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Preface

Model-Driven Architecture, including model-driven approaches in general, holds
the big promise of moving software development towards a higher level of ab-
straction. Given the challenges in the software industry of delivering more com-
plex functionality with less effort, I am convinced that it isn’t a question of
whether model-driven development will succeed, but rather a question of when
it will break through. However, before this can happen, we have many challeng-
ing problems to conquer. There are both theoretical and pragmatic problems
to solve and therefore we need a close collaboration between industry and the
academic world.

The goal of the European Conference on Model-Driven Architecture — Foun-
dations and Applications (ECMDA-FA) is to bring together industry and
academia to tackle the problems in model-driven development. This volume
includes 18 foundation papers and 12 application papers, which is a fine bal-
ance between both worlds. ECMDA-FA 2006 also hosted six workshops on both
theoretical and practical aspects of MDA. Furthermore, the keynote speakers,
David Frankel and Bran Selic, from some of the world’s largest IT companies
proved that industry is very much involved in MDA.

This second ECMDA-FA conference is the result of the work of the authors
who submitted a total of 78 papers, the Program Committee members who
took the effort to review the papers, the people organizing the workshops, and
of course the Steering Committee. All in all, several hundreds of people have
worked hard to make this conference a success. I have the honor of speaking for
all these people in this preface and I would like to thank each of them for their
valuable contribution.

The ECMDA-FA 2006 conference was supported by the European
Commission and the MODELWARE project under the “Information Society
Technologies” Sixth Framework Programme, and by the Object Management
Group (OMG).

July 2006 Jos Warmer
Program Chair

ECMDA-FA 2006
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Hans Grönniger
Renata Guizzardi
Baris Güldali
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A Model-Driven Architectural Framework for 
Integration-Capable Enterprise Application  

Product Lines 

Vinay Kulkarni and Sreedhar Reddy 

Tata Research Development and Design Centre, Pune, India 
{vinay.vkulkarni, sreedhar.reddy}@tcs.com 

Abstract. Enterprise business applications are critical to the smooth operation 
of modern businesses and need to quickly respond to changing business rules, 
processes and technologies. Also, the ever-increasing thrust on collaboration 
calls for these applications to smoothly integrate with each other. MDA enables 
an application to be specified in terms of platform independent models each 
addressing a concern of interest and then transforming them into a platform-
specific implementation. Traditional organization of an enterprise, as a set of 
functionally distinct departments, results in a set of isolated applications 
providing point solutions each constructed for a specific purpose with context-
specific built-in assumptions implicit in their specifications. These assumptions 
lead to conflicts or mismatches during integration calling for application 
integration to be addressed as an explicitly modeled concern. Typically, a 
business application needs to be specialized for the requirements of a specific 
enterprise. Product line architectures that organize systems into well-defined 
core and variable parts have been proposed to address this need. However, 
traditional code based development approaches lack suitable abstractions to 
support product lines. We propose a model driven architectural framework that 
enables a system to be specified in terms of composable units, along the 
required dimensions of variation, wherein the integration requirements are 
modeled explicitly. Component interface is augmented with data models, 
process models, constraints, assertions and pre/post-conditions. A set of 
properties that need to be satisfied for semantically correct integration are 
proposed along with a set of verification techniques. We propose a software 
factory that seamlessly addresses development and integration needs of 
enterprise product lines and describe our experience in building and using it. 

1   Introduction 

Modern businesses rely on enterprise business applications for their smooth operation 
that need to quickly respond to changes in business rules, business processes and 
technology platforms during their lifetime. Model-driven development approach 
addresses this problem by providing a set of modeling notations for specifying 
different layers of a system namely user interface, application functionality and 
database in a platform independent manner [18]. A set of code generators then 



2 V. Kulkarni and S. Reddy 

transforms these models into platform-specific implementations. Models, being at a 
higher level of abstraction, are easier to understand and verify for properties of 
interest. Model based code generation incorporating proven design and architectural 
patterns results in significant gains in productivity and uniformly high quality [17].  

The growing popularity of electronic business, use of Internet technology and the 
upcoming demand of globalization are escalating the demand for collaborative and 
extended enterprise application environments that span across the entire value chain 
providing value added services [8]. Future enterprise systems are unlikely to be 
developed from scratch. Instead, customized product lines will be integrated with off-
the-shelf offerings and harvested legacy systems into a service oriented architecture. 
The ability to quickly customize such assets and integrate them into a vendor-specific 
variant of service oriented architecture will be a critical success factor in this 
emerging scenario [9, 10]. Typically, enterprise applications are designed to operate 
in a specific context with the context-specific built-in assumptions getting hard-coded 
in the implementation [19]. These assumptions lead to conflicts or mismatches during 
integration with other applications. Identification and mitigation of these conflicts are 
the principal challenges of application integration [16, 20]. For safe integration [3], it 
needs to be established whether an existing application fits into the context of the 
desired integrated application or not. In case of a mismatch, one would like to know if 
the existing application could be made to fit with some adaptation. The candidate 
applications, with or without adaptation, need to be integrated with assurance of 
completeness with respect to the desired integrated application. At present, we only 
have support for service adaptation that is limited to data transformation and service 
invocation across heterogeneous platforms with no guarantees for semantic correct-
ness of integration.  

As no two enterprises are exactly alike, a business application needs to be 
specialized for the requirements of a specific enterprise. Product line architectures 
that organize systems into well-defined core and variable parts have been proposed to 
address this need, the central idea being products within a product-line are 
differentiated by features [14, 7]. Producing a specific product variant can be seen as 
a stepwise refinement process wherein a common abstract model is refined to inject 
product-specific factors [5]. Feature commonalities can be captured as reusable 
patterns from which specific variants can be instantiated through suitable parame-
terization. A tool-driven software factory can provide the necessary machinery to 
assemble the instantiated patterns [11]. Multi-dimensional separation of concerns 
approach addresses this need through decomposition of a system along multiple 
dimensions of interest [25]. Aspect oriented programming provides support for this 
approach, but only at programming language level, where the same base language is 
used for specifying the different aspects of the system [15]. However, one would like 
to use purpose-specific languages to specify various aspects wherever possible. The 
richer abstractions provided by such higher-level domain specific languages lead to 
ease of understanding and analysis, and a possibility of code generation. 

We propose a model driven architectural framework that enables a system to be 
specified in terms of composable units, along the required dimensions of variation of 
a product line, wherein integration requirements are explicitly modeled. The approach 
is based on an extended component abstraction wherein component interface is  
augmented with data models, process models, constraints, assertions and  
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Fig. 1. Architecture for application integration 

pre/post-conditions. A set of properties that need to be satisfied for semantically 
correct integration are proposed along with a set of verification techniques. We 
propose a software factory that seamlessly addresses development and integration 
needs of enterprise product lines and describe our experience in building and using it. 
Section 2 describes the proposed architectural framework to support semantically 
correct application integration. Section 3 describes a model-driven software factory to 
support enterprise application product lines. Section 4 discusses our experience in 
realizing and using the software factory. Section 5 discusses issues that need to be 
addressed for acceptance of the proposed approach. Section 6 provides a summary 
and outlines future work. 

2   Architectural Framework for Application Integration 

We propose a layered architecture wherein enterprise systems are modeled at three 
levels of abstraction, namely, Enterprise, Integration and Application as shown in 
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figure 1. Enterprise layer specifies the desired integrated system in terms of its data 
model, process model and services supporting the data and process models. Enterprise 
layer is viewed in terms of a set of required components each providing a set of 
services that manage locally owned data. These services are responsible for 
supporting the process flows. Application layer specifies the existing applications 
using component abstraction. Typically, a component represents an existing appli-
cation and specifies its interface in terms of a set of service signatures. Integration 
layer uses an extended component abstraction to specify what a component provides 
to the external world and what it needs from the external world. The abstraction 
specifies the data a component provides to and requires from the external world, the 
services it provides to and requires from, and its view of the business processes it 
participates in. The data part is specified in terms of an object model with constraints, 
the service part is specified in terms of pre- and post-conditions, and the process part 
is specified in terms of a process model annotated with assertions on data state. 
Essentially, the integration layer captures all the relevant information necessary for 
semantically correct integration of an existing application in a desired context. The 
integration layer can be viewed as an abstract specification of the application layer 
with all the built-in assumptions about its environment made explicit. The application 
layer can be viewed as a concrete realization of the provided parts of the specification 
given in the integration layer. 

In a system development exercise, the enterprise layer specifies the desired 
integrated application; the integration layer specifies the integration requirements of 
the existing as well as new components if any, and a set of mappings that specify how 
each of these components is related to the desired integrated application. A mapping 
is specified in terms of three relationships, namely, data view, services view and 
process view. The architectural framework postulates that a set of participating 
components integrate correctly to produce the desired integrated application when the 
following properties hold: 

− The data models provided by the integration layer are sufficient to meet the 
data model requirements of the enterprise layer 

− The service models provided by the integration layer are sufficient to meet the 
service model requirements of the enterprise layer, i.e., the services provided 
by the integration layer are sufficient to realize the process requirements of the 
enterprise layer 

− The process flows of the enterprise layer are safe [3] with respect to the 
process flow expectations of the participating components as specified in the 
integration layer 

− The data state assertions of the process flows of the integration layer are 
satisfied by the process model of the enterprise layer 

− The data that each participating component requires from its environment is 
provided by the data model of the desired integrated system as specified in the 
enterprise layer 

− The data model constraints of participating components as specified in the 
integration layer are satisfied by the data model of the integrated system 
specified in the enterprise layer  
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− The services that each participating component requires from its environment 
are provided by the service model of the desired integrated application as 
specified in the enterprise layer 

− The implementations of components in the application layer satisfy their 
specifications in the integration layer, and the integration layer is a complete 
specification of the integration requirements of the participating component 
implementations in the application layer. 

 

The proposed architectural framework can be supported using the modeling 
notations prevalent in the industry. UML class diagrams can be used to specify data 
and service models [23]. Data constraints and service pre/post-conditions can be 
specified using OCL [24]. Process models can be specified using a UML profile for 
business process modeling [1]. The mappings between integration and enterprise 
layers can be specified using a model transformation language such as QVT [22]. The 
mappings are bi-directional and can be used to transform constraints and pre/post-
conditions from one layer to the other. However, modeling notations such as 
BPEL4WS [12], UML profile [1] etc. used by industry practice to specify business 
processes do not have rich enough semantic underpinnings to verify integration 
properties. On the other hand, formal techniques like model checking and theorem 
proving require elaborate specifications and do not yet scale up to the sizes typical of 
industrial applications. There is a need for a pragmatic approach that bridges the gap 
between these high level modeling notations and formalisms that support various 
analyses.  

The integration properties fall under two broad categories, namely, correctness and 
completeness. Correctness properties address whether existing applications can be 
safely integrated in the desired integration context. Completeness properties address 
whether all the requirements of the desired integrated system can be met by the 
applications being integrated. In the proposed architecture, correctness and complete-
ness properties need to be verified for three models i.e. data, service and process 
models. Correctness of a participating application with respect to its data model can 
be modeled as a view definition problem. The participating application can be 
integrated correctly if its required data model can be expressed as a view over the data 
model of the integrated system specified in the enterprise layer. Completeness of the 
data model of the desired integrated system can be modeled as a view integration 
problem [6]. The data model of the desired application is complete if it can be 
realized as a composition of the provided data models of the participating 
applications. The service model has two parts namely, structural and behavioral. The 
behavioral part is addressed by correctness and completes of process models. 
Correctness of the structural part is essentially a type-checking problem wherein  
the signature in the integration layer is either an exact match of or is coercible to  
the signature in the enterprise layer with respect to the view definitions. Verifying the 
correctness of a participating application with respect to its process model has two 
parts to it. The process flows of the desired integrated system should be safe with 
respect to the expected process flows of individual participating applications, and the 
process model of the desired integrated system should satisfy the constraints, 
assertions and pre/post-conditions of the participating applications. The former can be 
verified by language inclusion techniques on process automata [3] and the latter can 



6 V. Kulkarni and S. Reddy 

be addressed either by model checking or theorem proving or automated testing. The 
process model of the desired integrated system is complete with respect to the process 
models of the participating applications if all the process flows of the desired 
integrated system can be safely realized through the process flows supported by the 
participating applications. This can also be verified using language inclusion tech-
niques on process automata [4]. We take recourse to automated testing through test-
data and test-case generation where the verification techniques fail to scale. The 
proposed architectural framework caters only to the functional aspects of the 
application. Non-functional characteristics like architecture, technology platforms, 
design strategies etc are not addressed by this framework. We use a software factory 
approach discussed below to address these concerns. 

3   Model-Driven Software Factory for Enterprise Product Lines 

Typically, enterprise business applications tend to vary along five dimensions namely, 
functionality (F), business process (P), architecture (A), design strategies (D) and 
technology platform (T). Also, the integration requirements of an application change 
with the context in which it needs to operate. These requirements are modeled, as 
described earlier, along the Integration dimension of concern (I). A model based code 
generator encodes specific choices along A, D and T dimensions and generates 
suitable data and service adapters for integration. We propose a software factory for 
an enterprise business application product line wherein a set of product line variant 
specific model based code generators are generated from their specifications. Figure 2 
shows the proposed model driven software factory for enterprise business application 
product lines.  

A product line is organized as a repository of composable building blocks 
structured along the different dimensions of variation. A specific product line variant 
is derived as a composition of such building blocks of interest along these dimen-
sions. The derivation process begins by matching the requirements of the desired 
variant against the repository to select closest matching building blocks. A gap 
analysis then identifies the necessary modifications and adaptations to the candidate 
building blocks, if any. It may also lead to development of new building blocks. A 
purpose-specific code generator is then generated from these modified building 
blocks along A, D, T and I dimensions. The component specifications verified for 
integration properties, as discussed in the previous section, essentially address func-
tionality and process aspects of the desired application. The purpose-specific code 
generator translates these specifications into a platform-specific implementation 
incorporating the selected design and architectural patterns, and generates suitable 
data and service adapters if any required for integration. 

In our approach, an application is specified as a hierarchical composition of 
building blocks of interest along the dimensions of variation. A building block 
encapsulates reusable functionality along a dimension of variation. A building block 
can be seen as a specification of an aspect expressed in terms of a language specified 
by an associated meta model. Figure 3 shows the meta model of a building block 
itself. On instantiation, a building block brings along a set of model elements that 
conforms to the meta model and associated constraints. Building blocks are of two  
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kinds: leaf building block and composite building block. The instantiation specifi-
cation of a leaf building block specifies how to stamp out aspect-specific model 
elements. The transformation specification specifies how the model is transformed 
into code. The instantiation specification of a composite building block specifies how 
model elements constructed in member building blocks are merged (woven) together. 
We have found merge by name scheme of model merging sufficient for our purposes. 
Weaving specification of a composite building block specifies how the code 
generated by its member building blocks is woven together. We have found a code 
weaving specification language along the lines of Hyper/J [13] sufficient for our 
purposes. We have used a model-to-text transformation language called SpecL for 
model transformations [22]. 

The process of aspect composition is realized through a post-order traversal of the 
building block hierarchy in three sequential steps namely Instantiation, Transfo-
rmation and Weaving. The instantiation step stamps out models and merges them. The 
transformation step transforms models into code and generates weaving specifications 
for composing the generated code. The weaving step composes the generated code 
fragments by processing the weaving specifications. 

4   Experience 

During the past 10 years we have developed several business-critical enterprise 
solutions for a variety of business verticals like banking, financial services and 
insurance [17]. We are in the process of organizing these purpose-specific enterprise 
solutions in the form of vertical-specific product lines. The proposed software factory 
provides infrastructure to address technology, process and integration concerns of 
product lines. We are in the process of defining the required domain specific 
languages to specify building blocks along the required dimensions for each product 
line.  

The process of deriving a specific product variant begins by identifying the 
business process flows of interest. This leads to identification of functions required to 
implement these flows.  A keyword based search identifies functionality, process and 
Integration building blocks available in the repository. A manual comparison of the 
desired business process flows and business functions with existing process flows and 
their implementations identifies the functionality gap. Non-functional requirements 
like performance, throughput, architecture and technology platform are the basis for 
identifying D, A and T building blocks. A simple keyword based search mechanism is 
provided for selecting suitable D, A and T building blocks. These building blocks are 
composed to generate an implementation of model based code generators that impart 
the desired non-functional characteristics to the business functionality under 
consideration. If found unsuitable, one goes back to select a different set of D, A and 
T building blocks from the repository or modifies the existing ones suitably. 

We have realized the factory vision shown in figure 1 only in parts by being able to 
address the D, A and T dimensions of variation by aspect-oriented restructuring of our 
MDD toolset facilitating easy customization of the code generators. We decomposed 
the code generators into well-defined self-contained building blocks such as model to 
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java, object-relational map, auditing, concurrency management, error handling, 
message handling strategies like synchronous, asynchronous, queue-based etc.  

Our MDD toolset [20] translates a model (Mu) that is an instance of a unified meta 
model (MMu) to various software artifacts like Java code, JDBC code, JSP code and a 
variety of configuration specifications in XML as shown in figure 4. Limiting aspect 
weaving only to code level artifacts would necessitate specialized weavers for Java, 
JDBC, JSP, XML etc. each having separate join point models. Also, this approach 
would necessitate some commonality over these join point models so as to have an 
integrated Java application. With increased number of software artefacts to be 
produced the approach becomes increasingly complex as essentially it amounts to 
building aspect infrastructure for each such artifact. We address this problem by 
specifying aspect weaving at the unified meta model level and performing it at the 
model level whenever possible. Unified meta model enables specification of 
relationships between the various (sub) modeling languages. A reflexive meta 
modeling framework provides the necessary infrastructure to define and integrate the 
various modeling languages of interest and a meta model aware model transformation 
framework provides the necessary technology to address model weaving 
requirements. Performing aspect weaving at the model level also, whenever possible, 
results in simplification of model based code generators which are essentially model-
to-text transformers. 

We found that aspect-oriented restructuring of our MDD toolset has facilitated 
easy customization of the code generators and has resulted in increased reuse across 
their variants. Our MDD toolset has been used to develop several large enterprise 
class business applications for the past several years. These applications can be 
viewed as a set of vertical-specific product lines having toolset requirements that are 
similar but not exactly the same. Earlier, such a customization request meant opening 
up the implementation of the impacted tools that required expertise of all the tools to 
ensure the relevant changes are implemented in a consistent manner. Aspect-oriented 
restructuring has enabled us to organize the development team along two independent 
streams namely technology platform experts and design experts. A single design team 
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can now service all the technology platform teams. Separation of design strategies has 
enabled leaner technology platform teams. Moreover, it has enabled our toolset itself 
to be organized as a product family wherein a tool variant can be composed from 
design strategy and technology platform aspects of choice. Containment of change 
impact due to localization and increased reuse due to composability have led to quick 
turn around times for delivering a tool variant. Use of a higher-level model-aware 
transformation language has made maintenance and evolution of our product line 
easy. 

5   Issues 

Several issues need to be addressed for widespread industrial acceptance of the 
proposed solution.   

 

Regarding integration – For semantically correct integration, it is imperative that the 
terminology being used has the same standard meaning across all the applications 
being integrated. This calls for industry-wide standardization efforts to arrive at 
domain-specific ontologies [2]. Externalization of built-in assumptions encoded in 
implementations is central to the proposed architecture. This calls for tool support for 
sophisticated static and dynamic analysis of programs. System integration projects 
may involve use of 3rd party components from different vendors. These component 
interface definitions need to be extended along the lines mentioned earlier requiring 
an industry-wide standardization effort. It should be possible to take recourse to 
automated testing through test-data and test-case generation where the verification 
techniques fail to scale up. There is a need for tools capable of generating test-data 
and test-cases from the integration specifications. Results of formal analyses need to 
be translated back into the high level notations. This calls for a bi-directional bridge 
between high level notations used by industry practice and the formalisms supporting 
the desired analyses.  

 

Regarding aspects – It is not clear which facets of a system deserve to be treated as 
aspects. There is a need to investigate how these aspects can be modeled and what the 
right kind of abstractions for modeling them are to satisfy the various ‘ities’ like 
maintainability, reusability etc. Aspects may overlap thus introducing a dependency 
on the order of their weaving. In such cases, how does one ensure that properties of 
all aspects hold after their weaving?  An aspect specification may exist partly in 
model form and partly in code form. What’s the right approach to integrate such 
aspects into the aspect modeling framework? How to trace an aspect to the final 
implementation? It is not clear how to compute the impact of a change in an aspect on 
the final implementation of the system. This information would be critical for ‘what if 
analysis’, estimating testing efforts, managing releases etc. 

 

Regarding MDA tool support –  Supporting separation of concerns for product lines 
using MDA raises several tooling issues. The modeling tool should be extensible to 
support new modeling languages so as to be able to define new aspect models and 
relate them to the existing component models through model transformation. The 
model transformation tool should have adequate support for pattern matching and 
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composition, and should provide support for incremental reconciliation of models. 
The performance of the tool should scale up to cater to the demands of enterprise 
class applications. A bug detected at code level should be traceable back to the aspect 
specification. There should be support, preferably tool-aided, for aspect-based testing. 
Since aspects are independently specified, it should be possible to specify test cases 
for an aspect independently and compose the test cases to arrive at the system level 
test cases. 

6   Summary 

In this paper, we presented a model driven architectural framework to support 
integration-capable enterprise application product lines. We have discussed a set of 
properties that need to be verified to ensure semantically correct integration. A 
pragmatic approach has been proposed that combines the convenience of high level 
notations used by the industry practice and the rigour of formal verification 
techniques. We have implemented a proof-of-concept prototype for process integ-
ration validating the feasibility of the proposed approach. The proposed architectural 
framework can serve as foundation for a pragmatic application integration method. 
We have a partial realization of a model driven software factory that addresses Design 
strategies, Architecture and Technology platform concerns. We have also discussed 
several issues that still need to be addressed for the proposed approach to gain 
industrial acceptance. 

References 

[1] Jim Amsden, Tracy Gardner, Catherine Griffin and Sridhar Iyengar, “Draft UML 1.4 
profile for automated Business process with a mapping to BPEL1.0”, IBM 

[2] A. Ankolekar et al. “DAML-S: Web Service Description for the Semantic Web”, 
Proceedings of the International Semantic Web Conference (ISWC), 2002. 

[3] Souvik Barat and Vinay Kulkarni, “Enterprise application Integration using Process 
Mediation”, TRDDC Technical report, 2005.  

[4] Souvik Barat, Vinay Kulkarni and D Janakiram, “A safety criterion for reusing a business 
process in the desired integrated process”, submitted to SCC’06 

[5] Don Batory, Jacob Neal Sarvela and Axel Rauschmayer, Scaling step-wise refinement, 
IEEE TSE, 2004 

[6] M A Casanova and V M P Vidal, Towards a sound view integration methodology, 
Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on Principles of database 
systems, pp 36-47, 1983 

[7] K Czarnecki and U Eisenecker, Generative programming methods, tools and applications, 
Addison-Wesley, 2000. 

[8] Gartner Research, ID Number: G00127586, ‘Hype Cycle for IT Services, 2005’ 
[9] Gartner Research, ID Number: G00131143, ‘Predicts 2006: The Strategic Impact of SOA 

Broadens’ 
[10] Gartner Research, ID Number: G00131254, ‘Major Forces Changing the Software 

Industry, 2005 Update’ 
[11] Jack Greenfield and Keith Short, Software factories: Assembling applications with 

patterns, models, frameworks and tools, Wiley, 2004. 



12 V. Kulkarni and S. Reddy 

[12] IBM, “Specification: Business Process Execution Language for Web Services Version 
1.1”, July 2002, “http://www-128.ibm.com/developerworks/library/specification/ 
ws-bpel/”  

[13] IBM research. Hyper/J: Multi-dimensional separation of concerns for Java. 
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm 

[14] K Kang, S Kohen, J Hess, W Novak and A Peterson, Feature-orientation domain analysis 
feasibility study, Technical Report, CMU/SEI-90TR-21, November 1990. 

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira 
Lopes, Jean-Marc Longtier and John Irwin. Aspect oriented programming. ECOOP’97 
LNCS 1241, pp 220-242. Springer-Verlag. June 1997. 

[16] P. Johannesson, B. Wangler, and P Jayaweera, “Application and Process Integration – 
Concepts, Issues, and Research Directions”,  Information Systems Engineering 
Symposium 2000, eds., Springer Verlag, 2000. 

[17] Vinay Kulkarni, Sreedhar Reddy: Model-Driven Development of Enterprise 
Applications. UML Satellite Activities 2004: 118-128 

[18] Vinay Kulkarni, R. Venkatesh and Sreedhar Reddy. Generating enterprise applications 
from models. OOIS’02, LNCS 2426, pp 270-279. 2002. 

[19] Vinay Kulkarni and Sreedhar Reddy, “Integrating Aspects with Model Driven Software 
Development”. Software Engineering Research and Practice 2003, pp 186-197.  

[20] D Linthicum, Enterprise Application Integration, Addison-Wesley, 2000. 
[21] MasterCraft – Component-based Development Environment. Technical Documents. Tata 

Research Development and Design Centre. http://www.tata-mastercraft.com  
[22] MOF Query / View / Transformations http://www.omg.org/cgi-bin/doc?ad/05-09-01  
[23] OMG, "UML Infrastructure 2.0 Draft Adopted Specification", 2003, www.omg.org/uml/. 
[24] OMG, “UML 2.0 OCL specifications”, www.omg.org/docs/ptc/03-10-14.pdf 
[25] Peri Tarr, Harold Ossher, William Harrison and Stanley M. Suttom Jr. N Degrees of 

separation: Multi-dimensional separation of concerns. Proceedings of the International 
Conference on Software Engineering (ICSE'99) pp 107-119. 

 



A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 13 – 24, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Systems Integration Methodology Based on MDA 

Antonio Estévez1, José D. García1, Javier Padrón1, Carlos López1, 
Marko Txopitea2, Beatriz Alustiza3, and José L. Roda4 

1 Open Canarias, SL, Elías Ramos González, 4, ofc. 304, S/C de Tenerife, 38001 España 
info@opencanarias.com 

2 Open Norte, S.L., Madariaga Etorbidea, 1 – 4. Ezkerra, 48014 Bilbao, España 
opennorte@opennorte.com 

3 IZFE, S.A., Pinares Plaza, 1 – 4. solairua,  20001 Donostia – San Sebastián, España 
idazkari@gipuzkoa.net 

4 ULL, Escuela Técnica Superior de Ingeniería Informática 
Universidad de La Laguna, La Laguna, España 

jlroda@ull.es 

Abstract. Business corporations use frameworks and heterogeneous tools in the 
running of their systems. Most of these systems require the interaction between 
heterogeneous architectures, technologies and platforms. This integration is 
usually a complex task, which Model-Driven Architecture (MDA) approach to 
Model-Driven Software Development (MDSD) has promised to facilitate. In 
this paper we present a MDA-based methodology to platforms integration and 
show how it is successfully applied to a real business environment. In 
particular, the integration of three technological platforms (a framework based 
on Struts and J2EE, the transactional system CICS and the document manager 
FileNet) into a single development environment was carried out. Using this 
development environment, application code is 100% generated from UML-
based models.  

1   Introduction 

Business corporations use frameworks and heterogeneous tools in the running of their 
systems. Most of these systems require the interaction between heterogeneous 
architectures, technologies and information systems. At the moment, there are few 
consolidated solutions to solve these problems at a reasonable cost, which are also 
problem specific, proprietary and technology dependent. 

Model-Driven Architecture (MDA) [14] approach to Model-Driven Software 
Development (MDSD) [15] has promised benefits to software development. How-
ever, MDA-based development is not an easy task, and tool support and metho-
dologies are required. The goal of a MDA-based methodology must be to facilitate 
the implementation of applications using models as first class artifacts, i.e. the 
application code must be generated from these models. Among the benefits from 
using a higher level of abstraction when programming we can enumerate platforms 
integration and code correctness, maintenance and reusability. In this paper we 
propose an integration methodology to give support to those MDA functionalities, 
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and show its application to a real corporative environment. In particular, in this 
projects we aim at rising the productivity of J2EE [10] applications development, 
which can interoperate with transactional systems such as CICS [3] and with content 
managers such as FileNet [7].  

In this paper we first describe the technological platforms to be integrated  
(Section 2). Section 3 describes the integration methodology and Section 4 shows its 
application to a specific problem. Sections 5 and 6 show some results and conclusions 
respectively. We close this article with the proposal for future work (Section 7). 

2   Platforms Used in the Project 

The Foral Society for Information Technology, belonging to the Foral Department of 
Gipuzkoa (IZFE) is responsible for maintaining an IT network with a wide range of 
machines: from an IBM mainframe to more than 130 Windows, Unix and GNU/Linuz 
servers. The network is used by staff member of the Foral Department itself---Tax 
Office, Transport Department, Culture and Youth, Social Services Department, 
Emergency Services, Innovation---as well as of all Town Councils of Guipuzcua.  
IZFE is responsible for more than 90 development projects each year and at the 
moment has more than 300 heterogeneous applications running in a state of 
permanent evolution. The number of persons working directly on these development 
projects has reached 165, without counting those collaborating within the closed 
environment of suppliers and providers. In this project we aim at integrating three of 
the heterogeneous platforms used within the IT network:  

 
− The IZFE framework based on Struts [19] for J2EE web applications develop-

ment. It incorporates a WebSphere Application Server for z/OS, version 5.1 [23] 
and a DB2 database server for z/OS, version 7.1.0 [6]. 

− The transactional manager CICS Transaction Server for z/OS, version 2.3 [4]. This 
platform is used to maintain inherited corporative processes and logic with a high 
strategic value. 

− The file manager FileNet, version 3.0. This platform is used to maintain a great 
amount of high critical content. 
 
This heterogeneous and complex set of platforms conforms to the ideal scenario to 

apply a MDA approach to carry out this project. 

3   Integration Methodology 

Given the variety and complexity of the platforms to be integrated, we decided to use 
a bottom-up methodology, beginning with the most specific aspects leading to 
generalizations and aspects in common. We thus planned a series of repeated tasks to 
be applied individually to each platform (Tasks1–4) and a final task (Task5) to 
proceed to their integration (see Figure 1). 
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Fig. 1. Arrangement of the tasks with the methodology used 

Task 1. Initial Study of the Technology and Architecture. At this stage all the 
available information is obtained and studied. The information is checked, validated 
and developed; we try to make the study as near as possible to real life circumstances. 
 
Task 2. Development of Use Cases. At this stage, different previously developed 
platform-specific applications are obtained and analysed to define the functions 
required. As a result we establish a series of concrete scenarios to be developed. We 
then implemented a series of applications covering the most common work tasks and 
intrinsic necessities of the IZFE over that specific platform. The programes are 
analysed and verified at a trial stage with those technologies that already exist. We 
goal is to identify structures and components susceptible to be considered separately, 
along with abstractions and general concepts. In this process new patterns and 
templates were developed. 
 
Task 3. Creation of a Metamodel. We have used UML Profiles [21] to define 
metamodels. UML profiles allow the customization and extension of the UML syntax 
and semantics to define specialized modelling languages for particular domains [8]. 
The basic principle for defining each profile is to obtain generalisations between 
different programming languages, platforms and technologies, as well as to incur-
porate other relevant aspects related to the integration of inherited systems and 
applications. 
 
Task 4. Cartridge Construction. Having defined the functions and the metamodel, 
we can begin to construct the cartridge, whose function is to direct the working, 
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compilation and packaging of the model exported in XMI [22]. In essence, a cartridge 
links the implementation of the UML profiles in a platform context with the 
programming language in which the code is generated, which in our case will be Java. 
This cartridge will contain a description where the profiles of each of the stereotypes 
are defined, and the corresponding template assigned.  

We have used BOA [5] to build cartridges and platform-specific generation 
components. This tool allows the automatic generation of 100% of the application 
code through the use of three types of diagrams: class diagram (static model), 
sequence diagram (dynamic and interaction model) and state diagram (for integration 
and definition of the inner logic of class methods). 
 
Task 5. Metamodels Unification. The creation of cartridges and metamodels for 
each specific domain should provide enough information to define a shared  
and unified metamodel. Likewise, an important work on cartridges integration is 
required. 

4   Applying the Methodology 

In order to carry out the integration we first perform Task1-4 to the different 
platforms. We started with the IZFE framework, as it was already identified as a key 
factor for the success of the project, as well as for its high level of complexity. The 
second platform considered was the transactional manager CICS, followed by the file 
manager FileNet. We finally perform Task5 to integrate all platforms in a common 
metamodel. 

4.1   IZFE Framework 

Task 1. Study of the Architecture. The IZFE framework is used for the creation of 
applications in a corporative business environment. It is based on the Struts 
framework version 1.1. The IZFE framework is divided into a series of subsystems, 
with the listener, control and presentation subsystems being of the first importance, as 
well as the business and the special security subsystems relevant in the corporative 
environment. Once guides and reference information had been studied, we replicate 
the IZFE framework into our own simulation framework to perform our studies. 
 
Task 2. The Development of Use Cases. Two applications were selected for the 
administration of the framework. These applications were tested and run in our 
simulation framework. Having these applications as a reference, the requirements 
could be defined for a new application and reengineering techniques were used in its 
implementation. During this phase, unitary components were identified, which could 
be used as parametric components in the metamodel. 
 
Task 3. Creating the Metamodel. The objective of the metamodel is to use a higher 
level of abstraction to describe the IZFE framework which retains the requirements of 
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Fig. 2. IZFE Framework Architecture 

the IZFE framework. We described the framewok following a MVC pattern [16], in 
which the domains are clearly defined and focussed on the functions of self contained 
web applications. With this simplification we gain in level of reuse and correctness in  
the applications development process, as well as a better distribution of the work to be 
done by separating between different domains or aspects of the project, i.e. 
initialisation, view, business logic, and persistence domains.  
 
Task 4. Cartridge Construction. Our goal is to get 100% automatic code generation, 
which results in a considerable rise in the problem complexity, above all in the 
definition of the business logic. In order to reach this objective, state diagrams  
were used, incorporating into these states action semantics [1] which are described in 
the specifications 1.5 of the UML. To reach this approximation, Action Specification 
Language was employed (ASL) [2], and with certain modifications a grammar  
and a parser were developed, using a compiler from the SableCC [17] compiler.  
In this way a cartridge which generated 100% of the application code was built.  
Now the IZFE, instead of programming these applications directly, uses the 
metamodel defined in terms of a UML profile in order to represent their needs 
graphically. The system is capable of automatically generating applications from 
these diagrams. 
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Fig. 3. Sample piece of the IZFE framework metamodel to model web applications 

4.2   CICS Environment 

Task 1. Architecture Study. The objective to be reached in the running of complex 
application components hosted in CICS through J2EE components. An exhaustive 
study of this area was needed as no similar development programs with these 
requirements have been developed before. Two key problems were identified: (1) the 
communication with the EIS (Enterprise Information system) and (2) the formatting 
of types between domains, i.e., J2EE and Cobol-based CISC applications. 

 

Fig. 4. EIS - JCA Diagram 
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Task 2. Development of Use Cases. JCA [11] was used to solve the communication 
problem (see Figure 4). Numerous references, documents and examples of use of JCA 
libraries were consulted. A CICS ECI Resource Adapter was implemented and set up 
on a CTG (IBM CICS Transaction Gateway). The second problem identified in Task 
1 was solved using the JRIO [12] library. Although this second problem is equally 
critical few examples and documentation were available. Finally the minimum 
functions required were obtained through unitary tests in order to validate the 
solution. 
 
Task 3. Creating the Metamodel.  The metamodel was developed by identifying the 
general functional components (i.e. application components and resource adapter) and 
parameterizing the information which is needed to customize them for each 
application. Use cases developed in the previous task (Task2) were used as reference.  
 
Task 4. Cartridge Construction. Finally, the cartridge was built. This cartridge 
contains a descriptor where the profiles are defined with each of the stereotypes 
assigned to the corresponding templates. Beforehand, the generated systems were 
checked. In this way, and using a generation motor, the IZFE can describe the model 
graphically through simple UML diagrams, and generate 100% of the code needed for 
the connection to CISC programs. 

4.3   FileNet Framework 

Task 1. Architecture Study. FileNet is a document manager and workflow tool with 
its own framework based on Struts. It has an API for J2EE which allows access to 
most of its functional components. IZFE has developed and maintains a simplified 
API which makes easier the running of the contents of the organisation’s internal 
uses. 

 
Task 2. Development of Use Cases. Two struts from two different applications were 
selected which made use of the API of IZFE. Based on the examples provided and 
using inverse reengineering, the common functions were extracted in real scenarios. 
Finally a series of unitary tests were made in the IZFE’s environment. 
 
Task 3. Creating the Metamodel. The metamodel was developed by identifying 
functional components that needed to be generalised, and then parameterizing the 
minimum information needed to customize them for every specific application. All 
this was carried out using past existing cases as a point of reference. 
 
Task 4. Cartridge Creation. For the construction of the cartridge each one of the 
stereotypes were mapped out to the units of generation. A template was defined for 
each unit of generation, which allows for a generator motor for the creation of codes. 
The use of a cartridge allows, through the definition of UML diagrams, for the 100% 
generation of an access code of the resource contents defined in the corresponding 
document manager. 
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4.4   Metamodels Unification 

The final task defined in Section 3 (Task5) corresponds to the integration of platforms 
using a single metamodel. We decided to conceive this metamodel as an extension of  
 
 

 

Fig. 5. Sequence diagram sample about CICS integration with IZFE framework in the view 
domain. In this interaction a web form triggers the execution of a CICS program. 

 

 

Fig. 6. Sequence diagram sample showing FileNet integration in IZFE framework in the 
business domain 
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the IZFE framework metamodel, as this one is the most complex and extent of them, 
and the rest of platform domains are complementary to this one.  

We firstly carried out the integration of CICS with IZFE framework. In order to do 
so, CICS metamodel elements were incorporated into the IZFE framework meta-
model, as well as new kinds of relations to allow the interaction with them. The 
resulting extended metamodel allows now the modelling of interaction between IZFE 
framework applications and CICS programs both in the presentation and business 
logic domain. In the first case, web forms are allowed to interact with CICS programs 
to retrieve information. In the second case, more complicated interactions between 
IZFE framework components and CICS business logic processes are allowed to be 
modelled using state diagrams. 

The integration with FileNet was approached in a similar way. FileNet metamodel 
and cartridge were incorporated into the IZFE framework metamodel to be used along 
with it. This implies an enlargement of the target metamodel not only in the 
persistence domain (resource persistence) but also in the presentation domain. The 
integration was thought as a generic solution to maintain and manage resources, 
looking for a simply way of creating, editing and deleting resources from a content 
manager, in this case FileNet. A two-step strategy was followed. Firstly, we included 
in the IZFE framework metamodel components specific to FileNet characteristics. 
Secondly, we generalized the possible interactions that should be done against FileNet 
and we raised the level of abstraction in order to describe them with a single generic 
component.  A new stereotype was defined, which simplified even more the 
modelling and integration of FileNet interactions. This strategy was successful due to 
the low variability of the requirements to access FileNet resources. 

5   Results Obtained 

The use of the proposed methodology has allowed us to build a development 
environment (a set of cartridges and a unified metamodel) with which a developer is 
able to built a complete application integrating IZFE framework, CICS and FileNet by 
simply creating a UML-based model. It is no longer necessary to have experts on 
J2EE, IZFE framework, CICS or FileNet to develop web-based applications that 
integrate all them; it is enough with having a basic knowledge of these platforms and 
UML profiles modelling. 

Using a correct model as input, the engine on which this project is based is capable 
of generating all application code, entirely compatible with the corporative IZFE 
framework, able to communicate at the business layer with applications stored in the 
CICS systems, and in the persistence layer, with resources defined in the document 
FileNet database. All these complex interactions between heterogeneous platforms 
can now be programmed just by modelling through UML diagrams, without manually 
writing a single line of code or being an expert on those platforms (see Figure 7).  

It is worth noting that working on a higher level of abstraction gives the 
opportunity to incorporate new functional components easily. For example, to allow 
the use of other databases within the IZFE framework rather than DB2 (see Section 2) 
we proposed the use of Hibernate [9] as a transparent and efficient solution for the 
 



22 A. Estévez et al. 

 

Fig. 7. Example of a model of an application in the presentation domain 

persistence layer. This component was added as an element to the metamodel and the 
correspondent cartridge was created. Another example of the benefits from using a 
higher level of abstraction is the migration to other content managers: the metamodel 
had been sufficiently abstracted from FileNet characteristics as to be implemented 
using other content managers, by solely modifying the cartridge. 

6   Conclusions 

The goal of a MDA-based methodology must be to facilitate the implementation of 
applications using models as first class artefacts, i.e. the application code must be 
generated from these models. Among the benefits from using a higher level of 
abstraction when programming we can enumerate platforms integration and code 
correctness, maintenance and reusability. However, MDA-based development is not 
an easy task, and tool support and methodologies are required. In this paper we have 
shown how the methodology proposed and the tool used (BOA) are valid assets to 
give support to those MDA functionalities. 
    We have successfully defined and applied a methodology based on MDSD and 
MDA for heterogeneous platforms integration. This new methodology defines 
separate metamodels for each platform to finally integrate them in a single unified 
metamodel. With the resulting development environment, developers build their 
applications in terms of models whose elements represent functional components 
from the different platforms. Developers now do not have to introduce a single line of 
code as application code is 100% automatically generated. These methodologies have 
helped us to reduce risks within the development process of web applications in IZFE, 
such as delays and time uncertainty, code errors and maintenance problems.  
    On the other hand, the use of this methodology has represented a shift from the way 
of working of the development teams within IZFE. The new methodology was 
embedded as well as new work practices, along with the planning needed in the 
management of change to the rapid adaptation of the new paradigm. The modellers of 
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the new systems should possess a high degree of knowledge of UML in order to work 
on the theory and creation of these applications.   
    Apart from the intrinsic advantages derived from a MDA-based development 
process, our methodology allows: 

− The normalisation of the systems through UML models. 
− The integration of heterogeneous systems, which hide the complexities of each of 

the technologies in question. 
− The development of one system only based on the Web. 
− A considerable rise in the quality of the systems to be developed, given that the 

generated code has been exhaustively tested. 
− The possibility of a rapid development of prototypes, which could be easily 

converted into systems and final applications. 
− An easier way of implementing the persistence of the models capturing the 

applications logic, independent from the continual technological change and 
evolution. 

7   Future Proposals 

We shall keep on working towards the adaptation and maintenance of the cartridge 
that has been made, according to the evolution of the platforms integrated. New 
cartridges might be generated for other programming languages apart from Java 
(.NET for example), as well as the incorporation of other tools (Spring [18]) into the 
corporative framework, or the interaction with other systems different from those 
integrated in this project. 

There is also the possibility of integrating the technology into portlets [13], a 
challenge for the domain of our application. The portlet provided by Struts is 
recommended in order to avoid any compatibility problems with the IZFE framework 
controller. 

Regarding MDA, it is worth noting the emergence and use of new engines for code 
generation. In this case, a “translational” method has been used, where, apart from the 
templates included in the corresponding cartridge we also managed to put the model 
designed into code. There also exist at the moment other methods known as 
“elaborational”, where changes are made to models based on QVT [20]. This method 
has a great future within MDA architecture. 

So far we have analysed the benefits that IZFE developers gain from the use of the 
new development framework in terms of qualitative indicators; we have now to 
perform a quantitative analysis of the benefits in terms of time, money, number of 
developers, etc. 
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Abstract. To our knowledge, no current software development methodology 
explicitly describes how to transit from the analysis model to the software 
architecture of the application. This paper presents a method to derive the 
software architecture of a system from its analysis model. To do this, we are 
going to use MDA. Both the analysis model and the architectural model are 
PIMs described with UML 2. The model type mapping designed consists of 
several rules (expressed using OCL and natural language) that, when applied to 
the analysis artifacts, generate the software architecture of the application. 
Specifically the rules act on elements of the UML 2 metamodel (metamodel 
mapping). We have developed a tool (using Smalltalk) that permits the 
automatic application of these rules to an analysis model defined in RoseTM to 
generate the application architecture expressed in the architectural style C2. 

1   Introduction 

It is well known that the development (and maintenance) of software applications is a 
very complex task. Software development methodologies ([1], [2], [3], [4], [7]) were 
proposed as tools to decrease complexity, by providing methods to elaborate each 
aspect involved in the application development. However, the weakest link in all 
those methodologies is the transition between phases: there are no established 
methods indicating what to do with the software artifacts generated in one step when 
moving to the next one. This deficiency is more evident in the transition from the 
analysis phase to the software architecture development [6]. 

With regard to the development paradigm based on model, in which MDA (Model 
Driven Architecture) is supported, permits to transform the software artifacts of a 
phase development defined in a source model, in other software artifacts that establish 
the target model. To do that transformation it is necessary to define a mapping; that is, 
a “specification of a mechanism for transforming the elements of a model conforming 
to a particular metamodel into elements of another model that conforms to another 
(possibly the same) metamodel” [10]. 

This work presents a proposal that enables the transition from the software artifacts 
generated by the analysis activity to the elements forming the resulting architecture. 
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To do so, we have designed a mapping that, when applied to the analysis model, 
generate the software architecture of the application. Both models (analysis and 
software architecture) are described in UML 2 ([11], [13], [14], [15]). The rules that 
define the mapping function operate over the UML 2 metamodel. To help this 
transition we have built a tool that, when given an analysis model (in Rational 
Rose™), and by the application of the rules of mapping, generates the software 
architecture of the application for the C2 architectural style [8]. 

The paper is organized as follows. Sections 2 and 3 characterize the elements that 
appear in the analysis model (source model) and in the software architecture (target 
model) respectively. Section 4 presents the mapping rules that permit to transform a 
PIM (the analysis model) into another PIM (software architecture). In Section 5 we 
present a tool to automate this mapping. Finally, in Section 6 we present the main 
conclusions of this work and some related future work. 

2   Source Model: The Analysis Model 

The set of artifacts generated in the analysis activity forms the analysis model. The 
analysis activity we are referring to is the use-case analysis as described in [7]. This 
analysis activity implies the analysis of the use-cases, the analysis of the classes and 
packages and the architectural analysis. We do not take into account this last aspect 
since this work proposes to obtain automatically the architecture from the analysis 
model. Therefore, this analysis activity is different from the analysis activity des-
cribed, for example, in [20], where this activity focuses on: analyzing the consistency 
and completeness of requirements (defined in a software requirements document), 
negotiating the requirements (if there are conflicts), prioritizing the requirements, 
analyzing technical viability and costs to realize those requirements, etc. Therefore, the 
analysis activity is performed over the use case model obtaining the analysis model. 
Analysis artifacts include the analysis classes, use-case realization-analysis, analysis 
packages, and special requirements. Furthermore, we will use some stereotypes 
defined in Rational Unified Process, RUP (a specialization from [7]) to characterize 
analysis classes: <<boundary>>, <<control>> and <<entity>>. The set of artifacts 
generated in the analysis activity, and expressed in UML, is shown in Figure 1.  

3   Target Model: An UML 2 Profile for C2 Architectural Style 

In [19] we can read: “Abstractly, software architecture involves the description of 
elements from which systems are built, interactions among those elements, patterns 
that guide their composition, and constraints on these patterns.” Now, we briefly 
describe the C2 architectural style. “The C2 architectural style can be informally 
summarized as a network of concurrent components hooked together by message 
routing devices” [8]. A fundamental aspect of this style is the principle of limited 
visibility or substrate independence, that is, a component only knows the components 
on top of it. Every component has its own control flow and no assumptions are made 
about the existence of a shared addressing space.  
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Fig. 1. Elements in the analysis model 

The key elements of the C2 architecture are components and connectors. 
Components communicate through asynchronous message passing. Messages consist 
of a name and a set of associated typed arguments. There are two types of messages: 
notifications and requests. Notifications are announcements of changes in the state of 
the internal object of a component. Requests sent by a component indicate service 
requests to components on top of it. A notification is always sent downward through a 
C2 architecture while a request is always sent up. Both components and connectors 
must have top and bottom domains. The top domain of a component specifies the set 
of notifications to which the component responds and the set of requests that can be 
sent by the component. The bottom domain specifies the set of notifications that can 
be sent by the component and the set of requests to which it responds. The top domain 
of a component can only be connected to the bottom domain of a connector and its 
bottom domain can only be connected to the top domain of a connector. A connector 
can be connected to any number of components and/or connectors. Components can 
only communicate through connectors since direct communication between 
components is forbidden. Two connectors can only be connected from the bottom of 
one to the top of the other. Connectors are responsible for routing and, potentially, 
multicasting messages. A secondary responsibility of connectors is message filtering. 
Connectors can provide the following policies for filtering and delivery of messages: 
no filtering, notification filtering, message filtering, prioritized, and message sink. 

As [17] says, UML 2 cannot represent some elements of a software architecture. 
For example, UML 2 cannot represent the software connector of the C2 style [18]. 
Because of this, in this work we have defined a UML 2 profile to represent the C2 
architectural style (Figure 2). 
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Fig. 2. UML 2 profile to describe the C2 architectural style 

The stereotypes defined in the profile have associated constraints. Due to space 
constraint, we do not describe the stereotypes of Figure 2. As example, bellow we will 
show the constrains associated with the stereotype C2Connection. 

3.1   C2Connection Stereotype 

In C2, the component port may be linked to the role of a connector. On the other 
hand, the role of a connector can be linked to the role of another connector or to the 
port of a component. We have to remember that both C2Port and C2Role are 
stereotypes of Port. So, how could we state this relationship? It is necessary to define 
an association between C2Port and C2Role. However, an association between 
stereotypes is only possible if it is a subset of the existing associations in the reference 
metamodel between the base classes of those stereotypes. This means there must be 
an association between Port and Port. Here comes into play the metaclass Connector, 
establishing a link between two instances of type ConnectableElement (like instances 
of Port are). Then, to characterize the connection in C2 between a component port 
and the role of a connector, or between two roles of two different connectors, we will 
define a stereotype of the metaclass Connector called C2Connection. 

To be able to access the stereotype from the metaclass it extends, we define in 
OCL [14] the function stereotype as follows: 

 
stereotype (c: Class): Stereotype; 
stereotype = c.extension.ownedEnd.type 
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In the context of this stereotype (C2Connection) we define the following cons-
traints (also in OCL): 
 
[1] A connection in C2 links two elements.  
self.base.end -> size() = 2 
 
[2] A connection in C2 links a component port with a connector role or two roles of 
two different connectors.  
let ports: Set = self.base.end -> select (el| stereotype(el.role).name = ‘C2Port’) 
let roles: Set = self base.end -> select (el| stereotype(el.role).name = ‘C2Role’) in 
 ports -> size() = 1 implies roles -> size() = 1 and 
 roles -> size() = 2 implies roles -> forAll (r1 r2| r1.end <> r2.end) 
 
[3] A connection in C2 cannot link two ports.  
let ports: Set = self.base.end -> select (el| stereotype(el.role).name = ‘C2Port’) in 
not ports -> size() = 2 

3.2   Relationships Constraints Among the Stereotypes Defined 

Since the C2 style imposes certain topological constraints in relation with the 
connectivity between components and connectors, it is interesting to show the 
relationships among the different stereotypes defined and the constraints applicable to 
those relationships. Figure 3 shows those relationships. Due to space constraint we do 
not show that the all relationships between the stereotypes and the metaclasses are 
valid ones, meaning that they already exist between the stereotyped metaclasses in the 
reference metamodel. For instance, the relationship connectP between C2Port and 
C2Connection and the relationships connectR and connectRR between C2Connection 
and C2Role (Figure 3) imply that there must be a relationship between the 
metaclasses Connector and Port. The Connector metaclass is composed of 
ConnectorEnd and each ConnectorEnd is associated, through a relationship role, with 
a ConnectableElement. The metaclass Port is a type of ConnectableElement. 

In this same sense, we will not detail all constrains that can be applied to the 
stereotypes and relationships indicated in Figure 3. Like example we detail the 
following constrains (expressed in OCL): 

 
    [1] One of the ports of a component in C2 belongs to the top domain of the  

component and the other one to the bottom domain.  
context C2Component inv: 

self.ports -> one (p| p.domain = Domain::top) and 
self.ports -> one (p| p.domain = Domain::bottom) 
 

[2] A component in C2 must be connected by at least one of its ports.  
context C2Component inv: 

self.ports -> exists (p| p.c2Connection –> size() = 1) 
 

[3] The roles of a connector cannot be connected among them.  
context C2Connector inv: 

self.roles -> forAll (r1, r2| r1 <> r2 implies r1.c2Connection.connectRR <> r2) 
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Fig. 3. Abstract syntax to represent the C2 architectural style 

    [4] If the port of the top domain of a component is connected, it must be with the 
role in the bottom domain of a connector.  

context C2Port inv: 
self.domain = Domain::top and self.c2Connection.connectR -> size() = 1 implies 
self.c2Connection.connectR.domain = Domain::bottom 

4   Mapping 

Before describing the mapping rules we want to clarify why in this work we talk 
about a PIM to PIM transformation instead of PIM to PSM (as it is habitual). From 
our point of view, the architectural model expressed in the architectural style C2 is a 
PIM. This model will be transformed in a PSM when the implementation platform is 
selected. We think that the description of the software architecture of an application 
should be independent of the execution platform. Furthermore, to implement an 
architecture, heterogeneous platforms (software and hardware) are usually used. We 
only could consider that the architectural model in C2 is a PSM if it is supported by a 
platform that implements the C2 style (like ArchStudio 3.0). This platform [5] 
implements (among others) the component and the connector types specify in C2. In 
any case, as it is indicated in [10] “what counts as a platform is relative to the purpose 
of the modeller”. 

4.1   Characteristics of the Mapping 

The transformation proposed in this work can be characterized from four orthogonal 
viewpoints:  
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• Degree of model transformation [10]:  in this work we have developed a tool that 
transforms the models semiautomatically. 

• Nature of mapping [10]: in this work the elements of the metamodel that describes 
the source PIM have been transformed into other elements of the metamodel that 
describe the target PIM. As both models are expressed in UML 2, the mapping has 
acted over elements of the UML 2 metamodel (described in MOF [12]).  

• Scenario for mapping [9]: the mapping proposed is “refining mapping”, because 
we are decreasing the abstraction level:  from the source model (analysis) to the 
target model (architecture). 

• Type of mapping function [9]: we express the rules of the mapping function in 
imperative mode. The problem of this approach is that the mapping is not 
reversible: we can not generate the PIM of analysis from the architectural PIM and 
the mapping rules. 

Figure 4 illustrate the elements that take part in the proposed transformation. The 
mapping function indicated in Figure 4 has the following properties: 

AM: set of elements of the UML 2 metamodel used to construct the analysis model 
(with the profile for RUP). 

Analysis
Model

Software
Architecture
in C2 style

level M1
(Model)

level M2
(Metamodel)

<<instance of>> <<instance of>>

level M3
(Meta-metamodel)

<<instance of>>

MOF

<<instance of>>

UML 2 + profile for C2 
architectural style 

Record of
Transformation

transformation
tool

transformation
definition

<<is used by>>

UML 2 + profile
for RUP1

1 Rational Unified Process

AM
SA

 

Fig. 4. Metamodel mapping function 
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SA: set of elements of the UML 2 metamodel extended (with the profile for C2) 
used to construct the architectural model. 

 
∃f: AM → SA ⏐ 

(f(x) = y ∧ f(x’) = y) ⇒ x = x’ . (1) 

∃x ∈ AM ∧ ∀y ∈ SA ⇒  (x, y) ∉ f . (2) 

∃y ∈ SA ∧ ∀x ∈ AM ⇒  (x, y) ∉ f . (3) 

Firstly we have to observe the function is unidirectional: from the analysis model 
to architectural model. This one involves that it is not possible obtain the analysis 
model from architectural model and the transformation rules. This constraint comes 
from the imperative nature of the mapping rules. 

The expression (1) that indicates the function f is injective. The expression (2) 
indicates that not every element of the analysis model turns into an architectural 
model; that is, not every artifact generates during the analysis activity is significant to 
the architecture. For example: the association names or association roles. The 
expression (3) indicates that there are architectural elements that cannot associate with 
any analysis element; for example port and role. These elements are intrinsic to the 
architectural style. 

4.2   Mapping Rules 

We have designed 32 rules but, due to space constraint, we will only include here 9 of 
them. The rules have been expressed in natural language and OCL while waiting for 
MOF QVT [16] becomes an “Available Specification” (now is an “Adopted Spec-
ification”). The rules presented here deal with some aspects of the analysis classes, 
their attributes and operations, and some aspects of the collaboration diagrams. 
However, we have designed more rules to deal with different modelling aspects that 
can appear in the analysis, like inheritance, aggregations, compositions, abstract 
classes, class invariants, preconditions and postconditions on operations, analysis 
packages, association classes, class variables, etc. 

To be able to define constraints on a stereotype that will apply to the metaclass that 
it extends or to any of its relations, we name base the association end (see Figure 2). 
From here we consider that: 

 
let clas: Set (Class) = PIM_AM -> select (e | e.oclIsTypeOf (Class)) 
let comp: Set (Component) = PIM_SA -> select (e | e.oclIsTypeOf (C2Component)) 
 
PIM_AM is the analysis model and PIM_SA is the architectural model. The formal 
expression en every rule is described in OCL. 

 
    1) A concrete analysis class is transformed into a C2 component with the same 

name. This component is simple, which means that it does not contain other 
architectural elements.  This transformation is based on the idea that both elements 
have similar abstraction levels: an analysis class represents an entity in the problem 



 From Analysis Model to Software Architecture: A PIM2PIM Mapping 33 

domain while a component represents an independent element in the solution 
domain. However, when composition relationships exist among several analysis 
classes, these classes can be combined into a single component (see rule 9). 

clas -> forAll (ca | comp -> one (co | 
  ca.name = co.base.name and co.c2Architecture -> size() = 0)) 

    2) The attributes of the analysis class become state variables of the component. All 
these variables are private, independently of the visibility of the attributes in the 
analysis class. Note that the value of the attributes defined in an analysis class 
shows the state of its instances, like the value of the state variables defined in a 
component shows the state of the component instances. Furthermore, since only the 
interfaces of a component are public, by definition its state variables are private. 

clas -> forAll (ca | comp -> forAll (co | ca.name = co.base.name implies 
 let cat: Set (Attribute) = ca.attribute 
 let cot: Set (Attribute) = co.base.attribute in 
 cat -> forAll (at1| 
  if cot -> one (at2| at2.name = at1.name) then  
   (at1.visibility = VisibilityKind::public xor 
     at1.visibility = VisibilityKind::private xor  
     at1.visibility = VisibilityKind::protected xor  
     at1.visibility = VisibilityKind::package) and  
   (cot -> any (at2| at2.name = at1.name)).visibility = 
       VisibilityKind::private 
  else 
  endif))) 

3) An operation declared as public in an analysis class becomes an operation assigned 
to the component interface. The component operation will have the value prov 
(provide) in the attribute Direction. This is a direct consequence of the object 
oriented paradigm, in which a class specifies what it offers to the rest of the world, 
but it does not specifies what it needs from it. 

clas -> forAll (ca | comp -> one (co | ca.name = co.base.name implies 
    ca.operation -> forAll (op| op.visibility = VisibilityKind::public implies 
      co.bottomInterfaceProv -> exists (o| o.base.name = op.name and 
                o.direction = Direction::prov) xor  
      co.topInterfaceProv -> exists (o| o.base.name = op.name and 
                                                                   o.direction = Direction::prov)))) 
being: 

context C2Component def 
    let topPort: Port = self.ports -> select (p| p.domain = Domain::top) 
    let bottomPort: Port = self.ports -> select (p| p.domain = Domain::bottom) 

let topInterfaceProv: Set(C2InterfaceElement) =  
 topPort.interfaceProv.services -> select (e| e.direction = Direction::prov) 
let bottomInterfaceProv: Set(C2InterfaceElement)  =  
 bottomPort.interfaceProv.services -> select (e| e.direction = Direction::prov) 
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let topInterfaceReq: Set(C2InterfaceElement) =  
 topPort.interfaceReq.services -> select (e| e.direction = Direction::req) 
   let bottomInterfaceReq: Set(C2InterfaceElement) = 
 bottomPort.interfaceReq.services -> select (e| e.direction = Direction::req) 

    4) An analysis class with stereotype <<boundary>> is associated with a C2 compo-
nent at the lowest level of the architecture, or at least without elements connected to 
its bottom domain (Figure 5). Recall that this kind of classes models the interaction 
between the system and the actors. 

clas -> forAll (ca | comp -> one (co | ca.name = co.base.name and 
  stereotype(ca).name = ‘boundary’ implies 
   co.bottomPort.connectP -> size () = 0 

A

X Y

A

connector component link  
Fig. 5. Topology position of an analysis class boundary in the architecture 

    5) An analysis class with stereotype <<control>> is associated to a C2 component 
in the intermediate levels of the architecture. Recall that this type of component 
models the business logic and often (but not always) interacts with components in 
its top and bottom domains. Nevertheless, it is possible that it does not interact with 
elements in its top domain or with elements in its bottom domain. 

clas -> forAll (ca | comp -> one (co | ca.name = co.base.name and 
  stereotype(ca).name = ‘control’ implies 
    co.topPort. connectP -> empty() implies  
    co.bottomPort. connectP -> notEmpty() and 
    co.bottomPort. connectP -> empty() implies  
    co.topPort. connectP -> notEmpty())) 

    6) An analysis class with stereotype <<entity>> is associated to a C2 component in 
the top levels of the architecture, or that at least it always has elements connected to 
its bottom domain. Recall that this type of component models persistent data, 
repositories or abstract data types. 

clas -> forAll (ca | comp -> one (co | ca.name = co.base.name and 
  stereotype(ca).name = ‘entity’ implies 
   co.bottomPort.connectP -> size () = 1) 

    7) If in a collaboration diagram, an analysis class A does a request op to a class 
analysis B, then in the top domain of the component that represents the class A 
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there will be an operation op with direction req and in the bottom domain of the 
component that represents the class B there will be an operation op with direction 
prov (Figure 6). 

let col: Set (Collaboration) = PIM_AM -> select (e |  
     e.oclIsTypeOf (Collaboration)) in 
clas -> forAll (ca, cb | 
 let compa: Component = comp -> one (co| co.base.name = ca.name) 
 let compb: Component = comp -> one (co| co.base.name = cb.name) in 
 ca.association -> exists (as | as.participant = cb) and 
 col -> exists (c| c.interaction -> exists (i| i.message -> exists (m | 
  m.sender = ca and 
  m.receiver = cb and 
  m.callAction.operation.name = op))) implies 
 compa.topInterfaceReq -> exists (e | e.base.name = op) and 
 compb.bottomInterfaceProv -> exists (e | e.base.name = op) 

bottom domain

req prov

req prov

top domain

A

op op’

req prov

req prov

top domain

bottom domain

B

op’ op

A B

op

op’
request

notification

 

Fig. 6. Requests and notifications at the interfaces top and bottom 

    8) If in a collaboration diagram, an analysis class B invokes an operation op’ 
(notification) in an analysis class A to indicates that it has finish a request and to 
return the result of that request, then in the top domain of the component that 
represents the class A there will be an operation op’ with direction prov and in the 
bottom domain of the component that represents the class B there will be an 
operation op’ with direction req (Figure 6). 

let col: Set (Collaboration) = PIM_AM -> select (e |  
     e.oclIsTypeOf (Collaboration)) in 
clas -> forAll (ca, cb | 
 let compa: Component = comp -> one (co| co.base.name = ca.name) 
 let compb: Component = comp -> one (co| co.base.name = cb.name) in 
 cb.association -> exists (as | as.participant = ca) and 
 col -> exists (c| c.interaction -> exists (i| i.message -> exists (m | 
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  m.predecessor -> exists (m| m.callAction.operation.name = op) and 
  m.sender = cb and 
  m.receiver = ca and 
  m.action.oclIsTypeOf(ActionReturn)))) implies 
 compa.topInterfaceProv -> exists (e | e.base.name = op’) and 
 compb.bottomInterfaceReq -> exists (e | e.base.name = op’)) 
 

    9) If in an analysis class diagram a class A is composition of another class B, then 
both classes are associated to a single component, whose name is the concatenation 
of the names of both classes. Furthermore, all the operations and attributes of class 
B are private to the component AB. Regarding this issue we must note that an 
element can only be part of a composition and that the composed element is the 
only one that can interact with the rest of the world (i.e., only the composed 
element can send/receive messages to/from the component). This restriction is 
introduced to preserve the encapsulation to follow Demeter’s law. 

clas -> forAll (ca, cb | ca.associationEnd -> exists (as |  
 as.agregation = AgregationKind::composite and as.class = cb implies 
    comp -> one (co| co.base.name = (ca.name).concat (cb.name) and 
               co.operation = ca.operation -> union (cb.operation) and 
               co.property = ca.attribute -> union (cb.attribute)))) 

5   Tool 

As we have said, we have built a tool (in Smalltalk) that applies these rules auto-
matically. In Figure 7 we illustrate the interface offered by the tool. To generate an 
architecture from an analysis model developed with Rational Rose™, we can use the 
tool executing the following two steps: 

1. The user opens an analysis model of Rational Rose™ through the option Open 
Model from the menu Actions. After that, the tool invokes Rational Rose™, 
extracts the information of the corresponding model and places the set of analysis 
classes and analysis packages of the model in the single selection list of the left 
window. The tool analyzes the analysis model and applying the rules displays a 
description of the recommended topology indicating, for each component, the 
components that should appear in its top and bottom domains. 

