contains the facial boundary of the outer face of FϕF as a (not
necessarily proper) subsequence.

Property 1. The set of faces of Hϕ contains all the faces of GϕG except EG,
all the faces of FϕF except the face, XF , and the “new” face XH whose facial
boundary is formed by concatenating the facial boundaries of EG and XF . Thus
the facial boundary of XH is 〈u, g2, ..., g1, u, f2, ..., f1〉, where the list of nodes
and edges from g2 to g1 concatenated with u is the facial boundary of EG and the
list of nodes and edges from f2 to f1 concatenated with u is the facial boundary
of XF . Therefore XH contains all the angles contained by EG except 〈g1, u, g2〉,
all the angles contained by XF except 〈f1, u, f2〉, and the new angles 〈f1, u, g2〉
and 〈g1, u, f2〉.
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The following four preliminary lemmas have been proved by us previously [4].

Lemma 1. If G and F are acyclic digraphs such that V (G)∩V (F ) = {u}, then
G ∪ F is acyclic.

Lemma 2. Let Hi, i = 1, . . . , c be the components of a digraph H with respect
to a node u. Let H be a drawing of H and let Hi be the sub-drawing induced on
Hi, i = 1, . . . , c. H is UP only if at least c− 1 of the sub-drawings Hi for i = 1
to c are UP drawings whose outer face contains u.

Lemma 3. Let H be a planar digraph with a node u such that there are exactly
two components of H w.r.t. u, which we label G and F . Let H be a planar drawing
of H and let G (resp., F) be the sub-drawing induced on G (resp., F ). Then all
of G (resp., F) lies in a single face of F (resp., G) and at least one of G or F
lies in the outer face of the other.

Lemma 4. Let H be a bimodal planar digraph with an internal node u such that
there are exactly two components, G and F , of H with respect to u. Let H be
a bimodal planar drawing of H and let G (resp., F) be the subdrawing induced
on G (resp., F ). If G and F are I-components then all of G (resp., F) lies in a
single face of F (resp., G) which contains an I-angle incident on u and at least
one of G or F lies in the outer face of the other.

We now present some previously published properties of UP digraphs.
Lemma 5 and Theorem 1 are proved by Bertolazzi et al. [2]. Let Gϕ be a strongly
embedded digraph. Consider an assignment M that maps each source or sink v
of Gϕ to a face M(v) of Gϕ which contains v. Such an assignment M is consistent
if the number of nodes assigned to the outer face h of Gϕ equals Sa(h) + 1 and
the number of nodes assigned to each internal face f of Gϕ equals Sa(f)−1. For
each face z in Gϕ we use M−1(z) to denote the set of nodes assigned to z by M .

Theorem 1 (Bertolazzi et al.). A strongly embedded digraph Gϕ is UP if and
only if it is acyclic, bimodal and admits a consistent assignment of sources and
sinks to its faces.

Lemma 5 (Bertolazzi et al.). The following properties hold for any UPSL
drawing Γ of a digraph G. La(f) = Sa(f) + 1 if f is the outer face of Γ and
La(f) = Sa(f)−1 if f is an internal face of Γ . Also La(v) = 0 if v is an internal
node of G and La(v) = 1 if v is a source or sink node of G.

3 Sufficient Conditions for Upward Planarity

The same technique is used to prove each of the Lemmas 6–9. We present the
proof of Lemma 6 here; proofs of Lemmas 7–9 can be found in [4]. Although the
proofs of these lemmas are quite detailed the high level strategy is not. Given
two UP strongly embedded digraphs GϕG and FϕF with certain properties we
simply show that the strongly embedded digraph Hϕ that results from adding
GϕG and FϕF by inserting a certain angle from GϕG within a certain angle from
the FϕF is acyclic, bimodal and has a consistent assignment of sinks and sources
to its faces. It then follows from Theorem 1 that Hϕ is UP.
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Lemma 6. Let G and F be UP digraphs such that V (G)∩V (F ) = {u} and u is
a source (resp., sink) node in both G and F . Let H = G∪F . The following three
statements hold. 1. H is UP if at least one of G or F has an UP drawing whose
outer face contains u. 2. H has an UP drawing whose outer face contains u if
G and F both have an UP drawing whose outer face contains u. 3. H has an
UPSL drawing whose outer face contains a large angle incident on u if G and F
both have UPSL drawings whose outer face contains a large angle incident on u.

Proof. Assume that u is a source node (the case when u is a sink node follows
by symmetry) and that G has an UPSL drawing G whose outer face EG contains
the angle 〈g1, u, g2〉. Let F be an UPSL drawing of F and let XF be the face of
F that contains 〈f1, u, f2〉, the large angle incident on u in F . Thus G (resp., F )
has a strong embedding ϕG (resp., ϕF ) such that GϕG (resp., FϕF ) contains G
(resp., F) and has a consistent assignment, MG (resp., MF ) of sinks and sources
to faces, such that MG (resp., MF ) assigns u to a face XG (resp., the face XF )
of GϕG (resp., FϕF ) (Theorem 1). Let Hϕ be the strongly embedded digraph
that results from adding GϕG and FϕF by inserting 〈g1, u, g2〉 within 〈f1, u, f2〉.
We now show that Hϕ is acyclic, bimodal and has a consistent assignment. That
H is acyclic follows directly from Lemma 1. It follows from Definition 1 that
ϕ(v) = ϕG(v), ∀v ∈ V (G) \ u and that ϕ(v) = ϕF (v), ∀v ∈ V (F ) \ u. But GϕG

and FϕF are bimodal. Thus all nodes in V (H) \ u are bimodal. As u is a source
node it is also bimodal. Thus all nodes in Hϕ are bimodal. The set of faces of
Hϕ consists of all the faces of GϕG except EG, all the faces of FϕF except XF ,
and the “new” face XH (Property 1). We now show that Hϕ has a consistent
assignment M of sinks and sources to faces. M is defined as follows: P1. For each
source or sink v of V (H)∩V (G), if MG(v) �= EG then M(v) = MG(v); otherwise
M(v) = XH . P2. For each source or sink v of V (H) ∩ V (F ) \ u, if MF (v) �= Xf

then M(v) = MF (v); otherwise M(v) = XH . We now show that the assignment
M is consistent. The number of S-angles in each face z �= XH of Hϕ is equal to
the number of S-angles in its corresponding face in either GϕG or FϕF . It follows
from P1 that |M−1

G (z)| = |M−1(z)| for each face z �= XH of Hϕ that is a face in
both GϕG and Hϕ. It follows from P2 that |M−1

F (z)| = |M−1(z)| for each face
z �= XH of Hϕ that is a face in both FϕF and Hϕ (because u was assigned to
XF by MF ). Thus from the consistency of MG and MF that the assignment M
is consistent for each face z �= XH of Hϕ. We now consider the face XH . All the
S-angles contained by EG (resp., Xf) except 〈g1, u, g2〉 (resp., 〈f1, u, f2〉) are also
contained by XH (Property 1). XH also contains two “new” S-angles 〈f1, u, g2〉
and 〈g1, u, f2〉 (Property 1). Therefore Sa(XH) = Sa(EG)−1+Sa(XF )−1+2 =
Sa(EG)+Sa(XF ). It follows from the consistency of MG that the number of nodes
in V (G)∩V (H) that are assigned to XH by M equals Sa(EG)+1 (from P1). We
separate the cases when XF is an internal face of FϕF and XF is the outer face
of FϕF . Case 1. Assume XF is an internal face of FϕF . Thus XH is an internal
face of Hϕ. It follows from the consistency of MF that the number of nodes in
V (F ) ∩ V (H) \ u that are assigned to XH by M equals Sa(XF )− 2 (from P2).
Therefore |M−1(XH)| = Sa(EG) + 1 + Sa(XF )− 2 = Sa(XF ) + Sa(EG)− 1. So
M is consistent for XH . Case 2. Assume XF is the outer face of FϕF . Thus XH
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is the outer face of Hϕ. It follows from the consistency of MF that the number
of nodes in V (F ) ∩ V (H) \ u that are assigned to XH by M equals Sa(XF )
(from P2). So M is consistent for XH . Thus M is a consistent assignment of
nodes to the faces of Hϕ for case 1 and for case 2. But Hϕ is also acyclic and
bimodal. Therefore Hϕ is UP (Theorem 1). Thus H is UP. So Statement 1 is
true. If the outer face of FϕF contains u then the outer face of HϕH also contains
u (Definition 1). Thus Statement 2 holds. If MG(EG) = u and XF is the outer
face of FϕF then XH is the outer face of Hϕ (Definition 1) and M(u) = XH

(from P1). Therefore M assigns u to the outer face of Hϕ. Thus H has an
UPSL drawing whose outer face contains the large angle incident on u and so
Statement 3 holds.

Lemma 7. Let G and F be UP digraphs such that V (G) ∩ V (F ) = {u} and
u is an internal node in both G and F . Let H = G ∪ F . Then the following
four statements hold. 1. H is UP if at least one of G or F has an UP drawing
whose outer face contains an I-angle incident on u. 2. H has an UP drawing
whose outer face contains an I-angle incident on u if G and F both have an UP
drawing whose outer face contains an I-angle incident on u. 3. H has an UP
drawing whose outer face contains u, but does not contain an edge which enters
(resp., leaves) u if at least one of G or F has an UP drawing whose outer face
contains u, but does not contain an edge which enters (resp., leaves) u and the
other has an UP drawing whose outer face contains an I-angle incident on u. 4.
H has an UP drawing whose outer face contains u if at least one of G or F has
an UP drawing whose outer face contains u and the other has an UP drawing
whose outer face contains an I-angle incident on u.

Lemma 8. Let G and F be UP digraphs such that V (G)∩V (F ) = {u} and u is
a source node in G and a sink node in F . If H = G∪F then H is UP if at least
one of G or F has an UPSL drawing whose outer face contains a large angle
incident on u and H has an UP drawing whose outer face contains an I-angle
incident on u if G and F both have an UPSL drawing whose outer face contains
a large angle incident on u.

Lemma 9. Let G and F be UP digraphs such that V (G) ∩ V (F ) = {u}, u is a
source (resp., sink) node in G, and u is an internal node in F . If H = G ∪ F
then H is UP if G has an UPSL drawing whose outer face contains the large
angle incident on u or F has an UP drawing whose outer face contains an edge
which leaves (resp., enters) u. H has an UP drawing whose outer face contains
an edge which enters (resp., leaves) u if G has an UPSL drawing whose outer
face contains a large angle incident on u and F has an UP drawing whose outer
face contains an edge which enters (resp., leaves) u.

Lemmas 10 and 11 follow by induction from Lemma 6, whilst Lemma 12
follows by induction from Lemma 7.

Lemma 10. Let G be a digraph with a source or sink node u. G has an UP
drawing whose outer face contains u if every component of G w.r.t. u has an UP
drawing whose outer face contains u.
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Lemma 11. Let G be a digraph with a source (resp., sink) node u. G has an
UPSL drawing whose outer face contains the large angle incident on u if every
component of G w.r.t. u has an UPSL drawing whose outer face contains the
large angle incident on u.

Lemma 12. Let G be a digraph with an internal node u such that all components
of G w.r.t. u are I-components. G has an UP drawing whose outer face contains
an I-angle incident on u if every component of G w.r.t. u has an UP drawing
whose outer face contains an I-angle incident on u.

Lemma 13. Let G be a digraph with a node u such that all components of G
w.r.t. u are I-components. G has an UP drawing whose outer face contains u,
but no edge which enters (resp., leaves) u if some component Gx of G w.r.t. u
has an UP drawing whose outer face contains u, but does not contain an edge
which enters (resp., leaves) u and all other components of G w.r.t. u have an
UP drawing whose outer face contains an I-angle incident on u.

Proof. Let Gx be the union of all components of G w.r.t. u which are distinct
from Gx. Gx has an UP drawing whose outer face contains an I-angle incident
on u (Lemma 12). Therefore G = Gx∪Gx has an UP drawing outer face contains
u, but no edge which enters (resp., leaves) u (Lemma 7).

Lemma 14. Let G be a digraph with a node u such that all components of G
w.r.t. u are I-components. G has an UP drawing whose outer face contains u
if all components of G with respect to u have an UP drawing whose outer face
contains u and at most one component of G w.r.t. u does not have an UP drawing
whose outer face contains an I-angle incident on u.

Proof. If all components of G w.r.t. u have an UP drawing whose outer face
contains an I-angle incident on u then G has an UP drawing whose outer face
contains an I-angle incident on u (Lemma 12). Suppose some component Gy of
G w.r.t. u has no UP drawing whose outer face contains an I-angle incident on
u, but does have an UP drawing whose external face contains u. Let Gy be the
union of the all components of G with respect to u which are distinct from Gy.
If all the components of Gy w.r.t. u have an UP drawing whose external face
contains an I-angle incident on u then Gy has an UP drawing whose outer face
contains an I-angle incident on u (Lemma 12). It follows from Lemma 7 that
G = Gy ∪Gy has an UP drawing whose external face contains u.

4 Necessary Conditions for Upward Planarity

Lemma 15. Let G and F be DAGs such that V (G) ∩ V (F ) = {u} and u is a
source node in G and a sink node in F . If H = G ∪ F then H is UP only if
at least one of G or F has an UPSL drawing whose outer face contains a large
angle incident on u and the other is UP.

Proof. If neither F nor G admit an UPSL drawing whose external contains a
large angle incident on u then some components F ′ of F and G′ of G w.r.t. u do
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not admit an UPSL drawing whose external face contains a large angle incident
on u (Lemma 11). Let H ′ = F ′∪G′, let H′ be an UPSL drawing of H ′ and let G′
and F ′ be the sub-drawings induced on G′ and F ′, respectively by H′. At least
one of G′ or F ′ lies in the outer face of the other (Lemma 3). As u is an internal
node in H ′ it follows from Lemma 5 that both G′ and F ′ must lie in the face of
the other that contains the large angle incident on u. This is a contradiction.

Lemma 16. Let H = G ∪ F where G is an UP digraph with a source node u,
F is an UP digraph with a node u such that all components of F w.r.t. u are
I-components, and V (G)∩V (F ) = {u}. H is UP only if G has an UPSL drawing
whose outer face contains a large angle incident on u or F has an UP drawing
whose outer face contains an edge which leaves u.

Proof. (outline) As in the proof of Lemma 15 we show that if both G and F
do not have drawings with the stated properties then some component G′ of G
w.r.t. u does not admit an UPSL drawing whose outer face contains a large angle
incident on u, and some component F ′ of F w.r.t. does admit an UP drawing
whose external face contains an edge which leaves u. We then use Lemmas 5 and 3
to show that F ′ ∪G′ is not upward planar.

Lemma 17. Let Gi, i = 1, . . . , c be the components of a digraph G with respect
to a node u such that all components of G with respect to u are I-components. Let
G be a drawing of G and let Gi be the sub-drawing induced on Gi, for i = 1, . . . , c.
Then G is an UP drawing whose outer face contains an I-angle incident on u
only if each Gi for i = 1, . . . , c is an UP drawing whose external face contains
an I-angle incident on u.

Proof. Let a be any integer such that 1 ≤ a ≤ c. Suppose that Ga is not an UP
drawing whose outer face contains an I-angle incident on u. If Ga = G then it is
trivially true that G is not an UP drawing whose outer face contains an I-angle
incident on u. Otherwise let b be any integer such that (1 ≤ b ≤ c)∧ (b �= a) and
let Ga ∪ Gb be the sub-drawing of G induced on Ga ∪Gb. Because the outer face
of Ga does not contain an I-angle incident on u it follows from Lemma 4 that
Ga ∪ Gb is bimodal planar only if all of Gb is drawn within an internal face of
Ga. Therefore Ga ∪ Gb is UP only if the outer face of Ga is also the outer face of
Ga ∪ Gb. Therefore G is UP only if the outer face of Ga is also the outer face of
G. Therefore G is an UP drawing whose outer face contains an I-angle incident
on u only if each Gi for i = 1, . . . , c is an UP drawing whose outer face contains
an I-angle incident on u.

Lemma 18. Let Gi, i = 1, . . . , c be the components of a digraph G with respect
to a node u. Let G be a drawing of G and let Gi be the sub-drawing induced on
Gi, i = 1, . . . , c. G is an UP drawing whose outer face contains u only if each Gi

for i = 1 to c is an UP drawing whose outer face contains u.

Proof. Let x be any integer such that 1 ≤ x ≤ c. Suppose that Gx is an UP
drawing whose outer face Ex does not contain u. Therefore u is a point in the
interior of some closed curve E ′x that is a sub-drawing of Ex. But E ′x is a sub-
drawing of G. Therefore u is not contained by the outer face of G. Therefore G
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is an UP drawing whose outer face contains u only if each Gi, i = 1, . . . , c, is an
UP drawing whose outer face contains u.

Proofs of the next two lemmas appear previously [4].

Lemma 19. Let Gi, i = 1, . . . , c be the components of a digraph G with respect
to a source (resp., sink) node u. Let G be a drawing of G and let Gi be the
sub-drawing induced on Gi, for i = 1, . . . , c. Then G is an UPSL drawing whose
outer face contains a large angle incident on u only if each Gi, i = 1, . . . , c, is
an UPSL drawing whose outer face contains a large angle incident on u.

Lemma 20. Let Gi, i = 1, . . . , c be the components of a digraph G w.r.t. a node
u such that all components of G with respect to u are I-components. Let G be a
drawing of G and let Gi be the sub-drawing induced on Gi, for i = 1, . . . , c. Then
G is an UP drawing whose outer face contains u, but does not contain an edge
which enters (resp., leaves) u only if exactly one of the drawings Gi, i = 1, . . . , c
is an UP drawing whose outer face contains u, but does not contain an edge
which enters (resp., leaves) u and exactly c − 1 of the drawings Gi, i = 1, . . . , c
are UP drawings whose outer face contains an I-angle incident on u.

5 Main Results

Theorem 2. Let G be a digraph with a source or sink node u. G is UP if and
only if all components of G w.r.t. u are UP and at most one component of G
w.r.t. u does not have an UP drawing whose outer face contains u.

Proof. Suf. If all components of G w.r.t. u have an UP drawing whose outer
face contains u then G is UP (Lemma 10). Suppose some UP component X of G
w.r.t. u does not have an UP drawing whose outer face contains u, but that all
components of G \X w.r.t. u do have an UP drawing whose outer face contains
u. Therefore G\X has an UP drawing whose outer face contains u (Lemma 10).
Thus G = X ∪ G \X is UP (Lemma 6). Nec. Clearly if some component Y of
G w.r.t. u is not UP then G is not UP because Y is a subdigraph of G. Also if
two components Y1 and Y2 of G with respect to u do not have an UP drawing
whose outer face contains u then it follows from Lemma 2 that G is not UP.

Theorem 3. Let G be a digraph with a internal node u such that all components
of G w.r.t. u are either S-components or T -components. G is UP if and only
if all components of G with respect to u are UP, at most one component of G
w.r.t. u does not have an UP drawing whose outer face contains u and at least
one of S(u) or T (u) has an UP drawing whose outer face contains a large angle
incident on u.

Proof. (outline) The sufficiency follows from Theorem 2 and Lemma 8 whilst
the necessity follows from Lemma 2 and Lemma 15.

Theorem 4. Let G be a digraph with a node u such that all components of G
w.r.t. u are I-components. G is UP if and only if all components of G w.r.t. u
are UP and at most one component of G w.r.t. u does not have an UP drawing
whose outer face contains an I-angle incident on u.
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Proof. Suf. Let X be a component of G w.r.t. u such that all components of
G\X w.r.t. u admit an UP drawing whose outer face contains an I-angle incident
on u. Therefore G \X has an UP drawing whose outer face contains an I-angle
incident on u (Lemma 12). Therefore G = X∪G\X is UP if X is UP (Lemma 7).
Nec. Suppose that two components G1 and G2 of G w.r.t. u have no UP drawing
whose outer face contains an I-angle incident on u. Let H = G1 ∪G2. Let H be
a planar drawing of H and let G1 (resp., G2) be the sub-drawing induced on G1

(resp., G2). It follows from Lemma 4 that H is bimodal planar only if G1 (resp.,
G2) lies in a face of G1 (resp., G2) which contains an I-angle incident on u and
at least one of G1 or G2 lies in the external face of the other. Therefore H has
no UP drawing. But H is a subgraph of G.

A proof of Theorem 5 appears previously [4].

Theorem 5. Let G be a digraph with an internal node u such that there are no
T -components (resp., S-components) of G w.r.t. u. G is UP if and only if all
components of G w.r.t. u are UP, at most one I-component of G w.r.t. u does
not have an UP drawing whose outer face contains an I-angle incident on u,
and at least one of the following two statements is true:

1. All S-components (resp., T -components) of G w.r.t. u have an UPSL drawing
whose outer face contains the large angle incident on u.

2. All I-components of G w.r.t. u have an UP drawing whose outer face contains
an edge which leaves (resp., enters) u and at most one S-component (resp.,
T -component) of G with respect to u does not have an UP drawing whose
outer face contains u.

Theorem 6. Let G be a digraph and let u be any node in G. G is UP if and
only if all components of G w.r.t. u are UP, at most one I-component of G w.r.t.
u does not have an UP drawing whose outer face contains an I-angle incident
on u, at most one S-component or T -component of G w.r.t. u does not have an
UP drawing whose outer face contains u, and at least one of the following three
statements is true:

1. There are no S-components or T -components of G w.r.t. u which do not
admit an UP drawing whose outer face contains a large angle incident on u.

2. There are no S-components of G w.r.t. u which do not admit an UP drawing
whose outer face contains a large angle incident on u and there are no I-
components of G w.r.t. u which do not admit an UP drawing whose outer
face contains an edge which enters u.

3. There are no T -components of G w.r.t. u which do not admit an UP drawing
whose outer face contains a large angle incident on u and there are no I-
components of G w.r.t. u which do not admit an UP drawing whose outer
face contains an edge which leaves u.

Proof. Suf. Assume that all components of G w.r.t. u are UP and that at most
one I-component of G w.r.t. u does not have an UP drawing whose outer face
contains an I-angle incident on u. Thus I(u) is UP (Theorem 4). Also assume
that at most one S-component or T -component does not have an UP drawing
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whose outer face contains u. Thus S(u) and T (u) are both UP (Theorem 2).
We consider three cases. Case 1. Assume Statement 1 is true. Therefore S(u)
and T (u) both have an UPSL drawing whose outer face contains a large angle
incident on u (Lemma 11). Thus S(u) ∪ T (u) has an UP drawing whose outer
face contains an I-angle incident on u (Lemma 8). But I(u) is UP. Therefore
G = I(u)∪(S(u)∪T (u)) is UP (Lemma 7). Case 2. Assume Statement 2 is true.
Thus S(u) has an UP drawing whose outer face contains a large angle incident on
u (Lemma 11) and I(u) has an UP drawing whose external face contains an edge
which enters u (Lemmas 14 and 20). It follows from Lemma 9 that S(u) ∪ I(u)
has an UP drawing whose outer face contains an edge which enters u. But T (u) is
UP. Thus G = (S(u)∪I(u))∪T (u) is UP (Lemma 9). Case 3. Assume Statement
3 is true. It follows by symmetry from the sufficiency of case 2 that G is UP.
Nec. Every component of G w.r.t. u is a subgraph of G. Therefore G is UP
only if all components of G with respect to u are UP. It follows from Theorem 4
that I(u) is UP only if at most one I-component of G with respect to u does
not have an UP drawing whose outer face contains an I-angle incident on u. It
follows from Lemma 2 that S(u)∪ T (u) is UP only if at most one S-component
or T -component of G w.r.t. u does not have an UP drawing whose outer face
contains u. We now prove the necessity of at least one of Statements 1, 2 or 3
of Theorem 6 being true. We will need the following four statements. Statement
A (resp., Statement B) is that all components of S(u) (resp., T (u)) w.r.t. u
have an UPSL drawing whose outer face contains a large angle incident on u.
Statement C (resp., Statement D) is that all components of I(u) w.r.t. u have
an UP drawing whose outer face contains an edge which leaves (resp., enters)
u. S(u)∪ T (u) is UP only if at least one of Statement A or Statement B is true
(Theorem 3). I(u)∪S(u) is UP only if at least one of Statement A or Statement
C is true (Theorem 5). I(u) ∪ T (u) is UP only if at least one of Statement B or
Statement D is true (Theorem 5). Therefore G = I(u)∪ S(u)∪ T (u) is UP only
if Statements A and B are both true, and/or Statements A and D are both true,
and/or Statements B and C. But (Statement A ∧ Statement B) is equivalent
to Statement 1 of Theorem 6; (Statement A ∧ Statement D) is equivalent
to Statement 2 of Theorem 6; (Statement B ∧ Statement C) is equivalent to
Statement 3 of Theorem 6. Thus G is UP only if at least one of Statements 1, 2
or 3 of Theorem 6 is true.

Proofs of the following two theorems are similar to that of Theorem 6.

Theorem 7. Let G be a digraph with a node u, such that C is an S-component
(resp., T -component) of G w.r.t. u that contains a node w. G has an UP drawing
whose outer face contains a certain type of angle incident on w if and only if
C has an UP drawing whose outer face contains the same type of angle inci-
dent on w, there are no S-components (resp., T -components) of G \ C w.r.t. u
which do not admit an UP drawing whose outer face contains u, there are no
T -components (resp., S-components) of G \ C with respect to u which do not
admit an UP drawing whose outer face contains a large angle incident on u,
there are no I-components of G \C w.r.t. u which do not admit an UP drawing
whose outer face contains an edge which leaves (resp., enters) u and at most one
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I-component of G \ C w.r.t. u does not have an UP drawing whose outer face
contains an I-angle incident on u.

Theorem 8. Let G be a digraph with a node u, such that C is an I-component
of G w.r.t. u that contains a node w. G has an UP drawing whose outer face
contains a certain type of angle incident on w if and only if C admits an UP
drawing whose outer face contains the same type of angle incident on w, there
are no S-components or T -components of G \ C with respect to u which do not
admit an UP drawing whose outer face contains a large angle incident on u,
and all I-components of G \C w.r.t. u have an UP drawing whose external face
contains an I-angle incident on u.

6 Conclusions

Bertolazzi et al.’s algorithm for testing an embedded digraph for upward pla-
narity [2] can be modified to detect for the properties listed in Theorems 6–8. A
divide and conquer approach to upward planarity testing follows that involves
recursively splitting a digraph at its cut-vertices and testing the individual blocks
for the given properties. Bertolazzi et al. also describe a branch-and-bound algo-
rithm that tests the upward planarity of biconnected digraphs [3]. An interesting
question is could their algorithm also be tailored to detect the properties listed
in Theorems 6–8.
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Abstract. This paper presents a linear time algorithm for construct-
ing maximally symmetric straight-line drawings of biconnected and one-
connected planar graphs.

1 Introduction

Symmetry is one of the most important aesthetic criteria that clearly reveals the
structure and properties of a graph. Symmetric drawings of a graph G are clearly
related to the automorphisms of G, and algorithms for constructing symmetric
drawings have two steps:

1. Find the geometric automorphisms [3], and
2. Draw the graph displaying these automorphisms as symmetries.

This paper presents a linear time algorithm for constructing maximally symmet-
ric straight-line drawings of biconnected and one-connected planar graphs. The
first polynomial time algorithm which runs in quadratic time has appeared [4].
Here we present a linear time algorithm. A linear time algorithm for triconnected
planar graphs [6] and disconnected graphs are dealt with in [9]. The following
theorem summarizes our main result.

Theorem 1. There is a linear time algorithm that constructs maximally sym-
metric planar drawings of biconnected and one-connected planar graphs, with
straight line edges.

In the next section, we review necessary background. In Section 3 and Sec-
tion 4, we present a linear time algorithm for finding maximum number of
symmetries (planar automorphisms) of biconnected and one-connected planar
graphs. In Section 5, we describe the symmetric drawing algorithms.
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2 Symmetries and Planar Automorphisms

An automorphism of a graph is a permutation of the vertex set that preserves
adjacency. Symmetry in graph drawing is closely related to automorphisms of
graphs: a symmetry of a graph drawing induces an automorphism of the graph.
In this case, we say that the drawing displays the automorphism, and the auto-
morphism is geometric [3]. Note that not every automorphism is geometric.

An automorphism α of a graph G is a planar automorphism if there is a planar
drawing D of G which displays α. Note that not every geometric automorphism
is planar. Further, the product of two planar automorphisms is not necessarily
planar (because they may be displayed by different drawings). An automorphism
group A of a graph is a planar automorphism group if there is a single planar
drawing of the graph that displays every element of A [6]. The central problem
of this paper is to find a planar automorphism group of maximum size.

Planar Automorphism Problem
Input: A planar graph G.
Output: A maximum size planar automorphism group A of G.

Previous research on the Planar Automorphism Problem has concentrated on
subclasses of planar graphs [5, 11]. Our aim is to give a linear time algorithm for
planar graphs in general. We use connectivity to divide the problem into cases.

1. Triconnected graphs: a linear time algorithm is presented in [6].
2. Biconnected graphs: this is the topic of this paper.
3. One-connected graphs: this is the topic of this paper.
4. Disconnected graphs: a linear time algorithm is presented in [9].

Note that each case relies on the result of the previous case. The triconnected
case was solved in [6]; the algorithm finds a plane embedding of G that has max-
imum size planar automorphism group. Generators of the planar automorphism
group of G with given plane embedding are then derived. They also give a linear
time drawing algorithm.

3 The Biconnected Case

If the input graph G is biconnected, then we break it into triconnected compo-
nents in a way that is suitable for the task. The overall algorithm is composed
of three steps.

Algorithm Biconnected Planar
1. Construct the SPQR-tree T1 of G, and root T1 at its center.
2. Reduction: For each level i of T1 (from the lowest level to the root level)

(a) For each leaf node on level i, compute labels.
(b) For each leaf node on level i, label the corresponding virtual edge of the

parent node with the labels.
(c) Remove the leaf nodes on level i.

3. Compute a maximum size planar automorphism group at the labeled center.
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We briefly describe each step of the algorithm. The first step is to construct the
SPQR-tree for the input biconnected planar graph. The SPQR-tree represents
a decomposition of a biconnected planar graph into triconnected components.
There are four types of nodes in the SPQR-tree T1 and each node v in T1 is
associated with a graph which is called as the skeleton of v (skeleton(v)). The
node types and their skeletons are:

1. Q-node: The skeleton consists of two vertices which are connected by two
multiple edges.

2. S-node: The skeleton is a simple cycle with at least 3 vertices.
3. P -node: The skeleton consists of two vertices connected by at least 3 edges.
4. R-node: The skeleton is a triconnected graph with at least 4 vertices.

In fact, we use slightly different version of the SPQR-tree. We use the SPQR-tree
without Q nodes. The SPQR-tree is unique for each biconnected planar graph.
Let v be a node in T1 and u a parent node of v. The graph skeleton(u) has one
common virtual edge with skeleton(v), which is called as a virtual edge of v. For
details, see [2].

The second step is the reduction. The reduction process takes the SPQR-tree
of a biconnected graph, rooted at the center, based on the following lemma.

Lemma 1. [1] The center of the SPQR-tree is fixed by a planar automorphism
group of a biconnected planar graph.

The reduction process proceeds the SPQR-tree from the leaf nodes to the center
level by level, computing labels. The labels are a pair of integers, and boolean
values that capture some information of the planar automorphisms of the leaf
nodes. First it computes the labels for the leaf nodes. Then it labels the corre-
sponding virtual edge in the parent node and delete each leaf node. The reduction
process stops when it reaches the root.

The reduction process clearly does not decrease the planar automorphism
group of the original graph. This is not enough; we need to also ensure that
the planar automorphism group is not increased by reduction. This is the role
of the labels. As a leaf v is deleted, the algorithm labels the virtual edge e of
v in skeleton(u) where u is a parent of v. Roughly speaking, the labels encode
information about the deleted leaf to ensure that every planar automorphism
of the labeled reduced graph extends to a planar automorphism of the original
graph.

The last step is to compute a maximum size planar automorphism group at
the center using the information encoded on the labels.

3.1 The Labels and Labeling Algorithms

Standard Labels. Let v be an internal node of T1. We say that a virtual edge
e of skeleton(v) is a parent (child) virtual edge if e corresponds to a virtual
edge of u which is a parent (child) node of v. We define a parent separation pair
s = (s1, s2) of v as the two endpoints of a parent virtual edge e.

When we compute the labels of v, we need to delete the parent virtual edge e
from skeleton(v). We denote the resulting graph by skeleton−(v). The union of
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the graphs skeleton−(u) for all descendants u of v, including v itself, is denoted
by G+(v).

Suppose that nodes v1, v2, . . . vk of the SPQR-tree T1 are deleted at one
iteration of the reduction process. These nodes correspond to virtual edges
e1, e2, . . . , ek in the level above the current level. For each v, we need to compute
the following standard labels.

1. isomorphism code: a pair Iso(v) of integers.
2. axial codes:

(a) Aswap(v): a boolean label indicating whether G+(v) has an axial sym-
metry that swaps the parent separation pair.

(b) Afix(v): a boolean label indicating whether G+(v) has an axial symmetry
that fixes the parent separation pair.

3. rotation code: a boolean label Rot(v) indicating whether G+(v) has a rota-
tional symmetry of 180 degrees that swaps the parent separation pair.

Note that we need these labels when the virtual edge is fixed by a planar auto-
morphism of the parent node. Further we need to define special labels, which are
motivated by the special case below and plays important role to give a linear
time algorithm.

Special Case. The aim of labeling is to encode information about planar auto-
morphisms of the skeleton−(v) of the non-root node v of the SPQR tree in the
parent virtual edges. In this way we can find planar automorphisms of the whole
graph by finding planar automorphisms of the labeled skeleton(c) of the root
node c. This strategy has a simple flaw: the edges may not model the topological
properties of the skeleton−(v) correctly. In particular, while skeleton−(v) of a
child node v can enclose skeleton(u) of a parent node u (see Figure 1(a)), the
child virtual edge e in the skeleton(u) of parent node u (see Figure 1(b)) cannot
enclose skeleton(u), since it is purely a one-dimensional curve. An embedding
in which skeleton(u) is on an inside face of G+(v), where u is the parent of v,
is called an enclosing composition.

Figure 2(a) shows an example of a drawing constructed by an enclosing com-
position; this shows the maximum number of symmetries of a graph, two ro-
tational and two axial symmetries. Figure 2(b) shows the SPQR tree of the
graph. Here skeleton(c) of the root node c of the SPQR tree is enclosed by the
skeleton(v) of its child node v. The enclosing child node may be in turn en-
closed by one of its children, again fixed setwise. Note that the graph can be
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Fig. 1. An enclosing composition: v is a child of u.
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c

v

(a) (b) (c)

Fig. 2. The special (enclosing) case.

drawn without enclosing nodes, based on skeleton(c), as in Figure 2(c); but this
displays less symmetry, only one axial symmetry.

Special Labels. To take care of special cases such as that illustrated in Figure 2,
we define special labels. The most important property of this special case is that
the whole planar automorphism group fixes two faces of G+(v): the outside face,
and the internal face containing the separation pair. Thus we define the following
labels.

1. special axial codes:
(a) A∗

swap(v): a boolean label indicating whether G+(v) has an axial symme-
try that swaps the parent separation pair and with the parent separation
pair on an inside face.

(b) A∗
fix(v): a boolean label indicating whether G+(v) has an axial symmetry

that fixes the parent separation pair and with the parent separation pair
on an inside face.

2. special rotation code: a boolean label Rot∗(v) indicating whether G+(v) has
a rotational symmetry that swaps the parent separation pair and with the
parent separation pair on an inside face.

In fact, it is enough to require that the planar automorphism fixes two faces: one
incident to the parent separation pair, and the other not incident to the parent
separation pair, as described in the following lemma.

Lemma 2. Suppose that D is a drawing of a planar graph G and u and w are
vertices of G that share a face in D. Suppose that D displays an axial planar
automorphism φ that fixes {u, w}. Then φ fixes at least one face not incident to
u and w if and only if there is a drawing D′ of G that displays φ, with u and w
not on the outside face.

Lemma 2 implies, for example, that A∗
swap(v) = true if and only if G+(v) has an

axial planar automorphism that swaps the parent separation pair, fixes a face
incident to the separation pair, and fixes at least one other face.
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Computation of an Isomorphism Code. The isomorphism code Iso(v) con-
sists of a pair of integers, because the skeleton(v) has an orientation with respect
to the parent separation pair. The isomorphism code can be computed in linear
time using a planar graph isomorphism algorithm [10]. For details, see [7].

Computation of Axial Codes. An axial symmetry either swaps the parent
separation pair or fixes the parent separation pair. First we describe an algorithm
for Aswap(v).

Note that the axial symmetry should respect the isomorphism code of the
child virtual edge. Further, if the axial symmetry fixes a child virtual edge, then
we need to test its label. Further, from Lemma 2, A∗

swap(v) is true if and only if
Aswap(v) is true and the axial symmetry of skeleton−(v) can be extended to an
axial symmetry of G+(v) that fixes more than one face. Thus, we can compute
both Aswap(v) and A∗

swap(v) as follows.

Algorithm Compute Axial Code Swap
1. Test whether skeleton−(v) has an axial symmetry α which swaps the parent

separation pair and respects the isomorphism codes of child virtual edges.
2. If α exists, then

(a) For each child virtual edge ej that is fixed by α, check the followings:
i. if α fixes the endpoints of ej , then Afix(vj) = true.
ii. if α swaps the endpoints of ej , then Aswap(vj) = true.

(b) If one of these properties fails,
then Aswap(v) := false; else Aswap(v) := true.

else Aswap(v) := false.
3. If Aswap(v) = false then A∗

swap(v) := false;
else if either
– α fixes more than one face, or
– α swaps the endpoints of a child virtual edge f such that A∗

swap(f) =
true, or

– α fixes the endpoints of a child virtual edge f such that A∗
fix(f) = true,

then A∗
swap(v) := true; else A∗

swap(v) := false.

Algorithms for computing Afix(v) and Rot(v) are similar to the algorithm for
computing Aswap(v). Note that the labeling algorithm correctly computes labels
and runs in linear time. For proofs, see [7].

When v is a P -node, we use similar algorithms to the case of parallel com-
positions in series parallel digraphs [5]. When v is an S-node, we use similar
algorithms to the case of series compositions in series parallel digraphs [5]. For
details, see [7].

3.2 Computing a Maximum Size Planar Automorphism Group
at the Center

The center of the SPQR-tree may be a node or an edge. If the center is a node c,
then we can further divide into three cases by its type. If c is a R-node, then we
use the triconnected case [6] to compute a maximum size planar automorphism
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group. If c is a P -node, then we use a similar algorithm to the case of a parallel
composition in series parallel digraphs (see [5, 7]). If c is an S-node, then we can
use the algorithm for outerplanar graphs [11].

However, there may exist some other node v which is fixed by a planar
automorphism group as in the special case. Thus to find a maximum size planar
automorphism group at the center c, we consider both cases and then find the
maximum. Here we need an algorithm to find a child node which gives the best
result for the enclosing composition. This can be done in linear time by using
generators. For details, see [7].

If the center is an edge, then we find the maximum among three cases: parallel
composition, reduction composition and enclosing composition. Parallel compo-
sition means that we construct a drawing with two labeled edges such as a parallel
composition in series parallel digraphs. Reduction composition means that we
compute labels of one node u and then delete u by labeling the corresponding
virtual edge e of the other node v. Then we compute a planar automorphism
group at v using the center node case. Enclosing composition means that we con-
struct a drawing such as the special case. Each of these cases can be computed
in linear time, see [7].

4 The One-Connected Case

The algorithm for computing a maximum size planar automorphism group of
one-connected planar graph has a similar flavor to the biconnected case: we use
reduction approach. We also use algorithm Biconnected Planar as a subroutine.
The reduction process is similar to the biconnected case. In this case we take the
block-cut vertex tree (BC-tree) and then compute labels at each leaf node (block
or cut vertex). However, the labels are different.

4.1 The Labels and Labeling Algorithms

We need two types of labels: isomorphism code and axial code. However, these
are further divided into the case of a cut vertex or a block. Let B represent a
block and C represent a cut vertex.

1. isomorphism code : an integer IsoB(v) (or IsoC(v)).
2. axial code : an integer AB(v) (or AC(v)) indicating whether B (or C) has

an axial symmetry which fixes the parent node.

Note that we need these labels when the block or cut vertex is fixed by a planar
automorphism of the parent node.

Computation of an Isomorphism Code of a Block. Suppose that B1, B2,
. . . , Bm are the blocks on the lowest level and p1, p2, . . . , pm are the parent cut
vertices for the blocks. We compute isomorphism code IsoB(vi) for each Bi using
a planar graph isomorphism algorithm which takes linear time [10]. Note that
the isomorphism should respect the isomorphism code of the child cut vertex.
We now describe the algorithm.
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Algorithm Compute Iso B
for each Bi, i = 1, 2, . . . , m,

if there is an isomorphism α between Bi and Bj such that
(a) α(pi) = pj, and
(b) for each cut vertex ck of Bi,

i. α(ck) is a cut vertex, and
ii. IsoC(ck) = IsoC(α(ck)).

then assign isomorphism codes such that IsoB(vi) = IsoB(vj).

Computation of an Axial Code of a Block. The label AB(v) represents
whether the block B has an axial symmetry which fixes the parent cut vertex p.
Let c1, c2, . . . , ck be the child cut vertices of B. In fact, the algorithm computes
a ternary value for AB(v). The interpretation of AB(v) is:

1. AB(v) = 1 if G+(v) has an axial symmetry that fixes p and one face incident
to p.

2. AB(v) = 2 if G+(v) has an axial symmetry which fixes p and two faces
incident to p.

3. AB(v) = 3 if G+(v) has no axial symmetry that fixes p and a face incident
to p.

First we find an axial symmetry α of B which fixes the parent cut vertex using
Biconnected Planar. Then we check whether each fixed child cut vertex cj

preserves the axial symmetry. For this purpose, we need some information about
the axial code AC(v). The interpretation of values of AC(v) is:

1. AC(v) = 0 if G+(v) has an axial symmetry which does not fix any G+(vi)
for any i.

2. AC(v) = 1 if
(a) every axial symmetry of G+(v) fixes at least one G+(vi), and
(b) there is an axial symmetry α such that if α fixes G+(vi) then AB(vi) < 3,

and there is at most one j such that α fixes G+(vj) and AB(vj) = 1.
3. AC(v) = 2 if

(a) every axial symmetry of G+(v) fixes at least two G+(vi) for which
AB(vi) = 1, and

(b) there is an axial symmetry α such that if α fixes G+(vi) then AB(vi) <
3, and there are at most two indices j such that α fixes G+(vj) and
AB(vj) = 1.

4. AC(v) = 3 otherwise.

Finally we assign the value, depending on the fixed faces which are adjacent to p.
We now state the algorithm.

Algorithm Compute Axial B
Apply Biconnected Planar [7] to the labelled graph B; if B has an axial
planar automorphism α such that
(a) α fixes p and respects the isomorphism partition labels on B;
(b) For each child cut vertex cj fixed by α, the number of faces incident to

cj and fixed by α is at least as large as AC(cj).
then AB(v) := the number of faces fixed by α and incident to p.
else AB(v) := 3.
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Computation of an Isomorphism Code of a Cut Vertex. Suppose that
c1, c2, . . . , ck are the cut vertices on the lowest level. We compute IsoC(ci) for
each ci, i = 1, 2, . . . , k, which represents an isomorphism code of ci. More specif-
ically, IsoC(ci) = IsoC(cj) if and only if the subgraph which is rooted at ci is
isomorphic to the subgraph which is rooted at cj . We now state the algorithm.

Algorithm Compute Iso C
1. For each ci:

(a) Let Bi1, Bi2, . . . , Bim be the child blocks of ci.
(b) s(ci) := (IsoB(Bi1), IsoB(Bi2), . . . , IsoB(Bim)).
(c) Sort s(ci).

2. Let Q be the list of s(ci), i = 1, 2, . . . , k.
3. Sort Q lexicographically.
4. For each ci, compute IsoC(ci) as follows: Assign the integer 1 to ci whose

s(ci) is the first distinct tuple of the sorted sequence Q. Assign the integer
2 to cj whose s(cj) is the second distinct tuple, and so on.

Computation of an Axial Code of a Cut Vertex. The label AC(v) rep-
resents whether a cut vertex c has an axial symmetry which fixes the parent
block. Let Bp be the parent block of v and B1, B2, . . . , Bm be the child blocks
of v. Suppose that α is an axial symmetry which fixes Bp. We use AC(v) to de-
cide whether c preserves α of Bp. More specifically, this indicates that whether
B1, B2, . . . , Bm can be attached to c, preserving α.

To compute AC(v), we use AB(Bj). The label AB(Bj) indicates that whether
Bj has an axial symmetry which fixes c. Further, it indicates that whether there
is a fixed face adjacent to c. We now state the algorithm.

Algorithm Compute Axial C
1. Partition B1, B2, . . . , Bm into isomorphism classes P� using IsoB(Bj), and

compute the size s� of each isomorphism class P�.
2. If all s� are even, then AC(v) := 0; exit.
3. If there is an s� that is odd and AB(vj) = 3 for each j ∈ P�

then AC(v) := 3; exit.
4. Let f be the number of odd s� such that if j ∈ P� then AB(vj) = 1.

(a) If f > 2 then AC(v) := 3.
(b) If f = 2 then AC(v) := 2.
(c) If f = 1 then AC(v) := 1.

Note that all the labeling algorithms correctly compute labels and run in linear
time, see [8].

4.2 Computing a Maximum Size Planar Automorphism Group
at the Center

We can compute a maximum size planar automorphism group of the whole graph
by computing a maximum size planar automorphism group at the labeled center,
based on the following lemma.
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Lemma 3. The center of the BC-tree is fixed by a planar automorphism group
of a one-connected planar graph.

The algorithm can be divided into two cases, since the center of the BC tree
may be a block or a cut vertex. Roughly speaking, if the center is a block B,
then we use algorithm Biconnected Planar in Section 3. If the center is a cut
vertex c, then we use a similar method that was used in the case of trees [11].

However, the algorithm is not as simple as this, mainly because there are
some special cases. Namely, there may exist a fixed cut vertex when the center
is a block, and there may exist a fixed block when the center is a cut vertex. To
illustrate the special cases, see the graph Figure 3, with its BC tree. The center
of the BC tree is a block B with 5 cut vertices. The symmetries of the drawing
of this block fix the cut vertex c with 4 children in the BC tree. Maximizing
symmetry for the whole graph is not merely a matter of the reduction process
plus maximizing symmetry of B; we must also arrange the children of the fixed
cut vertex in a symmetrical way. Essentially this means merging the symmetries
of G+(c) with the symmetries of G+(B). Similar case can happen when the
center is a cut vertex. Thus to compute the maximum, we need to consider these
special cases. Again, we need an algorithm to find the child vertex of the center
which can gives the maximum. However, this can be done in linear time, see [8].

c

B

(a) (b)

Fig. 3. Special case.

5 The Drawing Algorithms

The algorithms presented in the preceding sections take a biconnected planar
graph and one-connected planar graph as input and has two outputs: a pla-
nar automorphism group of maximum size, and an embedding of the graph. In
this section, we show how to use this information to construct a straight line
symmetric drawing of the graph.

Given an embedding of a biconnected planar graph, we use “augmentation”:
we increase the connectivity by adding new edges and new vertices to make it
triconnected, while preserving the planar automorphism group. Then we can
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apply the algorithm for constructing symmetric drawings of triconnected pla-
nar graphs with straight-line edges to construct a symmetric drawing [6]. The
algorithm runs in linear time [6]. Finally we delete the added edges and vertices.

Given an embedding of a one-connected planar graph, we use “attachment”:
first, we draw each block using the algorithm for constructing symmetric draw-
ings of biconnected planar graphs with straight-line edges to construct a sym-
metric drawing. Then we attach each drawing at each cut vertex, preserving
planarity. Clearly, this algorithm runs in linear time.
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Abstract. Confluent graphs capture the connection properties of train
tracks, offering a very natural generalization of planar graphs, and –
as the example of railroad maps shows – are an important tool in graph
visualization. In this paper we continue the study of confluent graphs, in-
troducing strongly confluent graphs and tree-confluent graphs. We show
that strongly confluent graphs can be recognized in NP (the complex-
ity of recognizing confluent graphs remains open). We also give a natu-
ral elimination ordering characterization of tree-confluent graphs which
shows that they form a subclass of the chordal bipartite graphs, and can
be recognized in polynomial time.

1 Introduction

The area of graph drawing deals with the visualization of graphs, where the
visualization meets certain aesthetic or technical constraints [1]. Typically, the
goal of the drawing of a graph is to minimize some parameter such as the cross-
ing number, or, for grid drawings, the area, the number of times an edge bends,
or the total length of the edges. Among these parameters, the crossing number
has probably drawn the most attention. A crossing number of zero corresponds
to planarity, for which linear time algorithms are known, but, in general, deter-
mining the crossing number of a graph is NP-complete [4], making it a hard
parameter to minimize. Recently, Dickerson, Eppstein, Goodrich, and Meng [2]
suggested an extension of the notion of planarity called confluency that, while
allowing crossings, hides them in the drawing. At the core is an idea similar to
the train tracks of Thurston [6]: we allow edges in the drawing to merge, like
train tracks, into a single track. The merging device is called a switch. Figure 1
shows how to draw complete graphs and complete bipartite graphs confluently.

Dickerson, Eppstein, Goodrich, and Meng [2] identified several classes and
families of graphs which are confluent, including interval graphs and cographs.
They also gave examples for graphs which are not confluent (their smallest ex-
ample is obtained from the Petersen graph by removing a single vertex), and a
heuristic algorithm to recognize whether a graph is confluent or not. Interest-
ingly, they did not study the complexity of the recognition problem.

The main contribution of this paper is to show that a natural strengthening
of confluency in graphs can be recognized in NP. In Section 2 we define the

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 318–328, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. How to draw K6 and K5,3 confluently.

notions of confluency and strong confluency. Their relationship is investigated in
Section 3 by studying their underlying train tracks. Section 4 shows that strong
confluency can be recognized in NP by giving a polynomial upper bound on the
number of switches necessary to represent a graph. We think it is not unlikely
that the problem will turn out to be NP-complete.

If confluency does turn out to be NP-hard, it will be of interest to identify
large, and natural, subclasses which can be recognized efficiently. One immediate
way of obtaining interesting classes of confluent graphs is by taking well-known
graph classes whose definition depends on planarity, and replace planarity with
confluency. In that manner we obtain outer-confluent graphs (see Section 6), and
tree-confluent graphs, whose confluent drawings are treelike. In Section 5 we will
show that the tree-confluent graphs can be recognized efficiently with the help
of an elimination order characterization.

2 Train Tracks and Confluent Drawings

Definition 1. A curve is a continuous mapping of [0, 1] into the Euclidean
plane; we often identify a curve and its image. A curve is smooth, if it is dif-
ferentiable (intuitively, it cannot make sharp turns). A smooth curve which does
not self-intersect is called locally monotone [2].

Definition 2. A train track drawing with vertices V and switches S is a subset
D of the Euclidean plane such that (i) V ∩S = ∅, (ii) there is a injective mapping
of V

.∪ S into D (we identify a point in V
.∪ S with its image), (iii) any curve in

D not containing a switch must be smooth, and (iv) any two overlapping curves
in D must have a common tangent at any point of overlap; that is, they have to
join smoothly.

A curve in a train track drawing which shares exactly its two endpoints with
V

.∪ S is called a branch.

Based on this notion of a train track drawing, we derive two graph drawing
concepts.

Definition 3. We call a graph G = (V, E) confluent, if there is a train-track
drawing D on V such that uv ∈ E if and only if there is a locally monotone
curve in D with endpoints u and v that does not contain any other points of V .
In this case we call D a confluent drawing of G.



320 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

c

a b

d

Fig. 2. K4 or K4 − e?

For an example, consider the train track drawing in Figure 2. We can easily
trace locally monotone curves connecting all pairs of vertices – with the exception
of a and b. There is a smooth curve connecting a to b, but it is not locally
monotone, since it has to self-intersect. Hence, the train track drawing in Figure 2
is a confluent drawing of a K4 − e.

When tracing a train track drawing visually, the requirement to avoid self-
intersections seems to force a reader to backtrack to determine whether two
points are connected. Removing this requirement leads to the following notion.

Definition 4. We call a graph G = (V, E) strongly confluent, if there is a train
track drawing D on V such that uv ∈ E if and only if there is a smooth curve in
D with endpoints u and v that does not contain any other points of V . In this
case we call D a strongly confluent drawing of G.

Using this new definition, we would say that the train track drawing in Fig-
ure 2 is a strongly confluent drawing of a K4.

Remark 1. The notion of confluency was introduced by Dickerson, Eppstein,
Goodrich, and Meng in [2]; at a first glance it might seem that confluency is
a stronger requirement than strong confluency. The opposite, however, is true;
every strongly confluent graph is confluent (as we will see in Corollary 1), and
there is a confluent graph which is not strongly confluent.

By definition, any point of D at which several curves combine is a switch. A
switch has two sides, each with an arbitrary number of incoming curves. Every
such switch can be replaced by a series of simple switches, where a simple switch
is a switch in which two curves merge into a single curve. For example, the
drawing of K6 in Figure 1 uses simple switches, whereas the drawing of K5,3 in
the same figure uses a single switch which is not simple. Figure 3 shows how to
draw K5,3 using only simple switches.

For the rest of the paper we will use switch synonymously with simple switch,
unless explicitly stated otherwise.

3 Train Tracks

We want to capture the combinatorial structure of a train track drawing D in
graph-theoretic terms, abstracting from the particular embedding. To this end,
we call a vertex-labelled graph H = (V

.∪ S, F, o) a train track if the following
holds:
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Fig. 3. How to draw K5,3 using only simple switches.

(i) The vertex set of H consists of two types of vertices V and S, we call
vertices and switches of H ,

(ii) switches have degree 3,
(iii) o(s) ∈ V

.∪ S is one of the three neighbors of s (for every switch s ∈ S).

Remark 2. We will often consider H as a directed graph, for example to specify
in which direction the undirected edge uv is traversed. In that case we will write
(u, v) or (v, u), and we will tacitly consider the graph as symmetric; that is, for
every directed edge, the reverse edge also belongs to the graph.

We think of o(s) as determining the orientation of the switch s: if we enter
the switch s coming from o(s), it forks into two branches. A curve in a train
track drawing now corresponds to a walk in the train track which respects the
orientation of the switches in the sense that for every part (u, s, v) of the walk s
is a switch, and o(s) is either u or v (and u and v are different from each other).
We call such a walk acceptable. We can now rephrase our notions of confluency
and strong confluency in terms of train tracks.

