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Foreword

Arguably the most difficult aspect of drug development, once proof-of-concept is

achieved for a novel mechanism, is defining the “right” dose. Indeed, the question

rapidly expands to right for whom? An individual? A population? A specific

disease? A unique demographic? The answers can yield a dizzying array of

alternatives. Yet pressures to rapidly realize the benefits of a new compound

often limit time spent in early development (Phase I/II) when such questions

have traditionally been explored. To more efficiently address the problem

of defining the optimum dose, new approaches are being applied across the

disciplines of drug development.

The present volume, Dose Optimization in Drug Development, in the series

Drugs and the Pharmaceutical Sciences, provides a timely overview of emerging

knowledge in this field. This knowledge encompasses techniques for exploring

individual as well as population dose optimization including the definition

of dose-concentration-response relationships, modeling based on these PK/PD

relationships, clinical trial simulations, and application of pharmacogenomic

principles. One aspect of this research which should not be lost is the requirement

for more highly integrated interactions between the clinicians, kineticists, and

statisticians addressing these problems.

Dr. Rajesh Krishna, the editor of the present volume, has assembled an

extraordinary group of contributors. He has succeeded in identifying the critical

newly emerging capabilities in drug development as applied to dose finding and

generated a volume of enormous power. The authors, for their part, address the

fundamental issues of the day with respect to dose optimization—translational

research, methodology development, clinical trial modeling, PK/PD simulations,

biomarker identification and validation, and application of novel clinical trial

designs—in a manner that is of both sufficient depth and general applicability as

v
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to be of practical utility to the reader. This volume will become an indispensable

reference work for anyone interested in applying these state of the art principles

for dose optimization to the science of drug development.

Barry J. Gertz, M.D., Ph.D.

Executive Vice President

Clinical and Quantitative Sciences

Merck Research Laboratories

Rahway, New Jersey, U.S.A.

vi Foreword
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Preface

Advancements in various aspects of clinical science have resulted in remarkable

improvement in scientific drug development, specifically with respect to quality

of new drug applications. Despite these small and perhaps case-dependent

improvements, the promise of biomarkers, new clinical methodologies and

technologies, the “omic” sciences and the pharmacostatistical approaches to

advanced modeling of biodynamic systems and trial simulations have all yet to

significantly modulate the quality of new candidate selection, clinical optimiz-

ation, and characterization, and thus profoundly reduce late stage development

attrition. Fundamentally, all of these powerful tools and methodologies individu-

ally retain enormous potential to result in a better understanding of the new drug

candidate’s behavior in various patient populations, in understanding exposure–

response relationships, and in quantitatively delineating risk versus benefit. The

latter developmental aspect is a singularly worrisome gap in many drug develop-

ment programs, sometimes resulting in complicated and prolonged regulatory

reviews and, in rare cases, drug product withdrawals.

In considering the aspect of risk versus benefit further, one relatively under-

utilized concept is surprisingly the scientific basis of dose selection, focus, and

optimization. It is surprising because dose selection is still largely empirical

and not rationally scientific, at least to the extent that could be possible. Dose

selection is hardly trivial and is intimately linked to risk versus benefit

as it quantifies the therapeutic window for a given new chemical entity within

the context of the disease it is being developed for.

The realities of new product development took a turn for the better when the

U.S. Food and Drug Administration recently released a report entitled “Innovation/
Stagnation: Challenge and Opportunity on the Critical Path to New Medical

Products” on March 16, 2004, aimed at modernizing drug development. This is

the first major step in recent years that a federal authority has taken to further ident-

ify the deficiencies in new drug development from a regulatory standpoint. Fortu-

nately, this key regulatory initiative, or rather a formal recognition of a persistent

vii
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problem, has fueled considerable interest in integrating knowledge that would con-

tribute productively to new drug development, gain a better understanding of the

drug candidate’s behavior in patient populations, while increasing the probability

of success for new chemical entities. The emphasis on dose optimization has also

encouraged research and discussion on performing more innovative Phase I/II

trials to seek evidence of target engagement earlier rather than later, thereby redu-

cing failure rates attributable to poor efficacy. These considerations have played a

central role in the conceptualization and development of this book.

The theme of this volume is dose selection and optimization, specifically

as they relate to new drug development. When conceptualizing this volume, the

editor identified those specific areas that contribute to the rational scientific basis

for dose selection. Those areas leverage the first principles of pharmacokinetics

and pharmacodynamics, which in the editor’s opinion are fundamental to drug

development. The concepts presented here are intentionally somewhat advanced

and may appeal favorably to those who are familiar with basic pharmacokinetics

and clinical pharmacology. The book is not designed as a formal study course text-

book, but more along the lines of presenting perspectives from expert scientists

drawn from the pharmaceutical industry, academia, and regulatory agencies. The

perspectives are intended to be thought-provoking and designed to elicit sustained

interest and discussions on dose selection and its broader impact on various

elements of risk-versus-benefit and model-based drug development.

The editor recognizes that there are two key interfaces in new drug develop-

ment: first, the transition from preclinical to Phase I clinical development (so-called

early or translational development), and second, the transition from establishing

pharmacological proof-of-concept in Phase IB/IIA development to pivotal efficacy

Phase IIB/III trials (so-called late development). The interplay of biomarkers, novel

clinical trial designs, pharmacogenomics, and new technologies overlapping these

two transition events will be emphasized. Aspects of dose adjustment necessitated

by both intrinsic and extrinsic considerations will also be discussed, although this is

not the focus of this volume. The volume is intentionally not all-encompassing,

focusing only on those opportunities which in the editor’s perspective, if leveraged

successfully, will positively influence drug development dose decisions.

It is hoped that the book will appeal to drug development scientists, particu-

larly those who are clinical pharmacologists, pharmacokineticists, clinicians, and

regulators. Advanced students of medicine, pharmacy, and allied health sciences

may also benefit if their primary interests lie in new drug development. The book

will appeal to anyone who would like to appreciate how integration of sciences

facilitates meaningful changes in delineating risk versus benefit and ultimately in

the selection of safe and effective doses.

Rajesh Krishna

viii Preface
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1

Introduction to Dose Optimization in
Drug Development

Rajesh Krishna

Department of Clinical Pharmacology, Merck Research Laboratories,
Merck & Co., Inc., Rahway, New Jersey, U.S.A.

INTRODUCTION

On average, it now takes approximately at least 10 years of pharmaceutical

research and development time and approximately $1.7 billion to bring a new

molecule to bridge the gap of growing demands of unmet medical needs (1–

8). It is also interesting to note that there is a failure rate of approximately

50% in Phase III late stage development in the industry (1,5,7). A schema on

the drug development value chain is presented in Figure 1. Drug development

proceeds in stages, as a molecule moves from preclinical to clinical development,

eventually through registration and, in the process, valuable knowledge on the

preclinical and clinical properties is gained that is consistent with the learning

and confirming paradigm. It takes even more to keep the drug as a viable

option for therapy post-approval as new information becomes available on the

safety and efficacy of the drug in a wider patient population (8). As an

example of post-marketing events, Table 1 lists the drugs withdrawn from the

market due to safety-related reasons. The promise of new technologies that

have spanned the entire breadth and width of drug development from combina-

torial chemistry approaches to high throughput screens and the advances in

genomic sciences appear not to have made a significant impact on the drug devel-

opment statistics yet (6). This is reflected in the declining number of new mole-

cular (or chemical) entities received by the United States Food and Drug

Administration (FDA) as compared to the early 1990s (1). The scope of

1
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knowledge-based drug development is illustrated in Figure 2, one recurring

aspect of which, namely dose optimization, is the theme of this book.

CHANGING FACE OF REGULATORY ENVIRONMENT

The regulatory environment has also been rapidly changing as new information

on the safety of an approved molecule arises from the wider patient population

and additionally as long-term outcome trials on risk factors for disease dictate

drug development and approval. This has had particular impact on drug with-

drawals from the market in the past decade or two. Brewing in the midst of

this cycle of innovation and stagnation, two schools of thought have emerged.

One aims to critique the drug development as being too slow in bringing prom-

ising medical breakthroughs to the care of patients who deserve them faster than

currently is the case, while the other aims to critique that the current drug devel-

opment trials are insufficient to generate adequate safety and efficacy data to

support a new molecule’s broader use in a patient population.

The declining rate in approval of new molecular entities has been a

subject of debate for a number of both scientific and business forums in the under-

standing of why pharmaceutical innovation is on the decline. The FDA Modern-

ization Act of 1997, implying that a single adequate and well-controlled

investigation with confirmatory evidence was sufficient for drug approval, trig-

gered additional thought and public debate (9–16). A hypothesis on this issue

was presented by Carl Peck, Donald Rubin, and Lewis Sheiner, which appeared

Figure 1 Drug development value chain from preclinical development through regis-

tration. The schema also illustrates compound attrition rate and development time.

2 Krishna
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in Clinical Pharmacology and Therapeutics in June 2003 (17). The authors

argued against the perception of lowered standards for drug effectiveness and

stated that drug development will be more efficient in the end with a single clini-

cal trial with confirmatory evidence of effectiveness.

Recognizing the apparent deficiencies in drug development and regulatory

approval, the U.S. Food and Drug Administration put forth a white paper on

Table 1 Partial List of Drugs Withdrawn from the Market (1971–2005) Due to Safety

Reasons

Drug Reason for withdrawal

Azaribine Thromboembolism

Ticrynafen Liver and kidney toxicity

Benoxaprofen Liver toxicity

Encainide Mortality

Nomifensine Hemotological effects

Suprofen Kidney toxicity

Temafloxacin Haemolytic-uraemic syndrome

Triazolam Psychiatric effects

Zomepirac Anaphylactic reactions

Apa Anaphylactic reactions

Dilevalol Liver damage

Fenclofenac GI and skin toxicity and carcinogenicity

Feprazone GI toxicity

Indoprofen GI toxicity

Indomethacin-in-OROS GI toxicity

Metipranolol Granulomatous anterior uveitis

Perhexiline Peripheral neuropathy and liver damage

Terodiline Torsades de pointes

Zimeldine Peripheral neuropathy

Flosequinan Increased deaths

Fenfluramine Heart valve disease

Terfenadine Fatal arrhythmia

Bromfenac Liver toxicity

Mibefradil Fatal arrhythmia

Grepafloxacin Fatal arrhythmia

Astemizole Fatal arrhythmia

Troglitazone Liver toxicity

Alosetron Ischemic colitis

Cerivastatin Muscle damage leading to kidney failure

Rapacuronium Severe breathing difficulty

Etretinate Birth defects

Levomethadyl Fatal arrhythmia

Rofecoxib Heart attack, stroke

Valdecoxib Skin disease

Source: Adapted from Refs. 8, 45.
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challenge and opportunity on the critical path to new medical products, in March

2004 (1). The white paper calls for an increased emphasis on methodologies that

can reliably predict the safety and effectiveness of a drug and also novel clinical

evaluation approaches to increase the efficiency of the so-called bottleneck of

drug development, the clinical development (18). According to the white paper,

the critical issue impeding successful development is the inability to predict

safety and efficacy failures early in the process, such that the clinical development

path (Phases I through III) is optimized for molecules with high probability of

success to regulatory acceptance and approval. The FDA hopes to create new pub-

licly accessible methodologies on modeling, simulation, biomarkers, and clinical

endpoints to streamline the path to regulatory approval and has initiated a number

of initiatives within and external to the agency to help make this vision a reality. A

regulatory perspective is presented in Chapter 9.

NEW TECHNOLOGIES FOR DRUG DEVELOPMENT

Biomarkers

The integration of biomarkers in a drug discovery and development program

provides valuable insights into a mechanism of action for a desired therapeutic

intervention (19–40). These biological or biochemical markers of efficacy

Figure 2 Scope of knowledge-based drug development (modified from the original,

courtesy Dr. Jeff Barrett, University of Pennsylvania).

4 Krishna
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and /or safety will aid in the development of appropriate exposure/response

relationships and can be implemented as early as preclinical pharmacology

studies are performed in the drug discovery stage. Together with allometric

scaling of pharmacokinetics (PK), exposure margins from toxicological data,

and prediction of drug behavior in humans, they present the first opportunity to

elucidate the projected clinically relevant dose range in translational develop-

ment for assessment in the first human trial.

Typically, early biomarker identification and applications involve those

biomarkers that are implicated in the normal course of disease progression,

such that measurement of the marker provides some understanding of the

pharmacological responses to a desired effect.

It is not uncommon to use the early phase of clinical development to

investigate the viability of multiple markers of disease progression and /or

safety. Biomarkers are particularly useful in the transition from preclinical to

clinical development and also at the interface of early clinical and late stage clini-

cal development. Their application in translational and early clinical (Phase I)

development is in the selection of doses and /or regimens to be initially assessed.

Disease progression is discussed in Chapter 2 while biomarker validation

and qualification are discussed in Chapter 3. Surrogate endpoints (discussed

in Chap. 6) are generally those biomarkers that are intended to substitute for a par-

ticular clinical endpoint; clinical endpoints are those that represent functional or

survival attributes (21–40). Specific definitions for the terminology used have

been proposed by the biomarkers definitions working group listed in Table 2 (20).

Informative biomarkers and surrogate endpoints add value to drug develop-

ment not only for deciding on comparative efficacy among lead candidates and

a basis for termination or continuance of a program, but they are amenable to

elucidating PK/pharmacodynamic (PD) assessments, thus aiding in target

validation, providing early scope for risk/benefit, dose selection, focus and

optimization, and in identifying a subset of the target population who may

respond to a specific treatment option more favorably. In addition, they can aid

Table 2 Terminology for Biomarkers and Endpoints

Term Definition

Biomarker A characteristic that is objectively measured and evaluated as an

indicator of normal biological processes, pathogenic processes,

or pharmacologic responses to a therapeutic intervention.

Clinical endpoint A characteristic or variable that reflects how a patient feels,

functions, or survives.

Surrogate endpoint A biomarker that is intended to substitute for a clinical endpoint.

A surrogate endpoint is expected to predict clinical benefit (or

harm or lack of benefit or harm) based on epidemiologic,

therapeutic, pathophysiologic, or other scientific evidence.

Source: Adapted from Ref. 20 (Biomarkers Definition Working Group).
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in the design of efficient clinical trials and in the approval of new molecules,

using an accelerated approval program. A good example of an accelerated

approval based on a surrogate endpoint is from the infectious diseases therapeutic

area (26,30,34–36). CD4 lymphocyte count is widely acknowledged and applied

as a surrogate endpoint for AIDS progression. Zidovidine was first approved in

1987 based on survival data at 17 weeks. DDI, on the other hand, was approved

in 1991 based on the CD4 as a surrogate endpoint for use in cases where AZT

therapy failed, and ddC became the first molecule approved under the accelerated

approval paradigm in 1992. Many drugs against HIV have since been approved.

Based on a review of the recent accelerated approvals for drugs against HIV, the

endpoint has been either the change of CD4, time-averaged change of CD4, HIV

change from baseline, or HIV RNA ,400 and /or ,50 copies /mL. Table 3 lists

the biomarkers, and surrogate and clinical endpoints for a few other disease

segments. The role of pharmacogenomics in dose optimization is presented in

Chapter 8.

Modeling and Simulation

PK characterization of a new molecule involves the quantitative description of

the time course of a new molecule in the biological system, enabling elucidation

of key PK parameters, such as half-life, volume of distribution, clearance, and so

on. Similarly, PD characterization of a drug quantitatively describes the biologi-

cal effects of drugs and mechanism of action. When PK is integrated with PD,

Table 3 Partial List of Biomarkers and Clinical Endpoints

Disease Biomarker Clinical endpoint

Alzheimer’s disease Entorhinal cortex volume

by MRI

Cognitive testing

Asthma Lung function tests Respiratory distress

Cancer Tumor size Survival, progression

Diabetes Fasting plasma glucose,

HbA1c

Nephropathy, retinopathy

Glaucoma Intraocular pressure Visual acuity

Hyperlipidemia Serum cholesterol Myocardial infarction

Hypertension Blood pressure Stroke, myocardial infraction

Multiple sclerosis Lesion incidence, volume Neurologic manifestations

Osteoporosis Bone mineral density Fractures

Rheumatoid arthritis c-reactive protein, joint space,

erosion

Pain, mobility

HIV CD4 levels, viral load Survival

Congestive heart

failure

Cardiac output,

ejection fraction

Survival

Source: Adapted from Refs. 19–40.
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valuable information on concentration versus effect relationships can be

obtained, which has important implications in drug development. Simple and

empirical exposure/response relationships can guide many aspects of drug dis-

covery and development decisions such as dose selection, effect of exposure

alteration on desired pharmacological response, defining target effect concen-

tration margins, and prediction of response for a given concentration /exposure.

Notably, PK/PD models can aid in elucidating the biological plausibility of

various biomarkers early in drug development while providing an opportunity

to accelerate drug development when integrated with biomarkers, surrogate, or

clinical endpoints (12,17,41,42).

Over the last two decades, a new dimension of PK /PD modeling has

emerged, in part borrowed from advanced engineering and business decision

analysis fields (42). While probably still in infancy, the emerging science of

pharmacometrics offers a quantitative basis for the principles of clinical pharma-

cology and therapeutics to an extent perhaps greater than that which has been

accomplished in the past. This involves the application of complex

computational and statistical principles in development of more mechanistic

exposure/response relationships, integration of population PK/PD modeling,

and stochastic simulation analysis incorporating Monte Carlo simulation

paradigm, which have opened doors to a more quantitative outlook on clinical

pharmacology. With the available programming and simulations software,

these complex modeling and simulations approaches have already begun to

have a positive impact on drug development. More importantly, their core appli-

cation has been in forecasting the uncertainty in attaining a desired probability of

success for a given therapeutic endpoint for large Phase II–III trials, thereby

adding value to the design of clinical trials and dose and regimen optimization.

This is possible by modeling the time course of disease progression based on

available data on the progression of disease, outcome trials, and epidemiologic

database, thus providing an opportunity to assess drug effects on disease pro-

gression. Virtual trials can be performed essentially in-silico and can assess the

factors that influence the PK or PD of a given molecule against the backdrop

of typical events that occur in an actual trial setting. Many of these concepts

are applied and presented in Chapters 10–12.

Clinical Trial Design

In recent years, clinical trial designs have been a subject of numerous discussions

and scientific debates. Given the increasing number of ineffective new molecular

entities, failed clinical trial outcomes, and escalating trial costs, it has become

increasingly apparent that novel clinical study designs would benefit from a rede-

sign with an aim to improve upon the efficiency of clinical trials in selecting the

winners, while minimizing exposing trial subjects to ineffective treatments. In

general, for the purposes of discussion, there are two types of clinical designs

based on flexibility. One is a frequentist design that is a P-value-based fixed

Introduction to Dose Optimization in Drug Development 7
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allocation design, while the other is an evidence-based Bayesian approach

evaluating subject-specific dose /response relationships. The latter design

leverages prior information to decide on trial continuance or termination or

reallocation, such that knowledge is updated as trial progresses. In statistical

terms, this encompasses updating the prior estimate of the probability of an

event to a posterior probability as new information becomes available. Adaptive

clinical trial designs maximize the understanding of dose/response and con-

tribute to selection of appropriate doses. Novel study designs are discussed

more extensively in Chapter 5.

RISK VERSUS BENEFIT ASSESSMENT

A quantitative assessment of risk and benefit relates the desired therapeutic

endpoint with the undesired effects for a given new molecule. Delineation of

risk versus benefit enables a greater appreciation of the therapeutic index and

safety margins, thus enabling dose selection to be optimized. A risk versus

benefit profile can be leveraged by an understanding of the PK properties of a

given drug and exposure/response relationships for safety and efficacy. A con-

ceptual framework for risk/benefit leveraging of a biomarker approach for

safety and efficacy is presented in Figure 3.

It is quite common to encounter undesired safety issues for a new molecule

in Phase I development where super-pharmacological doses are used to aid in the

Figure 3 Assessment of risk/benefit. Source: Adapted from Ref. 20. Courtesy of the

American Society for Clinical Pharmacology and Therapeutics.
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assessment of dose-limiting tolerability /safety findings. With the integration

of biomarkers for safety and efficacy, one could leverage the information quan-

titatively with the aid of PK /PD modeling approaches, and as new data become

available, the model can be further updated. These analyses can guide the devel-

opment of the therapeutic index for a given molecule and provide dose focus for

later Phase II/III trials, allowing for a more precise evaluation of toxicity and

efficacy using an iterative process.

An example of a biomarker for safety is the QTc interval prolongation as a

predictor for torsades de pointes. A PK /PD modeling approach can predict the

extent of prolongation for a given molecule in the target population if sufficient

information is available on the factors influencing the PK and/or PD variability

for a drug response. A therapeutically meaningful dose or range of doses can then

be identified by maximizing the efficacy while minimizing the risk for an

observed incidence of QTc prolongation. An example for PK variability would

be the increased exposure to a drug metabolized by CYP3A in a subject with

hepatic insufficiency or in a subject with concomitant administration of

ketoconazole, a CYP3A inhibitor. Chapter 7 illustrates the role of PK and PD

variability in dose optimization.

Advances in mechanism-based modeling have allowed the flexibility

of incorporating underlying pathophysiological processes for an observed

PD response. In addition to providing a characterization of the concentration/
effect relationship, these approaches enable an effective delineation of risk/
benefit by providing a measure of potency/activity and undesired effects.

A good example of an application of mechanistic modeling in quantitative

risk/benefit assessments comes from the literature on inhaled corticosteroids

(43,44). While inhaled corticosteroids present a viable therapeutic option for

asthma, there have been questions on their long-term safety. Specifically, these

concerns stem from their potential to suppress development of the adrenal

function. Consequently, a clear delineation of the benefit (for asthma) and risk

(clinical adrenal suppression) is necessary for development of newer inhaled cor-

ticosteroids. Here the benefit is a conglomeration of all favorable attributes of a

molecule, including optimal PK properties, drug delivery properties, and

increased residence in the lung, which may likely contribute to a more favorable

systemic side-effect profile. An assessment of a quantitative risk/benefit value

would entail the use of cortisol levels in plasma as a biomarker of the suppression

in adrenal function. PK/PD modeling can then be performed integrating the bio-

marker, incorporating circadian rhythm, and any influence of down regulation. A

model-based approach here would provide information on the degree of cortisol

suppression for a range of efficacious doses and, thus, a therapeutic dose at which

there is negligible cortisol suppression can then be identified.

Early identification of delineation of factors influencing risk and benefit

is very useful as a clinical utility index is developed for a new molecule. This

information may aid in the design of additional trials to further elucidate risk

or benefit or add value in compound progression decisions.

Introduction to Dose Optimization in Drug Development 9
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IMPLICATIONS ON DOSE OPTIMIZATION

There are two crucial transition points in the drug development value chain.

One is in the transition from preclinical pharmacology /toxicology to initial

introduction to humans and the other is in the transition from Phase IIa to

IIb /III. These crucial transition points emphasize the learning and confirming

aspects of modern drug development. The selection of doses presents an import-

ant challenge during both transition points—specifically, the doses to be evalu-

ated in the introduction to human study (Chap. 4), proof-of-concept study, and

pivotal efficacy studies. Suboptimal dose selection can adversely influence

program timelines, increase uncertainty in drug development probability of

success, and elicit a poor understanding of exposure /response and, ultimately,

risk /benefit. The goal of the early development program is to gain a robust under-

standing of PK, PD, safety and preliminary pharmacological activity, and hence

key information on the maximum tolerated doses, minimum effective dose, and

therapeutically relevant dose range is discerned. The influence of covariates (age,

gender, special populations, concomitant drugs, renal status, and so on) on the

PK or PD of a drug has important implications for dose adjustment recom-

mendations. The availability of new methodologies and technologies, including

biomarkers, surrogate endpoints, and genomic sciences, as well as the compu-

tational advances in modeling and simulations, have all made elucidating

exposure /response relationships more informative in clinical drug development.

Importantly, these technologies have improved our ability to understand disease

progression and in delineation of risk and benefit by improving the predictive

power of a desired effect or an undesired effect. It is hoped that these advantages

translate into a productive and informed basis for dose selection in preclinical

pharmacology studies and in transition to initial clinical trial in humans, while

providing dose focus and refinement for later clinical trials and, ultimately, a

range of doses for registration. Positive changes in the regulatory climate as evi-

denced by newer regulatory initiatives offer better dialogue between the regulat-

ory agency and the sponsor on issues central to dose optimization by leveraging

exposure/response relationships at key points in the value chain, consistent with

the scope illustrated in Figure 2. The availability of drug disease model libraries

will further streamline drug development and further refine the key transition

points in drug development, such that late stage attrition can be reduced.
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INTRODUCTION

The rate of growth of available information about biomedical and biological

systems is exponential. In fact, available information has already gone far

beyond human ability to synthesize, analyze, and predict. The biomedical

information torrent is now a continuously growing set of exceedingly intricate

knowledge about complex, large dynamic systems. Against this background,

one of the most urgent challenges to the biomedical research community, with

direct impact on drug development, seems to be to develop approaches to

analyze this extremely large amount of data to discover patterns (1) or useful

information that may be available in the data but not apparent through simple

inspection. This integration aspect has always been a challenge in drug develop-

ment, where data are continuously gathered at a variety of scales and sizes

through the preclinical and clinical development programs. Recently, academic

and health sciences research has also become aware of the importance of this

very challenge. The National Institutes of Health (NIH) Roadmap for medical

research in the 21st century states that:

Today’s biomedical researcher routinely generates an amount of data

that would fill multiple compact discs, each containing billions of
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bytes of data. [A byte is approximately the amount of information con-

tained in an individual letter of type on this page.] There is no way

to manage these data by hand. What researchers need are computer

programs and other tools to evaluate, combine, and visualize these

data. In some cases, these tools will greatly benefit from the awesome

strength of supercomputers or the combined power of many smaller

machines in a coordinated way but, in other cases, these tools will be

used on modern personal computers and workstations (2).

Clearly, the storage and retrieval alone of these data sets poses formidable

challenges, along with synthesis and visualization tools. However, another aspect

of the biomedical data deluge poses an even more daunting test: biological and

biomedical data are, almost without exception, only noisy and corrupted

ghostly images of underlying phenomena which cannot be gauged directly.

These underlying phenomena are the features of interest. As a very straightfor-

ward example, pharmacokinetics (PK) is usually gauged from measurements

of drug levels in blood plasma and/or in urine. However, the concentration

time course so obtained is not of primary interest. Much more relevant, easy-

to-use, and simpler-to-grasp are the (kinetic) parameters that can be distilled

from it, such as clearances and apparent volumes of distribution. Any distillation

of information from data, such as pharmacokinetic data, requires a model, that is,

a construct, hopefully with a mechanistic underpinning, which requires data as

input and returns relevant, useful parameters as output. This is the model as

probe concept (3), a potentially very useful paradigm for biomedical data analy-

sis and synthesis. Within this framework, compartmental and non-compartmental

approaches to data analysis, for example, deal with the same issue of information

extraction.

Without a doubt, the main question is how do we measure usefulness in

this context? Are all measured variables, parameters, or model outputs useful

per se? Clearly, this is not the case. There have to be some basic requirements,

having to do with physiological plausibility and predictive power, that these

variables and parameters have to obey. In other words, estimated parameters

should be as close as possible to the hidden, unknown feature they aim at measur-

ing. When this is true, features of the model, such as, for example, predicted time

courses, parameter values, or mechanistic structure, become model-based bio-

markers, or (indirect) measures of biological processes conditional on both a

mathematical and statistical (sometimes called pharmacostatistical in drug

development) model assumption. Which particular features these parameters

gauge depends on the application: volumes of distribution, clearance rates,

production or secretion fluxes, sensitivity to intervention, response times, and

time-to-event estimates, are all possible features amenable to this approach.

Given the context, it should be apparent that model-based approaches are not just

one way, they are only way to extract useful information from much of today’s

biomedical data. The reasons are multiple, but let us summarize only three.
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First of all, a model-based analysis allows mitigation of the consequences

of poor signal-to-noise ratio (the model can be seen as a data smoother, or filter),

which all biological data suffer in various degrees. Secondly, as we have already

mentioned, the sheer size of biological databases, both in the private and public

sectors, nowadays by far outstrips human capacity. It is probably fair to say that

no human will ever be able to wholly appreciate modern datasets like those

coming out of proteomics research, which are starting to intrude in the petabyte

range (a petabyte is comprised of 2 to the 50th power bytes, already much larger

than the “monstrous” 2 to the 40th power bytes that comprise a terabyte). A

model is thus not only a useful tool for prediction (at least potentially), but

also for synthesis of available knowledge. A third reason is that more often

than not, models have a mechanistic underpinning: their structure resembles

the structure of the biological system they purport to represent. When this

happens, then the model may allow for relevant inference on the short- and

long-term behavior of the system under analysis, since the likely future behavior

can be inferred from the combination of model structure and informative data.

Accepted biomarker classification (4) nowadays distinguishes between

biomarkers and surrogate endpoints: the former is a larger class, while the

latter classification requires independent validation and testing. Surrogate end-

points are harder to come by, but when they are available, they have an incredible

potential to guide therapy design and the selection of optimal tests. Most valuable

is the situation when:

. The biomarker/surrogate endpoint is amenable to mechanistic model-

ing, and

. It has been gathered over time, so as to give insight on temporal disease

progression.

It would be most desirable for the biomarker to have a clear causal connection

with the disease mechanism (5); regrettably, this is not always the case.

However, while this is a shortcoming for mechanistic disease models, from a

pragmatic standpoint the causal connection does not have to be there; in a

sense, the marker needs only to be a monitor, or a probe of the disease

process, without necessarily having to be in the causal chain.

BIOMARKERS AND DISEASE PROGRESSION MODELING

Since its introduction in clinical pharmacology and pharmacostatistical modeling

(6), the idea of representing disease progression as a fundamental component of

the quantitative representation of the PK and pharmacodynamics (PD) of a drug

has made considerable strides. This paradigm shift has also made academic and

industrial research and development entities closer than ever. The main reason is

as follows. In this era of evidence-based medicine (7), where scientific findings

are routinely used to make policy decisions, it is only natural that drug develop-

ment makes aggressive use of the same body of scientific knowledge utilized
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by regulators and policymakers worldwide to make decisions that potentially

affect the health and well-being of millions. It has now become quite clear that

a computer model of disease progress, tightly integrated with a quantitative rep-

resentation of the drug distribution and PD, has a previously untapped potential to

streamline drug development at many levels. The cost of drug development has

risen severalfold over the past decade, and the process is staggeringly expensive

and far from efficient: only five out of 5000 candidate compounds reach the

human experimentation stage, and only one out of these five will be approved

by the FDA (8). There is a role for quantitative, testable, and queryable

models of the drug-disease system that incorporate current knowledge, together

with population variation and outcome mapping. The interest in these topics is

starting to cross disciplines, from traditional mathematical biology to drug devel-

opment, for example, as a recent mechanistic study about the effect of imatinib

(GleevecTM) (9) testifies.

There seems to be a strong preference these days for biomarkers that are

easy to measure, preferably univariate, and that have at least the potential to diag-

nose and predict therapy outcome for diseases that are at the worst multifactorial

(10). In practice, this is going to be a lot trickier than it seems. We will neglect

for now the role of environmental factors, but we will come back to them later.

Straightforward diagnosis and obvious needs, even when coupled with a knowl-

edge of the disease mechanism, such as for some monogenic diseases, do not

necessarily translate into successful therapies. On the other hand, a lot of

promise may lie in revisiting existing treatments or compounds, with the increased

awareness that comes from a better understanding of the drug-disease system and

its working mechanisms. An example is acute lymphoblastic leukemia, where sig-

nificant increases in cure rates have been achieved largely through “the optimiz-

ation of the use of existing drugs, rather than by the discovery of new agents” (11).

Needs are multiple: while it is important to clearly discriminate the genetic basis

of a disease, it is also important not to overlook disease aspects, which are more

related to gross phenotypes, such as demographics, dosing extent, delivery, and

timing of administration. Optimization of therapeutic conditions is also required,

together with the development of novel genetic or molecular paradigms. The chal-

lenge with these systemic events is that they are best addressed from a holistic, or

system-wide, point of view. The questions need to be posed in a specific language,

and the grammar of the language is made of seemingly abstruse concepts, such as

differential equations and probability densities, while its vocabulary consists of

parameter values and regression techniques. Its end results are readily understood,

since they are phrased in terms of dosing recommendations and effectiveness

predictions.

A ROLE FOR INFORMATICS AND COMPUTATIONAL BIOLOGY

Interestingly, the modeling and simulation technology to achieve these goals has

been available for decades (12) and originated from within multiple disciplines
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almost simultaneously (13); its practitioners used to be few and far between,

but this corpus of techniques is now achieving something of a renaissance

(14). Some companies have made this an integral part of their approach to

drug development and candidate selection (15). These seemingly disparate tech-

nologies are necessary if we are to solve the problems that are listed here related

to disease diagnosis and therapy, as applied to drug development.

. Most diseases are multifactorial, caused by several simultaneous

mutations that are not amenable to direct quantification or prediction:

one example for all is the prevalence of diabetes type 2 and its links

to obesity and the metabolic syndrome. However, it may be difficult

to translate even “simpler” causative links to promising therapeutic

strategies. Moreover, most diseases may be caused by a combination

of genetic and environmental factors, with the former providing predis-

position and the latter providing the triggering of the adverse condition.

It may not be appropriate to rely on either one or the other for predictive

purposes, and especially for individualized medicine; rather, both need

to be taken into account.

. There is a perceived excessive reliance on animal models and on other-

wise simplified disease components, as opposed to an increased under-

standing of the disease mechanisms in humans. While cancer research

has been recently singled out (16), the case could be made for other dis-

eases as well. Preclinical models are often oversimplified, difficult to

scale to humans (17), ultimately irrelevant, or all of these. This issue

deeply affects both academic and governmental research and private

R&D labs.

. A related issue with modern biomedical research is attention to the

functional aspects of collected biological information. There appears

to be a disconnection between the databasing and cataloging effort

ongoing in bioinformatics and related fields and the translation of

these findings into action items relevant for human health. While it is

true that the knowledge base about human pathophysiology has

increased severalfold, it is less clear how much of this knowledge is

actually relevant and can be turned into lifesaving treatments or

blockbuster drugs or both. The accumulation of knowledge may not

be regarded as sufficient for much longer, as both the public and

investors clamor to see tangible results of time spent or venture

capital supplied.

. The lack of a common language between biologists and quantitative

scientists, such as engineers, mathematicians, and statisticians, may

be the single most important obstacle to the progress of biomedical

research. If available, this language could be used for predictive state-

ments and integration of data and experiment, but its absence is a major

flaw. It has been said that, in the biological sciences, “you’re not
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licensed to theorize unless you put the time in and get the data” (18),

which seems a hardly efficient approach to science, since individual

researchers’ strengths and weaknesses may prevent such approaches.

In a recent commentary, the author argues this very point, and goes

on to state that it is “common experience that once the number of com-

ponents in a system reaches a certain threshold, understanding the

system without formal analytical tools requires geniuses, who are so

rare even outside biology. In engineering, the scarcity of geniuses is

compensated, at least in part, by a formal language that successfully

unites the efforts of many individuals, thus achieving a desired effect,

be that design of a new aircraft or of a computer program. In

biology, we use several arguments to convince ourselves that problems

that require calculus can be solved with arithmetic if one tries hard

enough and does another series of experiments” (19).

With regard to the last statement, a possibility is that the most powerful

and important role for bioinformatics and computational biology is not at all

where everyone thinks it is. While databasing and the collection of genetic infor-

mation and sequence results may be important per se in the end, the real promise

for drug development will lie in their integration with predictive, quantitative

models of drug-disease systems. Such models have concentration and effect

measurements as inputs, often linked with biomarkers, demographic variables,

genetic information and the like, and as outputs they return dosage information

and probabilistic statements of outcomes. These models are now arising in a

variety of areas, and their results in the determination of what we have called

model-based biomarkers earlier are worth sharing here. Instead of focusing on

drug development per se, we review recent findings in a few areas, discussing

also validation aspects, or tests that can be conducted on a biomarker to evaluate

whether it is measuring something of value. The commonality here is the great

potential for translational research, that is, the generation of testable hypotheses

or therapies from basic science research.

FINDING AND VALIDATING MODEL-BASED BIOMARKERS

Validation of model-based biomarkers is a fundamental issue, particularly when

the potential exists for them to become surrogate endpoints. Measurement

quality, statistical significance, and predictive power are all relevant in this

context, since model-based biomarkers are by their very nature indirect measure-

ments, and thus proxies for the actual biological parameter that would be of

interest. In the examples we describe here, taken from the medical, pharma-

ceutical, and physiological literature, validated models have been used to

either increase our understanding of the pathophysiological mechanisms at

play, or they have allowed the indirect monitoring of biomedically relevant
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events. The endocrinology literature is replete with examples of this, in particular

when considering the glucose-insulin system, which we will cover in some detail.

The attempt to describe one individual’s metabolic identity, or the state of an

individual’s regulatory pathways, with a relatively small set of parameters was

a major thrust for this area of research, and has generated intriguing and

important results. The basic approach undertaken may be extensable to other

areas with little modification.

Model-Based Biomarkers in Gene Expression Studies

Microarray technology has gone from being an expensive and poorly understood

technique to one of the most popular tools for the analysis of the genetic basis of

biological systems (20). In these experiments, at least in theory, several

thousands of gene expression levels following a certain stimulus can be

assayed simultaneously. Microarrays thus allow tremendous efficiency in exper-

imental design and allow to broadly examine a vast spectrum of how a biological

system responds to an external change or stimulus. The approach is mostly used

to determine which genes among this very large number are differentially

expressed when experimental boundary conditions change. The underlying

hypothesis is that, if a subset of gene expression levels changes dramatically,

there is a high chance that these genes are somehow responsible for the behavior

of the biological system or pathway under analysis (21). While the technology

is very promising, issues regarding its broad applicability remain, both exper-

imental and analytical in nature. Experimental issues include a relatively poor

understanding of all the sources of error in the experiment and of the reproduci-

bility properties of microarray experiments. Analytical issues arise when trying

to decide what constitutes a significant change in expression level, and

whether this is biologically relevant. Reliable differences in expression of

genes are currently extracted through a variety of methods, including, for

example, qualitative observations and heuristic rules (22), model-based

probabilistic determination (23), and generalized likelihood analysis (24).

The basic problem with most of these approaches is that they lack a

mechanistic background, so that changes in expression levels are, most of the

time, examined in terms of size-fold difference. There could be, however,

other aspects of the dynamic changes in expression levels that ultimately prove

to be of interest. For example, the speed (rate) at which a certain cluster of

genes reacts to a stimulus may relate more closely to the disease mechanism

than the amplitude of the change in expression levels. A mechanistic model of

expression changes could thus potentially provide much valuable insight, in

that it describes the underlying relationships between system components that

give rise to the observed behavior. Against this background, the parameters of

a mechanistic model informed by the kinetics of gene expression could be a veri-

table treasure trove of information on the system. Conceivably, this model-based

analysis method could provide a deeper understanding of the multiple reasons
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behind gene expression changes and, ultimately, a mechanistic insight on the

orchestration on the relationships between genes in a living system.

With application to PK-PD, Jusko et al. have demonstrated the integration

of model-independent methods, such as cluster analysis (25) and model-guided

inference (26), to study corticosteroid pharmacogenomics (Fig. 1 shows an

example of their work). In this kind of work, traditional PK-PD comes together

with more sophisticated pharmacogenomic quantitative constructs, in an inte-

grated PK-PD-pharmacogenomic model for this class of drugs. The innovative

aspect of this line of investigation is that biological inference is made on the

basis of mechanistic conclusions about the likely working mode of the system,

as opposed to inspection of the raw data and fold-change analysis of expression

levels. Further work by the same group focused on related mechanistic aspects of

this particular model system (27). Similar approaches bridging preclinical to

clinical data and inference have been taken in other areas of research as well

(28). Ideally, in vitro models should be followed by in vivo models (29) that gen-

eralize and amplify the findings possible in a controlled experiment.

Model-Based Biomarkers in Functional Imaging Studies

The quantitative aspects of imaging technology and its mechanistic underpin-

nings make it quite suitable as a tool for the extraction of model-based bio-

markers. Positron emission tomography (PET) is one of the earliest functional

imaging technologies. Through monitoring of a positron-emitting tracer, often

a glucose analog, [18F]FDG, unparalleled insight has been provided about the

inner workings of organs like the brain or the heart. What is not necessarily

Figure 1 This figure shows the temporal evolution of components of a fifth-generation

model of MPL pharmacokinetics and receptor dynamics developed in ADX rats. The

left panel shows the time profiles of MPL concentration and the change of the cytosolic

drug-receptor complex, DR, and the drug-receptor complex in nucleus, DR(N). A

50 mg/kg MPL i.v. injection was simulated. The GR density and mRNA are shown in

the right panel, together with a plot of observed GR mRNA. Abbreviations: MPL, methyl-

prednisolone; GR, glucocorticoid receptor. Source: From Ref. 26. Courtesy of The

American Society for Pharmacology and Experimental Therapeutics.
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appreciated is that the analysis of PET experiments has always required a

mechanistic model of blood–tissue exchange to maximize the information

extracted from this kind of study. The model was developed over many years

(30) and has been subject to many modifications (31) and updates that extended

the application of the technology to a variety of organs (32). Disease states have

also been a focus, with studies demonstrating the interplay between transport

and phosphorylation of glucose in diabetes through imaging (33), but also

tracer studies (34). An intriguing study focusing on giant cell tumors (35)

provides several hints as to how useful biomarkers can be extracted from these

kinds of studies. The investigators focused on [18F]FDG PET studies. They

used standard compartmental analysis techniques to analyze [18F]FDG kinetics

in this kind of tumors. They also looked at determining the fractal dimension

of the [18F]FDG curve to measure its heterogeneity (the curve seems to have a

fractal dimension of 1.3). Most interestingly, they correlated kinetic model par-

ameters and the fractal dimension with gene expression levels. They were able to

demonstrate that transport and uptake parameters, together with vessel density

(all parameters of the standard [18F]FDG model), correlated with the expression

of genes known to be associated with angiogenic processes (Fig. 2). This is an

interesting idea that relates the functional (model parameters) and genetic

(expression levels) aspects of a dynamic imaging study.

Let us go back to parameters such as the fractal dimension (36) for a

moment. The promise of such summary parameters is to summarize relevant

aspects of a complex data set (such as an imaging data set) in a reduced array

of values. This is of interest in image analysis (37) and time series (38), both

of which exhibit difficulty in characterizing fluctuations. It has been put forth

that fractal phenomena are ubiquitous in nature and especially in physiological

systems (39). A summary parameter, such as the fractal dimension or approxi-

mate entropy (40), which characterize different functional aspects of the time

series in a biologic recording or the spatial heterogeneity in a biomedical

image, is very useful as a potential biomarker of disease progression, although

care must be exercised to rigorously characterize the limitations of the analysis

(41) and what is being measured (42).

Dynamic-contrast-enhanced magnetic resonance imaging (DCE-MRI),

in conjunction with macromolecular contrast agents, is another recently proposed

tool for monitoring microvasculature permeability, in particular, angiogenic

processes. The time course of the DCE-MRI contrast agent will be measured

as it leaves the vasculature (administration is usually intravenous) and permeates

surrounding tissues. The rate of permeation, at least as stated currently, depends

on the capillary fenestrations, which happen to be larger (either in number or size)

in the presence of angiogenic events. Kinetic analysis of data gathered in

animal models has provided promising results (43). In particular, the output of

a blood–tissue exchange model applied to the dynamic imaging sequence was

correlated with independent histological information (Scarff-Bloom-Richardson

SBR histological scoring). Preliminary evidence showed increased capillary
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permeability correlated with high SBR scores. It may be worthwhile to point out

that the model, in this case, not only diagnoses the presence of a condition, but it

provides a scaled measure of the degree of the condition—moreover, the measure

is non-invasive.

Recently, these approaches have been applied to human trials as well (44).

While sensitivity of the model-based biomarker remains to be evaluated, studies

such as this provide an interesting avenue for exploration. Others have pointed

out that, although these parameters are composites, they seem superior to the

so-called “semi-quantitative” parameters that can be directly calculated from

dynamic imaging data, but suffer from various limitations and are harder to

generalize (45). The need is widespread and urgent; the Center for Biomarkers

in Imaging (46) at the Department of Radiology of the Massachusetts General

Hospital is cataloging imaging biomarkers in a variety of conditions and acts

as a repository of knowledge about biomarkers, including a memorandum of

Figure 2 Correlations between compartmental model parameters and gene expression in

giant cell tumors. (left panel ): the compartmental model parameter VB, related to local

tissue vascularization, is regressed against VEGF-B precursor (top) and cyclin E

(bottom). (right panel): k3, a compartmental model parameter related to phosphorylation

of [18F]FDG, is regressed against sFLT kinase and HIF-1, the former related to the activity

of VEGF-A and the latter related to tumor growth. Correlations were all significant with

regression coefficient r greater than 0.87. Abbreviations: VEGB-B, vascular endothelial

growth factor B; sFLT, soluble Fms-like tyrosine; HIF-1, hypoxia-inducible factor 1.

Source: From Ref. 35. Courtesy of the Society of Nuclear Medicine.
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understanding with the FDA (47). An interesting aspect is that imaging studies

may help decrease our reliance on “soft” markers, such as cognitive or functional

impairment. A recent review (48) suggests that biomarkers from MRI can be used

to monitor brain lesions over time and thus can provide surrogate endpoints for

clinical trials.

Model-Based Biomarkers in Intermediary Metabolism

What we have called “model-based biomarkers” have been investigated

quite intensely in endocrinology over the past 25 years or so. Lessons for drug

development that can be communicated through this body of work include:

. The need to gather data on the intact, in vivo system as soon as possible,

as opposed to conducting in vitro studies;

. The necessity to explicitly represent biological fluxes that change with

time, and their cross talk and interactions;

. The presence of non-linear control fluxes and signals, which have to be

accommodated even in the most basic endocrinology model;

. Having to predict the kinetic behavior of remote compartments, such as

peripheral or signaling compartments.

These aspects have increased in importance when studying biotechnology

products: a majority of protein products are produced by the body under normal

conditions, so one has to deal with the presence of endogenous fluxes and their

regulation (49).

Many contributions have been made to the field of endocrinology by

model-based analyses, also along the lines of time series investigations, such

as those we have mentioned earlier (50). We will focus here on glucose kinetics

and its control by insulin. A comprehensive review of the field is outside of our

scope, but it has been carried out elsewhere (51). The appeal of glucose-insulin

regulation, apart from its role in maintaining the crucial process of glucose

homeostasis, is that it is a classical example of negative feedback control, with

a few twists. Basically, high levels of glucose, such as those achieved after

ingestion of a meal or a carbohydrate drink, cause an increase in secretion of

the hormone insulin by the pancreatic beta-cells. Insulin then stimulates both

the uptake and metabolism of glucose in muscle cells, thereby returning its con-

centration close to the original baseline. Metabolic diseases linked to pancreatic

hormones result from one or more defects in all these processes, and sometimes

just a subset. For some time now, it has been known how the responsiveness of

tissues to insulin levels and pancreatic secretion of insulin lie on a hyperbola (52),

that is, when one increases, the other decreases to compensate, and vice versa,

and this maintains their product (often called the disposition index) approxi-

mately constant. One question, then, is how are these metabolic parameters

actually measured, since they both cannot be assessed directly, but only

indirectly, that is, through other means. The hyperbolic relationship seems to
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be largely independent of which particular approach is taken to measure beta-cell

function and insulin sensitivity; it becomes particularly significant across disease

states, as shown elsewhere (53). There are requirements that a measurement of

these metabolic indices should satisfy across disease states. It should be:

. Sensitive: working equally well for patients with low- and high-

sensitivity to insulin and insulin-secretory function;

. Straightforward: simple to implement in clinical practice, not too

demanding or time-consuming;

. Safe: unlikely to generate side effects and suitable to application in

large epidemiological studies.

The intravenous glucose tolerance test (IVGTT), as it is currently administered,

is based on the administration of an intravenous bolus and glucose and the

subsequent monitoring of glucose and insulin concentrations over time (54).

Basically, the intravenous administration bypasses the absorption sites, and

provides the impulse response (in engineering lingo) of the glucose system.

The original protocol has been subject to many proposed modifications, motiv-

ated by the need to enhance the response of the system after a glucose challenge

in highly insulin-resistant states; in these patients, secretory response may be

blunted, and thus the effect of insulin on glucose disappearance is hard to

discern. The most common modification is an exogenous administration of

insulin (55). A third variable is often measured, the connecting peptide

C-peptide. C-peptide is secreted equimolarly with insulin, but it is not extracted

by the liver like insulin is; as such, its concentration in plasma is directly related

to prehepatic insulin secretion. It turns out, as we will see later, that C-peptide

availability is crucial for the determination of beta-cell secretory profiles.

The main difficulty in simultaneously modeling glucose and insulin time

courses is related to the fact that changing levels of one influence the levels of

the other by triggering signals that modulate production and secretion rates.

The full feedback model that would be necessary to represent this complex

signaling network should take into account glucose’s effect on insulin secretion

and insulin’s effect on glucose production, in addition to insulin’s effect on its

own secretion and glucose’s effect on its own production. The introduction of

partition analysis (56) facilitated the scope of the work. Partition analysis

artifactually opens the closed loop by analyzing the effects of insulin on

glucose separately from the effects of glucose on insulin. What one loses is the

development of a fully integrated feedback model, but the decreased generality

that was brought forth in this case increased the robustness in the determination

of individual metabolic indices.

The model concerned with one half of the feedback cycle, the effect of

insulin on glucose disappearance, is simply called the glucose minimal model

(57), and it has been highly successful in research and epidemiological

settings. The minimal model uses two joint differential equations to model the

time course of glucose concentration and of insulin action (the insulin signal
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acting on glucose disappearance) during an IVGTT. Based on the model

equations, the action of insulin on glucose loss takes place from a signaling com-

partment [possibly related to interstitial fluid (58)], very similarly to the usual

pharmacodynamic formulation of “effect site concentration” (59). Insulin con-

centration acts as a forcing function on the model, that is, it is assumed known

without error. One of the parameters of the model (traditionally indicated as

SI ) has the interpretation of tissue sensitivity to insulin, that is, it measures the

effect of insulin on glucose disappearance. Low values of SI and/or low time

courses of insulin action indicate that the effect of insulin is blunted; this

occurs in the diabetic syndrome, especially in diabetes type 2. This approach

to determining the effect of insulin can also be applied to designer insulins

(60), not only to human insulin. Early validation studies (61) have focused on

the estimate of SI across the spectrum of glucose tolerance states (62), between

normal and various degrees of impairment (63). Insulin sensitivity ranges

where the model appears not to be sensitive enough (64) have also given

useful hints for patient classification. Despite its complexity, SI also seems to

predict cardiovascular disease risk better than other, simpler, and more straight-

forward measures of insulin resistance (65). Validation of time courses in glucose

regulation has also been attempted (66). Ideally, this kind of validation should be

attempted across populations and across degrees of disease, but, due to the related

experimental challenges and the ambiguities related to the identification of suit-

able validation variables (especially in in vivo studies), such studies are few and

far between.

Interestingly, the last five years have seen a surge of approaches that are

related to the minimal model approach, but aim to alleviate some of its

shortcomings. The minimal model was born as a research tool, and its sampling

schedule, invasiveness of the intravenous protocol, and uncompromising

simplifications of the underlying physiology are at the basis of current efforts.

Improvements have focused on the design of tests that are even easier to admin-

ister and shorter, based on ingestion of either glucose (in the oral glucose

tolerance test, OGTT) or a meal of known composition (as in the meal tolerance

test, MTT). Just like in a pharmacokinetic study based on oral dosing, the main

complication now is to account for absorption kinetics. Not much is known

about glucose absorption in vivo, and the kinetics of absorption are likely quite

variable across individuals. Also, without a concomitant IV administration, it

is impossible to segregate the absorption profile alone. Extensions of the

modeling paradigm were limited to healthy subjects (67), and used MTT data.

Validation studies have also been conducted on a larger scale (68) in a variety

of age groups. The agreement with the IVGTT estimates was quite good. More

recently, the time course of absorption (69) (actually, the rate of appearance of

glucose in plasma) was also subject to validation, and further contributed to

the evaluation of metabolic indices at the same time.

Validation of time courses is most challenging. However, there are other

studies where time courses have been validated by comparisons with independent
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measures of the same process. In general, in addition to matching the prediction

of drug amounts in accessible compartments, multistate pharmacokinetic models

also provide estimates of time-variant concentration in inaccessible compart-

ments, or system locations. While these estimates are conceptually interesting,

they present a substantial challenge for validation, since the actual levels in

these spaces cannot be measured. In an interesting classic contribution (70), a

mathematical model of tracer glucose kinetics was trained on measurements in

serum. Given that the model had three compartments, or physiological spaces,

that were needed to account for the data (serum, the accessible space, and a

slow- and fast-exchanging compartment), a natural question is whether the

levels predicted in these remote spaces, conditional on the model structure, are

physiologically valid, that is, if they reflect actual measurements, or are just

mathematical abstractions. In this particular case, thoracic duct lymph measure-

ments were available in the animal model as a surrogate of the fast-exchanging

compartment. Measurements agreed very well with the predicted time course,

even if they were not trained on it specifically. Thus, the time course of tracer

glucose could be accurately predicted in a peripheral, or remote, compartment,

based only on data gathered in a different, accessible compartment.

We have not talked about the beta-cell secretion component of the system

yet. This is even more important for the diagnosis and classification of, for

example, diabetes type 1. The key aspect here is the availability of C-peptide,

which, as we mentioned, has the same secretory profile as insulin but is not

retained by the liver. C-peptide plasma measurements are thus an obvious

choice to estimate prehepatic insulin secretion, provided a model for the kinetics

of C-peptide can be established. Just like the minimal model, the model was first

developed in animal studies (71), with promising results. A model for the

secretory process is difficult to establish, and more polished representations are

periodically proposed (72). Recent contributions seem to show that secretion

parameters can be estimated from the simplified oral tests (73) we mentioned

earlier (IVGTT and/or MTT tests), which may broaden the model’s domain of

applicability. These paradigms also brought forth novel candidate biomarkers,

such as secretory response times (74) to glucose increases and decreases (75),

which can be estimated by modeling the control of glucose rate of change (76)

on the secretory process. In conclusion, these approaches to dissecting a

complex intact system demonstrate that it is possible to estimate both insulin

sensitivity (action) and secretion from just one glucose administration, thus

opening up a potentially very wide spectrum of novel biomarkers and indirect

measures.

CONCLUSION

Regrettably, independent validation of parameter estimates, but especially of

time courses, is usually very burdensome, and independently designed exper-

iments are required to carry it out (77). The gold standard for validation would
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be a paired evaluation of the model-based biomarker and a direct measure of the

same quantity: this measure has to be obtained independently, and must have

been already validated through other means. Difficulties include the design of

the reference experiment, achieving a large enough sample size, recruiting sub-

jects, safety considerations, and data analysis. Perhaps the most challenging

aspect is to somehow demonstrate that the same physiological process, or metab-

olite level, or flux, is being measured by both the model and the reference exper-

iment. As such, one can notice how this challenge is not terribly different from

the one usually addressed in bioassay validation.

What sophisticated models of physiological systems actually accomplish

is, in a sense, the removal of the existing division between PK and PD. All

the models we have described represent distributional events, and so they are

kinetic models, but we also have shown that their parameters shed light on

dynamic effects (78). A validated model can be just as useful as a bioassay, in

that it measures (albeit indirectly and through regression methods) parameters

that have a direct physiological interpretation, whose changes over time can be

monitored to provide insights into the progression of a disorder. An interesting

aspect is that these models are all mechanistic. In conclusion, the case studies

described here demonstrate that model-based biomarkers are difficult to validate

and may generate controversy over their acceptance, but also that the drug

development process may greatly benefit from the results they may bring.

ACKNOWLEDGMENT

This work was partially supported by NIH Grant P41 EB-001975.

REFERENCES

1. Stewart I. Nature’s Numbers: the Unreal Reality of Mathematics. New York:

BasicBooks, 1995.

2. The NIH Roadmap, Bioinformatics and Computational Biology, http://nihroadmap.

nih.gov/bioinformatics /index.asp (accessed August 4, 2005).

3. Cobelli C, Caumo A. Using what is accessible to measure that which is not: necessity

of model of system. Metabolism 1998; 47(8):1009–1035.

4. Lesko LJ, Atkinson AJ Jr. Use of biomarkers and surrogate endpoints in drug devel-

opment and regulatory decision making: criteria, validation, strategies. Annu Rev

Pharmacol Toxicol 2001; 41:347–366.

5. Schatzkin A. Problems with using biomarkers as surrogate end points for cancer:

a cautionary tale. Recent Results Cancer Res 2005; 166:89–98.

6. Chan PL, Holford NH. Drug treatment effects on disease progression. Annu Rev

Pharmacol Toxicol 2001; 41:625–659.

7. Dixon-Woods M, Agarwal S, Jones D, et al. Synthesising qualitative and quanti-

tative evidence: a review of possible methods. J Health Serv Res Policy 2005;

10(1):45–53.

Disease Progression Modeling in Translational Research 29

Copyright © 2006 Taylor & Francis Group, LLC

http://nihroadmap.nih.gov/
http://nihroadmap.nih.gov/


8. Davies K. Counting the cost of drug discovery. BioIt World, July 11, 2002, http://
www.bio-itworld.com/archive/071102 /firstbase.html (accessed August 4, 2005).

9. Charusanti P, Hu X, Chen L, et al. A mathematical model of BCR-ABL autophosphor-

ylation, signaling through the CRKL pathway, and gleevec dynamics in chronic

myeloid leukemia. Discrete and Continuous Dynamic Systems, Series B, 2004;

4:99–114.

10. Park JW, Kerbel RS, Kelloff GJ, et al. Rationale for biomarkers and surrogate end

points in mechanism-driven oncology drug development. Clin Cancer Res 2004;

10(11):3885–3896.

11. Pui CH, Relling MV, Evans WE. Role of pharmacogenomics and pharmacodynamics

in the treatment of acute lymphoblastic leukaemia. Best Pract Res Clin Haematol

2002; 15(4):741–756.

12. Sheiner LB, Rosenberg B, Melmon KL. Modelling of individual pharmacokinetics for

computer-aided drug dosage. Comput Biomed Res 1972; 5(5):411–459.

13. Berman M. Kinetic analysis of turnover data. Prog Biochem Pharmacol 1979;

15:67–108.

14. Colburn WA. Biomarkers in drug discovery and development: from target identifi-

cation through drug marketing. J Clin Pharmacol 2003; 43(4):329–341.

15. Parrott N, Jones H, Paquereau N, Lave T. Application of full physiological models for

pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to

man. Basic Clin Pharmacol Toxicol 2005; 96(3):193–199.

16. Leaf C. Why we’re losing the war on cancer. Fortune 2004; 76–97.

17. Bonate PL, Howard D. Prospective allometric scaling: does the emperor have clothes?

J Clin Pharmacol 2000; 40(6):665–670; discussion 671–676.

18. Bray D. Reasoning for results. Nature 2001; 412(6850):863.

19. Lazebnik Y. Can a biologist fix a radio? Or, what I learned while studying apoptosis.

Cancer Cell 2002; 2(3):179–182.

20. Hess K, Zhang W, Baggerly K, et al. Microarrays: handling the deluge of data and

extracting reliable information. Trends Biotechnol 2001; 19:463–468.

21. Wang K, Gan L, Jeffery E, et al. Monitoring gene expression profile changes in

ovarian carcinomas using cDNA microarray. Gene 1999; 229:101–108.

22. DeRisi J, van den Hazel B, Marc P, et al. Genome microarray analysis of tran-

scriptional activation in multidrug resistance yeast mutants. FEBS Lett 2000;

470:156–160.

23. Long A, Mangalam H, Chan B, et al. Improved statistical inference from DNA micro-

array data using analysis of variance and a Bayesian statistical framework. Analysis of

global gene expression in Escherichia coli K12. J Biol Chem 2001; 276:19937–

19944.

24. Ideker T, Thorsson V, Siegel A, Hood L. Testing for differentially-expressed

genes by maximum-likelihood analysis of microarray data. J Comput Biol 2000;

7:805–817.

25. Almon RR, DuBois DC, Pearson KE, et al. Gene arrays and temporal patterns of

drug response: corticosteroid effects on rat liver. Funct Integr Genomics 2003;

3(4):171–179.

