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Preface

This book emphasizes dose selection issues from a statistical point of view. It
presents statistical applications in the design and analysis of dose–response studies.
The importance of this subject can be found from the International Conference on
Harmonization (ICH) E4 Guidance document.

Establishing the dose–response relationship is one of the most important activ-
ities in developing a new drug. A clinical development program for a new drug
can be broadly divided into four phases – namely Phases I, II, III, and IV. Phase
I clinical trials are designed to study the clinical pharmacology. Information ob-
tained from these studies will help in designing Phase II studies. Dose–response
relationships are usually studied in Phase II. Phase III clinical trials are large-scale,
long-term studies. These studies serve to confirm findings from Phases I and II.
Results obtained from Phases I, II, and III clinical trials would then be documented
and submitted to regulatory agencies for drug approval. In the United States, re-
viewers from Food and Drug Administration (FDA) review these documents and
make a decision to approve or to reject this New Drug Application (NDA). If the
new drug is approved, then Phase IV studies can be started. Phase IV clinical trials
are also known as postmarketing studies.

Phase II is the key phase to help find doses. At this point, dose-ranging studies
and dose-finding studies are designed and carried out sequentially. These studies
usually include several dose groups of the study drug, plus a placebo treatment
group. Sometimes an active control treatment group may also be included. If the
Phase II program is successful, then one or several doses will be considered for the
Phase III clinical development. In certain life-threatening diseases, flexible-dose
designs are desirable. Various proposals about design and analysis of these studies
are available in the statistical and medical literature.

Statistics is an important science in drug development. Statistical methods can
be applied to help with study design and data analysis for both preclinical and
clinical studies. Evidences of drug efficacy and drug safety in human subjects
are mainly established on the findings from randomized double-blind controlled
clinical trials. Without statistics, there would be no such trials. Descriptive statistics
are frequently used to help understand various characteristics of a drug. Inferential
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statistics helps quantify probabilities of successes, risks in drug discovery and
development, as well as variability around these probabilities. Statistics is also an
important decision-making tool throughout the entire drug development process.
In clinical trials of all phases, studies are designed using statistical principles.
Clinical data are displayed and analyzed using statistical models.

This book introduces the drug development process and the design and analysis
of clinical trials. Much of the material in the book is based on applications of
statistical methods in the design and analysis of dose-response studies. In gen-
eral, there are two major types of dose-response concerns in drug development—
concerns regarding drugs developed for nonlife-threatening diseases and those for
life-threatening diseases. Most of the drug development programs in the pharma-
ceutical industry and the ICH E4 consider issues of nonlife-threatening diseases.
On the other hand, many of the NIH/NCI sponsored studies and some of the phar-
maceutical industry-sponsored studies deal with life-threatening diseases. Statisti-
cal and medical concerns in designing and analyzing these two types of studies can
be very different. In this book, both types of clinical trials will be covered to a certain
depth.

Although the book is prepared primarily for statisticians and biostatisticians, it
also serves as a useful reference to a variety of professionals working for the phar-
maceutical industry. Nonetheless, other professions – pharmacokienticists, clinical
scientists, clinical pharmacologists, pharmacists, project managers, pharmaceuti-
cal scientists, clinicians, programmers, data managers, regulatory specialists, and
study report writers can also benefit from reading this book. This book can also be
a good reference for professionals working in a drug regulatory environment, for
example, the FDA. Scientists and reviewers from both U.S. and foreign drug regula-
tory agencies can benefit greatly from this book. In addition, statistical and medical
professionals in academia may find this book helpful in understanding the drug
development process, and the practical concerns in selecting doses for a new drug.

The purpose of this book is to introduce the dose-selection process in drug
development. Although it includes many preclinical experiments, most of dose-
finding activities occure during the Phase II/III clinical stage. Therefore, the em-
phasis of this book is mostly about design and analysis of Phase II/III dose–
response clinical trials. Chapter 1 offers an overview of drug development pro-
cess. Chapter 2 covers dose-finding in preclinical studies, and Chapter 3 details
Phase I clinical trials. Chapters 4 to 8 discuss issues relating to design, and Chap-
ters 9 to 13 discuss issues relating to analysis of dose–response clinical trials.
Chapter 14 introduces power and sample size estimation for these studies. For
readers who are interested in designs involving life-threatening diseases such as
cancer, Chapters 4 and 5 provide a good overview from both the nonparamet-
ric and the parametric points. In planning dose–response trials, researchers are
likely to find PK/PD and trial simulation useful tools to help with study design.
Hence Chapters 6 to 8 cover these and other general design issues for Phase
II studies. In data analysis of dose–response results, the two major approaches
are modeling approaches and multiple comparisons. Chapters 9 and 10 cover the
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modeling approach while Chapters 11 and 12 cover the multiple comparison meth-
ods. Chapter 13 discusses the analysis of categorical data in dose-finding clinical
trials.

Naitee Ting
Pfizer Global Research and Development
New London
Connecticut
Naitee.ting@pfizer.com



Contents

Preface v

1 Introduction and New Drug Development Process 1
1.1 Introduction ............................................................. 1
1.2 New Drug Development Process .................................... 4
1.3 Nonclinical Development............................................. 5

1.3.1 Pharmacology .............................................. 5
1.3.2 Toxicology/Drug Safety .................................. 6
1.3.3 Drug Formulation Development ........................ 7

1.4 Premarketing Clinical Development................................ 8
1.4.1 Phase I Clinical Trials..................................... 8
1.4.2 Phase II/III Clinical Trials................................ 10
1.4.3 Clinical Development for Life-Threatening Diseases 12
1.4.4 New Drug Application.................................... 12

1.5 Clinical Development Plan ........................................... 13
1.6 Postmarketing Clinical Development .............................. 14
1.7 Concluding Remarks .................................................. 16

2 Dose Finding Based on Preclinical Studies 18
2.1 Introduction ............................................................. 18
2.2 Parallel Line Assays ................................................... 20
2.3 Competitive Binding Assays ......................................... 20
2.4 Anti-infective Drugs ................................................... 25
2.5 Biological Substances ................................................. 25
2.6 Preclinical Toxicology Studies....................................... 26
2.7 Extrapolating Dose from Animal to Human ...................... 28

3 Dose-Finding Studies in Phase I and Estimation
of Maximally Tolerated Dose 30
3.1 Introduction ............................................................. 30
3.2 Basic Concepts ......................................................... 30
3.3 General Considerations for FIH Studies ........................... 32



x Contents

3.3.1 Study Designs .............................................. 33
3.3.2 Population................................................... 35

3.4 Dose Selection .......................................................... 37
3.4.1 Estimating the Starting Dose in Phase I ............... 37
3.4.2 Dose Escalation ............................................ 40

3.5 Assessments............................................................. 42
3.5.1 Safety and Tolerability.................................... 42
3.5.2 Pharmacokinetics .......................................... 43
3.5.3 Pharmacodynamics........................................ 43

3.6 Dose Selection for Phase II........................................... 46

4 Dose-Finding in Oncology—Nonparametric Methods 49
4.1 Introduction ............................................................. 49
4.2 Traditional or 3 + 3 Design .......................................... 50
4.3 Basic Properties of Group Up-and-Down Designs............... 51
4.4 Designs that Use Random Sample Size: Escalation

and A + B Designs .................................................... 52
4.4.1 Escalation and A + B Designs .......................... 52
4.4.2 The 3 + 3 Design as an A + B Design ................ 53

4.5 Designs that Use Fixed Sample Size ............................... 53
4.5.1 Group Up-and-Down Designs........................... 54
4.5.2 Fully Sequential Designs for Phase I Clinical

Trials ......................................................... 54
4.5.3 Estimation of the MTD After the Trial ................ 54

4.6 More Complex Dose-Finding Trials ................................ 55
4.6.1 Trials with Ordered Groups.............................. 55
4.6.2 Trials with Multiple Agents.............................. 56

4.7 Conclusion............................................................... 56

5 Dose Finding in Oncology—Parametric Methods 59
5.1 Introduction ............................................................. 59
5.2 Escalation with Overdose Control Design......................... 61

5.2.1 EWOC Design.............................................. 61
5.2.2 Example ..................................................... 62

5.3 Adjusting for Covariates .............................................. 63
5.3.1 Model ........................................................ 63
5.3.2 Example ..................................................... 66

5.4 Choice of Prior Distributions......................................... 68
5.4.1 Independent Priors......................................... 69
5.4.2 Correlated Priors ........................................... 69
5.4.3 Simulations ................................................. 70

5.5 Concluding Remarks .................................................. 70

6 Dose Response: Pharmacokinetic–Pharmacodynamic Approach 73
6.1 Exposure Response .................................................... 73



Contents xi

6.1.1 How Dose Response and Exposure Response Differ 73
6.1.2 Why Exposure Response is More Informative ....... 73
6.1.3 FDA Exposure Response Guidance .................... 73

6.2 Time Course of Response............................................. 74
6.2.1 Action, Effect, and Response............................ 74
6.2.2 Models for Describing the Time Course of Response 74

6.3 Pharmacokinetics....................................................... 75
6.3.1 Review of Basic Elements of Pharmacokinetics ..... 75
6.3.2 Why the Clearance/Volume Parameterization

is Preferred.................................................. 76
6.4 Pharmacodynamics .................................................... 77

6.4.1 Review of Basic Elements of Pharmacodynamics... 77
6.5 Delayed Effects and Response....................................... 77

6.5.1 Two Main Mechanism Classes for Delayed Effects. 78
6.6 Cumulative Effects and Response................................... 80

6.6.1 The Relevance of Considering Integral of Effect
as the Outcome Variable.................................. 80

6.6.2 Why Area Under the Curve of Concentration is
not a Reliable Predictor of Cumulative Response ... 80

6.6.3 Schedule Dependence..................................... 81
6.6.4 Predictability of Schedule Dependence................ 82

6.7 Disease Progress........................................................ 82
6.7.1 The Time Course of Placebo Response and

Disease Natural History .................................. 82
6.7.2 Two Main Classes of Drug Effect ...................... 83

6.8 Modeling Methods ..................................................... 84
6.8.1 Analysis ..................................................... 84
6.8.2 Mixed Effect Models...................................... 85
6.8.3 Simulation................................................... 85
6.8.4 Clinical Trial Simulation ................................. 85

6.9 Conclusion............................................................... 86

7 General Considerations in Dose–Response Study Designs 89
7.1 Issues Relating to Clinical Development Plan .................... 89
7.2 General Considerations for Designing Clinical Trials........... 90

7.2.1 Subject Population and Endpoints ...................... 91
7.2.2 Parallel Designs versus Crossover Designs ........... 93
7.2.3 Selection of Control ....................................... 93
7.2.4 Multiple Comparisons .................................... 94
7.2.5 Sample Size Considerations ............................. 95
7.2.6 Multiple Center Studies .................................. 96

7.3 Design Considerations for Phase II Dose–Response Studies .. 96
7.3.1 Frequency of Dosing ...................................... 97
7.3.2 Fixed-Dose versus Dose-Titration Designs ........... 99
7.3.3 Range of Doses to be Studied ........................... 100



xii Contents

7.3.4 Number of Doses to be Tested .......................... 101
7.3.5 Dose Allocation, Dose Spacing ......................... 102
7.3.6 Optimal Designs ........................................... 103

7.4 Concluding Remarks .................................................. 103

8 Clinical Trial Simulation—A Case Study Incorporating
Efficacy and Tolerability Dose Response 106
8.1 Clinical Development Project Background........................ 106

8.1.1 Clinical Trial Objectives.................................. 107
8.1.2 Uncertainties Affecting Clinical Trial Planning...... 107

8.2 The Clinical Trial Simulation Project .............................. 108
8.2.1 Clinical Trial Objectives Used for the CTS Project . 109
8.2.2 The Simulation Project Objective....................... 111
8.2.3 Simulation Project Methods 1: Data Models and

Design Options............................................. 111
8.2.4 Simulation Project Methods 2: Analysis and

Evaluation Criteria......................................... 117
8.3 Simulation Results and Design Recommendations .............. 120

8.3.1 Objective 1: Power for Confirming Efficacy.......... 120
8.3.2 Objective 2: Accuracy of Target Dose Estimation... 121
8.3.3 Objective 3: Estimation of a Potentially Clinically

Noninferior Dose Range.................................. 121
8.3.4 Trial Design Recommendations......................... 124

8.4 Conclusions ............................................................. 125

9 Analysis of Dose–Response Studies—Emax Model 127
9.1 Introduction to the Emax Model ...................................... 127
9.2 Sensitivity of the Emax Model Parameters ......................... 129

9.2.1 Sensitivity of the E0 and Emax Parameters............. 129
9.2.2 Sensitivity of the ED50 Parameter ...................... 130
9.2.3 Sensitivity of the N Parameter........................... 131
9.2.4 Study Design for the Emax Model....................... 131
9.2.5 Covariates in the Emax Model............................ 133

9.3 Similar Models ......................................................... 134
9.4 A Mixed Effects Emax Model ........................................ 134
9.5 Examples................................................................. 135

9.5.1 Oral Artesunate Dose–Response Analysis Example 135
9.5.2 Estimation Methodology ................................. 137
9.5.3 Initial Parameter Values for the Oral Artesunate

Dose–Response Analysis Example..................... 138
9.5.4 Diastolic Blood Pressure Dose–Response Example. 139

9.6 Conclusions ............................................................. 141

10 Analysis of Dose–Response Studies—Modeling Approaches 146
10.1 Introduction ............................................................. 146



Contents xiii

10.2 Some Commonly Used Dose–Response Models................. 149
10.2.1 Emax Model ................................................. 150
10.2.2 Linear in Log-Dose Model............................... 151
10.2.3 Linear Model ............................................... 151
10.2.4 Exponential (Power) Model.............................. 151
10.2.5 Quadratic Model ........................................... 152
10.2.6 Logistic Model ............................................. 152

10.3 Estimation of Target Doses........................................... 153
10.3.1 Estimating the MED in Dose-Finding Example ..... 155

10.4 Model Uncertainty and Model Selection........................... 156
10.5 Combining Modeling Techniques and Multiple Testing ........ 160

10.5.1 Methodology................................................ 160
10.5.2 Proof-of-Activity Analysis in the

Dose-Finding Example ................................... 162
10.5.3 Simulations ................................................. 163

10.6 Conclusions ............................................................. 169

11 Multiple Comparison Procedures in Dose Response Studies 172
11.1 Introduction ............................................................. 172
11.2 Identifying the Minimum Effective Dose (MinED).............. 172

11.2.1 Problem Formulation...................................... 172
11.2.2 Review of Multiple Test Procedures ................... 174
11.2.3 Simultaneous Confidence Intervals..................... 176

11.3 Identifying the Maximum Safe Dose (MaxSD) .................. 177
11.4 Examples................................................................. 177
11.5 Extensions ............................................................... 180
11.6 Discussion ............................................................... 181

12 Partitioning Tests in Dose–Response Studies with
Binary Outcomes 184
12.1 Motivation ............................................................... 184
12.2 Comparing Two Success Probabilities in a Single Hypothesis 185
12.3 Comparison of Success Probabilities in

Dose–Response Studies ............................................... 188
12.3.1 Predetermined Step-Down Method..................... 188
12.3.2 Sample-Determined Step-Down Method.............. 190
12.3.3 Hochberg’s Step-up Procedure .......................... 194

12.4 An Example Using Partitioning Based Stepwise Methods ..... 195
12.5 Conclusion and Discussion........................................... 197

13 Analysis of Dose–Response Relationship Based
on Categorical Outcomes 200
13.1 Introduction ............................................................. 200
13.2 When the Response is Ordinal....................................... 201

13.2.1 Modeling Dose–Response ............................... 201



xiv Contents

13.2.2 Testing for a Monotone Dose–Response
Relationship................................................. 203

13.3 When the Response is Binary........................................ 207
13.4 Multiple Comparisons................................................. 210

13.4.1 Bonferroni Adjustment ................................... 211
13.4.2 Bonferroni–Holm Procedure ............................ 211
13.4.3 Hochberg Procedure....................................... 212
13.4.4 Gate-Keeping Procedure ................................. 212
13.4.5 A Special Application of Dunnett’s Procedure

for Binary Response....................................... 213
13.5 Discussion ............................................................... 213

14 Power and Sample Size for Dose Response Studies 220
14.1 Introduction ............................................................. 220
14.2 General Approach to Power Calculation........................... 221
14.3 Multiple-Arm Dose Response Trial................................. 223

14.3.1 Normal Response .......................................... 224
14.3.2 Binary Response ........................................... 227
14.3.3 Time-to-Event Endpoint .................................. 230

14.4 Phase I Oncology Dose Escalation Trial ........................... 233
14.4.1 The A + B Escalation without Dose De-Escalation. 234
14.4.2 The A + B Escalation with Dose De-Escalation..... 236

14.5 Concluding Remarks .................................................. 238

Index 243



1
Introduction and New Drug
Development Process

NAITEE TING

1.1 Introduction

The fundamental objective of drug development is to find a dose, or dose range,
of a drug candidate that is both efficacious (for improving or curing the intended
disease condition) and safe (with acceptable risk of adverse effects). If such a
dose range cannot be identified, the candidate would not be a medically useful
or commercially viable pharmaceutical product, nor should it be approved by
regulatory agencies.

Each pharmacological agent (drug candidate) will typically have many effects,
both desired (such as blood pressure reduction) and undesired (adverse effects,
such as dizziness or nausea). Generally, the magnitude of a pharmacological effect
increase monotonically with increased dose, eventually reaching a plateau level
where further increases have little additional effect. Of course, for serious adverse
effects, we will not be able to ethically observe this full dose range, at least in
humans. Figure 1.1 illustrates a monotonic dose–response relationship, which
could be for either a beneficial or adverse safety effect. Note that some types of
pharmacological response exhibit a “U-shaped” (or “inverted U-shaped”) dose–
response pattern, but these are relatively rare, at least over the dose range likely to
be of therapeutic value.

Figure 1.1 distinguishes between individual dose–response relationships—the
three steeper curves representing three different individuals—and the single, flatter
population average dose–response relationship. When discussing “dose–response”
in drug development, it is generally implied the population average type of
dose–response.

For a therapeutically useful drug, the “safe and efficacious” dose range will be
on the low end of the safety dose–response curve and towards the higher end for
beneficial effect. The concept of “efficacious dose range” and “safe dose range”
is illustrated in Figure 1.2 and will be clarified in the following paragraphs.

Based on these dose–response curves, the maximum effective dose (MaxED)
and the maximally tolerated dose (MTD) can be defined: MaxED is the dose
above which there is no clinically significant increase in pharmacological effect or
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Figure 1.1. Individual and average dose–response curves.

efficacy, and MTD is the maximal dose acceptably tolerated by a particular pa-
tient population. Another dose parameter of interest is the minimum effective dose
(MinED). Ruberg (1995) defines the MinED as “the lowest dose producing a clin-
ically important response that can be declared statistically, significantly different
from the placebo response”.

MaxED MTD

Figure 1.2. Dose–response for efficacy and toxicity.
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In certain drugs, the efficacy and the toxicity curves are widely separated. When
this is the case, there is a wide range of doses for patients to take; i.e., as long as
a patient receives a dose between MaxED and MTD, the patient can benefit from
the efficacy, and at the same time, mitigate toxicities from the drug. However, for
other drugs, the two curves may be very close to each other. Under this situation,
physicians have to dose patients very carefully so that while benefiting from the
efficacy, patients do not have to be exposed to potential toxicity from the drug.
The area between the efficacy and the toxicity curves is known as the “therapeutic
window”. One way to measure the therapeutic window is to use a “therapeutic
index (TI)”. TI is considered as the ratio of MTD over an effective dose (e.g.,
MaxED). Clearly, a drug with a wide therapeutic window (or a high TI) tends to
be preferred by both physicians and patients. If a drug has a narrow therapeutic
window, then the drug will need to be developed carefully, and physicians will
prescribe the drug with caution.

It is also of interest to distinguish between the maximum effect achievable
(height of the plateau) and potency (location of the response curve on dose scale).
Figure 1.3 illustrates these concepts. Drugs operating by a similar mechanism of
action often have (approximately) similar dose–response shapes, but will differ in
potency (the amount of drug needed to achieve the same effect), e.g., Drugs A and
B in Figure 1.3. Here Drug A is more potent than B because it takes less dose of
A to reach the same level of response as that of B. A drug operating by a different
mechanism might be able to achieve higher (or lower) efficacy—e.g., Drug C.

Figure 1.3. High potency drug and high efficacy drug.

The process of drug development—involving literally thousands of experiments
in animals, healthy human subjects, and patients with the target disease—focuses
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on achieving progressively refined knowledge of the dose–response relationships
for important safety and efficacy effects. Prior to human trials, extensive in vitro
(outside of a living organism) and in vivo (within a living organism) experiments
are conducted with the drug candidate to identify how the various effects depend
upon dose (or other measures of exposure such as its concentration in the body).

Dose–response relationship for a new drug is studied both in human and in ani-
mal experiments. Human studies are referred as clinical trials, and animal studies
are generally part of nonclinical studies. In either case, experiment design and data
analysis are critical components for a study. Statistical methods can be applied to
help with design and analysis for both nonclinical and clinical studies. Evidences
of drug efficacy and drug safety in human subjects are mainly established on
the findings from randomized double-blind controlled clinical trials. Descriptive
statistics are frequently used to help understand and gauge various characteristics
of a drug. Inferential statistics helps quantify probabilities of successes and risks
in drug discovery and development, as well as variability around those probabil-
ities. Statistics is also an important decision-making tool throughout the entire
drug development process. In clinical trials of all phases, studies are designed
using statistical principles. Clinical data are displayed and analyzed using various
statistical models.

1.2 New Drug Development Process

Most of the drugs available in pharmacy started out as a chemical compound or
a biologic discovered in laboratories. When first discovered, this new compound
or biologic is denoted as a drug candidate. Drug development is a process
that starts when the drug candidate is first discovered, and continues until it
is available to be prescribed by physicians to treat patients (Ting, 2003). A
compound is usually a new chemical entity synthesized by scientists from
drug companies (also referred as sponsors), universities, or research institutes.
A biologic can be a protein, a part of a protein, DNA or a different form
either extracted from tissues of another live body or cultured by some type of
bacteria. In any case, this new compound or biologic will have to go through
the drug development process before it can be used by the general public. For
purposes of this book, the focus will mostly be on the chemical compound
development.

The drug development process can be broadly classified into two major com-
ponents: nonclinical development and clinical development. Nonclinical develop-
ment includes all drug testing performed outside of the human body. The clinical
development is based on experiments conducted in the human body. Nonclinical
development can further be broadly divided into pharmacology, toxicology, and
formulation. In these processes, experiments are performed in laboratories or pilot
plants. Observations from cells, tissues, animal bodies, or drug components are
collected to derive inferences for potential new drugs. Chemical processes are in-
volved in formulating the new compound into drugs to be delivered into human
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body. Clinical development can be further divided into Phases I, II, III, and IV.
Clinical studies are designed to collect data from normal volunteers and subjects
with the target disease, in order to help understand how the human body acts on
the drug candidate, and how the drug candidate helps patients with the disease.

A new chemical compound or a biologic can be designated as a drug candidate
because it demonstrates some desirable pharmacological activities in the labora-
tory. At the early stage of drug development, the focus is mainly on cells, tissues,
organs, or animal bodies. Experiments on human beings are performed after the
candidate passes these early tests and looks promising. Hence, nonclinical devel-
opment may also be referred to as preclinical development since these experiments
are performed before human trials.

Throughout the whole drug development process, two scientific questions are
constantly being addressed: Does the drug candidate work? Is it safe? Starting
from the laboratory where the compound is first discovered, the candidate has to
go through lots of tests to see if it demonstrates both efficacy (the drug works)
and safety. Only the candidates passing all those tests can be progressed to the
next step of development. In the United States, after a drug candidate passes all of
the nonclinical tests, an investigational new drug (IND) document is filed to the
Food and Drug Administration (FDA). After the IND is approved, clinical trials
(tests on humans) can then be performed. If this drug candidate is shown to be
safe and efficacious through Phases I, II, and III of the clinical trials, the sponsor
will file a new drug application (NDA) to the FDA in the United States. The drug
can only be available for general public consumption in the United States, if the
NDA is approved. Often, the approved drug is continually studied for safety and
efficacy, for example, in different subpopulations. These post-marketing studies
are generally referred as Phase IV of the clinical trials.

1.3 Nonclinical Development

1.3.1 Pharmacology

Pharmacology is the study of the selective biological activity of chemical sub-
stances on living matter. A substance has biological activities when, in appropriate
doses, it causes a cellular response. It is selective when the response occurs in
some cells and not in others. Therefore, a chemical compound or a biologic has
to demonstrate these activities before it can be further developed. In the early
stage of drug testing, it is important to differentiate an “active” candidate from an
“inactive” candidate. There are screening procedures to select these candidates.
Two properties of particular interest are sensitivity and specificity. Given that a
compound is active, sensitivity is the conditional probability that the screen will
classify it as positive. Specificity is the conditional probability that the screen will
call a compound negative given that it is truly inactive.

Usually sensitivity and specificity can be a trade-off; however, in the ideal case,
we hope both of these values be high and close to one.
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Quantity of these pharmacological activities may be viewed as the drug potency
or strength. The estimation of drug potency by the reactions of living organisms or
their components is known as bioassay. According to Finney (1978), bioassay is
defined as an experiment for estimating the potency of a drug, material, preparation,
or process by means of the reaction that follows its application to living matters.

As discussed previously, one of the most important relationships needs to be
studied for pharmacological activities is the dose–response relationship. In these
experiments, several doses of the drug candidates are selected, and the responses
are measured for each corresponding dose. After response data are collected, re-
gression or nonparametric methods may be applied to analyze the results. As
shown in Figure 1.2, the focus of nonclinical pharmacology is to help estimate the
response curve at left. By increasing the dose or concentration of the drug candi-
date, if the pharmacological response does not change and stays at the low level
of activity, then it can be concluded that this candidate does not have the activity
under study and there is no need to develop this candidate. If the drug candidate is
active, then the information about how much response can be expected for a given
dosage (or concentration) can be used to help guide the design of dose selection
clinical trials in human studies. Concerns relating to dose finding in nonclinical
pharmacology are covered in Chapter 2.

1.3.2 Toxicology/Drug Safety

Drug safety is one of the most important concerns throughout all stages of drug
development. In the preclinical stage, drug safety needs to be studied for a few
different species of animals (e.g., mice, rabbits, rodents). Studies are designed
to observe adverse drug effects or toxic events experienced by animals treated
with different doses of the drug candidate. Animals are also exposed to the drug
candidate for various lengths of time to see if there are adverse effects caused by
cumulative dosing over time. These results are summarized and analyzed by using
statistical methods. When the results of animal studies indicate potentially serious
side effects, drug development is either terminated or suspended pending further
investigations of the problem.

Depending on the duration of exposure to the drug candidate, animal toxicity
studies are classified as acute studies, subchronic studies, chronic studies, and
reproductive studies (Selwyn, 1988). Usually the first few studies are acute studies;
i.e., the animal is given one or a few doses of the drug candidate. If only one dose
is given, it can also be called a single-dose study. Only those drug candidates
demonstrated to be safe in the single-dose studies can be progressed into multiple-
dose studies. Single-dose acute studies in animals are primarily used to set the
dose to be tested in chronic studies. Acute studies are typically about 2 weeks
in duration. Repeat dose studies of 30 to 90 days duration are called subchronic
studies. Chronic studies are usually designed with more than 90 days of duration.
These studies are conducted in rodents and in at least one nonrodent species. Some
chronic studies may also be viewed as carcinogenicity studies because the rodent
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studies consider tumor incidence as an important endpoint. Reproductive studies
are carried out to assess the drug’s effect on fertility and conception; they can also
be used to study drug effect on the fetus and developing offspring.

Data collected from toxicology studies will help estimate the curve on the right-
hand side of Figure 1.2. The information are not only used to identify a NOAEL (No
Observed Adverse Event Level) for the drug candidate; it can also help provide
guidance as to what type of adverse events to be expected in human studies.
Again, results obtained from animal toxicity studies are very useful in helping
design dose selection clinical trials in humans. More details about drug toxicity
and dose–response are also described in Chapter 2.

1.3.3 Drug Formulation Development

As discussed earlier, a potential new drug can be either a chemical compound
or a biologic. If the drug candidate is a biologic, then the formulation is typ-
ically a solution, which contains a high concentration of such a biologic, and
the solution is injected into the subject. On the other hand, if the potential drug
is a chemical compound, then the formulation can be tablets, capsules, solu-
tion, patches, suspension, or other forms. There are many formulation prob-
lems that require statistical analyses. The formulation problems that stem from
chemical compounds are more likely to involve widely used statistical tech-
niques. The paradigm of a chemical compound is used here to illustrate some
of these formulation-related problems and how they can be related to dose
selection.

A drug is the mixture of the synthesized chemical compound (active ingredients)
and other inactive ingredients designed to improve the absorption of the active
ingredients. How the mixture is made depends on results of a series of experiments.
Usually these experiments are performed under some physical constraints, e.g.,
the amount of supply of raw materials, capacity of container, size and shape of
the tablets. In the early stage of drug development, drug formulation needs to be
flexible so that various dose strengths can be tested in animals and in humans.
Often in the nonclinical development stage or in early phase of clinical trials,
the drug candidate is supplied in powder form or as solutions to allow flexible
dosing. By the time the drug candidate progresses into late Phase I or early Phase
II, fixed dosage form such as tablets, capsules, or other formulations are more
desirable.

The dose strength depends on both nonclinical and clinical information. The
drug formulation group works closely with laboratory scientists, toxicologists and
clinical pharmacologists to determine the possible dose strengths for each drug
candidate. In many cases, the originally proposed dose strengths will need to be
changed depending on results obtained from Phase II studies. These formulations
are developed for clinical trial usage and are often different from the commercial
formulation. After the new drug is approved for market, commercial formulation
should be readily available for distribution.
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1.4 Premarketing Clinical Development

If a chemical compound or a biologic gets through the selection process from
animal testing and is shown to be safe and efficacious to be tested in human, it pro-
gresses into clinical development. In drug development for human use, the major
distinction between “clinical trials” and “nonclinical testing” is the experimental
unit. In clinical trials, the experimental units are human beings, and the experi-
mental units in “nonclinical testing” are nonhuman subjects. As mentioned earlier,
the results of these nonclinical studies will be used in the IND submission prior to
the first clinical trial. If there is no concern from the FDA after 30 days of the IND
submission, the sponsor can then start clinical testing for this drug candidate. At
this stage, the chemical compound or the biologic may be referred to as the “test
drug” or the “study drug”.

An IND is a document that contains all the information known about the new
drug up to the time the IND is prepared. A typical IND includes the name and
description of the drug (such as chemical structure, other ingredients); how the drug
is processed; information about any preclinical experiences relating to the safety of
the drug; marketing information; past experiences or future plans for investigating
the drug both in the United States and in foreign countries. In addition, it also
contains a description of the clinical development plan (CDP, refer to Section
1.5). Such a description should contain all of the informational materials to be
supplied to clinical investigators, signed agreements from investigators, and the
initial protocols for clinical investigation.

Clinical development is broadly divided into four phases, namely Phases I, II,
III, and IV. Phase I trials are designed to study the short-term effects; e.g., phar-
macokinetics (PK, what does a human body do to the drug), pharmacodynamics
(PD, what does a drug do to the human body), and dose range (what range of doses
should be tested in human) for the new drug. Phase II trials are designed to assess
the efficacy of the new drug in well-defined subject populations. Dose–response
relationships are also studied during Phase II. Phase III trials are usually long-term,
large-scale studies to confirm findings established from earlier trials. These studies
are also used to detect adverse effects caused by cumulative dosing. If a new drug
is found to be safe and efficacious from the first three phases of clinical testing, an
NDA is filed for the regulatory agency (FDA, in the United States) to review. Once
the drug is approved by the FDA, Phase IV (postmarketing) studies are planned
and carried out. Many of the Phase IV study designs are dictated by the FDA to
examine safety questions; some designs are employed to establish new uses.

1.4.1 Phase I Clinical Trials

In a Phase I PK study, the purpose is usually to understand PK properties and to
estimate PK parameters (e.g., AUC, Cmax, Tmax, to be described in next para-
graph) of the test drug. In many cases, Phase I trials are designed to study the
bioavailability of a drug, or the bioequivalence among different formulations of
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the same drug. “Bioavailability” means “the rate and extent to which the active
drug ingredient or therapeutic moiety is absorbed and becomes available at the site
of drug action” (Chow and Liu, 1999). Experimental units in such Phase I studies
are mostly normal volunteers. Subjects recruited for these studies are generally in
good health.

Figure 1.4. Drug concentration–time curve.

A bioavailability or a bioequivalence study is carried out by measuring drug
concentration levels in blood or serum over time from participating subjects. These
measurements are summarized into one value per subject per treatment period.
These summarized data are then used for statistical analysis. Figure 1.4 presents
a drug concentration–time curve. Data on this curve are collected at discrete time
points. Typical variables used for analysis of PK activities include area under
the curve (AUC), maximum concentration (Cmax), minimum concentration (Cmin),
time to maxium concentration (Tmax), and others. These variables are computed
from drug concentration levels as shown in Figure 1.4. Suppose AUC is used for
analysis, then these discretely observed points are connected (for each subject
under each treatment period) and the AUC is estimated using a trapezoidal rule.
For example, AUC up to 24 hours for this curve is computed by adding up the areas
of the triangle between 0 hour and 0.25 hour, the trapezoid between 0.25 hour and
0.5 hour, and so on, and the trapezoid between 16 hour and 24 hour. Usually the
AUC and Cmax are first transformed using natural log, then they are included in the
data analysis. Chapter 6 discusses how PK data and PK/PD models can be used to
help dose selection in Phase II.
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Statistical designs used in Phase I bioavailability studies are often crossover
designs; i.e., a subject is randomized to be treated with formulation A first, and then
treated with formulation B after a “wash-out” period; or randomized to formulation
B first, and then treated with A after wash-out. In some complicated Phase I studies,
two or more treatments may be designed to cross several periods for each subject.
Advantages and disadvantages of crossover designs are discussed in Chow and
Liu (1999). Response variables including AUC and Cmax are usually analyzed
using ANOVA models. Random and mixed effects linear/nonlinear models are
also commonly used in the analysis for Phase I clinical studies. In certain designs,
covariate terms considered in these models can be very complicated. How Phase
I studies can help in dose finding are discussed in Chapter 3.

1.4.2 Phase II/III Clinical Trials

Phase II/III trials are designed to study the efficacy and safety of a test drug. Un-
like Phase I studies, subjects recruited in Phase II/III studies are patients with the
disease for which the drug is developed. Response variables considered in Phase
II/III studies are mainly efficacy and safety variables. For example, in a trial for the
evaluation of hypertension (high blood pressure), the efficacy variables are blood
pressure measurements. For an anti-infective trial, the response variables can be
the proportion of subjects cured or time to cure for each subject. Phase II/III
studies are mostly designed with parallel treatment groups (in contrast to
crossover). Hence, if a patient is randomized to receive treatment A, then this
patient is to be treated with Drug A through out the whole study.

Phase II trials are often designed to compare one or a few doses of a test drug
against placebo. These studies are usually short-term (several weeks) and designed
with a small or moderate sample size. Often, Phase II trials are exploratory in
nature. Patients recruited for Phase II trials are somewhat restrictive; i.e., they
tend to be with certain disease severity (not too severe and not too mild), without
other underlying diseases, and not on background treatments. One of the most
important types of Phase II study is the dose–response study. As expressed on the
left curve of Figure 1.1, drug efficacy may increase as dose increases. In a dose–
response study, the following fundamental questions need to be addressed (Ruberg,
1995):

� Is there any evidence of a drug effect?
� What doses exhibit a response different from the control response?
� What is the nature of the dose–response relationship?
� What is the optimal dose?

Typical dose–response studies are designed with fixed doses, parallel treat-
ment groups. For example, in a four-treatment group trial designed to study dose–
response relationships, three test doses (low, medium, high) are compared against
placebo. In this case, results may be analyzed using multiple comparison tech-
niques or modeling approaches. In general, Phase II studies are carried out for an
estimation purpose. Dose–response study designs used in Phase II are discussed
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in Chapters 6, 7, and 8. A special chapter (Chapter 14) is devoted for discussion
on power and sample size issues.

Phase III trials are long-term (can last up to a few years), large-scale (several
hundreds of patients), with less restrictive patient populations, and often compared
against a known active drug (in some cases, compared with placebo) for the disease
to be studied. Phase III trials tend to be confirmatory trials designed to verify
findings established from earlier studies.

Statistical methods used in Phase II/III clinical studies can be different from
those used for Phase I or nonclinical studies. Statistical analyses are selected
based on the distribution of the variables and the objectives of the study. Many
Phase I analyses tend to be descriptive, with estimation purposes. In Phase II/III,
categorical data analyses are frequently used in analyzing count data (e.g., number
of subjects responded, number of subjects with a certain side effect, or number
of subjects improved from “severe symptom” to “moderate symptom”). Survival
analyses are commonly used in analyzing time to an event (time to discontinuation
of the study medication, time to the first occurrence of a side effect, time to cure).
Regression analyses, t tests, analyses of variance (ANOVA), analyses of covari-
ance (ANCOVA), and multivariate analyses (MANOVA) are useful in analyzing
continuous data (blood pressure, grip strength, forced expiration volume, num-
ber of painful joints, AUC, and others). In many cases, nonparametric analytical
methods are selected because the data do not fit any known parametric distribution
well. In some other cases, the raw data are transformed (log-transformed, ranked,
centralized, combined) before a statistical analysis is performed. A combination
of various statistical tools may sometimes be used in a drug development pro-
gram. Hypothesis tests are often used to compare results obtained from different
treatment groups. Point estimates and interval estimates are also frequently used
to estimate subject responses to a study medication or to demonstrate equivalence
between two treatment groups. Statistical methods for analyzing dose–response
studies are introduced in Chapters 9–13.

Although the recommendation of doses is primarily made during Phase II, in
most of the cases, dose selection is further refined in Phase III. One reason for this
is that Phase III exposure is long-term and with a large patient population. From an
efficacy point of view, the drug efficacy from recommended doses may or may not
sustain after longer duration of treatment. More importantly, from a safety point
of view, a safe dose selected from Phase II results may lead to some other safety
concerns after this dose is exposed for a longer time. One possibility is that drug
accumulation over time may cause additional adverse events. Therefore, it is a
good practice to consider incorporating more doses than just the target dose(s) in
Phase III. It helps to have a dose higher than the target dose(s) so that in case the
target dose(s) is not as efficacious as anticipated, we can consider this higher dose
to be the effective dose. It is also useful to have a dose lower than the target dose(s)
so that in case the target dose is not safe and the lower dose can be considered as
a viable alternative.

After a clinical study is completed, all of the data collected from this study
are stored in a database and statistical analyses are performed on data sets
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extracted from the database. A study report is prepared for each completed clinical
trial. It is a joint effort to prepare such a study report. Statisticians, data man-
agers, and programmers work together to produce tables, figures, and statistical
reports. Statisticians, clinicians, and technical writers will then put together clinical
interpretations from these results. All of these are incorporated into a study report.
Study reports from individual clinical trials will eventually be culled as part of an
NDA.

1.4.3 Clinical Development for Life-Threatening Diseases

In drug development, concerns for drugs to treat life-threatening diseases, such
as cancer or AIDS, can be very different from those for other drugs. In the early
stage of developing a cancer drug, patients are recruited to trials under open-label
treatment with test drug and some effective background cancer therapy. Under this
circumstance, doses of the test drug may be adjusted during the treatment period.
Information obtained from these studies will then be used to help suggest dose
regimen for future studies. Various study designs to handle these situations are
available in statistical/oncology literatures. Examples of these types of flexible
designs are covered in Chapters 4 and 5.

In some cases, drugs for life-threatening diseases are approved for the target
patient population before large-scale Phase III studies are completed because of
public need. When this is the case, additional clinical studies may be sponsored
by National Institute of Health (NIH) or National Cancer Institute (NCI) in the
United States. Many of the NIH/NCI studies are still designed for dose finding or
dose adjustment purposes.

1.4.4 New Drug Application

When there is sufficient evidence to demonstrate a new drug is efficacious and
safe, an NDA is put together by the sponsor. An NDA is a huge package of docu-
ments describing all of the results obtained from both nonclinical experiments and
clinical trials. A typical NDA contains sections on proposed drug label, pharma-
cological class, foreign marketing history, chemistry, manufacturing and controls,
nonclinical pharmacology and toxicology summary, human pharmacokinetics and
bioavailability summary, microbiology summary, clinical data summary, results of
statistical analyses, benefit–risk relationship, and others. If the sponsor intends to
market the new drug in other countries, then packages of documents will need to
be prepared for submission to those corresponding countries, too. For example, a
new drug submission (NDS) needs to be filed to Canadian regulatory agency and
a marketing authorization application (MAA) needs to be filed to the European
regulatory agencies.

Often, an NDA is filed while some of the Phase III studies are ongoing. Sponsors
need to be very careful in selecting the “data cut-off date” because all of the clinical
data in the database up to the cut-off date need to be frozen and stored so that NDA
study report tables and figures can be produced from them. The data sets stored in
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such an “NDA database” may have to be retrieved, and reanalyzed after filing, in
order to address various queries from regulatory agencies. After these data sets are
created and stored, new clinical data can then be entered into the ongoing database.

An NDA package usually includes not only individual clinical study reports,
but also combined study results. These results may be summarized using meta-
analyses or pooled data analyses on individual patient data across studies. Such
analyses are performed on efficacy data to produce summary of clinical efficacy
(SCE, also known as integrated analysis of efficacy—IAE) and on safety data
to produce the summary of clinical safety (SCS, also known as integrated anal-
ysis of safety—IAS). These summaries are important components of an NDA.
Increasingly, electronic submissions are filed as part of the NDA. Electronic sub-
missions usually include individual clinical data, programs to process these data,
and software/hardware to help reviewers from FDA or foreign regulatory agencies
in reviewing the individual data as well as the whole NDA package.

1.5 Clinical Development Plan

In the early stage of drug development, as early as in the nonclinical stage, a clin-
ical development plan (CDP) should be drafted. This plan should include clinical
studies to be conducted in Phases I, II and III. The CDP should be guided by the
draft drug label. The drug label provides detailed information on how the drug
should be used. Hence, a draft label at the early stage of drug development lays
out the target profile for the drug candidate. Clinical studies should be designed to
help obtain information that will support this given target drug label.

One of the most important aspects of labeling information is the recommended
regimen for this new drug. The regimen includes dosage and dose frequency. In
the early stage of drug development, scientists need to predict the dosage and
frequency as to how the drug will be labeled. Based on this prediction, the clinical
development program should be designed to obtain necessary information that will
support the recommended regimen. For example, if the drug will be used with one
fixed dose, then the CDP should propose clinical studies to help find that dose. On
the other hand, if the drug will be used as titration doses, then studies need to be
designed to study the dose range for titration.

Another example is dosing frequency. Patients with chronic diseases tend to
take multiple medications every day. Many patients may prefer a once-a-day (QD)
drug or a twice-a-day (BID) drug. In early development of a new drug, if the best
marketed product for the target disease is prescribed as a twice-a-day drug, and
the preliminary information of this test drug indicates that it will have to be used
three or more times a day, then the CDP needs to include studies to reformulate
the test drug so that it can be used as a twice-a-day drug or a once-a-day drug,
before it can be progressed into later phases of development.

A CDP is an important document to be used during the clinical development
of a new drug. As a drug progresses in the clinical development process, the
CDP should be updated to reflect the most current information about the drug and
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depending on the findings up to this point in time, the sponsor can assess whether
a new version of drug label should be drafted. In case a new draft of drug label is
needed, the development plan should be revised so that studies can be planned to
support the new drug label.

The overall clinical development process can be viewed in two directions as
shown in Figure 1.5. One is the forward scientific process, as more data and
information are accumulating, we know more about the drug candidate and we
design later phase studies to help progress the candidate. On the other hand, the
planning is based on the draft drug label. From the draft label, we have a target
profile for the drug. Depending on the drug properties to be demonstrated on
the label, the sponsor needs to have Phase III studies to support those claims. In
order to collect information to help design those Phase III studies, data need to be
available for the corresponding Phase I or Phase II studies. Therefore, the thinking
process is backward by looking at the target profile first, and then prepares the
CDP according to the draft label.

Forward:  Accumulating information

Backward: Planning Based on Label

Pre-clinical Phase I Phase II Phase III Drug label

Figure 1.5. Clinical development process.

1.6 Postmarketing Clinical Development

An NDA serves as a landmark of the drug development. The development process
does not stop when an NDA is submitted or approved. However, the objectives of
the process are changed after the drug is approved and is available on the market.
Studies performed after the drug is approved are typically called postmarketing
studies, or Phase IV studies.

One of the major objectives in postmarketing development is to establish a better
safety profile for the new drug. Large-scale drug safety surveillance studies are very
common in Phase IV. Subjects/patients recruited in Phases I, II, and III are often
somewhat restricted (patients would have to be within a certain age range, gender,
disease severity or other restrictions). However, after the new drug is approved and
is available for the general patient population, every patient with the underlying
disease can be exposed to this drug. Problems related to drug safety that have not
been detected from the premarketing studies (Phases I, II, and III) may now be
observed in this large, general population.
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Another objective of a Phase IV study is for the sponsor to increase the market
potential for the new drug by demonstrating an improvement in patients’ quality
of life (QoL) and by establishing its economic value. Studies designed to achieve
this objective include QoL studies and pharmaco-economic studies. Studies of
this nature are often referred to as “outcomes research” studies. One of the main
differences between a QoL study and an efficacy/safety study is the type of variables
being studied. Although in many cases, a QoL study may include ordinary efficacy
and safety endpoints, such a study will also include QoL-specific variables. These
variables are typically collected from questionnaires designed for the patient to
evaluate the change in life style caused by the disease and the improvement (of
quality of life) brought by the medication. In general, clinical efficacy variables
are measured to study the severity of symptoms, and quality of life variables are
measured to study how a patient copes with life while experiencing the underlying
disease. In the United States, the FDA determines whether to approve the drug
based on efficacy and safety findings. However, a patient may prefer a particular
drug based on how that patient feels. Among the drugs approved by FDA for the
same disease, the patient tends to choose the one that is better for his/her quality
of life.

Traditionally, Phase I, II, and III studies are used to establish the efficacy and
safety of a drug, and Phase IV is used to study QoL. Recently, there are many
changes in the field of outcomes research. For example, the new name of many
of these variables is “patient reported outcome (PRO)”. Generally, PRO includes
more variables than just QoL. Another important change is that more and more
Phase II/III studies are designed to collect and analyze PRO data. Furthermore,
FDA and other regulatory agencies are more involved in reviewing and labeling
PRO findings.

Pharmaco-economic studies are designed to study the direct and indirect cost
of treating a disease. In these studies, costs of various FDA approved drugs are
compared. Costs may include the price of the medication, expenses for moni-
toring the patient (physician’s charge, costs of lab tests, etc.), costs for treating
side effects caused by a treatment, hospital charges, and other items. Analyses
are performed on these studies to demonstrate the cost-effectiveness. By show-
ing that the new drug overall costs less than another drug from a different com-
pany, the sponsor can increase the competitive advantage by marketing this new
drug.

Results obtained from “outcomes research” studies can be used by the phar-
maceutical company to promote the new drug. For example, if the new drug is
competing against another drug treating the same disease, the company may be
able to show that the new drug improved the patient’s quality of life beyond the
improvement provided by the competing medication. Based on the results from
the pharmaco-economic studies, the company may also be able to demonstrate
that the new drug brought overall savings to both the patients and the insurance
carriers. These studies help evaluate other properties or characteristics of the new
drug in addition to its medical value. The results from these studies may be used
to increase the market potential for the new drug.
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Finally, another type of study frequently found during the postmarketing stage
is the study designed to use the new drug for additional indications (symptoms or
diseases). A drug developed for disease A may also be useful for disease B, but the
pharmaceutical company may not have sufficient resources (budget, manpower,
etc.) to develop the drug for both indications at the same time. In this case, the
sponsor may decide to develop the drug for disease A to obtain approval for drug
to be on the market first, and then develop it to treat disease B. There are also other
situations that this strategy can be useful. Hence, Phase III, IV studies designed
for “new indications” are very common.

Occasionally, in postmarketing studies, we may see that a drug is efficacious
at a lower dose than the dosage recommended in the drug label. This lower dose
tends to provide a better safety profile. When this is the case, drug label could be
changed to include the lower dose as one of the recommended doses. On the other
hand, it is seen that the recommended dose may work for many patients, but the
dose is not high enough for some other patients. When this is the case, an increase
in dose may be necessary. Based on Phase IV clinical trials, if there is a need to
label a higher dose, the sponsor would negotiate with the regulatory agencies to
modify the drug label to allow a higher dose to be prescribed.

1.7 Concluding Remarks

Based on the drug development process described above, it is obvious that selecting
the right dose for a new drug is a very important process. Without dose information,
it is not possible for a physician to prescribe the drug to patients. One of the
regulatory guiding documents describing the importance and practical difficulties
in the study of the dose–response relationship is ICH (International Conference
on Harmonization) E4 (1994) Guidance. Readers are encouraged to refer to this
document for some of the regulatory viewpoints.

Studying and understanding the dose–response relationship for a new drug is
an evolving, nonstop process. It started at the time when the new drug was first
discovered in the laboratory. Unless this newly discovered compound shows in-
creasing activities as the concentration increases, it would not be progressed into
further development. This increasing relationship is continually studied in tis-
sues, in animals, and eventually in humans. Phase I clinical trials are designed
to collect information that will support the study of dose–response relationship
for Phase II. Dosing information is one of the most important considerations
in Phases II and III clinical studies. Finally, before, during and after the NDA
process, dose selection is being considered by the sponsor, the regulatory agen-
cies, and the general public. Even after the drug is approved and available on the
market, new drug doses are still studied carefully and the level of investigation
depends on responses observed from the general patient population. When nec-
essary, dose adjustment based on postmarketing information is still a common
practice.
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2
Dose Finding Based on
Preclinical Studies

DAVID SALSBURG

2.1 Introduction

Before it can ever become a new drug, the candidate starts as a small molecule
generated through a synthetic process or as a protein or antibody purified from
a cell culture or from a modified animal or egg. There is often some biological
theory that supports the creation of this candidate. It might be based upon inserting
a specific human gene into the DNA of the culture, or some specific configuration
of the small molecule that is designed to “fit” into a three-dimensional structure
on the surface of a cell known as a receptor. It might, however, be a candidate
generated by a mass process that creates a large number of different molecules
of similar structure, that are then tested in a screen where microtubules contain
specific types of cultured cells designed to “respond” in some measurable way to
a “hit”.

The creation of biologic and mass throughput screening for small molecules
produce problems that can be approached with statistical techniques. However,
these problems are beyond the scope of this book. Instead, we start with a nominated
candidate, a chemical compound or biologic that has been selected as a potential
drug. The next set of studies, both in vivo (within a living organism), and in vitro
(outside of the living organism), are aimed at categorizing the dose response of
this compound. To fix ideas, consider the rat foot edema assay.

An irritant substance is injected into one of the hind paws of a rat. After a fixed
amount of time, the paw will swell with edema, due to inflammation. If the animal
is medicated with an anti-inflammatory drug, the amount of swelling will be less.
Both hind paws are measured by their displacement of a heavy fluid (usually
mercury), and the difference in those measurements is the degree of inflammation.
In a typical day’s run, 5 to 10 animals will be left untreated, a similar number
will be treated with a drug known to be an effective anti-inflammatory, and similar
numbers will be treated with increasing doses of the new candidate drug.

This is an example of a modified three-point assay. In a three-point assay, the
candidate is measured at two different dose levels, and a known active compound
is measured at a known effective dose level. In a modified three-point assay, more
than two doses of the candidate will be used, but only one dose of the known
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positive. A graph of log-dose versus effect is constructed as in Figure 2.1. The
points of the candidate effects are used to produce a straight line. A parallel line is
drawn through the effect of the positive control, and the antilog of the difference
in the x-direction between those two lines is taken as the relative potency. If the
relative potency, for instance, is 1:4 and the standard dose of the positive control
is 5 mg/day, then we could predict that the candidate will be effective in human
trials at 20 mg/day. The negative control is not used in this calculation. However,
it is used to make an initial test of significance between the positive and negative
controls. This test is used to discard runs that may have anomalous variability.
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Figure 2.1. Modified three-point assay.

In an ideal world, this one study should be sufficient to establish the dose needed
in human trials. Unfortunately, there is no such ideal world. Extrapolation of this
initial assay assumes that (1) the dose–response lines are parallel, (2) the effect on
the lab measurement is exactly the same as the effect on the clinical measure of
patient response, (3) the new compound will be metabolized and be bio-available
to the same degree that it was with the lab preparation, and (4) we can scale up the
response on a simple mg/kg basis from lab animal to human.

It also requires the existence of a known positive as the “stalking horse”. Few
of these assumptions will hold true for most of the compounds, and, therefore,
preclinical studies often require a number of different approaches to the problem,
each with similar flaws when it comes to extrapolation. The use of different kinds
of studies leads to further problems. It is axiomatic in biological research that if
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you ask the same question twice, you will get two different answers. The resulting
ambiguity makes the choice of dose in humans difficult in most cases.

2.2 Parallel Line Assays

The phrase “three-point assay” was an attempt to establish quick and accurate
tests of potency for digitalis preparations in the 1920s (see Burns, 1937). This
assay used a standard of known potency and two titrations of the test material. A
straight line was drawn between the two test results on a semi-log paper, another
line was drawn parallel to that, through the result for the standard, and the relative
potency was computed. Modern pharmacological studies use more than two doses
of the test compound and usually include a negative control. However, the general
approach is the same.

This type of assay can be conducted using live animals, preparations of animal
tissue, or cell cultures. What are needed are a numerical response and a known
positive compound. When the known positive is evaluated at more than one dose,
there are two general ways that the data are analyzed. One method is to assume that
the lines are parallel and to fit a restricted pair of straight lines with common slope,
usually by least squares. The other method is to fit different lines to the standard and
to the test compound. In that case, relative potency cannot be reported as a single
number. Instead, the usual procedure is to report relative potency as a function of
dose, or to report the relative potency at the animal dose equivalent to the human
dose for the standard.

The previous paragraphs describe the computation of relative potency between
two compounds. Potency is defined in Goodman and Gilman (1970, p. 20) as the
difference in dose or log-dose between the dose associated with a minimum effect
and the dose associated with a maximum effect. Although it is a useful concept
in pharmacology, it provides very little information about the dose that might be
useful in human trials. When there is no “stalking horse” available against which
the relative potency can be estimated, then the problem is approached in a different
fashion.

2.3 Competitive Binding Assays

The concept of competitive binding arises from the standard first-order chemical
kinetics and this was most fully developed by Sir John Gaddum in the 1930’s
(Burgen and Mitchell, 1978). The idea here is that there are “receptor” sites on
animal tissue. An “agonist” is a small molecule that fits into the receptor site and
triggers the tissue to do something. If the tissue is a smooth muscle, it contracts.
If it is glandular, it secretes some specific hormone. In animal preparations, as a
whole, it might involve physiological changes such as drops in blood pressure.
There is another small molecule called the “antagonist” which competes with the
agonist for the receptor site. When the site is occupied by the antagonist, it blocks
that site from the agonist and thus blocks the response.
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In the Gaddum model, there are a fixed but large number of receptors and a
larger number of agonist and antagonist molecules. For a given receptor site, the
agonist and antagonist molecules compete with each other, but the binding is only
fleeting. How the preparation responds as a whole depends on the percentage of
sites responding to agonists. Thus, the degree of gross tissue response is a function
of the relative proportions of agonist and antagonist molecules. To go further,
we shall need a little notation. However, first, to fix ideas, consider a specific
competitive binding assay: the guinea pig trachea response to beta-agonists.

A strip of trachea with its smooth muscle is suspended in a nutrient bath, one
end anchored to the side of the bath, the other end anchored to a strain gauge.
When the agonist is introduced into the flow of nutrient, the muscle contracts, and
the degree of contraction is measured on the strain gauge. If the antagonist is also
introduced, it will take a larger amount of agonist to produce the same degree of
contraction. Although the guinea pig trachea is used here as a concrete example,
this general model can be applied to any type of preparation where measurements
of response can be made.

Let

A represent the event of a free agonist;
B represent the event of a free antagonist;
R represent the event of a receptor site;
AR represent the event of an agonist/receptor complex;
BR represent the event of an antagonist/receptor complex; and
(X ) represent the number of events of type X.

First-order kinetics are changes in the amount of material of a given type, where the
rate of change is proportional to the amount of material at a given time, described
by the differential equation:

y′(t) = ky(t)

where k is the rate constant.

There is a probabilistic version of this, where the differential equation describes the
expectation of a Poisson process. See McQuarrie (1967) for a complete derivation.

First-order kinetic relationships are typically symbolized as

X
k

—−→ Y.

In the competitive binding model, the relationship between free agonist (or antag-
onist) and free receptors and a complex of agonist (or antagonist) and receptors is
symbolized as

A + R
k1A—−→
k2A←−—

AR

B + R
k1B—−→
k2B←−—

BR
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where k1A is the rate constant governing the reaction

A + R
k1A—−→ AR

where k2A is the rate constant for the reaction

A + R
k2A←−— AR

Similarly, it is done for k1B and k2B.

We let the ratio of rate constants be

KA = k1A/k2A and KB = k1B/k2B.

The first-order kinetic equations can be written as

d(A)(R)/dt = k1A(A)(R)

d(AR)/dt = k2A(AR).

At equilibrium, the rates of change in the total number of molecules and complexes
are equal, and therefore,

k1A(A)(R) = k2A(AR) or KA(A)(R) = (AR) (2.1)

and similarly,

KB(B)(R) = (BR). (2.1′)

There are three types of complexes, AR, BR, and R (unbound receptors). The total
number of receptors not bound to agonist A is

(R) + (BR) = (R)[1 + KB(B)]. (2.2)

If a = the proportion of receptors bound to agonist A, then

a/(1 − a) = (AR)/[(R) + (BR)] = (R)KA(A)/(R)[1 + KB(B)] (2.3)

or

KA(A) = [a/(1 − a)][1 + KB(B)]. (2.4)
This derivation assumes that the same number of molecules of A and of B are
needed to form a complex with a given receptor site. If, more generally, it takes
nA molecules of A and nB molecules of B to form a complex, then

KA(A)nA = [a/(1 − a)][1 + KB(B)nB ]. (2.4′)

Formula (2.4′) is not found in most of the pharmacology textbooks. Pharmacol-
ogists who are unaware of this general version sometimes try to force their data
to fit the consequences of formula (2.4), even when the experimental data clearly
indicate that nA/nB is considerably different from 1.0.

In an experimental set-up, we can saturate the solution with agonist and make
our measurement on the tissue. Then, we can introduce a specific amount of an-
tagonist and measure the difference in effect. The ratios of these two measures is
proportionate to a, the proportion of receptor sites occupied by the agonist A in the
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presence of this amount of antagonist. The unknown kinetic constants are usually
estimated in the following type of experiment.

Suppose the test compound is designed to be an antagonist, we introduce a fixed
amount of the test compound. Then, for increasing levels of agonist, we measure
the response of the preparation (as in the example of contraction of the trachea
muscle). This leads to a sequence of sigmoidal curves of response (= a) versus
log(A), as in Figure 2.2.
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Figure 2.2. Parallel dose–response curves for increasing doses of agonist.

A few words about interpretation of graphs as seen in Figure 2.2: The parallelism
of these curves assumes that the preparation has remained fresh and responds
equally well across the time it takes to do the experiment. Careful pharmacologists
include runs with a known antagonist from time to time to check on the ability of
the preparation to continue responding. As the dose of antagonist increases, some
of the binding may become noncompetitive, and the upper portion of the sigmoidal
curve will fail to reach the maximum response level. It is very difficult to measure
the response on a continuous basis, so the actual data usually consists of points at
different levels of log (agonist). The response includes some random noise, and
hence those points have to be fit to an appropriate sigmoid.