2. The user creates a new component and links an analysis class with the newly 
created component. To do so, she selects the analysis class, from the single 
selection list of the left window, places the mouse on top of the icon associated 
with the created component and clicks the right button. A menu with several 
options appears: Remove, Assimilate class, Generate, and Change definition. In the 
menu, she selects the option Assimilate class. The system extracts the information 
from the selected analysis class and, applying the rules, generates the charac-
teristics of the component.  

At any moment, the user can redefine/refine the information associated to a 
component (name, invariants, attributes, private operations, and top and bottom 
 



 From Analysis Model to Software Architecture: A PIM2PIM Mapping 37 

 

Fig. 7. Tool user interface 

interfaces) by selecting the option Change definition from the menu corresponding to 
the component. 

Figure 8 shows the architecture of the developed tool (using the C2 style).This 
architecture contains two packages: 

1. The components in C2Architecture package support the graphical manipulation of 
architectural elements, allowing several operations: add, connect, remove, resize, 
move, check topological rules, etc. In this package there is also a component (Rose 
Extensibility Interface, REI) that supports collaboration with Rational Rose™, with 
the purpose of extracting information from the selected analysis model. 
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UIArchitectureC2
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C2Metamodel
Package
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Fig. 8. Architecture of the tool 
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2. The C2Metamodel package contains a hierarchy of classes that implement the 
stereotypes defined on UML 2 metaclasses to describe the architectural elements of 
C2. Among these classes we can name C2Component, C2Connector, C2Port, and 
C2Role that support the concepts of component, connector, port, and role 
respectively. 

6   Conclusions and Future Work 

In this work we have presented a mapping from the software artifacts generated 
during the analysis activity (a PIM) to the architectural elements of style C2 (another 
PIM). The mapping consists of a set of rules that operate over the UML 2 metamodel 
extended with a profile (metamodel mapping). Also, we have developed a tool that 
extracts the analysis model from a file generated by Rational Rose™ (with extension 
.mdl) and, applying the mapping, generates a C2 style architecture. 

This proposal has several benefits: (1) the software architecture of the system is 
directly derived by applying the mapping; (2) since the architecture is directly derived 
from the analysis artifacts, there is a direct trace relationship between these artifacts 
and the elements of the resulting architecture, which eases the system maintenance; 
(3) the current problem of transiting from coarse-grain abstractions in the problem 
domain (analysis) to fine-grain abstractions in the solution domain (design) is 
simplified. Furthermore, this work is an example of how can be generated the 
architectural model of an application from the analysis model and mapping rules. 

The mapping proposed in this work generates an architecture in C2 style from an 
analysis model. With other mapping rules and other profiles for every architectural 
style, that analysis model can lead to the same architecture expressed in different 
styles. We want to elaborate other rules to generate other architectural styles (client-
server, peer-to-peer, pipe&filter, etc.). On the other hand, the mapping defined is not 
reversible: one can’t construct the source model from the target. To solve this 
problem we are going to express the rules using the declarative facilities of QVT. 
Lastly, we think it is interesting to generate a record of transformation that this work 
has not consider (which parts of the PIM have turned into which part of the PSM).  
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Abstract. We present a case study that utilizes UML modeling methodology 
for typical business applications. Such applications generally contain a GUI 
front-end for manipulating database tables and are object-relational systems 
that deal with both relational databases and object-oriented technology. To 
model such applications, we use UML Profiles and metamodels based on a 
three-tiered application architecture for the different stages of the development 
lifecycles. The benefits of the model-driven approach include the possible use 
of the models for maintenance processes such as incremental code generation, 
updating test cases, and documentation. These models also enable developers 
to validate the application’s flow by simulating its behavior through model 
execution. 

1   Introduction 

Today, more and more industry domains are beginning to understand the benefits of 
model-driven development for various products. The Model-Driven Architecture 
(MDA) was proposed by OMG as a radical move from object design to model 
transformation. The Unified Modeling Language (UML) was elected to play a key 
role in this architecture, being a general purpose modeling language. But being 
created for designing Object Oriented (OO) software applications, it often lacks the 
elements required to represent specific domains concepts. The solution proposed by 
OMG was to create profiles for certain application domains. 

Our work focuses on a case study based on a UML profile and metamodel for 
business applications with a layered architecture. Our main goal is to support the 
application maintenance process through this modeling. The maintenance process 
includes requirements management for the customers changing needs and the subse-
quent updates of code and test procedures. At present, this is often done manually 
when changes in design and code documentation are made in an informal manner, 
where they are sometimes not even written down. In this situation it becomes difficult 
to maintain consistency between the requirement updates, code versions, and test sets. 
Making updates in the modeling environment with the possibility of automatically 
generated code and test cases may increase the efficiency of the maintenance process. 
In this way, the application model maintains the connectivity between the 
requirements, design elements, and the generated results. 
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The paper is organized as follows. Section 2 provides an overview of the archi-
tecture for business applications and modeling practices. Section 3 describes the 
proposed metamodels and UML profiles for business application modeling. Section 4 
describes an example of such an application model. Section 5 describes how the 
proposed model can be used for application maintenance. Finally, Section 6 contains 
conclusions and possible future directions. 

2   Modeling of Business Applications   

2.1   Business Application Architecture 

"A Business, an enterprise, is a complex system that has a specific purpose or goal. 
All functions of the business interact to achieve this goal." [2]. Most business 
applications are designed to connect between end-user activities and different kinds of 
data repositories.  

At the end of 90s there were many studies that looked for mapping solutions 
between Object Oriented (OO) and Relational Database (RDB) technologies [4]. The 
conceptual differences between RDB technology and OO technology make it difficult 
for the various parts of business applications to interact. To reduce the interaction and 
integration problems, the Business Object (BO) model was introduced for developing 
object-relational systems [1, 5]. In a BO solution, an application is divided into three 
tiers: the presentation tier, the RDB tier, and the business logic tier (also called the 
domain logic tier [1]). Typical three-tiered business architecture is characterized by 
loose coupling between the user interface and data repositories. The user interface has 
no direct interaction with the database, but instead, it interacts with the domain 
objects responsible for communication with the RDB. This separation allows each of 
the tiers to be developed independently, with a compact interface. 

The upper, presentation layer handles the interaction between the user and the 
software implementing the business logic. It may be a rich client graphical user 
interface (GUI) application or the latest web-based clients. The software development 
practice of such applications is usually based on the Model-View-Controller paradigm 
(MVC) [1].  

2.2   State-of-the-Art  

Business application modeling took off in the late nineties with the increased usage of 
computer-aided tools. Since then, UML modeling has become a part of the develop-
ment practices both for business process modeling and for system design [2, 5], 
together with the wider practice of EJB and J2EE patterns [3].   

For modeling user interfaces, most of the existing work makes an effort to provide 
a means for modeling logical (abstract) views as well as concrete (physical) ones. 
Good modeling practices dictate that no interface details should be included in  
the early stages. The popular approach for designing GUI applications is based on  
the Model-View-Control (MVC) paradigm [1], which proposes separating between 
the view layout and its pieces of business logic. D.Anderson [6] describes this 
approach in a series of three papers; he also proposed using State Chart diagrams for 
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interaction design. J.Conallen [8] proposed using UML for Web application 
modeling. He also suggested integrating UI development with UML and Rational 
Unified Process (RUP), with its iterative validation and testing. More papers define 
UML profiles for modeling Web applications [10, 11, 12]. They use stereotypes such 
as client page, navigation, Java script, applet, and so forth to express the web 
specifics. Other works concentrate on concrete view presentation design [7, 10, 13]. 
These works, which define the methodology of the UML modeling for GUI and Web 
applications can be useful for business application modeling. However, their approach 
deals primarily with navigation between views or layout presentation details and less 
on the composition of business objects, along with their structure and relations, 
derived from the customer requirements. 

The use of UML for modeling relational database systems started later than 
modeling for software. The main rules of mapping OO to RDB are described in [1], 
together with detailed design patterns for enterprise systems (see also Sect. 3.2).  In 
2002, the UML profile for data modeling was proposed [5] and implemented as a 
Rational Rose add-in; it allows the generation of database scripts from Rose models 
and vice versa.  

2.3   Current Development Process Pain Points  

A significant problem with the existing development practices arises during 
application maintenance, when requirements may change and updates need to be 
made. Often the documentation is maintained in a text file or even on paper, and these 
are not kept up-to-date. Requirements changes are done informally and tests are both 
created and executed manually. This process can be improved using a model-driven 
approach, where the different artifacts, including documentation, code, and test cases, 
are automatically generated from the defined models. 

3   UML Profiles and Metamodels for Business Applications 

As noted above, there are several UML modeling directions for user interfaces and 
others for designing relational databases. Our intention is to combine them to provide 
a means for modeling the entire application as a business system, while paying 
attention to both its architecture tiers and the lifecycle phases of development. 

To model business applications, we define metamodel and profiles implementing it 
while the described stereotypes 
follow the architecture described in 
Sect. 2.1. These profiles are used to 
create three models (see the figure on 
the right): analysis model, design 
model and domain data model. These 
models are tightly connected to 
present the same business logic. The model transformations can be applied to them to 
create design and domain elements from the higher level analysis model. However, 
the designer can also make changes later to each of these models so they include 
specific details of the implementation. These lower level models can be used directly 
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for generating code and SQL scripts or divided again into different levels to separate 
platform-specific features into additional models. In Sect. 4.2 on transformation and 
code generation, we describe how to combine manual and automated updates. 

3.1   Analysis Model 

The analysis model is a higher level abstraction of the application; it describes the 
customer view of the application, its requirements, use cases, the main flow, and the 
general structure of components and data objects. The goal of the analysis model is to 
help different stakeholders come to an understanding and agreement on how the 
application’s high-level design corresponds to their requirements. The model can be 
used as basis for the generation of lower level models through transformations. The 
analysis model can also be used to create test cases for the views and behavior logic. 

Figure 1 presents the classes of the analysis metamodel (a) and their relationships 
(b). The concrete classes are presented as stereotypes in the corresponding analysis 
profile. Requirement elements are included in this model, in keeping with the recently 
proposed SysML standard [14]. 

 

   

Fig. 1 (a, b). The metaclasses (a) and relations (b) of the analysis metamodel 

The entire system is composed of smaller subsystems that contain data objects and 
handlers of tasks derived from the associated use cases. To model view aspects, we 
use stereotypes TaskViewer and DataView which are extensions of the general 
'Viewer' metaclass in our metamodel. TaskViewer is analogous to a page or a window 
frame. One or several such viewers are associated with a class of stereotype 
TaskHandler; they are connected by naviation relashionships.  In addition to view 
aspects, logic aspects are modeled by behavior diagrams that describe the control flow 
and navigation between viewers (see Sect. 4.2). 

DataView stereotyped class is bound to DataObject class targeting to present its 
fields and actions. For business application modeling, we used two extensions of this 
metaclass: EditView presents a single instance of DataObject as a group of fields for 
editing its attributes; SelectView presents the same class as a set of instances in a 
table form. One or more of instances can be selected for the subsequent actions, like 
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editing, deleting, etc. Other specific views can be added by the designer for their 
particular needs.  

3.2   Design Model 

The design model represents the same business logics captured in the analysis model, 
but includes implementation details; it is used for code generation through one or 
more transformation procedures. Some elements of the design profile and metamodel 
are taken from the analysis metamodel, e.g., DataObject, EditView, SelectView; 
however, in the design model these elements have more implementation details, like 
methods with typed parameters. The design model can be very flexible and extended 
by designers for their specific implementations. Its goal is to keep the implementation 
with the right architectural approach using best practices patterns [3], and make it 
easy to understand and update at a later stage.  

Following the MVC pattern mentioned above (see Sect. 2.1), class stereotypes are 
defined as view-related classes, and the associated classes of control and model 
stereotypes (Fig. 2). In the design model, view classes involve concrete view elements 
(associated by aggregation relation or as attributes), and operations corresponding to 
the user actions in the viewer, such as the Button or Menu actions stereotypes. 

 

Fig. 2. The design metamodel 

Elements stereotyped as 'Model' that are connectors to the data domain level, can be 
shared between views (Fig. 3, a) These elements are responsible for keeping a set of 
object instances retrieved from the relational tables by domain data model classes (see 
Sect. 3.3).   

Navigation between views can be modeled by relationships with additional 
stereotypes (Fig. 3, b), where 'Page' navigation refers to the 'next-previous' navigation 
adopted by web pages. 'Child' creates a new view, keeping the old view for a later use 
when the child is closed. 'Tab' navigation is the notebook style where the user can 
switch views using several tabs. 

Tagged values are additional attributes that are associated with the profile. For 
example, the stereotype 'Group' has attribute 'Layout' which is defined as a tagged 
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Fig. 3 (a, b). The hierarchy of view metaclasses (a) and navigation relations (b)  

value set with two values, 'horizontal' and 'vertical'. Other tagged values can be added 
by designers who need to extend this profile.  

3.3   Domain Data Model 

The domain data model can be created by the transformation of Data Objects from 
either the analysis or design models. The main rules of mapping OO to RDB are 
briefly as follows [1, 4, 5]: 

 Entities become tables 
 Attributes become columns 
 Identifiers become primary keys 

For mapping object relations such as inheritance, aggregation, association into table 
relations, there are several patterns, like 'Embedded Foreign Key', 'Associated  
Lookup Table' and others [1]. If Data Objects can not be mapped into single tables 
having more complex structure, then classes with stereotype 'TableGateway' are used 
(Fig. 4) as table mappers.  
    The domain data model may then be reviewed and modified, or transformed into an 
additional platform specific model (PSM) that reflects specific implementation or 
performance requirements. The benefit of the domain data model is that it can be 
reused for implementation of the same business model on different database platforms. 

 

Fig. 4. The domain data metamodel 
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4   Example of a Business Application and Its Model  

4.1   Application Overview 

Our case study considers a typical business application called Verification Office 
Application. The company manages testing and the certification of various measure-
ment devices – scales, speeds and distance meters, thermometers, and so forth. It also 
handles packaged goods and the quality of service at medical labs. Company employ-
yees need a comprehensive database system to manage the customers, their devices, 
test results, certificates and their validity, as well as billing and reporting. There are 
three kinds of application users: Regular worker, Secretary, and Administrator. 

The application has a two-tiered architecture. The first tier contains the GUI front-
end implemented in Java, designed following the MVC paradigm. Each use case has 
its handler class, with its own view and navigation between them supported by a 
specific mechanism. The second tier contains functions for database manipulations. 
These tiers communicate through the domain data objects included in the first tier. 

Fig. 5 presents examples of use case (a) and class diagrams (b, c, d) related to the 
analysis model.  Fig. 5, b shows the requirements associated with the corresponding 
 

 

 

Fig. 5 (a, b, c, d). Examples of diagrams from the analysis model 
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design elements. Fig. 5, c shows relations between three data objects and their views. 
Fig. 5, d shows two use case handlers and the related view objects. 

For behavior design we used UML activity diagrams. These activity diagrams (see 
Fig. 6) describe the task handlers' behavior as a specification of the detailed control 
flow, where the task handlers are responsible for fulfilling the functionality of the use 
cases. The following are examples of such diagrams where each lower level diagram 
contains details (Fig. 6, b) of an activity related to the higher level diagram (Fig. 6, a).  

Fig. 7 presents an example of a class diagram from design model for the 'Create 
device' Task Handler, whose design follows the MVC pattern.  

Fig. 8 shows an example of the domain model diagram presenting the relationship 
between the model and table elements. 

 
Fig. 6 (a, b). Examples of activity diagrams for a task handler from the analysis model 

 

Fig. 7. Class diagram for a task handler from the application design model 

 

Fig. 8.  The relationship between a model and table mappers 
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5   Using UML Modeling for Code Generation and Behavior 
Validation  

Once the application models are created as a collection of structure and behavior 
elements, they can be used for several purposes for maintenance of the application. 
Our scenario for updating the application is taken from a real-life situation where 
some business object attributes are added or removed.  

5.1   Model-to-Model Transformation   

The reason for transforming a high-level model to a lower level model is to automate 
maintenance updates and to avoid manual changes whenever possible. The lower 
level model includes implementation-specific details of the application itself and of 
the middleware platform and hardware.  

The transformation to domain data model is based on the OO-RDB mapping 
described in Sect. 2.3.  The model contains table objects derived from the business 
objects and their relations. These table objects can be used directly in SQL scripts as 
single tables or grouped into more complex tables. In specific cases, additional lookup 
tables can be added to the model. This model can be derived from the data objects of 
either the analysis or design model.   

In our study we use the specific mapping of the analysis model elements that 
reflects the existing application implementation design for the transformation to 
design model. The design model contains a set of classes related to the core of the 
framework, stereotyped as <<General>>; these classes are not changed during 
updates. Other stereotyped classes inherit from these core elements (see Fig. 9 a, b). 
This approach helps to support the code generation in a flexible way (see Sect. 4.2). 

 

   

Fig. 9 (a, b). Class diagrams with stereotypes used for model-to-code transformation 

The mapping of some of the profile elements is presented in Table 1. In addition to 
the stereotype mapping, a naming convention was used adding a prefix and a suffix to 
the original class names.   
    The model transformations were implemented using the Atlas Transformation 
Language (ATL) tool [15], which transforms an input model to another model using 
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Table 1. Part of the mapping between analysis and design model stereotypes 

Analysis Model Stereotype Design Model Stereotypes 

<<dataObject>> <<dataObject>>,  <<model>> 

<<editView>> <<editView>>, <<editController>>  

<<selectView>> <<searchView>>, <<searchController>> 

<<taskHandler>> <<taskHandler>>,<<taskViewer>>, 
<<taskController>> 

rules written in ATL and metamodels for both input and output models. In our study, 
the input and the output models have the same metamodel, which is the EMF/UML2 
metamodel [16].  

5.2   Model-to-Code Transformation     

In our maintenance scenario the application code had already been implemented and 
some updates were carried out to the existing application design. To facilitate partial 
generation of the code, the design model needs to maintain consistency with the 
existing design and naming conventions.  

During design model creation, each class that is a candidate for updates was 
divided into two:  one of which is the target for code generation (named with a suffix) 
and the other is a subclass of the first for making manual code extensions and 
modifications. The stereotype "General" was used for the application classes that are 
in the stable part of the application and are not regenerated during model-to-code 
transformation.    

In summary, we introduced three kinds of classes as input for the transformation: 
stable, automated and manual.  

The code generation was implemented using the MOFScript tool [17]. The main 
transformation procedure was built from a set of libraries containing sub-procedures 
for specific stereotypes targeted for code generation, including for example: 'Data 
Object', 'Model', and 'Edit View'. The following is an example of this procedure:  

uml.Class::mapClass() { 
var stereotype : string = "" 

    stereotype = self.getStereotype(); 
    if (stereotype <> "General") { 

if (self.getStereotype() = data_stereotype ) 
    self.dataMapClass() 
    else if (self.getStereotype() = view_stereotype ) 
    self.viewMapClass()  
     else  

      self.standardMapClass() 
   }} 

The body of these procedures includes parts of the real code, which is usually cut-
pasted with manual updates while eventual programmer's mistakes can introduce 
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bugs. Given class attributes and operations, the code is created by a loop procedure on 
each attribute as follows:  

uml.Operation::generatePropertyLoopMethod () { 
 self.standardMethodSignature() 
 m_name = self.name       

names = self.owner.getPropertyNames() 
    if (names != null) { 
      names->forEach(n : String) {  
      a_name = n.firstToUpper() 
  tab(1) a_name <%.%> m_name <%();%>   
   nl(1) }} 
 self.standardMethodEnd()      
} 

The following is the result of another generated method: 

protected List getChangedFields () {  
 // Generated body of getChangedFields method is here  
 List var = new ArrayList();    
 if (key.hasChanged()) var.add(key);   
 if (month.hasChanged()) var.add(month);   
 if (year.hasChanged()) var.add(year);   
 if (description.hasChanged()) var.add(description);  
 if (invoiceType.hasChanged()) var.add(invoiceType);  
 return var; 
} 

The stereotype "JavaClass" was used for manual extensions, being a subclass of the 
automatically generated class. A template is generated for these classes; it includes 
only calls to the parent methods that are generated automatically. They may be used 
‘as is’ or modified. This provides the flexibility for manually changing objects with 
specific needs. In addition, a library of utility procedures was created for the common 
use by other stereotype-specific libraries. 

Analogous transformations may be created for other purposes, such as generating 
different kinds of documentation and test cases.   

5.3   Behavior Simulation and Validation by Model Execution   

The behavior diagrams presented in (3.3) can be used to validate the application logic. 
Presenting the logic in a graphical form enables developers to agree on the flow with 
analysts and stakeholders before starting the detailed design.  A model execution tool 
was used to simulate and validate the specified behavior. 

6   Conclusions 

In this paper we describe the methodology and UML profiles for modeling business 
applications that access databases. The case study context was a business application 
with a specific maintenance scenario. This case study goal was to illustrate the 
benefits of modeling and code generation using a set of UML profiles. These benefits 
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include: traceability between high-level design changes and the corresponding imple-
mentation updates; code generation for periodic updates; and behavior validation 
using model simulation.  

We also introduced a technique for creating model-to-code transformation that 
supports the generation of code for maintenance updates.   

Our future activities will focus on enhancing the current metamodel and profile 
with additional semantics. We are investigating ways to improve traceability between 
customer requirements, model entities, and the application code to allow broader 
lifecycle support through model-driven development.   
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Abstract. In this paper we present a methodology supporting the definition of
data models on basis of a limited set of well-known UML features, thereby al-
lowing these models to be created and discussed by a large group of domain ex-
perts. A transformation is then defined from such a platform independent UML
model to XML schema, which exceeds the configuration possibilities of com-
parable approaches like XMI. This enables the generic reproduction of a wide
range of existing XML languages and hence supports reverse-engineering legacy
schemas and DTDs into well-structured UML models. The overview of an ac-
tual implementation of the generic methodology finally demonstrates the practi-
cal applicability or our approach. The work described in this paper is part of the
AUTOSAR development partnership, an international effort to standardize auto-
motive software infrastructure. The resulting XML schema is used today as the
official AUTOSAR XML data exchange format.

1 Introduction

AUTOSAR (short for: automotive open system architecture) is an international develop-
ment partnership [1] consisting of a multitude of car manufacturers, suppliers and tool
vendors, defining concepts and workflows, how electronic automotive systems can be
formally specified and processed. Currently, AUTOSAR is mainly focusing on software
and addresses issues like hardware independence, design-by-contract, system scalabil-
ity, reuse and so forth.

The definition of AUTOSAR concepts (which themselves are not in scope of this
paper) in form of a metamodel leads to a domain specific language (DSL). While
this language is specifically designed to describe distributed real-time software, it still
is platform-independent in terms of processing platforms like XML, databases or a
programming language. System descriptions written in this language must be inter-
changeable between various authoring, visualization and processing tools as well as the
different organizational entities involved in an AUTOSAR-oriented project. One of the
main goals of AUTOSAR is therefore the definition of an (automatically generated)
XML-based data exchange format.

While generating XML schema from UML is not new, a number of problems were
encountered with approaches and methods typically applied in the industry so far. For
instance:

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 52–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– XMI [2][3], OMG’s specification how to map UML models to XML schema, lacks
certain configuration possibilities, thereby preventing the reproduction of already
existing XML schemas from reverse engineered UML models. Furthermore, XMI
uses particular schema features like xsi:type, which in the XML community are
discussed as problematic [4][5].

– The MSR partnership [6] defined an XML DTD to describe automotive systems.
The underlying data structures have not been formally modeled; but instead were
designed directly at DTD level.

– The ASAM association introduced another modeling approach for the ASAM ODX
standard [7], leading to an XML description for automotive diagnostic and pro-
gramming systems. The corresponding schema is in fact generated from a UML
model. However, the applied UML profile is highly specific for the XML domain
and therefore alleviates the applicability of the metamodel as an MDA PIM, e.g. to
produce a database schema.

Our transformation of the AUTOSAR metamodel to XML schema exceeds the con-
figuration capabilities of current approaches. It is defined as a set of transformation
patterns and model markings. The actual implementation of our tool-chain is based on
the Eclipse Modeling Framework (EMF).

Outline of this Paper. The next section gives an overview of how our approach is aligned
with general MDA concepts. The remaining sections then follow the logical order of
applying our methodology. We begin with the description of our concepts to define a
platform independent model. The following section explains our requirements for a new
transformation from UML to XML schema and specifies the configuration capabilities
of our approach. Next, we describe our implementation of the schema generator. The
paper closes with a final summary of our results and an outlook of possible next steps.

2 Alignment with MDA Concepts

Fig. 1 gives an overview how our modeling and generation approach is aligned with
the concepts defined by MDA, which are shown as stereotypes of our corresponding
AUTOSAR artifacts.

The AUTOSAR metamodel is a PIM. Its definition is independent of the tooling
and processing platforms (e.g. programming languages, databases, XML formats, ...)
that eventually will be involved in creating, editing or persisting AUTOSAR models.
This platform independence is strongly required to allow automotive domain experts to
contribute efficiently without consideration of how modeled concepts eventually will
be mapped to a certain platform.

Our primary platform is XML schema, i.e. that we are generating the AUTOSAR
XML schema from the AUTOSAR metamodel.

The mapping is defined as a set of transformations, which are combinations of
type and instance mappings. For each relevant PIM type a template is defining the de-
fault purely type-based mapping. If a certain element in the AUTOSAR metamodel
requires different transformation, this is controlled by assigning values to platform
specific marks which leads to the annotated metamodel, a marked PIM. A modeling
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guideline prescribes tagged values as the only UML feature allowed to express such
PIM markings.

The target of our mapping is not a separate PSM. Instead, we follow the alterna-
tive path also mentioned in [8] by directly generating the actual XML schema file from
the marked PIM, for two reasons: While research projects [9][10] start providing tools
to perform model transformations, frequently as an implementation of the MOF QVT
specification [11], we did not find sufficient transformation support as part of commer-
cial UML tools available to AUTOSAR members. Having an explicit PSM does not
seem to add much value to our methodology. Instead, performing the extra transforma-
tion step adds a potential error source, resulting from defects in the used tooling as well
as problems introduced by improper usage.

<<PIM>>

AUTOSAR
Metamodel

<<Code>>

AUTOSAR
XML Schema

<<Marked PIM>>

Tagged AUTOSAR

Metamodel

<<Marks>>

Tag Definitions

<<Mapping>>

Persistence Rules
for XML

<<Platform>>

W3C XML Schema

Fig. 1. The alignment between the MDA methodology and the AUTOSAR modeling and schema
generation approach is shown in this figure. For each depicted AUTOSAR artifact the stereotype-
like annotations indicate the corresponding MDA concept.

3 Definition of the AUTOSAR PIM

The language to describe AUTOSAR systems is a DSL enabling the definition of au-
tomotive software and hardware systems. It therefore contains specialized entities like
certain types of software components that are responsible for handling hardware sen-
sors or entities like communication protocols used on automotive bus systems. While
the usage of UML to describe this metamodel was not disputed, a number of additional
requirements had to be taken into account.
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In the automotive industry the practical application of UML is not yet as widely
adopted as in other, more traditional IT domains. To overcome this psychological barrier
the AUTOSAR methodology had to limit itself in terms of used UML features. On
the other hand, certain features required to describe AUTOSAR systems are not well
supported in UML. In those cases, we had to extend the existing modeling capabilities.
Finally, practical reasons like existing tool support forced us to sometimes deviate from
pure MDA and UML approaches.

This section explains those limitations and extensions of UML.

3.1 Usage of a UML Subset

Even when using UML, still a number of alternative approaches can be considered for
the definition of the AUTOSAR metamodel. First, the metalevel the AUTOSAR DSL is
associated with or is build upon needs to be determined. Corresponding to OMG’s four-
layer metamodel hierarchy [12], AUTOSAR user models, e.g. the model of a concrete
windshield wiper system, live on M1. Therefore, the underlying AUTOSAR metamodel
that defines the language to express such M1 models is defined on M2.

To stay completely aligned with OMG’s metalevel hierarchy, this suggests two well-
known alternatives for the definition of the AUTOSAR metamodel: it can be defined as
an instance of MOF [8], or as a UML profile. Unfortunately, both approaches have
practical disadvantages.

The formal usage of MOF as modeling language was not well supported by tools
when work on the AUTOSAR metamodel was started in the end of 2003. This means
that limiting our modeling capabilities to the EMOF subset [8] was not possible through
available tools. This is different today, as tools like IBM’s RSM [13] and Sparx’ Enter-
prise Architect [14] start providing metamodeling capabilities.

Creating a UML profile has the strong advantage that even standard UML tools
are able to handle the corresponding UML instance models. However, tool support for
creation and especially formal application of a UML profile was again too weak for
us. While this also has been overcome by recent tools, the formal definition of such
a profile is not trivial and naturally requires deep insight into UML’s own metamodel.
Such deep analysis of UML is typically not part of the daily business of automotive
engineers and hence only sparsely available. Therefore, requiring the definition of a
formal UML profile for the AUTOSAR metamodel was not possible.

As a consequence AUTOSAR is following a mixed approach. The original AU-
TOSAR metamodel is created as an instance of UML. From UML we only allow using
basic class diagrams, essentially the concepts defined in EMOF or the UML infrastruc-
ture’s Core::Basic package [12]. We further restrict the allowed set of modeling fea-
tures, e.g. classes defined in the AUTOSAR model must not own any operations. These
limited class-modeling capabilities are formally specified in form of its own UML pro-
file. Since the AUTOSAR metamodel exists at M2, the underlying profile is defined at
M3. Currently, the AUTOSAR metamodel itself is mapped to a formal UML profile by
a small group of experts, who are involved in both, AUTOSAR development and UML
inner workings. For simplicity and due to growing tool support the rest of the paper
will assume the AUTOSAR metamodel residing at OMG’s metalevel M2, i.e. either as
direct MOF instance or in form of a UML profile, as shown in Fig. 2.
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MOF

UML AUTOSAR UML Profile AUTOSAR Metamodel

AUTOSAR Metamodel UML Profile

M3

M2

«extends»

«instanceOf» «apply»

«trace»«extends»

«instanceOf»

Fig. 2. The (AUTOSAR Metamodel) is effectively an instance of (MOF), which applies the
(Metamodel UML Profile) to provide required extensions and enforce our limitations. Eventu-
ally, the (AUTOSAR Metamodel) is translated into its own (AUTOSAR UML Profile) to allow
AUTOSAR modeling in standard UML tools.

3.2 Definition and Structure of PIM Markings

Platform-dependent information may be added to the model in form of tagged values
only. Vice versa, tagged values are exclusively used to specify platform- dependent
information. The names of the tag definitions are following a namespace scheme. E.g.
a tag called xml.name specifies how a (platform-independent) model element will be
called in a (platform-dependent) XML file, whereas a tag db.name could specify the
same for a database platform. For an overview of available marks see table 1.

3.3 Stereotypes of the AUTOSAR Metamodel UML Profile

The AUTOSAR metamodel UML profile defines a handful of new stereotypes to either
explicitly underline concepts already available in UML or to add modeling capabili-
ties that are not part of standard UML. Those stereotypes are usually prefixed by ‘atp’
(AUTOSAR template profile; a synonym for AUTOSAR metamodel UML profile).

Types and Typed Elements. UML supports types and typed elements as one of the
most fundamental modeling concepts expressed in the Types diagram of the UML in-
frastructure’s Core::Basic package [12]. While modeling of reusable types and their
later use in form of roles and instances is typical in many IT domains, automotive soft-
ware models are very often rather instance oriented. In those models, reuse is provided
in form of creating copies and changing them if required.

One of the main goals of AUTOSAR in fact is the reuse of software and correspond-
ing models. To make the distinction between types and typed elements more explicit,
we enable this feature at M3, in the metamodel profile, in form of three new stereotypes:

– «atpType» is applied to classes in the AUTOSAR metamodel that are defining a
type. This directly corresponds to classes being derived from UML’s Type meta-
class, in most cases those classes are refined forms of UML’s StructuredClassifier.



Definition and Generation of Data Exchange Formats in AUTOSAR 57

– «atpPrototype» is applied to all typed classes. Again, this is a very explicit form of
deriving a class from UML’s TypedElement metaclass, in most cases these classes
correspond to UML’s Property. The name prototype was chosen because of compat-
ibility concerns regarding MSRSW [6], an existing description format for automo-
tive electronic systems. Additionally, since classes with stereotype «atpPrototype»
are roles of a certain type, they in fact are prototypes for instances that are created
at runtime.

– «isOfType» is finally applied to the relation between a prototype and a type. Every
«atpPrototype» can reference at most one «atpType», just as in UML.

Through those stereotypes modelers are forced to explicitly distinguish types and typed
elements. The following figure shows a small excerpt from the AUTOSAR metamodel
where the aforementioned stereotypes are applied.

«atpType»

ComponentType

«atpType»

AtomicSoftwareComponentType

«atpType»

CompositionType

«atpPrototype»

ComponentPrototype
*«isOfType»

+type

1

+component 1..*

Fig. 3. The (AUTOSAR Metamodel Profile) defines new stereotypes for the explicit definition
of types and the corresponding typed elements (called prototypes here for historical reasons).
The figure shows a small example from the AUTOSAR metamodel demonstrating the stereotype
application.

Deep References to Parts of Parts. The fact that AUTOSAR strongly supports the
definition/usage dichotomy through its types and prototypes introduces a challenge in
situations, where an element needs to be referenced that is deeply nested in a part-of-
parts hierarchy as shown in Fig. 4. To ease understanding the chosen example is not
a software problem but describes a bicycle; not just any bicycle, but yours! Your bike
consists of two wheels of a certain type. Those wheel types in turn consist of their own
parts like a tube and a tire of some kind. If you now take your bicycle out on a trip and
blow the front tube you later will need to tell a mechanic what to fix. You can’t just ask
to repair a tube of type TubeX, because possibly every RacingWheel in the shop, and
for sure the two wheels on your bike both have that tube. If you mention that the tube of
a frontWheel needs to be fixed, there may still be multiple RacingBikes having this part.
The work order is precise enough once you specify that the tube of the frontWheel of
yourBike needs to be repaired as indicated in Fig. 5. In technical terms TubeX, TireY,
RacingWheel and RacingBike are all types, while tube, tire, front- and rearWheel as
well as yourBike are usages of those types. A type consisting of parts of certain other
types, which in turn consist of more parts and so on is a typical pattern in object-oriented
languages. The bike example shows that for an exact reference of a leaf (or intermedi-
ate) part in the hierarchy the containing parts must also be specified. In AUTOSAR
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yourBike : RacingBike

frntWhl : RacingWheel rearWhl : RacingWheel

tube : TubeX tube : TubeX

tire : TireY tire : TireY

Fig. 4. Example for a typical part-of-parts hierarchy. A (RacingBike) is a type of bike that contains
two wheels: (frontWheel) and (rearWheel). Those two wheels are usages of the same wheel type
(RacingWheel). Some parts of that wheel type are a (tube) of tube type (TubeX) as well as a (tire)
of tire type (TireY).

yourBike : RacingBike

frntWhl : RacingWheel rearWhl : RacingWheel

tube : TubeX tube : TubeX

tire : TireY tire : TireY

fix

2.

1.

3.

Fig. 5. To refer to a particular tube, the owning wheel as well as the bicycle must be specified.
Complete references to parts-of-parts require the containing context. In AUTOSAR this is called
in instance reference and consists of an ordered list of part references.

we find this requirement e.g. in case of a software component hierarchy. Composite
components may consist of further composites and so on, which eventually consist of
what in AUTOSAR is called an atomic software component. Only those leaf compo-
nents contain actual code and use up resources like CPU time or memory, and exactly
those leaf components must be deployed to the processing nodes (ECUs, electronic
control units) of the system, i.e. they must be referable from a top level deployment
element. UML 2 addresses this requirement only for exactly one hierarchy level in case
of the UML connector connecting two ports of a structured classifier’s parts: in addition
to the port which is defined by its owning type the UML connector end also references
the corresponding part through the attribute ConnectorEnd.partWithPort [15]. However,
AUTOSAR requires this issue to be addressed for the general case of arbitrary depth.
Therefore, we extended the UML 2 approach by not just specifying a single contextual
part, but an ordered list of those, starting with the outermost and ending with the inner-
most part, just as shown in Fig. 5. A short form of this reference type is presented in
Fig. 6 to once more allow our domain experts to express their concepts in a convenient
and simple way. The corresponding stereotype «instanceRef» for the association got
its name from the fact that the reference is indeed specifying an instance-like occur-
rence of the reference target instead of just a part in the context of its owning type. A
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yourBike : RacingBike

frntWhl : RacingWheel rearWhl : RacingWheel

tube : TubeX tube : TubeX

tire : TireY tire : TireY

fix

<<instanceRef>>

Fig. 6. AUTOSAR introduced an abbreviation for instance references in form of a regular associ-
ation stereotyped («instanceRef»)

comparable motivation led to a similar concept in SysML in form of the SysML «Bind-
ing» stereotype, which also allows referencing a list of parts through the Binding.path
attribute [16]. However, the SysML solution targets a different use-case.

4 Transformation of the PIM to XML Schema

This section describes our transformation of the AUTOSAR metamodel to an XML
schema. Especially we motivate why and how our approach exceeds the possibilities
provided by existing methods like XMI.

4.1 Design Patterns of the AUTOSAR XML Schema

Several approaches for translating UML or MOF based metamodels into XML Schema
or XML DTD [3][2][17] have been evaluated. None of them fulfilled all requirements
on the AUTOSAR data exchange format, the most important of which are listed
below:

– unambiguous mapping between instances of the XML Schema and instances of the
AUTOSAR metamodel,

– reuse of XML patterns well established in the automotive domain, and
– support of tools in the XML and the model domain.

The AUTOSAR XML schema fulfills these requirements by combining the strengths
of several existing XML patterns: Our XML schema is a dialect of XMI 1.2 that is ex-
tended by legacy XML patterns, which are harmonized between several data exchange
formats frequently used in the automotive industry.

The following sections describe the requirements and how they are fulfilled in more
detail. After that the configuration possibilities and translation rules are explained.

Unambiguous Mapping. The seamless exchange of data between tools requires un-
ambiguous mapping of information stored in the model domain to the XML domain
and vice versa. AUTOSAR follows the concept used in XMI: By default all navigable
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association ends, attributes and types in the model domain are explicitly represented by
XML elements or attributes in the XML domain.

The default mapping rules used by AUTOSAR are inspired by XMI 1.2: navigable
association ends, attributes and types in the metamodel are all represented as XML el-
ements. Fig. 7 shows a typical metamodel fragment and an instance of the AUTOSAR
XML schema created using the default mapping rules. The type information is re-
quired in order to manage inheritance: it must be possible to distinguish between ClassB
and SubClassB. Additionally, the names of the navigable association ends (roleB1 and
roleB2) are required in case of multiple associations with the same type. In case a model
fragment doesn’t make use of multiple association or inheritance it is allowed to over-
write the default mapping rules, as explained later in this section.

<CLASS-A>

   <ROLE-B-1S>

      <CLASS-B>...</CLASS-B> 

   

      <SUB-CLASS-B>...</SUB-CLASS-B>

     

   </ROLE-B-1S>

   <ROLE-B-2>

      <SUB-CLASS-B>...</SUB-CLASS-B>

   </ROLE-B-2>

</CLASS-A>

ClassA ClassB

SubClassB

+roleB1

0..*

+roleB2

1

Fig. 7. A typical metamodel fragment, including classes, multiple composite associations, and
a corresponding sample instance of the AUTOSAR XML schema created using the default
mapping rules

Support for Tools in the XML and Model Domain. The AUTOSAR data exchange
format will be used by a wide variety of different tools such as primitive XML editors,
legacy tools and graphical tools explicitly optimized for the AUTOSAR methodology.
Most tools internally implement their own data model with a structure different from
the AUTOSAR metamodel. While XMI strives to satisfy the requirement to find a very
simple transformation from a metamodel to its XML representation, we see no great
advantage in pursuing this goal, as the resulting direct transformation is not possible
for tools and their proprietary models. We therefore trade the straightforwardness of the
XMI transformation against high configurability.

Additionally, we limit used XML schema features to a subset that is generally ac-
cepted within the XML community and is implemented by most off-the-shelf XML
tools and libraries. E.g. we do not use XML schema inheritance because it is limited
to single inheritance and makes use of features like xsi:type, the usefulness of which is
debated among XML experts [4][5].

Inheritance in the AUTOSAR metamodel is mapped to the AUTOSAR XML schema
using the copy-down-approach of XMI 1.2. However, instead of repeating inherited
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properties in the declaration of XML elements, (see e.g. the repetition of ModelEle-
ment.name in the XMI 1.2 MOF DTD [2]) we use element and attribute groups, which
are referenced if needed. Polymorphism is made explicit in the schema by listing all
concrete subtypes.

Support of Existing DTD Based XML Formats. Some concepts used in AUTOSAR
are already well defined by existing XML formats used in the automotive industry. For
selected contents the translation of the AUTOSAR metamodel to the XML Schema
shall be flexible enough to reproduce such a standardized format. AUTOSAR addresses
this requirement by providing the advanced configuration possibilities explained
below.

Configuration of XML Schema Production Rules. The AUTOSAR XML schema
production rules are configured by UML tagged values attached to the metaclasses and
owned properties of the AUTOSAR metamodel. Default tagged values are implied in
(the very typical) case, where no explicit values have been added to a model element.
Tagged values on roles (references, composition and attributes) control which XML
elements or attributes are generated for representing the given role. Additionally order
and multiplicity is configurable.

ClassA ClassB

xml.name = ROLE-B-1
xml.namePlural = ROLE-B-1S
xml.attribute = false
xml.roleElement = false
xml.roleWrapperElement = true
xml.typeElement = true
xml.typeWrapperElement = false

xml.name = CLASS-A
xml.namePlural = CLASS-AS

xml.name = CLASS-B
xml.namePlural = CLASS-BS

SubClassBxml.name = SUB-CLASS-B
xml.namePlural = SUB-CLASS-BS

+roleB1

0..*

Fig. 8. The platform independent UML model is annotated with a set of predefined tagged values:
our model marks. The tags specify how a model entity is translated to the XML schema plat-
form, e.g. whether an XML element or XML attribute has to be generated, in which order XML
elements have to appear, or whether wrapper elements for multiple classes need to be generated.

Fig. 8 shows the default configurations for a composition relationship with
unbounded upper multiplicity. Table 1 lists the most important tagged values that are
part of our schema production configuration.
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Table 1. List of the most relevant tagged values used in our transformation from the AUTOSAR
metamodel to XML schema. The values refer to roles as synonym for UML properties.

Tag name Applicable to Description

xml.name role, class Provides the name of a schema fragment rep-
resenting the role or class.

xml.namePlural role, class Provides the plural name of a schema frag-
ment.

xml.attribute role If set to true, the role is represented as at-
tribute. This tag is only applicable for roles
typed by a primitive datatype with an upper
multiplicity of 1.

xml.roleElement role If set to true, the xml.name of the role shows
up as XML element.

xml.roleWrapperElement role If set to true, the xml.namePlural of the role
shows up as XML element. This XML ele-
ment is typically generated in case the multi-
plicity of the role is greater than 1.

xml.typeElement role If set to true, the xml.name if the role’s type
shows up as XML element.

xml.typeWrapperElement role If set to true, the xml.namePlural of the role’s
type shows up as XML element.

The following listing shows how the aforementioned metamodel fragment is
mapped to XML schema:

<xsd:element name="CLASS-A" type="CLASS-A"/>

<xsd:complexType name="CLASS-A" abstract="false" mixed="false">
<xsd:sequence>
<xsd:group ref="CLASS-A"/>

</xsd:sequence>
</xsd:complexType>

<xsd:group name="CLASS-A">
<xsd:sequence>
<xsd:element name="ROLE-B-1S" minOccurs="0">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="CLASS-B" type="CLASS-B"/>
<xsd:element name="SUB-CLASS-B" type="SUB-CLASS-B"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:group>

<xsd:complexType name="CLASS-B" abstract="false" mixed="false">
<xsd:sequence>
<xsd:group ref="CLASS-B"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="SUB-CLASS-B" abstract="false" mixed="false">
<xsd:sequence>
<xsd:group ref="CLASS-B"/>
<xsd:group ref="SUB-CLASS-B"/>
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</xsd:sequence>
</xsd:complexType>

<xsd:group name="CLASS-B">
<xsd:sequence>
...

</xsd:sequence>
</xsd:group>

<xsd:group name="SUB-CLASS-B">
<xsd:sequence>
...

</xsd:sequence>
</xsd:group>

5 Implementation of the Schema Generator

Our tool chain links a number of publicly available modeling and processing tools. The
complete process is depicted in Fig. 9.

We have two important sources defining AUTOSAR concepts: (a) the AUTOSAR
workgroups directly specifying particular content of the metamodel and (b) an exist-
ing standard for automotive software systems, the ASAM MSRSW harmonized objects
[7]. The original AUTOSAR concepts were directly modeled utilizing our UML subset
with Sparx System’s Enterprise Architect. In order to incorporate the MSRSW models,
which at that time did not exist in UML, but were available as DTD only, we realized
a simple reverse-engineering script, which creates a model compliant with the AU-
TOSAR modeling guidelines from the MSRSW DTD. Explicit import statements start-
ing at the original AUTOSAR metamodel specify, which parts of the complete MSRSW
need to be available as part of the joint AUTOSAR metamodel.

AUTOSAR 
Concepts

1a: Metamodeling with
Enterprise Architect

2: Transformation of tool
specific UML model to

EMF ecore

3: Generation of XSD
through EMF JET

1b: Rev erse engineering
DTD -> UML

MSRSW XML DTD

Ecore 
Representation of 

AUTOSAR 
Metamodel

AUTOSAR 
Metamodel in 

UML

AUTOSAR XML 
Schema

Fig. 9. Overview of the implemented AUTOSAR metamodel tool-chain. The applied process
steps are numbered in their order of execution. (1a) and (1b) indicate the two possible sources
for models: original AUTOSAR concepts as well as existing standard formats like the MSRSW
DTD.
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The second processing step transforms the modeling tool dependent metamodel into
an independent Java representation. Here we found the Eclipse Modeling Framework
(EMF) [18] most useful, with a very clean API and extremely good support for meta-
modeling tasks through arbitrarily deep access to all metalevels of a model in a sin-
gle application. The conversion step includes a number of mechanisms that allow for
graceful degradation in case the model is not fully following the AUTOSAR metamodel
rules. While the final model of course must be compliant, the sheer number of people
contributing to it requires a resilient algorithm in order to create and verify results early
in the process.

Finally, we use EMF’s Java Emitter Templates (JET) to translate the EMF based
metamodel into its final representation: the AUTOSAR XML schema.

6 Summary and Outlook

The Model Driven Architecture approach is well suited for defining the AUTOSAR
domain specific language and the corresponding data exchange format. While using
standard UML modeling techniques, we limit the expressive power of UML to a degree
allowing automotive engineers to actively contribute to the metamodel. This is further
supported by the strict platform independence of the model. No XML knowledge is
required to work on the AUTOSAR metamodel and finally get new concepts into the
exchange format.

The metamodel is optionally marked up with tagged values for configuring the
translation to XML schema. The configuration possibilities allow for powerful adap-
tation of the resulting XML format. If the default XMI 1.2-like translation is not suf-
ficient it may be customized to suite individual needs. This allows for reproduction of
XML fragments out of the AUTOSAR metamodel, which are already established in
the automotive domain as part of other standard data exchange formats. We proved the
applicability of our approach by describing the Java implementation of our EMF-based
schema generator. Future work may happen in the following areas:

– Additional transformations can be added. For instance, we are currently creating
generators that realize persistence code to read and write the format defined by
AUTOSAR. Since commercial tools typically will not be based directly on the
AUTOSAR metamodel, but much rather will instantiate their own, tool- optimal
model, such generators will therefore be specific for the target tool environment.

– Since many tools and projects start supporting formal model transformations as
prescribed by the OMG QVT specification we will start evaluating available plat-
forms and eventually switch over to begin using more formal methods instead of
our handcrafted transformation code. This applies to both, the description of the
transformations as well as the actual implementation.

– The AUTOSAR metamodel is annotated with OCL constraints [19] where required.
But as of now, we are not automatically evaluating those. With the recent releases
of more capable OCL processors we will start to implement automatic constraint
checking in upcoming versions of our tool-chain.
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Abstract. Increasing the performance and flexibility of automated
manufacturing systems is a key success factor for today’s production
companies. Flexible Manufacturing Systems (FMS) have proven to be
particularly suitable in this regard since they support small lot sizes and
high numbers of variants at the same time. The most important prob-
lems facing FMS are the huge expenditure of time and the high costs for
“engineering” its control software. Engineering in this context refers to
all aspects from planning the concrete production process, to assigning
machines to control programs, to implementing software modules, and to
testing the whole configuration. In this paper, we describe a model driven
approach to support consistent engineering of FMS control software. It
makes use of UML and customized UML metamodels for FMS-specific
features, and includes a prototype implementation based on open source.
We report on first experiences with a real FMS running cosmos 4, a dis-
tributed, agent-oriented FMS control software.

1 Introduction

Since the 90s, increasing the performance and flexibility of automated manufac-
turing systems has been a key success factor for today’s production companies.
Flexible Manufacturing Systems (FMS) have proven to be particularly suitable
in this regard. A Flexible Manufacturing System is an arrangement of machines
interconnected by a transportation system, which allows to build products in
small lot sizes and high numbers of variants at the same time. In the different
application domains such as milling and turning, sheet metal processing, and
sawing of slug material, there exist manifold differences concerning the detailed
modelling of the FMS, its workpieces and materials, as well as its manufacturing,
handling, and transportation processes. To overcome this heterogeneity, a new
automation solution, the cosmos 4 platform, has been developed at Aachen Uni-
versity’s Laboratory for Machine Tools and Production Engineering (WZL) [1].
It is a distributed, agent-oriented approach to universal and open control com-
ponents for different types of FMSs.

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 66–77, 2006.
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However, a FMS control software like cosmos 4 must be adapted and config-
ured to control a concrete production process in a real manufacturing system.
This kind of adaptation is called “engineering”. Engineering here includes all
aspects from planning the concrete production process, to assigning machines
to control programs, to implementing new software modules, and to testing the
whole configuration. One of the most important problems facing FMS is the huge
expenditure of time for engineering its control software. This problem traces back
to the lack of concept and proper tool support for engineering. In addition, the
high complexity of the process itself requires extensive know how. Consequently,
only few highly qualified and thus expensive employees are able to do this job.
Furthermore, a largely manual implementation leads to high error quota. On the
whole, this pushes costs and time of the implementation.

In this paper, we address these problems by proposing a model driven engi-
neering concept and a corresponding tool, the cosmos 4E (E for Engineering).
The solution is based on UML-related models together with corresponding trans-
formations and thus enables engineering of FMS control software on a higher
level of abstraction and in a more efficient way. In addition, this relaxes the
dependence on expensive experts and reduces implementation errors.

The paper is organized as follows. In Section 2, we present the cosmos 4
platform and the steps of engineering for a concrete production. Section 3 intro-
duces the model driven engineering concept with a special focus on behaviour
modelling by introducing a new metamodel in the style of Gantt charts. After
presenting some implementation details (Sect. 4), we report on a first evalua-
tion (Sect. 5) and conclude the paper with a brief discussion of our experiences
(Sect. 6).

2 Foundational Issues

The cosmos 4 platform addresses the heterogeneity of FMS by two major fea-
tures. Firstly, it includes an independent reference model that holistically fits the
static structure of FMS and its components as well as the dynamic behaviour
of FMS operations. Secondly, it provides a new advanced concept for increased
“programmability” of control components reflecting that the control logic is at
the core of the FMS control system’s software [1]. These two features ease also the
adaptation to changing requirements. But due to its vast applicability and scal-
ability, the profitability of cosmos 4 depends predominantly on its engineering
costs. Below you find the general process of engineering FMS control software,
which follows the well-known waterfall software development model:

1. Architecture Planning establishes an overview of the manufacturing sys-
tem. All components like machines, transportation systems, storage systems,
and system places are listed and classified. Furthermore in a distributed,
agent-oriented FMS setting, the assignment between machines and control
components is not fixed. Thus, it has to be decided which machines will be
combined to a cell and subsequently controlled by a single agent.
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2. Process Planning defines the automated production process for the re-
quired workpiece. All necessary operations and their execution dependencies
have to be identified. A Gantt chart is up to now the most popular mean
to illustrate the production process, since people are accustomed to think
chronologically.

3. Data Collection concerns recording the static structure of the FMS and
its components as well as the dynamic behaviour of FMS operations and
mapping it to a suitable data structure.

4. Definition of Machine Interfaces The machines are accessible via vendor
specific device drivers. The resulting heterogeneity can be coped with by a
universal, vendor-independent interface between the device control and FMS,
which raises the level of abstraction and reduces the complexity.

5. Definition of Control Logic The dynamic behaviour of a control compo-
nent is defined in its control logic. The control logic includes state variables
and control rules. According to the current state, a matching control rule is
identified and immediately executed. The separation of the control logic from
other code is advisable since this part has to be modified frequently. Usually
activity diagrams or Petri nets are used to illustrate the control logic.

6. Implementation of Functional Modules The operations called by
agents are grouped into functional modules. There are three types: to process
data, to execute operations, and to communicate with other agents.

7. Testing and Optimization reveal errors and weak points that can not be
identified at implementation time. Nowadays, the testing is usually carried
out in a virtual simulation environment to reduce the costs. Additionally,
it is attempted to improve the overall performance of the whole system by
reorganizing the production process, in order to minimize the waiting time
of machines.

8. Documentation is especially important in this setting since processes and
machines are often changed due to new pieces that have to be produced or
machines that are replaced. It should accompany all of the steps mentioned
above.

3 A Model Driven Engineering Concept

Two problems can be identified in the traditional engineering approach of FMS
control software. Firstly, until now the above mentioned engineering steps are
insufficiently connected to each other, thus, direct information flow from one
phase to the next is prevented. Architecture planning and process planning, for
example, deliver merely text and diagrams as output that can not be adopted
directly during the implementation. Secondly, it is a tedious and error-prone
job to write structurally rather similar code over and over again. To overcome
these problems, our basic idea is to provide for each of the engineering steps a
corresponding model and to support mostly automatic transformations between
them. Consequently, as much code as possible should be generated automatically,
fully or partially from the models. Thus, engineering is now considered as a
process of refinement and concretion of models.
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3.1 Overview

Above we described a vision of applying MDA to engineering FMS control soft-
ware. It can only be realized through a proper interpretation. The key of the
interpretation is to find an appropriate modelling language.

Fig. 1. A Model Driven Engineering Concept

Figure 1 gives an overview over the whole model driven engineering approach.
The output of engineering can be divided into two categories: objects and behav-
iour. The objects represent all components within a FMS, while the behaviour
describes the production process of machines. This separation makes sense since
usually different modelling languages and methods are applied. In this paper,
we focus on the behaviour modelling because changes to the production process
are quite frequent due to the small lot sizes, while the object modelling for an
FMS is rather static.

As a running example, we consider the adaptation of cosmos 4 to control
the integrated manufacturing and assembly system (IFMS) installed at WZL
for producing a “Four Wins” game. The production includes sawing, milling,
and assembling. For that, the sawing machine KASTO and the milling machine
MAHO need to cooperate. In addition, a robotic palletiser and the transport
system AGV are responsible for the material flow.

3.2 Object Modelling

As object modelling is not at the focus of this paper, we illustrate the idea only
with a simple example. Figure 2 shows a pallet with fixture on a roller table. To
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Fig. 2. Pallet Example

describe these objects and their relations, 16 entities in the relational database
are needed, according to the data model in cosmos 4.

A more intuitive representation can be given by a UML object diagram (see
Fig. 3 (a)). Furthermore, the object diagram can be based on a corresponding
class diagram (see Fig. 3 (b)) to ensure consistent modelling for all objects. Thus,
with a suitable library of FMS elements, architecture planning and the subse-
quent data collection can be alleviated.

Fig. 3. UML Object Diagram and UML Class Diagram

In the last step of object modelling (see step 3 in Fig. 1) a decision has to be
made as to how the data is stored e. g. as a relational database, as an XML file
etc. But this is a purely technical decision and thus can be left to an appropriate
transformation step. Due to efficiency, cosmos 4 uses a relational database.
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3.3 Behaviour Modelling

The desire for a consistent engineering environment promotes the use of the
UML standard or at least UML-based modelling languages in all engineering
phases. However, as mentioned above, the production process of machines is
usually planned with Gantt charts, which unfortunately do not belong to the
UML family. By comparing with all UML diagram types, it can be observed
that Gantt charts are tightly related to UML activity diagrams. So UML activity
diagrams are used as the basis for constructing Gantt charts.

There are two possibilities to establish a metamodel for Gantt charts: using
UML’s standard extension mechanism – UML profile – to extend the UML
activity metamodel or building an own MOF-based metamodel using the UML
activity metamodel as a reference. While UML with UML profile would be an
ideal solution, we decided for the moment in favor of an own metamodel because
it simplifies the implementation of our prototype and reduces in particular the
complexity of transformations. Nonetheless, we still consider a corresponding
UML profile as possible in the future, similar to the UML Profile for CORBA [6]
that also follows this idea.

Fig. 4. Metamodel for Gantt Charts

Figure 4 shows the metamodel for Gantt charts. Compared to the UML
activity metamodel, it is much more simplified. For example ObjectNode and
ObjectFlow have been omitted. On the other hand some new elements are in-
troduced. ActionInstance, for example, represents the execution of an action at
runtime. Thus, ActionInstance has a n-to-1 relationship with Action. The edges
that are used to connect ActionInstances show their dependence in time and
have nothing to do with transitions. Therefore a new model element ActivityIn-
stanceEdge is created, which is not related to ActivityEdge.
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Fig. 5. Gantt Chart and Activity Diagram Example for KASTO

Figure 5 (a) describes the process planning for the sawing machine KASTO.
As we can observe from the figure, the agent controlling KASTO will request
the transport system AGV to deliver the pallet and the robotic palletiser to be
prepared for picking the sawed workpiece, before KASTO can start the sawing
job. Since these are two independent operations, they can be executed simul-
taneously. As soon as the agent receives the commitments from AGV and the
robotic palletiser, it will start the sawing process. It is not necessary to wait
until they are in position.