26. Jin JY, Almon RR, DuBois DC, Jusko WJ. Modeling of corticosteroid pharmacoge-

nomics in rat liver using gene microarrays. J Pharmacol Exp Ther 2003;

307(1):93–109.

30 Vicini

Copyright © 2006 Taylor & Francis Group, LLC

http://www.bio-itworld.com/
http://www.bio-itworld.com/


27. Jin JY, DuBois DC, Almon RR, Jusko WJ. Receptor/gene-mediated pharmacody-

namic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regu-

lation in rat liver. J Pharmacol Exp Ther 2004; 309(1):328–339.

28. Panetta JC, Wall A, Pui CH, et al. Methotrexate intracellular disposition in acute lym-

phoblastic leukemia: a mathematical model of gamma-glutamyl hydrolase activity.

Clin Cancer Res 2002; 8(7):2423–2429.

29. Panetta JC, Yanishevski Y, Pui CH, et al. A mathematical model of in vivo methotrex-

ate accumulation in acute lymphoblastic leukemia. Cancer Chemother Pharmacol

2002; 50(5):419–428.

30. Sokoloff L. [1-14C]-2-deoxy-d-glucose method for measuring local cerebral glucose

utilization. Mathematical analysis and determination of the “lumped” constants.

Neurosci Res Program Bull 1976; 14(4):466–468.

31. Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cer-

ebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: vali-

dation of method. Ann Neurol 1979; 6(5):371–388.

32. Williams KV, Bertoldo A, Mattioni B, et al. Glucose transport and phosphorylation in

skeletal muscle in obesity: insight from a muscle-specific positron emission tomogra-

phy model. J Clin Endocrinol Metab 2003; 88(3):1271–1279.

33. Williams KV, Price JC, Kelley DE. Interactions of impaired glucose transport and

phosphorylation in skeletal muscle insulin resistance: a dose-response assessment

using positron emission tomography. Diabetes 2001; 50(9):2069–2079.

34. Bonadonna RC, Del Prato S, Bonora E, et al. Roles of glucose transport and glucose phos-

phorylation in muscle insulin resistance of NIDDM. Diabetes 1996; 45(7):915–925.

35. Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, et al. 18F-FDG kinetics and gene

expression in giant cell tumors. J Nucl Med 2004; 45(9):1528–1535.

36. Mandelbrot B. The Fractal Geometry of Nature. New York: W.H. Freeman and Co.,

1977.

37. Nagao M, Murase K, Kikuchi T, et al. Fractal analysis of cerebral blood flow distri-

bution in Alzheimer’s disease. J Nucl Med 2001; 42(10):1446–1450.

38. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and

stereotypy in disease. Perspect Biol Med 1997; 40(4):543–561.

39. Bassingthwaighte JB, Liebovitch LS, West BJ. Fractal Physiology. New York,

London: Oxford University Press, 1994.

40. Pincus SM. Assessing serial irregularity and its implications for health. Ann NY Acad

Sci 2001; 954:245–267.

41. Jelinek HF, Fernandez E. Neurons and fractals: how reliable and useful are

calculations of fractal dimensions? J Neurosci Methods 1998; 81(1–2):9–18.

42. Kuikka JT. Fractal analysis of cerebral blood flow distribution in Alzheimer’s disease.

J Nucl Med 2002; 43(12):1727–1728.

43. Daldrup H, Shames DM, Wendland M, et al. Correlation of dynamic contrast-

enhanced MR imaging with histologic tumor grade: comparison of macromolecular

and small-molecular contrast media. Am J Roentgenol 1998; 171(4):941–949.

44. Daldrup-Link HE, Rydland J, Helbich TH, et al. Quantification of breast tumor micro-

vascular permeability with feruglose-enhanced MR imaging: initial phase II multicen-

ter trial. Radiology 2003; 229(3):885–892. Epub Oct 23, 2003.

45. Miller JC, Pien HH, Sahani D, et al. Imaging angiogenesis: applications and potential

for drug development. J Natl Cancer Inst 2005; 97(3):172–187.

Disease Progression Modeling in Translational Research 31

Copyright © 2006 Taylor & Francis Group, LLC



46. http://www.biomarkers.org (accessed August 4, 2005).

47. http://www.biomarkers.org/NewFiles/news_archive/news_fda_hst.html (accessed

August 4, 2005).

48. Schmidt R, Scheltens P, Erkinjuntti T, et al. White matter lesion progression:

a surrogate endpoint for trials in cerebral small-vessel disease. Neurology 2004;

63(1):139–144.

49. Krudys KM, Dodds MG, Nissen SM, Vicini P. Integrated model of hepatic and per-

ipheral glucose regulation for estimation of endogenous glucose production during

the hot IVGTT. Am J Physiol Endocrinol Metab 2005; 288(5):E1038–E1046.

50. Veldhuis JD. Nature of altered pulsatile hormone release and neuroendocrine network

signalling in human aging: clinical studies of the somatotropic, gonadotropic, cortico-

tropic and insulin axes. Novartis Found Symp 2000; 227:163–185.

51. Bergman RN, Steil GM, Bradley DC, Watanabe RM. Modeling of insulin action in

vivo. Annu Rev Physiol 1992; 54:861–883.

52. Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship

between insulin sensitivity and beta-cell function in human subjects. Evidence for a

hyperbolic function. Diabetes 1993; 42(11):1663–1672.

53. Ferrannini E, Mari A. Beta cell function and its relation to insulin action in humans: a

critical appraisal. Diabetologia 2004; 47(5):943–596. Epub Apr 23, 2003.

54. Bergman RN. Pathogenesis and prediction of diabetes mellitus: lessons from integra-

tive physiology. Mt Sinai J Med 2002; 69(5):280–290.

55. Finegood DT, Hramiak IM, Dupre J. A modified protocol for estimation of insulin

sensitivity with the minimal model of glucose kinetics in patients with insulin-

dependent diabetes. J Clin Endocrinol Metab 1990; 70(6):1538–1549.

56. Bergman RN, Cobelli C. Minimal modeling, partition analysis, and the estimation of

insulin sensitivity. Fed Proc 1980; 39(1):110–115.

57. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin

sensitivity. Am J Physiol 1979; 236(6):E667–E677.

58. Yang YJ, Hope I, Ader M, et al. Dose–response relationship between lymph insulin

and glucose uptake reveals enhanced insulin sensitivity of peripheral tissues. Diabetes

1992; 41(2):241–253.

59. Holford NH, Sheiner LB. Pharmacokinetic and pharmacodynamic modeling in vivo.

CRC Crit Rev Bioeng 1981; 5(4):273–322.

60. Osterberg O, Erichsen L, Ingwersen SH, et al. Pharmacokinetic and pharmacody-

namic properties of insulin aspart and human insulin. J Pharmacokinet Pharmacodyn

2003; 30(3):221–235.

61. Beard JC, Bergman RN, Ward WK, Porte D Jr. The insulin sensitivity index in

nondiabetic man. Correlation between clamp-derived and IVGTT-derived values.

Diabetes 1986; 35(3):362–369.

62. Saad MF, Anderson RL, Laws A, et al. A comparison between the minimal model and

the glucose clamp in the assessment of insulin sensitivity across the spectrum

of glucose tolerance. Insulin Resistance Atherosclerosis Study. Diabetes 1994;

43(9):1114–1121.

63. Coates PA, Luzio SD, Brunel P, Owens DR. Comparison of estimates of insulin

sensitivity from minimal model analysis of the insulin-modified frequently sampled

intravenous glucose tolerance test and the isoglycemic hyperinsulinemic clamp in

subjects with NIDDM. Diabetes 1995; 44(6):631–635.

32 Vicini

Copyright © 2006 Taylor & Francis Group, LLC

http://www.biomarkers.org


64. Haffner SM, D’Agostino R Jr, Festa A, et al. Low insulin sensitivity (S(i) ¼ 0) in

diabetic and nondiabetic subjects in the insulin resistance atherosclerosis study: is it

associated with components of the metabolic syndrome and nontraditional risk

factors? Diabetes Care 2003; 26(10):2796–2803.

65. Howard G, Bergman R, Wagenknecht LE, et al. Ability of alternative indices of

insulin sensitivity to predict cardiovascular risk: comparison with the “minimal

model.” Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Ann

Epidemiol 1998; 8(6):358–369.

66. Vicini P, Zachwieja JJ, Yarasheski KE, et al. Glucose production during an IVGTT by

deconvolution: validation with the tracer-to-tracee clamp technique. Am J Physiol

1999; 276(2 Pt 1):E285–E294.

67. Caumo A, Bergman RN, Cobelli C. Insulin sensitivity from meal tolerance tests

in normal subjects: a minimal model index. J Clin Endocrinol Metab 2000;

85(11):4396–4402.

68. Basu R, Breda E, Oberg AL, et al. Mechanisms of the age-associated deterioration in

glucose tolerance: contribution of alterations in insulin secretion, action, and clear-

ance. Diabetes 2003; 52(7):1738–1748.

69. Dalla Man C, Caumo A, Basu R, et al. Minimal model estimation of glucose

absorption and insulin sensitivity from oral test: validation with a tracer

method. Am J Physiol Endocrinol Metab 2004; 287(4):E637–E643. Epub May 11,

2004.

70. Gastaldelli A, Schwarz JM, Caveggion E, et al. Glucose kinetics in interstitial fluid

can be predicted by compartmental modeling. Am J Physiol 1997; 272(3 Pt 1):

E494–E505.

71. Toffolo G, Bergman RN, Finegood DT, et al. Quantitative estimation of beta cell

sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in

the dog. Diabetes 1980; 29(12):979–990.

72. Toffolo G, De Grandi F, Cobelli C. Estimation of beta-cell sensitivity from intrave-

nous glucose tolerance test C-peptide data. Knowledge of the kinetics avoids errors

in modeling the secretion. Diabetes 1995; 44(7):845–854.

73. Breda E, Cavaghan MK, Toffolo G, et al. Oral glucose tolerance test minimal

model indexes of beta-cell function and insulin sensitivity. Diabetes 2001;

50(1):150–158.

74. Breda E, Toffolo G, Polonsky KS, Cobelli C. Insulin release in impaired glucose

tolerance: oral minimal model predicts normal sensitivity to glucose but defective

response times. Diabetes 2002; 51(suppl 1):S227-S233.

75. Ehrmann DA, Breda E, Cavaghan MK, et al. Insulin secretory responses to rising and

falling glucose concentrations are delayed in subjects with impaired glucose toler-

ance. Diabetologia 2002; 45(4):509–517.

76. Toffolo G, Breda E, Cavaghan MK, et al. Quantitative indexes of beta-cell function

during graded up&down glucose infusion from C-peptide minimal models. Am J

Physiol Endocrinol Metab 2001; 280(1):E2–E10.

77. Steil GM, Hwu CM, Janowski R, et al. Evaluation of insulin sensitivity and beta-cell

function indexes obtained from minimal model analysis of a meal tolerance test.

Diabetes 2004; 53(5):1201–1207.

78. Agerso H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1

derivative. Eur J Pharm Sci 2003; 19(2–3):141–150.

Disease Progression Modeling in Translational Research 33

Copyright © 2006 Taylor & Francis Group, LLC



3

Bridging Preclinical and Clinical
Development: Biomarker Validation

and Qualification

John A. Wagner

Department of Clinical Pharmacology, Merck & Co., Inc.,
Rahway, New Jersey, U.S.A.

INTRODUCTION

Dose optimization requires careful pharmacokinetic (PK) and pharmacodynamic

(PD) analyses. Biomarkers are the basis of PD assessments and, more generally,

are of increased interest to enhance decision-making in drug development. The

focus of this chapter is on selected components of a suitable biomarker research

plan, critical for the development and success of biomarkers, especially novel

biomarkers. The elements that must be addressed by the research plan include

both method validation and biomarker qualification. Method validation is the

process of assessing the assay and its measurement performance characteristics,

and determining the range of conditions under which the assay will provide

reproducible data meeting the individual study objectives. Qualification is the

evidentiary process of linking a biomarker with biological processes and clinical

endpoints. For distal or disease-related biomarkers, there are four general

categories of increasing levels for qualification: exploration, demonstration,

characterization, and surrogacy. A biomarker research plan, like the validation

and qualification activities it describes, is a graded, “fit for purpose” process

dependent on the intended application. A biomarker research plan can describe

activities leading to one or more purposes, or may be iterative in nature, evolving

with the use of the biomarker.
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Biomarkers have many current and potential roles in the setting of drug

development. One critical use of biomarkers is to provide a rational basis for

early decision-making in drug development (1,2). Importantly, the use of

biomarkers is critical for dose optimization of new therapies (3,4). Early

decision-making and dose optimization with the use of biomarkers are expected

to provide significant cost and time saving in drug development. Traditional

outcome-based drug development is a long, expensive, and uncertain process

(5). Refined drug development decision-making can translate to large financial

savings and substantial time savings in bringing new medicines to patients

(6–10). Investigation of biomarkers in the setting of drug development may

also aid in determining or refining the mechanism of action of new or

existing therapeutics. Along similar lines, investigation of biomarkers may

help determine or refine pathophysiology. Finally, if a particular biomarker

qualifies for use as a surrogate endpoint, then such use can aid in interac-

tions with regulatory agencies for review and approval of new therapeutics,

and may ultimately benefit medical practice by allowing the use of new

diagnostic tests.

There are many important issues relevant to a discussion of biomarkers.

First, there are many different systems of biomarker nomenclature, based on

different types of biomarkers. Second, there are different uses of biomarkers,

which range from exploratory hypothesis generation to definitive go/no-go

decision making in late-phase drug development. Third, there is a plethora of

different technology platforms for biomarker assays, which range from immuno-

logic assays to expression profiling to imaging. Fourth, there are different strat-

egies for validation (assay or method validation) and qualification (clinical

validation) of biomarkers in the context of a biomarker research plan. Finally,

the regulatory needs for scientific consensus and a robust dataset highlight the

potential for collaboration in biomarker development.

Biomarkers have been the subject of several important recent initiatives.

One of the most important was the Biomarkers Definitions Working Group,

with members from the Food and Drug Administration (FDA), the National

Institute of Health (NIH), academia, and industry (3). The consensus

definitions that arose from this working group are discussed next. A more

recent on-going effort is the one that was originated by the American

Association of Pharmaceutical Scientists (AAPS), and it focuses on gaining

consensus around method validation for biomarker assays (11). In addition,

the “Road Map,” announced in 2003 by the NIH (12), highlights the critical

need for the pharmaceutical industry to improve the productivity of its drug

development process and the wide-ranging initiative by the FDA supports

improvements in the efficiency of pharmaceutical development by augmen-

ting the role of biomarkers in drug evaluations and decision-making (10). A

major goal of all the recent initiatives is to foster a dialog on important

biomarker issues.
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DEFINITIONS

The definitions of the biomarkers and their related terms were refined by the

Biomarkers Definitions Working Group with members from FDA, NIH,

academia, and industry (3). Table 1 reviews the definitions of biomarker terms,

including biomarkers, PD markers, surrogate endpoints, and clinical endpoints.

The term biomarker is the most general case; it refers to any useful characteristic

that can be measured and used as an indicator of a normal biologic process, a

pathogenic process, or a pharmacologic response to a therapeutic agent (3).

Of particular interest in dose optimization, a PD marker specifically refers to a

biomarker of pharmacologic response. A clinical endpoint actually quantifies

a characteristic related to how a patient feels, functions, or survives, and a

surrogate endpoint is a biomarker that is meant to substitute for a clinical end-

point. There are relatively few biomarkers that qualify for the evidentiary

status of surrogate endpoints. The primary examples of surrogate endpoints are

Table 1 Definitions

Biomarker Characteristic that is objectively measured and

evaluated as an indicator of normal biologic

processes, pathogenic processes, or

pharmacologic response(s) to a therapeutic

intervention.

PD marker Biomarker of pharmacologic response.

Surrogate endpoint Biomarker that is intended to substitute for a

clinical endpoint and is expected to predict

clinical benefit (or harm or lack of benefit or

harm) based on epidemiologic, therapeutic,

pathophysiologic, or other scientific evidence.

Clinical endpoint Characteristic or variable that reflects how a

patient feels, functions, or survives.

Proximal biomarker Biomarker that occurs early in a pathophysiologic

cascade and informs on the physical or

biological interactions with the molecular

target of the drug. Also known as target

engagement biomarker.

Distal biomarker Biomarker that occurs late in the pathophysiologic

cascade and is linked to clinical benefit.

Validation Assessing the assay or measurement performance

characteristics including sensitivity, specificity,

and reproducibility.

Qualification The evidentiary process of linking a biomarker

with biological processes and clinical

endpoints.

Abbreviation: PD, pharmacodynamic.
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also PD markers, but it is important to note that this is not necessarily the case.

Surrogate endpoints are also referred to as surrogate markers in the biomarker lit-

erature. The Biomarkers Definitions Working Group has pointed out that the term

surrogate endpoint is preferred because the use of this term properly connotes that

the biomarker is being used to substitute for a clinical endpoint (3).

Validation and qualification are other key terms used for discussion of

biomarkers, and will be discussed in more detail below. Validation is the process

of assessing the assay and its measurement performance characteristics, and deter-

mining the range of conditions under which the assay will provide reproducible data

meeting the individual study objectives, including sensitivity, specificity, and

reproducibility. Qualification, or evaluation, is the evidentiary process of linking

a biomarker with biological processes and clinical endpoints, such that it can be

used as a surrogate endpoint. The biomarker literature occasionally uses validation

and qualification or evaluation synonymously; however, this should be avoided

because the validation and qualification processes must be distinguished and the

term validation does not adequately describe the qualification process (13).

Another useful distinction is shown in Figure 1. Pathophysiology is

typically a multistep cascade. If a biomarker is directly involved in the pathophy-

siology of a disease, it may occur early or late in the cascade. Biomarkers that

occur early in the pathophysiologic cascade are known as mechanism of action

(MOA) or proximal biomarkers. Proximal biomarkers inform on physical or

biological interactions with the molecular target of the drug. Biomarkers that

occur late in the pathophysiologic cascade are known as disease-related or

distal biomarkers. Qualified distal biomarkers are capable of prediction of clini-

cal benefit. Thus, in Figure 1, putative biomarker A is identical to the one in the

early pathophysiologic steps leading to the disease outcome, and is designated

as a proximal biomarker. Putative biomarker B substitutes for one of the late

pathophysiologic steps leading to the disease outcome, and is designated as a

distal biomarker.

Step 1 Step 2 Step 3 Disease 
Outcome 

Step 1 Biomarker A Biomarker B 
 

Disease 
Outcome 

MOA 
(Proximal)

Disease 
Related 
(Distal)

Figure 1 Pathophysiology is typically a multistep cascade. If a biomarker is directly

involved in the pathophysiology of a disease, it may occur early or late in the cascade.

Biomarkers that occur early in the pathophysiologic cascade are known as MOA,

proximal, or target engagement biomarkers (Biomarker A). Biomarkers that occur late

in the pathophysiologic cascade are known as disease-related or distal biomarkers

(Biomarker B). Abbreviation: MOA, mechanism of action.
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VALIDATION AND QUALIFICATION

A crucial distinction should be made between biomarker validation (assay or

method validation) and qualification (or clinical validation or evaluation).

Method validation is the process of assessing the assay or measurement per-

formance characteristics and qualification is the evidentiary process linking a

biomarker with biological processes and clinical endpoints. There are a series

of issues relevant to this distinction, including differences between biomarker

and PK assays, novel biomarker and diagnostic assays, the role for “fit for

purpose” biomarker method validation and qualification, and the interaction

between validation and qualification.

There are important differences between biomarker method validation

and PK assay and also diagnostic assay validation. The goals and processes for

biomarker assay validation are different from the PK validation. The FDA has

issued detailed guidance for the industry on bioanalytical method validation.

This guidance focuses on validation of assays for small molecule drugs and is

not directly related to the biomarker assay validation. Another distinction

should be made between diagnostic laboratory validation and novel biomarker

validation. The laboratories that perform diagnostic assays are certified under

the Clinical Laboratory Improvement Amendments of 1988 (CLIA), and there

is an exemption under CLIA for research, such as novel biomarker assays.

Thus, there is a lack of regulatory guidance on requirements for biomarker

assay validation. Because of the diverse purposes of biomarker research, the

FDA regulations, bioanalytical drug assays guidance, and the CLIA guidelines

all fail to meet the needs of novel biomarker study purposes.

Biomarker method validation is the process of assessing the assay or

measurement performance characteristics. Method validation should demonstrate

that a particular method is “reliable for the intended application” and, thus, the

rigor of method validation depends on the purpose. Generally, the rigor of

method validation increases from the initial validation proposed mainly for

exploratory purposes to more advanced validation dependent on the evidentiary

status of the biomarker and/or the use of the results. There are two general

categories of method validation in clinical drug development (11): (i) exploratory

validation with crucial components including accuracy, recovery, precision,

relative selectivity, initial target ranges, analyte integrity in matrix, and dilutional

linearity, and (ii) advanced validation with graded addition of other necessary

components, including additional specificity, sensitivity, parallelism, expanded

reference range, extended stability, method robustness, and document control.

For each biomarker project, the objectives and potential issues of the method

should be identified in a specific validation plan to meet the objectives. Different

applications of biomarkers require targeted method validation, that is, method

validation should be considered as an iterative and an evolving process.

For example, a biomarker for a purely exploratory objective in a Phase I study

may be subject to exploratory method validation, whereas a well-qualified
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biomarker for a primary objective in a Phase I study may be subject to advanced

method validation. Suitable biomarkers will typically require advanced method

validation.

The primary distinction between biomarkers and surrogate endpoints is

evidence. This is a point that has been highlighted by recent literature and also

regulatory guidances. Many biomarker nomenclature systems categorize bio-

markers according to their evidentiary status. For example, in AIDS research,

one early nomenclature scheme includes: (i) Type 0 markers of natural history,

(ii) Type 1 markers that assess biologic activity, and (iii) Type 2 markers that

act as surrogate endpoints for clinical outcome of therapy (14). In addition,

selected FDA guidances emphasize the evidentiary status in biomarker classifi-

cations. For example, in the exposure–response guidance, the FDA indicates

that “biological marker (biomarker) refers to a variety of physiologic, pathologic,

or anatomic measurements that are thought to relate to some aspect of normal or

pathological biologic processes” and “these biomarkers include measurements

that suggest the etiology of, the susceptibility to, or the progress of disease;

measurements related to the mechanism of response to treatments; and actual

clinical responses to therapeutic interventions” (15). Furthermore, in the

exposure–response guidance, the FDA had classified biomarker types by their

relationship to the intended therapeutic response or clinical benefit endpoints:

(i) valid surrogates for clinical benefit (such as blood pressure, cholesterol,

viral load), (ii) candidate surrogates reflecting the pathologic process (brain struc-

ture in Alzheimer’s disease, brain infarct size in stroke, or radiographic and

isotopic tests of function), (iii) measurement of drug action but of uncertain

relation to clinical outcome (e.g., inhibition of ADP-dependent platelet aggrega-

tion or even angiotensin- converting enzyme inhibition in hypertension), and

(iv) biomarkers that are remote from the clinical benefit endpoint (e.g., degree

of binding to a receptor or inhibition of an agonist-provoked response). The

FDA has also provided insight into its view of biomarkers through guidance

on pharmacogenomic data submissions that shows it is likely to further dis-

tinguish into “probable valid biomarkers” and “known valid biomarkers,”

depending on the weight of the supporting evidence.

This evidentiary distinction between biomarkers and surrogate endpoints

leads directly to the concept of qualification. Biomarker qualification is a

graded evidentiary process linking a biomarker with biological processes and

clinical endpoints, dependent on the intended application (13). When considering

a distal or disease-related biomarker, it is instructive to conceptualize four

general categories of qualification, as shown in Figure 2: (i) exploration

biomarkers are research and development tools accompanied by in vitro and/
or preclinical evidence, but with no consistent information linking the clinical

outcomes of the biomarker in humans, (ii) demonstration biomarkers are

associated with adequate preclinical sensitivity and specificity and linked with

clinical outcomes, but have not been reproducibly demonstrated in clinical

studies, (iii) characterization biomarkers are associated with adequate preclinical
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sensitivity and specificity and reproducibly linked clinical outcomes in more

than one prospective clinical study in humans, and (iv) surrogacy reflects a

holistic evaluation of the available data demonstrating that the biomarker can

substitute for a clinical endpoint. The demonstration biomarker category

corresponds to the “probable valid biomarker” in nomenclature suggested in

the guidance from the FDA. The characterization biomarker category corre-

sponds to the “known valid biomarkers” in nomenclature suggested in the

guidance from the FDA. The surrogacy category and designation of a biomarker

as surrogate endpoint requires agreement with regulatory authorities. Similar

graded categories for biomarker qualification have previously been proposed

for different purposes (16,17).

Figure 2 also illustrates the life cycle of qualified biomarkers. A novel

biomarker may be progressively qualified from an exploratory biomarker to a sur-

rogate endpoint for the purpose of drug development. Biomarkers may also enter

the qualification pathway from general medical practice or research. Hemoglobin

A1C is an important example of a biomarker that was in general medical use

prior to its role in drug development. Importantly, biomarkers can also be

“disqualified” if evidence no longer supports their use (i.e., runs of asympto-

matic VT amidst normal sinus rhythm). Although the rationale exists for the

suppression of intermittent ventricular tachyarrhythmias as a biomarker for

suppression of ventricular arrhythmia and reduction of mortality following

myocardial infarction, a well-controlled clinical study disqualified suppression

of intermittent ventricular tachyarrhythmias as a biomarker for this purpose.

In fact, the results of the Cardiac Arrhythmia Suppression Trial revealed that

mortality was increased by anti-arrhythmic therapy following myocardial

infarction (18).

The focus on evidentiary status for biomarkers also highlights an interest-

ing observation about clinical endpoints relative to surrogate endpoints. Clinical

endpoints are defined as a characteristic or variable that reflects how a patient feels,

functions, or survives, and surrogate endpoints are defined by an evidentiary link

Figure 2 Life cycle of qualified biomarkers.
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between a biomarker measurement and a clinical endpoint. It is interesting to

reflect that clinical endpoints also require an evidentiary link to the disease,

but this link is not usually highlighted, often because the association between

the clinical endpoint and the disease is taken for granted. It is also worthwhile

noting that both clinical endpoints and biomarkers, including surrogate end-

points, are measurements. For example, in coronary artery disease drug

development, myocardial infarction is considered as clinical endpoint and LDL

cholesterol is considered as surrogate endpoint. The evidence that associates

myocardial infarction with coronary artery disease is strong, by definition, as is

the evidence that associates LDL cholesterol with coronary artery disease clinical

endpoints (19). Both LDL cholesterol and myocardial infarction are measure-

ments. Assessment of myocardial infarction is not typically considered a

measurement, but, in fact, it is a multivariate measurement, involving clinical

assessment of symptoms, electrocardiogram findings, and laboratory alterations.

These considerations suggest that the distinction between biomarkers, especially

surrogate endpoints and clinical endpoints is, at least to some extent, blurred.

APPLICATION OF VALIDATION AND QUALIFICATION
TO SELECTED BIOMARKERS

Adiponectin is a 30-kDa protein composed of an N-terminus collagenous domain

and a C-terminus globular domain. It exists in the circulation as complex

oligomeric forms. Numerous studies have indicated that circulating concen-

tration of adiponectin is closely linked to insulin sensitivity. A gradual decrease

in adiponectin concentration is observed from lean to obese to diabetic individ-

uals. Furthermore, PPARg agonists increase plasma concentration of adiponectin

in rodents and humans. Thus, there is a body of evidence that adiponectin is

linked to glucose and lipid metabolisms in relation to insulin responsiveness

and acts as a biomarker of PPARg activation. However, in humans, there is

discordance between improvements in insulin sensitivity and increases in adipo-

nectin. Although the majority of the patients have increased adiponectin levels

in response to PPARg agonist treatment, only 50–70% of the patients demon-

strate clinically improved insulin sensitivity. This suggests that adiponectin

increases in any particular individual do not correlate with quantitative improve-

ments in insulin sensitivity. Thus, adiponectin is qualified as a demonstration

biomarker for PPARg agonist activity, associated with adequate preclinical

sensitivity and specificity, and linked with insulin sensitivity, but the link has

not been reproducibly demonstrated in clinical studies.

Hemoglobin is one of the many proteins that undergo non-enzymatic gly-

cation and HbA1c represents the most prevalent glycated species. Erythrocytes are

freely permeable to glucose, and so the rate of formation of HbA1c is directly pro-

portional to the ambient glucose concentration in which the erythrocyte circulates

and to the duration of exposure. In addition, because of the irreversible nature of

the non-enzymatic glycation, HbA1c represents an integrated measure of the
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average blood glucose concentration over the life spans of erythrocytes (i.e.,

2–3 months). In contrast to a less well-qualified biomarker, such as

adiponectin, HbA1c is associated with an overall database demonstrating that

the biomarker can substitute for a clinical endpoint. Qualification of HbA1c was

accomplished primarily in two large, randomized, landmark clinical trials, the

U.K. Prospective Diabetes Study (UKPDS) and the Diabetes Control and Com-

plications Trial (DCCT). In addition, regulatory authorities widely consider

HbA1c as the most widely accepted measure of overall, long-term blood

glucose control in diabetes and appropriate as a primary endpoint for clinical

studies. The assessment is based partly on evidence from the UKPDS and DCCT.

SUMMARY

Method validation is the process of assessing the assay and its measurement

performance characteristics, and determining the range of conditions under

which the assay will give reproducible data. Qualification is the evidentiary

process of linking a biomarker with biological processes and clinical endpoints.

For distal or disease-related biomarkers, there are four general categories of

increasing levels of qualification: exploration, demonstration, characterization,

and surrogacy. A biomarker research plan, like the validation and qualification

activities it describes, is a graded, “fit for purpose” process dependent on the

intended application. A biomarker research plan can describe activities leading

to one or more purposes, or may be iterative in nature, evolving with the use

of the biomarker.
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INTRODUCTION

One of the most challenging aspects of drug development is the design of the initial

clinical protocol, especially the selection of the starting dose for a first-in-human

(FIH) trial. For a typical investigational new drug application (IND), selection of

the starting dose for the FIH trial, by its very nature, is based solely on non-clinical

data (usually in at least two animal species) and, perhaps, in vitro metabolism data

in human liver microsomes (or hepatocytes). Although the selection of a safe

starting dose is relatively easy, in that one can always pick a very low dose

relative to doses used in the animal toxicity studies, the challenge is to select a

dose that is safe, but not so low as to result in an unreasonable amount of time

being taken to achieve doses that are anticipated to be therapeutically relevant.

The purpose of this chapter is to describe and to provide the basis for

the current strategy used by the U.S. Food and Drug Administration’s Center

for Drug Evaluation and Research (CDER) to select a maximum recommended

safe starting dose (MRSD) for FIH trials of new molecular entities (NME) in

adult healthy volunteers. Selection of starting doses in FIH trials in patients is

not addressed; however, similar principles may apply to selection of starting

doses for FIH trials in otherwise healthy patients. Dose escalation is also not

addressed. The guidance for industry (Guidance for Industry and Reviewers:

Estimating the Maximum Safe Starting Dose in Clinical Trials for Therapeutics

in Adult Healthy Volunteers, July 2005) has been published.
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APPROACH FOR SELECTING THE MRSD FOR FIH TRIALS
OF NMES IN ADULT HEALTHY VOLUNTEERS

The approach most commonly used within CDER for selecting a MRSD for a

FIH trial in adult healthy volunteers starts with selection of no observed

adverse effect levels (NOAEL) in animals. A NOAEL is defined as the highest

dose level that does not produce a significant increase in adverse effects when

compared with the control; both statistical and biological significance should

be taken into consideration. After NOAELs have been determined in the

toxicology studies (typically conducted in rodents and non-rodents), the

NOAEL (mg/kg) in each species is normalized by body surface area (mg/m2)

using the allometric exponent, 0.67:

BSA ¼ BW0:67

where BSA is body surface area and BW is body weight (kg). The NOAEL for

each species is then converted to human equivalent doses (HED, mg/kg) using

the appropriate conversion factor (km, Table 1).

HED ¼ NOAEL� km

Once HEDs are calculated, the most sensitive or appropriate species must

be selected. For some classes of drugs, it has been determined from a body of data

that one species is more relevant to humans than other species, based on one or

more factors. For example, unless data on a specific drug indicate otherwise,

monkey is considered the most appropriate animal species for testing the acute

toxicity of phosphorothioate oligonucleotides, since potentially life-threatening

complement activation is observed in non-human primates (1,2), but not

rodents. Also, rodents might be poor animal models for testing the toxicity of

antifolate drugs due to differences in tissue folate pools (3,4). If no species is

acknowledged to be “the best” model for human, the most sensitive species is

defined as the species in which the NOAEL results in the lowest HED.

Once the HED has been selected based on toxicity data in the most sensi-

tive or most appropriate species, a safety factor (SF) is applied to the HED in

order to determine the MRSD. The selection of the safety factor is a critical

Table 1 Recommended Species-Specific km Values

Species km
a

Human (adult) 37

Mouse 3

Rat 6

Rabbit 12

Dog 20

Cynomolgus monkey 12

akm ¼ body weight (kg)/body surface area (m2).
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part of the process. The SF selected must provide a reasonable safety margin

compared with the proposed clinical start dose (no toxicity should be expected)

and must be based on all available non-clinical (including pharmacology, phar-

macokinetics–PK/toxicokinetics and metabolism, safety pharmacology, and

general toxicity) and in vitro human data. Data in the most sensitive species

should not be the sole basis for determining an appropriate SF. The default SF

is 10; however, a SF of 10 should not be used automatically. It is simply a starting

point. There are many reasons for increasing the SF (Table 2); these include

serious, unmonitorable, or unpredictable toxicities observed in animals at doses

above the NOAEL, wide intra- or interspecies variability in PK/absorption,

distribution, metabolism, and excretion (ADME) and/or toxicity, and

deficiencies in study design or conduct. There are cases in which an SF , 10

is acceptable; however, decreasing the safety factor to ,10 should be done

only with great care (Table 2).

BASIS FOR CDER’S APPROACH FOR SELECTING A
MAXIMUM SAFE STARTING DOSE FOR FIH TRIALS
IN HEALTHY VOLUNTEERS

Conversion of NOAEL to HED

The best means to extrapolate from animal data to humans has been an area of

interest for a number of years. Historically, interspecies extrapolation has been

based on the concept of allometric scaling, that is, the process of relating

Table 2 Reasons for Increasing or Decreasing the SF of 10

Increase SF .10

Steep dose–response curve

Severe, non-monitorable, or irreversible toxicity at doses above the NOAEL

Unexplained mortality at doses above the NOAEL

Wide intra- or interspecies variability in PK/ADME or in doses eliciting toxicity

Non-linear PK

Lack of experience with drug class (e.g., novel therapeutic target)

Lack of an appropriate animal model

Data from poorly designed or conducted animal studies

Decrease SF ,10a

Drug is a member of a well-characterized drug class and animal data have been

demonstrated to be predictive for human

Minimal, predictable, monitorable, and reversible toxicities in animals; shallow

dose–response

NOAELs based on toxicity studies of substantially longer duration than proposed for

humans; must demonstrate that toxicities observed do not increase in severity or that

the effect-dose does not decrease with duration of dosing

aAnimal data must be from well-designed and conducted studies, using drug formulations, dosing

regimen similar to those proposed in the FIH trial.

Abbreviations: NOAEL, no observed adverse effect levels; SF, safety factor; PK, pharmacokinetics.
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various physiological variables or processes to body weight, using the general

equation:

Y ¼ a(BW)b

where Y is the parameter of interest, BW is body weight in kg, and a and b are

scaling parameters [plot of log(Y ) vs. log(BW), log(a) is the Y-intercept and b is

the slope].

A thorough review of this topic is beyond the scope of this chapter; for

discussions of the historical aspects of interspecies extrapolation, the reader is

referred to Travis and White (5), Travis (6), and Reilly and Workman (7),

among others. Early work in this area demonstrated that a number of physiologi-

cal variables (e.g., energy metabolism, organ size, and function) increased with

body weight; however, the increase was not directly proportional to the body

weight, that is, the slope, or b, is ,1. As noted by Travis and White (5) in

their historical overview, using body surface area (BSA) to make interspecies

comparisons was originally based on the early observations that metabolism

(i.e., heat loss/production), blood volume, renal parameters (i.e., kidney

weight, total number of glomeruli) were proportional to BSA, but not body

weight, and that oxygen utilization and caloric expenditure scaled best among

the species when normalized based on BSA. The use of dose normalization by

BSA for pharmaceuticals was codified in the 1960s in the area of oncology

drugs, based primarily on the works of Pinkel (8) and Freireich et al. (9).

Pinkel (8) compared the therapeutic doses of five chemotherapeutic agents in

humans with doses reported in literature for animals (mouse, hamster, rat), and

demonstrated intra- and interspecies similarities in dose when doses were nor-

malized for BSA, but not for body weight.

Freireich et al. (9) addressed interspecies scaling of doses based on data in

humans and toxicity data in various animal species (mouse, rat, hamster, dog,

monkey) for 18 oncology drugs. The authors demonstrated that the LD10 or

maximum tolerated dose (MTD) (considered to be equivalent) was similar

among a variety of animal species (mouse, rat, dog, monkey) and humans

when normalized by BSA. The data used by Freireich et al. (9) and data on 25

oncology drugs published by Schein et al. (10) were subsequently re-examined

by others [including Travis and White (5); Watanabe et al. (11)]. Based on

their reanalysis, Travis and White (5) concluded that an interspecies scaling

power (b) of 0.75 was more appropriate than the 0.67 power recommended by

Freireich et al. (1966). When data for 14 oncology drugs from the Freireich

et al. (9) database were examined, the best estimate of b was 0.72, with 95% con-

fidence limits of 0.67 and 0.77; reanalysis of 13 oncology drugs from the Schein

et al. (10) database resulted in a best estimate of b as 0.74, with 95% confidence

limits of 0.67 to 0.82. Neither result excluded a b of 0.67. However, when the

combined dataset was analyzed, the best overall estimate of b was 0.73, with

95% confidence limits of 0.69 and 0.77, thus, excluding 0.67 (BSA correction).
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Watanabe et al. (11) confirmed the overall results of Travis and White (5),

concluding that the “best case” estimate of 0.75 is the most appropriate scaling

factor; however, when the data were analyzed assuming greater variability

(based on the degree of uncertainty regarding quality of the data, particularly

in humans), they concluded that scaling by either factor is acceptable. While

Travis and Morris (12) acknowledged the validity of the analyses performed

by Watanabe et al. (11), they concluded that 0.75 was the most appropriate inter-

species scaling factor based on the work of Travis and White (5) and published

reports demonstrating that a number of physiological processes (i.e., metabolic

rate, cardiac output, alveolar ventilation volume, renal clearance, energy utiliz-

ation) scale best across species when body weight is raised to the 0.75 power.

Travis and White (5) noted that an early report in which Rubner (in 1883)

stated that heat production was proportional to BSA (i.e., b ¼ 0.67, not 0.75)

was based on intraspecies (i.e., dog), not interspecies, comparisons. Reilly

et al. (7), in their discussion of the historical aspects of interspecies comparisons,

noted that, as early as 1932, Kleiber demonstrated in animals (ranging in size

from rat to cow) that basal metabolic rate increased with body weight to the

power of 0.75.

Thus, the available body of data suggests that interspecies comparisons are

best made by normalizing dose by body weight to the 0.75 power. However, it is

important to note certain considerations that may limit the conclusions based on

the analyses of the Freireich et al. (9) and the Schein et al. (10) datasets. Both

datasets were based on evaluation of data only on oncology drugs, and using

various routes of administration and dosing schedules. The toxicity data reported

by Freireich et al. (9) were collected using IP, IV, and PO dosing. Of the 25

oncology drugs included in the Schein et al. (10) database, data for only three

drugs were from oral studies; the remaining drugs were from IV studies.

Routes of drug metabolism may vary widely and unpredictably among animal

species, and drug metabolism (as opposed to energy metabolism) may not

scale proportionate to either BSA (i.e., b ¼ 0.67) or basal metabolic rate (i.e.,

b ¼ 0.75) (13). These factors may limit the applicability of the conclusions

based on analysis of these datasets to dose selection in drugs for other therapeutic

areas. At present, it does not appear that there are sufficient data to select one

interspecies scaling approach over another.

In order to determine the impact of using either approach on calculating

a HED, conversion factors (kms) calculated using BW0.67 and BW0.75 were com-

pared for various animal species (mouse, rat, rabbit, dog, monkey) and humans

averaged over wide body weight ranges. In all cases, the mean HED calculated

using BW0.75 was higher than the mean HED calculated using BW0.67. The

greatest difference was in the smaller animal species (ratio of 0.75–0.67 was

1.88 in mouse and 1.57 in rat). In monkey and dog, the mean HED based on

0.75 was only 27% and 17% higher, respectively, than the mean HED based

on 0.67. Therefore, this analysis indicated that, although using BW0.67 would

always be a more conservative approach, it would not result in a markedly
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lower MRSD compared with the start doses calculated using BW0.75. Watanabe

et al. (11) used LD10 data in mouse to predict MTD values in humans for 25 com-

pounds [from the Freireich et al. (9) and Schein et al. (10) datasets], using either

BSA (0.67) or metabolic rate (0.737) corrections. For 14 of the 25 compounds,

the actual MTD identified in clinical trials was greater than the MTD predicted

using either 0.67 or 0.737 (i.e., successful predictions). For seven compounds,

the actual MTD was less than the MTD predicted using either scaling power

(i.e., failures of prediction). For four compounds, the actual MTD was greater

than the MTD predicted using 0.67, but less than the MTD predicted using

0.737. Watanabe et al. (11) noted that, although BSA correction always resulted

in lower doses, it should not be considered as a conservative approach.

This discussion is certainly not intended to be a thorough review of the

available literature on interspecies scaling of doses for pharmaceuticals. It is,

instead, intended to provide a basis for the use of BSA (0.67) normalization to

calculate a maximum safe starting dose for FIH trials in healthy adult volunteers.

BSA normalization has been selected for interspecies scaling since (i) there is no

body of literature that clearly establishes “the best” interspecies scaling approach,

(ii) BSA (0.67) correction provides a more conservative estimate of HED than

does correction based on basal metabolic rate (0.75), and (iii) reviewers in

CDER have a great deal of experience using BSA correction for selecting safe

starting doses and for other interspecies comparisons (e.g., comparison of

effect- and no-effect doses). However, the results of Watanabe et al. (11)

certainly suggest that simple conversion of a NOAEL in animals to a HED is

alone not sufficient to ensure a safe starting dose in humans.

Use of Standard Conversion Factors to Calculate HEDs

Calculation of HEDs requires stepwise conversion of doses in mg /kg in animals

to mg /m2 in animals, followed by conversion to mg /m2 in humans and, finally,

mg /kg in humans. Conversion of mg /kg to mg/m2 in animals is accomplished

using the equation, Dosemg /m
2 ¼ km (Dosemg /kg). The term, km, is a conversion

factor unique to each species and, within each species, it varies according to

body weight. Since it is impractical to calculate HED taking into account body

weight variations in individual animals and humans, a standard factor is used

for each species (Table 1). To determine the effect of using a standard factor

on calculation of HED, kms were calculated over a range of body weights in

rats (0.090–0.460 kg) and humans (50–80 kg). The results indicated that using

a standard km provided reasonable estimates of the HED (i.e., within 20%)

over a fairly wide range of body weights.

Selection of Safety Factors (SFs)

A default SF of at least 10 is recommended. This recommendation has no

scientific basis, but does take into consideration that interspecies differences

have, in part, been addressed by normalization of dose by BSA.
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A range of SFs has been suggested in published literature (9,11,14);

however, comparing values among publications is difficult since the safety

factors are often applied to different endpoints and for different purposes

(e.g., estimate of safe lifetime environmental exposure in humans). Bonate

and Howard (15) note that, according to an early method outlined by the

Association of Food and Drug Officials of the United States, the maximum

starting dose for a FIH trial should be 1/10 of the highest no-observed-effect

level in a chronic toxicity study in rodent, 1/6 of the no-observed-toxic-

effect level in a chronic study in dog, or 1/3 of the highest no-observed-

toxic-effect level in monkey, whichever results in the lowest dose. For

oncology drugs, starting doses of 1/10 of the rodent LD10 or the STD10

(i.e., dose, expressed in mg/m2, producing severe toxicity or death in 10%

of the animals), or 1/3 the estimated MTD in humans (mg /m2) have been rec-

ommended (9,16); however, Freireich et al. (9) cautioned that data from mul-

tiple species should be taken into consideration in selecting a safe starting

dose. Hertzberg (17) described the approach used by the U.S. Environmental

Protection Agency for cancer risk assessment; NOAELs (mg /kg) from

chronic animal studies are divided by 100 (a factor of 10 for species differ-

ences and another factor of 10 for differences in sensitivity among different

human subpopulations).

Dourson and Stara (18) reviewed the regulatory history of SFs and con-

ducted an analysis of SFs used to estimate acceptable daily intakes (i.e.,

lifetime exposure to, e.g., food additives) in humans. They noted that an SF of

100, applied to an animal NOAEL (expressed as mg /kg of diet or mg /kg body

weight), was recommended by various agencies (including the U.S. FDA).

Although the reasons given for the 100-fold SF differed somewhat among

agencies, they generally addressed two basic concerns: intraspecies (10-fold)

and interspecies (10-fold) variability. Recommendations to increase the safety

margin are generally based on increased uncertainty (e.g., lack of animal data)

or the use of a low-effect level instead of a NOAEL in animals, whereas rec-

ommendations to decrease the safety margin are based on decreased uncertainty

(e.g., availability of human data). Based on their evaluation of published data,

Dourson and Stara (18) concluded that there was support for using 10-fold

safety margins to address intra- and interspecies differences, and further noted

that a 10-fold safety margin would appear reasonable if interspecies differences

in sensitivity were adequately addressed by normalizing doses to BSA, as

proposed.

However, as previously noted, SF recommendations have no firm scientific

basis. The 10-fold safety margin recommendation should be considered as a

reasonable starting point, considering that interspecies differences in sensitivity

have been (at least in part) addressed by normalization of dose to BSA. It

should be increased in cases where there is greater uncertainty or concern

(Table 2), and decreased (with caution) when warranted. This issue is further

discussed in the following section.
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VALIDATION

Chan et al. (19) evaluated CDER’s approach to selection of the MRSD, using data

from 35–36 non-cytotoxic drugs tested in humans during the years 1996–2002.

Although not stated, it is assumed that the SF used in each case was the default

factor of 10, since there was no discussion of a range of SFs. For all 35–36 drugs,

the cardiovascular, gastrointestinal, and nervous systems were the most frequent

sites of adverse effects. For 20–21 drugs, a no-effect or minimal-effect dose was

identified. The calculated MRSD was lower than the no- or minimal-effect clini-

cal dose in 11 of the 21 cases (52%). In the worst case, the calculated MRSD was

20 times higher than the no- or minimal-effect clinical dose. For 15 drugs, the

lowest dose associated with what were considered significant adverse effects

was identified. The calculated MRSD was lower than the clinical dose associated

with significant adverse effects in 12 of the 15 cases (80%). In the worst case, the

calculated MRSD was approximately six times higher than the clinical dose

associated with significant adverse effects.

An internal effort has been initiated in order to validate CDER’s approach

described in the guidance for industry. The first step in this validation was to

identify a number of drugs for which sufficient data were available to determine

whether or not selection of the MRSD according to CDER’s algorithm would

have been successful, that is, starting dose associated with no (or minimal)

toxicity. The analysis was based on data for 69 drugs, representing all review

divisions. Reviewers were asked to provide the following information for each

case: (i) therapeutic indication, (ii) the route of administration used and the dur-

ation of the toxicity studies used to determine NOAELs in animals, (iii) the

NOAEL in the most sensitive species, (iv) the start dose and the route of admin-

istration used in the FIH trial, (v) the findings in humans at the start dose, (vi) the

highest dose tested in the FIH trial, if known, and (vii) the human dose associated

with significant toxicity, if identified.

For six drugs, there were insufficient data in humans to be included in the

analysis. Therefore, the overall analysis included data from 63 drugs. For 20 of

the 63 drugs, a toxic dose was identified in humans. For 35 drugs, data at

doses above the starting dose were available; however, no toxic dose was

identified. For eight drugs, human data were only available at the starting dose.

For one drug, the route of administration differed between animals (subcu-

taneous) and humans (sublingual). In the majority of the cases, NOAELs

in animals were based on toxicity studies of up to 3 months in duration; for

two drugs, NOAELs were based on 6-month studies; for one drug, NOAELs

were based on data from 13- to 26-week studies. It is not known how the

actual starting dose used was selected in each case. Generally, the reviewer cal-

culates a MRSD, using the method described, and compares that with the start

dose proposed by the sponsor. However, reviewers do not routinely recommend

adjusting the starting dose proposed by the sponsor unless a safety concern

is raised.
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In all but two of the 63 cases, the starting dose was successful, in that it was

not associated with adverse effects. However, an important factor in some cases

was selection of the safety margin. For the cases in which a toxic dose had been

identified, the safety margins selected (i.e., HED/HSD) ranged from 0.7 to 300.

Overall, safety margins used ranged from 0.4 to 2700. By category, 25/63 cases

used a safety margin of ,10, 3/63 cases used a safety margin of 10, 24/63 used a

safety margin between 10 and 100, and 11/63 used a safety margin of .100. For

the cases in which a toxic dose in humans had been identified, use of a 10-fold

safety margin would have resulted in a HSD greater than the toxic dose in two

cases. In 12 of the 20 cases, the toxic dose:HSD ratio would have been ,10.

Therefore, the selection of a sufficient safety margin would appear to be critical.

The conclusions of CDER’s preliminary analysis are limited by the fact

that the cases examined were not random samples of relevant cases, that in

some instances selection of the starting dose was based on human data, and by

the lack of sufficient data from the initial clinical trial. Cases are continuing to

be collected in order to complete the evaluation of CDER’s approach to selection

of the MRSD. However, the results of Chan et al. (19) and the preliminary

internal analysis both indicate that serious consideration should be given to

selection of an appropriate safety margin, and that a 10-fold SF may not be suffi-

cient in some cases.

ALTERNATIVE APPROACHES TO ESTIMATION OF MRSD
FOR FIH TRIAL IN HEALTHY VOLUNTEERS

Although dose normalization by BSA is currently the approach routinely used in

CDER, it is acknowledged that a variety of other strategies may be acceptable.

These include, but are not necessarily limited to, dose based directly on

body weight, physiological-based modeling, allometric scaling of various PK

parameters, and allometric scaling based on pharmacologically active dose

(instead of doses associated with toxicities).

Physiological-Based Modeling

Physiological-based modeling is complex and is not commonly used in determin-

ing start doses for FIH trials. Therefore, this approach will not be discussed

further. A publication by Dedrick (13) provides an early discussion of the use

of physiological-based modeling applied to interspecies scaling. More recent

discussions of physiological-based modeling applied to interspecies scaling of

PK data have been reported by Ings (20), Iwatsubo et al. (21), Kawai et al.

(22), Kirman et al. (23), Suzuki et al. (24), and others.

Interspecies Comparisons Based on mg/kg

There may be circumstances in which dose extrapolation among species is linear,

that is, the most appropriate interspecies comparison is based on scaling directly
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to body weight, i.e., NOAEL (mg/kg) ¼ HED (mg/kg). For example, if the

NOAEL in each animal species is similar on an mg/kg basis, then extrapolation

to humans based on mg/kg may be acceptable. However, since such a similarity

could result from factors unrelated to drug sensitivity (e.g., differences in

absolute oral bioavailability), if data from only two animal species are available,

then additional information is needed. It would need to be demonstrated that: (i)

NOAELs in the two animal species are defined by local toxicity (e.g., gastroin-

testinal) that directly scale by body weight across species, (ii) other drugs in

the class exhibit similar toxicity in humans and animals at doses that correlate

across species on an mg/kg basis, (iii) other pharmacological (e.g., pharmaco-

logically active dose) and toxicological (e.g., MTD) endpoints also scale by

mg/kg across species, or (iv) there is good correlation between plasma exposure

(Cmax and AUC) and mg/kg dose among species.

Since this approach results in a higher MRSD than when dose is normalized

by BSA, it should be used with caution. Published studies indicate that such an

approach has led, in a number of cases, to most unfortunate results (including

death), at least in animals (25,26). Based on their examination of data from

Freireich et al. (9) and Schein et al. (10), Watanabe et al. (11) concluded that

interspecies scaling based on mg/kg would have overpredicted the MTD in

humans in every case examined.

Allometric Scaling of PK Parameters

Allometric scaling of various PK parameters has received particular interest since

Boxenbaum (27) [based, in part, on the work of Dedrick et al. (28)] proposed that

PK parameters, such as volume of distribution and clearance, are related to body

size or mass, since various physiological parameters (e.g., renal clearance,

cardiac output) determining the PK parameters are also related to body size or

mass, using interspecies allometric scaling. It is an empirical approach to inter-

species scaling (as is interspecies extrapolation of dose), and may require knowl-

edge of toxicity in animals in order to determine a starting dose (depending upon

whether the PK parameter of interest is being related to some measure of toxicity,

e.g., LD10).

As noted by Bonate and Howard (15), there are limitations to predict

the start dose based on allometric scaling of PK parameters. Selection of the

“best” allometric exponent(s) may depend upon the specific parameter under con-

sideration, may require information that is not available at the time of initial dose

selection, for example, primary route of elimination (renal, hepatic) in humans,

and may require a larger body of data in animals (e.g., data in a greater

number of species) than is usually available. Interspecies differences in metab-

olism may be particularly problematic. Lave et al. (29) summarized the results

of a number of published studies examining interspecies scaling of clearance

for drugs from various therapeutic classes for which clearance data were avail-

able in humans. The authors noted that while prediction of total clearance was

good for some drugs, it was poor for others. For certain drugs (i.e., triazolam,
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nordiazepam, diazepam), poor prediction of total clearance resulted from species

differences in metabolism. Ward et al. (30) described the challenges in conduct-

ing interspecies scaling of clearance for drugs that are metabolized slowly and/or

primarily by phase II metabolism. Lave et al. (31) reported the failure of allo-

metric scaling to predict the PKs of napasagatran (a low molecular weight throm-

bin inhibitor) in humans. Napasagatran is actively excreted intact by the liver

(into bile) and kidney, and it demonstrated wide interspecies variability in

excretion based on PK data in rat, rabbit, dog, and monkey. Lave et al. (31) con-

cluded that data on the transporters involved in the elimination of napasagatran

might allow for more successful interspecies extrapolation. Chiou et al. (32)

examined differences between rat and human in plasma clearance of 54 exten-

sively metabolized drugs. While rat was considered to be, in general, a good

model for predicting clearance in humans, Choiu et al. (32) also noted that

there was large variability among drugs in the rat-to-human clearance ratio.

Therefore, they recommended caution in attempting to use clearance in rat to

predict clearance in human for FIH trials.

Numerous published studies have mostly conducted retrospective analyses

of interspecies scaling of PK parameters for drugs for different therapeutic

indications (e.g., 33). In reviewing the use of allometric scaling techniques in

drug development, Mahmood (34) emphasized the potential importance of

allometric scaling of PK parameters in selecting a safe starting dose for FIH

trials, but concluded that failures of prediction are sufficiently common to

warrant caution in making such predictions. A number of investigators have con-

sidered various approaches in an attempt to improve predictive ability, such as

using in vitro metabolism data or incorporating factors such as brain weight or

maximum life span. However, there is a question as to how successfully one

or more of these approaches can predict a MRSD prior to a FIH trial, that is,

before data in humans are available.

Pharmacologically Active Dose

There may be circumstances in which selection of MRSD may more appropri-

ately be based on allometric scaling of a pharmacologically active dose (PAD)

rather than a NOAEL. One example of this would be a drug for which dose-

limiting toxicities in animals solely reflect exaggerated pharmacological

effects. Selection of a PAD may be complex, since most drugs exert effects

on more than one receptor system or biological process, and would certainly

involve different factors depending upon the pharmacological class. Once a

PAD is selected, based on in vivo studies in the most sensitive or most appropri-

ate animal species, a HED can be calculated using BSA normalization.

SURVEY OF INDUSTRY APPROACHES

Some attempt has been made to document “current” practices for selection of

starting doses in FIH trials within pharmaceutical companies. Reigner et al.
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(35) conducted a survey within one pharmaceutical company to determine the

extent and outcome of using PK and/or pharmacodynamic (PD) data to design

clinical trials. A total of 18 projects were identified; in 13 of these, PK/PD data

were considered to have had an important impact on drug development. Of

these 13, five involved the use of PK and/or PD data to select a starting dose

for a FIH trial. Although no details were provided, the selection of the start

dose was based on allometric scaling of PK data in animals and previous pharma-

codynamic data on other compounds of the same pharmacological class. Reigner

et al. (35) noted that the starting dose, safely administered in all cases, was gen-

erally higher using the PK/PD approach than if based on animal toxicity data, and

that smaller SFs were used. In a more recent review, Reigner and Blesch (36)

described various approaches to selection of a starting dose for a FIH trial of cyto-

toxic and non-cytotoxic compounds. In selecting a starting dose for FIH trials of

cytotoxic compounds, greater toxicity is tolerated due to the need to quickly

achieve predicted therapeutic doses in patients, which is not appropriate for selec-

tion of a starting dose in FIH trials in healthy volunteers. Reigner and Blesch (36)

identified four general approaches to select a starting dose for a FIH trial of a non-

cytotoxic compound: (i) dose by factor, that is, dose identified in animals,

expressed in mg/kg and multiplied by an SF, (ii ) similar drug approach, that is,

dose selection based on safety data (in humans and animals) available for a

drug “similar” to the one being investigated and adjustment by some SF, (iii)

pharmacokinetically guided approach, that is, use of systemic exposure (AUC

or Cmax) at the NOAEL in animals and prediction of clearance in humans

based on allometric scaling of animal PK, and (iv) the comparative approach,

that is, calculation of the starting dose using two or more approaches. Reigner

and Blesch (36) also updated the results of the internal survey conducted within

their pharmaceutical company in 1995 (35). In the more recent survey, 15 projects

(conducted between 1996 and 2000) were identified. The results of both the 1995

and the 2000 surveys indicate that the PK-guided approach was the most com-

monly used approach (being used in eight of the 15 projects in both survey

years) and the comparative approach being the most rarely used (no projects in

1995 and only one in 2000). The dose by factor approach was used in 3/15 and

5/15 projects in 1995 and 2000, respectively, and the similar drug approach

was used in 4/15 and 1/15 projects in 1995 and in 2000, respectively.

CONCLUSIONS

CDER’s current approach in the selection of a MRSD for FIH trials in healthy

volunteers has been described. CDER’s approach does not apply to FIH trials

to be conducted in patients, since, in most cases, FIH trials in patients assume

greater risk (and may require more aggressive dosing) due to the nature of the

therapeutic indication being investigated (e.g., cancer chemotherapy, certain

classes of antibiotics). It may, however, be applicable to otherwise healthy

patients, in which rapid escalation to predicted therapeutic doses is not critical.
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Justification for the use of this approach has also been provided, although a com-

prehensive review of relevant literature was beyond the scope of this paper.

NOAEL in a sensitive animal species by BSA, with subsequent application

of an SF, provides a more conservative MRSD (compared with normalization

based on basal metabolic rate). This is a fairly straightforward process using stan-

dard conversion factors, and takes into account all available data (including

in vitro/in vivo animal data and in vitro human data). However, it is acknowl-

edged that other approaches for selecting a MRSD may be acceptable. There

are reports of successful interspecies scaling of PK parameters. However, the

use of this approach may require more data than are routinely available to

support an FIH trial and may be based on assumptions of interspecies similarities

(e.g., in metabolism) that are unfounded. There are cases in which dose appears to

scale linearly with body weight; however, extrapolating animal data to a human

on an mg/kg basis is a less conservative approach than normalization based on

either BSA or basal metabolic rate, and has been reported to result in unexpected

and unacceptable toxicities. Therefore, additional justification is needed if this

approach is used.