Many different methods have been proposed for fitting these data to a sigmoid,
including probits, logits, and angle transformations. In practice, where the potency
of the test compound is unknown, some of the curves will contain a large number
of points on the lower end of the curve (where the tissue fails to respond to agonist).
Inclusion of all these points can bias the estimates of rate constants that emerge.
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According to a statistical folk theorem all the different models of sigmoid curves
fit just as well in the center of the curve but differ greatly in the tails. It has been
my experience that the best thing to do is to truncate the data points that appear to
lie on either the lower or upper tail of the curve and fit a straight line to the middle.
This procedure seems to lead to the most consistent estimates of the rate constants.

In 1949, Schild (1949) proposed a method of deriving a relative potency measure
from this type of set up. Let

n = nA/nB.

Then formula (2.4′) becomes

KA(A) = [a/(1 − a)][1 + KB(B)n] (2.4′′)

and to solve a, we have

a = KA(A)/[1 + KB(B)n + KA(A)]

= KAelog(A)/[CB + KAelog(A)] (2.5)

CB = 1 + KB(B)n

and C −1
B = exp{− log[1 + KB(B)n]} = e−H

where H = log[1 + KB(B)n]
or

a = KAelog(A)−H/[1 + KAelog(A)−H]. (2.6)

Formula (2.6) is the theoretical description of the sigmoidal curves in Figure 2.2.

Let x be the multiple of A, needed to induce the same effect in the presence of (B)
molecules of antagonist when (B) = 0. At (B) = 0, x = 1. Formula (2.5) implies

a/(1 − a) = xKA(A)/[1 + KB(B)n] (2.7)

= KA(A) when (B) = 0. (2.8)

When (B) is much smaller than (R), we can assume that (B) is close to zero and
set (2.7) equal to (2.8), or

x/[1 + KB(B)n] = 1, or x − 1 = KB(B)n

log(x − 1) = log(KB) + n log(B).

If we define the symbol pAx by

pAx = − log(B), then
log(x − 1) = log(KB) − npAx

(2.9)

which shows that log(x − 1) is linear in pAx with slope –n.
We can now take at the center point of each sigmoid, the median doses of

agonist needed to reduce the different doses of antagonist to the same effect, to
derive values of x and pAx . The plot of log(x − 1) versus pAx should appear to
be linear with slope −n. Schild suggested that we extrapolate that line to x = 2



2.5 Biologic 25

and take the resulting value of pA2 as a measure of the potency of the test com-
pound. In fact, in most experimental set-ups pA2 is not observable. It is well within
the random noise at very low doses of agonist. However, it has the appeal of an
easily explained measure. It is the dose of antagonist at which twice as much ag-
onist is needed to have an effect than if the antagonist were not there. Families
of compounds can be ordered by their values of pA2, and relative potency can be
computed. Where there are no other such compounds, the pA2 can be taken as a
minimally effective dose.

Pharmacologists who are unfamiliar with the more general version of Gaddum’s
model will sometimes try to fit a line with slope (−1) to the plot for estimating
pA2. It has been my experience that plots of pAx versus log(1−x) tend to be
quite linear, and deviations from a slope of −1 can be easily seen. In fact, it
often happens that highly selective antagonists involve competitive binding where
n is substantially greater than 1.0. Allowing the data to provide the estimate of
n (= nA/nB) produces much more accurate predictions of human doses than trying
to force the points into a line with slope −1.

2.4 Anti-infective Drugs

The most successful extrapolation of dose directly from preclinical studies to hu-
mans occurs with anti-infective drugs. Candidates for potential use as anti-infective
drugs are routinely tested against cell cultures of specific infectious agents. The
concentration of drug needed to inhibit or kill the infective agent is determined by
serial dilution of the candidate compound against specific cultures. This provides
a spectrum of activity for the candidate drug.

It also provides the mean inhibitory concentration (MIC) for the compound
against each of the specific infections. Once the candidate drug has passed safety
tests in toxicology and has been introduced into human Phase I trials, the pharmaco-
kinetic parameters of the drug in peripheral blood are estimated. If the pharmaco-
kinetic parameters indicate that the MIC can be reached in peripheral blood, the
compound is a candidate for an anti-infective drug against that particular agent,
and the dose is determined by the pharmaco-kinetics as the dose that will produce
the needed MIC for a sufficiently long period of time.

2.5 Biologic

Many biologic are proteins that produce highly specific responses in cell cultures or
that produce antibody–antigen reactions in vitro. Radio-immune assays are avail-
able for specific antibody–antigen reactions, and so concentration of the biological
candidates can be measured directly against its ability to form antibody–antigen
complexes. Similarly, when proteins produce specific responses in cell cultures,
the degree of response can be measured as a function of the concentration of the
biologic.
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Thus, the projection of human doses for most biologic is similar to the projection
of human doses for anti-infective agents. Once the necessary concentration of the
agent is determined, the human pharmaco-kinetics can be used to determine the
dose that will produce that concentration.

2.6 Preclinical Toxicology Studies

Before going into human trials, candidate drugs and biologic undergo extensive
safety evaluation in several species of animal. The legal requirements in the United
States are spelled out in regulations promulgated by the Food and Drug Admin-
istration for the filing of an Investigational Drug Exemption (IND; U.S. Federal
Register, 1988). The regulations call only for sufficient preclinical studies to “as-
sure the safety and rights” of the human subjects who take part in Phase I, II, and
III studies. Similar regulations govern the introduction of new drugs and biologic
into human subjects in the European Union and other nations. In addition, guide-
lines such as ICH S2A (1996) have been issued from time to time, to describe the
expected preclinical toxicology studies in greater detail. Mayne (1993) provides
a general summary of the types of studies currently being used. Salsburg (1986)
provides a detailed discussion of the methods of statistical analysis used in those
studies.

The outcome of all toxicological studies will affect the attitude of regulatory
authorities and the medical community about the new drug and may produce reg-
ulatory limitations on its use when it is marketed. However, only one type of study
is actually used in setting the initial doses in human trials. This is the 60–90 day
subchronic toxicity study.

Under current guidelines, subchronic studies are run on three species, at least
one of which is nonrodent. In practice, this means rats, mice, and dogs are used for
most drugs. For biologic that might induce severe immune reactions in other than
human species, the subchronic studies are usually run on primates, often monkeys.

The fundamental law of toxicology was first stated by Paracelsus in the 16th
century: “Only the dose makes a thing not a poison.” Or, to put it in modern terms,
everything is a poison at a sufficiently high dose, and everything is nontoxic at
a sufficiently low dose. Because of this, it is widely recognized that acceptable
toxicological studies must include at least one dose that is high enough to cause
damage to the animal. To be acceptable for predicting human toxicity, it must also
include at least one dose that has no apparent toxic effect on the animals.

The typical subchronic toxicology study will include a control group and at
least three doses of the new compound. In cases where the new compound can be
taken orally, it is usually introduced into the drinking water or food of the animals.
In some cases, the taste or the mechanical properties of the compound cause the
animals to reject it in food, and the material is force-fed by gavage. In cases where
the test compound has to be injected, the control group is injected with the carrier.
The highest dose used may be adjusted soon after the study begins to assure that
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the dose is high enough to induce a reduction in weight or some other obvious
effect on the living animal.

One problem with the analysis of data from these studies is that highly social an-
imals like mice are sometimes housed several in a single cage. If the test compound
is introduced in food or water, there is no way of knowing how much individual
animals may ingest, and the unit of experimentation becomes the cage.

At the end of the trial period, the animals are sacrificed and examined in terms
of both gross and histopathology. In addition, blood and urine are taken from the
animals over the course of the study to be analyzed.

The data and pathology from high-dose animals are examined to determine the
lesions that can be associated with the test treatment. The pharmacology and other
aspects of the test compound’s biological activity are used to propose possible
lesions that might be expected from the test material. These are identified if found
in high-dose animals, along with unexpected abnormalities that might be seen.
The controls are next examined to determine whether any of the abnormalities
found in the high-dose group occurred there and can be attributed to the conditions
of the study and not necessarily to the test treatment. From these examinations,
the pathologists generate a set of putative lesions they might expect to see in
the lower-dose groups. The putative lesions include both the observed lesions
and any reasonable precursors that might be expected. For instance, if the high-
dose animals have severe ulceration of the intestinal tract, a putative lesion would
include both ulceration and the inflammation that might precede the development of
ulcers.

Once a battery of putative lesions is assembled, the animals on lower doses are
examined. The lowest dose that induced any of the putative lesions is considered
an upper bound on the lowest dose that could induce toxicity. The highest dose that
produced no animals with any of the putative lesions is labeled the “no observed
effect level” (NOEL). If the high dose has not produced toxic lesions, the study is
usually not accepted by regulatory authorities as an adequate one. If the lowest dose
shows lesions, the study did not produce a NOEL, and it may also be necessary to
redo it.

When three species are used, the lowest NOEL is usually taken for extrapolation
to human trials. There are exceptions to this rule. For some compounds, one or more
of the species may be unusually sensitive to the toxic effects of the treatment. For
instance, rats are very sensitive to nonsteroidal anti-inflammatory drugs (NSAIDs)
like aspirin and piroxicam. When rats are used in subchronic studies of these drugs,
the toxic lesions in the stomach occur at doses far below those needed for efficacy
in humans.

Once a NOEL is chosen, the first dose in man is taken as a submultiple of that.
Usually, the first dose is 20% of the NOEL for new drugs, but there are no clear-cut
regulations governing this choice. This entering dose in Phase I studies is the only
use made of toxicology when it comes to setting doses in clinical studies. Once the
sponsor develops experience with human dosing in Phase I studies, the limiting
doses determined from those Phase I studies govern how high the doses can go in
later studies.
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An important exception to this occurs with cytotoxic drugs being developed for
cancer chemotherapy. These drugs are designed to be toxic, albeit selectively, at
the doses that will be used in humans. Doses chosen for Phase I studies are usually
doses that were shown to have toxicity, but limited toxicity, in the animal studies.
Unlike other drugs and biologic, where the Phase I studies use healthy volunteers,
patients in Phase I studies for cytotoxic drugs are usually patients in the final stages
of the cancer that will be treated.

An example of this can be seen in the development of Mithracin for the treatment
of testicular cancer. Mithracin was discovered in mass screening of natural products
for new antibiotics but discarded because it was as toxic to multicellular animals as
it was to the bacteria. The National Cancer Institute pulled it into its standard mass
screening of compounds, where it was shown to have an affinity for testicular
tissue. The minimum toxic dose was used as an entering dose in human trials,
and doses were slowly escalated. However, the doses that seemed effective in
destroying human testicular cancers also produced severe internal bleeding in the
patients. The drug was almost discarded until the clinicians began experimenting
in humans with divided doses and eventually reached a regimen of dosing that is
now used for this disease.

Mithracin is an extreme example of a fundamental principle in determining the
toxicity of a new drug. The animal toxicology studies are useful for finding an en-
tering dose into human studies. Thereafter, it is human experience that determines
the limiting upper doses that can be used.

2.7 Extrapolating Dose from Animal to Human

There are many papers in the literature (especially in the toxicological literature)
discussing whether doses can be extrapolated from animals to humans by assum-
ing that the dose is proportional to weight or whether dose should be assumed
proportional to body surface area. It has been my experience that, in most cases,
it does not matter which is used. The difference is well within the prediction error
of the methods.

It should be noted that no one is measuring the average body surface area of a
given animal. Rather, body surface is estimated as the 2/3 power of the weight. If
we consider the log transform, it can be seen that extrapolation by weight versus
body surface involves the formula

log(dose in man) = log(dose) − log(weight)

versus, for body surface extrapolation;

log(dose in man) = log(dose) − 0.667 log(weight).

If the standard deviation of the prediction runs about 1/3 the log-weight, then the
difference between these two is within the random noise.



2.7 Extrapolating Dose from Animal to Human 29

References

Burgen, A.S.V., and Mitchell, J.F. 1978. Gaddum’s Pharmacology. 8th ed., London: Oxford
University Press.

Burns, J.H. 1937. Biological Standardization. London: Oxford University Press.
Goodman, L.S., and Gilman, A. 1970. The Pharmacological Basis of Therapeutics. 4th ed.,

London: MacMillan.
ICH Guidance S2A. 1996. “Specific aspects of regulatory genotoxicity tests for pharma-

ceuticals,” International Conference on Harmonization.
Mayne, J.T. 1993. “Preclinical drug safety evaluation,” in Drug Safety Assessment in Clinical

Trials (G. Sogliero-Gilbert, editor), New York: Marcel Dekker.
McQuarrie, D.A. 1967. Stochastic approach to chemical kinetics. Journal of Applied

Probability 4:413–478.
Salsburg, D.S. 1986. Statistics for Toxicologists. New York: Marcel Dekker.
Schild, H.O. 1949. pAx and competitive drug antagonism. British Journal of Pharmacology

4:277–280.
U.S. Federal Register 21-CFR1, Subpart B. 1988. Investigational New Drug Application.

Sections 312.20–312.55.



3
Dose-Finding Studies in Phase I
and Estimation of Maximally
Tolerated Dose

MARLENE MODI

3.1 Introduction

Historically, drugs have been marketed at excessive doses (i.e., doses well onto the
plateau of the efficacy dose–response relationship) with some patients experiencing
adverse events (AEs) unnecessarily (Herxheimer, 1991; ICH-E4, 1994). Over the
last 5 years, a greater effort has been made to ensure that the best benefit to risk
assessment is obtained for each new drug (Andrews and Dombeck, 2004; Bush
et al., 2005). The benefit to risk assessment of marketed drugs has been improved,
in some cases, by postmarketing label changes, which aim to optimize the dosage
regimen for the indicated populations (Cross et al., 2002). These postmarketing
changes in the label may reflect the quality of drug development, regulatory review
and postmarketing surveillance.

Information obtained in early clinical development about the average dose–
response relationship in the intended patient population for a drug’s desirable and
undesirable effects is extraordinarily valuable, in that it lays the foundation for fu-
ture dose–response studies (ICH-E4, 1994). Greater emphasis is being placed on
the integration of information and ensuring effective decision-making during drug
development. The pharmaceutical industrial sponsor of a compound is encouraged
to discuss with health authorities as early as possible the type and number of clin-
ical pharmacology studies that are needed to support labeling and approval. Also,
the sponsor reviews with health authorities the use of preclinical and early clin-
ical exposure–response information to guide the design of future dose–response,
pharmacokinetic–pharmacodynamic (PK–PD) and clinical efficacy studies (FDA,
2003a,b). In this atmosphere of vigilance and information management, the selec-
tion of dose is considered a critical element of the benefit to risk assessment.

3.2 Basic Concepts

Initially, the development of a new chemical entity is influenced by its anticipated
pharmacological actions in patients as suggested by its effects in animal models
as well as its toxicology and PK profile in animals (Lesko et al., 2000; Peck
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et al., 1994). The severity of the disease state and the availability of effective
and safe alternative treatments are also key factors in formulating a develop-
ment plan. Each new chemical entity is evaluated against key parameters of a
target profile. These key elements of the target profile are essentially the com-
ponents of a draft label, which are updated as the compound proceeds through
development.

In terms of facilitating drug development and increasing the likelihood of mar-
keting a drug successfully, the inherent properties of an ideal drug are often con-
trasted with those of the new chemical entity. An ideal drug is effective in control-
ling or reversing the pathophysiology of the clinical condition for which the drug
is intended. It does not adversely affect other disease processes or result in adverse
interactions with other drugs. It can be administered over a broad range of doses
with minimal toxicity. The ideal drug is uniformly metabolized or eliminated by
other mechanisms in a predictable manner that is not altered by organ impairment
and is not influenced by age, race or gender. Few, if any, drugs possess all of these
characteristics.

Information collected during drug development accumulates with each new
phase leading to an understanding of the drug’s inherent properties that are consis-
tently shown throughout all phases of development (Figure 3.1). A brief overview
of these various phases of drug development is given in Chapter 1.

Post-marketing (Phase IV)

First-time in human studies
Early dose-response data
Safety and pharmacokinetics

Fairly
homogenous
patients

Healthy subjects

Pivotal efficacy/safety studies
Special population studies

Heterogeneous patient population
with concurrent illnesses and
concomitant medications

Preclinical
Pharmacology,
Pharmacokinetics
Toxicology

Phase I and II

Phase III

Inherent Properties of New Drug Entity Shown

Figure 3.1. Information accumulates with each new phase of drug development and the
drug’s inherent properties become evident.

The information collected during drug development assists in determining the
benefit-to-risk assessment for the heterogeneous population of patients that will
be treated after the drug is approved for marketing. Adjustments are made to the
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proposed dosing regimen throughout the drug development process upon review
of information related to the drug’s safety profile, efficacy, and PK.

This chapter focuses on Phase I studies that are designed to provide preliminary
but essential information on safety, tolerability, PK and if possible the pharma-
cological actions of a compound. The term Phase I has two connotations: one
refers to the earliest, first-time-in-humans (FIH) studies, while the other encom-
passes studies of PK, metabolism, drug interactions, special populations, and other
clinical pharmacology trials (ICH-E8, 1997). Dose selection is a critical activity
for Phase I studies to ensure that the data collected in these clinical trials are
at doses to support the recommended therapeutic dose. The purpose of dose-
finding studies in Phase I is to evaluate: the compound’s mechanism of action
in humans, the compound’s metabolic actions and PK, AEs associated with in-
creasing doses of the compound and to gain early evidence of the compound’s
effectiveness (Code of Federal Regulations, 2004). A well-designed and executed
Phase I program permits the design of well-controlled, scientifically valid, Phase II
studies.

Traditionally, Phase I studies have been conducted in 20 to 80 young, healthy,
male subjects; however, this is not a regulatory requirement (ICH-E8, 1997).
Women of non-childbearing potential and older healthy subjects are now being
included in early studies especially if the drug is intended for these populations.
Initial evaluations in patients may be preferable for drugs with a low safety margin
and in certain life-threatening disease states (see Chapters 4 and 5). Given that
healthy subjects derive no benefit from receiving a new chemical entity, risk min-
imization is a critical ethical concern for Phase I studies (FDA, 1997; Tishler and
Bartholomae, 2002).

3.3 General Considerations for FIH Studies

Ascending dose studies are usually the first clinical trials in the drug develop-
ment process. The upper limit of a compound’s therapeutic window is partially
characterized in Phase I as these ascending dose studies usually determine the
dose-limiting AEs that prevent the titration to higher doses. The primary objec-
tives of these ascending dose studies are to estimate a maximally tolerated dose
(MTD), to characterize the most frequently occurring AEs, and to gain a general
understanding of the drug’s PK and PD profile. The MTD is defined as the dose
level below that producing unacceptable but reversible toxicity and is considered
the upper limit of patient tolerance. This chapter focuses on general design con-
cerns of Phase I clinical trials. The reader is referred to Chapters 4 and 5 for
discussions of issues related to the design of dose-finding trials in life-threatening
diseases.

The same pharmacological mechanisms that account for a drug’s efficacy can
account for many of its toxic effects, as most drug-induced (or treatment-emergent)
AEs are expected extensions of a drug’s known pharmacological properties
(Rawlins and Thompson, 1991). These AEs are usually dose-dependent and can
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be predicted from animal studies. Thus, detailed knowledge of a drug’s pharma-
cological actions assists in assessing for possible treatment-emergent AEs in the
clinic. For example, both the AE of bradycardia (undesirable action) and the ther-
apeutically desired reduction in blood pressure associated with the cardioselective
beta-blocker, atenolol, are mediated through the drug’s effect on beta-1 adrenergic
receptors.

Treatment-emergent AEs may be unrelated to the drug’s pharmacological action
but may occur at higher doses or systemic exposures or upon chronic exposure
to the drug. These types of AEs include withdrawal reactions, delayed reactions,
failure of therapy and pharmacogenetic reactions (Edwards and Aronson, 2000).
Unlike most treatment-emergent AEs, allergic drug reactions are unpredictable
(Gruchalla, 2003). Some drugs (antimicrobial drugs, anticonvulsants, chemother-
apeutic agents, heparin, insulin, protamine, and biologic response modifiers) are
more likely to elicit clinically relevant immune responses.

Generally, ascending dose studies enroll too few subjects to observe treatment-
emergent AEs that occur at a low to modest frequency. One way to visualize that
only the most frequently occurring or common AEs are likely to be detected in FIH
studies is to apply Hanley’s Rule of Three (Hanley and Lippman-Hand, 1983). In
order to ensure that one captures at least one occurrence of an AE happening at a
frequency of 1:10 or greater at a 95% confidence level, the appropriate size of the
safety database would be at least 30 subjects. Thus, given the small sample size of
each dose group in the FIH study, it is common for these ascending dose studies
to overestimate the MTD as the less frequently occurring treatment-emergent AEs
and dose-limiting toxicities may not be detected (Buoen et al., 2003; Natarajan
and O’Quigley, 2003).

3.3.1 Study Designs

A single dose is usually tested first, followed by multiple ascending dose studies;
however, the study design is influenced by the type of compound. Study designs
may be open-label, baseline-controlled or may use randomization and blinding.
The most common study design used for these early studies is the parallel group,
placebo-controlled, randomized, double-blind ascending dose study (Figure 3.2).
Each group is typically made up of three to six subjects who receive single or
multiple doses of the compound and one to two subjects who receive placebo.
Safety and tolerability at the very least (in some cases PK and PD endpoints also)
are evaluated before the next ascending dose group receives treatment.

Tolerability is an aspect of safety. It is a term used to indicate how well a patient
is able to endure treatment such that AEs do not result in the discontinuation of
treatment. A comparator drug, a marketed drug in the same class, can be included in
the FIH study to evaluate the differences in tolerability between the two compounds
if the comparator drug has a significant frequency of well-characterized AEs. The
new chemical entity may possess a better tolerability profile than the comparator
drug leading to a greater proportion of treated patients that successfully receive
the full course of treatment.
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Figure 3.2. Parallel-group, placebo-controlled, randomized, double-blind ascending dose
Phase I study design.

Given this early stage of drug development, not all subjects from the same dose
group or cohort are dosed on the same day. This practice of spacing the dosing of
subjects in a given dose group minimizes the number of subjects who are exposed
to a given escalating dose of the drug and who are potentially at risk for a dose-
limiting or irreversible toxicity of the drug. Should dose-limiting toxicities occur
in the first few subjects of a dose group, dose escalation can be stopped without
exposing all the subjects in a dose group.

Stopping rules for dose escalation need to be clearly described in the proto-
col. These may include reaching dose-limiting toxicities that define the MTD or
seeing more frequent AEs than anticipated, that may influence the compliance of
chronic administration (e.g., diarrhea or nausea). Stopping rules can also include
clauses for evidence of unexpected or unique PK properties of the compound (e.g.,
dose- or time-dependent changes in clearance or volume of distribution, saturable
absorption, presence of multiple active metabolites).

The stopping rules may be tailored for locally acting drugs or compounds with
minimal toxicity. For these types of compounds, dose escalation may stop when
the maximal feasible dose is reached. The maximal feasible dose is lower than
the MTD, which cannot be estimated because it is not possible to administer high
enough doses to reach the MTD. For some drugs where a good understanding of
the pharmacological action of the drug exists in relation to the pathophysiology
of the disease and efficacy of the drug, dose escalation may continue until the
maximal pharmacological effect is reached in the absence of toxicity.

In general, only an average response for each dose group with respect to
characterizing desirable or undesirable PD effects is obtained in the parallel-
group, placebo-controlled, randomized, double-blind ascending dose study de-
sign. Although not easily appreciated, individual dose–response relationships
may differ significantly from the population average relationship (see Chapter 1,
Figure 1.1).
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Table 3.1. Crossover, placebo-controlled, randomized, blinded study design

Groupa Treatment period 1 Treatment period 2 Treatment period 3

1 Placebo Medium dose High dose
2 Low dose Placebo High dose
3 Low dose Medium dose Placebo

a N > 5 per group

Another basic Phase I design is a crossover, placebo-controlled, randomized,
blinded study (Table 3.1). In this design, a subject receives two dose levels and
placebo in a randomized fashion. Like the parallel group design above, safety,
tolerability, PK and PD data are evaluated before proceeding to the next treatment
period. Stopping rules are clear and the study may be stopped or the doses modified
based on information from the preceding treatment period. An individual subject’s
response is assessed at more than one dose level and before or after placebo
treatment. There is a better understanding of an individual subject’s contribution
to the average dose response (FDA, 2003a).

The washout period between treatment periods in a crossover design is critical
to ensure that there are no carryover effects from one period to another. This study
design is inappropriate for drugs with long half-lives, for drugs with late toxicity,
and if sensitization or tolerance develops. This study design is generally not used for
FIH studies due to the general lack of information needed to rule out late toxicity,
sensitization, tolerance, or to select an appropriate washout period. Sensitization
is a phenomenon whereby the effects of a drug are augmented. Although it might
sound counterintuitive, the same drug can evoke both tolerance and sensitization.
Behavioral sensitization is a well-documented effect of repeated exposure to drugs
such as amphetamine and cocaine (Pierce and Kalivas, 1997). Unlike transient drug
effects, such as tolerance and withdrawal, behavioral sensitization can last as long
as a year after the last drug administration in rats. The persistence of these effects
implicates mechanisms distinct from those responsible for more transient drug
effects.

Thus, for drugs with reversible desirable or undesirable actions, the crossover
study design may provide a better understanding of the dose-concentration–
response relationship than the parallel-group design as individuals receive two
dose levels. In cases where it is unclear if the crossover design will be appropriate
for a new chemical entity, a follow-up study to the traditional parallel-group FIH
study may employ this design to better characterize individual dose- or exposure-
response relationships.

3.3.2 Population

The description of the study population should identify important inclusion and
exclusion criteria, demographic characteristics, baseline values of any clinically
relevant variables that would be needed to understand the treatment effect related
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to safety, tolerability or PD. Other characteristics of the population that have im-
plications to the extent that results can be generalized need to be clearly described
(Friedman et al., 1998). Inclusion and exclusion criteria are defined according to
population studied (i.e., healthy subjects or patients).

Phase I studies often include healthy subjects between 18 and 65 years old, and
groups are balanced for sex and racial distribution. General exclusionary criteria
are written to prevent the enrollment of subjects that are not in good health (e.g.,
those with evidence of underlying diseases, abnormalities, or organ impairment).
Subjects are excluded if they have participated in a study with another investiga-
tional agent in the recent past or have known allergies to any of the components
in the formulation of the new chemical entity or to any of the related class of
compounds. Specific exclusionary criteria that are related to safety concerns may
vary with the compound being studied. These specific exclusionary criteria are
likely to arise due to the compound’s mechanism of action (e.g., subjects with
flu-like symptoms for an interferon-like drug are excluded as endogenous levels
of interferon are elevated during the flu). Exclusionary criteria may also be related
to preclinical toxicology findings.

There are times, however, when initial studies are best performed in patients.
Often patients present with a different tolerability profile than healthy subjects
(e.g., antipsychotic drugs are tolerated at significantly higher doses in patients). In
some cases, the AE profile can only be studied in patients. Typically, this occurs
when a drug is suspected or known to be unavoidably toxic such as those used in
oncology or other life-threatening diseases. The target patient population should
be considered for FIH studies when there is evidence from toxicology studies of
irreversible, severe effects (e.g., cytotoxicity) or damage to an organ system, a
steep toxicity dose–response curve, or the effects are not easily monitored.

Drugs for the treatment of diseases that affect the elderly are tested early
in elderly subjects. Similarly, drugs intended for the treatment of diseases that
typically affect women need to be tested in female subjects. In addition, the
pharmacodynamic effects of the drug may be measurable only in patients (e.g.,
anti-hypertensive medications such as nifedipine have little or no effect on blood
pressure in normotensive subjects or the glucose-lowering effect of a drug is best
assessed in a diabetic patient).

The most salient issue with the administration of protein drugs is that they
may induce antibody formation. Antibodies could cross react with the naturally
occurring protein, conceivably neutralizing desired physiological effects in healthy
subjects. This is another factor to consider when including healthy subjects versus
patients.

In general, if patients are required in Phase I studies for drugs to be used in non-
life-threatening diseases, patients with comorbid conditions who are receiving
concomitant therapies other than for the disease under study are excluded. Phase I
studies for drugs to be used in life-threatening diseases, on the other hand, may
include patients who have not responded to previously administered marketed
or investigational treatments. These patients are ill, may have other underlying
conditions or diseases and a shortened life expectancy.
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A large pool of healthy subjects willing to participate allows the rapid enrollment
and completion of studies. Healthy subjects are in a normal, relatively low-risk state
of health. Studies in healthy subjects offer important advantages in that they gener-
ally have a greater physiological reserve than patients do. If an AE should occur, a
healthy subject is more likely to recover without suffering long-term negative con-
sequences. Also, healthy subjects are better able to provide more frequent measures
of PD endpoints and give a greater number of blood samples for PK. The drawback
to enrolling healthy subjects is that pathophysiological mechanisms of the targeted
disease state cannot be observed and can only rarely be accurately simulated.

3.4 Dose Selection

The most important variable in FIH studies is dose. The choice of the starting dose,
dose increment for subsequent doses, and the maximal dose to be investigated are
common issues that need to be addressed in the study design. Selecting a starting
dose and choosing the next dose levels are challenging. An overly conservative
approach may lead to an endless study, whereas a too rapid escalation can lead to
unacceptable toxicity. Although not always obvious, the maximal dose considered
for testing should be stated in the protocol and the rationale for the upper range of
doses selected should be clearly described. It is understandable that this maximal
dose may never be reached.

3.4.1 Estimating the Starting Dose in Phase I

A strategy has been proposed to determine the highest recommended starting dose
of new therapeutics in adult healthy volunteers (FDA, 2002). The draft guidance
presents a fairly simple method of estimating the starting dose. The maximum
recommended starting dose (MRSD) in adult healthy subjects is to be derived from
the no-observed adverse effect levels (NOAELs) in toxicology studies of the most
appropriate species, the NOAELs converted to human equivalent doses (HED),
and a safety factor is then applied. The method assumes that NOAELs and MTDs
scale reasonably well across species and that the conversion to HED is reasonably
accurate after normalizing dose by a body surface area (BSA) conversion factor.
Another major assumption is that the determination of a NOAEL is unambiguous.

The draft guidance method for estimating a starting dose in adult healthy sub-
jects relies solely on dose and does not employ systemic exposure data directly
(Figure 3.3). While more quantitative modeling approaches are presented in other
guidelines (FDA, 2003a), the draft guidance on estimating the starting dose does
not recommend these approaches. However, all of the relevant preclinical data,
including information on the pharmacologically active dose, the compound’s full
toxicology profile, and the compound’s PK (absorption, distribution, metabolism,
and excretion) is likely to be considered when determining the MRSD.

Toxicology studies generate basically three types of findings that can be used to
determine the NOAEL: (1) overt toxicity (clinical signs, macro and microscopic
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Figure 3.3. Overview of dose selection for FIH studies.

lesions), (2) surrogate markers of toxicity (serum liver enzyme levels), and (3)
exaggerated pharmacodynamic effects (FDA, 2002; Sellers and du Souich, 2004).
A recent review of current practices has revealed a lack of consistency in defi-
nition and application of frequently used terms such as no observed effect level
(NOEL), NOAEL, adverse effect, biologically significant effect, or toxicologically
significant effect (Lewis et al., 2002). Moreover, in review of current practices,
no coherent criteria were found that were used to guide consistent interpretation
of toxicity studies, including the recognition and differentiation between adverse
effects and effects that are not considered adverse. As the interpretation of a com-
pound’s toxicology findings is the foundation of hazard and risk assessment, there
is a need for consistent interpretation of toxicity (Lewis et al., 2002).

Toxicity should be avoided at the initial dose for the FIH study, but that does
not necessarily mean that the starting dose will not possess any pharmacological
activity. The pharmacologically active dose (PAD) should also be considered in
that for a compound with limited toxicity, the PAD may be used to lower the es-
timate of the MRSD. However, in general, the HED is estimated from toxicology
data in the most relevant species or alternatively, from the most sensitive species
if the most relevant species is not known (FDA, 2002; Sellers and du Souich,
2004). Several factors could influence the choice of the most appropriate species
including: (1) species differences in the compound’s PK, (2) evidence indicating
that a given species is predictive of human toxicity, and (3) limited cross-species
pharmacological reactivity of the compound. This later point is especially impor-
tant for biologic therapeutics in that many human proteins only bind to human or
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nonhuman primate targets, and thus species other than nonhuman primates would
not be appropriate for estimation of the HED (ICH-S6, 1997).

The draft guidance advocates that the NOAEL for systemically administered
compounds can be accurately extrapolated to other species and humans when
doses are normalized to BSA (mg/m2) (FDA, 2002). The work of Freireich
et al. (1966) and Schein et al. (1970) using approximately 33 anti-neoplastic drugs
provide the basis for this assumption. For these limited number of anti-neoplastic
drugs, doses lethal to ten percent of rodents (LD10) and MTDs in nonrodents both
correlated with the human MTD when the doses were normalized to the same
administration schedule and expressed in terms of BSA (i.e., mg/m2).

Body surface area was introduced into medical oncology practice in order to
derive at a safe starting dose for Phase I studies of anticancer drugs from preclinical
animal toxicology data (Sawyer and Ratain, 2001). While cardiac output does
correlate with BSA, the relationship between BSA and other physiologic measures
relevant for drug metabolism and disposition and thus systemic exposure, such as
renal and hepatic function, is weak or nonexistent (Sawyer and Ratain, 2001,
Boxenbaum and Dilea, 1995, Mahmood and Balian, 1999). An analysis of the
impact of allometric exponent (0.67 vs. 0.75) on the conversion of an animal dose
to the HED using Eq. (3.1) is presented in Appendix A of the draft guidance (FDA,
2002).

The approach recommended in the draft guidance to convert an animal NOAEL
to an HED is by using the following equation:

HED = animal NOAEL × (Wanimal/Whuman)(1 − b) (3.1)

where W is the weight in kg, b (equal to 0.67) is a correction factor used to convert
mg/kg to mg/m2 and the interspecies scaling factor is (Wanimal/Whuman)(1 − b).

The derivation of the interspecies scaling factor in Eq. (3.1) is presented in
Appendix C of the same draft guidance. Inherent in the BSA normalization is the
use of the factor, W 0.67. Other limited data besides that of Freireich et al. (1966)
and Schein et al. (1970) suggest that the most accurate allometric exponent for
normalizing MTDs of antineoplastic agents for interspecies extrapolation is b =
0.75 (FDA, 2002). Based on the analysis presented in Appendix A of the draft
guidance and the premise that correcting for BSA increases clinical trial safety by
resulting in a more conservative starting dose estimate, the guidance recommends
that the approach of converting NOAEL doses to an HED based on BSA correction
factors (i.e., W 0.67) be used for selecting starting doses of initial studies in adult
healthy volunteers. Deviations from the surface area approach should be justified,
and it is wise to calculate the initial dose to be used in adult healthy volunteer
studies by multiple approaches (Reigner and Blesch, 2002).

Once the HED has been determined, a safety factor is applied to provide a
margin of safety that allows for variability in extrapolating from animal toxicity
studies to humans (FDA, 2002; Sellers and du Souich, 2004). This variability
can result from: (1) uncertainties due to enhanced sensitivity to pharmacological
activity in humans versus animals, (2) difficulties in detecting certain toxicities in
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animals, (3) differences in receptor densities or affinities, (4) unexpected toxicities
and (5) interspecies differences in PK. In practice, the MRSD for the clinical trial
is determined by dividing the HED by a default safety factor of 10.

In certain situations, the use of a safety factor greater than 10 is required. Criteria
for using a safety factor greater than 10 include those related to toxicity such as: (1)
a steep dose–response curve for important toxicities in the most relevant species
or in multiple species, (2) severe toxicity or damage to an organ system in animals,
(3) irreversible toxicity in animals, (4) nonmonitorable toxicity, (5) presence of
significant toxicities without prodromal indicators and (6) nonpredictable and un-
explained mortality. Other factors to consider include: (1) variable bioavailability
between species, with poor bioavailability in the test species used to derive the
HED, (2) large variability in doses or AUC levels eliciting a toxic effect, (3) ques-
tionable toxicology study design or conduct, such as few dose levels, wide dosing
intervals, or large differences in responses between animals within dosing groups
and (4) novel therapeutic targets. The safety factor should be increased when ani-
mal models with limited ability to evaluate the compound’s toxicity are used. This
may result because of very limited interspecies cross-reactivity or pronounced im-
munogenicity (e.g., protein drugs likely to be pharmacologically active only in
nonhuman primates), or because the compound’s effect is elicited by mechanisms
that are not known to be conserved between animals and humans (FDA, 2002;
Sellers and du Souich, 2004).

Safety factors of less than 10 may be appropriate under some conditions
(FDA, 2002; Sellers and du Souich, 2004): (1) the compound belongs to a well-
characterized class, has a similar metabolic profile and bioavailability, presents
similar toxicity across all the species tested including humans, and it is adminis-
tered by the same route, schedule, and duration of administration, (2) the toxicity
elicited is easily monitored, reversible and predictable, and a moderate to shallow
dose–response relationship with toxicities are consistent across the tested species,
and (3) the NOAEL is estimated from toxicity studies of longer duration than
required for the proposed clinical schedule in healthy subjects. The toxicology
testing in these cases should be of the highest caliber in both conduct and design.

3.4.2 Dose Escalation

It is not always necessary to escalate to doses as high as the MTD in the FIH
studies. The highest single dose tested can also be defined as the pharmacologically
active dose (PAD) giving the maximal effect in the absence of toxicity (Figure 3.3).
However, the estimation of the PAD from preclinical pharmacology studies may not
be possible if animal models of the disease are not available or the understanding
of the fundamental biochemical or physiological aspects of the mechanism of
action of the drug is lacking. Target site and receptors may be absent or modified
in animal models precluding the estimation of the PAD in animals. Treatment in
animals does not always lead to sufficiently sustained drug concentrations at the
site of action in order to extrapolate the PAD to humans. PK may differ between
species. Also, it is common to perform studies in animal models of disease using
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the intravenous or intraperitoneal route of administration which are unlikely to
be the intended route of administration for patients. However, an estimation of
pharmacologically active doses or targeted plasma concentrations is often helpful
in guiding the dose escalation (Reigner and Blesch, 2002).

The choice of the dose escalation scheme is usually based on the type of toxicity
and the steepness of the dose–response curve seen in toxicology and pharmacology
experiments. Several classical methods for dose escalation have been described
(Spilker, 1991): (1) starting dose (x) increased by an equal amount (x, 2x, 3x, etc.),
(2) dose increased by equal percentage (e.g., by 100%), (3) modified Fibonacci (x,
2x, 3x, 5x, 7x, 9x, 12x, and 16x), and (4) a variant of the modified Fibonacci scheme
where doses are increased by 100% until the first hint of toxicity followed by the
modified Fibonacci scheme. Many of these methods have been traditionally used
in Phase I studies in patients with cancer. A number of new study design proposals
for anticancer agents address ethical concerns about treating excessive numbers
of patients at subtherapeutic doses. These new study designs aim to increase the
overall efficiency of the process while enhancing the precision of the recommended
Phase II dose (see Chapters 4 and 5; Zhou, 2004).

Methods based on concentrations or PK guided dose escalation utilize PK pa-
rameters such as AUC or Cmax from the preceding dose group to rationalize the
dose increments for escalation (Vaidya and Vaidya, 1981; Graham and Workman,
1992; Reigner and Blesch, 2002). Doses are escalated to the MTD if appropriate,
and AUC or a given PK parameter is monitored. In general, doses are escalated by
doubling the dose until 40% of the AUC at the mouse LD10 is reached, and then
conventional dose escalation begins. The underlying theme of this approach is that
the AUC at the mouse LD10 is close to the MTD in humans although a different
dose may be needed to achieve that AUC value in humans.

The PK–PD guided dose escalation can utilize target plasma concentrations
established in animal models of disease and may provide a more rapid and safe
completion of the FIH study as well as decrease the number of patients receiving a
subtherapeutic dose. At each dose level, the PK and PD data are incorporated into
an interactively updated PD model. Difficulties arise when the compound’s PK
differs substantially among species, dose-dependent or time-dependent changes in
PK occur, or there is considerable inter- and intra-individual variability in PK or PD.
In addition, it is unknown if maintaining these target plasma concentrations will
ultimately lead to efficacy in the patient population. When using PK to escalate the
dose, a maximally tolerated systemic exposure instead of MTD may be determined.
This type of strategy can be seen as an application of the “concentration controlled
clinical trial” design (Kraiczi et al., 2003).

Biomarkers can be defined as “physical signs or laboratory measurements that
may be detected in association with a pathologic process and that may have putative
diagnostic or prognostic utility”. These can be measured objectively as indicators
of biological or pathological processes or of the response to a therapeutic inter-
vention (Rolan et al., 2003). Biomarkers can help guide dose escalation and may
assist in understanding the dose–response relationship for the primary efficacy
endpoint in Phases II or III (e.g., blood pressure and cholesterol reduction have
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been linked to heart attack or stroke-related mortality and have attained the status
of surrogate endpoints; Temple, 1999). However, the shape of the dose–response
relationship generated with biomarkers may differ from that of the primary effi-
cacy endpoint, as long-term effects may not readily translate from the acute effects
on the biomarker. Biomarkers may also be used to characterize the relationship
between dose and undesirable effects (e.g., incidence and severity of neutropenia
seen with interferon-like drugs) to facilitate the estimation of MTD.

3.5 Assessments

3.5.1 Safety and Tolerability

The use of randomization, blinding and a concurrent placebo-controlled group
reduces the bias in safety assessments during the FIH study. Prespecified safety
definitions (e.g., definition of dose-limiting toxicities and MTD) and stopping rules
for dose escalation also ensure that safety and tolerability data are collected in an
objective manner. Many have proposed that FIH studies be open-label and without
concurrent placebo controls. For objective measures that are less susceptible to bias
by the subject or investigator (e.g., AUC values), this could be a consideration.
Unfortunately, AE reporting is often subjective.

The underlying objectives of safety and tolerability assessments in single dose
FIH studies are to monitor for early signals of toxicity and to characterize the
common treatment-emergent AEs. Consideration should be given to AEs that are
likely after chronic use of the drug to reduce compliance in the intended patient
population. Safety issues may result from the extension of the drug’s pharmaco-
logical effects or be unrelated to the drug’s pharmacological actions in that the
toxicity is unexpected and was not seen in preclinical studies.

For multiple ascending dose studies, subchronic treatment-emergent AEs are
characterized. The effect of multiple dosing on accumulation of a drug’s sys-
temic exposure is evaluated. For both single and multiple ascending dose stud-
ies, appropriate follow-up is needed to detect late toxicity (e.g., hepatotoxicity
with fialuridine and antiretroviral agents; Styrt and Freiman, 1995; Kontorinis and
Dieterich, 2003). Compounds that affect hematology parameters (e.g., red blood
cells) may produce late toxicity like anemia, which may not appear until there has
been enough time for the red blood cell population to turn over. In general, the
follow-up period should not be less than four to five times the terminal half-life of
the drug (provided this covers a significant portion of the AUC) or 4 weeks.

Early studies usually carefully monitor organ functions after single or multiple
ascending doses (e.g., cardiovascular and pulmonary vital signs and electrocar-
diograms, hepatic, renal, and hematological laboratory parameters, and clinical
signs and symptoms of target organ toxicity that have been identified in preclin-
ical toxicology or pharmacology studies). One of the objectives of FIH studies
is to monitor for early signals of severe toxicity, and humans are considered to
be possibly more sensitive to the toxicity of the compound than the species used
in toxicology studies. The critical organ functions to monitor are those identified
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in toxicology studies as being affected by the compound. However, a number of
compounds exhibit safety concerns that were not initially detected in toxicology
studies (e.g., hepatotoxicity). It is prudent to ensure that adequate safety assess-
ments are included in the protocol to characterize the expected AEs and to identify
early signals of severe or unexpected toxicity.

3.5.2 Pharmacokinetics

Most drugs have inter- and intra-subject variability in PK parameters of at least 20%
to as much as several fold. Overlap in systemic exposure across various dose levels
occurs when the variability in PK parameters is large (e.g., > fourfold in clearance)
or if the increment in each dose escalation is low. If significant treatment–emergent
events occur during a given dose escalation, it may be reasonable to repeat the same
dose in the next group or proceed with a minimal dose increase.

A major objective underlying PK assessments is to detect an unexpected or
unusual PK profile that could lead to severe toxicity. While important to detect,
dose-dependent and time-dependent changes PK may be masked by the small
sample sizes and considerable inter-subject variability in PK parameters. However,
the FIH study is often the best study to show that a compound exhibits dose-
independent and time-independent PK (i.e., clearance and volume of distribution
is constant across doses and over time), as there are generally several dose levels
tested and the PK sampling is more extensive in early studies. Further study may
be required to characterize the mechanism of a compound’s dose-dependent or
time-dependent PK and to identify its source. PK data should be obtained rapidly
from all dose groups in the single and multiple ascending dose studies if dose-
dependent or time-dependent PK is suspected. If a drug exhibits dose-dependent
PK such that small changes in dose have a significant effect on AUC, the drug’s
pharmacological effect may be increased disproportionately as well as its duration
of action with increasing doses.

In multiple ascending dose studies, subjects are usually treated for several days
beyond that needed to achieve steady state. PK data from the single dose FIH
study is used to estimate the dosing frequency for the multiple dose study. These
data are used to predict accumulation and the time required to reach steady-state
plasma concentrations. In a broad qualitative sense, the appearance of metabolites
are characterized in humans and compared with animal data. As drug development
progresses, the PK profile of a compound is continuously refined such that predic-
tions can be made about routes of elimination and potential drug interactions, and
special populations can be identified.

3.5.3 Pharmacodynamics

It is important to determine if the drug’s desired pharmacological effects occur
at dose levels that humans can tolerate. Without this information, the estimated
MTD cannot be put into context of a therapeutic window. For drugs with reversible
pharmacological action that is readily quantifiable, PD becomes an important
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assessment in FIH studies. Desirable or undesirable pharmacodynamic effects
may only be measurable in patients (e.g., anti-hypertensive agents). Often with
antagonists, pharmacological activity can only be demonstrated with a provoca-
tive challenge. For example in exercise-induced asthma, a patient undergoes an
exercise challenge to assess the pharmacological activity of a leukotriene antag-
onist as the targeted leukotriene pathway responsible for bronchoconstriction is
operative only in the disease state (Adelroth et al., 1997).

Pharmacological effects, if these are related to exposure and are predictable
from animal data, should be monitored by carefully observing subjects. If no
exaggerated pharmacological effects are seen in healthy subjects and patients in
early Phases I and II studies, then these exaggerated effects are unlikely to be
seen in Phase III. However, it is possible that a drug could have an effect that
might become apparent in patients, but was not seen in healthy subjects. The
healthy subject’s counter-regulatory system may be able to compensate whereas
that of the patient may not. For example, counter-regulatory mechanisms induced
by hypothermia include shivering, which can induce a fourfold increase in heat
production, but at the expense of a 40 to 100% increase in oxygen consumption.
Patients with coronary artery disease often have worse outcomes in hypothermia.
However, for certain treatment–emergent events counter-regulatory mechanisms
may be ineffective even in the healthy subject.

Major sources of variability in a patient’s response to a given treatment are de-
rived from PK, PD or the disease state itself provided that the patient is compliant.
The drug may have a variable effect on the disease over time. For drugs having
greater variability in PK than PD parameters, plasma concentration data may be
better able than dose to predict the magnitude and duration of PD effects (FDA,
2003a). On the other hand, if PD variability is greater than PK variability, plasma
concentration data may not predict the PD effect well. Sources of PK variability
could include demographic factors (age, gender, and race), other diseases (re-
nal or hepatic), diet, concomitant medications, and disease characteristics. Thus,
assessing variability and identifying the sources of variability allows for a bet-
ter understanding of the individual dose–response relationship for PD or efficacy
endpoints.

Understanding a drug’s pharmacological response is challenging due to the
multifaceted nature of this endeavor. As a practical matter, it is easier to demonstrate
a dose–response relationship for a PD effect that can be measured as a continuous
or categorical variable, if the effect is obtained relatively rapidly after dosing
and dissipates rapidly after therapy is stopped (e.g., blood pressure, analgesia, or
bronchodilation) (FDA, 2003a). For drugs acting on the central nervous system,
measuring the intensity of the pharmacological response is not always possible
and several of the frequently used psychomotor performance tests suffer from
limitations related to learning and practice effects (Di Bari et al., 2002). For this
reason, it may not be possible to apply these tests repeatedly within the same
subject.

For drugs used in the treatment of depression, anxiety and pain, rating scales
are often used. The responses to rating scales may be subjective and variables such
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as motivation or fatigue can influence the results (Demyttenaere et al., 2005). The
assessment of visual acuity in age-related macular degeneration requires the use of
sham or placebo-control to minimize bias as the patient may try harder to see and
lean forward during visual acuity assessments if he believes he is benefiting from
treatment (Gragoudas et al., 2004). Knowledge of the disease state in relation
to the selection of PD endpoints and examples of successful efforts with other
drugs for the same indication or having the same mechanism of action provides a
greater certainty that these data will be collected and analyzed appropriately and
be ultimately usable.

PD endpoints which can be readily measured and exhibit the ideal characteristics
(continuity, repeatability or the ability to obtain multiple measurements over time,
reproducibility, sensitivity, and objectivity) often have an unclear relationship to
the primary efficacy endpoint (Lesko et al., 2000). Sometimes the efficacy endpoint
is delayed, persistent, or irreversible (e.g., stroke prevention, arthritis treatments
with late onset response, survival in cancer, treatment of depression). Thus, it
is not inconceivable that the shape of the dose or exposure or concentration–
response relationship for the PD endpoint differs from that of the efficacy dose or
concentration–response relationship (Figure 3.4).

Dose or concentration

Pharmacodynamic
effect (desirable or undesirable) Clinical

effect

R
es
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ns

e

Figure 3.4. PD effect vs. clinical efficacy dose– or exposure–response relationships.

Clinical PK/PD data arise from complex and dynamic systems. Data from early
studies are limited to single and short-term multiple dosing from a small number
of individuals, and these data are unlikely to represent the full breadth of the
intended patient population. Nonetheless, these data are invaluable in establishing
exposure–response relationships that are further characterized in Phases II and
III to provide a basis for dosage adjustment in subpopulations of interest and a
rationale for the intended clinical dose (see Chapter 6). Various approaches have
been used to model PK–PD or PD versus dose data (e.g., effect compartment,
lag-time, PK–PD link, physiological feedback, indirect response models). These
models in their most general form can be seen as relating PD effects to dose or
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exposure (see Chapter 14 for Emax model) to more extensive modeling efforts
with successive links from dose to exposure to PD or efficacy endpoints (see
Chapter 6).

3.6 Dose Selection for Phase II

In addition to examining dose or concentration response information from studies
specifically designed to provide it, the entire database should be examined for
possible desirable or undesirable PD effects that could be related to dose or con-
centration. If possible have an estimate from Phase I studies of the smallest dose
that could provide any benefit. If quantifiable, select reasonable PD parameters to
measure in Phase II in order to gain further information on the variability in PD and
an early understanding of the influence of disease state on PD effects in Phase II. In
addition, information about the relationship between PD and the proposed efficacy
endpoint can be gathered in Phase II if not already known. The careful selection of
PD endpoints or biomarkers are invaluable in understanding the dose or exposure
response data as the development progresses from Phase I to II and reduces the
likelihood of a failed Phase III study or a Phase III study where all doses rest on
the plateau of the efficacy dose–response curve. Information on the duration of
a PD effect along with PK data obtained in Phase I studies provides a basis for
dosage interval or frequency. Identification of the common AEs and those associ-
ated with dose is extremely helpful in planning Phase II studies. Setting the upper
limit of the dose range that will be explored by estimating the MTD in Phase I
guides the selection of doses. While Phase I studies are generally small in size
and have many limitations with respect to the breadth of information that can be
gathered, a well designed Phase I program is essential for formulating hypotheses
on how the drug works and forms the basis for the design of scientifically valid
Phase II dose-ranging studies.
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4
Dose-Finding in
Oncology—Nonparametric Methods

ANASTASIA IVANOVA

4.1 Introduction

Phase I trials in oncology are conducted to obtain information on dose–toxicity
relationship. Preclinical studies in animals define a dose with approximately 10%
mortality (the murine LD10). One-tenth or two-tenths of the murine equivalent of
LD10, expressed in milligrams per meters squared, is usually used as a starting
dose in a Phase I trial. It is standard to choose a set of doses according to the mod-
ified Fibonacci sequence in which higher escalation steps have decreasing relative
increments (100, 65, 50, 40, and 30% thereafter). Toxicity in oncology trials is
graded using the National Cancer Institute Common Terminology Criteria for Ad-
verse Events version 3.0 (available online from the Cancer Therapy Evaluation
Program website http://ctep.cancer.gov). Toxicity is measured on a scale from 0 to
5. The dose limiting toxicity (DLT) is usually defined as treatment related non-
hematological toxicity of Grade 3 or higher, or treatment related hematological
toxicity of Grade 4 or higher. The toxicity outcome is typically binary (DLT/no
DLT). The underlying assumption is that the probability of toxicity is a nonde-
creasing function of dose. The maximally tolerated dose (MTD) is statistically
defined as the dose at which the probability of toxicity is equal to the maximally
tolerated level, �. Alternatively, the MTD can be defined as the dose just below the
lowest dose level with unacceptable toxicity rate �U , � < �U (Rosenberger and
Haines 2002). For example, the MTD can be defined as the dose level just below
the lowest dose level where two or more out of six patients had toxicity. In the first
definition, the MTD can be uniquely determined for any monotone dose–toxicity
relationship; in the second, the MTD depends on the set of doses chosen for the
study. In Phase I oncology studies, � ranges from 0.1 to 0.35. In oncology, unlike
many other areas of medicine, dose-finding trials do not treat healthy volunteers,
but rather patients who are ill and for whom other treatments did not work. An
important ethical issue to consider in designing such trials (Ratain et al. 1993)
is the need to minimize the number of patients treated at toxic doses. Therefore,
patients in oncology dose-finding trials are assigned sequentially starting with the
lowest dose.
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Von Békésy (1947) and Dixon and Mood (1954) described an up-and-down
design where the dose level increases following a nontoxic response and decreases
if toxicity is observed. This procedure clusters the treatment distribution around
the dose for which the probability of toxicity is equal to � = 0.5. To target any
quantile �, Derman (1957) modified the decision rule of the design using a biased
coin. Durham and Flournoy (1994; 1995) considered two biased coin designs in
the spirit of Derman. Wetherill (1963) and Tsutakawa (1967a, b) proposed to
assign patients in groups rather than one at a time. Group up-and-down designs
can target a wide range of toxicity rates, �. Storer (1989) and Korn et al. (1994)
used decision rules of group designs to suggest several designs for dose finding.
Among the designs studied in Storer (1989) and Korn et al. (1994) were versions
of the traditional or 3 + 3 design widely used in oncology.

Biased coin designs, group up-and-down designs, the traditional or 3 + 3 de-
sign, and its extension A + B designs (Lin and Shih 2001) are often referred to
as nonparametric designs. Nonparametric designs are attractive because they are
easy to understand and implement since the decision rule is intuitive and does
not involve complicated calculations. Designs such as the continual reassessment
method (O’Quigley et al. 1990) and the escalation with overdose control (Babb
et al. 1998) are often referred to as parametric designs.

In this chapter, we describe the 3 + 3 design in Section 4.2. Basic properties
of group up-and-down designs are given in Section 4.3. In Section 4.4, we review
designs that use random sample size, such as the escalation and A + B designs.
In Section 4.5, designs with fixed sample size are discussed. In Section 4.6, we
describe more complex dose-finding situations such as trials with ordered groups
and trials with more than one treatment.

4.2 Traditional or 3 + 3 Design

The most widely used design in oncology is the traditional design also known as
the standard or 3 + 3 design. According to the 3 + 3 design, subjects are assigned
in groups of three starting with the lowest dose with the following provisions:

If only three patients have been assigned to the current dose so far, then:

� If no toxicities are observed in a cohort of three, the next three patients are
assigned to the next higher dose level;

� If one toxicity is observed in a cohort of three, the next three patients are assigned
to the same dose level;

� If two or more toxicities are observed at a dose, the MTD is considered to have
been exceeded.

If six patients have been assigned to the current dose, then:

� If at most one toxicity is observed in six patients at the dose, the next three
patients are assigned to the next higher dose level;
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� If two or more toxicities are observed in six patients at the dose, the MTD is
considered to have been exceeded.

The estimated MTD is the highest dose level with observed toxicity rate less
than 0.33.

The properties of the 3 + 3 design will be discussed later. To understand this
design better we first describe group up-and-down designs.

4.3 Basic Properties of Group Up-and-Down Designs

Let D = {d1, . . . , dK } be the set of dose levels selected for the study. Let P(d)
denote the probability of toxicity at dose d, pj = P(d j ). We assume that P(d)
is an increasing function of d . The group up-and-down design is defined as
follows.

Subjects are treated in cohorts of size s starting with the lowest dose. Let X (d j )
be the number of toxicities in the most recent cohort assigned to dose d j , X (d j ) ∼
Bin(s,pj ). Let cL and cU be two integers such that 0 ≤ cL < cU ≤ s. Assume that
the most recent cohort of subjects was assigned to dose level d j , j = 1, . . . , K .
Then

(i) if X (d j ) ≤ cL , the next cohort of s subjects is assigned to dose d j+1;
(ii) if cL < X (d j ) < cU , the dose is repeated for the next cohort of s subjects;

(iii) if X (d j ) ≥ cU , the next cohort of s subjects is assigned to dose d j–1.

Appropriate adjustments are made at the lowest and highest doses. The process
is continued until N subjects are treated. We will denote this design as UD(s,
cL , cU ).

Gezmu and Flournoy (2006) showed that assignments in group up-and-down
design are clustered around the dose with toxicity rate �s , where �s is the solution
of

Pr{Bin(s, �s) ≤ cL} = Pr{Bin(s, �s) ≥ cU }. (4.1)

That is, if there is a dose dk such that �s = pk , the assignments are clustered
around dk . If pk–1 < �s < pk , the assignments are clustered around dose k − 1
or k (Ivanova, 2004).

The parameters s, cL and cU in a group up-and-down design are chosen so that
� is approximately equal to �s , the solution of Eq. (4.1). To find �s , one needs to
write (4.1) using formulae for Binomial probabilities. For example, for UD(s, cL =
0, cU = 1), Eq. (4.1) has the form (1 − �s)s = 1 − (1 − �s)s with the solution �s =
1 − (0.5)1/s . For most of the group up-and-down designs, closed form solutions
of Eq. (4.1) do not exist but approximations can be easily obtained. Examples of
group up-and-down designs can be found in Section 4.5.



52 4. Dose-Finding in Oncology—Nonparametric Methods

4.4 Designs that Use Random Sample Size:
Escalation and A + B Designs

4.4.1 Escalation and A + B Designs

In this section, we describe two types of designs that are used in dose-finding
studies in oncology and other areas. Both designs do not need specification
of the total sample size, since, ideally, experimentation is continued until the
MTD is exceeded by one dose level. The escalation design is defined as
follows.

Subjects are assigned in groups of size m starting with the lowest dose. Let CU

be an integer such that 0 ≤ CU < m. Let X (d j ) be the number of toxicities in
a cohort of subjects assigned to dose d j . Assume that the most recent cohort of
subjects was assigned to dose level d j , j = 1, . . . , K − 1. Then

(i) if X (d j ) ≤ CU , the next cohort of m subjects is assigned to dose d j+1;
(ii) if X (d j ) > CU , the trial is stopped.