Activity diagrams are used to model the machine control logic. Again we
prefer our own metamodel shown in Fig. 6. We adopted as much elements from
the metamodel of UML activity diagrams as possible. As to the conditions, we
extended this concept to fit the special requirements of FMS control software.

The activity diagram for the sawing machine KASTO is shown in Fig. 5 (b).
The control logic is executed in cycle and can only be terminated externally,
so no final node is defined. Every action is accompanied by a decision node for
checking the precondition. For example, only when the sawing job is loaded but
no pallet is available, the KASTO will request the AGV to deliver an empty
pallet. Since every action appears only once, the activity diagram provides a
more technically suited view to the control logic than Gantt charts.

Machine drivers and functional modules belong to the individual parts of
FMS control software. But nevertheless, some modelling support is possible.
The difference is that only a code frame can be generated for machine drivers or
functional modules. We omit details here due to the limit of space.

The steps for modelling of behaviour are illustrated on the right side of Fig. 1.
The Gantt charts – representing process planning – and the activity diagrams
– representing control logic – are connected by a fully automated model-to-
model transformation. Since an official language for QVT has not yet been re-
leased, the model-to-model transformations are currently implemented in text,
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Fig. 6. Metamodel for Activity Diagrams

but encapsulated to ease their replacement. From the activity diagram, the im-
plementation of the control logic can completely and automatically be generated.

4 Implementation

4.1 Technologies and Tools

Our prototype tool, named cosmos 4E (E for Engineering), focuses currently on
the behaviour modelling, including process planning, definition of control logic,
constructing functional modules, and testing. For this purpose a set of tools
is needed that concern a model repository, a graphical model editor, a model
transformation tool, a code transformation tool, and a runtime manager.

While in principle we should be able to choose any existing MDA tool with
XMI support [7], the currently available tools on the market do not provide this
ideal. Our implementation overcomes this problem by finding a platform first,
in which each MDA tool for the prototype can be easily integrated. The choice
of Eclipse is advantageous since it is primarily an integration platform through
the concept of plug-in development environment (PDE). In addition, a lot of
MDA-based tools are available as Eclipse plug-ins.
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The commitment to a platform simplifies the choice of MDA tools. The
Eclipse Modeling Framework [2] is an Eclipse plug-in, a modelling framework,
and a code generation facility for building tools and other applications based on
a structured data model. EMF provides mechanisms to view and edit the model
and is able to import or export models from or into XMI. The Graphical Edit-
ing Framework [3], another Eclipse plug-in, allows developers to take an existing
model and quickly create a rich graphical editor. As no suitable tool for model-
to-model transformation is available yet, we implemented it directly in source
code. Concerned with code generation, EMF contains two very powerful tools:
Java Emitter Templates (JET) and Java Merge (JMerge). JET [8] is a generic
template engine using a JSP-like syntax and can be used to generate any kind
of output from templates. JMerge [9] is an extension to JET and allows code
re-generation by ensuring that the customized code is not overwritten.

4.2 cosmos 4E

cosmos 4E is created as an Eclipse plug-in and integrated with the Eclipse plat-
form and other plug-ins. The structural overview of cosmos 4E is shown in Fig. 7.

Figure 8 illustrates the use of the Gantt chart editor. In contrast to normal
Gantt charts, this editor has some special features: The production process can be
planned in minutes, seconds, and milliseconds instead of days and weeks. And each
process can be assigned to a resource, which refers in this context to a functional
module. With the aid of a tool palette, new elements can be created.The properties
of these elements are accessible and editable through the property view.

After the process planning, the user can start the automated model-to-model
transformation to create the activity diagram. The generation is preceded by a
simple model verification that ensures that the model is valid. The generated
activity diagram is shown in a read-only editor. After that the model-to-text
transformation can be called. This generates the control logic in source code.
As the user is supposed to provide the complete information in the Gantt chart
editor, no modification in the source code is necessary. A re-generation always
overwrites old data. A new functional module can be created via a dialog. Due
to the complexity of functional modules, only an essential part of the Java code
can be generated. Other methods must be manually implemented and it has
been taken care that they will not be overridden by re-generation.

Fig. 7. Overview of cosmos 4E
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Fig. 8. Overview of Gantt Chart Editor

Furthermore, we implemented various views in Eclipse, which act as proxies
to the source repository, for example, templates, functional modules, and control
logic files. The functionality of a runtime manager is also integrated as a view.
It allows a user to start an agent watcher, which reuses the model and logs the
runtime activities of agents. The results can again be illustrated in the Gantt
chart editor and compared with the planning data. This provides the users with a
possibility to analyze the weak points in the planning and make an improvement.

5 Evaluation

To provide “useful feedback” to the prototype, we introduced a small evalua-
tion. As mentioned in the introduction, the engineering process itself requires
extensive know-how. Thus, we could only attract five users that already have
a sufficient background knowledge about FMS and enough coding experience.
They were divided into two groups and required to finish the same task. To
complete the production process for the “Four Wins” game, a new agent for
the milling machine MAHO had to be created. This includes the definition of
the control logic, the preparation of all invoked functional modules, and other
necessary agent configurations.

Group A was instructed to work with the prototype, while group B wrote the
source code manually. Both groups were given corresponding material about a
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finished agent as an example. Models and source code were given to group A and
merely source code was given to group B. User satisfaction was collected by a feed-
back form. The users were also asked to record the time needed for each step.

The prototype is evaluated as helpful. The feedback shows that group A,
which got the models as introductional material, could learn much faster than
group B working with source code only. On average, group A needed one third
less of the time of group B. This confirms that the models are better under-
standable than source code. While the evaluation was not extensive enough to
make a well-founded comparison of the quality of the engineering results, it has
become obvious that group A’s results contained fewer errors. This results not
only from the automated code generation (about 500 lines that group B had to
code manually), but also from a simple model checking that is provided by the
prototype. It checks, for example, whether every needed parameter is specified.
Enriching the model checking facilities, e.g. for including semantical checks, in
the future is a strong wish of the users.

6 Discussion

We are aware of some other projects concerning efficient engineering of FMS
control software that have been started in the academic field during the last
years [12], [13], [4]. Most of them concentrate on single engineering steps,
modules, repositories, or configuration files. Fewer approaches have been made
by using models. Langen [5] tried to develop an engineering architecture cover-
ing various modellers and generators. Current research in this area mostly con-
cerns the automobile industry. The project IMMOS1 e.g. aims at an integrated
methodology for model driven development of control devices [11]. Various mod-
elling languages like Matlab, Stateflow are applied. Although the concepts and
tools reported by IMMOS can not easily be adopted for the engineering of FMS
control software, their experiences show that model driven engineering can cause
improvements. Furthermore, it is reported that the available tools for model
driven engineering are still insufficient [10].

The approach that we have presented here – consisting of a model driven
concept and a set of MDA-based tools – allows an efficient and integrated engi-
neering of FMS control software. The test trial of the prototype has proven that
the engineering of FMS control software, driven by models, can make a profit.
Meanwhile, we gathered a lot of experiences on developing MDA solutions.

Until now there is not a single tool that supports all features of MDA, thus,
usually a set of tools is needed. To make the decision, as to which MDA tools
are to be selected, designers have to look for different aspects or factors that are
required by their particular project. We have made good experiences by start-
ing from a platform that acts as a basis for MDA tools. Furthermore, based
on long-term considerations, using standard metamodels like UML metamodel
with specific extensions (e. g. UML profiles) is obviously advantageous. How-
ever, building own metamodels reduces development costs and implementation
1 http://www.immos-projekt.de
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complexity considerably, especially for model transformations. For our proto-
type, we have thus chosen the latter way. Finally, MDA is still a new concept.
Currently available open source MDA tools are not sufficiently mature to sup-
port all features of MDA. For example, there are few tools which can describe
QVT or offer model-to-model transformation. Even so, it is important to be
prepared for adopting new technologies or tools during the implementation. We
packaged the source code for model-to-model transformation, for which we pro-
vide documentation and guidance, waiting for new MDA tools to replace it.

Future work will focus on extending the cosmos 4E engineering environment
to object modelling and to elaborating the use of models during test and ver-
ification. Furthermore, we are looking forward to new MDA tools for better
support, especially in the area of model-to-model transformation and model-
checking. Eventually, our efforts might result in a new UML profile supporting
consistently all phases of engineering FMS control software.
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Abstract. Experience reports show that MDD reduces time-to-market and in-
creases productivity by means of platform independent business logic model-
ling and automation. Achieving these two concepts in the organisation is not a 
one step process. This paper explains the MDD Maturity Model developed to 
drive this task in a structured way. The MDD Maturity Model establishes five 
capability levels towards the progressive adoption of MDD within an organisa-
tion. Each level describes a coherent set of engineering, management and  
support practices involved in the MDD approach, and characterizes the MDD 
artefacts, called MDD elements, used in or resulted from those practices. The 
paper presents also the validation process that the model will undergo in two 
large organisations and two SMEs. 

1   Introduction 

Several examples can be found of satisfactory MDD introduction in organisations, 
such as Interactive Objects’ report on MDA experimentation in DainmlerChrysler 
TSS and M1 Global’s own case study report, both available at Object Management 
Group’s (OMG) MDA web site (www.omg.org/mda). 

As seen in experiences of the like, successfully introducing MDD methods and 
tools in a project is not simple, and obviously deploying them throughout the organi-
sation is much more complex because it implies serious changes in the organisation’s 
culture and processes: start treating models as first class citizens (which means keep-
ing them updated and on-track), adapt the roles, provide staff with the necessary tool-
ing and methodological training, and so on.  

Maximising the benefits of MDD for time-to-market reduction and productivity in-
crement is achieved through two key factors: abstracting from platform specificities 
when modelling business logic and exploiting automation possibilities. 
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In this paper we explain the MDD Maturity Model developed within the MODEL-
WARE project1 aimed to help organisations in the MDD approach adoption, until the 
whole process automation is reached, and organisation acquires the sufficient capabil-
ity for business knowledge capitalisation in reusable models.  

The Model has been developed to be used as reference model for identifying and 
appraising the level of maturity of a given organisation with respect to MDD technol-
ogy implementation. The validation of the model will be done through using the 
model in assessments of MDD implementations by different companies. 

The remainder of this paper is organised as follows. The next section explains the 
concepts used in the MDD Maturity Model, and Section 3 explains the Model itself. 
Section 4 summarises its major contributions for the industry and Section 5 describes 
the validation process the model will undergo. In section 6 we deal with some related 
works and finally, we present our conclusions and future work. 

2   The MDD Maturity Model Concepts 

The MDD Maturity Model consists of five maturity levels. The maturity levels  
provide a general characterization of the organisations with respect to the degree of 
adoption and implementation of MDD; this means that each maturity level indicates a 
step forward in the MDD improvement path of the organisation. For each maturity 
level goals associated to both MDD practices and MDD elements status are defined. 

2.1   MDD Practices 

MDD practices describe only activities specific for the model-driven development 
and typical practices in traditional software development are deliberately excluded 
from this Model. 

Three categories of MDD practices are defined in the MDD Maturity Model: 

• Engineering practices (ENG) cover development activities in the model-driven 
software engineering discipline.  

• Project management practices (PJM) address activities that are directly related 
to management decisions absolutely necessary to setup and manage an MDD 
project. The typical practices such as planning a project, milestone definition 
and resource assignment are not considered.  

• Support practices (SUP) cover activities that support the implementation of the 
engineering and the project management practices. 

2.2   MDD Elements 

MDD elements are the basic artefacts used in the MDD technology such as models, 
transformations, MDD tools and so on. The following MDD elements are identified: 
                                                           
1 The work presented here has been developed within the MODELWARE project. 

MODELWARE is a project co-funded by the European Commission under the “Information 
Society Technologies” Sixth Framework Programme (2002-2006). Information included in 
this document reflects only the author’s views. The European Community is not liable for 
any use that may be made of the information contained herein. 
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Table 1. MDD Elements and associated attributes 

MDD Element: Attribute: Attribute description: 
Models Model purpose The extent to which the model is defined 

according to established organisational 
policies and standards.  

 Adherence to organ-
isational policies 
and standards 

The objective for which the model is de-
fined.  

 Scope of the model The extent of the matters defined in the 
model.  

 Integration degree The extent to which the model is integrated 
in the development process, if the model is 
defined in isolation or it is linked to other 
MDD elements by means of formal and 
consistent relationships. 

 Verification degree  To which extent the verification activities 
are focused on this model. 

 Traceability depth  Extent of details addressing the traceability 
of the model to other MDD elements.  

 Simulability Ability of being simulated by means of a 
model simulator. 

 Executability Ability of being executed by means of a 
model executor or virtual machine. 

Transforma-
tions and code 
generation 
mechanisms 

Transformation type Horizontal (generation of another model 
view at same level of abstraction) or Verti-
cal (generation of another model or artefact 
at another level of abstraction). 

 Round-trip engi-
neering support 

Degree of support for round-trip engineer-
ing (forward and backward transforma-
tion). The implementation of this aspect 
supports synchronisation among models. 

 Platform depend-
ency 

Degree of dependency with the specific 
target platform of the system. 

Tools Integration facility Capability of the tool to be integrated with 
other tools supporting the MDD process. 

Documentation Automation extent Average ratio of automatically generated to 
manually written part in documentation. 

 
• Models: A model represents an abstraction (simplification) of something in the real 

world and captures its essential characteristics. The following types of models are 
distinguished: 
• Domain metamodel: is the metamodel or language that captures the abstract 

structure of the business domain identifying fundamental domain entity types 
and the relationships between them. 

• Architecture-centric metamodel: is the metamodel that captures the concepts of 
the technical platform. 
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• Domain model: is the model that defines how a business works without refer-
ence to software systems, similarly to OMG’s Computation Independent Model. 

• Business model: is the model that resolves business requirements through purely 
problem-space terms and it does not include platform specific concepts, as the 
OMG’s Platform Independent Model. 

• Technical model: is a solution model that resolves both functional and non-
functional requirements through the use of platform specific concepts. This 
model is equivalent to the OMG’s Platform Specific Model.  

• Code: is the final asset in the development, which can be considered as a model 
because it conforms to a specific metamodel, the programming language. 

• Model transformations and code generation mechanisms: are mechanisms for 
converting a model to another model of the same system. Model to model, Model 
to text and Model to code transformations are examples of this MDD element type. 

• Modelling tools: are tools that are used in modelling activities, e.g. model editors, 
model simulators, model executors, model repositories, transformation editors, 
transformation repositories, transformers… 

• Documentation: is the set of text documents which describe all the development 
process and/or the assets generated and, thus, is linked to other MDD elements. 

 

While MDD practices do not, MDD elements do have MDD attributes associated 
to them. Each attribute describes an essential characteristic of the MDD element. The 
next table summarizes the attributes identified in the Model. 
    The maturity level of an organisation is given by the assessment of two factors: 

• whether the MDD practices and MDD elements corresponding to that maturity 
level exist or not and 

• whether those MDD elements’ attributes take the appropriate values corresponding 
to that maturity level.  

3   The MDD Maturity Model 

One of the major requirements of the MDD Maturity Model developed inside 
MODELWARE project is to be compliant with the Capability Maturity Model® Inte-
gration (CMMI®), which is a recognised and widely spread model, implemented in 
lots of software intensive organisations.  

One approach to developing the MDD Maturity Model is to define how the MDD 
activities amplify the CMMI® specific practices. This approach could be useful for 
organisations that have experience and knowledge in applying CMMI®. However, 
organisations interested in adopting MDD without implementing CMMI® will get 
little benefit from an MDD Maturity Model represented as an amplification of 
CMMI®. Besides, lots of Small and Medium Size (SME) companies do not apply 
CMMI®, yet are interested in increasing the effectiveness of their software engineer-
ing processes by means of MDD. The MDD Maturity Model is developed as an inde-
pendent model, which, however, complements CMMI. 
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Additionally, the MDD Maturity Model is aligned with the model developed 
within the FAMILIES (IP02009) project, with respect to the domain capitalization 
dimension, because the goals of the two upper levels in the MDD Maturity Model fit 
very well in it.  

To define the MDD Maturity Model, literature and early adopters’ MDD processes 
has been studied and the following approach was adopted: 

• Analysis of the MDD practices and grouping them in levels representing different 
degree of profundity of the implementation of MDD 

• Analysis of technical means: how they can be characterised, what are the different 
possible extents for using and deploying these means in a development process 

• Study of the dependencies between the MDD practices and the technical means  
• Identification of discrete levels of the MDD adoption that combine MDD practices 

and relevant technical means. 

As shown in Figure 1, the MDD Maturity Model defines five maturity levels dis-
tributed bottom up, from less mature to more mature MDD adoption. The lower level 
MDD practices and elements are a basis for the implementation of the activities on 
the upper levels.  

 

 

Fig. 1. MDD Maturity Model levels 

3.1   Maturity Level 1: Ad-Hoc Modelling 

The Ad-hoc modelling level corresponds to situations where modelling practices are 
sporadically used or not used at all in the organisation. This means that the organisa-
tion is performing traditional software development, and individuals may use some 
models for their own help, but no policy or common understanding applies to those 
scarce models. Obviously, the organization has no specific goals on modelling activi-
ties or artefacts. 

Level 1: Ad-hoc Modelling 

Level 2: Basic MDD 

Level 3: Initial MDD 

Level 4: Integrated MDD 

Level 5: Ultimate MDD
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3.2   Maturity Level 2: Basic MDD 

In this level of maturity, the organisation is more mature in modelling and in each 
project developed in the organisation a Technical model is created with which the 
final code and system documentation have to be in line. In this level, the Technical 
model combines business and technical aspects of the system to be developed, with 
no distinction between them.  

The final code and documentation shall comply with the system specification mod-
elled. This alignment is done by means of basic automatic code generation and docu-
mentation generation mechanisms which generate (parts of) them from the Technical 
model.  

In Level 2, the fact that models are used for guiding implementation and produc-
tion of documentation is an organisational premise and not an individual initiative. In 
the projects, it is necessary to take decisions upon the modelling tools and techniques 
that will be used in the development, in accordance with project objectives.  

The next table defines the goals in this level and the MDD practices aimed to 
achieve them. 

Table 2. MDD Maturity Level 2 goals and practices 

Goals:  
Goal 1 Develop technical model and use it to build up software 
Goal 2 Include all business and technical requirements in models 
Goal 3 Select MDD tools aligned to project objectives 
MDD Practices:  
Engineering ENG 1 Identify modelling techniques   
 ENG 2 Define Technical model  
 ENG 3 Generate code from the Technical model  
 ENG 4 Generate documentation from the Technical model 
 ENG 5 Complete code to comply with all req. 
Project Management PJM 1 Decide upon modelling tools 
Support N/A 

 
Figure 2 shows the key elements in the MDD maturity level 2.  

 

Fig. 2. MDD elements in MDD Maturity Level 2 



84 E. Rios et al. 

Note that in all figures, a thick dashed arrow stands for “manual or automatic trans-
formation”, whereas a thick continue arrow means “automatic transformation”. 

3.3   Maturity Level 3: Initial MDD 

The organisation starts developing systems in a more model-driven approach when, 
besides aligning the code and the models, it develops business models which address 
the business logic of the system separately from the technical models which cover the 
technical requirements. This is done for capitalising the business knowledge over all 
the projects. 

Business models are then manually converted to technical models, but these  
technical models are represented by means of a tool and are converted to code auto-
matically. The Business models can be directly converted to code also, which means 
that the Technical model with platform specifics resides implicit in this direct  
transformation. 

In addition to business logic and platform specifics differentiation, in this level of 
maturity, the models are exchanged between different stakeholders for communica-
tion, which implies the need of models are checked with respect to well-formedness 
rules, and metrics on modelling activities are consistently defined, collected and  
analysed.  

The next table defines the goals in this level and the MDD practices aimed to 
achieve them. 

Table 3. MDD Maturity Level 3 goals and practices 

Goals:  
Goal 1 Separate business and technical aspects in MDD elements 
Goal 2 Define rules for modelling linked to organisation’s strategy  
Goal 3 Exchange system knowledge with other stakeholders 

through models 
MDD Practices:  
Engineering ENG 6 Define Business model  
 ENG 7 Define transformations from Technical model to 

text 
 ENG 8 Separate generated from non-generated code  
 ENG 9 Check models 
Project Management PJM 2 Define MDD-project workflow 
 PJM 3 Decide upon coverage of modelling activities 
Support SUP 1 Establish and maintain repositories for models and 

transformations 
 SUP 2 Define, collect and analyze measures with respect 

to the modelling activities 

 
The next figure depicts the MDD elements of the level 3 and their relationships. 
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Fig. 3. MDD elements in MDD Maturity Level 3 

3.4   Maturity Level 4: Integrated MDD 

The organisation begins integrating the models when domain modelling is performed. 
This means that the domain concepts are represented by means of a domain model. 
Business models are derived from the domain models and are developed by means of 
a tool. Then, they are automatically transformed to technical models and these techni-
cal models into code. Domain, business and technical concepts are separated. 

In this maturity level, two types of technical models are developed: the ones that 
model the core infrastructure shared by all products in a product family, and the tech-
nical models for a specific application development. This ensures reusability of infra-
structure models. 

At Level 4, the organisations are more mature in modelling and they simulate the 
models created with a tool, in order to verify them for early correcting possible design 
errors. 

The next table defines the goals in this level and the MDD practices aimed to 
achieve them. 

Figure 4 shows the MDD elements involved in the level 4 and the relationships 
among them. 

3.5   Maturity Level 5: Ultimate MDD 

To achieve a complete MDD adoption and reap its benefits, there is a need to have a 
system family engineering mindset, which means to have a common set of MDD 
assets (transformations, domain models, metamodels,...) that are reusable organisa-
tion-wide. Therefore, the ultimate maturity level is reached when the transformations 
between all the models are made automatically and models are fully integrated  
between them and with code. Executable models are developed so the focus of the 
organisation efforts is on the models and not on code programming. The whole life 
cycle becomes model-driven. 
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Table 4. MDD Maturity Level 4 goals and practices 

Goals:  
Goal 1 Separate domain, business and technical aspects in 

MDD elements 
Goal 2 Ensure efficient modelling performance 
Goal 3 Share integrated development environment  
MDD Practices:  
Engineering ENG 10 Define architecture centric metamodel 
 ENG 11 Define domain model  
 ENG 12 Define transformations from Business model 

to Technical model 
 ENG 13 Simulate models  
 ENG 14 Separate the technical models of the product 

and the system family infrastructure 
Project Management PJM 4  Manage common infrastructure development.  
Support N/A 

 

 

Fig. 4. MDD elements in MDD Maturity Level 4 

Hence, the main characteristic of the ultimate MDD level is that the entire organi-
sation’s know-how is capitalised in models and transformations. The domain engi-
neering practices are put in place and Domain Specific Languages (DSL) are created 
in order to make strategic assets reusable. Even the system verification and validation 
(V&V) knowledge is stored in models that are used for V&V of the implementation. 

The next table defines the goals in this level and the MDD practices aimed to 
achieve them. 
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Table 5. MDD Maturity Level 5 goals and practices 

Goals:  
Goal 1 Ensure complete model-centric development 
Goal 2 Ensure organisation's knowledge is capitalised in models 

and transformations  
MDD Practices:  
Engineering ENG 15 Define domain specific languages 
 ENG 16 Continuously improve and validate the meta-

models  
 ENG 17 Define transformations from Domain model to 

Business model 
 ENG 18 Model-based V&V 
Project Management PJM 5 Establish and maintain strategic MDD elements 
Support N/A 

Figure 5 shows the MDD elements involved in the level 5. 

 

Fig. 5. MDD elements in MDD Maturity Level 5 

4   MDD Maturity Model Benefits for the Industry 

The main benefits that the MDD Maturity Model can offer to the industry are: 

• Provides understanding of the steps towards a complete and efficient MDD  
adoption. 
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• Makes easier to further improve MDD practices and work products in the  
organisations. 

• Establishes a common integrated vision of all MDD dimensions to improve in the 
organisation. 

• Facilitates to accomplish the cultural and organisational changes that MDD implies 
simultaneously with the learning of a common language on modelling activities 
understood by all process participants. 
 

The MDD Maturity Model complements other maturity models, such as the 
CMMI®, allowing the adoption of MDD specific practices within the CMMI® im-
provement initiative.  

The MDD Maturity Model is the first step for building the standardized framework 
for categorizing the organisations’ capabilities on MDD, for either internally identify 
or externally claim their maturity level.  

5   Validation Process 

The MDD Maturity Model described above is going to be used as the reference model 
for performing assessments of companies or project teams with respect to MDD. In 
particular, the model will be used to assess the MDD implementation by four leading 
companies: Thales ATM (France), France Telecom (France), WM-data (Estonia) and 
Enabler (Portugal). The first two are well known large businesses, WM-data is a SME 
branch of the leading supplier of design and IT services in the Nordic regions and 
Enabler is the SME branch of an international IT solution provider for retailing. These 
four companies are industrial partners in MODELWARE and the assessments’ work 
is also part of the project results. 

The assessment consists in rating the capability in each of the MDD practices and 
evaluating the status of the MDD elements in the Model, and therefore highlighting 
both strengths and areas candidate for improvement.  

The MDD Maturity Model will be valid if it enables to distinctively characterize 
the maturity level of each organisation and if it helps organisations in effectively 
implementing MDD and improving its weak areas in MDD. Besides, the terminology 
used in the model shall be understandable for all these companies and it should em-
brace all the key modelling practices experimented by them.  

After the validation process a refined version of the MDD Maturity Model will be 
issued. The improvement brought will mainly consist in refining the goals and prac-
tices in each of the levels and integrate them with appropriate MDD metrics to collect 
in each case. 

6   Related Work 

Assessing the capability of an organisation with regards to MDD technology is a 
relatively new subject, with limited material available and experimented in the MDD 
community.  

Some partial attempts have been made in MDD maturity degrees definition, which 
focus on specific aspects of MDD. This is the case of Kleppe and Warmer’s  
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Modelling Maturity Levels [2] or the IBM approach [3], which uses some form of a 
MDD technological capability model as commercial support for their proprietary 
tools. Whereas neither of these models has formal specification of the MDD practices 
and assets inside each maturity level, nor is validated by the industry yet, our Model 
makes a formal definition of both MDD practices and elements for unambiguously 
characterising the maturity levels. Besides, our model will undergo a validation proc-
ess by the industry in near future. 

7   Conclusion and Future Work 

The MDD Maturity Model described has been developed inside the MODELWARE 
project to complement the existing models for quality and process improvements by 
putting the focus on how to execute software engineering activities applying the 
MDD technology.  

The Model describes five maturity levels in the roadmap for improving MDD  
practices and MDD artefacts, from the lowest level (Ad-hoc modelling level) to the 
highest level-5 (Ultimate MDD level). Each level describes a consistent set of engi-
neering, management and support practices within the MDD approach. Additionally, 
it provides a characterization of the MDD elements created or used at each level. 

The MDD Maturity Model is the tool for organisations to establish the correct 
roadmap for the adoption of MDD. It provides them a means for identifying their 
strengths and weaknesses with respect to MDD. Therefore, the MDD Maturity Model 
serves to support industry in improving their MDD development processes, technol-
ogy and organisation. A final, refined iteration of the model will follow after the 
model is validated in the industrial partners in MODELWARE in June 2006. 
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Abstract. Organisations are always looking for better and faster ways of 
developing systems. One of the technologies that promise this is Model Driven 
Development (MDD), but there are still only a few organisations that have been 
capable of maximizing the benefits of MDD. The success of these few cases is 
based on the establishment of a clear system development process which 
encompasses both the activities that must be performed as well as the tools that 
need to be used within the organisation to adopt MDD. When an organisation 
considers adopting MDD, the first barrier it encounters is the lack of well-
documented success stories which clearly state the process followed by these 
organisations. This paper presents a common repository of MDD processes/ 
practices which have been extracted from successful MDD adoption stories, in 
the form of the MDD Process Framework. 

1   Introduction 

In today’s more competitive environment, where higher productivity and quality 
make a difference, software intensive organisations need to introduce technology-
specific processes within their current development process in a fast but controlled 
manner. 

Software development organisations are focused on the return on their investments 
and on seeking higher process maturity levels, taking as reference maturity models 
such as CMMI®, SPICE and others. It is relevant to mention that organisations at a 
higher level of maturity in their process specification and execution will be at an 
advantage when adopting a new technology. 
                                                           
* The work presented here has been developed within the MODELWARE project. MODEL-

WARE is a project co-funded by the European Commission under the “Information Society 
Technologies” Sixth Framework Programme (2002-2006). Information included in this 
document reflects only the author’s views. The European Community is not liable for any use 
that may be made of the information contained herein. 
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This paper describes a solution that enables organisations to adopt  MDD success-
ully, as well as standardise their system development process, by the use of the 
Software Process Engineering Metamodel [1] (SPEM). SPEM is a metamodel defined 
by the OMG [2] (Object Management Group) that offers an open standards-based 
approach to model development processes. This solution is the MDD Process 
Framework. 

1.1   The MDD Process Framework 

The MDD process framework is a process repository that contains reusable MDD 
process elements that describe MDD related processes and practices. To be more 
precise, the MDD Process Framework is a repository of MDD specific engineering 
and management process elements (MDD process elements) which have proven to be 
successful in the adoption of MDD within organisations in several contexts. These 
MDD process elements can be used to construct standardised project-specific or 
organisation development processes. 

The MDD process elements have been defined in terms of the UML-based process 
modelling language SPEM v1.1 [1]. By using this standard as the basis of this work it 
makes the interchange of processes and the integration into existing processes easier. 
The MDD Process Framework contains MDD process elements that have been 
identified from real experimentation in adopting MDD. Some of the sources have 
been: 

• MASTER project. “D3.2 - Process model to engineer and manage the MDA 
approach [3] “ 

• COMET Methodology Handbook. [4] 
• SINTEF modelling methodology [5] 
• "PIM Definition and Description" [6] 
• "An introduction to UML Profiles" [7] 
• Reflective Model Driven Engineering" [8] 
• PLUTO, a simple test methodology for product families. [9] 
• AGEDIS project [10] 
• ENABLER software development process [13] 

These MDD process elements are organised by means of phases such as Require-
ments, Analysis, Design, Development, Test and also Cross-phase process elements. 
The concept of phase used in the MDD Process Framework is basically a grouping 
issue to ease understanding, since, depending on the existing development life-cycle 
used, the MDD process elements can be integrated into different phases to those 
defined within the MDD Process Framework.  

A MDD process element  consists of  a set of activities, roles and workproducts, 
and clearly specifies the MDD process/practice it defines. 

1.2   The Environment of the MDD PF 

Based on work done in “The Living Software Development Process” [15], where a 
new approach on building a development process is introduced, specific steps and 
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roles have been identified as necessary to build a system development process using 
building blocks (process elements) from different process frameworks. 

The MDD Process Framework and other process frameworks will be used mainly 
by the method engineer, manually or by means of a process modelling tool, to 
construct the organisational standard set of processes enriched with MDD-specific 
practices. The method engineer identifies and integrates the different process elements 
contained in different process frameworks, required to develop the system 
development process he/she needs to develop [14]. 

The method engineer needs to identify the modelling artefacts that should be 
produced during the project, and relate them appropriately. This selection will be 
based on the organisation’s process needs and on the description provided within 
these MDD-specific practices that describe how to build an organisation system 
development process.  

The method engineer uses pre- and post-conditions as well as the process descrip-
tions in order to be able to adequately address the combination of MDD process 
elements with other process elements predefined by the organisation. The method 
engineer must ensure completeness of the defined system development process, for 
example, that roles adopted from the MDD process framework that he/she has 
integrated within the system development process are coherent with roles existing 
within the organisation. The method engineer is responsible for ensuring the correct-
ness of the resulting system development process independently of the available tool 
support. 

To do so, the MDD PF provides MDD tailoring guidelines which allow different 
MDD process elements to be joined with other process frameworks’ elements in order 
to construct the resulting system development process. These MDD tailoring guide-
lines are used to aid the customisation of the MDD process elements in order to 
adequately adapt them to the organisation’s context. The content of the MDD 
tailoring guidelines is provided by the users of specific MDD process elements, by 
capturing problems and solutions identified when integrating the MDD process 
elements together.  

Once the method engineer has defined the system development process of the 
organisation, the project manager must make use of the defined system development 
process in the definition and execution of a specific project. The project manager 
must tailor the system development process to the project specific context. 

Next, the application designer uses the project adapted system development 
process to build the final system. Finally, the method engineer, application designer 
and project manager should provide feedback to the knowledge engineer in order to 
modify, delete or add new process elements in the process frameworks with proved 
best practices. This final task allows an updated source of knowledge to be main-
tained within the organisational process framework. 

Fig. 1 provides an overview of previously described steps as well as a detailed 
operational environment of the MDD PF. Note that actors identified in this section 
denote roles, so one person can perform many roles at the same time. 
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Fig. 1. Detailed operational environment for System development process construction 

1.3   Making the MDD PF a Reality 

The major drawback for the approach identified was the lack of tool support, 
therefore two prototypes were developed. Both prototypes were developed as plug-ins 
to Rational Software Modeller (RSM) from IBM. We implemented a SPEM v1.1 
profile for RSM and used it to model all the MDD process elements. The other plug-
in was implemented for the user, to select the MDD process elements which fit his/her 
needs from the MDD Process Framework. 

2   Experimental Use of the MDD Process Framework in 
ENABLER 

The first outline of this experimentation in a broader context was provided during the 
ECMDA-FA Conference within the Workshop "From code centric to model centric 
software engineering: Practices, Implications and ROI" in the paper “MDD process 
for SME: evolution, not revolution – Phase I” [13]. In this paper the major initial steps 
in the definition of the Enablers MDD Process were described. 

Continuous work by Enabler, IBM UK and ESI, has identified MDD process 
elements which are for general purpose, such as developing profiles or transfor-
mations. At the same time the process structure is based on the traditional waterfall 
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life cycle and for each of the phases there are a set of predefined MDD Process 
Elements. 

As an initial exercise in browsing the MDD Process Framework, a set of MDD 
Process Elements were selected as having potential to be used. Once the MDD 
Process Elements had been selected, there was a need to identify the tailoring required 
to integrate the selected MDD Process Elements into the already defined MDD 
process.  

One of the major issues was the correct mapping of roles and workproducts 
between the MDD PF and the organisation’s MDD process; as is often the case, the 
roles that carry out activities or are responsible for producing specific workproducts 
are already related to the operational concepts of an organisation. Therefore the 
specified roles within the MDD process elements in many cases are renamed, while 
keeping responsibility, in order to integrate them into existing roles within the 
organisation.  

Fig. 2 provides an overview of the construction of the Enabler MDD development 
process, using the MDD Process Framework as well as the SPEM v1.1 Rational 
Software Modeler plug-ins. The parties involved in the process specification were 
Enabler, IBM and ESI.  

 

Fig. 2. Enabler's MDD development process: Construction overview 

Fig. 3 provides an overview of the resultant Enabler MDD development process 
indicating the specific MDD Process Elements used in the different phases of MDD 
Process Framework in the Enablers industrial context. 

In the following paragraphs we describe the different steps that were taken to 
describe Enabler’s MDD development process. The first step is to identify the set of 
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activities for each phase and describe the inputs and outputs for each of them. Next it 
is necessary to capture the roles involved in the defined activities, this is captured in a 
Role diagram, and finally there is a need to capture the relationships among the 
different input and outputs from the activities, also called workproducts.  

In the following examples from the case of Enabler, two MDD Process Elements 
are shown as candidates for being reused in the requirements phase when addressing 
the customer needs and domain. They are: Define Domain Concept Model and Define 
Project Concept Model and presented in Fig. 4 which shows that they are to be used. 
 

 

 

Fig. 3. Process Elements used in Enabler´s Development Phases 

These two MDD Process Elements were tailored to Enabler’s specific needs. In 
Enabler’s case, where they customise an existing product family to particular 
customer situations, the overall domain model is well defined.  This domain model is 
tailored to a particular project conceptual model to account for such things a customer 
specific terminology. As a result of a particular project, the overall Domain 
Conceptual Model may be enhanced with lessons learnt. 

Fig. 5 shows the detail of the 2 example activities from the MDD PF with the 
resultant Enabler process description. 

One of the main areas in which Enabler believes that MDD can help to improve 
ROI is in the Change Management Process, since this is a frequent activity in all 
Enabler projects. Actually one of the MDD experiments in the Modelware project is 
focussed on this as represented in Fig. 6 and is being harvested into the overall MDD 
PF. Notice the workproducts generated (for example SQL definitions). Change 
management is a fundamental process, and as such is represented in most existing 
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Fig. 4. Use of the Define Domain Concept Model and Define Project Concept Model MDD 
process elements in the requirement phase definition 

 

Fig. 5. MDD Process Elements in Enabler’s requirements phase 

Process Frameworks including RUP.  Therefore it is essential to modify this standard 
process to apply to MDD techniques. 

Fig. 7 shows how specific MDD techniques are added to the Enabler process, in 
this case the Requirements process; Object Constraint Language (OCL) statements 
are used to check that certain features of the Requirements have been fulfilled (for 
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Fig. 6. Enabler's MDD Change Management Process 

instance each requirement has at least one Stakeholder, has a priority etc.); these 
constraints should be satisfied before exiting the Requirements Phase.  Likewise 
essential documentation is generated from models using transformations. 

In fact there is a move to generate as much documentation as possible as shown in 
Fig. 8 where the Business Requirements Document (BRD) is generated from models. 
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Such documents are required by Enabler’s customers, but producing them from 
models enhances their quality and brings greater productivity. 

The MDD process has been instantiated within the Enabler experiment on the 
Modelware project. Fig. 9 presents this instantiation at the level of the specific tools 
used during that experiment. The objective is that by adding annotations to the 
components in the diagram we can then generate some of the configuration files for 
the tool set. 

 

Fig. 7. Roles Used in Enabler´s Requirements Phase 

 

Fig. 8. Relationship between workproducts 
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Fig. 9. Process instantiation in Enabler's experiment 

3   Conclusion and Future Work 

This paper presents an MDD process framework, which allows the reuse of existing 
knowledge of MDD which that can be used for standardising both the definition  
and execution of an organisation’s system development processes. This MDD process 
knowledge has been extracted from many sources including the Modelware 
experiments. 

The paper also provides a brief example of the use of the MDD Process 
Framework in an organisation, an example of the specification of an Organisation’s 
standardised system development process. 

The MDD Process Framework only covers MDD-specific engineering and 
management practices while organisations need a generic tool for all kind of practices 
(MDD specific, Agile-specific, etc.). 

At the same the MDD PF is going to be used as the base MDD process repository 
for defining the telecom service creation process inside the W3GCreaTeS project 
(Creation Environment for 3G and WxAN Telecom Services) in which ESI is 
working together with Euskaltel Basque Country global operator. This project is 
being cofunded by the Spanish National Authorities inside the PROFIT programme. 

The next step for the proposed MDD Process Framework is the integration of our 
MODELWARE work with the Eclipse Process Framework results, in order to provide 
an open solution for the adoption of not only MDD practices but of  any kind of 
practices. 

The Process Framework (EPF) Project <Beacon> [12] aims to provide an 
extendable framework for method and process authoring and provide exemplary and 
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extendable process content for a range of software development and management 
processes. MODELWARE and WP2 partners will concentrate their efforts mainly on 
providing a set of MDD specific process elements to the EPF tool to create a system 
development process. 
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Abstract. A core problem in Model Driven Engineering is model consistency 
achievement: all models must satisfy relationships constraining them. Active 
consistency techniques monitor and control models edition for preventing in-
consistencies, e.g., using automatic errors correction. The main problem of 
these approaches is that strict enforcement of consistency narrows the mod-
eler’s possibilities for exploring conflicting or tradeoff solutions; this is just 
what temporaries inconsistencies enable. In this article, we propose a hybrid 
approach capitalizing on active consistency characteristics while allowing the 
user to edit inconsistent models in a managed mode: at any moment we are able 
to propose a sequence of modelling operations that, when executed, make the 
model consistent. The solution consists in defining a set of automatons captur-
ing a sufficient part of the model state space for managing any inconsistent 
situation. We illustrate this approach on a consistency relationship implied by 
the application of a security design pattern impacting both class and sequence 
diagrams of a UML2 model.  

1   Introduction 

A core problem in Model Driven Engineering is model consistency: all models must 
satisfy relationships constraining them [2, 9]. This generic definition emphasizes the 
fact that consistency is a context specific definition, depending on used models, their 
relationships and their intended uses. An inconsistency is defined as a situation in 
which models break a consistency rule [3]. 

There are many consistency techniques. Those techniques often analyze models 
and report inconsistencies in a static way letting the user trigger checks and correct 
errors [18, 16, 17]. In this paper we focus on active consistency techniques, enacting 
at model edition time and interacting with models edition. These techniques aims to 
make consistency management more “user friendly”, e.g., by automatically correcting 
some errors, forbidding operations or allowing consistency preserving operations. 

In the first section we introduce such consistency techniques and raise issues nar-
rowing their usage. Then we present an overview of our approach and illustrate it on a 
concrete scenario. After a few remarks we conclude the paper. 
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2   Consistency Techniques 

Consistency by monitoring outlined in [13] is an approach preventing inconsistencies 
thanks to a checking algorithm executed each time the user requests a model edition 
operation. Thus consistency rules encoded in the algorithm are impossible to be vio-
lated by the model editor. For example, the Objecteering modelling environment does 
not allow cross package references: each time the user edits a package referencing 
association, a check is performed and if this consistency rule is broken a dialog box 
informs the user that the requested operation is not allowed. It is then impossible to 
break this rule.  

The problem with this approach is the strict enforcement of consistency rules. In 
some cases it would be necessary to relax it. For instance cross package references are 
allowed in Java and when the user imports Java source code to a Java model (retro-
engineering) the user must inactivate consistency checks. In the opposite case the 
import will fail. But in such a situation, any kind of inconsistencies may be introduced 
in the model: there should be a balance between strict consistency enforcement and no 
consistency at all. 

Another consistency technique called consistency by construction is also intro-
duced in [13]. It enables automatic completion of models when specific operations are 
triggered by the user. For example when the user creates an “active class” the consis-
tency engine automatically creates a default state machine and associates it to the 
class. These methodological consistency rules are often implemented in the model 
edition user interface. As a consequence, if the user edits a XMI[10] version of its 
model, he/she can easily break a consistency rule and reload the model into the envi-
ronment, but without any inconsistency detected. 

Constructive approaches can be more complex. In Fujaba, models can be automati-
cally repaired. This works as follows: a background graph rewriting algorithm 
searches for negative patterns [15] (forbidden patterns) in the graph of objects repre-
senting the model. If there is a match (an inconsistency), then the rewriting engine 
replaces the negative pattern with another predefined correct pattern. This strategy 
automatically detects inconsistencies and then automatically corrects them. Once 
again, consistency is enforced, letting no places for inconsistencies, even temporarily. 
In this case detecting inconsistency and delaying its correction would enable the user 
to choose between different correct patterns. Furthermore this choice could be per-
formed at his/her convenience, postponing inconsistency resolution at will. 

Engels [6, 7] et al. introduce consistency preserving model evolution. Their solu-
tion consists in predefining a set of local model transformations rules that have been 
mathematically proven to preserve a consistency relationship, i.e., protocol consis-
tency and deadlock freedom in this article. The main idea is to preserve consistency 
incrementally at model edition time, avoiding checking the whole model at each 
modification. In this approach, no inconsistencies can be introduced if transformation 
rules are applied correctly, e.g., by respecting a specific order.  

The idea of consistency preserving model evolution is attractive since it claims that 
it is possible to build consistent models incrementally, without running global checks. 
Unfortunately, they do not describe any mechanisms for managing application  
order of local model transformations, depending on user awareness of this order. As a  
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consequence, consistency is not guaranteed, likely resulting in incrementally intro-
duced inconsistencies and requiring an unwanted global model check. 

Furthermore enforcing consistency leads to overconstraining modelling activity, 
frustrating the modeler while he designs solutions, explores multiple alternatives, or 
does not model at a good precision degree. In [1] authors claim it is impossible, in 
general to maintain absolute consistency between all perspectives on the system 
(models) at all times. This position is adopted and reinforced in [5]. Spanoudakis et al. 
point out positive aspects of inconsistent models, like identification of parts of the 
system needing further analysis or assistance in specification of alternatives for the 
development. Finkelstein resumes this situation: “rather than thinking about removing 
inconsistencies, we need to think about managing inconsistency” [4]. 

It is clear that active consistency techniques lack such inconsistency management 
capabilities either by forbidding inconsistencies or by automatically correcting them. 
But inconsistency-driven correction and prevention reduces the amount of time the 
user spends in resolution activities. Furthermore, under certain circumstances the user 
might not have the skills for repairing complex errors. In such a situation those tech-
niques become critical. 

We propose to provide active consistency techniques with inconsistencies man-
agement capabilities. As a consequence, model edition monitoring and control should 
not only enable inconsistency prevention and automated correction but should also 
allow introducing inconsistencies in a managed mode. This implies that an inconsis-
tency no more needs to be repaired synchronously, i.e., blocking user model edition 
until it is resolved. Instead when an inconsistency is introduced, it is automatically 
detected but models can still be edited, delaying the automated resolution at will. 

3   Principles of Our Approach: Automata for Managing 
Inconsistencies 

Model evolutions are caused by modelling operations triggered by the user or by 
automated means (i.e., patterns engines, model transformation engines, wizards etc.). 
While these modifications are performed, models go through a potentially infinite 
number of different states that are either consistent or inconsistent with regards to a 
consistency relationship. Before detailing our approach, we introduce model states’ 
spaces and associated concepts. 

3.1   Model State Space 

We now introduce the theoretical concept of exhaustive model state space M, an 
infinite state transition systems [14] capturing all possible models and model evolu-
tions. In M, a state is a model and a transition is a modelling operation. 

The figure 1 illustrates the concept of model state space. As we can see it repre-
sents two complete (among multiple partial) potential model evolutions between an 
initial empty model and a model containing two classes linked by an association. 
Operation o1 means that the user creates a class named C1, operations o2 means that 
the user creates a class named C2 and operation o3 means that the user creates a  
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Fig. 1. A simple model state space representation 

default association named A1 between C1 and C2.  Example modelling operation 
sequences are <o1>, <o1,o2>, <o2,o1,o3> or <o1,o2,o3>. 

The interest of model states lies in their property to validate or not a consistency 
relationship. The core thesis of our approach is that, given a consistency relationship 
we are able to specify the sufficient subset of M for automatically managing inconsis-
tencies lifecycle. Notice that an inconsistency may exist inside a model (intra-model 
consistency) or between two or more models, i.e., inter-model consistency [12]. The 
first step of the solution is on-the-fly detection of transitions switching this model 
current state: 

• from consistent to inconsistent: a new inconsistency is introduced 
• from inconsistent to inconsistent: models evolve, but inconsistency remains 
• from inconsistent to consistent: an inconsistency is resolved 
• from consistent to consistent: models evolve but are consistent 

This raises the M subset specification issue. Specifying a subpart of M implies a 
clear understanding of M states and transitions. On the first hand, states, i.e., models, 
are commonly represented as in-memory object data structures, each object being an 
instance of a meta class defined in the metamodel. 

On the other hand transitions are defined as elementary operations on those ob-
jects, for instance instantiation of a metaclass, deletion of an object, linking of objects, 
setting values to object attributes. These operations are provided by the API meta-
model repository and are fine grained, in opposition to the o1 operation presented in 
figure 1. The latter is actually a composite of three “low level” transitions: instancia-
tion of the Class metaclass, setting the default “classname” attribute and linking the 
newly created object to the Model object. 

3.2   Specifying a Subset of M 

A direct specification of a subpart M is not conceivable. There are too many states 
and transitions. Thus it seems not feasible to directly represent a subpart of M. We 
propose three mechanisms for making such a specification feasible.  
 



 Finding a Path to Model Consistency 105 

Transition abstractions save both transitions and states. We have explained that 
o1 replaces three low level elementary operations; o3 replaces about ten of them. 
Abstraction of transitions enables to avoid description of intermediate states and tran-
sitions. 

State abstractions enable description of the sufficient state subpart which might 
impact the consistency condition. For example we will see in the example introduced 
in section 4.2 that class attribute descriptions are not necessary since they do not im-
pact the consistency relationship. The language or technique for describing state con-
tent is out of the scope of this paper. 

State partitioning: we exploit a property of model evolutions that we have observed. 
From a given state, it is possible to identify and isolate model parts evolving inde-
pendently of each other. Thus independent model parts may be separated and each 
subpart evolutions be traced by one automaton. As a result we have a set of automata, 
each one being responsible for tracing evolution of an independent model part.  

In the following abstract example, two automata illustrate such a situation: 
 

 

Fig. 2. Two automatons capturing model parts evolutions 

Each automaton traces the evolution of a model state space part. For example, if the 
model is in a composite state given by the two automata states (sA,s1) and the user 
performs the sequence of model edition operation <o2, o1,o2’,o’1>, then only the left 
automaton will be affected and it will go through states s2, s4, s3 to finally return to 
s1 state. But at any moment the model can evolve with an oA operation resulting in 
the appropriate composite model state. We will exemplify it in section 4.3. 

3.3   Defining and Managing Inconsistencies with Automata 

These automata enable to define consistency or inconsistency in term of relationships 
over the Cartesian products of automata states. Thus we can mathematically define 
consistency as a subset C  of the Cartesian product of the sets of automata states 
{A1,…,AK} where Ai is the set of states of Automaton number i. We will illustrate a 
concrete consistency relation in the section 4.3. 

Once consistency defined, the second core idea of our approach is that these auto-
mata can be exploited by basic graph algorithms for managing consistent and incon-
sistent model editions:  
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• dynamically report to the user that he/she is entering or leaving consistent or in-
consistent states.  

• computing model edition operations sequences bringing models from inconsis-
tent states to consistent ones. Once this sequence computed it is possible to 
automatically execute it or propose it to the user. 

 

From an operational point of view our approach consists firstly in automated and 
incremental detection of inconsistent model states while the user edits models, i.e., on 
the fly. Secondly it provides users with automatable means for exiting such inconsis-
tent model states. From a theoretical perspective the approach is based on the concept 
of consistent or inconsistent model state.  

4   Running Example 

For illustrating our approach, we consider a consistency relationship between two 
diagrams of a design model constrained by the application of a security design  
pattern.  

4.1   A Security Design Pattern 

This security pattern constrains both behavioral and structural properties of the soft-
ware system. We choose the secure communication security design pattern published 
by the  open security group in their technical guide [8]. The goal of this pattern is to 
ensure a security policy when two parties need to communicate over a channel that 
may be subject to security threats. When this pattern is correctly implemented it se-
cures communications against threats by employing protection traffic mechanisms in 
the communication channel. The structure of this pattern involves three elements 
exposed in the following figure. 

 

Fig. 3. The secure Communication Design Pattern Structure 

The first element is a communication party, e.g., a client or a server. It is the source 
and/or the destination of messages that are delivered from the communication chan-
nel. The second element is the communication channel. It has a send method that, 
when invoked by parties, transports messages from the sender to the receiver. 
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Finally the last element is the communication protection proxy. It is responsible for 
protecting traffic over communication channels. It provides a protection method  
before sending the message on the channel and a verification method before deliver-
ing the message to the target communication party.  

 

Fig. 4. The Secure Communication Design Pattern Collaboration version 1 

This collaboration pattern describes a secured message exchange between a sender 
communication party and a receiver communication party. First the sender submits a 
message to its own proxy which protects the data by calling the protect() method. 
Then the proxy sends the message on the channel that delivers it to the receiver proxy. 
It checks the message by calling the verify() method and finally it delivers the 
message to the final recipient, i.e., the receiver.  

4.2   Consistency Scenario 

We define consistency of the two diagrams as a configuration in which security as-
pects of the system are both described in structural and behavioral diagrams. A con-
tradiction may occur if one diagram represents security properties and not the other 
one. When no one of them represents security properties, then they are consistent 
because they do not contradict each other [1]. 

Now suppose we wish to manually secure the simple client server design model 
below.  

 

Fig. 5. Unsecured Client Server Structure Diagram 
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Fig. 6. Unsecured Client Server Sequence Diagram 

We define two consistent model states. The first one is when the channel class is 
stereotyped with a “SecureComm” stereotype and the sequence diagram method calls 
are intercepted and secured by the proxies. The other one is when the channel class is 
not stereotyped and the communications are not secured, like in figures 5 and 6. 

The user could start introducing a “SecureComm” stereotype on the Channel class. 
As explained above, both diagrams are consistent if they do not contradict each other. 
Thus at the moment the user stereotyped the channel class the model is inconsistent 
and it will remain in this state until the sequence diagram is secured in accordance 
with the behavioral pattern. We have illustrated a possible model evolution of the 
sequence diagram from its initial state to its final fully secured state.  

 
Fig. 7. Initial state 

 
Fig. 8. State 1 of the automaton (cf. fig12.)  

 

Fig. 9. State 4 of the automaton (cf. fig12.)  
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Fig. 10. Secured State of the automaton (cf. fig12.) 

From the initial state to the one of figure 8 the user has added the submit method 
call between the client and the proxy. Then from state of figure 8 to the one of figure 
9 the user has added the protect method call. In the last step the user has added the 
send method call between the proxy and the communication channel. 

4.3   Automata Supporting Scenario 

In this section we define the automata supporting the scenario, and then we define the 
consistency relationship. 

There are two automata, one responsible for monitoring the evolution of the class 
diagram and the other monitoring the evolution of the sequence diagram. The first 
automaton is given in the following figure. 

 

Fig. 11. Automaton 1 for class diagram evolutions 

Following the abstraction and partitioning mechanisms this automaton defines two 
abstract, partial model states respectively representing a “SecureComm” stereotyped 
channel class and a channel class without this stereotype. The transitions between the 
two states represent application or deletion of the “SecureComm” stereotype. 

The following figure defines the automaton for tracing potential sequence diagram 
evolutions. Because the full automaton is huge, we have only represented the possible 
evolutions from the figure 7 to the figure 10. Its structure underlines multiple scenar-
ios for securing these model parts. Each method call addition between two life lines 
(or one in the case of the protect method call) can be applied independently. 

Now we define the consistency relationship. As previously explained the model 
has two consistent states: one before the application of the pattern and the other when 
the pattern has been completely applied in the two diagrams. It is possible to formu-
late this situation in terms of automata states. Indeed the model will be consistent if 
and only if both automata 1 and 2 are simultaneously in specific states.  



110 G. de Fombelle et al. 

 

Fig. 12. Automaton 2 for sequence diagram evolutions 

Thus we can mathematically define consistency as a subset C  of the Cartesian 
product of automata A1 and A2 state sets ( 21 AAC ×⊆ ). 

A1={UnstereotypedChannelClass,StereotypedChannelClass} 

A2={initialState,state1,state2,…,state6,SecuredState} 

C={(UnstereotypedChannelClass,initialState), 

(StereotypedChannelClass,SecuredState)} 

In the scenario we have illustrated a possible model evolution of the sequence dia-
gram through different states. This scenario is only one of the possible sequences of 
modelling operations for building the model. The second automaton illustrates this 
point clearly: we see that for going from “initialState” to “SecuredState” there are 
many paths (6 exactly). 

Imagine we are in the state where the class is stereotyped and the sequence dia-
gram is in the state illustrated on figure 7. Then, the composite model state captured 
by our automata is given by the couple (StereotypedChannelClass, InitialState). This 
state is not consistent since it does not belong to the previously defined consistent 
set C . Thus it is possible to detect an inconsistent state while models evolve. Fur-
thermore it is possible to compute a path in automata for reaching a consistent state; 
this path is a sequence of modeling operations. In our scenario such a path is for in-
stance <CreateSubmitClientToProxy, CreateProtectMethod, CreateSendProxyTo-
Channel>. If we execute this sequence of operations then it will switch the model to 
the consistent state (StereotypedChannelClass, SecuredState). 



 Finding a Path to Model Consistency 111 

4.4   Remarks 

A first remark is that there are multiple paths to consistency: it is possible to undo the 
first modelling operation that leads to an inconsistent state. Here when the model 
evolves to the state where the channel class is stereotyped, the trivial path to consis-
tency is to undo the stereotyping action. 

Some will notice that no inconsistencies will be raised if the user draws a method 
call between the client and the channel, resulting in an unsecured method call. This is 
not because our approach cannot deal with this situation. The simple reason is that it 
is not specified as an inconsistency. But it is possible to specify new automata or to 
modify existing ones for taking into account this constraint. 

These automata have been manually produced following two main principles: ab-
straction and partitioning. But the complexity of this specification remains high. On 
this limited but concrete example there are still many states and transitions. We could 
then head toward automatic production of these automata from high level languages. 
For instance we believe feasible to generate these automata from simple QVT relation 
language[11] expressions. 

5   Conclusion and Further Works 

In this paper we have introduced active consistency techniques, an approach to model 
consistency enacting at model edition time, automatically correcting errors or prevent-
ing modelling operations when they break a consistency condition. Then we ex-
plained why their strict consistency enforcement policy should be relaxed. As a result 
we argued the need for a hybrid approach combining active consistency techniques 
and “live” inconsistency management capabilities. We detailed some issues of such 
an approach like how to determine inconsistent model states without running com-
plete model checks.  

Main contribution of our approach is to introduce the concept of model state space 
and to define mechanisms for producing automata tracing all model evolutions which 
might impact a consistency relationship. These automata enable on-the-fly detection 
of inconsistencies, specified as a subset of the Cartesian product of their states. Fur-
thermore at each current model state, it is possible to compute paths to consistent 
states. A path is a sequence of modelling operations and may be automatically exe-
cuted. But this execution may also be delayed enabling to edit the model while it is 
inconsistent. To the best of our knowledge this is the first time such an approach is 
proposed. However in this article this model of model evolution is not formally  
presented.  

Our future works can be divided into theoretical and experimental aspects. At the 
theoretical level we firstly plan to provide a formalization of this model, a precise 
definition of modelling operations and model states. Based on these core concepts, we 
wish to explore the relationships between the automata and the state space of models. 
At the experimental level we designed an initial architecture and implemented a basic 
model listener for tracing model evolutions. The latter detects events modifying the 
model data structure. In the next step we will be able to specify composite modelling 
operations from atomic ones and detect them while the user edits models. 
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Abstract. The Unified Modelling Language (UML) is intended to de-
scribe systems, but it is not clear what systems satisfy a given collection
of UML diagrams. Stephen Mellor has described a small collection of dia-
grams which appear to be inconsistent, yet are “cool” according to UML.
We describe an approach to defining semantics for UML diagrams us-
ing dynamic logic, and show that Mellor’s example is inconsistent, given
a reasonable assumption. Our approach interprets all diagrams, static
and dynamic, in a single semantic space. The modeller specifies how the
meaning of a model is made up from the meanings of its diagrams, thus
the “viewpoint” taken by each diagram is made explicit. This compo-
sition is achieved through formation of the dynamic logic formulae. It
is therefore very flexible, and we propose it as a means for defining se-
mantics for domain specific languages, and for specifying “bridges” or
“weaving” model transformations used in aspect oriented modelling.

One approach to modelling is to begin with use-cases, and aim to reproduce
them as sequence diagrams executed by the model being developed. Whether
or not a model can execute a sequence diagram is therefore a question which
will be asked frequently when working this way. We want the question to have
a definite answer, and we want our tools to give us that answer.

Any multi-view approach to modelling will have similar questions about the
relative consistency of its parts. The way to make these questions precise and
amenable to automatic solution is by defining formal semantics for our language.
Formal semantics are usually associated with formal verification for safety criti-
cal, or other trusted systems. Formal semantics are also usually associated with
incomprehensible symbolic mumbo-jumbo.

The ability to formally certify the products of model driven development
would certainly be beneficial. However, if the semantics could be understood by
at least some modelling practitioners, the result would be clearer thinking and
greater consensus in the modelling community. Modelling of problem domains
would produce better understanding, and hence better solutions.

Although endowing parts of UML with formal semantics has become quite an
industry, we do not know of any work that gives uniform semantics for class, state
machine and sequence diagrams, as well as UML actions. Reggio and coworkers
suggest an analogy between UML diagrams and logical axioms [13]. We promote
the idea from analogy to practice, translating the diagrams and actions into for-
mulae of dynamic logic [7]. Object diagrams can also be formalised, and adding
OCL to the repetoire would be straightforward, following [3].
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Some would argue that UML 2.0 is already well enough defined to resolve the
kind of consistency question we study here. From this point of view, dynamic
logic or any other rigorous mathematics are a complicated waste of time, since
OCL and the UML action semantics provide all that is needed. Far from being the
solution, we consider OCL and the action semantics to be a part of the problem.
We believe that the current official definition is not adequate to unequivocally
demonstrate the inconsistency of apparently inconsistent collections of diagrams.
Attempting to do this would be an interesting test, but it is beyond our present
scope. Here, we take UML model consistency to be a mathematical question,
and tackle it using mathematical techniques.

By translating into a well studied formalism like dynamic-logic, we obtain
precise semantics, along with a wealth of metatheory. Our example model at-
taches actions to states, and state diagrams to classes. We achieve this by making
an action a subformula of a state machine diagram axiom, which is in turn a
subformula of a class axiom. This suggests a general approach to specifying
“weaving” of diagrams and models, by defining how their translations are com-
bined to form model axioms. The idea of a “semantic variation point” used
throughout the UML definition [11] can also be made precise in this way. One
would simply use some parts of the translation output and not others, according
to the required interpretation of the diagrams.

In [8], Stephen Mellor gives an example where UML blindly accepts an in-
tuitively erroneous model. We use this example to demonstrate the style of se-
mantics we propose, and their application to model consistency problems.