It must be emphasized that data that clearly demonstrate the validity of one

interspecies scaling approach over another do not exist. In fact, it is clear that no

one approach is “best” for all drugs. Ideally, one would have sufficient data on a

drug to compare the various approaches. However, this is generally not feasible

and certainly not required. Whatever approach is used to select an MRSD needs

to be adequately justified. An alternative approach that results in an MRSD lower

than the MRSD obtained using CDER’s approach requires less justification,

whereas one that results in a higher MRSD would require greater justification.

Other approaches, such as allometric scaling of PK parameters, have been

successfully, although not commonly, used to support dose selection for an

FIH trial. The challenges faced in selecting a safe starting dose that is not

unacceptably low (compared with the anticipated therapeutic dose range) are

illustrated by the current lack of general regulatory guidance on this process.

The guidance developed by CDER is an attempt to provide some regulatory fra-

mework for, and standardization to, this process. Hopefully, future work in this

area will provide data to refine or revise CDER’s thinking.
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INTRODUCTION

With the increased emphasis of model-based drug development through the FDA criti-

cal path initiative (1), it is increasingly apparent that in addition to gaining

a quantitative understanding of the relationship between dose (exposure or concen-

tration) and response, it is equally important to be able to predict and simulate the

effect of a drug on disease pathophysiology to an extent greater than has been accom-

plished in the past. It is assumed that through these novel processes, a more informed

understanding of the appropriate selection of doses is achieved. To consider the poten-

tial benefits of model-based drug development, it is perhaps necessary to review

whether the current commonly employed designs for Phase I/II studies are adequate

approaches to the desired goals and consider the advantages and disadvantages of

some newer designs in the realm of clinical pharmacology and experimental medicine.

Drug development statistics reveal that both the length of the new chemical

entity compound progression time and increased attrition rates are impediments to

the desire to bring key medical and pharmaceutical breakthroughs to satisfy many

unmet medical needs (2). As increased emphasis is put on shortening drug
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development timelines and reducing attrition rates, it is important to insure the quality

ofnewchemicalentities (NCEs) throughconcept-andhypothesis-basedclinical inves-

tigation, such that the risk /benefit is more accurately and quantitatively understood.

To meet these increased demands, the discipline of clinical pharmacology

and experimental medicine in early drug development is appropriately poised

to develop a key understanding of the following aspects of drug development

that profile the risk /benefit for a given NCE: initial safety, tolerability,

pharmacokinetics (PK), pharmacodynamics (PD), preliminary efficacy and the

maximum tolerated dose (MTD); the dose or exposure/response relation-

ships (e.g., minimum effective dose); and determination of the PK and PD

variability in drug response (e.g., formulation, food, age, gender, renal /hepatic

impairment, disease, pediatrics, pregnancy, concomitant medication, etc.).

These assessments will ultimately guide the selection of doses and dosing

regimen to be evaluated in further efficacy trials and also lead to better understand-

ing of the mechanism of action and clinical validation of the target through proof

of mechanism, proof of concept, and proof of principle clinical trials. Conse-

quently, it is imperative to explore proof of concept as soon as possible in early

clinical development, such that informed decisions could be made for long-term

clinical efficacy studies. These considerations encourage the widespread appli-

cation of biomarkers, and surrogate and clinical endpoints in early development

to gain an understanding of the mechanism of action and also key responses

related to safety and /or efficacy. More recently, complex computational tools

have been utilized that mathematically chart the course of disease progression

while factoring in the PK and PD properties of a given new molecule.

The primary focus of this chapter is on the clinical trial designs used in clini-

cal pharmacology and experimental designs to enable proof of mechanism and /or

concept as they relate to early clinical development. The chapter will review the

current commonly employed designs, provide discussion on newer clinical

designs as they relate to adaptive dosing or stopping, and provide pros and cons

to each approach as they relate to dose optimization. Studies that are commonly

performed to understand the PK and PD variability, which is also a scope for the

discipline of clinical pharmacology, are covered in Chapter 7 in this book.

Many of the approaches discussed in this chapter pertain to study designs

that employ relatively smaller sample sizes as compared with Phase IIB/III

studies; nonetheless, some of the concepts could be extended to large populations

although not a focus here. Furthermore, additional considerations for trial designs

are also presented in Chapter 9.

CONVENTIONAL DESIGNS

Phase I Studies

Phase I studies are hypothesis-driven, placebo-controlled, learning-type clinical

investigations, which are typically performed in healthy human volunteers and

commonly use single or multiple dosing of the study drug.
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The primary objective of initial clinical pharmacology studies is to define

the dose of a new molecule that results in unacceptable adverse events, which

aids in the definition of dose-limiting toxicity and MTD. Secondary objectives

may encompass a preliminary understanding of exposure /response relationships

and also an understanding of common factors that result in PK variability.

Consistent with a learning paradigm, the PD response is typically an exploratory

or cataloged biomarker, which may be subsequently bridged to a surrogate or a

clinical endpoint in the confirmatory clinical investigation. An early determi-

nation of the MTD enables later trials to provide dose focus and refinement for

risk /benefit assessments.

First Introduction to Human

The first introduction to human study is typically a double-blind, placebo-

controlled, randomized trial in healthy subjects. A healthy subject population

enables a good assessment of drug properties in the absence of confounding

variables of disease and other intrinsic and extrinsic factors, and also presents

a fair assessment of risk, depending on preclinical safety profile and target

organ toxicities (3–7). This initial study is limited in sample size (usually

six active and two placebo), is somewhat inflexible in inclusion /exclusion

criteria, and involves administration of rising single doses of the treatment

until a dose-limiting safety /tolerability is attained or PK exposures result in

non-linear plateau on exposure at a certain dose beyond which no appreciable

increase is observed, or that a maximum feasible dose is reached in the

absence of safety or tolerability finding. The study is also carefully monitored

for any apparent safety issues via a battery of clinical safety assessment

panels. The selection of doses is based on an understanding of safety margins

and multiples of exposure from toxicological species, preclinical PK and PD

data, and prediction of human PK and drug response considerations. For a

detailed review on how these doses are selected, the reader is referred to the

chapter by Freed (Chap. 4). Dose escalation may proceed such that an MTD is

identified, but done carefully as more information on the safety, tolerability,

and PK /PD is gained from the preceding doses. Data from this initial

study would inform subsequent studies in terms of either additional preclinical

toxicology studies, or inclusion of appropriate additional safety tests for

monitorable toxicology events.

Although the key objective of a first-in-human (FIM) study is identification

of the MTD and understanding of the common adverse experiences made poss-

ible via a battery of laboratory safety, AEs, vital signs, and ECG profiles, this is

the first opportune time to learn the preliminary effect on desired response.

Whenever possible, both validated and non-validated exploratory biomarkers

are incorporated into these studies, and, in the event, a single dose of a given

molecule in a healthy volunteer population is sufficient to elicit a desired pharma-

cological response. For a greater understanding of biomarker validation, the

reader is referred to the chapter by Wagner (Chap. 3). In many therapeutic

areas, human healthy volunteers often do not predict the response typically
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seen in the target patient population. This is commonly encountered in drugs for

central nervous system disorders, such as Alzheimer’s disease, multiple sclerosis,

or Parkinson’s disease. Certain variations of the FIM designs have also been

performed.

Commonly employed FIM designs are either serial panel rising doses or an

alternating panel design, wherein two or maybe even three panels of subjects

receive the treatments in three or four treatment periods. The alternating panel

design allows for greater flexibility in dose selection while providing an intra-

subject evaluation. Depending on whether a given molecule is favorably or

adversely influenced by food or whether a given molecule is a substrate and/or

inhibitor of a drug metabolizing enzyme (e.g., a CYP 3A4), the design is modified

to incorporate a food-effect arm either as a returning cohort at an identical dose or

as a cross-over design at a dose well below the anticipated MTD. It is also not

uncommon to enroll a panel of patients once an MTD is identified to determine

comparability in performance in both the populations.

Multiple Dose Study

The multiple dose study is typically a second Phase I study performed after

completion of the FIM study to evaluate the safety, tolerability, PK, and PD of

multiple doses of the new molecule. Depending on the anticipated PK and PD

properties, and depending on the turnover rates for the biomarker response, the

duration of the study can range from one to four weeks, or to the extent that

there is comparable duration of preclinical safety coverage that allows it. This

is usually the first instance when the performance of the new molecule on mul-

tiple dosing is gained. This type of study will yield crucial information on

whether the new molecule exhibits desirable safety profile in a multiple dose

setting, whether the safety finding is more likely to manifest itself after repeat

dosing than a single time (e.g., a delayed-type hypersensitivity), whether single

dose PK reasonably predict multiple dose PK, degree of accumulation, and mag-

nitude of PD response, among other data.

Similar to the FIM study, the sample size is typically small (e.g., six active

and two placebo per dose level), and somewhat limited in scope in terms of power

needed to detect small changes in safety and/or response. Although the multiple

dose study is commonly performed in healthy volunteers, it can also incorporate

patients. If the biomarker or PD response is simple and can be discerned within

the framework of this type of study, it is not uncommon to consider a test of

concept in such a study, provided additional elements of statistical power and

design are appropriately addressed.

For a detailed description of Phase I clinical designs, the reader is referred

to some authoritative reviews in this area (8–14). Innovation in Phase I clinical

trials have provided ample opportunities in discerning early readout of drug

activity and mechanism of action. These include, though are not limited to,

biomarkers, pharmacogenomics, and non-invasive imaging probes (15,16).
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PD Studies

In addition to the studies described previously, the third type of study commonly

performed in clinical pharmacology includes studies designed to evaluate and

validate certain types of experimental medicine methodology or concepts

(6,10,11,14,17–20). These studies may be used for preliminary indication on

efficacy (e.g., pain model), or for developing a certain type of approach that

could be customized for a desired outcome across a therapeutic area (e.g., food

intake or energy expenditure study, positron emission tomography study for

receptor occupancy, and so on). Before a wider use is implicated, studies explor-

ing these concepts or tools may be needed to build an experience database or

simply to evaluate whether these methodologies are safe. Most often, the types

of studies used to assess PD are geared to demonstrate a desired degree of bio-

logic /pharmacologic activity that may be reminiscent of subsequent clinical

success or failure, such that adequate refining of the concept or study is war-

ranted. The study may also enable dose or concentration versus effect relation-

ships and provide insight into the duration of effect. For example, compounds

for Alzheimer’s disease would generally need more than 6–12 months of treat-

ment to discern a treatment-related effect on cognitive endpoints. An experimen-

tal medicine model would probably be a clinical investigation for a shorter

treatment duration, which may discern beneficial effects on biomarkers that

relate to the long-term treatment effects on cognition. Another example would

be to understand the influence of formulation on the peak /trough ratio for an

antihypertensive medication to overcome deficiencies in short terminal half-life.

The key attributes of experimental medicine studies are that the study

sample size is generally small and the level of statistical significance in order

to discern a desired trend in treatment effect may be higher than the normal a

of 0.05 for decision-making purposes regarding future definitive trials. The

experimental medicine studies are also characterized as being driven by the

disease pathophysiology and drug pharmacology considerations. They are in

most cases methodologically and statistically flexible. They are particularly

useful to determine response in specific subpopulations that likely to more

favorably respond to a treatment effect, which may yield an understanding of

the magnitude of an effect and ascertain the benefit of the new molecule under

investigation.

As an example of a preliminary proof-of-concept, double-blind, placebo-

controlled test of concept, Haringman et al. evaluated an oral CCR1 antagonist

in a small number of patients with rheumatoid arthritis (21). Specifically, they

performed synovial biopsies on days one and 15 of the two-week treatment

period to evaluate chemokine blockade. A statistically significant reduction in

the number of macrophages and CCR1þ cells for the active treatment, compared

with the placebo group, provided a simple test of concept for the new molecule

(Fig. 1). Another example of a novel Phase I study which encompassed safety and

preliminary proof of concept was described in 2003 by Rustin et al. (22,23).
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The Phase I trial was performed with combretastatin A4 phosphate (CA4P),

a novel antivascular agent, wherein 167 patients received 10-minute weekly

infusion for three weeks followed by a week gap, with intrapatient dose escala-

tion until grade 2 toxicity was observed. Positron emission tomography (PET)

was used to measure the effects of this vascular targeting agent on tumor and

normal tissue perfusion and blood volume. Significant dose-dependent reductions

in tumor perfusion and tumor blood volume after CA4P administration were

observed.

Phase IIa Studies (Proof-of-Concept)

A Phase IIa study designed to evaluate clinical concept is a study that is further

on in the early development value chain; it serves to provide a more “definitive”

read on the proof-of-concept for a given indication for which a new molecule is

being developed (24–26). These double-blind, randomized, placebo-controlled

trials intend to measure effect on a predetermined surrogate and/or clinical

endpoint in a larger sample of patients and generally longer duration of

therapy (� up to 12 weeks). These studies provide the best opportunity in

early drug development to more accurately refine dose and dosing regimen

focus for definitive dose–response Phase IIb investigations. Furthermore, these

studies provide a greater understanding of the common adverse experiences

and/or target organ toxicity. Key compound development progression decisions

are generally predicated on the outcome of these trials; consequently, the studies

are often designed more ruggedly than the previously described experimental

medicine studies, such that sound scientific rationale is presented for the target

patient population going forward.

IMPETUS FOR NOVEL DESIGNS

The historical focus of clinical development was on hypothesis-driven, ade-

quately powered clinical trials where fixed sample size designs were generally

the norm. Recent years witnessed a number of key regulatory initiatives, which

Figure 1 Proof-of-concept for a CCR1 antagonist. Source: From Ref. 21. Courtesy of

BMJ Publishing Group.
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add fuel to the thoughts on considering dose optimization more broadly and also

making quantitative assessments of risk /benefit. These include:

. End of Phase IIa meeting concept by the U.S. Food and Drug Admin-

istration (FDA) as a means to evaluate exposure/response relationships,

such that doses and dosing regimens are appropriately selected (27);

. Critical path initiative by the U.S. FDA, which reinforces model-based

drug development as a learning /confirming paradigm (1);

. European Medicines Agency’s release of a guideline on clinical trials in

small populations (28).

Probably all of these activities have a vested interest in making drug devel-

opment successful by reducing late stage attrition rates, particularly at the key

interface between end of Phase I and start of Phase II/III, at which time the

need to predict the risk /benefit is a key consideration. Traditionally, Phase II

and III trials have been fixed allocation clinical investigations, with the exception

of some newer oncology trials, which have incorporated stopping rules in the

event there is failure of the treatment. While the latter of the three initiatives is

aimed at efficacy trials performed in smaller trial sets, the common principles

lend themselves to broader applications of hypothesis-based drug development.

These proposals are timely, given the advances in the field of pharmacogenetics

and pharmacogenomics (Chap. 8) that permit unique approaches to individualiz-

ing drug therapy, and thus are fundamentally amenable to novel approaches to

clinical design.

The seminal work of Donald Berry provides adequate thought to the

fundamental basis of clinical investigations (19,25,29–31). Whereas his work

bears importance to the so-called late stage clinical trials (Phase IIb /III), the

philosophy of his work has important relevance to early clinical investigations,

particularly Phase Ib or IIa. Berry’s work on adaptive designs provides insight

into the nature and design of clinical trials by creating flexibility in investigation,

such that a dynamic environment is created, in which a trial can either be stopped

or continued, depending on responses at the previous treatment or doses. The

flexibility also is shaped by adding or rearranging treatment options, such that

one can maximize the amount of useful information generated in the trial.

Needless to say, the ultimate utility and value of novel study designs is

contingent upon a thorough understanding of the disease pathophysiology.

Here, advances in the field of biomarkers will provide a disease fingerprint for

the scope of efficacy for a new molecule by ascertaining the selection and validity

of endpoints.

With the advent of complex computational tools to mathematically model

the rate and magnitude of disease progression and effectively integrate PK with

disease progression, it has become possible to simulate “what-if” scenarios to

conveniently guide not only dose selection but also the clinical trial design.

For a discussion of disease progression modeling, the reader is referred to

Chapter 2. These advanced biodynamic simulation models can quantify the

Novel Clinical Trial Designs 67

Copyright © 2006 Taylor & Francis Group, LLC



degree of uncertainty in a given response while discerning the probability of

success in attaining a desired trial outcome.

Adaptive Dose Designs

The premise of adaptive dosing design is in minimizing failure in treatment

effects at doses due to safety on the upper end and efficacy on the lower end of

the underlying respective dose–response relationship, as compared to random-

ized study designs with fixed sample size allocated to fixed treatments or doses

(32–34). The simplest form of an adaptive dose design is the classical up and

down design (35,36). In this design, subjects enter into the trial sequentially

and a binary response is monitored for each subject. The dose for the first

subject is determined based on prior knowledge about effectiveness and toxicity.

The dose for each subsequent subject is either the next dose lower in the sequence

of doses being evaluated (if positive outcome for the previous subject), or the

next higher dose (if negative outcome for the previous subject).

An example of a group-sequential, adaptive, placebo-controlled up and

down designs was published by Hall et al. in 2005 (37), wherein the objective

was to test mechanism of action for a drug for migraine headache and to select

a dose range for later clinical trials. This design (Fig. 2A) was used, given a

lack of information across a desired target dose range, small sample size, and

to reduce exposure of patients to ineffective treatment. Adaptive dose selection

was based on response rate of 60% that is observed with other drugs. If more

than 60% of the treated patients in each sequential group responded favorably

to the drug, a next lower dose was evaluated in the next sequential group and

a next higher dose was tested if unfavorable. An adaptive stopping rule was

Figure 2 (A) An example of an up and down design. (B) Similar dose–response

relationship yielded by dose-adaptive (up and down) design as for the conventional

design. Abbreviation: CI, confidence interval. Source: From Ref. 35. Courtesy of

Elsevier. (Continued)
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used to stop the trial once a selected dose level attained a statistically significant

(controlling experiment-wise error) effect over the placebo.

Case Study

Data from a completed dose–response study were used to demonstrate the

usefulness of the simple up and down design. This was a parallel group study

comparing four doses of test drug versus placebo and an active control. In

order to simulate what an adaptive dosing scheme would have yielded, the

patients were sorted in ascending order of allocation number (AN) within a

treatment group. Sequential groups of patients (three placebos, six test drugs,

three active controls) were entered into an up and down design according to

the following algorithm based on whether the group demonstrated response or

non-response.

Response was defined as test drug mean minus placebo mean � 15 units,

and test drug mean minus active control mean . 0. The dose-adaptive

algorithm was:

. First group is comprised of three placebos, six at dose 2, three active

control patients.

. The mean response for each treatment within the group was computed.

. Dose for the next group was decreased by one dose level if the test drug

group demonstrated “response,” or increased by one dose level if the

test drug group demonstrated “non-response.”

Figure 2 (Continued).
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. Test drug dose level for each subsequent group was determined simi-

larly based on the previous group’s response/non-response.

. Patients were chosen in sequence by increasing AN within the treat-

ment group.

. Sampling continued until all active control patient data was used; the

aim was to generate comparator datasets for placebos and active con-

trols of similar size to those planned for the original study, and about

twice those sizes for the test drug doses combined, since test drug

observations will cluster around the dose, which yields the defined

level of response, OR, if available doses are too low, around the

maximum dose.

Rationale for these choices regarding this design is as follows:

. Patients are plentiful and enter rapidly; thus, a group sequential

approach seems preferable to entering patients one at a time.

. Both active and placebo control treatments are needed; therefore, three

treatments per sequence group are used for each.

. To maximize information in the test treatment group, yet to provide

information on placebo and comparator, a 1:2:1 allocation ratio was

used.

. A sufficient number of sequence groups is needed to allow the design to

span the space of doses, so �8–20 seems reasonable. The example trial

had 47 control patients and 51 placebo patients; therefore, to match that

sample size, 16 groups of 12 (3:6:3) were used. The last group will have

only two comparator patients to avoid re-sampling.

. The definition of response was derived from meta-analyses of prior

studies.

Note that the treatment response means yielded by the up and down designs

are similar (Fig. 2B) to those yielded by the entire study, and that the up and down

designs spare a substantial number (greater than half) of observations at doses not

near the dose that yields the prescribed level of response according to the defi-

nition. However, the fixed sample design yielded more precise (tighter) confi-

dence intervals (CIs) for mean response. In spite of the loss of precision with

the up and down designs, the 95% CIs for the placebo and dose 1 groups do

not overlap with those from doses 2 and 3. Thus, the conclusions from both

designs are the same.

An extension of the up and down designs is the biased coin designs, which

can adapt to any level of response. These and the up and down designs enable the

assignment of doses for each subject based on the response of the previous

subject or group of subjects. A hallmark of Bayesian adaptive designs is lever-

aging prior information on responses from all prior subjects to enable dose

assignment for each new subject. The approach provides adequate flexibility in

modeling safety and efficacy responses by calculating a joint posterior
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distribution of a biomarker endpoint for efficacy and an endpoint for safety.

Acceptable doses can then be defined as those with posterior probability that

efficacy is above a given threshold value and posterior probability of toxicity

being lower than some chosen value. Each successive dose is then assigned

from the set of possible doses as that dose with posterior probability of response

closest to the target level. Speigelhalter et al. have proposed a framework for

Bayesian clinical trials in the early 1990s that leverages the range of equivalence,

the community of priors, and monitoring and stopping rules. Selecting a priori is

a crucial element in Bayesian analysis, for which Speigelhalter et al. proposed a

variety of priors, including reference priors, clinical priors, skeptical priors, and

enthusiastic priors (38). Skeptical and enthusiastic priors reflect skepticism

or enthusiasm about a given treatment (Fig. 3). An example of this application

to a clinical Phase II trial of gemcitabine in metastatic nasopharyngeal cancer

is illustrated in Figure 4 (39–42).

Response and Covariate-Adaptive Designs

The study design methodology can be made sufficiently flexible, such that for a

given set of treatment conditions (or dose groups), patients can be allocated to

those treatments to which patients best respond (33). These response-adaptive

Figure 3 Skeptical and enthusiastic priors for Bayesian analysis.
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designs are biased towards those treatment(s) that are successful and are

predicated on prompt availability of endpoint effect. These designs are also

referred to as continual reassessment methods used for dose selection. These

methods are, in principle, better than the conventional “up and down” dose-

finding designs in that they determine the optimal dose sooner while treating a

greater proportion of patients with an optimal dose. However, they tend to

focus on allocated doses very close to optimal and yield little information at

other doses of the underlying dose–response curve. Since the up and down

designs are less efficient than the Bayesian dose-adaptive designs, they tend to

provide more information at more doses across the dose–response range of

interest. Hence, if the only objective is to estimate a particular quantile of the

dose–response curve, Bayesian designs would be preferred; however, if study

objectives include yielding information on dose–response curve, and also

estimating a particular quantile, then biased coin designs may be preferable.

An area for further development is extending Bayesian dose-adaptive designs

with criteria for dose selection that includes providing information across the

dose–response range of interest.

Figure 4 Prior and posterior distributions. Source: From Ref. 37. Courtesy of Macmillan

Publishers Ltd.
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There is another type of method that depends on the covariates used, and

thus called covariate-adaptive method. Covariate-adaptive methods are particu-

larly useful when there are several stratification options available for which stra-

tification per se may not be entirely useful (43,44). Such a method corrects for

any apparent imbalance with respect to measure covariates made possible via

allocation to the designated treatments. This approach is more commonly

applied in oncology, where patients may respond differentially to chemothera-

peutic regimens administered in various stages for variable durations (45–50).

If, after randomization, each patient were to receive up to certain stages of

chemotherapy, the patient’s disease condition would be evaluated after the

completion of each stage and treatment continued if disease is stable or treatment

discontinued if treatment fails. A probability model accounts for baseline

covariates and the treatment/evaluation structure. Covariate-adjusted adaptive

randomization is achieved based on a score that represents the patient’s cumula-

tive probabilities of treatment success or failure.

The Bayesian approach to clinical study design stems from leveraging

prior information or trial evidence to inform continuance or termination

(11,29,31,38,51–53). As new information becomes available, a Bayesian prior

estimate of the probability for a particular event to occur is updated, using

Bayes Theorem to calculate the posterior probability. This has particular benefits

in drug development as they relate to dose selection and effective management

of study outcomes. Bayesian applications are widespread in medical device

development and clinical trials using these approaches are on the rise, particu-

larly in oncology where therapeutic benefits to the patient are vital. This approach

was successfully applied by Krams et al. for a stroke trial (25). Krams, Lees, and

Berry using the ASTIN (acute stroke therapy by inhibition of neutrophils)

approach exemplify the value of adaptive treatment allocation in a sequential

design using an algorithm based on Bayesian principles of prior knowledge.

The assignment of doses was based on prior dose–response knowledge and the

requirement that data are available in real time, with the objective of identifying

the minimal dose that will provide optimal efficacy. Krams et al. developed a

decision algorithm for response-adaptive learning about dose–response in a

single subject. Decision analysis is performed throughout the cycle but, more

importantly, the algorithm calls for study termination due to futility or two

types of continuance, whether clinical significance has been attained so that it

is no longer necessary to continue the trial, or that the dose finding should

continue. The decision to stop due to clinically significant effects is based on

posterior probability that treatment effect size is larger than expected.

The value of Bayesian sequential design and continuous re-assessment of

dose–response is exemplified in the ASTIN study with UK-279276 by the

same authors (54,55). UK-279276 was a neutrophil inhibitory factor which

showed good preclinical efficacy for stroke in the MCAO model. A novel

Phase II proof-of-concept in patients with acute stroke was designed, such that

adaptive allocation to one of the 15 doses ranging from 10 to 120 mg or
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placebo was achieved with early termination for treatment success or failure.

There was no treatment effect with a posterior probability of failure at 0.89,

which allowed early termination of the trial due to failure. The dose effect

curve of the change in the Scandinavian Stroke Scale effect over placebo

confirms a flat dose response in the population with no meaningful difference

in tPA-treated and non-treated patients.

Dragalin and Fedorov (56) have developed a continual reassessment

method, which incorporates criteria for determining both a quantile of the

efficacy of the dose–response curve and MTD. It is based on updating

the joint likelihood function after each observation and choosing the dose for

the next subject, as that will maximize the joint likelihood function at the next

stage.

Dose-adaptive designs are generally more difficult to implement than

conventional fixed sample/fixed dose designs. Up-front statistical computations

of study precision generally require extensive computer simulations to justify the

proposed dose-adaptive scheme; this requires substantial computer programming

effort, and also clinical and statistical expertise to interpret the simulation study

results. During the trial, an on-call unblinded person(s) is needed to assess pre-

vious response data and generate the resultant dose for the next subject or

group of subjects. This step could be automated, but that could require substantial

computer programming resources. Finally, there is need for an unblinded

pharmacist at the study site to package/select the dose for each patient.

However, this could be overcome by labeling all the drug supplies via kit

numbers and having the unblinded analytical persons or the computer program

that computes the dose for next subject identify the associated kit number to

be assigned.

Sequential Designs

Sequential designs offer the flexibility of reducing sample size by demonstrating

statistically significant effect when a treatment is better relative to control (57).

These designs can be sufficiently flexible to enable assigning patients until a

reliable positive or negative conclusion about the treatments is possible. An

adaptive group-sequential design was tested in a study for knee osteoarthritis

with a stopping criterion for efficacy if the p value was ,0.0041 at first

interim analysis (58). The sample size was revised based on the negative

outcome at first interim analysis, at which point, the second interim analysis

revealed a statistically significant effect at a revised significance level.

N 5 1 Trials

A relatively new concept of n-of-1 trials has emerged and it has potential value

for experimental medicine designs (59–61). The design focuses on the treatment

and not on the patient, and so trials are performed with one patient, and with

active versus control treatments, the sequence of which is randomized.
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The patient is randomly assigned to the first treatment and randomized again at

the end of the treatment period. A series of n-of-1 trials can also be performed,

such that a trend for a consistent preference to a particular treatment is discerned.

This type of design is particularly useful in those disease areas in which the end-

point returns to baseline post-treatment and in patients with chronic conditions.

For example, Pope et al. (59) used the n-of-1 trial to compare the effect observed

in a placebo-controlled trial with conventional NSAID treatment. Fifty-one

patients with osteoarthritis were randomized either to a conventional treatment

group (n ¼ 25) or to an n-of-1 group (n ¼ 24). The n-of-1 group received, in a

random, double-blind manner, the NSAID or placebo for two weeks over a

total study period of three months. All patients in the control group received

NSAID as a conventional treatment. NSAID was found to be effective in 81%

of the n-of-1 group and in 79% of the “conventional” group, whereas, none in

the placebo group preferred placebo. Although the authors positioned the latter

group as “n-of-1” group, it is really a 24-patient period-period cross-over

study. Wegman et al. (60) selected 13 patients and randomized them to five

sequences of two weeks of NSAID and two weeks of paracetamol. Only five

patients completed the study and a modest difference was seen between the two

treatment regimens. These examples highlight the complexity of these types of

designs and the issue of statistical power versus lack of a treatment effect.

Clinical data with quinine sulfate indicates lack of efficacy in nocturnal

cramps until Woodfield et al. (61) enrolled 13 patients for three four-week

blocks (two weeks of active treatment and two weeks of placebo). Treatment

allocation was random. The primary outcome was the mean difference in the

self-reported number of cramps. Compliance was measured by plasma quinine

concentrations. Of the 10 patients who completed the trials, three showed signi-

ficant reductions in the frequency of cramps, while six had non-significant

reductions, with one patient showing no effect.

MODELING AND SIMULATIONS FOR CLINICAL TRIAL DESIGNS

The past decade or two have witnessed considerable scientific and technological

advances in computational modeling and simulations of complex biological

systems and disease processes (62–65). It is important to note that these funda-

mental technologies have been in existence and application in a number of fields,

most commonly in aeronautics, business, weather forecasting, and engineering;

however, their assimilation and integration in drug development is recent. The

concerted efforts of regulatory authorities in model-based drug development

have also fueled this integration (see Chap. 9 for discussion). Empirical

PK/PD analyses are now routinely supplemented with complex mechanistic

models that effectively integrate population PK with disease pathophysiology

and response, thereby enabling a greater understanding of drug effects and

influence of covariates in the target population, and predicting the probability

of clinical success for a desired therapeutic endpoint.
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The technique of population PK and PD modeling is assumption-dense and

depends on a clear understanding of the known PK behavior of a drug, the disease

pathophysiology and biological framework within the context of drug action, and

sound computational and statistical principles. The process of model building

starts from pooling all available PK information from clinical studies

to develop a structural population PK model. This would encompass, for

example, all Phase I/IIa studies to support dose/regimen and trial design for

Phase IIb. The next step, usually, is to determine which covariates of interest

(e.g., age, gender, food, formulation, disease, creatinine clearance, BMI, and

so on) may influence PK parameters of interest, for example, the clearance

and/or volume of distribution, such that a covariate-adjusted model is developed.

Integration of the structural PK model with PD endpoint is then performed,

wherein the endpoint may be a biomarker or surrogate for efficacy or for

safety or a combination of both. Appropriate validation of the integrated model

will inform the predictive performance of the developed model.

Clinical trial simulations (Monte-Carlo simulations) represent an area of

current interest in drug development, which allow for dose optimization by

posing “what-if” scenarios for clinical trial outcome likelihood, and quantifying

degree of uncertainty in achieving a desired safety and/or efficacy endpoint, and

thus developing a clinical utility index using a decision analytic approach

(63–68). Once a population PK and/or PD model is developed, the next step

in the process is to predict the response (or the desired endpoint) in a hypothetical

subject or a cohort of subjects for a given clinical trial design(s), known disease

pathophysiology and physiology, and known PK and PD properties of a drug.

This virtual simulation of a clinical trial includes data associated with an

actual trial, such as subject demographics, inclusion/exclusion criteria, accrual

and allocation process, drug administration, and subject compliance/missing

data. At the end of the virtual trial, valuable information is generated on the prob-

ability of success of attaining a desired therapeutic endpoint. This information

can be used prospectively to design an actual trial, determine what adaptive

designs best inform the effectiveness of a given drug, provide dose focus and

guidance for late stage large efficacy trials, and also provide a quantitative

risk/benefit assessment. As an example, the probability of attaining a specific

PD target, in this case, target angiotensin-converting enzyme (ACE) inhibition

at 24 hours, at several doses or dosing regimens, can be simulated in a virtual

manner (69). Simulations reveal desired extent of ACE inhibition in a proportion

of subjects at various doses and provide valuable guidance on selection of dosing

regimens. This type of information can inform the design of a clinical trial by

determining an appropriate effect size and sample size needed to meet a

desired therapeutic target.

As much as the advantages appear appealing for drug development, the

success of this approach is predicated on prior available data on the drug, the

disease, and factors or conditions that influence a response. It also depends on

the question being asked and whether there is sufficient scientific evidence to

76 Krishna and Bolognese

Copyright © 2006 Taylor & Francis Group, LLC



support the hypothesis. Despite these advantages and implications for drug

development, there are only limited case examples in the published domain

that maximize the potential which this new science has to offer. This could be

due in part to the highly specialized and limited talent pool available, limited

didactic training, and cost, resource, time, and infrastructure considerations.

Even with these apparent drawbacks, the incorporation of these technologies

into pharmaceutical research and development as they relate to clinical pharma-

cology will make quantitative clinical pharmacology a near-term reality.

Disease Progression Modeling

A relatively underutilized form of modeling in drug development is disease

progression modeling, which models the rate of natural progression of a

disease and effect of drug treatment. The seminal work of Holford et al. has

illustrated the profound advantages of this approach in determining the time

course of symptomatic or protective treatment effects on disease progression,

particularly in the realm of neurodegenerative diseases (70–74). Holford et al.

have leveraged exposure /response relationships and stochastic simulation tools

to predict the long-term consequences of drug effects.

Disease progress models can either be linear or asymptotic, depending on

the nature of the deterioration (Fig. 5). A given drug can influence the disease by

delaying the rate or rate and extent of progression, which, upon discontinuation,

may either result in the regaining of disease status or reduced slope of recovery.

Key considerations for a disease progression model include slope of the

model, the disease progression half-life (TP), the maximum burnt-out disease

status (Sss), and baseline disease state parameter, S0. Any of these parameters

may be influenced by the type of model process employed, that is, linear or

asymptotic (70).

There is greater utility of disease progression modeling in late stage clinical

development as long-term longitudinal assessment will aid in the time course of

the progression. Epidemiological data can be leveraged for this purpose. Disease

progression models can aid in the design of clinical trials using simulation

approaches. One good example of the time course of disease progression was

highlighted by Holford and Peace, who showed that the rate of Alzheimer

disease progression was significantly influenced by treatment with tacrine by

using a population PD approach. Specifically, the rate of disease progression

was 6.17 ADASC units per year and the effect of tacrine was a delay in the

disease progress curve by 22.99 ADASC units or 177.6 days at a dose of

80 mg/day (73).

The effective integration of PK and PD data including the disease pro-

gression component was reflected in a recent publication by Frey et al. (74),

wherein a large database of type 2 diabetic patients was used to develop a

PK/PD model by using a non-linear mixed-effect analysis. Responders to treat-

ment were identified using a mixture model and reduction in fasting plasma
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glucose was linked to drug exposure by Emax relationship. The large database

enabled a development of a linear disease-progression model to evaluate glyce-

mic deterioration longitudinally, which revealed that the constant rate of the

disease progression was 0.84 mmol/L per year. Simulations defined the time

Figure 5 An illustration of linear and asymptotic disease progression model. The rec-

tangular box represents the treatment start and stop times. Source: From Ref. 67. Courtesy

of Annual Reviews.
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course of the antidiabetic effect of gliclazide MR and revealed the dose needed to

elicit a meaningful influence on glycemic control at 12 months of treatment.

These modeling and simulation technologies can be used prospectively to

design clinical trial designs more optimally than conventionally used approaches.

As illustrated previously, many elements of trial design can be evaluated, and

these include power, estimation, pros and cons for competing designs, sampling

considerations for PKs or response measures, and also determining the impact of

disease progression.

SUMMARY

The integration of new technologies in biomarkers and experimental medicine

has improved our ability to understand the effect of a given drug on a given

disease more informatively than has been done in the past. Dose selection and

focus is critically dependent on informative clinical trial designs and our

ability to define treatment effects in a clinically meaningful manner. Novel exper-

imental clinical designs provide greater flexibility for adaptive stopping or dosing

in generating meaningful information on the effectiveness of a given treatment

based on prior valuable information, such that patient exposure is limited for

an ineffective treatment or continued if treatment course meets a certain

desired therapeutic target. Ultimately, it is hoped that these approaches will

have a positive impact on drug development by selecting the winners, and

reducing attrition rates of drugs from later stages of development by terminating

drugs with negligible benefit, while shortening the drug development time.
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The objectives of this chapter are to: (i) describe the current use of “proxy” end-

points during development and approval and after approval of cardiovascular

and related drugs (CRD), (ii) identify issues that need to be addressed, and

(iii) propose possible solutions.

THE CURRENT PARADIGM OF DRUG DEVELOPMENT

Medical interventions, whether diagnostic, prophylactic, or therapeutic, like any

other intervention, are associated with benefits and risks. With drugs, biologics,

and devices, the benefit, that is, efficacy, and the risk, toxicity, are determined in

controlled clinical trials involving the population exhibiting the target disease. Effi-

cacy of the intervention is usually assessed by measuring the impact on defined

clinical endpoints. Only if the Food and Drug Administration (FDA) believes

that there is net benefit does the Agency approve an application for marketing.

aThe views expressed in this chapter do not reflect the official policy of the FDA. No official endorse-

ment by the FDA is intended or should be inferred.
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However, the development of a drug, biologic, or device usually does not

start with investigations in the target population. The development of a new drug

from discovery to market is a structured multi-phase process involving, usually,

first in vitro and in vivo experiments in different animal species, followed by

trials in human volunteers, and, finally, in patients with the target disease.

Thus, during a good part of the development, a drug must be evaluated on the

basis of “proxy” endpoints measured in “proxy” populations. The sequential

process used in the development of a drug is dictated by concerns for the

safety of the human volunteers and patients exposed to the drug. It is also man-

dated by alternating needs for “learning” from the information obtained and for

“confirming” the results (1). The scientific, logistic, and strategic challenges to

successful and efficient drug development are considerable. The development

of a drug should be defined by a well-thought-out plan that specifies type and

order of the individual studies required. The individual studies must be well-

designed and informative. At each stage, the data obtained ought to be analyzed

and the information should be used in designing future studies.

The traditional drug development paradigm assumes that information

based on “proxy” effects of drugs measured in “proxy” populations is sufficiently

predictive to separate effective and safe drugs from ineffective or hazardous drug

candidates.

However, the large 50% attrition rate of drugs in Phase III (2) indicates that

often a “learning” deficit exists as late as at the end of Phase II and, consequently,

Phase III is not a pure “confirming” phase, as it ideally should be. To an important

extent, the limited predictive power of the current paradigm is due to the often

uncertain relationship between soft “proxy” endpoints and “hard” clinical

outcomes.

DRUG RESPONSE MEASURES

There exist important distinctions between clinical endpoints, surrogate end-

points, and biomarkers. A biomarker is a characteristic that is objectively

measured and evaluated as an indicator of normal biological processes, patho-

genic processes, or pharmacological responses to a therapeutic intervention

(3). A clinical endpoint has been defined as a direct measure of how a patient

feels, functions, or survives. Among the clinical endpoints, intermediate clinical

endpoints, such as, for example, symptoms and quality of life, have been differ-

entiated from outcome endpoints, such as survival and irreversible morbidity. A

surrogate endpoint, as defined in Subpart H of the Code of Federal Regulations

(21 CFR 314, subpart H), is a biomarker intended to substitute for a clinical end-

point and reasonably likely to predict clinical benefit based on epidemiological,

therapeutic, patho-physiologic, or other scientific evidence. Thus, a surrogate

endpoint is a biomarker whose capability of forecasting a drug’s effect on a

clinical endpoint has been demonstrated. A drug’s impact on a surrogate endpoint

is not per se of any value to the patient, it is only its capability of predicting an
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outcome (4). Usually, establishment of a surrogate involves demonstration of the

fact that the changes of the surrogate under different scenarios have the expected

clinical consequences.

The expected clinical benefits have been realized with surrogate endpoints,

such as viral load and CD4 count that predicted AIDS progression correctly (5);

however, there are other examples where clinical benefits were not observed,

such as with positive inotropic drugs in heart failure or PVC suppression with

antiarrhythmic drugs (6,7). These examples indicate the criticality of choosing

the right biomarker (BM), that is, a response marker that is more proximal but

in the same disease pathway as the outcome, as shown in the following scheme:

Disease Manifestations 

 Proximal           Distal 
|        | 
|        | 

|        | 
|        | 

Drug   BM (Viral Load)   Outcome 

Drug   BM (Suppression of PVCs)    
Outcome 

ACCEPTABLE SURROGATE ENDPOINTS AND BIOMARKERS
FOR DEMONSTRATING EFFICACY OR ASSESSING THE
TOXIC POTENTIAL OF DRUGS

Under Subpart H of the CFR, introduced in 1992 and signed into law in 1997, the

FDA is entitled to approve drugs treating life-threatening or serious illnesses

based on evidence obtained using surrogate endpoints, provided there is a com-

mitment to study clinical benefit in Phase IV. With drugs indicated for non-life

threatening diseases, demonstration of efficacy may also be based on surrogate

endpoints, but confirmation of efficacy based on clinical endpoints is required

prior to marketing approval. Unfortunately, the definition of a surrogate endpoint

provided in Subpart H is vague. Thus, perhaps not surprisingly, to date, 13 years

after introduction of Subpart H, a consensus has not been reached in the scientific

community on a procedure and criteria for cross-validating biomarkers and

clinical endpoints/outcomes. As a result, not many biomarkers have been elev-

ated to surrogate endpoints since 1992. Surrogate endpoints presently accepted

by the Agency to demonstrate efficacy of CRDs are listed in Table 1. It should

be noted that most of these represent “grandfathered” surrogate endpoints, that is,

biomarkers that have been used for a long time, but have not been correlated to

outcomes with the statistical rigor proposed by some (8).
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“Proxy” endpoints to assess the safety of CRDs and other drugs are used

routinely by sponsors and the Agency in assessing risk. Compared with the require-

ments for efficacy-related “proxy” endpoints, the expectations regarding the

strength of the evidentiary linkage between safety-related surrogate and toxicity-

related clinical endpoints are lower. The QTc interval is a case in point. QTc is

an accepted surrogate endpoint believed to predict drug-induced pro-arrhythmic

toxicity (Table 1). A draft ICH Guideline for Industry (9) recommends careful

study of new drugs’ effects on QTc to assess pro-arrhythmic potential. A drug is

considered unequivocally safe if it causes a prolongation of the QTc interval that

is below a critical cut-off, but it should be noted that drug-induced arrhythmias

are quite rare and the true relationship between QTc and risk is poorly understood.

Other safety-related biomarkers, such as, for example, liver function tests and

forced expiratory volume, are acceptable to the Agency, but are outside of this

review, which focuses on the cardiovascular system.

ACCEPTABLE BIOMARKERS WHEN EFFICACY AND SAFETY
ARE ESTABLISHED BY OTHER DATA

Thus far, the discussion focused on the regulatory requirements for different drug

response measures in the context of demonstrating efficacy and safety of new

CRDs for which approval is sought. If efficacy of a drug is demonstrated by clini-

cal endpoints or outcomes, biomarkers may be used to link different populations,

ethnicities, formulations, routes of administrations, or regimens under certain

conditions. This pertains to the pre- and the post-approval phases. In this

Table 1 Surrogate Endpoints for Cardiovascular and Related Drugs Acceptable to the

FDA in the Past

Drug class

efficacy Indication Surrogate endpoint Endpoint

Antihypertensives Hypertension Blood pressure Stroke

Hypotensives Orthostatic

hypotension

Blood pressure Functioning in

upright position

Lipid-lowering

drugs

Hyperlipidemia Lipid levels Coronary artery

disease

Antidiabetics Hyperglycemia Blood sugar,

Hb1AC

Coronary artery

disease

Renal function Renal failure

Miscellaneous Acute renal failure Renal function Renal failure

Miscellaneous Diabetic nephropathy

with proteinuria

Renal function Renal failure

Safety

All Safety QTc interval Torsades de pointes
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context, not only response but also exposure biomarkers may be acceptable to the

Agency. It is plausible that if the exposure measures, Cmax and AUC, can be

reproduced by a new formulation, route of administration or regimen, a drug’s

efficacy and safety profile in the target population does not change. Dose

adjustments of drugs in adult subpopulations with renal or hepatic impairment

are routinely based on a comparison of the exposure relative to subjects with

normal renal or liver function (10,11). The underlying assumption is that the

exposure–response relationship of a drug is not impacted by renal or hepatic

disease, which may not always be true. In accordance with the pertinent FDA

Guidance for Industry, linkage of co-medication and single-drug treatments

may also be based on exposure, and, since these experiments are often conducted

in healthy subjects, the same caveat is in order (12).

The linkage of pediatric and adult target populations has gained a lot of

interest since the introduction of the Food and Drug Administration Moderniz-

ation Act (FDAMA) in 1997. FDAMA addressed the need for improved infor-

mation about efficacy and safety of drugs in the pediatric population by

providing incentives to sponsors for conducting pediatric studies. A “decision

tree” is used by the Agency to determine on a case-by-case basis type and

the extent of information required for a linkage of the two populations (Fig. 1)

(13). The decision tree exemplifies that the type of evidence required in the

pediatric population varies, depending on the persuasiveness of existing infor-

mation to link pediatric and adult patient populations. Depending on the persua-

siveness of existing information, determination of exposure and/or response

biomarkers, that is, surrogate endpoints or clinical endpoints/outcomes, may

be required. The guiding principle is: the scarcer the pre-existing evidence, the

Figure 1 Pediatric decision tree. Source: Courtesy of the Food and Drug Administration.
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higher the requirements. The evidentiary requirements are lowest if patho-

physiology and time course of the disease in pediatric and adult populations

are similar. A concentration–response relationship based on biomarkers may

be acceptable to connect different ethnicities, dependent on quality and strength

of existing information (14,15). Examples of response and exposure biomarkers

that may be acceptable to the Agency to link different ethnicities, populations,

formulations, routes of administrations, and treatments are listed in Table 2.

Three examples illustrating the use of biomarkers and surrogate endpoints to

obtain regulatory approval can be found in the Appendix.

RELEVANCE OF AND CURRENT ISSUES WITH BIOMARKERS

Because of their promise to respond to therapeutic interventions earlier, to be

easier, and more frequently measurable, less variable and more responsive than

clinical endpoints to drug treatment, biomarkers and surrogate endpoints are of

Table 2 Drug Response and Exposure Biomarkers of Cardiovascular and Related Drugs

that Were Acceptable in the Past for Linking of Populations, Ethnicities, Treatments, and

Formulations

Drug/drug

class Response biomarker Indication

Linkage

From To

Beta-blockers Exercise induc.

tachycardia

Hypertension Ethnicity A Ethnicity B

Digoxin HR, LVET AF, AFIB Adults Pediatrics

Sotalol HR, QTc AF, VT/VF Adults Pediatrics

Platelet agg.

inhib.

Platelet agg.

inhib.

MI, stroke IR formul. MR formul.

Exposure biomarker

All AUC, Cmax All Patients Renal impairm.

patients

All AUC, Cmax All Patients Hepatic impairm.

patients

All AUC, Cmax All Treatment Treatment with

interacting

drug

All AUC, Cmax All IR formul. New IR formul.

All AUC, Cmax All MR formul. New MR

formul.

All AUC, Cmax All Fasted Fed

Abbreviations: HR, heart rate; LVET, left ventricular ejection time; AF, atrial flutter; AF, atrial

fibrillation; VF, ventricular fibrillation; VT, ventricular tachycardia; MI, myocardial infarction;

IRF, immediate release formulation; MRF, modified release formulation.
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interest to drug developers and regulators alike. This interest is attested to by a

number of excellent reviews on the use of biomarkers from academic, industrial,

and regulatory viewpoints (5,16–19). Pharmaceutical companies with a portfolio

of drugs competing for resources use biomarkers increasingly for internal

decision-making at crucial junctures of the drug development process, that is,

demonstration of proof of the principle in Phase I or IIa or in selecting doses

for Phase II or III studies. Biomarkers may also be of use to define dose ranges

and regimens of Phase III studies when the use of clinical endpoints in Phase II

is not feasible or helpful. However, as discussed, reliance on biomarkers to

predict efficacy is risky.

The number of surrogate endpoints acceptable to the Agency in the realm of

CRDs and other drugs has not significantly increased since the introduction

of Subpart H in 1992. Thus, an important opportunity to increase the efficiency of

drug development remains largely unutilized. Identification of surrogate

biomarkers should not be serendipitous and, thus, rare. Promising biomarkers

in the cardiovascular arena have been identified some time ago (20). They

include changes in coronary artery diameter as defined by angiography or

intra-coronary ultrasound, late lumen loss, micro-albuminuria, left ventricular

hypertrophy, brachial vaso-reactivity, and coronary vasomotor response to acetyl-

choline and myocardial perfusion by radionuclide techniques or positron emission

tomography. However, the concordance of these biomarkers with clinical

endpoints has not been demonstrated to date.

Today, there is a clear need to improve the predictability and hence the

efficiency of the “drug development by proxy” paradigm. The attrition rate of

drugs in Phase III is too large (2) and the cost of development, particularly

in the late phases of clinical development, has increased substantially (21).

Unacceptable toxicity, lack of efficacy, or industrialization (the product cannot

be manufactured at a commercial scale with consistently high quality) (22) are

reportedly the major causes for the attrition of drugs during development. The

Agency has responded with the Critical Path Initiative of 2003 (22) and is

currently developing strategies to increase the efficiency of drug development

without jeopardizing safety.

The predictability of the drug development by the “proxy” paradigm

must be improved to increase safety and efficiency of the development of

drugs. Systematic research and development of biomarkers, application of

modeling and simulation techniques, and use of adaptive trials can increase

the efficiency of the “learning” and “confirming” cycles and can provide

tools with increased sensitivity and predictability to separate between “good”

and “bad” drug candidates. Development and use of predictive biomarkers

should become a routine part of the drug development process and start in

the preclinical phase. The use of biomarkers should not stop after the proof

of principle study in Phases I or II. Biomarkers should be assessed together

with clinical endpoints or outcomes in the pivotal Phase III trials. It should

be recognized that the development of predictive biomarkers is a process in
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its own right that will take time and cost money. The predominantly empirical

approach used in the current drug development paradigm towards biomarkers

must be replaced by a more mechanistic one that results in an improved under-

standing of the disease process, the patho-physiologic pathway, and the pos-

ition of biomarkers in the chain of events causing diseases. Also, a better

understanding of the sequence of events that take place before diseases

become clinically manifest is necessary to increase the evidentiary level of bio-

markers. To attain this more advanced stage of understanding, it may be

necessary to measure panels of biomarkers and subsequently identify the rel-

evant ones. An evaluation of drug effects on biomarkers and clinical endpoints

across marketed compounds should be performed in epidemiological studies to

find out about existing interrelationships. Also, the best use of already existing

data should be made. Thus, there ought to be wider availability of collected

data on disease factors and biomarkers. Systematic mining of data from sub-

mitted NDAs could provide important insights into process and time course

of disease and impact on drug response measures. The ultimate goal of these

initiatives is to create libraries of predictive biomarkers and important

disease variables. As de facto repository of new and old information, the

Agency should play a key role in this endeavor. In order to make explorations

of such data practically feasible and efficient, a well-designed electronic data-

base should be created with priority. A procedure should be identified that

opens the database to regulatory and academic research, but protects proprie-

tary information.

There should be incentives for organizations that are successful in demon-

strating concordance of biomarkers and clinical endpoints/outcomes.

The Agency should also be the driving force in defining the process and cri-

teria to be applied in elevating biomarkers to surrogate endpoints. Criteria may

include a combination of quantitative measures of correlation with clinical end-

points and qualitative mechanistic elements in support of a common pathway.

The correlation between biomarker and outcome must persist after adjusting

for other potential prognostic factors. The effect of an intervention on biomarker

and endpoint must be consistent and reproducibly demonstrated in clinical trials

and the impact of the drug effect on the biomarker large and lasting (26). Parallel

dose or exposure response curves of a biomarker and a clinical endpoint/outcome

constitute a very persuasive finding.

The Agency should also take the lead in defining the standards for

measuring response measures, particularly those for biomarkers. As with other

exposure and response markers/endpoints, quality of measurement ought to be

assured for promising biomarkers by demonstrating sensitivity, specificity, and

reproducibility of the method used.

Recognition of the existence and magnitude of the outlined issues by

all stakeholders, academia, pharmaceutical industry, and government, is

required. A dialog among the stakeholders should be a first step towards a

resolution.
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APPENDIX

Example 1: Use of Biomarkers to Demonstrate Bioequivalence
of a New Formulation

Biomarkers can play a vital role in the establishment of bioequivalence and

interchangeability of formulations, especially if the concentration of the active

moieties cannot be measured. A case in point is the novel platelet aggregation

inhibitor, clopidogrel. Neither the parent compound nor the active intermediate

metabolite is measurable in the biological fluids. The sponsor proposed to

measure the inhibition of ADP-induced platelet aggregation by clopidogrel to

assess whether two formulations containing different polymorphs of clopidogrel

were bioequivalent. Because a 10% difference between test and standard formu-

lations is considered not to be clinically relevant by the Agency (24), the sponsor

was required to show that the 90% confidence intervals of the maximum achiev-

able percent inhibition of aggregation (steady-state trough relative to baseline)

was within the equivalence region of +10%. In addition, the 90% confidence

intervals of Cmax and AUC of the inactive metabolites of clopidogrel were to

be within the 80–125% limits.

Example 2: Use of Biomarkers to Assess Drug–Drug Interactions

For an analog of clopidogrel with an established concentration–effect relation-

ship, the drug’s inhibition of platelet aggregation was used to assess the possible

impact of another drug in a drug-interaction study. Absence of a drug interaction

was to be declared if the difference in aggregation inhibition, as defined in

Example 1, by the clopidogrel analog in the presence and absence of the

second drug was ,10%. Using this critical value and the known relationship

between plasma concentration and inhibition of platelet aggregation, boundaries

for AUC and Cmax of the analog were calculated. It is entirely possible that the

so defined upper and lower bounds for Cmax and AUC exceed the traditional

bioequivalence range of 80–125%. The criteria for the clinical significance of

a drug interaction was defined in this example by a biomarker and not the

target clinical endpoint (25).

Example 3: Use of a Surrogate Marker in the Approval of
New Formulations

The approval of a new modified-release formulation for a drug that has an

approved immediate-release formulation does not require the extensive clinical

testing that is expected from new molecular entities. Moreover, provided the

concentration–response relationship is well established and a surrogate endpoint

is available, it is possible to get approval for modified release formulations

by conducting PK/PD studies (26). A good illustration of this concept is the

approval of the once-a-day formulation of metoprolol for angina (24). The

basis for approval was: (i) the demonstration of effective beta blockade as
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evidenced by blunted exercise-induced tachycardia in healthy volunteers over the

dose range and interval recommended for the modified release formulation (27),

and (ii ) demonstration of safety in four-week trials in patients.
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INTRODUCTION

As early as in the eighteenth century, it was mentioned that drug response (the

duration of mydriasis observed following belladonna administration) depended

on dose size (1), cited after Abdel-Rahman (2). Subsequent pharmacologic

investigations have confirmed the presence of the dose–response relationship

for the majority of drugs. However, drug response is subject to substantial inter-

individual variability. Individuals receiving the same dose or dosage regimen

may demonstrate responses that vary widely in onset, magnitude, and duration.

Dose individualization is, therefore, the ultimate goal for those involved in

drug development and evaluation: pharmaceutical industry, academia, and regu-

latory agencies. However, this does not seem to be an easy task, due to high

between-individual variability (BIV) in pharmacokinetic (PK), pharmacody-

namic (PD), physiological, and pathophysiological processes involved in clinical

manifestation of drug effects. The goal of the late stage of drug development is

thus the selection of a dose or doses to be recommended for therapeutic use,

and the intention is to optimize the dosage and reduce the risk of under- or

overdosing as much as possible.
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If we construct a hypothetical distribution of optimal individual doses,

loosely defined as those producing a maximal therapeutic outcome with an accep-

table level of adverse effects (AE), we most probably will see a curve like that

shown in Figure 1 (continuous line), which illustrates BIV of optimal doses in

a target population. The peak corresponds to a population typical optimal dose,

which is around 110 units. Individual doses vary considerably. The overall

spread of individual optimal dose’s distribution is determined by the variability

in a number of PK, PD, and pathophysiological processes in the body, which

lead to clinical outcomes. These processes depend to some extent on subject

characteristics (e.g., gender, age, race, body size) that indirecty influence clinical

responses and contribute to the variability in individual optimal doses. If we use

the typical optimal dose to treat all patients, many of them will be under- or over-

dosed. To reduce the risk of inadequate dosing, we may perform a study (or

studies) to identify one or more patients’ characteristics that have a marked

impact on the clinical outcome. Suppose it is the patients’ gender. Properly

designed and analyzed clinical studies can provide optimal doses separately for

men and women; they will have narrower distribution (Fig. 1, dotted lines),

and also typical optimal doses will differ (Fig. 1, dotted vertical lines). By admin-

istering the drug according to the patient’s gender, we are able to reduce the risk

of over- and underdosing.

This is a simplified scheme illustrating the dose optimization based on a

single characteristic pertinent to a patient. Taking into account more than one

Optimal dose
60 80 100 120 140 160 180

0.
0

0.
00

5
0.
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0
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Figure 1 Hypothetical distribution of the optimal dose in the population (see text for

further explanation).
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characteristic may explain more of the variability, further reduce the spread of

optimal doses, and diminish the risk of the inadequate therapy. Nevertheless,

the random component of BIV of the optimal dose (i.e., not explained by

patient characteristics and other known covariates) cannot be avoided, since indi-

vidual PK, PD, and pathophysiological processes underlying clinical outcomes

are subject to the uncontrollable variability. It is important to estimate parameters

describing the random variability as it may help in individualizing the dosage

regimen by means of therapeutic drug monitoring (3).

Estimation of BIV became possible with the development of the population

PK and PK–PD methodology, which is now an established part of the drug devel-

opment process (4). Population PK–PD modeling can provide a vital aid to the

drug development process by generating reliable predictions of the individual-

ized dose–exposure–response relationship, which is key to successful therapy

(5). Understanding the variability associated with PK and PD of and clinical

responses to treatment helps defining the therapeutic index, appropriate dosage

regimen, and subpopulations at risk (6).

Drug development can be thought of as an information gathering process

that consists of two successive “learning-confirming” cycles (5,7). The first

cycle (clinical Phase I and Phase IIa) addresses the question of whether benefit

over existing therapies in terms of efficacy and safety can be expected. It

involves learning (Phase I) what is the largest short-term dose that may be

safely administered, and then testing (Phase IIa) whether that dose induces

some measurable short-term benefit in patients for whom the drug is intended

to be prescribed. A positive answer at this first cycle justifies a more elaborate

second cycle (traditionally, Phase IIb and Phase III). The aim of this second

cycle is to first learn (Phase IIb) what is an optimal dosage regimen to achieve

useful clinical outcome (i.e., an acceptable benefit–risk ratio), and then to

perform one or more formal confirmatory trials (in Phase III) of that regimen

versus a comparator (usually placebo). Implementation of PK–PD modeling in

drug development seems to be quite natural. Among other benefits, it offers a

scientifically valid tool to quantitatively evaluate the impact of patient character-

istics on the response, to judge whether dose adjustment is needed, and to provide

rules for that adjustment.

The aims of this chapter are:

1. To elucidate mechanisms behind BIV in PK and PD;

2. To summarize examples of clinical studies demonstrating effects of a

subject characteristic, namely, gender, on PK and PD. The effect of

gender is selected as it may have substantial clinical significance;

3. To give an overview of methods available in current PK, PK–PD, and

PK-response modeling;

4. To outline the ways as to how dose optimization can be achieved at the

stage of drug development.
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MECHANISTIC CONSIDERATION

In this section, a high-level overview of a sequence of basic processes will be

given, starting from drug administration and ending with a clinical effect mani-

festation. Figure 2 [adapted from Refs. (8) and (9)] summarizes the processes.

This scheme will be used in the subsequent sections to help understanding BIV

in plasma concentrations and in effects.