The dose one level below the dose where >CU toxicities were observed is the
estimated MTD.

The A + B design (Lin and Shih 2001) described below is a generalized version
of the traditional or 3 + 3 design. It includes a stopping rule as in the escalation
design but saves resources at lower doses. The design below does not allow dose
de-escalation. We refer the reader to Lin and Shih (2001) for a description of
A + B designs with the possibility of dose de-escalation. The A + B design is
defined as follows.

Let A and B be positive integers. Let cL , cU , and CU be integers such that
0 ≤ cL < cU ≤ A, cU − cL ≥ 2, and cL ≤ CU < A + B. Let XA(d j ) be the num-
ber of toxicities in a cohort of size A assigned to dose d j , and XA+B(d j ) be
the number of toxicities in a cohort of size A + B. Subjects are treated in co-
horts of size A starting with the lowest dose. Assume that the most recent cohort
was a cohort of A subjects that has been treated at dose d j , j = 1, . . . , K − 1.
Then

(i) if XA(d j ) ≤ cL , the next cohort of A subjects is assigned to dose d j+1;
(ii) if cL < XA(d j ) < cU , the cohort of B subjects is assigned to dose d j ; then,

if in the combined cohort assigned to d j , XA+B(d j ) ≤ CU , the next cohort of
size A receives dose d j+1, otherwise the trial is stopped.

(iii) if XA(d j ) ≥ cU , the trial is stopped.

The dose one level below the dose where unacceptable number of toxicities
were observed (≥cU toxicities in a cohort of size A or >CU toxicities in a cohort
of size A + B) is the estimated MTD.

The escalation and A + B designs are constructed using general rules of group
up-and-down designs. The escalation design is a group up-and-down design of the
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form UD(m, CU , CU + 1), with large group size. The trial is stopped as soon as
the design calls for dose de-escalation. The A + B design is a combination of two
group up-and-down designs UD(A, cL , cU ) with cU − cL ≥ 2 and UD(A + B,
CU , CU + 1). The experimenter switches to the second design every time the first
design calls for repeating the dose. The trial is stopped as soon as either design
calls for dose de-escalation. In both designs, the frequency of stopping escalation
at a certain dose level depends on toxicity rate at this dose as well as on toxicity
at all lower dose levels. Ivanova (2006) outlined the general principles of how
to select parameters in the escalation and A + B designs. Parameter CU in the
escalation design can be chosen so that (CU + 1)/m = �U , if �U is specified, or
CU /m = �, if � is specified. For example, if �U = 0.33, escalation design with
m = 6 and CU = 1 can be used.

Several A + B designs are presented in Table 4.1. The approximate range
for � and the approximate value of �U were computed as described in Ivanova
(2006).

Table 4.1. Examples of A + B designs

Design parameters � �U

A = B = 3, cL = 0, cU = 2, CU = 1 0.17 < � < 0.26 �U = 0.33
A = B = 4, cL = 0, cU = 3, CU = 2 0.25 < � < 0.31 �U = 0.38
A = B = 4, cL = 1, cU = 3, CU = 3 0.37 < � < 0.44 �U = 0.50
A = B = 5, cL = 0, cU = 2, CU = 1 0.10 < � < 0.15 �U = 0.20
A = B = 5, cL = 0, cU = 3, CU = 2 0.20 < � < 0.25 �U = 0.30
A = B = 5, cL = 1, cU = 3, CU = 3 0.30 < � < 0.35 �U = 0.40

4.4.2 The 3 + 3 Design as an A + B Design

The 3 + 3 design described in Section 4.2 can be found in Table 4.1 (Design 1).
The dose most frequently selected by the 3 + 3 design has a toxicity rate above
0.17 and below 0.26 approximately. Simulation studies (Reiner et al. 1999; Lin
et al. 2001) showed that the 3 + 3 design selects the dose with toxicity rate near
0.2. The approximate upper bound �U = 0.33 of the probability of toxicity at the
dose selected by the design is often quoted when the 3 + 3 design is described.

4.5 Designs that Use Fixed Sample Size

A trial with relatively large fixed sample size allows assigning a number of patients
in the neighborhood of the MTD. The disadvantage of using a fixed sample size
is that the starting dose can be too low and the sample size might not be large
enough to observe a single toxic outcome in the trial or the number of toxicities
in the trial might not be large enough to estimate the MTD well. The sample size
usually varies from 18 to 36.
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4.5.1 Group Up-and-Down Designs

In Section 4.3, we described the group up-and-down design and mentioned that
the assignments for the design are clustered around the dose with probability of
toxicity �, where � is the solution of Eq. (4.1). Recommended designs for different
quantiles are given in Table 4.2. If the target toxicity rate is low, the group size
needs to be rather large. For example, for � = 0.1 the group up-and-down with
the smallest group size is UD(s = 6, 0, 1). Often approximations of � need to be
used. For example, the recommended designs for � = 0.20 are UD(3, 0, 1) with
�s ≈ 0.21 or UD(5, 0, 2) with �s ≈ 0.22.

Table 4.2. Examples of group up-and-down designs

Targeted quantile Group up-and-down design

� = 0.10 UD(6, 0, 1) with �s≈ 0.11
� = 0.20 UD(3, 0, 1) with �s≈ 0.21

UD(5, 0, 2) with �s≈ 0.22
UD(6, 0, 2) with �s≈ 0.18

� = 0.25 UD(4, 0, 2) with �s≈ 0.27
UD(6, 0, 3) with �s≈ 0.25

� = 0.30 UD(2, 0, 1) with �s≈ 0.29
UD(4, 0, 2) with �s≈ 0.27
UD(5, 1, 2) with �s≈ 0.31
UD(6, 1, 3) with �s≈ 0.34

� = 0.50 UD(1, 0, 1)∗ UD(4, 1, 3)∗
UD(2, 0, 2)∗ UD(5, 1, 4)∗
UD(3, 0, 3)∗ UD(6, 2, 4)∗

∗Targeted quantile �s is exactly 0.50 for these designs.

4.5.2 Fully Sequential Designs for Phase I Clinical Trials

In a clinical setting, assigning subjects one at a time may be necessary due to time
and logistical constraints. The biased coin designs (Durham et al. 1994; 1995)
use the most recent outcome and a biased coin to determine the assignment of
the next patient. These designs lose efficiency since they use the information from
the most recent patient only. The moving average design (Ivanova et al. 2003) uses
information from several subjects that have been assigned at the current dose and
hence is more efficient than the biased coin designs. The moving average design
has a decision rule of a group up-and-down design but uses data from the s most
recent subjects instead of a new group of subjects.

4.5.3 Estimation of the MTD After the Trial

Designs that use fixed sample size require specifying an estimation procedure
to use after the trial is completed. It had been shown by simulations that the
isotonic regression based estimator works better than other estimators (Stylianou
and Flournoy 2002; Ivanova et al. 2003). The isotonic regression estimator is
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essentially the maximum likelihood estimator for the isotonic model of the data.
Let N (d j , n) be the number of patients assigned to dose d j and X (dj , n) the number
of toxicities at d j after n patients have been dosed. Let p̂j = X (dj , n)/Nj (n) for all
j ∈ {1, . . . , K } for which X (dj , n) > 0, and ( p̂1, . . . , p̂K ) be the vector of these
proportions. The vector of isotonic estimates ( p̃1, . . . , p̃K ) can be obtained from
( p̂1, . . . , p̂K ) by using the pool adjacent violators algorithm (Barlow et al. 1972).
Stylianou and Flournoy (2002) described this process in detail. The dose with the
value p̃i closest to � is the estimated MTD. If there are two of such values, the
lowest of the doses is chosen except for the case where both doses have toxicity
lower than �, in which case the higher of the two is chosen. Some authors suggested
linear (Stylianou and Flournoy 2002) or logit interpolation (Ivanova et al. 2003).
Methods that use interpolation allow for the estimated MTD to be between dose
levels chosen for the trial.

4.6 More Complex Dose-Finding Trials

4.6.1 Trials with Ordered Groups

Sometimes patients can be stratified into two populations with possibly different
susceptibility to toxicity. For example, UGT1A1 genotype might predict the oc-
currence of severe neutropenia during irinotecan therapy (Innocenti et al. 2004).
In a study conducted by Innocenti et al. (2004), three out of six patients with the
TA indel 7/7 genotype developed grade 4 neutropenia compared to 3 among 53
other patients. The two populations are referred to as ordered since it can be said
that the probability of toxicity for the population with genotype 7/7 is the same or
greater than the probability of toxicity at the same dose for the second population.
Equally, the MTD (mg/m2) for irinotecan is lower for patients with 7/7 genotype
compared to other patients. Since MTDs are different, two trials need to be con-
ducted, one for each subgroup. If one of the populations is far less prevalent, it
might not be feasible to conduct both trials. One solution is to combine the two
trials in one with the goal of finding two MTDs, one for each group. A parametric
approach to this problem was proposed by O’Quigley et al. (1999) and O’Quigley
and Paoletti (2003). Ivanova and Wang (2006) described a nonparametric design
for the problem with two ordered groups and up to K dose levels tested. As-
sume without loss of generality that the first group is more susceptible to toxicity
than the second, G1 ≥ G2. Let P (1≥2) = {p(1≥2)

i j } be the bivariate isotonic regres-
sion estimator (Robertson et al., 1988) of the toxicity rate for the two groups, i =
1, 2, j = 1, . . . , K , obtained under the assumption G1 ≥ G2 and the assumption
that the probability of toxicity in each group is nondecreasing with dose. Subjects
are assigned one at a time starting with dose d1. Suppose that the most recent
subject was assigned to dose d j . Let p̃ = p(1≥2)

i j be the bivariate isotonic estimate
of the probability of toxicity at the current dose with i = 1 or 2 according to the
patient’s group. The next subject from the same group is assigned to:

(i) dose d j+1, if p̃ < � − �;
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(ii) dose d j–1, if p̃ > � + �;
(iii) dose d j , if � − � ≤ p̃ ≤ � + �.

Appropriate adjustments are made at the highest and lowest doses. Design pa-
rameter � was set to � = 0.05.

4.6.2 Trials with Multiple Agents

It is common in oncology to treat patients with drug combinations. Often, the dose
of one agent is fixed and the goal is to find the MTD of the other agent administered
in combination. Sometimes, two or three doses of one of the agents are selected
with the goal of finding the MTD of the second agent for each dose of the first agent.
For example, Rowinsky et al. (1996) described a trial where five doses of topote-
can and two doses of cisplatin were selected for the study. Since topotecan and
cisplatin cause similar toxicities such as severe neutropenia and thrombocytopenia
it was not possible to distinguish which drug caused toxicity. Ivanova and Wang
(2004) suggested conducting a single trial that uses the assumption of toxicity
monotonicity in both directions, that is, for each agent; toxicity is nondecreasing
with dose when the dose of the other agent is fixed. Their nonparametric design
for the problem uses the bivariate isotonic estimate of the probability of toxicity
and is similar in spirit to the nonparametric design for ordered groups described
in the previous section.

Thall et al. (2003) recently described a different setup for trials with multiple
agents. The goal was to find one or more maximally tolerated combinations. Doses
of both agents were increased simultaneously until the first toxicity was observed.
Then nearby dose combinations were explored. They used a Bayesian (parametric)
design with a five-parameter model.

4.7 Conclusion

Nonparametric designs are easy to understand by a practitioner and easier to use
compared to parametric designs. These designs are flexible. Some, as the escalation
and A + B designs, have an embedded stopping rule, others require specification
of the sample size. All the designs mentioned in this chapter can be constructed
for a wide range of values �. Simulation studies are a good tool to choose the best
design and adequate sample size for the planned study.
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5
Dose Finding in Oncology—Parametric
Methods

MOURAD TIGHIOUART AND ANDRÉ ROGATKO

5.1 Introduction

The primary goal of a cancer Phase I clinical trial is to determine the dose of a
new drug or combination of drugs for subsequent use in Phase II trials to evaluate
its efficacy. The dose sought is typically referred to as the maximally tolerated
dose (MTD) and its definition depends on the treatment under investigation, the
severity and reversibility of its side effects, and on clinical attributes of the target
patient population. Since it is generally assumed that toxicity is a prerequisite
for optimal antitumor activity (see Wooley and Schein, 1979), the MTD of a
cytotoxic agent typically corresponds to the highest dose associated with a tolerable
level of toxicity. More precisely, the MTD γ is defined as the dose expected to
produce some degree of medically unacceptable, dose limiting toxicity (DLT) in a
specified proportion θ of patients (see Gatsonis and Greenhouse, 1992). Hence, we
have

Prob{DLT|Dose = γ } = θ

Due to the sequential nature of these trials, the small number of patients involved,
and the severity of dose toxicity, designs with the following desirable properties
are sought:

(1) A priori information about the drug from animal studies or similar trials should
be easily implemented in the entertained model.

(2) The design should be adaptive (Storer, 1989), in the sense that uncertainty
about the toxicity associated with the dose level to be given to the next patient
(or cohort of patients) should be reduced when data collected thus far are taken
into account.

(3) The design should control the probability of overdosing patients at each stage.
(4) The design should produce a sequence of doses that approaches the MTD as

rapidly as possible.
(5) The design should take into account the heterogeneity nature of cancer Phase

I clinical trial patients.
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A number of statistical designs have been proposed and extensively studied in
the past three decades. Nonparametric approaches to this problem have been de-
veloped by Durham and Flournoy (1994) and Gasparini and Eisele (2000). Within
a parametric framework, a model for the dose–toxicity relationship is typically
specified and the unknown parameters are estimated sequentially. Bayesian ap-
proaches to estimating these parameters are natural candidates for designs that
satisfy properties (1) and (2) above. Among such designs, we mention the pio-
neering work of Tsutakawa (1972, 1980), Grieve (1987), and Racine et al. (1986).
More recent Bayesian models include the continual reassessment method (CRM)
of O’Quigley et al. (1990), escalation with overdose control (EWOC) described
by Babb et al. (1998), the decision-theoretic approach of Whitehead and Brunier
(1995), and constrained Bayesian C- and D-optimal designs proposed by Haines
et al. (2003). The CRM and EWOC schemes both produce consistent sequences
of doses in the sense that the sequence of doses converge to the “true” MTD in
probability but EWOC takes into account the ethical constraint of overdosing pa-
tients. The last two designs are optimal in the sense of maximizing the efficiency
of the estimate of the MTD. A discussion on the performance of these designs can
be found in Rosenberger and Haines (2002).

In this chapter, we focus in one particular parametric, adaptive, and Bayesian
method—EWOC—and present two real life applications where this approach was
used. EWOC is the first statistical method to directly incorporate formal safety
constraints into the design of cancer Phase I trials. In Section 5.2, we show how
the method controls the frequency of overdosing by selecting dose levels for use in
the trial so that the predicted proportion of patients administered a dose exceed-
ing the MTD is equal to a specified feasibility bound. This approach allows more
patients to be treated with potentially therapeutic doses of a promising new agent
and fewer patients to suffer the deleterious effects of a toxic dose. EWOC has
been used to design over a dozen of Phase I studies approved by the Research Re-
view Committee and the Institute Review Board of the Fox Chase Cancer Center,
Philadelphia. Also, EWOC was adopted by the University of Miami for its Na-
tional Cancer Institute Cancer Therapy Evaluation Program (NCI/CTEP) approved
study of Cytochlor, a new radio-sensitizing agent synthesized at UM. Additionally,
EWOC has been used in trials sponsored by pharmaceutical companies such as
Pharmacia-Upjohn, Jensen, and Bristol-Myers-Squibb.

In Section 5.3, we show how EWOC permits the utilization of information con-
cerning individual patient differences in susceptibility to treatment. The extension
of EWOC to covariate utilization made it the first method described to design
cancer clinical trials that not only guides dose escalation but also permits person-
alization of the dose level for each specific patient, see Babb and Rogatko (2001)
and Cheng et al. (2004). The method adjusts doses according to patient-specific
characteristics and allows the dose to be escalated as quickly as possible while
safeguarding against overdosing. The extension of EWOC to covariate utilization
was implemented in four FDA approved Phase I studies. Section 5.4 addresses the
issue of the choice of prior distributions by exploring a wide range of vague and
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informative priors. In Section 5.5, we give some final remarks and discussion of
current and future work.

Based on the research work we describe in Sections 5.1 to 5.3, the EWOC
methodology satisfies the above five desirable properties, and to our knowledge,
no other design has been shown to be flexible enough to accommodate those
properties simultaneously.

5.2 Escalation with Overdose Control Design

The main attribute underlying EWOC is that it is designed to approach the MTD
as fast as possible subject to the ethical constraint that the predicted proportion of
patients who receive an overdose does not exceed a specified value. The design
has many advantages over some competing schemes such as up-and-down designs
and continual reassessment method; see Babb et al. (1998). In this section, we
describe the methodology in details and give a real-life example illustrating this
technique.

5.2.1 EWOC Design

Let Xmin and Xmax denote the minimum and maximum dose levels available for use
in the trial. One chooses these levels in the belief thatXmin is safe when administered
to humans and γ ∈ [Xmin, Xmax] with prior (and hence posterior) probability 1.
Denote by Y the indicator of toxicity. The dose–toxicity relationship is modeled
parametrically as

P(Y = 1|Dose = x) = F(β0 + β1x) (5.1)

where F is a specified cumulative distribution function. We assume that β1 > 0
so that the probability of a DLT is a monotonic increasing function of dose. The
model is reparameterized in terms of γ and ρ0, the MTD and the probability of
DLT at the starting dose, respectively. These parameters can be easily interpreted
by the clinicians. This might be advantageous since γ is the parameter of interest
and one often conducts preliminary studies at or near the starting dose so that one
can select a meaningful informative prior for ρ0. Assuming a logistic distribution
for F , model (5.1) becomes

P(Y = 1|Dose = x) =
exp

{
ln

[
ρ0

(1 − ρ0)

]
+ ln

[
θ (1 − ρ0)

ρ0(1 − θ )

]
x

γ

}
1 + exp

{
ln

[
ρ0

(1 − ρ0)

]
+ ln

[
θ (1 − ρ0)

ρ0(1 − θ )

]
x

γ

} (5.2)

Denote by yi the response of the i th patient where yi = 1 if the patient exhibits
DLT and yi = 0 , otherwise. Let xi be the dose administered to the i th patient and
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Dk = {(xi , yi ), i = 1, . . . , k} be the data after observing k patients. After specifying
a prior distribution h(ρ0, γ ) for (ρ0, γ ), denote by �k(x) the marginal posterior
cdf of γ given Dk . EWOC can be described as follows. The first patient receives
the dose x1 = Xmin and conditional on the event {y1 = 0}, the kth patient receives
the dose xk = �–1

k (α) so that the posterior probability of exceeding the MTD is
equal to the feasibility bound α. Such a procedure is called Bayesian feasible of
level 1−α, see Eichhorn and Zacks (1973); the corresponding sequence of doses
generated by this design converges to the unknown MTD while minimizing the
amount by which patients are underdosed. Calculation of the marginal posterior
distribution of γ was performed using numerical integration. In practice, Phase I
clinical trials are typically based on a small number of prespecified dose levels z1,
z2, . . . , zr . In this case, the kth patient receives the dose

zk = max{z1, . . . , zr : zi − xk ≤ T1 and �k(xk) − α ≤ T2}
where T1, and T2 are nonnegative numbers we refer them as tolerances. The re-
sulting dose sequence is Bayesian-feasible of level 1− α if and only if T1 or T2 is
zero. We note that this design scheme does not require that we know all patient
responses before we can treat a newly accrued patient. Instead, we can select the
dose for the new patient based on the data currently available.

At the end of the trial, the MTD is estimated by minimizing the posterior expected
loss with respect to some suitable loss function l. One should consider asymmetric
loss functions since underestimation and overestimation have very different conse-
quences. Indeed, the dose xk selected by EWOC for the kth patient corresponds to
the estimate of γ having minimal risk with respect to the asymmetric loss function

lα(x, γ ) =
{

α(γ − x) if x ≤ γ that is, if x is an underdose
(1 − α)(x − γ ) if x > γ that is, if x is an overderdose

Note that the loss function lα implies that for any δ > 0, the loss incurred by
treating a patient at δ units above the MTD is (1 – α)/α times greater than the loss
associated with treating the patient at δ units below the MTD. This interpretation
might provide a meaningful basis for the selection of the feasibility bound.

The above methodology can be implemented using the user-friendly software
of Rogatko et al. (2005).

5.2.2 Example

EWOC was used to design a Phase I clinical trial that involved the R115777
drug at Fox Chase Cancer Center in Philadelphia, USA in 1999. R115777 is a
selective nonpeptidomimetic inhibitor of farnesyltransferase (FTase), one of sev-
eral enzymes responsible for post-translational modification that is required for the
function of p21(ras) and other proteins. This was a repeated dose, single center trial
designed to determine the MTD of R115777 in patients with advanced incurable
cancer, Hudes et al. (1999).

The dose-escalation scheme was designed to determine the MTD of R115777
when drug is administered orally for 12 hours during 21 days followed by a 7-day
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rest. Toxicity was assessed by the National Cancer Institute of Canada (NCIC)
Expanded Common Toxicity Criteria. Dose limiting toxicity was determined by
Week 3 of Cycle 1, as defined by Grade III nonhematological toxicity (with the
exception of alopecia or nausea/vomiting) or hematological Grade IV toxicity with
a possible, probable, or likely casual relationship to administration of R115777.
Dosing continued until there was evidence of tumor progression or DLT leading
to permanent discontinuation. The initial dose for this study was 60 mg/m2 for
12 hours. Drug was supplied in 50 and l00 mg capsules, therefore the patients’
dose was averaged to the closest 50 mg. In a previous pilot study, five patients
received doses ranging from 100 to 300 mg/m2 and no toxicity has been noted. An
accelerated dose escalation scheme was then used whereby the dose of R115777
was increased by increments of approximately 50% in successive patients treated
at 21-day intervals because no dose-limiting toxicity was encountered in any of the
proceeding patients. The first patient received 240 mg/m2, and doses for subsequent
patients were selected from the set {360, 510, 750} mg/m2.

The dose of R115777 at which the first DLT occurred during Cycle 1 of treatment
was denoted by Dl. Once a DLT occurred in any treated patient, all subsequent
patients were assigned a dose based on the EWOC Algorithm using Dl as the dose
upon which subsequent dose levels were derived.

Figure 5.1 shows the posterior distributions of the MTD as the trial progressed.
The prior probability density function of (ρ0, γ ) was taken as

h(ρ0, γ ) =
⎧⎨⎩

1

180
if (ρ0, γ ) ∈ [0, 0.333] × [60, 600]

0 otherwise

Thus, ρ0 and γ are independent a priori, uniformly distributed over their cor-
responding interval. The EWOC scheme assumed (1) that the dose of R115777
below which the DLT was first observed is the safe starting dose, (2) that the maxi-
mum dose achieved will not exceed four times the value of D1, (3) that θ = 0.333,
and (4) that α = 0.3. This modification of the EWOC scheme allowed rapid dose
escalation at nontoxic doses of the drug, which resulted in a more efficient yet safe
determination of the MTD.

Figure 5.2 shows the posterior density of the MTD after 10 patients have been
treated. The posterior mode is 372, which corresponds to the 40th percentile of the
distribution but by design, since α = 0.3, patient 11 was given the dose 340.

5.3 Adjusting for Covariates

5.3.1 Model

In the previous section, the MTD was assumed to be the same for every member
of the patient population; no allowance is made for individual patient differences
in susceptibility to treatment. Recent developments in our understanding of the
genetics of drug-metabolizing enzymes and the importance of individual patient
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Figure 5.1. Posterior density of the MTD when the number of treated patients (from bottom
to top) is 1, 5, 10, 15, 20, 25, 30, 33. The x-axis represents the MTD and the y-axis represents
the number of patients.

differences in pharmacokinetic and relevant clinical parameters is leading to the de-
velopment of new treatment paradigms (see for e.g., Decoster, 1989; Ratain, 1993).

In cancer clinical trials, the target patient population can often be partitioned
according to some categorical assessment of susceptibility to treatment. A Phase I
investigation can then be conducted to determine the appropriate dose for each
patient subpopulation. As an example, the NCI currently accounts for the con-
tribution of prior therapy by establishing separate MTDs for heavily pretreated
and minimally pretreated patients. In such contexts, independent Phase I trials
can be designed for each patient group according to the methods outlined above.
Alternatively, a single trial might be conducted with relevant patient information
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Figure 5.2. Posterior density of the MTD after 10 patients have been treated.

directly incorporated into the trial design. Thus, the dose–toxicity relationship is
modeled as a function of patient attributes represented by the vector c of covariate
measurements. For simplicity of presentation, we consider the case where a single
covariate observation ci is obtained for the i th patient and the relationship between
dose and response is characterized as

P(Y = 1| Dose = x, Covariate = c) = exp {β0 + β1x + β2c}
1 + exp {β0 + β1x + β2c} . (5.3)

Assuming that the covariate assessment is made before the initial course of
treatment, the dose recommended for Phase II testing can be tailored to individual
patient needs. Specifically, the MTD for patients with covariate c is defined as
the dose γ (c) such that P(Y = 1 | dose = γ (c), covariate = c) = θ . In other
words, γ (c) is the dose that is expected to induce DLT in a proportion θ of patients
with pretreatment covariate observation c. Since estimation of the MTD is the
primary aim of cancer Phase I clinical trials and in order to accommodate prior
information about the toxicity of the agent for selected groups of patients (if
available), it is convenient to reparameterize model (5.3) in terms of γ (c0), ρx1(c1),
and ρx2(c2) where γ (c0) is the maximally tolerated dose associated with a patient
with covariate value c0, and ρx1(c1), ρx2(c2) are the probabilities of DLT associated
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with patients with covariate values c1 and c2 when treated with dose levels x1 and x2,
respectively.

5.3.2 Example

In this example, we describe the use of EWOC using the above reparameterization
in a Phase I study of PNU-214565 (PNU) involving patients with advanced ade-
nocarcinomas of gastrointestinal origin. Preclinical studies demonstrated that the
action of PNU is moderated by the neutralizing capacity of anti-SEA antibodies.
Based on this, the MTD was defined as a function of, and dose levels were ad-
justed according to, each patient’s plasma concentration of anti-SEA antibodies.
Specifically, the MTD for patients with pretreatment anti-SEA concentration c was
defined as the dose γ (c) that results in a probability equal to θ = 0.1 that a DLT
will be manifest within 28 days. The small value chosen for θ reflects the severity
of treatment attributable toxicities (for example, myelosuppression) observed in
previous studies.

We assume that β1 > 0 and β2 < 0 in model (5.3) so that the probability of DLT is
(1) an increasing function of dose for fixed anti-SEA, and (2) a decreasing function
of anti-SEA for fixed dose since anti-SEA has a neutralizing effect on PNU. A
previous clinical trial showed that patients could be safely treated at 0.5 ng/kg dose
of PNU irrespective of their anti-SEA concentration. Furthermore, it was observed
that patients with anti-SEA concentration equal to c (pmol/ml) could receive PNU
doses up to the minimum of 3.5 and c/30 ng/kg without the induction of significant
toxicity. Owing to the nature of the agent and as a precaution, it was also decided
that no patient with anti-SEA titre greater than 5 pmol/ml should be administered
a dose level greater than his/her pretreatment anti-SEA concentration.

Model (5.3) is re-expressed in terms of three parameters γ max, ρ1, and ρ2 defined
as follows. The maximally tolerated dose for patients with anti-SEA concentration
c2, γ max = γ (c2), and the probabilities of DLT at dose level 0.5 ng/kg for patients
with anti-SEA concentrations c1 and c2, ρ1 = ρ0.5(c1), and ρ2 = ρ0.5(c2). We
took c1 = 0.01 and c2 = 1800 since these values span the range of anti-SEA
concentrations expected in the trial. Since the probability of DLT at a given dose
is a decreasing function of anti-SEA, we have ρ2 < ρ1. Furthermore, since the
MTD was assumed to be greater than 0.5 ng/kg for all values of anti-SEA, we have
ρ1 < θ . The prior distribution of (γ max, ρ1, ρ2) was then specified by assuming
that γ max and (ρ1, ρ2) are independent a priori, with (ρ1, ρ2) uniformly distributed
on 
 = {(x , y): 0 ≤ y ≤ x ≤ θ} and ln(γ max) uniformly distributed on the interval
[ln(3.5), ln(1000)].

The PNU trial was designed according to scheme described in Section 5.2. Ac-
cordingly, each patient is administered the dose level corresponding to the αth
fractile of the marginal posterior cumulative distribution function (CDF) of the
MTD. Specifically, after k − 1 patients have been observed, the dose for the next
patient accrued to the trial is xk(c) = �–1

k,c(α), where �k,c(x) is the marginal pos-
terior CDF of the MTD γ (c) given the data from the previous k − 1 patients. Prior
to the onset of this trial, data from 76 patients with known pretreatment anti-SEA
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concentration were treated with PNU. This data was used during the Phase I trial
in order to maximize statistical efficiency, see Babb et al. (2001) and Cheng et al.
(2004) for more details.

A total of 56 patients were treated in the Phase I trial of which three (5.4%)
experienced DLT. The data from patients with anti-SEA less than 100 pmol/ml,
treated either during or prior to the Phase I trial, are depicted in Figure 5.3. Patients
were observed to tolerate doses of PNU as high as 44% of their anti-SEA concen-
tration without significant toxicity. None of the 96 patients treated at a dose less
than 7% of their anti-SEA concentration exhibited DLT. Of the 63 patients treated
with a dose greater than their anti-SEA/30 (the lowest permissible dose during the
Phase I trial), seven patients (11.1 per cent) manifest DLT, a rate of toxicity not
far above the targeted proportion θ = 0.1.

Figure 5.3. The dose level and anti-SEA of each Phase I patient with anti-SEA concentration
less than 100 pmol/ml. Patients experiencing treatment attributable dose limiting toxicity
(DLT) are indicated by a cross, those without DLT by an open circle.

Figure 5.4 shows the recommended dose level as a function of anti-SEA at both
the start and the conclusion of the trial. The latter (uppermost) curve corresponds
to the dose levels recommended for Phase II evaluation. At trial onset the rec-
ommended dose curve was nearly horizontal beyond an anti-SEA concentration
of 100 pmol/ml. In other words, nearly the same dose was recommended for all
patients with sufficiently high anti-SEA concentration. Essentially, this was a re-
flection of the fact that data from only 36 patients with anti-SEA greater than 100
were available at the start of the trial. Since all of these patients received a dose
less than 2.6% of their anti-SEA concentration (no dose exceeded 4 ng/kg) and
none experienced DLT, little was initially known about the effect of high anti-SEA
concentrations on treatment response. The amount of information gained during
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Figure 5.4. The recommended dose of PNU as a function of anti-SEA concentration at both
the onset and the conclusion of the Phase I trial.

the trial is demonstrated in Figure 5.5 which shows the change in the marginal
posterior distribution of γ (5), the MTD for patients with anti-SEA equal to 5,
from the start to the end of the Phase I trial.

Figure 5.5. The marginal posterior distribution of the MTD for patients with anti-SEA
concentration equal to 5 pmol/ml, at both the onset and the conclusion of the Phase I trial.

5.4 Choice of Prior Distributions

In this section, we address the issue of the choice of prior distributions. Specifically,
we extend the class of restrictive priors used in Sections 5.2 and 5.3 by relaxing
some of the constraints placed on (ρ0, γ ). We show through simulations that a
candidate joint prior distribution for (ρ0, γ ) with negative a priori correlation
between these two components results in a safer trial than the one that assumes
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independent priors for these two parameters while keeping the efficiency of the
estimate of the MTD essentially unchanged.

5.4.1 Independent Priors

In Sections 5.2 and 5.3, we assumed that the support of the MTD was contained
in [Xmin, Xmax]. That is, it was assumed that dose levels Xmin andXmax could be
identified a priori such that γ ∈ [Xmin, Xmax] with prior (and hence posterior)
probability 1. Although simulation studies showed that the logistic based model
(5.2) works well in practice, the assumption that the support of γ is bounded
from above is too restrictive. In the absence of toxicity, this assumption causes
the dose escalation rate to slow down and in general, the target MTD will never
be achieved if it lies outside the support of γ . Furthermore, because the support
of the probability of DLT at the initial dose ρ0 is [0, θ ] and γ is a function of
θ , the assumption of prior independence between ρ0 and γ may not be realistic.
Intuitively, the closer is ρ0 to θ , the closer the MTD is to Xmin. We also note that
when independent priors are specified for (β0, β1) as in Tsutakawa (1980) and
Racine et al. (1986), then a negative correlation between ρ0and γ will result in the
induced prior for these two parameters. Such observations are useful if a researcher
plans to compare the EWOC methodology we described with the designs used in
Tsutakawa (1980) and Racine et al. (1986). In the next section, we examine a class
of prior distributions for (ρ0, γ ) defined on [0, θ ] × [Xmin, ∞) and study their
properties through simulations.

5.4.2 Correlated Priors

For simplicity of notation, ρ0, γ , and ν will denote both random variables and
arguments of the corresponding densities.

Let ρ0 be a random variable defined on (0, θ ) and ν ∼ N(b, σ 2
1) truncated to the

interval [b, ∞).
Given ρ0 and ν, let γ ∼ N(µ(ρ0, ν), σ 2

2) truncated to the interval (a, ν) with
a < µ(ρ0, ν) < ν and a < b. Denote by gµ(.)(γ ) the marginal distribution of γ .
This density depends on the functional form of µ(ρ0, ν) specified below.

Model M1: ρ0 and γ are independent with ρ0 ∼ U(0, θ ) and γ ∼ U(a, b).
Model M2: ρ0 and γ are independent with ρ0 ∼ U(0, θ ) and γ has density gµ(.)(γ )

with µ(ρ0, ν) = (a + ν)/2 . This prior allows the support of the MTD to extend
beyond b and keeps a vague prior for ρ0 on (0, θ ).

Model M3: ρ0 and γ are independent with ρ0/θ ∼ beta(α1, α2) and γ has density
gµ(.)(γ ) with µ (ρ0, ν) = (a + ν)/2. Again, the support of the MTD is extended
to [a, ∞) but the prior distribution for ρ0 puts more mass near 0 for suit-
able choices of the hyperparameters α1 and α2 as in Gatsonis and Greenhouse
(1992).
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Model M4: ρ0 ∼ U(0, θ ) and γ has density gµ(.) (γ ) with µ(ρ0, ν) = (ρ0/θ ) a +
(1 − (ρ0/θ )) ν. Here, we introduced an a priori correlation structure between the
MTD γ and ρ0 by forcing the distribution of the MTD to concentrate towards
its upper tail whenever the probability of DLT at the initial dose is close to 0.

Model M5: ρ0/θ ∼ beta (α1, α2) and γ has density gµ(.) (γ ) with µ(ρ0, ν) = (ρ0/θ )
a + (1 − (ρ0/θ )) ν. The prior structure is similar to that of model M4 except
that the prior distribution for ρ0 puts more mass near 0 as in Model M3.

Specification of the hyperparameters contained in the above prior distributions
can be achieved with the help of clinicians and prior information about the agent.
For more details about the selection of these hyperparameters and fitting the above
five models in the Bayesian statistical software WinBugs (see Spiegelhalter et al.,
1999; and Tighiouart et al., 2005).

5.4.3 Simulations

We compared the performance of models M2 with M4 and M3 with M5 by sim-
ulating a large number of trials from each model. An MCMC sampler based on
the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) was
devised to estimate features of the marginal posterior distribution of γ . For each
of the above four models, we simulated 5000 trials, each consisting of n = 30
patients. Comparisons of these models were based on the proportion of patients
that were assigned dose levels higher than the MTD, the proportion of patients
exhibiting DLT, the average bias and the estimated MSE. We found that on the
average, fewer patients were overdosed under M4 compared to M2 whereas the
proportions of patients exhibiting dose limiting toxicity were about the same under
these two models. The efficiency of the estimated MTD as measured by the root
mean square error was about the same on the average. Based on the above re-
marks, we recommend the use of model M4 with our proposed a priori correlation
structure between ρ0 and γ ; while the efficiency of the estimated MTD is about
the same under the two models; fewer patients are overdosed under model M4.
Under models M3 and M5, the prior distribution of the probability of dose-limiting
toxicity at the initial dose is more concentrated toward zero. Since ρ0 and γ are
negatively correlated a priori under model M5, this resulted in more patients being
overdosed and exhibiting DLT under this model compared to model M3. In other
words, model M5 uses a more aggressive scheme in search of the MTD. On the
other hand, model M5 performs much better in terms of the efficiency of the es-
timated MTD. Details on the above simulations can be found in Tighiouart et al.
(2005).

5.5 Concluding Remarks

We described a dose-escalation scheme (EWOC) for cancer Phase I clinical trials
that addresses the ethical demands that underlie cancer Phase I trials by selecting
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doses while controlling for the probability of overdosing patients. Simulation re-
sults presented in Babb et al. (1998) showed that (1) relative to CRM, EWOC
overdosed a smaller proportion of patients, exhibited fewer dose-limiting toxici-
ties and estimated the MTD with slightly lower average bias and marginally higher
mean squared error, and (2) relative to the nonparametric dose escalation schemes,
EWOC treated fewer patients at dose levels that were either subtherapeutic or
severely toxic, treated a higher proportion of patients at doses near the MTD and
estimated the MTD with lower average bias and mean squared error.

We also showed through a Phase I clinical trial how EWOC permits the uti-
lization of information concerning individual patient differences in susceptibility
to treatment. This extension to continuous covariate utilization made it the first
method described to design cancer clinical trials that not only guides dose escala-
tion but also permits personalization of the dose level for each specific patient. A
priori information and uncertainty about the agent under consideration can easily
be implemented into the methodology and the corresponding computations of dose
allocations can be easily carried out using WinBugs. We are currently working on
extensions of this methodology to accommodate more than one continuous covari-
ate, utilization of categorical covariates, and ordered groups with respect to their
susceptibility to treatment.
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6
Dose Response:
Pharmacokinetic–Pharmacodynamic
Approach

NICK HOLFORD

6.1 Exposure Response

Almost all clinical trials include responses measured over time. It is valuable to
understand how these responses arise as a function of treatment dose and time. It
is particularly important in planning and interpreting Phase IIB (“dose response”)
and Phase III (“confirmation of effectiveness”) trials. This chapter describes how
the dose–response relationship can be understood in pharmacological terms. It
reviews the basic principles of clinical pharmacology (pharmacokinetics, pharma-
codynamics, and disease progress) and shows how they can be used to describe
the time course of response both with and without drug.

6.1.1 How Dose Response and Exposure Response Differ

A fundamental difference between dose response and exposure response arises
because individuals differ in their responses when given the same dose. Exposure
response methods explicitly recognize this and try to describe individual differ-
ences as well as the average dose–response relationship.

6.1.2 Why Exposure Response is More Informative

The exposure response approach is capable of describing and explaining the time
course of response after a single dose or multiple doses. Unlike the usual dose
response approach, which is usually defined by a primary endpoint at a single
time, the concept of time is a necessary and fundamental part of understanding
pharmacological effects and therapeutic responses to a drug. Dose response can be
considered as the least informative form of exposure–response relationship. The
time course of exposure can be inferred even if no concentration data are available
(Holford and Peace, 1992a).

6.1.3 FDA Exposure Response Guidance

An important step was taken by the United States Food and Drug Administra-
tion (FDA) when it issued its Exposure Response Guidance (Food and Drug
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Administration, 2003). This document clearly distinguished the pharmacokinetic
and pharmacodynamic sources of variability in response to a dose and offers prac-
tical advice for implementation of exposure response analysis. Unfortunately, it
only hints at incorporation of the time course of response and focuses on the use of
simple pharmacokinetic statistics (AUC, Cmax, Cmin) as exposure variables rather
than considering drug effects and responses as a consequence of the continuous
time course of drug concentration.

6.2 Time Course of Response

6.2.1 Action, Effect, and Response

It is helpful to describe the pharmacological and pathophysiological consequences
of drug exposure with three terms that are often considered synonyms (Holford
and Peck, 1992).

Action—Refers to the mechanism at the primary target for the drug molecule,
usually a receptor or enzyme, e.g., stimulation of an adrenergic beta-receptor in
bronchial smooth muscle.

Effect—Describes the pathophysiological consequence of the drug action. There
are typically several effects that might be observed, e.g., increase in cyclic AMP
in bronchial tissue, relaxation of bronchial smooth muscle, increase in airway
conductance, and increase in peak expiratory flow rate. These effects are frequently
referred to as biomarkers (Lesko and Atkinson, 2001).

Response—This is the clinical outcome that the patient experiences by changes
in how he/she feels, functions or survives, e.g., decreased difficulty breathing,
reduced frequency of asthma attacks, shorter hospital stay, increased survival.

6.2.2 Models for Describing the
Time Course of Response

The guiding principle for exposure response is the belief that drug concentration
is the primary causal factor in generation of a response (Holford and Sheiner,
1981). This differs from the apparent belief expressed by statisticians who analyze
dose response as if the dose was the primary causal factor whether allopathic
(response increases with increasing dose) or homeopathic (response decreases
with increasing dose).

The concentration belief system leads to a simple partition of processes deter-
mining the dose–response relationship into pharmacokinetics and pharmacody-
namics (Figure 6.1).

The dose-concentration process is described by pharmacokinetics. In almost
all instances, this involves the time course of drug concentration in plasma. Fre-
quently this is simplified to consider only the average steady-state concentra-
tion with consequent loss of information about the time course of concentra-
tion driving the response. The concentration–effect relationship is described by
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Figure 6.1. The components of the exposure–response relationship.

pharmacodynamics. The time course of effect subsequent to changes in drug con-
centration (e.g., in plasma) usually requires a further linking model to account for
delays in effect.

In addition to changes produced by drug treatment, the time course of response
also depends on the underlying progress of the disease, giving rise to the response
and the placebo response in a clinical trial. Simple models for describing dis-
ease progress and placebo response can be useful for describing and interpreting
the action of drugs.

6.3 Pharmacokinetics

6.3.1 Review of Basic Elements of Pharmacokinetics

The time course of drug concentration in plasma and other tissues of the body is
determined by rates of input, distribution and elimination.

The input process will vary with the route of administration but most often
can be adequately described by a single first-order or zero-order mechanism
(sometimes with a lag time before the onset of appearance of drug at the site
of measurement, e.g., plasma). It is helpful to distinguish between the extent of
absorption, or bioavailability, of a dose and the rate of input of the bioavailable
fraction. First-order input is described by the absorption half-life (typically 10 to
20 minutes for small molecules but may be much longer for pegylated molecules
or monoclonal antibodies) while a zero-order input (for a given dose) is defined
by the duration of input. The input duration is nominally under the control of the
prescriber when the dose is given as an infusion. A constant rate of input may
also be used to describe an oral formulation which may be largely determined by
gastric emptying if the formulation dissolves rapidly (with an input duration of
30 to 60 minutes) or by the formulation itself if it is a controlled release product
(with input durations measured in hours).

Distribution from the plasma (2.5 L/70 kg) to other tissues involves perfusion
of the organ and diffusion from vessels into the extravascular space (18 L/70 kg)
and in many cases into cellular water (35 L/70 kg total body water). Equilibration
with tissues such as brain and heart typically takes place in minutes while adipose
tissues may take hours and bone may take days to weeks. The rate of equilibration
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is often parameterized in terms of one or more intercompartmental clearances (see
below). The apparent volume of distribution is defined by the ratio of the amount
of drug in the body to drug concentration (Eq. (6.1)). The apparent volume is
initially small and increases with time until the so-called steady-state volume of
distribution is achieved when a pseudoequilibrium is reached between plasma and
tissue concentrations. The initial volume of distribution is determined by rapidly
equilibrating tissues such as plasma and extracellular fluid while the steady-state
volume reflects partitioning and binding to extravascular tissues. Apparent volumes
at steady state may range from a few liters (e.g., heparin) to several hundred liters
(e.g., digoxin).

Volume = Amount of drug in body

Concentration
(6.1)

Elimination occurs via excretion of unchanged drug through the kidneys, bile
or gut and via metabolism primarily in the liver, but the gut wall also plays a key
role for some drugs in reducing oral bioavailability. The concept of drug clearance
is used to describe all processes of elimination (and can also be used to describe
distribution). Clearance is defined by the ratio of elimination rate to drug concen-
tration (Eq. (6.2)). When used to describe the ratio of distribution rate between
compartments to the compartment concentration it is known as intercompartmental
clearance:

Clearance = Rate of Elimination

Concentration
(6.2)

6.3.2 Why the Clearance/Volume Parameterization
is Preferred

Pharmacokinetic models can be expressed in a variety of parameterizations, e.g.,
volumes and half-lives or volumes and clearances. From a mechanistic perspective,
the volume and clearance parameterization is preferable because the parameters
can be directly linked to structural and functional properties of the body. Half-lives
(e.g., of drug elimination) should be considered as secondary or derived param-
eters dependent on the more fundamental parameters of clearance and volume
(Eq. (6.3)).

Half-life = ln(2) • Volume

Clearance
(6.3)

Changes in half-life alone cannot be readily attributed specifically to changes in
elimination or distribution. The cause of half-life changes can only be determined
by looking at differences in clearance or volume.
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6.4 Pharmacodynamics

6.4.1 Review of Basic Elements of Pharmacodynamics

Pharmacodynamics describes the concentration–effect relationship. The concen-
tration is usually considered to be at the site of action and drug effects occur
immediately in proportion to concentration. Delayed effects in relation to concen-
trations at other sites (e.g., plasma) are discussed below.

The law of mass action predicts the equilibrium occupancy of a receptor by a drug
binding to the receptor-binding site with affinity defined by Kd, the equilibrium
dissociation constant (Eq. (6.4)). The driving force for binding is the unbound drug
concentration, Cunbound.

Occupancy = Cunbound

Kd + Cunbound
(6.4)

Occupancy leads to a stimulus in proportion to the intrinsic efficacy of the drug.
Antagonists have an intrinsic efficacy of zero whereas agonists have intrinsic ef-
ficacy up to 1 (called a full agonist). The stimulus–response relationship ( f ) is
typically nonlinear reaching half-maximum effect with a stimulus defined by S50
(Eq. (6.5)). Stimulus is a dimensionless quantity and f has an upper bound of 1.

f = Stimulus

S50 + Stimulus
(6.5)

The drug effect, E , is defined by f and a scaling factor, efficacy or Emax:

E = Emax · f (6.6)

This leads to the common Emax model of drug action: Emax is directly related to
intrinsic efficacy while EC50, the concentration at 50% of Emax, is determined by
Kd and S50 (Eq. (6.7)).

E = Emax · Cunbound

EC50 + Cunbound
(6.7)

The nonlinear stimulus–response relationship means that most commonly EC50
is less than Kd, often by a factor of 10 or more. In vitro binding studies, which
estimate Kd can only give limited guidance for the effective concentrations in vivo
with an intact receptor–response system. This may be because in vitro and in vivo
binding site conditions are different in terms of physiological substances near the
binding site or feedback mechanisms that may affect binding.

6.5 Delayed Effects and Response

From a practical viewpoint drug pharmacokinetics are usually described in terms
of plasma concentration because plasma is the most readily sampled site to obtain
observations of concentration and thus develop models and estimate parameters.
However, with very few exceptions (e.g., heparin effects on blood coagulation)
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drug actions and consequent effects are not exerted in plasma but in extravascular
fluids or within cells. It is therefore naı̈ve to expect that plasma concentrations
would themselves be related directly to drug action and attempts to use simple
correlation between plasma concentration and response are often doomed. It is not
infrequent to find a statement such as “there was no correlation found between
plasma concentration and effect.” This kind of conclusion indicates the need to
consider the basic mechanisms of clinical pharmacology and to separate fixed and
random effects in an appropriate fashion.

A clear approach to understanding exposure and response requires thought about
the necessary physical and physiological processes that are involved when using
plasma concentration time course to predict drug action, effect, and response.

6.5.1 Two Main Mechanism Classes for Delayed Effects

There are two qualitatively different mechanisms linking plasma concentration
time course to subsequent actions, effects, and responses. First, the drug molecule
must be distributed to the site of action, e.g., at the cell surface in the extracellular
fluid adjacent to a receptor. Second, a chain of events involving turnover of physi-
ological mediators such as cyclic AMP, gene transcription factors, and proteins is
required before the action is translated into an effect or clinical response. In almost
all cases, both of these mechanisms are operative but the rate-limiting step will
vary depending on the class of drug.

6.5.1.1 Distribution Delay

Distribution of a drug molecule to its site of action typically occurs quite rapidly
and extracellular sites of action can be expected to be reached in minutes. This
pharmacokinetic phenomenon of drug distribution may occasionally share a similar
time course to the predicted tissue concentration derived from a compartmental
pharmacokinetic model. However, in general, the concentration time course at
the site of drug action is not reflected in the gross average of tissue and organ
distribution predictable from observations of plasma concentration profiles. Direct
measurement of concentrations in tissue samples gives a false sense of being
“closer” to the site of action. Concentrations measured after homogenization of
tissue are only gross mixtures of fine extracellular and intracellular compartments
that truly reflect the site of action.

A solution to describing distribution delays comes from making two assump-
tions. First, that unbound drug concentrations in plasma and at the site of action
are the same when distribution equilibrium occurs. This is quite plausible for pas-
sive diffusion of unbound unionized molecules. Second, that the observed effect
is related to the concentration at the site of action according to some pharma-
codynamic model, e.g., linear, Emax (Holford and Sheiner, 1981). This second
assumption is harder to justify a priori but can often be rationalized by the ad-
equacy of the model to describe the time course of effect and make acceptable
predictions.
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These assumptions are used to describe the time course of concentrations in an
effect compartment driven by plasma concentrations. The time course of equili-
bration of the effect compartment is determined by a single parameter—the equi-
libration half-life. This model was originally parameterized in terms of the rate
constant corresponding to this half-life (Segre, 1968; Sheiner et al., 1979), but the
half-life parameterization is conceptually easier to grasp and relate to the observed
effect or response.

Thiopental is a short acting barbiturate used to induce anesthesia. It is given in-
travenously usually by a short injection over a few seconds. The depth of anesthesia
can be related to the frequency of electrical activity in the electroencephalogram
(EEG). The EEG frequency changes lag behind changes in plasma thiopental
concentration but can be easily linked using the effect compartment model. The
delay in EEG effect will be determined by distribution to the brain, activation of
GABA receptors and subsequent changes leading to altered electrical activity. It
seems plausible that the rate limiting step is pharmacokinetic distribution and this
is compatible with the short equilibration half-life of about 1 minute (Stanski,
1992a; Figure 6.2).

Figure 6.2. Time course of thiopental concentration (left axis) and EEG effect (right axis).

The EEG effect is a biomarker, which gives useful insight into the factors control-
ling individual response. These include the maximum effect (efficacy), sensitivity
(EC50) and speed of onset (equilibration half-life). The slower onset of midazolam
compared to similar drugs such as diazepam was responsible for substantial mor-
bidity and mortality. Eventually the slow equilibration was identified as a key factor
and a slower rate of administration and lower dose was introduced (Stanski, 1992).

6.5.1.2 Mediator Turnover

The role of mediator turnover as a major determinant of delay in drug effect
was first identified by Nagashima and co-workers (Nagashima et al., 1969). This
physiological alternative to the effect compartment model was described more
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generally and was subsequently classified into four basic mechanisms (Dayneka
et al., 1993; Holford, 1991). These mechanisms have been termed indirect effects
but it is more insightful to recognize that they demonstrate effects of drugs on
the turnover of physiological mediators. PK PD models (often including an effect
compartment model) can describe the drug action on the turnover process but it is
the mechanistic understanding that comes from an appreciation of the mediator of
the effect in a physiological sense that allows robust predictions of drug response.

Warfarin is an anticoagulant used to prevent morbidity and mortality associ-
ated with vascular thrombosis. Its action is to inhibit the recycling of vitamin K
epoxide back to the active reduced form of vitamin K. Reduced vitamin K is a
necessary cofactor for the synthesis of coagulation factors collectively termed the
prothrombin complex. Inhibition of prothrombin complex synthesis leads to the
slow elimination of these factors reaching a new lower steady state and decreased
blood coagulability (Holford, 1986). The turnover half-life of these factors aver-
ages about 14 hours and it is the rate-limiting step in the onset of warfarin effects.

Delayed effects with apparent effect-compartment half-lives of hours rather
than minutes should always raise the possibility that the delay is due to mediator
turnover and is not due to pharmacokinetic distribution delay. Physiological me-
diator turnover (physiokinetic) delay is often substantial and frequently ignored in
traditional dose response analyses. This leads to underestimation of the true treat-
ment effect size and failure to properly account for carryover effects in crossover
designs.

6.6 Cumulative Effects and Response

6.6.1 The Relevance of Considering Integral of Effect
as the Outcome Variable

The most obvious applications of PK PD are to describe the time course of a drug
effect or clinical response such as changes in blood pressure or pain. However,
many clinical responses are more closely related to the cumulative effects of the
drug. For example, the healing of a peptic ulcer is the consequence of cumulative
inhibition of gastric acid secretion and increase in pH allowing tissue repair. The
time course of changes after each dose may be important for acute symptomatic
relief of pain, but it is the cumulative effect that leads to the healing response.
Another example would be the use of a diuretic to treat acute pulmonary edema.
The clinical benefit arises from the cumulative loss of fluid and is not determined
by the effect of the drug at particular times after the dose.

6.6.2 Why Area Under the Curve of Concentration is not
a Reliable Predictor of Cumulative Response

Many drugs are used at doses which reach concentrations above the EC50. Because
of the nonlinear relationship of concentration to effect the integral of concentration
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with respect to time will not be proportional to the integral of the effect. When
the clinical response is related to cumulative effect (i.e., its time integral) then
summary measures of drug exposure such as area under the concentration time
curve (AUC) will not properly predict the response.

6.6.3 Schedule Dependence

There is no clearly recognized definition of what constitutes schedule depen-
dence. One way it might be defined is if the same total dose is given with dif-
ferent dosing schedules and the cumulative response varies then this is sched-
ule dependence. On the other hand if the time of peak drug effect changes with
dose then this would not be usually called schedule dependence. Nevertheless,
changes in the timing and magnitude of neutropenia with different dosing sched-
ule of anticancer drugs have been referred to as schedule dependent (Friberg et al.,
2000).

The time course of furosemide concentration and its effect on renal sodium
excretion is shown in Figure 6.3. Two dosing schedules are illustrated—a single
dose of 120 mg and three doses of 40 mg given every 4 hours. The cumulative
excretion of sodium (and thus the cumulative fluid loss) is 50% greater when three
smaller doses are given over a 12-hour period. The total dose and the area under
the concentration time curve (AUC) over 12 hours is the same for both dosing
schedules but the cumulative effect is very different.
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Figure 6.3. Furosemide concentrations and effects.
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6.6.4 Predictability of Schedule Dependence

When cumulative drug effect determines clinical response then schedule depen-
dence should be expected. Schedule dependence occurs because of the nonlinear
concentration–effect relationship and also requires that the action of the drug is
rapidly reversible.

There are two situations when cumulative effect and clinical response may not
be schedule dependent. If the doses do not reach concentrations above the EC50
then the concentration–effect relationship will be essentially linear and schedule
dependence will not occur. The other case is for drugs, which bind irreversibly
to the site of action. Proton pump inhibitors bind irreversibly (e.g., omeprazole)
and would be expected to have the same cumulative effect on acid suppression
irrespective of the dosing schedule in one day because the turnover and regeneration
of new pump molecules takes several days.

6.7 Disease Progress

All diseases have a time course of evolution and the clinical response to a drug will
be dependent on this time course. Although experienced clinicians and patients
will often have a good idea of this time course, it is unusual to find quantitative
descriptions of disease progression.

6.7.1 The Time Course of Placebo Response and
Disease Natural History

In the analysis of clinical trials, it is usual to consider the placebo response as
if it was indistinguishable from the natural history of the disease. However, it
is often plausible to assume that the disease and the placebo response will have
different time courses. Slowly progressive diseases, e.g., those that change 10 to
20% over the time course of the trial can be approximated by a linear function even
if the profile over longer periods has a more complex shape. It is also reasonable to
assume that the disease progression continues at a constant rate. On the other hand,
the response to a placebo might be expected to increase initially, reach a peak then
fade away with time. The placebo response may be triggered by entry to a trial
and be more or less independent of the timing of placebo dose administration or it
may be triggered by each dose especially if the dosing event is very recognizable,
e.g., placement of a transdermal patch every few days.

The overall response due to natural history and placebo can then be described
by the sum of two functions which are separately identifiable (Holford and Peace,
1992a,b). This is illustrated in Figure 6.4 by a linear decline in response due to the
natural history with an additional transient placebo response. The placebo response
is defined empirically by the sum of two exponentials similar to the model used
to describe drug concentrations with first order absorption and elimination. This
is sometimes referred to as the Bateman function.
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Figure 6.4. Natural history and placebo response (time units are arbitrary but could be
interpreted as days).

6.7.2 Two Main Classes of Drug Effect

For any disease progress model, there are two distinct ways that a drug may
affect the natural history of the disease. The first simply shifts the natural his-
tory curve producing an offset to the untreated time course of disease status. The
second is to change the rate of progression of the disease. This is illustrated in
Figure 6.5.

6.7.2.1 Symptomatic

The offset pattern of drug effect may also be called symptomatic because it is
typically associated with responses that relieve a patient’s symptoms (e.g., pain)
without any permanent effect on the disease. The response is transient and when
treatment is stopped, the effect washes out and the disease state returns to the
natural history curve.

The use of cholinesterase inhibitors such as tacrine to treat Alzheimer’s disease
has had limited success. The effects appear to be purely symptomatic with no
evidence that the rate of progression of the disease is slowed (Holford and Peace,
1994) by treatment.

6.7.2.2 Protective

Effects on the rate of disease progression can be considered to be protective.
If the direction of progression is reversed, they may even be called curative.
When treatment is stopped, it would be expected that treatment effects persist. In
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Figure 6.5. Symptomatic and protective drug effects during and after treatment for 28 units
of time (units are arbitrary but could be interpreted as days).

practice, it can be hard to demonstrate protective effects by attempting to detect
this persistent benefit after stopping treatment. This is because the worsening of
the disease after treatment withdrawal is typically unacceptable to patients and
effects are only observable over short withdrawal intervals.

Attempts to demonstrate a protective effect of levodopa to slow down the pro-
gression of Parkinson’s disease have produced controversial results (The Parkinson
Study Group, 2004). In part, this is because of the slow washout of symptomatic
benefit. It also arises from the use of an experimental design and analysis method
that was unable to distinguish protective from symptomatic effects.

6.8 Modeling Methods

Mathematical models describing pharmacokinetics, pharmacodynamics, and dis-
ease progression are helpful for understanding dose–response because they can
incorporate the mechanistic underlying processes thought to be responsible for
observations of disease state. Descriptions of these models and their applications
in clinical drug development have been reviewed elsewhere (Chan and Holford,
2001; Holford and Ludden, 1994; Sheiner and Steimer, 2000).

6.8.1 Analysis

The analysis of dose–response relationships based on PK PD models typically
requires the use of nonlinear regression. Although linear models, e.g., quadratic,
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can be used to describe curvi-linear dose–response relationships, there are usually
other nonlinear components of the model, e.g., using exponential functions to
describe the time course of onset and loss of effect.

Sometimes doses are coded in sequential categories that lose information about
the size of the dose, e.g., doses of 0, 50, 100, 200, 400 might be coded as 1, 2, 3,
and 4. This recoding should be avoided when trying to understand dose–response
relationships in pharmacological terms.

6.8.2 Mixed Effect Models

Many clinical trials will include multiple observations of the response variable
in the same subject. This usually means that between subject variability (and
sometimes within subject variability) in parameters of the dose–response model
can be estimated. The ability to describe both fixed and random effect sources of
variability is essential for prediction of effects and responses, e.g., when used in
clinical trial simulation.