Lemma 1. A graph G = (V, E) is confluent if there is a planar train track H
such that uv ∈ E if and only if there is an acceptable path from u to v in H. The
graph is strongly confluent if there is a planar train track H such that uv ∈ E if
and only if there is an acceptable walk from u to v in H.

Proof. Consider a train track drawing D with vertices V and switches S. Con-
struct a train track H as follows: V

.∪ S will make up the vertex set of H . Include
an edge (u, v) in F if in D there is a curve from u to v which does not cross
through any vertices or switches. We assumed that switches are simple, hence
there are three branches leaving s. Let o(s) be the endpoint (other than s) of the
edge corresponding to the branch that extends the other two branches smoothly.
Then H is a planar train track in which every acceptable walk corresponds to a
smooth curve in D, and every acceptable path to a locally monotone curve.

Remark 3. Given a train track, the graph it represents can be found in polyno-
mial time. In the case of strong confluency this is obvious, for confluency the
problem can be reduced to a matching problem [3].

Theorem 1. If G = (V, E) is strongly confluent, then it is represented by a
planar train track H = (V

.∪ S, F, o) such that ab ∈ E if and only if there is an
acceptable path Pab in H from a to b.



322 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

We omit the proof of Theorem 1. Together with Lemma 1 it immediately
implies a relationship between the two notions of confluency we introduced.

Corollary 1. Any strongly confluent graph is confluent.

The inclusion is strict, consider for example the graph drawn in Figure 4.
By adding some more vertices and edges on the outside, we can force that all
the switches occur within the circle. The resulting graph is confluent, but not
strongly confluent (since vertex 6 will always be connected to vertex 4 in a
strongly confluent drawing).

1

2
3

4

5

6

7

8
9

10

11

12

Fig. 4. Construction for graph which is confluent but not strongly confluent.

4 Strong Confluency in NP

Lemma 2. If G = (V, E) is confluent, then there is a train track H representing
G, and acceptable paths Pe for every edge e ∈ E such that the following condition
holds:

If P is a longest path contained in both some Pe and some Pf , then P
is a single edge.

Proof. We need a measure of overlap between two paths Pe and Pf . To this end,
we introduce the numbers

oef :=
∑

P maximal subpath of Pe ∩ Pf

|P |2.

With this we can establish the following claim:

Suppose H is chosen to minimize the number oef . In that case, if P is a
path contained in both Pe and Pf , then P is a single edge.

If the conclusion of the claim is false, there is a path (u, x, v) belonging to both
Pe and Pf . Let y be the endpoint of the third edge incident to x; without loss
of generality, we can assume that o(x) = u. Since Pe and Pf are paths, the
edge xy cannot belong to either of them. Modify H as follows: remove edges ux
and xv and add two new vertices u′, v′ and edges uu′, u′v′, v′v, u′x and xv′; set
o(u′) = u, o(v′) = v, and o(x) = u′. Modify Pe and Pf such that one of them uses
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(u, u′, x′, v′, v) and the other (u, u′, v′, v). This will split the maximal common
subpath of Pe ∩ Pf containing (u, x, v) into two parts. Since (i + j)2 > i2 + j2

for i, j ≥ 1, this strictly reduces oef showing that H did not minimize it. This
establishes the claim.

In the modification made to H in the proof of the claim, we can route any
other Pg through (u, u′, v′, v) if it used (u, x, y) or through (u, u′, x, y) if it used
(u, x, v); in either case the length of another Pg path will be increased by at
most one.

More importantly, if any maximal subpath of Pg and Ph is an edge, then
the modification to H will not change that: if Pg and Ph were affected by the
modification and shared a single edge on the vertices u, x, v, and y, it must have
been ux, and one of Pg and Ph must have used xv and the other xy; hence, after
the modification they will only share uu′.

Let e1f1, e2f2, . . . , ekfk be an ordering of all pairs of distinct edges of G. The
above observation immediately implies that if we choose H so as to minimize
(in lexicographic ordering) the vector

(oe1f1 , oe2f2 , ..., oekfk
)

then any paths Pe and Pf intersect in isolated edges.

For the rest of this section we will concentrate on strongly confluent graphs.
Because of Corollary 1, we can still apply Lemma 2 in that case, concluding that
overlap between a Pe and a Pf consists of non-adjacent edges. Moreover, these
overlaps between Pe and Pf correspond to crossings in a planar drawing of H .
That is, if we have the path (ue, s, t, ve), part of Pe and (uf , s, t, vf ), part of Pf

then ue and ve cannot be on the same side of st in the planar drawing of H ,
since otherwise we could have reduced oef by having two separate paths (ue, ve)
and (uf , vf ) as shown in Figure 5.

There is one scenario which would prohibit the application of the move shown
in Figure 5, namely if there was a third Pg making use of the edge st. This,
however, is not possible, since one pair from Pe, Pf , Pg would share a path of
length ≥ 2.( Note that this operation would not be valid if the representation was
just confluent, since lifting the path could introduce new connections between
vertices not possible before.)

Our goal is to show that we can assume the number of switches in H to be
polynomial in the number of vertices. To this end we equip the train track with
an edge labelling that contains connectivity information.

Given a train track H = (V
.∪ S, F, o) for G = (V, E) we define a labelling of

the directed edges of H as follows:

�(u, v) = {a ∈ V : there is an acceptable walk from a to v in H

passing through (u, v)}.

uf

s t
vf

ue ve

uf vf

ue ve

Fig. 5. Lifting a path (in a strongly confluent representation).
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From the definition it follows that � is the minimal labelling fulfilling

(i) a ∈ �(a, u) for any edge (a, u) ∈ F ∩ (V, V
.∪ S),

(ii) NG(a) =
⋃

(u,a)∈F �(u, a) for any a ∈ V , where NG(a) = {b : ab ∈ E} is
the neighborhood of a in G,

(iii) for any switch s ∈ S and its neighbors u = o(s), v, w:

�(u, s) ⊆ �(s, v) ∩ �(s, w), and

�(s, u) ⊇ �(s, v) ∪ �(w, s).

By the results proved so far we know that if G = (V, E) is strongly confluent,
then there is H = (V

.∪ S, F, o) such that ab ∈ E if and only if there is an
acceptable path Pab from a to b in H .

Lemma 3. If G = (V, E) is strongly confluent, then it is represented by a train
track H with O(|V |)6 vertices and switches.

Let uv ∈ E. Consider a path Puv in H whose inner vertices are all switches,
and the function �(−→e ) as we move the directed edge e along Puv from u to v.
This yields a monotone function, namely, if e occurs before f on Puv and both
edges are directed towards v, then �(−→e ) ⊆ �(−→f ). Therefore, �(−→e ) can take on at
most |V |+1 different values along Puv. Similarly, if we move an edge←−e directed
towards u along Puv from u to v, the corresponding label sets are monotonously
decreasing, and, hence, also take at most |V | + 1 different values along Puv.
Consequently, the expression (�(−→e ), �(←−e )) can change value less than 2(|V |+1)
times as we travel along Puv from u to v.

For each uv ∈ E we color those switches at which (�(−→e ), �(←−e )) changes red,
and the remaining switches blue. Note that at most (2|V | + 1)|E| switches are
colored red. We call the maximal segments of Puv which do not contain red
switches blue segments. There are at most 4(|V |+ 1)|E| blue segments. We will
show that there is a drawing such that any two blue segments intersect at most
once. Hence there is a drawing with at most (2|V |+ 1)|E|+ 2(4(|V |+ 1)|E|)2 =
O(|V |6) switches.

Consider two edges e and f in H that are adjacent crossings of a blue segment
P with other blue segments. There are two possible scenarios depending on
whether the crossings are parallel or not (as earlier, the sharp angles represent
the forking part of a switch, and thus define o). Figure 6 shows how the order
of two parallel crossings can be swapped.

We can use a similar move for non-parallel crossings, as shown in Figure 7.

Fig. 6. How to swap two parallel crossings.
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Fig. 7. How to swap two non-parallel crossings.

Note that in both cases we can extend the labelling of H to the newly intro-
duced edges so that the graph represented by H remains the same: we simply
label the new edges with (�(−→e ), �(←−e )).

Suppose that two blue segments P and R cross more than once. Let e1, e2

be crossings of P and R such that there are no crossings of P and R between
e1 and e2 on R. There may be crossings of P and R between e1 and e2 on P .
Label them by i if after cutting R between e1 and e2 they would be in the same
component of R as ei. There is a pair of neighboring crossings f1, f2 labeled by
1, 2, respectively. Using the swap moves on edges intersecting R we can make
e1, e2 adjacent on R and then shortcut P eliminating half of the intersections
created by the swap moves. Similarly using the swap moves on edges intersecting
P we can make f1, f2 adjacent on P and then shortcut R eliminating half of the
intersection created by the swap moves. In one of the cases we decrease the
total number of intersections while preserving the property that any two paths
intersect in paths of length 1. Hence there is a train track in which any two blue
segments intersect at most once.
Corollary 2. Strong confluency can be tested in NP.

Proof. Corollary 2 shows that if G is strongly confluent, then there is a train
track representing G of size polynomial in |G|. In NP we can guess any such
train track, and verify that it represents G.

5 Tree-Confluent Graphs

We call a train track drawing D tree-like, if it does not contain a closed curve (the
curve would not have to be smooth or locally monotone). For example, Figure 8
shows a tree-like train track drawing. On the other hand, Figure 1 shows a train
track drawing representing K6 which is not tree-like. We call a confluent graph
which can be represented by a tree-like train track drawing tree-confluent (the
strong case being the same). We will see later that all tree-confluent graphs are
bipartite, so there is no tree-like train track drawing representing K6.

In graph theoretic terms, the underlying abstract train track of a tree-con-
fluent graph has to be a tree. A graph is tree-confluent if and only if it is rep-
resented by a planar train track which is a tree. We now give a characterization
of tree confluent graphs in terms of a vertex elimination ordering. This charac-
terization leads to a fast recognition algorithm.

Theorem 2. A graph is tree confluent if and only if repeatedly removing (i)
vertices of degree 1, and (ii) vertices u such that there is another vertex v with
N(u) = N(v) 
= ∅, leads to the trivial graph (containing only a single vertex).
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Fig. 8. A tree-like train track drawing.

Proof. First observe that if G is tree confluent then it will still be tree confluent
after the removal of vertices of type (i) or (ii). Furthermore, if G is not tree
confluent, it cannot become tree confluent by removing a vertex of type (i) or
(ii): if G− {v} were tree confluent and v has degree 1 in G, then it has degree
1 in the underlying train track, hence G is tree confluent; similarly if G − {v}
is tree confluent, and G contains another vertex u with N(u) = N(v), then we
can replace u in the train track for G− {v} by a switch that branches to u and
v, showing that G is tree confluent (note that G does not contain the edge uv,
since N(u) = N(v)).

Since the trivial graph is tree confluent, this observation implies that any
graph which can be reduced to the trivial graph by removing vertices of type (i)
and (ii) is tree confluent.

Furthermore, for the other direction, the observation shows that the order of
removal is irrelevant, and it is sufficient to show that if G is tree confluent, there
is some order E in which to remove vertices of type (i) and (ii) such that we end
up with the trivial graph.

Suppose G = (V, E) is tree confluent; then there is a planar train track
H = (V

.∪ S, F, o) which represents G. Consider F as a set of directed edges. We
define a function p from F to N as follows:

p(u, v) = |{w ∈ V : there is a walk from v to w that does not use u}|.
Figure 9 shows an example of p.

Using p we define a second function r from S to N. Let the neighbors of s be
u, v, w, then

r(s) = min{p(s, u) + p(s, v), p(s, u) + p(s, w), p(s, v) + p(s, w)}.

1
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Fig. 9. A train track. Every edge is labelled with the number of vertices contained in
the portion of the train track to which the edge points.
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We begin the construction of E by repeatedly removing vertices of degree 1
in G until there are no such vertices left. If G has not turned into the trivial
graph at that point, it has to contain at least one switch (otherwise it would be
a tree on its vertices and would have to contain a vertex of degree 1).

Choose the switch s with minimal r(s). We claim that r(s) = 2. First note
that r(s) ≥ 2, because p is always at least 1. Now suppose that r(s) > 2. Then
s must be adjacent to at least one edge su such that p(s, u) ≥ 2, since otherwise
r(s) would equal 2. The portion of the train track to which su leads cannot
contain any switches, for if it contained a switch t, then r(t) would be strictly
less than r(s) violating the minimality of r(s). Therefore, the vertices in the
portion of H to which (s, u) leads must form a tree. However, the leaves of this
tree would have degree 1, and we already eliminated all those vertices.

Let s be a switch with r(s) = 2. Then there are u and v such that p(s, u) +
p(s, v) = 2, and therefore p(s, u) = p(s, v) = 1. Hence, u and v have to be
vertices of G. Since neither of them can have degree 1 in G, the switch s must
be oriented to fork into u and v which implies that N(u) = N(v). Hence we can
continue the construction of E by selecting u, for example.

We continue in this fashion, eliminating vertices of degree 1 as long as pos-
sible, and then identifying leaf vertices of switches s with r(s) = 2. We showed
that the only reason such a switch would not exist is that the graph G has turned
into the trivial graph, which is what we had to show.

The elimination characterization of Theorem 2 leads to a randomized linear
time algorithm for recognizing tree-confluent graphs.

In [5], Golumbic and Goss introduced the now well-known class of graphs
known as the chordal bipartite graphs, which are those bipartite graphs in which
every cycle of length at least 6 contains a chord (that is, no cycle of length
at least 6 is induced). Removing a vertex of degree 1 or a vertex u such that
there is another vertex v for which N(u) = N(v) from a graph does not change
the property of a graph being chordal bipartite. This observation gives us the
following lemma.

Lemma 4. Every tree confluent graph is chordal bipartite.

The reverse is not true as witnessed by a C6 with a single chord.

6 Open Problems

While we have shown that strong confluency can be recognized in NP, we cur-
rently have no such result for confluency. Although the two notions are very
similar, their combinatorial nature seems to be quite different. At this point we
cannot even rule out the possibility that a confluent graph needs an exponential
number of switches to be realized (although that would not necessarily affect
membership in NP, as witnessed by the example of string graphs [7]).

Identifying large classes of confluent graphs remains a challenging task. We
suggest the notion of outer-confluency (confluent graphs that can be drawn in
a disk with all the vertices on the boundary of the disk). As in the case of
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confluency there are examples of graphs that are outer-confluent but not strongly
outer-confluent (see Figure 4). Dickerson, Eppstein, Goodrich, and Meng [2]
showed – in effect – that all cographs are outer-confluent (even strongly outer-
confluent), thereby also showing that outer-confluency is a strict superclass of
tree-confluency. It does not seem unlikely that outer-confluent graphs can be
recognized in polynomial time.

We seem to have a good understanding of tree-confluent graphs; the main
missing piece is a deterministic linear time recognition algorithm.
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Abstract. We consider the following graph embedding question: given
a graph G, is it possible to map its vertices to points in 3D such that
G is isomorphic to the mutual nearest neighbor graph of the set P of
points to which the vertices are mapped? We show that this problem is
NP-hard. We do this by extending the “logic engine” method to three
dimensions by using building blocks inpired by the structure of diamond
and by constructions of A.G. Bell and B. Fuller.

1 Introduction

Proximity graphs are an important and well studied area of computer science and
find applications, for example, in architecture, pattern recognition, and geogra-
phy. Proximity graphs are defined to capture some kind of spatial relationship
between pairs of points on the plane or in space. Two points, regarded as ver-
tices of a graph, are joined by an edge if, and only if, the points satisfy some
given proximity criterion. Examples of proximity graphs include mutual nearest
neighbour graphs, Gabriel graphs, and the Delauney triangulation. For a review
of proximity graphs, see [11, 16].

Given an abstract combinatorial graph whose vertices are labeled, and a
proximity criterion, the recognition problem is to determine whether there is
some set P of points, typically required to lie in 2D or 3D, such that the graph is
isomorphic to the proximity graph on P defined by the given proximity criterion.
The realization problem is to produce such a set P if one exists. This paper proves
that the problem of recognizing mutual nearest neighbour graphs in 3D is NP-
hard, an open problem in graph drawing (see [4]). Our proof builds a 3D version
of a “logic engine”. The building blocks we designed are based on the structure
of diamond; they may prove useful in extending the logic engine approach to
obtain complexity results for other 3D layout and proximity problems studied
previously in two dimensions (e.g., [3, 4, 6, 7, 12–14]).

The rest of this section contains background material. Section 2 extends the
logic engine approach to 3D, using the octet truss of Buckminster Fuller, and
gives our NP-hardness result. Section 3 concludes.
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Preliminaries. A mutual nearest neighbour graph of a set P of points is a
proximity graph for which each pair x,y of vertices arising from points x,y is
connected by an edge if, and only if, point x is a nearest neighbor of y, and point
y is a nearest neighbor of x. The set P of points typically lies in 2D or 3D. Note
that in 2D, points x,y determine an edge if the interior of the union of the two
discs centred at x and y, and having radius equal to their separation distance, is
empty of points other than x and y.

A simple example of a 3D mutual nearest neighbor graph is given by the
combinatorial structure of the vertices and edges of the regular tetrahedron.
The four vertices of the regular tetrahedron of unit edge length are positioned at
points in space so that each point is unit distance from each of the other three.
Thus each pair of points gives rise to an edge in the mutual nearest neighbor
graph of the points, which is thus K4, the complete graph on four vertices.

As we will later see, if we start with a combinatorial graph K4 whose vertices
are labeled and ask whether it can be realized in 3D as the mutual nearest
neighbor graph of some set P of four points, we find that there are exactly
two realizations, up to translation, rotation, and scaling, and that these two
realizations are mirror images of each other.

Similarly, the vertex-edge incidence structure of the regular octahedron can
be thought of as a 3D mutual nearest neighbor graph, and the combinatorial
graph has exactly two realizations, up to translation, rotation, and scaling.

In the early 1900’s, Alexander Graham Bell used rigid tetrahedra and octa-
hedra to construct kites, an unsuccessful flying machine, and a tall tower [1].
The structures that Bell assembled are mutual nearest neighbour graphs, as we
will prove. These structures were later rediscovered by Buckminster Fuller [2],
who patented the octet truss and used it extensively.

Mutual Nearest Neighbour Graph Recognition (MNNGR). Given an
undirected graph G, is G realizable as a mutual nearest neighbour graph?

For 2D, MNNGR was proved NP-Hard by Eades and Whitesides [9], by
a reduction from Not-All-Equal-3-Satisfiability (NAE3SAT) to MNNGR via a
method they called the “logic engine” approach, reviewed below. Recall that
NAE3SAT is NP-complete and that an instance consists of m clauses each con-
taining three distinct literals, and that a satisfying assignment must contain
at least one true and at least one false literal in each clause ([10]). It may be
assumed that no clause contains both a literal and its complement.

The Logic Engine Approach. The logic engine is a virtual mechanical de-
vice that encodes instances of NAE3SAT. The device can be positioned a certain
way in the plane if and only if the instance of NAE3SAT that it encodes can
be satisfied. The idea for obtaining hardness results for proximity graph recog-
nition problems is to design a graph whose only possible realizations imitate the
correctly positioned mechanical device.

The (m,n) logic engine contains a rigid “frame” and a “shaft”. To the shaft
are attached a series of “armatures” Aj , 1 ≤ j ≤ n, one for each literal xj in the
instance of NAE3SAT. Each armature can rotate about the shaft independently
of the others, although the position of each armature along the shaft is fixed.
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Fig. 1. a) Schematic for a (3,4) logic engine, and b) Encoding for NAE-3SAT instance
c1 = {x1, x

′
2, x3}, c2 = {x′

1, x
′
2, x

′
3}, c3 = {x2, x3, x4}.

Each armature Aj in turn has two “chains” attached to it: aj from one end
of the armature to the shaft, and a′

j from the other end of the armature to the
shaft. The length of a chain equals the distance between the shaft and the ends
of its armature. Each chain has at least m links, which are numbered 1,2,...,m,
outward from the shaft; the first m links correspond to clauses with the same
indices, respectively.

The aj chain of armature Aj represents the uncomplemented literal xj , and
its ith link represents the possible occurrence of xj in clause ci; similarly for link
i of chain a′

j and the possible occurence of the complemented literal x′
j in ci. A

“flag” attached to link i of armature chain aj indicates that xj does NOT occur
in clause ci; similarly, a flag on link i of chain a′

j indicates the non-occurence of
x′

j in ci. See Figure 1 for a (3,4) logic engine encoding of a NAE-3SAT instance.
The entire structure can move in the following ways: each armature can lie in

one of two positions, either with ai above the shaft, or with a′
i above the shaft;

and each flag can face to the right, or can be flipped to face the left.
Although each flag is free to rotate, flags that lie on the same row and lie on

adjacent armatures must not face one another. If they do face each other, the
flags collide. Similarly, any flag in armature An collides with the frame if it faces
outward; any flag in armature A1 collides with the frame if it faces inward. We
later use the following lemma.

Lemma 1. (from [9]) A given instance of NAE3SAT has a satisfying solution
if, and only if, there exists a collision-free configuration for the logic engine.

2 Mutual Nearest Neighbor Graphs in Three Dimensions

Here we prove the NP-hardness of MNNGR in 3D, settling a problem from [4].
While the result was anticipated in [9], this is the first concrete proof.

3D Nearest Neighbour Rule: Vertex vi is a nearest neighbour of vj if, and
only if, the open sphere of radius d(vi, vj) around vj contains only vj .
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3D Mutual Nearest Neighbour Graph: Suppose that P is a set of points
in 3D. Then a 3DMNNG, defined by a set P of points, is an undirected graph
G with a vertex vi for every point pi ∈ P . For every pair of vertices vi, vj ∈ G,
there is an edge between them if, and only if, vi is a 3D nearest neighbour of vj ,
and vj a 3D nearest neighbour of vi.

A graph G is realizable as a 3DMNNG if for some point set P in 3D, the
3DMNNG on P is isomorphic to G. In that case we often use “G” to denote
both the combinatorial graph and its geometric realization in 3D, and we use
the same labels for corresponding points and vertices.

3D Mutual Nearest Neighbour Graph Recognition (3DMNNGR):
Given an undirected connected graph G, is G realizable as a 3DMNNG?

We will use the logic engine paradigm to transform NAE3SAT to 3DMNNGR
in polynomial time, thus showing that 3DMNNGR is NP-hard.

Lemma 2. (straight-forward from Lemma 2 of [9]) Suppose that G is a con-
nected 3DMNNG. Then all edge segments of G have the same length.

From now on, we assume all edges in a connected 3DMNNG have unit length.

Lemma 3. (by Lemma 2) Suppose that H is an induced connected subgraph
of a combinatorial graph G. Then any 3DMNNG realization of G includes a
3DMNNG realization of H.

Two realizations of a labeled graph are “the same” if, following possible
translation, rotation, and scaling, vertices with the same label coincide. Thus, all
mirror images of a given labeled structure are the same in this sense. However,
mirror images are not, in general, the same as their initial labeled structure.
Taking the mirror image of a vertex-labeled tetrahedron turns it inside out; the
mirror image cannot be superimposed on the original, with labels matching, by
translation and rotation.

In the next lemma, and throughout the paper, we let h =
√

6/3, which is the
distance from the base of a tetrahedron to the top, if all edges are unit length.

Lemma 4. (straight-forward) The labeled graph K4 has exactly two realization
as a 3DMNNG, both of which are regular tetrahedra.

Once we prove a labeled combinatorial graph has exactly two realizations as
a 3DMNNG, we use the term “graph” to refer to either realization.

Lemma 5. (straight-forward) Let H be a labeled graph isomorphic to the com-
binatorial structure of Figure 2c). Then H has exactly two realizations as a
3DMNNG, namely a regular octahedron and its mirror image.

Lemma 6. Let H be the labeled combinatorial graph (called an octet truss)
arising from the geometric structure in Figure 3a). H can be realized as a
3DMNNG in exactly two ways: points a,b,c,d,e,f must lie on a single base plane,
while points u,v,w must lie on a parallel lid plane at a distance h from the base
plane.
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Fig. 2. a) and b) Two realizations of labeled K4; c) and d) Labeled graph H and one
of its realizations as an octahedron.

Proof. By Lemma 2, all edges must have unit length. By Lemma 5, the points
b,c,e,u,v,e construct a regular octahedron. When the plane of b,c,e is viewed
from above, then the plane of u,v,w is parallel to it, and may lie on either side of
it. (In Figure 3a, the plane of u,v,w is shown closer to the viewer than the plane
of b,c,e). Now add the points a,d,f to the graph. These points become members
of tetrahedra. Consider each of a,d,f in turn. Although by Lemma 4, a labeled
tetrahedron has two realizations, one of these would place the point (a,d or f)
inside the octahedron and violate a distance constraint: no vertex in a connected
MNNG can lie distance less than one from another vertex. Hence the remaining
points lie in the plane of b,c,e as shown. �

A base plane is defined by the six coplanar vertices of an octet truss (in
Figure 3a, the plane of a,b,c,d,e,f). The remaining three vertices of the truss
define the lid plane (in Figure 3a, the plane of v,u,w). A base vertex is any
one of the six vertices on the base of an octet truss. A lid vertex is any one
of the three vertices on the lid of an octet truss. The plane parallel to the base
plane, at distance 4h on the same side of the base plane as the lid plane, is the
mid-plane. The plane parallel to the base plane, at distance 8h on the same
side of the base plane as the lid plane, is the sky plane.

Lemma 7. Let H be the labeled combinatorial graph arising from the geometric
structure in Figure 3b) (called the hexagonal octet truss). H can be realized
in exactly two ways. Furthermore, u,v,w and x are coplanar, and the remaining
vertices are coplanar, and these planes are parallel.

Fig. 3. a) Octet truss and b) Extended octet truss.
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Proof. By Lemmas 3 and 6, the subgraph induced by vertices a,b,c,d,e,f,u,v,w
must be realized as one of two octet trusses, with the lid plane on either side of
the base plane. Point x lies unit distance from each of v,e,w, with which it forms
a regular tetrahedron. Since it cannot lie inside the octahedron b,c,e,u,v,w, it
must lie as shown in Figure 3b), in the lid plane of the octet truss.

Point g must lie on a circle perpendicular to d,e, centred at the mid-point of
d,e. Likewise, g must lie on a circle centred at the mid-point of x,e. The circles
intersect in two points, so g must lie either as shown in 3b), or at the position
occupied by vertex v, which is clearly not allowed. Similarly for point f. �

Fig. 4. a) Link graph b) Flagged link graph c) Tower with mid-wire and sky-wire.

The link graph, the flagged link graph and the k-tower are the labeled
graphs having the combinatorial structures shown in Figures 4 a), b), and c),
respectively. All three graphs can be realized as 3DMNNG’s. The next lemma
proves that each graph has exactly two realizations, namely, the realizations
shown in the figure, together with their mirror images. We also define the di-
rection of a link graph realization, or flagged link graph realization, to be the
vector of the directed line segment from the s to the t vertices of the realization.
The line defined by the points s and t is called the s-t axis.

Lemma 8. The link graph, flagged link graph, and k-tower each have only two
realizations.

Proof. The combinatorial structure of the k-tower has the form H1 ∪ ... ∪ Hk,
where Hi is an octet truss, and for i odd, Hi ∩ Hi+1 consists of three shared
lid vertices, and for i even, Hi ∩ Hi+1 consists of six shared base vertices. By
Lemma 6, each Hi has two realizations. However, once a realization is chosen
for an octet truss, say H1, the remaining realizations are determined. Thus a
k-tower has exactly two realizations, which are mirror images of each other.

The link graph and flagged link graph also have two realizations. By Lemma7,
the position of each vertex, with the exception of u, v, and t, is determined once a
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realization of the octet truss containing s is determined, since all vertices are con-
nected by extended octet trusses. To place u,v,t, note that points b,w,c,u,v,t form
a regular octahedron for which there are exactly two realizations by Lemma 5.
However, one of these realizations violates a distance constraint with respect to
the rest of the graph, so the octahedron is as shown in Figure 5. �

The k-flagged link graph is a sequence of k link graphs or flagged link
graphs joined together as shown in Figure 5. Each link graph in the k-flagged
link graph is called a block. Since the 3DMNNG realization of a flagged link
graph has exactly two realizations, which are mirror images of each other, the
Euclidean distance from vertex s to vertex t is a constant, which we denote by
dflagged link.

Lemma 9. (from the definition of dflagged link) If the 3DMNNG realization of
a k-flagged link graph spans a distance of k · dflagged link, then the s-t axis of all
link graphs and flagged link graphs must coincide.

Such a realization is a taut realization of a k-flagged link graph.

Lemma 10. In a taut realization of a k-flagged link graph, the base planes of all
the flagged link graph realizations must be the same, and similarly, the lid planes
must be the same.

Proof. To show that all the base planes form a common plane, consider two
joining link graphs X and Y (see Figure 5). Note that tx1,tx2,ty0,t form a regular
tetrahedron. Fix block X in space, thereby determining the position of points
t,tx1,tx2, and therefore the position of ty0. This prevents the rotation of block
Y about the s-t axis. The midpoint of ty1 and ty2 must lie on the s-t axis at a
known position. Points ty1 and ty2 must lie on a circle centred at the midpoint of

Fig. 5. 2-flagged link graph.
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ty1,ty2, and also, on a circle centred at midpoint of t,ty0, which is also a known
position. These two distinct circles intersect in two points, namely the positions
occupied by ty1 and ty2 in Figure 5. These positions lie in the base plane of block
X; hence blocks X and Y have the same base plane. Since the position of ty0 is
determined by block X, the lid plane of block Y is thus the same as the lid plane
of block X. �

Lemma 11. Any taut realization of a k-flagged link graph has exactly 2k real-
izations as a 3DMNNG.

Proof. As seen in Lemma 10, a taut realization of a k-flagged link graph must
have a common base plane and a common lid plane. However, any block can have
two realizations, which are mirror images of each other. To see this, consider a
realization of a block, and take its mirror image with respect to the plane con-
taining the s-t axis and perpendicular to the base plane. This second realization
has the same s-t axis, base plane, and lid plane as the first. �

Note that for blocks that are flagged link graphs, the two mirror images
point in opposite directions. We will use the taking of mirror images to imitate
rotations in the virtual logic engine.

Now, we build an (m,n) 3D logic graph, to imitate a logic engine, by con-
structing the following components, as seen in Figure 6. A frame consists of a
series of octet trusses, together with two 8-towers (the locations of which are
shown in gray in Figure 6). Attached to one side of the tower is a mid-wire at
height 4h, and a high wire at height 8h (see Figure 4c). Each wire consists of
a path of vertices and runs between both frame towers. By a similar argument
to that in the proof of Lemma 9, we can ensure that all vertices of the mid-wire
are colinear by forcing them to span a set distance to the other tower. The same
is true for the sky wire.

Each of these wires intersects the towers of each of the armatures in a path
of three vertices. As we will later prove, this ensures that the frame and all the
armatures share a common base plane.

We define the π plane to be the plane perpendicular to the base plane, con-
taining the mid-wire and the high wire.

An armature is built with a series of octet truss components forming three
sides of a rectangle (see Figure 6). The last side consists of two m-flagged link
graphs: ai from one end of the armature to the π plane, and a′

i from the other
end of the armature to the π plane. The armature also has a tower of height 8h
intersecting the mid-wire and the high-wire in paths of three vertices lying on
the π plane.

Lemma 12. The frame component has two realizations, both of which have a
single base, lid, mid, and sky plane. The armature component has a single base,
lid, mid, and sky plane. The base planes of all armatures and the frame are
coplanar. The same is true for the lid, mid, and sky planes.

Proof. The frame is built with overlapping hexagonal octet trusses in such a way
that all trusses must share a common base plane and lid plane. The towers of the
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Fig. 6. A 2D projection of the entire logic engine. Towers project to the gray regions,
and the mid-wire and sky-wire project to a common line. Edges between lid vertices
are not shown, and edges between lid vertices and base vertices are not shown. There is
a distance violation between vertices p and q; however a valid realization results when
flag p is flipped to the right.

frame intersect the rest of the frame in octet trusses, and this also determines the
orientation of the towers. Similarly, within each armature the base, lid, mid, and
sky planes are the same for all but the k-flagged link graph. Since the distance
between the extreme vertices of the k-flagged link graph is determined by the
rest of the armature to be k ·dflagged link, Lemma 9 applies to the k-flagged link
graph. The k-flagged link graph is connected to the rest of the armature with
the same connection seen between flagged link graphs.
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The intersections of each armature tower with the mid-wire and sky wire
force the base plane and lid plane of the armature to be the same as the base
plane and lid plane of the frame. �

An (m,n) 3D logic engine graph can now be constructed for any given instance
of NAE3SAT.

Lemma 13. In a 3DMNNG realization, two neighbouring flagged link graphs
may not have flags facing one another.

Proof. From Lemma 12, all the base planes of all armatures must be the same. If
a flagged linked graph and its neighbouring flagged link graph point in opposite
directions, then the two vertices at the tips of the flags must be unit distance
apart in the logic engine. This would imply the two vertices would be connected
in the combinatorial version of the graph, which is not the case. Thus, the flags
must not point towards one another. Similarly, the flags on armatures A1 and
An must point away from the frame. �

Lemma 14. (by Lemma 13 and Lemma 1 ) The (m,n) 3D logic graph can be
customized to encode instances of NAE3SAT so that the logic graph is realizable
if, and only if, the NAE3SAT instance is satisfiable.

Lemma 15. (straight-forward) There is a polynomial time transformation from
NAE3SAT to 3DMNNG.

Theorem 1. (by Lemmas 14, 15 and the NP-completeness of NAE3SAT). The
3DMNNGR problem is NP-hard.

3 Conclusion

The result that 3DMNNGR is NP-hard is not an immediate consequence of the
fact that MNNGR is NP-hard in 2D, in part because of the difficulty pointed out
by Fuller: regular tetrahedra do not fill space. We believe that the 3D building
blocks seen here suggest that the logic engine approach indeed is applicable to
three dimensional problems in graph drawing.
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Abstract. Given n red and n blue points in convex position in the plane,
we show that there exists a noncrossing alternating path of length n +
c
√

n
log n

. We disprove a conjecture of Erdős by constructing an example

without any such path of length greater than 4
3
n + c′

√
n.

1 Introduction

It is a basic problem in geometric graph theory to decide which graphs can be
drawn on a given point set with noncrossing straight-line edges. For instance, it
is known that every outerplanar graph (i.e., triangulated cycle) G of n vertices
can be drawn on any set of n points in general position in the plane [GMPP91].
Moreover, if G is a rooted tree, one can find such an embedding even if the image
of the root is specified [IPTT94,T96]. An unsolved problem of this kind is to find
the size of the smallest “universal” set in the plane, on which one can draw every
planar graph of n vertices with noncrossing straight-line edges [dFPP90,CK89].

We obtain many interesting new questions by considering colored point sets;
see [KK04] for a survey. It is a well known mathematics contest problem to prove
that between any set R of n red and any set B of n blue points in general position
in the plane there is a noncrossing matching, i.e., a one-to-one correspondence
between their elements so that the segments connecting the corresponding point
pairs are pairwise disjoint. Moreover, if R and B are separated by a line, one
can also find an alternating Hamilton path, i.e., a noncrossing polygonal path
passing through every element of R ∪ B such that any two consecutive vertices
have opposite colors [AGH97]. If we do not assume that R and B are separated,
then the last statement is known to be false for n ≥ 8, even if R∪B is in convex
position, i.e., its elements form the vertex set of a convex 2n-gon. The following
problem was communicated to the second named author by Erdős around 1989.
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Problem. Determine or estimate the largest number � = �(n) such that, for
every set of n red and n blue points on a circle, there exists a noncrossing alter-
nating path consisting of � vertices.

Of course, the condition that the points are on a circle is equivalent to the
assumption that they are in convex position.

Erdős and others conjectured that the asymptotically extremal configuration
was the following. Suppose n is divisible by four. Cut the circle into four intervals,
and place in them n

2 red, n
4 blue, n

2 red, and 3
4n blue points, respectively. It is easy

to see that in this construction the number of vertices in the longest noncrossing
alternating path is 3

2n + 2. That is, we have �(n) ≤ 3
2n + 2. The main aim of

this note is to disprove Erdős’s conjecture by exhibiting a better construction
in Section 2. A similar construction was found independently and at about the
same time by Abellanas et al. [AGHT03].

From the other direction, it is easy to argue that �(n) ≥ n. Indeed, divide
the circle into two arcs, each containing n points. At least half of the points
belonging to the first arc are of the same color, say, red. Then the second arc
must contain the same number of blue points. Enumerate the red (resp. blue)
points of the first (resp. second) arc in clockwise (resp. counterclockwise) order.
Starting with the first red point on the first arc, and connecting each point
with the next available element of opposite color on the other arc, we obtain
a noncrossing alternating path of length 2�n

2 � ≥ n. In Section 3, we improve
this bound by a term that tends to infinity. Our results can be summarized as
follows.

Theorem 1. There exist constants c, c′ > 0 such that

n + c

√
n

log n
< �(n) <

4
3
n + c′

√
n.

It is an annoying feature of this problem that it is not clear whether the
assumption that the points are in convex position plays any significant role. In
particular, the above argument for finding an alternating path of length n easily
generalizes to arbitrary 2-colored sets, on the other hand, our proof for the lower
bound in Theorem 1 relies heavily on the fact that the points are in convex
position. We conjecture that the upper bound in Theorem 1 is asymptotically
tight, that is,

|�(n)− 4
3
n| = o(n).

See also our Conjecture at the end of the paper.
The problem of covering a set of n red and n blue points with several non-

crossing alternating paths was discussed by Kaneko, Kano, and Suzuki [KKS04].
Alternating Hamiltonian cycles with at most n − 1 crossings were found by
Kaneko, Kano, and Yoshimoto [KKY00]. Their result cannot be improved. Many
other interesting questions about partitioning the plane into a given number of
convex pieces, each containing roughly or exactly the same number of red and
blue points, were studied in [BKS00,BM01,S02]. Analogous questions can be
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asked when we color by red and blue all the
(
n
2

)
segments between n points in

general position in the plane. Furthermore, instead of long alternating paths, we
may be interested in finding long monochromatic ones [KPTV98]. Merino et al.
[MSU05] studied alternating paths in k-colored point sets for k ≥ 3.

2 Upper Bound

Consider a ‘2-equicolored’ set C of 2n points in convex position in the plane.
That is, let half of the elements of C be colored red and half of them blue. An
uninterrupted run (or, in short, run) is a maximal set of consecutive points of C
that have the same color. The length of a run is the number of its elements. We
say that C is a k-configuration if it consists of k red and k blue runs.

A set of pairwise disjoint segments, each of which connects two points of
different colors, is called a matching. The size of a matching is defined as the
total number of points participating in it, that is, twice the number of segments.
A matching is said to be separated if there is a straight-line that intersects the
interior of each of its segments.

Lemma 2.1. Let C be a k-configuration for some k > 0, which has a noncrossing
alternating path of length l. Then C has a separated matching whose size is at
least l − 4k − 1.

Proof. Suppose without loss of generality that all elements of C lie on a circle.
Consider a noncrossing alternating path p of length l. Fix a chord c of the
circle that crosses the first and last segments along p, but does not pass through
any point of C. Let M1 denote the matching consisting of all odd-numbered
segments of p. Clearly, the size of M1 is at least l − 1. Let M2 ⊆ M1 be the set
of all segments in M1 that cross c. By definition, M2 is a separated matching.

To establish the lemma, it is enough to show that the number of elements of
M1 that do not cross c is at most 2k. Let us call these segments outer segments.
For each pair of consecutive points of C that have different colors, pick a point
between them on the circle. Any two consecutive runs of C are separated by
at least one such point, so the number of points we selected is precisely 2k.
Every outer segment s divides the circle into two (closed) arcs. One of them,
I(s), contains both endpoints of c; let the other one be denoted by J(s). Since
s connects two points of different colors, J(s) must contain at least one of the
selected points. On the other hand, both endpoints of the alternating path p
belong to I(s), so J(s) cannot contain the endpoints of any outer segment other
than the endpoints of s. Thus, for any two outer segments, s and s′, J(s) and
J(s′) are disjoint, so the selected points lying in the corresponding arcs J(s) and
J(s′), resp., are different. Hence, the number of outer segments cannot exceed
the total number of selected points, which is 2k. See Fig. 1. �

Represent any k-configuration with runs S1, S2, . . . , S2k by the sequence
(|S1|, |S2|, . . . , |S2k|). We assume that the odd-numbered runs are red and the
even-numbered are blue.
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c
J(s) I(s)

s

s
J(s )

Fig. 1. J(s) and J(s′) are disjoint.

ss1 3

2ks

2s

s2i+1

s4

Fig. 2. The k-configuration (k n
3k−2

, (2k − 1) n
3k−2

, k n
3k−2

, n
3k−2

, . . . , n
3k−2

).

Lemma 2.2. Let k ≥ 2 and assume that n is divisible by 3k−2. Then the size of
any separated matching in the k-configuration (k n

3k−2 , (2k−1) n
3k−2 , k n

3k−2 , n
3k−2 ,

. . . , n
3k−2 ) is at most 2n 2k−1

3k−2 .

Proof. Let S1, S2, . . . , S2k denote the consecutive runs of the k-configuration
(k n

3k−2 , (2k− 1) n
3k−2 , k n

3k−2 , n
3k−2 , . . . , n

3k−2 ) (see Fig. 2). Let M be a separated
matching. We distinguish five cases, according to the set of runs that are con-
nected to S2 by at least one edge in M .

Case 1: No edge of M has an endpoint in S2.
Then M uses at most n−n 2k−1

3k−2 blue points, so its size is at most 2n−2n 2k−1
3k−2 =

2n k−1
3k−2 < 2n 2k−1

3k−2 .
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Case 2: No edge of M runs between S2 and S1 ∪ S3.
Now the points in S2 can be connected only to the elements of S5, S7, . . . , S2k−1.
Hence, at most n k−2

3k−2 points of S2 are matched and at least n k+1
3k−2 are missed

by M . The size of M is at most 2n− 2n k+1
3k−2 < 2n 2k−2

3k−2 .

Case 3: S2 is connected by an edge of M to both S1 and S3.
Since M is a separated matching, the blue points in S4, S6, . . . , S2k are not
matched, so M uses at most n 2k−1

3k−2 blue points. Thus, the size of M is at most
2n 2k−1

3k−2 .

Case 4: S2 is connected by an edge of M to S1, but not to S3.
Suppose that the size of M exceeds 2n 2k−1

3k−2 . Then M matches more than n k
3k−2

points of S2, so at least one edge of M must connect S2 to a red run different
from S1. Let i > 1 denote the smallest integer such that there is an edge of M

between S2 and S2i+1. Then M matches at most nk+(k−i)
3k−2 = n 2k−i

3k−2 blue points
from S2 and misses the n k−i

3k−2 blue points in S2i+2, S2i+4, . . . , S2k, because M is a

separated matching. Therefore, it does not match at least n (2k−1−(2k−i))+(k−i)
3k−2 =

n k−1
3k−2 blue points, and its size is at most 2n 2k−1

3k−2 .

Case 5: S2 is connected by an edge of M to S3, but not to S1.
By symmetry, the same argument applies as in the previous case. �

Lemma 2.3. For any positive integers k and n ≥ k, there exists a k-configuration
of 2n points with no alternating path longer than 2n 2k−1

3k−2 + 16k.

Proof. The statement is trivial for k = 1, and also for n ≤ 8k. Suppose that
k ≥ 2, and n > 8k. Let n0 ≤ n be the largest integer divisible by 3k − 2. Let
C0 denote a k-configuration consisting of n0 red and n0 blue points, considered
in Lemma 2.2. Add n − n0 red points to S1 and n − n0 blue points to S2, and
denote the resulting k-configuration by C.

We claim that C satisfies the requirement of the lemma. Let p be an alternat-
ing path of length l(p) in C. By Lemma 2.1, there is a separated matching M1 in
C, whose size is l(M1) ≥ l(p)−4k−1. Remove from M1 the 2n−2n0 points that
were added later and all edges in M1 incident to them. We obtain a separated
matching M0 of C0 of size l(M0) ≥ l(M1) − 4(n − n0) ≥ l(M1) − 4(3k − 2) =
l(M1)− 12k+ 8 ≥ l(p)− 16k. By Lemma 2.2, we have l(M0) ≤ 2n0

2k−1
3k−2 , so that

l(p) ≤ 2n 2k−1
3k−2 + 16k. �

The upper bound in Theorem 1 immediately follows from Lemma 2.3. For
any n, set k = �√n	. Applying Lemma 2.3, we obtain a configuration of n red
and n blue points in which the length of any noncrossing alternating path is at
most 2k−1

3k−2 · 2n + 16k < 4n
3 + 20

√
n, as required.

3 Lower Bound

As before, let C be the vertex set of a convex 2n-gon, with n red and n blue
elements. Suppose without loss of generality that the elements of C lie on a
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circle. A set of consecutive vertices of C (of not necessarily the same color) is
said to be an interval. The length of an interval is its cardinality.

Assume that we can find a separated matching M of size 2l, all of whose seg-
ments are crossed by a chord c. Then we can easily construct a noncrossing alter-
nating path of length 2l. To see this, enumerate the segments s1, s2, . . . , sl of M
according to the order of their intersection points with c. Let ri and bi be the red
and blue endpoints of si, respectively. Then p = (r1b1, b1r2, r2b2, . . . , bl−1rl, rlbl)
is a noncrossing alternating path of length 2l.

Therefore, it is sufficient to establish a lower bound on the size of a separated
matching in a k-configuration of 2n points. We divide the proof into two steps.
Lemmas 3.1 and 3.2 provide reasonably good bounds when k is small and when
k is large, respectively. Their combination implies the general lower bound in
Theorem 1.

Lemma 3.1. Let k, m, n be positive integers such that k = 2m divides n. Then
every k-configuration C of 2n points contains a separated matching of size at
least n

(
1 + 1

k(m+1)

)
.

Proof. Let S be the run of length at least n
k . Let I0 denote a monochromatic

interval in S, whose length is precisely n
k . For 1 ≤ i ≤ m+1, let Ii be an interval of

length 2i−1 n
k such that I0, I1, . . . , Im+1 are consecutive in the clockwise direction

(see Fig. 3). These intervals form a partition of the underlying set C consisting
of all 2n vertices. Assume without loss of generality that all elements of I0 are
blue. �

Suppose for contradiction that there is no separated matching whose size is
at least n

(
1 + 1

k(m+1)

)
.

Claim. For every 0 ≤ i ≤ m + 1, the interval Ji = I0 ∪ I1 ∪ . . . ∪ Ii has at least(
2i−1 1

k + 1
2k − i

2k(m+1)

)
n blue points. Moreover, strict inequality holds if i > 0.

Note that Lemma 3.1 immediately follows from the Claim. Indeed, for i =
m + 1, we obtain that there are more than

(
2m 1

k + 1
2k − m+1

2k(m+1)

)
n = n blue

points on the circle, which is a contradiction.

Proof of Claim. We proceed by induction on i. For i = 0, the statement
obviously holds. Assume that for some i ∈ {0, 1, 2, . . . , m}, there are at least(
2i−1 1

k + 1
2k − i

2k(m+1)

)
n blue points in the interval Ji. We show that there are

more than
(
2i−1 1

k − 1
2k(m+1)

)
n blue points in Ii+1.

I5

I4I3
2II1

0I
m+1I
Fig. 3. I0, I1, . . . , Im+1 form a partition of the vertices.
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Suppose this is not the case. Then there are at least l =
(
2i−1 1

k + 1
2k(m+1)

)
n

red points in Ii+1. Since we have 2i−1 1
k + 1

2k − i
2k(m+1) ≥ 2i−1 1

k + 1
2k(m+1) , the

number of blue points in Ji is at least l. Thus, there is a separated matching
of size 2l between the blue points of Ji and the red points of Ii+1. Let M be
the most ‘economical’ such matching of size 2l. That is, if b1, b2, . . . , bs (s ≥ l)
denote the blue points of Ji listed in counterclockwise order and r1, r2, . . . , rt

(t ≥ l) denote the red points of Ii+1 listed in clockwise order, then let M consist
of the segments b1r1, b2r2, . . . , blrl.

Let K denote the interval between bl and rl, oriented clockwise. All blue
points from K not matched by M lie in Ii+1, so their number is at most ub =(
2i−1 1

k − 1
2k(m+1)

)
n. All red points of K not matched by M lie in Ji, so their

number is at most

ur =
(

2i 1
k
−

(
2i−1 1

k
+

1
2k
− i

2k(m + 1)

))
n

=
(

2i−1 1
k
− 1

2k
+

i

2k(m + 1)

)
n.

Using the fact that ub − ur =
(

1
2k − i+1

2k(m+1)

)
n ≥ 0, we obtain that ub ≥ ur.

Let L denote the complement of K in the set C of all points. Clearly, L
has at least n0 = n − l − ub =

(
1− 2i 1

k

)
n points of each color. Divide L into

two intervals L1, L2, each of length at least n0. Obviously, at least one of the
following two conditions is satisfied:
(a) There are at least n0

2 blue points in L1 and at least n0
2 red points in L2.

(b) There are at least n0
2 red points in L1 and at least n0

2 blue points in L2.

We can assume without loss of generality that (a) is true. Then there exists a
separated matching M ′ of size at least n0 between intervals L1 and L2. The union
of M and M ′ is also a separated matching. (One endpoint of the corresponding
chord lies between the intervals Ji and Ii+1, and the other between L1 and L2.)
The size of M ∪M ′ is at least

2l + n0 =
(

2i−1 1
k

+
1

2k(m + 1)

)
2n +

(
1− 2i 1

k

)
n =

(
1 +

1
k(m + 1)

)
n,

which is a contradiction. Hence, our assumption was wrong: there are more than(
2i−1 1

k − 1
2k(m+1)

)
n blue points in Ii+1.

Consequently, the number of blue points in the interval Ji+1 = I0 ∪ I1 ∪ . . .∪
Ii+1 is larger than

(
2i−1 1

k
+

1
2k
− i

2k(m + 1)

)
n +

(
2i−1 1

k
− 1

2k(m + 1)

)
n

=
(

2i 1
k

+
1
2k
− i + 1

2k(m + 1)

)
n,

completing the induction step, the proof of the Claim, and hence the proof of
Lemma 3.1.
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Lemma 3.2. For n ≥ k ≥ 1, every k-configuration of 2n points admits an
alternating path whose length is at least n + k − 1.

Proof. Let v1, v2, . . . , v2n be the vertices of a k-configuration, in clockwise di-
rection. Assume that v1 is red. For any 1 ≤ i < 2n, if vi is red and vi+1 is blue,
then vi and vi+1 are called special vertices. There are 2k special and 2n − 2k
non-special vertices. Moreover, exactly half of the special and exactly half of
the non-special vertices are red, and blue. Let m be the smallest number such
that there are n − k non-special vertices in the set {vi | 1 ≤ i ≤ m}. Assume
that t ≥ �n−k

2 � of them are red. (The other case can be settled analogously.)
Denote those red points by u1, u2, . . . , ut, in clockwise direction. Then the set
{vi | m + 1 ≤ i ≤ 2n} also contains n− k non-special vertices, and t of them are
blue. Denote those blue points by w1, w2, . . . , wt, in counterclockwise direction.

The vertices u1, u2, . . . , ut divide the set {vi | 1 ≤ i ≤ m} into t + 1 intervals
of consecutive vertices, denote them by I0, I1, . . . , It, in clockwise direction. For
0 ≤ 1 ≤ t, if Ii contains some special vertices, denote them by ui,1, ui,2, . . . ui,αi ,
in clockwise direction. Since u1, u2, . . . , ut are non-special, ui,j is red if j is odd,
and blue if j is even.

Similarly, the vertices w1, w2, . . . , wt divide the set {vi | m + 1 ≤ i ≤ 2n}
into t + 1 intervals of consecutive vertices, denote them by J0, J1, . . . , Jt, in
counterclockwise direction. For 0 ≤ 1 ≤ t, if Ji contains some special vertices,
denote them by wi,1, wi,2, . . . wi,βi , also in counterclockwise direction. Now wi,j

is blue if j is odd, and red if j is even.
Finally, consider the following path:

u0,1, u0,2, . . . u0,α0 , u1, w0,1, w0,2, . . . w0,β0 , w1, u1,1, u1,2, . . . u1,α1 , u2,

w1,1, w1,2, . . . w1,β1 , w2, . . . , ut,1, ut,2, . . . ut,(αt−1), wt,1, wt,2, . . . wt,βt .

It is a noncrossing, alternating path of length 2t + 2k− 1 ≥ n− k + 2k− 1 =
n + k − 1. This concludes the proof of the lemma. �

Now we are ready to prove the lower bound in Theorem 1. Suppose that we
have a k-configuration of 2n points. We distinguish two cases. If k ≥ 1

10

√
n

log n ,

then, by Lemma 3.2, there exists an alternating path of length at least n +
1
10

√
n

log n − 1.

We are left with the case k < 1
10

√
n

log n . Let m be the least positive integer

such that k ≤ 2m. Then m < 1+log k. Let n′ = 2m� n
2m 	 ≥ n−2m and choose any

subconfiguration C′ of n′ red and n′ blue points from C. C′ is a k0-configuration
for some k0 ≤ k. So it has a run of length at least n′

k0
≥ n′

k ≥ n′
2m . Now, according

to Lemma 3.1, C has a separated matching (and also an alternating path) whose
size is at least

n′ +
n′

2m(m + 1)
≥ n− 2k +

n

2m+1(m + 1)
≥

n− 2k +
n

4k(log k + 2)
≥ n− 2k +

n

2k log n
≥

n− 1
5

√
n

log n
+

5n

log n

√
log n

n
≥ n + 4

√
n

log n
.
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This completes the proof of the lower bound in Theorem 1.

Conjecture. For any fixed k and large n, every k-configuration of 2n points
admits a separated matching of size at least 2n 2k−1

3k−2 + o(n).
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Abstract. Pinchasi and Radoičić [1] used the following observation to
bound the number of edges in a topological graph with no self-intersec-
ting cycles of length 4: if we make a list of the neighbors for every vertex
in such a graph and order these lists cyclicly according to the connecting
edge, then the common elements in any two lists have reversed cyclic
order. Building on their work we give an estimate on the size of the lists
having this property. As a consequence we get that a topological graph on
n vertices not containing a self-intersecting C4 has O(n3/2 log n) edges.
Our result also implies that n pseudo-circles in the plane can be cut into
O(n3/2 log n) pseudo-segments, which in turn implies bounds on point-
curve incidences and on the complexity of a level of an arrangement of
curves.

1 Introduction

In this paper we consider cyclicly ordered sequences of distinct symbols from a
finite alphabet. We say that two such sequences are intersection reverse if the
common elements appear in reversed cyclic order in the two sequences.