Physiochemical properties of a drug and biological properties of tissues at

the site of drug administration determine the rate and extent to which the drug

can enter the body. Biochemical properties and metabolic capacity of local
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Figure 2 A simplified overview of processes involved in producing clinical effects of a

drug. The full arrows indicate the mass transfer of the drug (unidirectional or bidirectional)

and a mediator; dashed arrows depict single-step post-receptor events initiated by the

drug–receptor interaction; dashed-dotted arrows show (multistage) complex processes

triggered by a biosignal (transduction) leading to the observable response.
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environments through which the drug traverses control the rate and degree to

which it can reach the site of action. The genetic constitution of the host at the

level of molecular targets influences the interaction between the drug and recep-

tors. Finally, the pathophysiologic nature of the host may modulate post-receptor

events initiated by the drug–receptor interaction, thereby influencing time course

and intensity of the PD and clinical effect. Evidently, the system is extremely

complicated, and rarely, if ever, can all processes involved in drug translocation,

accumulation, subcellular localization, and receptor signaling be directly

observed or quantitated (2). What we normally observe in clinical settings are

plasma drug concentrations and some of the effects that the drug produces.

The processes under consideration can be grouped into three major

categories (partly overlapping):

1. PK processes

2. PD processes

3. Processes involved in clinical effect generation

Here, only a superficial review of these basic processes will be provided. It

is hardly feasible to give a more detailed general overview, since many of these

processes, especially in what is related to PD and clinical effects, are drug-

specific.

PK Processes

After being systemically absorbed, the drug distributes to the peripheral tissues

and undergoes elimination out of the body via metabolism and/or excretion.

These processes collectively define the shape of the plasma concentration–

time profiles in individuals. Among other tissues, the drug may reach a site (or

sites) of action (biophase), that is, the vicinity of molecular targets (usually recep-

tors). The drug concentration at the site of action drives any further pharmaco-

logical events, including those of interest: clinical responses.

Only in rare cases can the anatomical location of the site of action be

clearly identified. If receptors are distributed across the body, the site of action

is the entire body. Moreover, sometimes the site of action cannot be kinetically

distinguished from the plasma compartment. Simultaneous PK–PD modeling

represents an adequate tool to evaluate the role of the site of action, which is rep-

resented by a hypothetical “effect” compartment (10). The equilibration rate con-

stant between plasma and that compartment is the measure of the delay between

changes in the plasma level and PD processes.

The drug metabolism leads to formation of compounds that may possess

pharmacological properties either similar to those of the parent drug or different.

The overall effect of the drug is, in this case, a result of combined effects of the

parent compound and metabolites (the active moiety). Metabolites often have

dissimilar PK properties, and their concentration–time profiles at the site of

action may look completely different.
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PD Processes

In order to produce any pharmacological response, the drug should bind to its bio-

logical targets. For short we will call them “receptors,” keeping in mind that they

are not necessarily membrane-bound proteins (classical receptors), which specifi-

cally bind drug molecules (11,12). The drug interaction with receptors produces

a primary signal that triggers a series of pharmacological events, ultimately

leading to clinical effects. This biosignal may consist in perturbing an intrinsic

biochemical process (or processes) in the body. For example, formation or

sequestration of certain mediators (hormones or proteins) may be accelerated

or suppressed. Changes in the mediator level may, in their turn, initiate a

cascade of events that we call “transduction,” resulting in observable changes

in body characteristics, or clinical effects.

Clinical effects are almost the only sources of information about the drug–

receptor interaction and biosignals in man. Some new techniques such as proton

emission tomography, that became recently available enable researchers to

obtain direct information on the drug–receptor binding, and intensive researches

are going on to find links between the receptor occupancy and clinical effects

(13–15).

Clinical Effects

We will distinguish three categories of clinical drug effects that are observable

due to changes in the following characteristics or variables (16,17):

1. A biomarker is a characteristic that is measured and evaluated as an

indicator of normal biologic processes, pathogenic processes, or

pharmacologic processes to a therapeutic intervention.

2. A surrogate endpoint is a biomarker that is intended to substitute for a

clinical endpoint.

3. A clinical endpoint is a characteristic or variable that measures how a

patient feels, functions, or survives.

One has to distinguish direct biomarkers that are in the causative pathway to

clinical endpoints, and independent biomarkers, which are not. Indirect

biomarkers depend on direct biomarkers, but still are in the causative pathway

(9). There may be many combinations of these basic biomarkers and various

clinical endpoints, depending on a specific drug or a therapeutic area. The

linkage between a biomarker and the clinical outcome may sometimes be

strongly based on the drug’s mechanism of action, prior therapeutic experience,

and well-understood pathophysiology. A properly selected biomarker may

explain a large percentage of the ultimate clinical benefit and clinically relevant

questions.

Biomarkers are either biochemical or clinical. For instance, in the case

of asthma and chronic obstructive pulmonary disease, biochemical biomarkers

are leukotrienes, chemokines, and cytokines; clinical biomarkers are pulmonary
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function tests. For diabetes mellitus, the biochemical biomarkers are

glucose, fructosamine, glycosylated albumin, glycated haemoglobin, and cyto-

kines; clinical biomarkers are retinal evaluations, nephropathy measures,

and peripheral neuropathy assessments. In the case of hypertension, the

biochemical biomarkers are angiotensin I, angiotensin II, plasma renin, aldo-

sterone, and ACE activity; clinical biomarkers are blood pressure and heart

rate measures.

Biomarkers do not necessarily confer any therapeutic benefit of a drug on a

given disease process or provide any therapeutic benefit to a patient (18). As such,

they are not considered as acceptable clinical endpoints of effectiveness or safety

in assessing risk/benefit ratios prior to market authorization. On the other hand,

biomarkers can usually be readily measured and are information-reachable in

contrast to clinical endpoints. They often are more directly related to the time

course of plasma drug or metabolite concentrations than clinical endpoints.

Biomarkers can provide great value if they reflect the mechanism of action for

the intervention, even if they cannot be used as surrogate endpoints. They are

most suitable for PK–PD modeling and simulation, and can play a critical role

in drug development.

A surrogate endpoint is a specific biomarker that may substitute for a clini-

cal endpoint. Surrogates can predict the clinical effectiveness or safety when the

pathophysiology of a disease and the mechanism of action of a therapy are very

well understood (e.g., blood pressure, CD4 count, and viral load). Depending on

the therapeutic area, the surrogate endpoint can also be a physiological response,

a laboratory measurement, or a physical sign that is induced by the drug mecha-

nism of action. The decision to use a biomarker as a surrogate endpoint is

based on evidences demonstrating that changes in the biomarker correlate

strongly with the desired clinical outcome. Typical examples of surrogate end-

points are physiologic functions, such as pupil dilation in the case of narcotics,

laboratory measurements, such as serum cholesterol in the case of HMG-CoA-

reductase inhibitors, or biochemical markers, such as tumor marker (19).

Before surrogate endpoints can be used to predict clinical outcomes, however,

it is crucial to validate them in accordance with good clinical practice

methods. This has to include the evidence of relevance (validity)—that is,

changes in the marker are correlated to changes in disease state or clinical

outcome—as well as measurement criteria (reliability) similar to those used

in analytical method validation, such as repeatability, reproducibility, and

sensitivity (20).

A clinical endpoint is a clinically defined, meaningful therapeutic outcome,

such as survival, onset of serious morbidity, or symptomatic response that can be

used as a primary response variable in a clinical trial of effectiveness or as a

measure of safety. While the clinical outcome is the ultimate efficacy measure

quantifying the direct benefit to a patient (e.g., cure or decreased morbidity), it

is sometimes difficult to quantify and usually requires a large sample size since

it is a categorical measurement (18).

PK and PD Variability 103

Copyright © 2006 Taylor & Francis Group, LLC



BIV and Intraindividual Variability

Every process among those mentioned previously and depicted in Figure 2

may and does vary between individuals (21). Also, an intraindividual variability

(e.g., with time) takes place.

PK processes vary since they depend on the individual body composition,

enzymatic pattern, and the intensity of internal biochemical and physiological

processes, and so on. This sort of BIV can at least partly be associated with

and explained by subject-specific characteristics, among which the most

important are gender, age, ethnicity, body size, and genotype. External factors

like diseases, diet, physical activity, smoking, interaction with concomitant

medication, and so on, may play a role as well.

The relationship of PD processes with subject characteristics is less

obvious; nevertheless, one can anticipate that gender, age, race, etc. are important

predictors. Since PK and PD processes determine clinical effects, the latter

should depend on subject characteristics as well. However, the impact of these

characteristics is often hidden by transduction processes, the nature of which is

not always well-understood. Moreover, the intraindividual variability, particu-

larly temporal variations, can mask the effects of subject characteristics.

As the goal of the late stage of drug development is the selection of an

optimal dose to be recommended for therapeutic use, the developers are eager

to reduce the negative impact of BIV in those processes on clinical outcomes.

Taking subject characteristics into account is one of the obvious measures to

diminish such an impact, and the modern PK–PD modeling and simulation tech-

nique is well suited for quantitating variabilities of various sorts and estimating

optimal dosing regimens.

POPULATION MODELING: STATISTICAL FRAMEWORK

In this section, the notions of fixed and random effects will be introduced, and the

statistical framework of population modeling based on mixed effects is briefly

delineated. This framework is used when effects of subject characteristics on

PK or PD are quantitatively evaluated.

PK data are longitudinal in nature, that is, several blood samples are

collected from each individual in the course of a study. PD studies are also longi-

tudinal, and most clinical efficacy/safety trials include multiple assessments,

enabling the application of the statistical methodology, known as mixed-effects

modeling (5,22,23).

Considering the PK data, theoretical plasma concentration–time profile in

an ith individual, Cpi, can be expressed as follows:

Cpi ¼ fpkðupki, D, bpki, tÞ (1)

where fpk denotes the functional form of the PK model (e.g., mono- or biexponen-

tial); upki is a set of individual PK parameters, D is the dose (or dosing regimen in
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case of multiple or continuous dosing); bpki is a set of influential subject charac-

teristics and other relevant covariates; and t is the time. In the cases of non-linear

kinetics, fpk may be not an analytical function, but a numerical solution of a

system of partial differential equations defining the PK model.

Similarly, we can define a PD model for continuous direct effects (thera-

peutic or adverse). The drug concentration is the immediate driving force for

changes of the effect variable, Effi, from the baseline value, Eff0,i:

Effi ¼ Eff0,i þ fpd(updi, Cpi, bpdi, t) (2)

where fpd is a PD function; updi is a set of individual PD parameters; bpdi is a set

of influential patient characteristics and other relevant covariates (they may differ

from those of the PK model). Note D is not in the list of PD model arguments, but

Cpi, which translates information on dosing into the PD model. This reflects the

current paradigm that the dose may produce a response only through plasma con-

centration. On the contrary, the time is one of the arguments, since in some cases,

for example, if tolerance develops, the effect may change with time even if Cpi is

constant. If the effect is indirect (the drug changes the effect variable through

changes of rates of processes controlling the level of Effi), fpd is not an analytical

function anymore; it can be derived numerically by solving the system of partial

differential equations representing the PD model.

Individual PK and PD parameters are distributed in a population, and the

exact form of this distribution is usually unknown. In the framework of mixed-

effects modeling, upki and updi are defined as deviations from population

typical values, Qpk and Qpd:

upki ¼ Qpk þ hpki (3)

updi ¼ Qpd þ hpdi (4)

where hpki and hpdi are called random effects. The distribution of random effects

hpki and hpki are usually assumed to be normal with zero mean and the standard

deviations (SD) vpk and vpd. The additivity in Eqs. (3) and (4) allows individual

parameters to take zero or negative values. Since all PK parameters and most of

PD parameters must be positive, a convenient way to constrain them is as follows:

upki ¼ Qpk � exp(hpki) (5)

updi ¼ Qpd � exp(hpdi) (6)

Population modeling offers a good way to summarize information; for each

PK or PD model parameter, instead of long vectors of individual values, we have

just two global parameters: a typical value, and SD of random effects. If model

parameters are correlated in the population, a full variance–covariance matrix

of random effects should be considered where diagonal elements represent BIV

in parameters and off-diagonal elements correspond to covariance between

parameters.
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PK and PD model parameters are usually estimated by means of a

maximum likelihood method [see statistical texts for technical details

(24–26)], which also provides a useful tool to select the optimal model among

several candidates: the likelihood ratio test, LRT. In particular, LRT is suitable

for selecting influential subject covariates.

Fitting a population PK model to data gives estimates of Qpk and the cor-

responding random effects’ SD that reflect the extent of random BIV. Influential

covariates explain part of the random variability, and their effects on PK para-

meters are called fixed effects. The inclusion of fixed effects in the model

should decrease the unexplained random BIV.

Suppose the drug clearance (CL) is different in men and women. We fit two

rival models to the same data set, one without subject covariates (base model),

and another one incorporating a fixed effect of gender on CL. From the point

of view of implementation, this means that instead of one population typical

CL, we consider two: CL in men and CL in women. Two resulting fits should

differ in terms of SD representing the random part of BIV in CL: the model

with gender effect on CL should have reduced SD. Besides this, the inclusion

of influential covariate should significantly increase the likelihood of the data

given the model.

Since population models include both fixed and random effects, they are

called mixed-effects models. More detailed descriptions of mixed-effects model-

ing can be found in the previously cited texts.

BIV in PK and PD parameters translates into the variability in the optimal

dose (dosing regimen). The following simple simulated example illustrates these

relationships. Suppose the concentration–response relationship follows a sigmoi-

dal Emax model (10,27,28), and the baseline effect is zero. Equation (2) becomes:

Effi ¼ Emax � Cph
i =(C

h
50i þ Cph

i ) (7)

where Emax is a maximum response, C50i is a concentration corresponding to the

half-maximum response, and h is a sigmoidicity parameter. Emax and h have no

subscript index i, thus the model assumes there is no BIV in these parameters.

Only C50i varies across individuals according to the statistical model represented

by Eq. (6). Also, Cpi is constant and may be regarded as that during constant

rate steady-state intravenous (IV) infusion. Another assumption is that the

same model works for both therapeutic and toxic effects. The only difference

is in the typical C50 values: for the toxic effect it is higher (50 and 90 concen-

tration units, respectively). This is thus an example of a low therapeutic

window drug. Emax and h are 100 and 3, respectively. SD for BIV in C50i was

chosen to be 20%.

Two hundred pseudo-individuals were simulated, and Figure 3 ( panel A)

shows a small fraction of them, together with the typical profiles. Then the clinical

benefit variable was created equal to the difference between efficacy and toxicity

profiles, and plotted against Cp ( panel B). Again, to improve the visibility, only a
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few profiles are plotted. The maximum clinical benefit identifies the optimal

concentration, CpOPTi, which substantially varies between individuals (panel C ).

Finally, optimal concentrations were converted into optimal dosing regimens:

DRi ¼ CpOPTi � CLi (8)

where DRi is the optimal dose rate in the ith individual, and CL varies between

individuals according to Eq. (5). Typical CL was set to 10 and SD to 20%.

The resulting optimal dose rates are rounded for hundreds that are clinically

meaningful and presented in panel D of Figure 3. BIV in CL and C50 thus trans-

lates into optimal dose rates that range between 300 and 1200 arbitrary units with

the population typical value of 600. For more than 50% of the individuals, the

optimal dosing range is within 500–700, and 600 can be considered as an appro-

priate dosing regimen for them. If the remaining individuals receive this dose

rate, they may be under- or overdosed.

To illustrate the potential impact of subject characteristics, namely gender,

another simulation was conducted using similar PD and PK models. The only

difference was in the toxic effect model: two subpopulations were assumed to

be differing in their typical values of C50: 70 units for women and 100 for

men. Also SD of random BIV was smaller (15% instead of 20% in the
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previous example), mimicking a reduction of the random part of BIV after intro-

ducing the fixed effect of gender. The total number of simulated quasi-individuals

was 200 (100 males and 100 females). Figure 4 shows the distribution of

optimal doses separately for males and females. The overall spread is wider

than that within one gender. Also, typical values differ: 600 and 700 units for

females and males, respectively. The difference is not large and probably can

be ignored in this case; however, there may be cases where the disparity is

bigger and needs attention or even dose adjustment. In any event, this example

visualizes the major point: by taking into account patient characteristics, one

may reduce the random variability in optimal doses and thereby decrease the

number of under- and overdosed patients.

Models represented by Equations 1 and 2 are not complete, as they

represent an ideal case without measurement error. The complete PK and PD

models include the residual error that usually associates with the measurement

imprecision:

Cpij ¼ fpk(upki, D, bpki, tij) � exp(1pkij) (9)

Effij ¼ Eff0,i þ f pd(updi, Cpi, bpdi, tij)þ 1pdij (10)

where 1pkij and 1pdij are random variables with zero mean and SD equal to spk

and spd, respectively. The second subscript index j came into the picture as

there are several observations in the ith individual at the times tij, and every
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observation has its own error 1pkij or 1pdij. It is assumed, however, that SD

of errors is common for all individuals. In the PK model [Eq. (9)], the

residual errors follow the log-normal distribution, which is in line with

the fact that concentrations are positive. On the contrary, the PD model

[Eq. (10)] implies that the residual errors are normally distributed mimicking

the fact that observations may be below the mean baseline level. There may

be, of course, other residual model distributions, depending on the nature of

the data.

One more source of random variability that is worse to mention is an

intraindividual variability associated with repeated drug administrations at two

or more occasions at different study days: between-occasion variability (BOV).

In case of clinical studies, these are visits. To estimate BOV, more than one

observation per visit (e.g., plasma samples) has to be made; otherwise, BOV

becomes part of the residual variability. On the contrary, if an individual is

tested only at one occasion, BOV cannot be separated from BIV.

When a PK or PK–PD model is fitted to the dense data of a single indi-

vidual (many observations compared with the number of model parameters),

and an appropriate statistical method is used [e.g., the extended least squares

method (29)], the residual error can be estimated. If the structural model is ade-

quate, spk and spd reflect the measurement imprecision. On the other hand, if

one fits a model that has no random effects on parameters to data from more

than one individual, estimated residual SD becomes higher than the measure-

ment imprecision, as it now includes a contribution from BIV in model par-

ameters. The inclusion of random effects on PK or PD parameters (hpki and

hpdi) will lead to a reduction of residual SD, and will result in precise estimates

of spk and spd upon the condition that the number of individuals is sufficiently

large. Besides this, a significant increase of the likelihood of the data given by

the model will be observed. BIV in PK or PD parameters (vpk or vpd) is

estimated together with the residual errors spk and spd. If one or more model

parameters depend on subject charactistics, the model can be updated by corre-

sponding fixed effects, and this should result in a decrease of certain elements of

vpk or vpd, but not of spk and spd. This should be accompanied by a further

significant increase of the likelihood.

This is the basic approach used in building population PK and PD models.

Additional technical details on PK–PD modeling can be found elsewhere

(30–33).

PK and PD modeling based on mixed-effects enables the estimation of

population typical values and variabilities from sparse clinical data. Many

researchers who are not familiar with this relatively new technique believe that

population modeling is justified only in case of sparse data; if the data are

dense, individual model fitting is the method of choice, and no population analy-

sis is needed. This is a misunderstanding, since mixed-effects modeling in any

case provides less biased estimates of typical population parameter values than
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straightforward averaging of individual values, and is undoubtedly preferable in

estimating variance components.

Moreover, having in hand a population model with all parameters esti-

mated, one can easily generate best individual estimates using a Bayesian fore-

casting technique, which is much more robust compared with individual model

fitting (34,35). Particularly, Bayesian estimates are more stable with respect to

outlying observations.

PK DIFFERENCES BETWEEN MALES AND FEMALES

Although the FDA mandated in 1998 that new drug applications must include

data on safety and effectiveness by gender, a 2001 U.S. General Accounting

Office investigation revealed that over one-third of the FDA-approved drugs in

the preceding two years failed to provide such gender-specific information

(36). Although women may be increasingly represented in clinical trials,

failure to analyze gender-related differences in PK, side-effects, and efficacy

limits the generalizability of such data to women. The importance of studying

gender-based differences in PK, PD, and efficacy /safety is demonstrated by

the increasing data on gender-related variation in basic processes involved in

linking drug administration to clinical response. Gender-based differences in

the major processes that contribute to interindividual PK variability (bioavailabil-

ity, distribution, metabolism, and elimination) are theorized to stem from vari-

ations between men and women in factors such as body weight (BW), plasma

volume, gastric emptying time, plasma protein levels, activity of drug-metaboliz-

ing enzymes, drug transporter function, and excretion activity (37–39). Gender-

determined variations in PD have been more difficult to study due to the reasons

mentioned in this section, but a number of recent studies have explored these

differences (40–44).

In this section, differences in PK between the genders will be reviewed.

First, the data collected in “classical” PK studies will be presented; they

should, however, be regarded with caution. At the end, information obtained

through thorough population PK modeling will be reviewed. Table 1 summarizes

the various factors that contribute to each PK process and gender differences that

have been identified or not, for these factors.

Absorption

Factors that influence drug absorption are gastric emptying time, gastric and

intestinal pH, and the gastrointestinal blood flow (45), along with the effects of

presystemic hepatic and gut metabolism and transport. Metabolism and active

transport back into the lumen can also affect systemic bioavailability. Character-

istics of stomach and proximal jejunal fluids, including pH, osmolality, electro-

lyte concentrations, and levels of bile acids and proteins, do not seem to vary

significantly by gender (46–49), although it has been reported (50) that mean

basal acid outputs were significantly higher for male patients than for female
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Table 1 Gender Differences in PK Parameters

PK process Components Gender-based differences

Bioavailability Gastrointestinal tract

physiology

Gastric emptying time is slower in

females than males, mainly

secondary to the effects of

estrogens

Extrusion by drug

transporters, such as

intestinal Pgp

Intestinal Pgp levels do not seem to

consistently vary by gender

Gut enzymes, such as

alcohol dehydrogenase

and intestinal CYP3A4

Gastric levels of alcohol

dehydrogenase are higher in

males than females; intestinal

CYP3A4 levels do not

consistently vary with gender

Distribution Body composition: body

size, percent body fat,

plasma volume, and

organ blood flow

Women have lower body size than

men; women have a higher

proportion of body fat than men;

plasma volume is greater in men

than women, although volume

varies throughout the menstrual

cycle and during pregnancy;

organ blood flow is greater in

women than men

Protein binding: extent of

tissue and protein binding

of the drug

Albumin concentrations do not seem

to consistently vary with gender,

but endogenous estrogens

decrease the levels of AAG in the

plasma, so women have lower

concentrations of AAG than men.

Exogenous estrogens increase

levels of the serum-binding

globulins (such as sex-hormone

binding globulins, corticosteroid-

binding globulin, and

thyroxine-binding globulin)

Metabolism Hepatic enzymes: Phase I

metabolism reactions in

the liver (oxidation,

reduction, and hydrolysis

mediated through the

cytochrome P450 system)

Data on varying levels of CYP

expression and activity using in

vitro systems exist, but the

majority of studies that examine

CYP (mainly CYP3A4) substrates

for differences in PK parameters in

men and women are inconsistent;

general trend toward higher rates

of metabolism for CYP3A4

substrates in women versus men

(Continued)
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patients with gastroesophageal reflux disease, gastric ulcer, and duodenal ulcer.

Gastrointestinal motility is influenced by sex hormones (51,52), implying that

gender-based disparity in motility may exist and that the transit time in women

may vary throughout pregnancy and the menstrual cycle. Estrogen and its equiva-

lents may inhibit gastric emptying (53,54), whereas the effects of progesterone

depends on its concentration (55,56). Gastric transit time has been demonstrated

by many researchers to be slower in females than males (57–61).

At least some drug-metabolizing enzymes located in the intestine also vary by

gender (57,62,63). However, significant differences in gut expression of CYP3A

isozymes in enterocytes between males and females have not been consistently

observed (64,65). Potential gender differences in Pgp activity in the gut have been

hypothesized based on the reports on differences in hepatic content (66). The data

using oral fexofenadine as a probe of Pgp in humans, however, failed to find any

gender differences in plasma concentration–time profiles of fexofenadine (67).

Several clinical PK studies reveal differences in bioavailability for certain

drugs based on gender. A population PK analysis of mizolastine, an orally admi-

nistered antihistamine, demonstrated a slower absorption of this drug in men

versus women, contributing to variability in drug concentrations by gender (68).

Two studies have demonstrated an increased absorption rate for some

salicylate formulations in females compared with males (69,70), though other

authors failed to show this difference (71).

In summary, while gastrointestinal motility and enzyme activity vary by

gender, studies published thus far have not consistently shown a gender impact

on drug bioavailability. Furthermore, studies that examine differences in

Table 1 Gender Differences in PK Parameters (Continued)

PK process Components Gender-based differences

Hepatic transporters:

hepatic Pgp or MDR1

Men seem to have higher hepatic

Pgp levels than women, with

higher drug clearances in women

versus men for drugs that are

substrates of Pgp

Excretion Renal clearance: renal

excretion is dependent on

filtration, secretion, and

reabsorption

Renal clearance of drugs that are not

actively secreted or reabsorbed is

dependent on GFR, which is

directly proportional to weight;

gender differences for these drugs

are attributable to weight

differences. Drugs that are actively

secreted by the kidney may show

gender differences in excretion

Source: From Refs. 42, 171.

Abbreviations: PK, pharmacokinetics; AAG, a1-acid glycoprotein.
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bioavailability are few and confounded by variability in other PK processes, such as

distribution, metabolism, and excretion. The present evidence, however, suggests

that gender-based differences in bioavailability are not of great clinical significance.

Distribution

On average, women have a higher body fat percentage [the differences, however,

decrease at older ages (72)], a smaller plasma volume, and a lower organ blood

flow than men, with obvious implications for disparities in drug distribution.

Moreover, the major protein groups responsible for binding in human plasma are

influenced by sex hormone levels, so that plasma drug binding can clearly be influ-

enced by gender. Note, however, that albumin is not greatly affected by gender (73).

There were multiple reports of gender-related differences in a1-acid glycoprotein

(AAG) concentrations (74–79), gender-dependent stereospecific binding (80,81),

and estrogen-mediated decreases in AAG production (82). Nevertheless, gender

differences in unbound fractions of disopyramide are lacking despite differing

AAG levels (75). Further investigations did not demonstrate gender-related

differences in free fractions of highly bound drugs in patients or in subjects receiv-

ing hormone replacement therapy or oral contraceptive pills (83,84).

During pregnancy, the effects on binding proteins are complex. As preg-

nancy progresses, the concentration of albumin, along with other plasma proteins,

decreases (85). The effect of pregnancy on the AAG level is under debate: two

studies report an overall decrease in AAG concentration over the course of preg-

nancy (86,87); other studies report no change (88), or decreases in AAG levels

throughout pregnancy (85). Unresolved questions still exist regarding drug

protein-binding capacity in the setting of pregnancy. Some researchers report

that there is a steady increase in the production of endogenous ligands, such as

free fatty acids, during pregnancy that compete for drug-binding sites distinct

from their own albumin (89,90). Furthermore, protein-binding capacity may be

reduced secondary to intrinsic alterations in protein structure during pregnancy

(91). In addition, exogenous estrogens increase levels of the serum-binding

globulins, which include sex-hormone binding globulins, corticosteroid-

binding globulin, and thyroxine-binding globulin (92).

The differences in body fat may account for the increased distribution

volumes for lipophilic drugs, such as benzodiazepines (93,94). A larger volume

of distribution of diazepam has been observed in females versus males (95,96),

with differences in both body fat proportion and gender-dependent changes in

protein binding being cited for this disparity. This may lead to prolonged duration

of effect due to increased half-life. Increased fat stores and differences in organ

blood flow in women versus men have been implicated in the faster onset of

action and prolonged duration of neuromuscular blockade in females with lipo-

philic paralyzing agents, such as vecuronium (97–101) and rocuronium (102).

The water-soluble compound, metronidazole, demonstrates a smaller

volume of distribution in women versus men, although increased CL of
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metronidazole in females versus males accounts for a lower AUC for this drug in

females (103). A smaller volume of distribution for the water-soluble fluoroqui-

nolones in women versus men was observed (104,105). Both the oral CL and the

volume of distribution of prednisolone are significantly higher in men compared

with women (106).

Metabolism

Although cardiac output and hepatic blood flow are lower in women than men,

differences in hepatic enzymes seem to play the major role in determining PK

variability by gender. Gender-based disparities in cytochrome P450-mediated

drug metabolism have been examined through a variety of methods, including:

. The demonstration of gender differences in mRNA expression for

various CYP enzymes in peripheral leukocytes (despite the uncertain

clinical significance of those findings) and within hepatocytes.

. The direct examination of variability in CYP activity by gender.

. The demonstration of gender-based variability in PK parameters of

drugs metabolized by these enzymes.

Multiple PK analyses reveal gender-based differences in drug concen-

trations that are attributed to gender disparities in hepatic enzyme expression.

Gender-related PK differences in elimination are influenced by endogenous

gender hormone production as well (107), and also hormonal changes associated

with oral contraceptive use, pregnancy, and menopause. The following examples

summarize some of the studies that attempt to demonstrate gender-based varia-

bility in drug metabolism.

Both expression and functional studies suggest that CYP1A2 activity,

which is a prominent enzyme in the metabolism of antipsychotics (108), is

higher in females than in males (109). Olanzapine is a CYP1A substrate (although

glucuronidation also contributes to its metabolism). Combined analyses of studies

of the PK of olanzapine in healthy volunteers, and also population studies of

patients with schizophrenia, show CL of olanzapine (110) and clozapine (111)

(another CYP1A substrate) to be higher in men compared with women.

Female livers had a significantly higher mean content of CYP3A4 (112),

and in vitro liver microsome preparations exhibited a higher rate of the

CYP3A4-mediated ifosfamide N-dechloroethylation reaction in females than in

males (113). Erythromycin is metabolized through CYP3A-mediated N-

demethylation, and an in vitro study used microsomes prepared from human

livers to compare CYP3A4 activity in males versus females (114). It was 24%

higher in women than men. However, Schmucker et al. (115) demonstrated

that the mean amounts and activity of cytochrome P450-microsomal mono-oxy-

genases do not differ by gender. Another group used the liver microsome system

to investigate a variety of CYP450 enzymes and found no clear gender-related

differences in P450 levels or metabolizing activity, with the exception that

CYP1A2 activity was higher in Caucasian women than men (109). A third
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study used the microsome system to evaluate the content of cytochrome P450

proteins in human livers and found that gender did not influence the expression

of any of the CYP proteins (116). The results of these studies have to be inter-

preted with caution since the in vitro liver microsome assay lacks the systemic

hormonal milieu of the male or female body, which may lead to disparate

results from in vivo analyses.

Midazolam is a current “gold standard” metabolic probe for CYP3A. The

majority of the studies evaluating gender differences in CYP3A4 activity using

midazolam do not reveal any significant differences in IV or oral midazolam

metabolism by gender (107,117–122), although others have shown greater clear-

ance of the drug in women compared with men (123,124). Erythromycin is

another well-studied substrate of CYP3A4 and its metabolism has been examined

for gender differences. One group of investigators showed that erythromycin is

cleared more rapidly after IV dosing in women versus men (125), which is

thought to be a hepatic CYP3A4-mediated effect. In line with this, the erythromy-

cin breath test has demonstrated greater CYP3A4 activity in women versus men

(113,126).

The apparent CL of R-mephobarbital was much greater and the elimination

half-life was much shorter in young men compared with women (127). This enan-

tiomer also displayed an age-dependent gender effect and a gender-dependent

age effect in its metabolism. The apparent CL of the S-enantiomer was much

lower than that of the R-enantiomer in all subjects and did not differ between

genders, although the elimination half-life was slightly but significantly shorter

in young males. Alprazolam elimination half-life and oral CL were

significantly different in men and women (128). Female subjects cleared

ondansetron more slowly than males (P , 0.05), resulting in higher first-pass

extraction and absolute bioavailability (129). Theophylline PK parameters

were compared in healthy males and healthy premenopausal females who were

matched for age and smoking status (130). Total body CL was significantly

different in non-smoking females versus males, but did not reach statistical

significance in smoking females versus males. Women (luteal phase) exhibited

a greater methylprednisolone clearance (0.45 vs. 0.29 L/hr/kg) and shorter elim-

ination half-life (1.7 vs. 2.6 hours) than men (131). Tirilazad CL was approxi-

mately 40% higher in young women than in young men (132). In patients with

hypertension receiving oral nifedipine, a high-affinity CYP3A substrate, a

similar higher CL in women compared with men has been reported (84).

Gender differences in kinetics of triazolam, a CYP3A substrate benzodiazepine,

were not apparent (133). However, among women, age had no significant effect

on the drug CL in contrast to men, in which CL declined with age.

Oral CL of verapamil, another CYP3A substrate, is higher in men than

women, and consequently absolute bioavailability is lower, which is thought to

be a multifactorial phenomenon, including variations in hepatic metabolism. This

was confirmed later using population modeling (134). Oral CL of sustained-

release verapamil was 23.8+ 2.3 mL/min per kilogram in women compared
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with 18.6 + 3.4 mL/min per kilogram in men. Effects of age, formulation, and

alcohol consumption were not detected. In a study by Gupta et al. (135), the

mean plasma verapamil concentrations of each enantiomer after oral adminis-

tration of the racemic drug were higher for women than for men at all time

points, indicating lower CL.

In contrast, other studies have shown no differences in CL of oral verapamil

between men and women (136,137), although these studies both had a total sample

size of only 12 participants each. Overall, the weight of the evidence shows

negligible gender differences in midazolam PK, whereas the data on verapamil

kinetics more consistently reveals higher CL of the drug in women compared

with men. A possible explanation of the inconsistency is based on the Pgp contri-

bution (138): verapamil is a Pgp substrate. Drugs that encounter hepatocytes from

the blood stream need to cross the cell membrane to become available for inter-

action with CYP3A4. Men may have higher hepatic Pgp levels than women

(66), leading to higher intracellular drug concentrations in women with subsequent

increases in CYP3A4 metabolism and CL of some drugs in this group. Midazolam

is a substrate of CYP3A4, but not of Pgp, whereas verapamil is a substrate of

both. The authors thus explain the gender-based disparity in verapamil versus

midazolam PK as a consequence of the former drug’s interaction with hepatic

and/or intestinal Pgp (138). A literature survey to determine whether Pgp levels

contribute to gender-related differences in the CL of CYP3A4 substrates reveals

a general concordance between the predicted higher drug CL in women compared

with men for drugs that are substrates of both Pgp and CYP3A4 (138). However,

most of the studies that examined drugs that are substrates of CYP3A4, but not

Pgp, demonstrated no significant gender-based PK differences.

Results from studies with sparteine (139) and debrisoquine (140,141), clas-

sical probes for CYP2D6-related phenotype, failed to find gender differences,

whereas studies with dextromethorphan and metoprolol in subjects with the

extensive metabolizer phenotype showed higher CL in men compared with

women (142). Concentrations of sertraline, a CYP2D6 substrate, were reported

to be higher in young men compared with young women volunteers (143), yet

oral CL of desipramine has been reported to be higher in men compared with

women (144). Mirtazepine is metabolized by CYP2D6 and CYP3A, and by

CYP1A to a lesser extent. Higher CL and shorter elimination half-lives have

been shown for mirtazepine in men compared with women (145). Gender differ-

ences in propranolol CL have been demonstrated in Caucasians (81,146) and in

Chinese volunteers where propranolol CL was lower in women compared with

men (147). Clomipramine and nortryptyline concentrations at steady-state have

been reported to be higher in women compared with men (148,149). One study

showed that tardive dyskinesia as a side-effect of various antipsychotic agents

develops more frequently in female Chinese schizophrenic patients than in

males secondary to the increased frequency of a defective CYP2D6 allele in

Chinese women (150). However, these differences may have a PD rather

than PK origin.
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Data from studies of extensive CYP2C19 metabolizers who received

mephenytoin (151) or (R)-mephobarbital (127) showed lower CL in women com-

pared with men. However, for mephenytoin, the difference was attributed to oral

contraceptive use (151) and a subsequent study has confirmed the inhibitory

effects of oral contraceptives with respect to CYP2C19 activity (152).

There are limited data on gender differences in Phase II (conjugative) meta-

bolism. Human liver biopsies have shown higher thiopurine methyltransferase

(TPMT) levels in men compared with women (153,154), while erythrocyte

TPMT activity can be higher in men (153). Glucuronidation of propranolol is

faster in men compared with women (155). CL of labetalol (cleared by combined

processes) was also higher in male hypertensive patients compared with female

patients (156). Finally, higher doses of 6-mercaptopurine are needed for equival-

ent therapeutic efficacy in boys compared with girls with leukemia (157–159).

However, the interpretation of this finding as a manifestation of PK differences

is questionable.

Studies of glucuronosyltransferase activity using paracetamol and caffeine

have demonstrated faster CL in men compared with women (139,160,161),

whereas when caffeine was used as a probe of xanthine oxidase activity, it was

equal or higher in women than in men (107,160). Gender differences are not uni-

versally found with substrates of the UDP glucuronosyltransferase superfamily of

isozymes, such as clofibric acid or ibuprofen (162). The gender effect may vary

with the isozyme, metabolic phenotype /genotype, study sample size, probe drug,

or use of weight correction of parameters (107,163–165). Oral contraceptives

have an important influence on the rate of glucuronidation in women and have

been reported to increase it (165,166). There does appear to be differences in

N-acetyltransferase activity, as assessed by isoniazid or caffeine (140,160) and

in a small number of subjects studied with sulfamethazine (107).

Dihydrouracil dehydrogenase is an enzyme involved in the metabolism of

an anticancer drug, fluorouracil. Its hepatic levels are higher in women than men

(167). A series of clinical studies has shown that fluorouracil CL is dramatically

lower in women than in men, and toxicity is higher (168,169). Fluorouracil CL in

cancer patients (L/hr /m2) showed a wide dispersion for both men (median, 179;

range, 29–739) and women (median, 155; range, 56–466). Values were lower

significantly for women compared with men (P ¼ 0.0005) (170).

Gender differences in drug transporters are still much less studied than in

metabolic enzymes. Some animal data suggest gender differences, however, evi-

dence for humans are less apparent. Human multidrug-resistance gene (MDR1)

product Pgp has been reported to be higher in livers of men compared with

women (66), but phenotyping with fexofenadine did not demonstrate gender

differences in CL. Gender-related hepatic Pgp differences may contribute to

gender disparities in CL of CYP3A substrates that are also Pgp substrates (138,171).

Pgp and other drug transporters may play a significant role in determining

clinical responses, where gender-related differences are potentially more

pronounced (see Chap. 8).
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Excretion

Renal clearance of drugs that are not actively secreted or reabsorbed is dependent

on the glomerular filtration rate (GFR), which is directly proportional to weight

(172), and, consequently, higher on average in men than women. Hence, gender

differences in rates of renal excretion for most drugs are most likely attributable

to weight differences (105,173). On the other hand, there are evidences of weight-

independent gender differences in GFR (174). Many formulas used to calculate

creatinine CL from serum creatinine, like the Cockcroft-Gault equation (175),

include both weight and gender as predictors.

Drugs that are actively secreted by the kidney may show gender differences

in excretion. One study in humans has shown increased renal CL of amantadine,

an organic cation requiring secretion by the kidneys (176), in men compared with

women.

Other examples of drugs in which elimination is primarily through renal

excretion and is affected by gender are:

. Digoxin (177,178)

. Metildigoxin (179)

. Vancomycin (180)

. Cephalosporins (181,182)

. Fluoroquinolones (183)

. Methotrexate (184)

The renal clearance of these drugs in women was lower than in men.

All these data reinforce the need for gender-adjusted dosage selection for

renally excreted drugs with low therapeutic to toxic ratios and/or adverse

effects related to concentrations. Further study on gender-based differences in

renal excretion in humans is required to clearly delineate the contribution of

this factor.

Gender Effect on PK Through Population Modeling

The use of standard data analysis methods based on descriptive statistics and clas-

sical analysis of variance is not optimal in case of exploring effects of covariates

on drugs’ PK. Due to close association between gender and body size parameters,

it is not a simple task to identify a primary effect unless an adequate statistical

tool is carefully applied. Another serious problem of “classical” PK study

designs is that they are underpowered. The number of subjects included is

arbitrarily chosen, usually too low (e.g., 8 or 12 per group), and, therefore, the

results of the studies are highly dependent on “outliers.” Just one subject with

a PK parameter (say, CL) accidentally deviating from others may lead to a

wrong overall conclusion. Simulation based on a population PK model may

help in properly designing studies.

Consequently, some, if not most, of the results of the studies cited pre-

viously should be considered with caution. The method of choice is population
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modeling that, among other advantages, enables researchers to take into account

the intrinsic correlation between PK parameters (e.g., CL and volumes of distri-

bution). Such a correlation may cause an illusive effect of a covariate on CL,

whereas the true effect is on V.

Another serious problem of standard PK data analysis is that the results are

inconclusive. Suppose the gender effect on CL is substantial and causes 50%

difference. Should one adjust the dose for the clinical use accordingly? To

answer this question, a detailed analysis, including PK, PD, and efficacy/toxicity

data, is needed. The advantage of population modeling is that a PK model can be

easily integrated in a PK–PD model, followed by drug efficacy/safety modeling.

In this way, PK information is translated into clinical responses (endpoints) and

the decision on the necessity of dose adjustment becomes well-founded.

In the remaining part of the subsection, an overview will be given of recent

population analyses where gender effects on PK are addressed.

The first example presents a case where apparent gender differences in CL

could be fully explained by the body size effect (185). Galantamine is a revers-

ible, competitive inhibitor of acetylcholinesterase and an allosteric modulator of

nicotinic acetylcholine receptors effective in Alzheimer’s disease. It is cleared by

renal and hepatic mechanisms, including metabolism by the CYP2D6 and

CYP3A4 isoenzymes. Individual Bayesian estimates of CL show differences

between male and female patients, though not very dramatic (Fig. 5).

However, the final covariate model

CL(L=hr) ¼ 9:4� 0:033�(AGE� 75)þ 0:049�(BW� 67)þ 0:072�CLCR

did not include gender as a covariate. Thus, gender disparity was exclusively due

to BW and CLCR differences between males and females.
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Figure 5 Galantamine oral clearance in Alzheimers’ patients. The bars show 95%

confidence intervals of the distributions of individual estimates.
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Another example represents the case of significant and distinct BW and

gender effects on steady-state volume of distribution (Vss) of the anticancer

drug vorozole (186). Figure 6 shows individual Bayesian estimates of Vss

plotted against weight (left panel ). As can be seen, estimates for females (F )

are systematically higher than for males (M ). If the same values are plotted

versus the difference between BW and the lean body mass (LBM) (this difference

may represent the fat mass) two clouds of points overlap. This means that the

gender disparity in Vss could be caused by the higher fat content in females

compared with males.

In a study in patients infected with HIV, population estimates of indinavir

CL were 32.4 L/hr for females and 42.0 L/hr for males (187). CL was also mod-

erately correlated with BW. Population PK of melphalan infused over a 24-hour

period in patients with advanced malignancies demonstrated highly significant

and pronounced gender effect on CL (188). The final model for a typical

patient predicted 28% lower CL in females compared with males. Interestingly,

no body size parameters, including body surface area (BSA), affected melphalan

CL. Nevertheless, in the abstract, the authors reported BSA-normalized values:

14.3+4.5 L/hr per m2 in male versus 12.3 + 4.5 L/hr per m2 in female patients.

Such a normalization of CL, which does not seem to be justified, reduced the

gender differences from 28% to 14%.

In an extensive population PK analysis of darifenacin based on 18 clinical

studies in healthy subjects and patients, Kerbusch et al. (189) found that CL was

Figure 6 Individual Bayesian estimates of vorozole Vss in healthy volunteers versus

body weight (WT) (left panel); and body weight LBM difference (right panel).
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31% lower in females compared with males. In the final model, the covariates

race, gender, and circadian rhythm, accounted for approximately half of the

variability in the estimated exposures to the drug. Population modeling of melox-

icam concentration data collected in 586 rheumatoid arthritis patients showed

slightly lower CL in females compared with males (0.347 vs. 0.377 L/hr,

respectively) (190).

The metabolic pathways for capecitabine include 50-deoxy-5-fluorocytidine

(50-DFCR) and 50-deoxy-5-fluorouridine (50-DFUR) formation, which are then

converted to the pharmacologically active agent 5-fluorouracil (5-FU) (191). Sys-

temic exposure to 50-DFUR and alpha-fluoro-beta-alanine (FBAL), a catabolite

of 5-FU, was predictive of dose-limiting toxicities. The authors developed a

multi-response population PK model for the description of plasma concentrations

of 50-DFUR, 5-FU, and FBAL following oral administration of capecitabine.

Statistically significant (P , 0.001) effects were found for the influence of

gender, BSA, and total bilirubin on 50-DFUR clearance and the influence of

CLCR on FBAL clearance. Gender differences were only marginal. PK and PD

data of clinical trials of azimilide for prevention of supraventricular arrhythmia

recurrence were analyzed using mixed-effects method (192). CL was found to

depend on weight, gender and current tobacco use. The 17% increase for male

patients compared with female patients were observed.

An anticancer drug pemetrexed disodium was administered as a 10-minute

IV infusion, and concentration–time data were subject to population PK model-

ing (193). CL was dependent on CLCR, weight, and, to a lesser extent, alanine

transaminase and folate deficiency. Gender and weight were significant predic-

tors of the central volume of distribution. 5-FU PK following IV infusion in

patients with advanced colorectal cancer showed circadian changes of CL

(194). The typical mean (through 24 hours) CL in the male subgroup was

twice as large (125 L/hr) as that in the female subgroup (65 L/hr).

The population kinetic analyses of methotrexate in patients with rheuma-

toid arthritis after oral and intramuscular administration detected an effect of

gender on renal clearance in the order of 17% even after adjustment for CLCR

and weight (184). In a study by Marino et al. (195), PK of pyridostigmine

bromide was shown to be gender- and weight-dependent. The population PK

study of amikacin in neonates revealed weight- and gender-dependent CL as

28% higher in girls than in boys (196). Theophylline PK was studied in the

pediatric population (197), and gender, age, and weight were found to be the

most important demographic fixed effects influencing CL. Race was not found

to be important. Another study of theophylline in the same population (198)

confirmed the significance of gender effect (CL for males was 25% higher than

that for females); the race effect was found to be significant, too.

Population studies of riluzole in patients with amyotrophic lateral sclerosis

showed 32% lower CL in women compared with men (199). The smoking status

was the second main covariate to explain interpatient variability in CL. Only

5.7% lower valproic acid CL in females, compared with males, was identified

in a population PK study (200). In another study by the same author, CL in
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females was about 11% less than in males (201). Other CL predictors were

weight and the drug doses. A group of authors studied epirubicin PK in cancer

patients (202). A significant proportion of the variability in CL could be attri-

buted to gender, and also to age in women. For example, a 25-year-old man

would display a mean CL of 95 L/hr, whereas a 70-year-old woman would

exhibit a mean CL of 64 L/hr. Such differences might be important in the selec-

tion of dose regimens.

In conclusion, although gender disparity in PK has been identified for

numerous drugs, differences are generally only subtle. For a few drugs, these

differences have been shown to result in different PD responses, but their clinical

relevance remains unproven.

GENDER DIFFERENCES IN PD AND CLINICAL ENDPOINTS

PD variability in humans is large, usually more pronounced than PK variability

(203). PD disparities related to gender are one of the important causes of such

variability; however, they have not been studied as extensively as PK differences.

Gender effects on PD or clinical response can only be investigated by demonstrat-

ing that the same plasma concentration of a drug in the two genders does not yield

the same pharmacologic outcome or, preferably, through extensive PK–PD

modeling. These types of studies are still quite rare. Some studies that have exam-

ined PD differences between men and women are summarized in the following.

One study cited earlier showed that the oral clearance and the apparent

volume of distribution of prednisolone were both higher in men than women,

but these PK differences were not accompanied by PD differences (106). Specifi-

cally, the 50% inhibitory concentration (IC50) values for effects of prednisolone

on cortisol secretion and T-helper lymphocyte or neutrophil trafficking were not

statistically different between men and women. However, another group found a

significantly smaller IC50 value in women (0.1 vs. 1.7 ng/mL) for methylpredni-

solone suppression of cortisol secretion, indicating increased sensitivity (131).

Gender-based differences in the pharmacodynamics of prednisolone may be

mediated by endogenous estrogens; for instance, the IC50 values for effects of

methylprednisolone on basophil trafficking are related to estradiol concentrations

in a log-linear fashion in women, with increased sensitivity found at higher estra-

diol concentrations (131).

Earlier a study was cited that demonstrated increased bioavailability and

decreased CL of oral verapamil in women compared with men (134,135); differ-

ences in pharmacologic effect secondary to these gender-based PK differences

were observed, with greater reductions in blood pressure and heart rate observed

in women compared with men taking oral verapamil (204,205). Unfortunately,

PK–PD modeling was not attempted and that makes the findings of this extensive

study inconclusive. Another study that examined gender-based PK differences

for oral verapamil (both enantiomers) and norverapamil (both enantiomers)

showed that the reduction in mean arterial blood pressure and PR-interval
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changes owing to the drug were closely correlated with its plasma concentration,

and no impact of gender per se was observed (135).

Gender differences in response to various analgesics have been fairly well

studied (206), mainly because men and women seem to respond differently to

the syndrome of pain. The majority of the studies in humans point to greater

analgesic effects with opioid agonists in females compared with males

(207–209). Furthermore, women may have more side-effects than men when

taking opioid agonists. For instance, women had a 60% higher risk of nausea

and vomiting than men with the use of opiates, although efficacy did not differ

between the two groups (210).

Gender differences in analgesic response have also been observed with

nicotine and other cholinergic agents. Studies involving these agents have been

rare in humans, but one group did investigate the analgesic effects of a nicotine

patch in men and women (211). Ratings of electrocutaneous stimulation were

obtained 2.5 hours after patch application from 30 male and 44 female smokers

and non-smokers on either placebo or a nicotine patch (7–21 mg/24 hr

transdermal). Nicotine increased the pain threshold and tolerance ratings of

men, but had no effect on the pain ratings of women. Furthermore, there was

no effect of smoking history on pain ratings among men, suggesting that the

changes in pain perception reflect a direct inhibition of pain by nicotine, rather

than relief from nicotine withdrawal symptoms.

Anesthetic agents have also been investigated for gender-based differences in

PD and clinical responses (212). Females have 20–30% greater sensitivity to the

muscle relaxant effects of vecuronium, pancuronium, and rocuronium (100,101)

compared with men in terms of doses. The exact reason for the gender differences

in the sensitivity is still unclear. The authors (107) incline to the PK differences

(diverse distribution) as the likely explanation. Again, proper PK–PD modeling

might help in indentifying the reason for gender diversities in this case.

PD differences seem to explain a 30–40% increase in sensitivity to the

effects of propofol in males compared with females (213–216). Diazepam

impairs psychomotor skills to a greater extent in women compared to men (217).

Many psychotropic medications also appear to exhibit gender-mediated

differences in PD (43,218–220). Women show greater improvement in psychotic

symptoms and more severe side-effects with typical antipsychotic agents than do

men (221). For example, women appear to need much lower doses of fluspirilene

than men to treat schizophrenia (222). The gender differences in the antipsychotic

treatment responses may be at least partially a result of different hormone

concentrations or hormonal effects on receptors (44,220). Detailed studies as to

whether these differences are mediated through PK or PD mechanisms are

needed (220,223). Females have higher risk of hyperprolactinemia as an

adverse effect with risperidone and conventional antipsychotic agents (224).

A number of studies have also shown that men and women respond differ-

ently to antidepressants (220,225). For example, men may respond better to

imipramine than do women (226). Another study showed that depressed men
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suffering from panic attacks are better treated by tricyclic antidepressant agents,

whereas women with similar symptoms respond better to monoamine oxidase

inhibitors (227). Women may also have a greater magnitude of response to ser-

otonin (5-HT) agonists and serotonin reuptake inhibitors than do men (225). This

difference may be related to differences in serotonin binding to serotonin uptake

transporters. The binding of [3H]paroxetine to platelets, which may model sero-

tonergic neurons was examined (228). Platelets of men had fewer binding sites

and a lower affinity for paroxetine than did platelets of women. Consistent

with these results, prolactin secretion in response to serotonin agonists is

greater in women than in men (229).

The gender differences in nociception and response to ibuprofen were

investigated in healthy subjects. Men had a significantly greater stimulus

threshold, that is, lower nociception than women. However, only men exhibited

a statistically significant analgesic response to ibuprofen. None of these results

could be attributed to PK disparities, since the time courses of the plasma concen-

trations showed no gender differences (230). Women are more sensitive to insulin

than men because of an enhanced insulin sensitivity in muscles (231).

There may also be gender differences in the response to cardiovascular

drugs (232). Men and women may respond differently to antihypertensive

agents (232,233) and antithrombotic therapy (232). A substantial amount of

information was accumulated in the review by Makkar et al. on the incidence

of the torsade de pointes (TdP) arrhythmias (234) associated with antiarrhythmic

drugs, quinidine, procainamide, disopyramide, and amiodarone. Women made up

70% (95% confidence interval, 64% to 75%) of the 332 reported cases of cardi-

ovascular-drug-related TdP, and a female prevalence exceeding 50% was

observed in 20 (83%) of the 24 studies having at least four included cases. The

authors suggest that TdP do not appear to be related to gender differences in

drug levels, but rather to an intrinsic electrophysiological difference.

Tirilazad is an inhibitor of membrane lipid peroxidation. Its effectiveness

for treatment of subarachnoid hemorrhage could only be shown in men, but

was unproven for women (235). Gender differences in CL and the resulting

differences in systemic exposure to tirilazad were discussed as a potential

cause for the observed lack of efficacy in women (132). However, further inves-

tigations, including a population PK analysis of multiple studies, suggest that

the effect of gender on tirilazad kinetics is only modest or even minimal

during multiple-dose administration to a middle-aged population, the group

most at risk for experiencing a subarachnoid hemorrhage (236). Thus, other

factors, including PD differences, may have substantially contributed to the

dramatic gender disparity in response to tirilazad.

Most of the studies reviewed before did not include any PK–PD modeling,

and, in many cases, it is difficult to judge as to whether the observed differences in

PD or efficacy/toxicity responses are “true,” or caused by underlying PK differ-

ences, or both. Moreover, without detailed PD modeling, one cannot answer the

question on the intrinsic target of gender effect: is it the drug potency that differs
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in men and women or the sensitivity? Another possibility is the difference in the

drug transport to the site of action.

In a study by Parker and Hunter (237) of the neuromuscular blocking agent

atracurium a detailed PK–PD modeling was performed. The model fitted to indi-

vidual data included an “effect” compartment representing a delay between

changes in the drug plasma concentration and PD effect. The response was

described by a sigmoidal Emax model. The only gender effect identified was

that on the transport rate constant to the “effect” compartment. No difference

in the concentration corresponding to the half-maximum response between

males and females was found (237).

The most common adverse event of all anticholinergic compounds used in

patients with Alzheimer’s disease is nausea. In population PK and PK–PD mod-

eling of galantamine plasma concentrations, and adverse events data collected in

several Phase III studies (185), a logistic regression model was fitted to nausea

incidence with the peak plasma concentration (Cmax) as predictor. Cmax corre-

sponding to 50% probability of nausea (CE50) was estimated, and it turned out

to be around 95 ng/mL in women, which was much lower than in men

(.200 ng/mL, Fig. 7). This indicates that women are more susceptible to

nausea, which is in concert with the findings by Cepeda et al. (210). In contrast,

PK differences were small (185).

An interesting example of PK–PD modeling of the methylprednisolone

suppressive effects on cortisol secretion and basophil and helper T-lymphocyte
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Figure 7 Probability of nausea in Alzheimer’s patients as a function of the peak plasma

concentration of galantamine (men and women shown separately). The vertical dotted

lines show estimated CE50 values.
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trafficking was published by Lew et al. (131). A dramatically smaller 50% inhibi-

tory concentration (IC50) value (0.1 vs. 1.7 ng/mL) was seen in women for

suppression of cortisol secretion, indicating increased sensitivity. However, the

areas under the effect-time curves were similar for both groups. The IC50

values for effects of methylprednisolone on basophil trafficking related to estra-

diol concentrations in a log-linear fashion in women, with increased sensitivity

found at higher estradiol concentrations. Men displayed a greater 24-hour net

suppression in blood basophil numbers, but no difference was observed in net

cortisol and helper T-lymphocyte suppression between the genders. Thus,

although women are more sensitive to methylprednisolone as measured by corti-

sol suppression, they eliminate the drug more quickly, generally producing a

similar net response (131).

Plasma concentration and neuromuscular block data from 241 patients in

eight prospectively designed Phase I–III trials were pooled and analyzed using

population PK–PD modeling (238). The PD variable was percent block relative

to a baseline control. The model included the “effect” compartment, and its PD

part was the Emax model. Maximum effect parameter was fixed at 0% since at the

concentration peak a complete block was observed. The only statistically

significant gender effect was that on the “effect” compartment equilibration

rate constant, which was 14% higher in females than in males.

In the article by Mougenot et al. (188) that was cited in the previous section,

population modeling was applied to evaluate covariate effects on PK parameters

of melphalan infused over a 24-hour period in patients with advanced malignan-

cies. Highly significant and pronounced gender effect on CL was identified. In an

attempt to establish an exposure–response relationship, the authors plotted the

percentage decreases in red blood cells count, white blood cells count, and

platelet count at the nadir during each chemotherapy course against AUC. As

one could expect from such a simplistic analysis, no relationship was found.

It seems the adequate mechanistic-based PK–PD analysis would use indirect-

response models (239), in particular, models that take into account the cell

turnover and cell life-span (240–244). The PK–PD modeling approach would

enable researchers to explore the impact of patient covariates like gender on

essential processes involved, including the drug effect.

The study by Gieschke et al. (245) of capecitabine PK included an attempt

to find a relationship between the exposure (AUC and Cmax of active metabolites)

and the safety and efficacy parameters. Of 42 concentration–effect relationships

investigated, only five achieved statistical significance. Thus, a positive

association between the AUC of FBAL and grade 3–4 diarrhea (P ¼ 0.035), a

positive association between the AUC of 5-FU and grade 3–4 hyperbilirubinemia

(P ¼ 0.025), a negative association between the Cmax of FBAL and grade 3–4

hyperbilirubinemia (P ¼ 0.014), a negative association between the AUC of

5-FU (in plasma) and time to disease progression (hazard ratio ¼ 1.626,

P ¼ 0.0056), and a positive association between the Cmax of 5-DFUR and

survival (hazard ratio ¼ 0.938, P ¼ 0.0048), were obtained. In general, there
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was a broad overlap in systemic exposures to capecitabine metabolites for all

patients regardless of safety and efficacy outcomes. The overlap translates into

absent or weak relationships between systemic exposure and safety/efficacy par-

ameters. The basis of these findings may be that concentrations of 5-FU, 5-DFUR,

and FBAL in plasma do not necessarily reflect concentrations in healthy tissues

and tumors after capecitabine therapy. One should mention that the univariate

logistic regression analysis and Cox proportional hazard regression using six

predictors (AUC and Cmax of each active metabolite) chosen by the authors

(245) are inefficient due to the inherent multiple comparison. The reported

P-values should therefore be regarded with caution.

In view of the potentially hazardous QTc prolongation caused by drugs,

substantial efforts have been made to elucidate factors affecting processes

involved in prolongation of QT intervals (246–250).

In a study of 91 healthy subjects, an effect of physical exercises on the QT

interval was assessed (251). No drug was administered, and the aim of the work

was, in fact, to explore the natural behavior of the QT interval without pharma-

cological intervention. QT was analyzed using the heart rate and subject gender

and age as covariates. The gender differences were evident at the heart rate below

110 min. Unfortunately, only standard statistical methods were applied for the

data analyses with no mixed-effects modeling, and the findings of this interesting

study cannot be generalized.

An antiarrhythmic drug d-sotalol is known to prolong the QTc interval,

and PK–PD modeling of data collected in 24 healthy subjects after i.v. infusion

of the drug at three dose levels showed significant gender differences in baseline

QTc: 0.40 versus 0.38 seconds in females and males, respectively (252). The drug

effect was descibed by the sigmoidal Emax model, and no gender differences

in Emax, EC50, and Hill parameters were found. The authors used a standard

two-step (STS) approach, namely, individual model-fitting followed by a statisti-

cal analysis, a procedure known to be less efficient compared with mixed-effects

modeling. Particularly, STS usually overestimates BIV (253), which makes

identification of covariate effects difficult. For example, the key parameter

EC50 varied from 1.1 to 906 ng/mL (252).