Statistical software systems such as SAS or S-Plus provide mixed effect model-
ing procedures but do not provide support for pharmacokinetic predictions based
on the often complex and irregular actual doses taken in a clinical trial. NONMEM
(Beal et al., 1999) and WinBUGs with the PKBUGs extension (Best et al., 1995)
include pharmacokinetic model libraries capable of describing almost any real
dosing data pattern which is usually necessary to undertake a mixed effects model
analysis of dose–response data. Duffull et al. (2005) provide a discussion of the
advantages and disadvantages of these two programs.

6.8.3 Simulation

It can be argued that the primary purpose of undertaking a dose–response analysis
is not just to describe results, but to be able to predict responses to future doses. This
typically involves simulation using a simple deterministic description of the time
course of effects and responses after different doses. A more complex stochastic
simulation can be used to explore trial design properties and construct prediction
intervals for the likely range of outcomes.

6.8.4 Clinical Trial Simulation

The purposes and methods of clinical trial simulation have been reviewed by
Holford et al. (2000). Numerous applications in clinical trial simulation have been
reported in recent years (Anderson et al., 2003; Bonate, 2000; Chabaud et al.,
2002; Girard et al., 2004; Gomeni et al., 2002; Jumbe et al., 2002; Kimko et al,
2000; Lockwood et al., 2003; Veyrat-Follet et al., 2000). Almost all of these have
been concerned with evaluating dose–response relationships in drug development
programs. Further examples can be found in Chapter 8.
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6.9 Conclusion

The quantitative description of dose–response relationships can be approached
from a scientific basis by the application of principles of clinical pharmacology.
These recognize the central role of concentration as the explanatory variable linking
dose to effect. It is not necessary to measure concentrations or develop a formal
pharmacokinetic model in order to describe the effects of drugs (Holford and
Peace, 1992; Pillai et al., 2004), but recognition of the separate contributions of
pharmacokinetic and pharmacodynamic sources of variability is important for
accurate description and informative predictions.
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7
General Considerations in
Dose–Response Study Designs

NAITEE TING

7.1 Issues Relating to Clinical Development Plan

As mentioned in Chapter 1, one important step in early clinical development of a
new drug is to draft a clinical development plan (CDP). Various clinical studies are
designed and carried out according to this plan, and the CDP is updated over time
based on newly available information. Estimation of dose–response relationship
should be one of the very important components in CDP.

Considerations and plans regarding dose finding should be in place starting from
the nonclinical development stage. Across all phases of clinical development, in-
formation to help with dose selection is needed. The key stage for finding the
appropriate range of doses should be around Phase II. But critical information to
help design Phase II studies are obtained from nonclinical, and Phase I studies.
In certain situations, the drug candidate belongs to a well-established drug class
in which information from other drugs of the same class is available. Clinical sci-
entists need to make best use of that available information to help design Phase
II studies. Hence, one of the primary objectives in the earlier part of CDP should
be to deliver useful data to help designing dose ranging and dose selection stud-
ies in Phase II. Based on information collected from Phase I clinical studies, a
number of Phase II studies should be planned and carried out—proof of concept
(POC), dose ranging, and dose-finding studies. Some of these studies are carried
out to measure the clinical endpoints, while some others are implemented to char-
acterize biomarkers. Choice of appropriate endpoints for each study should be
considered in the CDP. Criteria to measure success should also be clarified in the
CDP.

After the multiple dose pharmacokinetics (PK) is established for a drug can-
didate from Phase I studies, there is often an estimated Maximally Tolerated
Dose (MTD). With the PK and MTD information available, a typical step to
progress the drug development is to conduct a POC study. A commonly used
POC study usually has two parallel treatment groups—a control (often placebo)
group and a test treatment group using a high dose very close to MTD, or the
MTD itself. In some situations, the test treatment group allows dose titration
up to the MTD. The reason a very high dose (very close to MTD) is used for



90 7. General Considerations in Dose–Response Study Designs

POC is that the highest dose may provide the best hope to demonstrate drug
efficacy.

Dose ranging studies usually include a placebo group, plus a few doses of
the test drug—e.g., low dose, medium dose, and high dose. An ideal dose rang-
ing study should cover a wide range of doses from low to high. Typically, these
studies are parallel group with fixed doses. The main objective of a dose rang-
ing study is to estimate the dose–response relationships for efficacy, and pos-
sibly for safety. Hence, in analyzing results from these studies, various dose–
response models are often applied to help understand the underlying dose–response
relationship.

On the other hand, dose selection studies or dose finding studies are mainly
designed to confirm the efficacy of one or several doses. Although the design of a
dose selection study is very similar to a dose ranging study (with placebo or active
control, plus a few test doses), the data analysis tends to be hypothesis testing of
each test dose against the control.

In the CDP, considerations should be made to determine whether studies could
be conducted simultaneously or sequentially. In other words, in trials designed to
study PK, this study can also provide safety information to help estimate MTD.
Meanwhile, another study can be designed to learn the food effect. In these situa-
tions, we should try to maximize the amount of information that can be collected in
each study, and minimize the time to achieve these objectives. On the other hand, a
POC study or a dose ranging study cannot be designed without MTD information.
Hence, these studies should be conducted after MTD information can be obtained
from earlier studies. Therefore, the CDP needs to lay out the sequence of studies
to be designed and executed over time. Estimation of the starting time of a new
study should be based on critical information available to help design that study. In
some cases POC and dose ranging studies are combined and in others dose ranging
studies and dose selection studies are combined. All of these strategies need to be
discussed while drafting the CDP.

Section 7.2 introduces some general considerations in designing clinical trials
(not just for dose finding purposes). Section 7.3 discusses design considerations
specifically for dose finding trials, and Section 7.4 provides concluding remarks.

7.2 General Considerations for Designing Clinical Trials

Figure 7.1 illustrates data collected from a typical dose–response study, often
referred to as a “randomized, double-blind, placebo-controlled, fixed dose, parallel
group, and dose–response design”. In such a study, patients are randomized into
predetermined dose groups (often including a placebo, a low dose, one or several
medium doses and a high dose). Patients take the randomized dose for the planned
study duration. The efficacy and safety data obtained are analyzed to evaluate
the dose–response relationships. Note that “parallel group”, “fixed dose”, and
“placebo-controlled” are some important features of this design. Each asterisk in
Figure 7.1 represents the efficacy measurement from one subject. Suppose a higher
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Figure 7.1. Observations from a simulated dose response study.

value indicates a better efficacy response, then Figure 7.1 indicates that as the dose
of the test drug increases, the efficacy response improves.

Dose–response trials are typically conducted in Phase II, although occasionally
they are done earlier or later. They are designed to explore a range of doses and to
characterize the dose–response relationship. In this chapter, we will discuss some
of the important clinical study design considerations for dose–response studies.
Many of these points focus on Phase II (exploratory) study design, although some
may be applicable to Phase III (confirmatory) studies, also.

7.2.1 Subject Population and Endpoints

Every clinical trial starts with a clinical question. Based on this question, clinical
trial team members work together to draft a clinical trial protocol. This protocol
serves as the design document for the trial. The results obtained from a clinical
trial will help address the key clinical question. Hence, the most important study
design consideration is to understand the objective(s) of the given study, and the
trial is designed to collect the necessary clinical data to help answer these important
clinical questions.

In designing a clinical trial, it is always important to collect and analyze data
to address the primary objective. Typically, the primary objective can be studied
by analyzing one or a few specific clinical variables (endpoints) from a well-
defined study population. Hence, it is critical that in every study design, the subject
population and the clinical endpoints be prespecified in the protocol. Primary and
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secondary objectives should be aligned with the primary and secondary endpoints
and populations.

As discussed in Chapter 1, clinical development is divided into four general
phases (Phase I, II, III, and IV). In most of the Phase I studies, the purpose is to
estimate pharmacokinetics (PK), pharmacodynamics (PD), and MTD. In Phase I,
healthy and normal volunteers are recruited for trials to study drug candidates
developed to treat non-life-threatening diseases. Endpoints used in Phase I include
PK and PD parameters, as well as safety endpoints. Safety endpoints typically
include adverse events, laboratory values and other measurements collected from
examination equipment such as electrocardiogram (ECG). In all of the clinical
studies, safety endpoints are collected, regardless at which phase the study is
designed. This is because drug safety should be monitored closely in every stage
of drug development.

In drugs developed for non-life-threatening diseases, a Phase II clinical trial is
usually the first one to recruit patients with the disease under study. Patients for
Phase II trials are recruited so that these patients may be most likely to benefit
from the drug candidate and least likely to be exposed to potential toxicities.
Endpoints used in Phase II studies include efficacy and safety endpoints. The
efficacy endpoints may be clinical endpoints such as blood pressure, time to disease
relapse, number of painful joints, visual acuity or surrogate markers such as white
blood cell count, bone mineral density, among others.

Phase III studies are usually designed to recruit a wider patient population. This
population could be very similar to the actual patients with the target disease.
Clinical efficacy and safety endpoints are collected so that they are similar to the
real world situation. Results obtained from Phase III studies are analyzed and
reported to regulatory agencies for drug approval. In Phase III, we tend to have
more relaxed inclusion/exclusion criteria with a hope to generalize well to clinical
practice, but the heterogeneity of patient characteristics may reduce power of the
trial.

The primary endpoint should be selected based on clinical relevance, directly
related to study objectives. Other considerations may include the choice of scale
(continuous, dichotomous, categorical), its potential impact on how analysis will
be done, its impact on power, and its impact on interpretation.

In many situations, more than one efficacy endpoints are used to address the
primary objective. When this is the case, it creates a multiple comparison issue
in statistical analysis. Let the prespecified Type I error rate be α (usually a two-
sided α is set at 0.05, or a one-sided α set at 0.025), then how should this α

be spent for these multiple endpoints? What analysis should be performed so
that the experiment-wise error rate (the Type I error is prespecified for the entire
experiment) is controlled? All of these considerations will need to be addressed in
the protocol and in the statistical analysis plan.

Often times, these multiple endpoints can be prioritized according to their im-
portance in the clinical study. In this case, a stepwise test procedure can be applied
to address the multiple endpoint issue by testing the most important endpoint
first. If this null hypothesis is not rejected, stop. Otherwise, continue to test for the
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second most important endpoint; then continue in this fashion until all prespecified
endpoints are tested (please refer to Chapters 11 and 12 of this book). On the other
hand, if two or three endpoints are equally important, then it is possible to combine
these endpoints into a single score, and the primary analysis is performed on this
composite score. It is also possible to apply multiple comparison adjustment to
these equally important endpoints.

7.2.2 Parallel Designs versus Crossover Designs

In a fixed-dose parallel group design, a patient receives the same treatment for
the duration of the trial. In contrast, in a crossover design, each patient receives a
sequence of treatments during two or more study phases. Multiple sequence groups
are used. Each has a different order of treatments, to account for any trends (such
as disease progression or seasonal variation). For instance, in a 2 × 2 crossover
design, a subject is randomized into one of two sequences. For one sequence, the
subject takes treatment A in the first study period and treatment B in the second
period, usually after washout period between treatments. The treatment order is
reversed for the other sequence. Sometimes more complicated crossover designs
are utilized.

In many cases, drug efficacy takes some time to demonstrate. A trial designed to
study efficacy may need each patient to go through several weeks to several months
of double-blind treatment. With this length of treatment, it is often difficult to use
crossover designs. Hence, a parallel study design is used in many of the Phase II/III
clinical trials.

7.2.3 Selection of Control

Three types of treatment controls can be considered in clinical trial designs:
(1) historical control, (2) placebo control and (3) active control. Historical con-
trols are based on data from other studies or the published literature, and they are
usually less credible than placebo or active controls. Hence, historical controls
are rarely used in clinical trials for new drug development. An active control is a
treatment that is already on the market. Usually this is the standard treatment avail-
able for the disease under study. Active control group may be more useful in later
phase studies. The advantages and disadvantages of using an active control group
depend on the disease under study, characteristics of the drug candidate being
developed, and specific clinical inferences of interest (ICH E10, 2001). Studies
with an active control, but without a placebo group, suffer from the additional
burden of demonstrating that the treatment groups are effective (assay sensitivity),
either through superiority to the active control or on the basis of some type of his-
torical control information (Temple and Ellenberg, 2000; Ellenberg and Temple,
2000). An active control, however, may provide a reference from a treatment of
‘known’ effectiveness. In practice, the use or not use of an active control mainly
depends on objectives of the study. However, in certain cases, it may also depend
on clinical budget considerations.
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In the early stage of clinical development of a new drug, it is a common practice
(if deemed ethical) to compare the test drug with a placebo. This is important since
detecting positive signals of effectiveness beyond that achieved with placebo is an
important milestone for continuing development of this drug candidate. Accord-
ingly, placebo plays an important role in a dose–response study—it represents
a zero dose in the study. Patient response at zero dose is a basic standard for
comparison with active doses. In typical dose–response studies, a few fixed doses
(usually two, three or four) would be chosen. These doses plus placebo constitute
the treatment groups for a randomized dose–response trial.

The basic principle is that the design needs to cover a range of doses, as wide
as possible in most cases. Generally, the low end will be placebo (at dose 0),
but sometimes the lowest dose may exceed zero (e.g., for ethical concerns). This
raises at least two issues: (1) a narrower dose range reduces the power to detect
a relationship, all other things being equal; (2) even if there is a significant dose–
response slope in the right direction, we need to be able to argue that this slope
reflects an improvement in all groups (rather than the case where a higher dose
may be worse than placebo).

An active control group can be useful, for example, if the test drug did not
show a difference from placebo, but the active control group demonstrates a su-
periority response compared with placebo. This provides evidence that the study
drug did not work. However, if the active control does not show a difference from
placebo, then one of two possibilities can be contemplated: either the placebo re-
sponse is too high, or the conduct of the study was flawed so that nothing can be
differentiated.

7.2.4 Multiple Comparisons

In typical dose–response studies, more than two treatment groups are included in
a clinical trial. When this is the case, it is important to understand the questions
related to the objectives of the study:

� To show a trend such that higher doses tend to have better responses? or
� To show a particular dose is better than placebo?

Depending on the objective of a study, appropriate multiple comparison adjust-
ment need to be made so that the probability of making a Type I error can be
controlled under α. In most Phase II studies, the objective is to estimate a trend of
dose–response relationship. A modeling approach is commonly applicable for
this purpose. Commonly used dose–response models include linear, quadratic,
Emax, logistic or others. Chapters 9 and 10 of this book discuss the modeling
approach in analyzing dose–response data. In certain situations, a preplanned
dose–response test with a positive slope can be considered as one of the pivotal
proof of efficacy trials.

For Phase III, it is critical that during the study design stage, a multiple com-
parison procedure be prespecified. This is similar to the multiple endpoint issue:
e.g., How is the Type I error α (or one-sided α/2) controlled when more than one
comparison is made? A number of multiple comparison procedures are available.
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Commonly used procedures include Dunnett, Bonferroni, Hochberg, stepwise, and
others (Hsu, 1996). Choice of procedures to be used for a particular study depends
on the objective(s) of the study, the background disease for treatment, and how
much prior knowledge is available at the time when the study is designed. Multiple
comparison procedure is one of the most important statistical concerns in design
and analysis of dose–response studies. This will be discussed in Chapters 10–13.

7.2.5 Sample Size Considerations

During the design stage of any clinical trials, one important question is always How
many subjects will be needed for this study? Generally, for a continuous variable,
four important quantities are used to estimate the sample size: namely α, β, δ, and
σ . Here α and β represents the probability of making a Type I error and a Type II
error, respectively. These two quantities are prespecified probabilities to control for
false positive and false negative rate, respectively. The quantity δ is the clinically
important difference we want to detect from this study (often this is postulated as
minimally clinically important difference), and σ is the common standard deviation
for each treatment group (usually obtained from previous studies). Depending on
the type of data to be used for analysis (continuous data, categorical data, time-to-
event data), various formulas are available to calculate sample sizes using these
four quantities.

When designing a dose–response study, the main concern in sample size calcu-
lation is how to handle multiple group comparisons. This issue is dictated by the
objective of the study. A few examples of the objective of a dose–response study
may be as follows:

� Testing to see if a specific dose of the study drug is different from placebo
� Finding the minimum effective dose
� Differentiating efficacy between active doses
� Checking to see if there is an increasing dose trend
� Demonstrating noninferiority between a particular dose and the active control

As a good clinical practice, it is important to keep a single and clear primary
objective for a single study. Hence, the above examples can be considered mutually
exclusive. The appropriate statistical method used to perform data analysis should
be aligned with the primary objective. Sample size estimation, in turn, should be
consistent with the data analysis method.

In the first example, if the trial were designed to differentiate a specific dose
of test drug from placebo, then the sample sizing method would be similar
to performing a two-sample t-test comparing the test drug against placebo. In
most situations when analyzing dose–response studies, multiple comparison
adjustments will be needed. Depending on the type of multiple comparison
to be used for data analysis, sample sizes should be estimated based on the
chosen method. For example, if a pre-determined stepwise multiple comparison
adjustment will be used for analysis, then the two-sample t test at level α could
be appropriate. On the other hand, if the Bonfferoni adjustment is proposed for
data analysis, then the appropriate α adjustment will have to be made prior to
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sample size estimation. In Phase II dose–response studies, the main purpose is to
estimate a monotonic relationship and hence the sample size and power will help
demonstrating a significant slope in a regression model.

There is another angle of sample size estimation: a study is powered to achieve a
required amount of precision for an estimated quantity using a confidence interval
approach (rather than testing Ho: effect = 0). The quantity could be an accepted
range of responses at a given dose—or, more usefully, the dose to give a required
range of response. This angle is not covered in this book.

A general discussion regarding sample size determination and power can be
found in the (Encyclopedia of Biopharmaceutical Statistics, 2003). These consid-
erations specifically for dose–response clinical trials will be covered in Chapter 14
here in this book.

7.2.6 Multiple Center Studies

Clinical trials are commonly conducted at a number of different investigator sites
or centers. The main reason for this practice is to ensure timely enrollment of suf-
ficient number of patients. Another benefit of multiple center studies is that results
obtained from these studies can represent a wider variety of patient background.
This means that a multiple center study including various type of centers are more
desirable, and the conclusion is not heavily dependent on one single center. In
other words, the conclusion of multiple center studies is more “generalizable”, so
that the interpretation of these results is more likely to be applied to a broader
patient population.

Different centers may have different recruitment rates. As a result, this can
cause an imbalance in the number of patients recruited from various centers. If
this happens, some centers may fail to provide enough patients to be randomized
to each treatment group, and the treatment-by-center interaction may become non-
estimable. Therefore, we tend to limit the number of treatment groups in order to
minimize the imbalance problem.

For example, in a dose–response study, there is often a need to include many
doses in one study. As demonstrated in Figure 7.1, a typical dose–response study
would include a placebo and three test doses (a total of four treatment groups).
When this is the case, in a multiple center study, it is desirable to include at least
four patients (one in each treatment group) from each center. However, in some
cases, the center may fail to recruit up to four patients and this will cause imbalance
in data analyses. There can also be situations where one particular dose is over (or
under) represented in many centers. Then, when all centers are pooled together,
the data causes another type of imbalance.

7.3 Design Considerations for Phase II
Dose–Response Studies

Dose–response studies are usually carried out in Phase II. At this point, there
is often a considerable amount of uncertainty regarding any hypothetical dose–
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Figure 7.2. Several possible dose–response curves.

response curves. It is typical at this time that the MTD is known from Phase I
studies, and it may also be assumed that efficacy is nondecreasing with increasing
doses. Even so, the underlying dose–response curve can still take many possible
shapes. Under each assumed curve, there are various strategies of allocating doses.
For example, in Figure 7.2, the population dose–response curve can be assumed
to take a variety of shapes. If we select doses to detect the ascending part of curve
3, then the planned doses should be on the higher range. On the other hand, if we
need to select doses to detect the activities of curve 1, then the doses should be
chosen on the lower end. Thus, the dose allocation strategy can be very different
depending on the underlying assumed dose–response curves.

In general, when designing a Phase II dose–response clinical trial, we need to
consider the following important points: dose frequency, dose range, number of
doses, dose spacing, use of control (or lack of), sample size for each treatment,
fixed dose or dose titration, and others. Some of these points are discussed in the
subsections below.

7.3.1 Frequency of Dosing

In designing dose–response clinical studies, we need to know how often should
a patient take the test drug (e.g., once a day, twice a day, or dose every 4 hours
during the day). This is a question about dosing frequency, and it is usually guided
by the Phase I PK–PD findings. One of the PK parameters is the half-life of a
drug. The estimated half-life helps to estimate how long the drug will stay in
human body. Using this information, we can propose a dosing frequency to be
used for dose–response study design. In certain cases, we may study more than
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one dosing frequency in a single study. When this is the case, a factorial design
(dose, frequency, dose × frequency) can be considered.

However, in some drugs, the PD response may be different from PK. Recall
that PD measures how the drug works in human body while PK measures how the
body do to the drug. In this case, even from the PK half-life data, we think there
is insufficient drug in the body after several hours of dosing, but there may still be
enough drug in the tissue to help with PD responses. On the other hand, the PK may
indicate that there are still plenty of drug in the body, but these drugs may not cause
any effective PD responses. In some drugs, the concentrations for PD activities can
be very different from that for PK activities. Hence, the dose frequency derived
from PK may either overestimate or underestimate the concentration needed for
PD response. In some cases, the best dose frequency may be derived in later phases
of the drug development.

Another important guiding principle in selecting dosing frequency is based on
the market assessment. For example, if the market requires a once daily dosing
treatment, but the drug candidate under development has a twice-a-day PK pro-
file, then some formulation change may be necessary. Figure 7.3 presents time–
concentration curves of this situation. The horizontal line that is above the x-axis
represents the efficacy concentration level (often based on PD information). The-
oretically speaking, we need to keep the drug concentration staying above this
line all the time for the drug to work. In order to achieve this concentration, two
strategies are possible: we can either dose the subject twice-a-day (BID) with low
dose (Figure 7.3), or once-a-day (QD) with the high dose (which is twice the

Figure 7.3. Once a day vs twice a day dosing.
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dosage of the low dose, Figure 7.3). Note that in the first few hours post dosing,
the high dose may result in a very high concentration, which could potentially
cause severe adverse events. When this is the case, re-formulation of the drug may
be needed so that when dosed as once a day, the Cmax would not be too high, while
the efficacy concentration can be maintained throughout a 24-hour period.

In designing the first few Phase I trials to study PK, there is very limited in-
formation about how will the human body metabolize this drug candidate. At this
stage, data observed from preclinical studies and animal experiments on this drug
candidate are used to help guide designing these Phase I trials. In case the drug
candidate belongs to a certain drug class where other drugs of the same class were
already on the market, information obtained from these other drugs can be used to
help guiding the study designs for this drug candidate.

During the development of a drug candidate, sometimes reformulation may
be needed. There can be many different reasons why there is a need for drug
reformulation, including to help absorption, and to change the half-life. It is critical
to understand that after reformulation, the PK–PD properties of the drug candidate
are different from what they were prior to reformulation. Hence, all of the dosing
information and drug regimen obtained from studies before the reformulation will
need to be changed and re-studied. This can potentially cause major re-work. Re-
work in drug research and development delays the development process and results
in additional amount of investment.

In studying the PK–PD relationship, we should realize that the main point is
whether Cmin, Cmax, or AUC drives the PD. This is a fertile area for collaboration
between statisticians and pharmacokineticists. Models based on prior trial data
(e.g., from preclinical data, clinical data of the drug candidate under study, other
compound of the same class) can be developed to inform the decision.

7.3.2 Fixed-Dose versus Dose-Titration Designs

A fixed-dose design is in contrast to a dose-titration design. In a fixed-dose design,
once a patient is randomized to a dose group, the patient would take the same
dose of study drug throughout the entire dosing period. In a dose titration design,
a patient is randomized to a dose regimen with a starting dose, then the dose for a
patient can be changed over time. In a dose-titration study, subjects are randomized
to start with a low dose, and depending on either patient’s response to the drug,
or a predetermined schedule, the dose is gradually increased until a suitable dose
level is found. For example, in a “titration to response” design, each subject can
receive more than one dose. A patient who responds to a low dose may stay on this
low dose, and a patient who does not respond to a low dose after a prespecified
treatment period may receive the next highest dose of the drug. This procedure is
repeated until some designed criteria are satisfied. There are at least two ways of
analyzing data obtained from this design:

1. If patients are titrated until a response occurs (e.g., sufficient efficacy or a
tolerable level of adverse events), the response measure is the dose achieved
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and the study generates an estimate of the distribution of doses required for a
response. This can be useful—but it’s not a dose–response relationship per se.

2. This same data (assuming multiple measurements of some parameter prior to
response) can be analyzed with a mixed effects model in an attempt to tease out
the dose–response relationship. This is based on the assumption that individuals
vary in their dose–response parameters and we observe a censored set of data.

In this design, the time effect versus dose effects complicate matters.
In addition to the titration-to-response design, there are other types of titration

designs. One example is a fixed titration design: doses are changed on a fixed
schedule without regard to response. The time on dose is confounded with dose, so
that either a model-based analysis is needed or preferably the dose groups are split
at the titration times, keeping some patients on the same dose to allow estimation
of the time effect. Another example is dose–response cross-over design—this can
be considered as a type of titration design—with the sequence groups taking care
of the time effect mentioned for the fixed titration design.

There are some advantages of a titration design. For example, a study with this
design will allow a patient to be treated at the optimum dose for the patient; this dose
allocation feature reflects the actual medical practice. However, the disadvantage
of a titration design is the difficulty in data analysis. For example, if a patient
responded to the test drug after doses are escalated, it is unclear whether the
higher dose or the accumulation of the lower dose caused the response. In titration
designs with multiple treatment groups, there may be overlapping doses—e.g.,
one treatment group is 10 mg escalating to 20 mg, while another group is 20 mg
escalating to 40 mg. When this is the case, it is difficult to make inferences about
the 20 mg dose group.

In some rare cases, instead of a dose–response study, a concentration response
study is designed. A concentration response study assesses efficacy and safety
measurements observed from subjects according to the plasma concentration of the
study drug, but not the doses of the study drug. There are many practical limitations
in using this type of designs, these include, among others, how to blind the patient
and the physician, and how and when to measure the blood concentration.

Because of the issues with dose titration designs and concentration response
designs, the parallel, fixed dose designs are, in general, the more commonly used
designs for dose–response studies. Therefore, in many of the dose–response stud-
ies, patients are randomized to a few fixed dose groups and are compared with one
or more control treatment groups.

7.3.3 Range of Doses to be Studied

As discussed earlier, drug efficacy can only be studied from patients with the target
disease. Hence, at the beginning of Phase II there is no efficacy information on these
patients to help define the dose range for study. It is desirable to obtain information
that helps describing the efficacy and safety dose–response curves. Studies should
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be designed to help estimate MaxED, MinED, and possibly to obtain additional
information to support MTD. Although estimates regarding MTD should have
been available prior to Phase II, more information will be helpful to re-confirm or
to adjust MTD estimates obtained from previous trials. If the budget and timeline
are permissible, the first dose ranging study should cover a wide dose range in a
hope that this study will help identify the doses where most of the activities exist.
The next study will then be designed to capture the dose–response relationship
using information obtained from the first study.

Note that nonclinical information on the candidate and perhaps both clinical and
nonclinical data for related compounds often provide a minimum drug concentra-
tion profile that is expected to be required for efficacy and safety. Together with
the PK profile, this provides a target dose range, which we would want to explore,
and possibly, a minimum dose expected to have little or no efficacy that we might
want to include.

In a dose–response design with placebo, low dose, high dose and several doses
in between, the dose range is defined as the range between the lowest and the
highest dose. Dose range can be expressed as the ratio of highest dose over lowest
dose—as a rule of thumb, in the first dose ranging study, the range should be at
least 10-fold. In many cases, when the dose range is too narrow, the dose–response
study failed to deliver the necessary information for efficacy or safety, and re-work
will be needed after these studies. Costs of re-work can be tremendous at times.
These costs may include costs of additional studies and costs of delaying the drug
get to the market, in addition to all the resources foregone in conducting the current
studies.

7.3.4 Number of Doses to be Tested

In order to cover a wide range of doses, it is desirable to study as many doses as
possible. However, the number of doses that can be tested in a given study is limited.
There are practical constraints in determining the number of treatment groups. Most
trials with sufficient number of patients are multicenter trials. As mentioned earlier,
different centers may have different recruitment rates, and imbalance in number
of patients between treatment groups may exist. If this happens, the treatment-
by-center interaction may become nonestimable. By increasing the number of
treatment groups, the risk of imbalanceness increases. In order to minimize this
risk, we tend to limit the number of treatment groups in each study. If we need to
have more dose groups in a Phase II setting, we can prespecify that the primary
model for data analysis is a main effect model, and that the treatment-by-center
interaction is not to be tested or estimated.

Another practical issue is dosage form. Sometimes there are only limited dosage
forms available in the early stage of clinical development. When this is the case,
the number of doses to be used in a study may also be restricted. For example,
if the tablet strengths are 10, 20, and 50 mg, respectively, then it is very difficult
to study doses of 1, 3, or 25 mg, respectively. For some studies, the technique
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to achieve blinding is to produce matching placebos for each treatment group.
The more doses that are included in a study, the more matching placebos may be
needed. For example, if 1 mg tablets, 5 mg tablets and 10 mg tablets are used in
the same study and these three types of tablets look different, then a placebo for
each dose will be needed; i.e., three types of matching placebo to be used in this
study. The number of dose groups may also be limited by practical considerations
of how many pills we might reasonably expect a subject to take for any given dose.
For these reasons and others, clinical studies designed with more than six or seven
treatment groups are rare.

7.3.5 Dose Allocation, Dose Spacing

As depicted in Figure 7.2, with very limited information about the drug candidate,
after allocating a placebo control, a high dose that is close to MTD, it will be very
difficult to select the medium or low doses. The challenge is that at an early stage,
there is no information as to what the underlying dose–response curve should be.
Is it curve 1, curve 2, curve 3 or some other form? When there is very limited data
to help allocating doses, we may consider the potential use of other information
such as preclinical and related compounds. This is much more than an issue for
statisticians, we should preferably work with the pharmacokineticists, clinicians,
and pharmacologists. Dose allocation also depends upon the primary question:
detecting an effect, estimating the slope near the MTD, finding the lowest dose
with effect of at least some minimally clinically important difference, fitting a
specific type of model, and so forth.

After the number of dose groups is chosen, it is still a challenge to determine
the high dose, low dose, and spacing between test doses. Typically, the high dose
is a dose selected around or below the MTD, but choices of lower doses are often
challenging. Wong and Lachenbruch (1996) introduce cases using equal dose
spacing from low to high doses; that is to divide the distance from placebo to
highest dose by the number of active doses, then use that divided distance as the
space between two consecutive doses (e.g., 20, 40, 60 mg, respectively). Others
may consider some type of log dose spacing; e.g., 1, 3, 10, and 30 mg, respectively,
for the design.

Hamlett et al. (2002) proposed to use binary dose spacing (BDS) design for dose
allocation. If the study includes two test doses and placebo, BDS suggests to pick a
mid-point between placebo and MTD, then allocate a dose above the midpoint and
another dose below. If the study uses three test doses and placebo, BDS suggests
to keep the high dose as the one selected in the two-dose case. Then pick a second
midpoint between placebo and the first mid-point, allocate the low dose below
the second midpoint, and the medium dose between the two mid-points. When
more doses are used, BDS picks more mid-points to the lower end and allocates
doses accordingly. BDS provides a wide dose range, helps identify MinED, avoids
allocating doses too close to the MTD, allows a log-like dose spacing, it is flexible,
and easy to implement.
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7.3.6 Optimal Designs

The dose levels and the number of subjects at each level can be chosen mathe-
matically (using mathematical theory, simulation, or some other tools) in order to
optimize a statistical criterion such as small errors of estimation. This set of dose
levels and number of subjects at each level is called the statistically optimal exper-
imental design, and the design depends on the chosen criterion and the underlying
model for the dose–response curve.

The statistical principles of optimal experimental design can be applied to many
studies. Optimal design techniques can be used with various statistical models. For
a given study objective and a reasonable model, optimization techniques allow one
to determine the statistically best set of doses and number of subjects to be used at
each dose. These designs help to estimate the parameters of the model; for example,
slope and ED50 (the dose which achieves 50% of efficacy response) in logistic
regression models, and intercept and slope in linear regression models. The doses
used might not necessarily be those intended for use in the label, but they provide
a basis for estimation of the dose–response curve so that the response at any dose
can be predicted with validity and precision. Depending on the optimality criteria
chosen, the doses studied may not necessarily be equally spaced or have equal
numbers of subjects at each dose. Information on the shape of the dose–response
curve should be attained where possible from PK–PD studies and early Phase II
studies, which can help the design of the late Phase II studies.

Pukelsheim (1993) proposes a comprehensive set of statistical approaches to op-
timal experimental design. Wong and Lachenbruch (1996) review dose–response
designs and use optimal design criteria for linear and quadratic regression. They
also use simulation to illustrate the effect of optimal design criteria on spacing of
doses and the numbers of subjects at each dose.

The key to optimizing a design is availability and use of prior information—
based on candidate information and related compounds. A second key is to take
into account the uncertainty in an a priori model. A goal might be to obtain a design
that will work adequately no matter where the dose–response curve sits on the dose
scale (over the range deemed most likely). On the other hand, the focus may be on
average success—weighted average success, integrated over the prior distribution
of the dose location uncertainty. Clinical simulation can be a useful tool here.

7.4 Concluding Remarks

Dose finding or dose selection happens mostly during Phase II or Phase III clinical
development. The primary challenge for designing a Phase II dose–response clini-
cal study is the lack of knowledge about how the drug works because this is the first
time the test drug is studied in patients with the target disease. Again, Phase II stud-
ies are designed primarily for exploratory purposes and hence the main statistical
method is estimation, and scientists tend to use model approaches in analyzing data
collected from these studies. The main challenge in Phase III is to guess the correct
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dose or range of doses and be able to demonstrate it. Phase III studies are for confir-
matory purposes. Multiple comparison procedures are commonly used to test sta-
tistical hypotheses for each dose comparing with placebo. This chapter introduced
some considerations and difficulties in designing dose–response clinical trials.

A changing environment is pushing scientists, especially statisticians, to be more
creative in designing dose-finding studies. Recently, FDA discusses the Critical
Path initiative, which pressure the sponsors to reduce the development cost and
speed up the time line. Within many pharmaceutical companies, there is a strong
push to do more creative Phase II programs, aimed at assessing the dose response
for safety and efficacy so that the drug candidate enter Phase III with the right dose
range (or to stop developing compounds in Phase II if they’re not likely to measure
up). The potentially more creative designs and analyses serve a role in the reg-
ulatory review—for justifying the dose selection and possibly even for Phase III
pivotal trials. Hence we hope to encourage readers to think about some of the
newer strategies based on considering a wider range of potential designs, using
prior information to inform the design, and basing at least some of the interpre-
tation on model-based analyses that can take advantage of prior information and
pharmacologically-reasonable assumptions about the underlying dose–response
relationship.

At the end of Phase III, in the preparation of an NDA, the sponsor drafts summary
of clinical efficacy (SCE) and summary of clinical safety (SCS). Traditionally, this
often includes simple pooling of similar studies and side-by-side presentation of
results. There is much more that can be done. One objective is to perform dose–
response oriented meta-analyses of individual patient data, to combine all the rel-
evant information about dose response and in particular, how it depends upon the
indication, concomitant disease conditions, patient demographics, as well as time
factors to accommodate different trial lengths. These were useful in the FDA dis-
cussions. This sort of meta-analysis can be built prospectively into the clinical de-
velopment plan. In this regard, we hope to promote the collaboration of statisticians
with PK–PD scientists, as natural ‘partners in quantification’. This means broad-
ening the perspective and understanding the difference between ‘learning’ and
‘confirming’ objectives for design and analysis of trials (and the entire programs).

Clinical trial simulation is a very useful tool to help with dose–response study
designs. Simulation can be used to examine the impact of dose spacing, number of
groups, and method for data analysis. There’s not one right answer about number
of groups as it depends upon the specific trial objectives, the data characteristics,
and the dose–response relationship itself. An example of a clinical trial simulation
is provided in Chapter 8.
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8
Clinical Trial Simulation—A Case
Study Incorporating Efficacy and
Tolerability Dose Response

WAYNE EWY, PETER LOCKWOOD, AND CANDACE BRAMSON

8.1 Clinical Development Project Background

This case study is based on an early clinical development project we conducted.
Details that identify the candidate compound have been obscured for confidential-
ity reasons, but the situation described is not uncommon in early clinical develop-
ment.

An important feature of the setting is that the candidate drug belongs to a class
that shares a similar mechanism of action and for which considerable clinical and
nonclinical information is available. This is a benefit because this information can
be used to inform the clinical program design. But the challenge is also greater
because the key question becomes differentiation from the class relatives, and not
simply finding a safe and efficacious dose. This is historically a Phase III type
of question, but in the increasingly cost-constrained development environment,
there is a great advantage if inadequately active candidates can be identified and
terminated early in Phase II.

The therapeutic setting is symptomatic treatment of a chronic condition, where
efficacy is assessed by one primary and other secondary measures. Based on avail-
able information (including Phase I data for the candidate), we were confident that
we would be working within a safe dose range, so that for trial design we could
ignore the unlikely possibility that an entire dose group might need termination
due to safety issues. The main safety-related concern was tolerability as reflected
by the incidence and severity of a particular class of adverse events (AE). Clin-
ical trial efficacy and tolerability data in the same indication were available for
a related compound. A head-to-head comparison trial with this reference agent
was not possible, so historical data would provide the performance target for the
candidate.

An overall development goal was to identify a dose range of the candidate that
is clinically noninferior to the “best dose” of the reference agent, considering both
efficacy and tolerability. Clinical noninferiority means that the candidate is not
worse than the reference agent by more than a clinically relevant amount; i.e., it
is clinically similar or better. If a noninferior dose were not found, there would be
no commercial or medical value in continued development. If a qualifying dose
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were found, additional development decisions would be based on the potential for
superior efficacy, tolerability, or regimen.

8.1.1 Clinical Trial Objectives

An obvious objective for the first Phase II trial is to confirm the candidate’s basic
pharmacology (efficacy and safety). This proof of concept (POC) objective could
be achieved by a simple two-group study, using some relatively high dose (near
the maximally tolerated dose, MTD) versus placebo, with a sample size appropriate
to the measures’ variability and anticipated effect sizes. However, based on prior
knowledge about the compound class, it is almost certain that the candidate will
have the predicted pharmacological effects, so proving this need not be the major
focus of the first trial. Rather, the design goal for this trial was to provide a basis
for an early Go/No Go decision and to select the doses for subsequent registration
trials.

More specifically, the trial objective is to estimate the dose–response relation-
ship (DRR) for each measure, allowing estimation of the dose expected to give
a response comparable to the reference agent’s best dose and identification of a
dose range with sufficient potential for continued development. These estimates
will be imprecise relative to what a Phase III trial would provide. Nevertheless,
there might be sufficient information to at least broadly determine if the candidate
has useful potential, with some inevitable gray range for which this first study
cannot provide a Go/No Go decision. Simulation helped us to evaluate different
trial designs and analysis methods and to set expectations about how successful
the trial might be (Bonate, 2000; Holford et al., 2000; Kimco and Duffull, 2003).

8.1.2 Uncertainties Affecting Clinical Trial Planning

Three major uncertainties about the DRRs were relevant to trial planning.

(1) The DRRs for the reference agent. The reference agent could not be included in
this trial, for reasons beyond the scope of this discussion. Thus, the trial needed
to be based on the strong (and to a large extent untestable) assumption that
the reference and proposed trials’ patient populations, methods, etc., would
be similar enough to justify comparison of the placebo-adjusted results. The
prior reference agent trial (with sample size of approximately 500) provided
an estimated DRR and the associated uncertainty for each endpoint, as well
as target values (TV), the estimated responses at the best dose, to be met by
the candidate. The TVs will be considered as constants in the candidate trial
analysis.

(2) The relative potency (RP) for tolerability, for the candidate compared to the
reference agent. The relative potency for tolerability can be defined as the ratio
(mg of reference/mg of candidate), where mg of reference is simply the ref-
erence drug’s best dose and mg of candidate is the candidate dose that pro-
duces an identical AE incidence. Both pharmacokinetic and pharmacodynamic
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differences are reflected in this RP value. An initial RP estimate and its uncer-
tainty were based on nonclinical data, and updated estimates would become
available at the completion of the Phase I trials.

(3) The therapeutic index (TI) of the candidate compared to the reference agent.
The TI can be defined as the ratio (RP for efficacy/RP for tolerability), where
the RP for efficacy is defined similarly to the RP for tolerability. The TI is a
more convenient parameterization than considering the efficacy and tolerabil-
ity RPs separately. The same best-dose value for mg of reference is used in
both definitions, while the mg of candidate can differ for the two endpoints.
A true TI = 1 implies the compounds have identical performance at their re-
spective best doses (and all other doses if the DRRs have similar shapes). A
TI >1 implies superiority and TI < 1 inferiority; a value “sufficiently close” to
1 implies clinical similarity. The trial’s objectives can be viewed, in effect, as
estimation of the TI from the first (human) estimate of the efficacy RP and an
updated estimate of the tolerability RP.

These uncertainties play different roles in the trial design, as elaborated below.

8.2 The Clinical Trial Simulation Project

The planning for the Phase II trial began prior to the candidate entering Phase I. Be-
cause the proposed dose-finding objectives were much more ambitious than those
of a typical Phase IIa POC trial, we also began planning a clinical trial simulation
(CTS) project to support the design process. A colleague who was not a regular
clinical project team member led the CTS project. This administrative arrangement
was necessary because the regular team members could not devote sufficient time,
within the project schedule, to conduct a project of the proposed scope. In addition,
a secondary project goal was a more general exploration of the usefulness of the
methodology and of the performance characteristics of some novel (for us, at least)
criteria for optimizing trial design in early clinical development.

One of the first steps, continued iteratively during the project, was to develop
a written CTS project plan (Holford et al., 1999). This plan described the CTS
project objectives, which are quite distinct from the clinical trial objectives. The
plan described the range of trial designs that would be considered, the range of
data models to be employed, the specific clinical trial objectives for which the
design was to be optimized, and the performance criteria upon which alternative
designs would be compared. Specific analysis methods were defined for each end-
point, comprising three alternatives from which we planned to select the best for
inclusion in the trial protocol; time constraints eventually allowed CTS imple-
mentation of only two. We also developed the overall evaluation plan (decision
criteria) by which a simulated trial’s conclusions are obtained from its data—
e.g., the steps to estimate a clinically noninferior dose range. For the simulations
to be relevant, these methods and criteria must be consistent with those eventu-
ally used for the actual trial. This all amounts to developing and implementing a
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Table 8.1. Selected acronyms

AE Adverse event (the tolerability measure)
ANCOVA Analysis of covariance (includes analysis of variance)
CI, LCL, UCL Confidence interval, lower and upper confidence limits, for a

difference from placebo, often used with the % as a suffix:
e.g., 80% CI: LCL80, UCL80

CTS Clinical trial simulation
DR, DRR Dose response, dose–response relationship
LCSL, UCSL Lower (efficacy) and upper (tolerability) clinical similarity

limits
MCID Minimal clinically important difference (from TV)
MTD Maximally tolerated dose (for extended therapy)
N Total sample size in a trial (not per group)
NI, NI region Non-inferiority, NI dose region
RD, ED, TD Reference, efficacy, and tolerability doses
RP Relative potency (efficacy or tolerability)
TI Therapeutic index (ratio of RPs)
TV Target response value (efficacy or tolerability)

complete statistical analysis plan for each proposed design and alternative analysis
method. Clearly, this situation has the potential for exponentially expanding com-
plexity, which must be managed against the available personnel time and project
timelines.

Table 8.1 lists some of the acronyms used in this chapter.

8.2.1 Clinical Trial Objectives Used for the CTS Project

For the CTS project work, the following clinical trial objectives were adopted:

(1) Confirm that the candidate is efficacious on the primary efficacy measure.
(2) Estimate the target doses—the candidate doses expected to give the target

response levels (TVs) for efficacy and tolerability.
(3) Estimate a dose range that is “potentially clinically noninferior” to the reference

agent for efficacy and tolerability.

A fourth trial objective, not covered due to space limitations, related to evaluating
potential superiority to the reference agent.

Objective 3 is the key for subsequent development decisions, so that if a “po-
tentially clinically noninferior” dose range were identified, this would provide a
“Go signal” for the project (which would need to be further interpreted within the
broader development context), while failing to identify a range would be a “No
Go signal”.

� Definitions and assumptions related to the clinical trial objectives: Noninferior-
ity is a more complex concept in a multidimensional DR context than in the case
of a simple comparison on a single endpoint of one candidate dose to a reference
agent dose. Prerequisite definitions, conventions, and basic assumptions are pre-
sented in the remainder of this section, as a basis for describing the decision
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criterion in Section 8.2.4. While perhaps cumbersome initially, the terminology
does allow a concise operational statement of the decision criteria.

� Conventions: Tolerability is measured by AE incidence, so that lower values
are desired, while efficacy is scored so that increased values are desired. The
true efficacy and tolerability DRRs are assumed to increase monotonically with
dose. The terms “confirm”, “potentially”, and “clinically noninferior” in the
objectives statement must be interpreted in the context of Phase IIa, during
which the results are used for internal decision-making regarding the candidate’s
development. Such decisions can be based on a lower degree of certainty than
would be necessary, for instance, for a regulatory filing.

� Tolerability: The tolerability target value (tolerability TV—the estimated AE
incidence at the reference’s best dose) and a clinical indifference margin (tolera-
bility MCID, minimal clinically important difference) define the highest true AE
incidence rate that would be considered clinically noninferior (the upper clinical
similarity limit or tolerability UCSL). In the simulated trials, the candidate’s
true DRR determines the dose (the true tolerability dose or true TD) with an AE
incidence equal to this UCSL; lower doses are clinically noninferior and higher
are clinically inferior. From this perspective, the key question is not whether the
candidate is noninferior, but what the highest noninferior dose is. Inference is
based on an upper confidence limit for the AE incidence difference at a dose
compared to placebo (tolerability UCL). If UCL ≤ UCSL, the dose is judged
noninferior. The highest noninferior dose is designated the estimated TD.

� Efficacy: For efficacy, an efficacy TV and an efficacy MCID set the lower clinical
similarity limit (efficacy LCSL). The true DRR defines a true efficacy dose (True
ED) that divides the dose range into inferior (lower) and noninferior (higher) re-
gions. The estimated ED is the lowest dose satisfying two criteria—significantly
better than placebo (LCL > 0) and not significantly worse than the target value
(UCL ≥ TV). (An alternative to the LCL > 0 element could be LCL > LCSL,
analogous to the estimated TD definition. For this particular case, this was deter-
mined to be an unrealistic standard, based on the sample sizes being considered.)

� Noninferior Dose Range: The true NI dose range is the True ED to the True TD,
surrounding the target or reference dose (RD). For a candidate with a TI of 1,
the width of the NI range depends upon the efficacy and tolerability MCIDs,
as well as the shapes of the DRRs in the RD region. For this project, the RD
was 75% of the MTD, and the True ED and True TD were 62.5 and 87.5%
MTD, respectively, based on clinical and statistical review of the reference data
(rounded for presentation purposes). For a candidate with TI > 1, the interval
is wider, while for a candidate with a sufficiently low TI, True ED > True TD
and there is no dose that is truly noninferior. The inference for the noninferiority
objective (Objective 3) has two logical steps.

(1) The trial gives a Go signal if the estimated ED ≤ the estimated TD, otherwise
the result is No Go signal. A Go signal is correct if True ED ≤ True TD, for the
DRRs being simulated, while a No Go signal is correct when the DRRs have
True ED > True TD.
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(2) In the case of a Go signal, the estimated NI dose range is (estimated ED,
estimated TD). Scoring this estimated dose range for correctness might be
done in a variety of ways. Our method is based on whether the estimated and
true dose ranges at least partially overlap.

These definitions are revisited in Section 8.2.4. The key message, however, is
that we attempted to mimic the decision process for recommending a Go/No Go
decision and a dose range for further study, based on the key efficacy and tolerability
measures, in contrast to, for instance, simply providing hypothesis tests of efficacy
for each dose group against placebo. Of course, with the actual trial data in hand,
these recommendations would be integrated with all other information for making
the overall development decisions.

8.2.2 The Simulation Project Objective

The main objective of the CTS project was to compare the performance of alter-
native trial designs and analysis methods for correctly assessing candidate drugs
across a range of candidate efficacy and tolerability DR profiles which might be
encountered in the actual trial and among which we want to discriminate, while tak-
ing into account our current uncertainty about the response profile for the reference
drug and the relative potency for tolerability for the candidate versus reference,
resulting in design and analysis recommendations.

8.2.3 Simulation Project Methods 1: Data Models
and Design Options

The key step of a clinical trial simulation is to simulate a single trial, analyzing and
drawing conclusions from it just as one would do in a real-life trial. This requires
using patient data models to populate the particular trial design being considered
and applying the proposed statistical methodology and decision rules. From the
trial’s statistical results, conclusions are drawn for each study question, mimicking
the logical process that will be used in the real-life trial. Based on the correct answer
(which is known from the simulation set-up), the trial’s inferences can be scored
for accuracy. A simple “correct”/“incorrect” scoring is natural and convenient
for many trial questions; for scoring point estimates, it is convenient to reduce
the assessment of bias and precision to a single dichotomy, based on whether the
estimate is “close enough” to the true value (Lockwood et al., 2003). Somewhat
arbitrarily, we used ±25% for this project. The percentage of correct trials can
easily be calculated (for each question), based on a series of replicate randomized
trials (e.g., 1000) conducted under identical conditions. This percentage becomes
a single data point in the evaluation of the impact of design features on trial
performance.

Preparation for the CTS project includes decisions on the range of designs to be
investigated and numerous other aspects of the data models for generating patient
data in the context of each design. Analysis methods and decision rules must be
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implemented for each design. The entire process is akin to planning, executing, and
analyzing a series of related (but not identical) clinical trials, and then comparing
their results. While this may require a substantial investment of effort, it is almost
certainly less expensive than doing a trial that fails to achieve its objectives because
of incomplete planning.

The remainder of this section describes some of the key elements of the simu-
lation process and models employed in this project.

Endpoints: For simplicity in this presentation, we focus on the primary efficacy
measure (a change from baseline) and one tolerability indicator (occurrence of
the most important adverse event). Other measures were included in the full
CTS project; of these, one important secondary efficacy measure appears in the
data models, but is not otherwise discussed in this chapter.

Candidate profiles and data models: Four distinct candidate profiles are considered,
spanning a range of TIs among which it would be important to distinguish. We
use the same tolerability DRR model for all candidate profiles, while shifting
the efficacy DRR model to achieve the desired TI. The models were based on the
reference data for a single trial, but because that trial used a narrower dose range
than will be available for the candidate’s POC trial, we needed to extrapolate
this model based on assumptions grounded in knowledge of this compound
class. For tolerability, we imposed a gradually increasing DR slope for AE
incidence. The reference efficacy data had a linear DRR in the tested dose range,
while our extrapolation included a plateau approached with a steadily decreasing
slope.

Our base model (TI = 1) has this assumed shape, with the candidate dose
scale related to the reference agent dose scale by a relative potency factor.
� The profile with TI = 0.5 (“inadequate efficacy”) has less efficacy, for

the same level of tolerability, compared to TI = 1. It reaches the same
plateau, but the dose required to reach a given response is double that for the
TI = 1 profile.

� The profile with TI = 2.0 (“superior efficacy”) has more efficacy conditional
on tolerability. As with TI = 0.5, the same plateau is reached, but it requires
just half the TI = 1 dose to reach any particular response level.

� The profile with TI = 0 (“inactive”) has a flat DR relationship. Its purpose
was for verifying that our analysis methods had the desired Type 1 error rate
for Objective 1.
Additional data model details are provided following the discussion of trial

designs.
Designs: The designs considered are all parallel group, placebo-controlled, with no

positive control. The comparison to the reference agent is indirect, through the
differences from placebo in the current and historical trials. The trial length is
a fixed number of weeks, based on regulatory requirements and the anticipated
time course of therapeutic response. The data models are based on the reference
trial data for this period, thereby incorporating the impact of dropouts. The
following design alternatives reflect a focus on Objective 3 more than 1.
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� Total trial sample size (N): The total trial sample size varied from 100 to 600 in
steps of 100. Viewed as a surrogate for trial cost, the impact of the other design
factors are examined conditional upon size.

� Number of candidate dose groups: The number of candidate dose groups
varied from three to seven including placebo.

� Allocation of total trial sample size to groups: Two patterns for allocating the
total sample size (N ) among the groups are considered—equal allocation to all
groups and “end-weighting” in which the placebo and highest dose groups are
twice the size of the other groups. The end-weighting scheme was proposed
on the basis that, for a linear regression, the minimum variance for the slope
is obtained when dose values are spaced as widely as possible. (In retrospect,
considering the regression analysis model used, described below, an allocation
pattern favoring the placebo, low dose and high dose might have been a better
choice. However, pragmatically, in the early stages of drug development, in
our experience, the scientists’ strong preference is to study the doses expected
to be of clinical value, so that a convincing performance benefit would be
needed to justify a plan emphasizing the placebo and lowest dose.)

� Dose spacing pattern: Four patterns of dose assignment are evaluated for
designs with two to six groups (plus placebo). The intended dose for each
group is expressed as a fraction of the true (but unknown) MTD. As described
below, the actual dose assignment is based on an estimated MTD, available
at the start of a (real or simulated) trial.

(1) “High-narrow 50%” spacing: Equally spaced doses from 50 to 100% of
MTD, respectively (e.g., for five groups: 0, 50, 66.7, 83.3, 100%).

(2) “High-narrow 40%” spacing: Equally spaced doses from 40 to 100% of
MTD, respectively (e.g., 0, 40, 60, 80, 100%).

(3) “Wide” spacing: Equally spaced doses over the full MTD range, from 0 to
100 (e.g., 0, 25, 50, 75, 100%).

(4) “Narrow-middle” spacing: Equally spaced doses centered around 50% of
MTD (e.g., 0, 20, 40, 60, 80%).

These patterns were created arbitrarily to provide a range of feasible alterna-
tives. The rationale for emphasizing the range above 40% MTD was based on
experience with the class of compounds; otherwise including doses as low as 5 or
10% MTD would have been prudent. The lowest target doses in these designs are
17 and 14% MTD in the wide and narrow-middle patterns, respectively, with six
groups. Because of uncertainty about the tolerability RP and considerable uncer-
tainty in the TI and the DRR shape over the extended dose range, we saw no firm
basis for fine-tuning the dose spacing based on theoretical optimality criteria.

Location of the dose groups relative to the data model: The dose levels for a trial are
assigned on the candidate scale, while the data models are based on the reference
scale. An estimated RP for tolerability can be calculated from the MTD estimates
for the candidate and reference agent, which allows an approximate mapping
between the candidate and reference dose scales. However, error in MTD estima-
tion results in the assigned doses differing from their intended location on the ref-
erence agent dose scale. As a further complexity, the dose level finally assigned to
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a group is the intended dose rounded down to an available dosage size, based on a
set of candidate tablet sizes available (e.g., 0, 10, 50, and 200 mg, respectively)
and a maximum number of tablets per dosage administration (e.g., ≤3). The
resulting available dosage levels are not uniformly spaced over the entire range.

To reflect the uncertainty in the relative potency for tolerability, the MTD
for each simulated trial is selected randomly from a lognormal distribution.
The clinical project team determined the distribution parameters, based on
nonclinical and ultimately Phase I tolerability data for the candidate. The
variance of this distribution is particularly important because the larger the
variance, the more the realized dose range placement can vary, trial to trial,
from the intended location—one trial might have multiple doses on the efficacy
plateau while another might have none. The mean for the lognormal distribution
was also estimated from the available information—the impact of this choice
is through the uneven spacing of the available dosage levels. Doses higher than
the true MTD can be given in a particular trial. We did not consider the impact
of discontinuing groups due to safety concerns.

Figure 8.1 shows the intended dose spacing for the four design patterns, for
two to six groups; the placebo group at 0% MTD is not shown. The reference
line at 75% MTD indicates the TI = 1 target reference dose.

Spacing pattern

Wide

Narrow–middle

Narrow–high 50%

Narrow–high 40%

0 25 50 75 100

Dose as percentage of MTD

Figure 8.1. The intended dose spacing patterns.

Figure 8.2 illustrates the impact of candidate MTD uncertainty on the realized
dose range, for a sample of 40 typical trials having an intended nonplacebo dose
range from 25 to 100% MTD. Each line corresponds to a single trial, with its
endpoints showing the lowest nonplacebo and highest doses assigned. The
highest assigned doses range from approximately 80 to 120%, around the
100% target.
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Figure 8.2. Variation in assigned doses levels (40 sample trials).

Data models for efficacy endpoints: Following exploratory analyses of the refer-
ence efficacy data, we selected a model for efficacy change from baseline that
included terms for the intercept, a drug versus placebo indicator, linear dose, and
the baseline values for the primary and secondary efficacy measures. There was
no apparent departure from linearity over the dose range studied, so no nonlinear
dose term was needed. The estimated parameters and covariance matrix from
this analysis provided the starting point for creating the efficacy data model.
� To reflect our uncertainty about the true DRR, the model coefficients used for

each simulated trial were randomly selected from a multivariate normal distri-
bution, with mean and covariance matrix as estimated from the reference data.

� Some adjustments, on a trial-to-trial basis, are needed to produce a more
reasonable model over the entire dose range. First, since we believe the true
DRR monotonically increases, any negative DR slope obtained is set to zero.
In addition, since our chosen model structure is discontinuous as the dose
approaches zero, linear interpolation is used in those rare trials having an
assigned dose between 0 and 12.5% MTD. Based on an estimated theoretical
maximum response, a plateau is imposed at dose levels above 75% of MTD,
by gradually decreasing the dose slope to zero.

� For each patient, the baseline efficacy values are drawn from a distribution
based on the reference trial population.

� A random residual variate is added to complete each patient’s efficacy
response. Based on reference data patterns, the residual variance linearly
increases with dose, with a unique set of regression coefficients randomly
selected for each trial.

The base TI = 1 model is modified to provide models for the other TIs—for
TI = 0, the DR slope is set to zero. An “adjusted” dose is used in the calculations
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Figure 8.3. Efficacy data models for the four TI profiles.

for TI = 0.5 (half the assigned) and TI = 2 (double). Figure 8.3 shows the four
efficacy data models, without between-patient and between-trial variation. The
reference lines on the dose scale at the ED (62.5%) and RD (75%) cross the
TI = 1 line at the efficacy LCSL (about 0.75) and the efficacy TV (about 0.86),
respectively.

Figure 8.4 shows the efficacy DRRs (without patient variability) for 10
sample trials (TI = 1). Note especially the locations relative to the target value
TV. For four of these trials, the expected response does not reach the target
(at doses ≤125% MTD), including one with a flat line at about 0.6 (for it, the
sampled slope was negative, so it was reset to zero). For two trials, the target
level is reached at about 50% of the MTD.

Figure 8.4. Sample data models for efficacy (10 trials).



8.2 The Clinical Trial Simulation Project 117

Data models for tolerability endpoints: Following a similar model building
process, the probability of an AE event is calculated as a logistic function, with
terms for intercept, drug versus placebo indicator, dose, the secondary efficacy
measure baseline, and the observed response on the primary efficacy measure.
Above 75% MTD, the DR slope for a trial is made increasingly steep, reflecting
our expectation for these extrapolated doses. Because the patient’s observed
efficacy response is in the model, there is a correlation between the efficacy and
tolerability endpoints, as observed in the reference data, presumably reflecting
that some patients’ good efficacy is accompanied by increased risk of adverse
events.