A topological graph is a graph without loops or multiple edges drawn in the
plane (vertices correspond to distinct points, edges correspond to Jordan curves
connecting the corresponding vertices). We assume no edge passes through a
vertex other than its endpoints and every two edges have a finite number of
common interior points and they properly cross at each of these points. For a
vertex v of a topological graph G let LG(v) be the list of its neighbors ordered
cyclicly counterclockwise according to the initial segment of the connecting edge.

Pinchasi and Radoičić [1] noticed the following simple fact:

Fact 1. If the lists LG(u) and LG(v) are not intersection reverse for all distinct
vertices u and v of the topological graph G, then G contains a self-crossing cycle
� Research was done while a Visiting Researcher at The Alfréd Rényi Institute, Bu-
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of length 4. Moreover, u and v are opposite vertices of a cycle of length 4 in G
that has two edges that cross an odd number of times.

For the proof one only has to consider drawings of the complete bipartite graph
K2,3 (see details in [1]). Pinchasi and Radoičić used Fact 1 to bound the number
of edges of a topological graph not containing a self-crossing C4. They showed
that such a graph on n vertices has O(n8/5) edges. Following in their footsteps,
we use the same property to improve their bound to O(n3/2 log n). This bound
is tight apart from the logarithmic factor as one has (abstract) simple graphs on
n vertices with Ω(n3/2) edges containing no C4-subgraph. Our main technical
result is the following:

Theorem 1. Let us be given m cyclicly ordered lists of d element subsets of a
set of n symbols. If the lists are pairwise intersection reverse, then

d = O

(√
n log n +

n√
m

)
.

We give the proof of this theorem in Section 2. In Section 3 we prove several
consequences, among them the following bound:

Theorem 2. If an n-vertex topological graph does not contain a self-crossing
C4 it has O(n3/2 log n) edges. The same holds if every pair of edges in every C4

subgraph crosses an even number of times.

The most important consequence of Theorem 1 deals with collections of
pseudo-circles: simple closed Jordan curves, any two of which intersect at most
twice, with proper crossings at each intersection. The result readily generalizes
to unbounded open curves such as pseudo-parabolas, the graphs of continuous
real functions defined on the entire real line such that any two intersect at most
twice and they properly cross at these intersections.

Tamaki and Tokuyama [2] were the first to consider the problem of cutting
pseudo-parabolas into pseudo-segments, i.e., subdividing the original curves into
segments such that any two segments intersect at most once. Such a separation
turns out to be quite useful since pseudo-segments are much easier to work with
than pseudo-parabolas and pseudo-circles, as will be seen in Section 3.

Tamaki and Tokuyama [2] proved that n pseudo-parabolas can be cut into
O(n5/3) pseudo-segments. This was extended to x-monotone pseudo-circles by
Aronov and Sharir [3] and by Agarwal, et al. [4]. It was also improved for certain
collections of curves that admit a three parameter algebraic parameterization to
n3/2 logαO(1)(n)(n), where α is the inverse Ackermann function.

Previously, the best bound for arbitrary pseudo-parabolas and x-monotone
pseudo-circles was O(n8/5) [4], which uses the result of Pinchasi and Radoičić
on topological graphs without self-crossing C4. With our improvement of the
latter result, we can prove that n pseudo-parabolas can be cut into O(n3/2 log n)
pseudo-segments. This substantially improves the previous bounds for arbitrary
collections and is still slightly better than results on families with algebraic pa-
rameterization; we replace a little-over-polylog factor with a single log factor. In
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doing so, we are able to simplify the results in [4, 1, 2], as well as generalize them
to the cases when the pseudo-parabolas and pseudo-circles are not necessarily
x-monotone.

In Section 3 we show the above result, as well as its applications to point-
curve incidences and the level complexities of curve arrangements. See [4, 3, 5, 6,
2] for more details and applications.

Finally in Section 4 we discuss a few related problems that are still open. All
logarithms in this paper are binary.

2 Intersection Reverse Sequences

In this section we prove our main technical result, Theorem 1. Much of the proof
follows the argument of Pinchasi and Radoičić [1]. We start with an overview of
their techniques.

Pinchasi and Radoičić break the cyclicly ordered lists into linearly ordered
blocks. They consider pairs of blocks from separate lists and pairs of symbols
contained in both blocks. They distinguish between same pairs and different
pairs according to whether the two symbols appear in the same or in different
order. They observe that any pair of symbols that appears in many blocks must
produce almost as many same pairs as different pairs. On the other hand the
intersection reverse property forces two cyclicly ordered lists – unless most of
their intersection is concentrated into a single pair of blocks – to contribute many
more different than same pairs. Exceptional pairs of cyclicly ordered lists are
treated separately with techniques from extremal graph theory. They optimize
in their choice for the length of the blocks.

We follow almost the same path, but instead of optimizing for block length
we consider many block lengths (an exponential sequence) simultaneously. For
two intersection reverse lists no block length yields significantly more same pairs
than different pairs, but we will show that some block length actually gives many
more different pairs than same pairs. As a consequence we do not have to bound
“exceptional pairs” of lists separately.

Definition. We will use the term sequence to denote a linearly ordered list of
distinct symbols and the term cyclic sequence to denote a cyclicly ordered list of
distinct symbols. Clearly, if one breaks up a cyclic sequence into blocks, then the
blocks are (linearly ordered) sequences. For a sequence or cyclic sequence A we
write A for the set of symbols in A. We define intersection reverse for sequences
just as for cyclic sequences: we say that the sequences A and B are intersection
reverse if they induce inverse linear orders on A ∩ B. If two sequences are not
intersection reverse, we call them singular. Note that if two sequences A and B
have |A∩B| ≤ 1, then the sequences are trivially intersection reverse. The same
holds for cyclic sequences A and B if |A ∩B| ≤ 2.

For a sequence B and symbols a �= b we define

f(B, a, b) =






0 if a /∈ B or b /∈ B,
1 if a precedes b in B,
−1 if b precedes a in B.
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For two sequences B and B′ we let f(B, B′, a, b) = f(B, a, b)f(B′, a, b). Notice
that f(B, B′, a, b) = 1 for same pairs and f(B, B′, a, b) = −1 for different pairs,
and that

∑
f(B, B′, a, b) corresponds to the difference between the number of

same pairs and different pairs.

The next lemma is taken from [1]. The summation
∑

a�=b here and later in this
section is taken for all ordered pair of distinct symbols a and b.

Lemma 3. Let the cyclic sequences A and A′ consist of the (linearly ordered)
blocks B1, . . . , Bk and B′

1, . . . , B
′
k′ , respectively. If A and A′ are intersection

reverse, then at most one of the pairs Bi, B′
j is singular. For this singular pair

we have ∑

a�=b

f(Bi, B
′
j , a, b) ≤ |Bi ∩B′

j | .

For the rest of this section, let A1, . . . , Am be the m cyclic sequences in
the theorem, pij = |Ai ∩Aj |, and p =

∑
i�=j pij . The following bounds follow di-

rectly from the inequality between the arithmetic and quadratic means assuming
dm > 2n (otherwise the statement of Theorem 1 is immediate).

Lemma 4. We have p ≥ d2m2

2n and
∑

i�=j(p
ij)2 ≥ p2

m2 .

We split each Ai into two almost equal size consecutive blocks Ai
0 and Ai

1.
In general, for a 0–1 sequence s we split the block Ai

s of Ai into two almost
equal halves (differing in size by at most 1): Ai

s0 and Ai
s1. The cyclic order of Ai

linearly orders all of these blocks. Let k = �log d� < log n + 1. Clearly, any 0–1
sequence s of length k satisfies |Ai

s| ≤ 1.
For 1 ≤ i ≤ m and 1 ≤ j ≤ m we let

Sij =
∑

a�=b

k∑

l=1

∑

|s|=|t|=l

wlf(Ai
s, A

j
t , a, b) ,

where the summation is taken over all pairs of symbols a �= b, and 0–1 sequences
s and t of size l. The weights wl in the formula are positive and we set them
later. Our goal is to contrast a lower bound on

∑
i�=j Sij (or rather on the partial

sum for fixed symbols a �= b) with upper bounds on the individual Sij . The pair
(i, j) (just as the pair (a, b) above) is considered ordered resulting in double
(quadruple, really) counting.

The lower bound is straightforward:

Lemma 5.
∑

i�=j Sij ≥ −md2
∑k

l=1
wl

2l

Proof. Notice that for fixed a, b, and length |s| = |t| we get a perfect square
when summing over all i and j. In particular,

m∑

i=1

m∑

j=1

Sij =
k∑

l=1

wl

∑

a�=b




m∑

i=1

∑

|s|=l

f(Ai
s, a, b)




2

≥ 0 .
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We can bound the Sii terms separately as they are merely the weighted sum of
the number of pairs in the blocks:

∑

i�=j

Sij =
m∑

i=1

m∑

j=1

Sij −
m∑

i=1

Sii ≥ 0−md2
k∑

l=1

wl

2l 	


The upper bound, however, requires more effort.

Lemma 6. For i �= j we have

Sij ≤ pij
k∑

l=1

wl − (pij)2

4
∑k

l=1
1

wl

.

Proof. We fix the indices i �= j and consider the following quantities:

rst = |Ai
s ∩Aj

t | and

Qst =
∑

a�=b

f(Ai
s, A

j
t , a, b)

where s and t are 0–1 sequences of equal length.
For a fixed 1 ≤ l ≤ k the blocks Ai

s with |s| = l form a subdivision of Ai,
while the blocks Aj

t with |t| = l form a subdivision of Aj . We use Lemma 3:
there is at most one singular pair (Ai

s, A
j
t ) for every length |s| = |t| = l. For

these singular pairs we have Qst ≤ rst, while for the intersection reverse ones
straightforward calculation gives Qst = rst − r2

st. Note that for |s| = |t| = k the
corresponding pairs are trivially intersection reverse.

For a 0–1 sequence s of length |s| > 1 let s′ denote the sequence obtained
from s by deleting its last digit; hence Ai

s′ contains Ai
s. We call a pair (s, t) of

equal length 0–1 sequences a leader if (Ai
s, A

j
t ) is intersection reverse and either

|s| = |t| = 1 or the pair (Ai
s′ , A

j
t′) is singular. Clearly, there are at most 4 leaders

in any given length. Furthermore, any symbol a ∈ Ai∩Aj is contained in Ai
s∩Aj

t

for exactly one leader pair (s, t): the longest intersection reverse pair of blocks
containing them (recall that we only consider pairs of blocks with equal length
subscripts). Thus we have

∑
(s,t)∈L rst = pij for the set L of leader pairs.

We use Qst = rst − r2
st for leader pairs (s, t) only. For all other pairs, inter-

section reverse or singular, we use Qst ≤ rst:

Sij ≤
k∑

l=1

wl

∑

|s|=|t|=l

rst −
∑

(s,t)∈L

w|s|r2
st = pij

k∑

l=1

wl −
∑

(s,t)∈L

w|s|r2
st

since
∑

|s|=|t|=l rst = pij for any fixed l. The Cauchy-Schwarz inequality gives




∑

(s,t)∈L

w|s|r2
st








∑

(s,t)∈L

1
w|s|



 ≥



∑

(s,t)∈L

rst




2

= (pij)2 .



354 Adam Marcus and Gábor Tardos

Here
∑

(s,t)∈L(1/w|s|) ≤ 4
∑k

l=1(1/wl), so we conclude that

Sij ≤ pij
k∑

l=1

wl − (pij)2

4
∑k

l=1
1
wl

as claimed. 	

Comparing the two estimates in the previous lemmas gives the theorem.

Proof (of Theorem 1). Using Lemmas 5, 6, and 4 (respectively) we obtain

−md2
k∑

l=1

wl

2l
≤
∑

i�=j

Sij ≤
∑

i�=j

pij
k∑

l=1

wl −
∑

i�=j(p
ij)2

4
∑k

l=1
1

wl

≤ p
k∑

l=1

wl − p2

4m2
∑k

l=1
1

wl

.

Using the fact that p ≥ d2m2/(2n) from Lemma 4 we get

d ≤ 4
√

n

√√√√
k∑

l=1

wl

√√√√
k∑

l=1

1
wl

or

d ≤ 6n√
m

√√√√
k∑

l=1

wl

2l

√√√√
k∑

l=1

1
wl

.

We choose the weights wl now. Equal weights (wl = 1) yield d = O(
√

n log n +
n
√

log n/
√

m), but we can improve on this bound by choosing

wl =
1

1 + k
2l/2

.

In this case
∑k

l=1 wl ≤ k,
∑k

l=1(1/wl) ≤ 4k, and
∑k

l=1(wl/2l) ≤ 3/k. Thus we
either have d ≤ 8k

√
n or d ≤ 21n/

√
m and the theorem follows. 	


3 Consequences

In this section we present several geometric applications of Theorem 1.

3.1 Self-intersecting Cycles of Length 4

Any bound for the n = m case of Theorem 1 carries over to the number of
edges of a topological graph not containing self-intersecting C4 by [1]. Using the
following corollary, however, the proof is even simpler:
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Corollary 7. Let us be given m cyclic sequences over an n-element set of sym-
bols. If the cyclic sequences are pairwise intersection reverse, then the sum of
their sizes is O (m

√
n log n + n

√
m).

The simple deduction from Theorem 1 is omitted.
The proof of Theorem 2 is now straightforward. The statements are direct

consequences of Corollary 7 using Fact 1. Notice that the sum of the sizes of the
lists of neighbors (the sum of the degrees) is twice the number of edges.

3.2 Cutting Number

Tamaki and Tokuyama [2] considered the cutting number of a collection of curves.
This is the number of cuts needed to obtain a collection of shorter curves, each
pair of which intersects at most once.

The restriction of the next corollary to so called x-monotone pseudo-circles
can be derived from Theorem 2 using a combination of techniques in the papers
[4, 2]. A simple and direct deduction from Corollary 7 that does not require any
additional assumption on the pseudo-circles will appear in the final version of
this paper. Recall that this result slightly improves the best previous bound
for (x-monotone) pseudo-circles with a three parameter algebraic representation
as defined in [4] (such as circles or axis-aligned parabolas) and substantially
improves the previous bounds for pseudo-circles lacking such representation. For
the definition of pseudo-circles see Section 1.

Corollary 8. An arrangement of n pseudo-circles can be cut at O(n3/2 log n)
points such that the resulting curves form a system of pseudo-segments.

Corollary 8 naturally generalizes to collections of open Jordan curves includ-
ing, for example, pseudo-parabolas. We omit the straightforward deduction. We
call a collection of simple closed and open Jordan curves a generalized pseudo-
circle collection if both ends of every open curve are at infinity, any two curves
have at most two points of intersection, and the curves cross properly at each
intersection.

Corollary 9. A generalized pseudo-circle collection C of n curves can be cut
at O(n3/2 log n) points such that the resulting curve segments form a system of
pseudo-segments.

3.3 Levels

Corollary 9 also has many consequences in the study of levels in arrangements of
curves. Tamaki and Tokuyama [2] first showed the usefulness of cutting numbers
in this area, and progress has been made by Chan [5, 6].

Definition. Let C be the set of the graphs of the real functions f1, f2, . . . , fn.
We assume that each fi is continuous and defined everywhere on the real line,
and that any pair of curves in C intersects a finite number of times. We define
the kth level of C to be the closure of the locus of points (x, y) on the curves in
C with |{i : fi(x) ≤ y}| = k. The kth level consists of portions of the curves in C,
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delimited by intersections between these curves. We will call the total number
of curve segments in a level its complexity.

Chan [6] derives an upper bound on the complexity of a given level using the
number of cuts needed to turn a collection of pseudo-parabolas into pseudoseg-
ments. Our Corollary 9 improves his analysis. We omit the details.

Corollary 10. Let C be a collection of n pseudo-parabolas. The maximum com-
plexity of any level of C is O(n3/2 log2 n).

The above corollary represents a substantial improvement over the previous
bound in [6] for an arbitrary collection of pseudo-parabolas. For a collection
possessing a three parameter algebraic representation (as defined in [4]) the
improvement is marginal, replacing a little-over-polylog term by log2 n. These
improvements carry over to levels of arrangements of algebraic curves of degree
higher than two by the technique of bootstrapping, as developed in [6]. We do
not state the slightly improved bounds here.

3.4 Incidences and Faces

Aronov and Sharir [3] also used cutting numbers in their analysis of incidences
between curves and points in the plane.

Definition. Let C be a set of curves and P a set of points in the plane. We define
I(C,P) to be the number of incidences between C and P , that is the number or
pairs (c, p) ∈ C × P such that curve c contains point p. We also define K(C,P)
to be the sum of the complexities of the faces of the arrangement C containing
points in P (assuming now that they are not on the curves). The complexity of
a face is defined to be the number of curve segments that comprise the face.

The results in [3] relate the values of K(C,P) and I(C,P) to the cutting
numbers discussed above. Applying their results and Corollary 9, we get

Corollary 11. If C is a collection of n generalized pseudo-circles and P a set
of m points, then

1. I(C,P) = O(m2/3n2/3 + m + n3/2 log n)
2. K(C,P) = O(m2/3n2/3 + m + n3/2 log3 n)

4 Open Problems

The results in this paper raise a number of interesting questions. Theorem 2
is tight except possibly for the logarithmic factor as graphs with n vertices and
Ω(n3/2) edges are known which do not contain any C4. This also implies that the
n = m special case of Theorem 1 and Corollary 7 are almost tight. Nevertheless,
it would be interesting to know if the logarithmic factor is needed.

Problem 1. Is the logarithmic factor needed in Theorem 2?

The geometric consequences use Theorem 1 in the n = m special case, but it is
interesting to give bounds in the asymmetric cases as well. We define R(n, m) to
be the maximum total length of m pairwise intersection reverse cyclic sequences
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over an alphabet of size n. With this notation Corollary 7 gives R(n, m) =
O(m

√
n log n + n

√
m). We collect here a few simple lower and upper bounds

for R(n, m).
A trivial consequence of the property that a collection of cyclic sequences

are pairwise intersection reverse is that no three symbols appear together in
three cyclic sequences. By the Kővári–T. Sós–Turán Theorem [7], we have that
R(n, m) = O(nm2/3 + m) and R(n, m) = O(n2/3m + n). The first bound super-
sedes the bound in Corollary 7 if m ≥ n3/2. The second bound supersedes the
bound in Corollary 7 if m < n2/3. So for these extremely large or small values
of m Corollary 7 is not tight.

The simplest constructions of intersection reverse cyclic sequences are con-
structions for collections of subsets intersecting each other in at most two ele-
ments. No matter how we order these subsets the resulting collection of cyclic
sequences is pairwise intersection reverse. A simple construction for such sub-
sets is any collection of circles in the plane over a finite field where −1 is
not a square. Taking all points of the plane and a subset of the circles gives
R(n, m) = Ω(m

√
n) for m ≤ n3/2. Taking all circles and a subset of the points

gives R(n, m) = Ω(nm2/3) for m ≥ n3/2. A collection of singleton sets gives
the trivial bound R(n, m) ≥ m, which is better than the previous bounds for
m > n3. Pairwise disjoint sets provide the other trivial R(n, m) ≥ n bound,
which is better than the other bounds for m ≤ √n.

The solid lines in the logarithmic scale diagram in Figure 1 shows the lower
and upper bounds mentioned above. These bounds determine R(n, m) up to a
constant factor for m ≥ n3/2 and m ≤ n1/3 and up to a logarithmic factor
for n ≤ m ≤ n3/2. In any construction proving better lower bounds then the
ones above, a typical pair of cyclic sequences will need to intersect in many
elements, so the cyclic order is essential in those constructions. We present such
a construction below proving R(n, m) = Ω(n5/6m1/2) for n1/3 < m < n2/3. This
bound is represented in Figure 1 by the dashed line. The area of “uncertainty”
is shaded. Even with this construction, the upper and lower bounds for R(n, m)
are far apart for n1/3 < m < n.
Construction. This construction is based on the construction of Gy. Elekes [8]
of a set of axis-aligned parabolas and a set of points with a large number of
incidences. Observe that axis-aligned parabolas form a collection of pseudo-pa-
rabolas: any pair intersects at most twice. For integers b ≥ a ≥ 1 consider the
subset P = {(i, j) : |i| ≤ a, |j| ≤ 3a2b} of the integer grid and consider the
collection C of parabolas (and lines) given by y = ux2 + vx + w with integers
u, v, and w satisfying |u| ≤ b, |v| ≤ ab and |w| ≤ a2b. We have m = |P | =
(2a+1)(6a2b+1) = Θ(a3b) and n = |C| = (2b+1)(2ab+1)(2a2b+1) = Θ(a3b3).
Clearly, each curve in C contains a point in P for each possible x coordinate,
a total of 2a + 1 points. For each p ∈ P we define the linearly ordered list Bp

of all the curves in C passing through p. We order the list Bp according to the
slopes of the curves at p (breaking ties arbitrarily). As a result we get m linearly
ordered lists of subsets of the set of n symbols. It is easy to verify that these lists
are intersection reverse. Their total length is the number of incidences between
P and C, which is Θ(a4b3) = Θ(n5/6m1/2).
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Fig. 1. Bounds and area of uncertainty for R(n, m) and Q(n, m).

Problem 2. Is it possible to find n2/3 pairwise intersection reverse cyclic se-
quences over an alphabet of size n such that their total lengths sum to sig-
nificantly more than n7/6?

Note that for m = n2/3 both constructions gives cyclic sequences with total
size Θ(n7/6). One of the constructions is based on finite geometry, the other on
Euclidean geometry. It seems to be hard to combine these constructions for a
better result. The upper bound (provided both by Corollary 7 and the Kővári–
T. Sós–Turán Theorem) is O(n4/3).

We remark that, although not known if needed in Corollary 7, the n/
√

m
term is meaningful. This is the threshold for a typical pair of symbols appearing
together in many cyclic sequences. We need it for our estimate that not many
more different than same pairs exist. If a typical pair of symbols appears together
in only two cyclic sequences, it is possible that they only contribute different
pairs. This happens in the above construction as well; since we construct linearly
ordered (rather than cyclic) sequences that are pairwise intersection reverse, no
“same pair” ever appears.

One can ask the same extremal question about linearly ordered sequences.
Let Q(n, m) stand for the maximum total length of m pairwise intersection
reverse sequences over an n element alphabet. In this case two symbols cannot
appear together in three sequences. The Kővári–T. Sós–Turán Theorem therefore
gives the bounds Q(n, m) = O(mn2/3 + n) and Q(m, n) = O(n

√
m + m). For

m ≤ n/ log2 n or m ≥ n3 we get the same upper bounds that we did for R(n, m).
The upper bound for intermediate values of m is shown by the dotted line in
Figure 1. One gets simple constructions of intersection reverse sequences by
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considering set systems with pairwise intersection limited to singletons. Just as
we noted in the case of cyclic sequences, this property ensures that the sequences
are pairwise intersection reverse independent of the linear order chosen. The
standard construction for such a set system is the set of lines in a finite plane,
yielding Q(n, m) = Ω(n

√
m) for m ≥ n and Q(n, m) = Ω(m

√
n) for m ≤ n.

The bounds Q(n, m) ≥ n and Q(n, m) ≥ m are trivial. These bounds determine
Q(n, m) up to a constant factor for m ≤ n1/3 and m ≥ n. Notice that the
construction using parabolas in the plane yields pairwise intersection reverse
linearly ordered sequences and so we have Q(n, m) = Ω(n5/6m1/2) for n1/3 ≤
m ≤ n2/3. Surprisingly, the “area of uncertainty” for Q(n, m) is exactly the same
parallelogram as it is for R(n, m). Only when n < m < n3 do the bounds for
Q(n, m) and R(n, m) diverge. We do not know if allowing for cyclic sequences
can yield longer intersection reverse collections in the m < n case.

Problem 3. Does R(n, m) = O(Q(n, m)) hold for m < n?
As far as pseudo-circles are concerned, our result is conjectured to be far

from optimal. The best known construction is a set of n pseudo-circles that
needs Ω(n4/3) cuts before it becomes a collection of pseudo-segments. It is an
important open problem to improve either bound on the minimum number of
cuts that turn pseudo-circles into pseudo-segments.
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Abstract. The bipartite crossing number of a bipartite graph is the
minimum number of crossings of edges when the partitions are placed on
two parallel lines and edges are drawn as straight line segments between
the lines. We prove exact results, asymtotics and new upper bounds
for the bipartite crossing numbers of 2-dimensional mesh graphs. We
especially show that bcr(P6 × Pn) = 35n− 47, for n ≥ 7.

1 Introduction

The planar crossing number is the minimum number of edge crossings in any
drawing of a graph in the plane. This is an important and difficult problem
which has been studied in graph theory, as well as in the theory of VLSI [4,
10, 15]. Computing the value of the planar crossing number is NP -hard [6], and
exact values are known only for very restricted classes of graphs. In this paper we
study a frequent variant of the planar crossing number. Let G = (V0, V1, E) be a
bipartite graph, where V0, V1 is the bipartition of vertices into independent sets.
A bipartite drawing of G, denoted by D(G) consists of placing the vertices of V0

and V1 into distinct points on two horizontal lines y = 0, y = 1 in the xy-plane,
respectively, and then drawing each edge with one straight line segment which
connects the end-vertices. The bipartite crossing number of the drawing, denoted
by bcr(D(G)), is the number of crossing pairs of edges in the drawing. The
bipartite crossing number of G, denoted by bcr(G), is the minimum bcr(D(G))
over all drawings.

A motivation behind studying bcr(G) comes from the routing of VLSI (see
for example [10, 17]). Another motivation appears in the field of graph drawing.
It is well known that bcr(G) is one of the parameters which strongly influences
the understanding and aesthetics of drawings of graph-like structures, especially
in a hierarchical fashion. For a survey on drawing graphs see [3].
� This research was supported by the EPSRC grant GR/R37395/01 and by VEGA

grant No. 2/3164/23.
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The notion of bcr(G) was first introduced in [7], [8] and [23] where it was
stated that bcr(G) = 0 iff the graph is caterpillar, and bcr(Cn) = n/2− 1 for an
n-vertex cycle (n is even). Some basic observations on bcr(G) were made in [13].
The bipartite crossing number problem is known to be NP-complete [6] but can
be solved in polynomial time for bipartite permutation graphs [20], and trees
[18]. A great deal of research has been devoted to the design of algorithms and
heuristics for solving this problem (see for example [2, 5, 9, 11, 12, 14, 21, 22]).

To find exact results of bcr(G) for special families of graphs is of interest
from the graph-theoretic point of view, but such results can also be applied in
testing heuristics for bipartite drawings. So far the heuristics are mostly com-
pared against each other but not against the optimal drawing, which is typicaly
unknown. For this purpose one can use

bcr(S(Kn)) = 4
(

n

4

)
+ 2

(
n

3

)
,

where S(Kn) denotes the complete graph with exactly one new vertex on every
edge [8]. They proved a similar formula for the subdivided complete bipartite
graph. In [18] we proved for the complete binary tree Tn of depth n− 1

bcr(Tn) =
1
9
((3n− 11)2n + 2(−1)n) + 2.

For the mesh Pm × Pn, i.e. the graph defined by the Cartesian product of an
m−vertex path with an n−vertex path, where 3 ≤ m ≤ n, we found in [19]
bcr(P3 × Pn) = 5n − 6, for n ≥ 3. To our knowledge these are all known non-
trivial exact results for the bipartite crossing number of typical graphs. In [19]
we also proved an estimation

3
4
m(m− 18)n + O(m3) ≤ bcr(Pm × Pn) ≤ 3

2
m(m− 1)n.

In this paper we prove an asymptotic

lim
n→∞

bcr(Pm × Pn)
n

=
1
2
(3m2 − 7m + 4)

and exact results for m = 4, 5, and 6. Especially,

bcr(P6 × Pn) =
{

161, if n = 6,
35n− 47, if n ≥ 7.

We conclude the paper with new upper bounds for bipartite crossing numbers
of general meshes and some conjectures about exact values.

2 A General Lower Bound

In this section we prove a lower bound for general meshes. Assume that the mesh
has m horizontal rows and n vertical columns.
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Theorem 1. For a mesh Pm × Pn, n > 8m:

bcr(Pm × Pn) ≥ 1
2
(3m2 − 7m + 4)n− 4m3 +

21
2

m2 − 7
2
m.

Proof. Let us have a bipartite drawing D of the mesh. Divide the drawing
into three parts: D1,D2,D3. Define D1 as a part of drawing constructed in the
following way: starting from the left end of the drawing, take alternate vertices
from both partitions until this set of vertices contains vertices from m different
columns of the mesh. The convex hull of this set is D1. Starting from the right
end of the drawing we similarly construct the part D3 until it contains vertices of
m different columns (different also from those in the D1). The rest is D2. From
the Dirichlet principle it follows that the total number of vertices in D1 and D3

is at most 2m2, and the number of horizontal edges incident to the vertices from
D1 and D3 is at most 4m2. Now, choose m vertices of different columns from D1

and m vertices of different columns in D3. Take a bijection between these two
groups of vertices and for any pair join its vertices by a path that uses exclusively
edges of one row of the mesh and the edges in the columns where the vertices
of the pair reside. In Fig. 1 there is such a path, shown by the heavy line. The
path can use edges of the mesh as shown in Fig. 2. The m paths are obviously
vertex disjoint.

D1 D2 D3
a b

u w

v

Fig. 1. An example of a path between vertices u and v, which crosses the column a− b
in vertex w.

We have m such edge disjoint paths. There are at least n − 2m complete
columns in D2. Now we count the number of crossings of the above m paths
with edges of these columns. There are m− 1 column edges in one column and
at least m−2 paths must cross each of them (two paths may use end-vertices of a
column edge). Therefore there are (n−2m)(m−1)(m−2) crossings of this type.

If a row edge lies completely in D2 it must be crossed by m− 1 paths as one
path can use the edge. As there are at least (n− 1)m− 4m2 such edges, we have
at least ((n− 1)m− 4m2)× (m− 1)/2 crossings of this type (2 in denominator
is because a crossing is counted twice), which in total gives the claimed lower
bound. �

In Section 4 we describe an upper bound which coincides with this lower
bound up to the second order term for fixed m and n >> m which implies:
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u

v

w

a

b

Fig. 2. Example of the path between the vertices u and v in the mesh.

Theorem 2. For any fixed m ≥ 3

lim
n→∞

bcr(Pm × Pn)
n

=
1
2
(3m2 − 7m + 4)

3 Three Exact Results

Here we prove exact results on the bipartite crossing numbers for m = 4, 5, 6.
We will skip the (simpler) proofs for the cases m = 4, 5.

Theorem 3. The bipartite crossing numbers of P4 × Pn, P5 × Pn and P6 × Pn

satisfy

bcr(P4 × Pn) =
{

33, if n = 4,
12n− 14, if n ≥ 5.

bcr(P5 × Pn) =
{

81, if n = 5,
22n− 28, if n ≥ 6.

bcr(P6 × Pn) =
{

161, if n = 6,
35n− 47, if n ≥ 7.

Proof. The matching upper bounds will be shown in Section 4. It is known that
bcr(P6 × P6) = 161 and bcr(P6 × P7) = 198. The values were found by Thomas
Odenthal using a branch and bound algorithm [16].

The leftmost ‘comb’, C, is a sub-graph of the mesh defined as a graph induced
by the first two columns without the edges of the second column. Similarly we
define the rightmost comb. Let us call the convex hull of the drawing of C the
comb region, R.

We proceed by induction on n. Let the claim hold for n − 1 ≥ 7. Consider
an optimal drawing D(P6 × Pn). If there are 35 crossings on the leftmost or
rightmost comb then by deleting that comb we get a drawing D(P6 × Pn−1).
Hence

bcr(D(P6 × Pn)) ≥ 35 + bcr(D(P6 × Pn−1)) ≥ 35n− 47.
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However, if both combs contain less than 35 crossings each, our aim is to
show that the drawing must be in special forms for which we determine the
numbers of crossings directly. Roughly speaking, in this case both combs must
be placed in “extreme” positions (left and right) in the drawing. Let Z be the
set of vertices which are not in the left comb C. Assume that there are at least
two vertices, or one vertex of at least degree 3, of Z to the left of R, and at least
two vertices, or one vertex of at least degree 3, of Z to the right of R. Then there
exists at least 3 edge disjoint paths between these vertices in the mesh, which
are vertex disjoint from C. As C has 11 edges, the 3 paths force 33 crossings
on C. Note that there must also be 5 additional crossings on C caused just by
the edges of C with edges of the second column. In total we have 38 crossings
on C, a contradiction.

Wlog we assume that there is at most one vertex v ∈ Z of degree two lying
to the left of R. Let S ⊆ Z denote the set of vertices lying in the comb region R.
We claim that there are at least 17 vertices of Z, which are from the 3rd to the
8th columns, lying to the right of the comb region R. If there are only at most
16 such vertices, then as n ≥ 8, the graph induced by Z has at least 60 edges
and at most 24 of them are in the graph induced by those 16 vertices. Hence
the number of edges incident to S is at least 36 and every such edge produces a
crossing on C, a contradiction.

Take the set Z ′ of 11 vertices out of those 17 such that they lie in the 3rd
to the 7th columns. One can show that there are 6 internally vertex disjoint
paths, forming a set P , between the vertices of the second column and vertices
of Z ′, disjoint from the edges of C and from the rightmost column. It implies
that there is no vertex of degree 2 on the paths from P .

If S = ∅, then we can move the degree two vertex v from the left to the
immediate right of R without increasing crossings. We checked by exhaustive
search on computer all possible drawings of C (i.e. (6!)2 permutations) and
found that if S = ∅ then the edges of C are crossed at least 32 times. The
crossings are caused either by paths from P , or edges of the second column, or
by C edges with C edges. Moreover, there is only one drawing of C with precisely
32 crossings, shown in Fig. 3. We call it ‘optimal with empty S’.

The notation and type of lines we use for vertices and edges is shown in
Fig. 4.

Assume that S �= ∅ and that there are less than 35 crossings on the comb,
C, i.e. its number of crossings is 33 or 34.

Suppose there is a vertex of degree two in S. As it does not belong to any of
the paths of P , it causes at least 2 crossings more on C.

Suppose there is a vertex of degree three (or four) in S. It may belong to
one of the paths of P . This implies at least one (or two) more crossings on C.
Consequently, if there are two nodes in S and at least one of them is not of
degree 3, then there are at least 3 new crossings, i.e. at least 36 crossings on C,
a contradiction.

Similarly, we get a contradiction if there is a single degree two vertex of Z
to the left of R, and there is a vertex in S.
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Fig. 3. Optimal drawing of the comb C with empty S.
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Fig. 4. Notation used for vertices of the comb C.

Let there be exactly one vertex of degree two or four in S. Such a vertex can
be moved to the immediate right of the region R without increasing the number
of crossings.

Now, assume we have two vertices of degree 3 in S. The two vertices must be
either both from the third column or next to each other from the same row (either
first or sixth), otherwise we have at least 3 more crossings on C, a contradiction.

By a detailed case analysis one can show that in both situations the vertices
can be moved to the immediate right of R without increasing the number of
crossings, i.e. all vertices of Z will be to the right of R.

The last case we need to analyse is where there is a single degree 3 vertex
in S. We checked by exhaustive search on computer all possible drawings of C
(i.e. 7(6!)2 situations) and found that if there is one vertex of degree 3 in S then
C is crossed at least 33 times, and there is only one such drawing of C with
precisely 33 crossings. We call it ‘optimal with one vertex in S’ (see Fig. 5).

So we conclude that the drawing of the left comb is either optimal with empty
S with 32 crossings or optimal with one vertex in S with 33 crossings. We repeat
the above arguments for the right comb.

Let us first have both combs in optimal drawings with empty S. In total
they contain 64 crossings. Consider now 6 horizontal paths, forming a set P ′,
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7 8

9 10
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Fig. 5. Optimal drawing of the comb C with one degree 3 vertex in S.

starting in the second column and ending in the (n− 1)th column. Similarly as
in the proof of Theorem 1, the paths from P ′ create 20(n− 4) crossings on the
3rd,. . .,(n− 2)nd column.

Now, we count the number of crossings caused mutually on paths from P ′.
Recall [8] that the bipartite crossing number of a 2p-vertex cycle is p − 1. The
paths of P ′ are divided into 2 groups according to the line on which they start
on the left side. Consider any 2 paths from different groups. Join them by 2 new
artificial edges on the left and right side, respectively. We get a (2n− 4)-vertex
cycle. As there are no crossings on the new edges the original paths cross at least
n − 3 times and the number of crossings between the paths of different groups
is 9(n− 3).

Consider any 2 paths from the same group. Identify the starting vertices of
the paths on the left and right side, respectively. This operation does not increase
the crossing number. We get a (2n− 6)-vertex cycle with n− 4 crossings. Hence
there are 3(n − 4) crossings between the paths of each group. Altogether the
number of mutal crossings on the paths is 15n− 51.

The optimal drawing of the left comb C forces 10 crossings between the edges
of the 2nd column and edges joining the 2nd and the 3rd column. A similar
argument holds for the right hand side comb. So we have 20 such crossings. In
total the number of crossings are

bcr(D(P6 × Pn)) = 64 + 20(n− 4) + 15n− 51 + 20 = 35n− 47.

If, instead of being optimal with empty S a comb is in the form optimal
with one vertex in S, we have 33 crossings on the comb. We then have one less
crossing:

– on edges of the third column with edges between the second and the third
columns;

– on the edges between the second and the third columns with themselves; and
– on the edges of the second column with the edges between the second and

the third columns.

We have one more crossing on:
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– the edges of the second and the third column; and
– on the the edges of the second column with the edges between the third and

the fourth columns.

The changes in comparison with ‘optimal drawing with empty S’ are only local
and they give the same number of crossings in total. �

4 Upper Bounds

First we describe 2 types of bipartite drawings of meshes.

– A mesh Pm ×Pn is drawn in a diagonal manner if the vertices are placed in
the order shown in Fig. 6.
We denote it by Dd(Pm × Pn).

– We say that the mesh is drawn in a combined way if the vertices are placed
in the order as shown in Fig. 7.
The parameter s < n/2 denotes the number of left and right columns whose
vertices are drawn in diagonal manner. We denote this type of drawing by
Dc(Pm × Pn).

Note that if s = 1, the drawing is just a column by column drawing. One
can check that the number of vertices in the above defined types of drawings of
meshes is given by the following upper bounds:

Fig. 6. Vertex order of mesh drawn in diagonal way.

Fig. 7. Vertex order of mesh drawn in combined way.
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Theorem 4. Let 4 ≤ m ≤ n. Then

bcr(Dd(Pm × Pn)) = (2m2 − 6m + 5)n− 1
3
(2m3 − 6m2 + 7m− 3), (1)

bcr(Dc(Pm × Pn)) =
1
2
(3m2 − 7m + 4)n (2)

−
⌈

(4s + 3)m2

4

⌉
+ (2s2 + s + 1)m− 1

3
s(2s− 1)(s + 5).

�
As a consequence we get matching upper bounds to our lower bounds from

Section 3:

bcr(P4 × Pn) =
{

bcr(Dd(P4 × P4)) = 33,
bcr(Dc(P4 × Pn)) = 12n− 14, if n ≥ 5, with s = 2.

bcr(P5 × Pn) =
{

bcr(Dd(P5 × P5)) = 81,
bcr(Dc(P5 × Pn)) = 22n− 28, if n ≥ 6, with s = 2.

bcr(P6 × Pn) =
{

bcr(Dd(P6 × P6)) = 161,
bcr(Dc(P6 × Pn)) = 35n− 47, if n ≥ 7, with s = 2.

At this place we reproduce a table of exact results for small meshes obtained
by Thomas Odenthal [16] using a branch and bound method.

m vs. n 4 5 6 7 8
4 33 46 58 70 82
5 81 104 126 148
6 161 198 233

The values for m = n are obtained by diagonal drawings. The values for
n > m are obtained by combined drawings. In cases m = 5, 6, 7 and m = 8 and
n > m we use the combined drawing with s = 2 and s = 3, respectively.

For general square meshes the upper bound (1) gives

bcr(Pm × Pm) ≤ 1
3
(4m3 − 12m2 + 8m + 3),

which we believe to be optimal.
For general rectangular meshes with 4 ≤ m ≤ n, we have

bcr(Pm × Pm) ≤ min{bcr(Dd(Pm × Pn)), bcr(Dc(Pm × Pn))} (3)

The righthand side of the inequality (3) is minimized for a value s = sm,
for which as m → ∞, sm/m → 1 − 1/

√
2 = 0.2928932 · · ·. Comparing the

minimum with the value for the diagonal drawing (1) we see that the diagonal
drawing is better only in a narrow interval m ≤ n ≤ αmm, for which if m→∞,
αm → 2(3−√2)/3 = 1.057333 · · ·.
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Drawing Pfaffian Graphs

Serguei Norine

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract. We prove that a graph is Pfaffian if and only if it can be
drawn in the plane (possibly with crossings) so that every perfect match-
ing intersects itself an even number of times.

1 Introduction

In this paper we prove a theorem that connects Pfaffian orientations with the
parity of the numbers of crossings in planar drawings. The proof is elementary,
but it has other consequences and raises interesting questions. Before we can
state the theorem we need some definitions.

All graphs considered in this paper are finite and have no loops or multiple
edges. For a graph G we denote its edge set by E(G). A labeled graph is a graph
with vertex-set {1, 2, . . . , n} for some n. If u and v are vertices in a graph G, then
uv denotes the edge joining u and v and directed from u to v if G is directed.
A perfect matching is a set of edges in a graph that covers all vertices exactly
once.

Let G be a directed labeled graph and let M = {u1v1, u2v2, . . . , ukvk} be a
perfect matching of G. Define the sign of M to be the sign of the permutation

(
1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)
.

Note that the sign of a perfect matching is well-defined as it does not depend
on the order in which the edges are written. We say that a labeled graph G is
Pfaffian if there exists an orientation D of G such that the signs of all perfect
matchings in D are positive, in which case we say that D is a Pfaffian orientation
of G. An unlabeled graph G is Pfaffian if it is isomorphic to a labeled Pfaffian
graph. It is well-known and also follows from Theorem 1 below that in that
case every labeling of G is Pfaffian. The importance of Pfaffian graphs will be
discussed in the next section.

By a drawing Γ of a graph G we mean an immersion of G in the plane
such that edges are represented by homeomorphic images of [0, 1] not containing
vertices in their interiors. Edges are permitted to intersect, but there are only
finitely many intersections and each intersection is a crossing. For edges e, f of
a drawing Γ let cr(e, f) denote the number of times the edges e and f cross. For
a perfect matching M let crΓ (M), or cr(M) if the drawing is understood from
context, denote

∑
cr(e, f), where the sum is taken over all unordered pairs of

distinct edges e, f ∈M .

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 371–376, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The following theorem is the main result of this paper. The proof will be
presented in Section 3.

Theorem 1. A graph G is Pfaffian if and only if there exists a drawing of G in
the plane such that cr(M) is even for every perfect matching M of G.

The “if” part of this theorem as well as the “if” part of its generalization
(Theorem 3) was known to Kasteleyn [4] and was proved by Tesler [14]; however
our proof of this part is different. The “only if” part is new.

2 Pfaffian Graphs

Pfaffian orientations have been introduced by Kasteleyn [2–4], who demonstrated
that one can enumerate perfect matchings in a Pfaffian graph in polynomial time.

We say that an n × n matrix A(D) = (aij) is a skew adjacency matrix of a
directed labeled graph D with n vertices if

aij =






1 if ij ∈ E(D),
−1 if ji ∈ E(D),
0 otherwise.

Let A be a skew-symmetric 2n× 2n matrix. For each partition

P = {{i1, j1}, {i2, j2}, . . . , {in, jn}}

of the set {1, 2, . . . , 2n} into pairs, define

aP = sgn

(
1 2 . . . 2n− 1 2n
i1 j1 . . . in jn

)
ai1j1 . . . ainjn .

Note that aP is well defined as it does not depend on the order of the pairs in
the partitions nor on the order in which the pairs are listed. The Pfaffian of the
matrix A is defined by

Pf(A) =
∑

P

aP ,

where the sum is taken over all partitions P of the set {1, 2, . . . , 2n} into pairs.
Note that if D is a Pfaffian orientation of a labeled graph G then Pf(A(D)) is
equal to the number of perfect matchings in G. One can evaluate the Pfaffian
efficiently using the following identity from linear algebra: for a skew-symmetric
matrix A

det(A) = (Pf(A))2.

Thus the number of perfect matchings, and more generally the generating func-
tion of perfect matchings of a Pfaffian graph, can be computed in polynomial
time.

The problem of recognizing Pfaffian bipartite graphs is equivalent to many
problems of interest outside graph theory, eg. the Pólya permanent problem [11],
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the even circuit problem for directed graphs [15], or the problem of determin-
ing which real square matrices are sign non-singular [5], where the latter has
applications in economics [13].

The complete bipartite graph K3,3 is not Pfaffian. Each edge of K3,3 belongs
to exactly two perfect matchings and therefore changing an orientation of any
edge does not change the parity of the number of perfect matchings with negative
sign. One can easily verify that for some (and therefore for every) orientation of
K3,3 this number is odd.

In fact, Little [6] proved that a bipartite graph is Pfaffian if and only if it
does not contain an “even subdivision” H of K3,3 such that G \ V (H) has a
perfect matching.

A structural characterization of Pfaffianbipartite graphs was givenby Robert-
son, Seymour and Thomas [12] and independently by McCuaig [7]. They proved
that a bipartite graph is Pfaffian if and only if it can be obtained from planar
graphs and one specific non-planar graph (the Heawood graph) by repeated ap-
plication of certain composition operations. This structural theorem implies a
polynomial time algoritheorem for recognition of Pfaffian bipartite graphs.

No satisfactory characterization is known for general Pfaffian graphs. The
result of this paper was obtained while attempting to find such a description.

3 Main Theorem

Let Γ be a drawing of a graph G in the plane. We say that S ⊆ E(G) is a marking
of Γ if cr(M) and |M ∩ S| have the same parity for every perfect matching M
of G.

Theorem 1 follows from the following more general result.

Theorem 2. For a graph G the following are equivalent:
(a) G is Pfaffian;
(b) some drawing of G in the plane has a marking;
(c) every drawing of G in the plane has a marking;
(d) there exists a drawing of G in the plane such that cr(M) is even for every
perfect matching M of G.

We say that Γ is a standard drawing of a labeled graph G if the vertices of
Γ are arranged on a circle in order and every edge of Γ is drawn as a straight
line.

The equivalence of conditions (a), (b) and (c) of Theorem 2 immediately
follows from the next two lemmas.

Lemma 1. Let Γ be a standard drawing of a labeled graph G. Then G is Pfaffian
if and only if Γ has a marking.

Proof. Let D be an orientation of G. Let M = {u1v1, u2v2, . . . , ukvk} be a perfect
matching of D. The sign of M is the sign of the permutation

P =
(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)
.
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Let i(P ) denote the number of inversions in P , then

sgn(M) = sgn(P ) = (−1)i(P ) =
∏

1≤i<j≤2k

sgn(P (j)− P (i)) =

=
∏

1≤i<j≤k

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi))×

×
∏

1≤i≤k

sgn(vi − ui). (1)

In Γ edges uivi and ujvj cross if and only if each of the two arcs of the circle
containing the vertices of Γ with the ends ui and vi contains one of the vertices
uj and vj , in other words if and only if

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi)) = −1.

Define SD = {uv ∈ E(D)|u > v}. Note that for every S ⊆ E(G) there exists
(unique) orientation D such that S = SD. From (1) we deduce that

sgn(M) = (−1)cr(M) × (−1)|M∩S|.

Therefore M has a positive sign if and only if cr(M) and |M ∩S| have the same
parity. It follows that D is a Pfaffian orientation of G if and only if SD is a
marking of the standard drawing of G. ��

Notice that we have in fact shown that there exists a one-to-one correspon-
dence between Pfaffian orientations of a labeled graph and markings of its stan-
dard drawing.

Lemma 2. Let Γ1 and Γ2 be two drawings of a labeled graph G in the plane.
Then Γ1 has a marking if and only if Γ2 has one.

Proof. For any n and any two sequences (a1, a2, .., an) and (b1, b2, .., bn) of pair-
wise distinct points in the plane, there clearly exists a homeomorphic transfor-
mation of the plane that takes ai to bi for all 1 ≤ i ≤ n. Therefore without
loss of generality we assume that the vertices of G are represented by the same
points in the plane in both Γ1 and Γ2.

It suffices to prove the statement of the lemma for drawings Γ1 and Γ2 that
differ only in the position of a single edge e = uv. Let e1 and e2 denote the
images of e in Γ1 and Γ2 correspondingly. Define C = e1 ∪ e2. The closed curve
C separates its complement into two sets P1 and P2 with the property that every
simple curve with the ends a ∈ Pi and b ∈ Pj crosses C even number of times if
and only if i = j.

Clearly if e �∈M we have

crΓ1(M) = crΓ2(M). (2)

Let c = 0 if both P1 and P2 contain an even number of vertices of G and let c = 1
otherwise. For two curves C1 and C2, let cr(C1, C2) denote the total number of
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times C1 crosses C2. For any perfect matching M of G, such that e ∈ M , the
following identity holds modulo 2:

crΓ1(M) + crΓ2(M) = 2
∑

{f,g}⊆M\{e}
cr(f, g) +

∑

f∈M\{e}
(cr(f, e1) + cr(f, e1))

=
∑

f∈M\{e}
cr(f, C) = c.(3)

Suppose S is a marking of Γ1. Identities (2) and (3) imply that S is a marking
of Γ2 if c = 0, and that S	{e} is a marking of Γ2 if c = 1. ��

Since clearly (d) implies (b), to finish the proof of Theorem 2 it remains to
show that (b) implies (d). Suppose G satisfies (b) and consider a drawing of G
in the plane with a marking S. Suppose there exists e ∈ S. We change the way
e is drawn, so that the closed curve C which is composed from the old and the
new drawing of e separates one vertex of G from the rest. From the proof of
Lemma 2 it follows that S \ {e} is a marking in the new drawing. By repeating
the procedure we produce a drawing of G such that the empty set is a marking,
therefore demonstrating that G satisfies condition (d) of Theorem 2.

4 Concluding Remarks

1. The following generalization of Theorem 1 follows from the proof in previous
section.

Theorem 3. Let G be a graph and let M be the set of all perfect matchings of
G. Let s :M→ {−1, 1}. Then the following are equivalent:
(1) there exists an orientation D of G such that for every M ∈ M its sign in
the corresponding directed graph is equal to s(M);
(2) there exists a drawing of G in the plane such that for every M ∈M

s(M) = (−1)cr(M).

In [8] I was also able to generalize the methods used in the proof of Theorem 1
to prove a result on the numbers of crossings in “T -joins” in different drawings
of a fixed graph.

2. For a labeled graph G, an orientation D of G and a perfect matching M of
G, denote the sign of M in the directed graph corresponding to D by D(M).
We say that a graph G is k-Pfaffian if there exist a labeling of G, orientations
D1, D2, . . . , Dk of G and real numbers α1, α2, . . . , αk, such that for every perfect
matching M of G

k∑

i=1

αiDi(M) = 1.

For surfaces of higher genus the following result was mentioned by Kaste-
leyn [3] and proved by Galluccio and Loebl [1] and independently by Tesler [14].
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Theorem 4. Every graph that can be embedded on a surface of genus g is 4g-
Pfaffian.

I was able to prove the following analogue of Theorem 1 for the torus [9].

Theorem 5. Every 3-Pfaffian graph is Pfaffian. A graph G is 4-Pfaffian if and
only if there exists a drawing of G on the torus such that cr(M) is even for every
perfect matching M of G.

Theorems 4 and 5 suggest several questions. For which k ≥ 5 do there exist
graphs that are k-Pfaffian, but not (k − 1)-Pfaffian? Is it true that a graph G
is 4g-Pfaffian if and only if there exists a drawing of G on a surface of genus g
such that cr(M) is even for every perfect matching M of G?
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Abstract. We propose an algorithm for the 3D visualization of gen-
eral ontology models used in many applications, such as semantic web,
entity-relationship diagrams and other database models. The visualiza-
tion places entities in the 3D space. Previous techniques produce draw-
ings that are 2-dimensional, which are often complicated and hard to
comprehend. Our technique uses the third dimension almost exclusively
for the display of the isa relationships (links) while the property relation-
ships (links) are placed on some layer (plane). Thus the semantic differ-
ence between isa links and property links, which should be as vertical or
as horizontal as possible respectively, is emphasized. Special reference is
made on a certain model, the CIDOC Conceptual Reference Model.

1 Introduction

Semantic graphs (also called models) describe relationships between entities and
are very important in many applications [1, 7–9]. They contain a great amount
of information and the visualization of such models is very crucial in order to
understand the details they incorporate. There have been several attempts to
automatically produce drawings of these models. Previous techniques produce
drawings that are 2-dimensional, and often complicated and hard to compre-
hend [5, 6]. We present a technique that produces 3-dimensional drawings that
are clear and understandable. In these metadata models there are usually two
different types of relationships: the isa relationships and the property relation-
ships. Our technique uses the third dimension almost exclusively for the display
of the isa relationships (links) while the property relationships (links) are placed
on some layer (plane). These links have different meaning. In detail, an isa link
represents a type of inheritance between the connected entities, whereas the
property links correspond to different relationships between the entities. Since
it is not always feasible, a few property links may use the third dimension.

Many automated tools for the display of such models have been developed.
The tools are naturally categorized into two types: textual and visual [1]. Ex-
amples of textual RDFS browsing tools are Protege 2000 [2], Ontoedit [3] and
� This work was supported in part by INFOBIOMED code: IST-2002-507585 and
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Ontomat1. However, text-based environments have not proved effective [3, 4]. On
the other hand, visualization based tools provide the user with a more general
view of the whole model. There are many tools visualizing RDF browsing such
as IsaViz [5], FRODO RDFSViz [6], and OntoViz2.

All these visualization tools produce 2D visualizations of the input model.
However, 2D visualizations of these models are complex and confusing, especially
when the number of entities of the specific model is large. Furthermore, in two
dimensions, it is difficult to understand the meaning of each link, as they are all
looked upon under the same perspective. Our approach uses the third dimension
for the visualization of the isa links and the input model will be considered as
a system of interactions between entities, which push the nodes of the graph
towards a specific optimal position. Till now, to the best of our knowledge, no
3D models for the automated visualization of semantic metadata models have
been presented.

In this paper, we present an algorithm that produces 3D solutions to the
semantic metadata and ontologies visualization problem. The algorithm tries
to implement intuitive preference directions (isa links upwards, property links
horizontal), that assist the intellectual orientation and understanding of the hu-
man spectator. If the number of entities and properties is large, this is virtually
impossible to be accomplished in 2D representations. Our algorithm can be ap-
plied in order to visualize many ontology models, including the ABC ontology
and model described in [7]. We present our results for a conceptual reference
model, the CIDOC CRM.