The first section briefly introduces dynamic logic, and then we introduce a
version of Mellor’s example inconsistent model, using the conventions of the Ex-
ecutable UML method [10]. In the following section we systematically translate
each diagram into dynamic logic formulae. A system specification is then formed
using these diagram formulae as subterms. We then search for a trace which sat-
isfies this specification and establish that none exists. The conclusion compares
this approach with related work, and considers the next steps towards a useful
formal semantics for UML.

1 Dynamic Logic

In this section we briefly introduce logic, beginning with simple propositional
logic. Then we consider two different extentions: modal logics and first order
logic. Finally, we combine these extentions and obtain the form of dynamic logic
we need to complete our formalisation.

A logic consists of syntax, semantics and a deductive calculus. The syntax
defines a set of formulae, which we call the language of the logic. The formulae are
just symbolised statements. The semantics defines a range of possible situations,
each of which assigns either true or false to each formula of the language. A
deductive calculus defines proofs, each of which derives a formula from some set
of formulae. We will not say much more about deduction.
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Propositional logic has atomic formulae P, Q, R, . . . and if ϕ and ψ are for-
mulae, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ and ϕ �� ψ. These symbols stand for
not, or, and, and if . . . then . . . respectively. The possible situations of propo-
sitional semantics are functions from the atomic formulae to the truth values
{true, false}. We will call these functions propositional interpretations. These
are extended to the whole language by assigning each of the connectives ¬, ∨, ∧,

�� the obvious truth function. We write � as a formula that is always true,
and ⊥ for one which is always false.

Propositional modal logics add some one-place connectives. Typically we add
to the above syntactic rules that if ϕ is a formula, then so are �ϕ and ♦ϕ .
Some intuitive interpretations of these connectives are: necessarily and possibly,
always and sometimes, obligitory and permissible. We are interested in temporal
interpretations, where �ϕ means that ϕ is true at all possible future situations,
and ♦ϕ is true in some possible future situation. Semantics for a propositional
modal logic are given by introducing a binary relation R between the propo-
sitional interpretations. Then �ϕ is true at w if ϕ is true at every situation
R-related to w, and ♦ϕ is true at w if ϕ is true at some situation R-related
to w.

This is already a useful formal language, because if R captures the possible
evolution of a system, and we have formulae Init and Bad which represent the
acceptable initial states of the system, and undesirable situations respectively,
then the formula Init �� ¬♦Bad is true if and only if it is impossible for the
system to evolve from an acceptable initial state into an undesirable situation.

Propositional dynamic logic PDL has a pair of modal operators for each pro-
gram in a simple programming language. There are atomic programs, α, β, γ, . . .
and if ρ and σ are programs then so are ρ; σ, ρ ∪ σ and ρ∗. These are the reg-
ular expressions over the atomic programs. Also, if ϕ is a formula, then ϕ? is
a program. Each atomic program denotes a relation over the situations, ρ ∪ σ
denotes the union of the two relations (non-deterministic choice) and ρ∗ denotes
the reflexive transitive closure of the relation denoted by ρ (non-deterministic
repetition). The program ϕ? relates a situation to itself when ϕ is true there.
This can be used to place guards on programs, and to write conditionals, such as
(ϕ?; α) ∪ (¬ϕ?; β) for if ϕ then α else β. In propositional modal logic, the
semantics for the modal operators � and ♦ were given using a binary relation.
In propositional dynamic logic, each program ρ corresponds to a binary relation,
and the semantics of the modal operators [ρ] and 〈ρ〉 depend on this relation.

We can write for example 〈α〉�, to mean that the program α runs successfully
(terminates), or 〈α〉� �� ϕ to mean that α only runs successfuly in situations
satisfying ϕ.

First order logic also extends propositional logic. Where the basic formulae of
propositional logic are unanalysed propositions P, Q etc, first order logic formulae
assert properties of individuals or assert relationships between individuals. For
example, a two place relation symbol L might be interpreted as “. . . loves . . . ”
the name a might mean “Aaron” and b “Belinda” then Lab would be read
as “Aaron loves Belinda.” The logic includes equality, so we may write a = b
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meaning “Aaron is Belinda.” Names are one kind of term, that is expressions
which refer to an individual. Variables x, y, z, . . . are another kind of term, and
terms can be formed by applying n-place function symbols, f, g, . . . to n terms,
for n = 1, 2, . . .. For example if the 1-place function symbol f is read as “the
father of . . . ,” then Lxf(b) should be read as “x loves Belinda’s father.” First
order logic also has quantifiers ∀ and ∃ so that ∀x, Lxf(b) means everybody
loves Belinda’s father, and ∃x, Lxf(b) that somebody does.

The semantic situations for first order logic (which logicians call “models”)
consist of a set of individuals, called the semantic domain, and an interpreta-
tion which takes each name to an individual and each n-place relation/function
symbol to a n-place relation/function. To evaluate variables and quantifiers, we
also need a valuation. This takes each variable to an individual in the semantic
domain. The formal definition of truth of a formula in an interpretation just
says that, in the interpretation, things are as the formula says they are. The
frightening notation required to state this precisely is unhelpful in the current
context.

The semantics of quantified formulae are defined using the idea of variants
of the valuation. An x variant of w is a valuation that is the same as w for all
inputs except for x. This is worth explaining, because we will use these ideas
again soon. We introduce some notation for a function the same as w, except
that it takes x to q. Define w ⊕ x �→ q by

(w ⊕ x �→ q)(y) =
{

q if x = y
w(y) otherwise

Then ∃x, ϕ(x) is satisfied by the model and valuation M, w iff ϕ(x) is satisfied
by M, (w ⊕ x �→ q) for some q. And similarly for ∀ formulae.

The language of dynamic logic includes that of first order logic plus modal
operators similar to those of PDL. The atomic programs of DL are assignments
of the form x := t for some variable x and some term t. For each interpretation
M, the atomic program x := t relates each valuation w to w ⊕x �→ tM,w, where
tM,w is the value of the term t under the interpretation M and valuation w. For
example, the formula a = 5 �� 〈x := a〉x = 5, says that if a = 5 then after you
set x to a, you get x = 5. This is always true, because if a = 5 in M, w, that is
aM,w = 5, then x = 5 in M, (w ⊕ x �→ aM,w).

Our objective is to reason about object oriented systems, where objects retain
their identity over time, but have attributes whose values may change. To achieve
this, we have object identifiers as individuals, and object attributes as functions,
so that the familiar o.a notation becomes short-hand for a(o). Then what we
want is the ability to update these functions. An extension of dynamic logic
studied in [7] allows such updateable functions, called array variables. Indeed, a
similar system has been used to formalise parts of UML 1.1 in [17].

The syntax of DL is extended by n-place array variables for each n = 1, 2, . . ..
These can occur wherever an n-place function symbol can occur, but also on the
left hand side of an assignment statement. The semantics are adapted so that now
the valuations also assign an n-place function to each n-place array variable. For
a fixed model M, this assignment denotes a relation that relates each valuation
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w to w ⊕ h �→ (hw ⊕ tM,w �→ sM,w). That is, w is related to an updated form of
w, which maps the array variable h to the same function w maps it to, except
updated so that it sends the value of t to the value of s.

This is the form of dynamic logic that we use to precisely express our inter-
pretations of the UML diagrams and actions.

2 The Problem Model

We begin this section with Mellor’s description of the problem which we aim to
a resolve.

Consider this. We have two state chart diagrams, one of which sends a
single signal X to the other. In the same system, we have a sequence
diagram that shows lifelines for two objects whose behaviour is captured
by the state chart diagrams, one of which sends a single signal Y to
the other. Both diagrams are intended to describe the same behaviour;
that is, a single message being sent between them. Which of these two -
contradictory - models is correct? Astonishingly, UML’s answer is Yes.
So long as the syntax of each of the two diagrams is correct, UML is
cool.

-Stephen Mellor in [8]

There should be some definite meaning attached to UML diagrams, so that
tools can detect that no system can satisfy all the diagrams in Mellors’ example.

We could formulate the problem as Mellor has, using two state machine
diagrams one sequence diagram and no class diagram, but this would require
more “weaving” logic (Section 4, Page 122) than the Executable UML [10] style
of model we present here.

A class diagram (Fig. 1, Page 117) declares the two classes. The association
between them will be used to target the signal.

Fig. 1. Class Diagram

We only give one state machine diagram (Fig. 2, Page 118), which describes
the behaviour of class A. Since the other state machine is completely arbitrary,
there is no point in specifying it. The join between the state machine and class
A will be made explicit in Section 4.

The only actions which we consider are signal send and receive. These are
only approximations of the official actions described in [11, §11.3.44 and §11.3.2],
since we do not attempt to capture ideas such as values travelling across “pins,”
and we use a stricter message queueing policy. The entry action for state s′ is
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Fig. 2. State Machine for Class A

send X to self.ex

Fig. 3. Entry Action for State s′

given in an action language of our own devising in Figure 3. Again, the join will
be given formally in Section 4.

Finally, the sequence diagram (Fig. 4, Page 118) shows an object of class
A accepting a W signal from an external entity, enterning state s′ and (erro-
neously?) sending a Y signal to a B object (presumably its ex).

Fig. 4. Sequence Diagram

3 The Model as Dynamic Logic Formulae

How can we represent this model using formulae of dynamic logic? We begin
this section with some general considerations about the relationship between
dynamic logic and the small UML subset used for this model. In each of the
following subsections, we will discuss one of the diagrams, and give its meaning
as a dynamic logic formula. These meanings are influenced by the use made
of the diagrams in the Executable UML [10] method. In the next section we
will combine the class diagram, state machine diagram and action formulae to
specify the system, and then show that this specification is inconsistent with the
sequence diagram formula.
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We give rather weak interpretations of each diagram, for example, assuming
that there might be objects in the system that do not belong to any class on the
class diagram. These interpretations are debatable, indeed it is possible that the
weak interpretations are more appropriate in an analysis phase, whilst stronger
ones might serve the design phase better. Indeed, we may want to keep sev-
eral interpretations available to cater for UML’s numerous “semantic variation
points.” The particular interpretations are not the main point though. Rather
we aim to demonstate that dynamic logic provides a simple and useful way of
giving the meanings of the diagrams. The reader should not overlook another
important virtue of the weak interpretations: they are shorter!

3.1 System Snapshots and Evolution

In Section 1 we said that the possible situations of the semantics of dynamic logic
consist of an interpretation and a valuation. We will consider all model specific
vocabulary to be variables, evaluated by the valuation, while the interpretation
takes care of the global UML vocabulary such as OCL library functions. Hence,
a system snapshot is a valuation, and the interpretation can be largely ignored,
because it is fixed.

Each DL program relates pairs of these snapshots, but not every DL program
corresponds to a legal evolution of the system. What we need is a formal defini-
tion of legal evolution. So, what can happen in a system defined by our subset of
UML? Only two things really: objects can send messages, and they can accept
them. There are conditions though, an object can only send a message if that
action is at the head of its todo list, although an external entity can send what-
ever it wants whenever it wants. An object can only accept a message if it has a
message to accept, and it is not currently activated. The non-deterministic DL
program ε which describes how these systems can evolve is defined as follows.

ε ≡ ((sendCond(x, M, y)?; x.send M to y) ∪ (acceptCond(x)?; x.accept))∗

where sendCond(x, M, y) is a formula, defined below, stating the conditions
under which it is OK for x to send an M message to y, send M to y is a DL
program, also defined below, which does what the send action is meant to do,
and similarly for acceptCond and accept.

sendCond(x, M, y) ≡ class(x) = EE ∨ (head(todo(x)) = send M to y)
acceptCond(x) ≡ todo(x) = () ∧ size(intray(x)) > 0

where head and size are library functions with the obvious meaning, and todo
and intray are array variables used to represent an objects outstanding actions
and messages respectively. The special class name EE is introduced so that
external entities can be treated as objects having this class.

Note that todo takes objects to programs, which on the face of it is a category
error, because programs are part of the syntax, not individuals in the semantic
domain. By adding function symbols corresponding to ∗, :=, ∪ and ;, we can copy
the program language into the semantic domain. Whenever you see a program
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on the right hand side of an equals sign, it is shorthand for a term formed using
this vocabulary.

Now we define the actions send and accept. When an object x sends a
message M to the object y, the message is placed in y’s intray, and the send
action is removed from x’s todo list.

x.send M to y ≡
intray(y) := append(intray(y), M);
todo(x) := tail(todo(x))

where append and tail are library functions.
When an object accepts a message, it makes the state transition specified in

its state machine, loads the entry procedure of the new state, and removes the
message from its intray.

x.accept ≡
state(x) := nextState(state(x), head(intray(x)));
todo(x) := entryProc(state(x));
intray(x) := tail(intray(x))

Where state is an array variable used to record an objects state. This definition
depends on the functions nextState and entryProc, which in turn depend on
the state machine diagrams of the model. The definitions of these functions
will turn out to be a consequence of the formulae we extract from the state
machine diagram. We will consider them to be array variables in order to keep
the interpretation general, but any attempt to assign them values that do not
agree with the state machine diagram(s) would result in an inconsistency.

This program ε allows us to say things about model dynamics. Adapting the
example in Section 1, we can say that nothing bad will happen so long as the
model starts within acceptable initial conditions: Init �� ¬〈ε〉Bad. Note ε is
a ∗ program, so the program under the ∗ can run 0 times. This means that for
[ε]ϕ to be true in some situation w, ϕ has to be true there and in every situation
reachable by legal model evolution. Therefore, if we want to say that in our
model, ϕ is always true (an invariant), we can assert [ε]ϕ.

This sets the general framework for systems defined by models of our tiny
UML subset. Now we are ready to look at the diagrams that define Mellor’s
example model.

3.2 Class Diagram

This class diagram (Fig. 1, Page 117) does not tell us a lot. The association
however, does tell us something. It says that each object of class A, has exactly
one ex which is an object of class B. Since this is all the information we can
obtain from the class diagram, we will name the formula CD.

CD ≡ [ε](∀x, class(x) = A ��

size(x.ex) = 1 ∧ (∀y, y ∈ x.ex �� class(y) = B))

Notice that we have taken some vocabulary from the class diagram. The class
names A and B are variables, ex and class are array variables.
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3.3 State Machine Diagram

The state machine diagram (Fig. 2, Page 118) does not specify which objects
it applies to, so the state machine diagram formulae contain a free variable. In
Section 4 we will use this variable to connect the state machine diagram to the
class A.

For an object to conform to this state machine, it must be in one of the
diagrams’ states.

SMs(x) ≡ [ε](state(x) = s ∨ state(x) = s′)

The transition in the state machine says that if an object x is in state s and it
has a W message at the top of its intray, then after it does an accept, it will
be in state s′.

SMt(x) ≡ [ε](state(x) = s ∧ head(intray(x)) = W
�� [x.accept] state(x) = s′)

We will not combine the state and transition formulae yet, but will combine
them with the entry procedure for state s′ and the class A in Section 4.

3.4 Sequence Diagram

The sequence diagram (Fig. 4, Page 118) partly specifies an initial model state,
and lists some occurrences in the order that they are meant to happen. It is sat-
isfied by model execution traces that begin in a state that satisfies the diagrams
intitial conditions, and in which all the occurrences happen legally, in the given
order.

Note that other things are allowed to happen in between the occurrences
given in the diagram. Read, write, link and unlink actions are not shown in
sequence diagrams. An object or external entity not shown in the diagram might
send one of the participants a message. Indeed, we might allow participants of
the sequence to exchange messages not shown on the diagram. If the diagram is
intended as a high-level summary, we might choose to omit some of these details.

The following formula captures our interpretation of the sequence diagram.
It says that ee is an external entity, a has class A, b has class B, and that it
is possible for some stuff to happen, and then for ee to legally send a W to a,
and then for some more stuff to happen followed by a legally doing an accept
(activation) after which some stuff can happen and then a can legally send a Y
message to b.

SEQ ≡ class(ee) = EE ∧ class(a) = A ∧ class(b) = B ∧
〈ε〉( sendCond(ee, W, a) ∧ 〈ee.send W to a〉
〈ε〉( acceptCond(a) ∧ 〈a.accept〉
〈ε〉( sendCond(a, Y , b) ∧ 〈a.send Y to b〉 �)))

As usual, we use variables for all the model specific vocabulary.
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4 Weaving and Consistency

Having specified the meaning of each of the parts of the model, we now turn to
the task of connecting these parts to specify the required system. Because we
have interpreted the diagrams using logical formulae, we can join them using
logical connectives.

We want to make the send action the entry action of state s′. That is, if an
object is in state s′, then immediately after it does an accept, we want its todo
list to contain only this action.

SMp(x) ≡ [ε][x.accept](state(x) = s′ �� todo(x) = send X to x.ex)

Putting x.ex rather than self.ex saves us the trouble of evaluating self.
Recall that in Section 3.3 we defined two formulae from the state machine

diagram, SMs(x) for the states and SMt(x) for the transitions. Now, we attach
the state machine diagram augmented by the entry procedures, to the class A.

SM ≡ [ε](∀x, class(x) = A �� SMs(x) ∧ SMt(x) ∧ SMp(x))

We are now in a position to ask whether our model is consistent. In other
words, is there an execution trace which can satisfy CD, SM and SEQ?

Semantic tableaux deductive calculi [4] do a systematic search for an inter-
pretation which satisfies their input formulae. Their purpose is to show that an
argument is valid, that is, that it is impossible for the premises of the argument
to all be true in the same situation where the conclusion is false. To test this, the
conclusion is negated, and together with the premises, input to the search pro-
cedure. If a situation that satisfies these inputs is found, it is a counter-example
to the argument, because it makes the premises and the negated conclusion all
true, hence it makes the premises true and the conclusion false. It is important
that the search procedure is exhaustive, because then if no counter-example is
found, we may conclude that the argument is valid. Some logics, such as first
order logic and DL are undecidable, so for some inputs, the procedure will not
terminate. However, when it does terminate without finding a counter-example,
we still know that the argument is valid.

Our goal is different: we want to show that a collection of formulae are
consistent. We can therefore simply enter our formuale into the search procedure.
If it finds an interpretation which satisfies the inputs, our model is consistent. If
it terminates without finding one, it is inconsistent. Since the required execution
traces are unlikely to be difficult to find, if the process runs for a long time
without terminating, this would be a fair indication that the model has problems.

For now, we will outline a manual search. We will assume that there is a
situation which satisfies SEQ, CD and SM , and we will call it w0. Recall that
these situations are valuations, which take variables to individuals, and array
variables to functions. Recall also that programs denote relations between these
valuations. So our search will consist in breaking down the formulae until we
have a collection of explicitly specified valuations, related as required by DL
programs.
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The three formulae, and some harmless assumptions tell us that w0 sat-
isfies: class(ee) = EE, class(a) = A, class(b) = B, a.ex = {b}, state(a) =
s, intray(a) = (), intray(b) = () and also the dynamic part of SEQ

〈ε〉(sendCond(ee, W, a) ∧ 〈ee.send W to a〉 . . . �) at w0 (1)

But ee is an external entity which can send as it pleases, and ε can run 0 times,
so it is sufficient to have

〈ee.send W to a〉 . . .� at w0 (2)

For this to be true, we need the send action to relate w0 to another valuation

which we will call w1. We write w0
send W to a �� w1 to express this. Satisfaction

of (2) now reduces to

〈ε〉(acceptCond(a) ∧ 〈a.accept〉 . . .�) at w1 (3)

Nothing needs to happen before a accepts this message, so we turn our atten-

tion to w2 where w1
a.accept �� w2. Now the definition of accept, on Page 120,

depends on the array variables nextState and entryProc, so its not immedi-
ately obvious what the situation will be in w2. A little reasoning, for which we
do not have space, shows that the state machine formula SM determines that
these variables behave as we expect, and so we require w2 to satisfy state(a) =
s′, todo(a) = send X to b and

〈ε〉(sendCond(a, Y, b) ∧ 〈a.send Y to b〉�) at w2 (4)

and now, it would appear that we are stuck, because it seems nothing that can
possibly happen is going to put send Y to b into a’s todo list, which we need in
order to satisfy sendCond(a, Y, b). But recall that X and Y are variables. Hence
each valuation maps them both to individuals in the semantic domain. If w2
maps X and Y to the same individual, then sendCond is satisfied, the send can
proceed and the sequence successfully completes, showing that it is consistent
with the model defined by the class and state machine diagrams.

This is clearly not how the story is supposed to end. We are developing a
formal theory of our intuitive understanding of the diagrams, and our intution
says they are inconsistent, because X is X , Y is Y , and they can not be the same
thing. That is “X” is not just a label we stick on that message from outside the
system, but rather something essential to its identity. We can capture this idea
formally by retrospectively asserting the following naming invariant

NAMES ≡ [ε](name(X) = “X” ∧ name(Y ) = “Y ” ∧ · · · ∧ name(s′) = “s′”)

which makes X = Y impossible. It also prevents the classes A and B from being
the same, and also weird possibilities like A = s, identifying a class and a state.
(Although Mellor [9] has made suggestions that are almost this strange when
discussing how domain models might be woven together.)

So now there really is no way to find a situation with send Y to b on a’s
todo list, so the sequence diagram is inconsistent with the model. This could be
proven by induction on the definition of ε.
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5 Related Work, Future Work, Conclusions

Our work is influenced by that of Roel Weiringa and collaborators. Executable
UML’s predecessor, the Shlaer-Mellor method [15] is studied in [16]. Another
shorter paper [17] studies a subset of UML 1.1, but the work is so similar that
we focus on the earlier contribution. The visual modelling language of the Shlaer-
Mellor method is given formal semantics using their own language LCM, which
is based on dynamic logic. This logic is first order, but the programs are not
explicit assignments, but rather unanalysed atomic programs like those of PDL.
To ensure that these programs have the desired effect, guard axioms 〈α〉� �� ϕ
and effect axioms ϕ �� [α]ψ are employed, but assumptions not expressible as
axioms are also required.

Shlaer-Mellor is subjected to a “methodological analysis” resulting in many
suggested revisions, some of which appear in Mellor’s newer method, Executable
UML [10]. Some of the revisions though, seem too extreme.

Our methodological analysis has led to a system transaction concept
that is simple to formalize: Each system transaction is a synchronous
execution of a non-empty finite set of local object transactions. Because
each object transaction has a local effect only, this composition is harm-
less and we can simply conjoin the local effects.

Thus tracing a timeline of object interactions, as we have done with our sequence
diagram formalisation, would be impossible. Weiringa’s goal is requirements en-
gineering, which is not concerned with the internal behaviour of a system, only
its interaction with its environment. Model driven development asks more than
this of its models. We require the ability to fully describe a system, including its
internal operations.

Another body of work using a type of dynamic logic to formalise parts of UML
is that of the KeY project [1], led by Peter Schmitt and Bernhard Beckert. Their
KeY tool verifies programs written in a subset of the Java programming language
against OCL constraints and their contextual class diagram, using a specialised
dynamic logic [2] with over 250 rules. This tool is tightly integrated with a
commercial CASE/modelling tool. This combination of UML class diagrams,
OCL and Java which they have formalised [2,3], can be seen as an executable
modelling language like UML, or various executable subsets of it. The difference
is that the Java code is much more complex and less flexible than UML actions,
but can stand alone as an implementation. To formalise such a system and build a
practical tool from it is a remarkable accomplishment, which we find encouraging
for our own project. Java, although complex, is according to Beckert [2, §4] quite
well defined. Almost everybody, except for Bran Selic [14], would argue that this
is not the case with UML.

Algebraic specification extended with “generalised labelled transition sys-
tems,” is used by Gianna Reggio, Maura Cerioli and Egidio Astesiano to for-
malise parts of UML in [13] and earlier papers by the same authors. They do
this by translating UML diagrams into the language Casl-LTL, though they
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emphasise that the particular language is immaterial. This work, like our own,
explicitly aims for a way of giving useful formal semantics to the whole of UML,
and as the title suggests, they take seriously the idea that the different diagrams
combine to specify a single system. Our translation seems, to us at least, to
more closely resemble the original model, although the Casl-LTL specifications
are perhaps more readable for software developers. We agree with Reggio and
her coauthors that

It is worth noting that to state the behavioural axioms we need some
temporal logic combinators available in Casl-Ltl that we have no space
to illustrate here. The expressive power of such temporal logic will also
be crucial for the translation of sequence diagrams.

A small executable subset of UML suitable for real-time systems is defined
in [5], and given formal semantics using symbolic transition systems. These are
due to Amir Pnueli, who is one of the papers authors. While we and Reggio’s
group translate diagrams into an existing language with semantics of its own,
this work starts with a “blank slate.” The metamodel abstract syntax of the
official definition is ignored, and a traditional formal syntax is given for the
selected UML subset. For tools based on this language definition to interoperate
with metamodel based tools, a translation will be required. Also, in order to
do verification, one needs to express ones proof goals. Ideally, OCL should be
used for this, since it is the official constraint language of UML. However, even
if you can not use OCL, if you translate the diagrams into some other language,
you can use that to express your constraints. This work has neither semantics
for OCL nor any alternative constraint language, so more work must be done
before they can state what they want to prove. Much of the complexity of this
work comes from the need to model hard real-time systems. It may be best to
spare the general UML semantics from this complexity, and save it for specialised
efforts like this one.

Finally, for something completely different, [6] uses UML collaboration dia-
grams as graph transformation rules which specify the semantics for object and
state machine diagrams. The state of a UML specified system is actually an
object diagram, and its evolution is determined by these rules. This is certainly
a very direct kind of formal semantics which would have great advantages if it
can be applied to more of the language.

How is one to compare these different approaches? None yet comes close to
covering a convincing selection of UML’s huge repetoire. None can demonstrate
an actual proof of a plausible model requirement. Without careful presentation,
only the graph rewriting approach is likely to be understood by practitioners.
Only KeY is implemented in a form useable by practicing developers. It seems to
us that it is more urgent to find justifiable and testable criteria for UML formal
semantics proposals, than it is to find more proposals.

Our formalisation has its weaknesses. Dynamic logic lacks types and spe-
cialisation. The DL variant used in [16,17] has ordered sorts for this purpose.
We have no concurrency, though concurrent dynamic logics have been studied
[12]. We consider only a tiny fragment of UML, with less than perfect fidelity.
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Readability must also count as a serious weakness of dynamic logic formulae.
An attractive possible solution is to obtain a dynamic logic from a graph-based
logic, rather than from the usual text-based logics. The atomic programs of such
a logic would be graph transformations.

On the positive side, we have shown that our approach can solve a practically
motivated problem that no previous effort can manage. The translation into
dynamic logic has made the meaning of each diagram quite precise, and made
explicit the role they play in the meaning of the model. We have tackled the
problem of consistency in UML using the much better developed theory and
techniques from logic. Expressing models as logical formulae has the additional
benefit that they are ready for use in formal proofs.

A suitable variant of dynamic logic, perhaps graphical, could we believe, serve
as the foundation for UML. A definitive translation from the UML metamodel
to the syntax of this language would make it absolutely clear what any given
model means. By applying tools and techniques from logic, model consistency
could then be checked automatically.
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Abstract. Model-Driven Development requires model management languages
and tools for supporting model operations such as editing, consistency checking,
and transformation. At the core of these model management techniques is a set
of facilities for model navigation and modification. A subset of the Object Con-
straint Language can be used for some of these tasks, but it has limitations as
a general-purpose language to be used in a variety of model management tasks.
We present the metamodel independent Epsilon Object Language (EOL) which
builds on OCL. EOL can be used both as a standalone generic model manage-
ment language or as infrastructure on which task-specific languages can be built.
We describe how it has been used to construct a selection of languages, such as
model merging, comparison, and text generation languages.

1 Introduction

Increasingly, software-intensive systems are constructed using Model-Driven Develop-
ment (MDD). For MDD approaches, such as the Model-Driven Architecture (MDA)
[25], to be used successfully, two key technologies are required.

– Standardised modelling and metamodelling languages, which are rich and expres-
sive enough to capture domain-independent and domain-specific concerns. MDA
relies on languages that are based on the Meta-Object Facility (MOF) [24].

– Model management features. Effective model management requires a set of lan-
guages and tools for manipulating models in automated ways [2]. A toolset for
model management might include model editors (e.g., UML diagram tools, or tools
for domain-specific languages such as Microsoft’s domain-specific language tools
for Visual Studio [7]), transformation engines (e.g., ATL [3]), model version con-
trol, consistency checking engines, and model merging engines.

In this paper, we present a new model management language, with prototype tool
support: the Epsilon Object Language (EOL). EOL has evolved from careful analysis of
existing model management frameworks and languages (discussed in the next section),
particularly the Object Constraint Language (OCL). The novelties with EOL are its
technology agnosticism, as it can be used to manage models from diverse technologies
such as MOF, EMF and XML, its metamodel independence, since it is not bound to a
specific metamodel, and the fact that it can be used as both a generic model management
language and as the basis for defining task-specific model management languages. We
describe how EOL has been used for the latter purpose in Section 4.
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The paper is organised as follows. We establish terminology and review related work
on model management, and identify the need for a common infrastructure language for
core model management operations, namely model navigation, modification and multi-
ple model access. We argue that OCL is insufficient as such an infrastructure language,
and then present EOL. We show how EOL can be used as a standalone language for
model navigation and modification, and then describe how EOL has been used to de-
rive a selection of model management languages, e.g., a model comparison, a model
merging and a text generation language.

2 Background and Motivation

We take a very general view of MDD in this paper: a model is a description of phe-
nomena of interest; thus, a model is represented using textual or graphical languages.
Examples of models include UML models, XML schemas, or web documents.

A variety of operations on models can be provided by model management systems.
These operations can be classified in the same way as database management system
operations:

– create new models and model elements that conform to a metamodel;
– read or query models, e.g., to project out information of interest to specific stake-

holders. Specific examples of queries include boolean queries to determine whether
two or more models are mutually consistent, and queries to select a subset of mod-
elling elements satisfying a particular property.

– update models, e.g., changing the properties of a model, adding elements to a
model. A specific example of an update operation is model merging.

– delete models and model elements.

2.1 Model Management Frameworks and Languages

The Meta-Object Facility is a standard model management framework from the OMG
[24]. It is a metamodelling language that provides core facilities for defining modelling
languages. There is limited tool support for MOF 2.0 at present, though there are tools
for earlier versions, e.g., UML2MOF and the MetaData repository under NetBeans for
MOF 1.4 [21].

Possibly the most well-known and widely used framework for implementing model
management is the Eclipse Modelling Framework (EMF) [17]. EMF is a model en-
gineering extension for Eclipse, and enriches it with model manipulation capabilities
via a model handling API. EMF provides support for operations such as creation and
deletion of model elements, property assignment, and navigation.

An exemplar of a model management framework mainly built atop EMF is the Atlas
Model Management Architecture (AMMA) [2]. AMMA is a general-purpose frame-
work for model management, and is based on ATL. AMMA provides a virtual machine
and infrastructural tool support for combining model transformations, model composi-
tions, resource management into an open model management framework.

XMF-Mosaic is a standalone meta-programming environment from Xactium [32]
that can be used for model management. It is based on a dialect of MOF and an



130 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

executable dialect of OCL, and provides built-in support for defining model transforma-
tions. It is not yet clear whether the infrastructure in XMF-Mosaic is sufficiently flexible
and extensible to define other model management operations, e.g., model composition.
These operations are not yet supported in the tool, to the best of our knowledge.

Perhaps of greatest similarity to the framework proposed in this paper is the work on
Kermeta [18]. Kermeta is a metamodelling language, compliant with the EMOF compo-
nent of MOF 2.0, which provides an action language for specifying behaviour. Kermeta
is intended to be an imperative language for implementing executable metamodels; as
such, it is general-purpose and can be used directly for implementing metamodels for
transformation languages, action languages, etc.

2.2 Transformations and Compositions

Transformations are sets of rules describing how models that conform to a metamodel
are to be expressed in models that conform to a second (not necessarily different) meta-
model. Specialised transformation tools are beginning to become available. Of note is
ATL, which is inspired by (but does not entirely conform to) the MOF 2.0 QVT standard
for transformations on MOF-defined languages [11]. The XMF-Mosaic environment
can be used to implement (much of) the QVT standard, and bases its transformation
rules on an executable language called XMap. Since XMF-Mosaic is a general-purpose
meta-programming environment, the transformations are not dependent on any meta-
model. Patrascoiu has proposed the YATL transformation language as part of the Kent
Modelling Framework (KMF) [28], and uses a subset of OCL for model navigation.

Model compositions involve merging or integrating two or more models to produce a
consistent single model. Model composition is founded on theory from database schema
integration [29]. One of the first prototypes of a model composition framework is the At-
las Model Weaver (AMW), which is part of the AMMA model management framework
[20]. The intent of AMW is to allow compositions of two models or two metamodels
via weaving sessions, which are based on specific weaving metamodels. AMW has been
shown to have general applicability to data management and software engineering [20].

2.3 Model Consistency Checking

An essential model management operation is model consistency checking, which in-
volves determining whether information contained in two or more models contains
contradictions. Model consistency is recognised as one of the most important quali-
ties sought in model management [12,14]. Two types of consistency are intra-model
and inter-model consistency [12]. To achieve intra-model consistency, a model must
comply with its meta-model. Moreover, in multi-view modelling languages (such as
UML [27]), views of a model must not contradict each other [33]. Inter-model con-
sistency, on the other hand, is about maintaining a set of models in a state where they
are consistent with each other. Substantial work has been carried out on checking intra-
model consistency, e.g., based on evaluating OCL constraints [9,10]. However, OCL is
inherently limited to specifying constraints in the context of a single model and cannot
be used as-is for expressing consistency rules across different models. This is of impor-
tance when checking consistency between different versions of a model. Intra-model
consistency has been achieved via construction [23], and by analysis [23,31]. Generic
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consistency checking approaches, e.g., based on XML [13] may be at the inappropriate
level of abstraction for defining meaningful consistency constraints on models.

2.4 Common Requirements

Among the generic and specific model management tools and frameworks discussed
above (e.g., OCL [26] for inter-model consistency checking, QVT [11], Kermeta, YATL
[28], ATL [3]), we can clearly identify a need for a common infrastructure for model
management that provides three key facilities in languages and tools, as illustrated in
Figure 1.

Fig. 1. Model Management Languages Requirements

The first characteristic is the ability to navigate models to extract elements of in-
terest. The second characteristic is the ability to modify models to implement model
management operations for change, e.g., to add, update and delete elements. Finally,
multiple models must be concurrently accessible to support cross-model operations
such as transformation, merging and inter-model consistency checking.

2.5 Limitations of OCL for Model Management

OCL provides model navigation facilities for UML and MOF models, and it is an OMG
standard. The majority of contemporary model management languages and tools use a
subset of OCL for navigation and expressing constraints. However, there are a number
of limitations with using OCL as the basis for model management:

– The subset of OCL used for navigation and expression varies among different
model management frameworks; incompatibilities can easily arise between, e.g.,
a transformation language using a subset of OCL, and a model-to-text language
using a slightly different subset of OCL. There is no standard OCL core that can
be reused for model navigation and building new task-specific languages.

– By design, OCL does not support model modification capabilities. In particular, it
cannot be used to create, update, or delete model elements, nor can it update at-
tribute or reference values. However model modification features are essential to
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most model management tasks. Consequently, each new model management lan-
guage has to implement its own model modification features, adding unnecessary
diversity between languages and duplicating effort.

– OCL does not support statement sequencing; this must be encoded using nested and
quantified expressions, leading to complex statements which are difficult to under-
stand and maintain. This makes it difficult to use a model management framework
in batch mode, and to express complex navigations.

– OCL can only refer to a single model at a time. This is particularly problematic
for tasks such as inter-model consistency checking, transformation, and merging.
It is particularly challenging in the case where some models have been constructed
manually and others automatically. OCL needs to be supplemented with other lan-
guages and tools for inter-model consistency checking [22].

– OCL provides two operators for model navigation (the ‘.’ and → operators). This
adds unnecessary diversity to navigation expressions [19].

However, OCL has a significant user base and its navigation mechanisms are effi-
cient, platform independent, and allow expression of complex queries. What is needed
is a flexible, metamodel-independent model navigation language that builds on OCL
but also addresses the aforementioned limitations. Such a language could play the role
of a common infrastructure language for model management tasks and is essential to
provide integrated support for diverse (domain specific) modelling languages.

In the next section we introduce the Epsilon Object Language as a language that
contributes to filling this gap.

3 The Epsilon Object Language

The Epsilon Object Language (EOL) is the result of efforts to reuse the navigational
mechanisms of OCL while adding support for other language features like multiple
model access, statement sequencing, simple programming idioms and model modifica-
tion capabilities. We are using EOL as a core language upon which we are developing a
family of task-specific model management languages such as transformation, code gen-
eration, merging/integration and consistency checking languages. We call this family of
languages the Extensible Platform for Specification of Integrated Languages for mOdel
maNagement (Epsilon).

We now present an overview of EOL focusing on its differences from OCL, its ab-
stract and concrete syntax, and some examples. In the next section we briefly describe
the use of EOL in deriving task-specific model management languages.

3.1 Features

EOL reuses a significant part of OCL, including model querying operations such as
the select(), collect() and iterate(). Moreover, it uses a similar syntax for
defining variables: def <name> : <type>; and has an identical type system. In the
sequel we describe the additional features of EOL in relation to OCL.
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3.1.1 Access to Multiple Models. To support multiple model access in EOL,
each model has a unique identifier (name). Access to a specific meta-class of a
model is performed via the ! operator. For example, if UML is a UML 1.4 model,
UML!Class will return the Class meta-class reference and UML!Class.
allInstances() will return all the instances of the Class meta-class that are
contained in UML. If there are conflicting meta-class names, the full path, e.g.,
UML!Foundation::Core::Class can be used. The ! operator is inspired by
ATL [3]. However, in ATL, instead of the model name, the name of the metamodel is
used as identifier. This is not appropriate for EOL, which must accommodate multiple
models of a metamodel.

3.1.2 Statement Sequencing and Grouping. Sequencing and grouping statements
allow developers to disentangle complicated, nested queries, potentially making them
easier to read and debug. Statements in EOL can be sequenced using the ; and grouped
using the { and } delimiters.

3.1.3 Uniformity of Invocation. Providing two operators for invoking operations
and accessing model element features (→ and ‘.’) adds unnecessary diversity to OCL
expressions. In EOL, we use the dot operator as a uniform navigation and invocation
operator. The arrow operator can still be used to facilitate compatibility with the syntax
that OCL developers are familiar with, or to resolve potential conflicts with built-in EOL
operations. For instance, EOL provides a built-in print() operation that displays a
String representation of the object to which it is applied. However, a meta-class may
itself define a print() operation. In that case, the arrow operator will invoke the
built-in operation while the dot operator will invoke the metamodel-defined operation.

3.1.4 Model Modification. A core requirement of OCL as a constraint language is to
preserve the state of models by performing read-only operations [26]. Therefore, OCL
expressions cannot create, update or delete model elements. While such operations
are not required for expressing constraints, for most model management languages
this feature is essential. Therefore, in EOL we have introduced the := operator,
which performs assignments of values to variables and model element features: e.g.,
class.name := ’SomeClass’. Moreover, EOL extends the built-in collection
types (Bag, Sequence, Set, OrderedSet) with operations (such as the add(Any) and
remove(Any) operations) that can modify the contents of the collection to which they
are applied. Regarding element creation and deletion, EOL supports the new keyword
and the newInstance() operation for creating new model elements as well as the
delete() operation for deleting model elements from a model.

3.1.5 Debugging and Error Reporting. For debugging and error reporting, it is es-
sential that the user can send text to predefined output streams. While nearly all pro-
gramming languages support this feature, OCL currently lacks such a mechanism. In
EOL we have introduced the print() and err() built-in operations that send a
String representation of the object that they apply to, to the standard output and er-
ror stream respectively. Reporting operations return the object to which they are ap-
plied, to facilitate integration of debugging messages without changing the structure of
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a program. For instance the statement a.owner := b.owner.print(); prints a
String representation of b.owner and returns b.owner so that it can be assigned
to a.owner. To facilitate meaningful messages, the EOL engine supports pluggable
pretty printers that can print String representations of model elements in a readable
way.

3.1.6 Reusability. EOL allows users to define operations that apply to elements of a
specific meta-class (similar to OCL helpers). Such operations can be used not only from
EOL programs but also from any EOL-derived languages programs as well. Moreover,
operations can be grouped in different physical files and be imported on demand through
the import statements. An operation that checks if a UML!ModelElement has a
specific stereotype is displayed in Listing 1.1.

Listing 1.1. EOL Operation example

operation UML!ModelElement hasStereotype(name : String) : Boolean
{

return self . stereotype . exists ( st :UML!Stereotype|st.name = name);
}

Having outlined the basic features of EOL, we now present its abstract syntax and a
short worked example that demonstrates its concrete syntax.

3.2 EOL Abstract Syntax

Figure 2 presents a snapshot of the core part of the abstract syntax of the language. The
example that follows, demonstrating parts of the concrete syntax of EOL, clarifies the
missing parts of the abstract syntax (e.g., the syntax for logical expressions).

StatementBlock

Statement

statements [0..*]

ComplexStatement

body [1..1]

DefStatement

variable : String
type : AnyType

BreakStatement LogicalExpression

ReturnStatement

result [1..1]

AssignStatement

source[1..1]target[1..1]

IfStatement

ElseStatement

else [0..1]

ConditionalStatement

Operation

name : String

body [1..1]

AnyType

isTypeOf(AnyType) : Boolean
isKindOf(AnyType) : Boolean

returns [1..1] context [1..1]

FormalParameter

name : String

formal parameters [0..*]

type [0..1]

ForStatement

iterator : Variable

target [1..1]

Variable

name : String

type [0..1]

Program

main [0..1]

Library

name : String

operations [0..*]

imports [0..*]

condition [1..1]

WhileStatement

Fig. 2. Snapshot of EOL Abstract Syntax
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3.3 EOL Concrete Syntax Example

In this section, we demonstrate a scenario and a working solution using EOL as a stand-
alone model management language.

3.3.1 Scenario. When designing class diagrams in UML, it is common practice to
mark attributes as private and to provide public getter and setter operations. A common
naming convention commonly is that for an attribute named attr of type AttrType
the setter and getter operations should have signatures getAttr():AttrType and
setAttr(attr:AttrType) respectively.

Adding getter and setter operations is mechanical and can benefit from automation.
In fact, some UML tools provide built-in wizards for converting public attributes into
triplets of private attributes, setters and getters. However, those wizards are tool-specific
and often pertain only to a particular extent. EOL allows a generic, tool-independent
(requiring only that the modelling tool can serialise models, e.g., in XMI) solution to
be defined.

3.3.2 Solution. In Listing 1.2, we demonstrate a user-defined EOL program that runs
on any UML 1.4 model and performs the desired addition of getters and setters.

Listing 1.2. EOL Program

1 for ( attribute in UML!Attribute. allInstances ()) {
2 if ( attribute . visibility = UML!VisibilityKind#vk public){
3 attribute . visibility := UML!VisibilityKind#vk private ;
4 attribute . createGetter ();
5 if ( attribute . changeability =
6 UML!ChangeableKind#ck changeable){
7 attribute . createSetter ();
8 }
9 }

10 }
11
12 operation UML!Attribute createSetter () {
13 def setter : new UML!Operation;
14 setter .name := ’ set ’ + self .name.firstToUpperCase ();
15 setter . visibility := UML!VisibilityKind#vk public;
16 setter .concurrency := UML!CallConcurrencyKind#cck sequential;
17
18 def valueParam : new UML!Parameter;
19 valueParam.name := self .name;
20 valueParam.type := self . type ;
21 valueParam.kind := UML!ParameterDirectionKind#pdk in;
22 setter . parameter .add(valueParam);
23
24 self .owner. feature .add( setter );
25 }
26
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27 operation UML!Attribute createGetter () {
28 def getter : new UML!Operation;
29 getter .name := ’get ’ + self .name.firstToUpperCase ();
30 getter . visibility := UML!VisibilityKind#vk public;
31 getter .concurrency := UML!CallConcurrencyKind#cck sequential;
32
33 def returnParam : new UML!Parameter;
34 returnParam. type := self . type ;
35 returnParam.kind := UML!ParameterDirectionKind#pdk return;
36 getter . parameter .add(returnParam );
37
38 self .owner. feature .add( getter );
39 }

Lines 1-10 constitute the body of the EOL program. It iterates over each attribute of the
UML model, changing its visibility to private. If the attribute is changeable, both setter
and getter operations are created, otherwise only a getter operation is created.

Lines 12-25 define the createSetter EOL operation. Line 12 declares that the
operation applies to elements of the type UML!Attribute. In lines 13-16, a new
UML!Operation is created using the new keyword with its name set according to
the naming convention discussed above. Its visibility and concurrency are set. In lines
18-22, the parameter of the operation is defined, its type and kind are set and it is added
to the formal parameters of the operation. Finally, in line 24, the setter is added to the
features of the class that owns the attribute.

Lines 27-39 define the createGetter operation that creates a getter
UML!Operation for an attribute, in a similar way to the createSetter
discussed above.

As proof of concept, we execute this EOL program using the model displayed in
Figure 3 (left) as input. In this model, all of the attributes are public and changeable
except for the registrationNumber of class Student that is read-only (frozen
according to UML terminology). The target, refactored model is shown in Figure 3
(right).

All public attributes of the source model have been converted to private in the target,
and setters and getters have been added for all except for registrationNumber,
for which only a getter has been added.

This example demonstrates using EOL as a standalone language, showing key parts
of EOL’s concrete syntax. The program of Listing 1.2 shows a minimal functionality.
A more complete program would include looking for existing setters and getters before
creating, as well as handling static, derived and multi-valued attributes.

3.4 EOL Tool Support

We have implemented an EOL engine using a modular architecture that allows us to
plug-in virtually any type of structured model. In its current implementation, we have
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Fig. 3. UML models for EOL example

developed full support for Meta-Object Facility (MOF) models using the MetaData
Repository [30], EMF models and XML documents using JDOM [6]. We are also ex-
perimenting with models from the Microsoft DSL Toolkit [7]. Since the EOL engine
treats all models identically through a layer of abstraction we call EolModel, it is fea-
sible to access and manage models from different platforms in the same program. For
instance, we have developed EOL programs that check XML documents against MOF
models and vice versa.

We have developed a set of plug-ins for Eclipse [4] (editor, perspectives, wizards, and
launching configuration) that allow developers to use the language in real problems. The
plug-ins and the source for the examples can be found at [15].

For EOL-based languages, the architecture of both the execution engine and the
Eclipse plug-ins is designed to facilitate reusability, as described in the next section.

4 Building Task-Specific Model Management Languages

In Section 3.3 we presented EOL as a standalone language. However, a primary mo-
tivation for developing EOL is to embed it in a family of task-specific languages for
model management. In this section, we briefly describe several task-specific languages
we have constructed: the Epsilon Merging Language (EML), the Epsilon Comparison
Language (ECL), and the Epsilon Generation Language (EGL) for generating text (e.g.
code and documentation) from models.

4.1 Epsilon Comparison Language (ECL)

ECL is a metamodel-independent model comparison language built atop EOL. It is used
to express rules that compare a pair of models. The results of comparisons can then
be used in, e.g., a merging process. An ECL specification consists of match rules that
apply to the elements of the models; these rules include compare and conform parts. The
matching process classifies elements into those that match and conform, those that do
not, those that match or conform, and those to which no match rule has applied. Further
discussion about the rationale of this classification approach is presented in [16]. The
results can then be processed in a variety of ways. The classification is made accessible
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through the API of the ECL engine that executed the specification; it can be processed
according to the needs and capabilities of the environment. For example, it can be used
to visually highlight the elements in the source models, or to provide text messages to
the user pointing at the sources of inconsistencies; the type of post-processing depends
on the application domain and the needs of the users of ECL.

A very simple and partial ECL example allows us to illustrate both ECL and its
relationship to EOL. Listing 1.3 contains an ECL program containing rules for com-
paring elements from two models: the first of a simplified class diagram metamodel,
and the second a simplified relational database metamodel (we omit the metamodels
themselves, but they are typical).

Listing 1.3. ECL Specification

−− Match classes against tables rule Class2Table
match class :CD!Class
with table :DB!Table {

compare {
return class .name = table .name;

}
conform {

return table .columns. exists (
c:DB!PrimaryKey|c.name = class.name + ’ID’);

}
}

The Class2Table rule is executed for each pair of instances of CD!Class and
DB!Table in the source models. In its compare part, it checks that the class has the
same name as its comparable table. When this condition is met, the two entities are
considered to be semantically equivalent and the match rule can proceed to executing
its conform part. There, it checks if the table has a primary key named after the name of
the class suffixed with ID. Thus, the compare part of a rule identifies a small amount of
contextual information necessary to carry out deeper semantic checking in the conform
part. In general, whether to check constraints in the compare or the conform part of a
rule is application dependent. A similar rule can be written to match attributes against
database columns, but we omit this due to space restrictions.

4.2 Epsilon Merging Language (EML)

EML is a metamodel-independent language for expressing model merging operations.
It is built atop EOL: model navigation expressions and model modification operations
used within the merging process are written directly in EOL.

EML is rule based. It allows specification of different kinds of rules for expressing
model merges. Rules in EML are either match rules (identical to those of ECL), merge
rules, or transform rules. In the example presented in Listing 1.4, the match rule on
Classes returns true iff two classes (the left and right class) are both abstract or both
concrete, and their names and namespaces match. The merge rule on Classes produces,



The Epsilon Object Language (EOL) 139

in the merged model, a class which has the name and namespace of the left class, and
all features of both left and right.

Listing 1.4. Match and merge rules in EML based on EOL

rule MatchClasses {
match l: Left !Class with r : Right!Class

compare {
return l .name = r .name and

l .namespace.matches(r .namespace);
}
conform { return l . isAbstract = r . isAbstract ; }

}

rule MergeClasses {
merge l: Left !Class with r : Right!Class
into m: Merged!Class

m.name := l .name;
m.namespace := l .namespace. equivalent ();
m. feature := l . feature . includeAll ( r . feature ). equivalent ();

}

EML provides more features than we can describe here. It includes rule inheritance,
exception handling, and transformation capabilities. An EML development tool, which
builds on the EOL tool, has been developed and is available at [15].

4.3 Epsilon Generation Language (EGL)

A third task-specific language that we have recently been developing is the Epsilon Gen-
eration Language (EGL), which targets the problem of model-to-text mapping, similar
to MOFScript[8]. Unlike MOFScript, EGL is once again built on top of EOL, and uses
EOL to provide model navigation and modification facilities. An example EGL speci-
fication is in Listing 1.5. The delimeters [% and %] separate EOL code from static text
(similar to what is done in MOFScript).

Listing 1.5. Example EGL specification built atop EOL

[%for ( class in UML!Class.allInstances ()) { %]
public class [%=class.name%] {

[%for ( att in class . feature . select (a:UML!Attribute|true )){ %]
private [%=att. type .name%] [%=att.name%];

[%}%]
}
[%}%]

In the example, an EGL program iterates across all UML classes and outputs target
Java code, wherein each UML class is mapped to a Java class, and each UML attribute
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is mapped to a private Java attribute. The EGL development tool transforms this speci-
fication into a pure EOL program, which can then be executed against a UML model.

4.3.1 Reuse of EOL Tools in Task-Specific Languages. The details of the imple-
mentation process of ECL exemplifies the effort that is saved by using EOL as an
infrastructure language for the development of task-specific model management lan-
guages.

The abstract syntax (grammar) of ECL contains only a small number of task-specific
elements (MatchRule, Conform and Compare), and depends substantially on EOL
(Statement Block, Formal Parameter, Library) for its navigational and computational
characteristics. This, together with the flexible architecture of the EOL engine, makes
the implementation of the ECL engine straightforward. More specifically, the ECL
parser required 121 lines of ANTLR [1] grammar specification and 6910 lines of Java
code, with 4883 of them being generated automatically from the ANTLR grammar,
leaving only 2027 lines of hand-written code.

5 Conclusions and Further Work

In this paper we have presented the Epsilon Object Language, a metamodel indepen-
dent model management language. Its novelties include its support for model modifica-
tion, additional conventional programming constructs, and the ability to access multiple
models, e.g., for model comparison. While EOL can be used as a standalone language
for model management, its primary purpose is to be embedded into higher-level task-
specific languages of the Epsilon platform. The architecture of the EOL execution en-
gine helps to achieves this. As proof of concept, we have designed and implemented
three task-specific languages built on EOL: a merging language, comparison language,
and model-to-text language. Implementing these languages and reusing the EOL in-
frastructure was predominantly straightforward.

We are in a continual process of attempting to align with the OCL 2.0 standard
in those aspects of EOL that are not characterized by fundamentally different design
decisions (such as the ability to modify models).

Our plans for the near future include releasing the EOL execution engine and plug-
ins as part of the Eclipse GMT [5] project, and to develop comprehensive documenta-
tion of the internals of the architecture of the EOL execution engine. This will allow ex-
ternal developers to use the EOL infrastructure to build custom task-specific languages.
As well, we are aligning the merging language with the approach taken by Atlas Model
Weaver, to produce weaving models, enabling reuse.
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Abstract. A difficult challenge in the industrialisation of Model-Driven 
Development is managing different versions of models. Different versions may 
arise at any time during the development process, due to different individuals or 
teams working on different parts of the overall model. To manage these 
versions it is necessary to be able to identify differences and reconcile these 
differences in a single, integrated model. We describe the use of model merging 
technology for managing different versions of a model in an industrial software 
development process. The use of automated model merging technology is 
contrasted with an alternative, semi-automated approach. The contributions of 
model merging to helping to solve this problem are outlined.  

1   Introduction 

Industrial applications of Model-Driven Development (MDD) require facilities for 
managing models. In particular, such facilities need to offer support for creating, 
updating (e.g., transforming or merging models), analysing (e.g., consistency 
checking) and deleting a variety of models, manipulated by different stakeholders. 
Model management platforms are beginning to become available – such as the 
AMMA [6] and Epsilon [7] platforms. 

A key problem faced by developers of model management platforms is the ability 
to manage and manipulate different versions [11] of the same model. This is 
particularly relevant in an industrial application of MDD where different developers 
work on the same model at different times: differences and similarities between 
different model versions need to be identified, reconciled, and finally integrated into a 
unified single model. This is a difficult problem in itself, given the complexity of 
industrial MDD models, and the variety of changes that can be made to them, in a 
typical MDD process. The problem is exacerbated in the case where a solution to 
model version management needs to be introduced, without changing the existing 
development process, e.g., by replacing a predominantly manual solution with an 
automated or semi-automated one. 

In this paper, we sketch an approach to managing model versions based on use of a 
model merging language – the Epsilon Merging Language (EML). In order to 
properly assess the value and utility of applying model merging in this context, we 



144 K.-D. Engel, R.F. Paige, and D.S. Kolovos 

aim to compare the use of EML with an alternative, semi-automated solution – 
developed in-house – that did not use model merging facilities.  

The remainder of this paper is as follows. We first briefly define the problem of 
managing model versions, and touch on related work. We introduce the Epsilon 
Merging Language, and then provide context by explaining the development process 
into which model version management is to be introduced. Two solutions to 
managing model versions are presented: the first not based on model merging, and the 
second using model merging via EML. The two approaches are then compared, and 
lessons learnt identified.  

2   Background and Related Work 

We start with a brief overview of the characteristics of a version control/management 
system, and then discuss model version control. We then give a short overview of the 
Epsilon Merging Language (EML), focusing on its characteristics that can help with 
model versioning. 

2.1   Version Control and Model Versioning 

A version control system (also called a revision control system) [14] is a software 
system that manages multiple revisions of the same unit of information. Conceptually, 
any serialisable information can be managed by a version control system (VCS). In 
practice, a VCS is typically applied to source code and textual documentation. Other 
applications include managing versions of CAD files. Some modelling tools, e.g., 
Enterprise Architect [8], include built-in support for managing versions of diagrams, 
but do not offer all of the facilities of a fully-fledged VCS. 

The fundamental characteristics of a VCS as applied in software engineering are as 
follows [14]: 

• the ability to return to any earlier state in the design (e.g., rollback to a 
previous version of a source file because of the introduction of a bug). 

• to allow multiple versions of a software system to be executed independently 
(e.g., to identify in which version a bug arose). 

• to allow multiple developers to work on a system simultaneously. 
• to allow documentation of changes and revisions (e.g., the changes that were 

made in moving from one version to the next). 
• to allow identification of differences between versions. 
• to allow developers to merge different versions. 

There are both centralised repository and distributed variants of VCSs, which 
mainly differ in terms of the approaches taken to avoiding conflicts (e.g., locking 
mechanisms). 

A key difficulty in using traditional version control systems for managing versions 
of models [11] is that the traditional approaches are based on linear, text-based files. 
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Models, however, are structured graphs presented visually. Traditional VCSs are not 
designed to operate with hierarchical data. 

The key issues in resolving this abstraction mismatch are identified by Lin, Zhang 
and Gray [10], who clarify the need for efficient and precise definitions of model 
comparison, needed for supporting model version control.  Alanen and Porres [12] 
formalise a definition of union and difference of models which can form the basis of 
an implementation of model version control, perhaps based on XML or XMI 
serialisation [3] of models. One challenge to overcome is the problem of visualising 
model differences. Ohst et al [9] make use of colours to highlight differences and 
redundancies, but it is unclear whether this is sufficient to cover all the potential 
differences (e.g., between elements and between hierarchies), and whether a colour-
based approach scales. 

2.2   Epsilon Merging Language 

The Epsilon Merging Language (EML) is a metamodel-independent language for 
expressing model composition operations. It is built atop a generic model 
management language called the Epsilon Object Language (EOL) [5], which is 
inspired by OCL. EML is a general-purpose model composition language, and is rule 
based. It allows specification of three different kinds of rules and fulfills the general 
requirements for a model comparison solution identified in [9]. EML also supports 
model transformations, by building atop the EOL. EML supports model 
transformations by transform rules. EOL provides only model navigation and generic 
management of models.  

An EML specification consists of a set of rules describing how model 
compositions should be carried out. Rules in EML are of three types: 

• Match rules 
• Merge rules 
• Transform rules 

Match rules can be further subdivided into comparison and conformance rules 
(examples to follow). EML also provides support for a pre block and a post block, 
which are actions that are executed prior to and after the compositions have taken 
place. These blocks are used to perform tasks that are not pattern based (e.g., 
initialisation and post-processing; an example will follow). 

Each match rule has a unique name and two metaclass names as parameters. The 
rule itself is composed of a compare part and a conform part . The rule is executed for 
all pairs of instances of the specified metaclasses that appear in the source models. 

The compare part of a match rule determines whether two instances match, using a 
minimum set of (syntactic) criteria. The conform part applies only to instances that 
satisfy the compare part of a rule; the conformance rule set refines this match. If the 
conformance part of the rule fails, then an exception is raised (work is ongoing on 
improving EML’s exception handling capabilities).  

An example is shown in Figure 1. 
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abstract rule ModelElements 
match l: Left!ModelElement 
with r: Right!ModelElement 
extends Elements { 

 
compare { 

return l.name = r.name 
and l.namespace.matches(r.namespace); 

} 
} 
 
rule Classes 

match l: Left!Class 
with r: Right!Class 
extends ModelElements { 

 
conform { return l.isAbstract = r.isAbstract; } 

} 

Fig. 1. Matching rules in EML 

The rule ModelElements is abstract; it is not instantiated and is not used to carry 
out any matches. It provides basic behaviour used by rules that extend it. The basic 
behaviour of this abstract rule is to match model elements that have identical names 
(l.name=r.name) and matching namespaces. A similar match rule is used for classes. 
However, the Classes rule is concrete and will be executed by the EML virtual 
machine. Classes match when they obey the rules declared in their parent, the rules 
they extend (in our case the ModelElements rule), and when the additional conform 
part of the rule holds, i.e., when classes are either both abstract or both not abstract. 

2.2.1   EML Model Element Categorisation 
After the execution of all match rules in an EML specification, four types of model 
elements can be identified with respect to a particular pair of models (which we 
designate as left and right models, respectively) 

1. Elements that match and conform to elements of the opposite model (i.e., 
elements of the left model that match and conform to elements of the right 
model, and vice versa). 

2. Elements that match but do not conform to elements of the opposite model. 
Elements in this category trigger cancellation of the composition process. 

3. Elements that do not match with any elements in the opposite model. 
4. Elements on which no matching rule has applied; elements in this category 

may suggest that the specification is incomplete and thus trigger warnings. 

After the matching rules have been applied, the following results are obtained. 

• Elements that match and conform will be merged with their identified 
opposites. The specification of merging is captured in a merge rule. 

• Elements in categories 3 and 4 (that do not match) will be transformed into 
model elements compatible with the target metamodel. The specification of 
transformation is defined in a transformation rule. We do not go into further 
details regarding transformation rules in this paper. 
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• Elements in category 2 either generate or an exception, or are handled by a 
fix block (similar to try-catch in Java), which we discuss further in Section 3.  

2.2.2   EML Merge Rules 
Merge rules in EML are used to specify the behaviour necessary to compose two 
instances of model elements that match and conform. Each merge rule consists of a 
unique name, two metaclass names as input parameters, and the metaclass of the 
model element that the rule creates in the target model. 