The same tolerability DR model is used for all TIs, as shown in Figure 8.5
(without patient and trial variability). The reference lines at 75 and 87.5% MTD
intersect the model line at the tolerability target and UCSL levels, respectively.

Figure 8.5. Tolerability data model (% adverse event incidence).

Figure 8.6 shows the tolerability DRR (without patient variability) for 10
sample trials, again demonstrating the range of data models that are consistent
with the data from the reference agent trial.

8.2.4 Simulation Project Methods 2: Analysis
and Evaluation Criteria

The evaluation criteria for the trial objectives are described in this section. Both
linear regression and analysis of variance methods were implemented, to allow a
better method (as measured by the percentage of correct trials) to be identified for
proposed inclusion in the trial protocol.

Analysis of covariance (ANCOVA): Based on an ANCOVA of the change from
baseline for the efficacy measure (with baseline as covariate) and an ANOVA of
the AE incidence (no covariate), the key statistics are the least squares adjusted
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Figure 8.6. Sample data models for tolerability (10 trials).

mean (LSMean) differences between each dose group and placebo, each with
an associated 80% confidence interval (CI) comprising upper and lower limits
(LCL80, UCL80). Linear interpolation between adjacent groups is used for dose
estimation based on the mean response, but criteria based on the CI are evaluated
only at the tested doses.

Linear regression: A linear regression model is used to calculate the predicted
difference from placebo at all dose levels up to the highest tested dose, with an
associated (nonsimultaneous) 80% CI band. The model terms include an inter-
cept, drug versus placebo indicator (1 or 0), and linear dose; if ≥3 nonplacebo
groups, a quadratic dose term is also included. For efficacy, the baseline ob-
servation is a covariate. The discontinuity of this model at dose = 0 has little
practical impact for estimation in the higher dose regions of primary interest.
The quadratic dose term provides some flexibility to fit the underlying nonlinear
data patterns; in an actual trial, it would be a matter of judgment as to whether
this term realistically improves the estimation.

A third planned set of methods could not be implemented in the CTS due to
project time constraints—nonlinear regression for efficacy using an “Emax” model,
which would likely match more closely the true DRR, and logistic regression for
AE incidence, to avoid the clear violation of the variance homogeneity assumption
in the ANOVA and linear regression methods.

8.2.4.1 Data Evaluation Criterion for Trial Objective 1: Confirming Efficacy

We set the experiment-wide significance criterion at 10% (one-sided) to limit the
false positive risk when the efficacy response is flat (TI = 0). The trial success
criterion for this objective is based on the correct answers of “no efficacy” when
TI = 0 and “efficacy” when TI > 0.
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ANCOVA: A 10% one-sided Dunnett’s test for the two highest doses compared to
placebo is used as the first step in a modified step-down approach. If either of
these groups meets the significance criterion, the trial is judged to have confirmed
efficacy; and if so, the remaining groups are separately tested at the 10% level
without further multiplicity adjustment. A monotonic true DRR is expected,
with the possibility that the higher doses are on a plateau, so that this procedure
focuses the first test on the two groups most likely to have the biggest effect. With
the caveat that the LCL80 is multiplicity-adjusted for the two highest doses, we
can, as shorthand, say that any group deemed significantly better than placebo
has passed the “LCL80 > 0” criterion. The lowest dose passing this criterion
is used in Objective 3. Note that it is possible that only the highest and lowest
doses in a trial pass LCL80 > 0; the lowest dose would be used in Objective 3,
despite the nonsignificance of the intermediate groups.

Regression: A contrast of the dose coefficients is tested at the 20% 2-tailed level.
If this contrast is statistically significant, the LCL80 band is examined to find
the lowest dose in the tested range, if any, for which LCL80 > 0. The trial is
deemed to have confirmed efficacy if such a dose is found. The lowest LCL80 >

0 dose, possibly between two tested dose levels, is the lowest significant dose
used in Objective 3.

8.2.4.2 Data Evaluation Criterion for Trial Objective 2: Estimated Target
Doses for Efficacy and Tolerability

The fitted model is used to find the dose corresponding to the target response. If not
achieved in the tested dose range, the conclusion is that the target dose is “above
the top tested dose”. For the ANCOVA, the “fitted model” is a linear interpolation
between adjacent group LSMeans. The trial success criterion is based on whether
the estimated dose is “close enough” to the true dose. For the TI = 1 and two
candidates, the estimate is judged correct if it is within 25% of the true value, while
a larger error or an estimate “above the top tested dose” is incorrect. For TI = 0
or 0.5, the correct answer is “above the top tested dose”.

8.2.4.3 Data Evaluation Criterion for Trial Objective 3: Estimated Dose Range
Potentially Clinically Noninferior to the Reference Agent for Efficacy
and Tolerability

This is the key objective for the trial and the most complex to define, calculate, and
score. The basic logic, definitions, and abbreviations were introduced in Section
8.2.1. The estimated efficacy dose (estimated ED) is defined as the higher of two
dose values—the lowest dose with significant efficacy (LCL80 > 0) and for which
the UCL80 ≥ target, i.e., with no evidence of inferiority to the target level, based on
a nonmultiplicity-adjusted 1-tailed 10% level test of Ho: Effect = target or better.
The estimated tolerability dose (estimated TD) is the highest dose with UCL80 <

UCSL. The trial success criterion for Objective 3 consists of two sequentially
evaluated components.
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(1) Go signal: A Go signal results from a finding that estimated ED ≤ estimated
TD. Correspondingly, when estimated ED > estimated TD, the No Go signal
reflects that no potentially acceptable dose range was found. The correct answer
for TI = 1 or 2 is “Go” and for TI = 0 or 0.5, “No Go”.

(2) Dose range estimate: The dose range estimate (applicable only when there is a
Go signal) is from estimated ED to estimated TD. We employ a relatively weak
success criterion: “Correct” if the estimated range at least partially overlaps
the true clinical NI range (True ED, True TD); otherwise “Not correct”.

A trial’s answer for Objective 3 is correct if both the Go/No Go signal and dose
range are correct.

The designs are compared on the percentage of correct trials, for each objective.

8.3 Simulation Results and Design Recommendations

The various design features and data models combine to give a large number
of simulation “scenarios”, each yielding a percentage of correct estimates for
each trial objective. The complete set of results is complex, with no single de-
sign being obviously superior on all criteria under all circumstances. The selected
results presented below illustrate the basis for our design recommendations; it
is certainly possible that others reviewing the results could come to different
recommendations.

In each case, 1000 replicate trials were conducted for each specific trial sce-
nario. This provides a resolution of about 2 to 4 percentage points for the design
comparisons, depending upon the overall levels of percentage success.

8.3.1 Objective 1: Power for Confirming Efficacy

For the TI = 0 candidate (no efficacy), the percentages of correct trials were
approximately 90% for all design and analysis combinations, confirming that the
10% Type 1 error rate was preserved as desired.

For the active candidates (TI > 0), the percentage of positive trials (i.e., the
power for confirming efficacy) generally increased with larger total trial size (N )
and decreased as the selected number of patients was spread over more groups.
Table 8.2 shows results for the TI = 1 data model, for selected size and number of
groups combinations, based on end-weighted allocation and the narrow-high 40%
dose spacing, using the ANCOVA analysis.

Table 8.2. Power (%) for Objective 1

Groups\N 100 200 400

3 72 90 97
5 69 85 95
7 64 81 93
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There was little difference among the three dose-spacing patterns that included a
group at the MTD, while the narrow-middle pattern, with its doses centered around
50% MTD and with highest dose always less than the MTD, had lower power. The
end-weighted allocation was somewhat superior to equal weighting—for the Table
8.2 scenarios, regression success ranged from about 1% lower with total N = 400
in three groups to about 9% lower with 100 in seven groups. The regression analysis
tended to be inferior to ANCOVA, ranging from almost identical with 400 in three
groups to about 8% lower with 100 in five or seven groups.

8.3.2 Objective 2: Accuracy of Target Dose Estimation

8.3.2.1 Tolerability Target Dose

Because the same data models for tolerability were used for all TI, only random
differences were seen among the four TI. There was essentially no impact of al-
location strategy on estimation success, as measured by the percentage of trials
with a “close enough” estimate (±25%). Similarly, the differences between the
regression and ANCOVA-based estimation were small. There were negligible dif-
ferences among the three dose spacing patterns including an MTD group, while the
narrow-middle pattern was inferior—for N = 400 in five groups, the three MTD
designs had approximately 74% success compared to about 50% for the narrow-
middle pattern. There was a gradual improvement in estimation with increased
sample size (e.g., for five groups—about 55% at N = 100 and 78% at N = 600).
The number of groups had little impact (given a fixed total N ). Based on these
results, the narrow-middle dose spacing pattern is not recommended.

8.3.2.2 Efficacy Dose Estimation

For TI = 0 (inactive), all design scenarios had a high success rate for correctly
declaring the target dose to be above the top tested dose (e.g., >99% for N = 400 in
five groups for all scenarios). For TI = 0.5 (e.g., with N = 400 in five groups), there
was about 70% successful declaration that the target dose is above the top tested
dose for the designs including the MTD and around 80% for the narrow-middle
design. The modest advantage of the narrow-middle spacing here derives from its
lower tested range, leading to more “above top tested dose” findings. For the TI =
1 and 2 profiles, the “close enough” success rates were quite small (e.g., 20 to 30%
for N = 400, five groups, TI = 1), with no marked advantage for any scenario.

8.3.3 Objective 3: Estimation of a Potentially Clinically
Noninferior Dose Range

For the inactive (TI = 0) profile, the 10% type 1 error rate used for Objective 1
provides a minimum Objective 3 success rate of 90%, with these 90% of trials
correctly declaring the efficacy dose to be above the top tested dose. The other two
criterion components further improve the success rate, e.g., to approximately 95%
with N = 400 in five groups.
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Figure 8.7. Assigned dose levels and estimated NI ranges for 40 sample trials.

(1) For TI ≥ 1: Recall that for TI ≥ 1, a correct trial provides a Go signal (i.e.,
estimated ED ≤ estimated TD) and this estimated dose range at least partially
overlaps the true NI dose region (which for TI = 1 is 62.5 to 87.5% MTD).
Figure 8.7 illustrates the regression method Objective 3 results for the same
40 TI = 1 trials displayed in Figure 8.1. As before, each light gray line depicts
a trial’s tested dose range. For the 33 trials correctly finding estimated ED ≤
estimated TD, a darker overlaid line depicts the (estimated ED, estimated TD)
interval; when estimated TD is “above top tested dose”, the overlay extends,
arbitrarily, to 125% MTD in this figure. The seven trials giving an incorrect
No Go signal (i.e., estimated ED > estimated TD) have a single X at the left
margin of the plot and no overlay, as in the 8th trial from the top. The three
vertical reference lines indicate the reference target dose (75% MTD) and the
surrounding NI dose region (62.5%, 87.5%). The first four trials, for example,
are scored as correct for Objective 3, while the 5th is not, since it gives a Go
signal but has its estimated range somewhat below the 62.5% mark.

Recall that a key purpose for the estimated (ED, TD) range is to suggest dose
levels for subsequent trials. Considering the ranges observed in the successful
trials in Figure 8.7, a strategy such as selecting three doses (at ED, TD, and an
intermediate dose) would be necessary to have a good chance to have at least
one dose in the targeted range. Picking either the midpoint or the two ends
might miss the target range.

Returning to the design feature impact on Objective 3 success for the
active candidate profiles (TI > 0), the impact of dose spacing pattern and
allocation balance appears to be minor, using the regression method. The
regression method has a considerable advantage over ANCOVA. For exam-
ple, for TI = 1 with the total N = 400 using end-weighted allocation and
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narrow-high 40% spacing, regression had 60% correct with three groups, in-
creasing monotonically to 68% with seven groups. The corresponding AN-
COVA results were in the much lower 10–36% range. The key to this better
performance is that the regression method interpolates between tested doses
using the regression model’s CI bands, whereas at least one of the tested dose
groups in the ANCOVA must meet all criterion elements.

The impact of the total sample size and number of groups on Objective
3 success is complex. In part, this is because the success for both correctly
declaring No Go for TI ≤ 0.5 and Go for TI ≥ 1 are considered. Design features
that increase the likelihood of recommending Go will increase the error rate
for TI ≤ 0.5 and the success rate for TI ≥ 1. Of course, there will always be
the region just below TI = 1 where “not quite adequate” candidates have a
high risk of getting a mistaken “Go”. Beyond that, however, the interplay of
the factors is complex.
� Since the estimated TD is the highest dose satisfying the tolerability

UCL < UCSL criterion, any design feature that narrows the CI will increase
the TD (and the likelihood of a Go).

� Since the estimated ED is the maximum of two dose estimates, the design
impact on the larger of these two will determine whether a design feature
decreases or increases the estimated ED (and the likelihood of a Go or No
Go). The LCL > 0 dose will be higher than the UCL > TV dose when the
DR curve is relatively flat, with a wide CI band and/or a relatively low TV.
Correspondingly, the UCL > TV dose will be the higher of the two when
there is a steep DR curve, narrower CI, and/or a relatively high TV. As the
CI narrows, due to increased N or other design features, an LCL-dominant
situation becomes UCL-dominant.

Table 8.3 illustrates the impact of total sample size (200 or 400) and number of
groups (3 or 5) for candidates with TI=0.5, 1, and 2. It provides the percentages
of successful trials for detecting efficacy (Objective 1), for a correct Go/No
Go signal and for an acceptable dose range estimate (Objective 3), based on

Table 8.3. Success percentages for selected sample sizes and numbers of groups

TI = 0.5 TI = 1 TI = 2

N\groups 3 5 3 5 3 5

Any efficacy
200 60 48 85 76 90 81
400 80 70 97 91 98 94
Go /No Go
200 57 62 72 65 87 77
400 63 50 72 80 90 91
Dose range
200 57 62 52 42 72 77
400 63 50 64 64 82 91
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the regression method for designs using the dose spacing pattern from 40 to
100% MTD with balanced allocation.

(2) For TI = 0.5: The success rates for correctly declaring “No Go” vary somewhat
(50–63%) among these four configurations. The best are 400/3 and 200/5, so
that increasing total N from 200 to 400 in five groups degrades performance,
while performance is improved by larger sizes in three groups. In general, the
success rate versus sample size relationship is nonmonotonic when TI < 1,
reaching a low point when the sample size is large enough to detect efficacy
but not large enough to declare it as inferior to the target value.

(3) For TI ≥ 1: For the complete Objective 3 success metric (Go + successful dose
range estimation), the larger sample sizes improve performance for both three
and five group designs. But for just “Go” component, three group designs with
N = 200 and 400 perform similarly; for five groups, the larger size improves
success about 15%. The impact of using more dose groups (keeping total
sample size constant) depends somewhat upon the sample size, with no clear
pattern evident with just selected sample sizes and numbers of groups, but
none of the comparative rates differ by more than 10%.

Perhaps the most notable finding is how well the 200/3 design performs relative
to the 400/3 and 400/5 designs. Consider the 200/3 versus 400/5 comparison—for
TI = 0.5, the 200/3 design does 7% better for the Go decision (57% vs. 50%).
For TI = 1, 400/5 has the expected advantage over 200/3 (80% vs. 72% for Go
and 64% vs. 52% for dose range). If we focus on the Go decision only, and if our
a priori expectation were that the TI = 0.5 and 1.0 candidates are equally likely
to be encountered (and ignoring other TI levels), the average success rates, over
TI = 0.5 and 1.0, for the four design configurations are quite similar—the 200/3
average is 64.5% (from 57 and 72), 400/5 has 65% (from 50 and 80), 200/5 has
63.5%, and 400/3 has 67.5%, all within the simulation margin of error. From this
specific, limited perspective, there would be little or no gain from doubling the
sample size, when measured by the success for correctly stopping or proceeding
with development.

8.3.4 Trial Design Recommendations

Based on a review of all the simulation results, and considering the stated trial
objectives and assumptions, we made these design recommendations:
� Analysis method: Regression-based estimation should be used, except for the

confirmation of efficacy, where ANCOVA has a modest advantage.
� Allocation of patients to dose groups: There was no consistent advantage to

either equally balanced or end-weighted allocation, so either could be used.
� Dose spacing: An MTD group should be included in the design -i.e., do not use

the “narrow-middle” design - but there was no consistent advantage noted for
any of the three spacing patterns with an MTD group.
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� Sample size and number of groups: As discussed, the interplay of these factors’
impact on trial performance is complex, particularly when considering both
correct “Go” and “No Go” decisions. Over the full range of N, a larger N will,
of course, be better. However, the false Go rate is not monotonic in N for TI < 1,
so that a larger N, over a limited range, can lead to poorer performance. Our
judgment, in the end, was to give two recommendations, one for each of two
levels of investment:
(1) For an N in the 300 to 400 range, use five or six groups. There was little

advantage to using more than 400, and four to seven groups performed
similarly (and better than 3 groups).

(2) For an N around 200, 3 groups would be slightly preferable, especially if a
TI = 1 is expected, when 3 groups has about a 10% advantage. Of course,
this would sacrifice the ability to evaluate the degree of linearity for the DR
relationships, but could be reasonably successful for the stated objectives,
as long as the assumed DR models used were close to the truth.

8.4 Conclusions

CTS can be viewed as an extension of conventional statistical power analysis for
selecting and adequately sizing a design. CTS allows us to consider a richer set of
drug development decisions and design optimization criteria than simply “is there
evidence for efficacy?” A full-scale simulation project, such as the one we describe,
requires a larger investment of time than a simple power analysis, so it will not be
the best choice for all drug development programs. The analysis methods used for
the simulated trial data were candidates for the actual trial’s formal analysis plan.
Further, the more difficult task of integrating the analysis results into an evaluation
framework for drug development decisions was attempted. The simulations helped
set expectations about the likelihood of success for these more complex decisions.

Despite efforts to be as realistic as possible in the models and criteria, this work
just provides an approximation to reality. Inevitably, design questions will be asked
that stretch the limits of the models’ relevance. For instance, when design factors
have opposing impacts (as with the total sample size and number of groups), the
models might predict a specific configuration to be optimum. However, different
model assumptions might move this optimal performance to another configuration,
begging the question of how literally the simulation results should be taken. Thus
the simulation results must be integrated with everything else known about the
design and the scientific setting to develop a trial plan that has the best chances for
success.

Both the interdisciplinary planning and the review of the simulation results
contributed to the progress of the clinical program development. This helped to
focus discussion upon the specific trial goals and decisions to be made, while also
helping us to incorporate, in a coherent manner, the knowledge available from
prior clinical and nonclinical sources.
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9
Analysis of Dose–Response
Studies—Emax Model

JAMES MACDOUGALL

9.1 Introduction to the Emax Model

The Emax model is a nonlinear model frequently used in dose–response analyses.
The model is shown in Eq. (9.1)

Ri = E0 + DN
i × Emax

DN
i + EDN

50

(9.1)

where

i = The patient indicator
Ri = The value of the response for patient i
Di = The level of the drug for patient i , the concentration may also be

used in many settings
E0 = The basal effect, corresponding to the response when the dose of

the drug is zero
Emax = The maximum effect attributable to the drug
ED50 = The dose, which produces half of Emax

N = The slope factor (Hill factor), measures sensitivity of the response
to the dose range of the drug, determining the steepness of the
dose–response curve (N > 0)

εi = The random error term for patient i . A standard assumption, adopted
here, is that the εi terms are independent identically distributed with
a mean of 0 and variance σ 2. An additional standard assumption is
that the error terms are normally distributed.

The Emax model dose–response curve shown in Eq. (9.2) is the expected value
of the Emax model.

R = E0 + DN × Emax

DN + EDN
50

(9.2)

The Emax model dose–response curve can be either increasing or decreasing
relative to an increase in dose. If the response is decreasing, the value of the Emax
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parameter will be negative. Figure 9.1 illustrates the Emax model dose–response
curve where the response increases with increasing dose. Note the difference be-
tween Emax, the maximal effect attributable to the drug, and (E0 + Emax), the
asymptotic response with increasing dose. This difference is particularly relevant
when the drug of interest is being administered along with concurrent therapy, as
the response at maximum dose includes both the maximal effect of the drug (Emax)
plus the effect of the concurrent therapy (E0).

R
es

po
ns

e

Dose

E0+ Emax

E0
ED50

N (Slope)

Emax

Figure 9.1. Emax Model dose–response curve.

Salient features of the model are:

� The Emax model has four parameters: E0, Emax, ED50, and N .
� The Emax model predicts the maximum effect a drug can have (Emax).
� The Emax model predicts a zero-dose effect (E0) when no drug is present.
� The Emax model follows the “law of diminishing returns” at higher doses.
� The Emax model parameters are readily interpretable.

A particular case of the Emax model is given by Eq. (9.3):

Ri = E0 + Di × Emax

Di + ED50
+ εi (9.3)

Here the slope factor, N, is not included in the model and as such has an implicit
value of one. The Emax model without the slope factor parameter is sometimes
referred to as the hyperbolic Emax model, while the model including the slope
factor is referred to as the sigmoidal Emax model. Although both the hyperbolic
and sigmoidal Emax models can be justified on the relationship of drug-receptor
interactions (Boroujerdi, 2002), they are primarily used for empirical reasons.
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Another common modification of the Emax model is to not include the E0 parameter
if the response at the no drug level is known to be zero.

The Emax model is a common descriptor of dose–response relationships. How-
ever, as in all modeling, there are situations where it may not be appropriate to
apply. These scenarios include:

� Where the dose–response relationship is not monotonic. The Emax model as-
sumes a monotonic dose response.

� Where the number of different doses for the model is small. As the Emax is a
four-parameter model, it desirable to have at least five different doses across the
effective dose–response range.

� When the response should not be modeled as a continuous outcome.

Dose estimates other than ED50 are often of interest in dose–response analysis.
For example ED90, the dose which produces 90% of Emax, is sometimes used as an
estimate of the maximal effective dose (MaxED). From the Emax model, the ED90

is estimated by the formula in Eq. (9.4) where p (0 < p < 1) is the percentile
of interest. For example if the slope factor N is 0.5, the estimate of ED90 is
(ED50× 81).

EDp = ED50

(
p

1 − p

)(1/N )

(9.4)

9.2 Sensitivity of the Emax Model Parameters

This section reviews the sensitivity of the Emax model dose–response curve to
changes in its four parameters: E0, Emax, ED50, and N . In addition, study design
criteria based on these parameters will be reviewed.

9.2.1 Sensitivity of the E0 and Emax Parameters

As described in Section 9.1, the E0 parameter is the response when there is no
drug present, and the Emax parameter is the maximum attributable drug effect.
These two parameters define the upper and lower asymptotic values for the dose–
response curve. Changes in the E0 parameter affect the “starting value” of the
dose–response curve (i.e., when there is no drug present). Changes in the Emax

parameter affect the range of the dose–response curve.
Figure 9.2 illustrates the change in response as the E0 and Emax parameters vary.

In Figure 9.2, the dotted line illustrates the change in the Emax model curve relative
to the solid line when the E0 and Emax parameters are increased from 0 to 10 and
100 to 110, respectively.
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Figure 9.2. Emax Model dose–response curves with differing E0 and Emax values.

9.2.2 Sensitivity of the ED50 Parameter

The ED50 parameter is the dose of the drug which produces half the maximal
effect. A higher ED50 value indicates a higher dose is needed to produce an effect.
Figure 9.3 illustrates the effect of changes in the ED50 parameter on the Emax

dose–response curve.
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Figure 9.3. Emax Model dose–response curves with differing ED50 values.
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9.2.3 Sensitivity of the N Parameter

The slope factor (Hill factor), determines the steepness of the dose–response curve.
As the slope factor N increases, the dose range, defined as the ratio of ED90 to
ED10 tightens. Hence, the larger the value of N , the more sensitive the response
is to changes in the dose of the drug. Figure 9.4 illustrates the effect of a change
in the slope parameter N from 1 to 3 on the Emax model dose–response curve.
Figure 9.5 illustrates the dose range (ED90/ED10) as a function of the slope factor
based on the Emax model.
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Figure 9.4. Emax Model dose–response curves with differing N values.

(E
D

90
/E

D
10

)

Dose range = 81 (1/N)

D
os

e 
ra

ng
e:

1

10

100

1000

10000

N (slope factor)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(

/

1

Figure 9.5. Emax Model dose range as a function of N .



132 9. Analysis of Dose–Response Studies—Emax Model

A useful approximation for the slope factor is given by Eq. (9.5), where DR is
the dose range, (ED90/ED10),

N ≈ 1.91

log10(DR)
(9.5)

As the hyperbolic Emax model in Eq. (9.3) implicitly has the slope factor pa-
rameter set to one, when using this model the implied dose range is 81, meaning
the ED90 is 81 times the value of the ED10.

9.2.4 Study Design for the Emax Model

In the design of a dose–response analysis study, the decision of which dose levels
to include is a critical step. For the Emax model, having a placebo dose provides
an estimate of response when there is no drug present which corresponds to the
E0 parameter. For the three other parameters in the Emax model: Emax, ED50, and
N , one method for determining the active dose levels is the D-optimality criterion.
The D-optimality criterion is a method of choosing the dose levels such that the
parameters are estimated in an optimal fashion (Seber and Wild, 2003; Bates and
Watts, 1988). Figure 9.6 illustrates the results of applying the D-optimality criterion
to each of the Emax parameters individually for an Emax model with parameter
values E0 = 0, ED50 = 5, Emax = 100, and N = 1. For each of the three curves,
the maximum value indicates the optimal dose for that parameter based on the
D-optimality criterion.
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Figure 9.6. D-Optimal design criteria for the Emax model parameters ED50, Emax, and N .
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The curve for the Emax parameter is monotonically increasing with respect to
dose, indicating that for this parameter a high dose should be utilized. For the ED50

parameter, the curve is maximized at ED50. For the slope parameter N , there are
two maximums, at approximately ED20 and ED80.

The D-optimality criterion can also be used in a multivariate setting, optimiz-
ing the design criterion over multiple parameters. For example, in the scenario
where a placebo group and four different active dose levels are planned, ap-
plying the D-optimality criterion for the Emax model with parameter values of
E0 = 0, ED50 = 5, Emax = 100, and N = 1 yields the four active dose lev-
els at: (1) ED15 – ED25, (2) ED35− ED65, (3) ED70− ED80, and (4) a maxi-
mum dose. This method has the limitation that the Emax model parameter val-
ues are used in the calculations, which, as they are unknown prior to the dose–
response study, would need to be estimated. In addition, this method implicitly
assumes that the Emax model is an appropriate model for the dose–response
data.

In situations where the study design does not include dose values that produce
close to a maximal effect, the resulting parameter estimates may be poorly esti-
mated. The results of Dutta et al. (1996) demonstrated that when the highest dose
in the study was less than ED95 the parameter estimates for Emax, ED50, and Nare
poorly estimated with a high coefficient of variation and bias. However, within
the range for which the data were available, the fit of the Emax model to the data
was quite good. As it is not uncommon for a circumstance to arise where it may
not be reasonable or ethical to include a high dose in the study design (e.g., safety
issues), care should be taken in the interpretation of the parameter estimates when
an Emax model is applied.

9.2.5 Covariates in the Emax Model

In a dose–response setting there is the possibility that one or more covariates
could significantly account for patient variation in the response to a drug. In a
situation where a covariate may influence the response, it can be beneficial to
incorporate that covariate in the Emax model. For example, if it is desired to allow
for gender differences in the ED50 parameter, the Emax model can be modified as
in Eq. (9.6),

Ri = E0 + DN
i × Emax

DN
i + (ED50 + (Zi × ED50M ))N

+ εi (9.6)

In Eq. (9.6), a fifth parameter is added to the Emax model, ED50M , and an indicator
variable, Zi , equal to 0 if the patient is female, 1 if the patient is male. For females
the estimate of the dose achieving half Emax is ED50; for males the estimate is
ED50 + ED50M .
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9.3 Similar Models

The four-parameter logistic model as described in O’Connell et al. (1993) is given
by the following equation

Ri = β2 + (β1 − β2)

1 + (Di/β3)β4
+ εi (9.7)

where

i = The patient indicator
R j = The value of the response for patient i
Di = The level of the drug for patient i
β1 = The response when there is no drug present
β2 = The maximal attributable effect of the drug + β1

β3 = The dose, which produces the response halfway between β1 and β2

β4 = This parameter is related to the steepness of the slope
εi = The random error term for patient i .

As can be seen from Eq. (9.7), the four-parameter logistic model is nonlinear.
As applied in O’Connell et al. (1993), the β4 parameter is set to be >0. There are
similarities between the four-parameter logistic model and the Emax model. When
the β4 parameter is set to be >0, the four-parameter logistic model is equivalent
to an Emax model with an inverse transformation on the dose (see the Appendix).
When the β4 parameter is set to be <0, then the four-parameter logistic model is
equivalent to the Emax model (see the Appendix).

Other models used in dose–response analysis are described in Chapter 10 and
in Ruberg (1995). The books by Seber and Wild (2003) and Bates and Watts
(1988) provide information on the theory and applications of nonlinear regression.
Texts on nonlinear regression for repeated measures include Davidian and Giltinan
(1995), and Vonesh and Chinchilli (1997).

9.4 A Mixed Effects Emax Model

Equation 9.8 describes a mixed effects Emax model as presented in Girard et al.
(1995). This model is useful when there are multiple observations per patient as
it accounts for the correlation of the within-patient responses and can be used to
describe individual dose–response curves,

Rij = E0i + DN
ij × Emax i

DN
ij + E DN

50i

+ εij (9.8)
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where

i = The patient indicator
j = The observation number for a patient
Ri j = The response of patient i , observation j
Di j = The dose of the drug for patient i , observation j
E0i = The zero-dose response for patient i
Emaxi = The maximum attributable drug effect for patient i
ED50i = The dose, which produces half of Emaxi

N = The slope factor
εi j = The random error term for patient i , observation j .

This model assumes individual variation in E0, ED50, and Emax. However, the
slope factor parameter, N , does not vary among patients. This restriction of having
the slope parameter only as a fixed effect is not a requirement of a mixed-effect
Emax model and there may be scenarios where the data is suitable and it is desired
to allow patient variation in the slope factor.

Discussions on the optimal study design to obtain repeated measures on a patient
for a dose–response study is beyond the scope of this chapter. However, discussions
on the design of clinical trials for obtaining multiple observations on a patient are
provided in Chapter 7 of this volume and also in Girard et al. (1995), ICH-E4
Guidelines (1998), Senn (1997); Sheiner et al. (1989), Sheiner et al. (1991), and
Temple (1982, 2004).

9.5 Examples

The data analyses for these two examples were performed using SAS with the
corresponding analysis code presented in the Appendix. In particular, Proc NLIN
and Proc NLMIXED in SAS were used for estimating the Emax model parameters.
It should be noted, however, that there are other available software packages as
well, such as NONMEM and S-PLUS, which are both utilized for Emax modeling
in dose–response analyses.

9.5.1 Oral Artesunate Dose–Response Analysis Example

The following example is based on a study by Angus (2002). The objective of
the study was to characterize the dose–response of oral artesunate on falciparum
malaria. Forty-seven adult patients were randomized to a single dose of oral arte-
sunate varying from 0 to 250 mg together with a curative dose of oral mefloquine.
A patient could receive a dose of either: 0, 25, 50, 75, 100, 150, 200, or 250 mg.

Figure 9.7 illustrates patients’ parasite clearance time (the time required for a
patient to reach a count of <1 parasite per 200 white blood cell nuclei) versus
their dose of artesunate divided by the patient’s weight (in units of mg/kg). An
Emax model curve and smoothing spline both fit to the data are also shown. The
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Table 9.1. Oral artesunate example: Emax model
parameter estimates

Sigmoidal Emax Hyperbolic Emax

E0 (s.e.) 70.2 (4.5) 72.8 (7.0)
ED50 (s.e.) 1.4 (0.14) 3.19 (4.18)
Emax (s.e.) −28.4 (5.8) −54.0 (27.7)
N (s.e.) 12.9 (23.9) —
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Figure 9.7. Parasite clearance time (PCT) versus dose of artesunate (mg/kg).

smoothing spline fit to the data illustrates that an Emax model may be appropriate
to characterize the dose–response of parasite clearance time. Table 9.1 presents
the corresponding estimated Emax model parameters.

The results of this analysis of the example data indicate a MaxED of less than
2.0 mg/kg (ED90 = 1.7), indicating limited additional benefit in the reduction of
parasite clearance time (PCT) with doses of artesunate higher than 2.0 mg/kg.

In this example the slope factor N is fairly high, corresponding to a steep
dose–response curve and a dose range of approximately 1.4. However, the slope
parameter is estimated with poor precision (standard error: 23.9).

Given the poor precision of the slope parameter N , the hyperbolic Emax model
was fit to the data. Figure 9.8 illustrates the contrast in fitting the hyperbolic Emax

model (which has the slope parameter N fixed equal to one) to the oral artesunate
malaria data versus the sigmoidal Emax model. As the estimated dose range for
oral artesunate is 1.4 using the sigmoidal Emax model and the dose range for
hyperbolic Emax model is set at 81, it is not surprising that the two curves look
markedly different. The suitability of the hyperbolic Emax model is questionable
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Figure 9.8. Sigmoidal and hyperbolic Emax model dose–response curves.

as two of the three parameters have relatively large standard errors. In addition,
the estimate of ED90 from the hyperbolic Emax model is 28.7 mg/kg, well outside
the dose range being investigated. An F-test to compare these two nested Emax

models (Bates and Watts, 1988) indicates that the slope parameter, N , should be
retained in the model (p = 0.013).

9.5.2 Estimation Methodology

Iterative methods are used to estimate the parameters in the Emax model based
on minimizing the residual sum of squares. In SAS Proc NLIN, the residual sum
of squares is initially determined by using the starting values for the parameters.
Then new values of the parameters are chosen based on an iterative technique
such that the sum of squares is reduced. The five iterative method options in SAS
Proc NLIN are: steepest-descent (gradient), Newton method, Modified Gauss-
Newton, Marquardt, and the multivariate secant method. The iterative estimation
procedure stops when the convergence criterion is met. In the example presented
in Section 9.5.1, the Marquardt iterative method (recommended as a method which
works well in many situations by Draper and Smith, 1966) was used. However,
other methods were tried as well with essentially no difference in the parameter
estimates, except for the steepest-descent method, which failed to converge after
1000 iterations (the slow convergence of the steepest-descent method is described
in Draper and Smith, 1966). Further details on the estimation methodology and
iterative methods used in Proc NLIN are found in SAS/STAT Users Guide (1999),
Bates and Watts (1988), and Draper and Smith (1966).
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Figure 9.9. Estimation of starting values for E0, Emax, and ED50 using a smoothing spline.

9.5.3 Initial Parameter Values for the Oral Artesunate
Dose–Response Analysis Example

As discussed in Section 9.5.2, starting values for the parameters are required for
Proc NLIN. Figures 9.9 and 9.10 illustrate fitting a smoothing spline to the data to
provide initial estimates of Emax model parameters.
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Figure 9.10. Estimation of starting value for N using a smoothing spline.
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Figure 9.10 illustrates the use of Eq. (9.5) in estimating a starting value for the
slope parameter N . Based on Figures 9.9. and 9.10, the starting parameter values are
E0 = 70, Emax = −30, ED50 = 1.4, and N = 8.61. In many cases, the parameter
estimates from the Emax model are fairly robust to the starting parameter values.
For example, modifying the starting values given above to:E0 = 50, Emax = −50,
ED50 = 2.0, and N = 3 yields essentially the same parameter estimates using SAS
Proc NLIN (albeit more iterations were needed to reach the convergence criteria).

A discussion on other methods of determining starting values for parameters in
nonlinear models can be found in Bates and Watts (1988).

9.5.4 Diastolic Blood Pressure Dose–Response Example

The following example is based on a simulation study by Giradet al. (1995). This
example considers the effect of an anti-hypertensive drug administered to patients
with a diastolic blood pressure over 95 mmHg. The data are simulated as follows:
40 patients with doses of 0, 10, 20, 40, and 80 given to all patients (each patient
takes multiple doses). The Emax model is used to simulate the data.

The model used to simulate the data is given by Eq. (9.9):

Rij = E0i + DN
ij × Emax i

DN
ij + EDN

50i

+ εij (9.9)

where

i = Patient number i = 1, . . . , 40
j = Observation number for a patient j = 1, . . . , 5 corresponding to

doses of 0, 10, 20, 40, and 80
Rij = The diastolic blood pressure for patient i at observation j
Dij = The dose of the drug for patient i , observation j
E0i = The baseline diastolic blood pressure for patient i ; normally

distributed (µ = 80, σ = 15)
Emax i = The maximum effect of the drug (relative to the baseline response)

for patient i ; normally distributed (µ = –12, σ = 6)
ED50i = The dose which produces half of the maximum response for patient

i ; normally distributed (µ = 10, σ = 3.5)
N = The slope factor; set to a value of 2
εij = The error term; normally distributed (µ = 0, σ = 2).

The first 40 simulated patients with an E0i of 95 mmHg or greater were included
in the analysis. Figure 9.11 illustrates the simulated dose–response data for 3 of
the 40 patients across the five doses. Figure 9.12 illustrates the individual dose–
response curves for these three patients. Table 9.2 illustrates the population level
parameter estimates.

Table 9.2 displays the mean and standard deviation estimates for the parameters
based on the forty patients’ actual values and the values estimated from the mixed
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Figure 9.11. Simulated diastolic blood pressure data for three patients.

effects Emax model. As can be seen from Table 9.2, the analysis of the simulated
data produced estimates similar to the values used in the simulation. The mean and
standard deviation estimates of E0i are different from the initial simulation model
values (µ = 80, σ = 15) due to the constraint that a patient have an E0i value
95 mmHg or greater.
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Figure 9.12. Diastolic blood pressure data Emax model fit for three patients.
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Table 9.2. Blood pressure example: Emax model parameter estimates

E0i ED50i Emaxi N

Actual: µ (σ ) 104.3 (8.4) 9.9 (3.3) −12.1 (6.0) 2 (−)
Estimated: µ (σ ) 104.8 (8.5) 9.1 (2.8) −12.8 (6.2) 1.7 (−)

Note: The slope factor, N , was included as a fixed effect.

Proc NLMIXED uses a different method of parameter estimation than Proc
NLIN; maximizing an approximation to the likelihood integrated over the random
effects. Details on the estimation methodology can be found in SAS/STAT Users
Guide (1999), Davidian and Giltinan (1995), and Pinheiro and Bates (2000).

9.6 Conclusions

This chapter reviewed the Emax model for dose–response analyses in clinical trials.
The model was introduced, parameters interpreted, and sensitivities of the Emax

model curve to changes in the parameters reviewed. Study design considerations,
estimating starting values, and data analysis examples using the Emax model were
also reviewed.

Understanding the dose response is a fundamental part of the choosing the right
dose. The Emax model is flexible, the parameters are readily interpretable, and
software packages make the implementation straightforward. The utility of the
Emax model has been demonstrated by its use over a wide variety of therapeutic
areas and stages of drug development including pre-clinical, PK/PD, and Phase II
studies. The decision to consider an Emax model as part of a dose–response analysis
ideally should be made prior to the start of the study. In doing so, the response of
interest, number of patients/observations, number of doses, and design of the study
can be evaluated to ensure the suitability of the Emax model. When appropriately
applied, the results of an Emax model analysis can be a fundamental part of the
dose-selection process.
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Appendix

Comparison of the Four-Parameter Logistic Model to the
Emax Model: When β4 > 0

Given the four-parameter logistic model:

R = β2 + (β1 − β2)

1 + (D/β3)β4
(9.10)

Re-arranging the terms yields:

R = β2 + (β1 − β2)

1 + (D × β−1
3 )β4

(9.11)

R = β2 +
(

D−β4

D−β4

)
× (β1 − β2)

1 + (D × β−1
3 )β4

(9.12)
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R = β2 + (D−1)β4 × (β1 − β2)

(D−1)β4 + (β−1
3 )β4

(9.13)

Setting

X = D−1

β2 = E0

(β1 − β2) = Emax

β−1
3 = ED50

β4 = N

(9.14)

yields an Emax model with an inverse dose transformation:

R = E0 + X N × Emax

X N + EDN
50

(9.15)

Note that due to the inverse transformation of the dose, the Emax model param-
eters are interpreted in terms of the inverse dose. For example, E0 would be the
response when the inverse dose is zero.

Comparison of the Four-Parameter Logistic Model to
the Emax Model: When β4 < 0

The following demonstrates the equivalence of the Emax model and the four-
parameter logistic model when β4 < 0.

Given the four-parameter logistic model:

R = β2 + (β1 − β2)

1 + (D/β3)β4
(9.16)

Re-arranging the terms yields:

R = β2 + D−β4 × (β1 − β2)

D−β4 + β
−β4
3

(9.17)

Setting

β2 = E0

(β1 − β2) = Emax

β3 = ED50

−β4 = N

(9.18)

yields the Emax model:

R = E0 + DN × Emax

DN + EDN
50

(9.19)

SAS Code Used for Emax Model Parameter Estimation

Proc NLIN and NLMIXED in SAS were used to estimate the Emax model parame-
ters. Further details on Proc NLIN and NLMIXED can be found in the SAS/STAT
Users Guide (1999).
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Core SAS Code for the Emax Model Analysis of the Oral
Artesunate Example Data in Section 9.5

proc nlin data=malaria method=marquardt hougaard;
parms e0=70 ed50=1.4 emax=−30 n = 8.61;
if dose=0 then

model pct=e0;
else

model pct=e0 + ((dose**n)*emax)/((ed50**n) + (dose**n));
ods output parameterestimates=ests;

run;

Comments on this SAS code are:
� malaria was the name of the SAS data set used, containing dose (mg/kg) and

parasite clearance time.
� The method option specifies the iterative technique NLIN uses to estimate the

parameters (method = marquardt) was used.
� pct is the dependent variable, the parameters in the model are e0, emax, ed50

and n.
� The hougaard option provides a skewness measure, assessing if the parame-

ters have properties similar to linear regression estimates: unbiased, normally
distributed (|values| >1 nonlinear behavior is considerable).

� The parm option specifies the initial values for the parameters.
� The if dose = 0 code was used because Proc NLIN calculates the partial deriva-

tives for the four parameters and the partial derivative with respect to the slope
factor involves log(dose). Hence a separate equation when the dose = 0 was
used, however when the dose = 0 the Emax model simplifies to R = E0.

Core SAS Code for the Emax Model Analysis of the Blood
Pressure Example Data in Section 9.5

proc nlmixed data=bp 01;
parms e0=100 ed50=10 emax=−12 n=2 s2e0i=225 s2emaxi=36

s2ed50i=12.25 err=4;
e0 =(e0 + e0i);
if dose=0 then do;

pred=e0 ;
end;

else do;
numer = (dose**n)*(emax +emaxi);
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denom = ((ed50+ed50i)**n) + (dose**n);
pred = e0 + numer/denom;

end;
model dbp ∼ normal(pred, err);
random e0i emaxi ed50i ∼ normal([0, 0, 0],[s2e0i, 0, s2emaxi, 0,

0, s2ed50i])
subject=patid;

run;

Comments on this SAS code are:

� bp 01 was the name of the SAS data set used. The dataset contained the patient’s
dose values and their corresponding diastolic blood pressure (mmHg).

� The parm option specifies the initial values for the population parameters (e0,
ed50, emax, n); the variance parameters for random effects (s2e0i, s2emaxi,
s2ed50i), and error term (err).

� Similar to the NLIN SAS code in the previous example, programming statements
were used for the dose = 0 case due to log(dose) component of the partial
derivative for the slope factor.

� In this code the Emax model is defined in two stages, first a numerator (numer)
and a denominator (denom) are defined, then the Emax model is defined as the
ratio with the e0 term included.

� The model statement is the mechanism for specifying the conditional distribution
of the data given the random effects.

� The random statement defines the random effects and their distribution. The
variance matrix is defined using the lower triangular method.



10
Analysis of Dose–Response
Studies—Modeling Approaches
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10.1 Introduction

Identifying the correct dose is one of the most important and difficult goals in drug
development. Selecting too high a dose can result in an unacceptable toxicity pro-
file, while selecting too low a dose decreases the chance of it showing effectiveness
in Phase III trials and thus getting regulatory approval. Typically decisions derived
from dose–response studies can be divided into two main components: establish-
ing that the treatment has some effect on the outcome under consideration, the so
called proof-of-activity (PoA), sometimes also referred to as a proof-of-concept
(PoC), and selecting a dose (or doses) that appears to be efficacious and safe, for
further development in Phase III, the so-called dose-finding step.

The statistical analysis of dose–response studies can be divided into two major
strategies: multiple comparison procedures (MCP) and model–based approaches.
The model-based approach assumes a functional relationship between the response
and the dose, taken as a quantitative factor, according to a pre-specified parametric
model, such as a logistic or an Emax model. The fitted model is then used to test if
a dose–response relationship is present (PoA) and, if so, to estimate an adequate
dose(s) to achieve a desired response using, for example, inverse regression tech-
niques. Such an approach provides flexibility in investigating the effect of doses
not used in the actual study. However, the validity of its conclusions will highly
depend on the correct choice of the dose–response model, which is of course a
priori unknown. This creates a dilemma in practice, because, within the regulated
environment in which drug development takes place, it is required to have the
analysis methods (including the choice of the dose–response model) defined at the
study design stage.

Multiple comparison procedures, on the other hand, regard the dose as a qual-
itative factor and make very few, if any, assumptions about the underlying dose-
response model. The primary goal is often to identify the minimum effective
dose (MED) that is statistically significantly superior to placebo and produces a
clinically relevant effect (Ruberg, 1995; ICH E4, 1994). One approach is to eval-
uate the significance of contrasts between different dose levels, while preserving
the family-wise error rate (FWER), i.e., the probability of committing at least one
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Type I error. Such procedures are relatively robust to the underlying dose–response
shape, but are not designed for inter- and extrapolation of information other than
at the observed dose levels. Inferences are thus confined to the selection of the
target dose among the dose levels under investigation.

The general framework adopted for this chapter is that a response Y (which can
be an efficacy or a safety variable) is observed for a given set of parallel groups
of patients corresponding to doses d2, d3, . . . , dk plus placebo d1, for a total of k
arms. For the purpose of testing PoA and estimating target doses, we consider a
one-way layout for the model specification

Yij = µdi + εij, εij
ind∼ N (0, σ 2), i = 1, . . . , k, j = 1, . . . , ni , (10.1)

where the mean response at dose di can be represented as µdi = f (di ,θ) for some
dose–response model f (.) parameterized by a vector of parameters θ and εij is the
error term for patient j within dose group i .

To make things more concrete let us introduce an example of a dose-finding
study presented in Bretz et al. (2005), which will also be used in later sections
to illustrate different dose-finding methods. This was a randomized double-blind
parallel group trial with a total of 100 patients being allocated to either placebo or
one of four active doses coded as 0.05, 0.20, 0.60, and 1, with n = 20 per group. To
maintain confidentiality, the actual doses have been scaled to lie within the [0, 1]
interval. The response variable was assumed to be normally distributed and larger
values indicate a better outcome. A priori the assumption of monotonicity µ0 ≤
µ0.05 ≤ µ0.2 ≤ µ0.6 ≤ µ1 was made. Figure 10.1 shows the estimated difference
in response with respect to placebo for each dose, together with the associated
90% confidence intervals.

A fixed sequence test (Westfall and Krishen, 2001) was adopted as an MCP
to test the PoA and determine efficacious doses using a 5% one-sided level.
In Table 10.1, the pairwise comparisons of treatment to placebo based on the
one-way analysis of variance model in Eq. (10.1) are summarized.

Table 10.1. Pairwise comparisons to placebo

Standard One-sided Marginal
Parameter Estimate error t-value P-value 90% CI

µ1 − µ0 0.6038 0.2253 2.68 0.0044 (0.2296, 0.9780)
µ0.6 − µ0 0.5895 0.2253 2.62 0.0052 (0.2153, 0.9638)
µ0.2 − µ0 0.4654 0.2253 2.07 0.0201 (0.0912, 0.8396)

µ0.05 − µ0 0.1118 0.2253 0.50 0.3103 (−0.2624, 0.4861)

From the results in Table 10.1, it is clear that the formal closed test stopped
after having concluded that the top three doses of treatment were statistically
significantly different from placebo. The question then arises as the determination
of a MED (all doses were well tolerated, so safety was not a concern for the
given dose range). The estimation of the MED using a modeling approach will be
discussed when this example is re-analyzed in Sections 10.3 and 10.5.
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Figure 10.1. Estimated treatment differences with respect to placebo and associated
marginal 90% confidence intervals for each dose in the Phase II example.

More complex designs, such as crossover and within-patient dose-escalation
designs are also used in practice with dose-finding studies but do not fall into the
general framework described by Eq. (10.1). In particular, the assumption of inde-
pendence among the observations, included in Eq. (10.1), is no longer reasonable
for these repeated measures designs. As a consequence, more complex modeling
of the dose–response profiles, typically utilizing linear or nonlinear mixed-effects
models (Pinheiro and Bates, 2000), is needed. Such designs and models are out-
of-scope for this chapter. However, the main ideas about dose response modeling
and estimation of target doses presented here remain valid for the more complex
cases, with the appropriate modifications.

The rest of this chapter is organized as follows. Section 10.2 describes some
commonly used dose–response models, discussing the interpretation of the asso-
ciated parameters and approaches for deriving starting estimates for determining
model contrasts. The estimation of target doses, and the MED in particular, using a
modeling approach is the topic of Section 10.3. The important topic of selecting the
most appropriate dose–response model within a set of possible candidate models,
and the uncertainty associated with it, is discussed in Section 10.4. In Section 10.5,
we describe a novel, unified strategy for the analysis of data from dose–response
studies which combines multiple comparison and modeling techniques to allow
inferences about PoA and dose selection. Our conclusions and suggestions for
further research are included in Section 10.6.
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10.2 Some Commonly Used Dose–Response Models

In this section, we describe some of the most common models used in practice to
represent dose–response profiles. As noted in Section 10.1, the general framework
adopted here for (parametrically) modeling the dose–response relationship for a
response Y is given by

Yij = f (di ,θ) + εij, εij
ind∼ N (0, σ 2) (10.2)

where the dose–response model f (.) may be a linear or nonlinear function of the
parameters θ.

The testing of PoA and the selection of target doses using a modeling approach
requires the estimation of the model parameters θ. Under the assumption of in-
dependent, identically distributed errors εij adopted here, ordinary least squares
(OLS) estimates that minimize the residual sum of squares

∑k
i=1

∑ni
j=1 |Yij −

f (θ, di )|2 are typically used. In the case of nonlinear dose–response models, non-
linear least squares algorithms are needed to estimate θ. The most popular of
these is the Gauss-Newton algorithm (Bates and Watts, 1988; Seber and Wild,
1989), which is an iterative procedure consisting of solving, until convergence, a
sequence of linear least squares problems based on a local approximation of the
nonlinear model. Such iterative algorithms typically require a starting point, the
so-called initial values, for the parameters. Methods for deriving initial estimates
for nonlinear models are discussed in Bates and Watts (1988).

The Gauss-Newton algorithm for nonlinear least squares is implemented in
mainstream statistical software packages. The functions nls (Chambers and
Hastie, 1992) and gnls (Pinheiro and Bates, 2000) implement it in S-PLUS and
R, while PROC NLIN (Freund and Littell, 2000) implements it in SAS. Examples
on the use of these functions and procedure can be found in the references given
above.

The dose-finding methodology combining MCP and modeling techniques de-
scribed in Section 10.5 requires the determination, at the time of protocol write-up,
of model contrasts for model selection. As described in Section 10.5, a model con-
trast is a function of the corresponding mean response vector µ = (µd1 , . . . , µdk )
taken at the planned doses for the study. The mean response vector is itself a func-
tion of the unknown model parameters θ. So, in order to utilize the methodology of
Section 10.5, initial values forθ are needed prior to any data is available, which then
need to rely on prior information/expectation about the dose–response relation-
ship. This should be contrasted with more traditional methods of deriving initial
estimates for fitting nonlinear regression models, described for example in Bates
and Watts (1988), which assume that the data to be modeled is already available.
Strategies for deriving initial parameter estimates based on prior dose–response
assumptions and before data is collected are included with the presentation and
discussion of dose–response models below.

For the purpose of determining initial parameter estimates for either model fitting
or constructing model contrasts, it suffices to consider a standardized version of
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the dose–response model. That is, if the model function f in Eq. (10.2) can be
written as

f (d,θ) = θ0 + θ1 f 0(d,θ0)

then one only needs to consider initial estimates for the parameters θ0 in the
standardized model f 0. In the case of model fitting, given initial estimates for θ0,
initial estimates for the remaining parameters can be obtained via linear regression.
Model contrasts can be derived from the response vector corresponding to f 0. The
advantages of using the standardized model f 0 instead the full model f will
become clear when developing a new method of combining MCP and modeling
in Section 10.5.

What follows is a selection of models used frequently in dose–response analysis.
The selection given below is not meant to be exhaustive. A graphical display for
each of these models is shown in Figure 10.3, included in Section 10.5.3.

10.2.1 Emax Model

In its simplest form, the Emax model is defined, for θ′ = (E0, Emax, ED50) as

f (d,θ) = E0 + Emaxd/(ED50 + d) (10.3)

E0 is the basal effect, corresponding to d = 0, Emax is the maximum change in
effect associated with d (at an infinite dose), and ED50 is the dose that gives
half of the maximum change. Note that the Emax model can accommodate both an
increase in effect (Emax > 0), as well as a decrease in effect (Emax < 0). Additional
parameters can be included to give greater flexibility of shapes to the Emax model,
but we will consider herein only the simpler version of Eq. (10.3). We refer to
MacDougall (2005), Chapter 9 of this book, for further information about the
Emax model.

The standardized Emax model is accordingly defined as

f 0(d, ED50) = d/(ED50 + d) (10.4)

The standardized Emax model represents the percentage of the maximum change
from the basal effect associated with dose d. The advantage is that the specification
of the single parameter ED50 is sufficient to obtain a fully parameterized standard-
ized model f 0. An initial estimate for ED50 can be obtained from knowledge of
the prior expected percentage of the maximum effect p∗ associated with a given
dose d∗. By inverting Eq. (10.4) one obtains

ÊD50 = d∗(1 − p∗)/p∗

If different (d∗, p∗) pairs are available, one can use the average of the corresponding
ÊD50 as an initial value, or use different estimates ÊD50 to determine different sets
of model contrasts for the Emax model.
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10.2.2 Linear in Log-Dose Model

The linear in log-dose model is defined, for θ′ = (E0, δ) as

f (d,θ) = E0 + δ log(d + c)

where a value c > 0 is added to d to avoid problems with the placebo (d = 0) arm.
E0 is the basal effect and δ is the slope associated with log(d + c). As with the
Emax model, an increasing effect (δ > 0) model will be assumed.

Clearly, the linear in log-dose model is a location-scale model which can be
expressed as f (d,θ) = E0 + δ f 0(d), with the standardized model being equal to

f 0(d) = log(d + c) (10.5)

so that the determination of the appropriate model contrasts can be done on the
basis of the doses alone, and no initial parameter estimates are needed.

10.2.3 Linear Model

Again, the model contrast is shown to be independent of the parameters, as in the
linear in log-dose model. The general model formulation and its standardized form
are given below, with θ′ = (E0, δ),

f (d,θ) = E0 + δd, f 0(d) = d

10.2.4 Exponential (Power) Model

This model is intended to capture a possible sub-linear or a convex dose–response
relationship. It is defined, for θ′ = (E0, E1, δ) as

f (d,θ) = E0 exp(d/δ) (10.6)

As before, E0 represents the basal level corresponding to d = 0 and δ > 0 (< 0)
controls the rate of increase (decrease) in the effect.

Because E0 is a scale parameter in the exponential model in Eq. (10.6), the
model contrast can be determined from the standardized model

f 0(d, δ) = exp(d/δ) (10.7)

being a function of δ alone. An initial estimate for δ can then be obtained from
knowledge of the prior expected percentage effect p∗ over E0 associated with a
given dose d∗. By inverting Eq. (10.7), and noting that the percentage increase
over E0 is given by f 0(d, δ) − 1, one obtains

δ̂ = d∗/ log(1 + p∗)

As in the Emax model, if different (d∗, p∗) pairs are available, one can use the
average of the corresponding δ̂ as initial value, or use different estimates δ̂ to
determine different sets of model contrasts for the exponential model.



152 10. Analysis of Dose–Response Studies—Modeling Approaches

10.2.5 Quadratic Model

This model is intended to capture a possible non-monotonic dose–response rela-
tionship, in either a concave (umbrella or inverted-U) shape, or a convex (U) shape.
The full three-parameter model, with θ′ = (E0, β1, β2), is defined as

f (d,θ) = E0 + β1d + β2d2 (10.8)

If β2 > 0, the model corresponds to a U-shape, while β2 < 0 gives an umbrella-
shape. A simple variation of the model above would result from replacing d with
log(d) in Eq. (10.8).

Since dopt = −β1/2β2 is the dose corresponding to the maximum (minimum)
response under Eq. (10.8), a necessary assumption in the context described in this
chapter is dopt > 0, which in turn implies that β1 and β2 have opposite signs. The
standardized versions of the quadratic model in Eq. (10.8), which will be different
for the U- and umbrella-shaped models, are then given by

f 0(d, δ) =
{

d + δd2, β2 < 0
−d + δd2, β2 > 0

(10.9)

where δ = β2/|β1|. It follows that f (d,θ) = E0 + β1 f 0(d, δ). Without loss of
generality, we will restrict ourselves to the umbrella-shape form of the model for
the remainder of this section.

Again, an initial estimate for δ can be obtained from knowledge of the prior
expected percentage p∗ of maximum effect associated with a given dose d∗ and
whether this d∗ is smaller or larger than dopt = −1/2δ. There are two δ̂ corre-
sponding to the pair (d∗, p∗): δ̂ = (−1 ± √

1 − p∗)/2d∗. The solution becomes
unique when conditioning on dopt being greater or smaller than d∗,

δ∗ =
{−(1 − √

1 − p∗)/2d∗, d∗ < dopt

−(1 + √
1 − p∗)/2d∗, d∗ ≥ dopt

10.2.6 Logistic Model

The logistic model is a four-parameter model, θ′ = (E0, Emax, ED50, δ), defined
as

f (d,θ) = E0 + Emax/ {1 + exp [(ED50 − d) /δ]} (10.10)

E0 is the left-asymptote parameter, corresponding to a basal effect level (not the
placebo effect, though), Emax is the maximum change in effect from the basal level,
and ED50 is the dose that gives half of the maximum change in effect. Finally, δ is
a parameter controlling the rate of change with dose in the effect and which has a
graphical interpretation as the increment over the ED50 dose that produces a change
in effect of Emax/(1 + exp(−1)) ≈ 3Emax/4, that is, approximately three-quarters
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of the maximum change in effect. Note that the logistic model can accommodate
an increase in effect (Emax > 0), as well a decrease in effect (Emax < 0).

Because E0 and Emax are respectively the location and scale parameters in the
logistic model in Eq. (10.10), the model contrast can be determined on the basis
of the standardized model

f 0(d, ED50, δ) = 1/ {1 + exp [(ED50 − d) /δ]} (10.11)

being, therefore, a function of ED50 and δ only. As in the Emax model,
f 0(d, ED50, δ) represents the percentage of the maximum effect Emax associated
with dose d. Because two unknown parameters are involved, derivation of initial
estimates requires, at a minimum, knowledge of the prior expected percentages of
maximum effect p∗

1 and p∗
2 associated with two given doses d∗

1 and d∗
2 . Letting

logit(p) = log(p/(1 − p)) one obtains from Eq. (10.11)

δ̂ = d∗
2 − d∗

1

logit(p∗
2) − logit(p∗

1)
, ÊD50 = d∗

1 logit(p∗
2) − d∗

2 logit(p∗
1)

logit(p∗
2) − logit(p∗

1)

If more than two (d∗, p∗) pairs are available, one can obtain estimates for ED50

and δ by regressing logit(p∗) on d∗: letting b0 and b1 represent the correspond-
ing intercept and slope estimates, one could use ÊD50 = −b0/b1 and δ̂ = 1/b1.
Alternatively, different estimates for ED50 and δ could be obtained to determine
different sets of model contrasts for the logistic model.