The CIDOC Conceptual Reference Model (CRM) provides definitions
and a formal structure for describing the implicit and explicit concepts and
relationships used in cultural heritage documentation [8, 9]. The CIDOC CRM is
a directed graph where nodes represent entities and edges represent property and
isa relationships. This graph is isa-disconnected (it contains more than one isa-
connected components) and has many interesting characteristics. The complete
definition of CIDOC CRM can be found in [9]. An example model of CIDOC
CRM is shown in Figure 1.

2 The Problem

Our target is to create a 3D-mapping of a metadata model. The model describing
entity relationships is given in various formats, such as XML or RDF.

As the description of the model consists of two kinds of relationships (isa and
property links) between entities, we can extract a directed graph G = (V, E)
such that V is the set of entities and E is divided into two sets of edges, I,
which denotes the set of isa links and P , which denotes the set of property links.
Throughout the paper n will denote the number of the original model entities
(vertices) whereas m will denote the number of the original model links (edges).

1 http://annotation.semanticweb.org/ontomat
2 Ontoviz is a visualization plug-in for Protege 2000.
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E25 Man-Made FeatureE22 Mane-Made Object

E24 Physical Man -Made Stuff

E26 Physical FeatureE19 Physical Object

E18 Physical Stuff

E36 Visual Item

E38 Image E37 Mark

E34 Inscription

E33 Linguistic Object

E56 Language
P56 bears feature

(is found on)

0,n

0,n

1,1

E28 Conceptual Object

P73 has translation
(is translation of)

0,n

0,n

1,n

0,n

0,n

E55 Type

E73 Information Object

P65  shows  visual   item
(is shown by)

P72 has language
(is language of)

Fig. 1. A CIDOC CRM model (mii) consisting of 15 entities (nodes).

Therefore, we reduce the problem of metadata model 3D visualization to the
computation of a 3D embedding of the respective directed graph. Thus, we want
to create a 3D visualization of G (i.e., to compute (x, y, z) for all v ∈ V ) such
that for all edges (v, u) ∈ I it is z(v) > z(u). The inequality represents a parent-
child relationship between two nodes that are connected with isa links. In this
way, the importance of isa links is pointed out. Also it is desirable (but clearly
not always feasible) to have z(v) = z(u) + 1 for each (v, u) ∈ I (i.e., all the
isa-connected nodes lie in adjacent layers). Additionally, we want to minimize
the number of edges (v, u) ∈ P that connect nodes that lie in different layers.
This means that our main objective is to place nodes that are connected with
property links on the same layer. In this way, an absolute discrimination between
the two types of edges is achieved. Finally, minimizing edge crossings per layer is
desired. Due to the computation of the (x, y, z) coordinates, crossings between
isa links are unlikely to occur, as the probability of independent placed line
segments crossing in the 3D space is almost zero. The satisfaction of all three
constraints is not always feasible. Thus, in the solution that we will present, some
trade-offs have to be made in order to achieve a feasible 3D embedding of the
graph. Figure 2 shows an ideal case of a 3D embedding: For all edges (v, u) ∈ I
it is z(v) = z(u) + 1 (i.e., all isa links connect nodes lying in adjacent layers).
Also, for all edges (v, u) ∈ P it is z(v) = z(u) (i.e., all property links lie on the
same layer). Finally, no crossings between property links per layer and between
isa links exist.

The constraints presented are general constraints that have to be taken into
consideration in order to produce an aesthetically good and readable drawing.
During the description of the algorithm, some more constraints will appear that
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C X

A B

W D

E

Fig. 2. An ideal embedding. If either a property or an isa link is added between the
gray and the black node, the ideal embedding cannot be preserved.

will aim to improve the final drawing. The main body of our algorithm is as
follows:

Algorithm 3DVis
Input: A directed graph G = (V, E = I ∪ P )
Output: A 3D embedding of G

1. Layer Assignment Stage
For each v ∈ V compute z(v).

2. Pseudo Nodes and Pseudo Edges Addition Stage
Decompose each isa link (i, j), such that i, j do not lie in adjacent layers, by
introducing dummy isa nodes at the layers between i and j.
Decompose each property link (i, j), such that i, j do not lie in the same layer,
by introducing one dummy property node either at the layer of node i or at
the layer of node j.

3. Coordinate Assignment on Layers Stage
Assign (x, y) coordinates to the nodes of the graph (including pseudo nodes).

4. Return the computed 3D embedding of G = (V, I ∪ P ).

In the following sections, we describe the three main stages of the algorithm.

3 Layer Assignment

Layer assignment is equivalent to determining the z-coordinate of each node.
The layers are numbered 0, 1, . . . , L−1, where L is a positive integer determined
by the algorithm. Many layer assignment algorithms have been proposed with
the longest path layering algorithm being the dominant one [10]. However, the
longest path layering, though initially implemented, is not finally used, as it does
not take into consideration the property links of each node.

In order to assign layers, both property and isa links should be taken into
consideration as we want to place the nodes in a way that minimizes the total
number of layers intersected by the edges. Thus the number of pseudo nodes
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(dummy property and dummy isa nodes) is also minimized. If the graph had only
isa links then a technique similar to that proposed in [11] for layered drawing of
digraphs could be used (see also [10]).

Let G = (V, I ∪ P ) be the input graph model to visualize, where V is the
set of nodes (entities) of the model, I is the set of isa links and P is the set of
the property links. Our first aim is to run an algorithm in order to identify the
isa-connected components of the induced undirected graph. This can be easily
done, by applying a depth first search that computes the isa connected trees in
the depth first search forest.

Suppose now that we have identified the isa DFS trees that correspond to
the input model. In the general case, we suppose that we have k such connected
subgraphs Gj = (Vj , Ej), j = 1, . . . , k. Let nj denote the number of nodes of
each connected subgraph (i.e., nj = |Vj |). It is clear that

∑k
j=1 nj = n. We want

to compute z(i) for all i = 1, . . . , n. Throughout the paper, we assume that z
increases by moving downwards. One very important consideration is that the
z-coordinates of the nodes must always satisfy the order imposed by the isa
hierarchies. The isa hierarchy for all the nodes of the graph is derived from the
input model.

Additionally, we would like to impose an upper bound L to the z-values.
L could be the number maxi=1,...,k{ni} (i.e., the number of the nodes of the
largest DFS tree). Another approach for the definition of L could be the longest
path of the directed acyclic graph that is produced by the model if we ignore all
the property links. Furthermore, we must define an objective function of each
solution. It is desired that a layer assignment is achieved such that the vertical
distance between nodes which are connected with property links is minimized.
Additionally, we want to ensure that vertical distance between nodes that are
connected with isa links is also minimized. Due to the nature of the models we
want to visualize, minimizing vertical distance between nodes which are con-
nected with property links is more important than minimizing vertical distance
between nodes which are connected with isa links. Thus we minimize the former
with priority α and the latter with priority β, where α > β. Therefore, we define
the following integer non-linear optimization problem of the function f :

min f(z) = α
∑

(i,j)∈P

(z(i)− z(j))2 + β
∑

(i,j)∈I

(z(i)− z(j))2

s.t. z(i) > z(j) ∀(i, j) ∈ I; z(i) < L ∀i ∈ V ; z(i) ∈ Z ∀i ∈ V

The first constraint ensures that the isa hierarchy is preserved, the second con-
straint imposes an upper bound to the values the depths of the nodes can range,
while the third one forces an integer solution. Figure 3 shows two legal layer
assignments of the same model. The superiority of the second one is clear, since
all property links lie on the layers.

The optimization problem, which is at least NP -hard [22], can be solved with
integer programming approximation algorithms. However, if we force direction
to the property links, it can be solved optimally by using the method proposed
in [11]. We have solved the problem using an optimization package, called Lingo
(version 8) (see http://www.lindo.com).
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Fig. 3. Two layerings z1, z2. The isa hierarchies in both layerings are preserved. Note
that f(z1) = 2α+4β, while f(z2) = α+4β. Our layer assignment algorithm will choose
the second layout.

4 Pseudo Nodes and Edges Addition

After the layers of the nodes have been computed, we must assign the (x, y)
coordinates to each node. Let z0 be the layout that minimizes f . We have to
consider the following two cases:

Case 1 – Property Links
There can exist property links (i, j) such that z0(i) �= z0(j) (i.e., i, j are not
placed on the same layer and f(z0) > β

∑
(i,j)∈I (z0(i)− z0(j))

2). Suppose we
have p such links. In this case, every one of these p property links will originate
from a certain layer and will terminate to another one. Thus we introduce the
idea of a dummy property node, which will actually appear as a bend in the
final visualization. For each pair of nodes i, j that are connected with a property
link such that z0(i) �= z0(j), a dummy property node c(i, j) is placed at layer
min{z0(i), z0(j)}. Additionally, it is desired that c(i, j) lies exactly above (in
terms of (x, y) coordinates) of the node v = i or v = j such that z0(v) =
max{z0(i), z0(j)}. A dummy property node c(i, j) is thus defined as a pseudo
node of an original node i which is connected to a node j through a property
link such that z0(i) �= z0(j). Following this approach, all property links will be
drawn as orthogonal lines at the cost of introducing one bend per property link.
Additionally, an upward property tree is formed (see Figure 4b). In the case
that a node j has more than one property destinations which all lie on the same
layer, different from z0(j), then all the created copies are merged into one.

Another approach is to create a property path between the respective nodes.
In this way, the number of dummy nodes would increase and the semantic dif-
ference between the property and isa links would not be so clear. Additionally,
this approach is not so useful, as in such metadata models, the number of the
property links is much less than the number of isa links.

Case 2 – Isa Links
There can exist isa links (i, j) such that z0(i) > z0(j)+1 (i.e., i, j are not placed
in adjacent layers and f(z0) > α

∑
(i,j)∈P (z0(i)− z0(j))

2 + β|I|)3. For each isa
link (i, j) such that z0(i) − z0(j) > 1 we define a set F (i,j) of z0(i) − z0(j) − 1

3 |X| denotes the cardinality number of set X.
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dummy isa nodes that will be placed on layers z0(j) + 1, z0(j) + 2, . . . , z0(i)− 1.
Note that F (i,j) = ∅ ⇔ (i, j) ∈ I ∧ z0(i)− z0(j) = 1.

Another way to describe this is as follows. Suppose we draw a virtual straight
line segment between two nodes i and j that are connected with an isa link and
lie in different layers. Dummy isa nodes are introduced on each layer pierced by
this virtual line segment. These nodes are stored in F (i,j). F (i,j) defines a path
of z0(i)− z0(j)− 1 new isa links i, i1, i2, . . . , ir, j where r = z0(i)− z0(j)− 1.

Finally, the total number of added dummy isa nodes is d =
∑

(i,j)∈I∧F (i,j) �=∅
|F (i,j)|. It is clear that d ≤ ∑

F (i,j) �=∅(L − 1). In Figure 4, we can see how the
addition of the dummy nodes is achieved.

i

k

h

g l

(a)

j

c

d

(b)

0
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Fig. 4. Dummy nodes and edges addition. In (a), node i has 4 isa links: (i, k), (i, g),
(i, h), (i, l). In (b), node j has has 2 property links (j, c) and (j, d).

Therefore, the total number of the inserted dummy nodes is p + d. It is easy
to prove that no dummy nodes are added if and only if f(z0) = β|I|. In this case
p = 0 and F (i,j) = ∅ ∀(i, j) ∈ I. The existence of dummy nodes is important
in the next phase, as they play the role of placeholders and bends in the final
drawing.

Finally, one more step has to be performed. As the model behaves as a
dynamic system, we must connect each dummy property node c(i, j) of two
property connected nodes i, j with a new link between c(i, j) and the original
node (i.e., the node copied). This can be done if we introduce a pseudo-isa
relationship between each dummy property node and the node from which it
has been copied. There will therefore be p pseudo-isa relationships (as many as
the dummy property nodes). The final number of isa links will be |I ′| = |I|+p+d.
Thus, after the addition stage is complete, our graph will consist of |V |+ p + d
nodes, exactly |P | property links and |I| isa links. In the following sections, V , I
will denote the augmented sets of nodes and isa links respectively. It is important
to state that in the final visualization, there would be only |I ′|−p isa links, as the
pseudo-isa links only contribute to maintain the dynamic aspect of the model.
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Fig. 5. The function of the pseudo node and edges addition algorithm. The initial
model has 3 relationships ISA(i, k), ISA(i, g) and PROPERTY (i, h).

The overall function of the pseudo-node and edges addition algorithm is depicted
in Figure 5.

Finally, we could use an alternative approach to this problem. Instead of
adding dummy nodes for each isa link (i, j), we can create an isa tree from a
node i to all its isa destinations, similar to the property tree. The difference of
this approach is evident only in the case of a node i having h isa links of type
(i, j1), (i, j2), . . . , (i, jh). This approach reduces the number of the dummy isa
nodes. However, the connection between all isa-connected nodes is not very clear.
Finally it depends upon the application as to which one of the two alternatives
will be chosen. In our case, the first alternative is more satisfying. Figure 6
depicts the dummy isa nodes addition according to the second alternative. Note
that the approach of using isa and property trees is trying to mimic the ideal
visualization case described in Figure 2.

5 Coordinate Assignment on Layers

In this section, we present the method for the computation of the (x, y) coordi-
nates of each node. Our main objective here is to minimize, with weight α, the
3D distance of all the pairs of nodes that are connected with isa links. In this
way, the isa children of a node v will be placed symmetrically around v. Fur-
thermore, with lower priority β, we want to minimize the horizontal distances
between nodes that are connected with property links. Note, that after the in-
troduction of the dummy property nodes, property links connect nodes lying on
the same layers.

This minimization is made under the constraint that nodes do not overlap.
Hence, we must ensure that for each layer there is a minimum horizontal distance,
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Fig. 6. Forming an ISA tree. Initially, there are 3 isa links: (i, k), (i, g), (i, h).

say 1, between nodes belonging to a certain layer. Additionally, it is desired
that for each node i that has a dummy property node j to another layer it is
p(i) = p(j) which means i and j have identical x and y coordinates (i.e., it is
x(i) = x(j) and y(i) = y(j)).

Furthermore, we would like to have the dummy nodes of each isa link (i, j)
placed on a straight line. In this way the hierarchy is clearer. For this purpose,
we examine two cases: (a), If node i has only one isa neighbor j such that
z0(i) > z0(j) + 1, then we want to ensure that

p(i) = p(i1) = p(i2) = . . . = p(ir) (1)

where i1, i2, . . . , ir are the nodes introduced in section 4 and r = z0(i)−z0(j)−1.
(b), If there are more than one isa links originating from i, say h, and we want
to ensure that for each isa neighbor jk, k = 1, . . . , h, the dummy isa nodes that
belong in F (i,jk) are related as follows

p(i1) = p(i2) = . . . = p(ir) (2)

where now r = z0(i) − z0(jk) − 1, k = 1, . . . , h. Note that only in the first case
the origin of the isa link is placed on the same vertical straight line with the
dummy isa nodes. This is not feasible in the second case, as we want to separate
the multiple isa links originating from i. In both cases, the destination of the isa
link is not forced to lie in a specific position. A desired layout for the second case
can be seen in Figure 4. This is a technique inspired by polyline drawings [21].

All these observations finally lead to the following non-linear optimization
problem:

min g(x, y) = α
∑

(i,j)∈I

dij + β
∑

(i,j)∈P

dij

s.t. (x(i)− x(j))2 + (y(i)− y(j))2 ≥ 1 ∀(i, j) : z0(i) = z0(j) (3)
p(t) = p(c(i, j)) ∀c(i, j), t = arg max{z0(i), z0(j)}; C1; C2 (4)
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where dij =
√

(x(i)− x(j))2 + (y(i)− y(j))2 + (z0(i)− z0(j))
2 is the 3D Eu-

clidean distance of nodes i, j, C1, C2 are the constraints imposed by (1),(2).
Constraint (4) ensures minimum distance per layer, whereas the other con-

straints ensure that the added nodes are placed on straight lines according to
the rules we have presented. This problem, which is also at least NP -hard [22],
has also been solved with Lingo 8, in polynomial time on the size of input [12].

Instead of solving the above optimization problem, we can use a force directed
algorithm. This can be achieved by using some extra dummy nodes, which will
be regarded as fixed. There are many force directed algorithms proposed such
as [13–16]. Finally, we can examine if the hierarchical approach [17] or maybe
an orthogonal drawing approach [18–20] could be implemented. These are all
goals of future work.
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Fig. 7. 3D Representation of the Mark Inscription Information (mii) Model (Figure 1).
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6 Time and Experiments

We have implemented our algorithm and have run it on several examples. The
time needed by our algorithm is divided into three main parts: (1), The time
needed for minimizing f . Lingo uses efficient approximation algorithms and per-
forms the layer assignment in polynomial time. (2), The time needed for deter-
mining dummy nodes. Let L∗ be the maximum number of layers needed after
the layer assignment stage is complete. This time is obviously O(mL∗), as we
need to check all links (isa and property links) in order to decide if the addition
of dummy nodes is necessary or not. (3), The time needed for the minimization
of g. This part is the most expensive one, as there are many constraints and the
size of the problem has increased (due to the introduction of dummy nodes and
edges). However, Lingo provides an approximation in reasonable time.

Here, we present some visualization examples produced by our software with
reference to two CIDOC CRM models. Isa and property links are depicted with
red and blue lines respectively. The time our algorithm needed in order to pro-
duce the 3D drawings is 4 seconds in average.
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of Some Orthogonal Drawings�
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Abstract. Large graphs are difficult to browse and to visually explore.
This note adds up evidence that some graph drawing techniques, which
produce readable layouts when applied to medium-size graphs, yield self-
similar patterns when launched on huge graphs. To prove this, we con-
sider the problem of assessing the self-similarity of graph drawings, and
measure the box-counting dimension of the output of three algorithms,
each using a different approach for producing orthogonal grid drawings
with a reduced number of bends.

1 Introduction

The picture of Fig. 1 shows a huge planar connected random graph drawn within
the orthogonal grid layout standard, where nodes are points with integer coor-
dinates and edges are sequences of horizontal and vertical segments of inte-
ger length. The drawing was obtained by using the well-known topology-shape-
metrics approach [10, 3]. It can be noticed that the drawing can be roughly split
into rectangular blocks, some very dense, and some others much more sparse.
Also, the same pattern seems to occur at different zooming levels inside the
denser rectangular blocks.

The property of showing the same structure at different scales is referred to
as self-similarity and is often associated with the concepts of fractional dimen-
sionality and fractal. These concepts will be more formally defined in Section 2.
In the rest of this section we will use the intuitive notion of self-similarity to
introduce the main point of this note and the implications of it.

Self-similar structures, characterized by the property of showing similar pat-
terns at all length scales, abound in nature. Lots of examples can be found in
disciplines as different as geology (river basins, coastlines, mountains landscapes,
etc.), human and animal physiology (blood vessels, nerves, bronchial tubes, etc.),
and biology (trail networks for harvesting ants, etc.)
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Fig. 1. A drawing with the minimum number of bends of a planar connected graph
with 4,700 nodes and 6,155 edges. The number of bends is 2,463.

Although fractals are usually put in relation with chaos, they are sometimes
credited with some desirable property caused by their self-similar pattern. How-
ever, it is very hard to attribute a fractal structure to a specific optimization
problem and such an explicit statement can be searched in vain in the litera-
ture. Rigorously defined combinatorial processes, like graph drawing techniques,
provide promising examples to study the relationship between fractals and op-
timization criteria.

This note offers an argument in favor of the hypothesis that self-similarity
may be induced by a minimization process. In fact, the line followed by our
argument goes the other way around: we start from a well known aesthetic
criterion, namely the reduction of the number of bends in orthogonal drawings,
and we assess the self-similarity of the produced layouts, a property elusive
enough to remain unnoticed for several years.

2 Background

Central to the definition of fractal is that of dimension [4]. The dimension which
we generally are familiar with is the so-called topological dimension. The topo-
logical dimension DT of a set is always an integer and is zero if the set is totally
disconnected, while it is n if the intersection of the set with the boundary of
an arbitrarily small neighborhood of one of its points has topological dimension
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n− 1. Thus, the topological dimension of a collection of points is zero, that of a
collection of curves is one, that of a collection of surfaces is two, and so on.

While the topological dimension is based on the concept of intersection, an
alternative and more tortuous definition of dimension is based on the concept of
cover, and is obtained from the definition of Hausdorff measure. The Hausdorff
measure Hp(S) of a set S is defined parametrically with p, where p is a non
negative real. Thus, there are as many Hausdorff measures as many values for
p (we will provide a rigorous definition of Hausdorff measure in the next para-
graphs.) If there is a value DH in [0,∞] such that Hp(S) = ∞ for p in [0, DH)
and Hp(S) = 0 for p in (DH ,∞], then DH is the Hausdorff dimension of S.

In order to define the Hausdorff measure Hp(S), used to find the Hausdorff
dimension, we need some further definitions. The diameter |U | of a set U is the
greater distance apart of any pair of its points. A δ-cover of a set S is a countable
collection of sets {Ui} of diameter at most δ whose union contains S. Hp

δ(S) is
the infimum of the sum of the p-powers of the diameters of a δ-cover of S, i.e.,
Hp

δ(S) = inf(
∑∞

i=0 |Ui|p : {Ui} δ-cover of S). Finally, Hp(S) = limδ→0Hp
δ (S).

Fractals are defined by Mandelbrot [6] as geometric sets whose Hausdorff
dimension DH strictly exceeds their topological dimension DT .

As it could be difficult to directly compute the dimension DH of a set S,
often a variant of the above definition is considered imposing the additional
constraint that all the sets in {Ui} have equal diameter. With this hypothesis,
given an arbitrary value p different from DH , by studying how Hp

δ(S) goes to∞
(when p is in [0, DH)) or to 0 (when p is in (DH ,∞]) for δ → 0, we can infer DH .

In fact,Hp
δ (S) = inf(

∑∞
i=0 |Ui|p) = inf(δp−DH

∑∞
i=0 |Ui|DH ) = δp−DHHDH

δ .
Assume that the diameter of S is finite and let N be the cardinality of the δ-cover
that gives the infimum of

∑∞
i=0 |Ui|p. We have thatHp

δ (S) = Nδp = HDH

δ δp−DH .
Thus, for δ → ∞, N = Cδ−DH , where C = HDH (S). It follows that measuring
the exponent of the power law that relates the number N of covering sets to
their diameter δ gives indirectly the value of the dimension we are searching
for. Based on these considerations, a simple method, called box-counting, can be
devised to compute a dimension DB, which is usually near to DH . It consists
of partitioning the plane into equal-sized squares of side δ, and of plotting on
a log-log scale the number N of squares intersecting S with respect to δ. The
slope of this curve gives DB.

3 Measuring the Self-similarity of Orthogonal Drawings

In order to compute the box-counting dimension of a graph drawing, we use the
tool by Leejay Wu and by Christos Faloutsos [11], which in addition to being
well known and widely used, is fast and rigorously designed. Since the input of
such a tool is a geometric object consisting of a collection of points, we replaced
each node with a point and each edge with a dotted line (see Figs 2.a and 2.b).

Fig. 2.c shows the box-counting log-log plot, produced by the package [11].
Between points B and C the −1.64 slope of the curve gives the fractal dimen-
sion induced by the self-similarity of the “holes” in the drawing. Note that before
point A, as each non empty box covers a single point of the drawing, the dimen-
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Fig. 2. (a) A portion of the drawing of a graph and (b) the same portion where segments
have been replaced with dots (five dots for each grid segment). (c) The box counting
log-log plot for a drawing of a graph with 485 vertices.

sion appears to be zero. Between points A and B, since a non empty box rarely
intersects more than a single segment, the line with slope −1.03 is measuring the
dimension of a collection of segments. Between points C and D, the line with
slope −2.00 is measuring the dimension of a continuous surface, since boxes are
largest than the largest “holes” of the drawing. Finally, after point D, the whole
drawing fits into a single box, and the slope of the line is zero again.

Using Pigale generator [2], we created three test suites of planar connected,
biconnected and triconnected graphs ranging from 500 to 3,000 edges, increasing
each time by 500 edges, 10 graphs for each type. After the generation multiple
edges and self-loops were removed. Fig. 3.a shows the number of edges before and
after simplification. For all the three test suites the number of nodes is roughly
half of the number of edges before simplification.

Orthogonal layouts were produced by applying three different algorithms
corresponding to the three approaches described hereunder.

OFV: The orthogonal-from-visibility approach consists of constructing a pla-
nar orthogonal grid drawing of a biconnected planar graph starting from a
visibility representation of the same graph [3]. Our implementation handles
graphs of degree greater than four inserting at most two bends per edge.
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Fig. 3. (a) Average number of edges before and after simplification for the three test
suites. (b) The DB fractal dimensions for orthogonal drawings computed with various
approaches.

RCS: The relative-coordinates scenario is based on the incremental construc-
tion of the drawings. We applied the ‘simple algorithm’ described in [7] for
drawing high degree biconnected graphs. Intersections may be introduced
even for planar graphs. Each edge is guaranteed to have a single bend.

TSM: For the topology-shape-metrics approach we used the Boyer and Myr-
vold algorithm [1] to compute a planar embedding. During the subsequent
orthogonalization step, the total number of bends was minimized by using
the algorithm in [10], modified as described in [5] for handling high degree
graphs. Finally, the compaction step was performed with the heuristic based
on the rectangularization of the faces [10].

As it can be seen from Fig. 3.b, the DB fractal dimension computed for the
various kinds of graphs is consistently above the DT of the point sets, which
is one. Hence, the drawings are actually fractals, and their fractal dimension is
about 1.7 for all types of graphs and for all the three approaches. In all cases
the correlation computed by package [11] for the line approximating the curve
on the log-log graph is less than −0.999, suggesting a high reliability for the
computed DB values.

4 Conclusions and Open Problems

Although it is well known that random graphs do not exhibit self-similar prop-
erties, we wanted to make sure that the input graphs were not self-similar them-
selves. The self-similarity of graphs and networks has been widely studied. Sev-
eral real-life networks, for example, are known to show a self-similar node-degree
distribution [9, 12]. We plotted the node-degree distribution for the three test-
suites and verified on a log-log scale that the curves are not power laws.

Also, we wanted to check whether the planarization step, exploited by both
the OFV and the TSM approaches, folded the faces one into the other, intro-
ducing self-similarity. Again, we found that the node-degree distribution of the
dual graphs does not follow a power law.
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Finally, we tried alternative compaction heuristics for the TSM approach,
without noticing significant changes of the DB fractal dimension computed.

Some other issues deserve a deeper investigation: Is there a way to avoid self-
similar patterns in orthogonal grid drawings by introducing a few extra bends?
Can alternative measures of fractal dimension, like the correlation dimension [8],
help deepening our understanding of this phenomenon? Do other graph drawing
standards also produce self-similar drawings of large graphs?
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Abstract. The no-three-in-line problem, introduced by Dudeney in
1917, asks for the maximum number of points in the n × n grid with
no three points collinear. In 1951, Erdös proved that the answer is Θ(n).
We consider the analogous three-dimensional problem, and prove that
the maximum number of points in the n × n × n grid with no three
collinear is Θ(n2). This result is generalised by the notion of a 3D draw-
ing of a graph. Here each vertex is represented by a distinct gridpoint in
Z

3, such that the line-segment representing each edge does not intersect
any vertex, except for its own endpoints. Note that edges may cross.
A 3D drawing of a complete graph Kn is nothing more than a set of
n gridpoints with no three collinear. A slight generalisation of our first
result is that the minimum volume for a 3D drawing of Kn is Θ(n3/2).
This compares favourably to Θ(n3) when edges are not allowed to cross.
Generalising the construction for Kn, we prove that every k-colourable
graph on n vertices has a 3D drawing with O(n

√
k) volume. For the

k-partite Turán graph, we prove a lower bound of Ω((kn)3/4).

1 Introduction

In 1917, Dudeney [10] asked what is the maximum number of points in the
n × n grid with no three points collinear? This question, dubbed the no-three-
in-line problem, has since been widely studied [1, 2, 7, 14, 16–19, 21]. A break-
through came in 1951, when Erdős [14] proved that for any prime p, the set
{(x, x2 mod p) : 0 ≤ x ≤ p−1} contains no three collinear points. If follows that
the n× n grid contains n/2 points with no three collinear, and for all ε > 0 and
n > n(ε), there are (1 − ε)n points with no three collinear. The result has been
improved to (3/2 − ε)n by Hall et al. [18] using a different construction. These
bounds are optimal if we ignore constant factors, since each gridline contains at
most two points, and thus the number of points is at most 2n. Guy and Kelly
[17] conjectured that the maximum number of points in the n× n grid with no
three collinear tends to (2π2/3)

1
3 n as n→∞.

In this paper we study the no-three-in-line-in-3D problem: what is the max-
imum number of points in the n×n×n grid with no three points collinear? The
following is our primary result.
� Research supported by NSERC and COMBSTRU.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 395–402, 2004.
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Theorem 1. The maximum number of points in the n×n×n grid with no three
collinear is Θ(n2).

Cohen et al. [6] generalised the no-three-in-line problem in a similar direction.
They proved that for any prime p, the set {(x, x2 mod p, x3 mod p) : 0 ≤ x ≤
p−1} contains no four coplanar points. It follows that the n×n×n grid contains
at least n/2 and (1− ε)n points with no four coplanar. Each gridplane contains
at most three points; thus we have an upper bound of 3n.

Cohen et al. [6] were motivated by three-dimensional graph visualisation. Let
G be an (undirected, finite, simple) graph with vertex set V (G) and edge set
E(G). A 3D drawing of G represents each vertex by a distinct point in Z

3 (a
gridpoint), such that with each edge represented by the line-segment between its
endpoints, the only vertices that an edge intersects are its own endpoints. That
is, an edge does not ‘pass through’ a vertex. The bounding box of a 3D drawing
is the minimum axis-aligned box containing the drawing. If the bounding box
has side lengths X − 1, Y − 1 and Z − 1, then we speak of an X × Y × Z
drawing with volume X · Y · Z. That is, the volume of a 3D drawing is the
number of gridpoints in the bounding box. This definition is formulated so that
2D drawings have positive volume.

Distinct edges in a 3D drawing cross if they intersect at a point other than
a common endpoint. Based on the observation that the endpoints of a pair of
crossing edges are coplanar, Cohen et al. [6] proved that the minimum volume
for a crossing-free 3D drawing of Kn is Θ(n3). The lower bound here is based on
the observation that no axis-perpendicular gridplane can contain five vertices, as
otherwise there is a planar K5. Note that it is possible for four vertices to be in
a single gridplane, provided that they are not in convex position. Subsequent to
the work of Cohen et al. [6], crossing-free 3D drawings have been widely studied
[4–6, 8, 9, 11, 12, 15, 20, 23]. This paper initiates the study of volume bounds for
3D drawings of graphs, in which crossings are allowed. The following simple
observation is immediate.

Observation 1. A set V of n gridpoints in Z
3 determines a 3D drawing of Kn

if and only if no three points in V are collinear. ��
Thus, the following result is a slight strengthening of Theorem 1.

Theorem 2. The minimum volume for a 3D drawing of Kn is Θ(n3/2).

A k-colouring of a graph G is an assignment of one of k colours to each vertex,
so that adjacent vertices receive distinct colours. We say G is k-colourable. The
chromatic number χ(G) is the minimum k such that G is k-colourable. The
Turán graph T (n, k) is the n-vertex complete k-partite graph with �n/k� or
�n/k	 vertices in each colour class. Theorem 2 generalises as follows.

Theorem 3. Every k-colourable graph on n vertices has a 3D drawing with
O(n
√

k) volume. Moreover, every 3D drawing of the Turán graph T (n, k) has
Ω((kn)3/4) volume.

Note that 2D drawings of k-colourable graphs were studied by Wood [25],
who proved an O(kn) area bound, which is best possible for the Turán graph.
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The remainder of this paper is organised as follows. In Section 2 we prove the
lower bounds in Theorems 1 and 2, which imply the upper bound in Theorem 1.
In Section 3 we prove the upper bounds in Theorems 1 and 2, which imply the
lower bound in Theorem 1.

2 Lower Bounds

An axis-parallel line through a gridpoint is called a gridline. A gridline that is
parallel to the X-axis (respectively, Y-axis and Z-axis) is called an X-line (Y-
line and Z-line). An axis-perpendicular plane through a gridpoint is called a
gridplane.

Lemma 1. There are at most 2n2 points in the n × n × n grid with no three
collinear.

Proof. Every X-line contains at most two points, and there are n2 X-lines. ��
The idea in Lemma 1 can be generalised to give a universal lower bound on

the volume of a 3D drawing of a graph.

Lemma 2. Every 3D drawing of a graph G has at least χ(G)3/2/
√

8 volume.

Proof. Say G has an A×B ×C drawing. The vertices on a single Z-line induce
a set of paths, as otherwise an edge passes through a vertex. The set of paths is
2-colourable. Using a distinct pair of colours for each Z-line, we obtain a 2AB-
colouring of G. Thus χ(G) ≤ 2AB. Similarly, χ(G) ≤ 2AC and χ(G) ≤ 2BC.
Thus 8(ABC)2 ≥ χ(G)3, and the volume ABC ≥√

χ(G)3/8. ��
The bound in Lemma 2 is only of interest if χ(G) ≥ 2n2/3, since n is a trivial

lower bound on the volume of a 3D drawing.
The following lemma proves the lower bound in Theorem 3.

Lemma 3. For all n ≡ 0 (mod k), every 3D drawing of T (n, k) has at least
(kn)3/4/

√
8 volume.

Proof. Consider an A×B×C drawing of T (n, k). Let ai (respectively, bi and ci)
be the number of X-lines (Y-lines and Z-lines) that contain a vertex in the i-th
colour class. Considering the arithmetic and harmonic means of {ai : 1 ≤ i ≤ k}
we have,

k2 ≤
(

∑

i

ai

) (
∑

i

1
ai

)
.

The X- and Y-lines that contain a vertex coloured i intersect in at most aibi

gridpoints. There are n/k vertices coloured i. Thus aibi ≥ n/k, implying 1/ai ≤
kbi/n.

Hence,

k2 ≤
(

∑

i

ai

) (
∑

i

kbi

n

)
.
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That is,

kn ≤
(

∑

i

ai

)(
∑

i

bi

)
.

There are at most two distinct colours represented in each gridline, as otherwise
an edge passes through a vertex. There are BC distinct X-lines. Thus

∑
i ai ≤

2BC. Similarly,
∑

i bi ≤ 2AC. Thus kn ≤ (2BC) (2AC). That is, ABC2 ≥ kn/4.
By symmetry, ACB2 ≥ kn/4 and BCA2 ≥ kn/4. Thus (ABC)4 ≥ (kn/4)3,
implying that the volume ABC ≥ (kn/4)3/4. ��

Since χ(Kn) = n and Kn = T (n, n), Lemmata 2 and 3 both prove the lower
bound in Theorem 2.

Corollary 1. Every 3D drawing of Kn has volume at least n3/2/
√

8. ��

3 Upper Bounds

The next lemma is the main component in the proof of our upper bounds. For
all primes p, define

Vp =
{(

x, y, (x2 + y2) mod p
)

: 0 ≤ x, y ≤ p− 1
}

.

Lemma 4. For all primes p, the set Vp contains three collinear points if and
only if p ≡ 1 (mod 4).

Proof. The result is trivial for p = 2. Now assume that p is odd. Suppose Vp con-
tains three collinear points a, b, and c. Then there exists a vector v = (vx, vy, vz)
such that b = kv + a and c = �v + a, for distinct nonzero integers k and
�. (Precisely, vx = gcd(bx − ax, cx − ax), vy = gcd(by − ay, cy − ay), and
vz = gcd(bz − az , cz − az).) Since b ∈ Vp,

(kvx + ax)2 + (kvy + ay)2 ≡ kvz + az (mod p) .

That is,

k2(v2
x + v2

y) + a2
x + a2

y ≡ kvz + az − 2k(vxax + vyay) (mod p) .

Since a ∈ Vp, we have a2
x + a2

y ≡ az (mod p). Since p is a prime and k �= 0,

k(v2
x + v2

y) ≡ vz − 2(vxax + vyay) (mod p) .

By the same argument applied to c,

�(v2
x + v2

y) ≡ vz − 2(vxax + vyay) (mod p) .

Thus,
k(v2

x + v2
y) ≡ �(v2

x + v2
y) (mod p) .
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That is,
(k − �)(v2

x + v2
y) ≡ 0 (mod p) .

Since k �= � and p is a prime,

v2
x + v2

y ≡ 0 (mod p) .

Now vx and vy are both not zero, as otherwise a, b and c would be in a single
Z-line. Without loss of generality, vx �= 0. Thus vx has a multiplicative inverse
modulo p, and

(vyv−1
x )2 ≡ −1 (mod p) .

That is, −1 is a quadratic residue. A classical result found in any number theory
textbook states that −1 is a quadratic residue modulo an odd prime p if and
only if p ≡ 1 (mod 4).

Now we prove the converse. Suppose that p ≡ 1 (mod 4). By the above-
mentioned result there is an integer t such that 1 + t2 ≡ 0 (mod p). We can
assume that 0 ≤ t ≤ (p − 1)/2 as otherwise p − t would do. Thus (1, t, 0) ∈ Vp

and (2, 2t, 0) ∈ Vp, and the three points {(0, 0, 0), (1, t, 0), (2, 2t, 0)} are collinear.
��

To apply Lemma 4 we need primes p �≡ 1 (mod 4).

Lemma 5 ([3, 13]).

(a) For all t ∈ N, there is a prime p �≡ 1 (mod 4) with t ≤ p ≤ 2t.
(b) For all ε > 0 and t > t(ε), there is a prime p ≡ 3 (mod 4) with t ≤ p ≤

(1 + ε)t.

Proof. Part (a) is a strengthening of Bertrand’s Postulate due to Erdős [13].
Baker et al. [3] proved that for all sufficiently large t, the interval [t, t + t0.525]
contains a prime. The proof can be modified to give primes ≡ 3 (mod 4) in
the same interval [Glyn Harman, personal communication, 2004]. Clearly this
implies (b). ��

We can now prove the upper bound in Theorem 2.

Lemma 6. Every complete graph Kn has a 3D drawing with (2 + o(1))n3/2

volume, and for all ε > 0 and n > n(ε), Kn has a 3D drawing with (1 + ε)n3/2

volume.

Proof. By Lemma 5 with t = �√n�, there is a prime p �≡ 1 (mod 4) with �√n� ≤
p ≤ 2�√n� and p ≤ (1 + ε)�√n�. By Observation 1 and Lemma 4, the set Vp

defines a p×p×p drawing of Kp2 . By choosing the appropriate vertices, we obtain
a �n/p�×p×p drawing of Kn. The volume is (2+ o(1))n3/2 and (1+ ε)n3/2. ��

The same proof gives the lower bound in Theorem 1.

Lemma 7. There are at least n2/4 points in the n × n × n grid with no three
collinear. For all ε > 0 and n > n(ε), there are at least (1 − ε)n2 points in the
n× n× n grid with no three collinear. ��

Lemma 6 generalises to give the following construction of a 3D drawing of
T (n, k).
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Lemma 8. Every Turán graph T (n, k) has a 3D drawing with (2 + o(1))n
√

k
volume. For all ε > 0 and k > k(ε), T (n, k) has a 3D drawing with (1 + ε)n

√
k

volume.

Proof. Index the colour classes {(x, y) : 0 ≤ x, y ≤ �√k� − 1}. By Lemma 5,
there is a prime p �≡ 1 (mod 4) with �√k� ≤ p ≤ 2�√k� and p ≤ (1+ε)�√k�. For
each 1 ≤ i ≤ �n/k�, put the i-th vertex in colour class (x, y) at

(
x, y, ip + (x2 +

y2) mod p
)
. Each colour class occupies its own Z-line. Thus, if an edge passes

through a vertex, then three vertices from distinct colour classes are collinear.
Observe that for every vertex at (ax, ay, az), we have a2

x + a2
y ≡ az (mod p).

Thus the same argument from Lemma 4 applies here, and no three vertices from
distinct colour classes are collinear. Thus no edge passes through a vertex, and
we obtain a 3D drawing of T (n, k). The bounding box is �√k�× �√k�× p�n/k�.
The volume is (1 + o(1))np, which is (2 + o(1))n

√
k and (1 + ε)n

√
k. ��

Pach et al. [23] proved that every k-colourable graph on n vertices is a sub-
graph of T (2n+2k, 2k−1). Thus Lemma 8 implies the upper bound in Theorem 3.

Lemma 9. Every k-colourable graph on n vertices has a 3D drawing with (4
√

2+
o(1))n

√
k volume. For all ε > 0 and k > k(ε), every k-colourable graph on n

vertices has a 3D drawing with (2
√

2 + ε)n
√

k volume. ��

4 Open Problems

Open Problem 1. Does every k-colourable graph have a crossing-free 3D
drawing with O(kn2) volume? The best known upper bound is O(k2n2) due
to Pach et al. [23]. A O(kn2) bound would match the Θ(n3) bound for the
minimum volume of a crossing-free 3D drawing of Kn.

For 1 ≤ � ≤ d− 1, let vol(n, d, �) be the minimum bounding box volume for
n vertices in Z

d, such that no � + 2 vertices are in any �-dimensional subspace.
We have the following lower bound.

Lemma 10. For 1 ≤ � ≤ d− 1, vol(n, d, �) ≥
(

n

� + 1

)d/(d−�)

.

Proof. Consider n vertices in a d-dimensional box of volume vol(n, d, �), such that
no � + 2 vertices are in any �-dimensional subspace. The box can be partitioned
into vol(n, d, �)(d−�)/d subspaces of dimension �, each of which have at most �+1
vertices by assumption. Thus n ≤ (� + 1) vol(n, d, �)(d−�)/d, and vol(n, d, �) is as
claimed. ��
Open Problem 2. What is vol(n, d, �)?

Consider the case of vol(n, d, d−1). Erdős [14] and Cohen et al. [6] proved that
vol(n, 2, 1) ∈ Θ(n2) and vol(n, 3, 2) ∈ Θ(n3), respectively. Let V = {(x, x2 mod
p, . . . , xd mod p) : 0 ≤ x ≤ n− 1}, where p is a prime with n− 1 ≤ p ≤ 2n. The
proofs of Erdős [14] and Cohen et al. [6] generalise to show that V contains no
d+1 points in any (d−1)-dimensional subspace. Thus vol(n, d, d−1) ≤ 2d−1nd.
By Lemma 10, vol(n, d, d− 1) ∈ Θ(nd) for any constant d.
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Open Problem 3. What is vol(n, d, 1)? Erdős [14] proved that vol(n, 2, 1) ∈
Θ(n2). Theorem 2 proves that vol(n, 3, 1) ∈ Θ(n3/2). This problem is unsolved
for all constant d ≥ 4. Note that for d ≥ log2 n the problem becomes trivial.
Just place the vertices at {(x1, . . . , xd) : xi ∈ {0, 1}}, and vol(n, d, 1) ∈ Θ(n).

Open Problem 4. What is vol(n, d, 2)? This case is interesting as it relates to
crossing-free drawings. Cohen et al. [6] proved vol(n, 3, 2) ∈ Θ(n3). Wood [24]
proved that for d = 2 log n + O(1), we have vol(n, d, 2) ∈ O(n2). In particular,
Kn has a 2×2×· · ·×2 crossing-free d-dimensional drawing with O(n2) volume.
What is the minimum volume for a crossing-free drawing of Kn, irrespective of
dimension, is of some interest.
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402 Attila Pór and David R. Wood

17. Richard K. Guy and Patrick A. Kelly. The no-three-in-line problem. Canad.
Math. Bull., 11:527–531, 1968.

18. Richard R. Hall, Terence H. Jackson, Anthony Sudbery, and K. Wild.
Some advances in the no-three-in-line problem. J. Combinatorial Theory Ser. A,
18:336–341, 1975.

19. Heiko Harborth, Philipp Oertel, and Thomas Prellberg. No-three-in-line
for seventeen and nineteen. Discrete Math., 73(1-2):89–90, 1989.

20. Toru Hasunuma. Laying out iterated line digraphs using queues. In Liotta [22],
pp. 202–213.

21. Torleiv Kløve. On the no-three-in-line problem. III. J. Combin. Theory Ser. A,
26(1):82–83, 1979.

22. Guiseppe Liotta, ed., Proc. 11th International Symp. on Graph Drawing (GD
’03), vol. 2912 of Lecture Notes in Comput. Sci. Springer, 2004.

23. János Pach, Torsten Thiele, and Géza Tóth. Three-dimensional grid draw-
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Abstract. This paper describes a local update scheme for the algorithm
of Sugiyama and Misue (IEEE Trans. on Systems, Man, and Cybernet-
ics 21 (1991) 876–892) for drawing views of compound graphs. A view
is an abstract representation of a compound graph; it is generated by
contracting subgraphs into meta nodes. Starting with an initial view,
the underlying compound graph is explored by repeatedly expanding or
contracting meta nodes. The novelty is a totally local update scheme of
the algorithm of Sugiyama and Misue. It is more efficient than redraw-
ing the graph entirely, because the expensive steps of the algorithm, e. g.,
level assignment or crossing minimization, are restricted to the modified
part of the compound graph. Also, the locality of the updates preserves
the user’s mental map: nodes not affected by the expand or contract
operation keep their levels and their relative order; expanded edges take
the same course as the corresponding contracted edge.

1 Introduction

A well-established technique to deal with huge graphs is to partition them re-
cursively into a hierarchy of subgraphs; this leads to compound graphs [1] or
clustered graphs [2]. Within both models, abstract representations of the graph,
so-called views, can be defined [3, 4]. Intuitively, a view is generated by con-
tracting subgraphs not needed in detail into meta nodes. Edges from within the
contracted subgraph to nodes outside become edges from the meta node to the
outside node. Views can be used for interactively exploring a large graph: one
can choose which subgraphs to contract into meta nodes and which to expand.
To this end, it is important that the drawing of the current view can be adjusted
efficiently after these operations such that the user’s mental map [5] is preserved.
In this paper, an update scheme for the compound graph drawing algorithm of
Sugiyama and Misue [1] is presented. Particular emphasis is laid on the locality
of the updates: every expand and contract has only a local effect. The drawing of
the new graph is computed only on the manipulated subgraph. This is a signifi-
cant improvement for the time consuming phases of the algorithm, such as level
assignment or crossing minimization. The user’s mental map of the old view is
preserved by keeping all uninvolved nodes on their levels and in the same relative
order. Furthermore, expanded edges take the same course as the corresponding
contracted edge.
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Fig. 1. A compound digraph; the hierar-
chy tree is depicted by the inclusion of the
dashed rectangles.

Fig. 2. The view having as leaves the
darker shaded nodes of the compound di-
graph in Fig. 1.

1.1 Problem Description

A compound digraph D = (V, E, F ) consists of nodes V , inclusion edges E, and
adjacency edges F . It is required that the inclusion digraph T = (V, E) is a
rooted tree, and no adjacency edge connects a node to one of its descendants or
ancestors; see Fig. 1. For convenience, we adopt the terminology of [1]: for a node
v ∈ V , let Ch(v) denote the set of all children of v and Pa(v) the parent of v in T .
The descendants of v, De(v), are all nodes in the subtree rooted at v (including
v). The depth of v, depth(v), is the number of nodes on the path from the root of
T to v. A view of D is a compound digraph D[U ] = (U, E[U ], F [U ]) given by the
nodes U ⊆ V , such that T [U ] = (U, E[U ]) with E[U ] = {(u, v) ∈ E | u, v ∈ U}
is connected and contains the root of T ; additionally, the leaves of T [U ] must
cover the leaves of T , i. e., for each leaf u of T , (exactly) one of its ancestors is
a leaf in T [U ]; thus, T [U ] is a subtree of T from the root. The adjacency edges
F [U ] comprise all edges (u, v) ∈ F with u, v ∈ U as well as induced edges : two
leaves u, v ∈ U are connected by an induced edge if and only if there are nodes
u′ ∈ De(u) and v′ ∈ De(v) such that u′ and v′ are connected by an adjacency
edge (u′, v′) ∈ F . Intuitively, given the designated set of leaves of T [U ], a view is
constructed by shrinking each such leaf and all its descendants in T into a single
meta node; see Fig. 2.

For the visual navigation of the underlying compound digraph D, the follow-
ing operations shall be performed on a view D[U ]:

– expand(v), where v is a leaf in T [U ]; refines the view at v, i. e., the result is
the view D[U ′] with U ′ = U ∪Ch(v),

– contract(v), where Ch(v) are leaves in T [U ]; coarsens the view at v, i. e.,
the result is the view D[U ′] with U ′ = U \ Ch(v).

This paper concentrates on visualizing the above operations. We start with
an initial layout of some view D[U ], and the user iteratively applies expand or
contract operations; after each operation the previous layout has to be adjusted.
Clearly, the obvious solution is redrawing the complete graph; unfortunately, it
is neither efficient nor will it preserve the users mental map [5], which can be
seen by comparing Figs. 3 and 5. In this context, our notion of preserving the
mental map is that all old nodes U stay on their levels with their relative order
unchanged; furthermore, expanded edges should take the same course as the
corresponding contracted edge.
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Fig. 3. Before expanding
the shaded node.

Fig. 4. Result of our update
scheme.

Fig. 5. Result of redrawing.

Our solution is an update scheme for the algorithm of Sugiyama and Misue [1]
for drawing compound graphs. This algorithm, briefly recalled in Sect. 2, con-
sists of four steps, which produce intermediate results. The initial view is laid
out with the original algorithm; after each expand or contract operation, the
intermediate results of the previous run are adjusted with our update scheme,
as described in Sect. 3.

1.2 Related Work

There are several algorithms for drawing compound graphs, most notably the
one of Sander [6], which differs from the algorithm of Sugiyama and Misue [1],
among other things, by its global layering. While producing more compact –
and supposedly more pleasant layouts –, this global layering is more difficult to
update than the local layering of Sugiyama and Misue.

Dynamic or online graph drawing concentrates on updating layouts of ordi-
nary graphs subject to insertions and deletions of nodes and edges [7]. The client-
server model for online hierarchical graph drawing of North and Woodhull [8]
allows insertion and removal of subgraphs, but only for ordinary DAGs and not
for compound graphs. By using a clan-based hierarchical decomposition, the in-
cremental drawing approach for DAGs of Shieh and McCreary [9] restricts the
adjustments of the layout to the modified part. Visual navigation of compound
(or clustered) graphs by expanding and contracting nodes has been introduced
by Sugiyama and Misue [1], but they seem to implement them through reapply-
ing their algorithm. Huang and Eades [10] briefly describe a system for handling
huge clustered graphs visually, but their layout method is force-directed.

The visualization system of Abello and Korn [11] supports the interactive ex-
ploration of very large clustered graphs. They also use views as an abstraction of
the underlying graph and provide methods for expanding edges. This expansion,
however, restricts the view to the expanded edge, whereas our method preserves
the relations of the expanded part to the remainder.

An efficient data structure supporting expand and contract, also known
as graph view maintenance problem [3, 4, 12], is indispensable for an efficient
implementation of the update method proposed in this paper. To this end, the
software architecture of [13] should be considered as well.
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2 Static Compound Graph Drawing

We recall the algorithm of Sugiyama and Misue [1] briefly, because our update
scheme uses the intermediate results of these steps.

2.1 Step I: Hierarchization

Input of this step is the original compound graph D = (V, E, F ); the result
is the assigned compound graph DA = (V, E, FA, clev), where clev : V → IN+

maps each node to its compound level and FA are the adjacency edges F oriented
from lower to higher level. This step internally uses the derived compound graph
DD = (V, E, FD, type); the edges FD with their types type : FD → {<,≤} are
derived from F by replacing every adjacency edge (u, v) ∈ F with edges between
those ancestors of u and v having equal depth. The deepest such edge is of type
<; all others of type ≤; see Fig. 6.

After resolving cycles in DD, compound levels are assigned to the resulting
cycle-free graph DF = (V, E, FF , type). The root is placed on level (1); then
children of already placed nodes are treated recursively. Note that the children of
all nodes on the same level are always evaluated in a common recursive call. The
local level of the children is determined by a standard level assignment algorithm
that takes into account the two types of edges: type(u, v) = < enforces that the
level of u is less than the level of v; with type ≤ the levels may also be equal.
The compound level of a child v, clev(v), is built by appending its local level
to its parent’s compound level, clev(Pa(v)). Finally, the adjacency edges F are
oriented from lower to higher level. Let the complexity of this step be O(SI(n)),
where n is the size of the input D.

2.2 Step II: Normalization

In this step all adjacency edges of the assigned compound digraph DA are made
proper : an edge (u, v) is proper if clev(Pa(u)) = clev(Pa(v)) and tail(clev(u)) =
tail(clev(v)) + 1, i. e., the parents lie on the same level and the children’s levels
differ by one. This is achieved by replacing each improper edge (u, v) with a
linear compound graph as in Fig. 7. The result of this step is the assigned proper
compound graph DP = (VP , EP , FP , clev). Let the complexity of this step be
O(SII(n)), where n is the size of the input DA.

2.3 Step III: Vertex Ordering

Given the assigned proper compound graph DP , this step calculates the relative
order of the nodes on each level, so as to minimize edge crossings. To this end,
the local order of all inner nodes’ children on their levels is determined. The
result of this step is the ordered compound graph DO = (VP , EP , FP , clev, σ),
where for each inner node u ∈ VP , σ describes the local order of u’s children.

The vertex ordering algorithm works depth-first: at an inner node u the
compound graph induced by De(u) is reduced to an ordinary DAG, the local
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≤

<

Fig. 6. The two dashed edges are derived
from the solid one.

u

v

Fig. 7. Dummy nodes replace the im-
proper edge (u, v).

hierarchy, by shrinking each child of u into a single node. This leads to two
types of edges in the local hierarchy: edges between adjacent levels and those
connecting nodes on the same level. A child u′ of u or a descendant of u′ may
be adjacent to a node v �∈ De(u). By the definition of a proper edge, it follows
that u and Pa(v) lie on the same level. Since the algorithm has already ordered
the children of all ancestors of u, it is known whether v lies to the left or to the
right of u. Therefore, each child u′ is annotated with two values λ(u′) and ρ(u′)
counting the edges going to the left and to the right, respectively.

The crossing minimization for the local hierarchy starts with a preprocessing
step – the so-called splitting-method – pinning the children u′ with λ(u′)−ρ(u′) >
0 to the left end and those with λ(u′) − ρ(u′) < 0 to the right end of their
level; the larger |λ(u′) − ρ(u′)| is, the nearer to the end the node is placed. For
the remaining nodes the crossings are minimized with a modified bary center
heuristic that takes into account the horizontal edges. Let the complexity of this
step be O(SIII(n)), where n is the size of the input DP .