For all pairs of matching instances of the two metaclasses, the rule is executed and 
an empty model element is created in the target model. The content of the newly 
created model element is defined by the body of the merge rule. Two examples of 
merge rules are shown in Figure 2. 

 
rule ModelElements {   rule Classes { 
   merge l: Left!ModelElement     merge l: Left!Class 
   with r: Right!ModelElement     with r: Right!Class 
   into m: Merged!ModelElement     into m: Merged!Class 
         extends ModelElements { 
 
   m.name := l.name;      m.feature := l.feature. 
   m.namespace:=l.namespace.equivalent()      includeAll(r.feature). 
}           equivalent(); 
        } } 

 
Fig. 2. EML Merge Rule 

 
Figure 2 presents two merge rules, one for merging ModelElements and a second 

for merging UML classes (“Classes”). The first rule applies to all Model Elements 
and produces a new, merged ModelElement whose name is that of the left original 
model, and whose namespace is that of the left original model. In the second rule, the 
two metaclasses, left and right, are declared; the merge rule is also declared to 
produce an instance of Class metaclass. The result of applying a merging rule is 
referred to via the merge result, declared by the into clause. The “Classes” rule 
creates a new instance of the Class metaclass, carries out all mergings declared in its 
parent (ModelElements), and sets the feature list of the new class to be the union of 
all features from the left and right arguments. 

There is a slight twist to the merging rule that takes the union of all features from 
the left and right model elements: the use of the equivalent() operator. This operator 
returns the equivalent of the model elements to which it is applied in the target model. 
The equivalent of an element is the result of a merge rule if the element has a 
matching element in the opposite model; otherwise it is the result of a transform rule. 
In short, this operator is necessary because the target and source metamodels may 
differ. This operator ensures that model elements from the source metamodel are 
expressed in the target metamodel before revealing the result of the composition. 

Additional details on EML, including its merging strategies, and its support for 
different metamodels (e.g., MOF [1], EMF) can be found at [7]. 
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3   Application of Model Merging 

We now describe an application of model merging for managing model versions. The 
aim of this application was to develop MDA [2] support for an established and 
intensively used approach to software development process without changing it. This 
work was done as a joint effort between Fraunhofer FOKUS and an industrial partner. 
The focus here is to contrast previously gathered experience on managing model 
versions without the use of automated model merging, with a model merging-based 
approach, making use of EML. 

In the following sections a short overview of the specific software development 
process will be given, and an example will be used to illustrate the approach used for 
merging model versions. This example will comprise only a fragment of the overall 
process but will be sufficient to illustrate the complete model merging approach used. 
The approaches to managing model versions will then be described: first, a semi-
automated model difference analysis and merge facility will be described; and then 
our attempt at using EML rules to obtain similar results will be presented. 

The first (semi-automated) approach has tool support; this model difference 
analysis and merge facility, implemented and used in an industrial project, is 
predominantly confidential. Presentations about the tool have been made [13].  For 
reasons of confidentiality, in this paper we describe a separate implementation of a 
similar merge approach in the Eclipse/EMF environment. 

3.1   Context: The Software Development Process 

We now describe the software development process that was to be extended and 
further developed to support MDA. The original software construction process 
supports all phases from planning through design and realization of the construction 
of enterprise information systems in an integrated environment. In the first phase the 
business rules and their relations are specified. The second phase allows the definition 
of Use Cases and their interrelations. In the third phase the flow of screens has to be 
specified, i.e., anticipated screens and the flow of control from screen to screen. This 
has to been done for each screen flow / use case; this description of screen flow can 
be seen as a behavioural description for the use cases. 

For each screen flow, diagrams are derived in the fourth phase, which describe 
system boundary objects to the user, server control objects and the data entities linked 
to the screens. This derivation is done using transformations starting with the objects 
from phase three. The resulting diagrams will be manually augmented increasing the 
description of control and data flow in the system. 

After this step a transformation can be used to generate a detailed class design for 
each of the diagrams received in phase four. These are still on a design level and not 
code, but are comparable to the code generation which is done in the next step. 

All objects created or modified within the different phases are stored in a MOF 
repository. Passing from phase to phase is supported by transformations. 
Relationships between objects that are derived from other objects by these 
transformations are kept as traces within the repository.  
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To limit the degree of detail in this paper, we will restrict our example to the use 
case phase and design of screen flow section since the requirements for versioning 
and model merge are similar for all phases. 

3.2   The Model Difference Analysis and Merge Facility  

We now briefly describe the initial approach to providing model merge and 
differencing tool support for the development process presented in Section 3.1. We go 
into sufficient detail so as to be able to precisely understand what needs to be 
implemented using EML rules. 

The existing tool offers team support facilities. It allows users to model different 
system aspects in parallel, to store them in model versions, and consolidate the results 
of parallel development. Consolidation is complex and time consuming. Within this 
environment a semi-automated approach is used. The person utilizing the diff/merge 
facility (model integrator) controls which model artefacts get transferred from the 
source to the target or are to be removed from the target. 

 

Fig. 3. The Model Diff Facility 

The diff/merge process consists of three phases: 

• Load the two versions of the model to be merged and determine the 
differences (the two versions are displayed in two sub windows). 
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• Navigate the artefact differences in the source and target window and decide 
whether to copy them from source to the target or delete them within the target 
window. In this phase this is done by only marking the artefacts as “to be” 
copied or deleted. 

• After the above decisions have been made the resulting model is to be saved as 
a new version. This is the actual execution of the merge process. 

3.2.1   Phase 1: Loading the Versions and Identifying the Differences 
Only versions of complete models, and not parts of models, are supported. So the two 
versions of a model must have had a common subset of artefacts - at least the root 
element - before they evolved into separate versions.  

The development environment is based on a MOF Repository [1]. Every MOF 
object obtains, at the time it is created, a unique identifier within the model which 
cannot be changed for the lifetime of the object. This MOF Id can be used to 
definitively establish an object’s identity.   

 
Instance typed objects have full object identity; that is, it is always possible to 

 

reliably distinguish one instance (object) from another. Object identity is intrinsic 
 

and permanent, and is not dependent on other properties such as attribute values. 
 

[from MOF 1.4 specification  formal/02-04-03] 
 
The first step during loading therefore uses those modelling artefact identities to 

identify elements that have been dropped or created in between the creation of those 
two versions. Objects with MOF Ids in the older version that do not appear in the 
newer one have been dropped, those that appear in the newer but not the older version 
have been created. Changes will be marked and highlighted in the Diff/Merge 
browser (Figure 3).  

Having two modelling artefacts representing the same object (i.e., with the same 
MOF Id) does not mean that they cannot be different. Their attributes or references 
may have changed, e.g., new ones may have been added, deleted or changed. We 
therefore have to elaborate how to discover a difference in more detail. 

To determine differences, we can make use of the reflective module of MOF. This 
has the advantage that the difference algorithm can be used for other metamodels too 
without changes. The reflective module allows working on the model and metamodel 
level without using metamodel specific interfaces that means without having 
knowledge of the metamodel in advance. For example, we can start with a modelling 
object, find its attribute names and values, its references, multiplicities of attributes 
and references and so on. 

For each pair of modelling artefacts (i.e., a new version and an old version) with 
the same MOF Id we 

• Check whether the attributes (names and values respecting the multiplicity) are 
different. 
    For primitive types we directly compare the values. For complex types we 
have to recursively compare the objects pointed to for differences. 

• Check whether the references (referenced objects) are different. This is also 
done recursively.  
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If we have found differences, we mark them and also mark the objects we started 
with as different. We have to be aware of cycles during the recursive search. If we are 
not interested in highlighting all differences in the browser, we could abort the search 
for differences after the first difference found for an object. To identify all changes we 
have to look from version A to version B for differences and vice versa. 

As a result we will have a list of all modelling artefacts in version A that have 
changed or added to version B and all those in version B which have changed or are 
added to version A. This holds for all attributes and references in the model artefacts. 

This reflective approach has the advantage that we do not need to know anything 
specific about the metamodel. Its disadvantage is that we perhaps compare too many 
objects that haven’t changed. If we have knowledge about the metamodel and more 
specifics about the way changes could have taken place within the model, we could 
restrict the number of objects we have to look at.  For example, only modelling 
artefacts that are visible in the modellers GUI could have been changed by the 
modeller.  

3.2.2   Interpreting the Differences and Identifying the Elements to Merge 
Within the merge phase we have a directed operation, i.e., one specific version of the 
model is the source and the other the target. The source elements may be 
added/merged from the source to the target but not vice versa. Elements may be 
deleted from the target that are not present in the source. This phase is normally done 
with support by a human being, who decides which differences should take part in the 
merge in which way and marks them as to be added from the source to the target or 
deleted from the target etc. The following kinds of objects can be identified: 

• Objects (identified by their MOF Id) that are present in the source but not in 
the target may be added to the target (marked as add). 

• Objects (identified by their MOF Id) that are present in the target but not in the 
source may be deleted from the target (marked as delete). 

• Attributes present in a modelling artefact in the source but not in the 
corresponding target can be created in the corresponding target artefact (mark 
as add). 

• Attributes present in a modelling artefact in the target but not in the 
corresponding source can be created in the corresponding target artefact (mark 
as delete). 

• References or links between objects to be added or deleted 
• Changes in modelling artefacts that are present in both versions but which 

have changed their values 

3.2.3   Merge Phase 
This phase executes the identifications and decisions made in phase 2 and creates a 
new target model in the repository. It takes the following steps: 

1. Delete all references to objects that are marked to be deleted 
2. Delete all the objects marked to be deleted 
3. Add all objects marked to be added (without their attributes and references, 

because they may reference objects not present) 
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4. Add all attributes to be added 
5. Add all references to be added 

Since it is not guaranteed that the decisions made in phase 2 lead to a consistent 
metamodel instance, we have to make a constraint check to validate the resulting 
model. 

3.2.4   The Metamodel 
The metamodel used within the industrial project is proprietary. Within the OMG 
presentation [13] a single slide gives an overview of the package structure used within 
the metamodel. This structure is shown in Figure 4. 

 

Fig. 4. The Metamodel Package Structure 

The metamodel is based on parts of UML 2.0, specifically UseCases, Activities 
and Kernel elements. These elements are specialized for their usage in the different 
development phases in the specific packages. These specific modelling elements are 



 Using a Model Merging Language for Reconciling Model Versions 153 

offered through a graphical modelling tool to the user. The models are stored within a 
MOF repository generated from the metamodel. Additional metamodel packages are 
defined for project metadata and the graphical representation data of the model. 
Within our examples we will concentrate on the use case screen flows. 

For use case design the modeller will offer the following (specific) elements: 
actors, use cases, association, generalization, include and extend dependencies. At 
model creation time the user has to enter an identifier (e.g. for use cases) that will be 
unique within the model. These identifiers are not as secure as the MOF ids assigned 
automatically, but can also be used to identify objects in the merge process. 

For the specification of screen flows we will have a screen (derived from activity), 
transitions between screens, initial and final nodes. These elements will also have 
specific identifiers assigned by the user during creation. 

3.3   Model Merge with the Epsilon Merging Language 

In this section we briefly outline how we use EML to manipulate the models, identify 
matches, and carry out the kinds of merges discussed in the preceding. In this sense, 
we are demonstrating the value and applicability of generic model composition 
technology for helping to solve a specific model management task, namely model 
differencing and merging of different model versions. 

With EML, the developer defines a set of rules which will be applied to two 
metamodel instances (one, for example, called the left instance, and the other the 
right). Applying the rules will partition the modelling elements into the four 
categories noted earlier, in Section 2.2.1, i.e., elements that do not match, elements 
that match and conform, etc. This partitioning of model elements will be used to 
separate the newly added, deleted and changed from the unchanged elements within 
the two versions.  

For the matching model elements, and hence writing the matching rules in EML, a 
combination of attributes/elements will be used that have the capability of uniquely 
identifying the element. For example, for use cases, the use case name suffices, and 
for screen flows the activity name will suffice. For associations we need a more 
complex construct of source and target, e.g., their role names, to identify it. A better 
approach would be to use the MOF identifier or the corresponding EMF identifier and 
a comparison function that checks two objects for identity, as we did with the 
approach previously described. Support for use of MOF identifiers was not available 
in the version of EML trialed for this experiment, but has since been added. In the 
case that a modelling tool preserves unique MOF identifies, an identity-based 
matching strategy (currently implemented for both MOF and EMF) can be used to 
identify matches based solely on element identity. We use EML conformance rules to 
identify changes in other characteristics of an element (e.g. changes in an element’s 
visibility, multiplicity, direction for navigation, etc.). Applying the matching to two 
model versions will lead to the partitioning mentioned earlier. We discuss the 
information provided in each case with respect to the problem at hand. 

Category 4 elements are a hint that we have forgotten to define a match rule needed 
for the model versions. In this case we infer that our rule set is incomplete and must 
augment it. 
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Category 1 elements are those that are contained in both model versions. However, 
the partitioning and inclusion of elements in this category does not say anything about 
them being different since contained elements like attributes or references may have 
changed. Elements of category 1 match and conform with their opposites. This means 
that even if some attribute values are different, the designer of the EML specification 
has decided that they are not important enough to raise a conformance issue – then 
they would belong to category 2. 

Category 3 elements are those elements that lead to changes. These may be 
elements that have been deleted or added in one model version. 

Elements of Category 2 have a corresponding partner but an expression that was 
checked in the conformance part of an EML rule has changed (e.g., the type of the 
attribute, the visibility of the element, direction of an association etc.).  

A sample of the EML matching rules used for such an application is presented in 
Figure 5. We present an example of a merge rule thereafter. 

 
abstract rule Elements 
 match l : V1!Element 
 with r : V2!Element { 
  
 compare { return l.owner.matches(r.owner); } 
} 
 
abstract rule NamedElements 
 match l : V1!NamedElement 
 with r : V2!NamedElement  
 extends Elements { 
 
 compare { return l.name = r.name; } 
} 

 
 
rule UseCases %% matches only on names 
 match l : V1!UseCase 
 with r : V2!UseCase  
 extends NamedElements { 
} 

 
rule Properties  
 match l : V1!Property 
 with r : V2!Property  
 extends NamedElements { 
  
 compare { 
   return l.type.matches(r.type) and 

      l.association.matches(r.association); 
 }  
} 

Fig. 5. Example EML match rules to support model version management 

The manual decision process used in the earlier approach, where a person 
responsible for the merge decides which elements should be added or deleted within 
or to the target model, cannot be fully used with EML since the merge and 
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transformation rules will applied automatically. However, such a process could be 
supported with EML if traceability information (e.g., sources of elements in a merged 
model) can be recorded. [15] presents an approach to recording traceability 
information in EML. In general, if it is desired to be able to apply a manual decision-
making process in concert with automated merging tools, a less strict set of rules 
should be written (e.g., leading to more elements in categories 2 and 4), which should 
lead to more exceptions during the automated merging process (in the case of 
increased elements in category 2) or more diagnostics suggesting model elements to 
which no rule applied (in the case of increased elements in category 4). Within match 
blocks an exception handling-like mechanism can be used. In practice, we attach a fix 
block to a compare rule; these fix blocks can be executed during a matching process. 
Their purpose is to allow modular conflict resolution and reporting. To add support 
for manual decision making we intend to split the matching/merging process into two 
distinct processes. The output of the match process will be a model (trace model) that 
will store the identified match-relationships (and the category in which each belongs) 
thus giving the opportunity to revise/correct/enhance the trace model before feeding it 
back into the merging process. 

The merging process for model versions can be done (in the simplest case) 
automatically; however, this depends on the policy followed for team coordination 
and synchronisation. This in turn will dictate whether we will have more or less 
conflicts during the merge. A merge rule for this process is shown in Figure 6. 

 
auto rule ModelWithModel 
  merge l : V1!Model 

      with r : V2!Model 
      into m : Vm!Model { 

  
  if (l.name <> r.name){ 

m.name := l.name + ' merged with ' + r.name; 
      } 
    }  

Fig. 6. Example EML Merge Rule 

3.4   Comparison of Both Approaches 

The MOF reflective approach described in Sections 3.1-3.2 is independent of the 
metamodel; EML is also metamodel independent. In general, in both approaches a 
person is needed to resolve the conflicts appearing during the merge and to determine 
the merge strategy. The merging afterwards is done automatically. With EML this 
may require some experimentation with the matching and merging rules in order to 
determine where and when human feedback can best be injected. We found this not 
difficult to do with EML, particularly because the rule structure inherent in any EML 
program is helpful in determining exactly what kind of feedback is needed from a 
human operator due to a failed rule. Including traceability information, as in [15], 
would also help with this process. 

For complex metamodels like the UML 2.0 metamodel the efforts for obtaining a 
complete set of matching rules needed for the EML approach will not be negligible; 
for this reason, the developers of EML are exploring matching strategies, e.g., based 



156 K.-D. Engel, R.F. Paige, and D.S. Kolovos 

on the ideal of a weaving model. With the strategies currently implemented within 
EML, this is straightforward.  Another issue is dealing with the frame of rules, i.e., 
their domain of applicability. Frames for the rules may be generated from the 
metamodel using an Epsilon helper utility [5].  

In general, MOF identifiers may not be available for determining the identity of 
objects since some tools do not persist such identifiers (e.g., Rational Studio 
Architect). While this is not a problem that a model composition tool such as EML 
can overcome, the user of automated composition tools must be aware of these 
limitations, as they will impact on the human intervention needed to deal with failed 
composition rules. 

With EML, it is currently not possible to support the conflict decision process as it 
currently exists. The process of deciding how to resolve conflicts must be done in 
advance and coded within the merge and transform rules set. The whole process 
afterwards can be executed predominantly automatically, but human intervention will 
be needed to deal with conflicts that have been overlooked.  

4   Conclusions 

We have discussed the problem of model versioning, and explored its use in an 
industrial software development process in which a human-intensive approach was 
used to identify and reconcile differences. This approach was compared with that 
offered by an automated model composition solution based on EML. The automated 
approach was found to be appropriate for dealing with many of the problems of model 
differencing and model version management, though it is by its nature incomplete. A 
particular challenge with using an automated rule-based solution like EML for model 
versioning will arise in terms of producing a complete set of rules for large 
metamodels. EML supports a notion of a merging strategy  which provides a default 
set of rules for compositions involving models from the same metamodel, and this 
may help in providing default rules for comparison and differencing for managing 
model versions. There are also issues in terms of using a model composition tool with 
other modelling tools, e.g., for maintaining visual presentations. 

By using EML to merge model versions we identified two key limitations: limited 
support for exception handling and support for managing MOF identifiers. Support 
for both features has been added to EML as a result of this experiment.. Technical 
limitations (e.g., the need to support additional modelling technologies,  and the 
utility of a separate model comparison language) have also been identified, and this 
will guide our future work. We also plan an additional experiment to demonstrate that 
EML is sufficient to carry out all key tasks of model versioning, as identified in 
Section 2. 
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Abstract. Model transformation is a key technology of model driven
development approaches. A lot of research therefore is being carried out
to understand the nature of model transformations and find out desir-
able characteristics of transformation languages. In recent years, several
transformation languages have been proposed.

We present the RubyTL transformation language which has been
designed as an extensible language–a set of core features along with an
extension mechanism. RubyTL provides a framework for experimenting
with features of hybrid transformation languages. In addition, RubyTL
has been created as a domain specific language embedded in the Ruby
programming language. In this paper we show the core features of the
language through a simple example and explain how the language can
be extended to provide more features.

1 Introduction

The model-driven development (MDD) promotes an intensive use of models in
the software life cycle. Software models are used to guide the construction of
the application, and an automatic generation of source code from models is pos-
sible. At the end of 2000, OMG launched its initiative on the Model Driven
ArchitectureTM (MDA) [1], an MDD approach to address the integration chal-
lenges and the continuous changes in technology. Since then other approaches
have been proposed [2][3][4], and MDD has become the new software paradigm
that promises to improve software productivity and quality.

Model-to-model transformations are a key technology of the MDA approach.
Most MDA research has been focused on understanding the nature of transforma-
tions and discovering desirable characteristics of model transformation languages
and tools. In recent years, several transformation languages have been defined
[5][6][7]. among them the QVT [8] standard proposed by the OMG. Today the
success of QVT is not clear, and an alternative of a set of languages providing
different styles makes sense [9].
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In this paper we present RubyTL, a hybrid transformation language which
has been designed with three main requirements in mind: i) rapid implementa-
tion, ii) it should allow us to experiment easily with different sets of features,
iii) it should provide enough functionality for writing complex transformation
definitions. Three design decisions have allowed us to satisfy these requirements:
the technique of embedding a domain specific language (DSL) in a program-
ming language such as Ruby facilitates the implementation; a plugin mechanism
provides a way of adding extensions, so that the language may be configured
to experiment with different sets of features; finally, Ruby constructs could
be used to write some kinds of complex transformations, in which a declara-
tive style is not the most suitable. In short, RubyTL is an extensible language
which provides a set of core features and an extension mechanism to add new
features.

The paper is organized as follows. Section 2 describes the basic features of
RubyTL transformation language, while Section 3 shows the extension mecha-
nism. In Section 4 the transformation process is discussed. Section 5 compares
RubyTL with other proposed languages. Finally, in the last section we present
our conclusions and outline future work.

2 Language Description

In this section we explain the RubyTL core features, and use a transforma-
tion definition example between two simple models to illustrate the syntax and
semantics of the language. These features are the basic ones for a usable trans-
formation language, but they can be extended, as explained in Section 3.

Ruby [10] is an object-oriented programming language which is gaining con-
stantly acceptance, especially over the last year because of the success of Ruby
on Rails, a web application framework. Ruby is dynamically typed and provides
an expressive power similar to Smalltalk through constructs such as code blocks
and metaclasses. Because of these characteristics, Ruby is very suitable to define
internal DSLs [3].

Thus, RubyTL is a model transformation language defined as a Ruby internal
DSL. RubyTL is a hybrid language since it provides both declarative and imper-
ative constructs to write transformation definitions. Like ATL [6][9], a binding
construct is used to express rules in a declarative way.

The RubyTL abstract syntax, expressed as a metamodel, is shown in
Figure 1. As can be seen, a transformation definition is a set of transforma-
tion rules packaged in a transformation module, and each rule has a name and
four parts:

– A from part, where the source element metaclass is specified.
– A to part, where the target element metaclass (or metaclasses) is specified.
– A filter part, where a condition over the source element is specified, such

that the rule will only be triggered if the condition is satisfied; this part is
optional and if a rule has no filter it will always be triggered.
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Fig. 1. Abstract syntax of RubyTL

– The mapping specifies relationships between source and target model el-
ements. These relationships can be expressed either in a declarative style
through of a set of bindings or in an imperative style using Ruby constructs.
As we will explain below, a binding is a special kind of assignment that
makes it possible to write what needs to be transformed into what instead of
how the transformation must be performed. The declarative style is recom-
mended, and Ruby imperative code should only be used when it is difficult
to express declaratively some part of a transformation.

The concrete syntax of a RubyTL transformation definition is shown in
Figure 2. It is determined by the fact that the language is implemented as a
Ruby internal DSL (e.g. notice the use of do - end to write a code block and
| | to set the block parameters). We have used a well-known technique to im-
plement Ruby internal DSLs, that is, every keyword in the language is mapped
to a method call and nested structures are mapped to parametrized code blocks.
A discussion about the definition of Ruby internal DSLs can be found in [3].

A rule is defined by the rule method which expects two parameters: the rule
name as a string and a code block which must have a structure conforming the
concrete syntax of the rule element. The from and to parts of a rule are defined
by the from and to methods, which expect as parameter a class belonging to
source and target metamodels, respectively. The filter part of a rule is defined
by the filter method which expects as parameter a block receiving an element
of the source metaclass. The filter evaluates true if the attached block returns
true, otherwise false1. The mapping part of a rule is defined by the mapping
method which expects as parameter a block receiving the source element and
one or more target elements. This block consists of either a set of bindings if
a declarative style is adopted to implement the rule, or any other Ruby code
if an imperative style is adopted. Bindings, which establish a mapping between
source and target elements, have been implemented by overloading the Ruby

1 In Ruby, the result of the last expression evaluated in a block is taken as the return
value of such a block.



RubyTL: A Practical, Extensible Transformation Language 161

module <module-name> do

rule <rule-name> do

from <source-metaclass>

to {target-metaclass}

filter do |source_element|

<expression>

end

mapping do |<source_element>, {target_element}|

{bindings}

# bindings has the form:

# target_element.property = source_element.property

end

end

# one or more rules

end

Fig. 2. Concrete syntax of RubyTL. In this notation <> means one ocurrence and {}
means one or more ocurrences.

assignment operator. It is worth noting that RubyTL is easy to learn and, since
a new notation has been built on top of Ruby, only a little knowledge of the
Ruby language is required.

2.1 Example

Once we have outlined the structure of the language, we show an example of
transformation definition and explain some language features. The example is a
simple transformation from a class model to a Java model, such that i) each class
is transformed to a Java class, ii) each public attribute of a class is transformed
to a pair of get/set methods plus a private field in the Java class, and iii) each
private attribute of a class is transformed to a private field in the Java class.

Figure 3 shows the source (Class) and target (Java) metamodels [11]. Class
metamodel is defined inside a package named SimpleClass. According to this
metamodel, a class is composed of attributes; an attribute has a name and a
visibility and the type of an attribute can be a class or a primitive type. Java
metamodel is defined inside a package named SimpleJava. According to this
metamodel a Java class is composed of features which can be fields or methods;
a method can have zero or more parameters; both features and parameters are
typed, therefore they inherit from TypedElement, which gives them a type and
a name.

The following transformation definition expresses the transformation from
class model to Java model, as explained above. In http://gts.inf.um.es/downloads
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Fig. 3. Class metamodel and Java metamodel

a more complex version of this transfomation example, in which operations are
introduced in the source metamodel, can be found.

module Transformation

rule ’klass2javaclass’ do
from SimpleClass::Class
to SimpleJava::Class
mapping do |klass, javaclass|

javaclass.name = klass.name
javaclass.features = klass.attrs

end
end

rule ’attribute2features’ do
from SimpleClass::Attribute
to SimpleJava::Field, SimpleJava::Method, SimpleJava::Method

filter do |attr|
attr.visibility == ’public’

end
mapping do |attr, field, get, set|

field.name = attr.name
field.type = attr.type



RubyTL: A Practical, Extensible Transformation Language 163

field.visibility = ’private’
get.name = ’get’ + attr.name
get.type = attr.type
get.visibility = ’public’
set.name = ’set’ + attr.name
set.visibility = ’public’
set.parameters = attr.type

end
end

rule ’attribute2field’ do
from SimpleClass::Attribute
to SimpleJava::Field
filter do |attr|

attr.visibility == ’private’
end
mapping do |attr, field|

field.name = attr.name
field.type = attr.type
field.visibility = ’private’

end
end

rule ’type2parameter’ do
from SimpleClass::Classifier
to SimpleJava::Parameter
mapping do |classifier, parameter|

parameter.name = ’value’
parameter.type = classifier

end
end

rule ’datatype2primitive’ do
from SimpleClass::DataType
to SimpleJava::PrimitiveType
mapping do |src, target|

target.name = src.name
end

end
end

A key point of the example is the binding construct. For instance, the bind-
ing javaclass.features = klass.attrs establishes a mapping from class at-
tributes to Java features and yields to the execution of a rule that specifies such
mapping. In this case both attribute2features and attribute2field rules
are valid choices, but the filter of these rules allows the selection of only one,
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depending on the attribute visibility. If there are more than one possible choice,
the decision of which rule will be selected depend on which plugins are installed.
The default plugin simply raises an error if this occur, but a more complex plugin
could provide the developer a mechanism to resolve such situation.

Note that bindings established between primitive types (e.g. field.name =
attr.name) do not involve any rule invocation since they belong to the same
underlying meta-metamodel.

It is worth mentioning how clear and legible the transformation shown above
is. The non-intrusive Ruby syntax and the combination of code blocks and meth-
ods have allowed us to design a very clean language. An important feature of
RubyTL, which makes it a clean language, is the implicit rule application driven
by the bindings established between model elements. The order in which the
rules are written in the transformation definition is irrelevant. Below, we discuss
some features of the language, and use the example to explain them.

2.2 Naming Metaclasses

In the rules of the example, notice how the metamodel classes (metaclasses) are
named in the from and to parts: the name of the metaclass is prefixed by the
name of the package in which that metaclass is enclosed plus two colons. This
usual notation can be used because the metaclasses organization in packages is
replicated in Ruby as classes enclosed in modules (the name of a class is prefixed
by the name of its module). For example, in RubyTL the Attribute metaclass
enclosed in the SimpleClass package can be named as SimpleClass::Attribute
because of a class named Attribute has been created within a module named
SimpleClass.

2.3 Expressions

Ruby expressions are used to write filters and bindings. For example, in the
attribute2features rule a simple example of filter expression can be seen:
attr.visibility == ’public’ checks if the attribute visibility is public.

It is very usual among transformation languages to use OCL as a query lan-
guage to navigate source metamodels and to express conditions. RubyTL does
not use any OCL-like query language since Ruby provides a powerful library
for managing collections. This library offers great expressive power for writ-
ing expressions, due mainly to the existence of internal iterators. For example,
klass.attrs.select {|attr| attr.visibility == ’public’} collects all
the public attributes of a class.

2.4 Bindings and Rule Conformance

As we have noted, the mapping of a rule is composed of a set of bindings.
The purpose of a binding is to specify a relationship between source and target
elements and it is written as an assignment in the form target.property =
source-expression, where:
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– source-expression is a Ruby expression whose result is an element, or a
collection of elements, belonging to the source model. Therefore, the type
of the right-hand side of the assignment is given by the type (metaclass) of
source-expression.

– target is a parameter of the mapping code block; this parameter denotes a
target element to be created and its type is given in the to part of the rule.

– property must be a property of the previously created target element. The
type of the left-hand side of the assignment is given by the type of the
metamodel feature to which the property corresponds.

The definition of binding semantics is based on the “conforming rule” concept:
“A rule conforms to a binding if the type in its from part conforms to the type in
the right part of the binding assignment and the type in its to part conforms to
the type in the left part of the binding assignment”. The semantics of a binding
can be defined as “there exists a conforming rule which transforms the type of
the right-hand side of the binding assignment into the type of the left-hand side
of the binding assignment”.

In the example, the binding javaclass.features = klass.attrs in the
klass2javaclass rule means that there exists a rule whose from part conforms
to SimpleClass::Attribute and its to part conforms to SimpleJava::Feature.
It is important to note that conformance between types must take into consid-
eration inheritance between metaclasses, that is, a subtype conforms to its par-
ent type. For example, the attribute2features rule conforms to the previous
binding: its from part is SimpleClass::Attribute and its to part conforms to
SimpleJava::Feature as both SimpleJava::Field and SimpleJava::Method
are subtypes of SimpleJava::Feature.

A transformation definition is well-formed if for each binding involving two
non-primitive types, as left-hand and right-hand side types, there exist one or
more conforming rules but there is one and only one applicable rule. This means
that if two or more conforming rules exist, their filter conditions must be exclu-
sive, since only one of them can be applied. Since RubyTL is an embedded DSL,
checking if a transformation definition is well-formed must be done at runtime.

2.5 Rule Evaluation

The evaluation of a transformation definition is driven by the bindings estab-
lished between source and target elements. Assignment operator has been over-
loaded in such a way as to look for the correct rule to transform the right part of
the binding assignment into the left part. Whenever a conforming rule is found
it is applied using the element in the right part of the binding as the source
element. If the type of the right-hand side element is a collection then it will be
flattened and the rule will be applied once for every single element.

Every transformation must have an entry point in order to start the evalu-
ation. The entry point is the first rule which is applied to all existing elements
of the metamodel class specified in its from part (in the example it is applied to
all instances of SimpleClass::Class). In Section 3 the language is modified to
allow different entry points.
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Applying a rule is simply executing the code block of its mapping part.
Just before a rule is applied, new target elements are created–one element for
each metaclass specified in the to part of the rule. While the first parameter
of the mapping code block receives the source element, the rest of parameters
receive the target elements created as a result of the rule execution. In the exam-
ple, the mapping code block of the rule attribute2features has four parame-
ters: attribute whose type is SimpleClass::Attribute, field whose type is
SimpleJava::Field, and get and set whose type is SimpleJava::Method. We
refer to the first parameter as source parameter and the rest as target parameters.

Execution of a rule returns one or more target elements which are assigned to
the target feature related to the binding which triggers the rule. An important
consideration is that a source element is never transformed twice by the same
rule, that is, if a source element has been already transformed by a rule the
previous result is returned. In the example, when the attribute2features rule
is applied, the result of the binding field.type = attribute.type is stored
and it is returned as the result of get.type = attribute.type when that rule
is applied to resolve such binding.

This way of evaluating rules is applied when the rules are written in a declar-
ative style based on bindings. Since the evaluation algorithm simply executes the
Ruby code written in the mapping code blocks (notice bindings are a Ruby con-
struct), it is also possible to write any Ruby construct inside the mapping part
of a rule, thus yielding an imperative style.

2.6 Reflection

Another property of RubyTL is that it can be used in a reflective way. Just like
reflective languages such as Java or Ruby, the main concepts of the language
(transformation, rule, mapping and metaclass in this case), except binding, can
be manipulated in runtime since they are Ruby objects. Therefore, they can be
handled by RubyTL rules, making it possible to write a RubyTL transformation
that takes another RubyTL transformation as input and generates a modified
RubyTL transformation as output.The main limitation is that reflectivity cannot
deal with bindings, since they are actually Ruby code. This makes that the
output transformation cannot be serialized, but only used in runtime.

To sum up, RubyTL is an unidirectional hybrid language, which relies on the
concepts of rule and binding to specify a transformation. Rules are resolved im-
plicitily and in a deterministic way. Figure 4 shows the core features of RubyTL
through a feature diagram according to [12].

3 Extension Mechanism

RubyTL is an extensible language, that is, the language has been designed as
a set of core features with an extension mechanism. In the previous section we
have explained the core features, and in this section we will present the extension
mechanism based on the use of plugins.



RubyTL: A Practical, Extensible Transformation Language 167

Fig. 4. Feature diagram showing the core features of RubyTL according to [12]

A plugin is a piece of Ruby code which modifies the runtime behaviour of
the language by acting on the language syntax, the evaluation engine or even
the model repository. The language can be considered a framework with a set of
extension points that plugins can implement to add functionality. Some examples
of additional features are the following: definition of new kinds of rules with
a different behaviour, adding or removing syntax elements, renaming existing
keywords, and modifying the transformation algorithm. Adding a new language
feature is as simple as creating a plugin which implements a few extensions
points. Obviously, a new feature can only be added if the necessary extension
points have been planned.

The underlying idea behind this plugin mechanism is to have an extensible
language intended to experiment with transformation languages features. Given
a transformation problem, different combinations of features could be tried out
in order to decide which is the most appropiate. Before the evaluation of a
transformation, the developer should select the set of suitable plugins so that
the language is properly configured. Each time a set of plugings is installed it is
as if a new instance of the language were created.

Next we outline some advanced features implemented as plugins. In addition
to implicit rule execution (expressed through bindings), it is possible to call rules
explicitly by their name. A plugin traverses all rules in the transformation and
creates a method with the same name of the rule which can be explicitly invoked.
This plugin allows to call rules when mappings are written in an imperative style.

As mentioned before, the entry point of a transformation is the first rule.
This behaviour is generalized by a plugin which implements a new kind of rules,
named top rules. A top rule is always applied to all instances of the type specified
in its from part, thus a transformation definition could have more than one entry
point.

A rule never transforms a source element twice, and this is the behaviour that
is usually expected. However, it may be necessary for a rule to be evaluated more
than once for a particular source element (in ATL this is the default behaviour
of rules). In order to provide this behaviour, we have implemented a plugin by
adding a new kind of rule, named creator.
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Another plugin allows mappings not to be restricted to one-to-one mappings,
but it is possible to perform one-to-many and many-to-one mappings. At this
moment, we are exploring different ways of writing such mappings in a declar-
ative and readable manner. Finally, adding traceability support has been quite
easy with a plugin.

In [12] several variation points in transformation languages are identified.
Some of these variation points could be extensions to RubyTL, and they are
summarized in Figure 5. For instance, the language can be modified to perform
a transformation in several phases, where each phase has a specific purpose and
only certain rules can be invoked in a given phase. It would allow us to think
about a transformation as a set of refinement steps o phases, where each phase
rely on the job accomplished by previous phases to complete its job.

Fig. 5. Feature diagram showing possible language extensions according to [12]. Fea-

tures marked * are suitable to be implemented as plugins.

There are several advantages of this extensible language approach. First, we
have an environment in which to experiment mixing transformation languages
features and where new features can be implemented if required. Second, imple-
mentation and maintenance are easier due to the modular design. Finally, both
experimenting with features and even implementing new features does not re-
quire any knowledge about language internals. In addition, the fact that RubyTL
is an internal DSL makes the plugin mechanism easy (e.g. modifying the lan-
guage syntax in runtime).

4 Transformation Process

RubyTL has been implemented as a Ruby internal DSL. This key design choice
means we are relying on the Ruby interpreter to parse and evaluate the transfor-
mation definition. The transformation engine and the XMI parser has also been
implemented in Ruby.

Figure 6 is a process diagram which shows the components and the data
involved in the whole transformation process. The steps are the following:
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Fig. 6. Execution of RubyTL transformation engine

1. Since RubyTL has a pluggable design, the first step is to load the suitable
plugins to configure the language with certain features. The user should
select the plugins to be loaded, and the plugin mechanism check dependencies
between them.

2. Source metamodel, target metamodel and source model are xmi files. A
parser written in Ruby reads these input files and a set of Ruby classes are
generated and loaded in the Ruby interpreter. These classes correspond to
the classes defined in the source and target metamodels.

3. Once metamodels have been loaded, the transformation definition (it is in
effect Ruby code) is read by the Ruby interpreter itself, which leads to the
creation of a set of rule objects. These rules will be used by the transforma-
tion engine to perform the transformation.

4. As explained above, the transformation execution is driven by the bindings
established in the mapping part of the rules. As the rule evaluation is be-
ing performed plugins implementing extension points could be called. For
instance, if a plugin implements a strategy to choose between two or more
applicable rules, it will be called when more than one rule can be applied.

5. The output of the transformation process is an xmi file containing a target
model conforming to the target metamodel.

5 Related Work

Several classifications of model transformation approaches have been developed
[12][13][14]. According to these classifications, the different model-model ap-
proaches can be grouped into three major categories: imperative, declarative
and hybrid approaches. Imperative approaches are focused on how the trans-
formation is done; the direct model manipulation approach is the most com-
mon mechanism which uses programming languages such as Java and procedu-
ral APIs. Declarative approaches, such as relational, functional or graph-based
approaches, are focused on what the transformation does. Finally, hybrid ap-
proaches combine declarative and imperative constructs.

Some of the latest research efforts in model transformation languages are
ATL, Tefkat, MTL and Kermeta. MTL and Kermeta [5][15] are imperative exe-
cutable metalanguages not specifically intended to model-model transformation,
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but they are used because the versatility of their constructs provides great ex-
pressive power. However, the verbosity and the imperative style of these lan-
guages make writing complex transformations difficult because they are very
large and not readable.

ATL is a hybrid language with a very clear syntax [6][9]. It includes several
kinds of rules that facilitate writing transformations in a declarative style. How-
ever, the complete implementation of the language is not finished yet, and at the
moment only one kind of rule can be used. Therefore it may be difficult to write
some transformations declaratively. ATL and RubyTL share the same main ab-
stractions, i.e. rule and binding, but ATL is statically typed while RubyTL uses
dynamic typing. Static typing allows ATL to perform compile time checks, for in-
stance to do optimizations. On the other hand, dynamic typing is less restrictive
and offers more flexibility, which is very important for an extensible language
such as RubyTL.

Tefkat is a very expressive relational language which is completely usable [7].
As noted in [16], writing complex transformations in a fully declarative style is
not straightforward, and the imperative style may be more appropriate. That
is why supporting a hybrid approach is a desirable characteristic for a transfor-
mation language, to help in writing practical transformation definitions. Tefkat
only supports the declarative style, which could be an important limitation.

In [16], a set of quality requirements for a transformation language is pre-
sented. If RubyTL is evaluated against these requirements the following are
found. Usability is facilitated providing a clear syntax and a style of writing
transformation definitions appropriate to the usual background of the develop-
ers. Furthermore there is a good trade-off between conciseness and verbosity
because it is a hybrid language–a declarative style allows rules to be written in
a concise way and a more verbose imperative style can be used when is needed.
Regarding scalability, the use of a native EMOF2 repository provides a good
performance, and it can cope with large transformations without loss of perfor-
mance due to the nature of the language itself.

6 Conclusions and Future Work

In June 2005 we started a project for the creation of a framework intended to
experiment with ATL-like transformation languages features, that is, features
of hybrid languages in which the declarative style is expressed by a binding
construct. The result of this project have been RubyTL, an extensible transfor-
mation language. We have gone through the following steps.

1. We observed that the technique of embedding a DSL in a programming
language such as Ruby provided three important advantanges: i) a fast im-
plementation, ii) changes in the language could be easily made, and iii) Ruby
constructs can be used to write complex transformations.

2 http://rmof.rubyforge.org/
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2. We also realized that Ruby facilitates the creation of a plugin mechanism, so
that RubyTL could be designed as an extensible language. We established
the core features and the extension points, and we implement a set of plugins.

3. Finally, we have experimented with the language by writing transformation
definitions.

In this paper we have presented RubyTL core features and the plugin mecha-
nism. We have used a classical example for describing the language. This example
has illustrated that RubyTL transformation definitions are readable and easy to
understand because of the declarative style of the language. An imperative style
could be adopted for complex transformations by writing Ruby code. Therefore,
RubyTL is a fully usable language to write transformations of any level of com-
plexity. But the main novelty of RubyTL is to provide a framework in which to
experiment with features of hybrid transformation languages and to extend the
language without taking into account its internals.

The fact that RubyTL is implemented as a Ruby internal DSL causes some
limitations. The main drawback is that there is not a static type checking, due to
Ruby being a dynamically typed language and it may make a good tool support
difficult. In any case, we are currently working on the integration of our transfor-
mation engine inside the Eclipse platform by using RDT3. At this moment, an
editor with syntax highlighting, a launcher for transformation definitions, and a
configuration tool for plugins is available4. As future work, we expect to be able
to provide a debugger to RubyTL, and we are exploring the possibility of using
RubyTL to refactor Ruby code.

We will continue writing transformation definitions in the context of real
applications to find problems which require new constructs in order to be declar-
atively specified.

Acknowledgments

This work has been partially supported by Fundación Seneca (Murcia, Spain),
grant 00648/PI/04, and Consejera de Educación y Cultura (CARM, Spain),
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Abstract. In the model driven software development process, software is built 
by constructing one or more models and transforming these into other models. 
In turn these output models may be transformed into another set of models until 
finally the output consists of program code that can be executed. Ultimately, 
software is developed by triggering an intricate network of transformation 
executions.  

An open issue in this process is how to combine different transformation 
tools in a flexible and reliable manner in order to produce the required output. 
This paper presents a model transformation environment in which new 
transformation tools can be plugged in and used together with other available 
transformation tools. We describe how transformations can be composed. 
Furthermore, in the cause of answering the question where and how transfor-
mations can be successfully applied, we created a language-based taxonomy of 
model transformation applications. 

Keywords: MDA, QVT, model driven development, model transformation, 
transformation taxonomy. 

1   Introduction  

Model Driven Architecture (MDA) [1, 2, 3] and Model Driven Engineering (MDE) 
[4] propose a software development process in which the key notions are models and 
model transformations. In this process, software is build by constructing one or more 
models, and transforming these into other models. The common view on this process 
is that the input models are platform independent and the output models are platform 
specific, and that the platform specific models can be easily transformed into a format 
that is executable. In other words, the model driven process is commonly viewed as a 
code generation process. 

There is also a more generic view on model driven development [1, 5, 6], in which 
the difference between platform independent and platform specific is not dominant. 
The key to this more generic view is that the software development process is 
implemented by an intricate network of transformation executions, combined in 
various ways. This makes model driven development much more open and flexible. 

For example, in figure 1 at the start there are two models, one that describes the 
functionality of the system (M1) and one that describes the security aspects of the 
system (M2). Because we require code that has a certain package structure, consisting 
of interfaces for each class in the main package and a subpackage containing  
the implementations, the first transformation we apply is one  that changes M1 into the 
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Functional Model 
(M1)

Security Model
(M2)

Functional Model
with Package Structure

(M3)

Functional Model
with Package Structure 
and Security (M4)

JSP Code
(M6)

Java Code
(M7)

SQL Code
(M8)

User Interface View
(M5)

transformation1

transformation3

transformation5transformation4

transformation6

transformation2

 

Fig. 1. Example of a combination of transformations  

required structure. The resulting model is M3. The second transformation merges M3 

with M2, thus creating a model M4 that has the right package structure and the 
required security aspects. Next we generate a model M5 

that contains all classes from 
M

4 
that are directly visible to a certain actor named in the use cases in M1. From this 

model we generate a platform specific model of the user interface (M6). Meanwhile, 
we take M4 as input to a transformation that generates a database model for the 
system (M7), and we use M4 

again as input to a transformation to generates the middle 
tier of our system (M8). Even in this fairly simply example, we can recognise six 
separate transformations. 

In this paper we describe an open environment for model transformations in which 
users may combine the available tools that implement transformations, at will and 
apply them to models in various languages. Transformation tools may be added or 
removed, and are thereby available (or not) for composition. Language definitions 
may be added or removed thus enabling/disabling transformation of certain categories 
of models. The inclusion of separate language definitions also enables us to formalise 
and check the types of transformation tools, and the compositions of transformations 
that are allowed in the environment. We are working towards a model of MDA that 
makes the input/output relationship of transformations more explicit, and doing so 
makes transformation scripting look like expressions in functional languages. 

We will often use a comparison with compiler technology to explain our ideas,  
because this comparison helps to illuminate the similarities and differences between 
traditional compilers and transformers, which are sometimes called model compilers. 
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Please note however, that not all knowledge of compiler construction can be 
transposed onto the field of model transformation directly. This is due to the fact that 
the languages in which the models are written are often visual and therefore 
multidimensional. (See [7]). Another difference is that transformers must be able to 
handle models in multiple languages. Whereas compilers work with multiple repre-
sentations of the same program, from parse tree through several stages of abstract 
syntax tree, transformers work with multiple representations of multiple programs or 
models. 

The paper is structured as follows. Section 2 explains why we have set out to 
implement an open model driven development environment. Section 3 gives a 
linguistically based taxonomy of transformations that is used in Section 4, which 
describes the formalisation of the units that are recognised in our environment. In 
section 5 the implementation of the environment is outlined. Section 6 contains 
references to related work and Section 7 concludes the paper with a short summary. 

2   Rationale 

This section explains the reasons for our approach to transformation composition. 
Key is the difference between internal and external composition. The environment 
that we describe in this paper is focused on external composition.  

2.1   Internal Versus External Composition of Transformations  

There are various approaches for model transformation that offer forms of compo-
sitionality, either based on sceduling, reuse, or logical composition of transformation 
rules. (See [6] for an overview.) For instance, the upcoming QVT standard [8] 
specifies a language in which one is able to express transformation definitions that 
consist of a number of mapping rules. The mapping rules may be combined by 
calling, or by using the refines or extends mechanisms.  

We call this the internal composition of transformations, whereas the combination 
of transformation tools is called the external composition of transformations. The 
latter must tackle tool interoperability as well as the logical composition of transfor-
mation rules. In the following, the set of transformation rules that is implemented by a 
single execution of a single transformation tool will be called a transformation 
definition.  

A special concern with interoperability of transformation tools is that not all trans-
formation tools are ready to execute any transformation definition. Some are what we 
call specialized transformation tools, in which the transformation definition is hard-
coded, in contrast to the general transformation tools, which are able to execute any 
transformation definition written in a given transformation language.  

We focus on external composition of transformations, because it offers the user 
more flexibility, such as enabling the user to combine transformation tools from 
different sources. For example, open source transformation tools could be combined 
with vendor specific tools, and specialized transformation tools could be combined 
with general transformation tools. 
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2.2   Towards an Open Model Driven Development Environment  

In our view there is ample reason for creating tool support for external composition of 
transformations. The user of transformation tools could very much benefit from a tool 
chain of transformation engines, each executing small parts of the transformation 
execution network. This gives the user full control over the process, thus enabling her 
or him to be most productive. 

An open environment for model driven development should offer multiple 
transformation tools, multiple transformation definitions in various transformation 
languages, and multiple tools for other model-related services, such as model 
creation, or even model checking tools like SPIN [9]. The environment should  
take care of the concrete interoperability between the tools, and it must provide a 
means to specify the network of transformation executions that is necessary to 
produce the required outcome. To prove the feasibility of this approach we have build 
an open tool environment for transformation execution, which will be described in 
section 5. 

3   Taxonomy of Model Transformation Applications  

In this section we present a taxonomy of model transformations based on a linguistic 
approach. This taxonomy is needed for the formalisation of transformation compo-
sition in section 4. The transformations are categorised according to the part of its 
source and target language definition it addresses. In order to clearly define this 
taxonomy we first need to formalise our notion of language.  

3.1   Language Definitions  

Because a model transformation always relates the language of its source model with 
the language of its target model, one has to be aware of the structure of the definition 
of these languages in order to understand the different applications of model 
transformations. The formalisation of language given by Chen e.a. in [10] is a simple 
and elegant one. They define a language to be a 5-tuple L = < A, C, S, M

S
, M

C
> 

consisting of abstract syntax (A), concrete syntax (C), syntax mapping (MC), semantic 
domain (S), and semantic mapping (MS).  

However, for our purposes this formalism is too simple. We need to take into 
account languages that have multiple concrete syntaxes. For instance, one could argue 
that the visual diagrams of an UML model and the textual XMI format of that model 
are representations of the same abstract syntax graph1 in two different concrete 
syntaxes. (The latter is called the serialization syntax in [11].) Another example is 
OCL, for which we have defined a second concrete syntax that resembles SQL [12]. 
Therefore, we extend the given formalism into the following.  

                                                           
1  Instead of using the more common term abstract syntax tree, we use the term abstract syntax 

graph to stress the fact that such a representation can be made for also languages that are 
context-free or type 0 in the Chomsky hierarchy.  
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Definition 1: (Language) A language is a 5-tuple L = < A, SC, S, MS, SMC> consist-
ing of an abstract syntax (A), a set of concrete syntaxes (SC), a set of syntax map-
pings (SMC), a semantic domain (S), and a semantic mapping (MS). For each element 
Cn in SC, there is an element MCn in SMC, which is a mapping between Cn 

and the 
abstract syntax A.  

Most of the times the mapping between a concrete syntax and the abstract syntax will 
be bi-directional, but this is not necessarily so. Sometimes a concrete syntax is used 
only to visualize a model, not to edit it or create it. The syntax mapping may be 
defined in either way; from abstract to concrete syntax, or from concrete to abstract 
syntax, or bi-directional. In section 4.1 we will look into this in more detail.  

Another observation that needs to be made is that the semantics of some languages 
are not defined by giving a direct mapping of the abstract syntax to the semantic 
domain, instead they are defined by mapping the abstract syntax to the abstract syntax 
of another language of which the semantics are known. This type of semantics is 
known as translational semantics. We formalise this as follows.  

Definition 2: (Translational semantic mapping) A translational semantic mapping for 
language Li with the use of language Lj is a semantic mapping TransMSi = MAij 

° Msj, 
where MAij is a mapping of the abstract syntax Ai of Li to the abstract syntax Aj of Lj. 

3.2   Types of Transformations  

In this section we present our taxonomy of transformations based on the formalisation 
of language in the previous section. An overview of the various types of 
transformations can be found in table 1, an overview of the relation between the trans-
formation types and elements of the source and target language definition can be 
found in figure 2. Note that although the arrows in the figure indicate a bi-
directionality, not all transformations need to be defined bi-directionally. The arrows 
indicate that transformations in both directions are possible.  

Table 1. A taxonomy of transformations  

Name Category Maps .. to ..
Syntax transformation Intra-language Ai -> Ci and/or Ci -> Ai

Semantic definition Intra-language Ai -> Si

Refactoring Intra-model Ai -> Ai

View transformation Intra-model Ai -> Ai

Structure transformation Inter-model Ai* -> Aj*

Stream-based transformation Inter-model Ci -> Cj

Hybrid syntax transformation Inter-model Ai -> Cj  

Intra-language transformations. The first category of transformations is formed by 
the intra-language transformations. Transformations in this category are used to 
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Fig. 2. The relation between transformations and language definition  

 
define a language. They either specify one of the syntax mappings (MCn), or the 
semantic mapping (M

S
). A transformation that implements a syntax mapping is called 

syntax transformation. An example of a syntax transformation is the MOF to text 
standard [13]. A transformation that implements a semantic mapping is called 
semantic definition transformation2. An example can be found in [14]. Note that in 
the case of a translational semantic mapping, either or both of the constituting 
mappings may be defined by an automated transformation.  

Intra-model transformations. The second category of transformations is formed by 
the intra-model transformations. In this case the transformation is applied to a single 
model. Logically, the source and target model of the transformation are one and the 
same, and therefore the source and target language are the same as well. Again, we 
can recognise two subtypes in this category. The first subtype consists of the 
transformations that change the source model, which are also called refactorings, or 
in-place transformations. A refactoring is a mapping from the abstract syntax Ai of 
language Li to the same abstract syntax Ai.  

The second type of intra-model transformations are transformations that generate 
views. View transformations, like refactorings are mappings from abstract syntax Ai 
of language Li to the same abstract syntax Ai, but they serve a different purpose. View 
transformations will never make changes in the source model, which is the purpose of 
a refactoring. Views present the same system from a different viewpoint, using 
different criteria. Views are always dependent upon their source model. If the source 
model changes the view should change. If the source model is removed, the view 

                                                           
2  The word ‘definition’ is added here in order to avoid confusion with the term semantic 

transformation, which is often being used to indicate a transformation that is semantics 
preserving. 
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should be removed. We therefore consider the view to be part of the original source 
model, hence its category. The close link between source model and view also makes 
traceability a key issue to view transformations.  

Inter-model transformations. The last category contains the transformations that are 
commonly considered to be the essence of model driven development: the inter-model 
transformations. Here, one model is transformed into another model, where the output 
model is often written in another language. Again, we can recognise a number of 
subtypes of this category. The first is very well-known in practise, namely the change 
of a textual representation of a model (or program) into another textual format. This is 
a mapping of a concrete syntax to another concrete syntax. We call this type of 
transformations stream-based transformations. The name indicates that these transfor-
mations are focused on textual, i.e. one-dimensional languages, which are handled 
sequentially, i.e. one token after another. Examples of this type of transformation are 
templates written in languages like AWK.  

The second type of inter-model transformations maps an abstract syntax graph into 
a different abstract syntax graph. We call them structure transformations. Note that 
there is a difference between refactorings and structure transformations, even when 
the language of the source and target models are the same. A refactoring makes in-
place changes in a model, therefore the input and output model is the same. A 
structure transformation produces a new model; the source and target model are two 
separate models. This might seem a minor difference from a theoretical viewpoint, 
but from the point of tool interoperability it is important.  

What is making matters more complex is that structure transformations may take 
multiple input models and produce multiple output models. We describe in more 
detail how we handle this in section 4.3. In essence, the latest version of the QVT 
standard [15] focuses on structure transformations, although - as its name suggests - it 
should also provide a solution for defining views.  

A third, very special case of inter-model transformations are the transformations 
that take an abstract syntax graph in one language as source and produce text in 
another language as output. Examples are transformations implemented in Velocity 
[16] templates. In this case the structure of the source model is available in the form 
of an abstract syntax graph, but the output is a character stream. We call this type of 
transformations hybrid syntax transformations. These transformations map the 
abstract syntax of one language upon the concrete syntax of another.  

4   Elements in a Transformation Environment Architecture  

This section describes the elements that constitute an open model driven development 
transformation environment.  

4.1   Executable Units: Creators, Transformers, and Finishers  

Because we focus on automation, the basic building blocks in our MDA environ-
ment are the tools that are able to execute transformations. The environment defines 
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three tool types: the creator, the transformer, and the finisher, which are defined as 
follows.  

Definition 3: (Creator) A creator is a tool that implements for some language L a 
mapping MCn in the direction from the concrete syntax to the abstract syntax.  

A creator is able to produce the abstract syntax graph of a model based on some 
concrete syntax, in other words, it implements a unidirectional syntax transformation. 
In traditional compiler terminology the creator would encompass the lexical analysis 
(scanning), syntax analysis (parsing), and semantic analysis (type checking, amongst 
other things). However, the creator concept is broader than the traditional parser 
concept. Because it is well-known that the complexity of parsing visual languages is 
in general NP-complete (see [7] for an overview of approaches to parsing visual 
languages), the creation of an abstract syntax graph is often automated using a syntax-
directed editor. Such an editor is also considered to be a creator. Multiple creators 
may be defined for one language.  

Definition 4: (Finisher) A finisher is a tool that implements for some language L a 
mapping MCn in the direction from the abstract syntax to the concrete syntax.  

A finisher is able to take an abstract syntax graph of a model and to create some 
concrete syntax representation of this model. It could, for instance, write the model to 
file. Finishers, like creators, implement syntax transformations, but they may also 
implement hybrid syntax transformations. In traditional compiler terminology the 
finisher would be called a deparser. Again, the concept finisher is broader than the 
concept deparser. For instance, a syntax directed editor could provide a diagram 
generating option that implements the finisher functionality. Multiple finishers may 
be defined for the same language. Although in general the mapping M

Cn 
will be bi-

directional, there is no need in the MDA environment to have a corresponding 
finisher for each creator, or vice versa.  

Definition 5: (Transformer) A transformer is a tool that implements the mapping  
Ai* 

-> Aj*.  

A transformer is able to take one or more abstract syntax graphs and to transform 
them into different abstract syntax graphs. It implements either a refactoring, a view 
transformation, or a structure transformation, in other words, it implements a model-
to-model transformation.  

4.2   Non-executable Units: ModelTypes or Languages  

The fourth building block in our MDA environment specifies the type of the models 
to be transformed. This is an essential unit though it is not executable. It is defined as 
follows.  

Definition 6: (ModelType) The type A m of a model m is the abstract syntax of the 
lan-guage in which M is written.  

We use the term ModelType instead of language to distinguish between the speci-
fication of a language and a certain implementation of this language. The relation 
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between a model and its ModelType is called the instanceOf relationship in [17], 
whereas the relation between a model and its language is called the modelOf 
relationship.  

Because transformations may take multiple input models and produce multiple 
output models, we define the following.  

Definition 7: (Input types). Each executable unit (creator, transformer, or finisher) T 
defines an m-tuple of its input types TinTypes = {Ai .. Am}.  

Definition 8: (Output types). Each executable unit T defines an m-tuple of its output 
types ToutTypes = {Ai .. Am}.  

Note that in the above definitions we focus on the abstract syntax, therefore CinTypes 
of creator C will be the empty sequence, and likewise, for finisher F, FoutTypes will be 
the empty sequence.  

Not present in the model driven development environment are semantic definition 
transformations or stream-based transformations. The reason to exclude the latter is 
that model driven development focuses on structure instead of streams. Semantic 
definition transformations are excluded because their nature does not permit their use 
in a chain of transformation executions.  

4.3   Combinations of Executable Units  

Using the definitions from the previous section, it is easy to see that the functionality 
provided by a traditional compiler would be represented by a simple creator-
transformer-finisher combination. The challenge of model driven development,  
how-ever, is not to rebuild compilers in a different fashion, but to use a network of 
trans-formers and (intermediate) models to produce the desired output. Therefore, in 
this section we present a means to define this network.  

We propose to use the following three commonly known combinatorial operators 
which have proven to be successful in the history of computing.  

• Sequence: a combination of two executable units; one is executed before the 
other, and the output of the first is the input of the second.  

• Parallel: a combination of many executable units; the input to all of them is the 
same (set of) input model(s), the output is the combination of all the outputs of all 
of them.  

• Choice: a combination of an ordered list of executable units; the first unit is 
executed if the conditions posed by this unit are met by its input, else the next unit 
is tried, until finally one of them is executed, or it is clear that the input does not 
meet the conditions of any of the units.  

In order to formalise these operators, we need to introduce the following definitions.  

Definition 9: (Transformer type) The type of transformer T is the type of the function 
FUNT: TinTypes ->

 ToutTypes
.  

Definition 10: (Creator type) The type of a creator C is the type of the function  
FUNC

 
: Sempty -> CoutTypes, where Sempty represents the empty sequence. 
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Definition 11: (Finisher type) The type of a finisher F is the type of the function 

FUNF: FinTypes -> Sempty. 

Definition 12: (Transformer condition) The condition CONDT of transformer T is the 

type of the function CONDT: TinTypes -> Boolean.  

Using the types of the basic elements and the combinatorial operators, we define a 
language of transformation expressions, according to the following rules.  

1. The application of transformer T, denoted by T(m1, .., mn), is allowed when every 
mi represents a model, and the n-tuple of types of these models {Am1, .., Amn} is 
equal to TinTypes.  

2. The conditional application of a transformer T, denoted by Tcond(m1, .., mn), is 
allowed when the application of T is allowed and CONDT(m1, .., mn) = true.  

3. The sequence of unit T1 followed by unit T2, denoted by [T1 ; T2] , is allowed 
when T1.outTypes is equal to T2.inTypes. Each unit can be either a creator, trans-
former, or finisher. The type of the combination is FUNT1 ° FUNT2: T1.inTypes 
-> T 2.outTypes

. 
 

4. Unit T1
 

and unit T2 may always be combined in parallel, denoted by [T1 || T2]. The 
type of the combination is T1.inTypes Δ T2.inTypes -> T2.outTypes + T2.out-Types , where + 
denotes the concatenation of both tuples, and Δdenotes a right tuple overwrite. A 
right tuple overwrite creates a tuple with the union of all the elements of the two 
tuples. Whenever both tuples have a given element, the value of the leftmost 
argument tuple is taken. Note that the output models of both participating units 
are separate; T1 and T2 do not generate parts of the same model, both produce 
their own output models.  