The same STS method was applied in the study of 68 healthy subjects

receiving an antiarrhythmics azimilide dihydrochloride through the i.v. route

(254). The authors did not examine covariate effects, particularly the impact of

gender was not studied since there were only seven women in the study group.

A circadian rhythm in QTc was observed and estimated: peak circadian variation

was equivalent to 14% Emax (254). A population analysis of azimilide PK–PD

data was that of Phillips et al. (192). The circadian rhythm was not taken into

account in this analysis, and also the between-day variability in baseline QTc.

The linear, Emax and sigmoid Emax models were applied, and the second one

was found to be optimal. The baseline QTc interval was dependent on gender:

392 and 400 ms in males and females, respectively. This is in fairly good

agreement with the findings by Salazar et al. (252).

PK and PD Variability 127

Copyright © 2006 Taylor & Francis Group, LLC



Shi et al. (255) carried out population PK and PD modeling of oral sotalol

data in pediatric patients with supraventricular or ventricular tachyarrhythmia

described in Chap. 12. A simple linear PD model relating QTc interval and

plasma sotalol concentration was found to satisfactorily fit the data that were

relatively sparse. The gender effect on the baseline QTc was significant, but

weak, and was not included in the final model. The slope parameter did not

depend on gender. Note that the study protocol did not foresee a placebo

period, and circadian variation of baseline QTc was not considered in the

analysis. Also, the between-day variability in the baseline was not incorporated

as a separate variance term in the model.

All these PK–PD analyses of QT prolongation data had the common

shortcoming: the QTc intervals were calculated from QT and RR intervals

using the Bazett equation (QTc ¼ QT /RR0.5), known to be suboptimal (256,

257). The actual correction exponent is on average lower than 0.5 and substan-

tially varies between individuals (258). The best way to model the QT pro-

longation caused by drugs is to incorporate the correction equation in the

model in the form QTc ¼ QT /RRW where the exponent W is a PD model

parameter to be estimated together with other parameters. This approach was

applied in an analysis of the results of the cardiovascular safety studies of two

experimental compounds (A and B) discontinued from development (259).

The PD model fitted to QT records was as follows:

QT ¼ QTcbsl � (RRW þ CRC þ Emax �C
H =½CH

50 þ CH �) (11)

where QTcbsl is a corrected baseline value, and CRC represents a circadian

rhythm submodel (the sum of two cosine functions). The Emax sigmoidal

model was used as a drug effect submodel. The Emax parameter was expressed

in terms of a fractional change from the baseline. All model parameters were

subject to BIV, except the Hill parameter. For each individual, QTcbsl varied

between occasions (study days). Drug concentration C was predicted for each

individual on the basis of a population PK model that was developed beforehand

(Bayesian predictions). Placebo data and active treatment data (all doses) were

combined in a single data set, and the population model was fitted to this set in

one run (separately for each compound).

Table 2 summarizes the typical value estimates of the most important PD

parameters. Baseline QTc intervals were higher in females than males in both

studies. Emax expressed in terms of a fractional change from QTcbsl did not

show gender differences, but, as a result of differences in baseline values, the

maximum QTc intervals (QTcbsl 
. Emax) were longer for females than males.

The two compounds differed considerably with respect to their activity (Emax)

and potency (C50), and both showed a higher potency in females than in

males. Figure 8 shows examples of the QTc data of compound A in two
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individuals: a man and woman, expressed as changes from baseline, and the cor-

responding model fits (the drug effect part only). Emax estimates of the individuals

slightly differ due to random BIV, while C50 for the man is higher than for the

woman as the consequence of the gender effect.

Table 2 Estimates of the Typical Population Values of Parameters of the

QT Prolongation Model

Compound

A

Compound

B

QTcbsl, ms

Females 392 391

Males 380 382

Emax (fractional change from

baseline)

0.076 0.006

Absolute QTc maximum, ms

Females 422 393

Males 409 384

C50, ng/mL

Females 118 63

Males 154 84
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Figure 8 Examples of corrected QT intervals (changes from baseline) versus plasma

concentration (the logarithmic scale) in a man and a woman, illustrating gender differences

in compound A potency. Closed circles and dashed lines correspond to the woman; open

circles and dashed-dotted lines to the man. Vertical thin lines show individual C50 values.

Bold lines represent individual (Bayesian) fitted curves.
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PITFALLS IN ESTIMATING AND INTERPRETING
EFFECTS OF SUBJECT DEMOGRAPHICS

Quantitative assessment of effects of subject demographics on PK and PD is a

complicated problem, as many of those characteristics are mutually correlated.

For example, all body size-related covariates (BW, HT, BSA, LBM, BW) are cor-

related, which makes selection of the best predictor difficult. Figure 9 shows plots

of HT, BSA, LBM, ideal BW versus BW of 1361 unrelated adults (903 men and

458 women). BSA is especially tightly correlated. Taking into account that the

impact of body size on the most important parameters like CL is usually not

dramatic, it does not make a big difference which covariate to use as a predictor.

The current practice in the oncology area to adjust doses per BSA does not have

any reasonable background (260).

Not only oncologists, but also some pharmacokineticists, believe that

expressing CL or dose per kilogram weight (or m2 BSA) provides correction

for the BW effect. This would be a right method if CL was proportional to

BW; however, it is not typically the case. In fact, the effect of BW or other

body size variables on CL is complex and depends on elimination mechanisms
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involved. For example, in a study already cited (185), the following covariate

model for galantamine CL has been developed (see p. 119).

CLCR in this study was calculated using the Cockroft-Gault equation. For

males:

CLCR(mL=min) ¼ BW � SCR (140� AGE)=72

where SCR is serum creatinine (mg/dL). For females, the coefficient 0.85 was

applied. According to the model, for 75-year-old patients (note these were

primarily Alzheimer’s patients who were elderly) and SCR of 1 mg/dL, the

typical profile of CL linearly depends on BW (Fig. 10, panel A, solid line). CL

normalization to the median BW of 67 kg (dashed line) does not correct the

parameter properly. Dose adjustment for body weight in this case may result,

for example, in overdosing in lighter patients. On the other hand, if CL is

proportional to body weight, normalization would work ( panel B).

In the analysis by Gieschke et al. (191), it was found that a 10% increase in

BSA resulted in a 12% increase in 50-DFUR CL. This indicated a proportionality
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Figure 10 Normalization of galantamine clearance per kilogram body weight (dashed

lines) assuming the actual linear ( panel A) and the hypothetical proportional ( panel B)

models. Panel C compares clearance versus body weight relationships in males (dotted

line) and females.
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and justified dose abjustment. However, for most drugs, CL in the adult

population is far from being proportional to the body size. According to some

population PK analyses, it may even be independent of it [e.g., (261–265)].

Therefore, dose adjustment is strongly not recommended unless population PK

analyses show proportionality. In pediatric patients, the situation is different:

CL is often proportional to BW and dose adjustment is justified.

Panel C of Figure 10 illustrates the gender effect on the typical values of

galantamine CL. The covariate model does not include gender effect on the meta-

bolic part of CL (i.e., the part that does not depend on CLCR). The observed

differences in CL come from 15% lower CLCR in females compared with

males. These differences are small, and no dose adjustment is needed.

As can be seen from Figure 9, association between gender and BW is obvious:

on average, men are larger than women. Due to this, the BW effect on any PK or PD

parameter will automatically lead to apparent gender disparities. Hence, the

observed gender differences can only be attributed to the “pure” gender effect if

they remain significant after the body size effect is properly implemented in the

model. To avoid the confusion, we will only consider differences between males

and females as a true gender effect if they cannot be explained by just body size,

but stem from variations in factors such as gastric emptying time, plasma protein

levels, activity of drug-metabolizing enzymes, drug transporter function, excretion

activity (PK factors), receptor density, intensity of transduction processes, and so on,

translating into clinical effect differences (42). In view of this, the early studies

where population modeling was not used have nowadays only a limited value.

The most serious problems are associated with evaluating effects of patient

demographics on PD or clinical endpoints. The same patient characteristic, for

example, gender, may affect either PK or PD of a drug, or both. Without rigorous

PK modeling followed by detailed PK–PD modeling, one cannot conclude what

specifically causes gender differences in a biomarker or clinical response. Due

to this, many early reports of gender differences also have a limited value.

From the point of view of therapeutic implications, the exact reason for gender-

related disparities may be not critical; however, if the disparities require dose

adjustment, one needs to know the actual source in order to estimate the right

doses. The best way to do it is through simulation such as those performed in

the previous sections. Additional examples will be given in the next section.

POPULATION MODELING AND SIMULATION AS A TOOL
FOR DOSE OPTIMIZATION IN DRUG DEVELOPMENT

A final goal of Phase II is the identification of an optimal dosage regimen that pro-

vides a high probability of successful confirmation in Phase III that the compound

is safe and efficacious (266). Frequently, however, dose-finding is being done in

Phase III, and the goal of Phase II is being limited to identify a maximum safe

dose. Dose optimization in Phase III is costly and inefficient; often it results in

testing and even marketing of excessively high dosages that ultimately cause
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safety problems and may lead to a reduction in dosing after marketing and

resultant reduction in sales, or the drug withdrawal from the market (267).

Population PK, PK–PD and PK-efficacy/safety modeling and simulation

can help considerably in selecting optimal doses for further confirming in

Phase III. However, this can only be achieved if sufficient information is col-

lected in Phase II studies in target patients, including those with concomitant dis-

eases that may alter drug PK or PD (hepatic, renal disfunction, and so on), and

appropriate modeling is performed. All available information (including PK

and safety data of Phase I) needs to be combined and a comprehensive model

developed followed by extensive simulation. Simulation will not only enable

the selection of optimal dosing regimen(s) to be run in Phase III. It is of high

importance to ensure that the design is well suited to elucidate dose–response

and will substantiate dose selection for Phase III based on the Phase II study

outcome.

After the completion of Phase III studies (if the outcome is positive), one

more M&S round is necessary after combining findings of the Phase III

program. The goal is to generate final dosing recommendations. At this stage,

the decision is to be taken whether dose adaptation for BW, gender, concomitant

diseases, and so on, is needed. PK aspects have to be taken into account; however,

the studies performed so far and reviewed earlier showed that gender disparities

in PK did not play a significant role. The major emphasis should be on the

efficacy and safety, and even substantial gender differences in CL can be

ignored if they are not translated into efficacy/safety differences.

Simple examples of simulation were presented in the section on “Popu-

lation Modeling.” Simulation based on real data needs to include much

more factors into account. Unfortunately, not so many examples can be found

in the literature on using M&S to optimize dosing regimens. This reflects the

past situation in the industry, where there was variable understanding of the

value of this approach at the level of the development teams (268,269).

The situation is now changing toward more extensive use of M&S in drug

development (2,18,23,270–272). A few examples of dose selection using

M&S will be reviewed here.

Probably the most successful application of PK and PK-efficacy/safety

M&S in clinical development was that of docetaxel (Taxoterew) (273–275), an

anticancer agent of the taxoid family. The population approach was implemented

in Phase II studies to estimate and explain interpatient PK variability using patho-

physiological covariates, generate individual estimates of patient PK parameters,

and systemic exposure using Bayesian estimation, and investigate PK estimates

as predictors of efficacy and safety endpoints through PK-efficacy/safety analy-

sis. The population PK model was developed at the first course of treatment in 24

Phase II studies conducted in more than 50 centers in Europe and in three centers

in the U.S. (266). Of the 18 covariates tested, five had a significant effect

(P , 0.005) on docetaxel CL: BSA, a1-acid glycoprotein and albumin plasma

levels, age, and hepatic function.
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PK-efficacy /safety analyses were conducted using logistic and Cox

regression models on both efficacy and safety endpoints. Model development

involved step-wise inclusion and deletion of covariates (274). Docetaxel CL

was a strong predictor (P , 0.0001) of the odds of both Grade 4 neutropenia

and febrile neutropenia at first treatment course, after adjustment for the

effects of other covariates. According to the logistic regression model, a 50%

decrease in CL is associated with a four- to fivefold increase of the odds of

Grade 4 neutropenia and febrile neutropenia. Cumulative dose was the strongest

predictor (P , 0.0001) for the time to onset of fluid retention, which is a cumu-

lative side-effect. However, the exposure at the first course was also found to

carry additional explanatory power (P , 0.01). As expected for a cumulative

side-effect, the magnitude of CL influence was much less marked than that

observed on first-course hematologic toxicity, with a 50% decrease in CL

being associated with a 46% increase in the risk of experiencing fluid retention.

With respect to efficacy, for breast cancer, no significant relationship was found

between any estimate of docetaxel exposure (CL, peak plasma level, AUC, time

above threshold concentrations) at the first course and either response rate or

time to the first response. This may indicate the need of a more sophisticated

PK-efficacy model. For non-small-cell lung cancer, docetaxel AUC at the first

cycle was a significant (P ¼ 0.023) independent prognostic factor for time to pro-

gression, with a decreased risk of progression in patients with higher exposure.

Thus, population PK and PK-safety M&S enabled the identification of a

population of patients with elevated liver enzymes having decreased CL,

which provided the rationale for making dosage recommendations (25% dose

reduction) and allowed safety concerns with the drug to be addressed. M&S

information obtained and its clinical relevance contributed to the accelerated

approval of the drug based on Phase II data in metastatic breast cancer. This

resulted in a significant shortening in registration time and time to market.

Without these analyses, approval of docetaxel based on Phase II data alone

would not have been obtained (270).

Another simulation example that received approval was that of titration

schemes of galantamine in patients with Alzheimer’s disease having moderate

hepatic impairment (185). In patients without the concomitant disease, the rec-

ommended titration scheme was starting from 4 mg b.i.d. for one week with sub-

sequent dose increase by 4 mg every week up to 16 mg b.i.d. The distributions of

simulated concentration peaks at the end of each week of the titration period for

patients with and without moderate hepatic impairment (850 patients in each

group) are shown on Figure 11. The latter group has elevation of peak levels

that is not desirable. The modification of the dosing regimen was recommended

starting with 4 mg once daily for 1 week followed by weekly dose escalation: 4, 8

and 12 mg b.i.d. Figure 12 demonstrates that there are almost no differences

between the two groups of patients any more. It is worthwhile to note that

simulation was performed based on a population PK model developed using

pooled data of Phase I–III studies, and there was only one Phase I study in
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Figure 11 Distributions of simulated peak galantamine levels in patients with normal

hepatic function and moderate hepatic impairment using standard titration scheme (4, 8,

12, 16 mg b.i.d.).
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Figure 12 Distributions of simulated peak galantamine levels in patients with normal

hepatic function (standard titration scheme: 4, 8, 12, 16 mg b.i.d.) and moderate hepatic

impairment (modified titration scheme, 4 mg q.d., 4 mg b.i.d., 8 mg b.i.d., 12 mg b.i.d.).

PK and PD Variability 135

Copyright © 2006 Taylor & Francis Group, LLC



non-Alzheimer patients with moderate hepatic impairment. Nevertheless, the

regulatory authority agreed with the dose selection strategy based on simulation

and approved the drug without additional study of the impact of moderate hepatic

impairment in the target patient population.

In a paper by Lockwood et al. (276), a clinical trial simulation study is pre-

sented that evaluated how well two eight-week parallel group studies could iden-

tify doses that corresponded to a response of clinical interest for pregabalin, a

drug for multiple indications, which includes pain relief in diabetic neuropathic

patients. The response of interest was a one-point reduction in pain intensity on

an 11-point numerical pain rating scale. The dose that produced this effect was

defined as the minimum effective dose, as this change was considered the

minimum clinically significant change. A PK model was based on that developed

previously for gabapentine, a drug with similar PK properties and pain relief

activity. It assumed the one-compartment disposition with zero-order input

with the apparent volume of distribution proportional to weight and CL linearly

related to CLCR. The clinical efficacy model included a placebo effect developing

with time, and a drug effect that depended on the average pregabalin plasma level

according to the Emax equation:

E¼Base � {1þPLM � (1� exp½�kpl � t�)þEmax �C
n
avg=(C

n
avgþECn

50)}þ 1

where E is an observed pain score (between 0 and 10); Base is a baseline score;

PLM is the magnitude of the placebo effect; kpl is the first-order rate constant

describing the onset of the placebo effect (days21); t is the time since treatment

initiation (days), Emax is the maximal drug effect; EC50 is the concentration at

which the effect due to the drug is 50% of Emax (mg/mL); Cavg is the average

gabapentine concentration based on dose, and estimated clearance (mg/mL);

n is the Hill coefficient, and 1 is the within-subject random effect. Between-

subject random effects were associated with Base, PLM, and kpl. No actual clini-

cal efficacy data of pregabalin were available, and gabapentine historical data

were used instead to estimate parameters of this model followed by scaling

based on preclinical relative potency data.

The efficacy model suggested (276) by the authors does not seem to be

optimal, as it assumes immediate development of a full drug effect as Cavg

reaches the steady-state. Gabapentine half-life is relatively short: 5–7 hours in

patients without renal impairment (277), and the steady-state is almost achieved

already after one day of treatment. On the other hand, from the first figure of

the article under consideration (276) it follows that the actual effect develops

relatively slowly indicating a delay between the concentration change and the

response change that can be related to transduction processes not taken into

account by the PK-efficacy model. It is not surprising then that the model par-

ameters could not be effectively estimated, the Hill coefficient in particular.

Additional assumptions have been made, leading to excessive uncertainty.
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Nevertheless, the overall strategy was adequate, demonstrating the ability of

M&S to explore rival study designs and to assess the likelihood of success

given prior knowledge on PK and comparative efficacy. The major goal of the

study was to compare two study designs with respect to their ability to estimate

the dose that caused a one-point reduction in the pain score. The designs were as

follows:

Study 1: 2-wk titration; 4-wk stable treatment; daily doses 0,150,600 mg

Study 2: 1-wk titration; 4-wk stable treatment; daily doses 0,75,300,600 mg

Analysis of the simulated data suggested that after accounting for the

uncertainty, there was an 80% chance that the dose defining the clinical

feature of interest was within 45% of the true value. The likelihood of the devel-

opment program to estimate the dose with acceptable precision approximated

50% and ranged from 40% to 70%, depending on the key assumptions. The

minimum dose that should be studied to have a reasonable chance of estimating

the dose that caused a one-point change was 300 mg. This suggests that the

identification of the selected dose–response feature with any real precision

from the chosen design is borderline. Therefore, if the objective was to

confirm the outcome in a future Phase III study, selecting a dose based on this

single outcome might be “risky.” To increase the likelihood, one might consider

changing the number of treatments, the number of efficacy measurements, or the
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Figure 13 Profiles of a score versus time simulated with the PK-efficacy model that inte-

grates the indirect response concept.
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acceptance limits. Further options might be the gathering of additional infor-

mation to reduce the uncertainty associated with key assumptions that influence

how reliably a dose can be estimated. Investigating the impact of these options or

combinations thereof may assist in identifying key failure points in a develop-

ment program that, if remedied, may optimize decision-making and enable the

selection of effective doses for confirmatory studies with a high level of

confidence.

Another case study has been presented recently by Mandema and Wang

(278). M&S was used to optimize the Phase II dose-finding strategy for a new

5-HT1D agonist indicated for the relief of moderate to severe migraine pain.

A drug model was derived on the basis of literature, preclinical, and early clinical

data of the drug, and other 5-HT1D agonists, such as sumatriptan, zolmitriptan,

naratriptan, and rizatriptan. The model was used to explore the likely range of

treatment outcomes for the new drug in comparison with the other 5-HT1D

agonists and to design a dose-ranging study in terms of the number of treatment

arms, spacing of active doses, and sample size, with the objective to confirm effi-

cacy and to support dose selection with the appropriate profile for further

development.

The severity of headache was measured on a four-point scale from

0 ¼ none to 3 ¼ severe pain. The primary clinical endpoint was the fraction of

patients with the headache relief, and the relief was defined as none or mild

pain. The following dose–response model relating the probability of pain

relief to the drug dose was used:

Pr(Pain Relief) ¼ g{bþ Emax � DT
n=(DT

n þ ED50,T
n)þ h}

g{x} ¼ exp (x)=½1þ expðxÞ�

where b corresponds to placebo response, Emax is the maximal drug effect, DT is

the dose of 5-HT1D agonist T, ED50,T is the dose giving 50% of the maximal

effect, n is the Hill coefficient, and h is the random effect reflecting the

between-study variability. This model was fitted to summary data of four

known 5-HT1D agonist (triptans) obtained from seven trials, and parameters

were estimated. It turned out that the only significant differences were in

ED50,T, but not in n and Emax. The latter was 70% at a mean placebo response

of 28%. This finding reflects the fact that all four drugs have the same mechanism

of action and differ only in potency. Since the newly developed compound was

of the same class of 5-HT1D agonists, the relative potency of 3 + 0.5 (SD) was

estimated from preclinical and Phase I studies compared with sumatriptan. The

latter accounted for uncertainty in scaling from animal to man. From Phase I

studies, it followed that 75 mg was the maximum tolerated dose. Through

simulation it was found that the expected dose to achieve pain relief in 60%

of the patients was 19 mg, with 80% probability that the dose is between 11

and 40 mg. Finally, two doses were recommended to include in a dose-finding

study: 20 mg and 40 mg that had 54% and 88% chances, respectively,
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to exceed the minimum marketing target of migraine pain relief in 60% of the

patients. Additional simulation was performed to identify the optimal study

design and the sample size (278).

An M&S study briefly described in the review by Chaikin et al. (270) was

aimed to optimize dosing regimens for the Phase II program in patients. A PK–

PD model was used to simulate the dose of Klerval, a platelet GPIIb/IIIa receptor

antagonist that would achieve the optimal inhibition of platelet aggregation. An

Emax model that included contributions from Klerval and its active metabolite

was fitted to pooled ex vivo data from normal volunteers and the parameters

were estimated. The response variable was the percent inhibition of platelet

aggregation induced by an agonist, such as collagen. The target platelet inhibition

for simulation was between 50% and 80%. PK data from healthy volunteers were

used to simulate the steady-state concentration of the parent compound and the

metabolite after oral administration of 50, 100, 200, and 300 mg b.i.d. of

Klerval, and the model was used to predict the steady-state effect. The 300 mg

b.i.d. dose was judged as optimal in achieving the desired pharmacologic

response. In actual Phase II studies conducted in patients with chronic stable cor-

onary disease and patients with recent (,14 days) and prior acute coronary syn-

drome (.30 days), the observed response at each administered dose was close to

that predicted by PK–PD simulations. The potency of the metabolite was twice

that of the parent drug in normal healthy subjects and the patient populations

studied (270).

An interesting example of M&S was published by Kimko et al. (279)

although the goal of the analysis was not dose selection or design testing. An

outcome of a Phase III trial of an antischizophrenic agent, quetiapine fumarate

(seroquel), was predicted based on information collected in Phase I and II

studies and compared with actual Phase III study results. The time course of

quetiapine concentrations was described by the one-compartment linear PK

model with first-order absorption. The clinical effect was assessed by a brief

psychiatric rating scale (BPRS) and the corresponding model was as follows

(the authors’ notation is used):

BPRS ¼ baseline BPRSþ drft� time� EmaxC=(EC50 þ C )

in which Emax is the maximum effect (shift in BPRS score from baseline) that can

be attained as a result of exposure to drug concentrations C, EC50 is the drug

concentration producing 50% of the maximum effect, and drift is the slope

reflecting time course of disease progression and placebo response. Patient

characteristics, like demographics, were shown not to be predictive covariates

of both PK and PK-efficacy models. All parameters were subject to BIV, and

the corresponding variances were estimated, although, due to the parallel

group design of the Phase II study used to get parameter estimates of the

PK-efficacy model, the variances were probably overestimated. Another short-

coming of the model was similar to that of the model by Lockwood et al.
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(276): no delay was assumed between drug concentrations and the effect. As

the half-life of quetiapine fumarate was short (according to the reported PK

parameters, it was about three hours) the steady-state was reached soon after

treatment initiation, resulting in a full development of the drug effect according

to the Emax model. The authors did not present any goodness-of-fit plots to let

the reader evaluate the model performance. Nevertheless, the simulation of the

Phase III trial outcome was in good agreement with the actual trial, except that

the placebo response showed deterioration of BPRS scores with time while

simulation predicted an improvement.

The problem of delayed response is a common one for clinical endpoints

based on scores. The score reflects the patient status (or disease status) and

cannot change immediately after changing conditions (e.g., therapy). Without

any treatment, the score versus time profile is defined by a spontaneous disease

progression, and the indirect response model shown in the following is the

way to express this paradigm:

dS=dt ¼ vd � va (12)

where S is a score or any other clinically relevant variable reflecting the patient

status, vd and va are deterioration and amelioration rates, respectively. Equation

12 assumes that deterioration results in the increase of S.

An assumption important for the practical use of the model is va proportion-

ality to the current value of S:

dS=dt ¼ vd � KS � S (13)

where KS is a rebalance rate constant, a core model parameter that determines

how fast the system returns to equilibrium after perturbation. At time t ¼ 0

when a patient is enrolled in the study dS/dt ¼ S0
0, an unknown value, since

we have no information about the disease progression before enrollment.

Equation 13 becomes:

S 00 ¼ vd � Ks � S0 (14)

where S0 is a score at enrollment. We use equation 14 to exclude vd in equation

13: vd ¼ S0
0 þ KS

. S0. Equation 13 now reads as follows:

dS=dt ¼ S 00 þ Ks � S0 � KS � S ¼ S 00 þ KS � (S0 � S) (15)

Usually the score S is constrained by definition. For example, in the

case of pain score used in the analysis by Lockwood et al. (269), it is between

0 and 10. In the framework of the indirect response concept, we can consider

an asymptotic value of the score due to disease progression, Smax, which

corresponds to t! infinity. dS/dt! 0 in this case. After taking the limit

we get:

S00 þ KS � (S0 � Smax) ¼ 0 (16)
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From equation 16, S0
0 can be expressed as 2KS 

. (S0 2 Smax) and intro-

duced into equation 15:

dS=dt ¼ �KS � (S0 � Smax) þ KS � (S0 � S) ¼ KS � (Smax � S) (17)

Note that despite the fact that S0 vanished from the model equation, it

remains a model parameter through the initial conditions defining the value of

S at t ¼ 0.

For patients treated with placebo, we assume that the effect is directed

towards the deterioration rate, vd, although the model allows an alternative

target, too. The magnitude of the placebo effect is PL, a parameter that has the

meaning of a fractional change. PL ¼ 1 corresponds to no placebo effect;

PL , 1 means some improvement. After repeating these rearrangements, we

come up with the following equation:

dS=dt ¼ KS � (PL � Smax � S) (18)

Most clinical studies do not include patients without treatment; a typical

efficacy study design includes only placebo and active treatment groups, so esti-

mation of the disease progression independently of the placebo effect is not feas-

ible; that means PL and Smax in equation 18 are not estimable, but only their

product, PL . Smax, which we will denote as SPL, an ultimate score on placebo.

dS=dt ¼ KS � (SPL � S) (19)

Finally, the drug effect is also assumed to change the deterioration rate and

is represented by a function of the plasma concentration, E ¼ 1 þ f (Cp). Again,

the effect on vd is translated into the change of the ultimate score:

dS=dt ¼ KS � (E � SPL � S) (20)

E ¼ 1 represents the case when the drug effect is lacking. There may be multiple

ways to implement the concentration effect. The simplest variant is to assume a

linear equation: E ¼ 1 þ K . Cp, where K is a slope of the concentration–effect

relationship. The advantage of the linear relationship is that the model equation

has in this case a closed-form solution. If the drug half-life is short relative to the

observed changes in S, like in the examples cited previously (i.e., it is much

smaller than ln (2)/KS), Cp can be replaced by an average steady-state concen-

tration. Figure 13 shows profiles simulated according to equations 19 and 20

with the following parameter values: KS ¼ 0.05; S0 ¼ 6.5; SPL ¼ 4; K ¼ 21;

Cp ¼ 0.25. The profiles resemble mean pain score profiles observed in

placebo- and gabapentin-treated groups presented in the first figure of the

article by Lockwood et al. (276).

The function f ( ) can be of an Emax-type, as those used in the articles by

Lockwood et al. (276) and Kimko et al. (279). The model selection should be

based on the goodness of fit criteria, as usual. If PK information is lacking, the

model described can be used to explore dose–response relationships and help
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in dose-finding through M&S. In this case, E is a function of dose D, not concen-

tration: E ¼ 1þ f (D). The impact of patient characteristics, including demo-

graphics, can be easily tested. If the PK component is included, one can

evaluate the impact of patient covariates affecting PK on clinical response in

terms of endpoints; this is the most suitable way to assess the actual role of

those covariates. One important question to answer is: can the dose serve as a

surrogate of concentration. In other words, does concentration as the predictor

of the response have any advantages over just dose?

Currently, there are very few examples of use of this model (280,281);

however, its generality, simplicity, and the fact that it is based on clearcut

semi-mechanistic considerations will favor its wide application in the future.

Concluding the overview of M&S studies published in the literature, it

should be stressed that this is probably only a small part of the studies performed,

especially in the pharmaceutical industry. The majority of studies remains

unpublished due to confidentiality issues. Therefore, the picture is rather frag-

mentary and biased. One can expect, however, more M&S studies published

in the future in view of increasing interest from drug development teams in the

companies and encouraging regulatory climate (282).

CONCLUSION

M&S is a general tool to evaluate complex systems that are hard to track analyti-

cally. This methodology can be incorporated in virtually every step of the drug

development to improve efficiency and assist decision-making. For instance, it

can be used to compare the information yield of competing trial strategies

versus time, costs, and trial complexity. This enables the development team to

balance the value versus cost of additional information derived from a study.

The probabilistic study outcome models can be leveraged into a decision-

making framework that can be further used to optimize the overall development

strategy, also from a financial value perspective. This link is important because

simulation can only determine the relationship between drug features, study fea-

tures, and power or precision to make a certain decision. It cannot, however,

determine what level of confidence one would like to achieve at a certain point

in the development.

It is not surprising, therefore, that PK–PD and PK-efficacy/safety M&S

are becoming more and more essential, especially in the later stages of clinical

development, where there is a need to better understand the dosing regimen—

concentration—efficacy/toxicity relationships in the target patient population.

It is important to recognize that population M&S is one of the driving forces

which can really help to overcome current problems in drug development that

the U.S. FDA has called “stagnation” (282). The outcome of these kinds of ana-

lyses can have an impact on approval and final labeling decisions with respect to

individualization of dosage for optimal therapeutic outcome and to properly

balance benefit/risk.
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SUMMARY

Recent achievements in molecular genetics have led to a substantial accumu-

lation of knowledge about the mechanisms of interindividual variability in

drug response. According to a recent report of the British Department of

Health, the greatest impact of novel genetic tools and technologies will be real-

ized in the field of pharmacogenomics (1). Pharmacogenomics is set to

provide a relevant contribution to our understanding of adverse drug reactions

and non-responsiveness to drug therapy. The most intriguing application of phar-

macogenomics in drug treatment will likely change the way in which we apply

drugs to routine care. It is widely proposed that genetic information of individuals

could be used to avoid “trial-and-error” scenarios during medication. Based on

genotype-based dose recommendations, medicine is expected to evolve from

the commonly used “one dose fits all” strategy to a patient-tailored drug selection

and dose optimization. So far, however, most promises related to the vision of

individualized therapies have remained unfulfilled. The greatest challenges for

the field of pharmacogenomics relate to the issues of genotype–phenotype and

genotype–environment interactions, optimal selection of study designs, predic-

tivity and ethical aspects. Besides other factors, such as drug interactions or

poor compliance, pharmacogenetic variability constitutes a potentially relevant

factor for drug response variability. Although its current impact on the routine
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of medicine is minimal, pharmacogenomics might, thus, provide useful contri-

butions to the future practice of drug therapy.

INTRODUCTION

A Primer to the “Omics ” Sciences

Ambitious genome sequencing projects, powered by significant technological

advances, resulted in the successful deciphering of the genetic information of

the human and many other organisms during the past decade (2,3). The genetic

information of an organism in its entirety can now be described by an exact

order of base pairs within the DNA sequence. The human genome contains

�3.2 billions of base pairs, organized into 23 chromosomes, each holding

between 47 million and 246 million base pairs and containing �30,000 genes.

While the genome of any living organism harbors the complete genetic

information in terms of both structural and functional blueprints of life, each

cell, carrying out specific roles, makes use of RNA, which serves as “working

copy” during protein synthesis. During the process of gene expression, a gene

is transcribed into an RNA copy, which is then processed to a mature, active mes-

senger RNA (mRNA) copy that contains the exact plan needed for the synthesis

of the protein encoded by the gene. The total mRNA content of a human cell, the

transcriptome, is estimated to consist of �100,000 different gene transcripts.

Compared with the total gene count, the higher number of transcripts is a

result of alternations and shuffling introduced during mRNA maturation, for

example, by alternative splicing. The total protein content in a given cell,

tissue or organism, the proteome, is even an additional order of magnitude

higher: the human proteome is estimated to contain up to 1 million different

protein species.

Initiated by “genomics” research, the life science scene has seen the creation

of several other “omics” research fields. While genomics usually includes both,

the genome-wide analysis of gene function and the global analysis of gene activity

(“transcriptomics”), “proteomics” research includes the assessment of protein

content, activity, modification, localization, and interaction. Proteomics is a

rapidly growing discipline, enabled by highly sophisticated technology, such as

protein chips (4), and holds significant promise to refine our understanding of cel-

lular processes in health and disease. Genomics- and proteomics-based

approaches will benefit clinical research by driving both the discovery of new

drug targets and the development of new diagnostic markers (5,6).

The “omics” confusion did not stop in front of the world of small mol-

ecules. Recently, the terms “metabonomics” and “metabolomics” have been

coined. Metabonomics comprises techniques (usually based on NMR technol-

ogy) for examining dynamic changes in the metabolome, the small molecular

inventory of the cell, and targets metabolites or important cellular compounds,

such as nucleotides, vitamins, or catecholamines. Thus, metabonomics and
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metabolomics constitute an interface between genomics, proteomics, and chemi-

cal biology and will also play an important role in the future development of

drugs (7,8).

PGx and Pharmacogenomics: A Definition and Short History

Although the terms pharmacogenetics (PGx) and pharmacogenomics are often

used interchangeably, they do not exactly match. While genetics looks at

single genes, genomics is trying to look at all genes globally and to determine

how they interact and influence biological pathways. PGx can best be defined

as the discipline based on the identification of genetic variations (polymorph-

isms) that affect the inherited response to drugs, aiming at providing molecular

genetics-based diagnostic tests that can be used to personalize drug treatment

(9,10). Pharmacogenetic research is usually focusing on genetic polymorphisms

in genes encoding drug-metabolizing enzymes, drug targets, receptors, and

transporters. Pharmacogenomics aims at an even more ambitious goal, that is,

analyzing a multitude of genes in parallel to assess the transcriptome.

Pharmacogenomics-based research would, for instance, include the application

of genome-wide expression profiling approaches, such as the GeneChip technol-

ogy, which can be deployed to simultaneously assess the activity of thousands of

genes at the RNA level (11). This allows for study of the total gene expression

output of cells in order to discern functions and interplay of genes, for

example, in response to different drugs and/or doses. Thus, pharmacogenomics

usually refers to the field of novel drug discovery and development. Genomics-

based approaches, however, will also help to tailor drug therapies based on a

patient’s individual genetic trait.

Historically, it has long been recognized that patients show substantial

variability in their response to drugs and that unusual drug responses may be clus-

tered in families. These observations have led to the notion that at least some part

of the variability in response to therapeutic interventions may be inherited. This

view was also supported by Karl Landsteiner’s discovery of blood groups in

1901. Concepts about genetically determined reagibility to exogenous com-

pounds in a narrower sense were first formulated by Archibald Garrod in the

thirties, and pursued by phenotype studies by Vogel and Motulsky in the

fifties, and by twin studies by Vesell and Page in the sixties (12,13). The first

routine aspect of PGx, albeit rather on a proteomic level, was screening for a

genetic deficiency in glucose-6-phosphate dehydrogenase (14). Other notable

milestones were the recognition of a close relationship between inherited

deficiencies in serum cholinesterase and susceptibility to muscle relaxants by

Kalow and Genest in 1957 and the description of “slow” and “rapid” metaboli-

zers in 1960. The era of molecular PGx started with the cloning and characteri-

zation of the gene encoding the drug-metabolizing enzyme, debrisoquine

hydroxylase, which is identical with cytochrome P (CYP) 450 2D6 (15). This
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event triggered the discovery of many other genetic variants of metabolizing

enzymes and drug targets, fueling the emerging science of PGx.

With the increased understanding of molecular biology and the completion

of the sequence of the entire human genome (2,3), the concept of studying the

whole genome to predict drug action became feasible and was termed pharmaco-

genomics (16). Today, pharmacogenomics pursues two main goals (17–21): first,

the pharmaceutical industry devotes intense efforts into pharmacogenomics for

drug target characterization in drug development (19). Present drug therapy

targets only about 500 molecules, but genomic target validation may help to

exploit a theoretical number of �30,000 protein targets for drug therapy. The

second line of research aims at elucidating the genetic basis for predicting

drug responses in routine care. Conceptually, this process follows two different

approaches. The traditional approach in detecting a pharmacogenetic trait was

based on the observation of a relevant phenotype, that is, an unusual drug

response in a patient or an unusual metabolic phenotype, for example, by measur-

ing metabolite ratios in plasma or urine. Consecutively, individual patients or

families were studied to elucidate inheritance patterns and to identify a respon-

sible gene. This could be achieved by candidate gene approaches or by screening

techniques, such as differential display or positional cloning strategies. In con-

trast, strategies in the “post-genomic” era capitalize on databases generated

from the human genome project, comprising �30,000 genes, to identify poly-

morphisms or mutations that are associated with drug response phenotypes

(20,21). The mechanisms involved in potential genotype–phenotype associations

need not necessarily be known a priori. This approach allows for the localization

of genetic traits by statistical association to specific regions in the genome and

enables identification of allelic variants that have only subtle clinical conse-

quences. These are most often characterized by point mutations, which cannot

be visualized cytogenetically. Therefore, the identification and analysis of such

genetic variation is pivotal to post-genomic approaches.

Genetic Variation in the Human Genome: The Basis of PGx

To date, it is estimated that the human genome harbors approximately 20,000–

25,000 genes, a surprisingly low number, meaning that only a small percentage

of the genome (�3%) consists of (known) functional roles. Embedded into large

stretches of non-coding DNA and many thousands of interspersed repeats (often

called “junk DNA”), approximately every 60–100 kbps, there are stretches of

DNA encoding a functional product, namely genes. Genes can exist in alternative

forms, the so-called alleles. Because each individual inherits two different alleles,

one from each parent’s chromosomes, the genetic constitution is built up from

either homozygous (two identical, either normal or variant alleles) or heterozy-

gous (the normal and the variant allele) genotypes. Except for monozygotic

twins, humans differ on average in every 100th to 1000th of the total

3.2 � 109 base pairs per haploid genome. Different alleles arise from mutations,
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caused either de novo by spontaneous changes in the DNA sequence or by DNA

damage. Among those mutations, three major types can be distinguished, namely:

(i) insertions/deletions, (ii) repeat length variations in repetitive DNA (called

mini- and microsatellites), and (iii) point mutations. Depending on the exact

nature, a mutation might cause the synthesis of an altered or inactive protein.

Genetic sequence variations occurring with higher frequency among individuals

or populations are called polymorphisms. The human genome is scattered with

millions of such polymorphisms (22), most of them are bi-allelic and affect a

single nucleotide, the so-called single-nucleotide polymorphisms (SNPs). It is esti-

mated that the human genome between any two individuals is identical by only

99.9%; SNPs account for the majority of the genetic variation within human popu-

lations and constitute the molecular basis for interindividual variation of inherited

traits. SNPs significantly contribute to the dynamics of genomes and can be regarded

as the driving force of evolution (23,24). The relationship between SNPs and poss-

ibly associated changes in gene function is illustrated (Fig. 1).

By definition, genes are considered genetically “polymorphic” if at one

given locus more than one allelic variant occurs with a frequency of .1% in a

certain population. Because only a minor fraction of the genome contains

coding sequence, many of these polymorphisms, of which more than 10

million can be expected to exist in the human genome, can be considered

“silent” without any functional effect. However, SNPs serve as genetic markers

because they are inherited together if they reside in close physical proximity on

a chromosome (linkage disequilibrium, LD). SNPs in LD build haplotypes,

between few and several tens of thousands base pair-long genetic blocks that

can be used in genotype prediction in order to assess long stretches of DNA

sequence instead of measuring every single SNP (25).

There is a continually growing list of polymorphisms found in genes encod-

ing drug-metabolizing enzymes, drug transporters and drug targets, and also

disease-modifying genes that have been linked to drug effects in humans. Of

the pharmacogenetically important polymorphisms, most rare alleles are associ-

ated with reduced activity of an encoded protein, but there are also examples of

allelic variants, for example, gene duplications, which lead to enhanced activity.

PGX, DRUG DOSE, AND SAFETY

Genotype-Guided Dose Optimization

The current understanding about how PGx will influence drug dose selection in

future clinical routine is most advanced with respect to allelic variants affecting

genes that encode drug-metabolizing enzymes, such as the CYP2D6 and the

CYP2C9 genes. While CYP2D6 metabolizes �20–25% of clinically important

drugs (26) and affects the pharmacokinetics (PK) of �50% of the drugs in clinical

use (27), CYP2C9 metabolizes 10–20% of the commonly prescribed drugs (28).

A plethora of allelic variants in CYP2D6 result in either poor, intermediate,

Pharmacogenetics and Dose Response 163

Copyright © 2006 Taylor & Francis Group, LLC



Figure 1 Relationship between SNPs and changes in gene function. To date�10 million

human SNPs have been identified, �4 million of which have been validated as double-hit

by the international HapMap consortium (164). It is estimated that�5 million SNPs occur

with a minor allele frequency (maf ) of 10%, which equals a prevalence of one every

600 bp. The bar graph schematically plots the estimated number of SNPs in the human

genome, occurring with frequencies between 1% and 40% (24). Shown is a typical sub-

chromosomal region with scattered, random SNPs (indicated as vertical lines). The

majority of SNPs are located in intergenic regions (iSNPs, white arrows). Perigenic

SNPs (pSNPS, light gray arrows) are located either inside, or in the flanking regions of

genes and affect the promoter, intron, or downstream untranslated (30-UTR) regions.

These SNPs can affect, for example, the transcriptional activity, stability, or correct splic-

ing of the mRNA copy. Coding-region SNPs (cSNPs) affect exon sequences and lead—as

“non-synonymous” changes—to an altered amino acid pattern of the gene product

(ns-SNPs, black arrows). This might ultimately cause, for example, higher, lower or

absent enzyme activity (in case of a non-conservative amino acid exchange). It is esti-

mated that every exon within a human gene harbors at least two cSNPs. Non-conservative

cSNPs are found at a lower rate and with lower allele frequencies than silent substitutions,

likely due to selection during human evolution (165). Note that synonymous codon

changes do not change the gene product but can be used—if in linkage disequilibrium

due to physical vicinity to functional ns-SNPs—as genetic markers (dark gray arrows).
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efficient or ultrarapid metabolizer phenotypes and the six common CYP2C9 gen-

otypes can be correlated either to normal, reduced, or very low enzyme activity.

Both genes have been studied extensively and are often cited as well established,

classic examples of how predictive genotyping could be applied to dose selection

and adjustment during pharmacotherapy. Figure 2 illustrates how the CYP2C9

genotype, for instance, might be used to predict warfarin dosing requirements in

anticoagulant therapy. The S-isomer of warfarin, a commonly used vitamin K

antagonist, is primarily metabolized by CYP2C9 through a typical Phase I

hydroxylation reaction. The low activity-conferring CYP2C9 alleles therefore

cause a reduction in warfarin metabolism and may explain an increased warfarin

drug response in the carriers of these alleles. Clinical studies demonstrated

increased plasma levels of S-warfarin, decreased clearance, increased frequency

of bleeding, and prolongation of hospitalization in patients carrying variant

CYP2C9 genotypes (29). Pharmacogenetic screening may therefore be a

perfect means of identifying patients who require lower initiation and mainten-

ance doses of warfarin, and who are at risk for warfarin-associated bleeding

and certain drug interactions (28,30–32).

Genetic testing for variants of the CYP2D6 genotype could be used to

identify subjects carrying multiple gene copies. They will metabolize drugs

more rapidly; therapeutic drug plasma levels will not be achieved with commonly

prescribed drug doses. On the other side, subjects lacking functional CYP2D6

alleles will metabolize drugs more slowly, indicating lower drug dose require-

ments and smaller therapeutic effect of pro-drugs activated by CYP2D6 (33).

The genotype–phenotype relationship for the CYP2D6 gene is shown schemati-

cally (Fig. 3). The power of CYP2D6 genotyping has been shown, for instance,

for predicting plasma clearance of antidepressants and neuroleptics, as the

dosage of nearly half of the currently used antipsychotics is dependent on the

CYP2D6 genotype (34). A few years ago, first dosing recommendations consid-

ering pharmacogenetic differences in drug metabolic capacity were published for

a set of antidepressants: for tricyclic antidepressants, for example, the authors

recommended dose reductions around 50% for poor metabolizers (35).

Adverse Drug Reactions

Case Study

The issue of inherited differences in response to drugs has recently gained broader

attention due to a report in Fortune Magazine (36) on the death of a nine-year-old

boy. Michael Adams-Conroy, afflicted with the brain damage of fetal alcohol

syndrome and attention-deficit hyperactivity disorder, died in 1995 due to a pro-

longed grand mal seizure. An autopsy showed a massive overdose of fluoxetine,

which he was taking to control his emotional outbursts. This finding prompted

a murder charge against his parents and led juvenile authorities to take

away their other children pending the outcome of a homicide investigation.
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Figure 2 CYP2C9 and warfarin dosing. (A) Main CYP2C9 variants. Two SNPs within

the CYP2C9 gene, called CYP2C9�2 and CYP2C9�3, occur with a frequency of 10–15%

and 5–10% of white populations, respectively. Both SNPs are non-synonymous cSNPs

(black arrows), causing altered gene products (cysteine exchanged for arginine at amino-

acid position 144, and leucine for isoleucine at position 359). (B) Reduced enzyme activity

of CYP2C9 variants. CYP2C9 catalyzes the conversion of S-warfarin to 6- and 7-hydroxy

metabolites (indicated by arrows). The enzyme variants encoded by the variant alleles

display markedly reduced activity and impaired hydroxylation (graph). The

Leu359 variant has a lower affinity and a lower intrinsic clearance for S-warfarin 7-

hydroxylation (166), while the lower activity of the Cys144 variant probably (Continued)

166 Schmidt and Müller

Copyright © 2006 Taylor & Francis Group, LLC



Eventually, it turned out that Michael harbored an unsuspected deficiency in the

CYP2D6 gene that led to drug levels exceeding any previous reports in cases of

fluoxetine overdose.

PGx has repeatedly been proposed as diagnostic and predictive tool for pre-

venting adverse drug reactions (ADR) (13,37,38). Approved drugs frequently

require a warning statement on the product label because of foreseeable ADRs.

Although such warnings are necessary for around 15% of the registered drugs,

ADRs still account for 7–13% of all hospital admissions in Europe (39). In

the United States, it has been estimated that the overall incidence of serious

ADRs is around 6% of the hospitalized patients with �100,000 deaths per

year, making these reactions a leading cause of death (40,41). Besides their

importance in routine drug therapy, ADRs are perhaps the most important

reason for attrition in the costly drug development process. These frequent unpre-

dictable reactions to medications seem strongly influenced by genetic factors

(13). Some genetic causes of ADRs have been identified, including mutations

responsible for anesthetic-induced malignant hyperthermia and for prolonged

apnea after succinylcholine administration.

Table 1 lists commonly observed ADRs with relevance to PGx. An impor-

tant example of a genetic determination of a Phase II reaction is the intolerance to

6-mercaptopurine, a standard anti-ALL (acute lymphoblastic leukemia) drug, due

to the deficiency of thiopurine methyltransferase (TPMT) (42). The TPMT gen-

otype is associated with risk of relapse in ALL and extreme intolerance has been

shown among patients with deficiencies in TPMT activity leading to severe and

even fatal cases of bone marrow aplasia. Reducing the dose of 6-mercaptopurine

in TPMT heterozygotes and use of a full treatment protocol with other types of

chemotherapy in deficient patients allows us to maintain high thioguanine

nucleotide concentrations.

A recent example of a successful elucidation of a “type-B” reaction based

on SNP-mapping is the case of abacavir hypersensitivity (43,44). Hypersensi-

tivity to abacavir, an anti-HIV reverse-transcriptase inhibitor, is a potentially

Figure 2 (Continued) results from altered interaction of the cytochrome P450 with the

NADPH:cytochrome P450 oxdioreductase (167). (C) CYP2C9 genotypes and S-warfarin

clearance. Together with the reference “wild-type” CYP2C9 allele, the two variant alleles

build six common CYP2C9 genotypes, which can be correlated either to normal, reduced,

or very low enzyme activity (168). The genotype therefore can be correlated to different,

individual warfarin dose requirements (28). (D) Concept of genotype-guided dose optim-

ization. In a first step, patients who will respond to warfarin are selected, taking into con-

sideration possible drug interactions (169) or specific molecular factors modulating

anticoagulant therapy such as, for example, coagulation factor IX (170,171) or factors II

and VII (172). In the next step, the CYP2C9 genotype could be used to stratify patients

into poor, intermediate, and normal metabolizers and to predict the likely optimal (start-

ing) dose for therapy.

Pharmacogenetics and Dose Response 167

Copyright © 2006 Taylor & Francis Group, LLC



Figure 3 Implications of CYP2D6 Genotypes for Dose Optimization. (A) Simplified

relationship between common CYP2D6 genotypes and metabolizer phenotypes. SNPs

within the CYP2D6 gene (gray) conferring low-enzyme activity are indicated as black ver-

tical arrows and x-marks. While the heterozygous genotype is associated with an inter-

mediate metabolizer phenotype, carriers of the homozygous variant genotype are poor

metabolizers. Carriers of multiple gene copies, for example, through gene duplication,

present excessive enzyme activity and are ultrarapid metabolizers. Drug clearance is mod-

erately reduced in intermediate and markedly reduced in poor metabolizers, potentially

increasing the risk of adverse drug effects. On the other hand, efficacious drug levels

may not be achieved in ultrarapid metabolizers due to rapid clearance. In contrast, in

the case of pro-drugs, poor metabolizers will likely be non-responders, whereas ultrarapid

metabolizers will be at higher risk of adverse drug effects due to excess drug activation at

standard drug doses. (B) Dose adjustments from standard dosing depending on CYP2D6

metabolizer status and the type of drug.
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Table 1 Examples of Adverse Drug Effects with Relevance to Pharmacogenetics

Gene name Symbol Drug (class) Adverse drug reaction Reference(s)

Cytochrome P450 2D6 CYP2D6 Antipsychotics Extrapyramidal symptoms (84–87)

Codeine Intoxication (47)

Cytochrome P450 2C9 CYP2C9 Warfarin Hemorrhage (29)

Phenytoin Increased toxicity (88–91)

Tolbutamide Hypoglycemia (92,93)

Diphenylhydantoin Cutaneous ADR (94)

Bradykinin receptor B2 BDKRB2 ACE inhibitors Therapy-related cough (95,96)

Dihydropyrimidine

dehydrogenase

DPYD 5-Fluorouracil Severe toxicity (97–99)

Dopamine receptor D3 DRD3 Antipsychotics Tardive dyskinesia (100)

Fc fragment of IgG, low

affinity IIa, receptor

(CD32)

FCGR2A Heparin Heparin-induced

thrombocytopenia

(101)

Major histocompatibility

complex, class I, B

HLA-B Abacavir Toxicity syndromes,

hypersensitivity

(43,44); reviewed

in (102,103)

“Long QT loci” KCNQ1, HERG, SCN5A,

KCNE1, KCNE2

Antiarrythmics, terfenadine,

others

Long QT syndrome, sudden

cardiac death

(104,105)

N-acetyltransferase 2 NAT2 Isoniazid, rifampicin Hepatotoxicity (106,107)

Thiopurine

S-methyltransferase

TPMT 6-Mercaptopurine,

thioguanine, azathiopurine

Myelotoxicity Reviewed in

(108–111)

Thymidylate synthase TYMS 5-Fluorouracil Toxicity (112)

UDP glycosyltransferase

1A1

UGT1A1 Irinotecan Severe toxicity, neutropenia Reviewed in (113)
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life-threatening idiosyncratic ADR affecting �4% of the patients treated. Abaca-

vir was selected for a proof-of-concept experiment for whole-genome SNP-

mapping because the ADR has a typical clinical phenotype and occurs frequently

enough to allow identification of sufficient numbers of affected patients and

matched controls. The goal of the experiment was to identify a genetic pattern

defined by SNPs that are associated with the ADR in patients. Using this

approach, polymorphisms in three HLA candidate genes were found to be

highly associated with abacavir hypersensitivity. Subsequent clinical studies con-

firmed the relevance of these loci in that withholding abacavir in individuals with

HLA-B �5701, HLA-DR7, and HLA-DQ3 reduced the prevalence of hypersensitiv-

ity from 9% to 2.5% without withholding abacavir from a patient who would

benefit from the drug.

PK AND DRUG METABOLISM

Genetic Variants Affecting PK

Inherited differences in molecules determining PK frequently follow monogenic

traits, and in many cases, mutations are inactivating in character. For molecules

that apparently do not have critical endogenous substrates, the molecular mech-

anisms of inactivation include “loss of function” mutations, such as splice

mutations resulting in exon skipping, point mutations resulting in early stop

codons, or complete gene deletions. Missense mutations causing amino acid sub-

stitutions that alter protein stability or catalytic activity and microsatellite nucleo-

tide repeats have also been described. Usually these inactivating mutations affect

single proteins and lead to extreme phenotypes with excessively higher plasma

concentrations. This is particularly relevant for drugs with a narrow therapeutic

index, for example, cancer drugs like mercaptopurine. Although most mutations

are inactivating in character, gene duplications may also occur, rendering the

resulting phenotype hyperfunctional. This is the case for CYP2D6 where gene

duplications due to unequal cross-over lead to 10 times higher dosing require-

ments for nortryptiline compared with the wild-type. Table 2 lists examples for

genetic variants in genes with functional roles in drug metabolism and PK.

Drug distribution may be affected by membrane transporters, for example,

P-glycoprotein (P-gp), the product of the ABCB1 (formerly called MDR-1) gene,

which was first identified by its overexpression in various tumors. Later, P-gp was

also shown to be expressed in various human tissues involved in gastrointestinal

absorption and excretion into the bile. Disruption of one or both MDR-1 genes in

mice was associated with increased bioavailability and reduced urinary clearance

and similar results were obtained in humans when P-gp inhibitors were

administered. Recently, it was shown that an MDR-1 gene polymorphism in

exon 26 affects absorption of digoxin also in humans (21) and response to anti-

epileptics (45).
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Table 2 Examples of Genetic Variants Affecting Pharmacokinetics

Gene name Symbol Variant

Molecular/clinical

phenotype Drug (class) Reference(s)

ATP-binding cassette,

sub-family B (MDR/
TAP), member 1

ABCB1 C.T Pos. 3435 Exon

26 (Ile1144Ile)

Duodenal expression of

P-glycoprotein (MDR-1),

increased plasma levels

Digoxin, fexofenadine,

ciclosporin, talinolol

(21,114,115)

ATP-binding cassette,

sub-family C (CFTR/
MRP), member 8

(sulfonylurea receptor)

ABCC8 Many Decreased insulin response Tolbutamide (116)

Cytochrome P450 11B2 CYP11B2 T.C Pos. –344

Promoter

Variations in aldosterone

and 11-deoxycortisol

production, positive

response to candesartan

treatment

Candesartan (117)

Cytochrome P450 2A6 CYP2A6 Gross deletions Poor metabolizer, impaired

nicotine metabolism

Tegafur (118)

Cytochrome P450 2C19 CYP2C19 Twenty alleles (nine

common variants)

Enzyme deficiency, poor

metabolizer

Antidepressants,

antipsychotics,

proton pump

inhibitors

Reviewed in

(28,32,119,120)

Cytochrome P450 2C9 CYP2C9 Twenty alleles (two

common variants)

Intermediate, poor

metabolizer, warfarin

hypersensitivity

S-warfarin,

tolbutamide,

glipizide, celecoxib,

fluvastatin

(28,34)

(Continued)
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Table 2 Examples of Genetic Variants Affecting Pharmacokinetics (Continued)

Gene name Symbol Variant

Molecular/clinical

phenotype Drug (class) Reference(s)

Cytochrome P450 2D6 CYP2D6 Ninety-one alleles Poor, intermediate,

extensive, ultrarapid

metabolizers

Many, for example,

beta-blockers,

analgesics,

antiarrythmics,

antidepressants,

antipsychotics

(27,34,121)

Dihydropyrimidine

dehydrogenase

DPYD Many Enzyme deficiency,

5-fluorouracil toxicity

5-Fluorouracil (122,123)

N-acetyltransferase 2 NAT2 Eight alleles (three

common variants)

Slow, intermediate, rapid

acetylation

antiarrythmics,

procainamide,

isoniazid

(124)

Sulfotransferase 1A1 SULT1A1 Arg213His Reduced enzyme activity Minoxidil (121)

Thiopurine

S-methyltransferase

TPMT Many Deficiency, toxicity 6-Mercaptopurine,

thioguanine,

azathiopurine

Reviewed in

(108,109)
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Most human drug-metabolizing enzymes responsible for modification of

functional groups (Phase I reactions) or conjugation with endogenous substi-

tuents (Phase II reactions) exhibit common genetic polymorphisms that are

clinically relevant. These genetic variants are most likely the result of dietary

adaptation to various food challenges by alkaloids or plant toxins (27,39). One

reason for the relatively high frequency may be that some enzymes are redundant

and thus dispensable for life. The frequency of almost all known polymorphisms

differs between the ethnic groups—a finding that proved decisive in the discovery

of acetylator subtypes. The most important class of metabolizing enzymes is

the cytochrome P450 (CYP) family, in which 58 different CYPs are known.

Most CYPs are polymorphic and there are a relatively large number of

pseudogenes—that is, archaically conserved genes without function. Only two

CYPs, CYP1A1 and CYP2E1, are well conserved—indicating that they have a

function in the metabolism of endogenous substrates (39). Interestingly, no

mutation causing complete inactivation has been described so far for the main

enzyme involved in drug metabolism, namely CYP3A4. In contrast, to date,

more than 90 alleles of the CYP2D6 gene are known for and an important inac-

tivating mutation in the CYP2D6 gene affects the metabolism of many commonly

prescribed drugs in about 6% of the Europeans. Another example of a clinically

relevant polymorphism affects the CYP2C19 gene and occurs predominantly

in Asians. This mutation renders omeprazole therapy and eradication of

Helicobacter pylori much more effective in Japanese as compared with

Caucasians (41). Apart from their role in metabolism, drug-metabolizing

enzymes may also act as activators of pro-drugs. This is the case for a number

of opioids, for example, codeine is activated by the polymorphic enzyme

CYP2D6 and carriers of non-functional CYP2D6 alleles may exhibit varying

degrees of codeine resistance (46). In contrast, CYP2D6 gene duplications lead

to enhanced conversion of codeine to morphine and corresponding side-effects

(47). Enzymes responsible for Phase I reactions can make substrates more reac-

tive through insertion of oxygen in the molecule. When Phase II reactions are

reduced, the phenotype is particularly characterized by a predisposition for

ADRs. In addition, some cancers have been linked to polymorphisms in drug-

metabolizing enzymes and an impaired ability to inactivate exogenous or

endogenous mutagenic molecules (48). Other examples of clinically relevant var-

iants are aldehyde dehydrogenase ALDH2 mutations causing antabus side-effects

following ethanol consumption and long-term cancer risk or dihydropyrimidine-

dehydrogenase (DPYD) variants leading to increased myelo- and neurotoxicity of

5-fluorouracil.

In contrast to the current knowledge on the genetic determinants in metabo-

lism, our knowledge about inherited aspects of elimination is still limited. In the

last decade, a large number of renal transporter proteins have been cloned and

their role in the handling of a wide variety of drugs have been established.

Expression of the cloned transporters in cell culture systems allows for the exam-

ination of the pharmacological efficacy of individual transporter gene products.
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It is likely that a similar situation as described for CYP polymorphisms also exists

for organic anion transporters (OATs). Indeed, three different polymorphisms

have been identified in the human SLC22A5 gene (formerly called OCTN2).