2.4 Step IV: Metric Layout

This step assigns coordinates and dimensions to the nodes of the ordered com-
pound graph DO. A recursive algorithm assigns local coordinates to the children
relative to their parents position; for an inner node u it is applied to all children
of u first, thus determining their width and height. The local coordinates are op-
timized with the so-called priority method on the metrical local hierarchy, which
is basically the local hierarchy from the previous step without the horizontal
edges. Similar to the bary center heuristic for minimizing crossings, the priority
method improves the nodes positions by moving them – as far as possible with-
out changing the order on the level – to their respective (metrical) bary centers.
A final depth-first traversal calculates the absolute coordinates. The first phase
is done with a recursive algorithm. Let the complexity of this step be O(SIV(n)),
where n is the size of the input DO.

3 Update Scheme

Let D[U ] = (U, E[U ], F [U ]) be a view of a compound graph D = (V, E, F ),
where D[U ] already has been drawn with the standard algorithm; node v ∈ U
shall be expanded, resulting in a new view D[U ′] = (U ′, E[U ′], F [U ′]), with
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U ′ = U ∪ Ch(v). It is assumed that, given D[U ], the structure of D[U ′] can
be determined efficiently, which is where the data structures for maintaining
hierarchical graph views [3, 4, 12] come into play.

3.1 Step I: Hierarchization

In this step the assigned compound digraph has to be updated. In order to
preserve the mental map, all old nodes u ∈ U stay on their levels; only for
the children of v appropriate levels are determined. In other words, the level
assignment function clev : U → IN+ has to be extended to the set U ′. Expanding
v in the cycle-free graph DF [U ] inherits the direction of edges incident to v to
all corresponding expanded edges, i. e., if an edge was reversed during the cycle
removal of the previous run, all corresponding expanded edges are reversed as
well. In this setting, it is obvious that new cycles entirely consist of newly added
edges, and the cycle removal can be restricted to the children of v.

From the definition of the derived graph, it follows that all edges adjacent
to a leaf are of type <, and in the level assignment algorithm an edge of type
< causes the target node to be placed on a higher level than the source node.
Therefore, v is not connected to any node on its level; neither is any child of
v in the updated cycle-free graph DF [U ′]. Consequently, the level assignment
does not need to take into account children of nodes on the same level as v,
but can be restricted to the subgraph of DF [U ′] induced by the children of v.
After the level assignment clev has been extended to U ′, updating the assigned
compound digraph DA[U ] to DA[U ′] is just a matter of adding Ch(v) (and the
corresponding inclusion edges) and inserting the new adjacency edges directed
from lower to higher levels; induced adjacency edges incident with v are removed.

How much does the updated assigned compound digraph differ from the one
the hierarchization algorithm of Sect. 2.1 applied to D[U ′] would have produced?
Since all old nodes stay on their level, it is not possible to place ancestors of v’s
neighbors on the same level as v. Compare, for instance, Fig. 9, which shows
the level assignment produced by our update scheme, and Fig. 10, which would
be the result of the hierarchization algorithm applied anew. The adjacency edge
(u, v) in Fig. 8 leads to a type < derived edge (Pa(u), v), which results in Pa(u)
being placed on a level above v, where it is bound to stay during our update. If
the derived graph would be built anew, this edge were of type ≤, and Pa(u) and
v were placed on the same level, as shown in Fig. 10.

Property 1. Let k denote the number of elements added to D[U ] by expanding
v. The complexity of updating the assigned compound digraph DA[U ] is O(SI(k)),
compared to O(SI(n + k)) for reapplying step I to D[U ′], where n is the size of
D[U ]. The user’s mental map is supported by keeping all old nodes U on their
level.

3.2 Step II: Normalization

The assigned proper compound graph DP [U ] is updated in two steps: first the
node v is expanded and then the new improper adjacency edges are made proper.



Visual Navigation of Compound Graphs 409

v

u

Fig. 8. Before expanding v.

v

u

Fig. 9. Update of the de-
rived graph.

vu

Fig. 10. Building the de-
rived graph anew.

Expanding v means to add Ch(v) with appropriate inclusion edges, (induced)
adjacency edges between two children of v, and those between a child of v and
some other node u �∈ Ch(v). For the latter the old induced edge connecting v
and u has to be removed; if this edge has been made proper all the associated
dummy nodes and edges are removed as well. Since the levels of the old nodes
U are unchanged, the only improper edges are adjacent to at least one child of
v. They are made proper exactly as described in Sect. 2.2. In the worst case this
has to be done for every new adjacency edge, whereas for the other adjacency
edges the construction from the previous proper compound digraph DP [U ] is
reused. Clearly, the result is exactly the same as if the normalization had been
applied to the updated assigned compound digraph DA[U ′] as a whole.

Property 2. Let k denote the number of elements added to DA[U ] by expanding
v. The complexity of updating the proper, assigned compound digraph DP [U ] is
O(SII(k)), compared to O(SII(n + k)) for reapplying step II to DA[U ′], where n
is the size of DA[U ].

3.3 Step III: Vertex Ordering

In this step preserving the mental map means to keep the order of nodes that are
common in the old and the new graph: only for the nodes that have been added
during the update from DP [U ] to DP [U ′] a position in the relative order on the
respective levels has to be determined. These nodes are either children of v –
including dummy nodes for edges between two children of v – or dummy nodes
that belong to an edge between a child of v and a node u �∈ Ch(v). As described
in Sect. 2.3, the vertex ordering algorithm recursively calculates local orders for
the children of an inner node on their levels; hence, determining the order of the
children of v is just a matter of applying the algorithm to the subtree rooted at
v. A precondition, however, is that the children of all ancestors of v already have
been ordered. Therefore, the positions of dummy nodes that are not children of
v have to be fixed prior to ordering the children of v.

Consider an induced edge (v, u) ∈ F [U ] (and symmetrically for an edge
(u, v)); after expanding v, children v1, . . . , vk inherit this edge. Clearly, the sub-
graph inserted to make any of the (vi, u) proper is – except for an extra dummy
node complex on the level of v – identical to the one for edge (v, u). The idea is
to reuse the positions of dummy nodes of the edge (v, u) for the dummy nodes
of the edges (v1, u), . . . , (vk, u). The dummy nodes of these edges are treated as
one block; the position of the block is the position of the respective dummy node
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u

v

w

Fig. 11. Two proper non-
local edges (v, u) and (v, w)
before expanding v.

u
v

w

Fig. 12. After expanding v,
the two new dummy node
complexes inherit the order
of u and w.

v

Fig. 13. The order of the
dummy nodes is determined
by the order of v’s children.

of the edge (v, u). This reusing has the effect that the expanded edges take the
same course as the old edge.

Since the positions of the old dummy nodes are reused, it can be assumed
without loss of generality that the edge (v, u) is proper; if it is not, it suffices
to expand the edge from v to the first dummy node of (v, u), which is proper.
Expanding the proper edge (v, u) results in improper edges (v1, u), . . . , (vk, u);
see Figs. 11 and 12. Each edge (vi, u) is made proper with a dummy node complex
consisting of nodes pi and ci with Pa(ci) = pi and edges (vi, ci) and (pi, u); the
nodes pi are siblings of v and lie on the same level as v. We distinguish two
types of proper edges (v, u): a local edge has Pa(v) = Pa(u) and a non-local
edge Pa(v) �= Pa(u). The reason is that if Pa(v) �= Pa(u), the definition of
proper demands that Pa(v) and Pa(u) lie on the same level. Since the relative
position of old nodes must be preserved, it is known whether Pa(u) is to the
left or to the right of Pa(v). Clearly, this determines whether the dummy nodes
pi are to the left or to the right of v. For a local edge, the position of the new
dummy node can be anywhere on the level of v.

All dummy nodes pi belonging to the same expanded edge are treated as one
block; therefore, one representant p is sufficient. In the local hierarchy induced
by Pa(v)’s children, a representant p for expanded edges belonging to a non-
local edge (v, u) has λ(p) − ρ(p) = ±1, depending on whether Pa(u) lies to the
left (+1) or to the right (−1) of Pa(v). The splitting method (cf. Sect. 2.3)
puts p to the left or right end of the level, with the exact position determined
by the λ(p) − ρ(p) value. Let q be the representant for the expanded edges of
another non-local edge (v, w) such that λ(p) − ρ(p) = λ(q) − ρ(q). Then p and
q are indistinguishable in the splitting method; they are pinned to one end in
arbitrary relative order. This order, however, should be the same as for the nodes
u and w, which have both the same level clev(v)+1. This problem, incidentally,
is immanent to the original algorithm of Sugiyama and Misue [1]. It can be solved
by taking the relative order of the end nodes of the expanded edges as secondary
sorting criterion in the splitting method. For our update scheme this means that
a representant p is placed into the old order σ according to λ(p) − ρ(p), and if
there are more nodes with the same value, the order of the respective end nodes
determines their order. Consider, for instance, the two dummy nodes on v’s level
in Fig. 12; having value −1 they are all placed to the right end. The order derived
from the order of u and w shown in Fig. 12 clearly is the best choice.

After the splitting method, all representants for expanded edges of non-local
edges are fixed; it remains to do the same for local edges. If (v, u) and (v, w) are
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two proper local edges, then u and w lie on the same level and thus determine
the relative order of the representants p and q of the expanded edges for (v, u)
and (v, w) respectively. Essentially, the only degree of freedom is whether to
place p or q right or left of v. It makes no sense to have some non-dummy node
x between p and v: otherwise the edges that p represents would cross x. In the
local hierarchy induced by Pa(v)’s children, dummy nodes like p and q have only
one outgoing edge; hence, their bary center is identical to the position of u and
w. The bary centers are used to decide whether representants are placed left or
right of v.

It remains to determine the relative order of the expanded edges within their
respective block. Since this order depends on the positions of v’s children, the
crossing reduction algorithm of Sect. 2.3 is applied to the local hierarchy of v first.
Note that this is possible without knowing the exact order of the expanded edges:
the representant already determines on which side they leave v; this information
is sufficient for the λ and ρ values of v’s children. Consider the edge (v, u) with
its expanded edges (v1, u), . . . , (vk, u). The order of the dummy nodes p1, . . . , pk

within the block represented by p is determined as follows: if p lies to the right
of v, and if vσ(1), . . . , vσ(k) is the order of v’s children from bottom to top and
within the same level from left to right, then pσ(1), . . . , pσ(k) is the order of the
dummy nodes from left to right; see Fig. 13. The case that p is right to v as well
as the two cases for an incoming edge (u, v) are symmetric.

Property 3. Let k denote the number of elements added to DP [U ] by expanding
v. Then the complexity of updating the local order σ is O(SIII(k)), compared to
O(SIII(n + k)) for reapplying step III to DP [U ′], where n is the size of DP [U ].
The relative order of all old nodes U is preserved and expanded edges take the
same course as the corresponding contracted edge.

3.4 Step IV: Metric Layout

Expanding v changes the width and height of v, which leads to adjustments of
the local coordinates for v’s siblings; this, in turn, changes the width and height
of Pa(v), and so on up to the root. On the other hand, the local coordinates
of children of a node that is no ancestor of v are not affected. As described in
Sect. 2.4, the metric layout consists of two steps: computing local coordinates
followed by a traversal of the hierarchy to sum them up to absolute coordinates.
Hence, we adjust the local coordinates at v and all its ancestors and then use
the second step unalteredly. For the updates of the local coordinates basically
the same recursive procedure as in Sect. 2.4 is used; the only difference is that
recursive calls are made only for ancestors of v. The local coordinates in the
subtrees rooted at nodes that are no ancestors are reused from the previous
layout.

Property 4. Let n denote the size of DO[U ′]. In the worst case, the complexity
of updating the coordinates is SIV(n). The final depth-first traversal to sum up
the absolute coordinates is completely applied in any case; the local coordinates
are adjusted only for ancestors of the expanded node.
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4 Contraction

Contracting a node v that has been expanded with the above update scheme is
straightforward: in the contracted view D[U ′] all nodes are old, i. e., U ′ ⊆ U ;
hence, the level assignment clev and the vertex order σ just need to be restricted
to U ′. The position of the dummy nodes for a new induced edge incident to v is
given by the position of the blocks of the corresponding expanded edges. Since
the width and height of v has changed, the metric layout has to be updated as
described in Sect. 3.4. This has the side-effect that expanding and contracting
are also visually inverse, i. e., the drawing after expanding and contracting a
node v is the same as before expanding.

Why is contraction more complicated for nodes v that have not been ex-
panded with our update scheme? Consider a child v′ of v with an edge (u, v′)
such that v and Pa(u) lie on the same level, e. g., as in Fig. 10. As pointed out
in Sect. 3.1, this cannot happen if v has been expanded before, yet it is possible
in the layout of the initial view. Note that because of the deepest derived edge
being of type <, for each edge (x, y) the compound levels clev(x) and clev(y)
differ – after a common start sequence – by at least one position (cf. Sect. 2.1).
The induced edge (u, v), representing (u, v′) after contracting v, would violate
this invariant, because clev(v) would be a subsequence of clev(u). This problem
manifests itself in the derived graph: before contracting v the deepest edge, the
one of type <, was adjacent to v′ and is removed; therefore, the type of the
derived edge between v and the ancestor of u at the same depth as v would have
to be adjusted from ≤ to <, which could lead to substantial changes in the level
assignment and thus to the user’s mental map; see Fig. 9.

The easiest way to deal with this problem is to allow contraction only for
nodes that have been expanded before, i. e., no node of the initial view can be
contracted. Another way is to modify the algorithm of Sugiyama and Misue [1]
used for the initial view such that all edges in the derived graph are of type <.
The consequence is that the initial layout is less compact, because nodes with
descendants that are connected never lie on the same level.

Property 5. Let k denote the number of elements removed from DP [U ]; then
the elements removed from the other (intermediate) compounds graphs are at
most k. Updating the drawing after contracting a node v that has been expanded
with our update scheme takes O(k) for steps I to III. Step IV is the same as
after expanding; see Property 4.

5 Summary

The proposed update scheme for the algorithm of Sugiyama and Misue [1] sup-
ports efficient visual navigation of compound graphs through expand and con-
tract operations. The locality of our update scheme makes it much more efficient
than redrawing the entire new view. For expanding a node the complexity of up-
dating the drawing essentially is determined by applying each of the steps I to
III to the modified part of the compound graph, followed by step IV adjusting
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the coordinates. The user’s mental map of the old view is preserved well: old
nodes stay on their levels in the same relative order and expanded edges take
the same course as the corresponding contracted edge.
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Abstract. We study 3-dimensional layouts of the hypercube in a 1-
active layer and a general model. The problem can be understood as a
graph drawing problem in 3D space and was addressed at Graph Drawing
2003 [5]. For both models we prove general lower bounds which relate vol-
umes of layouts to a graph parameter called cutwidth. Then we propose
tight bounds on volumes of layouts of N-vertex hypercubes. Especially,

we have VOL1−AL(Qlog N) = 2
3
N

3
2 log N + O(N

3
2 ), for even log N and

VOL(Qlog N) = 2
√

6
9

N
3
2 + O(N4/3 log N), for log N divisible by 3. The

1-active layer layout can be easily extended to a 2-active layer (bottom
and top) layout which improves a result from [5].

1 Introduction

The research on three-dimensional circuit layouts started in seminal works [15,
17] as a response to advances in VLSI technology. Their model of a 3-dimensional
circuit was a natural generalization of the 2-dimensional model [18]. Several basic
results have been proved since then which show that the 3-dimensional layout
may essentially reduce material, measured as volume [6, 12]. The problem may
be also understood as a special 3-dimensional orthogonal drawing of graphs, see
e.g., [9]. In all these models the degrees of vertices of a graph, which represents
the circuit, are at most 6. There exist only a few papers investigating layouts
of graphs of arbitrary degrees, e.g., [4, 5]. There are two basic variants of the
layout model. In a 1-active layer model, a vertex of degree d is represented by a
square of side d and is placed in the bottom layer of the 3-dimensional grid. In
the general model, a vertex of degree d is represented by a cube of side d and can
lie anywhere in the grid. In both models edges are routed as edge disjoint paths
in the underlying grid. The variants are straightforward extensions of linear
layouts [13] and 2-dimensional layouts [18, 19], respectively, and generalizations
of 3-dimensional layouts for bounded degree graphs mentioned above.

In this paper we solve an open problem posed by Calamoneri and Massini
[5] concerning the layout volume of the hypercube. We solve the problem for
both models. First we prove general lower bounds on volumes of any graph G of
cutwidth cw(G):
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VOL1−AL(G) ≥ cw(G)
√∑

v∈V

deg2(v),

VOL(G) ≥ (cw(G)−
√

2cw(G))
3
2 .

The lower bounds represent 3-dimensional analogues of similar estimations
of the area of linear or 2-dimensional layouts [13, 16] and are of special inter-
est. Then we propose optimal layouts in both models for the log N -dimensional
hypercube. Especially, for even log N we have

VOL1−AL(Qlog N ) =
2
3
N

3
2 log N + O(N

3
2 ),

VOL(Qlog N ) =
2
√

6
9

N
3
2 + O(N

4
3 log N),

for log N divisible by 3. Recall that 2-dimensional layouts of hypercubes were
studied in several papers [3, 8, 11, 14], but only recently an asymptotically exact
result has appeared [10], for even log N.

Our layout can be easily extended to the 2-active layer model, where vertices
represented as rectangles are placed on the bottom and top layer of a grid. For
such a model, Calamoneri and Massini [5] designed nearly optimal layout for the
hypercube. We prove an optimal layout for the hypercube in this model.

2 Preliminaries

The 3-dimensional grid consists of all points (a, b, c) of integer coordinates in
the standard xyz-coordinate system. Two points are joined by a straightline
segment if, and only if, their Euclidean distance is 1. The lines parallel to axes
and going through the points are called tracks. At the same time we consider
the 3-dimensional grid as an infinite grid graph whose vertices corresponds to
points and edges are the segments of lengths 1. The 3-dimensional 1-active layer
layout of a graph G is a mapping of G into the grid such the following conditions
are satisfied:

– A vertex of degree d is represented by a square of integer coordinates of side
d lying in the basic plane given by z = 0. The sides of the square are parallel
to the x and y axes.

– Two vertices (squares) do not touch.
– Edges are represented as edge disjoint paths in the grid graph in the halfspace

above the basic plane. A path touches only two squares which represent the
endvertices of the corresponding edge.

The 3-dimensional general layout of a graph G is a mapping of G into the
grid such the following conditions are satisfied:

– A vertex of degree d is represented by a cube of integer coordinates of side
edge length d. The edges of the cube are parallel to the axes.

– Two vertices (cubes) do not touch.
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– Edges are represented as edge disjoint paths in the grid graph. A path touches
only two cubes which represent the endvertices of the corresponding graph
edge.

The volume of the 3-dimensional 1-active layer (general) layout of G, de-
noted by VOL1−AL(G) (denoted by VOL(G)) is defined as the volume of the
smallest box containing the layout. From technical reasons we assume that the
coordinates of the box vertices are of the form (a + 1/2, b + 1/2, c + 1/2), for
some integers a, b, c.

Remark. The models we described, differs from the so called multilayer model
[7], in which vertices are represented as boxes lying on the bottom layer and
edges are routed in layers parallel to the basic plane.

Let φ : V → 1, 2, 3, ..., |V | be a 1-1 labelling of vertices of a graph G = (V, E).
Define

cw(G, φ) = max
i
{|{uv ∈ E : φ(u) ≤ i < φ(v)}|}.

The cutwidth of the graph G is defined as

cw(G) = min
φ
{cw(G, φ)}.

The cutwidth is strongly related to linear layouts and, roughly saying, represents
the largest edge cut in a graph which is embedded in a line.

Let deg(v) denote the degree of a vertex v. If N is a power of two, the log N -
dimensional hypercube graph has a vertex set consisting of all binary strings of
length log N . Two vertices are joined by an edge if the corresponding strings
differ in precisely one position.

3 Lower Bounds

In this section we prove a lower bound which is of special interest for its general
use and easy applicability.

Theorem 1. The volume of the 3-dimensional 1-active layer layout of any graph
G of cutwidth cw(G) satisfies

VOL1−AL(G) ≥ cw(G)
√∑

v∈V

deg2(v).

Proof. Assume we have an optimal 1-active layer layout of G of the volume
VOL1−AL(G). The layout is put into a box of the width W , length L and height
H , where W, L, H are measured along the x, y, z axes, respectively. Thus

VOL1−AL(G) = WLH. (1)

As two vertices do not touch we have

WL ≥
∑

v∈V

(deg(v) + 1)2. (2)
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Fig. 1. Replacing a 5 × 5 square vertex by a straight-line segment.

Consider now the first layer. For every vertex (square) remove its sides except
for the left one. It is easy to see that the edges which ended on those 3 sides can
be prolonged and connected to the left side using the original tracks and such
that the edges are edge disjoint. See Fig. 1

We obtain a new layout in which the square vertices are replaced by straight-
line segments. Now we use a similar idea as in earlier paper [16] (Lemma 2.1),
for estimating the area of 2-dimensional layouts. For the sake of completeness
we repeat the argument. Any such segment is identified by its coordinates given
by the position of the lower end of the segment. Sort the segments according to
their coordinates lexicographically. Label the segments by 1, 2, ..., |V |, according
to the lexicographic order. Let φ denote this labelling. Take the first i segments
in this labelling. We can find a surface, normal to xy-plane, which separates
precisely i segments from the rest, as in Fig. 2.

The area of the surface is (L+1)H. Clearly the number of edges between the
two parts of the layout is given by

{|{uv ∈ E : φ(u) ≤ i < φ(v)}|} ≤ (L + 1)H

Maximizing the left hand side over all i’s and then minimizing it over all φ’s we
get the cutwidth of G on the left side. By rearranging the terms we have

(L + 1)H ≥ cw(G). (3)

We may repeat the above argument by changing the role of L and W . We
get

(W + 1)H ≥ cw(G). (4)

Fig. 2. A 3D cut of the volume.



418 Lubomir Torok and Imrich Vrt’o

Combining relations (1),(2),(4) and (3) we have

VOL1−AL(G) ≥ (cw(G) −H)
√∑

v∈G

(deg(v) + 1)2

=
(

cw(G)− VOL1−AL(G)
WL

)√∑

v∈G

(deg(v) + 1)2

≥
(

cw(G)− VOL1−AL(G)∑
v∈G(deg(v) + 1)2

)√∑

v∈G

(deg(v) + 1)2

≥ cw(G)
√∑

v∈G

(deg(v) + 1)2 − VOL1−AL(G)√∑
v∈G(deg(v) + 1)2

.

By eliminating VOL1−AL(G) and some algebraic manipulations we get

VOL1−AL(G) ≥ cw(G)(
√∑

v∈V

(deg(v) + 1)2 − 1) ≥ cw(G)
√∑

v∈V

deg2(v).

�
Remark. The idea of cutting of the 3-dimensional layout into special parts was
used in [6] in a model for bounded degree graphs, where they considered the so
called special bisection width of a graph which is however in general a smaller
quantity than the cutwidth.

Corollary 1. The optimal volume of the 3-dimensional 1-active layer layout of
the N -vertex hypercube Qlog N satisfies

VOL1−AL(Qlog N ) ≥ 2
3
N

3
2 log N + O(

√
N log N).

Proof. Several papers proved that cw(Qlog N ) = �2N/3�, e.g., [1, 2]. �

Theorem 2. The optimal volume of the 3-dimensional layout of any graph G =
(V, E) satisfies

VOL(G) ≥ (cw(G)−
√

2cw(G))
3
2 .

Proof. Consider an optimal 3-dimensional layout of G. Assume the layout is
put into a box of sizes W, L, H such that

W ≥ L ≥ H. (5)

Take any vertex (a cube of sizes n × n × n) and choose one of its vertical
“edges” (a straightline segment). Delete the cube except for that segment. Ob-
serve that the graph edges originally attached to the cube can be prolonged and
connected to the segment using edge disjoint paths along the tracks. Repeating
this operation for all vertices we get a new layout in which the vertices are re-
placed by segments of length n and edges are routed in the edge disjoint manner.
Similarly as in the proof of Theorem 1, we can find a surface, see Fig. 3, which
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Fig. 3. A 3D cut of the volume.

separates the segments into two parts such that there are at least cw(G) edges
between the segments.

The edges must cross the surface. The area of the surface is HL + H + 1. It
follows

HL + H + 1 ≥ cw(G)

Then
HL ≥ cw(G) − 1−H. (6)

The relation (5) implies

LW ≥ cw(G) − 1−H. (7)

WH ≥ cw(G)− 1−H. (8)

Multiplying (6)(7) and (8) and taking the cube root we have

VOL
2
3 (G) ≥ cw(G) − 1−H ≥ cw(G)− 1−VOL

1
3 (G).

Solving this quadratic inequality for VOL
1
3 (G) we get the lower bound. �

Corollary 2. The optimal volume of the 3-dimensional layout of the N -vertex
hypercube Qlog N satisfies

VOL(Qlog N) ≥ 2
√

6
9

N
3
2 + O(N).

4 One-Active Layer Layout of Hypercubes

Theorem 3. The optimal volume of the 1-active layer layout of the log N -
dimensional hypercube satisfies

VOL1−AL(Qlog N ) ≤ 2
i
2+1

3
N

3
2 log N + O(N

3
2 ),

where i = log(N mod 2).
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Fig. 4. Linear layout of Q3.

Proof. Assume log N is divisible by 2. The second case is similar. Our ba-
sic building block is a linear layout of the m-dimensional hypercube Qm using
cw(Qm) = �2m+1/3� horizontal tracks, while every vertex is represented by a
square of size m. See Figure 4 for the case m = 3. Such a layout can be obtained
by placing the vertices on the line in the natural order and assigning the edges to
tracks properly. This was observed in several papers, e.g., [8, 10, 11]. We utilize a
fact that Qlog N can be represented as a cartesian product Q log N

2
×Q log N

2
. Using

the linear layout minimizing the cutwidth for Q log N
2

, one can easily design a
2-dimensional layout of Qlog N as shown in Figure 5, for N=64.

Now rotating every edge in the angle π/2 around the line defined by its
endpoints and compacting the vertices in the natural way we get a 1-active layer
layout of the volume ⌊

2
3
N

1
2

⌋
×N(log N + 1)2.

The first term stands for the height of the layout and the second one for the
occupied area on the 1st layer. We decrease the height of the layout by a factor
of log N in the following way. Consider the layout of any Q log N

2
- the sublayout

of the global layout of Qlog N . Assume the vertices of Q log N
2

are aligned along

Fig. 5. 2-dimensional layout of Q6 = Q3 × Q3.
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the x-axis. The edges occupy �2N1/2/3� tracks parallel to x. Divide the edges
evenly into log N groups according to the distance of the corresponding tracks
from the basic plane. I.e., the first group occupy the first t = ��2N1/2/3�/ logN	
tracks when counting from the basic plane, the second group occupy the second
t tracks, and so on. Reattach the edges to their corresponding vertices such that:

i) The endpoints of edges of the same group has the same y coordinate.
ii) The endpoints of edges of different groups have different y coordinate.
iii) The endpoints of edges lies in the first or the third “quadrant” of the square

vertex. This can be viewed as a “shifting” of edges in y direction on a proper
place on its square endvertices. Finally, decrease the height h of every track
to (h mod t) + 1 and reroute correspondigly the edges. See Figure 6.

Fig. 6. Decreasing the height of the layout.

We repeat this operation for all Q log N
2

’s in x and y directions. For the y

direction, the endpoits of edges lie in the second and fourth quadrants of square
vertices. This avoids overlapping of vertical parts of two edges starting in the
same square vertex. The new height of the layout is t, which implies the claimed
volume. �

5 Layouts of Hypercubes in the General Model

Theorem 4. The optimal volume of the general 3-dimensional layout of the
log N -dimensional hypercube satisfies

VOL(Qlog N ) ≤ 2
i
2+1
√

6
9

N
3
2 + O(N

4
3 log N),

where i = log(N mod 3).

Proof. Let log N be divisible by 3. The other 2 cases are similar. Consider a
cube of edge length n = log N in the 3D grid. Consider another cube of edge
length s + n such that the first cube is positioned “centrally” in the second one
and

s =





√√√√
⌊

2N
1
3

3

⌋


.

Place N1/3 copies of the second cube (with the first one inside) along the x axis
with unit spacing such that they form a box C of size (s+n+1)N1/3×(s + n)×
(s + n). Note that in the box C, there are at least
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(s + n)2 − n2 ≥
⌊

2N
1
3

3

⌋

tracks, parallel to the x-axis, which do not cross the cubes of sides n. Now let the
N1/3 small cubes be vertices of a Q log N

3
placed along the x-axis in the natural

order. Thus having cutwidth �2N1/3/3�, if we assume that the edges are drawn
as in the linear layout in one plane. It is easy to redraw the edges of Q log N

3
such

that they lie in the box C and if two edges shared the same track in the linear
layout they will share the same track in C. Moreover the edges are attached to
the opposite sides of a vertex only. See Figure 7.

Fig. 7. Routing edges in the general model.

Finally, we use again the fact that Qlog N = Q log N
3
×Q log N

3
×Q log N

3
. Repeating

the above construction for all Q log N
3

’s in all 3 dimensions we get a layout for
Qlog N . One can check that the layout satisfies the assumptions of the model.
The total volume is

(s + n + 1)3N =
2
√

6
9

N
3
2 + O(N

4
3 log N). �

6 A 2-Active Layers Layout for Hypercubes

Calamoneri and Massini [5] proposed a 2-active layer layout model for bipar-
tite graphs. In this model, all vertices are represented as rectangles and lie on
two opposite sides of the bounding box of the layout volume. The vertices are
distributed evenly between the two layers. The other properties of the model
are as in the 1-active layer layout model. Particularly, they studied layouts of
log N -dimensional hypercubes, assuming that each vertex is represented as a
1× � log N

2 − 1	 rectangle, and proved

VOL2−AL(Qlog N ) = Ω(N
3
2 log

1
2 N),

VOL2−AL(Qlog N ) = O(N
3
2 log N).
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We follow the same model but we represent every vertex of the hypercube as
a square of side log N . We have

Theorem 5. The optimal volume of the 3-dimensional 2-active layer layout of
the N -vertex hypercube Qlog N satisfies

VOL2−AL(Qlog N ) = Θ(N
3
2 log N).

Proof. The lower bound is proved in a similar way as in Theorem 1. The match-
ing upper bound is obtained by placing two (log N − 1)-dimensional hypercubes
on the two opposite layers using the 1-active layout from Theorem 3 and adding
the edges of the log N -th dimension as straight-line segments between the layers.

�
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New Theoretical Bounds of Visibility
Representation of Plane Graphs�

Huaming Zhang and Xin He

Department of Computer Science and Engineering,
SUNY at Buffalo, Buffalo, NY, 14260, USA

Abstract. In a visibility representation (VR for short) of a plane graph
G, each vertex of G is represented by a horizontal line segment such that
the line segments representing any two adjacent vertices of G are joined
by a vertical line segment. Rosenstiehl and Tarjan [6], Tamassia and
Tollis [7] independently gave linear time VR algorithms for 2-connected
plane graph. Afterwards, one of the main concerns for VR is the size of
VR. In this paper, we prove that any plane graph G has a VR with height
bounded by � 5n

6
�. This improves the previously known bound � 15n

16
�. We

also construct a plane graph G with n vertices where any VR of G require
a size of (� 2n

3
�) × (� 4n

3
� − 3). Our result provides an answer to Kant’s

open question about whether there exists a plane graph G such that all
of its VR require width greater that cn, where c > 1.

1 Introduction

The first simple linear time VR algorithm was given in [6, 7] for a 2-connected
plane graph G. One of the main concerns afterwards for VR is the size of the
VR, i.e., the height and width of VR. Some work has been done to reduce the
size of VR. We summarize related previous results in the following table:

References Plane graph G 4-Connected plane graph G

[6, 7] Width of VR ≤ (2n− 5) Height of VR ≤ (n− 1)
[2] Width of VR ≤ � 3n−6

2 �
[5] Width of VR ≤ � 22n−42

15 �
[3] Width of VR ≤ (n− 1)
[8] Height of VR ≤ � 15n

16 �
[9] Width of VR ≤ � 13n−24

9 � Height of VR ≤ � 3n
4 �

In this paper, we obtain the following main results:

(1) We prove that every plane graph G has a VR with height bounded by � 5n
6 �,

which can be obtained in linear time.
� Research supported in part by NSF Grant CCR-0309953.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 425–430, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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(2) We give a plane graph G with n vertices such that any VR of G require a
size of (� 2n

3 �)×(� 4n
3 �−3). This answers Kant’s open question about whether

there exists a plane graph G such that all of its VR require width greater
that cn, where c > 1 [2].

2 Preliminaries

In this section, we give definitions and preliminary results. We abbreviate the
words “counterclockwise” and “clockwise” as ccw and cw respectively.

An orientation of a graph G is a digraph obtained from G by assigning a di-
rection to each edge of G. We will use G to denote both the resulting digraph and
the underlying undirected graph unless otherwise specified. For a 2-connected
plane graph G and an exterior edge (s, t), an orientation of G is called an st-
orientation if the resulting digraph is acyclic with s as the only source and t as
the only sink. Note that, for every face f of G, its boundary cycle consists of two
directed paths. The path on its left (right, resp.) side is called the left (right,
resp.) path of f . There is exactly one source (sink, resp.) vertex on the boundary
of f , it is called the source (sink, resp.) of f .

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-
numbering of G is a one-to-one mapping ξ : V → {1, 2, · · · , n}, such that
ξ(s) = 1, ξ(t) = n, and each vertex v �= s, t has two neighbors u, w with
ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a smaller neighbor (bigger
neighbor, resp.) of v. Lempel et. al. [4] showed that for every 2-connected plane
graph G and an exterior edge (s, t), there exists an st-numbering. Given an st-
numbering ξ of G, we can orient G by directing each edge in E from its lower
numbered end vertex to its higher numbered end vertex. The resulting orien-
tation is called the orientation derived from ξ which is an st-orientation of G.
On the other hand, if G = (V, E) has an st-orientation O, we can define an 1-1
mapping ξ : V → {1, · · · , n} by topological sort. Thus, we can interchangeably
use the term an st-numbering of G and the term an st-orientation of G, where
each edge of G is directed accordingly. The following lemma was given in [6, 7]:

Lemma 1. Let G be a 2-connected plane graph. Let O be an st-orientation of
G. A VR of G can be obtained from O in linear time. The height of the VR is
the length of the longest directed path in O.

Let G be a plane triangulation, v1, v2, · · · , vn an ordering of the vertices of
G where v1, v2, vn are the three exterior vertices of G in ccw order. Let Gk be
the subgraph of G induced by v1, v2, · · · , vk and Hk the exterior face of Gk. Let
G−Gk be the subgraph of G obtained by removing v1, v2, · · · , vk.

Definition 1. [1] An ordering v1, · · · , vn of a plane triangulation G is canonical
if the following hold for every k = 3, · · · , n:

1. Gk is 2-connected, and its exterior face Hk is a cycle containing the edge
(v1, v2).
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2. The vertex vk is on the exterior face of Gk, and its neighbors in Gk−1 form a
subinterval of the path Hk−1−(v1, v2) with at least two vertices. Furthermore,
if k < n, vk has at least one neighbor in G−Gk. (Note that the case k = 3
is degenerated, and H2 − (v1, v2) is regarded as the edge (v1, v2) itself.)

A canonical ordering of G can be viewed as an order in which G is recon-
structed from a single edge (v1, v2) step by step. At step k, when vk is added
to construct Gk, let cl, , · · · , cr be the lower ordered neighbors of vk from left to
right on the exterior face of Gk−1. We call (vk, cl) the left edge of vk, (vk, cr) the
right edge of vk, and the edges (cp, vk) with l < p < r the internal edges of vk.
The collection T of the left edges of the vertices vj for 3 ≤ j ≤ n plus the edge
(v1, v2) is a spanning tree of G and is called a canonical ordering tree of G [1].

3 Compact Visibility Representation of Plane Graphs

Let G be a plane triangulation with n vertices, v1, v2, vn be its exterior vertices
in ccw order. Let T be a canonical ordering tree of G rooted at vn with at least
�n+1

2 � leaves [8]. We will construct the st-numbering ξT . (see Figure 1 for an
illustration. Only part of the tree is drawn. Tree edges are drawn in solid lines,
non-tree edges are drawn in dotted lines, dashed lines represent a path in the
tree.)

u
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u u

u
t

u
1

w
1

w
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u
1

w
1

w
s

w’
1

w’
r

u

u
t

(a) (b) (c)

Fig. 1. (a) No edge between ut and u. (b) An edge between ut and u, no edge between
ut and w1. (c) Edges between ut and u, ut and w1. No edge between u1 and w′

r.

Traveling from the leftmost unassigned leaf of T by ccw postordering with
respect to T . (The first visited vertex is v2). Assume we begin from the leaf u1,
continue to u1, u2, · · · , ut, then we reach the next leaf u. There are three cases
to be considered for each step:

Case 1: There is no edge between ut and u. We then assign the remaining
numbers from 1, 2, · · · , n to u1, u2, · · · , ut by ccw postordering with respect to
T , continue to leaf u, continue on, stop before a new leaf encountered. Continue
our assignment if there are leaves left unassigned. See Figure 1 (a).

Case 2: There is an edge between ut and u, but no edge between ut and w1,
where w1 is the rightmost unassigned leaf of T . We then assign the remaining
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numbers from 1, 2, · · · , n to u1, u2, · · · , ut by ccw postordering. Then jump to
leaf w1, continue on by cw postordering, stop before a new leaf encountered.
Continue our assignment if there are leaves left unassigned. See Figure 1 (b).

Case 3: There is an edge between ut and u, and an edge between ut and w1.
Then Starting from the leaf w1, assign the remaining numbers to T by cw pos-
tordering with respect to T . Assume that vertices assigned are w1, w2, · · · , ws,
then to next leaf, denote it by w′

1, keep assign numbers to w′
1, w

′
2, · · · , w′

r until
a new leaf encountered. Jump back to u1, keep assign numbers to u1, u2, · · · , ut

by ccw postordering with respect to T . Stop before a new leaf encountered.
Continue our assignment if there are leaves left unassigned. See Figure 1 (c).

There are at most one or two leaves left at last, then assign remaining num-
bers to them by ccw postordering. (or cw postordering). Figure 2 shows
such a construction.

v

vv

6

4

5

7

10

14

13

12

3

8

9 2

11

12 n

1

Fig. 2. A plane triangulation G, a canonical ordering tree T of G (drawn in solid lines).
The st-numbering ξT of G constructed from T as described above.

Observe that, for each step above, at least one vertex has to be bypassed by
any directed path. We have the following:

Theorem 1. Let G be a plane triangulation with n vertices, T a canonical or-
dering of G with at least �n+1

2 � leaves. Let ξT be constructed as above. Then:

1. ξT is an st-numbering of G. The longest directed path of G according to ξT

is bounded by � 5n
6 �.

2. G has a VR with the same exterior face with height bounded by � 5n
6 �,

which can be obtained in linear time.

Next, we have the following theorem regarding the lower bound of VR:

Theorem 2. There is an n-vertex plane triangulation G such that any VR of
G with the same exterior face requires a size of (� 2n

3 �)× (� 4n
3 � − 3).

Proof. Suppose that Gk is the graph of k nested triangles with n = 3k vertices
as shown in Figure 3 (a). We want to show that any VR of Gk requires a grid
size of (� 2n

3 �)× (� 4n
3 � − 3) = 2k × (4k − 3).
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Fig. 3. (a) Nested triangles, (b) VR of nested triangles.

First, we want to use induction on k to prove the height bound. When k = 1,
it is true. Suppose that it is true for k = t. Now, consider k = t + 1:

Given any VR Rt+1 of Gt+1, by removing the horizontal lines segments rep-
resenting the exterior vertices of Gt+1 and the vertical line segments representing
the edges adjacent to the exterior vertices of Gt+1, the resulting representation
is a VR of Gt, denoted by Rt. Applying induction hypothesis, the height of Rt

is at least 2t.
Observe the topmost and the lowest horizontal line segments in Rt+1, they

have to represent the exterior vertices of Gt+1. Thus, the height of Rt+1 is at
least 2 plus the height of Rt, which is at least 2(t + 1). (See Figure 3 (b)) This
finishes the induction for the height bound.

Next, we want to prove the width bound. Given any VR Rk of Gk. It is easy
to see that we can obtain an st-numbering ξ of Gk from Rk. We assign num-
bers from 1, 2, · · · , n to the vertices of Gk such that the lower its corresponding
horizontal line segment in Rk is, the smaller its assigned number is. (If two or
more vertices have the same level of horizontal line segments, then arbitrarily
assign consecutive numbers to them.) Denote the vertices by v1, v2, · · · , vn=3k,
where ξ(vi) = i. Without loss of generality, we may assume that the vertical line
segment representing the edge (v1, vn=3k) is the leftmost vertical line in Rk. Gk

can be directed according to ξ. And ξ induces its dual st-orientation ξ∗ of R∗
k.

Claim: The width of the VR Rk is greater or equal to the length of the longest
directed paths in ξ∗ of G∗

k .

left edge

left edge

right edge
f

left edge
right edge

right edge

f

(a) (b)

Fig. 4. (a) Two left edges and one right edge, (b) one left edge and two right edges.
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Proof of Claim: Let P be a longest directed path of G∗
k in the st-orientation

ξ∗. Obviously, it starts from its source s∗, i.e. an interior face of Gk. And it ends
at its sink t∗, the exterior face of Gk. We try to trace P in Rk. It starts from
the leftmost interior face. Because Gk is a plane triangulation, each face f of Gk

only has two possible representations in Rk as shown in Figure 4. Its right edges
in Rk always have bigger x-coordinates than its left edges. Therefore, when P
passes through one face of Gk (i.e. one vertex in G∗

k), it enters a face f from one
of its left edges, and it walks out of f from one of its right edges. Thus, each
edge on P has to add at least 1 to the x-coordinate of the VR Rk. Therefore,
the width of Rk is at least the length of P . End of the proof of Claim.

Now, we only need to show that for any st-numbering of Gk, the length of its
longest directed paths in its dual st-orientation is no short than � 4n

3 �−3 = 4k−3.
We want to show this by induction: When k = 1, this is trivially true. Assume
that it is true when k = t. Consider the case of k = t+1: Given any st-numbering
ξt+1 of Gt+1, it induces an st-numbering ξt of Gt. According to the induction
hypothesis, a longest directed path Pt in its dual orientation ξ∗t is no shorter
than 4t− 3. Consider Pt in ξ∗t+1, it can be extended to a directed path Pt+1 in
ξ∗t+1 from its source to its sink. Because of the way Gt+1 is nested, Pt+1 has to
pass through at least 2 vertices (2 faces of Gt+1) before it can share edges with
the path Pt. (see Figure 3) After it passes through Pk, it also has to pass through
at least 2 vertices (2 faces of Gt+1) before it can reach its sink. Therefore, the
length of Pt+1 has to be at least 4 plus the length of Pt. Therefore, the length
of Pt+1 has to be at least 4(t + 1)− 3. This finishes our proof.
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Abstract. Compound-fisheye views are introduced as a method for the
display and interaction with large graphs. The method relies on a hier-
archical clustering of the graph, and a generalization of the traditional
fisheye view, together with a treemap representation of the cluster tree.

1 Introduction

Many of the challenges in visualization today arise from the volume of data. As
the volume of data grows, so too does our desire to visualize the data. Often the
data contain relationships between objects, and can be represented as a graph.
A great deal of research and investment has gone into developing better display
systems, high-resolution screens, and visualization walls. However, no matter
how good our display systems get and how many pixels per square inch can be
obtained, there will always be graphs that are too large to be fully displayed and
too complex to comprehend as a whole.

Graphs with hundreds of thousands of nodes and millions of edges are com-
monplace in many of today’s applications, such as telecommunications, soft-
ware engineering, and databases. Recent graph drawing algorithms allow us to
compute layouts for large graphs in reasonable times. However, exploring and
interacting with such graphs in their entirety is likely to be ineffective.

A visualization technique that relies on fisheye views, clustering, and treemaps
is introduced in order to provide a way to explore and interact with large graphs.
In this context, clustering implies any hierarchical decomposition of the graph.
The cluster computation in turn yields level-views of the input graph at different
levels of detail. Navigation from one level of the hierarchy to the next is provided
by partial refinement and/or coarsening of different parts of the view. These
operations correspond to zooming in and zooming out. Compound-fisheye views
are introduced as a technique that provides high level of detail in the focus area
while also providing a global view of the graph, through distortion of the view in
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Fig. 1. Different graph views: (a) Multi-level view of a geometrically clustered graph;
(b) Fisheye view of a grid-like graph; (c) Treemap for a small tree.

areas away from the focus. The compound-fisheye view combines clusters from
different levels of the cluster-hierarchy by showing high detail clusters in the
area of interest and progressively lower detail clusters away from the focus. A
treemap view of the cluster tree is also used to provide a global view of the
original graph.

1.1 Related Work

Multi-level display algorithms are described in the context of visualization for
clustered graphs in [9]. Compound and clustered graphs are studied in [10, 18].
Multi-level views [8, 9] show large graphs at multiple abstraction levels. A natural
realization of such multiple level representations is a 3D drawing with each level
drawn on a plane at a different z-coordinate, and with the clustering structure
drawn as a tree in 3D; see Fig. 1(a). The related concept of a graph sketch is
introduced in [1] and is used in the MGV system [2].

The above algorithms assume that the clustering of the graph is given. In the
case where the input graph has no clustering information, hierarchical clustering
algorithms based on the structural properties of the graph can be used [4, 15].
Alternatively, geometric graph clustering based on binary space partitions can
also be used to display large graphs, as described in [8]. The quality of the
resulting multi-level drawings depends on the initial embedding of the graph in
the plane. Hence, a good initial embedding of a large graph is a prerequisite
for this method. Recently, a number of efficient algorithms for layout of large
graphs have been developed, based on multi-scale, high-dimensional and spectral
methods [12–14, 20]. Data structures supporting cluster-graph operations (such
as cluster-expand and cluster-collapse) have been studied in [6, 7].

Fisheye views are introduced in the context of viewing and filtering computer
programs [11]. Fisheye views show one area of interest quite large and in detail
and show other areas successively smaller and in less detail by using a distortion
function; see Fig. 1(b). 2-D fisheye view graph drawings with position and size
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distortions are studied in [16]. Finally, treemaps [17] have been studied for over
a decade as an efficient space-filling layout of tree-like structures; see Fig. 1(c).
The nodes of the tree are displayed as nested rectangles in the treemap. The
children of a node are within the rectangle of the parent. Squarified treemaps
ensure good aspect ratio for the rectangles [5] and ordered treemaps keep related
items spatially close to each other in the map [3].

1.2 Our Contribution

A visualization technique called a compound-fisheye view is described. It makes
possible to extend the effective use of the traditional fisheye view to larger graphs.
The technique relies on creating a clustered graph from the original graph, via
a hierarchical clustering algorithm. The resulting cluster tree is then shown as a
treemap and is also used to navigate the compound-fisheye view.

Compound-fisheye views allow the exploration of an area of interest in detail,
by providing an interactive view of the graph, while still capturing the global
context. When a focus node is selected from the current view, the corresponding
subgraph at the next level is depicted and the view is updated. Similarly, less
details can be requested about a particular node in the current view, which
results in the replacement of the node (and its siblings in the cluster tree) with
its parent, and the subsequent update of the view. These operations provide the
ability to zoom in and out with respect to the current view.

Moreover, the compound-fisheye view has clusters from different levels in the
cluster tree, depending on how close they are to the area of interest. In a way
similar to traditional fisheye views, when more detail is requested in a particular
area, the areas farthest away from the focus are automatically reduced in detail.
Unlike traditional fisheye views, however, the reduction in the detail is achieved
by replacing parts of the graph far away from the focus with coarser represen-
tations from the cluster tree (rather than just shrinking the area allocated to
these parts, via distortion).

To aid the comprehension of the overall structure, a treemap view of the
cluster tree provides global context. A prototype of the visualization system has
been implemented and tested with graphs of varying sizes, up to 10,000 nodes.
The screen-shots in Fig 7 show the system in action.

2 Hierarchical Clustering

A graph clustering algorithm is geometric if nodes are clustered according to
their spacial locality, given an initial embedding of the entire graph. Similarly, a
graph clustering algorithm is structural if nodes are clustered based on structural
features of the original graph (such as connectivity and density). Any clustering
algorithm can be used for the purpose of compound-fisheye view navigation,
provided that the clustering is hierarchical. One structural clustering algorithm
and one geometric clustering algorithm have been implemented as a part of the
prototype.
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Fig. 2. (a) Input graph G; (b) Cluster-tree T : lettered nodes represent input
graph nodes and numbered nodes represent clusters; (c) Compound-fisheye view of
C = (G, T ).

The structural clustering algorithm implemented in the system is a Markov
clustering algorithm [19]. Markov clustering, also known as MCL, uses a ran-
dom walk in the graph to identify densely connected components. MCL is also
general enough to allow weighted graphs (including negative weights) that can
be directed or undirected.

The geometric clustering algorithm implemented in the system is a Binary
Space Partition (BSP) algorithm, similar to that in [8]. Starting with a 2D layout
of the entire graph, a k-d tree recursive partition is used to obtain the clustering.
The initial embedding is obtained using a high-dimensional multi-level method,
similar to that in [12].

2.1 Clustered Graphs

Whether structural or geometric, the clustering algorithm produces a cluster
tree. A leaf node in this tree represents a node from the original graph. An
internal node represents a cluster of nodes, which consists of all the nodes in its
subtree. A cluster may contain leaf nodes and/or other clusters. The cluster tree
data structure is the interface between the clustering algorithm, the compound-
fisheye view, and the treemap.

Fig. 2(a-b) show an example of an input graph G and the recursive clustering
defined by a tree T . Together the input graph and the cluster tree make up the
clustered-graph C = (G, T ). All the nodes of T at a given depth i represent the
clusters of that level. A view at level i, Gi = (Vi, Ei), consists of the nodes of
depth i in T and a set of representative edges. The edge (u, v) ∈ Ei if there is
an edge between a and b in G, where a is in the subtree of u and b is in the
subtree of v. Fig. 2(c) shows a compound-fisheye view of the clustered graph. The
compound-fisheye view is initialized with the root of the tree and interaction is
accomplished by means of the two clustered-graph operations: cluster-expand
and cluster-collapse. The compound-fisheye view may contain a combination
of nodes from different levels in T .

Consider the cluster-expand operation. This operation takes a node in the
compound-fisheye view, called a cluster-node, replaces it with its children in
the cluster tree, and performs the necessary updates to the edges in the graph.
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Cluster-nodes do not exist in the original graph, but are created as part of a clus-
tering tree. In Fig. 2(c), all numbered nodes are cluster-nodes and all the nodes
from the input graph are leaves in the cluster tree. When expanding a cluster,
determining which nodes need to be added to the graph is straightforward, since
they will always be the children in the clustering tree of the cluster-node being
expanded. The challenge arises when trying to determine what new edges should
be added to the current view. An edge exists between two cluster-nodes only if
some member from one cluster is adjacent to a member of the other cluster in
the original graph. In Fig. 2 an edge exists between cluster nodes 2 and 4 because
nodes c and g are adjacent in the original unclustered graph.

The cluster-collapse operation is simpler. When a cluster is to be col-
lapsed, one of its children in the clustering tree must be selected, since the
cluster-node representing the cluster will not be in the graph. In Fig. 2(b), the
cluster-node 3 can only be collapsed by selecting one of its children, d, e, or f
from the compound-fisheye view in Fig. 2(c). Thus, in order to collapse a cluster,
the children of the cluster-node (siblings of the selected node in the cluster tree)
must be identified. Next, the set of nodes that are adjacent to any of those chil-
dren is identified. Finally, an edge is added between the collapsed cluster-node
and each adjacent node.

3 Compound-Fisheye Views

Fisheye views of graph drawings allow a user to understand the structure of
a graph near a specific set of nodes (local detail), and at the same time they
display the graph’s overall structure (global context). Such views achieve smooth
integration of both local detail and global context by repositioning and resizing
nodes and edges in the graph. However, even for graphs with a few hundred
nodes, the benefits of this approach are lost as the areas away from the focus
become too congested to comprehend.

The fisheye view idea is applied on a hierarchically clustered graph to obtain
a compound-fisheye view; see Fig. 3 (a-b). The compound-fisheye view makes it
possible to extend the effective use of the traditional fisheye view to larger graphs.
Conceptually, the nodes in the compound-fisheye view of a clustered graph can
be obtained by taking the intersection of an inverted cone with the level-views
of the clustered graph; see Fig. 3(c). The cone is centered at the area of interest
in the original graph (at the deepest level in the multi-level view). The farther
away from the point of the cone, the coarser are the views that it intersects.
Thus, parts of the graph that are far away from the focus are represented using
clusters at higher levels in the cluster tree.

The compound-fisheye view allows the user to navigate it, modify it, and in-
teract with it. The underlying representation provides an adaptive view with the
look and feel of a normal graph. Interaction with the compound-fisheye view is
accomplished through the cluster-expand and cluster-collapse operations.
These operations correspond to zooming in and out with respect to the current
view. When a focus area is selected, the corresponding subgraph at the next
(higher or lower) level is depicted and the current view is updated.
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Fig. 3. Compound-fisheye view of a clustered graph: (a) A multi-level view of a clus-
tered graph with highlighted nodes that make up the compound-fisheye view at the
bottom; (b) The compound-fisheye view is made of clusters from three different levels
of the hierarchy; (c) Conceptual view: the intersection of the multi-level view with an
inverted cone.

Once the nodes in the current compound-fisheye view have been identified,
the edges connecting them can be determined. Similar to the edges in the level-
views, the edges in a compound-fisheye view are easily defined: the edge (u, v) is
in the compound-fisheye view if there is an edge between a and b in G, where a is
in the subtree of u and b is in the subtree of v. Unlike in level-views, the nodes in
the compound-fisheye view are made of clusters from different levels in the cluster
tree. This makes the edge computations more challenging, especially for large
graphs. While efficient data structures have been designed for this problem [6,
7], a simple node and edge hashing scheme are employed in the implementation
of the prototype system.

To ensure that the compound-fisheye view does not become too cluttered,
the parts of the view away from the focus are automatically collapsed. With
standard fisheye views, it is not difficult to support more than one focus. This
idea generalizes to compound-fisheye views as well, although this functionality
has not yet been implemented.

4 Treemaps

Treemaps are a space-filling graph visualization technique first introduced in [17].
An important feature of treemaps is that they make very efficient use of display
space. Thus it is possible to display large trees with many hierarchical levels in a
minimal amount of space. Fig. 4(a) shows a sample tree structure and Fig. 4(b)
shows the corresponding treemap. The algorithm used to partition the display
space is known as the “slice-and-dice algorithm” and functions like a k-d tree
space partition. The positioning of tree nodes in a treemap is a recursive process.
First, the children of the root are placed across the display area horizontally,
where each node’s area is directly proportional to its weight. Then, for each
node n already displayed, each of n’s children is placed across vertically within
n’s display area. This process is repeated, alternating between horizontal and
vertical placement until all nodes have been displayed.
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Fig. 4. A cluster tree (a) and its treemap representation (b).