10.3 Estimation of Target Doses

Once an adequate dose–response model has been chosen and successfully fitted
to the data, one may proceed to estimate the target dose(s) of interest. In this
chapter, we restrict our attention to the estimation of the minimum effective dose
(MED), although the ideas are equally applicable when estimating other target
doses. Following Ruberg (1995), the MED is defined as the smallest dose, which
shows a clinically relevant and a statistically significant effect. Let � denote the
clinically relevant difference, i.e., the smallest relevant difference, by which we
expect a dose to be better than placebo. Note that � does not depend on the
particular dose–response model under consideration, but only on the objectives of
the drug development program.

Two definitions of the MED are possible, depending on whether the target dose
is selected out of the the discrete dose set D = {d1, . . . , dk} under investigation or
from the entire dose range (d1, dk]. In the former case,

M E D = argmindi ∈D{µdi > µd1 + �}

where argmin of a function, or an expression, denotes the value of the argument that
minimizes it. Typically, estimation of M E D ∈ D in this framework is conducted
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by applying appropriate multiple testing procedures, see Tamhane et al. (1996). In
contrast, model based approaches allow M E D ∈ (d1, dk]. Given a model f (.,θ),

M E D = argmind∈(d1,dk ]{ f (d,θ) > f (d1,θ) + �} (10.12)

Note that we restrict the MED to lie within the interval (d1, dk] in order to avoid
problems arising from extrapolating beyond the dose range under investigation.

In the following paragraphs, we focus on defining Eq. (10.12) and consider
three different rules for estimating the true MED proposed by Bretz et al. (2005).
Denote by Ld (Ud ) the lower (upper) 1 − 2γ confidence limit of the predicted
value pd at dose d based on the model f (.,θ), as computed, for example, by the
nls function (Chambers and Hastie, 1992) in S-PLUS and R. Note that the choice
of γ is not driven by the purpose of controlling Type I error rates, in contrast to the
selection of α for controlling the FWER for the PoA. As discussed below, γ should
nevertheless be set reasonably small in order to avoid interpretation problems with
the final estimate of the MED. The following alternative estimates are investigated
via simulation in Section 10.5.3:

M̂ E D1 = argmind∈(d1,dk ]{Ud > pd1 + �, Ld > pd1}
M̂ E D2 = argmind∈(d1,dk ]{pd > pd1 + �, Ld > pd1} (10.13)

M̂ E D3 = argmind∈(d1,dk ]{Ld > pd1 + �}

By construction, M̂ E D1 ≤ M̂ E D2 ≤ M̂ E D3 and it is seen from Section 10.5.3
that M̂ E D2 tends to be less biased in estimating the true MED than the alternative
estimates. Note that a dose obtained through any of the criteria above may not have
a significant effect at level α, especially when γ is not small enough. Since γ and
� are prespecified, it may happen that a MED is obtained which is lower than a
dose in the study which had no significant effect. To avoid such problems, γ should
be set reasonably small, perhaps even taking multiplicity due to the construction
of the confidence bands into account (Scheffé, 1953). An alternative approach to
guarantee statistical significance would be to use the confidence bounds Ld−d1 for
the difference between the response at dose d and placebo d1. One would then
require Ld−d1 > 0 instead of Ld > pd1 in the estimates above for MED.

Once the MED is estimated using one of the methods above, it is important to
assess its precision, for which a confidence interval is generally the most useful
tool. Bootstrap methods can be used to derive such a confidence interval. One
possibility is to implement a full, nonparametric bootstrap approach, in which the
patients within each dose group are re-sampled, with replacement, and the whole
dose–finding procedure is repeated, yielding a bootstrap sample of MED values. A
simpler, less computationally intensive alternative is to use a parametric bootstrap
approach. Let θ̂ denote the estimated parameter vector for the dose selection model,
with corresponding estimated (possibly approximate) covariance matrix Σ̂. For
the model and data scenarios considered here, θ̂ is asymptotically normally dis-
tributed. The parametric bootstrap approach then consists in re-sampling the
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parameter vector θ from its approximate distribution N (̂θ, Σ̂) and using these
values to derive a bootstrap sample of MED values. In either case, the bootstrap
sample of MED values would be used to derive an appropriate confidence interval
for the MED.

10.3.1 Estimating the MED in Dose-Finding Example

To illustrate the methods described in this section for estimating the MED from
a dose–response model, we consider again the dose-finding study introduced in
Section 10.1. The plot of mean responses per dose in Figure 10.1 suggests that an
Emax model as described in Section 10.2 can be used to adequately describe the
dose–response relationship and is the model that is used here to illustrate the MED
estimation methods.

Figure 10.1 can also be used to provide initial estimates for the ED50 parameter:
it appears that half of the maximum effect is attained at about d = 0.2, so we set
ẼD50 = 0.2. By fixing ED50 at its initial value, linear regression can be used to
obtain initial estimates for the other two model parameters. We used thelm function
in S-PLUS to obtain Ẽ0 = 0.344 and Ẽmax = 0.777. The nls function can then
be used with these initial estimates to fit the Emax model to the dose–response data,
producing the nonlinear least squares estimates

Ê0 = 0.321, Êmax = 0.746, ÊD50 = 0.142, and σ̂ = 0.706. (10.14)

Assuming a clinically relevant difference of � = 0.4 and applying the MED esti-
mates defined in Eq. (10.13) with γ = 0.1, 0.2 we obtain the values in Table 10.2.
Figure 10.2 gives a graphical respresentation of the different MED estimates for
γ = 0.2.

Table 10.2. MED estimates for Phase II example

γ M̂ E D1 M̂ E D2 M̂ E D3

0.1 0.07 0.17 0.34
0.2 0.10 0.17 0.27

Let us assume that the set of active dose levels used in this study (d =
0.05, 0.2, 0.6, 1) define the only doses for which it is possible to manufacture
the experimental treatment. In this case, we observe that the next highest dose
neighboring the selected dose level is 0.2. A pragmatic approach could then be
to suggest that the dose 0.2 is determined as the minimum dose which attains the
prescribed conditions for selection. In principle, any dose lying above 0.17 (based
on M̂ E D2) may be defined as an acceptable dose, provided that the gain in efficacy
does not result in an unacceptable safety risk. If, on the other hand, this study had
been undertaken with the aim of manufacturing a dose as close as possible to that



156 10. Analysis of Dose–Response Studies—Modeling Approaches

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

MED1 MED2 MED3

Placebo effect

Clinically relevant effect

Dose

R
es

po
ns

e

Figure 10.2. Estimated Emax model for the dose-finding example, with corresponding 60%
confidence bands (γ = 0.2). Also shown are the estimated MES’s using the formulas in
Eq.(10.13)

selected, the dose level either equal to 0.17 or in close proximity to 0.17 would
then be determined as the dose used for further drug development.

10.4 Model Uncertainty and Model Selection

In the previous sections we have described a variety of commonly used dose–
response models and given some possibilities of deriving initial parameter esti-
mates for constructing model contrasts. We have not yet discussed the problem of
selecting a model for the final analysis. This is a particularly important issue in the
regulated environment of pharmaceutical drug development, since it is required
to prespecify completely the statistical analysis (and thus also the dose–response
model used for the final analysis) prior to the start of a study.

The application of a model-based approach to analyze a given dose–response
study may raise questions on the validity of the statistical results, since the true
underlying dose–response relationship under investigation is typically unknown.
This model uncertainty remains during the entire drug development until the late
Phase III clinical trials. Thus, justification of a certain dose designated to be re-
leased on the market is based on the assumption of a particular dose–response
model. Supporting statistical analyses are mainly conducted to obtain the best
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parameter estimates for a suitable description of the collected data. Even if the
model specification is based on supporting information from prior trials, there is
always a more or less remote possibility of model misspecification. Current statis-
tical practice, however, mostly does not take this additional statistical uncertainty
into account. Instead, current approaches believe on the truth of the underlying
model and thus do not reflect the complete statistical decision process. This is
of particular concern in standard confirmatory clinical trials, since in late drug
development stages the statistical methods need to be defined up front, inherently
including the definition of the unknown dose–response model.

In fact, model uncertainty is one of the major pitfalls when conducting statistical
modeling. The intrinsic problem is the introduction of a new source of variability
by selecting a particular model M (say) at any stage prior to the final analysis.
Standard statistical analysis neglects this fact and reports the final outcomes without
accounting for this extra-variability. It is common practice, for example, to compute
the variance of a parameter estimate as var(µ̂) where in fact var(µ̂|M) is the correct
term. In addition, substantial bias in estimating the parameters of interest can be
introduced due to the model selection process. Whereas, it is admittedly a more
difficult task to compute unbiased estimates conditional on the selected model,
ignoring completely the model uncertainty can lead to very undesirable effects
(Chatfield, 1995; Draper, 1995; Hjorth, 1994).

A common approach in situations when one has to select the model that will
ultimately be used to fit the data is to use information criteria based on a reasonable
discrepancy measure to assess the lack of fit. Many model selection criteria are
available and the discussion on the best method is still ongoing (Zucchini, 2000;
Kadane and Lazar, 2004). A common approach is, for example, to consider the ratio
R2 of the sum of squares for regression to the total sum of squares. This number
is reported by most software packages when performing a standard regression
analysis. The problem with the R2 is that the sum of squares for regression, and
hence by construction R2 itself, increases with the number of parameters and thus
leads to over-fitting. If solely the (unadjusted) R2 would be used, the selected
model at the end would typically be among the most complex ones within the
given set of candidate models. A variety of alternative measures have thus been
proposed, which include a penalty term: as the model gets more complex, i.e.,
for larger number of parameters p, the penalty increases. The inclusion of a new
variable is therefore only supported, if the amount of information gain (in form of
a better prediction) is substantial as measured by the penalty correction. A well
known information criterion is the penalized log-likelihood AIC = −2 log(L) +
2p (Akaike, 1973), where L denotes the likelihood under the fitted model and p the
number of corresponding parameters. A second information criterion of the same
general form is the Bayesian information criterion BIC = −2 log(L) + p log(n)
(Schwarz, 1978), which also depends on the sample size n. Although both methods
are derived in completely different ways, the BIC differs from the AIC only in the
second term, favoring simpler models than AIC as n increases.

Note that these and other information criteria are generally not suitable in dose–
response analyses as they do not incorporate potential parameter constraints, such



158 10. Analysis of Dose–Response Studies—Modeling Approaches

as the simple order restriction µ1 ≤ . . . ≤ µk . This observation parallels the results
from the theory of order restricted inference that the maximum likelihood estimates
for the mean level responses subject to a given order restriction are different from
the unrestricted maximum likelihood estimates (Robertson et al., 1988). Anraku
(1999) thus proposed to use an order restricted information criterion (ORIC) based
on the isotonic regression theory. Simulation results suggest that the ORIC indeed
behaves better than the AIC, in that it selects more often the correct target dose
for varying model specifications and parameter configurations.

However, any measure of fit—either the AIC, ORIC or any other criterion—
bears the inherent drawback of a missing error control. If we simply select the
model corresponding to the best ORIC, say, we have no conclusion on the validity
of our decision. In fact, once we have a candidate set of models, the application
of the ORIC will always lead to the selection of one single model, irrespective of
the goodness of fit given the observed data. Instead, model selection uncertainty
should be incorporated into statistical inference in those cases, where the estimation
process is sensitive to the ultimate model choice (Shen et al., 2004). In order to
circumvent to a certain extent the problem of conditional inference on a selected
model, weighting methods and computer-intensive simulation based inferences
have been proposed.

We first consider the weighting methods, which incorporate rather than ignore
model uncertainty by computing parameter estimates using a weighted average
across the models. A straightforward solution in the line of the information criterion
approaches above was introduced by Buckland, Burnham, and Augustin (1997).
Let M = {M1, . . . , ML} denote a set of L candidate models index by �. Buckland
et al. (1997) proposed to use the weighted estimate

µ̂ =
∑

�

w�µ̂�

where µ̂� is the estimate ofµ under model � for given weights w�. The idea is, thus,
to use estimates for the final data analysis which rely on the averaged estimates
across all L models. Buckland et al. (1997) proposed the use of the weights

w� = e− I C�
2∑L

j=1 e− I C j
2

, � = 1, . . . , L (10.15)

which are defined in dependence of a common information criterion IC applied
to each of the L models. Alternatively, Buckland et al. (1997) have proposed to
set the weights w� as the proportions of bootstrap samples for which model M�

was selected. Augustin et al., (2002) extended this resampling approach and pro-
posed bootstrap aggregation methods instead. Note that although these approaches
provide a simple and intuitive way to overcome some of the model uncertainty
problems, one is still left with the open problem on how to ultimately choose
the final model for further inferential problems. Similar in spirit, though based
on a completely different theoretical reasoning, are Bayesian model averaging
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techniques. Having observed the data X , the posterior distributions P(µ|X, M�)
under each of the investigated models are weighted according to their posterior
model probabilities P(M�|X), so that

P(µ|X) =
L∑

�=1

P(µ|X, M�)P(M�|X)

We refer to Hoeting et al., (1999) and Clyde and George (2004) for discussions
of the related methods and several examples. Note that choosing the BIC for the
calculation of the weights in Eq. (10.15) leads to results that are closely related to
Bayesian model averaging (Augustin et al., 2002).

Cross-validation techniques are an example of computer-intensive simulation
based approaches. A data set consisting of n observed data is split into two subsets.
The first set of size n1 is used for fitting the model (learning sample). The second
set of size of size n2 = n − n1 is used for validating the fitted model, i.e., assessing
its predictive ability (training sample). Clearly, using n1 observations instead of the
complete sample of size n may substantially reduce the performance of the fit. One
possibility is to repeat the above procedure for all (or some) learning samples of size
n1 and to assess the average predicted ability. A common approach is thus to choose
n2 = 1 (leave-one-out method) and to repeat a large number of times the two steps
(1) model fit based on the learning sample of size n1 = n − 1 and (2) validation
of the fitted model using the single remaining observation. Cross-validation then
selects the model with the best predictive ability across the replications. We refer
to Hjorth (1994) and Hastie et al., (2001) for further details on cross-validation
and related techniques.

A different philosophy is to consider model selection as a multiple hypotheses
testing problem, where the selection of a specific model is done while controlling
the familywise error rate at a prespecified level α (Shimodaira, 1998; Junquera,
et al., 2002). In this context, the FWER may be interpreted as 1 – Probability of
Correct Model Selection. In addition, a reference set of good models is constructed
rather than choosing a single model. Shimodaira (1998), for example, considered
testing the set of hypotheses

H� : E(AICM�
) ≤ min

M j ∈M\M�

E(AICM j )

vs. K� : E(AICM�
) > min

M j ∈M\M�

E(AICM j )

where E(AICM�
) is the expected AIC value for model M�. The proposed multiple

test procedure uses the standardized differences of any two AIC values within a
variant of Gupta’s subset selection procedure using bootstrap techniques to assess
the joint distribution of the test statistics. A final reference set T of good models
is obtained as

T = {
M� ∈ M : PM�

≥ α
}
,
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where PM�
is the p-value associated with the �th model. By construction, if PM�

<

α, it has been shown that the AIC value for the �th model M� is significantly larger
than the minimum AIC of the remaining set M \ M�. Thus, the present approach
includes all models at the beginning and only removes those models shown to
behave inferior to the other models. This approach never leads T = ∅ and may
contain more than one model at the end.

10.5 Combining Modeling Techniques and Multiple Testing

10.5.1 Methodology

As seen in the previous sections, modeling techniques provide a flexible tool for
describing functional dose–response relationships and subsequently selecting a
suitable dose for the confirmatory Phase III studies. Typical model-based analyses,
however, do not provide a rigid error control, as it is provided, for example, by
multiple comparison procedures (Hochberg and Tamhane, 1987; Hsu, 1996). In this
section, we consider a hybrid approach which provides the flexibility advantages of
modeling based techniques within the framework of multiple comparisons (MCP-
Mod, Bretz et al., 2005). We perform a detailed numerical simulation study to
assess the operating characteristics of this approach.

The starting point of the MCP-Mod method is to recognize that the power
of standard dose–response trend tests depends on the (unknown) dose–response
relationship. Tukey et al. (1985) proposed the use of several transformations f of
the single predictor variable dose (i.e., of the dose levels di ) and then to look at
the minimum multiplicity adjusted P-value to decide for or against a significant
trend. The P-values were obtained from the regression sum of squares based on
the regression on the new set of carriers within a linearized model. In particular,
Tukey et al. (1985) proposed the use of the following transformations at the initial
step:

� arithmetic scaling: f (di ) = di ,
� ordinal scaling: f (di ) = i ,
� logarithmic scaling: f (di ) = log(di ),
� arithmetic-logarithmic scaling: f (di ) = di , if i = 1, f (di ) = log(di ) otherwise.

The lowest P-value is then taken and—after an appropriate multiplicity
adjustment—compared to the FWER α, see Tukey et al. (1985).

Bretz et al. (2005) formalized this approach and extended it in several ways. One
starts with a candidate set of models M. Each of the models M� ∈ M is applied to
the set of doses under investigation. Based on the resulting dose–response curves,
optimum weights are calculated for the comparison of the different candidate mod-
els within a multiple hypotheses testing framework. Once the multiplicity adjusted
P-values are obtained, different approaches of selecting the models and subsequent
dose-finding steps are possible. In the following we describe the procedure in more
detail before presenting the results of a simulation study.
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Assume that a set M of parameterized candidate models is given together with
initial parameter estimates as described in Section 10.3. The candidate set M may
contain some of the models presented in Section 10.2 or any other models deemed
to be suitable for the analysis. Applying these models to the doses d1, . . . , dk results
in the meansµ� = (µ�1, . . . , µ�k), which describe the dose–response of model � at
the given doses di . Each of these dose–response curves is tested by a single contrast
test, which is defined as a standardized linear combination of the means. The choice
of the weights (so called contrast coefficients) is free subject to the regularity
condition that the weights sum up to zero. We refer to Abelson and Tukey (1963)
for an early introduction of contrast tests in the context of dose–response analyses.
Here, the associated coefficients are chosen such that they best reflect the assumed
curves as characterized through µ�. A linear contrast test, for example, is defined
such that the difference of any two adjacent contrast coefficients is a constant.
Assuming that the standard linear model has been included in the candidate set M,
the linear contrast test is then a powerful test to detect the linear trend. Similarly,
any dose–response relationship characterized through µ� can be tested equally
powerfully by selecting an appropriate contrast test, whose coefficients are defined
in dependence of the assumed µ�. Details on the computation of optimum contrast
coefficients can be found in Bretz et al. (2005). Note that due to shift and scale
invariance properties of contrast tests, it is sufficient to work with the standardized
modeling functions f 0 to obtain the optimum contrast coefficients, as discussed
in Section 10.2.

Every single contrast test thus translates into a decision procedure, whether a
selected dose–response curve is significant given the observed data, while control-
ling the Type I error rate at level α. Under the assumptions stated in Eq. (10.1),
the joint distribution of the contrast test statistics is seen to be multivariate t and
available numerical integration routines can be used to compute the p-values and
critical constants (Genz and Bretz, 2002). Those models that are associated with a
significant contrast test result form a set of good models. This set may be regarded
as a reference set of models, which includes the most significant model with the
minimum p-value among all models initially considered in M. While all models
included in this reference set are statistically significant at the FWER α, the one
with minimum p-value (or according to any other standard model selection crite-
ria) may be regarded further for the dose selection step. Once a particular model
has been selected, the final step is then to use this model to produce inferences
on adequate doses, employing the methods described in Section 10.3. Note that in
contrast to a direct application of a model based approach, these preliminary steps
take care of possible model misspecifications and include the associated statisti-
cal uncertainty in a hypothesis testing environment. This approach therefore has
the advantage of leading to a quantitative measure of reliability for selecting an
adequate dose–response model. Basically, the multiple testing part is used mainly
to establish PoA, while accounting for model uncertainty. In the second step, a
single model from a suitable reference set of good models is selected, thus incor-
porating indirectly model uncertainty into the actual estimate of the MED. The
simulation study of Section 10.5.3 shows that although one model is ultimately



162 10. Analysis of Dose–Response Studies—Modeling Approaches

selected, the estimation bias is generally small, at least for M̂ E D2 defined in
Eq. (10.13).

As discussed in Section 10.3, the precision of the MED estimates can be assessed
via bootstrap methods, either nonparametrically (by re-sampling with replacement
subjects within each dose group), or parametrically (by re-sampling parameter
vectors according to the asymptotic distribution of the estimated coefficients.) In
the nonparametric case, the whole MCP-Mod procedure leading to the estimation
of the MED should be repeated for each bootstrap sample, so as to incorporate the
different sources of uncertainty involved in the MED estimation.

10.5.2 Proof-of-Activity Analysis in the
Dose-Finding Example

We now re-analyze the data presented in Section 10.1 using the MCP-Mod ap-
proach outlined in Section 10.5.1. The set of candidate models includes Emax,
linear in log-dose, linear, exponential and quadratic (umbrella shape). Based on
preliminary discussions, the logistic model is not included in this candidate set.
Initial estimates for the different models are provided in Section 10.3. The test
contrasts were obtained using the true parameter values for the corresponding
standardized model, (e.g., ED50 = 0.2 for the Emax model). The resulting con-
trasts are presented in Table 10.3. There is considerable correlation between some
of the test contrasts (e.g., linear and linear in log) indicating that it may be hard to
discriminate between such models, as discussed later in Section 10.5.3.

Table 10.3. Test contrasts for models in candidate set, with corresponding pairwise
correlations

Correlation with
Model Contrast linear-log linear exp quad logistic

Emax −0.643 −0.361 0.061 0.413 0.530 0.98 0.91 0.72 0.84 0.90
Linear-log −0.539 −0.392 −0.083 0.373 0.640 0.98 0.84 0.75 0.96
Linear −0.437 −0.378 −0.201 0.271 0.743 0.93 0.60 0.96
Exponential −0.292 −0.286 −0.257 −0.039 0.875 0.26 0.81
Quadratic −0.574 −0.364 0.155 0.713 0.070 0.72
Logistic −0.396 −0.387 −0.308 0.496 0.595

A summary of the multiple-comparison component of MCP-Mod, ordered by
the magnitude of the observed t-values, is given in Table 10.4. The one-sided unad-
justed (raw) p-values are presented and are accompanied with the corresponding
adjusted one-sided p-values from the multivariate t-distribution. All contrast tests
with an adjusted p-value less than 0.05 or equivalently with a t-value greater than
1.930 can be declared statistically significant having maintained the FWER at level
5%. Clearly all contrast tests are highly significant at the 5% level. In this example,
the Emax model is the first model to be considered for the dose selection component
of this analysis, see Section 10.3.
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Table 10.4. Summary of contrast tests

Raw Adjusted
Contrast Estimate t-value P-value P-value

Emax 0.552 3.46 0.0004 0.0017
Linear-log 0.524 3.29 0.0007 0.0028
Quadratic 0.494 3.10 0.0013 0.0048
Linear 0.473 2.97 0.0019 0.0069
Exponential 0.353 2.22 0.0145 0.0448

10.5.3 Simulations

We now investigate, via simulation, the performance of the MCP-Mod dose
finding methodology described in Section 10.5.1. Following the design of the
case study of Section 10.1, we consider the comparison of the five dose lev-
els d = 0, 0.05, 0.2, 0.6, and 1, with a single endpoint measured per patient.
The outcome is assumed to be independently distributed as N (µ d, σ 2). We set
σ = 0.65, motivated by the residual standard deviation from the case study in
Section 10.1. We restrict the simulations to balanced sample size allocations with
n = 10, 25, 50, 75, 100 and 150 patients per dose group and no drop-outs. As
in Section 10.1, a clinically relevant effect of � = 0.4 was adopted in the dose
selection algorithms. The confidence levels (= 100(1 − 2γ )%) used for these algo-
rithms in the simulations were 50, 60, 70, 80, and 90% respectively. We generated
a total of 10,000 simulation runs for each shape × sample-size combination.

Eight different shapes for the mean vector µ(d) were investigated in the simu-
lations:
1. Emax: µ(d) = 0.2 + 0.7d/(0.2 + d)
2. linear in log-dose: µ(d) = 0.2 + 0.6 log(5d + 1)/ log(6)
3. linear: µ(d) = 0.2 + 0.6d
4. exponential: µ(d) = 0.2 exp[log(4)d]
5. quadratic: µ(d) = 0.2 + 2.0485d − 1.7485d2

6. logistic: µ(d) = 0.193 + 0.607/{1 + exp[10 log(3)(0.4 − d)]},
7. double-logistic:

µ(d) =
{

0.198 + 0.61

1 + exp[18(0.3 − d)]

}
I (d ≤ 0.5)

+
{

0.499 + 0.309

1 + exp[18(d − 0.7)]

}
I (d > 0.5)

8. convex: µ(d) = 0.2 + 0.6/{1 + exp[10(0.8 − d)]}.
Note that the shapes were selected such that the placebo response value at d = 0
is about 0.2. In addition, all shapes have a maximum response of about 0.8 within
the dose range [0, 1], such that the maximum dose effect is about 0.6. The dose–
response profiles are shown in Fig. 10.3. Shapes 1 through 6 have been described
in Section 10.2. They will also form the set of candidate models for the contrast
tests. The last two shapes, 7 and 8, were included to evaluate the performance of
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Figure 10.3. Dose–response shapes used in the simulation study with the response at the
doses under investigation indicated by open dots.

the MCP-Mod method under model misspecification: they do not quite correspond
to any of the model shapes in the candidate set, though can be approximated by
some of the models in there.

The simulation power values to detect a significant dose–response relationship
under the different shape scenarios are given in Table 10.5. Due to the small
standard deviation, the power values are very close to 1 even for moderate to low
sample sizes. It can be expected that increasing the variability reduces the power to
detect a significant dose–response relationship (Bretz et al., 2005). Given the high
power values, MCP-Mod will in most cases lead to at least one model associated
with a significant contrast test in the following investigations.

The PoA power results also provide information about the ability of the contrast
tests in the MCP-Mod method to discriminate between the models in the candidate
set and thus to select the correct model for further inference. Table 10.6 gives the
simulation probabilities of choosing the correct model for the six models in the
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Table 10.5. PoA power values for MCP-Mod, under the model ×sample size
combinations

Data generating shape
n Emax Linear-log Linear Exponential Quadratic Logist Double-logistic Convex

10 0.723 0.746 0.736 0.708 0.638 0.851 0.663 0.558
25 0.974 0.982 0.981 0.975 0.951 0.997 0.956 0.915
50 1.000 1.000 1.000 1.000 0.999 1.000 0.999 0.998
75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

candidate set (e.g., the probability of the Emax model contrast yielding the largest t-
statistic when in fact this is the correct model). The quadratic model has the highest
discrimination power. This is because the quadratic shape is the most pronounced
one and none of the other shapes is similar to it. Even for low sample sizes, the
quadratic shape is correctly identified in about half of the cases. As expected, the
linear and the log-linear shapes, being the two most similar to each other, have
the lowest discrimination power and relatively high sample sizes are required to
identify them.

In some cases, fitting the model with the minimum p-value does not work
because of numerical instabilities. Such problems occur, for example, when the
model to be fit contains many parameters in comparison to the number of doses, or
when the doses are not spread evenly throughout the dose range under investigation.
In our simulation study, this was particularly true for the logistic model, which
involved the estimation of four parameters with the data being observed at five dose
levels. In such instances, estimating the MED from the most promising model
is not possible due to numerical convergence problems in fitting the model. To
circumvent this problem in the simulations, we selected the second best model
(assuming that it is significant at level α), fit it to the data and estimate the target
dose if the fit was successful and otherwise continue with the next best model.

Table 10.7 gives the related simulation probabilities of using the correct model
for the six models in the candidate set. Note that the probabilities in Table 10.7 are
different from the ones presented in Table 10.6: the latter refers to the probabilities
that the minimum p-value will correspond to the correct model, while the former
gives the probabilities that the correct model will be used for dose estimation.
The differences between the two tables result from the fact, mentioned above, that

Table 10.6. Probability of correctly identifying the response model

n Emax Linear-log Linear Exponential Quadratic Logistic

10 0.28 0.09 0.08 0.38 0.45 0.41
25 0.50 0.22 0.18 0.59 0.79 0.63
50 0.66 0.34 0.31 0.67 0.91 0.75
75 0.73 0.44 0.38 0.71 0.96 0.83

100 0.77 0.54 0.47 0.75 0.98 0.87
150 0.84 0.65 0.59 0.79 0.99 0.93
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Table 10.7. Probability of using the correct dose–response model

n Emax Linear-log Linear Exponential Quadratic Logistic

10 0.38 0.19 0.19 0.56 0.73 0.08
25 0.51 0.29 0.25 0.63 0.84 0.15
50 0.66 0.38 0.36 0.68 0.92 0.27
75 0.73 0.47 0.42 0.71 0.96 0.37

100 0.77 0.56 0.50 0.76 0.98 0.44
150 0.84 0.66 0.60 0.79 0.99 0.55

it is not always possible to use the model with the minimum p-value for dose
estimation, due to convergence problems. The probability of choosing the correct
model is increased compared with that of selecting it based on the contrast tests for
all models except for the logistic model. As indicated before, the logistic model
ended up being used for dose selection considerably less frequently than it was
initially selected by the contrast tests. An alternative approach would have been
not to use the minimum p-value for the model selection process, but using other
model selection criteria instead. Using the AIC, for example, could possibly ensure
that the penalty term for the number of model parameters helps selecting models
with a better numerically feasible fit to the data.

Two of the shapes used in the simulations, the double-logistic and the convex, do
not correspond to any of the models included in the candidate set. It is interesting to
consider which of the candidate models, if any, were chosen at the model selection
step, when these shapes were used. The selection probabilities for the models in
the candidate set for the double-logistic and convex shapes are presented in Ta-
bles 10.8 (contrast test) and 10.9 (dose selection). Similarly to Tables 10.6 and 10.7,
these two tables convey information about two different selection probabilities—
Table 10.8 refers to the probabilities that the minimum p-value will correspond
to the different models in the candidate set, while Table 10.9 gives the probabil-
ities that the different models are used for dose selection. As mentioned before,

Table 10.8. Selection probabilities for models in the candidate setbased on the
contrast test.

Shape n None Emax Linear-log Linear Exponential Quadratic Logistic

Double-logistic 10 0.34 0.07 0.02 0.01 0.02 0.30 0.25
25 0.04 0.06 0.02 0.01 0.00 0.47 0.41
50 0.00 0.03 0.01 0.00 0.00 0.52 0.44
75 0.00 0.02 0.00 0.00 0.00 0.52 0.46

100 0.00 0.01 0.00 0.00 0.00 0.54 0.45
150 0.00 0.01 0.00 0.00 0.00 0.54 0.45

Convex 10 0.45 0.03 0.02 0.03 0.41 0.00 0.05
25 0.09 0.02 0.02 0.04 0.81 0.00 0.03
50 0.00 0.00 0.00 0.02 0.96 0.00 0.01
75 0.00 0.00 0.00 0.01 0.99 0.00 0.00

100 0.00 0.00 0.00 0.00 1.00 0.00 0.00
150 0.00 0.00 0.00 0.00 1.00 0.00 0.00
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Table 10.9. Selection probabilities for models in the candidate set based on
the dose-selection step

Shape n Emax Linear-log Linear Exponential Quadratic Logistic

Double-logistic 10 0.11 0.15 0.10 0.03 0.57 0.03
25 0.07 0.17 0.07 0.01 0.65 0.03
50 0.04 0.18 0.03 0.00 0.72 0.04
75 0.03 0.17 0.01 0.00 0.75 0.04

100 0.02 0.15 0.00 0.00 0.79 0.04
150 0.01 0.12 0.00 0.00 0.83 0.04

Convex 10 0.06 0.06 0.16 0.70 0.01 0.01
25 0.02 0.02 0.07 0.88 0.00 0.01
50 0.00 0.00 0.03 0.96 0.00 0.00
75 0.00 0.00 0.01 0.99 0.00 0.00

100 0.00 0.00 0.00 1.00 0.00 0.00
150 0.00 0.00 0.00 1.00 0.00 0.00

the probabilities in the two tables differ because a model with minimum p-value
may not be used for dose selection, due to convergence problems. It is clear from
Table 10.8 that the double-logistic shape is approximated by either the quadratic
or the logistic shape, while the convex shape is approximated by the exponential
model. The discrimination among the different models increases with sample size,
as expected, being quite small under the scenarios considered here, for sample
sizes smaller than 50. The logistic model was frequently selected based on the
contrast tests for the double-exponential shape, but was rarely the model actually
used for dose selection, due to convergence problems.

Table 10.10 gives the target doses to achieve the desired clinically relevant effect
of 0.4 (difference with respect to placebo) for the eight different shapes considered
for dose selection. We now discuss the simulation results with respect to the dose-
selection performance of the MED estimators, measured in terms of its proximity
to and dispersion around the target dose (the doses producing an improvement of
� = 0.4 over placebo). Recall that the proposed MED estimates can be any dose
within the dose range under investigation. Because the target doses differ with
model, the performance of the estimator M̂ E Di is measured in terms of its relative
deviation Ri from the target dose, where Ri = 100(M̂ E Di − M E D)/M E D. The
median and inter-quartile range (IQR) of Ri in the 10,000 simulated dose selections
then characterize the relative bias and variability of M̂ E Di . Due to the large number
of combinations of sample sizes (n) and confidence levels (1 − 2γ ) used in the
simulations, only a subset of the scenarios are included here, namely n = 25, n =
50 and 150 and γ = 0.1 and 0.2 (corresponding to 80% and 60% level confidence
intervals respectively). Table 10.11 gives the corresponding summary statistics for

Table 10.10. Target doses for clinically relevant effect of 0.4 under various simulations
shapes

Shape Emax Linear-log Linear Exponential Quadratic Logistic Double-logistic Convex

Target dose 0.27 0.46 0.67 0.79 0.25 0.46 0.34 0.87
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Table 10.11. Median relative bias and relative IQR of MED estimators under various
models and scenarios

Median relative bias (%) Relative IQR (%)

Model n γ M̂ E D1 M̂ E D2 M̂ E D3 M̂ E D1 M̂ E D2 M̂ E D3

Emax 25 0.10 −40.0 −2.5 31.2 86.2 116.2 120.0
0.20 −28.8 −2.5 23.7 97.5 112.5 120.0

50 0.10 −36.3 5.0 38.7 82.5 93.7 108.7
0.20 −21.3 5.0 27.5 82.5 93.7 105.0

150 0.10 −25.0 1.2 31.2 48.7 60.0 75.0
0.20 −17.5 1.2 20.0 52.5 60.0 71.2

Linear in log-dose 25 0.10 −32.7 −4.4 19.5 69.5 76.0 84.7
0.20 −24.0 −6.6 12.9 73.9 76.0 82.5

50 0.10 −24.0 −0.1 23.8 56.5 63.0 71.7
0.20 −17.5 −0.1 17.3 56.5 63.0 69.5

150 0.10 −13.1 −0.1 17.3 28.2 36.9 43.4
0.20 −8.8 −0.1 10.8 30.4 36.9 39.1

25 0.10 −29.5 −11.5 8.0 39.0 46.5 45.0Linear
0.20 −25.0 −11.5 2.0 42.0 46.5 46.5

50 0.10 −22.0 −7.0 9.5 28.5 33.0 34.5
0.20 −17.5 −7.0 5.0 30.0 33.0 34.5

150 0.10 −11.5 −2.5 8.0 15.0 18.0 19.5
0.20 −8.5 −2.5 5.0 16.5 18.0 18.0

Exponential 25 0.10 −27.2 −6.7 3.5 27.3 26.2 18.2
0.20 −19.2 −6.7 1.3 26.2 26.2 20.5

50 0.10 −17.0 −2.2 4.7 21.6 19.3 14.8
0.20 −11.3 −2.2 2.4 21.6 19.3 17.1

150 0.10 −6.7 0.1 4.7 12.5 11.4 10.2
0.20 −4.4 0.1 3.5 12.5 11.4 10.2

Quadratic 25 0.10 −31.3 −7.1 21.2 28.3 44.4 56.5
0.20 −23.3 −7.1 13.1 32.3 44.4 52.5

50 0.10 −23.3 1.0 25.2 24.2 36.4 48.5
0.20 −15.2 1.0 17.1 28.3 36.4 44.4

150 0.10 −11.1 1.0 21.2 16.2 20.2 32.3
0.20 −7.1 1.0 13.1 16.2 20.2 28.3

Logistic 25 0.10 −20.4 3.2 29.0 47.3 51.6 60.2
0.20 −14.0 1.1 20.4 49.5 51.6 55.9

50 0.10 −11.8 5.4 29.0 38.7 40.9 45.2
0.20 −7.5 5.4 20.4 40.9 40.9 45.2

150 0.10 −7.5 3.2 20.4 30.1 30.1 32.3
0.20 −5.4 3.2 14.0 28.0 30.1 32.3

Double−logistic 25 0.10 −37.6 −10.9 12.9 44.6 68.3 71.3
0.20 −28.7 −10.9 6.9 53.5 65.4 68.3

50 0.10 −28.7 −4.9 18.8 44.6 59.4 65.4
0.20 −19.8 −4.9 9.9 47.5 56.4 62.4

150 0.10 −19.8 −4.9 12.9 23.8 32.7 41.6
0.20 −16.8 −4.9 6.9 26.7 29.7 38.6

Convex 25 0.10 −21.0 −0.6 10.2 28.7 25.1 16.8
0.20 −13.8 −0.6 7.8 26.3 25.1 20.4

50 0.10 −9.0 5.4 12.6 20.4 18.0 10.8
0.20 −4.2 5.4 10.2 19.2 18.0 14.4

150 0.10 1.8 9.0 13.8 8.4 9.6 7.2
0.20 4.2 9.0 11.4 9.6 9.6 7.2
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t2 various models. It is seen that M̂ E D2 tends to estimate the target dose with
less bias than the alternative estimation methods. M̂ E D1 tends to underestimate
the target dose, while M̂ E D3 tends to overestimate it. The precision of all three
estimation methods depends on the sample sizes and on the underlying dose–
response shape, though. With higher sample sizes, the precision of all three methods
is considerably enhanced. Furthermore, the precision is considerably higher when
the underlying dose–response shape is either a quadratic, convex or a exponential
shape.

Similar results are observed for the other sample sizes and values of γ . We
conclude that M̂ E D2 seems preferable to the other methods. The dose-selection
step offers additional and useful knowledge about the underlying dose–response
profile that is not possible with traditional multiple comparison dose-selection
methods. Greater precision in the estimation of the model would be obtained if
more suitable designs were used.

10.6 Conclusions

In this chapter, we have described modeling methods for analyzing dose–response
studies. We introduced the framework of modeling approaches with their advan-
tages and disadvantages as compared to alternative analysis methods. We described
some commonly used dose–response models, while discussing and interpreting
their parameters together with strategies for obtaining initial estimates. We then
presented methods to determine suitable dose levels to meet clinical effect require-
ments. Particular emphasis was laid on the inherent problems related to model
uncertainty, such as increased variability and bias of the parameters estimates of
interest.

In light of these results a hybrid strategy for analyzing dose finding studies
was investigated in detail. The proposed methodology combines the advantages
of multiple comparison and modeling approaches, consisting of a multi-stage pro-
cedure. In the first stage, multiple comparison methods are used to test for PoA
and to identify statistically significant contrasts corresponding to a set of candidate
models. Once the PoA is established in the first stage, standard model selection
criteria are used to chose the best model, which is then used for dose-fining in
subsequent stages. The advantage of this new approach, in comparison to more
traditional multiple comparison dose finding methods, is its added flexibility in
searching for and identifying an adequate dose for future drug development while
alleviating the aforementioned model selection problems.

The emphasis of this chapter has been on the motivation and the methodological
foundation of the MCP-Mod approach. We did not present or discuss in greater
detail the implementation aspects of the methodology, due to space limitations.
A separate manuscript dedicated to the practical aspects of utilizing MCP-Mod,
including software for implementing the various steps of the methodology, is
currently under preparation.

An important research topic that can significantly enhance the performance of
the methods described here is the re-evaluation of study designs for dose finding



170 10. Analysis of Dose–Response Studies—Modeling Approaches

studies which take modeling of the dose–response relationship into consideration.
Traditionally, dose-finding designs were developed with multiple comparison
methods in mind. From the point of view of modeling, it would be better to have
more doses spread out in the range of possible doses. Of course this raises other
important issues, like the feasibility of manufacturing such doses and managing
a trial with a larger number of doses. Whether or not these may be practical re-
strictions will be study-dependent. However, the need to re-think traditional dose
finding designs in light of the need to model the dose–response relationship is
evident and certainly deserving more research.
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11
Multiple Comparison Procedures
in Dose Response Studies

AJIT C. TAMHANE AND BRENT R. LOGAN

11.1 Introduction

Dose–response studies are useful in Phase II and Phase III clinical trials to evaluate
efficacy and toxicity of a drug in order to determine its effective and safe ranges.
A zero dose is generally included as a control against which higher doses are
compared. This naturally leads to multiple comparisons. The ordered nature of
doses suggests the use of stepwise multiple test procedures. The purpose of this
article is to give a brief overview of these procedures. In Section 11.2, we present
step-down procedures for identifying the minimum effective dose (MinED). These
procedures are applied to the problem of identifying the maximum safe dose
(MaxSD) in Section 11.3. Examples are given in Section 11.4 followed by some
extensions in Section 11.5. The paper concludes with a discussion in Section 11.6.

11.2 Identifying the Minimum Effective Dose (MinED)

11.2.1 Problem Formulation

Let i = 0, 1, . . . , k represent increasing dose levels, where 0 denotes the zero
(control) dose. Assume that the efficacy measurements Yi j (1 ≤ j ≤ ni ) on the
i th dose are independent and normally distributed with mean µi and variance
σ 2, denoted by Yi j ∼ N (µi , σ

2). We assume that a larger µi represents higher
efficacy. Let Y i ∼ N (µi , σ

2/ni ) be the sample mean and S2 ∼ σ 2χ2
ν /ν be the

pooled sample variance based on ν = ∑k
i=0 ni − (k + 1) degrees of freedom (df).

It is common to use the mean efficacy of the zero dose as a benchmark for
comparison purposes to decide if a particular dose is clinically effective. Two dif-
ferent measures are employed for this purpose. The first is the difference measure,
δi = µi − µ0, with a specified additive threshold δ > 0 that this difference must
exceed in order for dose i to be deemed effective. The second is the ratio measure,
λi = µi/µ0, with a specified multiplicative threshold λ > 1 that this ratio must
exceed in order for dose i to be deemed effective. Here we adopt the latter approach
since it requires an investigator to specify the threshold in relative terms instead of
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absolute terms, which is often more difficult. Thus, e.g., if a 10% increase in the
mean efficacy compared to the zero dose is regarded as clinically significant then
λ = 1.10. However, it should be noted that the use of the multiplicative threshold
assumes that µ0 > 0. If µ0 is positive but close to zero, very large values of λ

must be specified. Procedures using the additive threshold are briefly covered in
Section 11.5.

The true MinED can be defined in two ways. A simple definition is

MinED = min{i : µi > λµ0} (11.1)

which is the lowest dose that is effective. For a stronger requirement on MinED
the following definition is used:

MinED = min{i : µ j > λµ0 for all j ≥ i} (11.2)

This is the lowest dose such that it and all higher doses are effective.
In some applications it is reasonable to assume that the dose–response curve

satisfies a monotone property that if dose i is ineffective then all lower doses are
also ineffective, and if dose i is effective then all higher doses are also effective.
Formally,

µi ≤ λµ0 ⇒ µ j ≤ λµ0 ∀ j < i and

µi > λµ0 ⇒ µ j > λµ0 ∀ j > i (11.3)

This will be referred to as the weak monotonicity assumption as opposed to the
strong monotonicity assumption:

µ0 ≤ µ1 ≤ · · · ≤ µk (11.4)

If the dose–response relationship is weakly monotone, then the two definitions of
MinED are equivalent.

We want to guarantee that the probability of any ineffective dose being declared
effective is no more than a specified level α. Let ̂MinED denote the sample or
estimated MinED. Under weak monotonicity, this requirement translates to

P( ̂MinED < MinED) ≤ α (11.5)

Our approach to identifying MinED will be via tests of the hypotheses

Hi : µi ≤ λµ0 (1 ≤ i ≤ k) (11.6)

against one-sided alternatives. If using definition (11.1), the estimated MinED is
defined as ̂MinED = min{i : Hi is rejected } (11.7)

If using definition (11.2), the estimated MinED is defined aŝMinED = min{i : Hj is rejected for all j ≥ i} (11.8)
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If a multiple test procedure controls the familywise error rate (FWE), defined as

FWE = P{Reject any true Hi } (11.9)

strongly (for any combination of true and false Hi ) at level α then the requirement
in Eq. (11.5) is satisfied. However, note that if the dose response curve is not
weakly monotone, then the interpretation of Eq. (11.5), and the associated FWE,
as the probability of any ineffective dose being declared effective only holds for
definition (11.1).

In the next two subsections we will consider two types of multiple test proce-
dures. The SD1PC procedure estimates the MinED according to definition (11.1).
The SD2PC procedure estimates the MinED according to definition (11.2). When
it is reasonable to assume monotonicity, the two definitions are equivalent and
either SD1PC or SD2PC may be used.

11.2.2 Review of Multiple Test Procedures

Various procedures based on different contrasts of the dose means have been pro-
posed in the literature (Ruberg, 1989, Tamhane et al., 1996, Dunnett and Tamhane,
1998). Here we will only consider step-down procedures based on pairwise con-
trasts because (1) as shown by Bauer (1997), only pairwise contrasts yield proce-
dures that control the FWE even when the dose response is not monotone, (2) they
are simple to use, and (3) they can be easily extended to nonnormal data by using
appropriate two-sample statistics.

The traditional method for deriving step-down multiple test procedures is based
on the closure principle due to Marcus et al., (1976). More recently, Hsu and
Berger (1999) and Finner and Strassburger (2002) have proposed the partitioning
principle to derive more powerful test procedures. We now explain these principles
and the resulting test procedures.

11.2.2.1 Closure Principle: SD1PC Procedure

The closure principle requires a closed family of hypotheses. If we define the hy-
potheses H ′

i = ⋂i
j=1 Hj meaning all doses at or below dose i are ineffective,

then {H ′
i (1 ≤ i ≤ k)} is a closed family. (Note that this does not require the

monotonicity assumption.) The closure principle tests each hypothesis H ′
i , if it

is not already accepted, at level α. If H ′
i is not rejected then the closure principle

accepts all H ′
j that are implied by H ′

i without further tests. The representation
H ′

i = ⋂i
j=1 Hj shows that all H ′

j for j < i are implied by H ′
i . This leads to a

step-down test procedure in which H ′
k is tested first. If H ′

k is not rejected then all
hypotheses are accepted and no dose is declared effective. Otherwise H ′

k−1 is tested
next and the testing sequence continues. If H ′

i is the last rejected hypothesis then̂MinED = i .
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For the normal data assumed here, define the pairwise t-statistic corresponding
to hypothesis Hi as

Ti = Y i − λY 0

S
√

λ2/n0 + 1/ni

(1 ≤ i ≤ k). (11.10)

Then using the union-intersection (UI) method of Roy (1953), the statistic for
testing H ′

i is Ti,max = max1≤ j≤i Tj . Under H ′
i (assuming the least favorable con-

figuration µ j = λµ0 ∀ j ≤ i , which maximizes the FWE), the joint distribution
of T1, T2, . . . , Ti is an i-variate t-distribution with ν df and correlation matrix
Ri = {ρ j�}, which has a product correlation structure, ρ j� = τ jτ�, with

τ j = λ√
λ2 + r j

and r j = n0

n j
(1 ≤ j ≤ k) (11.11)

If n1 = n2 = · · · = nk = n and r = n0/n then ρ j� ≡ ρ = λ2/(λ2 + r ). Let t (α)
i,ν,Ri

denote the upperα equicoordinate critical point of this i-variate t-distribution. Then
the closed procedure rejects H ′

i at level α iff H ′
k, . . . , H ′

i+1 have been rejected and

Ti,max > t (α)
i,ν,Ri

This is referred to as the SD1PC procedure. Note that the critical constants used in
SD1PC are different if smaller µi ’s represent higher efficacies with the threshold
λ < 1. This is so because the ρ j� are not invariant to the transformation λ ← 1/λ

or λ ← λ − 1. Also, as pointed out earlier, the SD1PC procedure is appropriate
for definition (11.1) of the MinED in the sense that it will control the error rate in
Eq. (11.5) for this definition, but it can also be used for definition (11.2) under the
assumption of monotonicity, in which case H ′

i = Hi = ⋂i
j=1 Hj .

11.2.2.2 Partitioning Principle: SD2PC Procedure

The partitioning principle reformulates the hypotheses (11.6) so that they are dis-
joint. There are different ways to accomplish this. One way is to write the hypothe-
ses as

H∗
i : µi ≤ λµ0, µ j > λµ0 ∀ j > i (1 ≤ i ≤ k) (11.12)

For the sake of completeness, add the hypothesis H∗
0 : µ j > λµ0 ∀ j , which need

not be tested. This partitioning is appropriate when efficacy is expected to increase
with dose. Note that the hypotheses H∗

i are disjoint with their union being the
whole parameter space, and the true parameter configuration belongs to exactly
one of the H∗

i . Therefore, no multiplicity adjustment is needed to perform the tests
and each H∗

i can be tested at level α independently of the others. Final inferences
drawn must be logically consistent with the H∗

i that are not rejected. This procedure
controls the error rate in Eq. (11.5) corresponding to the more stringent definition
(11.2) of the MinED.

Note that the above formulation of the hypotheses implies that doses must be
tested in a step-down manner in the order H∗

k , H∗
k−1, . . ., stopping as soon as any

hypothesis is accepted. For example, suppose k = 5, and all five hypotheses are
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tested, but only H∗
5 , H∗

4 and H∗
2 are rejected. Then we can only conclude that doses

5 and 4 are effective, but not dose 2. Thus, we get ̂MinED = 4 and so testing can
be stopped once H∗

3 is accepted.
The main difficulty in applying the partitioning principle is that it is not easy to

derive tests of the hypotheses H∗
i . However, by noting that H∗

i is a subset of Hi ,
we see that an α-level test of Hi provides a conservative α-level test of H∗

i . This
leads to a step-down test procedure on the family {Hi (1 ≤ i ≤ k)}. Therefore, for
testing Hi , we use the ordinary Student’s t-test, which rejects Hi (assuming that
Hk, . . . , Hi+1 have been rejected) if Ti > tν,α , where tν,α is the upper α critical
point of the univariate Student’s t-distribution with ν df. The resulting step-down
procedure is referred to as the SD2PC procedure.

Although we have derived the SD2PC procedure by using the partitioning prin-
ciple, it can also be derived by noting that the a priori ordering of the hypotheses
results in their nesting: Hk ⊆ Hk−1 ⊆ · · · ⊆ H1. This approach is employed by
Maurer et al. (1995) to show that SD2PC controls the FWE strongly.

Finally we note that both SD1PC and SD2PC are pre-determined testing proce-
dures since they both test the hypotheses Hk, Hk−1, . . . in a pre-determined order
not in a sample-determined order (see Chapter 12).

11.2.3 Simultaneous Confidence Intervals

Bretz et al. (2003) proposed stepwise confidence intervals for the ratios λi = µi/µ0

based on Fieller’s (1954) method. Consider the r.v.

Ti = Y i − λi Y 0

S
√

λ2
i /n0 + 1/ni

which is t-distributed with ν df. By solving the inequality Ti ≤ tν,α , which is an
event of probability 1 − α, we get the following 100(1 − α)% lower confidence
bound on λi :

λi ≥ Li = Y 0Y i −
√

a0Y
2
i + ai Y

2
0 − a0ai

Y
2
0 − a0

where ai = t2
ν,α S2/ni (0 ≤ i ≤ k).

For identifying the MinED Bretz et al. (2003) embedded these marginal 100(1 −
α)% confidence intervals into the following step-down procedure, which does not
require any multiplicity adjustment according to the results of Hsu and Berger
(1999).

STEP 1: If Lk ≤ λ then conclude that λk ≥ Lk , all doses are ineffective and stop.
Otherwise conclude that λk > λ (dose k is effective) and go to Step 2.

STEP i : If Lk−i+1 ≤ λ then conclude that λk−i+1 ≥ Lk−i+1, doses 1, . . . , k − i + 1
are ineffective and stop. Otherwise conclude that λk−i+1 > λ (dose k − i + 1 is
effective) and go to Step i + 1.

STEP k + 1: Conclude that min1≤i≤k λi ≥ min1≤i≤k Li .
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This test procedure is equivalent to the SD2PC procedure because it is derived
from it. However, additionally, it yields lower confidence bounds on the λi ’s for
all doses found effective and the first dose found ineffective.

11.3 Identifying the Maximum Safe Dose (MaxSD)

All of the preceding discussion extends naturally to the problem of identifying the
MaxSD in toxicity studies with a few minor changes as we note below. In order
to keep the forms of the hypotheses (11.6) and the test statistics in Eq. (11.10) the
same, and also to conform with the past literature, we will assume that lower µi

implies a more toxic (less safe) dose. Toxicity generally increases with dose level
and the zero dose has the least toxicity. Therefore the µi ’s are generally decreasing
and the threshold λ < 1. Thus, dose i with µi > λµ0 is regarded as safe, while
dose i with µi ≤ λµ0 is regarded as unsafe. For example, λ = 0.90 means that a
10% decrease in safety level (increase in toxicity) is regarded as clinically unsafe.

The maximum safe dose (MaxSD) for specified λ < 1 is defined as

MaxSD = max{i : µ j > λµ0 ∀ j ≤ i}
Analogous to the discussion of the MinED, there could be two definitions of the
MaxSD. However, we assume monotonicity of the toxicity response so that the
definitions are identical. The hypotheses are the same as in Eq. (11.6) (where now
Hi states that the i th dose is unsafe). If̂MaxSD = max{i : Hj is rejected ∀ j ≤ i}
denotes the estimated MaxSD then we want to guarantee that

P( ̂MaxSD > MaxSD) ≤ α (11.13)

Since the goal is now to find the MaxSD, both SD1PC and SD2PC start by
testing H1 and proceed to testing H2 if H1 is rejected (dose 1 is declared safe) and
so on. If H1 is not rejected then all Hi are accepted without further tests and all
doses are declared unsafe, i.e., there is no MaxSD. SD1PC rejects Hi using the
representation Hi = ⋂k

j=i Hj if

Ti,max = max
i≤ j≤k

Tj > t (α)
�,ν,R�

where � = k − i + 1 and R� = {ρi j }, while SD2PC rejects Hi if Ti > tν,α . For
details see Tamhane et al.

11.4 Examples

Example 1 (Identifying the MinED): Tamhane and Logan (2002) cite an example
of a Phase II randomized, double-blind, placebo-controlled parallel group clinical
trial of a new drug for the treatment of arthritis of the knee using four increasing
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doses (labeled 1 to 4). While they consider both efficacy and safety outcomes
in that study, here we focus only on the efficacy data. A total of 370 patients
were randomized to the five treatment groups. The efficacy variable is the pooled
WOMAC (Western Ontario and McMaster Universities osteoarthritis index) score,
a composite score computed from assessments of pain (5 items), stiffness (2 items),
and physical function (17 items). The composite score is normalized to a scale of
0–10. An increase in WOMAC from the baseline indicates an improvement in
disease condition. We will consider a 30% improvement in WOMAC scores over
the baseline mean compared to that for the zero dose group a clinically significant
improvement, so that λ = 1.3.

The summary data are given in Table 11.1. Normal plots were found to be
satisfactory, and the Bartlett and Levene tests for homogeneity of variances yielded
nonsignificant results. The sample sizes are approximately equal so that ri ≈ r = 1
and ρi j ≈ ρ = 1.302/(1.302 + 1) = 0.628. The pooled estimate of the standard
deviation is 1.962 with ν = 365 df. The t-statistics computed using Eq. (11.10)
are given in Table 11.2.

Table 11.1. Summary statistics for changes from baseline in
WOMAC score

Dose level

0 1 2 3 4

Mean 1.437 2.196 2.459 2.771 2.493
SD 1.924 2.253 1.744 1.965 1.893
n 76 73 73 75 73

Table 11.2. t-Statistics and unadjusted p-values
for WOMAC scores

Comparison

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0

Ti 0.881 1.588 2.439 1.680
pi 0.189 0.056 0.007 0.047

The SD1PC procedure begins by comparing T4,max = 2.439 with the critical
value t (.05)

4,365,0.628 = 2.123. Since 2.439 > 2.123, we step down to compare dose
3 with the control. In fact, we can take a shortcut and step down to compare
dose 2 with the control, since T4,max = T3 = 2.439 and the multivariate T-critical
values decrease with dimension implying rejection of H3. So, next we compare
T2,max = 1.588 with the critical value t (.05)

2,365,0.628 = 1.900. Since 1.588 < 1.900, we
accept hypothesis H2 and by implication hypothesis H1, leading to the conclusion
that ̂MinED = 3.

The SD2PC procedure begins by comparing T4 = 1.680 with the critical value
t365,.05 = 1.649. Both T4 and T3 = 2.439 exceed 1.649, so we reject H4 and H3.
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Next T2 = 1.588 < 1.649, so we stop and accept H2 and hence H1 by implication,
leading to the same conclusion that ̂MinED = 3.

To compute stepwise 95% confidence intervals using the Bretz et al. method we
first compute

L1 = 1.136, L2 = 1.288, L3 = 1.468, L4 = 1.308

Since L4 and L3 are both greater than λ = 1.30 we conclude that both doses 4
and 3 are effective. But L2 < λ = 1.30, and so we stop and conclude that dose 2
is ineffective and λ2 ≥ 1.288. Obviously, we get the same conclusion as SD2PC,
but additionally we get confidence bounds on λ4, λ3 and λ2.

Example 2 (Identifying the MaxSD): Tamhane et al. (2001) cite an aquatic
toxicology study in which daphnids, or water fleas (Daphnia magna), were exposed
over 21 days to a potentially toxic compound. Daphnids of the same age and
genetic stock were randomly assigned to a water control, a solvent control, or
one of six concentrations of a pesticide. The safety endpoint of interest was the
growth, as measured by the lengths of the daphnids after 21 days of continuous
exposure. Because there was no significant difference between the two control
groups, they were combined for subsequent analysis. Six nominal concentrations
of the pesticide were tested: 0.3125, 6.25, 12.5, 25, 50, and 100 ppm. Forty daphnids
were randomly assigned to each group, but because some died during the course
of the experiment they were not evaluable. Also, because of excessive mortality
in the 100 ppm dose group, it was omitted from subsequent analysis. This follows
the recommendation of Capizzi et al. (1985) for a two-stage approach, in which
survival is studied in the first stage, and sublethal effects (such as growth) are
compared among those doses which do not significantly affect survival. In the
toxicology community, opinions about what constitutes a biologically significant
effect have ranged from 5 to 25% adverse effect. If we take an average of this
range, i.e., 15% reduction in length or λ = 0.85 as biologically unsafe, then we
would like to know which dose is the MaxSD for this value of λ.

The summary statistics are given in Table 11.3. Normal plots were found to be
satisfactory, and the Levene test for homogeneity of variances was nonsignificant.
The pooled estimate of the standard deviation is 0.1735 with ν = 254 df. Additional
analyses of variance were performed on the data as discussed in Tamhane et al.
(2002), but we do not elaborate on them here. The sample sizes in the nonzero
dose groups were all approximately equal, so that ri ≈ r = 80/36 = 2.222 and
ρij ≈ ρ = 0.852/(0.852 + 2.222) = 0.245. The t-statistics computed using Eq.
(11.10) are given in Table 11.4.