Given that as many as half-a-dozen OAT family members may be expressed in

the kidney, it is likely that SNPs in these will give rise to different drug elimi-

nation phenotypes.

PD AND DRUG EFFICACY

Genetic Variants Affecting PD and Responsiveness

About 30–60% of the patients treated with various drugs do not respond to treat-

ment (39). So far, the reasons for non-responsiveness have largely remained

unknown. The presence of non-responsiveness is usually detected clinically

and the reasons for the lack of drug effects often remain “idiopathic.” PGx

studies are expected to bring about a change in this situation. Several publications

on PGx of drug targets underline the importance of inherited determinants of drug

response and have helped to elucidate the mechanisms responsible.

Pharmacodynamics (PD) focuses on target molecules, that is, receptors or

enzymes that determine cellular reactions to drugs and can best be described by

the term “events indicating what the drug does to the body.” In contrast to PK, the

genetic basis of PD is far less well established and results have had a much

smaller impact on the practice of drug therapy so far. Information has been

mostly obtained by postgenomic genotype-to-phenotype approaches. Inherited

differences in molecules determining PD frequently follow polygenic traits.

The underlying genetic mutations, such as SNPs in promoters, rarely inactivate

a gene but are affecting gene regulation. The effect is mostly subtle, affects

multiple proteins, and thus leads to more subtle phenotypes. Presently, there is

no established routine application but several proof-of-concept studies have

already been published.

A number of functionally polymorphic drug targets that influence pharma-

cotherapy have been described. Examples of clinically relevant polymorphisms

in drug targets comprise the angiotensin-converting enzyme (ACE), the sulfonyl-

urea-, and 5-hydroxtryptamine receptor, apolipoprotein E, and the cholesteryl

ester transfer protein. Finally, the risk of ADRs has been linked to genetic

polymorphisms that predispose to toxicity, such as dopamine D3 receptor poly-

morphism and the risk of drug-induced tardive dyskinesia. Other associations

have been found for a b2-adrenergic receptor gene polymorphism and drug–

response in asthma, drug–response and CYP2C9 in epilepsia, P2RY12 mutations

and clopidogrel response, and mutations in potassium channel genes and their

association with drug-induced QT-prolongation syndromes. Table 3 summarizes

important examples of gene variants study with respect to PD and responsiveness

to therapy. A genetic variant in a-adducin, for example, a transporter responsible

for renal sodium reabsorption, was associated with a lower risk of combined
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myocardial infarction and stroke during diuretic therapy as compared with the

other antihypertensive therapies (17). Another notable example relates to respon-

siveness to albuterol and a b2-receptor polymorphism (18,49).

Genetic Variants Influencing Dose Selection

With regard to patient-tailored therapies, SNPs within genes encoding either drug

targets or key components of pathways are of greatest interest. In recent studies,

several such SNPs have been suggested to be predictive of drug selection, which

is illustrated by the two following examples. During antihypertensive therapy in

patients with left ventricular hypertrophy, for instance, SNPs in the angiotensino-

gen gene (AGT ) and the apolipoprotein B (APOB) predicted the change in left

ventricular mass in response to irbesartan, while a SNP in the a2A-adrenorecep-

tor gene (ADRA2A) was associated with response to the b1-adrenoreceptor

blocker atenolol (50). Another SNP within the APOB gene was also associated

with the blood pressure response to irbesartan but not to atenolol (51). The

predictive power of these SNPs could therefore be potentially deployed for the

genoytpe-guided selection of either an angiotensin-II type 1 receptor antagonist

or beta-blockade-based strategy in antihypertensive therapy. Another important

example for genotype-based prediction of response to a specific pharmacotherapy

was published recently with regard to total cholesterol reduction in pravastatin

therapy. The gene encoding HMG-CoA reductase, the target of pravastatin

therapy, was reported to harbor two common SNPs in linkage disequilibrium,

which were significantly associated with smaller reductions in cholesterol in

heterozygous carriers and, thus, reduced efficacy of pravastatin therapy (52).

Genotyping of the HMGCR gene could help in selecting patients suitable for

additional or alternative therapeutic strategies in cholesterol reduction.

PHARMACOGENOMICS, EXPRESSION SIGNATURES, AND
PREDICTIVE BIOMARKERS

Pharmacogenomic identification of non-responders may change the way the

pharmaceutical industry is developing and marketing drugs. Over the next few

years, pharmaceutical companies are likely to abandon the “chemical blockbuster

model” and adopt the “biological individualized” model of drug development.

Table 4 lists important examples of recent approaches deploying predictive bio-

markers for stratification of patients in order to achieve safer and/or more effica-

cious therapy. On a similar path, regulators like the FDA are more likely to grant

provisional approval on the basis of a surrogate/biomarker measure clinical

benefit in a single uncontrolled trial. This will also force industry to define sub-

populations of patients who are likely responders. Recent examples include the

use of a diagnostic test that detects overexpression of the HER-2 antigen to iden-

tify breast cancer patients likely to benefit from herceptin. Although the HER-2
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Table 3 Examples of Genetic Variants Affecting Pharmacodynamics

Gene name Symbol Variant

Molecular

phenotype Drug (class) Clinical phenotype Reference(s)

Angiotensin-1

converting enzyme 1

ACE Ins . Del 286 bp

Intron 16

Higher plasma and

tissue

angiotensin-II

ACE inhibitors, beta-

blockers,

fosinopril,

imidapril,

irbesartan,

enalapril

Response to

antihypertensive

therapy

Reviewed in

(125,126)

Adducin 1 (alpha) ADD1 Gly460Trp Renal sodium

retaining effect

Thiazide diuretics Response to salt-

sensitive

hypertension

therapy and salt

restriction

(127)

Adrenergic receptor

alpha-2A

ADRA2A A1817G Atenolol Change in left

ventricular mass

in response to

atenolol

(50)

Adrenergic receptor,

beta-1

ADRB1 Ser49Gly

Gly389Arg

Enhanced down-

regulation,

enhanced

receptor function

Metroprolol,

carvedilol, timolol,

propanolol

Response to beta-

blockade,

predisposition

and survival in

heart failure

(128–131),

reviewed in

(121,132)
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Adrenergic receptor,

beta-2

ADRB2 Arg16Gly

Gln27Glu

Thr164Ile

Enhanced down-

regulation,

decreased

responsiveness

Atenolol, bisoprolol,

albuterol

Bronchodilator

response to

albuterol,

response to beta-

blockers, higher

resting heart rate

(18,133)

(49,134–

135),

reviewed in

(126,136)

Angiotensinogen AGT Met235Thr Plasma level of

angiotensinogen

ACE inhibitors,

irbesatan

Response to ACE

inhibitor

(mono)therapy,

change in left

ventricular mass

in response to

irbesatan

(50,137,138)

Angiotensin-II

receptor, type 1

AGTR1 A.C Pos. 1166

30UTR

ACE inhibitors,

losartan

Humoral and renal

hemodynamic

responses to

losartan

(139,140)

Aldehyde

dehydrogenase 2

ALDH2 Glu487Lys Decreased ability to

clear

acetaldehyde

Antabus (disulfiram) Ethanol toxicity,

long-term cancer

risk

(141)

Apolipoprotein B APOB C.T Pos. 711

G.A Pos.

10108

Increased

cholesterol

Irbesatan Change in left

ventricular mass

in response to

irbesatan,

response to

antihypertensive

therapy

(50,51)

(Continued)
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Table 3 Examples of Genetic Variants Affecting Pharmacodynamics (Continued)

Gene name Symbol Variant

Molecular

phenotype Drug (class) Clinical phenotype Reference(s)

Apolipoprotein E APOE Cys112Arg (�E4)

Arg158Cys

(�E2)

Increased

cholesterol,

decreased

cholesterol

Tacrine, simvastatin Interaction with

cholesterol in

Alzheimer’s

disease, response

to simvastatin

therapy

(142,143)

Cholesteryl ester

transfer protein,

plasma

CETP C.A Pos. –629

Promoter

Arg451Gln

(“Taq1B1/
B2”)

CETP serum level

and mass

Statins Response to statin

therapy

(144–146)

Guanine nucleotide-

binding protein

(G-protein), beta

polypeptide 3

GNB3 C.T Pos. 292

Exon 10

Increased signal

transduction

Endogenous

hormones,

thiazide, sildenafil,

sibutramine

Antihypertensive

therapy with

diuretics and

endothelin

blockade, weight

loss

Reviewed in

(147)
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3-Hydroxy-

3-methylglutaryl-

Coenzyme A

reductase

HMGCR Chr. 5 Pos.

74726928

(A.T) &

74739571

(T.G)

Unknown Pravastatin Response to lipid-

lowering therapy

(52)

5-Hydroxytryptamine

(serotonin) receptor

2A

HTR2A Ile197Val Reduced antagonist

sensitivity

Clozapine Associated with

higher dose to

inhibit serotonin

stimulation

(148)

Integrin, beta-3

(platelet

glycoprotein IIIa

antigen, CD61)

ITGB3 Leu33Pro Increased platelet

activation

Antiplatelet agents Sensitivity to

aspirin,

clopidogrel

loading dose in

patients with

coronary stent

(149,150)

Low-density

lipoprotein receptor

LDLR C.T Pos. 16730 Atenolol Response

antihypertensive

therapy

(51)

Matrix

metalloproteinase 3

(stromelysin 1)

MMP3 5A.6A Pos.

21171

Promoter

Enhanced activity 5-Fluorouracil,

cisplatin

Chemosensitivity

in head and neck

cancer patients

(151)

Purinergic receptor

P2Y 12

P2RY12 Small deletion in

codon 238

Platelet ADP

receptor defect

Clopidogrel Bleeding disorder (152)
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Table 4 Examples of Predictive Biomarkers

Predictive test Biomarker Drug (therapy) Reference(s)

Protein-based tests

Predict clinical benefit from herceptin therapy in

breast cancer (approved by the FDA)

ERBB2 (HER-2) Trastuzumab (herceptin) (153)

Screening for all stages of ovarian cancer in high-

risk and general populations

Proteomic serum patterns

generated by SELDI-TOF-MS

Early detection of neoplastic

cells

(154)

Testing for specific gene activity

Testing for bcl-2 expression in bladder cancer Bcl2-mRNA expression Blc2-antisense therapy (155–157)

Testing for somatic mutations (“oncogenomics”)

Selection for adenoviral gene therapy in patients

with head and neck cancers

TP53 (mutations) Oncolytic adenovirus (158–160)

Clinical response of lung-cancer patients to

gefitinib

EGFR (mutations) Gefitinib (Iressa) (19,161)

Clinical response to imatinib in patients with

advanced gastrointestinal stromal tumors

c-KIT/PDGFRA (mutations) Imatinib (Gleevec) (162,163)

Gene expression profiling

Prediction of outcome in breast cancer, selection

of patients who will benefit from adjuvant

therapy

72-gene expression signature Adjuvant therapy in breast

cancer

(53,54)

Prediction of therapeutic response to docetaxel in

breast cancer

92-gene expression signature Docetaxel (55)

Prediction of chemotherapy response in estrogen-

receptor positive breast cancer

44-gene expression signature Tamoxifen (56)

Prediction of drug resistance in pediatric acute

lymphoblastic leukemia

124-gene expression signature Prednisolone, vincristine,

asparaginase, daunorubicin

(57)
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test is a “proteomic,” rather than a genetic test, it provides a good example of

where development is going to be in a few years from now. Recently, it was

reported that somatic mutations in the tyrosine kinase genes in patients with

non-small cell lung cancer may predict sensitivity to gefitinib (19).

Great potential for genomic testing lies in therapy-specific diagnostics

(“theranostics”) of the chemotherapy of cancer, where predictive biomarkers

can be applied to select patients who will benefit from specific drug treatments.

Brilliant examples for such approaches in the therapy of breast cancer have been

published during recent years. Nearly 80% of the breast cancer patients undergo

adjuvant therapies, designed to destroy remaining cancer cells and prevent meta-

static spread. According to two studies, patterns of gene activity within breast

cancer cells significantly predicted the aggressiveness of the cancer and the clini-

cal outcome. This gene expression signature outperformed all currently used

standard diagnostic criteria in predicting metastasis and overall survival and

could therefore be used to predict the need of adjuvant chemotherapy after sur-

gical intervention in breast cancer (53,54). Likewise, other transcriptomics-

based tests have been recently published and predict the therapeutic response

to docetaxel (55) or response to tamoxifen in estrogen-receptor positive breast

cancer (56). Another important example has shown that gene expression values

of four different sets of genes predict resistance to drugs commonly used to

fight ALL in children (57).

Overall, pharmacogenomic predictivity testing will just constitute part

of a larger scheme for “biomarker testing” comprising proteomic and/or

genomic approaches (20,58). It is also foreseeable that in the near future,

metabonomics might complement genomics on the way to individualized drug

therapy (59).

CURRENT CHALLENGES

The euphoria associated with the human genome project and impressive invest-

ments by the pharmaceutical industry in pharmacogenomic approaches of

drug discovery have triggered high, but as yet unmet, expectations (59–61).

Ideally, various technology platforms (62,63) including DNA array technology,

high-throughput screening systems, and advanced bioinformatics will allow the

tailoring of therapeutic agents targeted for specific and genetically identifiable

subgroups of the population. This would represent a shift from the current strat-

egy of developing medications for a statistically optimized fraction of the

population to a strategy that aims to provide tailored medications for genetically

diverse patients and diseases states that have heterogeneous subtypes. However,

much work must be completed before these future insights will have an influence

on the daily practice of medicine. Non-critical attitudes and the belief that phar-

macogenomics will soon lead to a new era of medicine should be greeted with a

“healthy dose of scientific skepticism” (26,59,61,64). This attitude is also sup-

ported by recent reports on, for example, difficult definitions of genotypes due
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to imbalanced expression of SNP alleles (65,66) or on substantial variation of

linkage disequilibrium patterns among human populations (67).

To date, significant information is available on the genetic variables of drug

metabolism. These data are derived from single gene approaches for selected

enzymes and have had a modest impact on routine drug therapy. Genetic variants

of metabolic enzymes, however, tend to lead to extreme phenotypes, which is

generally not the case for genetic variants involved in later steps of the dose-

effect cascade. In general, pharmacological effects seldom follow extreme mono-

genic traits, but, more likely, are driven by a complex and subtle interplay of

several genes encoding proteins involved in multiple pathways. Studies of

ACE polymorphisms, for example, have led to conflicting results, which may

have been caused by the polygenic nature of the drug effect. To move to a

more predictive level, a genomic rather than a genetic strategy must be

pursued and it will become important to analyze haplotypes (25,68,69). Per defi-

nition, a haplotype is a combination of alleles of closely linked loci that are found

in a single chromosome and which tend to be inherited together. Recent data

suggests that the average gene has 12 haplotypes, many of which are in

linkage disequilibrium. In many cases, a deductive approach to the entire com-

plexity of signal transduction cascades will be necessary to define rate-limiting

steps. Elucidating genotype–phenotype interactions based on single candidate

genes also has the disadvantage that the approach is based on current physiolog-

ical knowledge of receptor cascades. Novel approaches employing “whole

genome” strategies based on linkage disequilibria and expression profiling (70)

appear more suitable for identifying yet unknown outcome markers suitable

for forecasting drug response. Given the enormous complexity of the genome,

a purely hypothesis-generating approach based on shot-gun high throughput

technology will probably generate more questions than answers. Elucidation of

genotype–phenotype interactions will become a crucial issue in clinical

studies and can only be achieved by studies on humans because of the marked

species differences in dose–response cascades in animals.

Apart from the necessity to study multiple genes, there is a need for

studying gene–environment interactions. This need is underlined by the fact

that there is still considerable variability in drug response in the same genotype.

A particular gene or battery of genes may not always be a rate-limiting determi-

nant of pharmacological response and will account for a small fraction in the

variability of drug–response only. Genetically defective endothelial transporters,

for example, may only lead to increased target concentrations if blood flow to the

site of action is sufficient to deliver the drug. Other examples where phenotypes

may differ in the same genotype involve induction phenomena. This implies that

a purely genomic approach to variability in drug response will probably fail and

that a multiple faceted approach incorporating physiology, variable transcription

rates, and protein function will be more effective.

A number of practical aspects in the design of clinical pharmacogenomic

studies deserve closer attention. One important issue is the relatively high
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number of poorly designed pharmacogenomic studies (39). To provide meaning-

ful data, it will be mandatory to reduce type 2 error by appropriate sample size

calculations, to set more stringent p values for declaring statistical significance

in multiple hypothesis testing, and to use appropriate control groups

(27,28,58,71,72). In genetic association studies, for example, it is necessary to

control confounding arising from population stratification. This may be achieved

by stratification for demographic factors, for example, home country, by using

“genomic control” strategies, that is, data from marker loci across the genome

to model the underlying population structure or by comparison of haplotype fre-

quencies in cases and controls. The most appropriate designs for genomics trials

comprise cohort studies, case-control studies, and ultimately randomized con-

trolled clinical trials (RCT) for providing evidence that pharmacogenomic

approaches improve outcome or save costs. Unfortunately, there is no example

available of a large and meaningful RCT which provides evidence for the clinical

usefulness of a pharmacogenomic marker, for example, in a standardized clinical

study comparing the efficacy and side-effects of genotype-guided versus normal

dose selection and optimization.

Another technical aspect relates to the need for collaboration. Although

many genetically linked drug reactions, such as, ADRs, are rare, they may be

of considerable importance in human health. To obtain adequate numbers of

cases, international collaborations must be initiated. Ideally, open access to

high-throughput genotyping and SNP genotyping facilities could be provided

for all collaborators by a few individual centers and this would reduce costs

substantially.

If these initiatives allow us to obtain meaningful clinical information and to

move to “predictive-deterministic” rather than probabilistic pharmacogenomics

(73), it will become necessary to deal with the issue of prediction accuracy.

Given a population of one million and a genotype prevalence of 10%, a test

with 95% sensitivity and specificity would give false predictions in one-third

of the carriers (74). This is clearly unacceptable, as even the exposure of a low

number of subjects to wrong doses may have significant consequences. At a

pure genomic level, a satisfactory level of determinism may, possibly, never

be achieved due to locus heterogeneity, variable penetrance and expressivity,

and other reasons for non-Mendelian inheritance.

Like any genetic test, PGx approaches will be limited by several ethical

considerations (75). Some core concerns in this ongoing debate relate to issues

of: (i) confidentiality, (ii) resources, and (iii) control (76). This may be illustrated

by several questions, that is, (i) Is it imperative to anonymize genetic data or

should we allow a more open approach to connect person-specific data with

data from gene banks? (ii) Should the opportunity be provided to patent PGx

data (i.e., relevant SNPs)? Will there be obstacles to social insurances for patients

with “non-responder” SNPs? (iii) Under which circumstances is it necessary to

provide information about test results not only to the patient but also to family

members?
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OUTLOOK

From the patient’s perspective, the concept of “pharmacogenomic drug individ-

ualization,” at first glance, appears promising (77). In contrast to the psycho-

social meaning of the widely used terms “personalized” or “individualized”

therapy, the PGx and pharmacogenomic concepts facilitate the genotype-

guided classification and stratification of patients (78). Theoretically, pharmaco-

genomic tools may improve drug safety and efficacy and help select optimal

drugs for select patients. To fulfill its promise, however, problems of predictivity

must be solved and rules must be established to move from a no/yes piece of

information to quantitative dosing recommendations. Patients may also express

fears about insurance and privacy issues. It is additionally to be kept in mind

that providing a definitive and useful test even for a single gene is an enormous

challenge and may take many years, as has been demonstrated for BRCA1 and

BRCA2 (79).

From the perspective of an industry, besides the clear virtues of PGx in

streamlining drug discovery and development, it is felt that recent drug develop-

ment disasters such as rezulin, which caused severe liver damage, terfenadine,

which caused cardiotoxicity or cerivastatin, which caused severer rhabdomyo-

lyses, early after-market approval might have been avoided by more carefully

selecting patients based on pharmacogenomic differences. In fact, patient selec-

tion by genomic or proteomic biomarkers may “rescue” a drug, as in the case of

herceptin or abacavir. On the other hand, it was also pointed out that pharmaco-

genomic concepts threaten to reduce the market share by creating “orphan

drugs.” Instead of lumping disease entities, pharmacogenomics leads to splitting

diseases into new molecular disease entities. Companies might even, for reasons

of medical and product liability threats, be obliged to develop a genomic diagnos-

tic test. Overall, pharmacogenomic testing may offer advantages, some of which

may increase market share (77). But as pharmacogenomic strategies become a

routine part of drug discovery and development, such models should emerge

from large-scale clinical trials and follow-up of new medications. Together

with the industry, public initiatives—such as the National Institutes of Health-

funded Pharmacogenetics Research Network—will contribute a significant

drive within the PGx sciences (80).

From a regulatory perspective, the pharmacogenomic concept is encour-

aging, as it might help to provide drugs with higher effectiveness and a lower

safety profile (77). Currently, EMEA and FDA are working on guidance

documents for PGx drug applications (81). In a recent FDA publication on the

critical path in drug development, it is stated that “emerging techniques of

pharmacogenomics and proteomics show great promise for contributing bio-

markers to target responders, monitor clinical response, and serve as biomarkers

of drug effectiveness. However, much development work and standardization of

the biological, statistical, and bioinformatics methods must occur before these

techniques can be easily and widely used” (82). In addition, there is a significant
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need for educating health professionals and the community in order to effectively

move PGx into routine medicine (83).

From a third party payer’s perspective, pharmacogenomic approaches are

laudable, as the current situation of paying for drugs for non-responders is

similar to the situation of a customer who is charged the full cost of a dysfunctional

CD player in an electronics store. However, some payers may also view pharma-

cogenomics as a technology that will ultimately increase overall costs (77).

CONCLUSION

The opportunities created by recent conceptual and methodological advances in

pharmacogenomics will probably have a significant impact on drug therapy.

However, pharmacogenomics is still at the beginning with respect to its clinical

application. Overall, it is estimated that pharmacogenomics will have the greatest

impact on about 10–15% of the drug therapies where a single gene determines

drug–response, followed by 35–40% of the cases with relevant polygenic

traits (39). In about 50% of all drug therapies, the impact of pharmacogenomics

will prove to be insignificant, due to lack of gene products with functional var-

iants or because environmental influences dominate over the influence of genes

(39). For the earlier two situations, it can be envisaged that a fingerprint of the

patient’s individual genetic profile might guide the selection of optimal drug can-

didates in individual patients. However, much work must still be completed

before these visions will find their way into daily practice.
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INTRODUCTION

Dose–response (effectiveness and toxicity) relationships aid in optimizing the

use of drugs. These relationships can also form the basis for drug approval or

refusal. Several regulatory initiatives emphasize the need for better dose

finding and individualization of drug therapy (1,2). A recent article reported

that 21% of the new molecular entities approved by the FDA during 1980–

1999 underwent a dose-related labeling change (3). Of those, 80% of the

changes represented net reductions in the dosing regimen. It was suggested

that the frequency might be less than 21%, if the definition of “dose change” is

more appropriate (4). Nevertheless, it was generally accepted that the current

dose-finding paradigm is not optimal. It was concluded that the pivotal trials

tend to study relatively high-end doses after inadequate dose-finding efforts.

aThe views expressed in this chapter are those of the authors and do not necessarily reflect the official

views of the FDA.
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The primary focus of this chapter is on dose finding during clinical drug

development. This chapter first describes the dose–response nomenclature, and

the regulatory initiatives and presents some motivations for good dose–response.

Later, the chapter deals with the various clinical trial designs and quantitative

methods for investigating dose–response, followed by discussion on dose adjust-

ments in special populations. The chapter ends by providing future perspectives

on good dose–response in drug development.

NOMENCLATURE

Probably due to the diverse group of experts who contribute to drug development,

such as clinicians, clinical pharmacologists, and biostatisticians, the nomencla-

ture used to describe dose–response is quite varied. Dose finding is often used

to describe the process for identifying the optimal dosing strategy. This includes

recommendations on a starting dose, a strategy for titration if applicable, and

stopping criteria. For the purposes of this chapter, the term dose finding is not

limited to “dose” per se, but is also equally applicable to finding a target exposure

(concentration) for eliciting a target effect. Perhaps “dose finding” is in wider use

because of the fact that, ultimately, a dose is prescribed.

The terms dose–response, exposure–response, concentration–effect, and

pharmacokinetic–pharmacodynamic (PK–PD) relationships are used inter-

changeably. The term exposure–response will be used in this chapter. Exposure

includes any measure of drug in the body, such as dose and concentration in

biological fluids. Response includes a broad range of endpoints, including

biomarkers (e.g., receptor occupancy), a presumed mechanistic effect (e.g.,

ACE inhibition), a potential or accepted surrogate (e.g., effects on BP), and the

full range of short- or long-term clinical effects (e.g., mortality) related to

either effectiveness or safety.

The terminology pertaining to the drug development phases (e.g., Phase I,

Phase IIb), together with the learn-confirm paradigm (5), has led to some confusion

about the roles of different clinical trials. Dose ranging trials, typically called the

Phase II trials, which collect the relevant endpoint data in target patients, can be

used as the evidence of effectiveness (confirm). On the other hand, dose ranging

should be continued during the so-called Phase III trials (learn). For these

reasons, in the current chapter those trials, which provide primary evidence of effec-

tiveness and safety, will be called pivotal trials (can also be called registration trials).

CURRENT LEGAL REQUIREMENTS AND
REGULATORY EXPECTATIONS

The legal requirements that dictate the approval or refusal of a new drug appli-

cation (NDA) are listed in the Code of Federal Regulations (CFR). Section

314.105 deals with the requirement for approval, §314.125 deals with refusal,

and §314.126 describes an adequate, well-controlled trial. Direct reference to
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the type of study designs, endpoints, analyses, and quality of exposure–response

information required for approval is not made in these regulations. However,

§314.125 states that “there is insufficient information about the drug to determine

whether the product is safe for use under the conditions prescribed, rec-

ommended, or suggested in its proposed labeling as a basis for refusal.” Although

there is no clear consensus, this statement could be interpreted as requiring good

dose–response. Importantly, the following FDA guidances to the industry clarify

the need for collecting good exposure–response information pre-marketing:

1. Exposure–response relationships: study design, data analysis, and

regulatory applications (1).

2. Dose–response information to support drug registration (2).

3. Providing clinical evidence of effectiveness for human drug and bio-

logical products (6).

4. Pre-marketing risk assessment (7).

There are several others, such as the guidance on PK in patients with

impaired renal function—study design, data analysis, and regulatory applications

(8) and the guidance on drug metabolism/drug interaction studies in drug devel-

opment process—studies in vitro (9) that describe the Agency’s expectations on

evaluating the need for dose adjustments.

The proceedings of the Cardiovascular and Renal Advisory Committee

meeting held on October 20, 2000 are worth noting (10–12). Based on a retro-

spective analysis presented by the FDA on 10 approved antihypertensive

drugs, it was suggested that frequently optimum dose finding is not performed,

which could affect many regulatory decisions. The main outcome of the

meeting was the emphasis on determining exposure–response relationships

using model-based analysis and use of innovative designs to allow frequentist

and Bayesian methods of analysis.

In general, the FDA expects sponsors to characterize the exposure–

response reasonably well, where applicable.

THE NEED FOR BETTER DOSE-FINDING STUDIES

In addition to the legal requirements and other regulatory initiatives, the current

attrition rate and motivating case studies emphasize the need for good exposure–

response information pre-marketing. Poor dose finding is probably an important

cause of late attrition. Also, from a good clinical practice and patient perspective,

lack of optimal dosing guidelines could lead to sub-optimal therapeutic advantage.

Late Attrition

Recent surveys suggest that the average cost of discovering and developing a new

drug is in excess of US $800 million (13). These spiraling costs threaten to make

the development of new drugs increasingly unaffordable to both manufacturers
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and consumers. The mammoth amount spent in developing a drug does not

guarantee its entry into the market as a medicine. The drug development para-

digm is supposed to filter out poor drug candidates early on, and to be economi-

cally viable. However, the rate of failures in pivotal trials and rejection by

regulatory authorities have been reported to be discouragingly high, especially

in the therapeutic areas like oncology (59%) and women’s health (42%), respec-

tively (Fig. 1) (14).

While clear reasons have not been identified, it is reasonable to consider

poor dose selection as one of the important factors for the high attrition. Early

and better dose-finding studies might be able to reduce this attrition rate.

Case Studies

Nesiritide

The original new drug application (NDA) for nesiritide was submitted for the

treatment of acute decompensated coronary heart failure (CHF) in April 1998.

The changes in pulmonary capillary wedge pressure (PCWP) at 6 hours in

0.015 , 0.03, and/or 0.05 mg/min/kg groups are compared with that in the

placebo group. During that review, the FDA recommended the sponsor to

develop an exposure–response model relating concentrations and PCWP, and

blood pressure (BP) to facilitate regulatory decision-making. Nesiritide was dis-

cussed at the Cardiorenal Advisory Committee on January 29, 1999. From a clini-

cal viewpoint, the maximum desired effect at a given dose does not occur

instantaneously and the desired effects cannot be achieved without the undesired

effects. The fact that the hypotension occurs at a later time than changes in PCWP
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Figure 1 Success rate by the phase of development and by the therapeutic area. The percen-

tages indicate the failure rate in that phase of development. For example, out of 100 molecules

which are tested in pivotal trials, 59% fail to show utility. Source: Adapted from Ref. 14.

198 Gobburu and Gopalakrishnan

Copyright © 2006 Taylor & Francis Group, LLC



limits the ability for titration to take effect. Taking all these factors into consider-

ation, plus input from the Advisory Committee, the sponsor was recommended to

optimize the dosing regimen, such that the desired effect occurs instantaneously

and the hypotension is minimized. In April 1999, the Agency issued a non-

approval letter to the sponsor. Among other concerns, the Agency identified

the need to better understand the onset and offset characteristics of symptomatic

hypotension and to optimize the dosing regimen to achieve faster decrease in

PCWP and minimize undesired hypotension.

The developed exposure–response model was used to explore various

alternative dosing scenarios. A bolus dose followed by a maintenance infusion

would allow faster achievement of the desired effect. Evidently, a 2 mg/kg

bolus followed by 0.01 mg/min/kg infusion over 48 hours seems to offer a

reasonable benefit-risk profile. This dosing regimen was selected for further

investigation in the VMAC (vasodilation in the management of acute CHF)

trial. The effects predicted by the model are in close agreement with those

observed in the VMAC trial. In May 2001, the sponsor submitted the results of

the VMAC study in support of a revised dosing regimen. The Agency approved

nesiritide for acute CHF in May 2001.

Drug for Symptomatic Effect

One of the case studies presented at the recent Advisory Committee meetings

demonstrated the need for a more optimal dosing regimen by means of an

exposure–response analysis (15). The drug was indicated for a symptomatic

benefit and the sponsor had proposed a once-a-day dosing regimen, which

meant a sustained effect over 24 hours. Though evidence of effectiveness was

obtained, exposure–response analysis suggested inadequacy of the once-a-day

dosing regimen. The effect was not sustained for 24 hours because of the short

half-life of the drug. Simulations suggested that twice daily or three times a

day dosing regimen could provide sustained effect. For better compliance, a

modified release formulation could serve the purpose of maintaining a sustained

effect. The Agency decided that the NDA was approvable pending optimization

of the dosing regimen, among other aspects.

Antiretroviral Therapy

Potent combination of antiretroviral regimens has led to profound decrease in

morbidity and mortality associated with HIV-1 infection. The traditional practice

in antiretroviral therapy is to administer the combination drugs at fixed dose

regimens. Fixed dose regimens are reported to lead to higher rate of virological

failures in clinical trials (16), which is attributed to the variability in response

caused by high interpatient variability in systemic or intracellular concentrations

achieved (17). Studies have related systemic or intracellular concentrations to

anti-HIV effect (18). A recently published article compared the responses

between a concentration-controlled approach and a conventional fixed dose

combination antiretroviral therapy (19). The trial was a prospective, randomized
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52-week open-label trial. Zidovudine, lamivudine, and indinavir were adminis-

tered as fixed doses for two weeks to all patients and then patients were random-

ized to receive either fixed dose therapy or concentration-controlled therapy. The

primary endpoint was the proportion of patients with HIV-RNA levels below

50 copies/ml at 52 weeks. The concentration-controlled approach resulted in a

greater proportion of patients ( �100%) having undetectable HIV-RNA levels

than fixed dosing strategy ( �50%) at the end of the trial. The results of the

study support the notion that good dosing strategies, to accommodate inter-

patient variability, can improve therapeutic outcome.

Anticancer Therapy

It was reported that systemic clearance of anticancer agents differs up to 3–10

times in children with acute lymphoblastic leukemia (ALL) (20). It was seen

that the outcome was significantly worse among children with ALL who had

low plasma concentrations of methotrexate due to rapid clearance than among

those with slower clearance. Based on these findings, a prospective study com-

pared the outcome between a fixed dosing approach, based on body surface

area, and individualized dosing based on clearance (21). Individualized dosing

of methotrexate improved the five-year rate of continuous complete remission

(76% vs. 66%) in children with B-lineage ALL.

The first two case studies presented demonstrate that inadequate dose selec-

tion could lead to increased drug development time. The latter case studies highlight

the importance, from a public health point of view, of the need for tailoring doses for

an individual. In both these cases, the ultimate endpoint is mortality and, thus, it

becomes critical for drug developers to make dose individualization a priority.

APPROACHES FOR FINDING OPTIMAL DOSE

Conceptual Basis for Dosing

The conceptual basis for dosing requires knowledge of three aspects of

exposure–response to derive optimal dosing strategies. They are: (i ) shape of

the exposure–response (desired /undesired) curve (steep or shallow), (ii ) type

of response (reversibility of the disease, time of occurrence of disease event,

and seriousness of the adverse events), and (iii ) variability between and within

patients. Each of the aspects is described in detail in the following.

Shape of the Exposure–Response Curve

Figure 2 shows a hypothetical exposure–response curve for the desired and

undesired effects. This curve provides information on the starting dose, highest

effective dose given the corresponding safety and the step-size for titration of

the dose. If sufficient exposure–response information is available for a drug,

dosing recommendations in special populations could also be provided, if

certain assumptions can be made.
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Population vs. individual exposure–response curves: The shape

and location of the population (average) exposure–response curves are helpful

in choosing the starting dose for a drug. Study designs that allow estimation of

individual dose–response curves are useful in guiding titration. Certain

amount of caution needs to be exhibited when estimating population

exposure–response curves from individual exposure–response information.

Let us consider a few individual dose–response curves with steep exposure–

response relationships. The population (simple average) exposure–response

curve is flatter than the individual curves, which is a statistical artifact. This typi-

cally leads to titration in step-sizes much more than optimal, which is an often

ignored phenomenon. Figure 3 shows individual exposure–response curves for

five subjects along with population exposure–response curves.

Type of Response

Three different aspects need to be considered based on the type of responses to

optimize dosing strategy.

Reversibility of the disease state: The assessment of the need for dosing

adjustment depends on whether the response variable is reversible (symptom/
sign-related benefit) or irreversible (morbidity /mortality benefit). For example,

Metoprolol (Toprol-XL) is indicated for use in high BP (reversible), and heart

failure (irreversible). For treatment of high BP, dosing starts at 50–100 mg

daily and could be increased to 400 mg daily depending on how the patient

responds. The label recommends following the patient to decide the need for
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Figure 2 The exposure–response (desired and undesired) relationships of a hypothetical

drug.
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titration. But for a patient with heart failure, the recommended starting dose of the

same drug is 25 mg daily for two weeks. The dose may be doubled every two

weeks until dose-limiting toxicities occur. Generally, for drugs that decrease

mortality and/or morbidity rates, the maximum tolerated doses are administered.

Time of occurrence of the disease event: The decision of which “surro-

gate” to employ for dosing decisions partly depends on the relative timing of the

event. If the PD response occurs fairly soon after dosing, then dose adjustments

could be based on that response. The time of occurrence of the disease event or tox-

icity could be much later than the initiation of therapy. For example, gentamicin

trough concentrations greater than 2 mg/ml are associated with renal toxicity,

which occurs upon chronic administration of the drug. Creatinine clearance (CLCR)

explains a majority of the variability in gentamicin, and the dose should be adjusted

based on CLCR, so that trough concentrations are maintained below 2 mg/ml. In

this case, the trough concentrations serve as a surrogate to adjust doses. Another

example would be the risk of bleeding events during warfarin therapy. Dose

adjustments are constantly made based on international normalized ratio of

prothrombin time (INR), which signifies the ability of the blood to form clots.

Seriousness of the adverse events: Optimal dose can be derived based

on the seriousness of the adverse events, which influences the utility of a

therapy. Briefly, utility of the therapy is the net effect of not taking the therapy

to the benefit obtained by taking the therapy, given the adverse events of the

therapy, as described by the equation that follows (22):

Utility ¼ f (Cost½No Therapy�, Benefit, Cost½Toxicity�)

Figure 3 Population (weighted average and naı̈ve average) and individual exposure–

response curves. The graph shows that the population curves are not truly representative

of the individual curves.
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For example, the utilities of a drug treating stroke and another treating

migraine, but both causing nausea, are different. In the case of stroke, benefit

from the therapy outweighs no therapy, even though associated with nausea.

Although subjective for migraine, which might need daily treatment, the incon-

venience from nausea might be weighted differently.

There are two types of utilities—population and individual utilities. The

population utility is determined from an epidemiological perspective, whereas

the individual utility is determined by the patient. For example, the LIFE (Losar-

tan Intervention For Endpoint reduction in hypertension) (23) study showed that,

out of 9222 patients, 11% of the patients receiving losartan and 13% receiving

atenolol had death due to cardiovascular event, myocardial infarction, or stroke

( p ¼ 0.021). These results indicate that not every patient who received losartan

or atenolol benefited, however, epidemiologically, the 2% difference in the losar-

tan arm might translate to millions of patients overall (population utility), given

the risks of not treating at all and the drug-related toxicity. This is the typical

benefit-risk assessment regulatory bodies and health management organizations

employ. On the other hand, a particular patient might consider nausea to be

much worse in return for migraine relief as against another patient who might

not. This type of benefit-risk evaluation might be considered by marketing

departments in pharmaceutical companies to project sales. Several approaches

to evaluate the individual utilities from the pivotal trials are available (24), but

seldom employed prospectively in drug development.

Sources of Variability

Patient populations are heterogeneous, and characteristics, such as age, body size,

genetic status, and disease status, vary from one patient to another. These aspects

often lead to variations in the response to a drug. The widely used “one dose fits

all” paradigm is clearly not suitable for most disease settings. Optimizing dosing

regimen involves four important aspects to be taken into account, namely PK

variability, PD variability, the shape of exposure–response (steep or shallow)

relationship, and clinical practice. Variability includes both inter- and intrasub-

ject variability.

If the intersubject variability in PK is the rate-limiting factor, then by thera-

peutic drug monitoring (TDM), the variability in response (desired/undesired)

can be controlled. A recent article on antiretroviral therapy provided a scientific

basis of individualizing therapy by means of a concentration-controlled trial,

which resulted in a greater proportion of patients (�100%) with undetectable

HIV-RNA, as compared with a fixed dose trial (�50%) (18). The intrinsic varia-

bility between patients in virological, immunological, behavioral, and pharmaco-

logical factors was controlled by means of monitoring concentrations. If the

intrasubject variability in PK is relatively high, then TDM cannot completely

control the response.

On the other hand, if the response is highly variable (high inter- and

intrasubject PD variability), for example, BP measurement (25) monitoring of
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concentrations or response would not be able to control variations in drug effect.

While continuous monitoring of BP in each patient increases the precision, clini-

cal practice often includes monthly or more infrequent visits to the doctor.

Role of Biomarkers

The utility of biomarkers towards improving the efficiency of drug development

is widely recognized (26), and specifically in the selection of suitable dose (or

regimen) range for pivotal trials. Depending on the type of indication, an

exposure–biomarker relationship can be used in rational dose finding. Several

examples on the role of biomarkers for optimizing dosing are outlined here.

Symptom/Sign-Related Benefits

Clinical trials of drugs that are developed for symptom/sign-related benefits

(e.g., antidepressants, antiarrthymics, analgesics) are shorter and the magnitudes

of drug effect are relatively larger. Studying several doses in the pivotal trials is

possible. Use of an exposure–biomarker in such a case could narrow down the

choice of dose ranges or doses to be studied in pivotal trials. For example, the

effect on QT prolongation for Class-III antiarrhythmics, like dofetilide, which

are intended to maintain normal sinus rhythm, is useful to narrow down the

doses to be studied in the pivotal trials. An effect on exercise-induced heart

rate in healthy subjects is helpful in guiding the choice of doses/regimens for

beta-blockers that are intended for use in angina.

Mortality/Morbidity Benefits

Establishing an exposure–biomarker relationship for mortality/morbidity benefit

(e.g., treatment of cancer and CHF) is challenging primarily due to a large unex-

plained variability and/or small effect size. Defining an exposure–response

relationship for such an indication, given the effect size and cost, is impractical.

But if the effect size is relatively large, then the assessment of an exposure–

response is pragmatic for these indications as well.

Challenges in the Use of Biomarkers

Unclear biomarker–clinical endpoint relationships could be because of multiple

or putative mechanisms of action (AchE activity in Alzheimer’s disease), high

unexplained variability in clinical endpoint, and/or small effect size. Then selec-

tion of a dose to be tested in pivotal trials based solely on biomarker data would be

misleading. As long as a biomarker has a reasonable mechanistic basis, there are

several important contributions of biomarker(s) towards improving the efficiency

of drug development, irrespective of whether the relationship with the clinical out-

come(s) is formally established or not. Specifically, biomarkers can aid in the

selection of suitable dose (or exposure) range for pivotal trials, identification of

sub-populations with important differences in the drug effects, accelerated
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approval of drugs for life-threatening diseases, approval of new formulations,

extension of a drug’s use to new populations, and to assess product quality.

Choice of Dosing Regimen

As compared with the selection of doses, choice of dosing regimens to be studied

in pivotal trials is more challenging. Often, no clear exposure–response-based

rationale for choice of the dosing regimen is provided, except for some areas

like anti-infectives where the in vitro activity is routinely considered. The time

course of the effects on biomarkers should be considered in making decisions

regarding optimal dosing regimens. For example, dutasteride, used to treat

benign prostratic hypertrophy, was administered at a dose of 0.5 mg daily in a

pivotal trial, when it was seen that dihydrotestosterone (5-alpha reductase inhi-

bition) levels return to baseline after 14–28 days after initiation of therapy

(27). Here the time course of the biomarker (dihydrotestosterone) was ignored

when deciding the once-a-day regimen. One of the most frequently quoted

reasons for such a choice is compliance. Patients are believed to be more compli-

ant to daily treatments when compared with once in two- or three-day regimens.

While that might be true, non-compliance can also emerge from undesired tox-

icity, particularly if the drug needs to be taken daily. Further, innovative

methods to formulate drugs are now available, which can lead to more compliant

dosage forms. Another approach could be to sequence drug and placebo pills

according to regimen and yet dose daily. One potential concern of that could

be the cost of the placebo pills and who pays for it.

Experimental Designs and Analysis

The choice of the experimental study design and the study population in

exposure–response trials depends upon the phase of the development, therapeutic

indication, and the severity of disease in the patient population of interest. The

strengths and limitations of specific trial designs are provided in the following.

Parallel, Fixed Dose

In parallel design (23), patients are randomized to receive one of the several treat-

ments (placebo, test dose 1, test dose 2). This design could be applied when the

study endpoint or adverse effect is delayed, persistent, or irreversible (e.g., stroke

or heart attack prevention, asthma prophylaxis, arthritis treatments with late onset

response, survival in cancer, treatment of depression). The study need not be

placebo-controlled, since a positive slope in the exposure–response implies evi-

dence of effectiveness. But a placebo control could salvage a study where most of

the doses chosen are in the flat portion of the exposure–response curve by

showing that all doses were superior to the placebo. The design provides group

mean (population-average) dose responses, not the distribution or shape of indi-

vidual dose response. The advantage of such a design is the lack of confounding

factors, such as time (carry-over effects) and design-dependent outcomes.
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Cross-Over, Fixed Dose

According to a cross-over design (28), each patient would receive more than one

possible treatment. The design is suitable when the effect develops rapidly and

patients return to baseline conditions quickly after cessation of therapy, if

responses are not irreversible (cure, death) and if patients have reasonably

stable disease. If the ultimate aim is to estimate the distribution of individual

exposure–response curves, such a design is very powerful. Potential problems

of the design could be uncertainty of carry-over effects, baseline comparability

after the first period, period-by-treatment interactions. Such data are best analyzed

by sophisticated data analysis (linear or non-linear mixed effects modeling).

Titration Design

Mostly, titration designs are designed to titrate the dose to safety events (e.g.,

cancer). Toxicity-guided dose-finding approaches do not provide optimal dosing

for effectiveness. On the other hand, titration to effect or effectiveness guided

dose-finding approach provides optimal effective dose along with safety infor-

mation. Following are the two types of commonly followed titration designs.

Forced titration: In a forced titration design (29), all patients are ran-

domized to move through a series of rising doses. The design is similar in

concept and limitations, to a randomized multiple cross-over design, except

that assignment to dose levels is ordered, not random. A reasonable approxi-

mation of both population-average exposure–response and the distribution of

individual exposure–response relationships can be obtained if the time-

dependent drug effect is minimal and the number of treatment withdrawals is

not excessive. A critical limitation of this design is that, by itself, the study

cannot distinguish response to an increased dosage from response to an increased

time of therapy, or a cumulative drug dosage effect.

Optional titration (placebo-controlled titration to endpoint): In an

optional titration design (30), the patients are titrated until they reach a well-

characterized favorable or unfavorable response as expressed in the protocol.

The design is suitable for conditions where response is prompt and not an irre-

versible event like stroke or death. A crude analysis of such studies could lead

to misleading inverted “U-shaped” curve, as the patients who are less sensitive

to the drug need higher doses of the drug, making it appear as if the response

decreases after a certain dose. However, mixed effects modeling approaches

can provide valid exposure–response information. The design confounds time

and dose effects, and therefore poses problems in safety assessment.

Randomized Concentration-Controlled Trial (RCCT)

According to the RCCT design (31,32), patients are randomized to defined target

concentrations or concentration ranges (rather than doses). These target concen-

tration levels are selected based on the PK–PD relationship characterized in
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previous trials. The design is particularly efficient for drugs with high intersubject

variability in PK. Both group concentration response curves and individual

curves (if cross-over) could be obtained. Potential difficulties associated with

this design include defining target concentrations, intrasubject variability in PK

over time, uncertainty in the most appropriate concentration measure for

intermittent dose administration (e.g., peak, average or trough concentration),

availability of suitable assays and PK expertise, blinding issues, and PD variabil-

ity (33). A special case of RCCT is the PK-modified design. According to the

PK-modified design (34), patients will be dosed based on a covariate. For

example, the dose of an exclusively renally cleared drug could be adjusted a

priori for CLCR. It is very important to note that for this design to be useful in

characterizing the exposure–response, a dose range is still required. Trials that

investigate only one dose which is adjusted for some key prognostic factor are

perhaps the most uninformative trials, in terms of exposure–response.

Randomized Effect-Controlled Trial (RECT)

In a RECT (35), the subjects are randomly assigned to a set of pre-specified target

effect levels. This design is specifically suitable when there is a pronounced PD

variability in addition to the PK variability and when sparse sampling is done.

Prerequisites of RECT are that drug response must be reversible without any pro-

nounced pharmacodynamic hysteresis or time dependency. Unlike RCCT, deter-

mination of drug concentrations can be performed at convenient times.

Randomized Withdrawal Design

In a randomized withdrawal design (36), patients initially receive open treatment

with the test drug and then they are randomized to receive test drug or placebo

(withdrawal of active treatment). Any difference that emerges between groups

receiving continued treatment and placebo would demonstrate effectiveness of

the active treatment. The pre-randomization period could be any length (can

establish long-term effectiveness) and the post-withdrawal observation period

could be any fixed duration or early escape or time to any event. The randomized

withdrawal approach is suitable in several situations. It may be suitable for drugs

that appear to resolve an episode of recurring illness (e.g., antidepressants) and

where a placebo-controlled trial would be difficult (hypertension, CHF, chronic

pain), especially in pediatrics. Potential advantages of the design are: (i ) the

trial is enriched with responders, therefore large placebo-drug difference (clear

evidence of effectiveness), (ii) ideal for use in pediatrics, as placebo phase

could be shortened, and (iii ) exposure–response relationship could be assessed

after an initial placebo-controlled titration design.

Methods of Data Analysis

Essentially data analysis can be either confirmatory or exploratory. These two

types of analyses differ in the data and testing criteria employed to make

inferences.
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Confirmatory analysis: Confirmatory analysis is expected to be the most

unbiased inference of a hypothesis testing that is prespecified. Data from all

patients are required to be included in such analysis. Missing data are imputed,

most frequently using the last observation carried-forward principle (LOCF)

(37). The hypothesis testing is expected to preserve the typical 5% type 1 error

(false-positive) rate. The most widely tested hypothesis is whether the change

from baseline at a prespecified single point in time in the control and test treatment

groups is different. Other endpoints include the number of patients with a

prespecified change in the response (e.g., patients with 50% reduction in seizures),

time of the event (time to first myocardial infarction or time to death), and so on.

The most important requirement for comparing two or more groups is randomiz-

ation of treatments. That is, patients should have received, say, placebo or the

active drug randomly, irrespective of their baseline characteristics.

Exploratory analysis: Exploratory analysis can generate hypotheses that

can be confirmed in future trials. Most importantly, exploratory analysis can

serve as and has been used to provide supportive evidence for regulatory

decision-making (38). By definition, exploratory analysis cannot be pre-

specified, as new hypotheses are proposed after inspecting patterns in the obser-

vations. Almost all of the safety analyses are exploratory, as clinical trials are

seldom powered to test safety hypotheses. Such analysis is critical to assess

the benefit-risk and labeling.

An exploratory analysis could lead to building probabilistic models relating

outcomes, exposure, and prognostic factors. These models allow projecting

optimal dosing strategies. Table 1 compares the various features of confirmatory

and exploratory analyses.

Table 1 Features of Confirmatory and Exploratory Analysis

Features Confirmatory analysis Exploratory analysis

Analysis plan Prespecified Not prespecified

Analysis type Predominantly change

from baseline

Mostly model-based

Analysis outcome Primary evidence of

effectiveness

Can provide supportive

evidence of effectiveness

Inferences Unbiased Biased

Prior knowledge Required if stratifying Required

Compliance Ignores Can account

Time course of response Ignores Can account

Patient heterogeneity Ignores Can account

Explain observations Cannot Can

Dose Ignores Can account

Imputing missing data Fixed Can be explored

Improve future trials Not intended Can
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Dosing in Special Populations

Well-established exposure–response knowledge can be used for dosing rec-

ommendations in special populations (pediatrics, organ function impaired,

geriatrics).

Pediatrics

The FDA has proposed a pediatric decision tree (Fig. 4), which provides a general

idea for proposing labeling changes in the pediatric population. This decision tree

is generally applicable to all special populations. According to the pediatric

decision tree, if the disease is similar in adults and pediatrics and if a biomarker

is available, then pediatric studies measuring concentrations and effects can be

used to propose dosing recommendations in pediatrics. Availability of a reliable

biomarker is very useful for a pediatric indication, as clinical outcome-based

studies are difficult to be conducted in pediatrics.

Few examples are provided where appropriate use of exposure–response

relationships developed in adults is used to recommend dosing adjustments in

pediatrics. BUSULFEXw (Busulfan) injection is indicated for use in combination

with cyclophosphamide as a conditioning regimen prior to allogeneic hemato-

poietic progenitor cell transplantation for chronic myelogenous leukemia in

adults. It was approved in pediatrics by matching exposures in adults and

Figure 4 Pediatric decision tree (1). Source: Adapted from the Guidance to Industry.

Courtesy of U.S. Food and Drug Administration.

Optimal Dose Finding in Drug Development 209

Copyright © 2006 Taylor & Francis Group, LLC



pediatrics by conducting a PK study, as disease and response to intervention were

similar (39). Another example would be d,l sotalol hydrochloride. Sotalol is orig-

inally approved in adults to treat life-threatening ventricular fibrillation, tachy-

cardia, and maintenance of sinus rhythm in patients with symptomatic atrial

fibrillation and flutter. A clinical study assessing the antiarrthymic and beta-

blocking effects of sotalol in pediatrics on QTc and heart rate in pediatrics was

used for approval (40).

Sub-Populations Based on Prognostic Factors

As part of the NDA, frequently, dose-finding and bridging studies are submitted.

The dose-finding and other large “pivotal” clinical trials allow the clinical

pharmacologists to describe the exposure–response relationship and thereby to

select an appropriate dose/regimen for a given patient (41). The bridging

studies evaluate the influence of various prognostic factors (e.g., food,

smoking, hepatic/renal impairment, concomitant drugs, and so on). The bridging

studies seldom assess the effectiveness and (long-term) safety, although short-

term safety is assessed in all clinical studies routinely. The drug sponsors and

the regulators would like to seek answers to “what-if” questions like: “What is

the effect of co-administering an interacting drug on the performance (say,

effectiveness) of the new drug?” or “Is it necessary to alter dosing if given to a

patient with renal insufficiency? If so, by how much?” With respect to dosage

adjustment, the results from the bridging studies can be used in at least two

ways: (i) always adjust the dose to match the reference population, or (ii) use

the exposure–response relationship to judge the clinical relevance. Clearly, the

first option may lead to unnecessarily complicated dosing recommendations

and, practically, might be a costly endeavor. Based on prognostic factors like

age, body weight, diet, smoking, drug interactions, demographics, renal, or

hepatic impairment etc., exposure–response relationships can support dose

adjustments in these subpopulations. For instance, if exposure–response relation-

ship is established previously, a PK study in smaller number of patients with

varied renal function (normal, mild, moderate, severe) could suggest dosing

adjustments in terms of exposure in renal impaired patients (42). Judicious use

of biomarkers could also suggest dosing adjustments in sub-populations. Since

enrollment of adequate number of target patients with varying degrees of

renal/hepatic impairment could be difficult, the biomarker relationship in the

general target patients and exposure differences in the special populations

could be used for recommending dosing adjustments.

FUTURE CONSIDERATIONS

The legal requirements, regulatory initiatives, and their active implementation

are critical to institutionalize good dose finding. Currently good dose finding

is not considered as a requirement. Hopefully, the motivating examples and

the technological advances in effect measurements (biomarkers including
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imaging) will lead to the requiring of good dose finding. Also, from a pharma-

ceutical sponsors’ perspective, the root cause analysis for the high attrition rates

is crucial for proposing effective solutions. We believe poor dose finding will

be found as one of the drivers of the high attrition rate. To efficiently

address the late phase attrition, the FDA has recently proposed end-of-phase

IIa (EOP2A) meetings. EOP2A meetings occur following the completion of

the first set of exposure–response studies in patients, and before the beginning

of the pivotal clinical studies. At such meetings, issues pertaining to the overall

development strategy needed to support drug dosing and NDA approval could

be discussed.

The current confirmatory trials are lagging behind the advances in quanti-

tative techniques. Innovative designs and methods of analysis could be incorpo-

rated, which could improve the efficiency of drug development process and lead

to more meaningful labeling instructions. Enrichment design (43) is an innova-

tive design methodology where the trial is performed in responders, who are

identified after a treatment run-in phase. Such design demonstrates clearer evi-

dence of effectiveness, and a more precise estimate of the effect size, and thus

increases the study power to detect drug effects and select doses. The main

idea of this design is that if patients cannot respond to the main pharmacologic

effect of the drug, they cannot be expected to show a clinical response, and

such patients would dilute the drug effect if included in the trial. Such a design

could also be useful in situations where effectiveness is hard to demonstrate, as

only few patients respond to treatment. Examples would be motility-modifying

agents in gastro-esophageal reflux disease or antiasthmatic drugs other than

steroids and beta-agonists. The tacrine trials (44) employed an enrichment

design, where the initial phase was a cross-over, dose titration phase to determine

responsiveness and best dose.

Conventionally, regulatory decisions have been based on change from

baseline at some pre-specified time for the control and test treatments. All data

between baseline and that time are ignored. Innovative data analysis method-

ologies like longitudinal data analysis could be more powerful in assessing evi-

dence of effectiveness, as entire data generated is utilized. Because of increased

power, more optimal dose finding could be performed. Longitudinal data analysis

could also provide less biased estimates of effect size and intersubject variability,

as this method offers reasonable ways of handling missing data as opposed to the

LOCF approach.

We strongly believe that drug developers and regulatory agencies should

better exploit the vast information accrued from the hundreds of clinical trials

for a given indication. To the best of our knowledge, no systematic data

mining methods are in place to learn from successes and failures, and for design-

ing more efficient future trials. Institutions should invest in infrastructures that

enable standard storage of data, and tools that translate information into knowl-

edge. Modeling could play a useful role in integrating knowledge across drug

development programs. A related area which requires immediate attention
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regards labeling updates. Currently, scientists continue to investigate the dosing

strategies of drugs post-approval. For example, the “Antiretroval Therapy”

section of this chapter exemplifies such a study post-approval. If targeting a par-

ticular concentration could achieve therapeutic success in 100% of the HIV

patients, instead of 50%, one is left to wonder why the clinical practice ignores

it. There has to be a mechanism to systematically review such study results

and update labeling if appropriate. Pharmaceutical sponsors should be expected

to take an initiative.

Pharmacological endpoints or biomarkers require invasive sampling of

body fluids and tissues. Innovative non-invasive procedures, such as functional

or molecular imaging techniques, are shown to be of great importance in

linking together all the events from the administration of the drug through its

activity and modulation on the molecular target to the clinical outcome. Identify-

ing improved pharmacological endpoints could modernize drug design and

development, especially in oncology (45).

While deriving optimal dosing instructions is the first step towards optimal

therapy, implementing the instructions effectively in practice is critical. Review

of literature revealed that prescribing errors are a common occurrence in hospital

in-patients (46,47). Most of the prescribed errors are reported as human errors

occurring at various stages of administering a treatment, like ordering, errors

in dosing, route, or frequency (47). Current technological advances should be

exploited to develop tools for accurate prescription of doses. Such electronic

tools should be able to efficiently integrate patient information, such as demo-

graphics and current medications, and up-to-date labeling.

REFERENCES

1. U.S Department of Health and Human Services. Guidance for industry: exposure–

response relationships: study design, data analysis and regulatory applications.

http://www.fda.gov/cder/guidance/4614dft.pdf. (Access date January 31, 2005).

2. International Conference on Harmonisation. Guidance for Industry: dose–response

information to support drug registration. http://www.fda.gov/cder/guidance/iche-

4.pdf. (Access date January 31, 2005).

3. Cross J, Lee H, Westelinck A, Nelson J, Grudzinskas C, Peck C. Postmarketing drug

dosage changes of 499 FDA-approved new molecular entities, 1980–1999. Pharma-

coepidemiol Drug Saf 2002; 11(6):439–446.

4. Temple RJ. Defining dose decrease. Pharmacoepidemiol Drug Saf 2003; 12(2):

151–152.

5. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol

Ther 1997; 61(3):275–291.

6. Guidance for industry: providing clinical evidence of effectiveness for human drug

and biological products. http://www.fda.gov/cder/guidance/1397fnl.pdf. (Access

date January 31, 2005).

7. Guidance for industry: premarketing risk assessment. http://www.fda.gov/cber/
gdlns/premarkrisk.pdf. (Access date January 31, 2005).

212 Gobburu and Gopalakrishnan

Copyright © 2006 Taylor & Francis Group, LLC

http://www.fda.gov/


8. Guidance for industry: pharmacokinetics in patients with impaired renal function—

study design, data analysis and regulatory applications. http://www.fda.gov /cder /
guidance/1449fnl.pdf. (Access date January 31, 2005).

9. Guidance for industry: drug metabolism–drug interactions studies in drug develop-

ment process—studies in vitro. http: //www.fda.gov /cder/guidance/clin3.pdf.

(Access date January 31, 2005).

10. Gobburu JVS, Lipicky RJ. 2000. Dose–response characterization in current drug

development: do we have a problem? Part I: Inferences from animal/human

data. http://www.fda.gov/ohrms/dockets/ac/00/backgrd/3656b2a.pdf. (Access

date January 31, 2005).