Treemaps can be especially helpful when dealing with large clustered graphs.
While the compound-fisheye view combines detailed local information and a
global context, treemaps lend themselves naturally to showing the information
encapsulated in the clustering tree. When viewing a graph at some level of
abstraction, the viewer is really looking at nodes belonging to some level in the
cluster tree. A treemap can display the whole structure of a cluster tree, thus
allowing the user to place the current view in context.

In the standard treemap of Shneiderman [17] the nodes are represented as
rectangles of various shapes. This makes a visual comparison of their importance
(as determined by area) difficult, especially as the rectangles vary in orienta-
tion as well. In squarified treemaps [5] the aspect ratio (the ratio between the
width and height of a rectangle) is taken into account when placing nodes in the
treemap. The resulting treemaps contains squarish elements, making it easier to
visually compare their areas.

Squarified treemaps with a modified visual appearance are implemented in
the prototype of the compound-fisheye view visualization system. In traditional
treemaps, only the leaf nodes of a tree are displayed as rectangular areas. It is
often difficult to determine the nesting depth of the treemap structure as can
be seen in Fig. 5(a). For the purpose of navigating the compound-fisheye view
it is important to show depth information about the clustering tree, so the first
step is to display the nesting information as shown in Fig. 5(b). In order to
make the nested representation easier to view, progressively thinner borders for
deeply nested elements are used. The thickness of the border around an element
is inversely proportional to its level in the original tree. Thus, the root node has
the thickest border and the leaf nodes have the thinnest borders as shown in
Fig. 5(c).

5 Visualization Technique

Our visualization technique provides two views: one of the compound-fisheye
view and another of the treemap defined on the cluster tree. On their own, neither
of these approaches is powerful enough to represent and navigate a large graph.
The treemap algorithm applies only to trees, and while it could be applied to a
spanning tree of the graph, it does not show connectivity well. The compound-
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Fig. 5. (a) A squarified treemap representation of a 25-node tree; (b) the same tree
with nested rectangles; the same tree with frames.

fisheye view abstracts a great deal of the graph information, which can only be
recovered by recursive expansion of clusters. While showing connectivity and
local details well, it only shows an abstraction of the overall structure, making
navigational decisions difficult.

Together, the compound-fisheye view of the graph and the treemap of the
cluster tree offer a better approach to showing both local details and global con-
text. The combined view is shown in Fig. 6. One of the main shortcomings of a
compound-fisheye view is that nodes that are clustered become invisible in the
display and the viewer cannot deduce information about the structure under-
neath the cluster. By using a combined view displaying both the compound-
fisheye view and the treemap, information about the subtree rooted at the
cluster-node can be better conveyed. In Fig. 6, the red node (rightmost node)
has been selected by the user and its corresponding rectangle in the treemap is
highlighted in blue (top left). It is easy to see that the selected cluster-node is

Fig. 6. Compound-fisheye view and treemap: the red cluster-node (rightmost) has been
selected and its corresponding representation (top left) is highlighted in the treemap.
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Fig. 7. Interaction with the system: steps 1, 2, and 3.



440 James Abello, Stephen G. Kobourov, and Roman Yusufov

at level 4 in the clustering tree, contains 3 children that are also leaves, and if
the user chooses to expand the cluster-node it will be replaced by 3 nodes in the
current view.

When a user selects a node by placing the mouse pointer over it, it is high-
lighted along with all of its cluster tree siblings. This reveals the branching factor
and permits the user to see the set of nodes that will be collapsed, should he
choose to collapse the cluster (via a right mouse-click). During a collapse opera-
tion, the nodes being collapsed are highlighted in red, and whenever an expand
operation is performed (via a left mouse-click), the cluster-node being expanded
is marked in green. Once a cluster has been fully expanded, the resulting nodes
are the nodes from the original graph and are colored in black. If all clusters
are expanded, then the resulting graph is identical to the original graph and will
contain only black nodes.

6 Conclusion and Future Work

The technique described in this paper has been implemented in a Java prototype.
Fig. 7 shows snapshots of the exploration of the GD literature topic graph for
the years 1994-2000, with 332 nodes and 1,338 edges. In step 1 the cluster tree
root and its treemap are shown. In step 2 the root is expanded and one of the
cluster-nodes has been selected (highlighting its corresponding treemap region).
In step 3, the selected node has been expanded and labeled leaves of the tree
appear in the view. For this example, the combined computation time needed
for the initial layout, clustering, treemap, and rendering take under 5 seconds.
Interaction with the compound-fisheye view is in real-time.

While the system can deal with larger graphs (with up to 10,000 nodes) the
computation times are not nearly as good. Incorporating this prototype into
a fully functional graph visualization system that can handle large graphs will
be a difficult challenge, but one worth pursuing. Efficient data structures and
algorithms, to support expand/collapse operations will become important if one
requires real-time interaction with graphs with hundreds of thousands of nodes.

The current system uses cluster-node positions that are set by the clustering
algorithm and are never modified. A natural alternative is to apply a layout algo-
rithm to the compound-fisheye view and reapply it after an expand/collapse op-
eration is performed. Since the view changes as nodes are being added/removed
through expand and collapse operations, the layout algorithm must preserve the
mental map between consecutive layouts and make smooth transitions between
such layouts.

References

1. J. Abello, I. Finocchi, and J. Korn. Graph sketches. In IEEE Proc. Information
Visualization, pages 67–71, 2001.

2. J. Abello and J. Korn. Mgv: A system to visualize massive multi-digraphs. IEEE
Transactions on Computer Graphics and Visualization, pages 1–16, 2002.



Visualizing Large Graphs with Compound-Fisheye Views and Treemaps 441

3. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quantum
treemaps: Making effective use of 2D space to display hierarchies. ACM Transac-
tions on Graphics, 21(4):833–854, 2002.

4. U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algo-
rithms. In 11th Euro. Symp. on Algorithms (ESA), pages 568–579, 2003.

5. M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In Proc. Joint
Eurographics/IEEE TVCG Symp. Visualization, VisSym, pages 33–42, 2000.

6. A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching over
tree cross products. In 8th Euro. Symp. on Algorithms (ESA), pages 120–131,
2000.

7. A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In
Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 566–575, 2000.

8. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees
and their use for drawing large graphs. Journal of Graph Algorithms and Applica-
tions, 4:19–46, 2000.

9. P. Eades and Q. Feng. Multilevel visualization of clustered graphs. In Proceedings
of the 4th Symposium on Graph Drawing (GD), pages 101–112, 1996.

10. P. Eades, Q. Feng, and X. Lin. Straight-line drawing algorithms for hierarchi-
cal graphs and clustered graphs. In Proceedings of the 4th Symposium on Graph
Drawing (GD), pages 113–128, 1996.

11. G. W. Furnas. Generalized fisheye views. In Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI ’86), pages 16–23, 1986.

12. P. Gajer and S. G. Kobourov. GRIP: Graph dRawing with Intelligent Placement.
Journal of Graph Algorithms and Applications, 6(3):203–224, 2002.

13. R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs nicely. Dis-
crete Applied Mathematics, 113(1):3–21, 2001.

14. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. Journal
of graph algorithms and applications, 6:179–202, 2002.

15. R. Sablowski and A. Frick. Automatic graph clustering. In Proceedings of the 4th
Symposium on Graph Drawing (GD), pages 395–400, 1996.

16. M. Sarkar and M. H. Brown. Graphical fisheye views. Communications of the
ACM, 37(12):73–84, 1994.

17. B. Shneiderman. Tree visualization with treemaps: a 2-d space-filling approach.
Technical report, HCI Lab, University of Maryland, Mar. 1991.

18. K. Sugiyama and K. Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Transactions on Systems, Man, and Cyber-
netics, 21(4):876–892, 1991.

19. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

20. C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Proceed-
ings of the 8th Symposium on Graph Drawing (GD), pages 171–182, 2000.



A Compound Graph Layout Algorithm
for Biological Pathways

Ugur Dogrusoz1,2,�, Erhan Giral1, Ahmet Cetintas1,
Ali Civril1, and Emek Demir1

1 Center for Bioinformatics, Bilkent University, Ankara 06800, Turkey
ugur@cs.bilkent.edu.tr

2 Tom Sawyer Software, Oakland, CA 94612, USA

Abstract. We present a new compound graph layout algorithm based
on traditional force-directed layout scheme with extensions for nesting
and other application-specific constraints. The algorithm has been suc-
cessfully implemented within Patika, a pathway analysis tool for draw-
ing complicated biological pathways with compartmental constraints and
arbitrary nesting relations to represent molecular complexes and path-
way abstractions. Experimental results show that execution times and
quality of the produced drawings with respect to commonly accepted
layout criteria and pathway drawing conventions are quite satisfactory.

1 Introduction

The notion of compound graphs has been used in the past to represent more com-
plex types of relations or varying levels of abstractions in data [10, 8]. One such
application is in bioinformatics; Patika (Pathway Analysis Tool for Integration
and Knowledge Acquisition) is a software tool providing an integrated, multi-
user environment for visualizing and manipulating network of cellular events [4].

There has been a great deal of work done on general graph layout [5] but
considerably less on layout of compound graphs [14, 12, 2, 6], which has mostly
focused on layout of hierarchical graphs.

There have been a few studies done specifically for layout of biological path-
ways as well, focusing on metabolic pathways [11, 1, 13]. Certain tools such as
Patika enforce a more restricted ontology to represent signaling pathways whose
underlying graph structure can be arbitrarily more complicated and irregular.

A layout algorithm for signaling pathways was proposed and implemented
within Patika earlier [9]. However neither this algorithm nor any of the previ-
ously proposed ones address advanced pathway representations including nested
drawings, intergraph relations, and application-specific constraints such as com-
partmental constraints at the same time. In this paper we describe a new algo-
rithm for layout of compound pathway graphs.

2 Pathway Model

The structure of pathway graphs highly depend on the type of pathways (e.g.,
metabolic or signaling) and the model or ontology used to represent the biological
� To whom correspondence should be addressed.
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Fig. 1. Canonical wnt pathway represented by Patika ontology, including molecular
complexes (e.g., C2) and various abstractions (e.g., Wnt and Protein Degradation).

phenomenon. We assume the ontology described in [3], which represents a cellular
process in the form of a directed compound pathway graph (Figure 1).

3 Layout Algorithm

A force-directed layout algorithm with constraints to satisfy general drawing
conventions in compound pathway graphs has been chosen. Basically, it is a vir-
tual dynamic system in which nodes are assumed to be physical objects with
a certain “electrical charge”, connected via “springs” of a pre-specified desired
length. Objects pull or repel each other depending on current lengths of any con-
nected springs. In addition, relatively minor repulsion forces act on any pair of
objects that are too close to each other to avoid node-to-node overlaps. Further-
more, each nested graph including the root of the nesting hierarchy is assumed
to have a dynamic (with respect to the graph bounds) center of gravity. Thus
the optimal layout is regarded as the state of this system in which total energy
is minimal [7]. The following additions are made to this basic model (Figure 2):
– An expanded node and its associated nested graph are represented as a single

entity, similar to a “cart” which can move freely in every direction. Multiple
levels of nesting is modeled with smaller carts on top of larger ones.

– The nodes and edges of a nested graph are set in motion on this cart, confined
within its bounds. Each cart is assumed to be surrounded by a material,
elastic enough to adapt to the current bounds of the associated nested graph.
Thus, as nodes of the nested graph are pushed out, expanding the nested
graph, the expanded node adjusts its bounds accordingly.

– To avoid overlaps of variably sized nodes, desired edge lengths are calculated
using parts of edges in between borders of end-nodes.

– Intergraph edges are treated specially; their desired lengths are set to be
proportional to the nesting depth of the graphs their end nodes belong to.
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Fig. 2. Part of a sample compound pathway (left) and the corresponding physical
model used by our algorithm (right).

We also apply relativity constraint forces or simply relativity forces on each
substrate, product and effector states to position them properly around asso-
ciated transition(s). The convention is to align substrates and products of a
transition on opposite sides of the transition to form a certain flow direction.
When calculating relativity forces, we first determine a flow, called orientation,
for each transition by simply looking at current, relative positions of their asso-
ciated substrates and products. Then each associated state of the transition is
applied a relativity force to respect this orientation (Figure 3).

Another important constraint is due to cellular locations of biological nodes
(compartments) represented by rectangular regions. The layout algorithm must
keep each biological node within the bounds of the associated compartment and
must enlarge or shrink it as required by the geometry of the pathway.

The algorithm is composed of three phases preceded by initialization:

Initialization: Initial node and compartment sizes, and threshold values for
convergence are calculated as well as initial random positions of nodes. In ad-
dition, for efficiency and quality reasons parts of the given pathway that are

Fig. 3. An example of how the orientation of a transition is determined shown on
transition t1 of Figure 1 (left) and used to calculate the relativity force on one of its
substrates, Frz (right). O(t1), R(Frz), and D(Frz) respectively denote orientation of t1,
relativity force on Frz due to t1, and desired location of Frz to obey this force, where
magnitude of R(Frz) is equal to that of O(t1), and the distance of D(Frz) from t1 is
equal to the desired edge length.
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trees are temporarily removed. The remaining part of the pathway forms the
“skeleton” of the pathway graph.

Phase 1: In this phase the skeleton graph is laid out using the spring embedder
model described earlier but relativity and gravitational forces are disabled.

Phase 2: Trees reduced earlier on are introduced back level by level in this
phase, also taking relativity and gravitational forces into account.

Phase 3: This phase is the stabilization phase where we “polish” the layout.

algorithm CompoundLayout()
(1) call Initialization()
(2) set phase to 1
(3) if layout type is incremental then
(4) increment phase to 3
(5) while phase ≤ 3 do
(6) set step to 1, error to 0
(7) while (step < maxIterCount(phase) and

error > errorThreshold(phase)) or !allTreesGrown do
(8) call ApplySpringForces()
(9) call ApplyRepulsionForces()
(10) if phase �= 1 then
(11) call ApplyGravitationForces()
(12) call ApplyRelativityForces()
(13) call CalcNodePositionsAndSizes()
(14) call UpdateCompartmentBounds()
(15) if phase = 2 and !allTreesGrown and step % growStep = 0 then
(16) call GrowTreesOneLevel()
(17) increment step by 1
(18) increment phase by 1

A quick analysis reveals that the running time of layout is O(k · n2) where n is
the total number of nodes in the compound pathway, and k is the number of
iterations required to reach an energy minimal state.

4 Implementation

The algorithm has been implemented within the Patika editor built on top of
Tom Sawyer Software’s GET for Java ver. 5.5. The results have been found sat-
isfactory as far as the general graph drawing criteria such as number of crossings
and total area are concerned. In addition, application-specific constraints such
as compartmental constraints and relative positioning constraints seem to be
highly satisfied. Figures 4 and 5 show sample pathway drawings produced.
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Fig. 4. Sample pathway from the Patika editor laid out by our algorithm.

Fig. 5. Sample pathway from the Patika editor laid out by our algorithm.
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From the theoretical analysis given earlier, a quadratic behavior of execution
time versus number of nodes is expected, assuming k does not grow in the order
of the graph size. The experiments validate this argument.
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Abstract. We present a method for modifying a force-directed graph
drawing algorithm into an algorithm for drawing graphs with curved
lines. Our method is based on embedding control points as dummy ver-
tices so that edges can be drawn as splines. Our experiments show that
our method yields aesthetically pleasing curvilinear drawing with im-
proved angular resolution. Applying our method to the GEM algorithm
on the test suite of the “Rome Graphs” resulted in an average improve-
ment of 46% in angular resolution and of almost 6% in edge crossings.

1 Introduction

Curvilinear drawings of graphs give a significant amount of flexibility to a layout
algorithm, creating the potential for improved aesthetics. Such drawings are
ideally suited for several applications (e.g., flight maps). However, the literature
on curvilinear drawing algorithms is not as extensive as that on straight-line and
orthogonal drawings. In this paper, we present a methodology for computing
curvilinear drawings using force-directed methods and we report on the result of
experiments showing that our technique yields aesthetically pleasing curvilinear
drawings with improved angular resolution and number of crossings.

The idea of the force-directed method is to use physical simulations to lay out
a graph. Forces are calculated, applied to vertices, and recalculated over many
iterations. In the pioneering “spring-embedder” algorithm [10], the edges are
modeled as stretchable springs of different length, which oscillate until the system
reaches equilibrium. Effective force-directed techniques include subatomic forces
[12] and simulated annealing [8]. An experimental comparison of force-directed
methods is presented in [3]. Recent work includes [13, 19].

Previous work on curvilinear drawings of graphs has focused on planar draw-
ings and on edge-routing methods. Early systems for layered drawings of digraphs
use heuristics that transform a drawing with polygonal chains into a curvilinear
drawing by replacing polygonal chains with splines [14–16]. The routing of a
curvilinear edge that is being added to an existing drawing is investigated in [9].
In [17, 18], algorithms for drawing planar graphs using cubic Bézier curves for
the edges are given. In [7], an algorithm is presented for drawing planar graphs
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(a) (b) (c) (d)

Fig. 1. Layout improvements obtained by our method: (a) straight-line drawing pro-
duced by the KK algorithm; (b) associated curvilinear drawing; (c) straight-line draw-
ing produced by the GEM algorithm; (d) associated curvilinear drawing.

with asymptotically optimal area and angular resolution such that the edges
are sequences of two circular arcs. Brandes and Wagner show how to use Bézier
curves to draw graphs with vertices at fixed locations [6], with applications to
the display of geographic networks. Related work on 3D curvilinear drawings of
geographic networks is presented in [4, 5, 21].

Imagine an architect who uses graph drawing software to design a sculpture
garden. In the graph, vertices represent sculptures and edges represent paths.
Using a standard force-directed algorithm, the architect would probably get a
drawing with a good spread of sculptures, but a mediocre layout of paths. The
architect might want the paths themselves to be more separated, and to arrive
at the sculptures at more distinct angles. These properties correspond to the
aesthetic criteria of edge separation and angular resolution. It seems plausible
that by introducing curved paths the architect could improve the aesthetic layout
with respect to these two qualities. The architect might also prefer smooth,
curved lines to the rigid lines connecting the sculptures in the layout generated by
the standard force-directed algorithm. We show in Fig. 1 how drawings produced
by the KK [20] and GEM [11] algorithms can be smoothed and aesthetically
improved using the method set forth in this paper.

The fundamental function of force-directed methods is to find a layout for
the vertices, which are the only objects subject to forces. Edges merely influ-
ence these forces. In many circumstances, this is acceptable. However, one could
imagine a situation in which the layout of the edges is also important and should
be considered by the algorithm. Thus, we would like to give edges a “mass-like”
quality so they can also be pushed and pulled and acted upon by forces.

2 Force-Directed Curvilinear Drawings

For the curvilinear drawings studied in this paper, we consider three relevant
aesthetic criteria: angular resolution, edge separation, and number of crossings.
The angular resolution refers to the angles formed by pairs of edges incident
on a vertex. In general, small angles are not desirable. We measure the angular
resolution as the difference between the smallest angle and the optimal angle
at a vertex v (360/ deg(v)), averaged over all vertices. Thus, lower values in-
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dicate better layouts. The edge separation refers to the distance between an
edge and another non-incident, non-intersecting edge. In this paper, we measure
the edge separation as the average distance between pairs of non-incident, non-
intersecting edges. Hence, larger values are desirable. Finally, edge crossings are
undesirable and should be minimized.

Our algorithm for curvilinear graph drawing using the force-directed method
is based on the following simple idea (see Fig. 2a–b). Given a graph G, we
insert a new fictitious vertex C along each edge (A, B), thus replacing (A, B)
with a path of two edges (A, C) and (C, B). Let G′ be the resulting graph. We
compute a straight-line drawing of G′ using a force-directed algorithm. Finally,
we transform the drawing of G′ into a drawing of G by replacing each polygonal
chain (A, C, B), where C is a fictitious vertex, with a curve that joins A and B
and uses C as a control point. More generally, we can embed several fictitious
vertices (control points) on each edge to magnify the curving effect. In practice,
one or two vertices will produce good results. Our approach generalizes the one
used by Brandes and Wagner [6] for the layout of geographic networks, where
the vertex locations are fixed and forces operate only in local neighborhoods.

Adding vertices and edges to a graph may increase the number of crossings. In
theory, one could prevent the addition of new crossings by imposing boundaries
on the control vertices. However, most force-directed algorithms, while evaluating
a modified graph, will sometimes generate new crossings (see Fig. 2c). In practice,
many of these crossings occur among edges incident on the same vertex and can
be easily detected.

Any number of algorithmic heuristics could be used to unwind these crossings.
We use a binding technique, inspired from [6], which was designed to be simple
and algorithm independent: its only mechanism is adding hidden edges. To bind
a vertex, connect the closest control vertices around that vertex in the order
of the “real” (non-control) endpoints. The points are sorted based on polar
coordinates, similar to a Graham Scan. The vertices are connected with edges
that will not be drawn, but will pull the control points into place. Convex angles
are also excluded, so as to preserve good angular resolution.

Binding a vertex will generally fix these added local intersections. It should
be noted, however, that binding is specific to each embedding of a graph. Thus, it
can be done only after the algorithm has run and then it requires the algorithm
to be repeated from the current position with the new hidden edges. In this
way, the bindings can be done in several passes, or all at once, yielding different
results.

(a) (b) (c)

Fig. 2. (a–b) Inserting a fictitious vertex C, serving as a control point, on edge (A, B).
(c) Crossing between edges incident on the same vertex.
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3 Implementation and Experimental Results

We have implemented our force-directed curvilinear graph drawing method in
Java using the JDSL library [1] and the VGJ tool [2]. Experiments were per-
formed on 1.5 GHz AMD Athlon workstations with 512MB RAM running Linux.
The test suite was made from the “Rome Graphs” obtained from graphdraw-
ing.org. The force-directed algorithms chosen were GEM [11] and KK [20] be-
cause of their effectiveness, speed and simplicity. Indeed, GEM and KK were
shown to be all-around performers in [3]. The implementations of GEM and KK
were adapted from the JDSL library and VGJ tool, respectively.

We use a Bézier curve because of its attractive shape and geometric proper-
ties: it is contained inside the convex hull of its endpoints and control points, and
its slope starts directly towards a control point. Edges with single and double
control points use quadratic and cubic Bézier curves, respectively. For binding,
there are two successive passes. We also test the effect of binding all vertices.

A step-by-step example of the execution of the modified GEM method using
quadratic Bézier curves and the “bind all” heuristic is shown in Fig. 3.

Each one of the Rome Graphs was drawn twice, with and without the curvi-
linear method, starting from the same initial random vertex placement. Ficti-
tious control vertices were evenly spaced on the edges. The above process was
repeated with three different binding heuristic options. First with no binding,
simply executing the algorithm on the modified graph and measuring the aesthet-
ics. Second, with the binding heuristic on only vertices with local intersections.
In this case we ran the algorithm on the graph as before, then bound vertices

Fig. 3. Step-by-step example of execution of the modified GEM method using quadratic
Bézier curves and the “bind all” heuristic.
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Table 1. Averages of the aesthetic properties using our curvilinear method with the
GEM force-directed layout algorithm on the Rome Graphs.

edge type, type of binding angular resolution edge separation # crossings

straight edges (without method) 46.175257 0.043419 30.718649

quadratic Bézier, none 34.447798 0.044492 29.652424

quadratic Bézier, crossed 32.612817 0.044642 30.316422

quadratic Bézier, all 31.748013 0.045090 30.393090

cubic Bézier, none 31.233901 0.044849 29.209033

cubic Bézier, crossed 28.199770 0.045294 29.216517

cubic Bézier, all 24.814479 0.045931 28.986946

with local intersections, executed, bound again, and executed a final time before
making the measurements. Finally, a test was done where the algorithm was
executed on the graph, then all vertices were bound, and then the algorithm was
run again.

Our experimental results, summarized in Table 1, show that the curvilinear
drawing method significantly improves the angular resolution. Binding all ver-
tices, using cubic Bézier curves led to an overall average angular resolution 46%
closer to optimal and average decrease of more than one crossing per graph.

It should be noted that binding in general was not very effective when using
quadratic Bézier edges. This is because two vertices share each control point;
binding from one vertex can adversely affect the other. For cubic Bézier curves,
the results show that binding is an extremely effective heuristic; it is best when
used on all vertices, not just the ones with local intersections.

Unlike the GEM algorithm, the KK algorithm did not perform well with
our curvilinear method. Since the method increases the number of vertices and
edges, it affects the running time of the drawing algorithm. Because of its O(n3)
running time per iteration, compared to GEM’s O(n2), KK did not scale well
and was prohibitively slow on large graphs. In addition, the KK algorithm uses
graph-theoretic distances, and thus the presence of the fictitious vertices hampers
the effectiveness of the algorithm itself, creating far too many new crossings to
justify any improvement in angular resolution or edge separation.

Future research should investigate the effect of this process on other force-
directed methods, such as [8, 13, 19]. It would also be interesting to investigate
the use of interpolating splines (e.g., Catmull-Rom), which go through their
control points, instead of Bézier curves.
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Abstract. The graphael system implements several traditional force-
directed layout methods, as well as several novel layout methods for
non-Euclidean geometries, including hyperbolic and spherical. The sys-
tem can handle large graphs, using multi-scale variations of the force-
directed methods. Moreover, graphael can layout and visualize graphs
that evolve though time, using static views, animation, and morphing.
The implementation includes a powerful interface that allows the user to
put together existing algorithms and visualization techniques, and to eas-
ily add new ones. The system is written in Java and is available as a down-
loadable program or as an applet at http://graphael.cs.arizona.edu.

1 Introduction

As researchers in the graph drawing community develop new algorithms and
visualization techniques it is natural for the creation of new graph drawing tools
to follow. It is often the case, however, that the implementation of an algorithm is
accompanied by time consuming tasks that have little to do with the algorithm
itself. Researchers who would like to test a new layout algorithm should only
have to concern themselves with the details of the algorithm itself rather than
with graphics packages, file parsers, or user interface design.

In this paper we present graphael: yet another graph drawing system de-
signed to provide the necessary structure and flexibility for force-directed graph
drawing research. Our system is built with the following design considerations:
(1) Plug-and-Play: it should be easy to integrate new algorithms and visualiza-
tion methods; (2) User Friendliness: the user interface should be easy to use,
but also powerful and versatile; (3) Portability: the system should run on any
computational platform.

The graphael system attempts to meet these goals by providing a set of core
algorithms and visualization routines, as well as an interface that allows the user
to combine different algorithms and visualization methods, and to easily add new
ones. In addition, the system contains several novel algorithms and visualization
techniques, such as force-directed methods in non-Euclidean geometries, and
techniques for dealing with graphs that evolve through time.
� This work is supported in part by the NSF under grant ACR-0222920 and ITCDI

under grant 003297.
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1.1 Related Work

A number of automated graph drawing systems have been developed over the
last few years; see [9] for a survey. The GraphServer [3] is an online service that
allows users to draw graphs and translate graph descriptions between multiple
formats. Tulip is a framework built to facilitate large graph drawing research [1].
WilmaScope [4] is a Java application designed specifically for 3D visualization.
yFiles [14] is a commercial library of Java classes developed to provide building
blocks for graph drawing applications. Pajek [2] is a Windows program designed
to handle large graphs for social networks analysis. TGRIP [6] is an extension on
the GRIP system [8] and efficiently draws large temporal graphs using intelligent
placement. The GraphAEL [5] system extracts three types of evolving graphs
from a custom-built graph drawing literature database and creates 2D and 3D
animations of the evolutions.

1.2 Our Contributions

In addition to sharing all the letters with GraphAEL [5], the system described
in this paper was inspired by it. We wanted to provide a graph visualization
framework that can easily be coupled with the bibliographic database to pro-
vide visualizations of the co-citation, collaboration, and topic graphs, produced
from the database. This led to the development of the current system, which
is equipped with a core package of force-directed algorithms and visualization
tools. In addition to putting together well-known algorithms and visualization
methods, graphael contains several novel features. Among these features are
support for temporal graphs, interactive graph visualization, multi-scale layout
algorithms for large graphs, and embedding graphs in non-Euclidean spaces,
such as hyperbolic space and spherical space. The current system also includes
an interactive Control Flow (CF) Graph, used to put together different com-
binations of layout algorithms, projections and visualizations, while offering a
visual representation of the process.

2 System Overview

2.1 Force-Directed Layouts

Force-directed layout algorithms are a powerful and practical graph drawing
heuristic. They rely on an objective function that maps a particular graph layout
to an energy value. Typically such algorithms start with a random drawing of
the graph and utilize standard optimization methods to minimize the energy
function. The algorithms define functions in which low energies are associated
with layouts where adjacent vertices are near some preferred distance from each
other, and non-adjacent vertices are well-spaced. The main difference between
force-directed algorithms is the choice of energy function and the methods for
its minimization.

We have implemented two traditional force-directed algorithms in graphael.
The first one is the Fruchterman-Reingold [7] algorithm. It defines an attractive
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force function for adjacent vertices and a repulsive force function for non-adjacent
vertices. For a vertex v, FFR(v) = Fa,FR + Fr,FR, where the attractive force is

defined as Fa,FR =
∑

u∈Adj(v)
distRn (u,v)2

edgeLength2 (pos[u] − pos[v]) and the repulsive

force is defined as Fr,FR =
∑

u∈Adj(v) s · edgeLength2

distRn (u,v)2
· (pos[u]− pos[v]).

The second force-directed method is the Kamada-Kawai [10] layout algo-
rithm. In this method each pair of vertices connected by a path has forces propor-
tional to the length of the path. The displacement of a vertex v of G is calculated

by: FKK(v) =
∑

u∈Ni(v)

(
distRn(u,v)2

distG(u,v)·edgeLength2 − 1
)

(pos[u]− pos[v]).

In the above equations, distRn(u, v) is the Euclidean distance between pos[u]
and pos[v], distG(u, v) is the graph distance between u and v along a shortest
path, edgeLength is the unit edge length, Adj(v) is the set of vertices adjacent
to v, and s is a small scaling factor.

2.2 Multi-scale Graph Drawing

The effectiveness of force-directed methods rapidly decreases as the input graphs
get larger. This is mainly due to the increased difficulty of getting out of local
minima and to the runtime complexity, typically quadratic, or cubic in the size
of the graph. Multi-scale graph drawing methods address both of these problems
by filtering the graph into different levels, called filtration levels, each containing
a subset of the initial graph. The levels are laid out from least to most complex.
The multi-scale methods rely on good filtrations, good initial placement of the
vertices, and on local refinement on each level.

Filtrations: The effectiveness of the multi-scale method depends on each suc-
cessive filtration level containing a constant fraction of the vertices from the
previous level. Thus, good filtrations have Θ(lg n) depth and can be quickly
computed. In graphael we currently provide three filtration methods: Maximal
Independent Set Filtration, Random Graph Filtration, and Cores Filtration:

1. Maximal Independent Set Filtration: A filtration V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃
∅ of the vertex set V of G is called a maximal independent set filtration if
V1 is a maximal independent set of G, and each Vi is a maximal subset of
Vi−1 so that the graph distance between any pair of its elements is at least
2i−1 + 1. Maximal Independent Set filtrations have depth O(lg n) and can
be computed in near-linear time [8].

2. Random Graph Filtration: Random filtrations are created by repeatedly re-
moving half of the vertices, chosen at random, starting with the original
vertex set V of G. The depth of this filtration is also O(lg n) and the compu-
tation time required is linear in the size of V . Although simple, this method
produces reasonable layouts for large graphs.

3. Cores Graph Filtration: Graph cores are described in [13]. Given a graph
G = (V, E), a subgraph Hk = (W ; E|W ) induced by the set W is a k-core,
or a core of order k if ∀v ∈ W : degH(v) ≥ k, and Hk is the maximum
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subgraph with this property. The core of maximum order is also called the
main core. Graph cores can be computed in linear time [2]. If the number
of cores is a small constant compared to the size of the graph, we augment
the filtration induced by the cores to depth O(lg n) using the peeling process
inherent in the core computation.

Initial Placement and Refinement: The main idea of good initial placement
is to add vertices to the current drawing one at a time at a carefully computed
position, rather than a random one [8]. For simplicity we describe the process
in 2D, but in practice this is done in arbitrary Euclidean, and even some non-
Euclidean, spaces. Assume that the highest filtration level has exactly 3 vertices.
These vertices are placed at the endpoints of a triangle with sides proportional
to the graph distances between the points in the original graph. Vertices in sub-
sequent filtration levels are placed based on their graph distances from already
placed vertices from previous filtration levels. The intuition is that if we place
the vertices close to their optimal positions initially, the refinement phase will
only need a few iterations of a local force-directed calculations to reach a mini-
mal energy state. In graphael’s implementation, we use the “3-closest-vertices”
strategy. Using this method we place the vertex t at the barycenter of u, v, and
w, the three vertices closest to t from the previous filtration level. Once all the
vertices at the current filtration level have been placed, we apply a local force-
directed refinement. The refinement stage is local as for a given vertex v in the
current filtration, only a small neighborhood of vertices Ni(v) is considered in
the force computation.

2.3 Graphs That Evolve Through Time

We have also implemented algorithms for visualization of graphs that evolve
through time based on techniques described in [5, 6]. The algorithms are mod-
ifications of the standard force-directed algorithms that allow us to deal with
vertex-weighted and edge-weighted graphs. Graphs that evolve through time are
converted to vertex-weighted and edge-weighted graphs, by treating each in-
stance of the graphs as a timeslice, and connecting neighboring timeslices. The
edges connecting different timeslices are called inter-timeslice edges. By changing
the weights of these edges, we are able to balance the individual graph readability
with the overall mental map preservation between consecutive graphs. Making
the inter-timeslice edges heavy, results in fixing the vertex positions in each graph
instance. Alternatively, making the inter-timeslice edges light, results in nearly
independent layouts of each graph instance.

Weighted Graphs: We modify the force-directed equations for calculating the
force vectors to include edge weights and vertex weights so as to place heavy
vertices well away from each other and to place vertices connected by heavy
edges closer to each other. The unit edge length is modified to

√
wu · wv/we for

an edge of weight we, connecting vertices u, v of weight wu, wv, respectively.
The Kamada-Kawai method relies on the notion of graph distance between

pairs of vertices. It is easy to generalize this notion to weighted graphs, but
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because of the computational and space overhead associated with calculating the
shortest path between all pairs of vertices in the graph, we use an approximation.
Let p1, p2, . . . , pn be the sequence of vertices in the shortest unweighted path in
G connecting two vertices, u and v. The modified Kamada-Kawai force vector
is given by FKK(v) =

∑

u∈Ni(v)

(
2 · distRn(u, v)2

optDistG(u, v)2 · edgeLength2 + distRn(u, v)2
− 1

)
(pos[u]− pos[v]),

where optDistG(u,v) =
n∑

i=2

√
wpi · wpi−1

wepipi−1

. Similarly, we modify the Fruchterman-

Reingold forces as follows: Fa,FR =
∑

u∈Adj(v)
we·distRn (u,v)2

edgeLength2 (pos[u] − pos[v])

and Fr,FR =
∑

u∈Adj(v) s ·
(

edgeLength2·√wu·wv

distRn(u,v)2

)
(pos[u]− pos[v]).

Timeslice Attribute: To visualize a series of graphs embodying the evolution
of a set of relationships over time, we associate a timeslice attribute with each
vertex. The timeslice of a vertex is just a label identifying which graph instance
the vertex belongs to. We use the timeslice attribute to partition the vertices
of a graph into groups by time. Additional modifications to the force-directed
algorithms are needed to accommodate timeslice information.

For the Kamada-Kawai layout method, the function optDistG(u, v) is modi-
fied so that for two vertices u, v with timeslice indices of tu and tv, respectively,

is given by: optDistG(u, v) =
n∑

i=2

δtutv ·
√

wpi · wpi−1

we
, where p1, p2, . . . , pn is the

shortest unweighted path in G connecting two vertices, u and v and δtutv is 1 if
tu = tv and 0 otherwise.

The modifications needed for the Fruchterman-Reingold calculations are sim-
ilar. Repulsive forces are simply eliminated between vertices in different times-
lices, Fr,w,t,FR = δ · Fr,w,FR while the attractive forces remain unchanged,
Fa,w,t,FR = Fa,w,FR.

2.4 Visualizing Evolving Graphs

The timeslice information alone is not enough to nicely layout evolving graphs;
we must also arrange edges between timeslices so that the layouts can be used
for animation. The most straightforward method to animate is simply to use a
series of “snapshots” of a graph taken at some interval over a period of time.
When visualizing an evolving graph, we would ideally like the graphs of each
timeslice to have high readability (i.e. have a pleasing layout) and for consecutive
timeslices to be similar, that is, the mental map should be preserved. To meet
these constraints the timeslices are combined into a single graph by connecting
vertices with the same labels from adjacent timeslices.

Because of the modified optimal distance function, corresponding vertices in
different timeslices have no repulsive force on each other, but they still have
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Fig. 1. graphael in cooperation with GraphAEL. The graphs shown are the column
view and flat 2D view of a citation graph from 2000 to 2003 by 1 year increments.

attractive forces due to the inter-timeslice edges. In graphael the balance be-
tween readability and mental map preservation can be controlled by changing
the weights of the inter-timeslice edges.

Once the layout of the evolving graph has been computed, graphael offers
different methods for visualizing the graphs. Each timeslice can be drawn in a
restricted 2D view, or the graphs can be drawn in 3D with individual graphs ar-
ranged on top of each other (column-view). The column view lays out each times-
lice on a separate plane, allowing the user to view the changes in the graph over
time; see Fig. 1. The inter-timeslice edges can be hidden or displayed. Smoothly
stepping through the evolving graphs using linear interpolation of vertex posi-
tions, colors, and weights yields visually pleasing animations.

2.5 Graph Drawing in Non-Euclidean Spaces

A novel feature in graphael is the option to layout graphs in non-Euclidean
spaces, in particular, in hyperbolic space and in spherical space [11]. Existing
force-directed algorithms are restricted to calculating a graph layout in Euclidean
geometry. Euclidean space has a very convenient structure for force-directed
methods. It is easy to define distances and angles, and the relationship between
the vector representing the net force on an object and the appropriate motion of
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that object are quite straightforward. Certain non-Euclidean geometries, specif-
ically hyperbolic geometry, have properties which are particularly well suited to
the layout and visualization of large classes of graphs [12].

With this in mind we have implemented a generalization of force-directed
methods to non-Euclidean geometries that relies on mappings between non-
Euclidean geometries and corresponding tangent spaces. While a non-Euclidean
geometry does not afford all of the conveniences of Euclidean geometry, there is a
straightforward way to define distances and angles, provided we restrict ourselves
to geometries which are smooth. Such geometries are known as Riemannian ge-
ometries, and while they have less convenient structure than Euclidean geom-
etry, they retain many of the characteristics which are useful for force-directed
graph layouts. A Riemannian manifold M has the property that for every point
x ∈ M , the tangent space TxM is an inner product space. This means that for
every point on the manifold, we can define local notions of length and angle.

Using a local notion of length we can define the length of a continuous curve
γ : [a, b]→M by length(γ) =

∫ b

a ‖γ′‖dt. This leads to a natural generalization of
the concept of a straight line to that of a geodesic, where the geodesic between
two points, u, v ∈M is defined as a continuously differentiable curve of minimal
length between them. In Euclidean geometry the geodesics are straight lines, and
in spherical geometry they are arcs of great circles. Hence, the distance between
two points, d(x, y) is defined as the length of the geodesic between them.

Hyperbolic Geometry: Hyperbolic geometry is particularly well suited to
graph layout because it has “more space” than Euclidean geometry – in the
same sense that spherical geometry has “less space”. Unlike in Euclidean geom-
etry, where the relationship between the radius and circumference of a circle in
two-dimensional geometry is linear with a factor of 2π, and constant in a spher-
ical geometry, in hyperbolic geometry the circumference of a circle increases
exponentially with its radius. The applicability of this geometric property to
graph layout is well-illustrated with the example of a tree. In hyperbolic space,
it is possible to layout a tree structure with a uniform distribution of the vertices
and with uniform edge lengths despite the fact that the number of vertices at a
certain depth in the tree increases exponentially with the depth.

In order to visualize a layout in hyperbolic geometry it is necessary to map
the layout into the (2D) Euclidean geometry of a computer monitor. The method
used in graphael is the Poincare projection, that maps hyperbolic space onto
the open unit disk. The projection compresses the space near the boundary of
the unit disk, giving the impression of a fish-eye view. This naturally provides a
useful focus+context technique for visualizing the layouts of graphs. This model
preserves angles, but distorts lines. A line in hyperbolic space is mapped to a
circular arc which intersects the unit circle at right angles. The Poincare disk
progressively distorts the graph view as we move away from the center of projec-
tion. In Fig. 2(a) we show a drawing of a graph obtained in hyperbolic geometry
and displayed in 2D Euclidean space.

Spherical Geometry: Using the same ideas, we can generalize force-directed
methods to spherical space. Spherical geometry, like hyperbolic geometry, has



Graphael: A System for Generalized Force-Directed Layouts 461

Fig. 2. Layouts of a title-word graph, obtained in Hyperbolic space and in Spherical
space. The graph has 27 vertices and 50 edges and the vertices correspond to title-words
from papers in the 1999 Graph Drawing conference. The size of a vertex is determined
by its frequency and edges are placed between two vertices if they co-occur in at least
one paper.

a constant curvature and the equations for mapping to and from the tangent
space can be calculated analytically. Each point on a sphere is given a longitude
and latitude. The sphere can then be embedded in 3D Euclidean space by a
simple parameterization. In Fig. 2(b) we show a drawing of a graph obtained in
spherical geometry and displayed in three-dimensional Euclidean space.

Multi-scale Graph Drawing in Non-Euclidean Space: Since we are able
to utilize tangent space mapping to use existing force-directed methods for graph
layouts, we can also generalize the multi-scale method for drawing large graphs
to non-Euclidean spaces. Of the tree stages in the multi-scale method (filtration,
initial placement, and refinement) the only stage that requires further consider-
ation is the initial placement stage.

In the initial placement stage we place each vertex one at a time in the
barycenter of its neighbors. In Euclidean space we simply take the average of
each dimension and place the vertex at that point. For non-Euclidean points
we use the mapping to and from a tangent space. Specifically, we map the non-
Euclidean points that correspond to the location of the neighbors to a tangent
space. From there we are able to calculate the barycenter. We map that back
into the non-Euclidean manifold and place the vertex at that location.

2.6 Graph Editor

There are several ways to experiment with the graphael system. Loading one
of the sample graph files, loading a new file, or creating a new graph. When a
user wants to create a graph manually, they have the option of using a basic
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Fig. 3. A screenshot of the graphael CF-graph.

graph editor that can be accessed from within graphael. The editor is simple,
but useful for users that do not have data to generate a graph from. The graph
editor is especially helpful in the testing of new components, since simple cases
can be modeled easily in the editor. With a point/click/drag user interface,
vertices and edges can be added, deleted, or moved.

3 Control Flow Graph

Here we describe another novel features of graphael, the Control Flow (CF)
graph1. The CF-graph allows the user to put together different combinations
of layout algorithms, projections and visualizations, while offering a visual rep-
resentation of the derived graph’s production process; see Fig. 3. CF-graphs
contain CF-nodes (such as layout algorithms) that act to generate and refine a
derived graph, and CF-edges that represent the channels of input and output,
internally passed between the CF-nodes.

CF-graphs are created by adding new CF-nodes and connecting them with
edges. Once a complete chain of appropriate CF-nodes has been completed, the
“run” button activates all the graph fabricators (described below). Modifying
how an existing CF-graph produces derived graphs can be done by manipulating
the composition of the current CF-graph or by changing the internal properties
of the production units of CF-nodes.

3.1 CF-Nodes

There are three different types of production units: fabricators, embellishers, and
processors. Each of them is briefly described below.

1. Graph Fabricators are graph production units that take no input from other
CF-graph entities. They act as the starting point for the generation of derived

1 Note: For clarity we shall call a Control Flow graph a CF-graph and a graph produced
by a CF-graph a “derived” or “production” graph.
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graphs since are not dependent on a derived graph as input. Many of the
current graph fabricators available in graphael create the most raw form of
a derived graph (i.e., vertex and edge declarations) by reading input files.

2. Graph Embellishers are methods that require a single, derived graph element
as input from within the CF-graph and output a newly augmented, derived
graph. In many cases, graph embellishers are used to add or modify proper-
ties of the derived graph they receive as input. For example, an embellisher
could take a weighted graph as input and produce a weighted graph in which
the color property of the heaviest vertices makes them stand out.

3. Graph Processors are methods in the final stage in any CF-graph, since
they do not pass derived graphs to other production units. These methods
typically output the final derived graph in the form of a picture, or a file.

3.2 Callback Edges

In a CF-graph with normal edges, once a production unit is finished with its
input, the graph is passed to the next unit until it reaches the end of the CF-
graph. However, there are cases when this is not desirable. If we wish, for exam-
ple, to show a graph layout in a series of iterations (as opposed to just the final
product), we would require the use of graphael’s callback edges. These edges
allow the source CF-node to suspend its execution and pass the graph to the
remainder of the CF-graph, starting at the target of the callback edge. Once this
finishes, execution resumes where the source CF-node left off. Using callbacks,
we implemented features such as animation. Specifically, a layout that needs to
iterate over the graph multiple times can suspend itself to let the resulting graph
from each iteration reach the processor and be displayed on the screen. After
the processor finishes, the layout runs the next iteration. Callback edges can be
identified as thick, dotted lines.

3.3 CF-Node Property Management

Whereas the panel in Fig. 3 offers different ways to manipulate the CF-graph,
the individual CF-nodes can be manipulated as well. Recall that one of the two
ways to modify how a derived graph is produced is to change CF-node properties.
While we do allow for customized property managers, we have implemented an
automatic GUI generator to minimize the amount of work required to make ad-
ditions to the graphael library. The GUI generator is implemented using Java’s
reflection capabilities. This allows graphael to dynamically examine methods
and data members of Java classes that have been added to its library. The sys-
tem detects which properties can be modified by looking for a pair of getter and
setter methods that meet certain conditions.

4 Conclusion

The graphael system has been implemented in Java, and is can be used to
draw static graphs and evolving graphs online or offline. It can also be used as
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visualization platform for tools that generate graphs as output. For example, a
database that produces graphs, such as the one described in [5] can be coupled
with graphael to provide visual interaction with the graphs. Our system cur-
rently supports the (graph markup language) file format. Simple modifications
to the standard format accommodate vertex-weights and edge-weights, as well
as timeslice information.
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Abstract. We describe the query and data processing language
QUOGGLES which is particularly designed for the application on graphs.
It uses a pipeline-like technique known from command line processing,
and composes its queries as directed acyclic graphs. The main focus is on
the extensibility and the ease of use. The language permits queries that
select a distinguished subgraph, e.g., the set of all green nodes with de-
gree at least d or the set of edges whose endnodes have a neighbor which
has exactly one neighbor. It is SQL complete, however, it cannot describe
paths of arbitrary length; otherwise NP-hard problems like Hamilton
path could directly be expressed. QUOGGLES also enables the user to con-
catenate queries with algorithms, e.g. with graph drawing algorithms,
which are then applied to the selected subgraph.

1 Introduction

Graphs are frequently used to represent discrete data with objects as nodes and
(binary) relations represented as edges. A relational database can be seen as a
graph with n-ary relations, which can be modelled by hyperedges or by bipartite
graphs. Often, a user has a special view on the data. In terms of graphs this
means a distinguished subgraph, which is described by a collection of nodes,
edges and attributes. This is particularly true for huge graphs such as the WWW
or communication networks, from which the user selects a particular section.

This scenario coincides with the theme of Category C of the 10th Graph
Drawing Contest 2002 [1]. The initiator Joe Marks had posted example graphs
and wanted on-line answers on questions like “what is the largest wheel of green
and blue nodes”. At GD 2002, nobody could answer this question on-line. This
was the starting point for quoggles (“QUeries On Graphs: A Graphical Largely
Extensible System”), a plug-in for the graph visualization toolkit Gravisto de-
veloped at the University of Passau [2]. It is fully described in [3]. Gravisto
associates graph elements with a hierarchy of attributes. These are addressed
by queries and used for further computations like comparisons and sorting. The
query language is capable of simulating relational algebra and SQL. However, it
cannot express transitive closures and the existence of paths of arbitrary length.
QUOGGLES itself is fully graphical and composes its queries in terms of directed
acyclic graphs, which are automatically drawn by a simple algorithm.

Here we give a short description of the language and illustrate its use by
some examples. For details we refer to [3] and [2].

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 465–470, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Description of the Language

The query language of QUOGGLES consists of a set of fundamental operations
which can be combined to form more complex operations. Every operation has
i inputs, p parameters and o outputs. For maximal generality these numbers
can depend on the values of the parameters. The resulting language has the full
power of relational algebra and SQL (the proof can be found in [3]); however it
cannot express paths of arbitrary length.

QUOGGLES is fully graphical. Every operation has a box as graphical repre-
sentation as shown in Fig. 1. The box includes the name of the operation, values
for its parameters and is numbered consecutively in the order of the creation
within the query. It has i incoming lines on the left hand side for the input and
o outgoing lines on the right for the output. These act as connection points to
other boxes.

In the graphical representation, queries are composed from operations as
directed acyclic graphs, combining inputs and outputs of boxes of operations in
an appropriate way, possibly observing intermediate results using Output boxes.
See, e.g., Fig. 2 for an example which is explained later in more detail.

For the evaluation of a query, the pipeline idea is used, which is well known
from Unix command line and batch file processing. QUOGGLES applies and ex-
tends this general approach in information processing to graphs.

The set of graph elements from a graph acts as a source for each query. Data
is processed as it flows through the pipelined operations. Since the notion of one
single linear pipeline is quite restrictive, a directed acyclic graph can be built
instead. It is constructed from operations with any finite number of inputs and
outputs. Data flows along the edges of such a query graph. A query can then
be evaluated using a topological ordering. A graphical user interface helps to
create, change, execute and debug query graphs.

2.1 Basic Operations

In this section we describe a set of basic operations necessary to generate a sensi-
ble range of queries. This includes input operations, filters, general purpose and

Op
(par1, �, parn)... ...

1

2

i o

2
1

Fig. 1. Graphical representations of a general and a sample operation.
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Fig. 2. This query computes the average degree of the nodes of a graph.
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graph specific operations. Every operation receives one element or a collection of
elements as input, checks and transforms the element(s) and outputs its result.
Such elements can be nodes and edges, numbers and strings, e.g., nodes and
edge labels, or tuples of such elements. In the implementation a collection is a
list of Java objects. The following categories of operations are available:

Input Operations. Input boxes have no inputs and are used to create specific
constants, such as text labels or numerical values or access external information
like saved graphs.

Graph Specific Operations. For the navigation through graphs it suffices to
provide an operation that accesses the neighborhood of a graph element and one
that returns associated attribute(s):

The Neighborhood operation accesses elements in the graph theoretical neigh-
borhood from input graph elements. Possible parameter values include neighbors,
incoming or outgoing edges and source or target nodes.

The GetAttributeValue operation is used to retrieve attributed information
from graph elements, such as node and edge identifiers or their labels. Graphical
attributes like shape and size can also be queried.

General Query Operations. Most of the data processed by QUOGGLES is
present as lists of elements. Hence, operations on collections are common. These
include flatten, which converts a nested to a flat collection, reverse, which re-
verses lists and make distinct, which removes duplicates and sort for sorting a list
using a string representation of the objects. The union and intersection boxes
take two input lists and compute the set union and intersection, respectively.

Further general operations use the textual representation of elements in the
input collection, count elements, compute the average, do arithmetic, compar-
isons and boolean operations or check the type of an input. Figure 3 shows the
CompareTwoValues operation that compares its two inputs according to some
specified relation.

There is a special TwoSplitConnector operation that duplicates the input
and thus enables producing queries beyond that of simple linear pipelining.

Since it is not always clear that the sinks of the query graph are the (only)
places that should contribute to the query result, Output boxes specify which
part of the data present somewhere in the query pipeline should contribute to
its result. They can also be used to check intermediate results.

Figure 2 shows an example query. The table on the right shows its output if
the small graph displayed in Fig. 4 is used as input to the query. The data in
the first column is retrieved from the first output box (‘col 1’). It shows a list of

CompareTwoValues
(floating, <=)

3.0

�14�
true

CompareTwoValues
(string, <=)

3.0

�14�
false

Fig. 3. Comparing two inputs using the <= relation and two different orders.
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n2n1

n4

n3

e4
e1

e2
e3

good good

good

bad

Fig. 4. A small graph used as sample input to queries.

all nodes of the graph. The Neighborhood operation produces a list that holds
(lists of) all incident edges of the corresponding nodes. The third columns shows
the sizes of these edge lists in the second column, i.e., the number of incident
edges of each node. The Arithmetic box then computes the average degree of all
nodes of the input graph (‘col 4’). The selection of elements according to some
predicate is the most frequently used operation in database systems. Here, the
Filter operation retrieves those objects from an input collection of arbitrary
objects that meet the condition specified by a predicate subquery. The predicate
can be an arbitrary query. Its output will be interpreted as a boolean value.
Empty collections or the value zero will for example be converted to false.

Figure 5 shows a query that filters all graph elements that have an attribute
called value with value equal to good. The table on the right shows the result for
the example graph displayed in Fig. 4. Since edges do not have such an attribute,
column one displays a “-” for them. Nodes n1, n2, n4 match the criterium (which
can be verified by examining their attribute value in column three).

Result:

Filter

Predicate: GetAttributeValue
(value)

ValueCompare
(string, =, good)

col
2

col
3

GetAttributeValue
(value) n1

n2
n4

good
-

bad
-

col 2col 1

col
1

-

good
good

-

good
good
good

col 3

Fig. 5. Find all nodes from the small graph on the left that have outgoing edges.

To ensure reusability of queries and a reasonable size of queries, it is impor-
tant that any query or part thereof can be saved as a subquery for later use. This
is shown in Fig. 6 where the calculation of the average node degree of a graph is
saved. This subquery can then be used to get all nodes that have a degree larger
than average. The query and the result (‘col 3’) is shown in Fig. 7.

3 Application in Graph Drawing

Good layouts of graphs can often not be achieved by generic graph drawing
algorithms alone. A certain degree of interactivity can be necessary or at least
helpful. However, tweaking algorithms for those special uses can be time con-
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Neighborhood
(inc. Edges)

SizeOfGetGraphElements
(get nodes)

Arithmetic
(average)

SubQuery
(�avg_degree�)

Fig. 6. The query on the left is saved and can later be used in a Subquery box.