5. A ‘choice’ combination of transformer T1 and transformer T2, denoted by [T1
  

or T2], is always allowed. The type of the combination is T1.inTypes Δ T2.inTypes -> 

T2.outTypes +T2.outTypes, where + denotes the concatenation of both tuples, and 

Δdenotes a right tuple overwrite. The difference with the parallel operator is that 

both participating transformations will be applied conditional, as define in rule 2.  

Compositions of transformers can be regarded as transformers themselves, thus 
allowing compositions to be used as part of another combination. The combinatorial 
operators defined above are higher order functions known amongst others from 
functional programming languages like Haskell [18].  

5   The MDA Control Center Implementation  

In section 2.1 we explained why a model driven development environment should be 
open to the addition of new transformation tools and why it should provide a means to 
combine the execution of transformation tools in a tool execution chain. In sections 3 
and 4 we described the types of elements that can be part of such a development 
environment. In this section we describe how we have implemented such an 
environment.  
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5.1   The MCC Eclipse Plug-In  

To implement our MDA environment we have created an Eclipse plug-in called MDA 
Control Center (MCC). This environment uses the Eclipse extension point mechanism  

[19] to recognise the available units. It defines four extension points, each of which 
specifies a certain type of (Eclipse) plug-in.  

 5.2   Extension Points for the Executable Units  

Three MCC extension points specify the three types of executable units defined in 
section 4.1: Creator, Transformer, and Finisher. Note that from the point of view of 
the MCC a transformer, creator, or finisher does not represent the actual tool, instead 
it represents the service offered by the tool. This also means that it is possible that a 
single plug-in implements multiple extension points. For example, the same plug-in 
may function both as a creator and as a transformer. In fact, one could build a plug-in 
that implements all extension points. In the following we will use the term MCC 
service to indicate either a creator, transformer, or a finisher.  

An example of the declaration of a plug-in that implements both the transformer and 
the creator extensions points can be found in figure 3. In this example the creator reads 
resources of type “file” that have “.alan” as file extension, and produces models of type 
“IAlanModel”, whereas the transformer takes as input an “IAlanModel” and produces 
as output an “OJPackage”. (Alan is one of the languages for which we have defined a 
number of MCC services, see for more information [20], and “OJPackage” is part of 
our implementation of the Java metamodel, which is part of the Octopus tool [21].)  

Note that each transformer may define multiple inputs and multiple outputs. In that 
case the order in which the outputs appear in the declaration determines the order of 
the elements of the tuples TinTypes and ToutTypes, as defined in section 4.3. 

 5.3   Extension Point for the Non-executable Unit  

The fourth extension point specifies the type of the models to be transformed as 
defined in section 4.2: the ModelType. The fact that the MCC deals with in-memory 
representations of models, i.e the abstract syntax graphs, means that resources like 
files are not considered to be models. Another consequence of the focus on abstract 
syntax graphs, is that it is necessary to handle implementations of languages. A 
ModelType plug-in defines an implementation of the metamodel of a language.  

For instance, it is not enough to claim that a certain model is a UML model as 
specified by the UML 2.0 superstructure [17], instead we need to know from which 
set of classes that implement the UML 2.0 superstructure, this model is an 
instantiation. There can be large differences between a model that is an instantiation 
of one UML implementation and another. For example, the Eclipse UML2 project  
[22] defines an implementation in Java based on EMF [23], but many other 
implementations —in other languages— are possible.  
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 <plugin
id="com.klasse.alan.alan2java"

   ....
<extension

         point="com.klasse.mdacontrolcenter.creator">
<creator

           resource="file"
           filter=".alan"
           output="com.klasse.alan.abstractsyntax.IAlanModel"
           label="Alan Model Creator"
           class="com.klasse.alan.MCCCreator">

</creator>
</extension>

   <extension
         point="com.klasse.mdacontrolcenter.transformer">

<transformer
           output="com.klasse.javametamodel.OJPackage"
           input="com.klasse.alan.abstractsyntax.IAlanModel"
           label="Alan to Java Transformer"
           class="com.klasse.alan.javagen.MCCTransformer">

</transformer>
</extension>

</plugin>
 

Fig. 3. Example extension point implementations 

5.4   Executing Transformations  

The MCC offers its users the possibility to run simple Creator-Transformer-Finisher 
combinations without using any complex composition facilities. Each resource is 
associated with certain extra properties. Using these properties the user can indicate 
for each resource separately which creator should be used, and which transformer 
and/or finisher should be used to work on the thus created in-memory representation. 
Next to the properties view the MCC offers a button and a resource menu item called 
Run Transformer. By clicking this button or selecting the menu, the user can initiate a 
run of the service combination given by the properties of the given resource.  

In order to make the combinations of executable units as defined in section 4.3 
available to MCC users, we have created a small scripting language for trans-
formation combinations. Each script itself defines a new transformer, which is 
available for use in another script or in a creator-transformer-finisher combination as 
defined by the resource properties. An example of an MCC script can be found in 
figure 4. It implements the example given in figure 1 in section 1.  

transformer kleppe.myFirstScript (in m1: FuncModel, 
  m2: Security)

{
m4 := T2( T1( m1 ), m2 )->first();
T4 ( T3(m4) ) || T5(m4) || T6(m4)

}
 

Fig. 4. An example transformer script  
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5.5   Type Checking  

The interoperability between the executable units in MCC is taken care of by the 
Eclipse environment. However, MCC performs extra type checks on (the composition 
of) the executable units. A first type check that is performed by the MCC, is a check 
on the plug-in declarations. For each plug-in that declares input and output types, the 
types are matched against the types known in the MCC.  

Additional type checking in MCC is implemented by dedicated operations that 
compare the type of each element in the list of inputs of the transformation with the 
required inputs (TinTypes). If the types do not match, the user is issued an error 
message.  

6   Related Work  

We have found that the work of Xavier Blanc e.a. [24, 25] is closely related to the 
work described in this paper. Their Model Bus tackles the same problems in the 
manner of OMG’s CORBA. There are however, a few differences, the most important 
one being that the MCC offers a scripting language to define new services.  

Other work that has resemblance to our work is [26]. The differences between their 
ToolBus approach and MCC are that the ToolBus uses a common data representation 
whereas MCC offers more generality and flexibility because it uses several data 
representations, which are determined by the ModelTypes that are available in the 
environment. Furthermore, the ToolBus enables communication between processes 
other than data exchange, using messages or notes. The MCC does not offer this 
possibility.  

The UMLAUT transformation toolkit [27] is build with the same intension as 
MCC: to provide the model designer with a freedom of choice with regard to 
combinations of transformations to be executed. The differences are that UMLAUT is 
limited to transforming UML models whereas MCC is able to handle models written 
in various languages. Furthermore, although UMLAUT provides a transformation 
library and a pluggable architecture, the composition of transformations in UMLAUT 
is internal rather than external.  

7   Summary and Future Work 

In this paper we have defined the elements that should be present in an open model 
driven development environment. In the process we have established the difference 
between internal and external composition of transformations, and we have developed 
a linguistically based taxonomy of transformations. Furthermore, we have described 
an implementation of the open model driven development environment, which 
includes a scripting language that enables the user to define his own transformations 
based on the transformation tools that are available.  
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To support the interoperability of transformation tools, every unit must be defined 
as Eclipse plug-in, but no further restrictions apply. This makes the MCC one of the 
most generic MDA environments. What is new in our approach is the application of 
knowlegde from the fields of compiler construction and functional programming to 
the area of model transformations. Our research has shown that the well-known 
concepts from the area of compiler construction have a limited application in the area 
of model transformation. In this paper we have extended these concepts to fit them to 
the new challenges of model driven development. In the future, our work will focus 
on taking into account performance or optimization (i.e., not model) parameters to 
transformations.  
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Abstract. Context-awareness is a very important feature for pervasive services 
to enhance their flexibility and adaptability to changing conditions and dynamic 
environments. Using ontologies to model context information and to reason 
about context at a semantic level has attracted a lot of interest in the research 
community. However, most of the proposed solutions are ad hoc or proprietary. 
Therefore, employing standard approaches to formulate the development process 
becomes of importance. In this paper we examine how OMG’s Model Driven 
Architecture (MDA) can be applied to tackle the issues of context modelling and 
Context-Aware Application (CAA) modelling and development. A Context On-
tology Model (COM) is presented to model context information at two levels: 
upper-level and extended specific level. A Model Driven Integration Architec-
ture (MDIA) is then proposed to integrate rigorous model specifications and 
generate CAA implementations either semi-automatically or automatically. 

1   Introduction 

In order to flexibly adapt to changing conditions and dynamic environments, perva-
sive services need to become more context-aware. A pervasive service can be a  
simple service such as helping a user on a mobile device (such as a PDA or a smart-
phone) to find their favourite restaurant in the immediate vicinity around their current 
location. The challenges of context semantic representation, inference and interopera-
tion in pervasive computing environments are well recognised. Earlier research work 
focused on context information gathering and integration aiming to achieve reusabil-
ity for higher level pervasive applications [1, 2]. Other work studied the modelling of 
information from types of context in a platform independent way in order to support 
context management and interoperation [3, 9]. More recently, the notion of ontology, 
which is often used by Artificial Intelligence practitioners for knowledge representa-
tion, has emerged as a new approach to context modelling. Ontologies can model 
context at a semantic level establishing a common understanding of terms and mean-
ing and enabling context sharing, reasoning and reuse in pervasive environments [9, 
10, 11, 15].   
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Languages such as W3C’s OWL [13] or RDF Schema can be used to specify on-
tologies in a machine-interpretable way. Without loss of generality, we consider both 
of them in this paper. An ontology includes definitions of commonly understood vo-
cabularies and of logic statements that specify what each term in the vocabularies 
mean and how they relate to each other. An ontology removes ambiguity and is se-
mantically independent to context. Ontology is, therefore, useful in bridging termi-
nology differences thus enhancing interoperability. The concepts and logic expressed 
by ontologies are commonly accepted and can be communicated between human 
users and computer programs from different vendors. These features make ontologies 
the right mechanism for modelling context information in support of Context-Aware 
Application (CAA) development for pervasive computing environments, as they 
tackle heterogeneity introduced by diverse device technologies, the multiplicity of 
vendors developing CAAs and various operating systems that CAAs run on. 

The use of ontologies to model context augments the development process of per-
vasive services with additional complexity introduced by the work required for ontol-
ogy specification and management. Therefore, to make the use of ontologies viable, 
development approaches need to be applied those are capable of tackling this com-
plexity. Such an approach cannot be ad-hoc and proprietary but rather it must allow 
for rigorous/precise modelling of context ontology and for automatic development of 
ontology-based context-aware applications. To this end, we have been investigating 
the use of Model Driven Architecture (MDA) [12], the emerging standard by the 
Object Management Group (OMG) for software systems design and development in 
order to evaluate benefits of this approach in ontology development.  

MDA aims at providing clear separation between technology-neutral and technol-
ogy-specific concerns involved in the different stages of a system’s development 
process. MDA [12] consists of a set of standards, namely, MOF, OCL, XMI and QVT 
[18] that enable the definition of Domain Specific Languages (DSLs) used to specify 
a system’s structure and behaviour. DSLs are represented as meta-models based on 
the Meta-Object Facility (MOF) and can be precisely defined using the Object Con-
straint Language (OCL). OCL allows the definition of constraints over meta-models 
as well as actual models for a specific system.  

We have applied MDA in a number of case-studies that demonstrated the advan-
tages the approach offers in the development process of systems and services [3, 4, 5]. 
In [3] and [4] we discussed the use of MDA for context-aware pervasive service mod-
elling, provisioning and service composition. In [5] we presented how MDA is used 
for the design, development and integration of telecommunications Operations Sup-
port Systems (OSS) and the benefits gained in terms of improved quality, rapid deliv-
ery and lower development costs.  

The above experiences lead to the conclusion that MDA can be a beneficial para-
digm for capturing context ontologies with a number of advantages. Modelling on-
tologies as Platform Independent Models (PIMs) can be a one-off activity as these 
PIMs (models of roles, devices, and tasks) can be re-used in the development of other 
CAAs. Heterogeneity is also catered for since ontology and CAA PIMs can be trans-
formed into implementations suitable for the platforms and devices at hand. MDA can 
facilitate the semi-automatic or automatic generation of ontology-based CAAs with 
significant reductions in time and costs during the development and maintenance 
phases.  
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This paper presents an MDA-based approach for context ontology modelling to-
wards the development of context-aware applications for pervasive systems. To the 
best of our knowledge, no previous work has made use of MDA in this field. The 
primary contributions of our work are: 1) a context ontology model (COM) for perva-
sive services based on the RDFS and OWL meta-models; 2) a model driven integra-
tion architecture (MDIA) for ontology-based CAA development. 

The rest of the paper is organized as follows. The next section presents related 
work in ontology based context modelling for pervasive services. Section 3 describes 
the context ontology models developed using MDA. Section 4 illustrates our Model 
Driven Integration Architecture (MDIA) for ontology-based CAA development. Sec-
tion 5 provides some concluding remarks and plans for future work. 

2   Related Work 

Related research has dealt with the issue of ontology-based context modelling and 
reasoning in a number of perspectives. Wang et al [9] proposed an OWL-encoded 
ontology (CONON) for modelling and reasoning about context in pervasive comput-
ing environments. Chen et al [10] proposed an architecture called Context Broker 
Architecture (CoBra) that uses OWL to define ontology in intelligent environments. 
Furthermore, they proposed a Standard Ontology for Ubiquitous and Pervasive Com-
puting Applications (SOUPA) [15]. Henricksen et al [11] proposed a hybrid approach 
for context modelling, reasoning and interoperation between object-oriented context 
models and ontology-based context models. All the above referenced research illus-
trated the advantages of handling context at a semantic level by using different solu-
tions. However, no evidence was found of any solutions trying to model ontology in 
the context of MDA. 

Other research work focuses on ontology-based CAA development. Biegel and Ca-
hill proposed a framework to develop CAAs based on their sentient object model. They 
focus on fusing data from disparate sensors to ease context-aware application devel-
opment by simple coding [16]. McFadden et al [17] proposed a model driven approach 
to develop CAA based on their object-oriented Context Modelling Language (CML). 
These practices are aiming to reduce the development effort or to automate the CAA 
development process through specific and proprietary mechanisms.   

In our work, a pure MDA-based approach has been applied for context ontology 
modelling that is based on well-recognized OMG standards, such as MOF, OCL, and 
XMI and on OMG’s recent efforts regarding ontology modelling, the Ontology Defi-
nition Meta-Model (ODM) [8], which deals with modelling and engineering of con-
text information in the pervasive services domain. 

3   Context Ontology Modelling 

This section presents how ontologies are captured using the four layers of abstraction 
that MDA adopts. In the MDA paradigm, ontology languages need to be abstracted 
and expressed using MOF in the form of meta-models. Based on these meta-models, 
we then construct our Context Ontology Model (COM). COM consists of the  
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Upper-Level Context Ontology Model (ULCOM) and the Extended Specific Context 
Ontology Model (ESCOM) and is used to model context information. We employed 
an MDA tool, XMF, from Xactium1 in our modelling work. 

3.1   Ontology Meta-modelling 

MDA is based on four layers of abstraction, M0 through M3. M0 contains application 
run-time data; M1 contains application models designed for a specific problem do-
main; M2 contains meta-models that capture domain specific languages (DSLs) used 
in the application designs of M1; M3 hosts the Meta-Object Facility (MOF), which 
serves as a language to specify DSLs.  

Fig. 1 shows how the ontology models and meta-models are positioned around the 
above four layers. M2 hosts the MOF-based Ontology Definition Meta-model (ODM) 
and the UML profile for Ontology. Domain Ontology Models are situated on M1 and 
are instances of ODM representing models of domain-specific ontologies. An exam-
ple of a domain ontology model is the Context Ontology Model (COM) introduced in 
the next section. M0 contains models that are instances of M1 domain-specific  
ontologies. 
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Fig. 1. Ontology Modelling in MDA Four-layer Architecture 

To enable ontologies become machine-interpretable, they need to be represented as 
software artifacts. To achieve this in MDA, the primary elements of ontology need to 
be abstracted out and be represented as a meta-model using MOF.  

Several efforts have already been made towards ontology meta-modelling in the 
MDA paradigm. Fuchs et al proposed a meta-model specification for OWL DL [6]; 
Duric et al proposed a meta-model for Semantic Web ontology [7]. OMG launched a 
request for proposals (RFP) regarding an Ontology Definition Meta-model (ODM). 
The latest adopted submission of ODM proposal is available on [8].  All this work 
aims to use MDA standards for ontology engineering. Our ontology meta-modelling 
work presented in this section is compliant to [8]. 
                                                           
1 Xactium: www.xactium.com 
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Based on RDF, RDFS, OWL and ODM, we constructed the RDFS Meta-Model 
and OWL Meta-Model; both are MOF-based meta-models that allow users to define 
ontology models using the same terminology and concepts as those are defined in 
RDFS and OWL, respectively. 

One challenge that characterizes the definition of MOF-based ontology meta-
models is how to make these meta-models precise enough so that ontology model 
definitions on M1 are unambiguous. We tackle this by means of the Object Constraint 
Language (OCL) that is used to specify constraints on ontology meta-model elements 
against which ontology models’ consistency can be checked. 

context OWLClass 
  @Constraint SameParent 
 superClass->select 
   (s|s.isKindOf(OWLMeta::OWLClass)) 
      ->forAll(s|s.of()=self.of()) 

end

context RDFSClass 
  @Constraint SameParent 
 superClass->select 
   (s|s.isKindOf(RDFSMeta::RDFSClass))
      ->forAll(s|s.of()=self.of()); 
  end 

@Constraint URIDefined 
 self.URI<>”” 

end
 

Fig. 2. Example of Constraints in Meta-models 

Fig. 2 depicts two examples of constraints in ontology meta-models. OWLClass, 
an entity of the OWL meta-model, is augmented with constraint SameParent. This 
constraint coerces any OWLClass instance A to only subclass a class B if and only if 
B is also an instance of OWLClass and does not instantiate any other meta-model 
entity. In the OCL scripts, s.of() is used to get the superclass of an entity. Fig. 2 also 
shows constraint URIDefined imposed on class RDFSClass, which specifies every 
RDFSClass must have a non-empty URI (Uniform Resource Identifier) defined. 

3.2   Context Ontology Model (COM) 

An ontology of context represents knowledge about the context domain and com-
prises definitions of a set of context entities, the entity attributes, the functions the 
entities provide, the relationships between context entities, the instances of context 
entities and the axioms used for context reasoning.  

We have defined COM that describes context for pervasive services. COM consists 
of two parts, namely, the Upper-Level Context Ontology Model (ULCOM) and the 
Extended Specific Context Ontology Model (ESCOM). ULCOM captures an ontol-
ogy of concepts that are essential for generically characterizing context in the perva-
sive services domain. The ULCOM specification uses the RDFS/OWL meta-models. 
ESCOM defines specific concepts for context as extensions of ULCOM entities.  
Fig. 3 depicts a part of COM.  

ULCOM includes three core concepts, namely, Entity, EntityProperty, and  
EntitySpecification: 
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• Entity, stereotyped as OWLClass, represents five types of context concepts that 
are usually involved in a typical pervasive service – person, device, communica-
tion-channel (ComChannel), function, and event. 

• EntityProperty: Apart from the proprietary attributes an entity may have, Enti-
tyProperty is also used to characterize general attributes, such as, time, identity, 
activity, and location.  These attributes are necessary to determine the when, 
who, what, and where type of knowledge relating to an entity. EntityProperty is 
a type of OWLProperty. 

• EntitySpecification models the configuration of each entity and entity property 
in terms of constraints. It is an instance of OWLRestrictions and contains 
OCL scripts for constraints definition and model checking. 

For simplicity, there are only a few of relationships depicted in Fig. 3. For instance, 
a person owns devices and a person is nearby another person. 

Upper-
Level
Context
Ontology
Model
(ULCOM)

Extended
Specific
Context
Ontology
Model
(ESCOM)  

Fig. 3. A Part of the Context Ontology Model (COM) 

ESCOM and ULCOM are M1 layer models. ESCOM is used to define more spe-
cific context entities and their corresponding properties and specifications. Some 
examples of ESCOM entities are PDA, laptop, PC, mobile-phone and TV which are 
devices normally used in a pervasive computing environment. These devices have 
specifications that define certain constraints on device features, e.g. ScreenSpec, or 
configurations of the device to support different types of network access e.g. Blue-
toothSpec and IEEE80211Spec. Further concepts in the ESCOM include different 
types of activities, such as ScheduledActivity or PredictedActivity, different types of 
locations, such as home, office or café, types of events that may emerge, e.g. Sub-
scribedEvent and UnexpectedEvent, and types of communication channels supported 
by the devices or the user locations, e.g. WLAN and GPRS. 

4   MDA-Based Context-Aware Application Development 

This section presents our MDA-based approach for Context-Aware Application 
(CAA) development. Context ontology alone is useful but not sufficient to entirely 
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support CAA development as it only captures knowledge about the CAA context. For 
CAA it is necessary to further specify models describing the application logic, the 
graphical user interfaces (GUI), the application data and the way the CAA integrates 
with other systems and services. Therefore, alongside COM, more meta-models have 
been developed to facilitate the automatic generation of CAAs.  

Fig. 4 gives an overview of our Model Driven Integration Architecture (MDIA) for 
CAA development. At the meta-model layer there are three categories of artifacts: 
CAA integration related meta-models, implementation languages meta-models, and 
mappings between the meta-models.  

Meta
Model
Layer

Model
Layer (ULCOM)

PIM (ESCOM)

PSM

 

Fig. 4. Model Driven Integration Architecture (MDIA) for Context-Aware Application  
Development 

The CAA integration related meta-models category includes the following six 
packages: 

• ComponentMetaModel defines a language to model functional interfaces of 
existing functional components (such as ontology reasoning components in our 
application domain, or inventory components in OSS systems [5]). Using this 
language we can model at the M1 level ontology handling functionality of Com-
mercial-Off-The-Shelf (COTS) components (or libraries) which we can then in-
tegrate into the models of CAAs. 

• ProcessMetaModel represents a language that can be used on M1 to specify sys-
tem logic in the form of a process.  The meta-model defines elements of a UML 
activity diagram. 

• RDFSMetaModel and OWLMetaModel are used to define context-aware on-
tology data in our architecture. 

• GUIMetaModel defines basic elements of a language to describe a graphical 
user interface, such as window, label and textbox and an event-based model de-
scribing the dynamic way GUI elements can trigger logic associated with them.  

• DataMetaModel describes a language for the specification of application-
related data on M1. This meta-model is based on the UML class diagram. 
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• IntegrationMetaModel is fundamental as it defines the way all previous meta-
models associate and  integrate.  It serves as the glue that brings all necessary 

elements together in order to compose a CAA. More specifically, this meta-
model defines how (1) a flow of process activities integrates different compo-
nents by invoking certain operations on each component to deliver an activity; 
(2) GUIs integrate with processes by events GUI elements generate and trigger 
process activities or entire processes representing the logic behind these ele-
ments; (3) data integrates with both components and processes that consume and 
produce information of different types. 

All above CAA integration related meta-models are tools/languages that facilitate 
the technology-neutral specification of CAAs. In order to enable the generation of 
technology-specific CAA implementations, it is important to introduce another  
category of meta-models, namely, implementation languages meta-models. In this 
category, we defined JavaLanguageMetaModel, XMLLanguageMetamodel, and CSharp-
MetaModel, which constitute specifications of the respective languages’ syntax, in-
cluding grammars, expressions, statements and programming structures (classes, 
operations, variables etc). It is worth to note that J2SEMetaModel and J2MEMeta-
Model are defined which are extensions of JavaLanguageMetaModel. They are speci-
fying to two sub-sets of Java language meta-data for generating the Java implementa-
tions for Standard and Micro Edition platforms, respectively. 

What is still missing before MDIA is completely enabled to automatically generate 
CAA implementations is specifying precise transformations of technology-neutral 
into technology specific meta-models. More specifically, we define two types of 
mappings in the architecture:  

• Mappings between integration and implementation language meta-models, 
namely, Integration2Java, Integration2XML, and Integration2CSharp. These are 
used to generate CAA implementations. 

• Mappings between ontology language (RDFSMetaModel and OWLMetaModel) 
and implementation language meta-models, namely, Ontology2Java, Ontology-
2XML, and Ontology2CSharp. These are used to generate technology-specific 
representations of ontological artifacts in the specified implementation languages.  

@Mapping OWLClass2JAVAClass 
  (OWL::OWLMetaModel::OWLClass) 
     :JavaLanguageMetaModel::Structure::Class 
  @Clause OWLClass2JAVAClass 
     OWLClass[name = N, property = P]
  do 
     Class [name = N, slots = S]
  where
     S = P->collect(p|PropertyOf(N)) 
end

 

Fig. 5. A Mapping Example 

Fig. 5 shows an example of a mapping specification that transforms OWLClass, of 
the OWLMetaModel, into Class, of the JavaLanguageMetaModel. The mapping 
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script is written in XMap, the proprietary language of the XMF tool to define trans-
formations. XMap uses pattern matching and the particular script of the example 
maps an OWLClass with a name and properties onto a Java class that has the same 
name and variables (slots) as the OWLClass. 

Utilising the meta-models presented above, a designer can now specify the model 
of a CAA at the M1 layer. Fig. 4 illustrates the model layer being populated by  
generic forms of integration related model packages, corresponding to the CAA inte-
gration related category of meta-models that specify all aspects of a platform inde-
pendent model for the CAA. These aspects are application logic (ProcessModel that 
can reuse and integrate COTS capabilities described in OntologyComponentModel), 
data (DataModel), context (ULCOM and ESCOM), GUIs (GUIModel) and the ways 
all aspects integrate (IntegrationModel). Rigorous specification of the CAA PIM 
allows for the automatic generation of complete PSMs represented in various imple-
mentation languages. Fig. 4 illustrates packages JavaSourceCode, CSharpCode, and 
XMLCode in the PSM of the model layer, that respectively include the code in Java, 
C# and XML representation of the CAA PIM as they are automatically generated by 
the correspondent transformations defined in the meta-model layer. For instance, 
JavaSourceCode results from the execution of the Integration2Java mapping that 
transform instances of the integration related meta-models into Java code. Similarly, 
the Ontology2Java mapping generates a Java code representation of an ontology.  

5   Conclusion and Future Work 

Our primary goal in this paper is to explore the feasibility of amalgamating UML, MDA 
and ontology languages (such as RDFS and OWL) towards context ontology modelling 
and an MDA-based integration architecture for automatic development of context-aware 
applications aiming at improving the accuracy and reducing time and costs.  

We presented our Context Ontology Model (COM) which can be validated against 
precise meta-models. The Model Driven Integration Architecture (MDIA) is designed 
to integrate different types of DSLs and technologies. For instance, under the  
umbrella of the MDIA, GUI models, process models and ontology models can be 
integrated to build a platform independent CAA model representing user interfaces, 
business logic and ontology-based context data involved in the CAA. 

This paper only presents the first step of our work towards a model driven ontology-
based pervasive service engineering platform. As part of our future work, a compre-
hensive case study on ontology-based pervasive service provisioning is to be carried 
out to evaluate the new challenges introduced by ontology and MDA amalgamation. 
Our next big step will be the application of our MDA-based ontology approach to the 
design and integration of enterprise information systems in the telecom OSS domain. 
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Abstract. Building service-based architectures has become a major area
of interest since the advent of Web services. Modelling these architectures
is a central activity. Model-driven architecture is a recent approach to
developing software systems based on the idea of making models the cen-
tral artifacts for design representation, analysis, and code generation. We
propose an ontology-based composition and transformation approach for
model-driven service architecting. Ontology technology as a logic-based
knowledge representation and reasoning framework can provide answers
to the needs of sharable and reusable models and descriptions needed
for service engineering. Based on UML-style visual modelling of service
architectures and their mapping into an ontology representation, our
approach enables ontology-based semantic modelling based on represen-
tation, analysis, and code-generation techniques for Web services.

Keywords: Service-oriented Architecture, Service Process Composition,
Model-Driven Architecture, Service Ontology, Web Services.

1 Introduction

Model-driven architecture (MDA) is an approach to the development of soft-
ware systems that has gained wide support over the past years [1]. MDA is
supported by major standardisation bodies such as the Object Management
Group (OMG). MDA emphasises the importance of modelling in the software
development process. Detailed models in MDA serve as design specifications
that support the maintainability of systems and can also provide the basis for
automated code generation. Service-oriented architecture (SOA) [2] is a specific
development and platform approach for service engineering that would benefit
from a tailored MDA solution in order to realise the MDA objectives.

Our focus is here on central development activities in service-oriented ar-
chitecture [3,4]. Composition is central in a paradigm that addresses architec-
tures of orchestrated services [2]. Service orchestration refers to the assembly or
composition of services to service processes [5]. Within the Web Services plat-
form [3]– which is the concrete platform for service-oriented architecture that we
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target here – the business process execution language WS-BPEL [6] is the most
widely used implementation language for service processes.

Services description and composition has been combined with ontology tech-
nology [7,8]. Model-driven architecture has been enhanced to ontology-driven
architecture [9]. However, the integrated application of both ontology technol-
ogy and MDA to service architecture has so far not been adequately addressed.
We propose an approach for architecting service-based software systems that
embraces the MDA-philosophy. UML-based dynamic modelling is the starting
point. A tailored UML profile based on activity diagrams provides the modelling
notation for service process orchestration. The orchestration of services occurs in
two forms. Firstly, the composition of services to processes at the abstract level
using process operators. Secondly, the association of concrete provided services
that match the requirements of abstract service process elements.

Supporting service engineering using MDA and ontologies is beneficial for
the composition activity. For the SOA context, in particular Web services where
compositions across organisations and network boundaries are the norm, explicit
semantic descriptions of services are a prerequisite for the reliable composition of
services [10]. We introduce an ontology framework, i.e. a logic-based knowledge
representation framework, to enable sharable representations of semantic service
and process descriptions. Various attempts in this direction include service on-
tologies such as OWL-S [11] and WSMO [12]. The OMG has also recognised the
importance of logic-supported semantic modelling using ontologies, which is re-
flected in the OMG’s Ontology Definition Metamodel (ODM) initiative [13]. The
need for service providers to publish their services in an accepted, standardised
format is another argument in favour of ontologies.

Our solution is UML-based service process modelling supported through a
UML profile and a mapping from this profile into a semantic service ontology.
The ontology acts as a service architecting engine for both forms of composi-
tion and also supports code generation for the process execution and service
publication aspects. The aim is to apply the MDA philosophy to a specific soft-
ware technology. Service-oriented architecture focusses on architectural problems
such as process composition through service orchestration and the Web Services
platform is characterised by specific languages such as WS-BPEL [6] for ser-
vice process execution. Therefore, our solution will be dominated by semantic
modelling techniques for these specific aspects.

We start with an overview of the service engineering process in our con-
text in Section 2. In Section 3, we introduce UML-based modelling of service
processes. Ontology-based composition is the topic of Section 4. We discuss the
deployment of service processes in Section 5. We end with related work and some
conclusions.

2 Engineering of Service-Based Software Architectures

In [4], a Web service is defined as a software system, whose public interfaces are
defined and described using XML. Other systems can interact with the Web
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process:Choice

process:hasInput

process:...

process:hasOutput

process:..."

BPEL

<process>

<flow> ... 

</flow>

</process>

WSMO

<interface>

...

<capabilities>

...

Fig. 1. Overview of the Ontology-based Service Architecture Technique

service in a manner prescribed by its definition, using XML based messages
conveyed by Internet protocols. The composition of services to orchestrated
processes is a major concern in current Web service research [14,15,2]. These re-
cent developments have strengthened the importance of architectural questions
such as service composition. Behaviour and interaction processes are central
modelling concerns for service-based software architectures. Explicit semantic
descriptions and exchangable models enable developers and clients of services
to create reliable service architectures using tool support.

We embed our proposed service composition technique into an ontology-
supported, MDA-based development approach for the platform-independent
layer (PIM). Our service-specific software process model for ontology-driven se-
mantic service architecture is based on the following steps, see Fig. 1:

– Service Process Modelling. This activity is about visual UML modelling of
process activities. Activity diagrams with service-oriented semantic exten-
sions form the notation. Individual actions represent services.

– Abstract Process Composition Analysis. The analysis activity part of the
process modelling addresses the integrity of a process composition based on
semantical model enhancements in an ontological representation; here we use
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Fig. 2. UML Profile (Metamodel) for Semantic Service Process Modelling

the Web Service Process Ontology WSPO [16,17] – which we will motivate
later on – to analyse for instance the integrity of service process definitions.

– Service Process Implementation. The focus of this activity is the discovery
of individual services in repositories and directories that match the require-
ments of the actions specified in the process model. These concrete services
can then be associated to the abstract services from the process model.

– Service Process Deployment. The deployment activity enables the implemen-
tation of the process as an executable WS-BPEL process [6] based on the
associated services. Deployment also includes the publication of the over-
all process as a service in a service ontology; here we use the Web Service
Modelling Ontology WSMO [12].

An ontology-based service architecting engine supports the composition activi-
ties within the platform-independent (PIM) layer and also guides the necessary
transformations to the Service Deployment, i.e. platform-specific (PSM) layer.

3 Modelling of Service Processes

Service processes are assemblies of individual services or other service processes.
This form of service composition is part of what is often called service orchestra-
tion [5] – the other aspect of orchestration is the association of concrete services
to abstract service placeholders in the composed process description. It describes
the control and data flow between services using basic flow operators.

UML activity diagrams capture activities that are to be performed as exe-
cutable activity nodes in a graph-like structure. The overall system flow based
on the activities is modelled. The basic diagram elements are executable activ-
ity nodes, called actions, and edges between these activity nodes that represent
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Fig. 3. Semantic Service Process Model based on UML Activity Diagrams

flow. Control flow nodes allow the description of choice (decision) or concur-
rency (fork) with their joining counterparts. The control flow can be enhanced
by explicit objects and input and output pins that represent input and output
elements at activities.

We require some extensions to activity diagrams, which we will capture in
form of a UML profile, to address the needs of semantic service process descrip-
tion. This metamodel is defined in Fig. 2. White rectangles denote the standard
UML activity diagram elements; medium grey ones denote our service-specific
extensions; dark grey ones associated elements of a possible domain ontology1. A
service is an activity. A service’s input and output objects are linked to the input
and output pins of activities. In addition to input and output elements, we need
to add semantic service descriptions, here in the form of pre- and postconditions.

The application of the profile is presented in Fig. 3. It represents an online
bank account application. The process of using such an account is described.
This application is based on four individual services, each described in terms of
input, output, precondition, and postcondition.

The following textual representation summarises the syntactical aspects in
an IDL-style service interface format.

application AccountProcess
service login (user:string, account:int) : ID

balance enquiry (account:int) : real
money transfer (account:int, destination:int, amount:real) : void
logout (sessionID:ID) : void

process login; !( balance enquiry + money transfer ); logout

1 Often, a domain ontology or model captures central concepts, i.e. key objects and
processes, of an application context [16]. The architecture model here is linked to
the domain model. Although we do not discuss this aspect further, the integration
with a domain model is central for a coherent ontology-based modelling approach.
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The services are composed to a process, here using the combinators sequence
(;), iteration (!), and choice (+) in the textual representation above, which is
also captured in UML notation in Fig. 32.

4 Composition of Service Processes

Composition occurs, as already mentioned, in two forms in service architectures:

– Process composition. The assembly of services to processes is the first form
of composition. The visual modelling of this composition form is supported
by the UML profile. The semantic consistency of the process composition
needs to be addressed at a different level.

– Refinement. The composition of the abstract service process as the client and
individual concrete services as providers of functionality is the second form
where the provider properties refine the required properties. The problem is
the discovery of services in service repositories or directories that match the
semantic requirements.

Both forms together are usually refered to as orchestration.
We introduce in this section an ontology-based engine to support the ar-

chitecting of service-based systems based on these two composition forms. The
notion of a service architecting engine – emphasising the focus on architecture
development – captures semantic properties of services and processes, and sup-
ports process- and refinement-style composition. An operator calculus for process
composition and inference rules to support matching are integral elements of this
engine. As we will see later on, a service composition ontology can also provide
the foundations for the generation of deployment code. We start with the com-
position ontology itself (Section 4.1), before looking at mappings between UML
and this ontology (4.2) and process composition (4.3) and implementation (4.4).

4.1 A Service Composition Ontology

A number of service ontologies have been proposed, with OWL-S [11] and WSMO
[12] as two prominent examples. The central aim of service ontologies is the
semantic annotation of services. While OWL-S also supports service composi-
tion to a degree through its process model, we use the Web Service Process
Ontology WSPO – whose foundations are presented in [17,18] and which we
developed specifically to support service composition and architecture ontologi-
cally. WSPO is an OWL-DL (the Web Ontology Language – Description Logic
variant) ontology. It uses description logic [19], which also provides the foun-
dation of OWL, to capture composition techniques. WSPO is actually an en-
coding of a dynamic logic (a modal logic of programs) in a description logic
format, which enables reasoning about dynamic service process properties such

2 We have used iteration as an explicit control flow abstraction here, even though it
is not part of the UML notation, since its simplifies expressions on the textual level.
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as safety and liveness, making WSPO the most suitable candidate for ontology
that supports the MDA PIM layer. The ontology can be used to check the in-
tegrity of service process definitions (a safety condition), e.g. determine if the
output of a service satisfies the semantic requirements of the next service in the
process.

Ontologies are knowledge representation frameworks formalised in an ontol-
ogy language (such as OWL) [20,21], which is usually based on a terminological
logic (such as description logic). Knowledge is represented in form of concepts
and (quantified) relationships between these concepts to characterise them se-
mantically. Services (and processes) in WSPO are not represented as concepts, as
one might intuitively assume, but as relationships denoting accessibility relations
between states of the system. The states are represented as concepts.

– The central concepts in this approach are states (pre- and poststates) for
each service. Other concepts are parameters (input- and output-parameters)
and constraints (pre- and postconditions).

– Two forms of relationships are provided. The services themselves or their
composition to processes are called transitional relationships. These processes
are based on operators such as sequence, choice (decision), and concurrency
(fork) – other operators not present in activity diagrams, such as the iterator,
could also be added as control flow abstractions. Essentially, the transitional
relationships define a (labelled) transition system. Syntactical and seman-
tical descriptions – here input and output parameter objects (syntax) and
constraints (semantics) – are associated to individual services through de-
scriptional relationships.

The benefit of this non-standard approach are improved reasoning capabilities
for dynamic properties such as lifeness and safety. WSPO can be distinguished
from other service ontologies by two specific properties.

– Firstly, although based on description logics, it adds a relationship-based
process sublanguage enabling process expressions based on iteration, choice,
and sequential and parallel composition operators.

– Secondly, it adds data to processes in form of in- and output parameters –
introduced as constant process elements into the process sublanguage.

We will present WSPO here in a pseudo-OWL notation to avoid the full ver-
bosity of XML-based descriptions, see e.g. Fig. 4. The @-construct used in some
constraints refers to the attribute in the prestate, cf. [22].

A service process template with a central process element (the transitional
relationship) and associated services (descriptional relationship) defines the ba-
sic structure of states and service processes. Syntactical parameter information
in relation to the individual activities and also semantical information such as
preconditions are attached to each activity as defined in the template. The pre-
and poststates will remain implicit in the notation.

The three services on the right-hand side of Fig. 4 are part of a composed
process, shown on the left-hand side. The process is based on a choice construc-
tion (based on the decision control flow operator of the UML activity diagrams).
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process:Choice

process:hasInput

process:Input rdfID="login"

process:hasOutput

process:Output rdfID="balance enquiry"

process:Output rdfID="money transfer"

process:Service rdfID="login"

service:hasInput

service:Input rdfID="user"

service:Input rdfID="account"

service:preCondition rdfConstr="valid(user,account)"

service:hasOutput

service:Output rdfID=“sessionID"

service:postCondition rdfConstr=“valid(sessionID)"

process:Service rdfID="money transfer"

service:hasInput

service:Input rdfID="source"

service:Input rdfID="destination“

service:Input rdfID="amount"

service:preCondition

rdfConstr=" valid(sessionID) and balance(source)>0"

service:hasOutput

service:Output rdfID="void"

service:postCondition

rdfConstr="balance = balance@pre - amount"

process:Service rdfID=“balance enquiry"

service:hasInput

service:Input rdfID=“account"

service:preCondition

rdfConstr=" valid(sessionID)"

service:hasOutput

service:Output rdfID=“result"

service:postCondition

rdfConstr=“result = balance(account)"

Fig. 4. WSPO Process and Service Model

The left-hand side is a transitional relationship expressing the composed process
itself. The three services login (as input) and balance enquiry and money
transfer (both as output of the control flow operator) are combined. Input and
precondition are (implicitly) associated to the prestate and output and post-
condition are (implicitly) associated to the poststate. Although the pre- and
poststates are not explicit in the WSPO notation, their presence is necessary
as the overall process specification is interpreted by labelled transition systems.
The transitional relationships, i.e. the process specification itself, defines the
accessibility relationship between pre- and poststates.

Pre- and postconditions for the composed process can be derived from the
individual service specifications – once the overall consistency of the abstract
composed process definition is established – in order to represent the process as
a single service to potential users.

4.2 Mapping Activity Diagrams to Service Ontology

In our framework, UML activity diagrams and our extension to model service
processes based on the UML profile serve mainly as a tool for visual mod-
elling. The ontology framework provides the service architecting engine for the
platform-independent and platform-specific model layers. It performs composi-
tion checks and creates executable process implementations.

The mapping from the activity diagrams based on the profile into the WSPO
is straightforward. The ontology representation in Fig. 4 is the result of the trans-
formation of the UML model in Fig. 3. WSPO is based on a standard template.
A process specification forms the core, to which individual service specifications
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of services that participate in the process are associated. The standard activ-
ity nodes and edges from UML activity diagrams are mapped onto the process
template:

– The activity nodes of services connected by the activity edges to processes
(see Fig. 3) with their input and output elements are mapped onto the
process part of the template. The UML control flow operators, such as
decision and fork, are represented by the WSPO process combinators, such
as choice and concurrency.

– For each service (activity node), a separate service part with input and
output, precondition and postcondition information is generated, where each
of the individual information elements is considered as attached through a
descriptional relationship. The UML input and output pins are mapped to
WSPO service input and output concepts. Pre- and postconditions of the
UML extension are equally mapped to WSPO concepts.

We currently work with a subset of activity diagram features as shown in Fig. 3,
which is sufficient to express abstract functional service and process properties.
The transformation between this subset and WSPO is straightforward. Other
diagram elements, such as activity partitioning mechanisms (swimlanes), could
be used in extensions of this approach to consider non-functional aspects such
as service distribution. We have investigated modelling of service distribution
in [23].

The ontology acts as a formally defined internal representation that enables
transformation, composition, and reasoning activities. UML provides an interface
for visual modelling, but also interoperability, which allows existing UML models
to be reused and integrated into our proposed framework.

4.3 Process Composition

Services that are visually composed do not necessarily match semantically. A
semantical analysis of the composition between these abstract specifications is
required. The excerpt of the bank account model.

The login service produces an output object sessionID that satisfies the
postcondition valid(sessionID). Although the sessionID is not required as
an input element for the subsequent balance enquiry service, the validity of
the sessionID is still required and guards this service. This case, even though
a simple one, illustrates the need to check the consistency of the composition
– both in terms of input elements in and output elements out and also the
semantic matching of postcondition of the predecessor postP and precondition
preS of the successor service. A required input element in of an output service
of a composition must be provided as an output element of the preceding ser-
vice in the process composition (cf. pipes) or must be supplied by the overall
process instance (cf. calls). An implication postP → preS is the semantic consis-
tency constraint for the composition. This applies to all composition operators
(sequence, choice, concurrency).
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This type of composition can be characterised as horizontal, whereas in the
following section, we will address the vertical dimension of composition by asso-
ciating concrete provided services to abstract process models.

4.4 Composing Service Providers and Clients

The service process defined by modelling the control and data flow characteris-
tics visually and by checking its consistency using the ontology engine is still an
abstract description. Concrete services need to be found that match the require-
ments expressed in the abstract models, called service orchestration. Matching
is often based on the so-called IOPE (Input Output Precondition Effect) char-
acteristics. A refinement relation (e.g. weakening the precondition and strength-
ening the postcondition or effect, which we use here) defines the matching
notion.

Ontologies enable reasoning about models and their properties. In [17], a
refinement notion is integrated into an ontological framework, based on the on-
tological subsumption (subclass) relationship. There, we have presented an on-
tological matching notion that can be applied to determine whether a service
provider can be connected to a service user based on their individual service and
process requirements.

Assume that in order to implement an account process, an implementation
for the money transfer service with input parameter amount needs to be in-
tegrated. For any given state, the process developer might require (using the
balance enquiry)

service:preCondition rdfConstr="balance() > amount"
service:postCondition rdfConstr="balance()= balance()@pre-amount"

which would be satisfied by a provided service

service:preCondition rdfConstr="balance() > 0"
service:postCondition rdfConstr="balance()= balance()@pre- amount

and lastActivity = ’transfer’"

The provided service would weaken the required precondition assuming that the
transfer amount is always positive and strengthen the required postcondition as
an additional result is delivered by the provided service. Note, that we have used
a pseudo-RDF notation here to simplify the example.

5 Deployment of Service Processes

The deployment of services at the platform-specific layer involves two perspec-
tives – clients invoking and executing service processes (5.1) and providers pub-
lishing abstract descriptions and making the process services available (5.2).
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Rule Aspect Description
P1 WS-BPEL The complex WSPO process relationships can be mapped to

BPEL processes.
P1.1 WS-BPEL For each process create a BPEL partner process.

process partners
P1.2 WS-BPEL Convert each process expression into BPEL-invoke activities

orchestration and the client side BPEL-receive and -reply activities at the
server side.

P1.3 WS-BPEL Convert the process combinators ’;’, ’+’, ’ !’, and ’||’ to the
process activities BPEL combinators sequence, pick, while, and flow, resp.

Fig. 5. Transformation Rules – Executable Processes

5.1 Code Generation for Service Process Invocation and Execution

Automated code generation is one of the central objectives of MDA. In the
context of SOA, code generation essentially means the generation of exectu-
able service processes. WS-BPEL [6], which has been looked at from a semantic
perspective [24], has emerged as the most widely accepted process execution
language for Web services.

A summary of the transformation rules from WSPO to WS-BPEL is pre-
sented in Fig. 5. WSPO defines a simple language that can be fully translated
into WS-BPEL. BPEL process partners are the client and the different ser-
vice providers. The WSPO specification is already partitioned accordingly. Flow
combinators can also be mapped directly.

5.2 Description and Publication of Services and Service Processes

The Web Services architecture proposes a specific platform based on services
provided at certain locations, which can be located using directory information
provided in service registries. The description of services – or service processes
made available as a single service – is therefore of central importance. Infor-
mation represented in the process model and formalised in the service process
ontology can be mapped to a service ontology. Both OWL-S and WSMO would
be suitable here. This transformation would only be a mapping into a subset,
since these ontologies capture a wide range of functional and non-functional prop-
erties, whereas we have focussed on architecture-specific properties in WSPO.

We have chosen WSMO here to illustrate this type of code generation. A
summary of the transformation rules from WSPO to WSMO is presented in
Fig. 6. Some correspondences guide this transformation. WSPO input and out-
put elements correspond to WSMO messageExchange patterns, which are used
in WSMO to express stimuli-response patterns of direct service invocations, and
WSPO pre- and postconditions correspond to their WSMO counterparts.
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Rule Aspect Description
D1 WSMO Based on the WSPO model, map process relationships to

WSMO service concept and fill messageExchange and pre/
postCond properties accordingly.

D1.1 WSMO Map the WSPO in and out objects onto WSMO message-
messageExchange Exchange descriptions.

D1.2 WSMO Map the WSPO pre- and postconditions onto WSMO pre-
pre-/postconditions and postconditions.

Fig. 6. Transformation Rules – Semantic Service Descriptions

6 Related Work

Some developments have started exploiting the connection between ontologies
– in particular OWL – and MDA. In [25], an MDA-based ontology architecture
is defined. This architecture includes aspects of an ontology metamodel and a
UML profile for ontologies. A transformation of the UML ontology to OWL
is implemented. The work by [9,25] and the OMG [1,13], however, needs to
be carried further to address the ontology-based modelling and reasoning of
service-based architectures. In particular, the Web Services architecture needs
to be addressed in the context of Web-based ontology technology. Some of the
reasoning tasks we used ontologies for, could have also been addressed using
OCL [22]. However, ontologies provide a full-scale logic and additionally allow
XML-based sharing and exchange in a Semantic Web framework.

Grønmo et.al. [26] introduce – based on ideas from [25] – an approach similar
to ours. Starting with a UML profile based on activity diagrams, services are
modelled. These models are then translated into OWL-S. Although the paper
discusses process composition, this aspect is not detailed. We have built on [26]
in this respect by considering process compositions in the UML profile and by
mapping into a service ontology that focusses on providing explicit support for
service processes. Other authors [27,28] have directly connected UML modelling
with WS-BPEL code generation, without the explicit ontology framework. In-
tegrating ontologies, however, enhances the semantic modelling and reasoning
capabilities in the context of service architectures.

WSMO [12] and OWL-S [11] are the two predominant examples of service
ontologies. Service ontologies are ontologies to describe Web services, aiming
to support their semantics-based discovery in Web service registries. WSMO is
not an ontology, as OWL-S is, but rather a framework in which ontologies can
be created. The Web Service Process Ontology WSPO [17,18] is also a service
ontology, but its focus is the support of description and reasoning about service
composition and service-based architectural configuration. An important current
development is the Semantic Web Services Framework (SWSF), consisting of a
language and an underlying ontology [29], which takes OWL-S work further and
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is also linked to convergence efforts in relation to WSMO. The FLOWS ontology
in SWSF comprise process modelling and it equally suited to support semantic
modelling within the MDA context.

Our framework has to be seen in the context of MDA initiatives. The OMG
supports selected modelling notations and platforms through an adoption
process. While Web technologies have not been adopted so far, the need for
a specific MDA solution for the Web context is a concern. The ubiquity of the
Web and the existence of standardised and accepted platform and modelling
technology justify this requirement. The current OMG initiative to define and
standardise an ontology metamodel (ODM) will allow the integration of our
framework with OMG standards [13]. ODM will provide mappings to OWL-DL
and also a UML2 profile for ontologies. ODM, however, is a standard address-
ing ontology description, but not reasoning. The reasoning component, which
is important in our framework, would need to be addressed in addition to the
standard.

7 Conclusions

Service-oriented architecture is developing into a service engineering paradigm
with its own specific techniques. The development of a service engineering
methodology should – similar to other approaches – adopt accepted technologies:

– MDA provides, based on UML, a modelling approach that can satisfy the
modelling requirements necessary to develop service architectures and that
emphasises tool support and automation.

– Ontology and Semantic Web technologies provide semantic strength for the
modelling framework necessary for a distributed and inter-organisational
environment.

Our main contribution is an ontology-based engine that supports the process of
service architecting. The central element is a service ontology tailored to sup-
port service composition and transformation. An ontology-based technique is
here beneficial for the following reasons. Firstly, ontologies define a rigourous,
logic-based semantics modelling and reasoning framework thats support archi-
tectural design activities for services. Secondly, ontologies provides a knowledge
integration and interoperability platform for multi-source semantic service-based
software systems. Thirdly, service ontologies can also be integrated with domain
ontologies to integrate different software development activities – for instance at
the computation-independent layer of MDA. Our aim here was to demonstrate
the suitability of ontologies for this environment – for both WSPO to support ar-
chitectural issues but also for WSMO here to support service discovery. We have
embedded this service composition ontology into an architecture modelling tech-
nique integrating visual UML-based modelling, transformation, ontology-based
reasoning, and code generation.

In this approach ontologies replace the classical UML models, except that
we keep the visual UML notation, but give semantics to a UML profile for
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service architecture by mapping UML models to ontologies. This approach has
in addition to the visualisation of models also the benefit of allowing the reuse
of existing models. Ontologies add rigorous semantic modelling and reasoning.

While we have outlined the core of an ontology-driven service architecture
framework, a number of aspects have remained unaddressed. The integration
of a wider range of UML models could be discussed in order to improve the
reusability of UML models. For instance, interaction and sequence diagrams ex-
press aspects of relevance to service composition and interaction. Composition
aspects such as time or error handling could be considered. A reversed mapping
from ontologies into UML models could also be considered. A standardised ontol-
ogy definition model (ODM) can be expected in the near future. The integration
of our approach with this standard is necessary for interoperability reasons and
will facilitate model reuse, but should turn out to be feasible due to OWL-DL
as the common underlying ontology language.
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Abstract. In this paper we report on a feasibility study in reengineer-
ing legacy systems towards a model-driven architecture (MDA). Steps
in our approach consist of (1) parsing the source code of the legacy
system according to a grammar; (2) mapping the abstract syntax trees
thus obtained to a grammar model that is defined in the Meta-Object
Facility (MOF); (3) using model to model (M2M) transformations to
turn the grammar model into a generic meta-model, called Generic-
AST, in which information about software systems can be stored in a
language-independent way; (4) mapping the GenericAST models, again
using M2M transformations, to UML models that can be either used
for code generation or for documentation purposes. The steps have been
implemented in a prototype model harvesting tool that is based on Arc-
Styler, the MDA environment provided by Interactive Objects. Our pa-
per presents this approach, and reports on our experiences in applying
the method to a 178 KLOC production system from the insurance do-
main written in PL/SQL.

1 Introduction

Model Driven Architecture (MDA) provides a promising basis for keeping soft-
ware maintainable by using a series of models in the development process: models
are the main software assets, as opposed to source code. In this paper we ex-
plore how MDA concepts can be applied to existing software systems. The key
problem here is that usually no adequate models of actual systems are available.
In order to overcome this gap, we investigate to what extent reverse engineering
techniques can be used to extract adequate models from source code.

It is very unlikely that a fully automatic approach will ever be able to recon-
struct models that are (1) at an appropriate level of abstraction; and (2) can be
used to (re)generate the full functionality of the original application. Therefore,
we will aim at the interactive reconstruction of models that serve the following
purposes:

– The models can be used for system understanding and software exploration
in order to support a transition to a model-driven reimplementation;

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 213–225, 2006.
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– The models can be used to generate code templates, that can subsequently
be refined to include deeper application knowledge.

A distinctive characteristic of reengineering to an MDA context is that
MDA provides a flexible environment for manipulating models, using open stan-
dards such as the Meta-Object Facility (MOF) [20], transformations using the
Query/View/Transformation approach (QVT) [19] and the Unified Modeling
Language UML. For that reason, we will investigate a reengineering approach
which switches to the MDA “technological space” [15] as quickly as possible,
after which model to model transformations are used to refine the initial raw
results.

The work presented in this paper was carried out within a pilot study con-
ducted at a major Dutch insurance company. The objective of this pilot study
is to investigate the feasibility of adopting MDA techniques for their legacy sys-
tems, in order to safeguard the future maintainability of these systems. Within
the study, tools were built to reverse engineer models from code —a process
called “harvesting” — and these tools have been applied to the source code of a
production system written in PL/SQL. Steps in our approach consist of

1. Parsing the source code of the legacy system according to a grammar;
2. Mapping the abstract syntax trees thus obtained to a grammar model that

is defined in the Meta-Object Facility (MOF);
3. Using model to model (M2M) transformations to turn the grammar model

into a generic meta-model, called GenericAST, in which information about
software systems can be stored in a language-independent way;

4. Mapping the GenericAST models, again using M2M transformations, to
UML models that can be either used for code generation or for documenta-
tion purposes.

The paper is structured as follows. We start out with a survey of related work
in the area of reengineering to model-driven architectures. We then describe our
approach (Section 3) as well as the prototype workbench we developed to support
our approach (Section 4). The application of our approach to the PL/SQL pro-
duction system is described next (Section 5) followed by a discussion of lessons
learned (Section 6). We conclude by summarizing our main contributions as well
as suggestions for future work.

2 Related Work

The Object Management Group is actively involved in the “reverse engineer-
ing to MDA” area, with the Architecture Driven Modernization (ADM) task
force [11, 22]. A total of seven Requests for Proposal aim at standardizing an
extensive reverse engineering framework towards an MDA target environment.
Part of ADM are two generic intermediate models, for supporting analysis and
refactoring. The generic models we use are inspired by but significantly simpler
than the wide spectrum ADM models.
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Mansurov and Campara [16] argue that a first step in the migration towards
the MDA is the introduction of modeling in the software development process.
They propose an approach to raise the maturity of software architectures to a
level where software maintenance and evolution are driven by the architecture
instead of by the code. For this they introduce so-called Container Models. They
focus on the extraction of these Container Models from existing code.

A framework for language neutral representation of source code is presented
by Al-Ekram and Kontogiannis [1]. A generic abstract syntax tree (AST) is part
of the program representation framework. XML is used as the main language. It
has the advantage of being a light weight solution, but comes with meta-model
discovery problems. The meta-model must be hardwired into the programs that
use it.

A view on language support for MDA also requiring a generic representa-
tion is discussed by Cepa and Mezini [4]. They propose a generic annotated
abstract syntax tree that can be used to support domain-specific but platform-
independent models. An explicit meta-representation is advocated for programs
in an AST-like structure, together with the possibility for users to add their own
annotations to this AST using a dedicated language.

Boronat et al. present a framework for automatic legacy system migration in
MDA [3], using rewriting logic as their transformation engine. The results are
UML models of the legacy system.

An approach aiming at incremental adoption of model-driven technologies is
provided by Gannod and Carey [13], who rely on Java annotations that support
the creation of models that fit in the Eclipse Modeling Framework EMF.

Harvesting MDA models from existing proprietary models is discussed by
Doyle [9]. His starting point are models as used in a 4GL application genera-
tor also in use at Fortis. His approach involves reconstructing and normalizing
models from database representations, which are subsequently transformed into
MOF representations using EMF.

Reengineering from code towards the MDA involves a combination of parsing
and model transformation. Kurtev et al. [15] refer to this as building bridges
between technological spaces, in this case between the grammar-ware and MDA
spaces. A very generic framework for bridging between technological spaces is
discussed by Wimmer and Kramler [24]. In this framework a compiler-compiler is
used that, based on an attributed grammar mapping EBNF to MOF, generates
a so-called grammar parser. This grammar-parser not only transforms EBNF
grammars into MOF-based metamodels, but also generates a tool to transform
programs associated with that EBNF grammar into models associated with the
generated metamodel.

A general introduction to reengineering and system renovation is provided
in [5,7]. Reengineering generally consists of a series of reverse engineering steps
that reconstruct system representations at a higher level of abstraction. These
representations can subsequently be used for code generation. Since fully au-
tomated reengineering often is not feasible, much reverse engineering research
focuses on supporting system exploration, i.e., helping software engineers in
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understanding the legacy system at hand [17]. A reverse engineering process
tailored towards reconstructing software architectures from source code is pro-
vided in [6].

3 Harvesting Approach

The approach we used for harvesting models from the source code of an existing
application is depicted in Figure 1. It consists of the following steps.

The starting point is a grammar of the legacy language, expressed in an
EBNF-like formalism. We first of all use this grammar to generate a parser
capable of processing the system’s source code and representing it by means of
abstract syntax trees (ASTs).

Existing parser generators generally produce proprietary AST representa-
tions. In order to benefit from standards and available tool support from MDA
technologies, we therefore need to transfer these abstract syntax trees to a MOF-
based representation. To that end, we use the EBNF grammar to generate:

1. A MOF-based Grammar Model, i.e., a metamodel of the Grammar defined
with MOF, that offers a one-to-one mapping between EBNF-based ASTs
and MOF-based ASTs; and

2. A series of transformations coded in Java mapping EBNF-based AST nodes
to their Grammar Model counterparts.

Following the terminology of Kurtev et al., we thus switch from the grammar-
ware technological space to the MDA technological space [10, 15].

Our next step consists of mapping the source language abstract syntax trees
to a generic, domain-independent model, which we have dubbed GenericAST.
From this generic model, we subsequently generate models that can be used
either for documentation or for code generation purposes. In some cases these
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models will be based on UML, whereas in other situations these models will be
domain specific. The main reason for introducing such a generic layer is that it
increases opportunities for reuse when, for example, extending the framework
with additional source languages.

The GenericAST meta-model is based on UML, especially for representing
structural information such as containers, entities, features, constraints, or types.
Regarding behavioral constructs, various meta-classes have been defined for
representing common programming language constructs, such as a conditional-
statement (similar to an if-statement or switch-statement) and a loop-statement
(similar to a for-loop or while-loop). Note that these statements can be rep-
resented independent of a specific concrete syntax, which is abstracted in the
transformations to a GenericAST model. UML support for representing behav-
ioral constructs is limited (we used version 1.4), which is another reason for us-
ing a GenericAST as intermediate model in the transformation process, instead
of transforming directly to UML. The GenericAST meta-model furthermore in-
cludes facilities for storing custom information in model elements by using tagged
values, and for including references to the original source code.

4 Harvesting Workbench Developed and Used

We created a prototype tool set implementing the approach described that al-
lowed us to harvest models from PL/SQL applications. This tool set makes use
of the following components.

– The basis for our tool set is Interactive Objects’ MDA environment Arc-
Styler.1 ArcStyler is an extensible platform for MDA-based software archi-
tecting and engineering. It integrates a UML modeling environment with
a collection of model transformations with can generate models or textual
output base on UML models. It provides an open, flexible environment for
tasks relating models, such as visualization, transformation (both model to
model, and model to text), and manipulation. We mostly used the model to
model transformation and visualization facilities, and to a lesser extend the
model to text transformation facilities offered.

– We used the Grammatica2 parser generator to obtain a PL/SQL parser. We
have been able to reuse an existing PL/SQL grammar, which we tuned for
our purposes.

– The mapping from grammars to MOF was set up according to the method
proposed by [2], with some extensions in order to turn Grammatica parse
trees into true abstract syntax trees.