Table 11.3. Summary statistics for daphnid length data

Dose level

0 1 2 3 4 5

Mean 4.0003 3.9908 3.8108 3.6306 3.4600 3.2106
SD 0.1496 0.2110 0.1504 0.1961 0.1726 0.1829
n 80 38 39 35 35 33
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Table 11.4. t-Statistics and unadjusted p-values
for daphnid length data

Comparison

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0 5 vs. 0

Ti 18.082 12.692 6.838 1.774 −5.505
pi 0.000 0.000 0.000 0.038 1.000

For the SD1PC procedure, the critical values are t (.05)
5,254,0.245 = 2.307, t (.05)

4,254,0.245 =
2.224, t (.05)

3,254,0.245 = 2.114, t (.05)
2,254,0.245 = 1.952, and t (.05)

1,254,0.245 = 1.652. The SD1PC
procedure proceeds by comparing the statistics Ti,max to the critical values in
sequence, starting with T1,max = 18.082. These are rejected in sequence until we
come to T4,max = 1.774, which is less than 1.952. Therefore, we conclude that̂MaxSD = 3.

The SD2PC procedure proceeds by comparing each t-statistic with the critical
value t254,.05 = 1.652, starting with dose 1. H4 is the last hypothesis rejected, since
T4 = 1.774 > 1.652 and T5 = −5.505 < 1.652. Therefore, we stop and accept
H5, leading to the conclusion that ̂MaxSD = 4. Note that SD2PC found dose 4 to
be safe, whereas SD1PC did not.

11.5 Extensions

Several extensions of the basic methods described above have been studied in the
literature. We briefly summarize a few below.

1. Multiple test procedures based on general contrasts are given in Ruberg (1989),
Tamhane et al. (1996), Dunnett and Tamhane (1998), and Tamhane et al. (2001).
The first three papers use the difference measure approach. Specifically, when
using the difference measure approach for the MinED problem, a general con-
trast for testing Hi : µi ≤ µ0 + δ is given by

Ci = ci0(Y 0 + δ) + ci1Y 1 + · · · + cikY k (1 ≤ i ≤ k)

where the contrast coefficients ci j sum to zero. The corresponding test statistic
is

Ti = Ci

s.e.(Ci )
= Ci

S
√∑I

j=0 c2
i j/n j

(1 ≤ i ≤ k)

The Ti have a multivariate t-distribution with correlations that depend on
the ci j and the ni . If the dose response shape is known a priori then the ci j

can be chosen to mimic its shape, e.g., if the shape is roughly linear then
one can use linear contrasts in which the ci j form an arithmetic progression.
However, often such knowledge is lacking. Previous simulation studies have
shown that the procedures based on Helmert contrasts, in which ci j = −1, for
j = 0, 1, . . . , i − 1, cii = i and ci j = 0 for j > i , perform better than those
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based on other contrasts when the minimum effective dose is at the high end or
when the dose response shape is convex, and do not perform too badly in other
cases. Another advantage of Helmert contrasts is that for a balanced design
(n0 = n1 = · · · = nk) they are uncorrelated, i.e., ρi j = 0. Effectively, the i th
Helmert contrast compares the i th dose level mean with the average of all the
lower dose level means (including the zero dose).
Other trend tests are available as well for testing the hypotheses at each stage
of the step-down procedure. Abelson and Tukey (1963) propose a contrast
test which minimizes the maximum power loss over the alternative hypothesis
space. Stewart and Ruberg (2000) propose using the maximum of several well-
defined contrast tests to improve the robustness of the trend test to different
dose–response shapes. Tests could alternatively be based on isotonic regression
(Robertson et al. 1988; Williams 1971, 1972).

2. The problem of identifying the MinED and MaxSD simultaneously is consid-
ered in Tamhane and Logan (2002); see also Bauer et al. (2001). The therapeutic
window is defined as the interval [MinED, MaxSD] if this interval is nonempty.
This interval is estimated by [ ̂MinED, ̂MaxSD] subject to the requirement that
the probability that [ ̂MinED, ̂MaxSD] contains any ineffective or unsafe doses
is less than or equal to a prespecified level α, i.e.,

P
{ ̂MinED < MinED or ̂MaxSD > MaxSD

} ≤ α

Tamhane and Logan (2002) investigated several strategies, including α-
splitting, where the MinED is identified with Type I error αE and the MaxSD is
identified with Type I error αS so that αE + αS = α. They also proposed more
efficient bootstrap procedures which take into account the correlation between
efficacy and safety variables.

3. In many applications the assumption of homoscedasticity of variances is not
satisfied. In Tamhane and Logan (2004), we give extensions of the procedures
discussed here as well as those based on Helmert contrasts when the dose
response data are heteroscedastic.

4. Nonparametric extensions of the step-down procedures for identifying the
MinED are given by Chen (1999), Sidik and Morris (1999), Chen and Jan
(2002), and Jan and Shieh (2004).

11.6 Discussion

In this section, we compare the methodology proposed in this paper with that cur-
rently practiced by the U.S. Food and Drug Administration (FDA). For simplicity
assume a single dose or drug. Then the FDA’s criterion for efficacy consists of the
proof of statistical significance and of clinical significance. Denoting the means
for the control and the drug by µ0 and µ1, respectively, the statistical significance
criterion is met if H0 : µ1 ≤ µ0 is rejected in favor of the one-sided alternative
H1 : µ1 > µ0 at the α-level (usually 2.5%). For clinical significance, if the ratio
measure is adopted then it is required that µ̂1/µ̂0 > λ, where λ > 1 is a specified
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threshold. Thus it is required that the 100(1 − α)% confidence interval for µ1/µ0

lie above 1, but only the point estimate of µ1/µ0 lie above the threshold λ. On the
other hand, our approach tests H0 : µ1 ≤ λµ0 vs. H1 : µ1 > λµ0 and thus requires
that the 100(1 − α)% confidence interval for µ1/µ0 lie above λ, which is a stricter
requirement. The two approaches are equivalent if λ = 1. We recommend that the
stricter requirement with λ > 1 be adopted since requiring that the point estimate
µ̂1/µ̂0 > λ does not guarantee that the true ratio µ1/µ0 > λ with 100(1 − α)%
confidence. Similar discussion applies if the difference measure is used. In either
case, another practical problem is how to specify the threshold.
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12
Partitioning Tests in Dose–Response
Studies with Binary Outcomes

XIANG LING, JASON HSU, AND NAITEE TING

12.1 Motivation

As discussed in Chapter 1, the main purpose of Phase II studies is dose finding
and most of these studies are designed to help estimate the dose–response rela-
tionships. On the other hand, Phase III studies are designed to confirm findings
from early phases, and results from Phase III studies are used for submission to
regulatory agencies for drug approval. Hence, Phase III studies are designed for
decision making. In terms of hypotheses testing, ways of controlling the family-
wise error rate (FWER) strongly should be well specified prior to unmasking the
study data. In many cases, these prespecification need to be clearly communicated
with regulatory agencies for mutual agreement.

Although a wide range of different doses may have been studied at Phase II, it
is still of interest to test a few doses in Phase III. There are many reasons for doing
this—one reason could be that one or a few of the target doses may not have been
studied in Phase II, another reason could be that the target dose was not exposed
long enough in Phase II. Therefore, it is common to see that several doses are
studied at Phase III. In situations where Phase III studies include multiple doses
against a control, the null and alternative hypotheses need to be clearly stated, and
procedures of multiple comparisons need to be specified prior to unmasking the
study data. In many Phase III studies, the control group is a known active treatment;
however, placebo is still commonly used in Phase III.

This chapter introduces the partitioning tests (Stefansson, et al., 1988; Hsu and
Berger, 1999; Finner and Strassburger, 2002) as a method to construct multiple
comparison procedures for binary outcomes. Three types of partitioning tests are
introduced in this chapter: Section 12.3.1 covers the predetermined step-down
method, Section 12.3.2 discusses the sample-determined step-down method, and
Section 12.3.3 discusses the sample-determined step-up method. Suppose a given
Phase III trial was designed with a low dose, a high dose of the test drug, plus
a placebo control. Then the objective is to show that either the low dose, or the
high dose, or possibly both doses are clinically meaningfully better than placebo.
Therefore, two null hypotheses—H0H: high dose is no better than placebo, and
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H0L: low dose is no better than placebo—may be of interest. Partitioning testing
is a general principle which is useful in conducting multiple comparisons. There
are various ways of implementing these tests. Our focus in this chapter is to apply
partitioning tests in Phase III dose response settings where the primary efficacy
variable of interest is a binary variable.

Binary variables are frequently used in clinical trials. For example, at the end
of a study, each patient is classified as a responder or a nonresponder to the study
treatment. A typical primary efficacy analysis is to compare the numbers and
proportions of responders between treatment groups. The responder variable is a
binary variable. In some other cases the primary efficacy variable may be a time-
to-event variable and, hence, the primary efficacy analysis would be a survival
analysis. If, however, the interest is in the number of such events observed at a
particular time point during this study, then the outcome variable is a binary vari-
able (number of events observed from each treatment group up to that time point).
Although Chapter 13 discusses the analysis of dose–response studies with binary
endpoints from a traditional tests of equalities point of view, this chapter concen-
trates on formulating the dose–response problem to to illuminate the partitioning
principle that cleaves through single-step and stepwise methods. Some connection
between partition testing and closed testing can be seen in Chapter 11.

For hypothesis testing of binary variables, two approaches are introduced in this
chapter: large sample approximation tests and small sample exact tests. The large
sample tests are derived using the normal approximation to the binary distribution
(Chuang-Stein and Tong, 1995). The small sample exact tests are derived using
the multivariate hypergeometric distribution.

Section 12.2 provides a review, Section 12.3 derives the partitioning test with
binary outcome, an example is given in Section 12.4 and Section 12.5 concludes
this chapter.

12.2 Comparing Two Success Probabilities in a
Single Hypothesis

In this section, we briefly review the tests for comparing two unknown success
probabilities, p0 and p1. Let us first consider testing the null hypothesis of equality

H0 : p0 = p1 (12.1)

There are exact tests and large sample approximate tests available for testing
this simple null hypothesis. Let n0 and n1 represent the sample sizes in the two
groups. Let X0 and X1 be the numbers of successes and x0 and x1 be the ob-
served numbers of successes in each group. Then X0 ∼ Binomial(n0, p0) and
X1 ∼ Binomial(n1, p1).

For large sample sizes n0 and n1, we can use normal approximation. The es-
timators of p0 and p1, p̂0 = x0/n0 and p̂1 = x1/n1, are approximately normally
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distributed, based on the central limit theorem. Hence p̂0 − p̂1 follows a normal
distribution. Under the null hypothesis, we can use the pooled standard error for
p̂0 and p̂1, so

SE ( p̂0 − p̂1) =
√

p̂ (1 − p̂)

(
1

n0
+ 1

n1

)
(12.2)

where p̂ = (x0 + x1)/(n0 + n1). As p̂ converges in probability to the common
success rate, by Slutsky’s theorem, the test statistic

p̂0 − p̂1

SE( p̂0 − p̂1)

has asymptotically a standard normal distribution under H0.
If the sample sizes n0 and n1 are small, we must use exact tests instead of

approximate procedures. Let x be the total observed number of successes from both
groups. Fisher (1934) introduced a conditional test using the fact that under the null
hypothesis the variable X1 given n0, n1, x , follows a hypergeometric distribution.
That is,

Pr(X1 = x1|n0, n1, x) =
(

n1

x1

)(
n0

x−x1

)
( n1+n0

x

) (12.3)

where max(0, x − n0) ≤ x1 ≤ min(x, n1).
Once we have the distribution (asymptotic distribution or conditional dis-

tribution) of the test statistics, it is trivial to test the simple hypothesis in Eq. (12.1).

Now let us consider comparing two success probabilities in a composite hy-
pothesis. Suppose the null hypothesis of interest is

H01 : p1 ≤ p0 + δ (12.4)

where δ is a prefixed constant. For a large sample test, since we cannot use the
pooled variance under this null hypothesis, the test statistic is

Z1 = p̂1 − p̂0 − δ

SE∗ ( p̂1 − p̂0)
(12.5)

where

SE∗ ( p̂1 − p̂0) =
√

p̂1(1 − p̂1)

n1
+ p̂0(1 − p̂0)

n0

The null hypothesis is rejected if the test statistic is larger than the (1−α) quantile
of the standard normal distribution.
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Figure 12.1. The relationship between δ and ψ for a few values of p0.

As for a small-sample exact test, it can be shown that

Pr(X1 = x1|n0, n1, x) =
(

n1

x1

)(
n0

x−x1

)
ψ x1∑U

j=L

(
n1

j

)(
n0

x− j

)
ψ j

(12.6)

for L≤ x1 ≤U, where ψ = p1

1−p1

/ p0

1−p0
is the odds ratio, L= max(0, x − n0), and

U= min(n1, x). A difference on the linear scale, i.e., δ, is now replaced by a
nonlinear odds ratio ψ . Figure 12.1 shows the relationship between δ and ψ for a
few values of p0. Notice that p1 ≤ p0 is equivalent to ψ ≤ 1, and the distribution
reduces to Eq. (12.3) when p1 = p0, or, ψ = 1.

It can also be shown that for ψ > 0, the distribution in Eq. (12.6) has monotone
likelihood ratio in X1. That is, for

ψ ′ > ψ, h(x1) = Prψ1 (X1 = x1|n0, n1, x)/Prψ (X1 = x1|n0, n1, x) ∝ (ψ ′/ψ)x1

is non-decreasing in X1. Therefore, the Type I error probability is maximized when
ψ = p0+δ

1−p0−δ
/

p0

1−p0
, or equivalently p1 = p0 + δ. That is,

Prp1<p0+δ(X1 ≥ m) ≤ Prp1=p0+δ(X1 ≥ m)

for any m. When δ = 0, the rejection region for the null hypothesis Eq. (12.4) is
X1 ≥ m0, where m0 is the smallest integer such that Prψ=1(X1 ≥ m0) ≤ α. For
δ �= 0, ψ depends on the unknown parameter p0 under null hypothesis. Thus the
null hypothesis in Eq. (12.4) with δ �= 0 can not be tested using Fisher’s exact test.
We assume δ = 0 for Fisher’s exact test for the rest of the paper.

Although a null hypothesis of non-zero location shift cannot be tested using
Fisher’s exact test, the hypothesis of ψ ≤ θ can be tested for any θ > 0. The
rejection region for ψ ≤ θ is X1 ≥ m ′

0, where m ′
0 is smallest integer such that

Prψ=θ (X1 ≥ m ′
0) ≤ α. The problem of comparing two success probabilities can

be either in terms of the difference of the two probabilities or the odds ratio, but
they are generally not the same unless δ = 0 and θ = 1. Next, we will discuss
several methods for multiple comparisons of success probabilities.
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12.3 Comparison of Success Probabilities
in Dose–Response Studies

In dose–response studies, there are usually multiple composite null hypotheses of
interest. Let the notation be the same as before, with the subscript denoting the
dose group. For example, let pi , i = 0, 1, 2, . . . , k denote the success probabilities
of the placebo, the lowest dose, the second lowest dose, . . . , and the highest dose
respectively. Suppose a dose i is considered effective if pi > p0 + δ, i = 1, . . . , k,
where δ is a pre-specified non-negative quantity that reflects practical significance.
Then, the null hypotheses are:

H0i : pi ≤ p0 + δ, i = 1, . . . , k (12.7)

12.3.1 Predetermined Step-Down Method

The partitioning principle partitions the entire parameter space into disjoint null
hypotheses, hence testing each at level α without multiplicity adjustment controls
the familywise error rate (FWER) strongly (the probability of at least one wrong
rejection).

Suppose our expectation is that the sample will show increasing efficacy with
increasing dose. Then a set of partitioning hypotheses could be

H∗
0k : pk ≤ p0 + δ

H∗
0(k−1) : pk−1 ≤ p0 + δ < pk

...

H∗
0i : pi ≤ p0 + δ < p j for all j, i < j ≤ k (12.8)

...

H∗
01 : p1 ≤ p0 + δ < p j for all j, 1 < j ≤ k

In words, the null hypotheses are:

H∗
0k : Dose k is ineffective

H∗
0(k−1) : Dose k is effective but dose k − 1 is ineffective

...

H∗
0i : Doses i + 1, . . . , k are effective but dose i is ineffective

...

H∗
01 : Doses 2, . . . , k are effective but dose 1 is ineffective.

The partitioned parameter space is plotted in Figure 12.2 (left) for k = 2. We
can see that if H∗

0k fails to be rejected, then none of the doses can be inferred
to be effective, regardless of the results from testing the remaining hypotheses.
Similarly, if H∗

0i fails to be rejected, then dose 1 to dose i − 1 cannot be inferred to
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Figure 12.2. The partitioned parameter space (left) and inferences (right) of a pre-
determined step-down procedure for comparing two doses with a placebo.

be effective. Therefore, by this formulation of null hypotheses, we can test those
null hypotheses in a step-down fashion with H∗

0k tested first, then H∗
0(k−1), and so

on. We stop the procedure once a null hypothesis fails to be rejected. If H∗
0k fails

to be rejected, then the remaining null hypotheses are not tested, and none of the
doses can be inferred to be effective. For any integer i ≥ 1, if H∗

0 j , j = i, . . . , k,

are all rejected, then the logical inference is doses i, . . . , k are all efficacious. The
dose levels inferred to be efficacious are naturally contiguous. By testing the dose
levels expected to show more efficacy in the sample first, the method also takes
advantage of the expected response shape, if it turns out to be true.

In practice, the null hypotheses typically tested (in Hsu and Berger (1999) for
example)

H0k : pk ≤ p0 + δ

H0(k−1) : pk−1 ≤ p0 + δ

...

H0i : pi ≤ p0 + δ (12.9)
...

H01 : p1 ≤ p0 + δ

Since each H∗
0i implies H0i , a level-α test for H0i is automatically a level-α test for

H∗
0i . Therefore, any family of level-α tests for Eq. (12.9) controls the FWER of Eq.

(12.8) strongly. Thus, one can apply the large sample test/exact test for Eq.(12.4)
to each of H0i , i = k, . . . , 1. Let z1−a denote the 100(1 − a)% percentage of the
standard normal distribution. The right plot in Figure 12.2 shows the inferences of
a predetermined step-down procedure for comparing two doses with a placebo.

Inference resulting from the predetermined step-down method is valid (in terms
of FWER) without any prior assumption on the shape of the response curve. That
is, it does not require a predetermined ordering of pi . If, however, the expected
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response curve turns out be be not true, and the dose levels giving the higher sample
responses are not the ones tested early in the steps, the predetermined stepwise
method has weak power. When the shape of the sample response curve can not be
reasonably anticipated, the sample-determined step-down method can be used.

12.3.2 Sample-Determined Step-Down Method

Consider the set of partitioning hypotheses:

H∗
0I : Doses i (i ∈ I ) are not effective but doses j ( j /∈ I ) are effective

(12.10)
for all I ⊆ {1, . . . , k}. The partitioned parameter space for k = 2 is illustrated in
the left plot of Figure 12.3. Similarly, a level-α test for H0I , Doses i (i ∈ I ) are not
effective, is a level-α test for H∗

0I . As there are 2k potential null hypotheses, apply-
ing a multiple comparison method to each of the H0I would be computationally
inefficient especially when k is large. Sample-determined step-down procedure is
a computational shortcut to partition testing, reducing the number of tests to be
performed to at most k. Specifically, if dose i0 appears to be most significantly
better than placebo among the doses whose indices are in the set I and the rejec-
tion of H0I guarantees the rejection of all null hypotheses H0I ′ , i0 ∈ I ′ ⊂ I , then
a shortcut can be taken by skipping testing H0I ′ .

The idea of the sample-determined step-down procedure is to decide first
whether there is sufficient evidence to infer that the dose that appears to be most
significantly better than the control is indeed efficacious while guarding against
the possibility that all k doses are actually worse than the control. If the answer is
“yes”, then at the next step one decides if the next dose that is most significantly
better than the control is indeed efficacious while guarding against the possibil-
ity that all the remaining k − 1 doses are actually worse than the control, and so
on (Naik, 1975; Marcus, et al., 1976; Stefansson, et al., 1988). A method of this
form is called a step-down test because it steps down from the most statistically
significant to the least statistically significant.

Let Mi , i = 1, . . . , k, denote the test statistics for each treatment-control com-
parison. For large sample tests Mi = Zi (defined in Eq.(12.5) with subscript 1
replaced by i), and Mi = Xi for Fisher’s small sample tests. Let [1], [2], . . . ,
[k] denote the random indices such that M[1], M[2], . . . , M[k] are the ‘p-ordered’
statistics of Mi , meaning that when applying a test to each of H0i , i = 1, . . . , k,
M[1] is the Mi with the largest p-value, M[2] is the Mi with the second largest
p-value, and so on. For large sample tests and Fisher’s small sample tests with
equal sample sizes for dose groups, the ‘p-ordered’ statistics are the usual order
statistics of Mi , and

M[1] ≤ M[2] ≤ . . . ≤ M[k] (12.11)

For Fisher’s small sample test with unequal sample sizes, the test statistics Xi

follow different hypergeometric distributions. Therefore, the ‘p-ordered’ statistics
are in general different from the usual order statistics and Eq.(12.11) does not hold.



12.3 Comparison of Success Probabilities in Dose–Response Studies 191

p2-p0-δ

p1-p0-δ

H0{2}

H0{1, 2} H0{1}

0

Both doses
are
effective

Z1

Z2

None
of the doses
is effective

Only
does 1 is
effective

Only
does 2 is
effective

*

* *

Figure 12.3. The partitioned parameter space (left) and inferences (right) of a sample-
determined step-down procedure for comparing two doses with a placebo.

For instance, Xi could be large because of large ni and/or large pi , and M[k] may
not be the largest Xi .

Let m I , I ⊆ {1, . . . , k}, denote suitable critical values for use in the procedure
given below. The sample-determined step-down method proceeds as follows.

Step 1
Is M[k] > m{[1],...,[k]}?
Yes, infer p[k] > p0 + δ and go to step 2;
No, stop.

Step 2
Is M[k−1] > m{[1],...,[k−1]}?
Yes, infer p[k−1] > p0 + δ and go to step 3;
No, stop.

Step 3
Is M[k−2] > m{[1],...,[k−2]}?
Yes, infer p[k−2] > p0 + δ and go to step 4;
No, stop.

...
Step k

Is M[1] > m{[1]}?
Yes, infer p[i] > p0 + δ for i ≤ k and stop;
No, stop.

The right plot in Figure 12.3 shows the inferences of a sample-determined step-
down procedure for comparing two doses with a placebo.

One should be aware that such shortcut may not be valid under some
conditions. Hsu (1996) provides an example (pp. 136–137) of an erroneous
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shortcutting computer implementation of such a statistical method, demonstrating
with data explicitly why shortcuts cannot be taken. The key condition needed to
effect a shortcut is roughly that the rejection of a more restrictive hypothesis im-
plies the rejection of certain less restrictive null hypotheses. Thus, if one starts by
testing more restrictive null hypotheses and then skips the testing of less restric-
tive hypotheses as such implications allow, then the resulting shortcut version of a
closed/partition test is a step-down test. One condition that guarantees that a step-
down method strongly controls the familywise error rate is the subset pivotality
condition given on page 42 of Westfall and Young (1993). Alternativly, we give a
precise set of sufficient conditions for such shortcutting to be valid as follows.

S1: Tests for all hypotheses are based on statistics Mi , i = 1, . . . , k, whose values
do not vary with H0I ;

S2: The level-α test for H0I is to reject H0I if the test statistic with the smallest
p-value among Mi , i ∈ I, is more extreme than a suitable critical value;

S3: Critical value for H0I is no smaller than that for H0I ′ if I ′ ⊂ I .

One should verify that either conditions S1–S3 are satisfied, or subset pivotality
is satisfied, before implementing a stepdown test, for otherwise the stepdown test
may not control the familywise error rate strongly.

There are several multiple comparison methods for binary outcomes (Piegorsch
1991). We can apply different comparison methods in the step-down procedure.

12.3.2.1 Sample-Determined Step-Down Procedure Using a Method for
Comparisons With a Control

It is ideal to apply a method for multiple comparisons with a control, like
Dunnett’s method, to each H0I (Stefansson, et al., 1988; Chapter 3 of Hsu, 1996).
Dunnett’s method is for situations where a common unknown variance for all
groups is assumed. In the case of binary outcomes, the variances are related to
the means and cannot be assumed to be equal. Therefore, Dunnett’s method is
not directly applicable. In the following, we develop a procedure for multiple
comparisons with a control for binary response variable.

Let us first consider large sample tests. Let dk be the first step critical value such
that

Pr(Wi ≤ dk, i = 1, . . . , k) (12.12)

is approximately 1 − α for large sample sizes, where

Wi = p̂i − p̂0 − (pi − p0)√
p̂i (1 − p̂i )/ni + p̂0(1 − p̂0)/n0

(12.13)

Define the vectors P = (p0, . . . , pk)′ and P̂ = ( p̂0, . . . , p̂k)′, where p̂i = xi/ni

as before. By the multivariate central limit theorem, P̂ is asymptotically normally
distributed with mean P and a diagonal variance covariance matrix � = {σi i =
pi (1 − pi )/ni }. After transforming, standardizing and replacing pi with their
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consistent estimators p̂i , we have a vector of Wi being asymptotic multivariate
normal with zero means, unit variances, and covariances

p̂0(1 − p̂0)/n0√
p̂i (1 − p̂i )/ni + p̂0(1 − p̂0)/n0

√
p̂ j (1 − p̂ j )/n j + p̂0(1 − p̂0)/n0

, i �= j

(12.14)
Denote the cumulative distribution function (cdf ) of this k-dimensional multivari-
ate normal distribution as F , then Eq. (12.12) is just F(dk, dk, . . . , dk). Therefore,
critical value dk , for which the probability of Eq. (12.12) is approximately equal to
the desired confidence level 1 − α, can be determined using a computer program for
multivariate normal distribution such that F(dk, dk, . . . , dk) = 1 − α. More sim-
ply, the critical value in step 1, m{[1],...,[k]}, is dk , the (1−α) quantile of W[k], where
W[1] ≤ W[2] ≤ . . . ≤ W[k]. Similarly, the critical value in step 2, m{[1],...,[k−1]} =
dk−1, the (1−α) quantile of W[k−1], such that Fk−1(dk−1, . . . , dk−1) = 1 − α,
where Fk−1 is the (k − 1)-dimensional c.d. f. for the same multivariate normal
density without elements corresponding to W[k]. The critical value in step 3,
m{[1],...,[k−2]}, is dk−2, which is the (1−α) quantile of W[k−2], and so on. Since
W[1] ≤ W[2] ≤ . . . ≤ W[k] and di is the 1 − α quantiles of W[i], i = 1, . . . , k, we
have d1 ≤ d2 ≤ . . . ≤ dk .

For the small-sample exact test, the joint probability of Xi , i ∈ I, I ⊆
{1, . . . , k}, given the total number of successes from all groups in I plus the
placebo group, denoted as xI0 where I0 = I ∪ {0}, is a (non-central) multivariate
hypergeometric distribution:

Pr(Xi = xi , i ∈ I |n0, ni , xI0 ) ∝
(

n0

x0

)∏
i∈I

(
ni

xi

)
ψ

xi
i

where ψi = pi

1−pi

/ p0

1−p0
. Therefore, the small-sample test procedure involves a

multivariate hypergeometric distribution. For instance, assume equal sample sizes
for the dose groups: n1 = n2 = . . . = nk , and let ψ = (ψ1, . . . , ψk)′. The null
hypotheses in Eq. (12.9) are equivalent to ψ ≤ 1, that is, ψi ≤ 1 for all i , and
Prψ≤1(Xi ≥ m, i = 1, . . . , k) is increasing in ψ . Hence, the critical value of
Fisher’s small sample test in step 1 is m{1,...,k} = d ′ where d ′ is the smallest integer
such that Prψ=1(Xi ≥ d ′, i = 1, . . . , k|n0, ni , xI0 ) ≤ α. In general, the critical val-
ues m I are the smallest integers such that Prψ=1(Xi ≥ m I , i ∈ I |n0, ni , xI0 ) ≤ α.
Routines for calculating the probabilities of multivariate hypergeometric distri-
butions are not available in major statistical packages. For small sample sizes,
it is more convenient to use a step-down procedure based on the Bonferroni
method.

12.3.2.2 Sample-Determined Step-Down Method Using Bonferroni
Method—Holm’s Step-Down Procedure

Holm’s (1979) step-down method uses the Bonferroni method to test each H0I .
For a large sample test, Bonferroni method is used to guarantee that Eq. (12.12)
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is at least 1 − α. The critical value for step 1 is z1−α/k , the critical value for
step 2 is m{[1],...,[k−1]} = z1−α/(k−1), and so on. That is, the critical value for
step i is z1−α/(k−i+1). For a small-sample exact test, the critical value for step
i , m{[1],...,[k−i+1]}, is the smallest integer d ′′ such that Pr(Y ≥ d ′′) ≤ α/(k − i + 1),
where Y follows a hypergeometric distribution H(n0, n[k−i+1], x[k−i+1] + x0),
where n[k−i+1] and x[k−i+1] are the sample size and the number of observed suc-
cesses in the dose group corresponding to X [k−i+1], the (k − i + 1)th largest p-
ordered test statistic. Note that the critical values of Bonferroni method are con-
servative compared to those of the method for comparisons with a control.

Since m J < m{1,...,k} for J ⊂ {1, . . . , k} in the step-down testing and m{1,...,k}
is the critical value for non-stepwise tests, given the same data set and error rate,
this sample-determined step-down procedure with a multiple comparison method
applied to the partitioned hypotheses will infer the same or more doses to be effi-
cacious compared to a non-stepwise procedure with the same multiple comparison
method.

12.3.3 Hochberg’s Step-up Procedure

This is also a sample-determined stepwise procedure, similar to that in Section
12.3.2. While Holm’s step-down testing is a shortcut version of the partition testing
based on Bonferroni methods, Huang and Hsu (2005) show that Hochberg’s step-
up testing is also a special case, or shortcut version, of a partition testing based on
Simes’ test. Although more powerful than Bonferroni method/Holm’s procedure,
Simes’ test/Hochberg’s procedure control the Type I error rate/familywise error
rate at α only when the test statistics are independent (Simes, 1986). Sarkar (1998)
proves that Simes’ test controls the probability of a Type I error at or below α when
the test statistics have joint null distributions with multivariate totally positive of
order two (MTP2, implying that the test statistics are positively dependent) with
common marginals. Conservativeness of Simes’ test for some other positively
dependent multivariate distributions is proved or supported by simulation results
and anti-conservativeness of Simes’s test for negatively associated test statistics is
observed (Sarkar and Chang, 1997, Sarkar, 1998).

Since the correlations of the large sample test statistics as in Eq. (12.14) are
positive, it is reasonable to use Hochberg’s step-up procedure. Here, we show that
the correlation matrix of the test statistics has 1-factor structure (Hsu, 1996) and is
MTP2. By definition, a correlation matrix of the distribution has 1-factor structure
if and only if the correlation matrix can be written in the form of λλ′ + 
, where

 is a diagonal matrix and λ is a column vector. In our case,

λi =
√

p̂0(1 − p̂0)

n0

/( p̂0(1 − p̂0)

n0
+ p̂i (1 − p̂i )

ni

)
, i = 1, . . . , k (12.15)

and 
 has elements 1 − λ2
i . By theorem A.5.1 of Srivastava (2002), the inverse of
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the correlation matrix is


−1 − 
−1λ(1 + λ′
−1λ)−1λ′
−1,

which has all off diagonal elements non-positive. Then, asymptomatically, the test
statistics have MTP2, by Fact 1.3. of Karlin and Rinott (1980). This justifies the
use of Hochberg’s procedure.

The idea of a step-up multiple comparison method is to decide, at step 1,
whether there is sufficient evidence to infer that the dose that appears to be least
significantly better than the control is indeed better. If the answer is “yes,” then we
infer all the doses to be better than the placebo and stop. If the answer is “no,” then
at step 2, one uses a larger critical value to decide whether the dose that appears
to be the next least significantly better than the placebo is indeed better, and so
on. The critical values for large sample testing, z1−α , are the 1 − α quantiles
of a standard normal distribution. Define the critical values for a small sample
test, d∗

1−α , as the smallest integer such that Pr
(
Y ≥ d∗

1−α

) ≤ α, where Y follows
hypergeometric distribution H(n0, n[i], x[i] + x0), where n[i], x[i] are the sample
size and the number of observed successes in the dose group corresponding to
the test statistic in each step. The Hochberg’s (1988) step-up method proceeds as
follows, with M[i] being the p-ordered’ statistics.

Step 1
Is M[1] > z1−α or d∗

1−α?
Yes, infer p[i] > p0 + δ for i = 1, ..., k and stop;
No, go to step 2.

Step 2
Is M[2] > z1−α/2 or d∗

1−α/2?
Yes, infer p[i] > p0 + δ for i = 2, ..., k and stop;
No, go to step 3.

...
Step k

Is M[k] > z1−α/k or d∗
1−α/k?

Yes, infer p[k] > p0 + δ and stop;
No, stop.

12.4 An Example Using Partitioning Based
Stepwise Methods

A dose–response trial study with four active doses of an experimental compound
versus a placebo was reported by Stewart and Ruberg (2000). The experiment
was planned to study the effectiveness of the drug of different doses in preventing
nausea and vomiting for patients undergoing surgery. The response variable was
“complete response”, that is, no emetic episodes over a 24-hour observation period.
The data are as follows.
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Dose Placebo 12.5 mg 25 mg 50 mg 100 mg

Number of responders 102 123 111 119 121
N 208 206 203 205 208

% responders 49% 60% 55% 58% 58%

The sample sizes are large enough for the asymptotic normality assumption of
the large sample test. The large sample test statistics for dose groups 12.5, 25, 50,
and 100 mg versus the placebo are 2.19, 1.15, 1.84 and 1.88 mg respectively. Let
the familywise error rate be controlled strongly at α = 0.05.

Let us first use the predetermined step-down method to test from high dose to
low dose. For large sample tests, the critical value for large sample test for each
step is z0.95 = 1.64. Hence, the predetermined step-down method infers the 100
and 50 mg doses to be efficacious. For small sample exact tests, the procedure
leads to the same conclusion.

For the sample-determined step-down procedure using the method for compar-
isons with a control, the critical values for large sample tests can be calculated
using the R package mvtnorm, which calculates the probability for a multivari-
ate normal distribution with any specified mean vector and variance-covariance
matrix. The R package mvtnorm is described in Hothorn, et al. (2001), which is
available at http://cran.r-mirror.de/doc/Rnews/Rnews 2001- 2.pdf. The ProbMC
function in SAS can also be used since the correlation matrix here has 1-factor
structure.

The syntax of the ProbMC function in SAS is

probmc(distribution, q, prob, df, nparms<, parameters>)

In our case distribution = “dunnett1,” which refers to the one-sided Dunnett; the
quantile, q, is what we want to compute and is not specified; prob is the cumulative
probability, which is 1-alpha; the degrees of freedom, df, is missing here, which
is interpreted as an infinite value. In step 1, using λ = (λ1, λ2, λ3, λ4)′ for the
parameters of the ProbMC function,

data binary_Dunnett;
array drug{5}$;
array count{5};
array mu{5};
array temp{5};
array lambda{4};
array q{2};

/* input the table */
do i = 1 to 5;

input drug{i} count{i} mu{i};
end;
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/* input alpha */
input alpha;

/* compute the lambdas */
do i = 1 to 5;

temp {i} = (mu{i}/count{i})*(1-mu{i}/count{i})/count{i};
end;
do i = 1 to 4;

lambda{i} = sqrt(temp {1}/(temp{i+1} + temp{1}));
end;

/* run the one-sided Dunnett’s test */
q{1} = probmc("dunnett1",.,1-alpha,.,4, of lambda1-lambda4);
put q{1} e18.13;
datalines;

P 208 102
A 206 123
B 203 111
C 205 119
D 208 121
0.05
;

This gives us the critical value of 2.16, which is smaller than the largest test
statistic. Thus, dose 12.5 mg is declared efficacious. In step 2, we delete λ1 which
corresponds to the largest test statistic and use λ = (λ2, λ3, λ4)′:

q{2} = probmc("dunnett1", ., 1-alpha, ., 3, of lambda2-lambda4);

The resulting critical value for step 2 is 2.06, larger than the second largest test
statistic, hence dose 100 mg is declared not efficacious. Therefore, only dose 12.5
mg, which has the largest response rate, is inferred to be efficacious.

For Holm’s step-down procedure with large sample tests, the critical value for
step 1 is z1−0.05/4 = 2.24, which is bigger than the largest test statistic. Therefore,
none of the doses is inferred to be efficacious, which shows the conservativeness of
Bonferroni method compared with the method for comparisons with a control. For
Hochberg’s step-up method with large sample tests, the critical values from Step 1
to 4 are is 1.64, 1.96, 2.13 and 2.24, which are bigger than the corresponding ordered
test statistics. Hence, none of the doses is inferred to be efficacious. However, both
Holm’s and Hochberg’s stepwise procedures with small sample tests infer dose
12.5 mg is effective.

12.5 Conclusion and Discussion

In dose–response studies, when the purpose is to test for one or a few doses that are
more efficacious than placebo, the principle of partitioning provides a powerful
testing procedure for constructing multiple tests which control the FWER strongly.
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In this chapter, two partitioning test procedures for binary responses are introduced.
One is a predetermined step-down method and the other is a sample determined
step-down method. Choice of the appropriate procedure depends on the anticipated
dose response relationship. If it is anticipated that the relationship is monotonic,
then the pre-determined step-down method is recommended because it is more
powerful.

The general use of multiple comparison adjustment in dose response studies
is introduced in Chapter 11. In that chapter, additional statistical concerns and
methods are discussed in further detail. Binary data is a type of categorical data.
Chapter 13 has more discussion about handling categorical data in dose response
studies.
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13
Analysis of Dose–Response
Relationship Based on Categorical
Outcomes

CHRISTY CHUANG-STEIN and ZHENGQING LI

13.1 Introduction

In an eloquent article prepared in defense of the dichotomy, Lewis (2004) wrote
that one of the most important ways in which we learned to understand the world
was to describe complicated phenomena using simple categories. Thus, it is hardly
surprising that medical researchers often seek to categorize data in their attempt to
make sense of unfamiliar measurement scales and treatment effects of uncertain
implication. For this reason, threshold values based on continuous measurements
are frequently used to help guide the decision to initiate medical interventions.
Examples include a diastolic blood pressure greater than 90, a fasting cholesterol
level higher than 200, and a CD4 count lower than 200. Normal ranges were
constructed to screen subjects for possible lab abnormalities. Even though this
black-and-white dichotomy appears to be crude in many situations, its simplicity
helps human minds make decisions, decisions that are often binary in nature.

As we became more sophisticated in our views of the world, so did our descrip-
tions of the surroundings. Being normal or abnormal alone is no longer enough.
We want to know the extent of abnormality to decide if immediate actions are nec-
essary. Experiencing pain alone is not enough to decide if pain relief medications
are necessary. Similarly, recovery from a major trauma can mean recovery with
major disability, with minor disability, or essentially with no noticeable disability.
The human minds realized that creating a finer grid between the two extremes of
black and white could help us make better decisions on many occasions.

Over the past 30 years, researchers have been busy developing scales to subdivide
the space between the black and white extremes. The proliferation of scales is most
prevalent in the area of outcome research where scales are used to record a patient’s
and the treating physician’s global assessments of the clinical symptoms associated
with the underlying disorders. Scales are also used to record the extent of relief
patients receive from the medications. These activities have led to the collection
of categorical data in many clinical trials.

In this chapter, we will focus on analyzing dose–response relationship when the
primary endpoint is either ordinal or binary. We will treat the ordinal case first in
Section 13.2 and regard the binary case as a special case of the former. The binary
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case will be covered in Section 13.3. In Section 13.4, we will discuss multiple
comparisons procedures that are applicable to categorical data when multiplicity
adjustment is considered necessary because of the confirmatory nature of the trial.
Readers are referred to Chapter 12 for a more general discussion on multiple
comparisons. We will comment briefly in Section 13.5 the use of a titration design
to explore the dose–response relationship with a binary outcome. In addition, we
will discuss in that section issues related to sample size. Finally, we encourage our
readers to use simulations to help evaluate the planned study at the design stage.

In this chapter, we provide numerical examples along with methodology. This
is a deliberate effort to emphasize the applied nature of this chapter. To help
implement the methodology, we include in the Appendix simple SAS codes that
could be used to produce most of the results in Sections 13.2 and 13.3.

This chapter draws heavily from a review article by Chuang-Stein and Agresti
(1997) on testing a monotone dose–response relationship with ordinal response
data. Readers who wish to learn more about the technical details of the method-
ologies are encouraged to read the original publication.

13.2 When the Response is Ordinal

Consider the data in Table 13.1 where five ordered categories ranging from “death”
to “good recovery” were used to describe the clinical outcome of patients who
suffered from subarachnoid hemorrhage. The five outcome categories make up
the Glasgow Outcome Scale (GOS). Three doses of an investigational drug (low,
medium, and high) and a vehicle infusion (placebo) were included in the trial. For
this type of data, one can either model the probability of an ordinal response as
a function of the dose or conduct hypothesis testing to test for a dose–response
relationship. In this section, we will briefly describe the modeling approach first
followed by procedures that focus on hypothesis testing.

13.2.1 Modeling Dose–Response

Let pij be the probability that a subject in the i th dose group (i = 1, 2, 3, 4) will
have a response in the j th ( j = 1, 2, . . . , 5) category. For each dose group, pij’s

Table 13.1. Responses measured on the Glasgow Outcome Scale from a trial comparing
three doses of a new investigational treatment with a control (Chuang-Stein and
Agresti, 1997)

Glasgow Outcome Scale

Treatment Vegetative Major Minor Good
group Death state disability disability recovery Total

Placebo 59 25 46 48 32 210
Low dose 48 21 44 47 30 190
Medium dose 44 14 54 64 31 207
High dose 43 4 49 58 41 195
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satisfy �j pij = 1. We will use Yij to denote the number of subjects in the i th dose
group whose responses are in the j th category. We assume that within each dose
group {Yij, j = 1, . . . , 5} follows a multinomial distribution (ni ; {pij}) where
ni = � j Yij . Here, we are treating {ni} as fixed constants since most trials have a
target figure for {ni}. Furthermore, we assume in this chapter that the response
categories are arranged in such a way that higher response categories correspond
to a more desirable outcome. The dose groups are arranged in an ascending order.
If there is a placebo group, the placebo group will be the first dose group.

There are many ways to take advantage of the ordinal nature of the response
when modeling the dose response relationship. The most popular one is probably
the one using logits of the cumulative probabilities defined as (McCullagh, 1980)

ln

( ∑ j
l=1 pil∑5

l= j+1 pil

)
= α j − βi (13.1)

In Eq. (13.1), “ln” represents the natural logarithm and i = 1,2,3,4 and j = 1,2,3,4.
In Eq. (13.1), the parameters {α j} associated with the response categories do not
depend on the dose group. As a result, if one looks at the ratio of the cumulative odds
between two dose groups, the ratio is constant across response categories. For this
reason, model (13.1) is called the proportional odds model. The appropriateness of
the proportional odds assumption can be checked by the likelihood ratio statistic
obtained by comparing the proportional odds model to the saturated model.

One can further simplify model (13.1) by fitting β i as a function of the dose as
in Eq. (13.2) or the dose on the logarithmic scale if there is reason to believe that
the treatment effect is a monotone function of the dose.

ln

( ∑ j
l=1 pil∑5

l= j+1 pil

)
= α j − β di (13.2)

Parameters in Eqs. (13.1) and (13.2) could be estimated by the maximum like-
lihood method. The procedure PROC LOGISTIC in SAS® can be employed to
estimate the parameters. Testing the equality of the {β i} in Eq. (13.1) and β = 0 in
Eq. (13.2) can be done using the likelihood ratio test. In either case, the likelihood
ratio statistic has an asymptotic χ2 distribution with degrees of freedom deter-
mined by the difference in the number of parameters included in the two models
under comparison. For example, the likelihood ratio statistic for testing β = 0 in
Eq. (13.2) has an asymptotic χ2 distribution with 1 degree of freedom under the
null hypothesis.

When employing model (13.2), one is typically interested in testing β =0 against
β > 0 so that rejecting β = 0 will infer that higher doses tend to produce more
favorable response. Despite this, we will report two-sided p-values when testing
the significance of the slope parameter to reflect the current regulatory requirement
on reporting two-sided p-values even if the interest is clearly one-sided. Unless
mentioned otherwise in this chapter, one-sided p-values can be obtained by halving
the two-sided p-values.
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By setting β1 = 0 in model (13.1), we obtained the maximum likelihood esti-
mates forβ2 toβ4 from PROC LOGISTIC as β̂2 = 0.118 (SE=0.178), β̂3 = 0.317
(SE = 0.175), and β̂4 = 0.521 (SE = 0.178). Since the β’s estimates increase with
the dose, model (13.1) suggests that the cumulative odds for the lower response
categories are a decreasing function of the dose. The likelihood ratio test for the
goodness-of-fit of model (13.2) relative to model (13.1), obtained as the difference
of −2 log-likelihood values between the two models, results in a likelihood ratio
statistic of 0.13 with 2 degrees of freedom. The low value of the likelihood ratio
statistic (therefore a high p-value) strongly suggests that the simpler model in
(13.2) is appropriate for the data when compared to the model in (13.1).

The maximum likelihood estimate for β in (13.2) is β̂ = 0.175 (SE = 0.056).
For Table 13.1, this means that as we move from one dose to the next higher dose,
the odds of obtaining a more desirable outcome against a less desirable one is
increased by 19% (e0.175 = 1.19). The Wald test for β = 0 produces a χ2 statistic
of 9.709 with 1 degree of freedom. This statistic is highly significant (p = 0.002
for a two-sided test), suggesting a monotone dose–response relationship on the
cumulative odds scale.

Other choices to take advantage of the ordered categories include the adjacent-
categories logit model that looks at the odds of being in two adjacent categories,
i.e., ln(pij/pi, j+1), and the continuation-ratio logit model. The latter looks at
ln(pij/

∑5
l= j+1 pil), the logarithmic odds of being in one category versus the cate-

gories above. While these other logit models are all reasonable models for ordinal
response, the cumulative odds logit model is a natural extension of the binary re-
sponse case because the former becomes the regular logit model when one chooses
to collapse the ordinal response categories into two categories.

All the logit models can be further extended to include stratifying factors. As-
suming that there are S strata defined by patient’s characteristics at baseline, a
straightforward extension of model (13.1) is model (13.3) in which the terms β S

h ,
h = 1, . . . , H , represent the stratum effect and βD

i represent the dose effect. There
is no treatment by stratum interaction in model (13.3). Furthermore, the propor-
tional odds assumption now applies not only to dose groups but also to subgroups
defined by the strata as well as those jointly defined by the dose and the stratum.
PROC LOGISTIC can be used to estimate the model parameters and to test various
hypotheses concerning βD

i

ln

( ∑ j
l=1 pihl∑5

l= j+1 pihl

)
= α j − β S

h − βD
i (13.3)

13.2.2 Testing for a Monotone Dose–Response Relationship

A frequently asked question in dose–response studies is whether a monotone rela-
tionship exists between dose and the response. Section 13.2.1 discussed how the
question on monotonicity could be addressed under a modeling approach. Follow-
ing the discussion in Section 13.2.1, monotonicity can be interpreted as a more
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favorable response with a higher dose. Since a more favorable outcome implies a
smaller probability for the lower end of the response scale, the question on mono-
tonicity can translate to a comparison on the cumulative probabilities. In other
words, monotonicity can be evaluated by checking if

∑ j
l=1 pil is a nonincreasing

function of the dose {di , i = 1, 2, 3, 4} for all j = 1, . . . , 4. The latter implies test-
ing a null hypothesis of equal distributions against a monotone stochastic ordering
among the four dose groups as described below:

H0 : p1 j = p2 j = p3 j = p4 j , j = 1, . . . , 4

HA :
∑ j

l=1 p1l ≥∑ j
l=1 p2l ≥ ∑ j

l=1 p3l ≥ ∑ j
l=1 p4l , j = 1, . . . , 4

Strict inequality holds for at least one j for one of the three inequalities included
in the alternative hypothesis above. The subscript j above goes from 1 to 4 since∑5

l=1 pil = 1 for all i .
It should be pointed out that testing H0 versus HA as formulated above forces

one to make a choice between a flat dose–response and a monotone one. Even
though monotone dose–response is very common, other types of dose–response
relationships are also possible. If there are reasons to anticipate beforehand that
the dose–response relationship is substantially different from monotone, testing
H0 versus HA as shown above will not be appropriate.

13.2.2.1 Tests Based on Association Measures

Since the response categories are ordinal, one can treat the response scale as
quantitative and assign scores to the categories. One can also assign numerical
values to the dose groups. With the assigned scores, one can use correlation-
type association measures to tease out the linear component of the dose–response
relationship and construct a χ2 statistic with 1 degree of freedom to test for the
significance of the correlation.

The most commonly used scores for the response categories are the equally
spaced ones. When the desirability of moving from one category to the next depends
strongly on the categories involved, other scores might be more appropriate. For
example, it might be more appropriate to assign scores {0, 1, 2, 4, 8} than {1, 2, 3,
4, 5} to the response categories in Table 13.1. From our experience, conclusions are
generally robust to the scores assigned to the response categories unless the data are
highly imbalanced with many more observations falling in some categories than
others. Because of this potential issue, it is often prudent to check the robustness
of the conclusion by using several sets of scores.

For the dose group, one can use equally spaced scores, the actual doses, or
the logarithmic doses to represent the treatment groups. Since trials typically ran-
domize patients to the treatment groups, treatment groups are represented either
similarly or according to a prespecified ratio. As a result, the above three choices
of the numerical scores for the dose groups usually lead to similar conclusions on
the existence of a linear relationship between the dose and the response.

One approach that does not require assigning scores is to use ranks of the
observations. All observations in the same response category will have the same
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rank rj defined in Eq. (13.4). These ranks {rj} are called the midranks. Midranks
are nothing but the averages of all ranks that would have been assigned to the
observations in the same response category if we rank observations from the entire
trial

r j = y+1 + y+2 + · · · + y+ j

2
(13.4)

In Eq. (13.4), y+l = ∑4
i=1 yil is the total number of subjects with a response in the

lth category.
The use of midranks seems appealing because one does not need to assign any

scores. On the other hand, midranks cannot address the unequal spacing of the
response categories from the clinical perspective. In addition, when one particular
response category has very few observations, this response category will have
a midrank similar to the preceding one. The latter might not be desirable if the
two categories represent very different outcomes with drastically different medical
implications.

Using PROC FREQ (CMH1 option) with scores {1, 2, 3, 4} for the four dose
groups and {1, 2, 3, 4, 5} for the five response categories, we obtained a χ2 test
statistic of 9.61 with 1 degree of freedom. Under the null hypothesis of a zero
correlation, this statistic produced a two-sided p-value of 0.002. Using {1, 2, 3, 4}
for doses and midranks for the response categories yielded a χ2 statistic of 9.42
with a two-sided p-value of 0.002. Finally, using {1, 2, 3, 4} for the dose groups
and {0, 1, 2, 4, 8} for the response categories produced a χ2 statistic of 7.39 with a
two-sided p-value of 0.007. In this case, the three sets of response scores produced
similar results, all confirming a higher chance for a more favorable outcome with
higher doses.

13.2.2.2 Tests Treating the Response as Continuous

Another application of assigning scores to the ordered categories is to treat the
data as if they come from continuous distributions and apply standard normal
theory methods to the data. The latter include approaches such as the analysis of
variance and regression-type of analysis. There is evidence that treating ordinal
data as continuous can provide a useful approximation as long as the number of
categories is at least five (Heeren and D’Agostino, 1987). Under this approach, all
methods developed for continuous data can be applied here. Interested readers are
referred to other chapters in this book for a detailed account of the methods for
continuous data.

One can, however, take into account the nonconstant response variance by ex-
plicitly incorporating the multinomial distribution structure when estimating the
mean response for each dose group. Assuming that scores {s j} are assigned to the
five response categories, the mean response score for the i th dose group, denoted
by mi , is defined by

mi =
∑5

j=1 s j × pi j∑5
j=1 s j
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Under the above definition, mi can be thought of as a weighted average of {pi j}
within each dose.

Grizzle et al. (1969) proposed to model {mi} as a function of the dose as in
Eq. (13.5). The {mi} can be estimated by replacing pi j with the observed pro-
portions. Using multinomial distributions, one can calculate the variance of the
estimated mean response for each group. The inverse of the variances can then be
used as the weights when estimating the regression coefficients in Eq. (13.5) using
the least-squares methods,

mi = a + b × (dosei ) (13.5)

SAS® procedure PROC CATMOD with weight option can be used to estimate the
parameters a and b in Eq. (13.5). Testing a monotone dose–response relationship
(i.e., b = 0) can be accomplished using a χ2 test statistic. Using {1, 2, 3, 4} for
the dose groups and {1, 2, 3, 4, 5} for the response categories, PROC CATMOD
produced a χ2 statistic of 9.58 with a two-sided p-value of 0.002. Using the same
dose scores but {0, 1, 2, 4, 8} as the scores for the response categories produced
a χ2 statistic of 7.08. The latter has a two-sided p-value of 0.008.

Applying weighted least squares method to the mean response model in
Eq. (13.5), we conclude that there is a monotone relationship between the mean
response and the dose. As the dose increases, the mean response increases
accordingly.

13.2.2.3 Jonckheere–Terpstra Test

Assume di and di ′ are two doses such that di ′ > di . Consider the Wilcoxon-Mann-
Whitney (WMW) statistic for testing equal distributions in response to these two
doses against a stochastic ordering with response to dose di ′ being stochastically
greater than that to dose di . Let {r(i,i) j } represent the midranks constructed from
dose groups di and di ′ only, i.e.,

r(i,i ′) j = (yi1 + yi ′1) + (yi2 + yi ′2) + · · · + (yi j + yi ′ j )

2

The WMW statistic for comparing groups i and i ′ can be constructed as

W MWi,i ′ =
5∑

j=1

r(i, i ′) j yi ′ j − ni ′ (ni ′ + 1)

2

If there is a stochastic ordering between the response distributions to doses di

and di ′ , we would expect the observed rank sum for dose di ′ to be greater than
the rank sum expected for that group if there is no difference between the two
groups. In other words, we would expect WMWi,i′ to be generally positive under
the alternative hypothesis of a stochastic ordering between di and di ′ .

For four dose groups, there are six pairs of dose groups and six WMW statistics
to compare the response distributions within each pair. Constructing WMW in
such a way that the WMW statistic always looks at the difference between the
expected and observed rank sums of the higher dose groups, we can express the
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Jonckheere–Terpstra (Jonckheere, 1954; Terpstra, 1952) statistic (JT-statistic for
short) as below

J T =
4∑

i ′=2

i ′−1∑
i=1

W MWi,i ′

For large samples, the standardized value

z = JT − E(JT )√
var (JT )

provides a test statistic that has a standard normal distribution under the null hypoth-
esis of equal response distributions across dose groups. Both SAS (PROC FREQ)
and the StatXact (1995) software could conduct this test. For the data in Table
13.1, the standardized JT-statistic is 3.10, producing a two-sided p-value of 0.002.
The conclusion from the JT-test is similar to that obtained from other approaches.

13.2.2.4 Summary

If the number of categories is at least five and the sample size is reasonable, the
simplest approach is to treat the response as if it is continuous. This approach
is particularly relevant if one intends to look at the change in the response at a
follow-up visit from that at the baseline. In this case, change from baseline can be
constructed using the scores assigned to the ordinal categories. This approach could
be extended to include baseline covariates using an analysis of covariance model.

On the other hand, if there is much uncertainty in assigning scores to the cat-
egories or if the primary interest is in estimating the probability of a response
in a particular category, modeling approach becomes a natural choice. Modeling
approach is especially useful for dose-finding studies at the early stage of drug
development when there is very little information on the dose response relation-
ship. In this case, modeling allows us to borrow information from adjacent doses
to study the effect of any particular dose.

13.3 When the Response is Binary

Binary endpoints are very popular in clinical trials. Frequently, “success” and
“failure” are used to describe the outcome of a treatment. Even if the endpoint is
continuous, there is an increasing tendency to define criteria and classify subjects as
a “responder” or a “nonresponder”. For example, patients in antidepressants trials
are frequently referred to as a responder if they experience a 50% reduction in the
HAM-D score from their baseline values. The American College of Rheumatology
(ACR) proposed to use ACR20 as the basis to determine if the treatment is a success
or not for an individual. ACR20 is defined as

� ≥ 20% improvement in tender joint count
� ≥ 20% improvement in swollen joint count
� ≥ 20% improvement in at least three of the following five assessment
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� Patient pain assessment
� Patient global assessment
� Physician global assessment
� Patient self-assessed disability
� Acute phase reactant

The above definition combines multiple endpoints into a single dichotomous
endpoint. By setting a criterion to classify treatment outcome, the medical commu-
nity implicitly provides a target for treatment success. The popularity of responder
analysis arises from the above desire even though dichotomization can lead to the
loss of information (Senn, 2003).

There are situations when binary response makes sense. Examples include
“alive” or “dead” for patients in salvage trials with end stage cancer. In anti-
infective trials, it is natural to consider if an individual is cured of the underlying
infection, both clinically and microbiologically. There are many situations where
dichotomizing subject’s response in a manner that makes clinical sense is not a
trivial matter. This is especially so when the response is measured using an in-
strument. Does a 50% improvement in the HAM-D scale from the baseline in
depressed patients translate to clinically meaningful improvement? Is the rule we
use to dichotomize patients sensitive to drug effect? All these are important ques-
tions when determining the responder definition.

We will assume that a binary endpoint is appropriately defined and the objective
is to explore the relationship between the likelihood of the desirable outcome and
the dose. Using Table 13.1 as an example, we will assume that it is reasonable to
collapse the three categories of death, vegetative state, and major disability into
one category and combining minor disability and good recovery into another. The
first (combined) category is deemed undesirable while the second (combined) cat-
egory is the desirable one. Following our previous notations, we will label the two
response categories as j = 1 and 2. The four dose groups will be labeled as i = 1, 2,
3, 4, respectively. Response categories after combination are given in Table 13.2.

The binary case can be considered as a special case of the ordinal response
discussed in Section 13.2. For example, the logit model in (13.6) is subsumed in
the proportional odds logit model described in (13.1). Similarly, the logit model

Table 13.2. Collapsing the first three response categories and the last two response
categories in Table 13.1 to form a binary response consisting of “undesirable” and
“desirable” categories

Outcome

Treatment group Undesirable Desirable Total

Placebo 130 80 210
Low dose 113 77 190
Medium dose 112 95 207
High dose 96 99 195



13.3 When the Response is Binary 209

in (13.7) is subsumed in the proportional odds logit model in (13.2).

ln

(
pi2

pi1

)
= α − βi (13.6)

ln

(
pi2

pi1

)
= α − β di (13.7)

Because of the relationship between the above and their counterparts for the ordinal
response, estimation and testing related to models (13.6) and (13.7) can be con-
ducted similar to those for models (13.1) and (13.2). Setting β1 = 0, the maximum
likelihood estimates for {β i} in (13.6) are β̂2 = 0.102 (SE = 0.205), β̂3 = 0.321
(SE = 0.199), and β̂4 = 0.516 (SE = 0.202). Maximum likelihood estimate for
β in Eq. (13.7) is β̂ = 0.176 (SE = 0.064). The Wald test for β = 0 produced a
two-sided p-value of 0.006.