Compare2Values
(floating, >)

GetGraphElements
(get nodes)

SubQuery
(�avg_degree�)

Result:

Filter

Predicate: GetProperty
(degree)

col
3

col
2

col
1

11
2

1
0

col 2col 1

n2

col 3

Fig. 7. Using a Subquery box, nodes with high degree (n2 ) can easily be found.

suming or even impossible if third-party programs are used. QUOGGLES enables
the user to layout different parts of the graph differently.

Subgraphs that should be drawn in some special way can be retrieved by using
queries. Then these sets can be further processed by applying layout algorithms
on them. This renders it extremely easy to, e.g., quickly test which type of
centrality best serves to find a good drawing. Nodes with a high centrality value
can be drawn, e.g., more central than others.

Figure 8 shows a generic example query that finds a certain set of ‘important’
nodes. This might be done, e.g., by using the query shown in Fig. 7 as a subquery.
This set is drawn using a spring embedder algorithm (‘spring’) with a small value
as parameter (‘10’) indicating that nodes will be close together. All other nodes
(retrieved using the set minus operation) are drawn using an algorithm that
places nodes on a circle with a rather large radius (‘75’). The algorithms directly
work on the data structure. The result of the query (as specified by the circular
box titled ‘col 1’) is the set of special nodes. This helps to manually adjust the
relative placement of the two layouted subgraphs. This query has been applied
to a random placement of nodes of a small graph producing the layout shown in
Fig. 8.

Algorithm
(circle, 75)

Algorithm
(spring, 10)

ListOperation
(minus)

SubQuery
(�importantGraph�)

col
1

Fig. 8. A query used to apply two layout algorithms to different parts of the graph.



470 Paul Holleis and Franz J. Brandenburg

4 Conclusion

The QUOGGLES system is an implementation of a query language specifically
designed to retrieve information from graphs. It combines general and graph
specific operations using an extended pipeline principle. It can been shown that
the system is relational complete and even provides similar functionality as SQL
92. An intuitive user interface is provided. Its extensibility renders it especially
useful for semi-automatic graph processing. As an example, we showed how to
apply its feature to include algorithms in query processing to address layouting
and graph drawing problems. Fig. 9 shows a screen dump of the system.

Fig. 9. A screen dump of Gravisto with an example graph and the QUOGGLES system
after executing the introductory query: “Get the set of edges whose endnodes have a
neighbor which has exactly one neighbor”.

References

1. Brandenburg, F.J.: Graph-drawing contest report. Proceedings Graph Drawing
2002, LNCS 2528 (2002) 376–379

2. University of Passau: Gravisto. http://www.gravisto.org/ (2002)
3. Holleis, P.: Design and implementation of an extensible query language on graphs.

Diploma thesis (2004)



Visualisation of Large and Complex Networks
Using PolyPlane�

Seok-Hee Hong1 and Tom Murtagh2

1 National ICT Australia; School of Information Technologies,
University of Sydney, Australia

shhong@it.usyd.edu.au
2 School of Information Technologies,

University of Sydney, Australia
tfm@it.usyd.edu.au

Abstract. This paper discusses a new method for visualisation of large
and complex networks in three dimensions. In particular, we focus on
visualising the core tree structure of the large and complex network.
The algorithm uses the concept of subplanes, where a set of subtrees
is laid out. The subplanes are defined using regular polytopes for easy
navigation. The algorithm can be implemented to run in linear time. We
implemented the algorithm and the experimental results show that it
produces nice layouts of large trees with up to ten thousand nodes. We
further discuss how to extend this method for more general case.

1 Introduction

Recent technological advances produce a lot of data, and have led to many
large and complex network models in many domains; examples include social
networks, biological networks and webgraphs.

Visualization can be an effective tool for analysis of such networks. Good
visualisation reveals the hidden structure of the networks and amplifies human
understanding, thus leading to new insights, new findings and possible predic-
tion.

However, recent advances in technology have made available data on net-
works with millions of nodes; visualization of such large and complex networks
is very challenging. Current methods exhibit at least one the following problems:
poor scalability, lack of good navigation methods, poor integration with analysis
methods, and lack of good 3D visualisation.

In this paper, we present a new method for visualisation of large and complex
networks in three dimensions. In particular, we focus on visualising the core tree
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structure of the large and complex network to reduce both cognitive overload
and visual complexity.

The tree is one of the most common relational structure. Many applications
can be modeled as trees. Examples include family trees, hierarchical informa-
tion, BFS tree of WWW graphs and phylogenetic trees. There are many layout
methods for trees in two and three dimensions. However, most existing methods
focus on two dimensions. Layout methods for trees in three dimensions are not
well investigated.

We present a new drawing algorithm for trees in three dimensions. The al-
gorithm uses the concept of the subplanes, where a set of subtrees are laid out.
The main reason to use subplanes is to reduce visual complexity and for easy
navigation. Note that 3D visualisation may suffer from occlusion and navigation
problem. However, using subplanes defined by regular polytopes, the drawing is
easy to navigate. Further, the algorithm can be implemented to run in linear
time.

We implemented the algorithm and the experimental results show that it
produces nice layouts of large trees with up to ten thousands nodes. Figure 1(a)
shows a drawing of a tree with 6929 nodes using our algorithm. Here, we use the
Icosahedron polytope to define 30 subplanes.

z

y

x

θ

(a) (b)

Fig. 1. (a) Example output of the algorithm (b) example of a subplane.

This paper is organized as follows. In Section 2, we review previous drawing
algorithms for trees. The main results of the paper is in Section 3: here we
present a new drawing algorithm for drawing trees in three dimensions. An
implementation and experimental results are described in Section 4. In Section 5,
we discuss how to extend this method for more general case.

2 Related Work

There are many tree drawing algorithms and systems are available [2, 3, 7–9,
11–13]. For a survey, see [5]. These can be classified as 2D visualisation [2, 3,
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7, 8, 11, 12] or 3D visualisation [9, 13], rooted tree [7, 12, 13] or free (unrooted)
tree [3, 8, 11], binary tree [12] or general tree [3, 7, 8, 11, 13], and their aesthetics
or optimization goal, such as efficient use of spaces [7, 11].

First we consider 2D tree drawing algorithms. The radial drawing algorithm
is suitable for drawing free trees in two dimensions [3]. It uses concentric circles
and then recursively draw each subtree in a wedge of the circle. However, there
is some unused space in order to guarantee no edge crossings. For rooted binary
trees, one can use Tidier Drawing algorithm [12].

Treemaps use a space filling technique for the visualisation of the tree in
two dimensions [7]. It uses all available space, but it may be difficult to under-
stand the relationship between the nodes[11]. The hyperbolic tree browser uses
hyperbolic geometry for layout in two dimensions and classical focus+context
techniques [8]. It produces nice layouts and can be used to visualise large hier-
archies, up to a thousand or so nodes.

Recently, the space optimization tree was presented for viewing very large
hierarchies in two dimensions [11]. The method uses the space in an optimized
way and can display trees with up to 55000 nodes.

In three dimensions, cone trees are the best known [13]. They allow fo-
cus+context view and provide rotation operations. However, it uses only the
surface of the cone and there is some unused space in 3D. They are able to dis-
play trees with thousands of nodes. The H3 method uses hyperbolic geometry
in three dimensions [9]. It produces a three dimensional layout for the spanning
trees of large directed graphs, and also provides focus+context view.

However, in general, 3D drawing algorithms for trees are not well investigated
compared to the methods in two dimensions. In this paper, we present a new
drawing algorithm for trees in three dimensions.

3 The PolyPlane Algorithm

The algorithm uses the concept of subplanes, which are defined by regular poly-
topes. Roughly speaking, we choose the root of the tree and then partition the
subtrees of the root. Then we assign each set of subtrees to a subplane and we
draw each set on the subplane. An example of a subplane is shown in Figure 1(b).

The algorithm described in this paper treats the input tree as a rooted tree.
The deletion of the root results in subtrees T1, T2, . . . , Tm. The drawing algorithm
draws the root of T at the origin o, and distributes the subtrees T1, T2, . . . , Tm

onto disjoint subplanes Pj , which are equally spaced around the z axis.
The algorithm uses a two dimensional drawing algorithm, Draw2D, as a sub-

routine. This algorithm draws a rooted tree in a subplane. For the purposes of
this paper there are no specific requirements for Draw2D; there are many linear
time algorithms available (see [2]). Thus, the main algorithm can be described
as follows.

Algorithm PolyPlane
1. Compute the core tree structure T of a graph G.
2. Choose the root r of the tree T .
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3. Choose the regular polytope which defines the subplanes. Let j be the num-
ber of subplanes defined from the regular polytope.

4. Choose a partitioning S = S1 ∪ S2 ∪ . . . ∪ Sj of the set {Ti : 1 ≤ i ≤ m} of
subtrees rooted at r.

5. For all i, 1 ≤ i ≤ j, consider the subtrees in Si to be a single tree T ′
i with a

common root r. Use Draw2D to draw T ′
i in the subplane Pi.

It is clear that the drawings in the subplanes have no edge crossings. Further,
as long as we use a linear time algorithm Draw2D, and compute the partitioning
at step 3 in linear time, the whole algorithm takes linear time.

Note that the algorithm is very flexible, as there are many steps at which an
arbitrary choice can be made at each step. We now explain each step in details.

3.1 Computation of the Core Tree Structure

We first discuss how to compute the core tree structure of the large and complex
networks. One can use a spanning tree, Steiner tree, BFS (Breath-First-Search)
tree, or DFS (Depth-First-Search) tree based on the application domain.

For example, for weighted graphs, one may use the maximum weight spanning
tree or minimum weight spanning trees. These can be computed in polynomial
time. For the simplest, one can use a BFS or DFS Tree which can be computed
in linear time.

3.2 Choice of the Root Node

The choice of the root may depend on the application domain. For example, the
input tree may already have a designated root from hierarchy.

For free (unrooted) trees, one may choose the center of the tree as root. Every
tree T has a center c, that is, a vertex such that the maximum distance from c
to the leaves of the tree is minimized. Further it can be found in linear time.

In practice, one may choose the (domain dependent) most important vertex
as the root. For example, highest degree vertex based on degree centrality, or
betweenness centrality in social network analysis.

3.3 Choice of the Regular Polytopes

We use regular polytopes to define subplanes. The main reason to use regular
polytopes is to provide an easy navigation method. There are many regular
polytopes. However, all are variations on just three types: pyramids, prisms, and
the Platonic solids. We now explain each polytope in detail.

Regular Pyramid A regular pyramid is a pyramid with a regular g-gon as
its base. There is only one g-fold rotation axis, called the vertical rotation axis,
passing through the apex and the center of its base. The axis defines the g-fold
rotational symmetries of the regular pyramid polytope. An example is shown in
Figure 2(a). Also, there are g reflection planes, called vertical reflection planes,
each containing the principal axis.
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Fig. 2. (a) pyramid polytope (b) subplanes of pyramid polytope (c) prism polytope
and subplanes.

We can define the g reflection planes, each of which is a rotation of 2πi/g,
i = 0, 1, . . . , g − 1. The basic idea is to construct a regular pyramid drawing of
a tree by placing the center of the tree at the apex of the pyramid, and the g
partitioned subtrees on the subplanes that contain the side edges of the pyramid.
An example is illustrated in Figure 2(b).

Regular Prism A regular prism has a regular g-gon as its top and bottom
face. There are g +1 rotation axes and they can be divided into two classes. The
first one, called the principal axis or vertical rotation axis, is a g-fold rotation
axis which passes through the centers of the two g-gon faces. The second class,
called secondary axes or horizontal rotation axes, consists of g 2-fold rotation
axes which lie in a plane perpendicular to the principal axis. Also, there are g
reflection planes, called vertical reflection planes, each containing the principal
axis, and another reflection plane perpendicular to the principal axis, called
horizontal reflection. Figure 2(c) shows the rotation axes in the prism polytope.

We can define the 2g reflection planes, each of which is a rotation of 2πi/g,
i = 0, 1, . . . , g − 1 in both directions of z coordinates. The basic idea is to
construct a regular prism drawing of a tree by placing the center of the tree
at the centroid of a prism, and 2g partitioned subtrees on the subplanes that
contain the side edges of the prism.

An example is illustrated in Figure 3. In fact, there are two variations. One
can define 2g subplanes as illustrated in Figure 3(a), or 3g subplanes as in
Figure 3(b), which include g subplanes on the xy plane.

The Platonic Solids Basically, we use the rotation axes of the regular poly-
topes to define the subplanes. Using the regular g-gon pyramid polytope, we can
define g subplanes, and using the regular g-gon prism polytope, we can define
either 2g or 3g subplanes. For the Platonic solids, we can define more subplanes,
as there are more rotation axes.

The tetrahedron has four 3-fold rotation axes and three 2-fold rotation axes.
It has 12 rotational symmetries and 24 symmetries in total. The cube has three
4-fold rotation axes, four 3-fold axes, and six 2-fold rotation axes. It has 24
rotational symmetries and a full symmetry group of size 48. The icosahedron
has six 5-fold rotation axes, ten 3-fold rotation axes, and fifteen 2-fold rotation
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Fig. 3. Example of the subplanes of the regular prism polytope.

axes. It has 60 rotational symmetries and a full symmetry group of size 120.
Note that the cube and the octahedron are dual solids, and the dodecahedron
and the icosahedron are dual.

As an example, we consider the case of the cube. We can define 24 subplanes
using the cube. The cube has three 4-fold axes, and these can define six half-
axes. We can use each of the half-axis, to define 4-subplanes. This means that
we can define 24 subplanes in total.

Similarly, we can define 12 subplanes using the tetrahedron, 3 subplanes each
around four 3-fold axes. We can also define 60 subplanes using the icosahedron,
as we can define 5 subplanes each around six 5-fold axes and these six 5-fold
axes define 12 half-axes.

3.4 The Partitioning Algorithm

Once we have chosen the regular polytope and fixed the number g of the sub-
planes, we then need to divide the subtrees into g subsets.

For this step, we need to find a balanced partitioning of the subtrees. This
problem can be formulated as a traditional bin-packing problem. Note that the
bin-packing problem is NP-hard [4]. However, many heuristics and approxima-
tion algorithms are available [1, 4]. For our implementation, we use first-fit and
best-fit [4]. One main advantage for using these heuristics is that they run in
linear time. One may use other well-known approximation algorithms for more
sophisticated balancing. For details, see [1].

Note that in many applications, the partitioning may be given based on
clustering or analysis of the large and complex networks. For example, in social
network analysis, clustering can be defined using centrality or status measure.
In biological networks, clustering can be defined by users or functionality.

3.5 The 2D Drawing Algorithm

Once we have chosen the regular polytope and computed a partitioning of the
subtrees into g subsets, we then choose a 2D drawing algorithm for trees to draw
each subset in a subplane. Formally, a subplane can be defined as a maximal
simply connected open subset of a reflection plane that does not intersect any
other reflection plane.
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Many linear time algorithms are available to implement Draw2D(see [2]). For
our implementation, we choose the radial drawing algorithm [3] to create the
drawings in the subplanes as wedges. To guarantee no edge crossings, we allow
a small space between each pair of subplanes.

4 Implementation and Experimental Results

We implemented the new layout algorithm as a part of the system 3DTree-
Draw [10]. In fact, the system 3DTreeDraw implements two 3D tree drawing
algorithms.

The first one is a symmetric drawing algorithm [6], which finds the maximum
number of symmetries in a tree and then constructs a maximally symmetric
drawing of trees in three dimensions. The second algorithm is the algorithm
PolyPlane, which is presented in this paper.

The system also provides simple zoom in and zoom out functions, as well as
rotation of the 3D drawing. This rotation function is sufficient for navigation,
as the subplanes were defined using regular polytopes which make the drawing
easy to navigate. It also provides a function that you can save the result as a
bmp file.

We use two different data sets, regular data sets and real world data sets from
software engineering, webgraph and social network domains. We now present
experimental results in details.

Firstly, we use randomly generated regular data sets, from a few hundred up
to a hundred thousands nodes. The experimental results show that it produces
aesthetically pleasing drawings of trees with up to ten thousands nodes. For the
regular data sets, the drawings produce balanced appearance. Figure 4(a) shows
a tree with 8613 nodes, using a regular 3-gon prism polytope with 6 subplanes.

One can define more subplanes based on variations of the Platonic solids. For
example, in Figure 1, we can define three planes in each of the triangular shape
space recursively. This improves resolution. However, we observed that too many
planes make navigation a bit difficult. See Figure 4 (b) for an example. The tree
has 483 nodes and it was drawn using the icosahedron polytopes.

(a) (b) (c)

Fig. 4. (a) tree with 8613 nodes drawn with prism polytope (6 subplanes) (b) tree with
483 nodes drawn with the icosahedron polytope (c) tree with 6929 nodes drawn with
the cube and the octahedron polytopes (36 subplanes).
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(a) (b) (c)

Fig. 5. Trees drawn the dodecahedron and the icosahedron polytopes (90 subplanes)
(a) tree with 22001 nodes (b) tree with 59732 nodes (c) tree with 139681 nodes.

Figure 4(c) shows a tree with 6929 nodes, using a variation of the cube and
the octahedron polytopes with 36 subplanes. Figure 5(a) shows a tree with 22001
nodes, using a variation of the dodecahedron and the icosahedron polytopes with
90 subplanes. Figure 5(b) shows a tree with 59732 nodes, using a variation of
the dodecahedron and the icosahedron polytopes with 90 subplanes. Figure 5(c)
shows a tree with 139681 nodes, using a variation of the dodecahedron and the
icosahedron polytopes with 90 subplanes. Figure 6(a) shows a tree with 6929
nodes, using the dodecahedron polytope with 30 subplanes.

Finally, we apply our algorithm to visualise large and complex network from
real world data. Figure 6(b) shows a home directory with 1385 nodes, using the
icosahedron polytope with 30 subplanes.

Figure 6(c) shows a BFS tree of the School of IT, University of Sydney
webgraph, with 4485 nodes, using the cube polytope with 12 subplanes. This
is rooted at the main home page, and the core tree structure is a BFS tree.
Figure 7(a) shows a tree of depth-limited search of the it.usyd.edu.au website
with 146716 nodes, using a variation of the dodecahedron polytope with 30
subplanes.

(a) (b) (c)

Fig. 6. (a) tree with 6929 nodes drawn with the dodecahedron polytope (30 subplanes)
(b) a home directory with 1385 nodes drawn with the icosahedron polytope (30 sub-
planes) (c) BFS tree of School of IT website with 4485 nodes drawn with the cube
polytope (12 subplanes).
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(a) (b) (c)

Fig. 7. (a) tree of depth-limited search of website with 146716 nodes drawn with the
dodecahedron polytope (30 subplanes) (b) Erdos Number visualisation using the icosa-
hedron polytope (30 subplanes) (c) Kevin Bacon number visualisation using the prism.

(a) (b)

Fig. 8. Kevin Bacon number visualisations using (a) the icosahedron polytope with 30
subplanes (b) multiple planes defined by concentric cones.

Figure 7(b) shows Erdos number visualisation of mathematician collabora-
tion network. We root at Erdos and compute a BFS tree. We then use the
icosahedron polytope with 30 subplanes. Note that the current database keeps
a record up to Erdos number 2, hence it displays a balanced appearance.

Figure 7(c), 8(a), and 8(b) show “Kevin Bacon number visualisations” of
Hollywood movie actor collaboration network. We root at Kevin Bacon and then
compute a BFS tree to visualise Kevin Bacon Number. We use three different
polytopes: Figure 7(c) uses the prism polytope, Figure 8(a) uses the icosahedron
polytope with 30 subplanes, and Figure 8(b) uses a variation of the PolyPlane
algorithm with multiple planes defined by concentric cones.

In summary PolyPlane produces nice layouts. In particular, the effective use
of subplanes reduces both visual and cognitive complexity and provides easy
navigation.

5 Conclusion and Current Work

In this paper, we present a simple method to visualise the core tree structure of a
large and complex network in three dimensions. The algorithm uses the concept
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of subplanes which are defined using regular polytopes. The algorithm is easy to
implement and runs in linear time.

The algorithm is flexible, as one can choose the regular polytope and the
2D drawing algorithm for their own purpose. For example, for rooted trees, the
pyramid polytope is more suitable. For dense trees with small diameter, the
prism polytope or one of the Platonic solids is preferred. To improve resolution,
one can define more subplanes using the method described in Section 4. However,
there is a trade off between the number of planes and the navigation problem.

In summary, PolyPlane has the following advantages. It is flexible, easy to
implement and can run in linear time. It can scale very well and is suitable for
visualising a tree with high degree nodes, short diameter, or short average path
length.

Our current work is to implement good navigation methods for PolyPlane
and extend the method to cover more general cases. That is, to draw the whole
network using multiple planes.

We consider many different variations as extensions. One is to use two parallel
planes, to draw an important subgraph of the network on the top plane and draw
the remaining subgraph of the network in the bottom plane. The important
subgraph can be a set of vertices, a set of edges, or a small subgraph of the
network. Note that this method can be generalised using up to k planes and a
method to draw hierarchical graphs in three dimensions.

Another extension is to extend this multi plane idea to draw clustered graphs
in three dimensions. Both involve some fundamental problems that need to be
solved.
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Abstract. We initiate a new problem of automatic metro map layout. In
general, a metro map consists of a set of lines which have intersections
or overlaps. We define a set of aesthetic criteria for good metro map
layouts and present a method to produce such layouts automatically.
Our method uses a variation of the spring algorithm with a suitable
preprocessing step. The experimental results with real world data sets
show that our method produces good metro map layouts quickly.

1 Introduction

A metro map is a simple example of a geometric network that appears in our
daily life. An example of such, the Sydney Cityrail NSW train network, is shown
in Figure 1 (a) [13]. Furthermore, the metro map metaphor has been used suc-
cessfully for visualising abstract information, such as the “train of thought” net-
work in Figure 1 (b) [8], website networks [9], and networks of related books in
Figure 5 (a) [14].

In general, a metro map can be modeled as a graph, and automatic visualisa-
tion of graphs has received a great deal of interest from visualisation researchers
over the past 10 years. However, automatic visualisation of metro maps is a
very challenging problem, as already observed by Beck [4] and Tufte [12]. Note
that existing metro maps are produced manually. Hence, it would be interesting
to know how far automatic visualisation methods can go towards achieving the
quality of the hand drawn pictures.

In this paper, we address this new problem of metro map layout. We define
a set of aesthetic criteria for good metro map layouts and present a method to
produce such layouts automatically. Our method uses a variation of the spring
algorithm with a suitable preprocessing step. The experimental results with real
world data sets show that our method produces good metro map layouts quickly.

In the next section, we define the problem. We present our metro map layout
methods in Section 3 and discuss metro map labeling methods in Section 4. In
Section 5, we present the experimental results and Section 6 concludes.
� A preliminary version of this paper was published in [5]. For a version of this paper
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Sydney Suburban Lines

Intercity Lines

Eastern Suburbs & Illawarra Line
(Waterfall / Cronulla - Bondi Junction)

South Coast Line
(Bomaderry (Nowra) / Port Kembla - Bondi Junction)

Bankstown Line
(Liverpool / Lidcombe - City via Bankstown)

Inner West Line
(Liverpool / Bankstown - City via Regents Park)

Cumberland Line
(Campbelltown - Blacktown)

Airport & East Hills Line
(Macarthur - City via Airport / Sydenham)

South Line
(Macarthur - City via Granville)

Southern Highlands Line
(Goulburn - Central)

North Shore Line
(Berowra - Parramatta via Central)

Western Line
(Emu Plains / Richmond - North Sydney)

Blue Mountains Line
(Lithgow - North Sydney)

Carlingford Line
(Carlingford - Clyde)

Northern Line
(Berowra - North Sydney via Strathfield)

Newcastle & Central Coast Line
(Newcastle - Central)

Hunter Line
(Scone / Dungog - Newcastle)

Proposed line

Bus / Coach Connections

Interchange with other lines 

Suburban / Intercity train 
connections

Bus stop / Interchange

Ferry wharf

Light rail interchange

Commuter car park

Wheelchair Access 
(This station staffed from 
first train service to last train 
service)

Wheelchair Access
(This station not staffed from
first train service to last train 
service)

CityRail Network

7 ��������� ����
��� +������ 899:

(a) (b)

Fig. 1. (a) Sydney Cityrail NSW network (b) “Train of thought” network.

2 The Metro Map Layout Problem

A metro map graph consists of a graph G and a set of paths that cover all the
vertices and edges of G. Some vertices and edges may appear in more than one
path, but each occurs in at least one path. See Figure 2 (a) for an example.

(a) (b) (c)

Fig. 2. (a) Example of a metro map graph (b) Simplified metro map graph (c) Eight
label positions for each vertex.

A layout of a metro map consists of a drawing of the graph. Thus, the main
problem of this paper can be formally defined as follows.

The Metro Map Layout Problem
Input: a metro map graph G with a set of lines, each being a sequence
of stations.
Output: a good layout L of G.

We now need a definition of a good layout of a metro map graph. For this purpose,
we have studied existing hand-drawn metro maps from all over the world. For
example, a detailed study of the London metro map by Beck can be found in [4].
From these manually produced layouts, we derive the following criteria for a
good metro map layout.
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C1: Each line drawn as straight as possible.
C2: No edge crossings.
C3: No overlapping of labels.
C4: Lines mostly drawn horizontally or vertically, with some at 45 de-
grees.
C5: Each line drawn with unique color.

We have designed layout methods based on these criteria. It should be noted
that producing layouts conforming to exact geometry or topology is not the
primary aim of our project. This is partly because, in general, the metro map
metaphor can be used for visualisation of abstract information which has no
fixed geometry. Another reason is that the most common usage of the metro
map is for navigation, that is, to find out how to get to a specific destination.
For example, consider the situation where a visitor to London (who does not
know the exact geometry of London) uses the metro map for navigation.

3 The Layout Methods

We have tried five different layout methods using various combinations of spring
algorithms. The tools that we use are GEM [2], a modified version of PrEd [1]
and a magnetic spring algorithm [11]. In summary, each method can be briefly
described as follows.

1. Method 1: The GEM algorithm.
2. Method 2: Simplify the metro map graph using a preprocessing step de-

scribed in Section 3.1 and use the GEM algorithm with edge weight (details
are explained later).

3. Method 3: Simplify the metro map graph and use the GEM algorithm with-
out edge weight. Then we use the modified PrEd algorithm with edge weight.

4. Method 4: Simplify the metro map graph and use the GEM algorithm with-
out edge weight. Then we use the modified PrEd algorithm with edge weight,
plus orthogonal magnetic spring algorithm.

5. Method 5: Simplify the metro map graph and use the GEM algorithm with-
out edge weight. Then we use the modified PrEd algorithm with edge weight,
orthogonal magnetic spring algorithm, plus 45 degree magnetic field forces.

We now describe each method in detail. Method 1 simply uses GEM, a generic
spring embedder. We use Method 1 mainly as a baseline for comparison.

3.1 Method 2

First, we explain the preprocessing step. Note that there are many vertices of
degree two in the metro map graph G. However, they do not contribute to the
embedding, that is the overall topology, of the graph. This motivates us to remove
these vertices and define a simplified graph G′. The resulting graph only contains
intersection vertices and vertices with degree one. For example, the metro map
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graph in Figure 2 (a) can be simplified as in Figure 2 (b). Note that special care
is needed to handle self loop and multiple edge cases.

After drawing the simplified graph G′, we need to reinsert those removed
vertices to get a layout of G. This requires space; hence we assign edge weights,
according to the number of removed vertices, to edges of G′ and produce a
layout of G′ which reflects those edge weights. Thus, Method 2 can be described
as follows.

Method 2
1. Compute a simplified metro map graph G′ by removing degree two vertices

from the metro map graph G.
2. Produce a layout L′ of G′ using the GEM algorithm with edges weighted

according to the number of vertices removed at Step 1.
3. Produce a layout L of G by reinserting the removed vertices, spaced evenly

along the edges in the layout L′.

3.2 Method 3

Method 3 uses the preprocessing step, the GEM algorithm and the PrEd algo-
rithm [1]. The PrEd algorithm is a special force directed method that preserves
the topology of its input layout. For our purpose, we modified the PrEd algo-
rithm to take into account edge weights.

In our modification, the x-components of the attraction force F a(u, v) and
the repulsion force F r(u, v) between two vertices u and v are defined as follows:

F a
x (u, v) =

d(u, v)
δ(u, v)

(x(v) − x(u)), F r
x (u, v) =

−δ(u, v)2

d(u, v)2
(x(v) − x(u)) (1)

where x(u) and x(v) are the x coordinates of vertices u and v respectively, d(u, v)
is the distance between vertices u and v, and δ(u, v) is the ideal distance between
the two vertices defined as δ(u, v) = L×min(W, weight(u, v))2, where L, W are
positive constants and weight(u, v) is the weight of the edge between u and v.
In the case of multiple edges between u and v, the maximum weight of that set
of edges is used. The y-components F ay(u, v) and F r

y (u, v) of the force vectors
are computed similarly.

Node-edge repulsion forces are computed in an identical manner to the orig-
inal PrEd algorithm, that is:

F e
x (v, (a, b)) = − (γ − d(v, iv))2

d(v, iv)
(x(iv)− x(v)) (2)

if iv ∈ (a, b), d(v, iv) < γ, otherwise F e
x (v, (a, b)) = 0.

As in the PrEd algorithm, the total force acting on a vertex v is calculated
by summing all attraction and repulsion forces on that vertex, that is:

Fx(v) =
∑

(u,v)∈E

F a
x (u, v) +

∑

u∈V

F r
x (u, v)

+
∑

(a,b)∈E

F e
x(v, (a, b))−

∑

u,w∈V,(v,w)∈E

F e
x (u, (v, w)) (3)
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We now describe Method 3.

Method 3
1. Compute a simplified metro map graph G′ by removing degree two vertices

from the metro map graph G.
2. Produce an initial layout L′ of G′ using the GEM algorithm (with no edge

weights).
3. Produce a better layout L′′ of G′ using the PrEd algorithm, modified to

include edge weights.
4. Produce a layout L of G by reinserting the removed vertices, spaced evenly

along the edges in the layout L′′.

3.3 Method 4

Method 4 uses the preprocessing step, GEM and PrEd with orthogonal magnetic
springs, that is, with horizontal and vertical aligning forces.

Forces are calculated as for Method 3, but with the addition of magnetic
field forces acting on each edge. Equal and opposite forces are applied to each
vertex of an edge to attempt to align that edge with a horizontally or vertically
directed vector [11].

The magnitude of a force from an individual force field vector on the edge
connecting vertices u and v is determined by a similar calculation to that for a
magnetic spring:

Fm(u, v) = cmbd(u, v)αθβ (4)

where b represents the strength of the magnetic field, θ is the angle between the
edge (u, v) and the magnetic force vector, and cm, α, β > 0 are model-tuning
constants.

Four force field vectors are used - left, right, up and down directed vectors.
At any instant only a single magnetic force is applied to a given edge. The
magnitude of the force applied is calculated according to the above equation for
the force field vector to which the edge has the lowest angle θ. The direction
of the force applied is perpendicular to the direction of the edge. To effect the
desired rotational force on the edge, a force of magnitude Fm(u, v) is applied
to one vertex of the edge and a force of magnitude −Fm(u, v) is applied to the
other.

With the addition of the magnetic field, the total force applied to a vertex v
becomes:

Fx(v) =
∑

(u,v)∈E

F a
x (u, v) +

∑

u∈V

F r
x (u, v) +

∑

(a,b)∈E

F e
x(v, (a, b)) (5)

−
∑

u,w∈V,(v,w)∈E

F e
x (u, (v, w)) +

∑

(u,v)∈E

Fm
x (u, v)

Method 4 can be described similarly to Method 3, except at Step 3: Produce
a better layout L′′ of G′ using the PrEd algorithm, modified to include edge
weights and orthogonal magnetic field forces.
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3.4 Method 5

Method 5 uses the preprocessing step, the GEM algorithm and the PrEd algo-
rithm with orthogonal magnetic springs and 45 degree magnetic forces. Forces
are calculated as for Method 4, but with the addition of four diagonal magnetic
force field vectors.

Vectors running bottom-left to top-right, bottom-right to top-left, top-right
to bottom-left and top-left to bottom-right are added to the set of magnetic field
forces used. Magnetic field forces are calculated as described for Method 4, and
the equation for the total force acting on a vertex v does not change.

Method 5 can be described similarly to Method 3, except at Step 3: Produce
a better layout L′′ of G′ using the PrEd algorithm, modified to include edge
weights and orthogonal magnetic field forces and 45 degree magnetic forces.

Note that the production of a metro map layout which preserves geographical
constraints can be achieved with a small modification. Instead of using GEM at
Step 2, we can assign real geographical coordinates to vertices according to the
real world latitude and longitude of their associated train stations. This ensures
that the geographical embedding of the graph remains unchanged throughout
the layout process. As a result, the relative ordering of edges and their crossings
are preserved.

4 Metro Map Labeling

The second part of this project is to produce a good labeling for metro map
layout. We use a well known combinatorial approach for labeling map features.
In this approach, a predefined set of label positions is assigned to every feature
and a subset of these positions is chosen for producing an overlap-free label
placement.

The first step of the approach is to specify the predefined label positions. We
define an eight position model, orthogonal and diagonal, for metro map labels as
illustrated in Figure 2 (c). Note that the labeling of other types of maps typically
uses only a four position model.

The next step is to construct a conflict graph that describes all overlaps be-
tween label positions. The conflict graph has a vertex for every label position,
and an edge linking every pair of label positions that overlap in the map. More-
over, the set of label positions assigned to each feature forms a clique in the
graph. Each vertex can also have a cost value indicating the preference of using
its associated label position on the map.

A labeling solution is then generated by computing the maximum indepen-
dent set with minimum cost of the conflict graph. If a vertex is included in the
independent set then its associated label position is used for label placement.
Features which have no label positions appearing in the set are left unlabeled.
Note that the maximum independent set represents label positions that do no
overlap.

We have labeled the metro maps using the LabelHints system with eight po-
sition model. LabelHints implements the automatic approach described above,
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and offers several other tools for interactively exploring map labeling solutions [7].
It uses a simulated annealing algorithm and a greedy heuristic for producing an
initial labeling. Whenever the users are not satisfied with the computer-generated
result, they can improve the solution by directly changing the conflict graph, re-
executing the algorithms, and/or modifying the pre-computed independent set.
Such interactions allow the users to include important domain knowledge that
was not considered in the automatic process.

Through experiments done with the system and in studies of other metro
maps we observed that labels with diagonal orientation (45 degrees) are visually
more pleasing. We have, therefore, decided to use mostly this orientation in our
layouts.

5 Implementation and Experimental Results

The layout algorithms were implemented as a plugin to jjGraph [3]. The tests
were executed on a single processor 3.0GHz Pentium 4 machine with 1GB of
RAM, and the code was run under the Sun Microsystems Java(TM) 2 Runtime
Environment, Standard Edition.

Metro map data is stored in a custom text file format describing the sequence
of stations along each line in the network. These files are read by the metro map
plugin, which then lays out the network and displays the resulting graph layout
in jjGraph. jjGraph allows the user to navigate and modify this graph layout,
as well as providing save and image export functionality. The metro map plugin
was later made to export a complete layout to another format to be loaded into
LabelHints [7].

We used real world data sets with several hundred vertices. Let G = (V, E)
be the original metro map graph and G′ = (V ′, E′) be the reduced metro map
graph. Details of the data sets are as follows. Sydney: |V | = 319, |E| = 897, |V ′| =
41, |E′| = 178, Barcelona: |V | = 101, |E| = 111, |V ′| = 22, |E′| = 32, Tokyo:
|V | = 224, |E| = 292, |V ′| = 62, |E′| = 122, London: |V | = 271, |E| = 745, |V ′| =
92, |E′| = 317, Train of thought network: |V | = 76, |E| = 120, |V ′| = 36, |E′| =
67, O’Reilly book network: |V | = 116, |E| = 137, |V ′| = 44, |E′| = 65.

In summary, the results are comparable to hand drawn metro maps. Our
method produces a good metro map layout very quickly. First, we present results
of the Sydney Cityrail network. The methods gradually improve both in terms
of the running time and the quality of the layout. Details of the running time of
each method are as follows. Method 1: 12, Method 2: 0.6, Method 3: 1.9, Method
4: 2.1, and Method 5: 2.3 seconds.

Note that Method 2 significantly reduces the running time over Method 1.
Methods 3, 4 and 5 take slightly longer than Method 2, due to use of two spring
algorithms; however, they are still significantly faster than Method 1.

Each method’s results for Cityrail are illustrated in Figures 3 and 4. Note
that each successive Figure improves over the previous one; and Method 5 is
clearly the best. It satisfies most of the criteria that we wanted to achieve.

Since Method 5 produces the best result, we chose this layout for labeling.
The results for the Barcelona, Sydney Cityrail NSW, Tokyo and London metro
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(a) (b) (c)

Fig. 3. Sydney Cityrail NSW network produced by (a) method 1 (b) method 2 (c)
method 3.

(a) (b)

Fig. 4. Sydney Cityrail NSW network produced by (a) method 4 (b) method 5.

map layouts are shown in Figures 5 (b), 7 (a), 8 (a) and 8 (b) respectively. The
running times are: Barcelona: 0.2, Sydney Cityrail NSW: 2.3, Tokyo: 9.2, and
London: 22 seconds. Note that London is the most complex of these networks.

Figure 6 shows two examples of metro map metaphor visualisation; the train
of thought network and the book network. Figure 7 (b) shows an example of
the Sydney Cityrail NSW network with fixed embedding. The running times are:
Sydney: 7.6, Train of thought: 3.3, and O’Reilly book network: 3.8 seconds.
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Fig. 5. (a) O’Reilly book network (b) Barcelona city metro map with labeling.
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Fig. 6. Metro map metaphors for (a) Train of thought network (b) Book network.
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Fig. 7. (a) Sydney Cityrail NSW network with labeling (b) Sydney Cityrail NSW
network with fixed embedding.

6 Conclusion and Future Work

From our experiments using real world data sets, we have shown that carefully
designed spring algorithms can produce good layouts of metro maps. Using a
suitable preprocessing step and magnetic springs, we have obtained results that
satisfy the given aesthetic criteria for metro maps. These results are comparable
to hand drawn metro maps. We believe that automatic visualisation tools can be
used as a fast preprocessing step for producing a good quality visualisation very
quickly. Our current work is to extend this method to visualise more complex
geographical networks, such as the European railway system. Furthermore, we
want to apply other graph drawing approaches to the problem. For a multicriteria
optimisation approach, see [10].
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Fig. 8. (a) Tokyo metro map with labeling (b) London metro map with labeling.
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Abstract. In this paper we consider the problem of simultaneous draw-
ing of two graphs. The goal is to produce aesthetically pleasing drawings
for the two graphs by means of a heuristic algorithm and with human
assistance. Our implementation uses the DiamondTouch table, a multi-
user, touch-sensitive input device, to take advantage of direct physical
interaction of several users working collaboratively. The system can be
downloaded at http://dt.cs.arizona.edu where it is also available as
an applet.

1 Introduction

Simultaneous drawings of multiple graphs are a useful visualization technique
when different relationships are defined on the same set of objects, or when a
relationship evolves through time. The objects are represented by graph nodes
and the relationships are represented by graph edges. In simultaneous drawings,
the placement of the graph nodes is the same in all the drawings, in order to
preserve the viewer’s mental map. Thus, it is more difficult to obtain good node
placement for simultaneous drawings of two or more graphs, compared to the
case when only one graph is to be displayed.

Even in the case when only two graphs are given, and individually they are
planar, it is not always possible to find consistent node positions that realize
plane drawings for each graph. It is not known whether pairs of graphs from a
large number of classes allow simultaneous, straight-line, crossing-free embed-
dings. To aid in the design of algorithms for simultaneous plane drawings for
certain classes of graphs and also to help in finding counter-examples (pairs of
graphs that cannot be realized) we designed an interactive, multi-user system
for manipulating simultaneous drawings of pairs of graphs.

Motivation for this problem comes from applications where it is often neces-
sary to visually compare two relationships. Evolutionary trees on the same set of
� This work is partially supported by the NSF under grant ACR-0222920 and by

ITCDI under grant 003297.
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species are often constructed in computational biology. Biologists spend count-
less hours pouring over tree drawings to determine the most likely evolutionary
branches. The problem is particularly difficult when the drawings of different
trees are laid out independent of each other.

1.1 Related Work

The problem of simultaneous embedding of planar graphs was introduced in [2],
where it is shown that pairs of paths, cycles, and caterpillars can always be
realized, while for general planar graphs and even outerplanar graphs this is not
always possible. Modified force-directed methods are used to visualize general
graphs simultaneously such that the mental map is preserved in [6]. Conceptually,
the problem of simultaneously embedding graphs is the reverse of the geometric
thickness problem [5].

The TreeJuxtaposer is a system designed to support the comparison task for
large trees [13]. A tool for visualizing large numbers of evolutionary trees on the
same set of species is presented in [10].

Traditional informal definitions of aesthetically pleasing graph drawings in-
clude features such as straight-line segments for edges, few if any crossings, and
display of symmetries. In crossing minimization, the problem is to find a draw-
ing with the minimum number of crossings. The problem is NP-Complete [7]
but there has been a great deal of research on heuristic algorithms [8]. Graph
planarization [12] is often used together with careful reinsertion of edges.

The Human Guided Search (HuGS) framework described in [1, 9] is an inter-
active, or human-in-the-loop, optimization system. It leverages people’s abilities
in areas in which they outperform computers, such as visual and strategic think-
ing. Users can steer interactive optimization systems towards solutions which
satisfy real-world constraints. HuGS has been applied to graph drawing prob-
lems in [11]. The DiamondTouch table is introduced in [4] and it has been used
for an interactive, multi-player game [3] and for gestural interaction [14].

1.2 Our Contributions

We present an interactive multi-user system for simultaneous graph drawing.
The system uses the DiamondTouch table, and allows for collaborative work
of up to four users. We also provide a heuristic algorithm that attempts to
minimize the number of crossings. The algorithms can be used on the entire
graphs or on subsets of nodes. The users can stop the algorithm, move nodes
around and restart it with the updated positions. Thus, the users can help the
algorithm move out of a local minimum, or guide the algorithm towards a more
aesthetically appealing solution. Alternatively, if the users get stuck in a local
minimum, the algorithm can be started from a random position that may lead
to a better solution. Finally, our system works not only with the DiamondTouch
table, but also as a Java desktop application, or as a Java applet. The system is
operational at http://dt.cs.arizona.edu.
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Fig. 1. Conceptual DiamondTouch table setup (from [3]).

2 The DiamondTouch Table

The DiamondTouch table [4] from Mitsubishi Electric Research Laboratories
(MERL) is a desktop device that allows up to four users to simultaneously ma-
nipulate virtual objects. Users can move objects around on the table by touching
and dragging them with their fingers. The purpose of the table is to allow sev-
eral people to interact with a program at the same time and to do so using their
hands rather than more common input devices such as mice. The conceptual
setup is shown in Fig. 1.

The DiamondTouch table not only detects multiple users, but also identifies
which user is touching where on the table. The table is physically large at 32” x
24” and allows several users to work together comfortably; see Fig. 2. Under the
surface of the table, there is a grid of antennae. Each antenna transmits a signal
to the computer that corresponds to the strength of the capacitance between the
user and table. The capacitance is greatest when the user is in direct contact
with a particular antenna: a circuit is completed from the antenna, through the
user’s body, through the receiver pad on which the user is sitting or standing,
and back into the table.

The table is designed to be used with an ordinary desktop PC or laptop. It
sends the data from the antennae to the DiamondTouch SDK drivers through
the USB port, allowing the software to examine the data and to determine where
on the table the user’s fingers are located. The table is not a touch-screen: it has
no ability to display output. Instead all images which would normally appear on
the display monitor are routed to a video projector which projects them onto the
surface of the table with the aid of a mirror and some painstaking calibration.

3 Our System

The input to the system consists of two graphs G1 = (V1, E1) and G2 = (V2, E2)
defined on the same set of nodes, V1 = V2, or a subset of a larger common set,
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Fig. 2. Physical setup of the DiamondTouch table setup with two users untangling
graphs.

V1 ⊆ V and V2 ⊆ V . The goal is to obtain aesthetically pleasing simultaneous
layouts for both graphs.

In the case where G1 and G2 are planar, the goal is to obtain a node con-
figuration that realizes plane drawings for each graph. That is, we are looking
for a point set P and bijective function m : V → P that maps the set of nodes
to points in R2 such that: (1) in a straight-line drawing of G1 on P , using the
mapping m, there are no crossings; and (2) in a straight-line drawing of G2 on P ,
using the mapping m, there are no crossings; see Fig. 4.

In the case when the two graphs cannot be realized simultaneously as plane
drawings, the goal is to obtain symmetric straight-line drawings with as few edge
crossings as possible. Note that edge crossings are acceptable if in each pairwise
edge crossing one of the edges is from E1 and the other from E2.

The system overview is shown in Fig. 3. The system requires an input file,
which contains node and edge information about the two graphs. The graphs
are then displayed on the table and users can interact with the system in various
ways. Some of the interactions possible are:

– loading and storing graphs via input/output files;
– selecting single-view or split-view;
– selecting drawings to show in the view (G1, G2, or both);
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Fig. 3. System interface with split view.

– calling a heuristic crossing-minimization algorithm on both graphs;
– calling the same algorithm on selected parts of the graphs;
– interrupting the algorithm and manually repositioning nodes;
– zooming in and out, or scrolling across larger areas;
– changing colors and sizes of nodes and edges.

3.1 Examples

If the union graph, G = (V1 ∪ V2, E1 ∪ E2), of the input pair of graphs, G1 =
(V1, E1) and G2 = (V2, E2) is a planar graph, then our problem has a trivial
solution. Since G is planar, there exists a plane drawing of it, and hence for
each of G1 and G2 independently. However, if the union graph G is not a planar
graph, a solution may or may not exist.

Consider the pair of graphs in Fig. 4(a-b). Both G1 and G2 are simple cycles
on 5 nodes. Their union is K5 as seen in Fig. 4(c). However, it is easy to find node
locations that realize each of the two graphs with straight-lines and no-crossings;
see Fig. 4(d-e). The only crossing in Fig. 4(f) is between edges of different graphs.

While pairs of paths, cycles, and caterpillars are easy to simultaneously draw
without crossings and using straight-line edges, this is not the case for all pairs of
planar graphs. In fact, it is not known whether two trees can be simultaneously
drawn without crossings and using straight-line edges. With this in mind, we
experimented with different classes of trees. It is not difficult to construct a pair
of trees, such that their union contains a subdivision of Kn for any n. For the
cases when n ≤ 4 it is fairly straight-forward to obtain by hand straight-line,
crossing-free simultaneous drawings. The pen-and-paper solution is difficult to
find for K5 and K6. For these two cases our system helped us greatly; see Fig. 5-6.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a-b) Initial drawings of G1 G2 with crossings in G1; (c) Combined view of
both drawings; (e-f) Crossing-free drawings of G1 and G2; (f) Combined view of both
drawings.

It is also known that there exist pairs of outerplanar graphs that cannot
be realized simultaneously [2]; Thus, while it is not possible to design an algo-
rithm for simultaneously realizing pairs of general planar graphs, in many cases
solutions do exist. Moreover, no polynomial time algorithms are known for deter-
mining whether two planar graphs have a simultaneous embedding or not. Our
system can be helpful in gaining insight into the problem and in bridging the gap
between the classes of graphs for which algorithms for simultaneous embeddings
exist and those for which such embeddings are not possible.

3.2 Different Graph Views

Our system offers several different ways to view the input graphs. The main
choice in selecting a view is whether it will be a single-view or a split-view.
Regardless of the choice, the views can show graph G1, or graph G2, or both
graphs at the same time. The split-view with G1 in one and G2 in the other seems
the most useful for the purpose of untangling graphs. This view is useful when
two groups of people simultaneously work on untangling the two graphs. When
a node (and its adjacent edges) is moved in one of the drawings, it also moves in
the other drawing. Showing both drawings at the same time allows a user to see
the impact of the move in both drawings. To aid the user in identifying the two
graphs, the edges of G1 are colored red and the edges of G2 are colored blue.
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(a) (b) (c)

Fig. 5. The union of two trees contains a subdivision of K5. (a-b) Crossing-free draw-
ings of G1 and G2; (c) Combined view of both drawings.

(a) (b) (c)

Fig. 6. The union of two trees contains a subdivision of K6. (a-b) Crossing-free draw-
ings of G1 and G2; (c) Combined view of both drawings.

3.3 Heuristic Crossing Removal

Given a crossing pair of edges from the same graph, e1 = (p, q) and e2 = (r, s)
we employ a crossing removal strategy consisting of three node-manipulating
operations: flip, shrink, and rotate (FSR strategy). We briefly describe the
three operations in the FSR strategy below.

The flip operation consists of flipping the positions of two nodes that are
not endpoints of the same edge. This implies that given crossing pair of edges
e1 = (p, q) and e2 = (r, s) , there are 4 possible flips. Without loss of generality,
consider the case where p and r are flipped; see Fig. 7. It is easy to see that flip-
ping the position of two nodes that are not endpoints of the same edge removes
the crossing.

The shrink operation is performed on edges. It is attempted for each end-
point of each of the edges in the crossing edge pair e1 = (p, q) and e2 = (r, s).
Without loss of generality, consider the case where the operation is performed
on node p; see Fig. 8. Let d1 (d2) be the distance from p (q) to the intersection
point of e1 and e2. The shrink operation for e1 at node p results in moving p
along the edge e1 in the direction of q for a of distance d1 + k ∗ d2 to its new
position p′, where k is a parameter in the range 0 < k < 1.
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Fig. 7. The flip(e1, e2) operation.

q

r

s

p r

s q

p
d1

d2

p’

Fig. 8. The shrink(e1, e2) operation.
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Fig. 9. The rotate(e1, e2) operation.

The rotate operation is attempted for each node in the crossing edge pair
e1 = (p, q) and e2 = (r, s). Again, consider the case when the operation is
performed on node p. Let θ be the angle determined by the intersection of the
lines passing thorough the points (p, q) and (p, r); see Fig. 9. We rotate p around
q at an angle θ + ε to its new position p′, where θ ≤ ε ≤ 2π.

Each of the operations in the FSR strategy can be executed a number of
times on a particular crossing. Some of them are also parametrized by k and ε
for shrink and rotate, respectively. The three operations are attempted on all
of the undesirable crossings until either they are all removed or we have reached
a local minimum.

4 Conclusion and Future Work

We have presented an interactive multi-user system for drawing graphs simul-
taneously. While the system is designed for the DiamondTouch table, it is also
available as a Java application, and as a Java applet at http://dt.cs.arizona.
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Fig. 10. Single view of the two trees in Fig. 6.

edu. With the aid of our system we were able to untangle many pairs of graphs
that had stumped us in the past. We also used the system successfully, to come
up with counter-examples for the cases where simultaneous embedding is not
possible. However, there are many other examples that we have neither realized
simultaneously, nor proved that they cannot be simultaneously realized. Some
of these example graphs are available at the URL above and we hope that with
the help the PC-version of our system their status will be determined.

Currently the heuristic algorithm for minimizing the crossings in the simul-
taneous drawings of the two graphs relies on simple heuristics. We would like to
explore better heuristic algorithms, or leverage algorithms and heuristics from
traditional crossing-minimization. Finally, we would like to design a brute-force
algorithm which can be used to implement a fully functioning HuGS system.
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Abstract. Gravisto, the Graph Visualization Toolkit, is more than a
(Java-based) editor for graphs. It includes data structures, graph algo-
rithms, several layout algorithms, and a graph viewer component. As
a general toolkit for the visualization and automatic layout of graphs
it is extensible with plug-ins and is suited for the integration in other
Java-based applications.

Overview: Gravisto is a new approach towards an extensible graph visualiza-
tion toolkit. Entirely written in Java, Gravisto runs on all Java2 1.4 platforms,
including Linux, Solaris, MacOS X, and Microsoft Windows. Gravisto can be
obtained under the terms of the GNU General Public License (GPL) from [2].

Graph Data Structure

Adj. List Adj. Matrix

Editor

Plug-in Manager

Default
Plug-ins

User
Plug-ins

External
LibrariesListener Manager

Fig. 1. System architecture.

Architecture: Gravisto consists of three layers;
see Fig.1. The basic layer contains the graph
data structures. The editor layer uses the basic
data structures and provides managers for easy
extension and customization. The top layer com-
prises all plug-ins, either delivered with Gravisto
or from third-parties.

As several components must be notified
about changes of the data structure, e. g., a view
component in a plug-in, Gravisto employs the Observer Design Pattern: the
Event Manager allows a component to register as a special type of event han-
dler, depending on the events it likes to receive.

Interfaces: Gravisto provides a powerful plug-in mechanism with a comfortable
plug-in manager. Most non-core functionality is realized as plug-in, including
algorithms, node and edge attributes, graphical user interface components, input
and output serializers, attribute inspectors, node and edge shapes, tools, or entire
views. The idea behind this paradigm is to facilitate extensions of Gravisto;
thus encouraging people to contribute to the project. Furthermore, this concept
allows easy customization of the editor for different application scenarios, e. g., a
biologist, working with biochemical pathways, does not need most functionality
of the standard graph editor, but, for instance, the nodes and edges must be
linked to additional information in a data base; thus all unnecessary plug-ins

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 502–503, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 2. Gravisto’s editing view, its plug-in manager, and the Quoggles interface.

can be excluded and a custom plug-in for the data base connection may be
added. Of course, the toolkit includes all plug-ins for the basic functionality and
many more. Plug-ins for the widely used GML and GraphML file formats allow
data exchange with non-Java applications and other graph drawing tools.

Queries on Graphs: An innovative feature is Quoggles, [3], a plug-in implement-
ing an extensible, graphical query system for graph properties. The idea for
Quoggles arose from the 10th Graph Drawing Contest, 2002, Category C, [1].
The query itself is composed into a graph. The input to the query are the set
GE of all nodes and edges of the queried graph. For example, the query “GE →
GetGraphElements(nodes) → GetProperty(degree) → Arithmetic(avg)” cal-
culates the average degree of all nodes in the graph. The query shown in Fig. 2
sorts the nodes according to their degree.
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Abstract. Visualizing DNA secondary structures is essential to fast
and efficient design of probes for DNA chips. There are several pro-
grams available for visualizing single-stranded RNA secondary struc-
tures, but these programs cannot be used to draw DNA secondary struc-
tures formed by several hundred to thousand primers and target genes.
We have developed an algorithm and program for visualizing DNA sec-
ondary structures formed by multiple strands. We believe the program
will be a valuable tool for designing primers and probes in DNA chips.