11. Sheiner LB. 2000. Dose finding—What do we want to know? ed. Cardiovascular and

Renal Drug Products Advisory Committee Meeting (FDA). Bethesda, October 20,

2000. http://www.fda.gov/ohrms/dockets/ac/00/transcripts/3656t2b.pdf. (Access

date February 1, 2005).

12. Peck CC. 2000. Does the currently drug development find the right-dose, ed.,

Cardiovascular and Renal Drug Products Advisory Committee Meeting (FDA).

Bethesda, October 20, 2000. http://www.fda.gov/ohrms/dockets/ac/00/tran-

scripts/3656t2a.pdf. (Access date February 1, 2005).

13. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of

drug development costs. J Health Econ 2003; 22(2):151–185.

14. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug

Discov 2004; 3(8):711–715.

15. Gobburu JVS. 2003. Could an EOP2A meeting shorten drug development

time? http://www.fda.gov/ohrms/dockets/ac/03/slides/3998S1_06_Gobburu_

files/frame.htm. (Access date February 10, 2005).

16. Ledergerber B, Egger M, Opravil M, et al. Clinical progression and virological failure

on highly active antiretroviral therapy in HIV-1 patients: a prospective cohort study.

Swiss HIV Cohort Study. Lancet 1999; 353(9156):863–868.

17. Fletcher CV, Acosta EP, Henry K, et al. Concentration-controlled zidovudine therapy.

Clin Pharmacol Ther 1998; 64(3):331–338.

18. Fletcher CV, Kawle SP, Kakuda TN, et al. Zidovudine triphosphate and lamivudine

triphosphate concentration–response relationships in HIV-infected persons. Aids

2000; 14(14):2137–2144.

19. Fletcher CV, Anderson PL, Kakuda TN, et al. Concentration-controlled compared

with conventional antiretroviral therapy for HIV infection. Aids 2002; 16(4):551–560.

20. Rodman JH, Relling MV, Stewart CF, et al. Clinical pharmacokinetics and pharmaco-

dynamics of anticancer drugs in children. Semin Oncol 1993; 20(1):18–29.

21. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH. Conventional

compared with individualized chemotherapy for childhood acute lymphoblastic leu-

kemia. N Engl J Med 1998; 338(8):499–505.

22. Gobburu JVS. Population pharmacokinetic and pharmacodynamic analyses in new

drug application: regulatory and scientific principles for clinical pharmacology and

biopharmaceutics. In: Sahajwalla C, ed. Marcel Dekker, 2001.

23. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in

the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a ran-

domised trial against atenolol. Lancet 2002; 359(9311):995–1003.

24. Sheiner LB, Beal SL, Dunne A. Analysis of nonrandomly censored ordered categorical

longitudinal data from analgesic trials. J Am Stat Assoc 1997; 92(440):1235–1244.

Optimal Dose Finding in Drug Development 213

Copyright © 2006 Taylor & Francis Group, LLC

http://www.fda.gov/
http://www.fda.gov/


25. Pickering TG. The role of ambulatory monitoring in reducing the errors associated

with blood pressure measurement. Herz 1989; 14(4):214–220.

26. Jadhav PR, Mehta MU, Gobburu JVS. How biomarkers can improve drug develop-

ment. Am Pharm Rev 2004; 7(3):62–64.

27. Gisleskog PO, Hermann D, Hammarlund-Udenaes M, Karlsson MO. A model for the

turnover of dihydrotestosterone in the presence of the irreversible 5 alpha-reductase

inhibitors GI198745 and finasteride. Clin Pharmacol Ther 1998; 64(6):636–647.

28. de Visser SJ, van der Post JP, Nanhekhan L, Schoemaker RC, Cohen AF, van Gerven

JM. Concentration–effect relationships of two rilmenidine single-dose infusion rates

in hypertensive patients. Clin Pharmacol Ther 2002; 72(4):419–428.

29. Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A. The prospec-

tive pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone

reduce cardiovascular events in diabetes? Study design and baseline characteristics of

5238 patients. Diabetes Care 2004; 27(7):1647–1653.

30. White WB, Saunders E, Noveck RJ, Ferdinand K. Comparative efficacy and safety of

nisoldipine extended-release (ER) and amlodipine (CESNA-III study) in African

American patients with hypertension. Am J Hypertens 2003; 16(9 Pt 1):739–745.

31. Sanathanan LP, Peck CC. The randomized concentration-controlled trial: an evalu-

ation of its sample size efficiency. Control Clin Trials 1991; 12(6):780–794.

32. Holford N, Black P, Couch R, Kennedy J, Briant R. Theophylline target concentration

in severe airways obstruction—10 or 20 mg/L? A randomised concentration-

controlled trial. Clin Pharmacokinet 1993; 25(6):495–505.

33. Grahnen A, Karlsson MO. Concentration-controlled or effect-controlled trials: useful

alternatives to conventional dose-controlled trials? Clin Pharmacokinet 2001;

40(5):317–325.

34. STRATTERA (Atomoxetine) Label. http: //www.fda.gov /cder/pediatric /labels /
Atomoxetine.pdf. (Access date February 1, 2005).

35. Ebling WF, Levy G. Population pharmacodynamics: strategies for concentration-and

effect-controlled clinical trials. Ann Pharmacother 1996; 30(1):12–19.

36. Schick EC Jr, Liang CS, Heupler FA Jr, et al. Randomized withdrawal from nifedi-

pine: placebo-controlled study in patients with coronary artery spasm. Am Heart J

1982; 104(3):690–697.

37. Little R, Yau L. Intent-to-treat analysis for longitudinal studies with drop-outs.

Biometrics 1996; 52(4):1324–1333.

38. Gobburu JV, Marroum PJ. Utilisation of pharmacokinetic–pharmacodynamic model-

ling and simulation in regulatory decision-making. Clin Pharmacokinet 2001;

40(12):883–892.

39. BUSULFEX (Busulfan) Label. http://www.fda.gov/cder/pediatric/labels/
busulfan.pdf. (Access date January 26, 2005).

40. BETAPACE (d,l sotalol hydrochloride) label. http://www.fda.gov/cder/pediatric/
labels/sotalol.pdf. (Access date January 26, 2005).

41. Gobburu JVS, Sekar V. Application of modeling and simulation to integrate clinical

pharmacology knowledge across a new durg application. Int Clin Pharmacol Ther

2001; 40(7):281–288.

42. Jonsson S, Karlsson MO. A rational approach for selection of optimal covariate-based

dosing strategies. Clin Pharmocol Ther 2003; 73(1):7–19.

214 Gobburu and Gopalakrishnan

Copyright © 2006 Taylor & Francis Group, LLC

http://www.fda.gov/
http://www.fda.gov/


43. Robert Temple. 2004. Where protocol design has been a critical factor for success or

failure. DIA Annual Meeting, June 2004. www.fda.gov /cder/present /DIA2004 /
Temple.ppt. (Access date February 1, 2005).

44. Davis KL, Thal LJ, Gamzu ER, et al. A double-blind, placebo-controlled multicenter

study of tacrine for Alzheimer’s disease. The Tacrine Collaborative Study Group. N

Engl J Med 1992; 327(18):1253–1259.

45. Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug

discovery and development. Br J Radiol 2003; 76 Spec No 2:S128–S138.

46. Dean B, Schachter M, Vincent C, Barber N. Causes of prescribing errors in hospital

inpatients: a prospective study. Lancet 2002; 359(9315):1373–1378.

47. Fortescue EB, Kaushal R, Landrigan CP, et al. Prioritizing strategies for preventing

medication errors and adverse drug events in pediatric inpatients. Pediatrics 2003;

111(4 Pt 1):722–729.

Optimal Dose Finding in Drug Development 215

Copyright © 2006 Taylor & Francis Group, LLC

http://www.fda.gov/
http://www.fda.gov/


10

Optimal Dose Selection in Drug
Development: Role of Population

Pharmacokinetics in Phase III

Willi Weber and Diether Rueppel

Global Metabolism/Pharmacokinetics, Sanofi-Aventis Deutschland GmbH,
Frankfurt, Germany

INTRODUCTION

The Goal of Drug Development

The pharmaceutical industry seeks to meet medical needs of drug treatment by

developing new drug applications (NDA). The final step in drug development

is to confirm that the NDA significantly improves the disease state in a population

of the target patients.

In a confirmatory design of a Phase III study, the test group is assigned a

dose regimen that achieves the maximum response possible without toxicity,

while the control group is assigned the least effective ethically acceptable alterna-

tive treatment without the test drug (1,2).

Using large doses will maximize the benefit magnitude, whereas zero dose

minimizes new drug-related benefit. The major task in drug development is to

find the optimal dose, which will show sufficient evidence of efficacy in a

placebo- or comparator-controlled double-blind clinical trial without unaccepta-

ble adverse events. The dose finding requires understanding of the disease

and learning the functional relationship between dosages, prognostic variables
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(like body size and kidney function), and clinical outcome. A list of acronyms is

presented in an Appendix at the end of this chapter.

Why Is Population Pharmacokinetics (PopPK) Useful in
Drug Development?

We often look at the occurrence of events critical for a disease as clinical end-

point in a RCT (randomized clinical trial). This type of data is recorded as

binary data (3), that is, either yes or no, typically coded as 1 or 0, respectively.

Similarly, drug treatment may successfully suppress or fail to suppress harmful

events. The success or failure of a drug treatment again can be coded as 1 or

0, respectively. Behind the binary outcome is our model for the continuous

probability between 0 and 1 to observe or not to observe a certain event.

To model the relationship between the probability of success and drug con-

centration, we use either the Hill equation or the logistic equation. The empirical

Hill model:

Prob(successjC) ¼
Cs

ECS
50 þ CS

(1)

can be transformed into the logistic equation:

logit(successjC) ¼ �S log EC50 þ S log C ¼ b0 þ b1 log C (2)

Prob(successjC) ¼
elogit

1þ elogit
(3)

Both equations 1 and 3 describe the transition from no drug effect at all to a

condition of a full drug effect at sufficient high concentrations. EC50 corresponds

to the concentration at half-maximal effect (Prob ¼ 0.5) and S to the Hill-

exponent. A large S� 1 value describes a steep relationship between concen-

tration and effect. In terms of a logistic distribution, the location parameter

log EC50 ¼ m is the mean and the shape parameter 1/S defines the variance

p2/3S2.

EC50 and S will vary between patients and are elements of a random vector

drawn from a multi-variate PDF (probability density function) defined by a

mean vector and a covariance matrix. The concentration C expected in a

patient is a function of the given dose and the random vector of the individual

PK (pharmacokinetics) parameters like CLtot (total clearance) and Vss (volume

of distribution at steady-state). Optimizing the probability of clinical success

is crucial in drug development. The expectation value for the probability of

observing a clinical success in a patient is given as a function of the dose and

the random variables EC50, S, CLtot, and Vss. To minimize the risk of failure in

drug development, we want to predict the probability of observing a clinical

success for a given dose as precisely as possible. Therefore, we need to know

the mean and variability of the critical random variables linking the probability

of success with dose. The appropriate method for estimating the mean and the
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variance of the random variables EC50, S, CLtot, and Vss is the PopPK (population

pharmacokinetics) approach.

Population PK/PD (relationship between pharmacokinetics and pharma-

codynamics) modeling and simulation can provide a vital aid to the drug

development process by providing reliable predictions of the individualized

dose–exposure–effect relationship (where effect refers to both efficacy and tox-

icity), which is key to successful therapy (4,5).

THE LEARNING AND CONFIRMING CONCEPT

What Is Learning and Confirming in Drug Development?

Sheiner (1) introduced the learning and confirming concept into the science of the

drug development process. The development of a new chemical entity (NCE) to a

new drug application (NDA) is described as an information gathering process that

can be thought of as two successive learning–confirmation cycles, which are

linked by a decision point.

The first cycle (traditional Phase I and Phase IIa) addresses the question of

whether benefit in terms of efficacy and safety can reasonably be expected over

existing therapies. It involves learning (Phase I) what is the largest short-term

dose that may be administered to humans without causing harm, and then

testing (Phase IIa) whether that dose induces some measurable short-term

benefit in patients for whom the drug is intended to be therapeutic.

An affirmative answer at this first cycle provides the justification for a more

elaborate second cycle (traditionally, Phase IIb and Phase III). The aim of this

second cycle is to first learn (Phase IIb) what is a good, if not optimal, dosage

regimen to achieve useful clinical value (i.e., an acceptable benefit–risk ratio),

and then to perform several formal clinical trials (in Phase III) of that regimen

versus a comparator to confirm a clinical value of the drug.

In summary:

. First learning and confirming cycle

Phase I: What is the largest short-term dose that may be administered

to humans without causing harm?

Phase IIa: Confirm that this dose has promise of efficacy in a selected

group of patients.

. Decision: Is there a sufficiently positive indication of efficacy and lack

of toxicity to justify investment in the future development of the drug?

. Second learning and confirming cycle

Phase IIb, dose finding: What is a good, if not optimal, dosage

regimen to achieve useful clinical value (i.e., an acceptable

benefit–risk ratio)?

Phase III, approval: Confirm in a randomized clinical trial in a large

representative patient population that when using the selected dose

regimen an acceptable benefit–risk ratio is achieved.
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At the confirmatory stage, the most credible analyses are those that make as

few assumptions as possible. A confirmatory design is optimized to reveal rejec-

tion of the H0-hypothesis, which is, in general, that the drug shows no effect.

A confirmatory design chooses a homogeneous set of patients, that is, one type

of patients likely to show the expected benefit are selected.

In a learning design, doses are spread out from not effective to intermediate

and maximum effective, to reveal the whole dose–response curve, not just two

extreme points. Furthermore, to learn as much as possible about the influence

of prognostic factors, patients with a broad range of prognostic factors are

enrolled in the learning studies.

In this chapter, we describe the learning and confirming cycles in the devel-

opment of cariporide.

Clinical PK data obtained in drug development, often sparse and

unbalanced repeated observations, are appropriate for using mixed effect

modeling. The hierarchical PopPK approach is the method of choice for this

type of data.

Clinical PD data is typically a single observation of success or failure

obtained in a subject. In cases where repeated observations are available, the

information content is often insufficient to estimate the intersubject variability

of the PD parameters. The functional relationship between concentration

and effect is often not hierarchical. The PK /PD method is the method of

choice for this type of data. If the PD data contains enough rich information,

the mixed effect modeling approach can also successfully be applied in the

PK /PD analysis (3).

In the area of modeling and simulation (M&S), both the hierarchical

PopPK and the non-hierarchical PK /PD methods are combined.

Use of PopPK and M&S in Learning and Confirming Steps

Figure 1 illustrates the typical learning and confirming steps during the drug

development. M&S is always involved during the learning steps.

Phase I, the first learning step: Normally PK and efficacy data from

animals are available when starting the first-in-man study. They can tentatively

be combined to a PK/PD model in man. Simulations with this first model will

help to decide on the first dose in man. The PK part of the model can continously

be improved when PK data in man become avaliable. In Phase I of the drug devel-

opment, safety and tolerability within a broad dose range are investigated.

Phase I studies are designed to generate rich data and balanced PK information

in each individual.

Phase IIa, the first confirming step: A PopPK meta-analysis of the

pooled Phase I data leads to a population PK model including fixed effects and

random effects (Eq. 18). In general special populations like renally impaired

patients, men and women and elderly subjects are included. The first PK/PD

model contains information about human PK and, typically, information about
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the relationship between the concentration and the effect observed in animals.

Simulations will be performed to find a dose which probably will show the

desired effect in man.

In Phase IIa, most often, learning while confirming happens simul-

taneously. The primary objective is to confirm the proof of the concept. For

the learning step, concentrations are observed using a sparse and unbalanced

sampling schedule. Once the proof of the concept is confirmed, the relationship

between the concentration and the effect is analyzed. Now the findings in humans

will be incorporated into the PK/PD model. Given that PK is linear, we can use

the PopPK model to optimize the dose in a way that, for example, 95% of the

Figure 1 PK/PD modelling and simulation. Abbreviations: PK, pharmacokinetics;

PD, pharmacodynamics; ph, phase.
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patients will achieve an exposure to the drug that leads to a successful clinical

outcome.

Phase IIb, the second learning step: In Phase IIb, you want to improve

your learning about variation in PK and PD in the target patient population. Simu-

lations using the PopPK and PK/PD model will again help to design a variety of

dose-finding studies, which elucidate the dose/concentration/effect relationship.

Simultaneous observations of the exposure and the effect are analyzed to improve

the models describing the PopPK and the PK/PD relationship. Using the

improved models of PopPK and PK/PD for simulations, an optimized dose for

the confirming Phase III study can be proposed. Of course it will be cross-

checked with all safety and tolerability data to achieve an optimal benefit/risk

ratio in Phase III.

Phase III, the second confirming step: Phase III combines confirming

efficacy and learning about toxicity in the target patient population. Phase III

hopefully confirms the desired efficacy without learning too much about toxicity.

There are good reasons to include a sparse sampling design which is

applied in a small satellite group and supports us with exposure data. The

main reason to prepare further learning is because sometimes confirming efficacy

fails. The lesson is not that the drug does not work, but only that the present

Phase III study does not allow rejection of the NULL hypothesis, which states

that the drug does not work. Why did confirmation fail? Using the data obtained

in the satellite group, we can validate our PopPK model. Using the information

on influential covariates like body size, kidney function, and disease status, we

can predict the most probable exposure in the total study population. Using the

predicted concentrations and the observed clinical outcome, we can revalidate

our PK/PD model. Simulation studies based on the updated models may

change the dose recommendation and a new Phase III may be designed to

finally confirm the efficacy.

When Phase III confirmed efficacy, we would also use the satellite group

data to update our models. Simulations may investigate the unobserved clinical

outcome after potential studies using a broader range of dose regimens. Such

simulation studies may help in discussions with the authorities about special

populations or adjustments in the dose regimen to be indicated in the drug label.

DEVELOPMENT OF A CARDIOPROTECTIVE DRUG

Can Cariporide Protect Acute Ischemic Patients?

Medical Need

Ischemic heart disease is the leading cause of morbidity and mortality in all

industrialized nations (6). The goal of the cariporide project is to protect the

heart from ischemia and reperfusion injury to avoid myocyte death, arrhythmias,

and contractile dysfunction.
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How can we construct our disease model? In our disease model, an

event was attributed to either a chronic low risk related to the underlying CHD

(coronary heart disease) or attributed to an acute high risk related to a risk situ-

ation of the CHD patient like a CABG (coronary artery bypass graft surgery).

Counts of events per day are observed as clinical outcome of a RCT and need

to be predicted by the disease model. In a time-to-event analysis, the time for

the occurrence of the first event in a patient was used as dependent variable.

The contribution of events by both the acute and the chronic risk source is

reflected in a mixture probability model for the time-to-event random variable T.

Which event belongs to the acute risk source and which to the chronic risk source

cannot be decided. Let T be a non-negative random variable representing the

event time for an individual from a mixture of two homogeneous populations.

The mixture probability model for T was constructed using a mixture of two

Weibull distributions (7), given as follows:

Pmix(T ja, t) ¼
X2

i¼1

piPWeibull(Tjai, ti) (4)

and the weighting factors:

p1 ¼ P(eventjdrug, acute high risk situation of CHD) and (5)

p2 ¼ P(eventjchronic low risk of CHD) ¼ 1� p1 (6)

The probability that a time-to-event (T) is less or equal to time t is given by

the cumulative distribution function Pmix(T � t). The probability that T is less or

equal to a value t, conditional on the parameter estimates, a and t, of the time-to-

event analysis and given the mixture probability density function (Eq. 4), can be

calculated as:

Pmix(T � tja, t) ¼
X2

i¼1

pi 1� e�(t=ti)
ai

� �
(7)

where ai (location of the i-th Weibull distribution) and ti (shape of the i-th

Weibull distribution) are the location and shape parameters of the i-th Weibull

distribution.

The target study population comprised acute ischemic patients with either

UAP (unstable angina pectoris), PCI (percutaneous coronary intervention), or

patients undergoing CABG surgery. The treatment with cariporide targeted

to reduce the acute risk of the occurrence of a combined event of either MI

(myocardial infarction) or death, given as p1 in equation 5. The treatment may

be limited to a maximum effect when the probability of success for the drug is

approaching unity, Prob(successjdrug)! 1, and a minimum effect under

placebo when Prob(successjdrug) ¼ 0.

p1 ¼ p1,placeboð1� DAcute riskProb(successjdrugÞÞ (8)
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In Equation 8, the term p1,placebo corresponds to the placebo treatment when p1 ¼

Prob(success jplacebo).

DRisk ¼
Pmix(T � t jplacebo) � Pmix(T � t jdrug)

Pmix(T � t jplacebo) 
(9)

The observed clinical outcome is related to the combined risk, Pmix, and the

target drug effect, judged as clinically relevant, is a relative risk reduction of

DRisk ¼ 25% of the total event rate at t ¼ 36 days. Simulation of the clinical

outcome and the effect of a successful drug treatment is shown in Figure 2.

The ratio of the event rates following placebo and cariporide treatment is

shown in Figure 3. To observe 25% and 21% DRisk (relative risk reduction) of

the total event rate on day 5 and day 36, respectively, DAcute risk (relative

reduction of the acute risk) ¼ 30% of the acute risk p1 is required.

What sample size is required? When designing a clinical study, one of

the first questions that arises is about sample size necessary to confirm efficacy.

The sample size depends upon the minimum detectable difference of interest, the

acceptable probability of rejecting a true NULL hypothesis (a ¼ 0.05), the
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Figure 2 Probability of myocardial infarction or death. The total risk (broken lines) of

the occurrence of an event is the sum of the acute risk and the chronic risk observed

during the study. The acute high risk (dotted lines) is related to CABG surgery, chronic

low baseline risk (solid lines) related to the coronar syndrome, left panel: placebo obser-

vation, right panel: cariporide reduces the acute risk within the first day by 30%. No

further additional effect of cariporide at later times.
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desired probability of correctly rejecting a false null hypothesis (power ¼ 0.80),

and the variability within the population(s) under study (8).

The NULL hypothesis simply assumes that there is no drug effect at all. If

there is no drug action, there is no place for modeling any drug effect. In the

alternative hypothesis, we assume that the drug responses have an effect. The

size of the effect should be significantly different from no effect and at least

should be clinically relevant. A larger effect can be detected using a smaller

sample size. Sample size calculation is based on the size of the effect, which

may be achieved by an unknown dose of the new drug. The difficult task

remains to select an appropriate dose regimen to achieve the target effect. Now

modeling a relationship between dose and effect size becomes important for

optimizing the dose selection.

The target product profile (TPP) required to show evidence for a clinically

relevant effect of at least 25% relative risk reduction of the event rate observed

36 days after the patient was enrolled into the study. In low risk patients with

a placebo event rate of approximately 2–5% on day 36, a sample size of more

than 20,000 patients would be needed to show a 25% relative risk reduction of

the event rate (a ¼ 0.05 and power ¼ 0.8). The investment in time and money

would be much too high for such a large proof of concept study (Phase IIa).
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Figure 3 Relative risk reduction over time. A minimum relative risk reduction of 30%

for the acute risk related to CABG surgery was estimated (Fig. 2). Due to the increasing

cumulative chronic risk, the observable relative total risk reduction shows its maximum on

day 1 and is continuously decreasing with time afterwards. The observable relative risk

reduction is 25% on day 5 and 21% on day 36, respectively. Abbreviation: CABG,

coronary artery bypass graft.
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Seeking the proof of concept in a high-risk population with a 15% risk on

day 36, a 25% relative risk reduction would require a sample size of 2650

patients. Such a large sample size is typically used in a Phase III trial, but still

too expensive for a Phase IIa proof of concept study. We gave up confirming

proof of concept in man and continued with a high-risk development of caripor-

ide of combining Phase IIa, Phase IIb, and Phase III in a single big clinical study

[GUARDIAN (9)].

What Dose Can Achieve the Target Effect?

The goal of learning in drug development is to attribute outcome differences to

variation in actual dose regimens. Drug exposure or its surrogate, plasma concen-

tration, is the most important covariate to predict outcome.

A relationship between dose and clinical outcome is usually split into first

defining a relationship between dose and concentration and then defining a

relationship between concentration and clinical outcome.

Inhibitors of sodium/hydrogen (Na /H) exchange like cariporide have been

shown to protect the ischemic myocardium in cardiac surgery of animals. In

pharmacologic experiments in pigs using cariporide, the outcome was successful

in all ischemic experiments with drug concentrations above a threshold of

0.2–0.4 mg /L. So, the relationship between concentration and clinical outcome

is approximated as a step function where any concentration above the observed

threshold should show the maximum probability of a successful outcome. The

threshold concentration referred to is almost full NHE (sodium–hydrogen type

1 exchanger) inhibition. Concentrations have been above the threshold before

the start of ischemia and were prolonged until the end of reperfusion.

The relationship between concentration and NHE inhibition in human

thrombocytes was determined [Fig. 4 and Ref. (10)] and used to link the

animal data to hypothesized effects in man. Human plasma concentrations

above 0.2 mg/L–0.4 mg/L translate to more than 80% NHE inhibition. We

hypothesized that 80% NHE inhibition will also be achieved in the ischemic

area of the heart and 80% NHE inhibition will show the target cardioprotective

effect in man.

With this assumption, the question of what dose regimen may achieve

maximum response in man could be replaced with the question of what dose

regimen achieves concentration above the minimum effective threshold concentra-

tion of 0.2 mg/L in the majority of the patients. To answer this question we need a

PopPK model predicting the concentration time course for a given dose regimen.

Using M&S, we are looking for a dose regimen leading in the majority of patients

to a mean drug concentration during the period of a high risk for the event, which

is above the hypothesized minimum effective threshold concentration.

How to Predict the Exposure Using PopPK?

The PopPK approach relies on a hierarchical model describing random effects at

the intrapatient and interpatient levels.
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Intrapatient level: The rich and balanced data observed in Phase I was

fitted separately for each subject and than the summary statistics were reported.

PK following bolus injections was best described by a 3-compartment (cmt) PK

model. The concentration observed for one subject at time ti is predicted as:

Ci ¼ f3cmt(dose, ti, u)þ ei (10)

The 3-cmt model f3cmt is built using the following parameter vector ~u:

~u ¼ {CL, Vss, V2, V3, Q1, Q2} (11)

and a residual error is modeled as proportional to the model-predicted concen-

tration.

SD(ei) ¼ s f3cmt(dose, ti, u) (12)

Interpatient level: Describing the PopPK of a group of subjects, the indi-

vidual parameter vector uj of the j-th subject can be viewed as a random vector

drawn from a multivariate distribution, describing the joint probability of all poss-

ible individual parameter vectors. The individual parameter vector uj of the j-th
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Figure 4 The relationship between the probability of NHE inhibition and cariporide con-

centration (log scale) was estimated using the NHE inhibition assay applied on human throm-

bocytes. Estimates for EC50 were between 0.06 mg/L and 0.09 mg/L and Hill coefficient

was approximately 1.7. Approximating as EC50 � 0.1 mg/L, we expect 80% of the

maximum NHE inhibition at 0.4 mg/L and 0.2 mg/L when we assume a Hill coefficient S

of 1 and 2, respectively. Depending on the true S our expectation about the probability of

NHE inhibition is marked as the polygon area. Abbreviation: NHE, sodium–hydrogen

exchanger.
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subject is assumed to be drawn from a multi-variate PDF with a typical mean ~u
and a between subject variability V. The between subject variability is modeled

as a log normal distribution. For the j-th patient a vector would be drawn as:

~uj ¼ ~uehj ; hj � N(0, V) (13)

Part of the interpatient variability can be explained by differences between

subjects in the body characteristics like size and kidney function.

Describing the demographics of a group of subjects, the individual demo-

graphic parameter vector Zj of the j-th subject can be viewed as a random vector

drawn from a multivariate distribution, describing the joint probability of all

possible individual demographic parameter vectors. Again, the multivariate

PDF describes the demographic distribution, for example, of AGE (age of

subject), BW (body weight), and HT (body height), conditional on GENDER

(gender of a subject) with a typical mean ~Z and an intersubject variability t.

~Zk ¼ {AGE, BW, HT, SCREA}jGENDERk (14)

We summarized body size either to LBM (lean body mass) or to IBW (ideal

body weight) and the kidney function to CLCR (creatinine clearance) and normal-

ized on a typical demographic vector:

~Z ¼
CLCR

100 ml=min
,

LBM

50 kg
,

IBW

70 kg

� �
(15)

which is no longer conditional on GENDER. The individual demographic par-

ameter vector Zj of the j-th subject is drawn from the joint probability of all poss-

ible individual demographic parameter vectors:

~Zj ¼ ~Zezj ; zj � N(0, t) (16)

When no influential demographic variables are used in the parameter

model, then the ~u is calculated for a subject with the mean demographic proper-

ties given in equation 15.

~u ¼

uCLR

uCLNR

uVss

uV2

uV3

uQ2

uQ3

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

; ~Zu ¼

ZCLCR

ZIBW

ZLBM

ZLBM

ZLBM

ZLBM

ZLBM

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

; z~uj
¼

zCLCR

zLBM

zLBM

zLBM

zLBM

zLBM

zLBM

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

; ~hj ¼

hCLR

hCLNR

hVss

hV2

hV3

hQ2

hQ3

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

(17)

~uj ¼ ~u ~Zu ezuj
þhj (18)
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The typical patient is described by the mean demographic parameters, that

is, z~uj
¼ 0, and the mean PopPK parameters, that is, ~hj ¼ 0. Part of the variability

given as Var( ~hj) in equation 13 is explained in equation 18 by differences in

CLCR, IBW, and LBM.

NONMEM analysis of pooled Phase I data: For a specific sub-

population of healthy subjects defined by an LBM of 50 kg, IBW of 70 kg, and

CLCR of 100 ml /min, we found the following typical parameter vector:

~u ¼

CLRen

180

ml/min

CLNon:ren

86

ml/min

�������

�������

Vss

88

L

V2

46

L

�������

�������

V3

31

L

Q2

52 :4

L/hr

�������

�������

Q3

215

L/hr

8
><

>:

9
>=

>;
(19)

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag V

p
¼ {18 :6, 39 :8, 13 :8, . . . , 20:5, 21:7}%, s ¼ 20% (20)

CLCR as surrogate for the kidney function has the greatest influence on car-

iporide pharmacokinetics. The relationship between the typical CLRen (renal

clearance) for a sub-population with a specific CLCR can be calculated as follows:

CLRen ½mL = min � ¼ 180
CLCR

100 mL =min

� �
; CV ¼ 18 :6% (21)

IBW has only a weak influence on CLNon.ren. The relationship between

CLnon.ren and IBW can be described as follows:

CLNon :ren ½mL = min� ¼ 86
IBW

70 kg

� �
; CV ¼ 39:8% (22)

The relationship between total CLtot ¼ CLRen þ CLNon.ren and CLCR is

shown in Figure 5.

LBM has a strong influence on the volume of distribution at steady-state

(Vss). The relationship between Vss and LBM can be described as follows:

Vss ½L � ¼ 88
LBM

50 kg

� �
; CV ¼ 13 :8% (23)

The relationship between Vss versus LBM is shown in Figure 6.

Dose selection for Phase II/III: Combined use of PopPK and M&S

revealed that a dose of 120 mg t.i.d. was required to predict concentrations

above the assumed threshold concentration of 0.2 mg /L for longer than 80%

of the dose interval in more than 80% of patients. As observed in animal exper-

iments, we expected the maximum cardioprotective effect above this threshold

concentration. To get a better understanding of the relationship between dose

and clinical outcome, we also included the lower doses of 20 mg and 80 mg of

cariporide every 8 hours in the Phase II/III GUARDIAN study (Fig. 7).
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Severe moderate mild normal

Figure 5 Total clearance versus creatinine clearance from a pooled Phase I analysis.

Symbols correspondent to different trials. The horizontal line corresponds to the contri-

bution of the non-renal part of the clearance. Clearance is linearly increasing with creati-

nine clearance, dotted lines are individual fits for the different trials. Limits for normal

kidney function and also for mild, moderate, and severe renal impairments are indicated.

Source: From Ref. 10.

Figure 6 Distribution volume at steady-state versus lean body mass in the pooled Phase I

analysis. Circles correspond to females, triangles to male volunteers. Source: From Ref. 10.
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Proof of Concept in CABG Patients

Is there a dose–effect relationship? In the Phase II/III GUARDIAN

study, a total of 11,590 patients with unstable angina or non-ST elevation MI

or undergoing high-risk percutaneous or surgical revascularization were random-

ized to receive placebo or 20, 80 or 120 mg doses of cariporide every 8 hours for

at least 2 days and up to a maximum of 7 days. The Phase II/III study failed with

respect to the Phase III part to confirm benefit of cariporide over placebo on the

primary endpoint of MI or death assessed after 36 days. There were no increases

in clinically serious adverse events.

A post hoc analysis of the GUARDIAN data confirmed the proof of concept

(Phase IIa part) in the sub-population of CABG patients. Pretreatment with

120 mg t.i.d. of the NHE inhibitor cariporide resulted in a significant reduction

in the primary endpoint. No effect was seen on mortality. No effects existed at

the 20- and 80-mg doses, whereas a 25% reduction in MI or death was present

with the 120-mg dose of cariporide ( p ¼ 0.027). The event rate of MI or death

Figure 7 Concentration versus time courses observed in a Phase I study and in the PPK

sub-study of the GUARDIAN study after 120 mg t.i.d. cariporide. The dots correspond to

individual observations. The grey areas indicate the prior predictions with 98%, 95%,

50%, and 10% percentiles. Left panel: Phase I single dose; middle panel: Phase I last

three doses; right panel: PK data observed on the first 2 days in UAP and PCI patients

enrolled in the PPK sub-study. Abbreviations: UAP, unstable angine pectoris; PCI, percu-

taneous coronary intervention; PK, pharmacokinetics.
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at 36 days was 16.2% and 12.1% in the placebo and the 120 mg t.i.d. cariporide

group, respectively.

With 120 mg t.i.d. dose, benefit was observed in patients undergoing bypass

surgery as relative risk reduction (DRisk) as shown in the Table 1. Because the drug

effect reduces only the acute risk (DAcute risk) occuring on the first day and is less

pronounced on the second day, the observed relative risk reduction DRisk

decreases due to the continuing contributions of events by the chronic risk. As

shown in Figure 8, the observed events were clustered mainly on the first day

showing that the acute high risk is related to CABG surgery. The observed low

event rate after the third day reflects the chronic low risk of the underlying CHD.

Is there a relationship between concentration and clinical

outcome? In Figure 8, we see a clustering of the events as a result of an

acute high risk period limited between the start of the anesthesia and the end

of surgery. Only the number of events observed at this initial peak is large

enough to observe any beneficial effect of the drug in the given sample size.

The observed target effect of reducing the event rate by DRisk % will depend

only on the cariporide concentration during this initial period of the acute high

risk. Due to the increasing contribution of the chronic risk to the observed

event rate, the observed relative risk reduction is always smaller than the drug-

related reduction of the acute risk, that is DRisk , DAcute risk.

p1 ¼ p1,�c¼0(1� DAcute riskProbðsuccessj �C Þ) (24)

In Equation 24, the term p1,�c¼0 corresponds to the placebo treatment when

Prob(successj �C ¼ 0Þ ¼ 0.

A relationship between concentration and clinical outcome was constructed

correlating the weight of the acute risk p1 in the time-to-event risk probability

(given in Eq. 5) to the mean plasma concentration during the acute high risk

period of CABG surgery �C (Eq. 24).

Let us approach the important question: Whether there is a relationship

between concentration and clinical outcome? The situation after a RCT is

often that we observe the clinical outcome in a large study population but miss

Table 1 Time Course of the Clinical Benefit Observed as Relative Risk

Reduction (DRisk) of the Combined Event of MI or Death in CABG

Patients Enrolled in the 120 mg t.i.d. Group of the GUARDIAN Study (9)

Time (days) DRisk (%) p value

5 32.3 0.007

10 28.5 0.016

36 25 0.027

183 19.3 0.033

Abbreviation: CABG, coronary artery bypass graft.
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Figure 8 Event rate (relative count of events per day) versus time after start of treatment.

Step solid lines: experimental data; dotted lines: predicted event rate using a mixture

probability model. Source: From Ref. 11. Courtesy of American Society of Clinical

Pharmacology and Therapeutics.

Figure 9 Concentration time courses in UAP and PCI patients enrolled in the PPK sub-

study of the GUARDIAN study. Black dots: observed concentrations; grey lines: post hoc

predictions using the PPK model obtained from pooled Phase I data; left panel: 20 mg

t.i.d., middle panel: 80 mg t.i.d. and right panel: 120 mg t.i.d. Abbreviations: UAP,

unstable angina pectoris; PCI, percutaneous coronary interventions.
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any information on exposure to the drug in most or all of the patients. Within the

GUARDIAN study, we included a PopPK sub-study. Plasma samples were col-

lected in a small satellite group of 377 out 11,590 patients using a sparse

sampling design. Discarding the patients on placebo, at least some PK infor-

mation for validation of the known PopPK model was available in 269 patients

of the small satellite group. However, most of the patients were enrolled for

indications other than CABG. We assumed that the PK is comparable between

the observed group of UAP and PCI patients and the group of CABG patients

for whom the predictions are required. The concentration–time courses

sampled in the UAP and PCI patients enrolled in the PopPK sub-study are

shown in Figure 9.

PopPK analysis of the pooled Phase I data revealed that body size and

kidney function were powerful predictors of the PK parameters V and CL, respect-

ively (Figs. 5 and 6). The clinical outcome was observed in almost 2840 CABG

patients. The missing PK information in these CABG patients was predicted

using the PopPK model and M&S, incorporating their dose history and their

influential demographic information on body size and kidney function.

The most important role of the PopPK approach was learning about the

unobserved PK in the major study population from a small satellite group of

patients with sparse sampling data. The small amount of PK information obtained

from a satellite group is, in general, sufficient to validate an a priori known

PopPK model for the target population. The missing PK data necessary for a

concentration–effect analysis in the target population is simply predicted using

the PopPK model, the influential demographic patient information, and the

M&S technique. In the cariporide project, the mean concentration during the

period of surgery �C (mean concentration during the priod of acute risk) was

predicted and used as a predictor of the drug effect in a time-to-event analysis

including all CABG patients with observed information on clinical outcome.

The concentration–efficacy analysis revealed a steep onset of reduction in

the risk of MI or death with cariporide plasma concentration above a minimum

effective threshold concentration of 0.55 mg /L [Fig. 10 and Ref. (11)]. The

threshold concentration in man is approximately twice the threshold concen-

tration found in animal experiments. The exposure achieved with 120 t.i.d.

seems just to cover the lower range of efficacy. At concentrations distinctly

higher than the minimum effective threshold concentration, the number of

patients exposed was too low to precisely evaluate the maximum therapeutic

potential. Nevertheless, due to its clinical importance, a rough estimate of the

maximum effect revealed that for the observed event rate of 16% in placebo-

treated patients the relative risk reduction DAcute risk should be at least 30% or

higher. Such reduced acute risks would translate to at least 25% and 21%

(DRisk) lower event rates on day 2 and day 36, respectively.

As shown in Figure 11, the minimum effective threshold plasma levels found

in man were reached in none of the patients who received the 20-mg dose, in 24% of

those who received the 80-mg dose, and in 69% of those who received the 120-mg
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dose, suggesting that higher dosages and/or dosing modifications that achieve

exposure above the minimum effective threshold during the period of risk in

most of the patients could improve the efficacy of cariporide.

How to optimize the dose: The secondary goal of the GUARDIAN

study (the Phase IIb part) was to attribute outcome differences to variation in

actual regimens and find an optimized dose regimen for future clinical use.

In the GUARDIAN study most patients were operated between 2 and 9

hours after start of the t.i.d. treatment with cariporide. As a consequence of the

chosen t.i.d. regimen, the cariporide concentrations declined during the dose

interval below the minimum effective threshold concentration within the

period of increased risk. Using a constant infusion regimen instead of a t.i.d.

treatment could avoid such decline of the cariporide concentration below the

minimum effective threshold concentration during the CABG surgery.

Figure 10 Relationship between event rate and cariporide concentration. Bar histogram:

fraction of 2840 patients with a predicted concentration within the limits of the individual

bar. Placebo is shown as the bar with negative concentrations. Intersections on the other

bars show the fraction corresponding to each dose group: 20 mg (wide hatching), 80 mg

(narrow hatching), and 120 mg (no hatching). The probability of an event, Pmix(T � 36

days), given in equation 4 is shown using the Hill model (equation 1, solid line) to describe

the concentration dependency of the drug effect described in equation 24. The filled dia-

monds with error bars represent the observed event rate, that is, the sum of acute and

chronic risk events, in each concentration box and their 5% and 95% percentiles. The

event probability contributed by the chronic risk was 0.045. Source: From Ref. 11.

Courtesy of American Society of Clinical Pharmacology and Therapeutics.
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Cardioprotection is required only on the first day when the acute risk related to

CABG surgery is high and is less important on the second day.

The learning step in a new Phase IIb study aimed to find an optimized infu-

sion dose regimen, which constantly exposed 95% of the patients on the day of

the CABG surgery and the day after to concentrations above the minimum effec-

tive threshold concentration without exceeding the range of concentrations

observed in the GUARDIAN trial.

What infusion regime covers exposure of 120 mg t.i.d. in CABG

patients?—120 mg t.i.d. sums up to a daily dose of 360 mg cariporide or to a

mean infusion rate of 15 mg/hr. To quickly obtain the concentration range

above the minimum effective threshold concentration, we decided to start with

the initial 1 hour infusion of 120 mg. To avoid the decline of the cariporide con-

centrations, we could continue with a 15 mg/hr maintenance infusion. Such

120 mg/15 mg/hr approach would achieve the mean concentration time course

of the 120 mg t.i.d. dose regimen without any fluctuation of exposure. As clinical

trial simulations revealed, an increase of the 15 mg/hr maintenance infusion to a

20 mg/hr maintenance infusion would still achieve concentrations below the

peak concentrations of the 120 mg t.i.d. approach and, at the same time, would

increase exposure to such an extent that more than 95% of the patients would

achieve concentrations above the minimum effective threshold concentration

during surgery. Therefore, a 120 mg loading infusion administered within 1 hour

20
80
120

Figure 11 Distribution of mean cariporide concentration under CABG surgery for each

dose group. The vertical line marks the threshold concentration of 0.5 mg/L. In the 80 mg

dose group only 31% of the patients reached mean concentrations above this minimal

effective concentration, whereas in the 120 mg dose group, 76% are above. Abbreviation:

CABG, coronary artery bypass graft.
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and followed by a 20 mg/hr maintenance infusion given for a further 48 hours

was expected to cover the exposure of 120 mg t.i.d. and was the first dose

regimen investigated in a new Phase IIb study.

What infusion regime constantly exceeds 1 mg/L in the majority of

patients? The second target of the Phase IIb study aimed to explore the safety

and tolerability in the concentration range above 1 mg/L, where the PK/PD

model obtained from the GUARDIAN data potentially predicts additional effi-

cacy. Our second target aims to investigate such a high concentration range

well above the peak concentrations observed in the GUARDIAN study, which

was never investigated in humans. As clinical trial simulations revealed, an

increase of the 1 hour loading infusion of 120 mg to an 1 hour loading infusion

of 180 mg and simultaneously increasing the 20 mg/hr maintenance infusion to

a 40 mg/hr maintenance infusion would mean that more than 95% of the patients

would achieve concentrations above twice the minimum effective threshold con-

centration during surgery (Fig. 12). To limit the risk with safety and tolerability in

this unexplored range of exposure, we decided to increase the dose step-wise from

120 mg/20 mg/hr to 180 mg/30 mg/hr and continue with 180 mg/40 mg/hr

only if no issues with safety and tolerability occurred.

To validate our PopPK model for the use of the higher than previously

used dose regimen, we compared the PK data expected and observed in the

Phase IIb study. The available PopPK model predicted the concentration time

course suffciently well to optimize the dose regimen.
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Figure 12 Concentration versus time in a Phase IIb study with 180 mg/hr loading dose

and 40 mg/hr maintenance dose. Observations are shown on the right, simulations with the

population PK model on the left side. Abbreviation: PK, pharmacokinetics.
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Designing the confirmatory Phase III study: Continuously adminis-

tered intravenous (IV) cariporide for up to 48 hours in subjects undergoing

CABG surgery was safe and well tolerated at all three dose levels tested in this

study. Exploratory analysis of the combined incidence of MI or death demon-

strated a reduction in the occurrence of this endpoint with cariporide compared

with placebo, which was most pronounced in the high-dose cariporide group.

The findings of this study support the continued investigation of optimal continu-

ous IV cariporide dosing in patients undergoing CABG surgery.

As the three dose levels tested exhibited a similar safety profile, the ulti-

mate selection of a dose regimen for further studies was based upon the results

of the PopPK analyses (12) and M&S. In Figure 13, we compared the outcome

for the mean concentration during the risk period between 100 simulations of

the Phase IIb study and the observed study results.

The results of the PopPK analysis of the dose-finding Phase IIb study are

summarized as follows:

. Using doses of 120/20 mg/hr and 180/40 mg/hr we achieved the

target exposure during CABG surgery of concentrations above

0.5 mg/L and above 1 mg/L, respectively in 95% of the patients.

Figure 13 Simulated and observed concentrations during CABG for three dosing

regimens (120/20 mg/hr, 180/10 mg/hr, 180/40 mg/hr) in a Phase IIb study. Abbrevi-

ation: CABG, coronary artery bypass graft. Source: From Ref. 12.
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. Because no dose-limiting adverse events occurred, 180 /40 mg/hr was

found appropriate to be tested in a new clinical trial; 120 /20 mg/hr may

serve as a back-up dose option.

. Due to the considerably lower risk of suffering an event on the second

treatment day (Fig. 8), the observed higher concentrations on day 2

probably will not add additional benefit to the patient. Therefore, the

modified infusion regimen of 180 /40 /20 mg/hr, consisting of

180 mg/40 mg /hr infusion on the first treatment day and half the main-

tenance infusion (20 mg /hr) on the second day was recommended.

Simulations using the demographics of the Phase IIb CABG population and the

180 /40 /20 mg /hr dose regimen are shown in Figure 14. Assuming that we

achieve maximum relative risk reduction DAcute risk when using the 180 /40 /
20 mg /hr dose regimen, the expected event probability curves for placebo and

maximum treatment effect are shown in Figure 15.

What was the Role of PopPK in the Development Process? (Table 2)

The development started with animal experiments, showing that in all clamp

experiments the heart was successfully protected against ischemic injury above

a threshold concentration.

The question was how to translate the successful treatment in animals to

cardioprotection in ischemic diseases in man. The threshold concentration

Figure 14 Simulation of the concentration–time course in CABG patients. The dosing is

180 mg/hr for 1 hr, 40 mg/hr for 24 hours, 20 mg/hr for 24 hours. Abbreviation: CABG,

coronary artery bypass graft. Source: From Ref. 12.
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determined in animals correlated to more than 80% NHE inhibition. The NHE

inhibition assay in human thrombocytes led to plasma threshold concentration

correlated to 80% NHE inhibition in human. We assumed that the NHE inhibition

in thrombocytes correlates with the NHE inhibition in the ischemic myocard.

Our first PK/PD relationship was a simple step function describing no effect

below the threshold concentration and the full effect above the threshold concen-

tration. However, cardioprotection in animals was always observed above the

threshold concentration. We decided to design a confirmatory study to detect a

25% difference between the event rate in placebo and cariporide treatment.

Knowledge of the wide range of placebo responses in patients with ischemic dis-

eases was found in the literature. To limit the sample size of the clinical study, we

decided to investigate only high-risk patient groups with an event rate between

10% and 20%. When the type I error a and the power 1 2 b are given for the

0
30
60

100

Figure 15 Expected event probability curves for placebo and maximum treatment effect,

DAcute risk, calculated using equation 7. DAcute risk was estimated as 60% (95% confidence

interval: 30–100%) relative reduction of the acute risk of an event, which is assumed to be

directly related to the CABG surgery. The lowest curve, that is, 100% reduction, corre-

sponds to the chronic risk of an event, which is assumed not to be related to the CABG

surgery. The event rates of 0.164, 0.169, 0.176, and 0.119 observed in patients enrolled

in the GUARDIAN trial and treated per protocol with placebo, 20, 80, and 120 mg

cariporide t.i.d., respectively, are shown as filled circles with 95% confidence intervals.

The vertical dotted lines mark day 5 and day 36 after beginning of treatment as the

discussed days of observation. Abbreviation: CABG, coronary artery bypass graft.

Source: From Ref. 11. Courtesy of American Society of Clinical Pharmacology and

Therapeutics.
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Table 2 Use of PopPK Preparing Phase III of the Cariporide Development

Question Experiment Result Phase

Reduction of infarct size with

cariporide?

Clamping and reperfusion in pigs Above 0.2 mg/L reduced Preclin., Pigs

NHE effect in humans? Human thrombocyte test, NON/MEM 80% inhibition of NHE exchanger for

conc . 0.2–0.4 mg/L

Preclin., in vitro

For which dose concentration

.0.2 mg/L?

Pooled Phase I, PopPK, simulation 120 mg t.i.d. I

Proof of concept and confirming? GUARDIAN study Proof of concept: yes, confirming in a

large patient population: no

IIa, III

Dose response? GUARDIAN 25% reduction for CABG patients at

120 mg t.i.d., no reduction at 80 mg

t.i.d.

IIb

Concentration response in

CABG patients?

GUARDIAN, PopPK for 269 patients

satellite logistic regression for 2116 patients

Yes, minimum effective threshold

0.55 mg/L

IIb

High-risk period in CABG? GUARDIAN Time of CABG surgery IIb

Dose for concentration above

a threshold of 0.55 mg/L?

Study in CABG patients, PopPK, simulation Infusion 120 mg/hr for 1 hrþ 20 mg/
hr for 47 hours

IIb

Safety concerns? GUARDIAN, study in CABG patients no safety concerns IIb

Dose for concentration above 2

times threshold?

Study in CABG patients, PopPK, simulation Infusions of 180 mg/hr for 1 hr,

40 mg/hr for one day, 20 mg/hr for

the following days

IIb

Abbreviations: NHE, sodium–hydrogen exchanger; CABG, coronary artery bypass graft.
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sample size calculation, you need only to decide about the minimal detectable,

but still clinically relevant, effect size i.e., the expected event probability and

the DRisk (8).

The challenging question was: Which dose regimen is necessary to achieve

at least the minimal detectable effect size? From the animal experiments, we

learnt that a simple step function may serve as a first estimate of the relationship

between concentration and effect. So our hypothesis was that all doses leading to

concentrations above the threshold concentration will at least achieve the target

effect size. With this assumption, the dose we are looking for could be found if a

PopPK model for cariporide would be available for M&S.

The PopPK model was built retrospectively using the NONMEM approach

and the pooled data obtained in Phase I. Our PopPK model was then used to simu-

late the concentration–time courses of all further future studies, which always

included a sparse sampling strategy. After completion of the studies, the PopPK

model was validated by comparing the predicted concentration–time courses

with the concentration–time courses observed in the following study.

The GUARDIAN study failed to confirm efficacy over all patient groups.

However, there was a strong effect found in a sub-group analysis in CABG

patients receiving the largest dose amounts. Plasma concentrations were

measured only in a small satellite group of patients using a sparse sampling

design. PK information was only available in a small satellite group of patients

and most of them with indications other than CABG. The clinical outcome

was observed in almost 3000 CABG patients. The PK information required to

estimate the relationship between concentration and clinical outcome was

taken from predicting the PK using the PopPK model. M&S incorporated the

dose history and the influential demographic information on body size and

kidney function, which were powerful predictors of the PK parameter V and

CL, respectively. The most important role of the PopPK approach was learning

about the PK in the major study population from small satellite groups of patients.

The missing PK data necessary for a PK/PD analysis is simply predicted using

the PopPK model and M&S. The predicted mean concentration during the

period of surgery was used as a predictor of the drug effect in a time-to-event

analysis including all patients with observed information on clinical outcome.

The resulting PK/PD model was used to predict the PK and clinical

outcome for a variety of dose regimens. Three dose regimens were selected to

investigate their safety and tolerance in a following Phase IIb study. Validation

of the PopPK model in the target population of CABG patients was our second

objective in this Phase IIb study. A sparse sampling design was applied in all

CABG patients enrolled in this study. Optimizing the design of future studies,

especially dose finding for Phase III studies, is an important role of the PopPK

approach.

All three dose regimens were safe and tolerable. The PopPK model was

validated by comparing predicted and observed plasma concentrations. We

updated the PopPK model parameter estimates using the PK data obtained in
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the Phase IIb study. Using the updated model we simulated the PK and clinical

outcome for slightly modified dose regimens. The finally chosen dose regimen

was investigated in the final Phase III trial. The outcome of this Phase III

study was summarized by Bolli et al. (6) as follows: The NHE inhibitor

“cariporide has been shown to be cardioprotective in high-risk CABG patients.”

Unfortunately, Bolli et al. continued with “but its neurologic effects preclude its

use at the present time.” The sad result of the cariporide development is that the

demonstrated beneficial cardioprotective effects were offset by unexpected

neurologic side effects. The good news is that PopPK combined with simulation

techniques was successfully applied in the learning and confirming steps about

efficacy in drug development.

CONCLUSION

When designing any experimental study, we always have a model about our

experimental unit in mind supporting us with expectations of the outcome of

the study. When optimally designing a Phase III study, we need a model for pre-

dicting the outcome with respect to the dose/concentration/effect relationship in

our experimental unit, that is, the population of target patients.

Drug development is a sequence of learning and confirming steps gathering

the information necessary to optimize the pivotal Phase III study, which hope-

fully confirms the efficacy of the new drug. The role of PopPK and PK/PD

modeling is summarizing available data into a predictive model. The hypothesis

concerning the functional relationship between dose, concentration and effect,

the selection of physiological variables as influential covariates, and the

parameter estimates were incorporated into the model and tested against our

available experimental data.

Modeling and simulation helps in general to structure the drug develop-

ment process and to ask question about what is already known or where we

have only vague ideas and where we require more information for making qual-

ified decisions. Putting things into equations of a model needs to decide on each

parameter and think about possible influential covariates.

The value of a model is given by its usefulness to answer specific drug

development questions. Our PopPK model was useful to answer important ques-

tions related to the design of our Phase III study, such as:

. What dose regimen achieves in 95% of the target patients’ plasma

concentration constantly above a minimum effective threshold

concentration?

. How to obtain reliable predictions on missing concentration data

required for PK/PD modeling?

We used the PopPK approach combined with M&S for all the learning steps to

acquire the information needed for decision-making and for planning efficient

confirmatory clinical studies.
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APPENDIX: LIST OF ACRONYMS

AGE age of subject; year

CABG coronary artery bypass graft surgery
�C mean concentration during the period of acute risk

CHD coronary heart disease

CLtot total clearance; L/hr

CLCR creatinine clearance; L/hr

CLNon.ren non-renal clearance; L/hr

CLRen renal clearance; L/hr

EC50 concentration at half maximum effect; mg/L

GENDER gender of a subject; 1 ¼ male and 2 ¼ female

HT body height; cm

IBW ideal body weight; kg

IV intravenous

LBM lean body mass; kg

ai location of the i-th Weibull distribution

M&S modeling and simulation

MI myocardial infarction

V Covariance matrix describing the between subject variability

NHE sodium–hydrogen type 1 exchanger

NONMEM nonlinear mixed-effects modeling

PCI percutanous coronary intervention

PDF probability density function

PK pharmacokinetics

PK/PD relationship between pharmacokinetics and

pharmacodynamics

PopPK population pharmacokinetics

Q intercompartment clearance

RCT randomized clinical trial

DRisk relative risk reduction

DAcute risk relative reduction of the acute risk

SCREA serum creatinine concentration

ti shape of the i-th Weibull distribution

S Hill coefficient

UAP unstable angina pectoris

Vss volume of distribution at steady-state; L

BW body weight; kg
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INTRODUCTION

The development of atomoxetine hydrochloride (Stratteraw) involved several

important factors. In addition to demonstrating efficacy in attention-deficit/
hyperactivity disorder (ADHD), key aspects of development included the poly-

morphic metabolism of atomoxetine by cytochrome P450 2D6 (CYP2D6)

and the primary target population being children. Dose optimization was a

critical part of the successful development of atomoxetine and employed

phase-appropriate development strategies. Earlier clinical studies focused on

dose optimization related to the safety and tolerability of atomoxetine, and

also defining the impact of the CYP2D6 polymorphism on the general dis-

position of the molecule. Later clinical studies focused on dose optimiza-

tion of atomoxetine related to efficacy measures, and the potential necessity

of individualizing dosing based on genotype. This chapter presents only a

subset of the data available for Strattera, and, therefore, complete safety,

efficacy, and dosing information should be obtained from the current

package insert.
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BACKGROUND

Atomoxetine is a potent inhibitor of the presynaptic norepinephrine (NE) trans-

porter with lower affinity for other monoamine transporters or receptors (1–5).

The efficacy of atomoxetine has been demonstrated for the treatment of ADHD

in children, adolescents, and adults (6–9). As the first FDA approved non-

stimulant pharmaceutical treatment for ADHD, atomoxetine represents a

significant advance in the treatment of this disease. Furthermore, due to its

mechanism of action, atomoxetine does not share the abuse potential associated

with psychostimulant drugs (10).

In vitro studies demonstrate that atomoxetine has potent nanomolar to sub-

nanomolar affinity for the rat and human NE transporters and minimal affinity for

serotonin and dopamine transporters, and also other receptors and ion channels

(1). A number of preclinical in vivo studies have characterized the potency of ato-

moxetine as an inhibitor of NE reuptake at both central and peripheral sites

(2,3,11). Furthermore, microdialysis measurement of rat brain extracellular

monoamines has helped to define the central effects of atomoxetine (12). In

these studies, atomoxetine increased extracellular NE in the prefrontal cortex

threefold, but did not alter serotonin. Atomoxetine also increased dopamine con-

centrations in the prefrontal cortex threefold, but did not alter dopamine in the

striatum or nucleus accumbens. In contrast to the psychostimulant methylpheni-

date, atomoxetine does not increase dopamine in the striatum or nucleus accum-

bens nor does it increase locomotor activity, suggesting it would have less

potential for motoric or drug abuse liabilities. This conclusion is further sup-

ported by the finding that atomoxetine did not substitute for cocaine in

monkeys that self-administered cocaine (13,14).

PK AND METABOLISM, INFLUENCE OF PHARMACOGENETICS

The most interesting feature of atomoxetine disposition is its metabolism and the

influence of pharmacogenetics. Three oxidative metabolic pathways are involved

in the systemic clearance of atomoxetine: aromatic ring-hydroxylation, benzylic

hydroxylation, and N-demethylation (15). Aromatic ring-hydroxylation results in

the formation of the primary oxidative metabolite of atomoxetine, 4-hydroxyato-

moxetine, which is subsequently glucuronidated and excreted in urine. The for-

mation of 4-hydroxyatomoxetine is primarily mediated by the polymorphically

expressed enzyme, CYP2D6 (16). Therefore, alterations in the catalytic activity

of CYP2D6 due to genetic polymorphism have a profound effect on the clearance

of atomoxetine. This results in two distinct populations of individuals: those

exhibiting active metabolic capabilities (CYP2D6 extensive metabolizers,

EMs) and those exhibiting poor metabolic capabilities due to mutations or

deletion of the CYP2D6 gene (CYP2D6 poor metabolizers, PMs) for atomoxetine

(17,18). The PM trait, which is known to be inherited as an autosomal recessive

characteristic, is an important source of intersubject variability in metabolism for
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a number of drugs (17,19,20). This genetic mutation is most prevalent

in Caucasians, in which approximately 7% of the population can be geneti-

cally classified as PMs (21). Although the compromised ability to metabolize

CYP2D6 substrates is principally mediated by the genetic polymorphism associ-

ated with CYP2D6, the phenotypic manifestation of this condition can result

from exposure to chemical inhibitors of this metabolic pathway.

The EM population can be subdivided into two additional groups based on

the number and intrinsic catalytic activity of functional alleles. These subpopu-

lations are identified as ultra-rapid metabolizers (UM) and intermediate metabo-

lizers (IM). The UM genotype results from gene duplication of functional

CYP2D6 alleles (CYP2D6�2XN ) and has been associated with greater

CYP2D6 catalytic activity (22). The UM genotype accounts for approximately

3–7% of the overall EM population (23). Individuals that are defined as IMs

possess two compromised CYP2D6 alleles (CYP2D6�10, CYP2D6�17) that

have decreased activity due to genetic mutation (24,25). Although the enzyme

produced from these alleles is functional, its catalytic activity is lower than

that associated with fully functional alleles (CYP2D6�1).