– The MOF repositories were generated and manipulated using Interactive
Objects’ MDA-environment ArcStyler. In particular, ArcStyler’s Carat.MOF
functionality was used to generate a Java repository implementation, con-
forming to the Java Metadata Interface JMI [14], from a repository model
represented in the UML profile for MOF.

1 http://www.arcstyler.com
2 http://grammatica.percederberg.net
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– The language independent analysis and transformation facilities offered at
the GenericAST level are illustrated in Figure 2. They include tree traversals,
transformations, a user interface for manipulating models, and an annotation
framework.

– Model to model transformations (M2M) (e.g. from GenericAST to UML)
were implemented in ArcStyler’s prototype M2M-transformation engine
called AIM – Atomistic Information Mapping. AIM provides a graphical
user interface for defining transformations, which can be expressed in the
Jython3 scripting language.

5 Case Study

We have applied the harvester tools to HiBob, a 178 KLOC production system
at De Amersfoortse Verzekeringen, a major insurance company based in The
Netherlands. The system has been developed in Oracle’s PL/SQL4 and consisted
of a data model with business logic that calculates insurance offers. The size of
the application is shown in Table 1, both in KLOC PL/SQL and in the number
of items.

For each main construct a grammar has been developed that describes part of
the PL/SQL language, to generate parsers and meta-models that can process the
input. The GenericAST has been used as an intermediate model, to reuse previ-
ously developed analyses and M2M-transformations to UML. ArcStyler has been

3 http://www.jython.org
4 http://www.oracle.com/technology/tech/pl_sql
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Table 1. System size per main construct

Main Construct Size (KLOC) Item count
Tables with fields 70 163 with 4052
Triggers 28 468
Stored procedures (global) 7 46
Packages with procedures 73 23 with 538

used as MDA-environment for executing M2M-transformations and presenting
the generated UML models.

Before commencing harvesting, the anticipated architecture of HiBob was
determined. This first of all gives suggestions for the specific harvesting approach.
Secondly, it will help to determine where there are mismatches between the
current and the target architecture.

Only a small part of the harvesters is specific for HiBob, which is imple-
mented in the model to model transformations from a grammar model to a
GenericAST model. Using HiBob specific information, we were able to au-
tomatically modularize the application, based on known naming conventions.
The modularization was implemented in one transformation rule, whereas all
other transformation rules (more than 100) can be reused for harvesting other
PL/SQL applications. The grammars can be completely reused for harvesting
other PL/SQL applications. A grammar only regards syntax, which is not ap-
plication specific.

Although there is no conceptual restriction on what target models are gen-
erated, in the case study only UML models were generated, including class di-
agrams, state-chart diagrams and collaboration diagrams. Class diagrams (such
as in Figure 3) were used to gain insight in the data structure of the applica-
tion (tables, fields, relations, triggers and constraints) and the structure of the
behavior (stored procedures, packages with stored procedures, direct call depen-
dencies). The generated model can be used for both documentation and code
generation purposes.

Collaboration diagrams (such as in Figure 4) were derived to obtain insight
in all required methods for executing a certain initial method, which is derived
from direct call dependencies. The example diagrams shown here are relatively
simple, there are for example collaboration diagrams with over 10 objects and
more than 1000 method invocations required for more complex calculations.

Table 2 shows several performance measurements from the case study, per-
formed on a Pentium4 3.0 GHz computer with 1 GB RAM. The measurements
give an indication on the performance of parsing and populating a generated
MOF repository. The table also shows that the cost of compressing and sav-
ing models by means of XMI are substantial. No explicit measurements have
been done for the M2M-transformations, because we used a prototype M2M-
transformation engine with known scalability issues. M2M-transformations ran
for hours before completing which is due to the current implementation of the
engine. A custom (Java) transformation may run much faster, but it is harder
to keep a good overview of the transformation implementation.
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Fig. 3. Harvested Data Structures

Fig. 4. Harvested Collaboration Diagram showing Required methods for executing
method pp bereken opti variant

Table 2. Performance measurements from Text to MOF-based model

Property Unit Tables Triggers Stored Procedures Packages
Grammar size LOC 190 240 250 250
Input size KLOC 70 28 7 73
Parse time Sec 6 13 3 33
Population time Sec 9 42 7 144
Compressed XMI file size KB 2580 15600 1800 41000
XMI save time Sec 117 827 103 2660

The case study has shown the feasibility of harvesting existing source code (in
this case 178 KLOC PL/SQL) to UML models, although the current prototype
implementation suffers from scalability issues regarding M2M-transformations.
Using the GenericAST has successfully enabled transformation reuse as intended,
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although being an extra step in the extraction process. The extracted models
have successfully been used for documentation and forward engineering
purposes. Although currently no full migration has been done, experiments have
been conducted in generating J2EE code from the harvested UML models, using
standard model to text transformations shipped with ArcStyler. For data struc-
tures (tables with fields) complete J2EE code has been generated, whereas for
the business logic (e.g. trigger implementations, stored procedures, and PL/SQL
packages) only structural code has been generated (e.g. classes with methods,
with an empty body).

Further details of the case study conducted can be found in [21].

6 Lessons Learned

Have a clear picture of what to harvest. It is important to have a specific question
to answer or problem to solve before harvesting, and to know how to find the
answer or solution: if you don’t know where you’re going, any road will take
you there. In other words, constructs of interest that appear in the input must
be specified, such that a harvester can recognize them. For example, if for a
database system a question is ’what is the data structure?’ then constructs of
interest are table definitions, field definitions and relations between the tables.

Know the anticipated target models in detail. Having good knowledge on the
target models that need to be harvested increases usability of the harvested
models. For example, if the harvested models will be used for code generation
and the code generator requires that associations have names then association
should be given names during harvesting, which might not be necessary when
generating models solely for documentation. This results in models that can be
used directly for their purpose.

Make use of coding guidelines and naming conventions. The more system-specific
information is used during harvesting, the better quality the initial models have.
For example, if a table name contains a number that indicates the module it is
part of, it can be used to automatically relocate the table to the right module.
It improves the usability of the initial models.

Keep grammars small and focused. Smaller grammars are easier to maintain than
bigger grammars. When a complete grammar is not available for a harvesting
project, a minimal grammar should be developed. A minimal grammar has ex-
actly the right information to describe the anticipated input, but not a complete
language. This approach, which is based on the notion of island grammar [8,18]
has been taken while harvesting HiBob.

Modularize grammars. Modular grammars improve reusability of commonly
used grammar parts, such as statement and expression definitions. In the case
study, four different grammars were composed from several grammar parts. Not
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only does this save work while developing grammars, it also allows reuse of sev-
eral M2M-transformation parts, which correspond with the grammar parts. This
has successfully done in the case study.

Design grammar towards a target meta-model. Grammars should be developed
with a certain target meta-model in mind, including how to map the grammar to
the target meta-model. This improves reusability of M2M-transformation parts.
For example, if in a target meta-model statements are all contained by a certain
container, this should be reflected in the grammar. This could be done by having
a production statement_container which contains other statements and acts
the entry-point for statements in the grammar. This creates an extra node in
the AST that can be mapped to the statement container model element in the
target meta-model.

Avoid usage of XMI to store model contents. Persistence of harvesting results
using XMI should be avoided, because it is a slow mechanism. Instead of saving
and loading every time to and from XMI, as much as possible should be done
without XMI. In the case study, parsing and populating a repository took in the
order of seconds, while streaming to XMI took in the order of minutes. Therefore,
it is more efficient to parse the input every time the models are needed for M2M-
transformations. Because generation of a GenericAST model takes more time
than saving and loading XMI, it should be used to save a generated GenericAST
model.

Optimize M2M-transformations. M2M-transformations should be optimized
everywhere possible. In the case study, M2M-transformations were the longest
operations, which took in the order of days to complete. Simple optimizations
could improve the performance, for example by doing calculations once, pass on
the results to child rules where filtering takes place. In the case study, calcula-
tions where done at the same time as filtering, requiring each calculation to be
executed multiple times instead of once.

Genericity Mismatch. The genericity (or expressiveness) of the GenericAST
could be inadequate for a given harvesting project. It means that the Generic-
AST cannot represent constructs that appear in the project’s source code. This
risk is hard to identify and predict; it will show up during individual harvesting
projects.

Possible ways of minimizing or dealing with the consequences are:

– Provide extension points in meta-model: Currently each element can be ex-
tended by tagged-values, which is a light-weight, pragmatic extension mech-
anism. This will not be sufficient for all situations, but it is a start.

– Extend GenericAST meta-model: Evolving the meta-model requires exten-
sive testing in both the meta-model and tools, because it is a heavy-weight
extension mechanism. It has impact on compatibility with existing models
and transformations.
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The genericity (or expressiveness) of the GenericAST could be too large. It
happens when a semantic construct can be represented in more than one way.
If this is true it is harder to create generic transformations and analyses on
GenericAST models, because there could be two semantically equal models that
do not result in the same target model and/or analysis result. This risk is hard
to identify and predict.

Possible ways of minimizing the consequences are:

– Thorough meta-model review: For each meta-model element make sure why
it exists and what can be represented with it. It should not be able to rep-
resent the same construct with any other element.

– Definition of well-formed model guidelines: Identified ambiguities must be
resolved by making one option ’preferred’ and the other options ’illegal’,
which can be done with a guideline. Any model that violates a guideline is
not a valid GenericAST model. It may be enforced by providing a model-
checker which detects and reports violations.

7 Concluding Remarks

Reverse engineering to an MDA target context requires a flexible, automated
process that uses open standards as propagated by the OMG. Our reverse engi-
neering framework provides an abstract process with minimal transformations to
generate UML models from textual source code. The process consists of several
transformations: textual source code is parsed into an AST, which is populated
into a MOF-based repository with a meta-model conforming to the grammar
that describes the structure of the textual source code. The contents of the
MOF-based repository are transformed to an initial target model, which can be
a UML model. The benefits of MDA can now be used to their full potential: gen-
erated models can be used for documentation, or even for MDA-based forward
engineering.

To automate the process our prototype implementation uses generators. The
source code structure is described in a grammar and from the grammar a spe-
cialized harvester and repository are generated. An improved mapping from an
EBNF grammar to a MOF meta-model results in concise and usable repositories.

The generic intermediate model allows us to reuse M2M-transformations and
analyses. For specific harvesters a transformation can be developed to generate
a generic model. Available transformations and analyses can then be applied to
the generic model to get the desired target models.

The case study has shown that the prototype implementation of the reverse
engineering framework is able to extract models from a production system of
178 KLOC: UML models have been generated that give insight in structure and
behavior. These models can be used for documentation purposes as well as for
(partial) forward engineering: in our case Java classes have been generated from
the harvested models that represent the application’s structure.

Future work firstly regards solving scalability issues for our prototype imple-
mentation with the current M2M-transformation engine. An improved version
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of such an engine is required to support larger M2M-transformations without
running into performance problems. A functional extension of the prototype im-
plementation is replacing the parser generator with a more powerful one, such as
a Generalized LR parser generator [23] or an expression grammar parser genera-
tor [12]. A more powerful parser generator enables usage of island grammars [18],
which is a powerful technique to quickly develop grammars for complex struc-
tured source code. In an island grammar constructs of interest can be specified
in detail while the parser is told to ignore any other construct encountered in
the input.

Secondly, it should be investigated whether information in GenericAST mod-
els is sufficient to generate target source code, such that method implementations
can be generated as much as possible (at least for several constructs this expected
to be feasible). A particular challenge is how to represent business logic. It is an
open issue to what extend UML Action Semantics can help for the case at hand.
To fully evaluate the current GenericAST prototype implementation should be
tested on more source languages and evolved accordingly.

Last but not least, a full system migration should be attempted to assess fea-
sibility of using reverse engineered models in an MDA-based forward engineering
track. This might require transformation to specific UML profiles, domain spe-
cific languages and/or abstraction of platform dependent constructs to platform
independent constructs.
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Abstract. Databases are one of the most important components of information 
systems, since they keep all the information of organizations. Although new 
standards in databases have appeared in the last years, most databases are still 
based on SQL-92, and are thus true legacy systems. Most of the services offered 
by information systems are based on the information stored in their databases. 
In order to allow interoperability, current trends advise exposing some of these 
services to the Web, making them available for other users and also for the 
information system itself. Since dealing with old databases and their associated 
software is difficult, a methodology to discover services from SQL-92 
databases and to offer them via Web Services is proposed. This methodology is 
based on the MDA approach and implements a reengineering process, which 
starts from an SQL-92 database and obtains a set of services that can be 
exposed as Web Services. 

Keywords: reengineering, reverse engineering, metamodel, Web Service, 
QVT, patterns, MDA. 

1   Introduction 

Information systems are composed of many elements, for example documentation, 
programs, hardware, databases, etc. Of these, the database can be considered as the 
cornerstone. This importance is due to the role played by databases: they store all the 
information required for system operation. 

Despite the fact that new versions of the SQL standard are being developed (i.e. 
SQL-99, SQL-2003), many systems are still working with relational databases [1], 
mainly based on the SQL-92 paradigm [2] . 

Programs that use legacy databases are sometimes also legacy programs with low 
maintainability. Because of that, the effort spent on improving these systems (adding 
new features, integration into the web, etc.) can be taxing [3] . 

Any attempt to deal with this kind of legacy system is difficult for many reasons, 
such as the size of both the applications and the databases [4] , lack of experience in 
the source code language, lack of documentation, etc. 



 A Methodology for Database Reengineering to Web Services 227 

Reengineering is a very useful tool for dealing with this kind of problem. 
According to [5] , reengineering is a process composed of two sub-stages: reverse and 
forward engineering. 

Recently, reverse engineering (the most important stage of reengineering) has 
become closely related to MDA [6] . In just a few words, MDA makes is possible to 
separate business logic from the implementation platform [6] . MDA proposes to 
work at both model and metamodel levels: thus, the implementation stage is not as 
critical as in the earlier times, because this step can be performed by means of 
automatic transformations. The relation of reverse engineering and MDA has been 
strengthened by ADM (Architecture-Driven Modernization), which aims to integrate 
reverse engineering and MDA. Many metamodels have been standardized to support 
legacy systems, such as CWM [7] . It is essential to represent this kind of systems by 
means of these metamodels by a reverse engineering stage. 

According to [6, 8] , the basic elements of the MDA approach are PIMs (Platform 
Independent Models), PSMs (Platforms Specific Models), and PDMs (Platform 
Description Models). When MDA is applied, the software engineer works at a 
business level with one or more PIMs. Later, and by means of some transformations, 
one or more PSMs are generated depending on the target platform. If the starting 
point is not a PIM but a PSM (the legacy system), the process involves two 
transformations, one to obtain a PIM (representation of the legacy platform) and a 
second transformation to obtain the target PSM from the PIM [8] . The latter situation 
is what leads to the aforementioned term “Architecture-Driven Modernization”. In 
this situation, reverse engineering is required to pass from the starting PSM to the 
PIM: therefore, reverse engineering is a core element in the application of the MDA 
approach. 

In this respect, a methodology based on the idea of reengineering and focusing on 
databases, using the concepts of MDA and ADM has been developed. The starting 
PSM is the SQL-92 database; the different PIMs are the set of metamodels used 
during the process; while the target PSM is the final set of Web Services to be 
generated. 

The methodology also takes into account the fact that, as happens in many 
applications, the domain layer used is a reflection of the structure of the database 
which supports the information managed by the application. In other words, having a 
multi-tier application [9] , the domain (or business) tier is chiefly responsible for 
implementing the operations required to achieve the objective for which the system 
was developed. Because of this, the database can be used not only to extract the static 
structure in a reengineering process, but also to infer many of the original system 
functionalities. 

The development of a general and partially-automated reengineering process for 
relational databases requires specifying which kind of relational databases are 
involved. As far as we know, despite the fact that SQL-2003 is the current standard, 
most databases are still defined in SQL-92 (or the corresponding subset of SQL-
2003). For this reason, we are now mainly focused on obtaining all the characteristics 
of SQL-92 based databases. By means of a set of inference patterns, it is possible to 
find potential services in the schema of the database, using a model-driven pattern 
matching process as a sub-step of our general reengineering process. 
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This paper is organized as follows: Section 2 provides a brief description of the 
related work; Section 3 overviews our proposal; Section 4 summarizes the reengi-
neering task to be performed until the services are discovered; Sections 5 and 6 
depicts the service discovery; Section 7 deals with service implementation, Section 8 
puts forth some conclusions and possibilities for future work. 

2   Background 

Until recently, data reengineering (and more specifically data reverse engineering) 
had not been one of the most important topics in reengineering for two straight-
forward reasons: (1) the traditional partition of software engineering and database 
systems, and (2) source code reverse engineering seemed more interesting in many 
aspects in the academic environment [10] . Database reverse engineering can be 
performed for the following purposes [11-13] : redocumentation, model migration, 
restructuring, maintainance or improvement, tentative requirements, software 
assessment, integration, conversion of legacy data, and assessment of the state-of- 
the-art. 

Recovering metadata from databases is a very important issue, because our process 
starts with a database from which no documentation is available. Here, much research 
has been done on algorithms and techniques to recover metadata stored in database 
catalogs. In [14, 15]  the authors studied algorithms to extract information about the 
structure of relational databases. In [16] J.L. Hainaut also made a deep study of the 
database reverse engineering field. 

[17, 18] present a reengineering database project named DB-MAIN. DB-MAIN is 
a generic methodology supported by a tool of the same name, with the following 
steps: (1) database structure extraction, and (2) data structure conceptualization. 

The MIDAS framework [11] tackles the migration of databases, specifically from 
net databases to relational databases. This framework also allows for the replacement 
of database access subroutines by SQL code. 

In the field of migration, not all the research tries to tailor the original database to 
the new model in order to adapt it to a new technology. Wrapping can be seen as 
another kind of migration, in which a logical layer is displayed between the databases 
and the system. This technique used to be implemented by means of wrappers which 
can be seen as a kind of component, such as an adapter. Wrappers make it possible to 
transform queries for a particular data model into another one, for example from a 
particular DMS (Data Management System) into a different model [19] . Wrappers 
are used not only to adapt one data model to another, but also for other purposes, for 
example adapting a relational database to a distributed environment [20] . In this case, 
the wrappers work as a façade between the database and any external system which 
attempts to access the information. 

However, databases are not always subjects of transformations or migration in 
reengineering, that is, of operations that (sometimes) modify their structure and 
require complex data transformations. In [21] , the authors implement a whole 
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reengineering process in a tool, RelationalWeb. This tool takes a relational database 
as input (nowadays it accepts four sorts of DBMS, namely Microsoft Access, SQL 
Server, Caché Intersystems and Oracle) and generates a full operational application to 
manage it. 

Traditionally, research in database reengineering has focused on the tasks 
discussed above (migration, restructuring, etc.), but not much research has been done 
(to our best knowledge) on generating services from relational databases. As with  
[21], our intention is not to generate applications but rather Web Services, offering 
operations based on the structure of the database. 

Our methodology starts with a particular sort of relational database (as noted 
above), SQL-92. This is due to the fact that industrial studies show that many 
information systems are still running over relational databases [1, 22] . 

3   An Overview of the Methodology 

Fig. 1 illustrates the different steps of the methodology. The first step reverse engi-
neers the SQL-92 database in order to obtain its structure. It obtains an instance of a 
relational database metamodel representing its complete logical schema. 

In the next step, the instance (a model) of the database metamodel is transformed 
into an instance (also a model) of a metamodel describing an object-oriented 
representation. This model is instrumented with basic operations and state machines 
to define its behavior. 

Then, the engineer guides the process of service discovery, applying different 
techniques. As a result, a set of services are shaped in an abstract manner. 
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Fig. 1. Process overview 

The last stage is the service generation. By means of transformations, a code 
implementation of the abstract service description is generated. All the stages are 
explained in the following sections. 

4   Preparing the Environment: A Reverse Engineering Task 

This section explains the different steps of the methodology in detail. 
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4.1   Database Metadata Extraction for Schema Representation 

An effective strategy for recovering the database schema is used in [23, 24], where 
database metadata is extracted via specific queries thrown against the database data 
dictionary. 

All these metadata are stored and represented via the SQL-92 metamodel in Fig. 2, 
proposed by [25] , which considers all the elements of the SQL-92 standard [2]. By 
means of this metamodel, all the metadata stored in the original database can be 
represented. From now on we call this sub-metamodel SQL92Schema. 
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Fig. 2. General View of the SQL-92 metamodel 

4.2   An Object-Oriented Representation of the Database 

Once the structure of the database has been recovered, the next step in the process 
translates the instance of the database metamodel (SQL92Schema) into an instance of 
an object-oriented metamodel, representing the conceptual schema corresponding to 
the database. This object-oriented representation is the starting point for inferring and 
building services, establishing a layer between the exposed services and the database 
itself. 

The object-oriented metamodel is extracted from the UML 2 specification [26]. 
This metamodel has been made up by a subset of the Classes package of UML2, but 
has not been included here due to the lack of space. 

4.3   Transforming the SQL92Schema into the OOSv2 Metamodel 

This section explains how to obtain an object-oriented representation from a database 
schema by means of a QVT composed transformation. 

All the elements managed are models: thus, the reengineering process is platform-
independent and the database service discovery is performed in a conceptual level. In 
this way, the generation of source code is deferred to the final stage, when the 
artifacts implementing the services must be generated. 

The QVT language [27] was chosen to perform the transformations. QVT is a 
powerful language to specify transformations among models (and in the same fashion 
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metamodels). QVT includes both a syntactical and graphical notation to define 
transformations. 

Due to the extension of the complete transformation, Table 1 shows only a small 
part of the QVT algorithm to transform an instance of the SQL92Schema metamodel 
into an instance of the OOSv2 metamodel.  

Table 1. QVT transformation to obtain an object-oriented system from an SQL-92 Schema 

transformation SQLSchemaToOOSv2  
(sql92db: SQL92Schema, oos2: OOSv2){ 

 
key Class{name, owner}; 
key Association{name, owner}; 
key Property{name, owner}; 

 
top relation SQL92SchemaToOOSv2{…} 
top relation TableToUMLElement{…} 
top relation ConstraintToUMLElement{…} 
relation  

ReferentialConstraintToAssociation{…} 
relation UniqueConstraintToProperty{…} 
relation BaseTableToClass{…} 
relation ColumnToProperty{…} 

relation DomainToUMLConstraint{…} 
relation ViewToClass{…} 
relation AssertToConstraint{…} 
relation TableCheckConstraintToUMLConstraint{…} 
//Funciones 
function SQL92_ValueToOOSv2V_Value 
 (domain sql92 col:Column{}): 
 domain oos2 val:ValueSpecification{} 
function SQL92_TypeToOOSv2_Type 
  (domain sql92 type: DataType{}): 
 domain oos2 type:DataType{} 
function DomConstraintToUMLClassInvariant 
  (domain sqp92 cons:Constraint{}): 
  domain oos2 cons:Constraint{} 

 

ReferentialConstraint
ToAssociationname = rcName name = rcName

rc:ReferentialConstraint
assoc:Association

C E

sql92db oos2

<<domain>> <<domain>>

where

secColumn:
Column mainColumn:

Column

secTable:Table

mainTable:Table
memberEnd:
ExProperty

ownedEnd:Ex
Property

MEMD->size() = 2; 
OEND->size() = 1; 
let counter:Integer = 0 in 
let propTemp: Property in 
let mainClass:Class = oos2.classes->select 
      (c:Class | c.name = mainTable.name)in 
let secClass:Class = oos2.classes->select 
      (c:Class | c.name = secTable.name) in 
MEND->exist(secClass) and MEND->exist(mainClass) and OEND->exist(mainClass); 
SECCOL->iterate(colTemp:Column; counter = counter +1| 
   propTemp = secClass.columns->select(name = colTemp.name); 
   propTemp.orderInRC = counter; 
   propTemp.mainClassAssoc = mainClass; 
   propTemp.mainPropertyAssoc = mainClass.select (name = (MAINCOL->at(counter).name)))

ReferentialConstraintToAssociation

 

Fig. 3. QVT transformation to obtain a UML association from an SQL-92 foreign key 

The algorithm here is a composed function that triggers the functions shown in 
Figs. 3 and 4 (graphical representation): for example, View2Class, ReferentialConst-
raint2Association, BaseTable2Class, Assertion2UMLConstraint, etc. In the same 
way, other transformations are triggered later, as a consequence of the execution of 
the main transformation (Table 1). 

Transformation in Fig. 4 is in charge of transforming a column from a table to a 
property of a class. In the same way, we have developed another transformation 
 



232 I. García-Rodríguez de Guzmán, M. Polo, and M. Piattini 

which is also invoked by the SQL92S_2_OOSv2, the ReferentialConstraint2-
Association transformation in Fig. 3. This takes a foreign key (which is composed of 
one set of referencing columns and one of referenced columns) and generates a UML 
Association (between one class representing the referencing table and other class 
representing the referenced table). 

name = cName 

nullability_characteristic = nc  
default_option = dop  
ordinal_position = orp  
is_updateable = isupd  

column_data_type = cdtype:DataType{}  
colDefValue = cdv  

name = cName  
visibility = `protected 
orderInTable = orp 
propertyType = 

propType:DataType{}  
isreadonly = TRUE 

default = colDefValue

col:Column
prop:ExProperty

defValue = domDefValue

mDom:Domain

propType:DataType

column_data_Type:
DataType

ColumnToPropertyC E

sql92db oos2

<<domain>>
<<domain>>

ColumnToProperty

if (col->sqlType = null)  
    then{ propType = SQL92_TypeToOOS2_Type(col->mdomaintype->mtype,DomainToUMLConstraint(col, prop)} 
else  propType = SQL92_TypeToOOSv2_Type(cdtype)

where

 

Fig. 4. QVT transformation to obtain a UML property from an SQL Column 

5   Class Instrumentation 

At this stage of the process, all the work is focused on the instance of the OOSv2 
metamodel (that is, the representation of the relational database schema). That means 
that all classes involved in a service are in fact an object-oriented representation of the 
relational database tables and the parameters of a service are required to perform an 
operation over the database. 

Before performing any task for service discovery, the set of obtained classes must 
be instrumented with methods. Up to now classes have been created from tables, and 
each class owns properties but no methods. Thus, before composing any service, 
methods must be assigned to all classes. 

The basic CRUD operations (Create, Read, Update and Delete, shown in Fig. 5) 
are added to all classes. 

In addition, other operations may be required to add extra behavior to our classes. 
Imagine the class Account representing a banking account (previously recovered from 
a table). It is very likely that this class would require operations such as deposit, 
withdraw or getBalance. In other words, many classes would require operations to 
shape their behavior. 

In addition to these operations, a state machine for some classes is also provided in 
order to give the class a more similar behavior than it has in reality. See [21] for 
further explanations. 

The set of states corresponding to each class can be assigned by hand or be inferred 
from the data saved in the database. Transitions, however, must always be designed 
by the engineer, since there is no information about them. 
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   create 
      create (void) 
      create (in:PK) 
      create (in:PK, in:custom_ record) 
   read 
      read (in:PK, out:record) 
      read (in:PK, out:custom_record) 
      read (in:custom_PK, in:custom_record, out:record*)  
   

   update 
      update (in:PK, in:{}{\values})  
      update (in:custom_PK, in:custom_record, in:{}) 
   delete 
      delete(in:PK) 
      delete(in:custom_PK) 
_____________________________________________ 
PK: primary key 
custom_PK: partial PK, used to select a set of records 
record: set of columns to be assigned to a table

CRUD OPERATIONS

 

Fig. 5. CRUD operations to be added 

 

Fig. 6. Obtaining a state machine from a FK 

The automation of state discovery inside classes relies on some heuristics. Some of 
these rules are the following: 

•   Use of limit values: in numeric columns (later transformed to properties), limit 
values are suggested in order to identify intervals that, at the end, can be seen as 
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states. For example, remember our Account table. The Balance column (repre-
senting the money in the banking account) must be of a numeric data type. Three 
limit values can be obtained, namely negative values, zero and positive values. 
According to this, any account would be in any of these intervals: Balance-
Negative (-∞ < Balance <0), BalanceZero (Balance = 0) and BalancePositive (0 
< Balance < ∞). 

•   Now suppose a table, and one of its columns referencing via a foreign key 
another table with just one column (with a short set of values, such as an 
enumeration). It is possible that these values are defining the state of the 
corresponding table record and class instance. For example, in Fig. 6 (a) two 
tables are observed, the first one representing projects developed by students and 
the second representing the possible stages a project may have: thus, the stage 
column in the first table is constrained by the second table via referential 
constraint (Fig. 6 (b)). Taking the values of the Proj_Stage table as possible 
states, a suitable state machine results from this supposition (Fig. 6 (c)). 

In order to integrate the class instrumentation inside the full process, the State 
Machine metamodel of the UML2 specification has been taken into account. 

6   Extracting Services for SQL-92 Databases 

6.1   Service Extraction 

A service is a function that is well-defined, self-contained, and does not depend on the 
context or state of other services [28] . Also, a service can be seen as an operation 
which may need a set of parameters and that may return a result. 

One of the first issues before generating services automatically is how to build 
these services in a generic manner. Since a metamodel is an abstract language for 
some kind of metadata [29] , a service metamodel has been developed to represent 
any database-based service.  

A service can be divided into two basic parts: the static and the dynamic compo-
nent. The static component of the metamodel represents all the artifacts involved in 
the service such as classes, parameters, etc. The dynamic component of the service is 
related to the behavior of the service, that is, the execution flow of the service. This 
dynamic component lets the engineer model the set of steps that must be taken to 
achieve the goal of the service. 

In the methodology, a service will be translated into an (more or less) complex 
SQL sentence. That is, both the result of the Model-Driven Pattern Matching (see 
section 6.2) and the CRUD operations (see section 5). 

Due to the SQL representation of services, a dynamic description is not required, 
but a complete one of the structural elements of the service is essential. With this aim 
in mind, a service metamodel has been developed. This metamodel does not cover the 
full syntax of the SQL-92 standard but the required the methodology. Instead of the 
BNF description of SQL-92 standard this metamodel has been build because (1) it is 
easier to manage and integrate in the MDA process, (2) also to have a service 
representation compatible with the other metamodels involved in the process, (3) 
because this metamodel contains all the required elements to generate the requited 
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source code to implement services in the code generation stage, and is more suitable 
than the SQL-92 BNF notation to represent services. 

Together with this metamodel, a complete OCL set of invariants has been added to 
many of the classes in order to specify with are the correct models (of services) that 
could be generated having the kind of service and the operations involved in the service. 
Due to the lack of space, these OCL invariants will be studied in further publications. 

Service_Kind

$ SELECT_SERVICE : String = SELECT
$ INSERT_SERVICE : String = INSERT
$ DELETE_SERVICE : String = DELETE
$ UPDATE_SERVICE : String = UPDATE

SQLOperator

$ LESS_THAN : String = <
$ GREATER_THAN : String = >
$ LESS_OR_EQUAL_THAN : String = <=
$ GREATER_OR_EQUAL_THAN : String = >=
$ EQUAL_TO : String = =
$ NOT_EQUAL_TO : String = <>
$ IN : String = IN
$ LIKE : String = LIKE
$ EXISTS : String = EXISTS
$ UNIQUE : String = UNIQUE
$ ALL : String = ALL
$ SOME : String = SOME
$ ANY : String = ANY
NONE : String

La semántica v aría en 
f unción del t ipo de 
serv icio

SQLSetFunction

$ COUNT : String = COUNT
$ MAX : String = MAX
$ MIN : String = MIN
$ AVG : String = AVG
NONE : String

ReferentialConstraint

update_rule : Enum
delete_rule : Enum
match_option : Enum
mMainMult : Multiplicity
mSecMult : Mutiplicity

(from SQL-92 MM)

Column
(f rom SQL-92 MM)

Service_Parameter

name : String
type : Type

Return_Element

Table

name : String

(from SQL-92 MM)

#mMainTable
#mSecTable

1..* #mCol1..*

#mOwner

Required_Expression

mSetOperator : String

Value
mType : DataType
isParameter : Boolean

#mParameterValue

defined_by

Service
name : String
kind : String

0..*
#mParameter

0..*

#mReturn 1..*
#mMember

1..*

0..1

*

#mNestedService
0..1

#mReqExp *

Item
mTable : Table
mColumn : Column

0..1#mItem 0..1

Constraint_Expression

mOperator : String
isNot : Boolean
isAND : Boolean
isOR : Boolean

0..* #mValue0..*

0..1

*

#mNestedService

0..1

#mConsExp *

0..*
#mSecItem

0..*
#mMainItem

 

Fig. 7. Service component metamodel 

6.2   Model-Driven Pattern Matching 

As noted above, the database schema is considered as the reflection of the domain 
layer, so it is very possible that many of the functionalities of the application are 
reflected in the schema of the relational databases. 

Being MA the set of elements that could take part in a service, it is possible to 
match this model against a bigger model, namely MB, in order to find occurrences of 
MA. That is, MA may be used as a pattern to search inside MB. 

In our context, MB could be either the SQL92Schema or the OOSv2. The goal of 
this process would be to obtain a set with all the occurrences of the elements of the 
model that matches the given specification, and choose among them those that fit our 
intention. 
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The idea explained above corresponds to the model-driven pattern matching (from 
now on, MDPEM) concept. This idea is briefly outlined in the MDA specification 
[6], but emphasized more in the QVT specification [27]: “The essential idea behind 
pattern matching is to allow the succinct expression of complex constraints on an 
input data type; data which matches the pattern is then picked out and returned to 
the invoker”. 

 

Pattern ReferentialConstraint
(from SQL-92 MM)

+mPKs

Column
(f rom SQL-92 MM)

0..*

1..*

0..*

+mMainPK
1..*

1..*

0..*

+mSecRef
1..*

0..*

Table
(from SQL-92 MM)

#mMainTable

#mSecTable

1..*

+mPK

1..*
 

Pattern Association
1..*

Class
(f rom OOSv 2 MM)

+mMainClass

1..* +mSecClass

Property
(f rom OOSv 2 MM)

+mPKFieldSet

#mAssocs

1..*

#mClasses
1..*

 

Fig. 8. Pattern metamodels 

In this context, the pattern (or the mechanism to shape something that could be 
offered as a service) is a generic description of a pattern to do the matching against a 
model. In this respect, the metamodels in Fig. 8 are proposed. These metamodels does 
not work in the same way as the one proposed in [30], which is more general. 

SQL92Schema 
MM Instance

OOSv2  
MM Instance

SQL92S_2_OOSv2 
Transformation 

<<QVT>>

MDPEM 
SQL92Schema 

MM Pattern

MDPEM 
OOSv2 

MM Pattern

MDPEM 
Schema-M 

Pattern 

MDPEM 
UML-M 
Pattern

MDPEM 
over 

Schema

MDPEM 
Schema 

Matchings

MDPEM 
Schema 

Matchings
MDPEM 

over 
OOS

SQL92S_2_OOSv2 
Transformation 

<<QVT>>

Service_1

Service_2

Service_n

....

Ingeniero  

<<results_in>>

<<results_in>>

Engineer

 

Fig. 9. MDPEM: inputs and results 

Because MDPEM can be performed at two different levels of abstraction (namely 
the SQL92Schema and the OOSv2 level), a pattern metamodel has been designed for 
each one. While Fig. 8 (a) depicts the metamodel for building a pattern at a OOSv2 
level, Fig. 8 (b) depicts a metamodel for builing patterns at the SQL92Schema level. 
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Looking at the metamodels, it can be seen that both of them represent the same 
concepts, but at the two different levels of abstraction. This fact means that the 
MDPEM can be performed over the two models without distinction. Since there is a 
QVT transformation to obtain an OOSv2 instance from a SQL92Schema instance (see 
Section 0), this mechanism can be also applied to transform results from MDPEM at 
the SQL92Schema level to OOSv2 results. This means that the engineer can choose to 
apply MDPEM to any of the abovementioned levels. 

Fig. 9 helps explain the MDPEM process. As Fig. 9 shows, MDPEM is guided by 
the engineer in charge of the reengineering process. Having both the instance of the 
SQL-92 metamodel and the object oriented system metamodel, the engineer can 
choose where to apply the MDPEM technique, depending on the skill of the engineer 
and his/her preferences, because at the end, all matchings found in the SQL92Schema 
instance could be transformed to OOSv2 ones by means of our QVT transformations. 
An example of this process is presented below. 

6.2.1   An Example of the Application of MDPEM 
Given the relational database in Fig. 10 (b), a pair of patterns (Fig. 10 (a)), which will 
be applied later, are going to be proposed, both over the SQL92Schema and OOSv2 
metamodel instances. 

The pattern of Fig. 10 expresses four tables (namely Cp, Dp, Ep and Mp) and three 
foreign keys (namely FKp1, FKp2 and FKp3), where FKp1 is a foreign key from Mp to 
Cp, FKp2 is a foreign key from Mp to Dp, and Fkp3 is a foreign key from Mp to Ep. 
These elements belong to a conceptual set, namely S, which represents all the 
elements of the recovered schema. The MDPEM process could be also be expressed 
by means of a pseudo-SQL query:  

),(),(
),(.,,,,,,

32

1321

SSSSSS

SSSSSSSSSS

MEFKMDFK
MCFKSFKFKFKMEDCSELECT

∧∧
∈

 

In this pseudo-SQL query, AS, BS, CS and MS represents tables and FKS1, FKS2 and 
FKS3 represents foreign keys, both from the recovered schema. The result of the 
MDPEM over the schema represented by Fig. 10 will be composed of two occur-
rences. One of these results (which is only a view of the whole model) will be 
composed of Classroom, Academic_Year, Teacher and Give tables (which match the 
Cp, Dp Ep and Mp tables of the pattern respectively) and their corresponding foreign 
keys (which have no names in the schema but probably numerical identifiers). It is 
important to note that the result of the MDPEM can be represented by the service 
metamodel proposed in Fig. 7. 

Implementing the patterns with an abstract description of an operation, in which all 
the elements of the pattern are involved, could be very useful for the semi-automatic 
generating of source code in further steps. In this way, after matching is done, the 
result is the abstract specification of an operation where the elements involved are real 
elements of the schema and not abstract entities of the pattern. Obviously, many parts 
of the abstract operation must be customized before the services are generated. This 
point is currently being researched and we think that would be useful to provide a 
special language to express these abstract operations together with our proposal. 

At the end of the MDPEM process, each instance of the patterns is susceptible to 
being transformed to a Web Service (see the following section). Because the entire 
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process revolves around models and views of these models, the target implementation 
platform does not matter, because it is automatically generated. It only depends on the 
available factories to generate code in different platforms (such as J2EE, .NET, etc.). 

 

Cp

Dp

EpMp

Fkp2

Fkp1

Fkp3

(a) 

(b) 

Fig. 10. Two patterns for searching in an SQL-92 Schema 

7   Service Implementation: The Last Step 

In the previous sections, a methodology to reengineer SQL-92 databases to discover 
services was explained. The main goal of this work is to develop a method to help the 
software engineer expose services from a legacy system, in our case an SQL-92 
database. 

Our choice for publishing these services is Web Services technology. The reason 
for using Web Services instead of other types of component or software artifacts is 
that Web Services were created for system integration and to wrap legacy systems 
[31]. Specifically, the use of Web Services for legacy system integration is a fact [32]. 
So, on one hand, Web Services were chosen because the target of the methodology is 
true legacy systems such as an SQL-92 database which is still widely in use and on 
the other hand, Web Services work over any technology due to the fact that this 
technology lean on standard protocols such as SOAP, WSDL and UDDI. 

Currently, QVT transformations to generate Web Services from abstract service 
specifications are being defined. In this case, the core of the transformation is the 
obtained services and the WSDL specification of a Web Service. The WSDL 
documents work as a contract between the provider and the customer, because this 
specification is where the customer can learn which operations the Web Service 
provides, along with the signature of each operation. Different strategies to perform 
this transformation are being studied. 

The source models for the last transformation in our process are the services, while 
the target model is the WSDL document metamodel and the implementation of the 
services as well. Different versions of transformations would be created in order to 
generate Web Services in different platforms. 
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8   Conclusions and Future Work 

Up to now, a complex but fully functional environment for database reengineering 
(Relational Web) has been developed, and its efficiency has been proven in many 
projects [21] . 

Despite the fact that SQL-92 technology is obsolete, most legacy systems and most 
companies are still working over this kind of database. For this reason, an effective 
process for reengineering this kind of database towards the web, exposing function-
alities and operations, is being designed. 

In section 4.1, the SQL-92 part of the metamodel presented in [25] was chosen to 
work with, but current results will be extended to subsequent versions of SQL 
(namely 1999 and 2003 versions).  

Our research is mainly focused on discovering hidden functionalities by means of 
pattern matching and state machines. These functionalities are exposed by means of 
Web Services, which are also automatically generated inside the reengineering process. 

Transformations are described using QVT as transformation language. Due to the 
novelty of this language, not too much tools support the full syntax of QVT. 
However, until a suitable QVT engine could be used, transformations will be repre-
sented by means of an implemented algorithm. 
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Abstract. General-purpose modeling languages are inadequate to model and 
visualize business processes precisely. An enterprise has its own vocabulary for 
modeling processes and its specific tasks may have attached data that define the 
tasks precisely. We propose using Domain Specific Modeling (DSM) languages 
to model business processes, such that an enterprise can define its own DSM 
language(s) capturing its vocabulary and data requirement. We suggest using 
UML profiles and UML activity diagrams as the semantic base for these DSM 
languages and present tools that are able to create a DSM language and tool 
support for a given domain. One tool, called ADSpecializer, can generate a 
UML profile and its tool support of a given application domain. The other tool, 
ADModeler, is used to create UML activity diagrams within such a domain-
specific UML profile. The two tools enable an enterprise to efficiently define 
and utilize their own DSM language. 

1   Introduction 

Model Driven Engineering (MDE), as an approach for describing and implementing 
business processes, is believed to speed up the development time and be less error 
prone compared to traditional software development. Several standards have been 
proposed for modeling and implementing business processes [2]. Based on experi-
ences at using MDE for describing and implementing business processes in a large 
Scandinavian bank, we recognize a need to have domain specific modeling languages 
to be able to succeed using the MDE approach. Each enterprise has its own terms for 
modeling business processes and has enterprise specific implementation patterns for 
these terms. The development of a common vocabulary in a large enterprise is crucial 
for efficiency. To tailor modeling tools efficiently to this common vocabulary is 
therefore a prerequisite for us to apply MDE. 

A general language is too abstract to be used by people working in a specific do-
main. As Bézivin and Heckel state [1 p. 1], “model-driven approaches to software 
development require precise definitions and tool support for modeling languages, 
their syntax and semantics”.  

We see at least three obstacles to use a general purpose modeling language com-
pared to a domain specific modeling (DSM) language for business process modeling: 

• Semantics. Specific semantics for custom tasks like RegisterInvoice cannot be 
defined. A modeler has to remember to define necessary data when using the task 
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in models and there is no tool support for providing and validating the data. A 
transformation engine does not recognize a task like RegisterInvoice because it is 
modeled as a general task. 

• Visualization. There is no customized visual presentation of the model. Visualiza-
tion is important because different people such as users, business analysts, archi-
tects and developers all have to understand the model. 

• Abstraction. A business process may be modeled at a high abstraction level. A task 
such as RegisterInvoice may not have a simple implementation as e.g. a web ser-
vice invocation. Instead, it could have an implementation pattern, for instance a se-
quence of three web service calls, and mechanisms for handling exceptions. These 
details are not relevant for the model, but have to be modeled when using a general 
language to make transformation to an implementation possible. 

The primary argument against using DSM languages and customized tasks for each 
enterprise or even each business unit inside the enterprise is that the set of necessary 
languages and tasks to define will continue to evolve. We address this argument by 
providing tool support for definition and generation of custom tasks and new  
languages. 

This is in line with Bézivin and Heckel [1, p. 1] who state “In order to support 
model-driven development in a variety of contexts, we must find efficient ways of 
designing languages, accepting that definitions are evolving and that tools need to be 
delivered in a timely fashion”. Software systems are evolving all the time and enter-
prises will also have to extend and enrich their DSM languages. To do this efficiently 
they need ways to get customized modeling tools for the extended DSM languages. 

We have developed two Eclipse-based UML2 tools, ADModeler and ADSpecial-
izer. ADModeler is a plug-in that implements a UML activity diagram editor. 
ADSpecializer can define and generate UML profiles and data entry wizards encapsu-
lated as Eclipse plug-ins for ADModeler. The modeler who uses a DSM language 
generated by ADSpecializer is not aware that she is modeling in UML. Both the lan-
guage and tool support appear domain specific. 

1.1   Background 

The Model Driven Architecture (MDA) initiative by the Object Management Group 
(OMG) is an implementation of the general MDE approach for developing software 
around a set of standards like MOF, UML, CWM etc. [5]. UML is a visual language 
for specifying, constructing and documenting software systems [4]. It is a broad-
spectrum language and consists of several diagram types. One of these, the activity 
diagram, has modeling of organizational processes as one of its purposes. UML is 
defined by the Meta Object Facility (MOF) [3]. MOF is a meta-meta model because it 
is used for defining other meta-models like UMF. MOF is defined by itself. 

When using MDA standards, there are two possible approaches for creating DSM 
languages. The first approach is the definition of a new language based directly on 
MOF. Such a language becomes an alternative to UML. The Common Warehouse 
Meta model (CWM) is an example of such a language. The syntax and semantics of 
the elements of the new language can be defined to match the specific domain.  
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The second approach is based on specialization of the existing UML entities using 
UML profiles. The intention of profiles is to give a straightforward mechanism for 
adapting UML with constructs that are specific to a particular domain, platform, or 
method.  A profile is constructed by using the extensibility elements: stereotypes, 
tagged values, and constraints. Stereotypes are specific meta-classes, tagged values 
are standard meta-attributes, and constraints are restrictions on how an element can be 
used in models. Using profiles is considered a lightweight method of defining a DSM 
language, while basing the language on MOF is considered a heavyweight method. 

UML Profiles have been made for many specific purposes. For example several 
profiles have been defined for business process modeling [13, 18] or for implementa-
tion technologies such as J2EE, where refined UML Class diagram differentiate  
between home and remote interfaces. Each of these profiles defines UML for a  
particular context.   

Meta-modeling tools like MetaEdit+ [12] and GME [7] show that it is possible to 
provide generic tool support for domain specific modeling languages. At present such 
tools do not exist for MOF although work is going on in projects like GMF (Graphical 
Modeling Framework)[22]. In contrast, the use of UML profiles for customizing the 
modeling language is supported by several UML modeling tools.  

Business process models are sufficiently similar to the fundamental abstractions of 
activity diagrams so that we believe using profiles for defining DSM languages is 
feasible. UML Activity diagrams can model most of the workflow patterns described 
in [9] and have more expressive power than most of the industrial workflow manage-
ment standards [10, 11] for implementing business processes. It is therefore a natural 
choice to use activity diagrams for modeling business processes.  

1.2   Our Work 

We use UML activity diagrams and UML profiles to create domain specific modeling 
languages for business processes. Activity diagrams have the formal expressive power 
to formulate the business processes we want to model. UML is a specification and is 
supported by general tools such as Rational and Poseidon, which support creation and 
use of profiles.  

However, using profiles for domain specific modeling in general modeling tools 
requires good knowledge of both UML and profiles as the general tools do not sup-
port modeling directly in domain specific terms. The usability of the tools remains 
low, in particular: 

1. The abstract notion of actions lies far from concrete tasks like “change reserva-
tion”. This makes the tools less useful to domain experts. 

2. There is no way to customize how attributes for a particular stereotype such as 
“RegisterInvoice” should be entered. 

3. There is no design-time validation of attribute values or model element  
relationships. 

The general tools do not support these requirements, and the commercial tools are 
not sufficiently open to tailor them. We will therefore work with the open source tool 
Eclipse [19]. The UML2 eclipse project [20] provides an implementation of the 
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UML2 specification and is based on the Eclipse Modeling Framework (EMF) [21] 
which implements a subset of MOF.  

We address the vision of providing enterprise specific process modeling tools in a 
two-step fashion. First, our ADModeler is a general-purpose extensible and open 
source UML activity-diagram editor, and is to our knowledge the first such for the 
Eclipse framework. Special emphasis has been placed on rendering UML profiles 
containing specification of icons for each stereotype, and the definition and manage-
ment of mandatory auxiliary data.  

Secondly, our ADSpecializer enables efficient development of enterprise specific 
profiles. It can generate a profile for use by ADModeler. It creates icons, images and 
text to present the specific profile in ADModeler, and wizards to enter data for the 
specific tasks. The Eclipse framework provides a rapid and seamless profile-
development cycle for testing plug-ins, which we leverage by making ADSpecializer 
generate the profile as an Eclipse plug-in. ADSpecializer is a no-coding-required tool 
and requires only limited knowledge of UML activity diagrams.   

We define two different roles, a tool developer and a modeler. The tool developer 
is a person responsible for developing tools in an enterprise. He uses ADSpecializer 
to create DSM languages. The modeler is a domain expert. She uses ADModeler with 
extensions created by the tool developer to model business processes precisely in 
domain specific terms. 

The usability of ADModeler is enabled for a particular domain as the specific tasks 
are available directly from the editor’s tool palette, addressing point one above. When 
adding a task, the modeler is presented a wizard to define data for the attributes of the 
task. This addresses point two above. Point three is addressed by allowing a tool de-
veloper to define validation rules in the generated wizards for the different tasks, so 
consistency in the model is ensured. 

A tool developer can use ADSpecializer to create a DSM language and customized 
tool support for it with only limited insight into UML. Further, using the ADModeler 
it is possible for a modeler to work with domain specific terms without any knowl-
edge of UML.  

The rest of the paper is structured as follows: In section 2, we give an example of 
using our tools to model processes in a human family. We first identify domain spe-
cific tasks for modeling processes in the family, then we create a new language for 
modeling processes using the ADSpecializer, and last we create a model of the proc-
ess of getting home from work using the newly generated DSM language. In section 
3, we describe the architecture of the tools, and in section 4 and 5 we describe related 
work, give a summary, and outline future work. 

2   Example: DSM Language for Processes in a Family 

We illustrate the power of defining a DSM language and a customized tool for a par-
ticular domain by looking at the processes in a human family. The family domain has 
been chosen since it is well known to all and easy to illustrate. Example of processes 
in a family are Getting home from work, Go to the cinema and Drive on vacation. 
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First, we define the language. We ask: what specialized tasks do we require to 
model processes in the family, what are the attributes for these tasks, and what new 
data types do we need. Secondly, we use the ADSpecializer to define the language 
and to generate a plug-in to the ADModeler. Thirdly, we use the generated plug-in 
together with the ADModeler to model the process of getting home from work. 

2.1   Language Definition 

We limit the language for modeling processes in the family to deal with six different 
task types. These are Transport, Clean, Cook, Shop, Relax and Nurse Kid, and are 
described below in table 1 including the images used for their graphical representation. 

Table 1. Custom tasks for the Family DSML 

Task Icon Description 
Transport 

 

Transport family members to a destination using 
some kind of transportation, e.g. a car, a bus or a 
train 

Clean 

 

Clean a room. The cleaning can be of different types, 
e.g. vacuum cleaning, wash the floor etc. 
 

Cook 

 

Cook a meal. It must be specified which kind of meal 
should be created; breakfast, lunch or dinner 

Shop 

 

Do some specific shopping, such as groceries or 
clothes. 
 

Relax 

 

Take some time for watching TV, exercise or sleep. 
For the task it must also be specified for how long 
time relaxation can be done. 

Nurse kid 

 

Take care of the children, play with them, put them 
to bed, etc. 

 
To be able to define these tasks and their attributes we must also define some data 

types. For example we must have a data type defining that we can choose between the 
kitchen, the toilet and the living room when we use the Clean task and have to decide 
which room to clean. Table 2 lists the different data types for our new language. Here 
we define only Enumeration data types, although we could also have defined compos-
ite data types containing attributes of other data types. When we have specified the 
required data types, we can define the custom tasks and their attributes. These can be 
found in table 3. 
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Table 2. Data types for family DSML 

Data type Possible values 
TransportationType Car, Bicycle, Train, Bus 

CleanType Vacuum clean, Wash floor 
RoomType Kitchen, Toilet, Living room 
MealType Breakfast, Lunch, Dinner 
ShoppingType Grocery, Clothes, Lumberyard 
ActivityType Sleep, Play soccer, Watch TV 
NurseType Play, Bath, Change nappies, Put to bed 

 
Now, after having described the custom tasks, their attributes, and the required data 

types, we can generate the language using the ADSpecializer.  

Table 3. The custom tasks and their attributes 

Task Attributes Type Description 
Transport meansOfTransport 

destination 
TransportationType 
String 

Which transport? 
Where to go? 

Clean room 
cleanWhat 

RoomType 
CleanType 

What room to clean? 
What to clean? 

Cook Meal 
Persons 

MealType 
Integer 

Which meal to cook? 
Number of persons. 

Shop shopKind ShopType What to shop? 
Relax activity 

duration 
ActivityType 
integer 

What to do? 
How many minutes? 

Nurse kid activity 
duration 

NurseType 
integer 

What to do? 
How many minutes? 

2.2   Language Creation 

The ADSpecializer creates an extension to the ADModeler after a tool developer has 
used a wizard to define the previously described language. The wizard contains three 
steps. First, the language or the profile is named and described. Then the tasks are 
defined, and at last, the custom data types and attributes for the tasks are defined.  

Completing the wizard, a new Eclipse plug-in project is created containing an 
UML profile with stereotypes, attributes and data types as defined in the wizard. Fur-
ther, the plug-in extends the ADModeler so the defined tasks can be used within 
ADModeler. The generated plug-in project also contains generated wizards for each 
task to be used to collect data for the defined attributes when a modeler inserts a task 
of a given type into a model. 

2.3   The Process of Getting Home from Work 

While it would have been useful to demonstrate a process from an industrial applica-
tion, we have chosen to show a process from the domain of a human family because it 
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is well known to all. Here we describe a simplified process of getting home from 
work and try to model it by using our domain specific language. 

After getting off from work, you drive to the daycare to pick up your child. Then 
you go to the grocery shop to buy food for dinner and, then you drive home. At home 
a lot of things now happen in parallel; you start cooking dinner, you have to check the 
nappies on your kid and optionally change it, also you have to play with the kid, and 
you have to clean the floor. When dinner is ready, you stop cleaning, and the family 
eats. After dinner, you put your kid to bed, and exhausted, go to relax in front of the 
television for an hour before going to sleep. 

This process has been modeled in ADModeler using the Family language and can 
be found in figure 1, which also illustrates the ADModeler working with the gener-
ated plug-in containing the Family language. In the tool palette to the right, all the 
customized tasks as defined in table 1 can be found. A task instance can be dragged 
from the palette onto the model. As the figure illustrates, we have also customized the 
general UML decision and merge nodes to use a question mark as image. Doing this 
makes the tool more intuitive to use by a domain expert.  

 

 

Fig. 1. ADModeler with the Family DSM language extension and modeling the Getting home 
from work process 

Still the modeler could be customized further, e.g. unnecessary menus and toolbars 
could be removed from the tool, and a special view for accessing attribute data could 
be created.  

Whereas the customized diagram is syntactic sugar over plain UML, the semantics 
of the task instances is the real force of our approach. When a task instance is added 
to the model, the modeler is presented with a customized wizard for collecting data  
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Fig. 2. Generated wizard pages for defining data for the Transport Task attributes 

for the attributes defined for the task. Figure 2 shows the two generated wizard pages 
for entering attribute data for a Transport task, which are the transportation type and 
the destination. A tool developer can customize these pages if the generated ones are 
insufficient for a particular task, e.g. if some specific validation is required or data has 
to be retrieved from a database.  

The example illustrates having a DSM language when modeling and having tool 
support for this DSM Language. We gain a more intuitive model, precise semantics 
and guided definition of required data. Our tools have made the process of creating 
DSM languages and tool support for them automatic with no need for technical in-
sight into UML and eclipse plug-in development. The example shows that using ac-
tivity diagrams and profiles for creating DSM languages using our tools is straight 
forward. Using the generated tools hides the complexity and generality of UML and 
instead provides domain specific terms, symbols and wizards to be used directly by 
the modeler.  

3   Tool Details 

In this section, we give an overview of the ADModeler and ADSpecializer tools, how 
they use meta-models, how ADModeler can be extended, and how ADSpecializer 
automates the task of creating such extensions.  

3.1   ADModeler 

The ADModeler is a general-purpose UML activity diagram editor but provides an 
Eclipse extension point that enables tool developers to extend the editor for specific 
purposes, i.e. they can define their own domain specific languages and customize the 
editor and tool palette. ADModeler will appear as if it was created for the specific 
domain. A model can be defined by adding instances of the domain specific tasks 
directly from the palette. A domain specific task represents a specific UML Activ-
ityNode, for instance an Action or a DecisionNode with an applied stereotype such as 
Transport which indicates an action of transporting oneself from one destination to 
another. The stereotype is defined in a profile that is contained in the plug-in that 
extends ADModeler.  
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Furthermore, the tool developer is able to define how a modeler is supported in 
providing attribute data for the specific tasks. This is done by creating a wizard con-
taining a number of wizard pages for each custom task. The wizard is able to validate 
input from a modeler before an element is inserted into the model. The validation 
check can be everything ranging from simple validation of text strings to validation 
against values in databases or from web services. Wizards are not always considered a 
good strategy for providing tool support [23, p. 126] so this approach may be revised 
in the future. 

ADModeler provides a graphical editor for creating and editing UML2 activity 
diagrams. We have built the editor using a number of open source eclipse plug-ins 
providing a framework for making graphical editors and implementations of MOF 
and UML 2.0 specifications. These plug-ins are 

• Graphical Editor Framework (GEF). The project provides an easy way to create a 
rich graphical environment based on a model.   

• Eclipse Modeling Framework (EMF). The EMF project provides an implementa-
tion of a subset of the MOF specification. Using this project enables a tool devel-
oper to define his own modeling languages based on MOF. 

• UML2. The project provides an implementation of the UML2 specification and 
builds on EMF. The project makes it possible to create models which conform to 
the UML2 specification although it does not provide any graphical annotations or 
possibilities of making visual diagrams of models.  

3.1.1   Meta-models in ADModeler 
Because the Eclipse UML2 project contains no implementation of the UML2 Dia-
gram Interchange Specification or other visual data, we have to decide how to define 
visual information for an activity diagram. We could define a profile containing the 
visual information and apply it to all model elements. But a lot of irrelevant informa-
tion would pollute the model. Another approach could be to create a new meta-model 
which contains both visual and semantic information and from which UML could be 
exported. We have chosen neither of these. Instead we have created a new MOF 
based meta-model called ADModel representing all visual information about the 
activity diagram. This meta-model does not contain any semantics. Instead it wraps or 
links to the UML2 meta-model, which represents the semantic model of activity dia-
grams. The ADModel meta-model could be thought of as a decorator of the UML2 
meta-model.  

When creating a model in ADModeler two models are produced. One model based 
on the ADModel meta-model contains all visual information and one model based on 
the UML2 meta-model contains all semantic information. The strengths of this ap-
proach are: 

• Separation of visual and semantic information in two models. 
• Semantic model is directly available from file system for other UML tools like 

modeling tools or transformation engines, which do not require visual information. 
• Simple visual model extensible for plug-ins. 

Because the UML model is not encapsulated in another model, no extraction or ex-
port has to be done from the visual model. The UML model can be edited directly, 
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except actions like adding or deleting elements, in another tool and the corrections 
will be reflected in the editor when shown in ADModeler.  

 

UML

ADModel
«import»

 

Fig. 3. Meta-model dependency from the UML meta-model 

The meta-model used by ADModeler is illustrated in figure 3 and figure 4. Each 
element in the meta-model has a reference to an element in the UML meta-model. 
The most interesting part of the meta-model is the Node element which represents the 
ActivityNodes, or the building blocks, in the activity diagram.  

It contains attributes for various visual presentations like coordinates and size. It 
further contains a typeId attribute and has a link to the abstract UML class ActivityN-
ode. Concrete implementations of the ActivityNode class include classes like Action, 
Decision-, Join-, Fork-, and Merge nodes. An instance of a Node in a concrete model 
will have a reference to an instance of one of these concrete ActivityNode types. 

The typeId attribute at the node indicates which kind of ActivityNode and optional 
stereotype the Node represents. Using a typeId and a reference to the abstract Activ-
ityNode enables us to make the model extensible for others. For example, the Trans-
port task contained in the Family language has a typeId equal Family.Transport and 
extends an Action node. It also represents the stereotype Transport. When a Transport 
task is inserted into a model, a Node and an Action instance is created. The Transport  
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Fig. 4. The ADModel meta-model and references to elements in the UML meta-model 
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stereotype is applied to the action. The Node instance has a link to the Action instance 
and a typeId equal Family.Transport. 

The tool provides standard typeId’s for the most common ActivityNodes; Initial-
Node, ActivityFinalNode, Action, DecisionNode, MergeNode, ForkNode and Join-
Node. Next section provides more information about how to define an extension to 
the ADModeler. 

3.1.2   Extension Point 
ADModeler provides an extension point for extending the editor and its underlying 
meta-model. By default, the modeler supports modeling with seven different node 
types as described above. These are registered in a NodeRegistry which maps a typeId 
to a specific kind of UML ActivityNode, an optional stereotype, an icon, image, label, 
description and group, and a wizard for collecting data for stereotype attributes. When 
opening the editor, its tool palette is built by reading the NodeRegistry and creating a 
tool for each entry.  

Each element in the palette contains a typeId. When an element is dragged onto the 
editor, ADModeler from the NodeRegistry retrieves the kind of ActivityNode to in-
stantiate, the stereotype to apply at the ActivityNode, a wizard, etc. based on the 
typeId. After looking up the typeId it presents the wizard to the modeler to collect 
data. Then it instantiates the concrete ActivityNode type, optionally applies the 
stereotype, sets stereotype attributes and at last presents the Node in the diagram us-
ing the image registered in the NodeRegistry. 