1 Introduction

The high-throughput analysis of genes using DNA chips has a great impact
on modern biological research. Several thousand different primers are required
for a DNA chip [1]. DNA primers are DNA sequence fragments consisting of 4
types of nucleotides: adenine (A), guanine (G), cytosine (C), and tymine (T).
Target genes and primers form secondary structures by hydrogen bonds between
complementary base pairs. The secondary structure is an important criterion for
the selection of the primer since interaction between primers should be avoided
to conserve the maximum sensitivity of the primer and the spot on a DNA chip.

Several programs are available for drawing RNA secondary structures [2–4],
but none of these can be used to draw DNA secondary structures because the
programs are intended for drawing single-stranded RNA. DNA itself is a double-
stranded molecule and primer design should be able to consider secondary struc-
tures formed by multiple primers and target genes. We have developed a program
called DNAdraw for fast and accurate selection of primers to be used in DNA
chips. The input for the program is the DNA or cDNA sequence(s) of the target
gene, candidate primer sequences, and their secondary structures. Experimental
results demonstrate that DNAdraw is capable of automatically producing a clear
and aesthetically appealing drawing of DNA secondary structures. This paper
describes an algorithm and its implementation.

2 Algorithm

In the structure data, a pair of parentheses represents a base pair. The parenthe-
sis pairs used in DNAdraw are ’()’, ’[]’, and ’{}’. In visualizing DNA structure, we
� This work was supported by the Korea Science and Engineering Foundation

(KOSEF) under grant R01-2003-000-10461-0.
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Fig. 1. (A) Example of a structure with 2 simple stem-loops (SL1 and SL2) and a
composite stem-loops (SL3). (B) Tree structure of Fig. 1A.

call a structure element enclosed by matching parentheses a stem-loop (Fig. 1A).
A simple stem-loop corresponds to a single hairpin loop-stem, and a composite
stem-loop contains one or more other stem-loops. From the standpoint of graph
theory, a drawing of DNA secondary structures can be considered as a tree with
simple stem-loops as leaf nodes of the tree (Fig. 1B). Computation starts with
a leaf node.

The algorithm of DNAdraw is outlined as follows: (1) stem-loops are identi-
fied from the input structure data; (2) the position and shape of a simple stem-
loop are computed; and (3) the position and shape of a composite stem-loop are
computed.

Base pairs of a stem in a simple stem-loop are stacked on the y-axis. In
Fig. 2A, n represents the number of bases in the loop region plus 2 (for the base
pair at the end of a stem). If the loop region contains a terminal base either at
5′ or 3′ end of a strand, 10 is added to n to make space between the base and
other parts. L represents the distance between adjacent bases of a loop. L is also
the distance between a pair of bases of a stem. Then, the angle a is π/n and the
radius R of the loop is L/2sin(a).

To determine the loop center, we first compute the midpoint Pm of points
P1 and P2. If we use N to represent the unit vector directed toward the loop
center C from a point Pm, vector N can be obtained by rotating the vector
P2 − P1 clockwise with respect to Pm and then by normalizing the vector. The
distance d between C and Pm is determined by equation (1). From the distance
d, vector N , and the position vector Pm, we can compute the position vector C
representing the loop center.

(A)
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stem-loop 3
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pEnd
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s
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Fig. 2. (A) The radius, angle, and center of a loop in a simple stem-loop. (B) Example of
inserting two simple stem-loops into a composite stem-loop by rotating and translation
the simple stem-loops.
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θ = π/2− a, d = ‖−→C −−→Pm‖ = R · sin(θ), −→
C = d · −→N +−→Pm (1)

Consider a composite stem-loop pSL containing a simple stem-loop sSL. In
Fig. 2B we use sStart and sEnd to represent the position of the first and the
last base of sSL before being enclosed in pSL; pStart and pEnd to represent the
position at which the first and the last base of sSL to be located in pSL. Let s
be the unit vector in the direction of sEnd− sStart and p the unit vector in the
direction of pEnd− pStart. The simple stem-loop sSL can be inserted into the
composite stem-loop pSL by rotating sSL by the angle between s and p with
respect to sStart and then translating it by the vector of pEnd−sStart. Fig. 2B
shows an example of enclosing two simple stem-loops in a composite stem-loop.

3 Results and Discussion

DNAdraw is written in Microsoft Visual C#, and is executable on any Windows
system (see Figs. 3 and 4). DNAdraw takes as input the DNA sequence with
its structure data in bracket view. In the input data below, 5 and 3 denote the
start and termination of the DNA sequence, respectively.

Input Format 1: Both ends of the DNA sequence are denoted either by 5 or 3.

# primer1 // optional sequence name

3-ATGCCGTAGGTA-5

5-TAGGTGAGCCAT-3

3-CTCAGCATTGCA-5

3-((((((((::::-5

5-))))((((::::-3

3-))))))))::::-5

Input Format 2: The sequence in each line is ended by a slash (“/”) character,
with the sequence direction from the 5′ end to 3′ end.

# primer2 // optional sequence name

ATGCCGTAGGTA/

TAGGTGAGCCAT/

CTCAGCATTGCA

((((((((::::/

))))((((::::/

))))))))::::

In summary, we have developed a new algorithm for visualizing DNA sec-
ondary structures with multiple DNA strands and have implemented the algo-
rithm in a web-based program called DNAdraw. For given secondary structures,
DNAdraw identifies all simple stem-loops and composite stem-loops enclosing
other stem-loops. Stem-loops are inserted into their enclosing composite stem-
loops by rotation, and/or translation operations. The DNAdraw algorithm is the
first capable of automatically drawing DNA structures with multiple strands.
DNAdraw will be a valuable tool for fast and accurate design of primers and
probes in DNA chips.
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(A) (B)

Fig. 3. (A) Structure drawing for input data format 1. (B) Structure drawing for input
data format 2.

Fig. 4. Hypothetical DNA secondary structure with 15 DNA strands.
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Abstract. This project was inspired by the last year’s paper on Selected
Open Problems in Graph Drawing by Brandenburg et al. (Proc. 11th GD.
Vol. 2919 of LNCS. (2003) 515–539). While being a very good start, a
paper is inherently static and will become out-dated. For dynamic con-
tent, what open problems (hopefully) are, a web-site is more appropriate.
Keeping such a site up-to-date, however, is time consuming and requires
good knowledge of recent work. In projects like the free encyclopedia
Wikipedia these obstacles are overcome with a collaborative approach:
everyone is allowed, and even requested, to contribute his knowledge to
the site. The Open Problems Wiki makes use of this paradigm to provide
a forum for collecting open problems in graph drawing.

Introduction

Recently, collaboratively edited projects on the WWW were impressively suc-
cessful; by the time of writing, the free encyclopedia Wikipedia, for instance,
has more than   articles in the English version (with translations in over
 languages in steady progress), edited by over   users. The Wikipedia
project is a so-called Wiki, a simple form of content management system where
everyone not only is allowed to but also is requested to create new pages or edit
existing pages. Meaning “super fast”, the Hawaiian word “wiki wiki” was used
for this kind of software, because the pages are written in a very simple, yet
powerful, markup language; the wiki software then stores the source code in a
database, from where it is read and transformed to standard HTML.

It seems that a Wiki is an appropriate framework for collecting and discussing
open problems in graph drawing. The task of editing is balanced among the
whole community; therefore, it tends to be more comprehensive and more up-
to-date than other solutions. This wiki shall become the primary site for the
open problems in graph drawing, a site everyone knows and contributes to.

Features

The Open Problems Wiki uses the MediaWiki software, which was developed for
the Wikipedia project and is by far the most advanced wiki software available.
It already has proved its qualities; it is well documented and supported, and
� http://problems.graphdrawing.org
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freely available under the terms of the GNU General Public License (GPL). The
following is only a small fraction of the features; a more detailed description can
be found in the “Help” section of the wiki.
Users. Although it is not required to register or log in – not even for editing
pages – there are many reasons to do so. A registered user can pick a username;
all edits, made while being logged in, will be assigned to that name, giving the
user full credit for each contribution in the page history (when not logged in, the
edits are just assigned to the respective IP address). When logged in, all own
contributions are accessible via the “My contributions” link. Many features that
are only available to registered users: for example, registered users can mark edits
as minor. Minor edits can be filtered from the list of “Recent changes”. One very
important feature, which active contributors will likely use a lot, are watchlists.
When logged in a new link “Watch this page” is shown on every page. That
link adds a page to the user’s watchlist, which thus becomes basically a filtered
view of the “Recent changes” page, showing changes recently made to items in
the watchlist. Only registered users are allowed to rename pages, a feature that
is very important to maintain structure and consistency. Also, images can be
uploaded only by registered users.
Basic Markup. As the pages are stored in a database rather than as files on
the server, links between the pages are established via the names of the pages.
For instance, [[Graph Drawing]] in the source code results in a link to a page
with title “Graph Drawing”; if this page does not yet exist, the link leads to
a new page with a text field for editing. Most pages are written in a simple
markup language, which is sufficient for standard editing tasks like headings (==
heading ==), highlighting text (’’italic’’ and ’’’bold’’’), or even simple
tables. Also, standard HTML can be used for more advanced tasks.
Formulas. The main reason for choosing the same software as in the Wikipedia
project was its integrated support for TEX-formulas. TEX-source within special
tags (<math></math>) is rendered on the server and included as Portable Net-
work Graphics (PNG) picture.
History. Since everyone is allowed to edit a page, it is very important to have a
sophisticated version control system. The software used for the Open Problems
Wiki stores the complete editing history of every page and allows to rollback a
page to any previous state.
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1 Introduction

Graph layout methodologies often solve difficult subproblems in order to sat-
isfy the aesthetic constraints: finding the maximal planar subgraph, minimizing
crossings, minimizing area, maximizing symmetries, etc. One standard approach
is to translate the subproblem into a linear optimization problem (LOP) and to
use a standard mathematical tool to find the solution. The standard solving tool
for such LOPs is ILOG CPLEX.

ILOG CPLEX delivers high-performance, robust, flexible optimizers for solv-
ing linear, mixed-integer and quadratic programming problems (including mixed
integer quadratic constrained problems). It is a component that includes C, C++
and Java API, and it is integrated via the Concert Technology into the ILOG
Optimization Suite.

With ILOG JViews, we also offer a visualization suite that includes sophis-
ticated graph layout algorithms. Our recent investigations focused on cross-
product development and the question, how ILOG CPLEX can be used to help
graph layout and how ILOG JViews can be used to help the LOP solving.

2 How ILOG CPLEX Helps Graph Layout

ILOG CPLEX can be used to solve various subproblems in graph layout. The
following is a collection of algorithms found in the literature that make extensive
use of ILOG CPLEX:

– Link Crossing – Jünger and Mutzel (GD’95, LNCS 1027, p. 337ff) compare
a CPLEX implementation of the LOP for the 2-layer straightline crossing
minimization problem with various other heuristics.

– Labeling Problem – Binucci e.a. (GD’02, LNCS 2528, p. 66ff) show an LOP
algorithm to compute optimal label positions in an orthogonal drawing.

– Detecting Symmetries – Buchheim and Jünger (GD’01, LNCS 2265, p. 178ff)
use ABACUS and CPLEX to detect automorphisms and symmetries in ar-
bitrary graphs.

– Graph Layering Problem – Healy and Nikolov (GD’01, LNCS 2265, p. 16ff)
partition a DAG into layers as needed for the hierarchical layout algorithm.
Again, CPLEX was used as reference implementation.
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– Orthogonal Layout Compaction – Klau and Mutzel (IPCO’99, LNCS 1610,
p. 304ff) compress an orthogonal layout so that the the edges length are
minimized by applying a branch and cut approach that can be implemented
with CPLEX.

– and many more.

3 How ILOG JViews Graph Layout Helps LOP Solving

ILOG CPLEX uses nonvisual algorithms on a mathematical model of the prob-
lem to be solved. Visualization is used to help CPLEX users to model their
problems, and to detect or debug the internal behavior of the CPLEX routines.

– ILOG OPL Studio – This is the modeling tool for the ILOG Optimization
Suite. It has a graphical GUI to visualize scheduling problems and their
solutions.

– Branch and Bound Tree – Mixed integer problem are often solved by branch
and bound. The branching structure is essentially a binary tree. Graph lay-
out technology helps to visualize this tree. The RINS algorithm (Relaxation
Induces Neighborhood Search) is a local search for feasible solutions of mixed
integer problems and can be visualized this way.

– Precedence graph of linear equations – Many subroutines of CPLEX solve
linear equation systems with sparse matrix. A precedence graph helps to ana-
lyze in which order the variables must be calculated. A reduction mechanism
of the precedence graph leaded to a major performance boost of CPLEX.
The precedence graph can be visualized.

– Parallel CPLEX – CPLEX can be executed on multiple processor machines.
The debug trace of parallel CPLEX can be visualized, which is essentially a
graph.

Fig. 1. Left: ILOG OPL Studio, Right: Branch and Bound Tree
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Abstract. This report describes the Eleventh Annual Graph Drawing
Contest, held in conjunction with the 2004 Graph Drawing Symposium in
New York, USA. The purpose of the contest is to monitor and challenge
the current state of the graph-drawing technology.

1 Introduction

This year’s graph drawing contest had two distinct tracks: the graph drawing
challenge and the free-style contest. The graph drawing challenge took place
during the conference. The challenge was straight-line crossing minimization of
10 graphs with 20-100 vertices. The contestants were given one hour and were free
to use custom designed software or a provided program for manual graph editing,
GraphMan. The free-style submission offered the opportunity for participants to
present their best graph visualizations. Ten teams of one to three participants
submitted graphs to the challenge, and eleven teams submitted entries to the
free-style contest.

2 Graph Drawing Challenge

The first three challenge graphs were generated by taking randomly-generated
trees, augmenting them with additional random edges, and expanding each ver-
tex into a clique of size 3-6. The next three challenge graphs were the unions
of 2, 3, and 4 trees, respectively. The next two were random graphs with edge
density 10% and 20%, respectively. The ninth challenge graph was the contest
graph from 1998, category C. The tenth challenge graph was the contest graph
from 1999, category B.

The team’s submissions to the challenge were measured objectively by as-
signing scores between 0 and 10 to each participating team as follows: each of
the 10 submitted graphs Gi was assigned a score: si = mini

curi
, where mini was the

minimal number of crossings found for the i-th graph and curi was the number
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c© Springer-Verlag Berlin Heidelberg 2004



Graph-Drawing Contest Report 513

Fig. 1. One of the drawings submitted by the winning team (the 10th challenge graph).

of crossings in Gi. The individual scores for the 10 graphs were added to obtain
the total score for each team. The contest committee awarded one first prize and
two honorable mentions.

The first place winner was the team of Andrei Grecu and Gunnar Klau;
see Fig. 1. They used a custom-built tool called Grapla. Their tool is based on
an evolutionary algorithm with four mutation operators, no recombination, and
modified tournament selection. The mutation operators take a single node and
move it to a new location on a fixed grid. Depending on the specific operator,
the new location is either chosen randomly, with a probability according to the
distance from the original position, randomly within a local window around the
old position, or within a window whose size exponentially decreases with time.
The population is realized by a multilevel hierarchy of different solutions whose
constant size is maintained by a selection operator that moves solutions between
different hierarchy levels or removes them. The tool gives visual feedback of the
quality of the population and allows for interactively manipulating the operators
as well as their parameter settings.

Two honorable mentions were given to Chandan Pitta and the team of Josh
Cooper, Rob Ellis, and Reid Andersen. Both used a combination approach of
automated and manual crossing minimization.
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Fig. 2. Spectral Dance (original in color).

3 Free-Style Contest

Eleven submissions for the free-style category were received. The submissions
consisted of individual drawings, SVG files, VRML files, papers, and movies.
The contest committee awarded one first prize and three honorable mentions.

The winning submission was “Spectral Dance” by Ulrik Brandes, Daniel
Fleischer, and Thomas Puppe; see Fig. 2. Each frame of this one-minute anima-
tion is a three-dimensional spectral layout of a square grid graph. Continuously
changing weights on the edges yield continuous changes in the layout, so that no
interpolation between layouts was necessary. The animation was used as back-
ground in the trailer for “Language of Networks”, a conference during the 2004
Ars Electronica Festival in Linz, Austria. This trailer was projected onto the
facade of the “Museum of the Future”.

An honorable mention was awarded to Kim Hansen and Stephen Wismath
for their submission “Arrangement for an Upright Bass”; see Fig. 3. The sub-
mission was an animation showing a representation of an arrangement graph in
three dimensions, induced by seven planes. Arrangement graphs in 2D have been
widely studied, but 3D arrangement graphs have been largely ignored as they are
difficult to visualize. Viewing the structure of such graphs in 3D is best accom-
plished by means of animation. “Arrangement for an Upright Bass” explores the
problem of arranging planes to create graphs in a modern computing context.
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Fig. 3. Arrangement for an Upright Bass (original in color).

Fig. 4. Three Self-Similar Orthogonal Drawings.
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Fig. 5. Euro 2004 Virtual Reality Scene (original in color).

An honorable mention was awarded to Maurizio Patrigniani for his submis-
sion “Three Self-Similar Orthogonal Drawings”; see Fig. 4. By looking at the
drawing of a maximal planar graph with 5, 000 nodes and 14, 994 edges, its self-
similarity may be appreciated. Small portions of the drawing seem to show the
same patterns of empty regions as the whole. This intuition is reinforced by a
more rigorous measurement of its box-counting fractal dimension, which is 1.70.

An honorable mention was awarded to Ulrik Brandes and Daniel Fleischer for
their submission “Euro 2004”, a virtual reality scene; see Fig. 5. The matches of
the 2004 European Football Championship are represented by a walkable three-
dimensional layout of a graph, in which vertices correspond to matches and edges
represent teams moving from one match to the next. The scene was prepared
for a CAVE (Cave Automated Virtual Environment) and open to visitors of the
“Museum of the Future” during the above mentioned conference.
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Abstract. This paper surveys the theory of bidimensional graph prob-
lems. We summarize the known combinatorial and algorithmic results of
this theory, the foundational Graph Minor results on which this theory
is based, and the remaining open problems.

1 Introduction

The newly developing theory of bidimensional graph problems, developed in
a series of papers [DHT,DHN+04,DFHT,DH04a,DFHT04b,DH04b,DFHT04a,
DHT04,DH05b,DH05a], provides general techniques for designing efficient fixed-
parameter algorithms and approximation algorithms for NP-hard graph prob-
lems in broad classes of graphs. This theory applies to graph problems that are
bidimensional in the sense that (1) the solution value for the k × k grid graph
(and similar graphs) grows with k, typically as Ω(k2), and (2) the solution value
goes down when contracting edges and optionally when deleting edges. Examples
of such problems include feedback vertex set, vertex cover, minimum maximal
matching, face cover, a series of vertex-removal parameters, dominating set, edge
dominating set, R-dominating set, connected dominating set, connected edge
dominating set, connected R-dominating set, and unweighted TSP tour (a walk
in the graph visiting all vertices).

Bidimensional problems have many structural properties; for example, any
graph in an appropriate minor-closed class has treewidth bounded above in terms
of the problem’s solution value, typically by the square root of that value. These
properties lead to efficient – often subexponential – fixed-parameter algorithms,
as well as polynomial-time approximation schemes, for many minor-closed graph
classes. One type of minor-closed graph class of particular relevance has bounded
local treewidth, in the sense that the treewidth of a graph is bounded above in
terms of the diameter; indeed, such a bound is always at most linear.

The bidimensionality theory unifies and improves several previous results.
The theory is based on algorithmic and combinatorial extensions to parts of
the Robertson-Seymour Graph Minor Theory, in particular initiating a parallel
theory of graph contractions. The foundation of this work is the topological
theory of drawings of graphs on surfaces.
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This survey is organized as follows. Section 2 defines the various graph classes
of increasing generality to which bidimensionality theory applies. Section 3 de-
scribes several structural properties of graphs in these classes, in particular from
Graph Minor Theory, that form the basis of bidimensionality. Section 4 defines
bidimensional parameters and problems and gives some examples. Section 5 de-
scribes one of the main structural properties of bidimensionality, namely, that
the treewidth is bounded in terms of the parameter value. Sections 6–10 describe
several consequences of bidimensionality theory: separator theorems, bounds on
local treewidth, fixed-parameter algorithms, and polynomial-time approximation
schemes. Section 11 discusses the main remaining open problems in this area.

2 Graph Classes

In this section, we introduce several families of graphs, each playing an important
role in both the Graph Minor Theory and the bidimensionality theory. Refer to
Figure 1. All of these graph classes are generalizations of planar graphs, which
are well-studied in algorithmic graph theory. Unlike planar graphs and map
graphs, every other class of graphs we consider can include any particular graph
G; of course, this inclusion requires a bound or excluded minor large enough
depending on G. This property distinguishes this line of research from other
work considering exclusion of particular minors, e.g., K3,3, K5, or K6.

2.1 Definitions of Graph Classes

The first three classes of graphs relate to embeddings on surfaces. A graph is
planar if it can be drawn in the plane (or the sphere) without crossings. A graph
has genus at most g if it can be drawn in an orientable surface of genus g without

apex−minor−free

H−minor−free

general

planar

map graphs

single−crossing−minor−freebounded−genus

Fig. 1. Interesting classes of graphs. Arrows point from more specific classes to more
inclusive classes.
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crossings1. A class of graphs has bounded genus if every graph in the class has
genus at most g for a fixed g.

Given an embedded planar graph and a two-coloring of its faces as either
nations or lakes, the associated map graph has a vertex for each nation and an
edge between two vertices corresponding to nations (faces) that share a vertex.
The dual graph is defined similarly, but with adjacency requiring a shared edge
instead of just a shared vertex. Map graphs were introduced by Chen, Grigni,
and Papadimitriou [CGP02] as a generalization of planar graphs that can have
arbitrarily large cliques. Thorup [Tho98] gave a polynomial-time algorithm for
constructing the underlying embedded planar graph and face two-coloring for a
given map graph, or determining that the given graph is not a map graph.

We view the class of map graphs as a special case of taking fixed powers
of a family of graphs. The kth power Gk of a graph G is the graph on the
same vertex set V (G) with edges connecting two vertices in Gk precisely if the
distance between these vertices in G is at most k. For a bipartite graph G with
bipartition V (G) = U ∪W , the half-square G2[U ] is the graph on one side U
of the partition, with two vertices adjacent in G2[U ] precisely if the distance
between these vertices in G is 2. A graph is a map graph if and only if it is
the half-square of some planar bipartite graph [CGP02]. In fact, this translation
between map graphs and half-squares is constructive and takes polynomial time.

The next three classes of graphs relate to excluding minors. Given an edge
e = {v, w} in a graph G, the contraction of e in G is the result of identifying
vertices v and w in G and removing all loops and duplicate edges. A graph H
obtained by a sequence of such edge contractions starting from G is said to be
a contraction of G. A graph H is a minor of G if H is a subgraph of some
contraction of G. A graph class C is minor-closed if any minor of any graph in
C is also a member of C. A minor-closed graph class C is H-minor-free if H /∈ C.
More generally, we use the term “H-minor-free” to refer to any minor-closed
graph class that excludes some fixed graph H .

A single-crossing graph is a minor of a graph that can be drawn in the plane
with at most one pair of edges crossing. Note that a single-crossing graph may not
itself be drawable with at most one crossing pair of edges; see [DHN+04]. Such
graphs were first defined by Robertson and Seymour [RS93]. A minor-closed
graph class is single-crossing-minor-free if it excludes a fixed single-crossing
graph.

An apex graph is a graph in which the removal of some vertex leaves a planar
graph. A graph class is apex-minor-free if it excludes some fixed apex graph. Such
graph classes were first considered by Eppstein [Epp95,Epp00], in connection to
the notion of bounded local treewidth as described in Section 7.

The next section describes strong structural properties of the last three
classes of graphs (minor-excluding classes) in terms of the first two classes of
graphs (embeddable on surfaces) and other ingredients.

1 This definition also includes graphs that can be drawn in non-orientable surfaces
of low genus, because if a graph has non-orientable genus g, then it has orientable
genus at most 2g.
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3 Structural Properties

Graphs from single-crossing-minor-free and H-minor-free graph classes have
powerful structural properties from the Graph Minor Theory. First we need
to define treewidth, pathwidth, and clique sums.

3.1 Background

The notion of treewidth was introduced by Robertson and Seymour [RS86a]. To
define this notion, first we consider a representation of a graph as a tree, called
a tree decomposition. Precisely, a tree decomposition of a graph G = (V, E) is
a pair (T, χ) in which T = (I, F ) is a tree and χ = {χi | i ∈ I} is a family of
subsets of V (G) such that

1.
⋃

i∈I χi = V ;
2. for each edge e = {u, v} ∈ E, there exists an i ∈ I such that both u and v

belong to χi; and
3. for all v ∈ V , the set of nodes {i ∈ I | v ∈ χi} forms a connected subtree

of T .

To distinguish between vertices of the original graph G and vertices of T in
the tree decomposition, we call vertices of T nodes and their corresponding χi’s
bags. The width of the tree decomposition is the maximum size of a bag in χ
minus 1. The treewidth of a graph G, denoted tw(G), is the minimum width
over all possible tree decompositions of G. A tree decomposition is called a path
decomposition if T = (I, F ) is a path. The pathwidth of a graph G, denoted
pw(G), is the minimum width over all possible path decompositions of G.

The notion of clique sums goes back to characterizations of K3,3-minor-free
and K5-minor-free graphs by Wagner [Wag37] and serves as an important tool
in the Graph Minor Theory. Suppose G1 and G2 are graphs with disjoint vertex
sets and let k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆ V (Gi) form a clique of
size k and let G′

i be obtained from Gi by deleting some (possibly no) edges from
the induced subgraph Gi[Wi] with both endpoints in Wi. Consider a bijection
h : W1 → W2. We define a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2

or simply by G = G1 ⊕G2, to be the graph obtained from the union of G′
1 and

G′
2 by identifying w with h(w) for all w ∈ W1. The images of the vertices of

W1 and W2 in G1 ⊕k G2 form the join set. Note that each vertex v of G has a
corresponding vertex in G1 or G2 or both. It is also worth mentioning that ⊕ is
not a well-defined operator: it can have a set of possible results.

3.2 Structure of Single-Crossing-Minor-Free Graphs

The structure of single-crossing-minor-free graphs can be described as follows:

Theorem 1 ([RS93]). For any fixed single-crossing graph H, every H-minor-
free graph can be obtained by a sequence of k-sums, 0 ≤ k ≤ 3, of planar graphs
and graphs of bounded treewidth, where the bound on treewidth depends on H.
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This theorem generalizes characterizations of K3,3-minor-free and K5-minor-
free graphs [Wag37]. A graph is K3,3-minor-free if and only if it can be obtained
by k-sums, 0 ≤ k ≤ 2, of planar graphs and K5. A graph is K5-minor-free if
and only if it can be obtained by k-sums, 0 ≤ k ≤ 3, of planar graphs and V8

(the length-8 cycle C8 together with eight edges joining diametrically opposite
vertices).

This structural property of single-crossing-minor-free graphs has since been
strengthened to ensure that the summands are minors of the original graph and
to provide algorithms for finding the decomposition:

Theorem 2 ([DHN+04]). For any fixed single-crossing graph H, there is an
O(n4)-time algorithm to compute, given an H-minor-free graph G, a decompo-
sition of G as a sequence of k-sums, 0 ≤ k ≤ 3, of planar graphs and graphs of
bounded treewidth (where the bound on treewidth depends on H), each of which
is a minor of G.

3.3 Structure of H-Minor-Free Graphs

The structure of H-minor-free graphs is described by a deep theorem of Robert-
son and Seymour [RS03]. Intuitively, their theorem says that, for every graph
H , every H-minor-free graph can be expressed as a “tree structure” of pieces,
where each piece is a graph that can be drawn in a surface in which H cannot be
drawn, except for a bounded number of “apex” vertices and a bounded number
of “local areas of non-planarity” called vortices. Here the bounds depend only
on H .

Roughly speaking, we say that a graph G is h-almost embeddable in a surface
S if there exists a set X of size at most h of vertices, called apex vertices or
apices, such that G − X can be obtained from a graph G0 embedded in S by
attaching at most h graphs of pathwidth at most h to G0 within h faces in an
orderly way. More precisely, a graph G is h-almost embeddable in S if there exists
a vertex set X of size at most h (the apices) such that G−X can be written as
G0 ∪G1 ∪ · · · ∪Gh, where

1. G0 has an embedding in S;
2. the graphs Gi, called vortices, are pairwise disjoint;
3. there are faces F1, . . . , Fh of G0 in S, and there are pairwise disjoint disks

D1, . . . , Dh in S, such that for i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩
V (Gi) = V (G0) ∩Di; and

4. the graph Gi has a path decomposition (Bu)u∈Ui of width less than h, such
that u ∈ Bu for all u ∈ Ui. The sets Bu are ordered by the ordering of their
indices u as points along the boundary cycle of face Fi in G0.

An h-almost embeddable graph is apex-free if the set X of apices is empty.
Now, the deep result of Robertson and Seymour is as follows:

Theorem 3 ([RS03]). For every graph H, there exists an integer h ≥ 0 de-
pending only on |V (H)| such that every H-minor-free graph can be obtained by at
most h-sums of graphs that are h-almost-embeddable in some surfaces in which
H cannot be embedded.
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In particular, if H is fixed, any surface in which H cannot be embedded has
bounded genus. Thus, the summands in the theorem are h-almost-embeddable
in bounded-genus surfaces.

3.4 Structure of Apex-Minor-Free Graphs

Apex-minor-free graph classes are an important subfamily of H-minor-free graph
classes. The general structural theorem for H-minor-free graphs applies in this
context as well. However, reductions developed in [DH04b] suggest that the
decomposition can be restricted to a particular form in the apex-minor-free case:

Conjecture 1 ([DH04b]). For every graph H , there is an integer h ≥ 0 depending
only on |V (H)| such that every H-minor-free graph can be obtained by at most
h-sums of graphs that are h-almost-embeddable in some surfaces in which H
cannot be embedded and whose apices are connected via edges only to vertices
within vortices.

3.5 Grid Minors

The r × r grid is the canonical planar graph of treewidth Θ(r). In particular,
an important result of Robertson, Seymour, and Thomas [RST94] is that ev-
ery planar graph of treewidth w has an Ω(w) × Ω(w) grid graph as a minor.
Thus every planar graph of large treewidth has a grid minor certifying that its
treewidth is almost as large (up to constant factors). Recently, this result has
been generalized to any H-minor-free graph class:

Theorem 4 ([DH05b]). For any fixed graph H, every H-minor-free graph of
treewidth w has an Ω(w) ×Ω(w) grid as a minor.

Thus the r × r grid is the canonical H-minor-free graph of treewidth Θ(r)
for any fixed graph H . This result is also best possible up to constant factors.
Section 11 discusses the remaining issue of bounding the constant factor and its
dependence on H .

A similar but weaker bound plays an important role in the Graph Minor
Theory [RS86b]: for any fixed graph H and integer r > 0, there is an integer w >
0 such that every H-minor-free graph with treewidth at least w has an r×r grid
graph as a minor. This result has been re-proved by Robertson, Seymour, and
Thomas [RST94], Reed [Ree97], and Diestel, Jensen, Gorbunov, and Thomassen
[DJGT99]. Among these proofs, the best known bound on w in terms of r is
that every H-minor-free graph of treewidth larger than 205|V (H)|3r has an r× r
grid as a minor [RST94]. Theorem 4 therefore offers an exponential (and best
possible) improvement over previous results.

Theorem 4 cannot be generalized to arbitrary graphs: Robertson, Seymour,
and Thomas [RST94] proved that some graphs have treewidth Ω(r2 lg r) but
have grid minors only of size O(r) × O(r). The best known relation for general
graphs is that having treewidth more than 202r5

implies the existence of an r×r
grid minor [RST94]. The best possible bound is believed to be closer to Θ(r2 lg r)
than 2Θ(r5), perhaps even equal to Θ(r2 lg r) [RST94].
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4 Bidimensional Parameters/Problems

Bidimensionality has been introduced and developed in a series of papers [DHT,
DHN+04,DFHT,DH04a,DFHT04b,DH04b,DFHT04a,DHT04,DH05b,DH05a].
Although implicitly hinted at in [DHT,DHN+04,DFHT,DH04a], the first use of
the term “bidimensional” was in [DFHT04b].

First we define “parameters” as an alternative view on optimization prob-
lems. A parameter P is a function mapping graphs to nonnegative integers. The
decision problem associated with P asks, for a given graph G and nonnegative
integer k, whether P (G) ≤ k. Many optimization problems can be phrased as
such a decision problem about a graph parameter P .

Now we can define bidimensionality. A parameter is g(r)-bidimensional (or
just bidimensional) if it is at least g(r) in an r×r “grid-like graph” and if the pa-
rameter does not increase when taking either minors (g(r)-minor-bidimensional)
or contractions (g(r)-contraction-bidimensional). The exact definition of “grid-
like graph” depends on the class of graphs allowed and whether we are con-
sidering minor- or contraction-bidimensionality. For minor-bidimensionality and
for any H-minor-free graph class, the notion of a “grid-like graph” is defined to
be the r × r grid, i.e., the planar graph with r2 vertices arranged on a square
grid and with edges connecting horizontally and vertically adjacent vertices. For
contraction-bidimensionality, the notion of a “grid-like graph” is as follows:

1. For planar graphs and single-crossing-minor-free graphs, a “grid-like graph”
is an r × r grid partially triangulated by additional edges that preserve
planarity.

2. For bounded-genus graphs, a “grid-like graph” is such a partially triangu-
lated r × r grid with up to genus(G) additional edges (“handles”).

3. For apex-minor-free graphs, a “grid-like graph” is an r × r grid augmented
with additional edges such that each vertex is incident to O(1) edges to
nonboundary vertices of the grid. (Here O(1) depends on the excluded apex
graph.)

Contraction-bidimensionality is so far undefined for H-minor-free graphs (or
general graphs)2.

Examples of bidimensional parameters include the number of vertices, the
diameter, and the size of various structures such as feedback vertex set, ver-
tex cover, minimum maximal matching, face cover, a series of vertex-removal
parameters, dominating set, edge dominating set, R-dominating set, connected
dominating set, connected edge dominating set, connected R-dominating set, and
unweighted TSP tour (a walk in the graph visiting all vertices). (See [DFHT04b,
DFHT04a] for arguments of either contraction- or minor-bidimensionality for
the above parameters.) We also say that the corresponding optimization prob-
lems based on these parameters, e.g., finding the minimum-size dominating
2 For the parameters to which we have applied bidimensionality, contraction-

bidimensionality does not seem to extend beyond apex-minor-free graphs, but per-
haps a suitably extended definition could be found in the context of different appli-
cations or a “theory of graph contractions”.
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set, are bidimensional. With the exception of diameter, all of these bidimen-
sional problems are Θ(r2)-bidimensional, which is the most common case (and
in some papers used as the definition of bidimensionality). Diameter is the
main exception, being only Θ(r)-contraction-bidimensional for planar graphs,
single-crossing-minor-free graphs, and bounded-genus graphs, and only Θ(lg r)-
contraction-bidimensional for apex-minor-free graphs.

5 Parameter-Treewidth Bounds

The genesis of bidimensionality was in fact the notion of a parameter-treewidth
bound. A parameter-treewidth bound is an upper bound f(k) on the treewidth
of a graph with parameter value k. In many cases, f(k) can even be shown to be
sublinear in k, often O(

√
k). Parameter-treewidth bounds have been established

for many parameters and graph classes; see, e.g., [ABF+02,KP02,FT03,AFN04,
CKL01, KLL02, GKL01, DFHT, DHN+04, DHT, DFHT04a, DH04b, DFHT04b].
Essentially all of these bounds can be obtained from the theory of bidimensional
parameters. Thus bidimensionality is the most powerful method so far for estab-
lishing parameter-treewidth bounds, encompassing all such previous results for
H-minor-free graphs.

The central result in bidimensionality that generalizes these bounds is that
every bidimensional parameter has a parameter-treewidth bound, in its corre-
sponding family of graphs as defined in Section 4. More precisely, we have the
following result:

Theorem 5 ([DH05b,DFHT04a]). If the parameter P is g(r)-bidimensional,
then for every graph G in the family associated with the parameter P , tw(G) =
O(g−1(P (G))). In particular, if g(r) = Θ(r2), then the bound becomes tw(G) =
O(

√
P (G)).

This theorem is based on the grid-minor bound from Theorem 4 and the proof
of a weaker parameter-treewidth bound, tw(G) = (g−1(P (G)))O(g−1(P (G))), es-
tablished in [DFHT04a]. The stronger bound of tw(G) = O(g−1(P (G))) was
obtained first for planar graphs [DFHT], then single-crossing-minor-free graphs
[DHT, DHN+04], then bounded-genus graphs [DFHT04b, DHT04], and finally
apex-minor-free graphs for contraction-bidimensional parameters and H-minor-
free graphs for minor-bidimensional parameters [DH05b] (Theorem 5 above).

We can extend the definition of g(r)-minor-bidimensionality to general graphs
by again defining a “grid-like graph” to be the r × r grid. Still we can obtain a
parameter-treewidth bound [RST94,DH04c], but the bound is weaker: tw(G) =
2O(g−1(k))5 .

6 Separator Theorems

If we apply the parameter-treewidth bound of Theorem 5 to the parameter of the
number of vertices in the graph, which is minor-bidimensional with g(r) = r2,
then we immediately obtain the following (known) bound on the treewidth of
an H-minor-free graph:
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Theorem 6 ([AST90, Proposition 4.5; Gro03, Corollary 24; DH05b]).
For any fixed graph H, every H-minor-free graph G has treewidth O(

√|V (G)|).
A consequence of this result is that every vertex-weighted H-minor-free graph

G has a vertex separator of size O(
√|V (G)|) whose removal splits the graph

into two parts each with weight at most 2/3 of the original weight [AST90,
Theorem 1.2]. This generalization of the classic planar separator theorem has
many algorithmic applications; see e.g. [AST90,AFN03]. Also, this result shows
that the structural properties of H-minor-free graphs given by Theorem 3 are
powerful enough to conclude that these graphs have small separators, which we
expect from such a strong theorem.

Section 11 discusses the issue of how tight a lead constant can be obtained
in such a result.

7 Local Treewidth

Eppstein [Epp00] introduced the diameter-treewidth property for a class of graphs,
which requires that the treewidth of a graph in the class is upper bounded by
a function of its diameter. He proved that a minor-closed graph family has the
diameter-treewidth property precisely if the graph family excludes some apex
graph. In particular, he proved that any graph in such a family with diameter
D has treewidth at most 22O(D)

. (A simpler proof of this result was obtained
in [DH04a].)

If we apply the parameter-treewidth bound of Theorem 5 to the diame-
ter parameter, which is contraction-bidimensional with g(r) = Θ(lg r) [DH04a],
then we immediately obtain the following stronger diameter-treewidth bound for
apex-minor-free graphs:

Theorem 7 ([DH05b]). For any fixed apex graph H, every H-minor-free graph
of diameter D has treewidth 2O(D).

This theorem is not the best possible. In some sense it is necessarily lim-
ited because it still does not exploit the full structure of H-minor-free graphs
from Theorem 3. The difficulty is that, in a grid-like graph, the O(1) edges from
a vertex to nonboundary vertices can accumulate to make the diameter small.
However, it is possible to show that, effectively, not too many vertices can have
such edges. This fact comes from the property that there are a bounded number
of apices in the clique-sum decomposition of Theorem 3, and in an apex-minor-
free graph, each apex cannot have more than a bounded number of edges to
“distant” vertices. Based on this fact, a complicated proof establishes the fol-
lowing even stronger diameter-treewidth bound in apex-minor-free graphs:

Theorem 8 ([DH04b]). For any fixed apex graph H, every H-minor-free graph
of diameter D has treewidth O(D).

This diameter-treewidth bound is the best possible up to constant factors.
Thus this theorem establishes that, in minor-closed graph families, having any
diameter-treewidth bound is equivalent to having a linear diameter-treewidth
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bound. As mentioned before, no minor-closed graph families beyond apex-minor-
free graphs can have any diameter-treewidth bound. Theorem 8 is therefore the
ultimate characterization of diameter-treewidth bounds in minor-closed graph
families (up to constant factors).

The proof of Theorem 8 is the basis for Conjecture 1. In fact, Theorem 8
would not be hard to prove assuming Conjecture 1.

The diameter-treewidth property has been used extensively in a slightly mod-
ified form called the bounded-local-treewidth property, which requires that the
treewidth of any connected subgraph of a graph in the class is upper bounded
by a function of its diameter. For minor-closed graph families, which is the focus
of most work in this context, these properties are identical. Graphs of bounded
local treewidth have many similar properties to both planar graphs and graphs of
bounded treewidth, two classes of graphs on which many problems are substan-
tially easier. In particular, Baker’s approach for polynomial-time approximation
schemes (PTASs) on planar graphs [Bak94] applies to this setting. As a result,
PTASs are known for hereditary maximization problems such as maximum inde-
pendent set, maximum triangle matching, maximum H-matching, and maximum
tile salvage; for minimization problems such as minimum vertex cover, minimum
dominating set, minimum edge-dominating set; and for subgraph isomorphism
for a fixed pattern [DHN+04,Epp00,HN02]. Graphs of bounded local treewidth
also admit several efficient fixed-parameter algorithms. In particular, Frick and
Grohe [FG01] give a general framework for deciding any property expressible
in first-order logic in graphs of bounded local treewidth. Theorem 8 substan-
tially improves the running time of these algorithms, in particular improving

the running time of the PTASs from 222O(1/ε)

nO(1) to 2O(1/ε)nO(1), where n is
the number of vertices in the graph.

8 Subexponential Fixed-Parameter Algorithms

A fixed-parameter algorithm is an algorithm for computing a parameter P (G) of
a graph G whose running time is h(P (G))nO(1) for some function h. The expo-
nent O(1) must be independent of G; thus the exponentiality of the algorithm is
bounded by the parameter P (G), and the dependence on n is only polynomial.
A typical function h for many fixed-parameter algorithms is h(k) = 2O(k). In the
last five years, several researchers have obtained exponential speedups in fixed-
parameter algorithms in the sense that the h function reduces exponentially, e.g.,
to 2O(

√
k). For example, the first fixed-parameter algorithm for finding a domi-

nating set of size k in planar graphs [AFF+01] has running time O(8kn); subse-
quently, a sequence of subexponential algorithms and improvements have been
obtained, starting with running time O(46

√
34kn) [ABF+02], then O(227

√
kn)

[KP02], and finally O(215.13
√

kk + n3 + k4) [FT03]. Other subexponential algo-
rithms for other domination and covering problems on planar graphs have also
been obtained [ABF+02,AFN04,CKL01,KLL02,GKL01].

All subexponential fixed-parameter algorithms developed so far are based
on showing a sublinear parameter-treewidth bound and then using an algorithm
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whose running time is singly exponential in treewidth and polynomial in problem
size. As mentioned in Section 5, essentially all sublinear treewidth-parameter
bounds proved so far can be obtained through bidimensionality. Theorem 5 and
the techniques of [DFHT04a] yield the following general result for designing
subexponential fixed-parameter algorithms:

Theorem 9 ([DH05b, DFHT04a]). Consider a g(r)-bidimensional parame-
ter P that can be computed on a graph G in h(w)nO(1) time given a tree
decomposition of G of width at most w. Then there is an algorithm comput-
ing P on any graph G in P ’s corresponding graph class, with running time
[h(O(g−1(k))) + 2O(g−1(k))] nO(1). In particular, if g(r) = Θ(r2) and h(w) =
2o(w2), then this running time is subexponential in k.

In particular, this result gives subexponential fixed-parameter algorithms
for many bidimensional parameters, including feedback vertex set, vertex cover,
minimum maximal matching, a series of vertex-removal parameters, dominating
set, edge dominating set, R-dominating set, clique-transversal set, connected
dominating set, connected edge dominating set, connected R-dominating set,
and unweighted TSP tour.

For minor-bidimensional parameters, these algorithms apply to all H-minor-
free graphs. The next section describes to what extent these algorithms can be
extended to general graphs.

For contraction-bidimensional parameters, these algorithms apply to apex-
minor-free graphs. On the other hand, subexponential fixed-parameter algo-
rithms can be obtained for dominating set, which is contraction-bidimensional,
on H-minor-free graphs [DFHT04b], map graphs [DFHT], and fixed powers of
planar graphs (or even fixed powers of H-minor-free graphs) [DFHT,DFHT04b].
These algorithms are necessarily more complicated than those produced from
Theorem 9, because apex-minor-free graphs are precisely the minor-closed graph
classes for which domatinating set has a parameter-treewidth bound [DFHT04a].
An intriguing open question is whether these techniques can be extended to other
contraction-bidimensional problems than dominating set, for fixed powers of H-
minor-free graphs and/or other classes of graphs.

9 Fixed-Parameter Algorithms for General Graphs

As mentioned in Section 5, minor-bidimensionality can be defined for general
graphs as well. In this section we show how the bidimensionality theory in this
case leads to a general class of fixed-parameter algorithms.

A major result from the Graph Minor Theory (in particular [RS95, RS])
is that every minor-closed graph property is characterized by a finite set of
forbidden minors. More precisely, for any property P on graphs such that a
graph having property P implies that all its minors have property P , there is a
finite set {H1, H2, . . . , Hh} of graphs such that a graph G has property P if and
only if G does not have Hi as a minor for all i = 1, 2, . . . , h. The algorithmic
consequence of this result is that there exists an O(n3)-time algorithm to decide
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any fixed minor-closed graph property, by finitely many calls to an O(n3)-time
minor test [RS95]. This consequence has been used to show the existence of
polynomial-time algorithms for several graph problems, some of which were not
previously known to be decidable [FL88].

However, all of these algorithmic results (except the minor test) are non-
constructive: we are guaranteed that efficient algorithms exist, but are not told
what they are. The difficulty is that we know that a finite set of forbidden minors
exists, but lack “a means of identifying the elements of the set, the cardinality of
the set, or even the order of the largest graph in the set” [FL88]. Indeed, there is
a mathematical sense in which any proof of the finite-forbidden-minors theorem
must be nonconstructive [FRS87].

We can apply these graph-minor results to prove the existence of algorithms
to compute parameters, provided the parameters never increase when taking a
minor. For any fixed parameter and any fixed k ≥ 0, there is an O(n3)-time algo-
rithm that decides whether a graph has parameter value ≤ k. Unfortunately, the
existence of these algorithms does not necessarily imply the existence of a single
fixed-parameter algorithm that works for all k ≥ 0, because the algorithms for
individual k (in particular the set of forbidden minors) might be uncomputable.
We do not even know an upper bound on the running time of these algorithms
as a function of n and k, because we do not know the dependence of the size of
the forbidden minors on k.

In [DH04c], fixed-parameter algorithms are constructed for nearly all param-
eters that never increase when taking a minor, with explicit time bounds in
terms of n and k. Essentially, by assuming a few very common properties of the
parameter, we obtain the generalized form of minor-bidimensionality.

Theorem 10 ([DH04c]). Consider a parameter P that is positive on some g×g
grid, never increases when taking minors, is at least the sum over the connected
components of a disconnected graph, and can be computed in h(w)nO(1) time
given a width-w tree decomposition of the graph. Then there is an algorithm
that decides whether P is at most k on a graph with n vertices in

[
22O(g

√
k)5

+

h(2O(g
√

k)5)
]
nO(1) time.

As mentioned in [DH04c], a conjecture of Robertson, Seymour, and Thomas
[RST94] would improve the running time to h(O(k lg k))nO(1), which is 2O(k lg k)

nO(1) for the typical case of h(w) = 2O(w). This conjectured time bound almost
matches the fastest known fixed-parameter algorithms for several parameters,
e.g., feedback vertex set, vertex cover, and a general family of vertex-removal
problems [FL88].

10 Polynomial-Time Approximation Schemes

Recently, the bidimensionality theory has been extended to obtain polynomial-
time approximation schemes (PTASs) for essentially all bidimensional parame-
ters, including those mentioned above [DH05a]. These PTASs are based on tech-
niques that generalize and in some sense unify the two main previous approaches
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for designing PTASs in planar graphs, namely, the Lipton-Tarjan separator ap-
proach [LT80] and the Baker layerwise decomposition approach [Bak94]. The
PTASs apply to H-minor-free graphs for minor-bidimensional parameters and
to apex-minor-free graphs for contraction-bidimensional parameters. To achieve
this level of generality, [DH05a] uses the sublinear parameter-treewidth bound
of Theorem 5 as well as a recent O(1)-approximation algorithm for treewidth in
H-minor-free graphs [FHL04].

Before we can state the general theorem for constructing PTASs, we need to
define a few straightforward required conditions, which are commonly satisfied
by most bidimensional problems. The theorem considers families of problems in
which we are given a graph and our goal is to find a minimum-size set of vertices
and/or edges satisfying a certain property. Such a problem naturally defines a
parameter and therefore the notion of bidimensionality. A minor-bidimensional
problem has the separation property if it satisfies the following three conditions:
1. If a graph G has k connected components G1, G2, . . . , Gk, then an optimal

solution for G is the union of optimal solutions for each connected compo-
nent Gi.

2. There is a polynomial-time algorithm that, given any graph G, given any ver-
tex cut C whose removal disconnects G into connected components G1, G2,
. . . , Gk, and given an optimal solution Si to each connected component Gi

of G − C, computes a solution S for G such that the number of vertices
and/or edges in S within the induced subgraph G[C ∪ ∪i∈IV (Gi)] consist-
ing of C and some connected components of G − C is

∑
i∈I |Si| ± O(|C|)

for any I ⊆ {1, 2, . . . , k}. In particular, the total cost of S is at most
OPT(G− C) + O(|C|).

3. Given any graph G, given any vertex cut C, and given an optimal solution
OPT to G, for any union G′ of some subset of connected components of
G− C, |OPT∩G′| = |OPT(G′)| ±O(|C|).
For contraction-bidimensional problems, the exact requirements on the prob-

lem are slightly different but similarly straightforward. The main distinction is
that the connected components are always considered together with the cut C.
As a result, the merging algorithm in Condition 2 must take as input a solution
to a generalized form of the problem that does not count the cost of including all
vertices and edges from the cut C. We omit the exact definition of the separation
property in this case in the interest of space.
Theorem 11 ([DH05a]). Consider a bidimensional problem satisfying the sep-
aration property. Suppose that the problem can be solved on a graph G with n
vertices in f(n, tw(G)) time. Suppose also that the problem can be approximated
within a factor of α in g(n) time. For contraction-bidimensional problems, sup-
pose further that both of these algorithms also apply to the generalized form of
the problem. Then there is a (1+ε)-approximation algorithm whose running time
is O(nf(n, O(α2/ε))+n3g(n)) for the corresponding graph class of the bidimen-
sional problem.

This result shows a strong connection between subexponential fixed-para-
meter tractability and approximation algorithms for combinatorial optimization
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problems on H-minor-free graphs. In particular, this result yields a PTAS for the
following minor-bidimensional problems in H-minor-free graphs: feedback vertex
set, face cover (defined just for planar graphs), vertex cover, minimum maximal
matching, and a series of vertex-removal problems. Furthermore, the result yields
a PTAS for the following contraction-bidimensional problems in apex-minor-
free graphs: dominating set, edge dominating set, R-dominating set, connected
dominating set, connected edge dominating set, connected R-dominating set,
and clique-transversal set.

11 Open Problems

Several combinatorial and algorithmic open problems remain in the theory of
bidimensionality and related concepts.

One interesting direction is to generalize bidimensionality to handle general
graphs, not just H-minor-free graph classes. As mentioned in Section 5, the nat-
ural generalization of minor-bidimensionality still yields a parameter-treewidth
bound, but it is very large. This direction essentially asks for the size of the
largest grid minor guaranteed to exist in any graph of treewidth w. Robert-
son, Seymour, and Thomas [RST94] proved that every graph of treewidth larger
than 202r5

has an r × r grid as a minor, but that some graphs of treewidth
Ω(r2 lg r) have no grid larger than O(r) × O(r), conjecturing that the right re-
quirement on treewidth for an r×r grid is closer to the Θ(r2 lg r) lower bound. If
this conjecture is correct, we would obtain nearly as good parameter-treewidth
bounds for minor-bidimensional parameters as in the H-minor-free case. A simi-
lar generalization of parameter-treewidth bounds beyond apex-minor-free graphs
is not possible for all contraction-bidimensional parameters, e.g., dominating set
[DFHT04a], but it would still be quite interesting to explore an analogous “the-
ory of graph contractions” paralleling the Graph Minor Theory. Such a theory
would be an interesting and powerful tool for handling problems that are closed
under contractions but not minors, and therefore deserves more focus.

Another interesting direction is to obtain the best constant factors in terms
of the fixed excluded minor H . These constants are particularly important in
the context of the exponent in the running time of a fixed-parameter algorithm.
At the heart of all such constant factors is the lead constant in Theorem 4.
This factor must be Ω(

√|V (H)| lg |V (H)|), because otherwise such a bound
would contradict the lower bound for general graphs. An upper bound near this
lower bound (in particular, polynomial in |V (H)|) is not out of the question:
the bound on the size of separators in [AST90] has a lead factor of |V (H)|3/2.
In fact, Alon, Seymour, and Thomas [AST90] suspect that the correct factor
for separators is Θ(|V (H)|), which holds e.g. in bounded-genus graphs. We also
suspect that the same bound holds for the factor in Theorem 4, which would
imply the corresponding bound for separators.

A third interesting direction is to generalize the polynomial-time approxi-
mation schemes that come out of bidimensionality to more general algorithmic
problems that do not correspond directly to bidimensional parameters. One gen-
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eral family of such problems arises when adding weights to vertices and/or edges,
and the goal is e.g. to find the minimum-weight dominating set. It is difficult
to define bidimensionality of the corresponding weighted parameter because its
value is no longer well-defined on an r×r grid: the parameter value now depends
on the weights of vertices in such a grid. Another family of such problems arises
when placing constraints (e.g., on coverage or domination) only on subsets of
vertices and/or edges. Examples of such problems include Steiner tree [AGK+98]
and subset feedback vertex set [ENZ00]. Again it is difficult to define bidimen-
sionality in such cases because the value of the parameter on a grid depends on
which vertices and/or edges of the grid are in the subset.
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Kynčl, Jan 340

Liotta, Giuseppe 251, 262
Lu, Lincoln 12
Lynch, Karol 296

Marcus, Adam 349
Martin, Jeremy L. 167
Meijer, Henk 251
Meng, Jeremy Yu 184
Merrick, Damian 482
Morin, Pat 1
Mosbah, Mohamed 60
Murtagh, Tom 471



536 Author Index

Navabi, Armand 454
Newton, Matthew C. 360
Norine, Serguei 371
North, Stephen 239

Ossona de Mendez, Patrice 217

Pach, János 340
Papamanthou, Charalampos 377
Patrignani, Maurizio 100, 389
Pich, Christian 89
Pitta, Chandan 492
Pizzonia, Maurizio 100
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