As for approaches that assign scores to response categories, one can easily
show that with only two response categories, one will reach identical conclusions
regardless of the scores assigned. Since there are only two response categories for
a binary outcome, the approach of treating the data as if they are from continuous
distributions (Section 13.2.2.2) is generally not encouraged. On the other hand, the
mean response model with parameters estimated using the weighted least-squares
method is still appropriate. In the latter case, one can choose (0, 1) scores so that
the mean response is actually the probability of the desirable response. The mean
response model in (13.5) now reduces to

pi2 = a + b × (dose)i (13.8)

In general, fitting model (13.8) could be a challenge if one wants to incorporate
the constraint that {pi2, i = 1, 2, 3, 4} are between 0 and 1. For Table 13.2, with
numerical scores {1, 2, 3, 4} for the doses, the weighted least-squares estimates for
a and b are 0.331 and 0.043 with standard errors of 0.042 and 0.016, respectively.
These estimates produced weighted least-squares estimates of 0.374, 0.417, 0.460,
and 0.503 for {pi2, i = 1, 2, 3, 4}.

For the binary case, the association-based approach is closely related to the
Cochran-Armitage (1955) test that is designed to detect a linear trend in the re-
sponse probabilities with dose. Mancuso et al. (2001) proposed to use isotonic
regression to increase the power of common trend tests in situations where a
monotone dose response relationship is imposed. They developed the isotonic ver-
sions of the Cochran-Armitage type trend tests and used bootstrap method to find
the empirical distributions of the test statistics. Using simulations, they demon-
strated that the order-restricted Cochran-Armitage type trend tests could increase
the power of the regular Cochran-Armitage trend test. When using {1, 2, 3, 4}
as the scores for doses, the Cochran-Armitage test for detecting a linear trend in
{pi2} produced a χ2 statistic of 7.65 with a two-sided p-value of 0.006.

For the data in Table 13.1 and the collapsed data in Table 13.2, all approaches
confirm a monotone dose–response relationship. As the dose increases, so is the
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probability for a more favorable outcome. Since the binary case is a simplified
case of the ordinal data, we will not devote more attention to this special case.

13.4 Multiple Comparisons

Dose–response studies can be conducted at different stages of a drug development
program. They can be the studies to establish proof of concept or to establish a
dose to bring into the confirmatory phase. Because the objectives of dose–response
studies at various development phases are different, the analytic approaches to
handling the data should vary accordingly. For dose response studies to establish
proof of concept, the focus is to see if the response varies with the dose to suggest
any drug activity. Therefore, the analysis will focus on estimation. This also applies
to many Phase IIb studies that are designed to correctly identify the dose(s) with
adequate treatment benefit. In this case, studying the trend and identifying doses by
the observed mean responses will be key since the studies might not be sufficiently
powered to detect a clinically meaningful difference between doses. There are also
situations where studies are powered to differentiate between pairs of groups, but
not powered to do so with adjustment for multiple comparisons. In any cases, the
analysis should be conducted to specifically address their objectives.

When multiple doses are included in a confirmatory trial and the goal is to
test the efficacy of each dose against the control (often a placebo), statistical
analyses should be adjusted for multiple comparisons. The latter will be the focus
of this section. Unlike the previous two sections where hypothesis testing, when
employed, is to check for a monotone dose–response relationship, a monotone
dose response is not necessarily the basis for hypothesis testing in this section.
Instead, definitively differentiating between treatment groups (especially doses of
an investigational medication from the control) will be the primary objective.

The primary objective of a multiple testing procedure is to control the overall
probability of erroneously rejecting at least one null hypothesis irrespective of
which and how many of the null hypotheses of interest are in fact true. Many
multiple testing procedures have been proposed in the literature. In general, they fall
in two classes. The first class includes procedures that are developed specifically for
continuous data such as the Dunnett’s method (1965) and the procedure by William
(1971). The second class includes procedures that are “distributional free” in the
sense that their implementation does not depend on any particular distributional
assumption. Most of the procedures in this class are derived from the closed testing
procedure proposed by Marcus et al. (1976) and work directly with the p-values
produced from individual tests. As such, procedures in the second class are readily
applicable to categorical data.

We will assume in this section that the objective of pairwise comparisons is
to unequivocally identify doses that have significantly different effect from the
control. For data in Tables 13.1 and 13.2, this means comparing low, medium,
and high doses against the placebo. Except for the Dunnett’s procedure described
in Section 13.4.5, we will focus on approaches that compare p-values to adjusted
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significance levels with adjustments determined by the multiple testing procedures.
We will look at four most commonly used procedures.

When the proportional odds model (13.1) is employed to analyze the ordinal
response data such as in Table 13.1 with the convention of β1 = 0, comparing
each dose group to the placebo is equivalent to testing if β i = 0 for i = 2, 3, 4.
Dividing β i estimate by its asymptotic standard error, we obtained z-statistics of
0.663, 1.811, and 2.937 for testing β2 = 0, β3 = 0, and β4 = 0, respectively. The
two-sided p-values associated with these three z-statistics under their respective
null hypotheses are 0.507, 0.070, and 0.003.

We can also obtain p-values for comparing each dose to the placebo by assign-
ing scores to the ordinal categories and treating the data as if they are continuous.
When doing this, multiple comparison procedures developed for normal distribu-
tion could be applied. Alternatively, one can apply the Wilcoxon-Mann-Whitney
test to compare each dose group to the placebo. Similarly, one can either use the
modeling approach or compare two proportions directly for the binary case. For
Sections 13.4.1 through 13.4.4, we will assume that p-values corresponding to the
hypotheses of interest have been produced. We will assume throughout Section
13.4 that the overall Type I error rate is to be controlled at the 5% level.

We would like to point out that multiplicity adjustment for model-based
approaches with large sample sizes may be done using parametric re-sampling
techniques. Macros for doing these are provided in Westfall et al. (1999) and an
example for binary outcome is given in Chapter 12 of that book. For the rest of
this chapter, large sample asymptotic normal approximations are used to derive
the significance levels.

13.4.1 Bonferroni Adjustment

Under this approach, we will compare each p-value to 0.0167 (=0.05/3) since
we will make three comparisons. Because of its simplicity, Bonferroni adjustment
is often used despite its conservativeness. Taking the three p-values cited above,
i.e., 0.507, 0.070 and 0.003, only 0.003 is smaller than 0.0167. Thus, applying
the Bonferroni procedure, one could only conclude that the high dose produced a
significantly better result than the placebo.

13.4.2 Bonferroni–Holm Procedure

This procedure calls for ordering the p-values from the smallest to the largest.
In our case, this lead to the order of 0.003 (high dose), 0.070 (medium dose),
and 0.507 (low dose). If the smallest p-value is smaller than 0.0167 (=0.05/3),
we will move to the next smallest p-value; otherwise we will stop and conclude
that no dose group is significantly different from the placebo. In our case, 0.003
is less than 0.0167, so we continue to 0.070, the next smallest p-value. We will
compare 0.070 to 0.025 (0.05/2). Since 0.070 is greater than 0.025, we will stop
the comparison and conclude that only the high dose produced results that are
significantly different from the placebo. Should the second smallest p-value be
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smaller than 0.025, we would proceed to the next p-value in the ordered sequence.
In other words, we continue the process with a significance level that is 0.05
divided by the number of hypotheses remaining to be tested at each stage unless
the p-value under comparison exceeds the current significance level. When this
occurs, we will conclude significance for all comparisons before the present one.

13.4.3 Hochberg Procedure

This procedure is among the most popular multiple comparison procedures by
pharmaceutical statisticians. Instead of ordering the p-values from the smallest to
the largest, this procedure orders the p-values from the largest to the smallest. In
our example, the ordered p-values are 0.507 (low dose), 0.070 (medium dose), and
0.003 (high dose). The largest p-value will be compared to 0.05. If it is smaller
than 0.05, we will stop the testing and conclude significance for all comparisons;
otherwise we will move to the second highest p-value. In our case, the largest
p-value, i.e., 0.507 is greater than 0.05, so we will continue. The second largest
p-value will be compared to 0.025 (=0.05/2). If it is smaller than 0.025, we will
stop and conclude significance for this comparison and all subsequent ones that
produced p-values smaller than the current one. Since 0.07 is greater than 0.025,
we will continue. The smallest p-value in our example will be compared to 0.0167
(0.05/3). Since 0.003 is smaller than 0.0167, we will conclude a significant differ-
ence between the high dose and the placebo. Under the Hochberg procedure, the
process starts with the largest p-value and the significance level decreases as we
proceed. The significance level for the kth step is given by 0.05/k. Unlike the Holm
procedure, the Hochberg procedure continues the testing until we reach a statis-
tical significance, otherwise it will conclude that none of the doses is statistically
different from the placebo.

13.4.4 Gate-Keeping Procedure

This procedure is also known as predetermined step-down or the hierarchy proce-
dure (Bauer and Budde, 1994; Bauer et al., 1998). In short, this procedure follows
a prespecified sequence. Testing will be conducted at the 0.05 level at each stage
and it will continue as long as the p-value is significant at the 0.05 level. Testing
will stop at the first instance when a p-value is above 0.05.

This procedure is used very frequently when there is a prior belief of a monotone
dose–response relationship and therefore it is logical to start with the highest dose
first. This procedure is especially helpful when looking for the minimum effective
dose (Tamhane et al., 1996). To look for a minimum effective dose under the strong
belief of a monotone dose–response relationship, one can start by comparing the
highest dose with the control and working our way down the doses. The minimum
effective dose is often defined as the smallest dose for which the null hypothesis
of no effect is rejected. Another appealing feature is that all comparisons are
conducted at the level of 0.05. Despite its appeal and ease to implement, if the
prior belief turns out to be false and the dose–response relationship turns out to be
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umbrella-shaped, the predetermined step-down procedure can miss the opportunity
to identify effective doses.

In our example, if we choose (high, medium, low) as the testing sequence based
on biologic considerations, we will reach the same conclusion as the previous
procedures. That is, the high dose is the only one demonstrating a statistically
different effect from the placebo.

13.4.5 A Special Application of Dunnett’s Procedure
for Binary Response

Chuang-Stein and Tong (1995) examined three approaches for comparing several
treatments with a control using a binary outcome. The first approach relies on
the asymptotic theory applied to the Freeman and Tukey (1950) transformation
of the observed proportions. The second finds an acceptance region based on
the binomial distributions estimated under the joint null hypotheses. The third
approach applies Dunnett’s procedure to the binary data. The authors found that
for sample sizes typical of the confirmatory trials, applying Dunnett’s critical
values to the z-statistics obtained from comparing proportions results in an actual
overall Type I error rate generally at the desirable level.

For the data in Table 13.2, the z-statistics for comparing each dose against the
placebo are 0.497 for the low dose, 1.618 for the medium dose, and 2.585 for the
high dose. Dunnett’s critical value for three comparisons and a sample sizes greater
than 160 per group is 2.212 (Hsu, 1996, Table E.3). Compared to 2.212, only the
comparison between the high dose and the placebo reached statistical significance
at the 0.05 level.

Occasionally, one might want to compare among doses that have been estab-
lished to be efficacious. Our recommendation is to make these comparisons without
worrying about multiplicity adjustment. This is because the latter are secondary
to the primary objective of identifying efficacious doses.

Ruberg (1995a,b) noted that dose–response studies routinely ask four questions.
They are (1) Is there any evidence of a drug effect? (2) Which doses exhibit a
response different from the control group? (3) What is the nature of the dose–
response relationship? (4) Which is the optimal dose? One can discuss the first
three questions either in the context of safety (Hothorn and Hauschke, 2000)
or efficacy data. The prevailing practice is to focus on safety and efficacy data
separately without making a conscious effort to integrate them. Compared to the
first three, the last question can only be answered when safety and efficacy are
considered jointly. The latter is outside the scope of this chapter.

13.5 Discussion

Ordinal data occur frequently in real life. Likert scale is frequently used to record
a subject’s response to a question or to an external intervention. Because of the
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way the scale is constructed, it is intuitive to use scores such as {–2, –1, 0, 1, 2}
for the five-category scale and {–3, –2, –1, 0, 1, 2, 3} for the seven-category
scale. Other examples of ordinal response come from using instruments to record
outcome reported by both patients and their treating physicians. Many instruments
contain questions that are ordinal in nature. Even though the score summed over
the various questions is often the primary point of interest, analysis of specific
questions leads to the analysis of ordinal data.

In this chapter, we discussed both the modeling and the testing approaches. In
our opinion, modeling approach, for all its advantages, is underutilized. Modeling
approach can handle covariates and predict the chance for achieving certain re-
sponse for a given dose as well as the uncertainty associated with the prediction.
In addition, a fitted model can be used to estimate the dose within the dosing range
that has a desirable probability to produce certain response. By plotting the ob-
served logit against the dose (or ln dose), one can get some indication whether the
assumption of a monotone dose–response relationship is likely to be supported by
the data or not. For example, if there is a downward trend in response when the
dose moves toward the high end, one might want to consider including a quadratic
term in dose (or ln dose) to describe the umbrella-like relationship. In addition to
modeling, distribution-free tests for umbrella alternatives were studied by Chen
and Wolfe (1990).

To be useful, models typically come with accompanying assumptions to aid
interpretation. The proportional odds logit models require constant odds ratios
among dose groups on the cumulative probability scale. Models such as those in
(13.2) and (13.7) describe a linear dose effect. Some researchers (e.g., Mantel,
1963) considered such requirements appropriate as long as the required conditions
constitute a major component of the phenomenon under examination. For example,
the linear models as in (13.2) and (13.7) are reasonable as long as the linearity
assumption holds for the underlying dose–response relationship. In using a linear
model, we are able to construct a powerful test for a hypothesis that suggests a
monotone dose–response relationship. In most cases, the linearity assumption and
the proportional odds assumption can be checked via the goodness-of-fit based on
the likelihood ratio tests.

Calculating sample size for binary outcome when comparing each dose group
against the control is straightforward. If multiplicity adjustment is needed, a con-
servative approach is to use the Bonferroni significance level as the Type I error
in the calculation. Sample size calculated in this way will be adequate when other
more efficient multiple comparison procedures are used in the analysis. If the
number of categories associated with an ordinal response is at least five and the
analysis calls for treating the data as continuous, the calculation of the sample
size can proceed as for the continuous case. A detailed discussion on sample sizes
needed for dose response studies is provided in Chapter 14 of this book.

Sample size calculation for the modeling approach is more complicated. White-
head (1993) discussed the case of comparing two groups based on the proportional
odds logit model. Suppose we want an 80% power in a two-sided 5% test for de-
tecting a size of β0 in a model like (13.2). Assuming a randomization ratio of A
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to 1 to the two groups and {p j , j = 1, . . . , J} the anticipated marginal propor-
tions of the response categories, Whitehead showed that the total required sample
size is

N = 3(A + 1)2(z0.975 + z0.80)2

Aβ2
0

(
1 −∑

j p3
j

)
where zc above represents the 100 × c% percentile of the standard normal distribu-
tion. A lower bound for N can be obtained by substituting 1/J for p j in the above
formula. Whitehead showed that the required sample size did not differ much from
this lower bound unless a single dominant response category occurred. It can be
easily seen that equal allocation, i.e., A = 1, produces the smallest sample size.

Using Whitehead formula, Chuang-Stein and Agresti (1997) discussed the effect
of the choice of the number of response categories on the sample size. In particular,
they discussed the sample size required for J categories N (J ) and that required
for two categories N (2) for the case of equal marginal response probabilities. The
ratio of N (J ) to N (2) is

N (J )

N (2)
= 0.75

1 − J−2

For J = 5, the above ratio is about 78%, suggesting a substantial loss of informa-
tion when collapsing five response categories into two. This observation is con-
sistent with our earlier comments on the loss of information when dichotomizing
a nonbinary response. Even though Whitehead’s original discussion was applied
to two-arm trials, the discussion is relevant to dose–response studies when the
primary focus is to compare each dose group against, for example, the placebo.

For dose–response studies conducted at the earlier development phase, the ob-
jective might not be to statistically differentiate between doses, but to correctly
identify doses that have better efficacy. For example, when studying a new antibi-
otic at the Phase II stage, the primary objective of a dose–response trial is often
to pick a dose to bring to the confirmatory phase. Such a trial might contain only
doses of the new antibiotic. The major consideration for sample size decision is
to make sure that we have enough patients at each dose so that the probability of
correctly identifying the dose with the best efficacy using the observed success
rate is at a desirably high level. For example, we might want to have an 80%
chance that the observed success rates will correctly reflect the ordering in the true
response rates when the underlying true rates are 60% and 50%, respectively. If
this is the objective, then we will need approximately 35 patients per dose group.
On the other hand, if one wants to differentiate between these two doses with an
80% power using a hypothesis testing procedure at a two-sided 5% significance
level, one will need 408 patients per dose group. The latter is excessive for a
Phase II antibiotic trial, especially when in vitro testing and animal model have
already confirmed the antibacterial activity of the compound under investigation.
Some design considerations for dose–response studies can be found in Wong and
Lachenbruch (1998).
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The analysis approaches discussed in this chapter are applicable to a parallel
design under which subjects are randomized to receive one of the treatments (doses)
under comparison. In some therapeutic areas, early phase dose–response studies are
done using a titration design. Under a titration design, subjects typically start with
the lowest dose and have their doses titrated upwards until treatment intolerance
or the obtainment of a response. The exploration of a dose–response relationship
with a binary outcome in a titration study requires special care because of the
selective nature of the titration scheme. For more details on the analysis of such
studies, the readers are referred to Chuang (1987).

There is a great flexibility in analyzing dose–response studies when the endpoint
is measured on an ordinal scale. Since most of the discussion in this chapter is for
the average situation, one might want to consider evaluating the use of a general-
purpose approach for a particular situation more thoroughly. To this end, we would
like to encourage our readers to diligently use simulations to evaluate various
design options. The latter includes the sample size. For example, one can simulate
studies under various conditions to see if the planned size provides adequate power
to address the research objectives. In addition to sample size, how missing data are
handled (e.g., the baseline response category carried forward, the worse response
category experienced by the individual, or the worst response category) could have
a significant impact on power. Furthermore, most multiple comparison procedures,
when applied to categorical data, rely on the asymptotic behaviors of the underlying
test statistics. Whether the asymptotic approximation is adequate for a particular
application needs to be assessed for the planned sample size, the response profiles,
the dropout patterns, as well as the choices of the analytical approaches (modeling
vs. comparing proportions directly). With the convenience of modern computing
power, it is highly desirable to take advantage of these tools so we have a good
understanding of the operating characteristics of the procedures chosen before we
initiate a clinical trial.
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Appendix: SAS Code for Performing Various Analyses

SAS code for performing various analyses with data in Table 13.1

data one;
input dose outcome count @ @;
group = 1;
cards;
1 1 59 1 2 25 1 3 46 1 4 48 1 5 32
2 1 48 2 2 21 2 3 44 2 4 47 2 5 30
3 1 44 3 2 14 3 3 54 3 4 64 3 5 31
4 1 43 4 2 4 4 3 49 4 4 58 4 5 41
proc freq data=one; *CMH test with scores entered in the data;
weight count;
tables group*dose*outcome/cmh1;
run;

proc freq data=one; ∗CMH test with mid-rank scores;
weight count;
tables group∗dose∗outcome/cmh1 scores=ridit;
run;

proc catmod data=one order=data; ∗mean response model;
weight count;
population dose;
response 1 2 3 4 5; direct dose; ∗use scores (1,2,3,4,5);
model outcome=dose;
run;

proc logistic data=one; ∗proportional odds model (ML);
freq count;
model outcome=dose;
run;

proc catmod data=one; ∗proportional odds model (WLS);
weight count;
response clogits;
direct dose;
model outcome= response dose;
run;

proc catmod data= one; ∗adjacent cat. Logit model (WLS);
weight count;
response alogits;
direct dose;
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model outcome= response dose;
run;

SAS code for performing various analyses after classifying data in Table 13.2

data two;
input dose outcome count;
cards;
1 0 130
1 1 80
2 0 113
2 1 77
3 0 112
3 1 95
4 0 96
4 1 99
proc logistic data=two; ∗treating dose levels as a continuous variable;
freq count;
model outcome=dose;
run;

data three;
set two; ∗create dummy variables for dose levels;
if dose=2 then idose2=1; ∗placebo group is treated as a reference level;
else idose2=0;
if dose=3 then idose3=1;
else idose3=0;
if dose=4 then idose4=1;
else idose4=0;
run;

proc logistic data=three; ∗treating dose levels as nominal categories;
freq count;
model outcome=idose2 idose3 idose4;
run;

proc freq data=two; ∗Cochran-Armitage trend test;
weight count;
tables dose∗outcome/trend;
run;
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Power and Sample Size for Dose
Response Studies

MARK CHANG AND SHEIN-CHUNG CHOW

14.1 Introduction

In this chapter, we will study sample size issues in dose–response trials. As in-
dicated in 21 CFR 312.21, Phase I clinical investigation provides an initial in-
troduction of an investigational new drug in humans. The primary objectives are
to (1) determine the metabolism and pharmacological activities of the drug, the
side effects associated with increasing dose and early evidence in effectiveness
and (2) obtain sufficient information regarding the drug’s pharmacokinetics and
pharmacological effects to permit the design of well-controlled and scientifically
valid Phase II clinical studies. Thus, Phase I clinical investigation includes studies
of drug metabolism, bioavailibility, dose ranging, and multiple dose. For dose-
escalation studies, clinical researchers usually start with low dose which is unlikely
to present any harmful effects to subjects. Then, several cohorts of subjects are
treated at progressively higher doses until a predetermined level of drug-related
toxicity is reached. The level of drug-related toxicity is usually referred to as dose-
limiting toxicity (DLT). In practice, since the test drug for progressive disease such
as oncology is usually toxic and only a small number of patients are allowed for
the study due to ethical consideration, the efficiency of the design is not only mea-
sured by its power but also the number of DLTs and accuracy for determination of
maximum tolerated dose (MTD). In Phase II, dose–response studies are focused
on the efficacy. Four questions are often of interest (Ruberg, 1995a, b): (1) Is there
any evidence of the drug effect? (2) What doses exhibit a response different from
the control response? (3) What is the nature of the dose–response? (4) What is the
optimal dose? The first question is often essential and most hypothesis test meth-
ods try to answer this question; The second question can usually be addressed by
Williams’ test for minimum effective dose. The third question can be addressed
by model-based approaches, either of frequentist or Bayesian type. The last ques-
tion is multiple dimensional involving at least efficacy and safety components.
We will limit our discussion on the sample size calculations for answering the
first three questions. Specifically, in next section, some general concepts regarding
sample size calculation are briefly reviewed. Section 14.3 provides a formula for
sample size calculation for various study endpoints under multiple-arm response



14.2 General Approach to Power Calculation 221

trials, including Williams’ test for minimum effective dose for normal response,
Cocharan-Armitage trend test for binary response, and a newly derived contrasts
test for survival endpoint. Sample size estimation and related operating charac-
teristics of Phase I dose escalation designs are discussed in Section 4. A brief
concluding remark is given in the last section.

14.2 General Approach to Power Calculation

When testing a null hypothesis H0 : ε ≤ 0 against an alternative hypothesis Ha :
ε > 0, where ε is the treatment effect (difference in response), the Type I error rate
function is defined as

α(ε) = Pr {reject H0 when H0 is true} .

Similarly, the type-II error rate function β is defined as

β(ε) = Pr {fail to reject H0 when Ha is true} .

For hypothesis testing, we need to know the distribution of the test statistic T ,
�0(T ), under H0. For sample size calculation, we need to know its distribution
under a particular Ha . To control the overall Type-I error rate at level α under any
point of the H0 domain, the condition α(ε) ≤ α∗ for all ε ≤ 0 must be satisfied,
where α∗ is a threshold which is usually larger than 0.05 unless it is a Phase III
trial. If α(ε) is monotonic function of ε, then the maximum Type-I error occurs
when ε = 0 and test statistic should be derived under this condition. For example,
for the null hypothesis H0 : µ2 − µ1 ≤ 0, where µ1 and µ2 are the means of the
two treatment group, the maximum Type-I error occurs on the boundary of H0

when µ2 − µ1 = 0. Thus, �0(T ) is the cumulative distribution function (CDF) of
the test statistic on the boundary of this null hypothesis domain.

The power of the test statistic T under a particular Ha can be expressed as
follows:

Power = Pr(T ≥ �−1
o (1 − α; n)|Ha) = 1 − �a(�−1

o (1 − α; n); n) (14.1)

where �a is CDF under the alternative hypothesis Ha . Figure 1 is an illustration of
the power function of α and the sample size n. Note that �o and �a are often CDF
for normal distribution. In this situation, we can derive an sample size formula as
follows:

n = (z1−a σ̂0 + z1−βσ̂a)2

ε2
(14.2)

where ε is treatment difference. If homogeneous variances hold among treatment
groups, i.e., σ 2

0 = σ 2
a = σ 2, then the sample size is simply given by

n = (z1−a + z1−β)2σ 2

ε2
(14.3)
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Figure 14.1. Power as a function of α and n.

Table 14.1. Sample sizes for different types of endpoints

Endpoint Sample size variance

One mean n = (z1−a + z1−β )2σ 2

ε2

Two means n1= (z1−a + z1−β )2σ 2

(1 + 1/r )−1ε2

One proportion n = (z1−a + z1−β )2σ 2

ε2
σ 2= p(1 − p)

Two proportions n1= (z1−a + z1−β )2σ 2

(1 + 1/r )−1ε2

σ 2= p̄(1 − p̄);

p̄ = n1 p1+n2 p2

n1 + n2
.

One survival curve n = (z1−a + z1−β )2σ 2

ε2
σ 2 = λ2

0

(
1 − eλ0T0 − 1

T0λ0eλ0Ts

)−1

Two survival curves n1= (z1−a + z1−β )2σ 2

(1 + 1/r )−1ε2

σ 2 = rσ 2
1 + σ 2

2

1 + r
,

σ 2
i = λ2

i

(
1 − eλi T0 − 1

T0λi eλi Ts

)−1

Note: r = n2

n1
. λ0 = expected hazard rate, T0 = uniform patient accrual time and Ts = trial duration.

Log rank-test is used for comparison of the two survival curves.

Based on Eq. (14.1), sample sizes for comparing means, proportions and survival
endpoints with one or two groups can all be easily derived, which are summarized
in Table 14.1 (see also, Chow et al., 2003).

Note that the selection of Type-I error rate α and Type-II error rate β should
be based on study objectives that may vary from phase to phase of clinical trials.
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It depends efficacy, safety, and other aspects of the trial. From safety perspective,
the number of patients should be gradually increased from early phases to later
phases due to potential toxicity of the test drug. From efficacy point of view,
for early phases, we are more concerned about missing good candidates and less
concerned about false positive rate. In this case, a largerα is recommended. For later
phase, a small α may be considered to meet regulatory requirements. In practice,
it is suggested that the benefit-risk ratio should be taken into consideration when
performing sample size calculation. In such case, Bayesian decision theory is a
useful tool.

14.3 Multiple-Arm Dose Response Trial

To characterize the response curve, multiple groups at different dose levels includ-
ing a control group are usually studied. Such a multiple-arm trial is informative for
the drug candidates with a wide therapeutic window. Whether a model-based or
a nonparametric approach is adopted, any prior information about dose–response
curve such as linear or monotonic is helpful. This prior information not only allows
user to decide a more powerful test statistic (e.g., linear contrasts of the means),
but also to perform power analysis under an appropriate model. In what follows,
we will consider sample size calculation in multiple-arm dose response trials with
various study endpoints.

A linear contrast test is commonly used in dose–response studies. For a one-
sided hypothesis testing problem

Ho : L(u) =
k∑

i=0

ci ui ≤ 0; vs. Ha : L(u) =
k∑

i=0

ci ui = ε > 0

where ui can be the mean, proportion, or ranking score, ε a constant, and the
contrast coefficients ci satisfy the equality

∑k
i=0 ci = 0.

The pivotal statistic (when Ha is true) and test statistic (when Ho is true) can be
expressed as

T = L(û|H )√
var (L(û)|Ho)

, H ∈ Ho ∪ Ha

where û is an unbiased estimator of u.
Let

ε = E(L(û)|Ha), v2
o = var (L(û)|Ho), and v2

a = var (L(û)|Ha).

We then have the large sample test statistic

T (Ho) = L(û)|Ho

vo
∼ N (0, 1)
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and

T (Ha) = L(û)

vo
∼ N

(
ε

vo
,
v2

a

v2
o

)
where ⎧⎨⎩v2

o = var (L(û)|Ho) = ∑k
i=0 c2

i var (ûi |Ho) = σ 2
o

∑k
i=0

c2
i

ni

v2
a = var (L(û)|Ha) = ∑k

i=0 c2
i var (ûi |Ha) = ∑k

i=0
c2

i σ
2
i

ni

That is, ⎧⎨⎩v2
o = σ 2

o
n

∑k
i=0

c2
i
fi

v2
a = 1

n

∑k
i=0

c2
i σ

2
i

fi

where the size fraction fi = ni
n with n = ∑k

i=0 ni , σ 2
o and σ 2

i are the variances of
the response under H0 and Ha, respectively.

14.3.1 Normal Response

Let µi be the population mean for group i . The null hypothesis of no treatment
effect can be written as follows:

H0 : µ0 = µ1 = ... = µk (14.4)

or

H0 : L(µ) =
k∑

i=0

ciµi = 0 (14.5)

where contrasts satisfy the condition that
∑k

i=0 ci = 0.

Note that if H0 in Eq. (14.5) is rejected for some {ci } satisfying
∑k

i=0 ci = 0,
then H0 in Eq. (14.4) is also rejected. We are particularly interested in the following
alternative hypothesis:

Ha : L(µ) =
k∑

i=0

ciµi = ε (14.6)

Under the alternative hypothesis in Eq. (14.6) and the condition of homogeneous
variance, the sample size can be obtained as

n =
[

(z1−α + z1−β)σ

ε

]2 k∑
i=0

c2
i

fi

where fi is the sample size fraction for the ith group and the population parameter
σ, for the purpose of sample size calculation, can be estimated using the pooled
standard deviation if prior data are available.
Example In a Phase II asthma study, a design with 4 dose groups (0, 20, 40,
and 60 mg) of the test drug is proposed. The primary efficacy endpoint is percent
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change from baseline in FEV1. Based on limited information from previous stud-
ies, it is assumed that 5%, 12%, 14%, and 16% improvement over baseline for the
control group, 20, 40, and 60 mg groups, respectively, and a homogeneous standard
deviation of 22% for the FEV1 change from baseline. Therefore, we propose the
following contrast which is consistent with the assumed dose–response shape:
c1 = −6, c2 = 1, c3 = 2, c4 = 3 such that

∑
ci = 0. Thus, we have

ε = ∑k
i=0 ci µ̄i = 58%, where µ̄i is the observed FEV1 improvement in the i th

group.
Using a balanced design ( fi = 1/4) with one-sided α = 0.05 (Since this is

Phase II, we do not have to use α = 0.025), the sample size required to detect the
difference of ε = 0.58 with 80% power is given by

n =
[

(z1−α + z1−β)σ

ε

]2 k∑
i=0

c2
i

fi

=
[

(1.645 + 0.842)(0.22)

0.58

]2

4((−6)2 + 12 + 22 + 32) = 178

Thus, a total sample size of 178 (45 per group) is required.
To study how the different combinations of response shapes and contrasts may

affect the sample size and power, we consider the following five different shapes
(Table 14.2).

Sample sizes required for different combinations of responses and contrasts are
presented in Table 14.3. It can be seen that when response and contrasts have the
same shapes, a minimum sample size is required. If an inappropriate contrast set
is used, the sample size could be 30 times larger than the optimal design.

Table 14.2. Response and contrast shapes

Shape µ0 µ1 µ2 µ3 c0 c1 c2 c3

Linear 0.1 0.3 0.5 0.7 −3.00 −1.00 1.00 3.00
Step 0.1 0.4 0.4 0.7 −3.00 0.00 0.00 3.00
Umbrella 0.1 0.4 0.7 0.5 −3.25 −0.25 2.75 0.75
Convex 0.1 0.1 0.1 0.6 −1.25 −1.25 −1.25 3.75
Concave 0.1 0.6 0.6 0.6 −3.75 1.25 1.25 1.25

Table 14.3. Sample size per group for various contrasts

Contrast

Response Linear Step Umbrella Convex Concave

Linear 31 35 52 52 52
Step 39 35 81 52 52
Umbrella 55 74 33 825 44
Convex 55 50 825 33 297
Concave 55 50 44 297 33

Note: σ = 1, one-sided α = 0.05
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14.3.1.1 Williams test for minimum effective dose (MED)

Under the assumption of monotonicity in dose response, Williams (1971, 1972)
proposed a test to determine the lowest dose level at which there is evidence
for a difference from control. Williams considered the following alternative
hypothesis:

Ha : µ0 = µ1 = ... = µi−1 < µi ≤ µi+1 ≤ ... ≤ µk

and proposed the following test statistic:

Ti = µ̂i − Ȳ0

σ̂
√

1
ni

+ 1
n0

where σ̂ 2 is an unbiased estimate of σ 2, which is independent of Y i , the mean
response of the ni patient in the i th group, and is distributed as σ 2χ2

v /v and µ̂i is
the maximum likelihood estimate of µi which is given by

µ̂i = max
1≤u≤i

min
i≤v≤k

{∑v
j=u n j Y j∑v

j=u n j

}
When ni = n for i = 0, 1, . . . , k, this test statistic can be simplified as

Ti = µ̂i − Y 0

σ̂
√

2/n

We then reject the null hypothesis of no treatment difference and conclude that the
ith dose level is the minimum effective dose if

Tj > t j (α) for all j ≥ i

where t j (α) is the upper αth percentile of the distribution of Tj . The critical values
of t j (α) are given in the Table 12.11 of Chow et al., (2003).

Since the power function of the above test is rather complicated, as an alternative,
Chow et al., (2003) considered the following approximation to obtain the required
sample size per dose group:

power = Pr {reject H0|µi ≥ µ0 + � for some i}
> Pr

{
reject H0|µ0 = µ1 = . . . = µk−1, µk = µ0 + �

}
≥ Pr

{
Y k − Y 0

σ
√

2/n
> tk(α)|µk = µ0 + �

}

= 1 − �

(
tk(α) − �

σ
√

2/n

)
where � the clinically meaningful minimal difference. To have a power of 1 − β,

required sample size per group can be obtained by solving
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β = �

(
tk(α) + �

σ
√

2/n

)

n = 2σ 2
[
tk(α) + zβ

]2

�2
(14.7)

It should be noted that this approach is conservative.
Example We consider the previous example of asthma trial. For power = 80%,
σ = 0.22, one-sided α = 0.05 (Note that there is no two-sided William’s test.),
Since the critical value tk(α) is dependent on the degree of freedom ν that is related
to sample size n which is unknown. Iterations are usually needed. However, for the
current case we know that ν > 120 or ∞, which leads to t3(0.05) = 1.75. Assume
that 11% improvement in FEV1 over placebo is the minimum effect that is both
clinically and commercially meaningful. Thus, the sample size for this study is
given by

n = 2(0.22)2(1.75 + 0.8415)

0.112
= 53 per group

Note that this sample size formulation has a minimum difference from that based
the two sample t-test with the maximum treatment difference as the treatment
difference. For the current example, n = 54 from the two sample t-test.

14.3.2 Binary Response

Binary response is a commonly used endpoint in clinical trials. Denote pi the
proportion of response in the ith group. Suppose we are interested in testing the
following null hypothesis

H0 : p0 = p1 = . . . = pk (14.8)

against the following alternative hypothesis

Ha : L(p) =
k∑

i=0

ci pi = ε (14.9)

where ci are the contrasts satisfying
∑k

i=1 ci = 0.

Similarly, by applying the linear contrast approach, the sample size can be
obtained as

N ≥

⎡⎢⎢⎣ z1−α

√∑k
i=0

c2
i
fi

p(1 − p) + z1−β

√∑k
i=0

c2
i
fi

pi (1 − pi )

ε

⎤⎥⎥⎦
2

(14.10)

where p̄ = ∑k
i=0 fi pi .

The effects of different contrasts on sample size are summarized in Table 14.4.
As it can be seen from Table 14.4, an appropriate selection of contrasts yields a

minimum sample size required for achieving the desired power.
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Table 14.4. Total sample size comparisons for binary data

Contrast

Response Linear Step Umbrella Convex Concave

Linear 26 28 44 48 44
Step 28 28 68 48 40
Umbrella 48 68 28 792 36
Convex 28 36 476 24 176
Concave 36 44 38 288 28

Note: One-sided α = 0.05, σ 2
o = p(1 − p).

Other commonly used methods include Cochran–Armitage test (Cochran, 1954,
and Amitage, 1955) and Nam’s test (Nam, 1987) for monotonic trend. These
methods can be reviewed as regression based approaches. Therefore, using these
methods, the rejection of the null hypothesis implies the dose–response has an
overall monotonic “trend” in the regression sense. However the global monotonic
trend is not a proof of monotonicity among all dose levels.

14.3.2.1 Nam’s formula for Cochran-Armitage test

Let xi be the k mutually independent binomial variates representing the number
of responses among ni subjects at dose level di for i = 0, 1, . . . , k − 1. Define
average response rate p̂ = 1

N

∑
i xi , N = ∑

i ni , q̂ = 1 − p̂, and d̄ = 1
N

∑
ni di .

U = ∑
i xi (di − d̄).

Assume that the probability of response follows a linear trend in logistic scale

pi = eγ+λdi

1 + eγ+λdi
(14.11)

Note that {di } can be actual doses or scores assigned to dose. However, Eq. (14.11)
represents different models for these two cases.

The hypothesis test problem can be stated as

H0 : λ = 0 vs. Ha : λ = ε > 0

where ε should be to negative for monotonic decreasing response.
An approximate test with continuity correction based on the asymptotically

normal deviate is given by

z = (U − �
2 )√

var (U |H0 : λ = 0)
= (U − �

2 )√
p̂q̂
∑

i ni (di − d̄)2
(14.12)

where �/2 = (di − di−1)/2 is the continuity correction for equal spaced doses.
However, there is no constant � exist for unequally spaced doses. Nam pointed
out that the familiar Cochran–Armitage test statistic, which obtained from least
square theory by formal linear regression analysis for the model pi = a + bdi , is
identical to the square of Eq. (14.12). The advantage of using the Eq. (14.11) is
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that the sample size formula for the test can be explicitly derived as follows:

Pr (z ≥ z1−α|Ha) = 1 − �(u)

where

u = −E(U − �

2
) + z1−α

√
var (U |Ho)√
var (U |Ha)

Thus, we have

E(U ) − �

2
+ z1−α

√
var (U |Ho) + z1−β

√
var (U |Ha)

For � = 0, i.e., without continuity correction, the sample size is given by

n∗
0 = 1

A2

{
z1−α

√
pq
∑

ri (di − d̄) 2 + z1−β

√∑
pi qiri (di − d̄)2

}2

(14.13)

where A = ∑
ri pi (di − d̄), p = 1

N

∑
ni pi , q = 1 − p, and ri = ni/n0 is the

sample size ratio between the ith group and the control.
On the other hand, sample size with continuity correction is given by

n0 = n∗
0

4

[
1 +

√
1 + 2

�

An∗
0

]2

(14.14)

Note that the actual power of the test depends on the specified alternative.
For balance design with equal size in each group, the formula for sample size

per group is reduce to

n = n∗

4

[
1 +

√
1 + 2

Dn∗

]2

(14.15)

where

n∗ = 1

D2

{
z1−α

√
k(k2 − 1)pq/12 + z1−β

√∑
b2

i pi qi

}2

(14.16)

and bi = i − 0.5(k − 1), and D = ∑
bi pi .

Note that the above formula (Nam, 1987) is based on one-sided test at the α

level. For two-sided test, the Type-I error rate is controlled at the 2α level. For
equally spaced doses: 1, 2, 3, and 4, the sample sizes required for the five different
sets of contracts are given in Table 14.5.

Cochran–Armitage test has been studied by many authors. The one-sided test
by Portier and Hoel (1984) was the modification (Neuhauser and Hothorn, 1999)
from Armitages’ (1955) original two-sided test, which is asymptotically distributed
as a standard normal variable under the null hypothesis. Neuhauser and Hothorn
(1999) studied the power of Cochran-Armitage test under different true response
shape through simulations. Gastwirth(1985) and Podgor et al. (1996) proposed a
single maximum efficiency robust test statistic based on prior correlations between
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Table 14.5. Sample size from Nam formula

Dose 1 2 3 4 Total n

Response
0.1 0.3 0.5 0.7 28
0.1 0.4 0.4 0.7 36
0.1 0.4 0.7 0.5 52
0.1 0.1 0.1 0.6 44
0.1 0.6 0.6 0.6 52

Note: The sample size is an approximation due to the nor-
mality assumption and small n.

different contrasts, while Neuhauser and Hothorn (1999) proposed a maximum test
among two or more contrasts and claim a gain in power.

14.3.3 Time-to-Event Endpoint

Under an exponential survival model, the relationship between hazard (λ), median
(Tmedian) and mean (Tmean) survival time is very simple:

Tmedian = ln 2

λ
= (ln 2)Tmean (14.17)

Let λi be the population hazard rate for group i . The contrast test for multiple
survival curves can be written as

H0 : L(µ) =
k∑

i=0

ciλi = 0 vs. L(µ) =
k∑

i=0

ciλi = ε > 0

where contrasts satisfy the condition that
∑k

i=0 ci = 0.

Similar to other types of endpoints (mean and proportion), the sample size is
given by

N ≥
⎡⎣ z1−ασo

√∑k
i=0

c2
i
fi

+ z1−β

√∑k
i=0

c2
i
fi
σ 2

i

ε

⎤⎦2

(14.18)

where the variance σ 2
i can be derived in several different ways. Here we use Lachin

and Foulkes’s maximum likelihood approach (Lachin and Foulkes, 1986; Chow
et al., 2003).

Suppose we design a clinical trial with k groups. Let T0 and Ts be the accrual
time period and the total trial duration, respectively. We then can prove that the
variance for uniform patient entry is given by

σ 2(λi ) = λ2
i

[
1 + e−λi Ts (1 − eλi T0 )

T0λi

]−1

(14.19)

Let ai j denote the uniform entry time of the j th patient of the ith group, i.e.,
ai j ∼ 1

T0
, 0 ≤ ai j ≤ T0. Let ti j be the time-to-event starting from the time of the

patient’s entry for the jth patient in the ith group, i = 1, . . . k, j = 1, . . . , ni . It is
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assumed ti j follows an exponential distribution with hazard rateλi .The information
observed is (xi j , δi j ) = (

min(ti j , Ts − ai j ), I
{
ti j ≤ Ts − ai j

})
. For a fixed i, the

joint likelihood for xi j , j = 1, . . . ni can be written as

L(λi ) = 1

T0
λ

∑ni
j=1 δi j

i e−λi
∑ni

j=1 xi j

Taking the derivative with respect to λi and letting it equal to zero, we can obtain

the MLE for λi which is given by λ̂i =
∑ni

j=1 δi j∑ni
j=1 xi j

. According to the central limit

theorem, we have

√
ni (λ̂i − λi ) = √

ni

∑ni
j=1(δi j − λi xi j )∑ni

j=1 xi j

= 1√
ni E(xi j )

ni∑
j=1

(δi j − λi xi j ) + op(1)
d→ N (0, σ 2(λi ))

where

σ 2(λi ) = var (δi j − λi xi j )

E2(xi j )

and
d→ denote convergence in distribution. Note that

E(δi j ) = E(δ2
i j ) = 1 −

∫ T0

0

1

T0
e−λi (Ts−a)da = 1 + e−λi Ts (1 − eλi T0 )

T0λi

E(xi j ) = 1

λi
E(δi j ), and E(x2

i j ) = 2E(δi j xi j )

λi

Hence

σ 2(λi ) = var (δi j − λi xi j )

E2(xi j )
= 1

E2(xi j )

(
E(δ2

i j ) − 2λi E(δi j xi j ) + λ2
i E(x2

i j )
)

= E(δ2
i j )

E2(xi j )
= λ2

i

E(δi j )
= λ2

i

[
1 + e−λi Ts (1 − eλi T0 )

T0λi

]−1

Example In a four–arm (the active control, lower dose of test drug, higher
dose of test drug and combined therapy) Phase II oncology trial, the objective is
to determine if there is treatment effect with time-to-progression as the primary
endpoint. Patient enrollment duration is estimated to be T0 = 9 months and the
total trial duration Ts = 16 months. The estimated median time for the four groups
are 14, 20, 22, and 24 months (corresponding hazard rates of 0.0459, 0.0347,
0.0315, and 0.0289/month, respectively). For this Phase II design, we use one-
sided α = 0.05 and power = 80%. In order to achieve the most efficient design
(i.e., minimum sample size), sample sizes from difference contrasts and various
designs (balanced or unbalanced) are compared. Table 14.6 are the sample sizes
for the balanced design. Table 14.7 provides sample sizes for unbalanced design
with specific sample size ratios, i.e., (Control:control, lower dose:Control, higher
dose:control, and Combined: control) = (1, 2, 2, 2). This type design are often seen
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Table 14.6. Sample sizes for different contrasts (balance design)

Scenario Contrast Total n

Average dose effect −3 1 1 1 666
Linear response trend −6 1 2 3 603
Median time trend −6 0 2 4 588
Hazard rate trend 10.65 −0.55 −3.75 −6.35 589

Note: Sample size ratios to the control group: 1, 1, 1, 1.

Table 14.7. Sample sizes for different contrasts (unbalance design)

Scenario Contrast Total n

Average dose effect −3 1 1 1 1036
Linear dose response −6 1 2 3 924
Median time shape −6 0 2 4 865
Hazard rate shape 10.65 −0.55 −3.75 −6.35 882

Note: Sample size ratios to the control group: 1, 2 ,2, 2.

in clinical trial where patients are assigned to the test group more than the control
group due to the fact that the investigators are usually more interested in the re-
sponse in the test groups. However, this unbalanced design is usually not an efficient
design. An optimal design, i.e., minimum variance design, where the number of
patients assign to each group is proportional to the variance of the group, is studied
(Table 14.8). It can be seen that from Table 14.8, the optimal design with sample
size ratios (1, 0.711, 0.634, 0.574) are generally most powerful and requires fewer
patients regardless the shape of the contrasts. In all cases, the contrasts with a trend
in median time or the hazard rate works well. The contrasts with linear trend also
works well in most cases under assumption of this particular trend of response
(hazard rate). Therefore, the minimum variance design seems attractive with total
sample sizes 525 subjects, i.e., 180, 128, 114, 103 for the active control, lower
dose, higher dose, and combined therapy groups, respectively. In practice, if more
patients assigned to the control group is an ethical concern and it is desirable to
obtain more information on the test groups, a balanced design should be chosen
with a total sample size 588 subjects or 147 subjects per group.

There are many other hypothesis-based dose–response studies. Shirley (1977)
proposed a nonparametric William-type test; Chuang and Agresti (1997) reviewed
tests for dose–response relationship with ordinal data; Gasprini and Eisele (2000)

Table 14.8. Sample sizes for different contrasts (minimum variance design)

Scenario Contrast Total n

Average dose effect −3 1 1 1 548
Linear dose response −6 1 2 3 513
Median time shape −6 0 2 4 525
Hazard rate shape 10.65 −0.55 −3.75 −6.35 516

Note: Sample size ratios (proportional to the variances): 1, 0.711, 0.634, 0.574.
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proposed a curve-free method for Phase I trial; Hothorn (2000) compared Cochran-
Armitage trend test to multicontrast tests. Liu (1998) studied an order-directed
score test for trend in ordered 2 × K tables. Stewart and Ruberg (2000), and
Hothorn (2000) proposed multiple contrast tests to increase the robustness of the
test. Most of them did not provide close forms for the sample size calculations.
However, Whitehead (1993) derived a sample size calculation method for ordered
categorical data (Chang, 2004).

14.4 Phase I Oncology Dose Escalation Trial

For non-life-threatening diseases, since the expected toxicity is mild and can be
controlled without harm, Phase I trials are usually conducted on healthy or normal
volunteers. In life-threatening diseases such as cancer and AIDS, Phase I stud-
ies are conducted with limited number of patients due to (1) the aggressiveness
and possible harmfulness of cytotoxic treatments, (2) possible systemic treatment
effects, and (3) the high interest in the new drug’s efficacy in those patients directly.

Drug toxicity is considered as tolerable if the toxicity is manageable and re-
versible. The standardization of the level of drug toxicity is the common toxicity
criteria (CTC) by United States National Cancer Institute (NCI). Any adverse
event (AE) related to treatment from the CTC category of Grade 3 and higher
is often considered a dose limiting toxicity (DLT). The maximum tolerable dose
(MTD) is defined as the maximum dose level with DLT rate occur no more than a
predetermined value.

There are usually 5 to 10 predetermined dose levels in a dose escalation study.
A commonly used dose sequence is the so-called modified Fibonacci sequence.
Patients are treated with lowest dose first and then gradually escalated to higher
doses if there is no major safety concern. The rules for dose escalation are pre-
determined. The commonly employed dose escalation rules are the traditional
escalation rules (TER), which also known as the “3 + 3” rule. The “3 + 3” rule is
to enter three patients at a new dose level and enter another 3 patients when DLT
is observed. The assessment of the six patients will be performed to determine
whether the trial should be stopped at that level or to increase the dose. Basi-
cally, there are two types of the “3 + 3” rules, namely, TER and strict TER (or
STER). TER does not allow dose de-escalation as described in Chapter 4 of this
book, but STER does when two of three patients have DLTs (see Figure 14.2). The
“3 + 3” STER can be generalized to the A + B TER (see Chapter 4) and STER esca-
lation rules. To introduce the A + B escalation rule, let A,B,C,D, and E be integers.
The notation A/B indicates that there are A toxicity incidences out of B subjects
and >A/B means that there are more than A toxicity incidences out of B subjects.
We assume that there are K predefined doses with increasing levels and let pi be
the probability of observing a DLT at dose level i for 1 ≤ i ≤ K . In what follows,
the general A + B designs without and with dose de-escalation will be described.
The closed forms of sample size calculation by Lin and Shih (2001) are briefly
reviewed. Sample size estimations by computer simulations are also presented.
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2.  0 of 3 or 1 of 6 patients has DLT at the
     lower dose level; and
3.  Two or more patients have DLT at the
     higher dose level.

Enroll 3 more
patients at the

same dose level

Figure 14.2. 3 + 3 Strict traditional escalation rule

14.4.1 The A + B Escalation Without Dose De-Escalation

The general A + B designs without dose de-escalation can be described as follows.
Suppose that there are A patients at dose level i. If less than C/A patients have
DLTs, then the dose is escalated to the next dose level i + 1. If more than D/A
(where D ≥ C) patients have DLTs, then the previous dose i − 1 will be considered
the MTD. If no less than C/A but no more than D/A patients have DLTs, B more
patients are treated at this dose level i . If no more than E (where E ≥ D) of the total
of A + B patients have DLTs, then the dose is escalated. If more than E of the total
of A + B patients have DLT, then the previous dose i − 1 will be considered the
MTD. It can be seen that the traditional “3 + 3” design without dose de-escalation
is a special case of the general A + B design with A = B = 3 and C = D = E= 1.

Under the general A + B design without de-escalation, the probability of con-
cluding that MTD has reached at dose i is given by
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P∗
i = P(MTD = dose i) = P

(
escalation at dose ≤ i and
stop escalation at dose i + 1

)
= (1 − Pi+1

0 − Qi+1
0 )

(
i
�
j=1

(
P j

0 + Q j
0

))
, 1 ≤ i < K (14.20)
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)
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B
m

)
pm
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An overshoot is defined as an attempt to escalate to a dose level at the highest
level planned, while a undershoot is referred to as an attempt to de-escalate to a
dose level at a lower dose than the starting dose level. Thus, the probability of
undershoot is given by

P∗
1 = P(MTD < dose 1) = (

1 − P1
0 − Q1

0

)
(14.21)

and probability of overshoot is given by

P∗
n = P(MTD ≥ dose K ) = �K

j=1

(
P j

0 + Q j
0

)
(14.22)

The expected number of patients at dose level j is given by

N j =
K−1∑
i=0

N ji P∗
i (14.23)

where

N ji =
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AP j
0 + (A + B)Q j

0

P j
0 + Q j

0

if j < i + 1

A
(

1 − P j
0 − P j

1

)
+ (A + B)

(
P j

1 − Q j
0

)
1 − P j

0 − Q j
0

if j = i + 1

0 if j > i + 1

Note that without consideration of undershoots and overshoots, the expected num-
ber of DLTs at dose i can be obtained as Ni pi . As a result, the total expected
number DLTs for the trial is given by

∑K
i=1 Ni pi .

We can use Eq. (14.23) to calculate the expected sample size for given toxicity
rate at each dose level. Alternatively, we can also use trial simulation software such
as ExpDesign Studio by CTriSoft International to simulate the trial and sample
size required (Ctrisoft, 2002). Table 14.9 is an example from ExpDesign Studio.
ExpDesign Studio uses an algorithm-based approach instead of using analytical
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Table 14.9. Simulation results with 3 + 3 TER

Dose level 1 2 3 4 5 6 7 Total
Dose 10 15 23 34 51 76 114
DLT rate 0.01 0.014 0.025 0.056 0.177 0.594 0.963
Expected n 3.1 3.2 3.2 3.4 3.9 2.8 0.2 19.7

Prob. of MTD .001 .002 .007 .033 .234 .658 .065

Note: True MTD = 50, mean simulated MTD + 70, mean number of DLTs = 2.9.
Probability of MTD = Percent recommendations of dose as MTD.

Figure 14.3. Dose-escalation simulations in ExpDesign studio

solution Eq. (14.23), one can do two stage design and Bayesian adaptive and other
advanced design with the software.

14.4.2 The A + B Escalation with Dose De-escalation

Basically, the general A + B design with dose de-escalation is similar to the design
without dose de-escalation. However, it permits more patients to be treated at a
lower dose (i.e., dose de-escalation) when excessive DLT incidences occur at the
current dose level. The dose de-escalation occurs when more than D/A (where
D ≥ C) or more than E/(A + B) patients have DLTs at dose level i . In this case, B
more patients will be treated at dose level i − 1 provided that only A patients have
been previously treated at this prior dose. If more than A patients have already been
treated previously, then dose i − 1 is the MTD. The de-escalation may continue
to the next dose level i − 2 and so on if necessary.
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Similarly, under the general A + B design with dose de-escalation, the proba-
bility of concluding that MTD has been reached at dose i is given by

P∗
i = P(MTD = dose i) = P
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)
=
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Also, the probability of undershoot is given by

P∗
1 = P(MTD < dose 1) =
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k=1
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)}
and the probability of overshooting is

P∗
K = P(MTD ≥ dose K ) = �K

j=1

(
Pj

0 + Q j
0

)
The expected number of patients at dose level j is given by

Nj = N j K P∗
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K−1∑
i=0

K∑
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Njik pik
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Table 14.10. Simulation results with 3+3 STER

Dose level 1 2 3 4 5 6 7 Total
Dose 10 15 23 34 51 76 114
DLT rate 0.01 0.014 0.025 0.056 0.177 0.594 0.963
Expected n 3.1 3.2 3.5 4.6 5.5 3 0.2 23

Probability of MTD 0.004 0.013 0.091 0.394 0.481 0.016 0

Note: True MTD = 50, mean simulated MTD = 41. Mean number of DLTs = 3.3
Prob. of MTD = Percent recommendations of dose as MTD.

and

P j
1 =

D∑
i=C

(
A
k

)
pk

j (1 − pj )
A−k

Consequently, the total number of expected DLTs is given by
∑K

i=1 Ni pi ,
Table 14.10 is another example as in Table 14.9, but the simulation results are

from STER rather than TER. In this example, we can see that the MTD is underes-
timated and the average sample size is 23 with STER, and three patients more than
that with TER. The excepted DLTs also increase with STER in this case. Note that
the actual sample size varies from trial to trial. However, simulations will help in
choosing the best escalation algorithm or optimal design based on the operating
characteristics, such as accuracy and precision of the predicted MTD, expected
DLTs and sample size, overshoots, undershoots, and the number of patients treated
above MTD.

There are many other dose-escalation designs, see Chapters 4 and 5 of this book
and also Crowley (2001).

14.5 Concluding Remarks

We have discussed the sample size calculations for the first three questions in
dose–response studies as stated in the beginning of the chapter, i.e., (1) Is there
any evidence of the drug effect? (2) What doses exhibit a response different from
the control response? (3) What is the nature of the dose-response? The sample size
formulations for one and two sample problems (Table 14.1) can be used for the
trials that try to answer the first question. Two group design is popular in Phase I
and II trials. Single arm design is often used in Phase I and II oncology studies.

Williams’ test for minimum effective dose is used to answer the second question
in the case of normal response. The test has a strong assumption of monotonic dose
response. If the assumption is not realistic, the test is invalid. William’ test is not
a test for monotonicity. The sample size Eq. (14.7) for Williams’ test is very
conservative.

Nam’s and Cochran-Armitage’s methods are equivalent and can be used to
answer the third questions when the response is binary. Both methods are regression
based methods for testing for a monotonic “trend”. However, they are not rigorous
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tests for monotonicity. Test for true monotonic response is practically difficult
without extra assumptions. One possible way to test for monotonic response in a
study with k + 1 dose levels is to form the following k hypotheses and test them
simultaneously: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H01 : p1 ≤ p0 vs. Ha1 : p1 > p0

H02 : p2 ≤ p1 vs. Ha2 : p2 > p1

......

H0k : pk ≤ pk−1 vs. Hak : pk > pk−1

However, even when all the null hypotheses are simultaneously rejected, we can
only conclude that the monotonicity hold for these prespecified dose levels and we
still do not know the response behaviors for doses between the prespecified dose
levels.

Contrast tests are very general and can be used to answer all three questions.
Two sample tests in Table 14.1 can be reviewed as the special cases of contrast tests
where the contrasts {c0, c1} = {−1, 1}. The linear trend test (Nam’s or Cochran-
Armitage’s) and contrast test were derived from two different approaches, but the
former is a special case of the contrast test. In fact, Nam’s test is a contrast test
where the contrasts ci = di − d̄ . In other words, di in Nam’s test can be dose
scores instead of actual dose. The contrast test has been applied to multiple arm
(include two arms) trials with three different endpoints (normal, binary, survival) in
a very same way in this chapter. The authors have not found sample size formulas
for one-sample and multiple (>2) sample survival problems using contrast tests
elsewhere in literatures. They are newly proposed.

To use a contrast test, the selection of contrasts should be practically meaningful.
If one is interested in a treatment difference among any groups, then any contrasts
can be applied. If one is only interested the comparison between Dose level 1 and
other dose levels, then one should make the contrast for Dose level 1 have a different
sign than that of the contrasts for other dose groups. To test a linear/monotonic
“trend”, linear/monotonic contrasts should be used, i.e., (c0 ≤ c1 ≤ ... ≤ ck) for
the corresponding dose (d0 ≤ d1 ≤ ... ≤ dk).

Since the power of a contrast test is sensitive to the actual dose response shape,
in the case of little knowledge of dose–response nature, multiple contrast tests can
be used (Bretz and Hothorn, 2002). Alternatively, we can use a contrast set where
each contrast has approximately equal weight (ignoring the sign).

Oncology Phase I dose escalation trial is somewhat unique. The expected sample
size is not determined by the error rates (α, β). Instead, it is determined by the
escalation algorithm and dose-response (toxicity) relationship and predetermined
dose levels. For A + B escalation rules, the sample size has closed form as pre-
sented in Section 4. For other designs, sample size can be estimated through
computer simulations. Note that the escalation algorithm and dose intervals not
only affect the sample size, but also other important operating characteristics such
as accuracy and precision in MTD estimation, and the number of DLTS (see also,
Chapter 4 of this book). Therefore, selection of an optimal design for an oncology
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study, just like for other studies, should not be purely based on the (expected)
sample size.
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