In PMs, multiple cytochrome P450 enzymes are capable of forming

4-hydroxyatomoxetine and secondary pathways become more dominant (benzylic

hydroxylation and N-demethylation) (15,16). Therefore, should one or more of

these multiple routes of metabolism be affected due to drug–drug interactions or

due to interindividual differences in the activity of cytochrome P450 enzymes,

changes in the overall clearance of atomoxetine in PMs are not expected.

PK in Adult Subjects

The clinical pharmacokinetic (PK) and metabolic properties of atomoxetine have

been well characterized in children, adolescents, and adults (for review, see

Ref. 26). Atomoxetine has high aqueous solubility and biological membrane per-

meability that facilitates its rapid and complete absorption after oral adminis-

tration. Absolute oral bioavailability ranges from 63% in EMs to 94% in PMs,

which is governed by the extent of the first-pass metabolism. The oral bioavail-

ability and clearance of atomoxetine are influenced by the activity of CYP2D6;

nonetheless, plasma PK parameters are predictable in both EM and PM patients.

After single oral doses, atomoxetine reaches maximum plasma concentration in

about 1–2 hours after dosing. In EMs atomoxetine has a half-life of 5.2 hours,

while in PMs atomoxetine has a plasma half-life of 21.6 hours. The systemic

plasma clearance of atomoxetine is 0.35 and 0.03 L/hr/kg in EMs and PMs,

respectively. Correspondingly, the mean steady-state plasma concentrations

are approximately 10-fold higher in PM compared with EM subjects.

Upon multiple dosing, there is plasma accumulation of atomoxetine in PMs,

but very little accumulation in EMs. The volume of the distribution is

0.85 L/kg, indicating that atomoxetine is distributed in total body water in
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both EMs and PMs. Atomoxetine is highly bound to plasma albumin (approxi-

mately 99% bound in plasma) (15).

Although steady-state concentrations of atomoxetine in PMs are higher

than those in EMs following the administration of the same mg/kg/day dose,

there are only modest differences observed in tolerability which do not appear

to have marked effects on overall clinical outcomes (27).

In Figure 1, the mean steady-state plasma concentration-time profiles (nor-

malized to a 1-mg/kg dose of atomoxetine) are shown for atomoxetine, N-des-

methylatomoxetine, and 4-hydroxyatomoxetine. In both EM and PM subjects,

N-desmethylatomoxetine and 4-hydroxyatomoxetine are the principal oxidative

metabolites of atomoxetine found in the plasma. In EM subjects at steady

state, plasma concentrations of both N-desmethylatomoxetine and 4-hydroxyato-

moxetine are relatively low compared with atomoxetine. The plasma concen-

trations (Css,avg) of N-desmethylatomoxetine were about 5% of atomoxetine,

while 4-hydroxyatomoxetine plasma concentrations were about 1% of atomoxe-

tine. In PM subjects, steady-state 4-hydroxyatomoxetine concentrations (Css,avg)

Time (hours)
0 2 4 6 8 10 12

M
ea

n 
Pl

as
m

a 
C

on
ce

nt
ra

tio
n 

(n
g/

m
L)

/(m
g/

kg
)

1

10

100

1000

10000

Extensive Metabolizers

Time (hours)

0 2 4 6 8 10 12M
ea

n 
Pl

as
m

a 
C

on
ce

nt
ra

tio
n 

(n
g/

m
L)

/(m
g/

kg
)

0

200

400

600

800

1000

Time (hours)

0 2 4 6 8 10 12

M
ea

n 
Pl

as
m

a 
C

on
ce

nt
ra

tio
n 

(n
g/

m
L)

/(m
g/

kg
)

1

10

100

1000

10000

Poor Metabolizers

Time (hours)

0 2 4 6 8 10 12

M
ea

n 
Pl

as
m

a 
C

on
ce

nt
ra

tio
n 

(n
g/

m
L)

/(m
g/

kg
)

0

800

1600

2400

3200

4000

Atomoxetine
4-Hydroxyatomoxetine
N-Desmethylatomoxetine

Figure 1 Mean steady-state concentration (normalized to a 1-mg/kg dose) versus time

profiles for extensive and poor metabolizer subjects.
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are relatively low compared with atomoxetine (about 0.1%). However, plasma

concentrations of N-desmethylatomoxetine were approximately 45% of atomox-

etine in the PM subjects (Strattera package insert).

With regard to the genetically defined subgroups present in the overall EM

population (UM and IM genotypes), the PK differences observed with atomoxe-

tine are relatively minor. A great deal of overlap in the PK of atomoxetine is

observed, suggesting that neither the UM or IM genotype are distinct phenotypic

populations, in contrast to the substantial PK differences observed overall

between the EM and PM individuals (data on file at Lilly Research Laboratories).

PK in Pediatric Patients

The PK in children and adolescents were fully evaluated in more than 400

patients and shown to be similar to adults, after adjustment for body weight

(28–30). Based on the marked effect of body weight on the clearance of atomox-

etine, it was decided early in development that a weight-based dosing regimen

would be used for pediatric patients.

DEVELOPMENT STRATEGY FOR A CYP2D6 SUBSTRATE

In addition to demonstrating efficacy in ADHD, key aspects of development

included the polymorphic metabolism of atomoxetine by cytochrome P450

2D6 (CYP2D6), and the primary target population being children. Phase I

study initially revealed the effect of the CYP2D6 polymorphism on the disposi-

tion of atomoxetine, and, therefore, this attribute was known during the

development of atomoxetine for ADHD. This characteristic increased the com-

plexity of clinical drug development because there were several additional

safety and PK aspects to explore. One question to be answered was whether

individuals lacking CYP2D6 activity, who have higher atomoxetine plasma

concentrations than the majority of the population, would tolerate the same

doses as EMs. Depending on the safety and tolerability of atomoxetine in the

PMs, patients may need to be phenotypically or genotypically characterized

for CYP2D6 status in order to receive the appropriate dosage. Another interest-

ing subset of the population, the UMs, needed to be explored in order to

understand if they may have subtherapeutic plasma concentrations, and, there-

fore, lack of efficacy. These questions were addressed during clinical

development and the appropriate dosing regimen and labeling for the drug

was determined.

The clinical development of atomoxetine followed a thorough and step-

wise progression in the understanding of the PK, safety, tolerability, and efficacy

in PMs, and also the population as a whole. Clinical pharmacology studies dosed

healthy adult subjects without regard to genotype in order to fully understand the

safety, tolerability, and PK over the dose range of interest. Early efficacy trials in

adults dosed atomoxetine at lower doses without regard to genotype. In initial
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efficacy trials in children and adolescents, patients were dosed in accordance with

their genotype, such that PMs received lower doses than EMs (data on file at Lilly

Research Laboratories). Another feature of these initial clinical trials in pediatric

patients was that the dosing regimens were very flexible, with the aim of titrating

doses slowly based on the individual’s response and tolerability to the drug.

These individualized titration design studies allowed for a more conservative

approach in early trials and also provided much information about the doses

that physicians found useful (31). After demonstrating a very broad therapeutic

index in these initial safety and tolerability studies, later clinical trials in both

pediatric and adult patients dosed atomoxetine without regard for genotype

(32,33). Another strategy to further optimize dosing was a large clinical trial

which allowed investigators to titrate doses as they would in the clinical

setting, while blinded to the patient’s CYP2D6 genotype (data on file at Lilly

Research Laboratories). This provided information on whether PM patients

would have sufficient efficacy at lower doses, or whether investigators would

increase their doses similar to EMs because their response was not substantially

different. The clinical trial results and safety comparisons between EMs and PMs

are discussed later in this chapter.

Biomarkers, Clinical, and Safety Endpoints

Atomoxetine being an NE reuptake inhibitor, several possible biomarkers were

considered to support dose finding in the early drug development process. No

human-validated PET ligand for the NE transporter was available when Phase I

studies were conducted with this compound. Other tools described in the litera-

ture to document pharmacodynamic (PD) effects of NE reuptake inhibitors in

humans include the tyramine pressor test (34), pupillary diameter (35), and

measurements of catecholamines in plasma, urine, and CSF (36,37). While

some of these evaluations were conducted in small Phase I inpatient studies

(38), none of them were considered suitable for large outpatient Phase II and

III trials. Therefore, focus was made on the primary clinical endpoint for efficacy,

as well as on cardiovascular effects, which are both easy to measure and are

believed to reflect the increased availability of NE induced by atomoxetine.

In pediatric populations, the primary efficacy variable was the Attention-

Deficit/Hyperactivity Disorder Rating Scale-IV-Parent Version: Investigator

Administered and Scored (ADHDRS-IV-Parent:Inv) total score including hyper-

active/impulsive and inattentive subscales (39). The scale consists of 18 items

used to diagnose ADHD as defined in the Diagnostic and Statistical Manual of

Mental Disorders, Fourth Edition (DSM-IV) (40). The total score is the sum

of the scores for each of the 18 items, with each symptom rated from 0 to 3

with a total score ranging from 0 to 54. The primary efficacy analysis is based

on baseline, last-observation-carried-forward (LOCF) endpoint, and change

from baseline to endpoint in ADHDRS-IV-Parent:Inv total score.
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In adults, signs and symptoms of ADHD were evaluated using the investi-

gator administered CAARS (Conners Adult ADHD Rating Scale Screening

Version), employing the 18 items that correspond to the ADHDRS scale (41).

Since NE reuptake inhibitors are expected to interfere with the regulation of car-

diovascular function via increased availability of NE (42), blood pressure and

heart rate were closely monitored across all the clinical studies as a safety end-

point. In clinical studies, increases in pulse and blood pressure were small and

of little, if any, clinical significance (for review, see Ref. 43).

The method for determining CYP2D6 status in clinical efficacy studies was

typically by obtaining a blood sample for determining the CYP2D6 genotype for

selected defective alleles (CYP2D6 �3, �4, �5, �6, �7, �8). This method was

shown to be adequate for predicting the phenotype. In clinical pharmacology

studies, typically a genotype and phenotype test (using dextromethorphan as

the probe substrate) were obtained in order to show concordance.

EFFICACY AND SAFETY STUDIES

The safety and effectiveness of atomoxetine in the treatment of ADHD was estab-

lished in randomized double-blind placebo-controlled trials in both pediatric

patients and adults who met DSM-IV criteria for ADHD (data on file at Lilly

Research Laboratories) (8,43,44). Since differences in CYP2D6 genotype and

phenotype could potentially affect the patient’s response to atomoxetine and its

clinical profile by altering its PK, blood samples were obtained from all patients

to determine CYP2D6 genotype. This CYP2D6 genotype status obtained at study

entry was kept blinded from the patients and the investigator until the conclusion

of each study, and was ultimately used by the sponsor in comparing the results

between groups.

The Phase III pediatric efficacy trials were dose-titration studies on a

weight-adjusted basis according to clinical response with a maximum total

daily dose of 1.8 mg/kg, with the exception of one dose–response study. The

dose–response study compared three dose levels of atomoxetine (0.5, 1.2, and

1.8 mg/kg/day) and placebo. The adult efficacy trials compared atomoxetine

and placebo, and atomoxetine was titrated according to clinical response up to

120 mg/day. The impact of these studies on dose selection is discussed in the

following.

A key part of the dose optimization strategy for atomoxetine was a pediatric

two-year open-label safety and efficacy Phase III study, which investigated the

comparability of the safety and tolerability of atomoxetine among a large

number of CYP2D6 EMs and PMs (data on file at Lilly Research Laboratories).

The final mean dose and clinical response, and also safety and tolerability, were

similar among both the groups. These results clearly suggested that when clini-

cians were blind to CYP2D6 status and titrated atomoxetine based on the clinical

response, the final efficacious dose was independent of CYP2D6 status. These

data also support the comparability of tolerability and safety for the groups.
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The effects of CYP2D6 status on the efficacy, safety, and tolerability of ato-

moxetine in children and adolescents were examined in a retrospective meta-

analysis (27, data on file at Lilly Research Laboratories). At the endpoint, PMs

had markedly greater reductions in mean symptom severity scores compared

with EMs (–14.1 for EMs; –20.9 for PMs, p ¼ 0.002). Fewer PMs discontinued

due to lack of efficacy than EMs (26% vs. 17.3%), again suggesting that this sub-

group had greater improvement in ADHD symptoms than EMs. Analysis of vital

signs demonstrated a greater increase in heart rate and diastolic blood pressure for

PMs compared with the EMs. No difference was noted in effects on the corrected

QT interval. Several adverse events were more frequent in PMs ( p , 0.05),

specifically decreased appetite, abrasion, and tremors. Although steady-state con-

centrations of atomoxetine in PMs are higher and more sustained than in EMs

following administration of the same mg/kg/day dose, there are only modest

differences observed in tolerability, which do not appear to have marked

effects on overall clinical outcomes (27).

The data collected during atomoxetine’s development, considered in its

entirety, suggested that a pharmacogenetic test for CYP2D6 status was not

necessary before treatment with atomoxetine. Instead, an initial starting dose

(0.5 mg/kg/day in pediatric patients, 40 mg in adults) along with a dose-titration

up to a target total daily dose (1.2 mg/kg/day and 100 mg, respectively) was

recommended. A target dose more than 1.2 mg/kg/day was not shown to

provide additional benefit, and therefore the 1.2 mg/kg/day dose was deemed

as the appropriate initial target dose for most patients (32).

DOSE–RESPONSE AND PK/PD MODELING

The dose optimization strategy focusing on efficacy utilized a Phase III dose–

response study with the following treatments: placebo, 0.5, 1.2, and 1.8 mg/
kg/day. Statistical analyses of this study’s data revealed a graded dose–response,

where the dose of 0.5 mg/kg/day was associated with intermediate efficacy

between placebo and the two higher doses. At the endpoint, atomoxetine doses

of 1.2 and 1.8 mg/kg/day were consistently associated with superior outcomes

in ADHD symptoms compared with placebo and were not different from each

other. The 1.2-mg/kg/day dose seems to be as effective as 1.8 mg/kg/day and

is thus the appropriate initial target dose for most patients (32).

Data from this study were used to evaluate the exposure–response relation-

ship using PK/PD modeling for the purposes of further optimizing the dosing of

atomoxetine (30). The PK/PD analysis utilized data from EMs only, since only a

small number of PMs participated in this study due to their infrequency in the

general population. Furthermore, the range of exposures observed in EMs was

unique from the range in PMs, making the PK/PD analysis comparing EMs

and PMs confounded. Therefore, this part of the dose optimization strategy for

atomoxetine focused primarily on EM data. Based on statistical analysis dis-

cussed previously, PMs had greater reductions in mean symptom severity
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scores compared with EMs (–14.1 for EMs; –20.9 for PMs, p ¼ 0.002). One

hypothesis is that the greater efficacy in PMs may be due to the greater exposure

to atomoxetine. On the other hand, the greater efficacy could be a result of the

different PK profile in PMs, resulting from the longer half-life and more sustained

exposure during the day, which may suggest a different PK/PD relationship in

PMs. Further work on whether a different PK /PD relationship is observed

based on CYP2D6 status is warranted and is ongoing for future publications.

In this study, the population PK model developed in a previous analysis of

five studies was used to obtain empirical Bayesian clearance estimates for each

patient. The final dataset used to conduct the population PK analysis contained

data from 189 pediatric patients. The area under the concentration–time curve

over the dosing interval (AUC02t) was calculated for each patient using the clear-

ance estimates, and the relationship of AUC02t with the ADHDRS-IV-Parent:Inv

score was examined.

Figure 2 summarizes the distribution of AUC02t values for the three dose

groups. Although mean, median, and modal AUC02t values were different for the

three dose groups, there was a clinically significant overlap in exposures between

the 0.5 and 1.2 mg /kg /day treatment groups, and between the 1.2 and 1.8 mg/
kg /day treatment groups. Because of a limited number of capsule strengths

and a moderate degree of PK variability, even with the use of weight-based

dosing, this variation and overlap in exposures is not unexpected.

A non-linear model (inhibitory Emax model) was fit to the observed AUC

and change from baseline ADHDRS-IV-Parent:Inv total scores data to explore

the relationship between efficacy and AUC (Fig. 3). Patients randomized to

placebo were used in this analysis by assigning an AUC of zero. The resulting

fit of this model suggests that the expected maximum improvement from baseline

would be 217.4 (compared to 26.2 for 8 weeks of placebo dosing). This

suggests an overall maximum benefit of 211.2 over placebo. This analysis is

useful for characterizing the shape of the exposure–response curve in order to

estimate the dose that provides a near maximum improvement in ADHD symp-

toms. Based on the median AUC values for each dosing group, Figure 3 suggests

that at a dose of 1.2 mg/kg/day (median AUC of 1.08 mg†hr/mL), the curve

begins to flatten and approach the maximum value. Therefore, this analysis pro-

vides additional evidence that a target dose of 1.2 mg/kg is desirable. This analy-

sis shows there is a relationship between systemic exposure and efficacy, which is

similar to that between dose and efficacy (32), and supports the dose selection of

1.2 mg/kg/day as an initial target dose.

DOSING RECOMMENDATIONS AND LABELING

Current labeling recommendations for atomoxetine in children and adolescent

patients (up to 70 kg) initiate treatment at a total daily dose of approximately

0.5 mg/kg and is increased after a minimum of 3 days to a target total daily

dose of approximately 1.2 mg/kg, administered either as a single daily dose in
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Figure 2 Frequency distribution of area under the atomoxetine plasma concentration

versus time curve at the three dose levels in extensive metabolizer patients. Abbreviation:

AUC, area under concentration–time curve.
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the morning or as evenly divided doses in the morning and late afternoon/early

evening. These dosage recommendations are without regard to an individual’s

CYP2D6 genotype.

Based on the cumulative amount of data in PMs, including evaluations of

efficacy, safety, and tolerability, it was determined that this subpopulation could

be safely and effectively treated using the same dosing regimen as the rest of the

population. In the current labeling, there is extensive information describing

various aspects of atomoxetine in PMs, which was possible since this subpopu-

lation was purposefully included and evaluated during clinical development.

Dose optimization based on safety and tolerability relied on data from all

patients. However, final dose selection was based primarily on EM response,

since greater efficacy is observed in PMs compared with EMs.

During the development of any drug that primarily relies on CYP2D6 for

its clearance, it is unclear at the onset of development whether individuals will

need to be prospectively identified before treatment and individualized dosing

based on the genotype utilized. Applying pharmacogenetic information during

drug development allows for the determination of whether individualized

dosing is warranted and also the determination of the appropriate regimen for

the subpopulation. In some cases, the knowledge related to genotype and clinical

outcomes can increase the quality of a clinician’s decision about individualizing

drug treatment (45). However, as discussed in this chapter, differential dosing

was not deemed necessary for Strattera based on the data as a whole.
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Figure 3 Model-predicted mean change from baseline to endpoint in ADHDRS-IV-Par-

ent:Inv Total score and atomoxetine AUC for extensive metabolizer patients with confi-

dence bounds. Abbreviations: ADHDRS-IV-Parent:Inv Total score, Attention-Deficit/
Hyperactivity Disorder Rating Scale-IV-Parent Version: Investigator Administered and

Scored; AUC, area under concentration–time curve.
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INTRODUCTION

The pediatric subject, representing the spectrum from prematurely born neonates

to adolescents, is characterized by dynamic processes of physical, physiological,

and psychosocial development. The influence of growth and maturation on a

drug’s pharmacokinetics (PK) and pharmacodynamics (PD) is as dynamic as

children themselves. Prior to the end of the last century, most drugs had not

been studied in children; therefore, there were no adequate age-defined dose rec-

ommendations in the labels. As a result, pediatricians had to use these drugs on a

trial-and-error basis, which often led to either overdose or underdose, causing

toxicity or ineffectiveness. In 1997, the U.S. Congress passed the Food and

Drug Administration Modernization Act (FDAMA), which encouraged pediatric

drug development by providing an incentive in the form of an additional six

months’ marketing exclusivity. We have now seen an unprecedented surge in

research activity related to pediatric drug testing and labeling. The key issue of

pediatric drug development is to determine how much data are required in

pediatrics for establishing appropriate dosage regimen, given that the safety

and efficacy of a drug is already established in adults.

One of the most important strategies of pediatric drug development is to

characterize factors that influence PK and PD parameters, and thereby bridge
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the adult efficacy and safety to pediatrics so that the proper treatment can be

determined for pediatric patients of various ages. Sufficient methodology is

now available to minimize the number of PK/PD samples taken in pediatrics,

and to estimate the population mean or typical parameters and their measures

of variability, along with estimates of each subject’s parameters on sparse and

unbalanced data (1–3). This chapter will provide an overview of the PK/PD

study design and data analysis in pediatrics. The focus of the chapter concentrates

on two case studies: sotalol—a drug which is predominantly renally excreted, and

leflunomide—a drug which is primarily metabolized, to illustrate the important

features of these methodologies (4,5).

GENERAL CONSIDERATIONS OF PK/PD STUDY DESIGN
AND DATA ANALYSIS IN PEDIATRICS

The Food and Drug Administration (FDA) constructs a decision tree, which maps

out different study requirements (PK, PK/PD, safety, efficacy) according to

assessments on similarity of disease progression, outcome of pharmacotherapy,

PK–PD relationship between adults and pediatrics, and availability of a bio-

marker for efficacy (Fig. 1) (6). The drug exposure is the fundamental linkage

between adult and pediatric pharmacotherapy. This mandates the performance

of PK studies in almost all scenarios of a pediatric drug development. For

Figure 1 FDA-proposed pediatric study decision tree integration of pharmacokinetics–

pharmacodynamics. Source: Courtesy of the Food and Drug Administration.
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designing informative pediatric trials, available information in adults should be

fully utilized. The following assumptions are usually made for a PK bridging:

. The disease etiology, progression, and outcome of the therapy are

similar between adult and pediatric subpopulations.

. The exposure–response, including efficacy and safety, established in

adults is similar to that in pediatric populations. If the clinical response

to the exposure relationship is not clear or not applicable, a biomarker

can be used as a surrogate.

. The safety and efficacy conferred from a recommended adult regimen

can be conferred to pediatric populations, assuming that comparable

drug exposure can be achieved.

A PK–PD study using a biomarker is often required to assess similarity of

the exposure and response relationship between adults and pediatrics before a

direct PK bridging can be deemed adequate. Model-based PK–PD analysis is

a powerful tool to allow the exploration of dose and regimen scenarios and to

probe the optimal one in pediatrics: (i ) to match the adult drug exposure in pedi-

atrics if their PK–PD relationship is similar, or (ii ) to achieve the target concen-

tration according to the exposure–response bridging if their PK–PD relationship

is different. Well-controlled safety and efficacy studies have to be conducted if

there are no biomarkers available for efficacy and safety or if the disease

patho-physiology, progression, and outcome of pharmacotherapy are likely to

be different between the two populations (e.g., bisphosphonates for osteoporosis

in post-menopausal women and for osteogenesis inperfecta in pediatric patients),

or there is little reason to assume continuity between adult and pediatric tested

indication (e.g., depression).

There are numerous challenges in the design, conduct, and data analysis of

PK–PD studies in pediatric patients that are distinctively different from issues

encountered in similar studies for adult patients. One of the most important strat-

egies of pediatric trials is to effectively utilize prior adult PK information for dose

selection and sampling design. The dose is usually calculated based on adult par-

ameters plus empirical scaling models, assuming that clearance and volume of dis-

tribution are proportional to either body surface area (BSA) or body weight (BW).

This empirical dosing adjustment is known to have many drawbacks. A sequential

design could offer an opportunity of dosing refinement in which a small PK study

is conducted prior to a large-scale safety and efficacy study. The dose selection is

critical when one fixed dose is employed to compare study drug against placebo

or active comparator. If a dose-ranging study with multiple dose levels is to be

conducted to obtain safety and efficacy data or to define PK–PD relationship, a

parallel design can be applied where PK is an add-on investigation to the trial.

A major challenge in pediatric studies arises from the ethical and logistic con-

straints on the number of blood samples and the effect of measurements that

can be obtained, especially, in neonates and young infants. Limited sampling

approaches coupled with population-based non-linear mixed-effects modeling

methodology have been explicitly recommended in the draft guidance documents
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on pediatric studies by the U.S. FDA (7) and have been widely applied to pediatric

studies to handle sparse and unbalanced PK–PD data. The goal of the sparse

sampling is to provide convenient schedules with minimal blood draws and

reduced load on bioanalytical assays, while maintaining accuracy in determining

important PK information without bias. The general technique is to use the prior

PK data in adults plus a scaling model along with D-optimality sampling methods

(8,9). Varying sampling times with time windows could protect against the ill

effects of misspecification in scaling models (10). If the PK of the drug is

complex, with multiple informative time points or segments, a composite

sampling strategy can be applied. This approach randomly assigns a subject to

one of a few sampling groups with times or time windows pre-selected. The

samples should be collected on more than one occasion to allow estimation of

inter-occasional variability. The development of the limited sampling model

can be guided and validated by Monte-Carlo simulations (11).

In addition to lack of dense datasets, other challenges in pediatric data

analysis are: (i ) scaling for body size adjustment, (ii ) collinearity of covariates

(Fig. 2), and (iii ) time-varying covariates. Empirical body size adjustment

Figure 2 Collinearity of the covariate variables in the sotalol pediatric population

PK dataset (age ranged from ,1 month to 12 years). Creatinine clearance (CLCR) was

calculated based on age, height, and serum creatinine according to Schwartz (44).

Abbreviations: BSA, body surface area; BW, body weight; HT, height.
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using either BSA or BW is often applied in the trials for dosing administration,

but the results may show that the empirical approach is not adequate for

certain age groups. Allometric size adjustments (with exponent of 0.75 for clear-

ance and 1 for volume of distribution using BW) provide a more mechanistic,

physiologically based approach that, if used a priori, allows delineating the

effect of other covariates, for example, organ function or concomitant medica-

tion, from the size variables and avoids collinearity between the size variables

(11). Perhaps a more appropriate size adjustment approach is to fit all the par-

ameters of the full model and let the data decide the optimal scaling. However,

this approach cannot be applied to a covariate model with two covariates

showing a high degree of collinearity (12). Potential body size covariates

should be measured at each PK/PD visit and captured in the dataset. There are

pitfalls for simultaneously fitting pediatric data with adult data: different formu-

lations and bio-availabilities, different meals and food effects on absorption and

bioavailability of drugs, different compliances of dosing, and different data quan-

tity in terms of number of subjects and number of samples per subject between

the two populations. Modeling pediatric data and adult data together should be

carefully conducted by tackling these potential issues and other hidden extrinsic

Figure 3 FDA-proposed criteria for dose adjustments in pediatric populations. Abbrevi-

ations: PK, pharmacokinetics; PD, pharmacodynamics; E–R, exposure–response.
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factors. Bayesian methods can be used to analyze the combination of sparse pedi-

atric data and informative prior distributions estimated from adult data plus

appropriate scaling models (13).

Once a statistically significant difference in PK is identified between pedi-

atrics and adults, the necessity of dose adjustment for pediatric subpopulations

should be judged based on whether or not the PK difference will likely lead to

a clinically significant PD difference. The FDA’s proposed decision tree could

guide this process (Fig. 3). Population PK /PD models, if used for bridging the

recommended dose, should be carefully validated or evaluated.

POPULATION PK–PD OF SOTALOL IN PEDIATRIC PATIENTS
WITH SUPRAVENTRICULAR OR
VENTRICULAR TACHYARRHYTHMIA

d,l-sotalol hydrochloride is an antiarrhythmic agent with Class III and non-

selective b-blocking properties. In adults, sotalol is labeled for life-threatening

ventricular fibrillation and tachycardia and for maintenance of sinus rhythm in

patients with symptomatic atrial fibrillation or atrial flutter (14). In pediatric

patients, sotalol was considered to be efficacious for similar indications

because of the similar electrophysiologic basis of the arrhythmias (15–18).

However, demonstrating benefit based on clinical outcomes is challenging for

antiarrhythmics, especially in pediatrics. The PK and PD of sotalol have been

extensively studied in adults (19). Sotalol is nearly completely absorbed after

oral administration. It has negligible plasma protein binding and is not metab-

olized. It is mainly eliminated unchanged by the kidneys. The PK of sotalol is

dose-proportional. The respective biomarkers for the Class III and b-blocking

actions are the QTc and RR interval, recorded in the surface ECG, and their

respective relations to the drug concentration are well established in adults

(20,21). As sotalol is predominantly eliminated unchanged by the kidneys in

adults, an important impact of maturation of renal function on the PK of

sotalol in the pediatric population can be anticipated. In addition, the relation-

ships between drug concentrations and QTc or RR interval prolongation in the

pediatric patients are unknown. The FDA agreed with the sponsor, as part of

the pediatric written request, to use biomarker data to derive dosing guidelines

in pediatrics, such that the effects are consistent with adults. This was a strategy

to leverage wealthy safety and efficacy data obtained in adults to pediatrics.

A PK study and a PK–PD study were conducted to investigate the impact

of maturation of renal function and body size-related changes and also other

demographic characteristics on the PK and PD of sotalol in pediatric patients

of various age groups with ventricular tachyarrythmia (VT) and supraventicular

tachyarrythmia (SVT).

An extemporaneously compounded formulation made by dissolving sotalol

HCl tablets in syrup (5 mg/mL) was used. In the PK–PD study, each patient
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received a total of nine oral doses with an upward titration without a washout

period. Three dose levels, 30, 90, and 210 mg /m2/day, were studied. The daily

doses were divided into three doses. Doses were given every 8 hours in pediatrics

instead of every 12 hours in adults, because of the notion that children usually have

a half-life shorter than adults, which may lead to breakthrough arrhythmias if the

trough level is too low. The mid-dose (i.e., 90 mg /m2/day) was selected because it

was the BSA-normalized initial adult daily dose (160 mg /1.73 m2). In the PK

study, each patient received a single dose of 30 mg /m2 of BSA. In the PK

study, blood samples were collected at 0.5, 1, 2, 3, 5, 8, 12, 16, 22, and 36 hours

following the dose. In the PK–PD study, blood samples were taken at 0.5, 2, 4,

and 8 hours following the third, sixth, and ninth doses. Electrocardiogram

(ECG) measurements were taken at the same time as the PK sampling during

these visits with two additional timepoints, 1.5 and 3 hours following the doses.

Baseline electrocardiograms (ECGs) were determined on the same six occasions

on the day prior to the first dose of sotalol.

A total of 59 patients, from birth to 12 years old, were enrolled in the studies.

Of these, 34 were in the PK study and 25 were in the PK–PD study. Fifty-four

were diagnosed to have SVT only, three VT only, and two SVT and VT. All had

normal renal function ( �80% of normal creatinine clearance, CLCR, for age).

Table 1 summarizes the characteristics of the patients with analyzable PK

and PD data by age category. All patients younger than three months had a

normal birth weight and gestational age. The PK database consisted of 611

plasma sotalol concentration measurements. Of those, 328 were collected from

the PK study, and 283 were collected from the PK–PD study. There were 499

observed RR intervals from 22 patients (22.7 per patient), and 477 observed

QTc values from 23 patients (20.7 per patient) available for analysis.

The results of population PK modeling showed that sotalol kinetics under-

went significant development and body-size-related changes in the pediatric

population tested, which ranged from newborns to 12-year-old school-age

children. The body surface area (BSA) was the most important single covariate

for both CL /F (total oral clearance) and V /F (apparent volume of distribution),

followed by body weight (BW) and age. The relationship of BSA to CL/F and

V/F can be described better by a linear model with a negative intercept

(Fig. 4) than by an exponential model. After taking BSA into consideration,

the remaining inter-subject variabilities in CL/F and V/F were fairly small

(about 20%, dropped from over 200% and 60%, respectively). The inter-

subject variability in ka and in tlag were relatively large, and could not be

accounted for by demographic factors. The data also showed no impact of

gender on the CL/F. The race effect could not be reliably assessed due to an

unbalanced distribution across age groups. CLCR was also an important single

covariate for CL/F, after BSA and similar to BW. Because there were no patients

with renal dysfunction in the study, the individual impact of CLCR on CL/F could

not be evaluated. In light of the collinearity between BSA or BW and normal

CLCR, CLCR was not included in the final model.
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Table 1 Demographics of Patients with Analyzable Data by Age Category

Age group

Neonates

�1 month

Infants

.1 to �24 months

Children

.2 to ,7 years

Children

�7 to 12 years Total

PK from both studies

N 9 17 9 23 58

Sex, M/F 5/4 10/7 5/4 10/13 30/28

Race, C/B/H/O 8/1/0/0 12/5/0/0 8/0/1/0 19/1/2/1 47/7/3/1

BSA, m2 0.23 + 0.03 0.41 + 0.10 0.70 + 0.10 1.10 + 0.22 0.70 + 0.38

BW, kg 3.6 + 0.8 8.4 + 2.9 17.2 + 3.3 32.4 + 9.7 18.5 + 13.6

Height, cm 52.0 + 2.8 71.6 + 10.6 104.2 + 10.5 135.3 + 16.1 98.9 + 35.5

CCr, mg/dL 0.5 + 0.2 0.3 + 0.1 0.4 + 0.1 0.6 + 0.1 0.47 + 0.17

CLCR, mL/min/1.73 m2 51.8 + 19.9 103.2 + 26.3 134.8 + 29.8 134.0 + 23.8 112.3 + 38.3

PK–PD Studya

N 7b 9b 3 6c 25

Sex, M/F 3/4 6/3 2/1 2/4 13/12

Race, C/B/H/O 6/1/0/0 7/2/0/0 2/0/1/0 5/0/0/1 20/3/1/1

BSA, m2 0.224 + 0.029 0.409 + 0.102 0.700 + 0.080 1.17 + 0.216 0.576 + 0.389

CLCR, mL/min/1.73 m2 51.3 + 22.8 101 + 14.1 121 + 35.3 129 + 20.5 96.3 + 36.6

aAll patients in the PK–PD study had analyzable PK data.
bOne patient in the group had no analyzable QTc and RR interval data.
cOne patient in the group had no analyzable RR intervals.

Abbreviations: C, Caucasian; B, Black; H, Hispanic; O, other; BSA, body surface area; BW, body weight; PK, pharmacokinetics; PD, pharmacodynamics;

CLCR, creatinine clearance; CCr, serum creatinine concentration.

Source: Adapted from Ref. 4. Courtesy of Springer Publications.
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Sotalol is mainly renally excreted (19). Much attention has been paid to the

PK and dosage regimens of such drugs in neonates and young infants because of

an underdeveloped renal function. Ideally, an appropriate dosage adjustment

should produce a constant AUC throughout the different age groups. However,

the plots of the predicted Cmax and AUC values against BSA indicated that neo-

nates or young infants with a BSA , 0.33 m2 tended to have a greater drug

exposure (Cmax and AUC) compared with the rest of the pediatric population

(Fig. 5). Immaturity of the kidney in the smallest children is a possible reason

for the difference. This result indicated that the empirical BSA adjustment

applied in this study, which assumes a direct proportional relationship

between CL/F and BSA, may not be adequate for the smallest children with a

BSA , 0.33 m2 from the point of view of the drug’s exposure.

Pharmacodynamic analysis indicated that pediatric patients were more sen-

sitive to the b-blocking effect than to the Class III effect at the same dose (Fig. 6),

which was similar to adult population (20). Children with BSA , 0.33 m2

represent a sub-population not only with larger drug exposures (Fig. 7), but

also larger pharmacological effects than the larger children (Fig. 8).

The population PK–PD modeling results clearly indicated that the QTc

and RR intervals were linearly related to sotalol plasma concentration. The

slope for the QTc interval was 0.02 + 0.002 (standard error) msec.mL /ng

(Fig. 9), which was similar to that (0.02 msec.mL/ng) in adults (21). The

inter-subject variability in the slope, expressed as percent CV, was also similar

(58% vs. 54%, in pediatrics and adults). The slope for the RR interval was
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Figure 4 Plots of individual CL/F and V/F based on the final pharmacokinetic model versus

BSA for 58 patients from the PK ( filled circle) and PK–PD (pharmacodynamic) (open tri-

angle) studies. The dispersion of individual parameter values about the regression model is

only modestly less than seen for individual parameters based on the PK model without BSA

as a covariate. Abbreviations: BSA, body surface area; CL/F, total oral clearance; V/F, appar-

ent volume of distribution. Source: Adapted from Ref. 4. Courtesy of Springer Publications.
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0.03 + 0.008 msec.mL /ng for a typical three-year-old child. The RR interval

was age-dependent, that is, age was a significant covariate for both baseline

RR interval (strong) and the slope of the b-blocking effect (weak). Figure 10

shows the relationship between the RR interval and drug concentrations for

four children from different age groups. A 2D plot of the pooled data as in
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Figure 5 Plots of Cmax,ss and AUC against BSA. [The Cmax,ss values were obtained by

simulations using individual post hoc Bayesian PK parameter estimates. AUC values

were obtained from AUC ¼ Dose � F/CL, where CL/F was obtained by the post hoc

Bayesian method. Dose ¼ 30 mg � 0.882 � BSA (m2) for both calculations.]

Abbreviations: BSA, body surface area; AUC, area under concentration time curve; CL/
F, total oral clearance. Source: Adapted from Ref. 4. Courtesy of Springer Publications.
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Figure 6 Relative sensitivity of the Class III and b-blocking effects to sotalol in pediatric

patients. Abbreviations: %DEmax, percentage of increase of observed maximum QTc or
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time curve at steady-state, represents average percent prolongation of QTc or RR interval

during a dose interval.
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Figure 9 for QTc would not demonstrate the impact of age on the relationship

between RR interval and drug concentration. In order to compare the b-blocking

activity of sotalol in the pediatric patients with that in the adults, the same PD

model (i.e., Emax) was applied to pediatric data (heart rate at resting) without

age as a covariate; the fit was equivalent or slightly better than that by the

linear model without age (12). The EC50 was estimated to be 790 ng /mL in pedi-

atric patients, which was similar to 804 ng /mL reported in literature with adults

undergoing exercise (20,22).

On the basis of the PK–PD data, sotalol syrup was approved by the

FDA for patients aged two years and above (30 mg /m2 t.i.d. as starting dose

with subsequent titration to a maximum of 60 mg /m2). The FDA recommended

specific dosing regimens for neonates and infants. Instead of using 0.33 m2

BSA as a cut-off, an age cut-off of two years was applied as a more conservative

Figure 7 Higher exposures to sotalol (Cmax and AUC) are observed in children with

BSA , 0.33 m2 compared with larger children. Abbreviations: BSA, body surface area;

AUC, area of concentration under the curve.
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of increase of area under the QTc or RR interval time curve at steady-state.
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Figure 9 Observed QTc interval versus the individual (empirical Bayes) predicted

sotalol concentration for all patients in the PK–PD study. QTc(msec) ¼ 405þ 0.02 Cp

(ng/mL). Abbreviations: PK, pharmacokinetics; PD, pharmacodynamics. Source:

Adapted from Ref. 4. Courtesy of Springer Publications.
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Figure 10 Four representative individual plots of observed RR interval versus individual

(empirical Bayes) predicted sotalol concentrations. Source: Adapted from Ref. 4. Courtesy

of Springer Publication.
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approach from the safety perspective. The PD effects of sotalol in pediatrics were

similar to those in adults for a given exposure. Hence the exposure in the adults

was a reasonable target in pediatrics. The systemic clearance of sotalol increases

until the patient reaches two years of age independent of body-size, owing to

the maturation process of the kidneys. After about two years, sotalol’s clearance

predominantly depends on body size. Based on the model findings, a dose, which

was not directly studied in trials, was recommended in patients less than two

years of age that included an age factor (Fig. 11) (14,23).

Since the population PK model established was to recommend dosage

regimen for pediatric use of sotalol, the model was evaluated by a predictive

check using Monte-Carlo simulations. The results revealed that the population

PK model adequately described the central tendency of the observed plasma

sotalol concentration data (Fig. 12).

In conclusion, using PK–PD for bridging adult safety and efficacy data to

pediatric patients, the dosing recommendations for sotalol in pediatrics aged one

month to 12 years are made and incorporated in the labeling.

Figure 11 Dose adjustment factor for sotalol in pediatrics aged 2 years or younger. For

children aged about 2 years and greater with normal renal function, doses normalized for

body surface area are appropriate for both initial and incremental dosing. For children aged

about 2 years or younger the dosing regimen should be reduced by a factor that depends

heavily upon age. For a child aged 1 month, the starting dose should be multiplied by 0.68;

the initial starting dose would be (30 � 0.68) ¼ 20 mg/m2, administered three times

daily. Source: Adapted from approved label for BetapaceTM in the Physician’s Desk

Reference.
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POPULATION PK OF THE ACTIVE METABOLITE OF
LEFLUNOMIDE IN PEDIATRIC SUBJECTS WITH POLYARTICULAR-
COURSE JUVENILE RHEUMATOID ARTHRITIS

Leflunomide is a disease-modifying antirheumatic drug, which effectively

reduces the signs and symptoms of active rheumatoid arthritis (RA) in adults,

while inhibiting joint damage and improving physical function (24). In clinical

trials of adults, leflunomide (20 mg/day) demonstrated efficacy equivalent to

Figure 12 Results of the evaluation of sotalol population pharmacokinetic model using

predictive check. Source: Adapted from Ref. 4. Courtesy of Springer Publications.
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that of methotrexate (7.5–15 mg/wk) and sulfasalazine (2 g/day) for improving

individual signs and symptoms of active RA (25–28) and slowing disease pro-

gression (29–31). The PK of leflunomide has been characterized in healthy

adults and adults with active RA (32–34). Following oral administration, leflu-

nomide, a highly non-polar pro-drug, is rapidly and completely absorbed and

is converted largely to its active metabolite A77 1726 (M1) during the first

pass. M1 is responsible for essentially all antirheumatic activity in vivo. Peak

concentrations of M1 occur between 6 and 12 hours after dosing. M1 displays

linear PK at the doses from 5 to 25 mg/day. M1 has a low volume of distribution

(Vss ¼ 0.13 L/kg) and it binds extensively to albumin (.99.3%) in healthy sub-

jects; protein binding is linear at therapeutic concentrations. M1 has a long half-

life (�2 weeks) but can be much longer in some patients. The elimination is

complex, involving both biliary and renal excretion, with biliary recycling con-

tribution to the drug’s long half-life.

Juvenile rheumatoid arthritis (JRA) is an inflammatory disease defined as a

chronic, idiopathic arthritis with onset before the sixteenth birthday. Although the

etiology of JRA is unknown, many of the etiological factors associated with adult

RA are also associated with JRA. Similarities in T cell, B cell, and macrophage

abnormalities have been demonstrated (35). Evidence of complement activation

and abnormal production and regulation of cytokines are common features of both

diseases (35). The relationship between dosage and clinical effect suggests that

leflunomide should be given at a daily rate of 20 mg to obtain near maximum prob-

ability of clinical success in adult RA patients (60%) (36). At this dose, the median

value of the average steady-state concentration in adults was about 34 mg/L.

Due to a lack of validated biomarkers for the efficacy or safety of lefluno-

mide in adults, two clinical trials, one PK and another safety and efficacy, were

undertaken sequentially to evaluate the PK, efficacy, and safety of leflunomide in

the treatment of JRA.

Study I, open-label, non-controlled, multicenter study, included a six-month

treatment period with up to a 24-month extension phase in pediatric subjects (6–

17 years) with active, polyarticular-course JRA, who had previously failed or

were intolerant of methotrexate therapy. Leflunomide treatment was initiated

with a loading dose equivalent to 100 mg/day in a standard adult with a BSA

of 1.73 m2 (57.8 mg/m2/per day), administered on days 1 through 3. Thereafter,

maintenance doses of leflunomide were given daily, based on an equivalent of

10 mg/day/1.73 m2 (the low adult maintenance dose). Because of the restricted

number of milligrams that can be reliably administered using the 10-mg tablets,

BSA categories were used to determine the dose. In subjects without clinical

response on or after eight weeks based on Definition of Improvement responder

analysis for JRA subjects published by Giannini et al. (37), escalation to the

equivalent of leflunomide 20 mg/day/1.73 m2 BSA was allowed at the discretion

of the investigator. On day 3, weeks 4, 12, and 26, serial blood samples were

collected prior to the dose and at 2, 4, 8, and 24 hours following dosing. In

addition, single blood samples were collected on several pre-defined
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event-related occasions, including dose change, early discontinuation, or severe

leflunomide-related adverse event. The objective of this small-scale study was to

learn the PK of leflunomide in the target pediatric patient population so that a

revised dose for the later efficacy and safety can be made if needed.

Study II was a randomized, double-blind, parallel-group, 16-week safety

and efficacy trial comparing leflunomide with methotrexate in pediatric subjects

(age 3–17 years) with active, polyarticular-course JRA, who were naı̈ve to both

methotrexate and leflunomide. A simplified treatment regimen was developed

based on the PK results of Study I. Loading doses with 100-mg tablets and main-

tenance doses with 10-mg tablets were assigned based on actual BW as described

in Table 2. Subjects unable to swallow the tablet(s) as a whole were permitted to

crush the tablet(s) and mix it in apple sauce or jam. In Study II, one or two blood

samples were obtained during weeks 2, 4, 8, 12, and 16. Fixed sample collection

times were not specified.

The evaluable PK population consisted of 73 subjects: 27 subjects in Study I

and 46 subjects in Study II. Among them, 57 subjects were female and 16 sub-

jects were male, which was consistent with the epidemiology of RA (35,38).

Age ranged from 3 to 17 years, weight ranged from 13 to 75 kg, and BSA

ranged from 0.56 to 1.83 m2. A total of 674 concentrations of M1 were included

in the database, including 493 from Study I and 181 from Study II. The number of

concentrations of M1 collected per subject averaged 9.2 (range, 1–23). Fewer

samples of M1 were collected in Study II (3.9 samples per subject) than in

Study I (18.3 samples per subject).

A previously established structural PK model for M1 concentration–time

data from adults was fitted to the M1 data from the pediatric population as the

base model. Population analyses indicated that age and gender of pediatric sub-

jects did not influence M1 concentrations significantly, but body size (BW or

BSA) correlated strongly with V/F and weakly with CL/F in children

(Fig. 13), as defined in the following:

V=F(L) ¼ 5:8 � (BW=40 kg)0:769 (1)

CL=F(L/h) ¼ 0:020 � (BW=40 kg)0:430 (2)

Table 2 Weight-Based Leflunomide Dosing Regimen in Study II

Actual body

weight (kg)

Loading dose

(100 mg/day)

Maintenance

dose (mg/day)

,20 � 1 5

20–40 � 2 10

.40 � 3 20

Note: 5 mg/day was given as 10 mg every other day.

Source: Adapted from Ref. 5. Courtesy of Springer Publications.
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The inter-subject variation in CL /F and V /F, expressed as the coefficient of vari-

ation for CL/F and V /F, were 50% and 19%, respectively.

To examine the uniformity in exposure produced by the leflunomide mainten-

ance regimens investigated in Study II, M1 Css data in 2000 JRA patients with a

uniform distribution of BW from 10 to 80 kg were simulated using the established

population PK model. The results indicated that only the maintenance dose of leflu-

nomide of 20 mg/day in pediatric subjects weighing .40 kg achieved systemic

exposures to M1 comparable with those previously observed in adults who received

leflunomide of 20 mg/day (32,36). The leflunomide doses prescribed for subjects

,20 kg (10 mg every other day) or between 20 and 40 kg (10 mg/day) resulted

in lower predicted values for Css (Fig. 14, left panel). Simulation of Css values

using a single leflunomide dose adjustment for a body weight ,30 kg provided

more comparable exposure to M1 than the dosing regimen tested in Study II

(Fig. 14, middle panel). However, a dose of leflunomide of 10 mg/day in pediatric

subjects who weighed ,30 kg would slightly underexpose them to M1 on average,

compared with that in adult patients or the pediatric group, which weighed from 30

to 80 kg. A third simulation was performed using the weight-based doses suggested

by the optimal regimens from the graphic exploration (Fig. 14, right panel). With

this dosing regimen, median Css for M1 was around 34 mg/mL in each of the

weight groups, matching the median Css previously observed in adult patients

with RA who received leflunomide of 20 mg daily in Phase II and Phase III

studies (32,36).

An exposure-versus-response relationship was further examined: among

the 47 pediatric subjects treated with leflunomide for 16 weeks in Study II, 32

were categorized as responders and 15 were categorized as non-responders
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Figure 13 Relationships between clearance and body weight (left panel) and volume

of distribution and body weight (right panel). Abbreviations: CL/F, total oral clearance;

V/F, apparent volume of distribution; BW, body weight. Source: Adapted from Ref. 5.

Courtesy of Springer Publications.
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when assessed by JRA Definition of Improvement .30% (37). Comparison of

M1 concentrations with response or non-response revealed a trend for lower

exposures in the group of subjects who failed to respond to leflunomide

(Fig. 15, left panel ). The majority of subjects (80%) in the non-responder

group had concentrations of M1 that were less than the median exposure in the

responder group. Lighter subjects also tended to be less likely to respond to

leflunomide (Fig. 15, right panel ), but the trend was less pronounced than that

for the M1 concentrations. These analyses suggest that the leflunomide doses

in Study II may be sub-optimal among subjects who weighed less than 40 kg, pro-

viding supporting evidence that the concentration versus response relationship

between pediatrics and adult patients is similar. Logistic regression analysis

also showed a slight trend of higher Css and higher probability of the response

as defined by Giannini et al. (37) (Fig. 16). However, the relationship was not

statistically significant by t-statistics due to the small sample size of the study.

The relationship between the Css of M1 and clinical effect previously deter-

mined in adult RA patients showed that the maximum probability of clinical

success (60%) would be obtained by choosing a dose rate that maintains a Css

above the target concentration of 13 mg /L for the majority of the patients. To

achieve the maximum probability of clinical success in 95% of the patients

treated with leflunomide, the dose rate would have to be adjusted to achieve a

median plasma concentration of 30 mg /L (95% CI: 13; 67), requiring a daily

dose of 16 mg leflunomide. The dose rate recommended is 20 mg daily, and

this dose rate should achieve the maximum probability of clinical success in
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Figure 14 Simulations of steady-state concentrations of M1 in 2000 pediatric “patients”

compared with observed values in adults. Predicted concentrations were derived for leflu-

nomide dose regimens from Study II (i.e., the Phase III study) (left panel), leflunomide

dosing based on body weight above or below 30 kg (middle panel), or the refined lefluno-

mide dose recommendations derived from the population pharmacokinetic models (right

panel)..An outside value is defined as a value that is smaller than the lower quartile minus

1.5 times the inter-quartile range, or larger than the upper quartile plus 1.5 times the inter-

quartile range (inner fences). These values are plotted with an asterisk. Abbreviation: Css,

concentration at steady-state. Source: Adapted from Ref. 5. Courtesy of Springer

Publications.
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99% of the patients. The plateau effect in the relationship between the Css and

clinical effect shows that higher dosages of leflunomide would not increase the

probability of clinical success to any significant degree (36).

Multiple pathways are involved in leflunomide metabolism and M1 elimi-

nation, and the PK of M1 in pediatrics cannot be reliably predicted from the PK in
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Figure 15 Steady-state concentration (Css) of the M1 metabolite and body weight in

pediatric responders and non-responders to leflunomide. Data were taken from a Phase III

study in subjects with juvenile rheumatoid arthritis (42,43). Response was defined

.30% improvement as defined by Giannini et al. (37). An outside value is defined as a

value that is smaller than the lower quartile minus 1.5 times the inter-quartile range, or

larger than the upper quartile plus 1.5 times the inter-quartile range (inner fences).

These values are plotted with an asterisk. A far out value is defined as a value that is

smaller than the lower quartile minus three times the inter-quartile range, or larger than

the upper quartile plus three times the inter-quartile range (outer fences). These values

are plotted with an open circle. Source: Adapted from Ref. 5. Courtesy of Springer

Publications.
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Figure 16 Results of logistic regression model prediction, plotted as probability of the

response defined as responders (1) or non-responders (0) as defined by Giannini et al.

(37) versus average steady-state M1 concentration (Css).
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adults simply by normalizing a body size covariate (BW or BSA) in an empirical

way. Human liver microsomes studies suggested P450 CYP 1A2 as the principal

P450 isozyme responsible for leflunomide metabolism. Studies with human

recombinant CYP isozymes also indicated a role for CYP 2C19 and CYP 3A4

in leflunomide metabolism (39). M1 is eliminated by further metabolism and sub-

sequent renal excretion and also by direct biliary excretion. After oral adminis-

tration of leflunomide, approximately 43% of the dose is excreted in the urine,

primarily as leflunomide glucuronides and an oxalinic acid derivative of M1,

and 48% is excreted in the feces, primarily as M1 (24). M1 has an extremely

long t1/2, largely due to enterohepatic recycling. A sequential design was

implemented in the program to first derive the PK information in JRA patients

in a small scale and then to examine the efficacy and safety in a large scale

with regimens recommended from the earlier study.

The strong correlation that was observed between body size and V/F, redu-

cing the inter-subject variation in V/F from 35.9% to 18.6%, indicates that a

loading dose regimen for pediatric patients should be adjusted, if indeed a

loading dose is administered. Due to the very long half-life of M1 (�2 weeks),

a loading dose of 100 mg for 3 days was used in clinical studies of adult patients

to facilitate the rapid attainment of steady-state concentrations of M1. However,

since leflunomide is a chronic treatment for a chronic disease for which full

response to therapy may take several months, the true benefit of the loading

dose has been debated and has been shown to be associated with an increased

risk of treatment discontinuation in adults (40,41). Furthermore, a disproportion-

ate number of gastrointestinal adverse events, headaches, and cases of alopecia

were reported within the first four weeks of leflunomide therapy in Study II,

the Phase III study of JRA (42,43). Beginning leflunomide therapy for JRA

without a loading dose may delay the initial onset of response in some patients,

but it permits a better opportunity for pediatric patients with JRA to tolerate early

leflunomide therapy. In addition, the gradual accumulation provides an opportu-

nity for a routine clinical monitoring of the safety during the accumulation. In

pediatric patients with polyarticular-course JRA, CL/F was only correlated

weakly to BW with an exponent significantly smaller than standard allometric

coefficient, that is, 0.75, indicating that maintenance dose adjustments for BW

should be more modest than the 50% dose reductions often applied empirically

in practice. Even with the most influential covariate identified (i.e., BW) and

included in the model, the inter-subject variation in CL/F was reduced only

slightly (from 53.6% to 50.4%, expressed as percent CV), indicating that

dosage reduction by half should only be required when the BW distribution is

wide, that is, in JRA patients, and only for those with a low body weight.

Either measure of body size (BW or BSA) provided similar prediction power

on CL/F, but BW can be measured more easily and more accurately, and it

was selected to be the sole covariate in the final population PK model.

Using the commercially available formulation strengths of leflunomide, the

adjusted dosage regimen derivation was a trial and error process. First, the
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number of body weight groups was determined based on: (i ) the therapeutic

index of the drug, and (ii) the possible regimens, given the available formulation

strengths. Second, the partitioning of the BW groups was determined by consid-

ering: (i ) the correlation between the CL /F and BW and the variability in CL /F,

(ii) the BW distribution of JRA patients, and (iii ) clinical convenience (20, 30,

40 kg). Finally, simulation was used to examine the performance of each possible

dosage regimen. Through this process, the optimal weight-based protocol for

dose adjustment was identified (Table 3). Although 15 mg /day would mean 10

and 20 mg on alternating days due to the lack of a 5-mg tablet, the inclusion

of this regimen resulted in comparable exposure to M1 (median and range)

across BW categories. This may trade some convenience for a gain in a better

overall balance between efficacy and safety compared with the other dose adjust-

ment protocols that were tested.

The final optimal population model was evaluated by a cross-study compari-

son and a predictive check. The cross-study evaluation (Table 4) shows the sub-

stantial agreement in the estimated PK parameters for the final model fitted to

the data of the two studies individually and the combined data set. The predictive

check (Fig. 17) revealed that the population PK model based on BW adequately

described both the central tendency and variability of the observed plasma M1

concentration data. Most of the observed data points fell within the range

defined by the 95% prediction interval simulated by the model (shaded area).

In summary, this present study assessed PK data collected during an uncon-

trolled Phase I trial (Study I) and a controlled Phase III trial (Study II) of leflu-

nomide for the treatment of pediatric subjects with JRA to create a model for

the population PK of the active metabolite, M1, and then use this model in

conjunction with efficacy and safety data obtained to determine appropriate

dosing regimens in pediatric patients with JRA. Analysis of M1 concentrations

and treatment response in Study II revealed a trend for lower exposures to M1

in the group of children who failed to respond to leflunomide. The doses summar-

ized in Table 3, recommended based on the population PK model, provide

Table 3 Doses that Would Achieve a Uniform Range

of M1 Exposure for Pediatric Patients with JRA

Actual body

weight (kg)

Initial maintenance

dose (mg/day)

10–20 10

20–40 15

.40 20

Note: 15 mg/day was given as 10 mg and 20 mg rotation every

other day. Source: Adapted from Ref. 5. Courtesy of Springer

Publications.
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Table 4 Cross-Study Comparison of the Final Population Pharmacokinetic Model

Study

CL/F

(L/hr)

V/F

(L)

ka

(hr21)

Exponentb

for V/F

Exponentb

for CL/F

IIVCL

(%)

IIVV

(%)

IIVka

(%)

Residual

error (%)

Study I 0.0191 5.67 1.07 0.811 0.377 46.7 18.4 170.7 17.7

Study II 0.0206 6.37 1.00a 0.719 0.452 52.7 19.3 0a 19.5

Study Iþ Study II 0.0200 5.80 1.13 0.769 0.430 50.4 18.6 171.5 18.2

SE (0.00127) (0.23) (0.455) (0.0989) (0.192) (22.0) (10.0) (101.5) (6.3)

aDue to lack of data obtained from the rising phase, ka and its variance were fixed to 1 and 0, respectively.
bThe format of the covariate model was: Pj ¼ Ptypical (BW/40)exponent, where P is the parameter (CL/F or V/F).

Abbreviations: CL/F, total oral clearance; V/F, apparent volume of distribution; ka, first-order input-rate constant; IIV, inter-individual variation in PK parameters,

expressed as %CV; SE, standard error of the estimate.

Source: Adapted from Ref. 5. Courtesy of Springer Publications.
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exposure to M1 comparable with that achieved in adults with a dose of lefluno-

mide at 20 mg/day.

CONCLUSION

Children cannot simply be regarded as “miniature” adults; they differ from adults

and even from other children with regard to drug absorption, distribution, metab-

olism, and elimination. Furthermore, age-related differences in receptor-binding

characteristics are also evident. PK/PD studies play a key role in pediatric clini-

cal programs and are a central contributor to define pediatric dose adjustments

specified in the product labeling.

Populations in pediatric PK–PD studies frequently cover a much wider

range in body size than similar studies in adults. Therefore, appropriately apply-

ing a size adjustment approach is critical in dose selection of the trials, optimal

sampling design, and PK–PD modeling for other covariates, and, ultimately,

in dosage regimen recommendations. Limited sampling designs are a frequently

used feature in population PK–PD analysis in pediatric populations. Sufficient

methodology is now available to allow for the design of D-optimality or
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Figure 17 Plot of the predictive check evaluation on the final model. The solid curve

represents the median concentrations of the 500 simulated datasets and the upper and

the lower boundaries of the shaded area represent the 97.5th and 2.5th quantiles of the

simulated data, respectively. Time after dose is used for the plot and the plot only displays

the data within 24-hour post-dosing in order to show individual data points. Source:

Adapted from Ref. 5. Courtesy of Springer Publications.
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random sampling-based schemes and validation of these schemes. Furthermore,

reliable and unbiased results can be obtained using various Bayesian and non-

linear mixed effects modeling approaches, even though the data is sparse and

unbalanced.

The recent regulatory initiatives and policies have stimulated pediatric

clinical studies resulting in improved understanding of the PK/PD of drugs pre-

scribed in pediatrics. The pursuit of relationships between exposure and response

specifically in pediatric populations represents the frontier in limited sampling

design, population PK/PD modeling, and dose optimization. The integration of

model-based techniques as a tool in these investigations is both rational and

necessary.
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