To extend ADModeller, one has to provide the data described in table 4. 

Table 4. ADModeler extension point attributes 

Attribute Description 
PaletteLabel The label to be used in the tool palette, e.g. Transport. 
PaletteTip The tool tip text for the palette, e.g. Transportation to 

somewhere. 
Group (Optional) The tool group in which the extension should be present. 
PaletteIcon path A relative path to the icon for the palette. 
EditorImage path A relative path to the image for the editor. 
ActivityNode type The type of UML activity node, e.g. Action. 
Profile path A relative path to the profile containing the required 

stereotype. 
Stereotype name The name of the stereotype to be applied to the Activ-

ityNode 
Wizard class name A wizard class for collecting data for the stereotype 

attributes. 
typeId A unique Id for this type to be used in the NodeRegistry, 

e.g. org.mda4bpm.homeprofile.Transport. 

 
One limitation of the tool is that only the control flow part of activity diagrams can 

be modeled. Modeling of the object flow is not implemented. Furthermore, it does not 
support defining restrictions in e.g. OCL or Java for how new tasks may be used in 
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Fig. 5. Wizard pages for ADSpecializer 

the model or how to validate stereotype attributes. Attribute validation can be done in 
the wizard class, but one has to do this in plain Java code. 

3.2   ADSpecializer 

To extend ADModeler, a tool developer has to create a new plug-in project and define 
the extension. As part of defining the extension, he has to create a wizard and an 
UML profile. This requires good technical insight into both the Eclipse platform and 
into UML. Further, it requires a UML tool supporting profiles to be able to define the 
profile. To aid in this task we have developed the ADSpecializer tool.  

To define a new DSM language, a tool developer is guided though a wizard.  
Figure 5 shows the pages used to define a new stereotype. The first page defines the 
graphical appearance, and which UML-type that is extended. The second page is used 
to define the custom attributes to be associated with this new stereotype. Currently 
attributes of type integer, Boolean, and string, and user defined enumerations are 
supported. In addition, it is possible to define aggregations of such values, which we 
call complex types.  

Complex types as well as enumerations are defined in the right hand window 
shown in figure 5. An additional page (not shown) is used to define the name of the 
profile. The data model behind the wizards conforms to a MOF based meta-model 
that we call ADProfile, which is shown in figure 6. In particular, complex types and 
enumerations are represented in the underlying model. Based on this model, ADSpe-
cialiser generates an eclipse plug-in that contains one extension to ADModeler for 
each custom task defined. Further, it generates all resources required for the extension 
point defined by ADModeler. 
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Fig. 6. Meta-model used by ADSpecializer 

In the next section, we describe related work in the area of business process model-
ing notations and particular the use of activity diagrams. 

4   Related Work 

Many standards have been proposed for modeling business processes and their im-
plementations. Two notations are dominating the modeling field. The Business Proc-
ess Modeling Notation (BPMN) [15] is a graphical notation intended for business 
analysts. The UML activity diagrams, on the other hand, are part of the UML suite of 
technical diagramming notations. Both notations are able to model most of the work-
flow patterns described in [9] which means they are feasible for modeling business 
processes [10, 14]. On the implementation side, the most important standard is 
 the Business Process Execution Language for Web services (BPEL4WS or just  
BPEL) [6].  

Transformation rules have been proposed for both the BPMN notation [15] and 
UML activity diagrams [8, 13] to BPEL, so an implementation can be generated di-
rectly from a business process model.  

Several others before us have used UML activity diagrams for business process 
modeling. Heckel and Voigt [8] suggest using a profile for UML activity diagrams for 
modeling business processes with the purpose of generating BPEL code. Combined 
with graph transformation as a meta-language for defining model transformations 
such models are transformed into BPEL. Heckel also presents techniques to analyze 
the models. Staikopoulos and Bordbar [16] have studied how the UML meta-model 
and the Web-services meta-models can be integrated so transformations can be facili-
tated. They present a method to support meta-model integration and interoperability 
and exemplify this with the BPEL meta-model. In [17] the same authors have used 
activity diagrams to capture the behavioral aspects of composing web-services and to 
transform these diagrams into BPEL. Eriksson and Penker have written a complete 
book about using UML for business modeling and have among other thing defined a 
profile to be used for business process modeling [18]. 
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Common to the above-mentioned work on using UML activity diagrams and pro-
files for business process modeling is that they suggest using one profile for process 
modeling regardless of application domain. Our contribution is to enable enterprise 
specific tailoring of the modeling tools, and to give tool support for the tailoring proc-
ess. We believe this tailoring is necessary to ensure the semantics, visualization, and 
abstraction of business process modeling as mentioned in the introduction.  

5   Summary and Future Work 

We have suggested UML activity diagrams as a general-purpose business process 
modeling language and using UML profiles for creating DSM languages for a specific 
enterprise.  

We presented the general-purpose UML activity-diagram modeling tool ADMod-
eler, and the ADSpecializer that automates the process of defining DSM languages 
and create customized tool support for them. The effectiveness and efficiency of these 
tools to model a solution in domain specific terms were demonstrated in the human 
family domain. 

Several open issues remain. Currently, presence of mandatory attribute data is 
validated. However, we lack mechanisms to define restrictions on their values. In 
addition, it should be possible to constrain the manner in which concrete task types 
are combined (e.g. invalidate concurrent cleaning and transport by the same person). 
The modeling tool should be able to interpret these constraints and guide the modeler. 
Further, it should be possible to model object flows and to extend already defined 
languages with new even more specialized languages, i.e. specialize profiles. 

A motivation for this work has been a wish to combine domain specific modeling 
with model transformations toward an implementation. For each custom task type 
defined in a profile, we need to define custom transformation rules and model tem-
plates representing patterns at lower abstraction levels.  

In the future, we expect to evaluate the strength and weaknesses of the proposed 
tools for modeling business processes. We will evaluate it using real business proc-
esses together with our industrial partner. Further, we will start to work on customized 
model transformations and the use of model templates to automate the development 
of implementation specific code like BPEL. 

We believe that having the combination of domain specific modeling languages, 
customized model transformations, model templates, and tool support for these for a 
single enterprise will be a crucial step towards the MDE vision: To heighten the ab-
straction level in software development. 
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Abstract. The growing interest in the MDA (Model-Driven Architecture) and 
MDD (Model-Driven Development) approaches has largely increased the 
number of tools and methods including code-generation capabilities. Given a 
platform-independent model (PIM) of an application, these tools generate (part 
of) the application code either by defining first a platform-specific model or by 
executing a direct PIM to code transformation. However, current tools present 
several limitations regarding code generation of the integrity constraints defined 
in the PIMs. This paper compares these tools and shows that they lack 
expressiveness in the kind of constraints they can handle or efficiency in the 
code generated to verify them. Based on this evaluation, the features of an ideal 
code-generation method for integrity constraints are established. We believe 
such a method is required to extend MDA adoption in the development of 
industrial projects, where constraints play a key role.  

1   Introduction 

The goal of automating information systems building was already stated in the late 
sixties [32]. However, thanks to the definition and standardization of the MDA [28] 
this goal has revived and seems now more feasible than ever. As a matter of fact, we 
have recently witnessed an explosion of tools and methods promising a full and 
automatic generation of the application code from its specification. Even more, 
nowadays, code-generation capabilities of current CASE tools and their adhesion to 
the MDA vision is a key issue in their development and marketing strategy. 

Nowadays, almost all methods and tools are able to generate the skeleton of Java 
classes or relational schemas from a platform-independent model (PIM). A few also 
generate the code of the application operations when its behavior is specified with 
state diagrams or action semantics [27]. Nevertheless, most methods and tools tend to 
skip the integrity constraints (ICs) specified in the PIM when generating the 
application code. We believe this is a major drawback since ICs are a fundamental 
part in the specification of an application [18], and thus, they must be taken into 
account when generating its implementation. In fact, the problem of generating an 
efficient integrity checking code from the ICs defined in a PIM has been classified as 
one of the open problems to solve before MDA, and in general MDD approaches, can 
be widely used in the industrial development of information systems [25]. 
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This paper surveys the capabilities of current tools regarding the explicit definition 
of ICs in a PIM and the code generation to enforce them. As we will see, all of them 
present important limitations regarding the expressivity of the ICs they can handle 
and/or the efficiency of the generated code. From such analysis, we will be able to 
draw the desirable features that should be satisfied by any tool generating code to 
enforce the ICs. 

In our study, we have considered MDA tools in a broad sense since we have 
chosen the most representative examples from the different kinds of tools (from 
CASE tools extended with code-generation capabilities to full MDD methods). 
Moreover, we have included in the study all tools supporting a textual language to 
define ICs, commonly OCL (Object Constraint Language [26]) or similar. Support for 
such a language is required in order to specify all kinds of ICs in the PIM. 

As far as we know, ours is the first paper addressing this topic. Several tool lists 
and comparisons exist, like the one we find in [31] which is the closest to our work. 
We extend the work reported there by evaluating a larger number of tools and by 
analyzing the support they provide regarding expressivity of the ICs and efficiency of 
the code generated to enforce them (while [31] only points out whether the tools 
support OCL or not). 

The paper is organized as follows. Next section defines the different evaluation 
criteria. Section 3 presents the evaluation of the selected tools and methods. Given 
their limitations, section 4 defines the features that all code-generation method for ICs 
should have. Finally, section 5 presents some conclusions.  

2   Evaluation Criteria 

This section presents the criteria used to select and/or to evaluate the tools. We have 
considered expressivity of the constraint definition language they allow, efficiency of 
the generated code and target technologies they address since they are the most 
relevant ones regarding the automatic treatment of ICs defined at the PIM level. 
 
a) Expressivity of the constraint definition language 
Although some ICs can be expressed by means of the graphical constructs provided 
by the modeling language (as the cardinality constraints), most ICs require the use of 
a general-purpose constraint definition language, commonly OCL in our case. 

The expressivity of tools supporting such a language differs depending on the 
complexity of the operators permitted in the constraint definitions. We distinguish 
three basic complexity levels (adapted from [33]): 

- Intra-object ICs: constraints restricting the value of the attributes of a single object. 
- Inter-object ICs: constraints restricting the relationships between an object and 

other objects, instances of different classes. Within this category, it is worth to 
distinguish the subcategory of ICs containing aggregator operators (like sum, count, 
size…). 

- Class-level ICs: constraints restricting a set of objects of the same class (in OCL, 
these ICs require the allInstances operator).  
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b) Efficiency of the code generated to enforce the ICs 
An IC states a condition that each state of the Information Base (IB), i.e. the set of 
objects and links of the class diagram at a certain time point, must satisfy. Hence, 
after each change of the contents of the IB the generated code must check efficiently 
that the new state of the IB satisfies also the ICs. We define two different levels of 
efficiency: 

1. An IC must only be enforced after changes that may induce its violation [5]. For 
instance, if one of the ICs states that the value of an attribute at of a class cl must 
be lower than X, we do not need to verify the IC after changes over other 
attributes of cl or when deleting cl instances. 

2. The enforcement of an IC must be done incrementally by considering the lowest 
possible number of objects [6]. In the previous example, once a new instance of 
cl is created we should only evaluate the constraint over that new instance instead 
of taking all instances of cl into account.  

 
c) Target technologies of the code generation process 
The IB must be implemented in a particular technology. Typically the IB is 
implemented by means of a (relational) database or by means of a set of classes in 
some object-oriented language. 

When using a database, the ICs are checked over the tuples of the tables created to 
represent the classes of the class diagram. When using a set of classes (for instance 
Java classes) representing the class diagram, the ICs are verified over the set of 
objects instance of these classes. Usually, after the objects have been verified they are 
also permanently stored in a database or a file system.  

Therefore, to study the constraint code-generation capabilities we focus on these 
two technologies: 1 – Relational databases and 2 – Object-oriented languages, in 
particular Java. Even though some tools also deal with other technologies (like .NET 
or C++), this decision does not restrict the set of tools to study since these two are the 
most widely covered. 

3   Tool Evaluation 

To facilitate the evaluation, we have classified the different tools in the following 
categories: CASE tools, MDA specific tools, MDD methods and OCL tools. For each 
group we have selected the tools we believe are the most representative or the ones 
that offer a better IC support. Some of the tools could be classified in more than 
category since most of them are usually considered as MDA-tools although in our 
classification we reserve this category to the tools closest to the MDA standard.  

Following the criteria stated in the previous section, for each tool we have 
evaluated its constraint generation capabilities for Java and for relational databases. 
For each technology we have studied the allowed expressivity and the efficiency of 
the generated implementation. See the appendix for a summary table. 

As a running example we will use the simple PIM of Figure 1. Apart from the 
cardinality constraints (each employee works in a department and each department 
has from three to ten employees) the PIM includes three textual ICs defined with 
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OCL. The ICs state that all employees are over 16 years old (ValidAge), that all 
departments contain at least three employees over 45 (SeniorEmployees) and that no 
two employees have the same name (UniqueName).  

Department Employee
WorksIn

1 3..10name : string name : string
age : natural

context Employee inv ValidAge:   self.age>16
 
context Department inv SeniorEmployees: 
  self.employee->select(e| e.age>45)->size()>=3 
 
context Employee inv UniqueName: 
  Employee.allInstances()->isUnique(name)  

 

Fig. 1. PIM used as a running example  

As we will see in the next subsections, even such a simple example cannot be fully 
generated using the current tools since none of them is able to provide an efficient 
implementation of the schema and its ICs. 

3.1   CASE Tools 

Even though the initial aim of CASE tools was to facilitate the modeling of software 
systems, almost all of them have extended their functionality to offer, to some extent, 
code-generation capabilities. From all CASE tools (see [23] for an exhaustive list) we 
have selected the following ones: Poseidon, Rational Rose, MagicDraw, 
Objecteering/UML and Together. In what follows we comment them in detail: 
 
a) Poseidon [15] is a commercial extension of ArgoUML. The Java generation 
capabilities are quite simple. It does not allow the definition of OCL ICs and it does 
not take the cardinality constraints into account either. It only distinguishes two 
different multiplicity values: ‘1’ and ‘greater than one’. In fact, when the multiplicity 
is greater than one the values of the multivalued attributed created in the corres-
ponding Java class are not restricted to be of the correct type (see the employee 
attribute of the Department class in Figure 2, the attribute may hold any kind of object 
and not only employee instances).  

The generation of the relational schema is not much powerful either. The only 
constraints appearing in the relational schema are the primary keys. The designer must 
explicitly indicate which attributes act as primary keys by means of modifying the 
corresponding property in the attribute definition.  

 public class Department { 
  private string name; 
  public java.util.Collection employee = new java.util.TreeSet(); 
} 

 
Fig. 2. Department class as generated by Poseidon 
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b) Rational Rose [30]. The Java generation process is similar to that of Poseidon. The 
database generation is better because the class diagram can be complemented with the 
definition of additional properties. For instance, the ValidAge constraint can be 
specified as a property of the age attribute (Figure 3). Given this property, the tool adds 
to the Employee table the constraint check(age>16) to control the employees’ age.  

Recently, a Rational Rose plug-in [13] is available to permit the definition of OCL 
ICs on rose models. However, these ICs are not considered when generating the 
application code.  

 

Fig. 3. Properties of the Age attribute in Rational Rose 

c) MagicDraw [22] offers a specific UML profile to define relational schemas which 
allows to improve the code generation for that kind of databases. In this way, the user 
may annotate the class diagram with all the necessary information (primary and 
foreign keys, unique constraints and checks over attributes).  

Figure 4 shows the relational schema definition of the PIM in Figure 1 once 
annotated with the profile. This diagram could be considered as the PSM (Platform-
Specific Model) of the initial PIM. The tool partially generates this PSM from the 
PIM. The schema includes the primary keys of each table, the foreign key from 
employee to department and the ValidAge IC. The other ICs cannot be specified since 
the database does not provide any predefined mechanism to verify them (and 
MagicDraw does not generate for itself any code excerpt to verify them either). 

Though MagicDraw allows the definition of OCL ICs, they are completely omitted 
during the PSM or code generation. For instance, when transforming the initial PIM 
(Figure 1) to the PSM (Figure 4), MagicDraw is unable to transform ValidAge in the 
corresponding check in the PSM, we are force to manually redefine the constraint 
again in the PSM. 
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<<table>>
Emp

<<check>>-age : int{condition=>16}
<<PK>>-name : varchar2

-dept : varchar2

<<table>>
Dept

<<PK>>-name : varchar2

WorksIn

<<FK>>

{columns=dept}

{columns=name}

 

Fig. 4. PSM for the relational schema in MagicDraw 

d) Objecteering/UML [29] presents as a special feature with respect to the previous 
tools that supports (and generates) any multiplicity value in the associations. When 
generating the Java code it uses a predefined class library to enforce the cardinality 
constraints. Moreover, it creates a set of triggers during the generation of the 
relational schema. For instance, the trigger in Figure 5 checks that a department 
contains less than ten employees before allowing the assignment of a new employee. 
Otherwise, it raises an exception. The starting point for the database generation is, as 
in the previous tool, a PSM that can be obtained from the initial PIM. It does not 
allow the definition of ICs in OCL. 

 CREATE TRIGGER TI_dept_emp_INSERT 
 ON employee 
 FOR INSERT 
 AS 
 IF NOT((SELECT COUNT(*) 
     FROM employee, inserted 
     WHERE employee.department = inserted.department) <= 10) 
 BEGIN 
   ROLLBACK TRANSACTION 
   RAISERROR 20501, "dept_emp : May not insert element, 

 dept_emp_FK maximum cardinality constraint violation" 
 END 

 

Fig. 5. Trigger to control the maximum number of employees per department 

e) Together [4] offers similar capabilities to Rational Rose regarding the database 
generation. Moreover, it includes full OCL support to define constraints and pre/ 
postconditions in the PIMs. However, when generating the Java code, only intra-
object constraints are correctly generated. Moreover the generation is not efficient 
since constraints are verified after every single method and not only after methods 
possibly violating the constraints. 

3.2   MDA Tools 

We classify in this category tools having as main goal to support the definition and 
execution of model transformations from PIMs to PSMs and from the PSMs to the 
final code. We evaluate in this section some of the well-known MDA tools: ArcStyler, 
OptimalJ and AndroMDA. 

ArcStyler [17] concentrates in the generation of Java, J2EE and .NET applications 
(with its cartridge architecture the designer can define additional transformations). 
When generating Java programs, the constraint support is like the one in Poseidon, 
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with the only difference that automatically creates a set of methods to modify the 
attributes representing the associations of the original class diagram. ArcStyler 
includes the Dresden OCL tool (see section 3.4) to define and generate ICs. 

OptimalJ [9] is devoted to generate J2EE applications where all the business logic 
concentrates in the Java classes (Enterprise Java Beans in this case). It only supports 
constraints over the attribute values using constant values or regular expressions. For 
more complex ICs, the designer must write the corresponding Java code directly.  

AndroMDA is an open source code generation framework that follows the MDA 
paradigm. According to the tool information, it takes model(s) from CASE-tool(s) and 
generates fully deployable applications. AndroMDA supports the definition of OCL 
query expressions and transforms them to the Hibernate-QL or EJB-QL query 
languages. However, no explicit support for OCL ICs is provided. 

3.3   MDD Methods 

In this section we grouped several MDD methods although some of them may not 
follow exactly the MDA approach nor use OMG standard languages.  

OO-Method [14] is based on the formal language OASIS, though admits the 
definition of UML class diagrams with constraints defined in an OCL-like language. 
ICs may include aggregator operators but class-level constraints are not allowed. ICs 
are verified over the objects instance of the Java classes implementing the class 
diagram. Every time a method of a Java class is executed, all ICs defined on that class 
are verified (and not only the ICs that may be affected by that method execution). To 
verify the ICs, they add a special method in the Java classes (Figure 6). The method 
contains a set of conditions (one for each constraint defined on the class). When a 
condition is not satisfied, the method throws an exception.  

 Protected void checkIntegrityConstraints() throws Error 
{ 
  if (! (age>16)) 
  throw new error (“Constraint Violation. Invalid age”); 
}  

Fig. 6. Java method verifying the ValidAge constraint 

WebML [8] is specialized in the generation of web applications. It presents little 
support for defining ICs. It only admits the definition of validity predicates on  
the web page forms. A validity predicate is a boolean expression that checks the 
correctness of the value entered by the user in a form included in a web page. The 
boolean expression may consist of boolean operators, arithmetic operators, 
comparisons (=,>,<,…) and constant values.  

Executable UML [21] proposes to specify the behavior of an application in 
sufficient detail so that it can be directly executed. Specifications in executable UML 
consist merely of class diagrams, state diagrams and action semantics to describe the 
operation behavior. Using a model compiler, then, the specification is internally 
transformed into Java or C++. It supports a predefined set of constraints like car-
dinality constraints, unique constraints or checks over the attribute’ values. These ICs 
are afterwards expressed using the Action Language they provide.  For more general 
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ones, the designer must define them using this Action Language directly. That is, the 
designer is forced to define them in an imperative way and not declaratively (although 
action languages may contain query expressions they are basically an imperative 
language). Figure 7 shows the UniqueName expressed in the action language. Tools 
following this approach (like BridgePoint or iUML) are mainly used in the real time 
and embedded domains. 

 select many employees from instances of Employee 
Where selected.name==self.name 
Return (cardinality employees)==0)   

Fig. 7. UniqueName defined with an Action Language 

3.4   OCL Tools 

This section evaluates all tools generating code from OCL constraints. Tools 
supporting OCL with other purposes (as model validation [16] or verification [1]) are 
not considered.  

Dresden OCL [11] generates the Java classes corresponding to the classes in a 
class diagram, including all ICs except for the class-level ICs, which are not 
supported. ICs are verified only after modifications over the attributes and associa-
tions (represented also as attributes in the Java classes) referenced in the constraint 
definition. This represents an efficiency improvement regarding previous methods, 
but, as shown in [5], it is still inefficient since not all kinds of changes over the 
attributes may violate the IC. For instance, the SeniorEmployees IC can be violated 
when removing an employee from a department but not when assigning a new one. 
This is exactly the same limitation of [34]. 

OCLtoSQL is another tool comprised in the previous toolkit, based on the method 
proposed in [10]. It generates the relational schema from the class diagram. 
Additionally, for each IC, it creates an SQL view. The view selects those tuples of 
the database not satisfying the constraint, and thus, a non-empty view indicates that 
the IC has been violated. As an example, Figure 8 shows the view corresponding to 
the ValidAge IC. Note that the view selects those employees not verifying the age 
condition. The views are not efficient since they examine the whole table population 
instead of considering only those tuples modified during the transaction (in the 
example, the view accesses all employees and not just the inserted or updated ones). 

 CREATE OR REPLACE VIEW ValidAge as 
(select * from EMPLOYEE SELF where not (SELF.AGE > 16));  

Fig. 8. View for the ValidAge constraint 

The code-generation capabilities of Octopus [20] are more restricted. For each IC, 
it creates a new method in the Java class corresponding to the context type of the IC. 
To know whether the IC holds we call this method. If it does not hold the method 
throws an exception. However, the decision about when the IC needs to be verified 
(i.e. when we should call this method) is left to the designer. OCLE [2] and KMF 
{KentModellingFramework,  #154} provide a similar functionality. 
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OCL2J [12] (and similarly OCL4Java [24]) generate a Java implementation of a 
PIM including all intra-object and inter-object ICs. The constraint verification is 
inefficient since ICs are verified before and after any method of the class executes. 

Finally, BoldSoft [3] permits to execute an OCL expression over a set of objects 
stored in main memory or in the database (in this latter case, the expressivity is 
restricted, for instance, operators as count, collect, difference, asSet, asBag and so 
forth are not allowed). However, the tool is focused in the definition of derived 
elements and not in the verification of ICs.  

4   Desirable Features of an IC Generation Method 

From the previous evaluation it is clear that tools must incorporate and/or develop 
new methods to cope with IC enforcement. The aim of this section is to propose a set 
of features that should be considered when developing such methods.  

Apart from the two basic features (expressivity and efficiency) we define also the 
technology-aware generation, technological independence and checking time charac-
teristics. The description of each characteristic is the following: 

1. Expressivity: The whole expressivity of the OCL language should be allowed.  
2. Efficiency: The generated code should verify the ICs only when it is strictly 

necessary and using an efficient approach. 
3. Technology-aware generation: To improve the efficiency of the generated code, 

the method should take into account the special characteristics of each target 
technology platform. For instance, when Java is the target technology disjoint ICs 
(stating that the intersection between objects of two given classes must be empty) 
can be discarded since they are enforced by the Java language itself (Java does 
not admit multiple classification, and thus, all classes are necessarily disjoint). 
The same idea applies when the target technology is a relational database. 
Relational databases offer some predefined constraint constructs as primary keys, 
checks over attribute values or unique constraints. OCL ICs should be mapped 
into one of this predefined constructs when possible, instead of creating our own 
checking code. It is reasonable to assume that the database management system 
will be always more efficient in managing them.  

4. Technological independence: Following the MDA vision, at least the first stages 
of the code generation process (as the processing of the ICs to determine the kind 
of changes that can violate them) should be independent of the target technology 
platform. In this way we could reuse the same method to generate the checking 
code in several technologies. Just the last step (the code generation itself) should 
be technologically dependent and take into account the previous technology-
aware generation characteristic.  

5. Checking time: In general there are two different possibilities regarding the 
moment when ICs are verified. They can be verified immediately after each 
single modification or their verification can be deferred until the end of the 
operation/s or the transaction. The method should be flexible enough to allow the 
designer define the preferred checking time for each IC.  
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5   Conclusions 

In this paper we have surveyed the support of current tools regarding the automatic 
generation of the code required to enforce the ICs specified in a PIM. These tools 
have been evaluated regarding the expressivity of the IC definition language they 
provide, the efficiency of the generated code and the target technology they allow. 

From our study, we may conclude that current tools have not yet seriously 
addressed such an issue since the support they provide is still rather limited. The main 
shortcomings encountered are the lack of expressivity of the ICs that may be defined; 
the need to use proprietary profiles and/or properties of each tool since in many tools 
ICs may not be expressed directly in OCL; and the lack of efficiency of the code 
generated to enforce the ICs. 

We believe that the main reasons why the tools are making so little progress in this 
matter are the difficulty of performing IC checking with OCL (because of the high 
expressivity of this language) and the focus of the tools on the automatic code 
generation for more basic capabilities (such as translation of the class diagram, auto-
matic interface generation, etc.). Additionally, we think that the increasing number of 
OCL auxiliary tools (parsers, compilers, APIs…) provides the tool vendors with a 
feasible opportunity to enhance tools’ functionality with full OCL support. 

So, there is still a huge amount of research to be pursued to achieve the goal of 
generating automatically the code required to enforce the OCL ICs defined in the 
PIM. Methods dealing with this problem are likely to be an extension of previous 
work on incremental integrity checking in relational and deductive databases. A first 
proposal has been recently presented in [7]. 
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Appendix A 

The following table summarizes the comparison of the different tools. For each tool 
we indicate its expressivity and efficiency regarding the Java and relational database 
generation of the ICs. In the expressivity columns, the symbol X means that the tool 
does not support any kind of constraint definition while the symbol √ means a full 
constraint support and n/a indicates that the tool does not generate code for that 
technology. Otherwise, we explicitly indicate the type of ICs admitted, according to 
the classification of section 2. Likewise for efficiency columns. In the DB efficiency 
column, cells are defined as DBMS when the tool relies on the constraint constructs 
offered by the database-management system (primary keys, checks…) to verify  
the ICs.  

Table A.1. Tool comparison 

Java DB Tools 
Expressivity Efficiency Expressivity Efficiency 

Poseidon X n/a PK DBMS 
Rational Rose X n/a PK, intra DBMS 
Magic Draw X n/a PK, intra DBMS 
Objecteering cardinality √ PK,cardinality √ 

Together √ 
ICs are verified after 

every method 
PK, intra DBMS 

ArcStyler 
Uses 

DresdenOCL 
n/a PK, intra DBMS 

OptimalJ intra √ PK, intra DBMS 
AndroMDA X n/a PK, intra DBMS 

OO-Method intra, inter 
ICs are verified after 

every method 
PK DBMS 

WebML intra √ PK DBMS 

ExecutableUML  
intra, 

predefined 
types 

√ n/a n/a 

DresdenOCL intra, inter 
ICs are verified after 

methods modifying the 
constrained elements 

n/a n/a 

OCLtoSQL n/a n/a √ 

Views 
evaluate all 

table 
population 

Octopus intra, inter n/a n/a n/a 
OCLE intra, inter n/a n/a n/a 
KMF intra, inter n/a n/a n/a 

OCL2J intra, inter ICs are verified before 
and after every method 

n/a n/a 

OCL4Java intra, inter ICs are verified before 
and after every method 

n/a n/a 
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Abstract. Higher-level modelling is considered to be the answer to
many of the problems computer science is faced with. In order to do mod-
elling, it is necessary to use proper tools. This article is about modelling
tools and how they can be generated automatically out of (modelling)
language descriptions. Language descriptions in turn are given in meta-
models. In this article, we define a terminology for aspects of meta-models
and check how they are supported by existing meta-modelling tools. In
particular we look at semantic aspects of the meta-models.

1 Introduction

Information technology is spreading more and more into all areas of daily life,
leading to an ever increasing amount of information and applications of a very
high complexity. Traditional methods of software production and data
handling cannot cope with this ever increasing complexity. New ways of com-
plexity handling take higher levels of abstraction and describe systems using
models. In particular, OMG puts forward their idea of a model-driven archi-
tecture (MDA) [21] which focuses on software development by means of high-
level models. We will use the term MDD (model driven development) in the
sequel to denote an approach taking high-level descriptions for the generation
of low-level results, e.g. executable code. For an effective application of MDD
it is necessary to use models that fit their application domain, which means
to use domain specific languages (DSLs) or domain specific adaptations of lan-
guages.

This leads to the problem of the development of DSL tool support. The cur-
rently existing tools support common multi-purpose languages, but are not par-
ticularly adapted to a specific domain. On the other hand, developers insist on
integrated development environments to be effective in their daily work. In this
context, the choice is either to take a not fitting language with a good tool sup-
port or to use a well fitting language with no tool support. Of course, none of
these alternatives is satisfactory.

So the problem is to provide tool support for modelling languages. There are
basically two ways to achieve this, either by manually building such tools or by
having higher-level tools that generate modelling tools. In any case it is necessary
to have a description of the language first. We will call such a description of the
language a meta-model. There are varying levels of accuracy when it comes to
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describing meta-models and also a whole range of tools that support parts of this
tool production by automation. Of course, also meta-models are just a special
kind of models and for their handling we again need (meta-)modelling tools.
This closes the circle and we can apply the same reasoning on the next level.
So in all the levels we have the need of powerful tools that are able to handle
models of different kind.

In this paper we will focus on this need for generating modelling tools. We will
first in section 2 look at the different requirements coming for these tools. Then
we will look at a new class of integrated tools claiming to support the complete
description of languages in Section 3. Section 4 concludes the paper.

2 Meta-modelling and Tool Production

A modelling tool is a tool that is able to handle models of a certain kind. The
description of the model kind is given by a meta-model, or in simpler cases by
an abstract grammar or even by a concrete grammar.

[12] defines meta-modelling as: ... the construction of an object-oriented model
of the abstract syntax of a language. However, in our article we use the term
meta-model in a wider sense: A meta-model is a model that defines a language
completely including the concrete syntax, abstract syntax and semantics.

The current situation of meta-model use is characterized by the following
observations.

– Meta-models are usually not given explicitly, but are built-in into the tools
that provide them; this can be seen as a sort of hard coded implementation
of a meta-model. In particular there is no direct relation between an external
meta-model and the representation in the tool.

– Meta-models change over time. Tool builders adapt their meta-models along
with their tools and do only provide means to align with their own old
versions.

– Meta-models are not standardized. Although several organisations, in partic-
ular OMG, try to publish standards for meta-models, the standards are far
from being formal and implementations deviate more or less severely from
the standards.

This leads to the fact that users are bound to one tool at a time. They are
allowed to import models from other tools, but then they are again encapsulated.
On the other hand, most meta-modelling tools provide a set of basic facilities
that are the same and some advanced facilities that are specific. A user is usually
not able to combine the positive parts of different tools.

In this section we will be looking at tools, aspects of meta-models and how
tools and meta-models are related.

2.1 Aspects of Meta-models

The meta-model can have several aspects that are to be covered by the modelling
tool. In figure 1 we have shown the essential parts of a meta-model. There is no
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Fig. 1. Structure of a Meta-model

complete agreement about these parts, but in most contexts the same or similar
parts are identified. In the picture, we have shown the following parts.

Structural information for the meta-model including all the information about
which concepts exist in the domain and how they are related. An example of
this would be a MOF class diagram. In our understanding this part does just
include very simple structural properties and not more advanced concepts
that rely on the use of constraints.

Constraints giving additional information about the structure in that they
identify the allowed structure according to additional logical constraints.
This will include first-order logic constraints (e.g. written in OCL) as well
as multiplicity constraints. In classical compiler theory these are collected
under the name of static semantics and in a meta-model context they are
called well-formedness rules.

Representation description includes model serialization syntax and informa-
tion about how the models are to be (re)presented to the user. The textual
grammars (concrete textual syntax) are well understood in terms of compiler
theory. When it comes to graphical grammar (concrete visual syntax), there
is less agreement and also some open research topics.

Behaviour description describes how the model is used. This item includes
execution of the model as well as mappings. By mapping we will understand a
relation between the model itself and another representation, e.g. in another
language. A typical example would be a compiler from UML to Java, or
mapping from PIM to PSM. An execution is the real run of the model, which
is of course only possible if the model is executable. A typical example here
would be a run of a UML state diagram.

In the picture given, the structure is the central aspect and all the other parts
relate to the structure. This is quite clear for the constraints, which need the
structure to be meaningful, but also for the representation and the semantics.
Most language descriptions do currently follow this approach, i.e. defining a
structure first and attaching all the static and dynamic semantic information to
this basic structure.
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When we take a step back, we will notice that the representation as well as the
semantics are not that closely bound to the structure. In fact, several modelling
languages use the same representation in order to represent similar things and
also the semantics is largely comparable although the internal structure might
be different.

For this situation, the MVC (model-view-controller) pattern is better suited.
This means in our case that the connection between the representation and
the structure and between the semantics and the structure is not direct, but
mediated via a controller. This will allow to associate both with each other as
shown in figure 2.

Fig. 2. Decoupling the Structure of a Meta-model

In the new structure, the middle is just connecting the parts as described below.

Integration gives the connections between the different model parts. Each part
forms a unit of its own, e.g. the syntax is described separately without ref-
erence to the basic structure of the language. Afterwards, the integration
allows to connect these separate parts.

Please note that the explicit connections are already implicitly present in figure
1. We have just extracted them explicitely in order to allow a better handling of
model descriptions. In the following we will ignore the explicit connections and
use the figure 1 as a reference.

2.2 Tools as Meta-model Implementations

We have discussed in the previous section how meta-models describe the possible
models to be handled. When we now look at tools, we can see that tools have
the same property as meta-models. They also define what kind of models are
allowed, how they look and what you can do with them. This way, a tool can be
considered a special meta-model as shown in figure 3.

The meta-model gives a description of the tool, which in turn can be trans-
formed into tool code. This code has then to be executed in order to be a running
tool, which then can handle a model.

Figure 3 does also match nicely with the OMG 4-level architecture. The model
would here stay on the level 1 (models), the tool code and the meta-model would
be on level 2 (meta-models) and then we do also have languages described on
level 3 (meta-meta-model).



272 J.P. Nytun, A. Prinz, and M.S. Tveit

Fig. 3. Tools and Meta-models

This meta-meta-aspect goes into the next level of description. In order to
have (formal) description of the meta-model, we need a (formal) meta-meta-
model which can be used to provide this description. Alternatively, we can use
known ad-hoc solutions, e.g. using a low-level programming language for doing
the description. Of course, all the aspects identified in figure 1 for a meta-model
have to be supported on all levels. For the tool, there should be code for each
of them; in the meta-model we need a description for each of them and in the
language level we need a language for each of them.

2.3 Tool Production Requirements

When it comes to tools that produce modelling tools, we will look at the following
requirements:

Generativeness: As we speak about tools that produce modelling tools, the
most important requirement is that they are able to automatically produce
the tool. In figure 3 this amounts to the mapping from the meta-model to
the tool code.

High-Level Description: The descriptions are more easily handled when they
are given in a high-level notation. This means that a tool should provide high-
level notations for the different modelling language aspects. This is reflected
in the figure 3 by the top-level layer.
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Completeness amounts to the coverage of the different aspects introduced in
the previous section. A good meta-tool will allow the expression of all impor-
tant aspects of a modelling language. This requirement is reflected in figure
3 by the amount of the meta-model aspects that are covered. Please note
that completeness is applicable for the tool, for the tool description and for
the tool description language.

Conformance to Standards is given in this respect very easily when the tools
are produced automatically from the corresponding standards documents.
For this to be possible the standards documents have to be given in a formal
way.

User Friendliness: Of course, for generated tools there is also the aspect of
user friendliness. As we focus on the very generation of the tools, this end-
user aspect is out of our focus.

When we look at the requirements, we see that they are all completely covered
in the two upper levels of figure 3. Therefore we will use these two levels as the
reference for comparing several meta-modelling tools in the next section. There,
we just identify which aspects are supported and if they are described formally
or built-in. If they are described formally, we check if they have a high-level
notation or if they are given using a low-level language. The template for the
comparison is therefore the two upper levels of figure 3.

3 Some Meta-modelling Frameworks and Tool
Production

In this section, we will compare different meta-modelling frameworks according
to the structure presented in the previous section.

3.1 MDA Meta-modelling

Karl Frank [5] states the following:

At the core of MDA are the concepts of models, of meta-models defining
the abstract languages in which the models are captured, and of trans-
formations that take one or more models and produce one or more other
models from them.

Since OMG introduced MDA in 2001, much work has been done in defining
this approach with proposed specifications and implementations. Please find
below some specifications that together cover all langues aspects of figure 3:

– For serialization: XMI [24] based on XML and UML 2.0 Diagram Inter-
change Specification [27].

– For concrete textual syntax: Human-Usable Textual Notation [22].
– For concrete graphical syntax: Human-Usable Graphical Notation [22].
– For transformations: Query/View/Transformation Specification [23] which

also has a reference implementation.
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– For execution: Action Semantics [26] (no concrete syntax defined).
– For constraints: OCL [25].
– For abstract syntax: MOF [28].

When it comes to tool production the specifications are important with re-
spect to ”input” and ”output”, e.g. code conforming to the Action Semantics
specification [26] might be produced as output and run on some UML virtual
machine.

The QVT [23] might turn out to be important since the jobs a tool does in
many respects can be seen as transformations.

Today there is no single tool or coherent set of tools producing a family of
tools that conforms to the listed specifications.

For MDA to work in practice models have to be unambiguous and their se-
mantics have to be precisely defined - UML does not fully comply with this
demand [12].

In many respects UML has been defined as a general modelling (programming)
language (but without fully described semantics) - a DSL, on the other hand,
is specific (by definition), such that a UML tool might not be the right tool for
expressing statements in a DSL (considering a DSL a subset of UML).

If the UML tool allowed advanced configuration (e.g. excluding parts of the
UML language), supported the extension mechanism of UML (profiling), then
the UML could be set up as a DSL tool; but even this might not work well in all
cases since UML after all is a predefined language based on some language design
decisions - this is the opposite argument of the ”missing semantic” argument,
UML might be to specific in ”the wrong way”! It seems harder to reject MOF in
the context of defining DSLs (which is done in [12]); if some semantic is missing
then add it!

3.2 XMF-Mosaic

XMF-Mosaic from Xactium is a platform for building tailored tools that should
provide high level automation, modelling and programming support for specific
development processes, languages and application domains. The tool is imple-
menting a layered executable meta-modelling framework called XMF that pro-
vides semantically rich meta-modelling facilities for the design of languages. This
way the Mosaic platform is realizing the Language Driven Development (LDD)
process presented by Xactium in [31]. LDD is a model-driven development tech-
nology based on MDA [21] standards, and it involves adopting a unified and
semantically rich approach to describe languages. A key feature of the approach
is the possibility to describe all aspects of a language in a platform-independent
way, including their concrete representation and behaviour. The thought is that
these language definitions should be rich enough to generate tools that can pro-
vide all the necessary support for use of the languages, such as syntax-aware
editors, GUI’s, compilers and interpreters.
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XMF provides a collection of classes that form the basis of all XMF-Mosaic
defined tools. These classes form the kernel of XMF and are called XCORE.
XCORE is a MOF-like meta-meta-modelling language, and it is reflexive, i.e.
all XCORE classes are instances of XCORE classes. XMF provides an extensive
language for describing language properties called XOCL (eXtensible Object
Command Language). XOCL is built from XCORE and it provides a language
for manipulating XCORE objects. In addition to XCORE, XMF provides a
collection of languages and tools defined in XOCL.

The general architecture of a tool or a language built using XMF-Mosaic is
as follows:

Structure. At the heart of most XMF-Mosaic tools is a meta-model, in XMF
called the domain model. This meta-model describes the structure of the con-
cepts in a language or in a domain. The language for building the structure
is XCORE.

Constraints. For adding constraints to the domain model, XMF-Mosaic sup-
ports a constraint language based on OCL. It is also possible to create in-
stances of the domain model and test them against their constraints.

Representation. This is also called the user-interface model in XMF, and de-
scribes the concrete representation of the concepts in the domain model. For
this purpose XMF-Mosaic provides XBNF, which is a grammar definition
language for defining the textual syntax, and XTools which is used to spec-
ify the concrete graphical representation of a language and to model user
interfaces.

Behaviour. The langugage XOCL is used to build executable tools with exe-
cutable semantics. XMF-Mosaic also supports the representation of model-
to-model transformation and model-to-code mappings, including generation
of Java from XCore models and XML serialization of models. The language
XMap is a pattern-based language that is used to write model-to-model
transformations.

According to this, XMF-Mosaic is fully covering all the aspects of the template
in figure 3.

3.3 Coral

Coral [15] is a meta-model independent framework, which means that it posi-
tions itself at the top of the OMG’s meta-model architecture and then creates a
meta-meta-model interface. In figure 4 it is shown which parts of the template
(see fig. 3) Coral supports by indicating them in grey. It was a bit problem-
atic to describe Coral according to the template, because the tool is not fully
documented.

Coral is divided into two main components: the kernel and the graphical user-
interface. The kernel is implementing a model repository. This repository could
be seen as a program library or an application framework that is used to manage
models described in the user-defined modelling language. This model repository
is based on a specific modelling language, Simple Metamodel Description Lan-
guage, which defines the structure of all modelling languages in Coral. SMD can
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Fig. 4. Aspects supported by Coral

be seen as analogue to MOF, but SMD contains some extensions to deal with
models described in multiple modelling languages. When Coral needs the defi-
nition of a modelling language, the SMD model for this language is loaded and
converted to a meta-model internally. This way Coral provides full support for
all structural aspects of meta-models.

The graphical user-interface in Coral can be used to view and edit models man-
ually. The kernel and the graphical user-interface are independent. This means
that the kernel can manage and transform models even if the user-interface can-
not render them graphically.

Currently Coral is coming with some predefined modelling languages, such
as UML 1.1, UML 1.3, UML 1.4 and UML 1.5, and also the XMI-DI 2.0 [27].
Coral can load and save models and meta-models using XMI 1.0 and XMI 2.0
format. It is also possible to load and save models containing diagram interchange
information using XMI-DI, and this format is also used to represent diagrams.
When it comes to interactive graphical support, this is missing, and support for
every diagram must be written explicitly.

One feature in Coral is the possibility to query and modify models at runtime.
This is done by creating Phyton wrappers around the Coral kernel, which is
written in C++. Model transformation can be written as Phyton programs with
separate phases for precondition, query and modification and postconditions.
The Phyton interface in Coral makes it possible to query models in a very similar
way to OCL [25], thus allowing constraints and transformations and executions
to be expressed. Because there is no specific language to express these things,
but just Python modules, we have not indicated these parts in the top-most
language layer.

3.4 Software Factories

Software Factories are described in [12] in the following way:
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A software factory is a product line that configures extensible devel-
opment tools like Microsoft Visual Studio Team System (VSTS) [17]
with packaged content and guidance, carefully designed for building spe-
cific kinds of applications ... the software factory schema specifies which
DSLs should be used and describes how models based on these DSLs
can be transformed into code and other artefacts, or into other mod-
els ... the software factory template ... provides the patterns, guidance,
templates, frameworks, samples, custom tools such as DSL visual editing
tools, scripts, XSDs, style sheets, and other ingredients used to build the
product ... When configured with the software factory template, VSTS
becomes a software factory for the product family.

Software Factories are promoted by Microsoft and can be based on tools like
VSTS - which is a tool that lets you develop Microsoft .Net Framework appli-
cations. In .Net many different languages can be used; compilation is done to
a common binary language (IL) which can be executed by the same runtime
engine. The .Net approach gives integration of different general purpose lan-
guages (e.g. C# and C++) and this seems to be a good starting point for the
development of a DSL framework.

The Software Factories method describes a MDD approach that is not based
on UML or MOF; it opposes the MDA which is based on UML and claims it to
give insufficient support to development of DSLs.

A comprehensive example is given in [12]; the following list describes the
elements that constitute a DSL:

1. Abstract syntax graphs instantiated from meta-models and also abstract
syntax trees instantiated from context-free grammars.

2. Layout information instantiated from concrete syntax. Concrete syntax is
described with annotations on meta-model elements, e.g. class Identifier has
annotation: [$shape: TextBox].

3. Serialized abstract syntax graphs and layout information which conforms
to defined serialization syntax. Serialization is not based on XMI, which is
seen as too strongly coupled to the target language meta-model and also
hard to read; they advocate the following: ”..., the XML syntax should be
designed on a language-by-language basis, so that the language designer
has the flexibility to change the mapping to accommodate different rates of
change on either side.”

4. Well-formedness rules defined with some ”OCL-like” language.
5. Trace-based semantics describing what happens during execution; this se-

mantics is described with a meta-model attached to the meta-model of the
DSL; well-formedness rules can be attached in the ”normal way”; a concrete
syntax for the trace-based semantics is described (as above).

Software factories do also demonstrate how a meta-models can be broken
down to parameterized language elements, called language design patterns, that
can be glued together in different configurations - this gluing is considered a
special case of model mapping.
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Item 2 above describes how graphical layout can be attached; OMG has a
different approach [27] which seems to be more flexible since it defines a separate
graph for the graphics - a graph that will be connected to the abstract syntax
graph, e.g. one element of the abstract syntax graph might be represented with
several nodes in the concrete syntax graph.

The arguments concerning the rejection of XMI (item 3) seems hard to follow,
e.g. change from one XMI version to another can be performed by some (sim-
ple) transformation. It seems likely that this approach will lead to yet another
standard!

It is hard to get an overview of tool support (tools that makes tools) when it
comes to software factories since a product line is put together in a somewhat
ad hoc way and since there is no specialized complete framework (as we know
of) for supporting the software factory method - only more general frameworks
with some pre-made components. On the other hand, [12] and articles like
[11] present a vision that includes full language support (a fulfillment of all the
aspects of figure 3).

3.5 More Examples

Of course, the idea to generate language processing tools out of language descrip-
tions is not new. The first attempts were grouped around the idea to generate
grammar handling tools out of grammars. They have been successful in the area
of lexical handling (e.g. [14]) and in the area of parsers (e.g. [29], [13]). It was
quickly clear that these properties did not fully describe a language and several
other approaches have been defined to capture the complete range of language
aspects. However, none of these has had real success.

Currently, there are several initiatives towards the idea of a more complete
language handling coming from different starting points. We have a closer look
at four of them.

Intentional Software [9,1] is an attempt to use the informal descriptions of a
software in order to generate code from them. This way, the intent of the code
is still visible later and the connection to the real code stays alive. It is very
difficult to get deeper understanding of their technology from the publicly
available information. What we have seen is that they allow the definition of
languages that capture the intent at the level that the developer has meant
it. Then they apply tools that make these descriptions valuable, i.e. they are
transformed to code. It is not visible which kind of description languages are
used in order to describe languages.

Meta-programming System [18] is coming from JetBrains. The name does
already say that this is a tool for meta-programming. They state ”MPS is
an implementation of Language Oriented Programming [3], whose goal is to
make defining languages as natural and easy as defining classes and methods
is today. The purpose is to ”raise the level of abstraction”, which has been
a major goal of programming since the first assembly language was born.”
This way they also allow the definition of languages and the generation of
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tools out of the descriptions. It is not easy to see what languages they use
for language description and which aspects they cover. On their website it
is possible to get a pre-release of their tools for experiments.

GMF The Eclipse Graphical Modeling Framework (GMF) [7] is a promising
open-source technology based on the Eclipse Modeling Framework (EMF)
and the Graphical Editing Framework (GEF). One purpose of GMF is to
support definition and implementation of Domain-Specific Languages. EMF
provides its own meta-model, called Ecore which is very similar to EMOF
(a subset of MOF 2.0). EMF includes support for XMI 2.0 serialization and
reflection APIs; support for OCL has also been added. GEF is an MVC-
based framework to create graphical editors. GMF brides EMF and GEF;
it supplies a set of tools that allows you to define and then automatically
generate a graphical Eclipse-based modelling tool. GMF seems quit complete
already and it will probably play an important role as a tool making tool.
This new approach has not had the time to mature and it is left to see if it
is flexible enough to meet the demands of tomorrow.

MetaEdit+ [16] is a commercial metaCASE tool developed by the company
MetaCase Consulting, Finland. The tool consists of two parts: the Method
Workbench and the CASE tool. The Method Workbench is a dialog based
interface, which allows the user to define the language concepts, their proper-
ties, associated rules, symbols etc. To describe the language concepts, a meta-
modelling language called GOPPRR is used. GOPPRR stands for Graph,
Object, Property, Port, Relationship and Role, which are the meta-types
used to describe modelling languages. The CASE tool MetaEdit+ follows the
language definition given in the Workbench, and provides a modelling tool
according to this specification. MetaEdit+ support automatic code genera-
tion for predefined and user-defined programming language. The predefined
includes: Smalltalk, C++, Java, Delphi, SQL and CORBA IDL.

3.6 The SMILE Framework

The SMILE project [19,6,20] started as an attempt to implement a technology
that allows high-level language descriptions to be interpreted or compiled into
real tools.

The basic idea of SMILE is the application of MDD to the language handling
itself. This is done by using high-level descriptions of the languages for creating
complete development environments. The descriptions are given in high-level
languages, thus allowing the application of the SMILE principle to itself, which
is usually called bootstrapping or self-reference. This idea came out of the success
of this technology in the implementation of the SDL formal semantics [10,4,30].

For language modelling, the SMILE methodology takes three steps:

1. the description of structure and semantics,
2. the automated generation of specific repositories and tools, and
3. the use of the generated repositories and tools for concrete models.
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This methodology is based on a combination of meta-modelling for informa-
tion structure description with technologies to describe the semantics of that in-
formation accordingly. These description techniques, covering different language
aspects, have to be adopted and aligned to create a common language modelling
framework. With this new technology that integrates structure and semantics,
the SMILE toolset will be able to generate data repositories and language tools
that reflect the given semantics.

The SMILE methodology will be supported by a domain-independent frame-
work that provides language support for information structure and semantic
descriptions, making SMILE applicable to the described domains. To describe
the information structure SMILE will use existing standards to describe a repos-
itory, e.g. MOF or RDFS. In the area of semantics SMILE distinguishes between
five kinds of semantics: Static semantics that is described with a condition lan-
guage based on OCL, execution semantics that will be handled through the ASM
method, transformations formally described by rules and two ways to describe
concrete representations, textual and graphical. SMILE will provide a) languages
to handle these semantics and b) implementations that allow the generation of
tools (model checkers, transformation engines, model editors and parsers) from
descriptions in these languages.

The SMILE approach is best understood by looking at the meaning of the
project abbreviation, which is Semantic Model-based Integrated Language En-
vironment. These parts stand for the following concepts.

Semantic: SMILE acknowledges the importance of explicit semantic descrip-
tions in all places of the technology. The current approach to have informal
descriptions of parts of modelling languages (most prominently the dynamic
aspects) is not fitting the state of the art. There is enough knowledge about
how language semantics can be formalised and there are even tools that can
transform such explicit semantics descriptions into real tools (interpreters or
compilers).

Model-Based: The whole approach of SMILE is focused on the idea to handle
models. Not only the descriptions of the software are models, but also the
descriptions of the languages and the languages to describe them and even
the generated code. In order to handle these models in a unified way, a basic
model representation is used allowing to capture models internally. This is
detailed below.

Integrated: The integration within SMILE starts with the unified model rep-
resentation. Every bit of information in SMILE is handled similarily. This is
achieved by using a basic instance representation with an explicit interface
between meta-modelling levels. This means, SMILE follow a strict meta-
modelling approach without connecting the levels to each other by default.
In SMILE, a model can be connected to different meta-models if the interface
between them allows this coupling.

Language: The most prominent examples of using SMILE are languages. In
fact, in SMILE a model is just a kind of a language and vice versa. Therefore,
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the concentration on languages is not that special, because everything is a
language in the end.

Environment: The final aim of SMILE is providing a complete modelling en-
vironment, which would also be a meta-modelling environment. Moreover,
the SMILE technology does also an easy integration of external modelling
or meta-modelling tools. The SMILE implementation is started in the scope
of the Eclipse [2] platform using EMF [8].

The SMILE project is still in its early phases and is not yet completely imple-
mented. A basic representation called MATER (see [6]) was defined that allows
the representation of any model (and meta-model) independently of the corre-
sponding meta-model. This is possible since SMILE has the complete information
about the model and the meta-model encoded into structural properties. This
allows models to be connected to different meta-models in SMILE.

4 Concluding Remarks

In this article, we have defined a terminology for the comparison of environments
that generate modelling tools. This framework is very heavily related to meta-
modelling. There are several current initiatives to create such an environment,
and although very few results exist so far, we can conclude that almost all ap-
proaches focus on the same aspects of languages, namely structure, constraints,
representation (textual and graphical), and behaviour (mapping and execution).

Despite these striking commonalities, there are also several differences, that
mostly relate to the semantics of the parts. In all MDA-related approaches a fixed
exchange format (XMI) is taken as part of the structure semantics. Software
factories argue that this is not needed and will use a specific format defined
for each language instead. This kind of reasoning is understandable when one
thinks of the many versions of XMI and that they do not really achieve the
goal of exchangability. However, we still think that in an ideal setting a basic
exchange format should be defined independently of the concrete language. This
is taken into account in the SMILE framework in that we consider also the
semantics of structural information to be given by the description language of
structural information, and a general way of exchange can be described there in
terms of textual representation. This way, it is just a special case and would also
be possible the same way in software factories.

Another difference are the concrete languages put forward for expressing the
different aspects of meta-models. Surprisingly, very concrete languages are used,
although they are defined based on meta-models. There is not much work in
integrating these different formalisms. Only the SMILE project tries to tackle
this problem, but they are at the very beginning of their work.

Finally, it remains to be said that almost all approaches take the language
structure for granted and do not allow handling of changes to the meta-model.
As these approaches are that similar, it would be a very good idea to allow them
to integrate, i.e. that there are ways to use the models of one approach also in
another approach.
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The plans described in the different environments sound very promising and
could lead to a completely different way of software development, once they are
fully implemented.
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Abstract. From a software engineering point of view, the agent paradigm has 
shown its potential for modelling in different domains. However, moving from 
agent models to implementation is not fully addressed by most agent-oriented 
methodologies in a systematic way. In most cases, they focus on the agent con-
cept at the analysis level or look for visual or formal representations of elements  
present in an already implemented agent framework. Here we show that model 
driven development with agent-based models can facilitate the implementation 
of methods and tools for the development of multi-agent systems. This is  
illustrated with the INGENIAS methodology and its tools, the INGENIAS  
Development Kit (IDK), which are founded on the definition of the INGENIAS 
meta-models for multi-agent systems, and implement most of the facilities that 
a model driven development approach requires.  

1   Introduction 

Agent Oriented Software Engineering addresses the development of complex and 
dynamic distributed systems using the agent paradigm [3]. An agent is a software 
entity that has its own thread of control and is modelled in terms of behavioural and 
social concepts such as goals, intentions, evidences, tasks, organizations, roles, etc. 
Many agent-oriented methodologies have focused on modelling concerns, leaving 
open the mapping to concrete implementations. In fact, multi-agent systems (MAS) 
are usually implemented with object oriented programming languages, with the  
support of some middleware for agent communications and lifecycle management. 
However, the fact of using agent modelling concepts makes the design and analysis 
simpler to understand since these concepts are, in principle, closer to human thinking. 
They are specially appropriate to deal with social issues (organization, interaction, 
coordination, negotiation, cooperation, distribution) and complex behaviours (auton-
omy, mental state, goals, tasks, emergence) [13]. The issue then is twofold: how to 
map these concepts, and how to associate them with concrete implementations.  

Most of the agent oriented methodologies propose a data model and provide prede-
termined mappings to very specific implementation frameworks or do not deal with 
implementation at all [4]. This leaves a significant gap between design and implemen-
tation, which is put in evidence when trying to apply some methodologies to specific 
application domains, i.e., losing generality. Given this context, we have been surprised 
by the fact that almost no agent-oriented methodological proposal bases on MDD, 



 Model Driven Development of Multi-Agent Systems 285 

which would help to address this important issue. This idea has driven us to reformu-
late an agent-oriented methodology, INGENIAS [15], in terms of the MDD paradigm. 
INGENIAS defines a development process, a specification of the results to produce, 
i.e. models, and support tools for modelling and transformation of models. The experi-
ence of using the methodology in several projects has been synthesized into a set of 
meta-model specifications for MAS and transformations (code generation) for several 
target platforms. These are supported by the INGENIAS Development Kit (IDK) [15], 
which provides capabilities for model edition, model verification and automatic code 
generation. These are ingredients that make INGENIAS suitable for applying MDD.  

However, we have also identified two main open issues with INGENIAS. First, 
meta-models may change (evolve) due to new requirements in new application do-
mains. Second, producing the transformations of the models into code for different 
target platforms requires a development process by itself. These issues were not ad-
dressed by the INGENIAS development process when it was first formulated. They 
point out the need of reviewing the problems inherent to a model drivel development 
in the context of agent systems. So, the contribution in this paper is a reformulation of 
INGENIAS methodology that increases the relevance of the model creation, defini-
tion, and transformation in the context of multi-agent systems.  

The next section discusses MAS meta-models and introduces the scope the INGE-
NIAS meta-models. Section 3 presents IDK facilities, more concretely, model edition, 
model verification, and automatic code generation. Section 4 describes the steps re-
quired in the IDK to produce a transformation module. Section 5 takes into account 
the support of IDK to define an Agent MDD process for INGENIAS. Section 6 gives 
information on the evaluation of the approach as it has been applied in the develop-
ment of several projects and compares it with similar works. Section 7 discusses con-
clusions derived from such experiences. 

2   Multi-Agent Systems Meta-models 

Meta-models in agent-oriented software engineering have been generally used  
for presenting concepts and only recently they are being considering as a foundation 
for MAS development tools. Probably, AALAADIN [7] has been the first meta-model 
for MAS. It intends to represent the MAS structure, not behaviour, in terms of three 
main concepts: agent, group and role. AALAADIN meta-model concepts have been 
implemented on the MadKit platform. A more formal proposal for the definition of 
agent organizations is given in [12], by extending the UML superstructure using 
MOF, although we have not found any tool that implements it. These meta-models 
were quite simple, but represent seminal work in the agent research area.  

Recently, the use of meta-models has grown. It has being used in the agent com-
munity as a tool that can help to compare different methodologies, such as in [2] for 
Adelfe, Gaia and Passi. More pragmatic purpose has [5], which tries to identify a 
generic meta-model for MAS that could serve as the basis to apply a method engi-
neering approach to integrate various agent-oriented methods. This approach has been 
also followed by recent work in AgentLink III, as reported in [3]. All these works are 
convincing agent researchers of the advantages of defining meta-models. Whether 
these meta-models will be detailed enough to serve as foundation for the appropriate 
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tools is something that we should see in the coming future. In this line, we are wit-
nessing an emergence of many meta-models for already existing agent-oriented meth-
odologies, like in Tropos, where a modelling tool is built on Eclipse using EMF and 
GEF [17]. 

Our contribution in the application of meta-models to agent-oriented software en-
gineering started with MESSAGE/UML [6], an extension to UML with the definition 
of a meta-model for MAS specification. In principle, an editor based on this meta-
model was implemented with MetaEdit+ [10]. With the application in several pro-
jects, we have refined the MESSAGE/UML meta-model (see for instance [9]), which 
has evolved into INGENIAS [15]. As we show below, INGENIAS has succeeded to 
specify a complete metamodel for MAS on which it is possible to build a full set of 
tools for Agent MDD. 

Since its conception, INGENIAS uses meta-modelling as the foundation for its 
methods and tools. This has facilitated the extension of the methodology when new 
concepts have been considered for their integration in INGENIAS. The specification 
is structured in five packages (Fig. 1) that represent the viewpoints from which a 
MAS can be regarded: organization, agent, goals/tasks, interactions, and environment. 

 

Multi-Agent System

Agents 

Organizations

Goals/Tasks

Interactions Environment

 

Fig. 1. INGENIAS viewpoints 

For instance, the agent viewpoint considers the elements to specify agent behav-
iour. Agents are considered as intentional entities that pursue the satisfaction of goals 
as they play roles in a MAS organization. Taking into account their mental state (a set 
of facts, goals, believes) the agent decides which actions (tasks) will try to perform. 
The mechanisms to make such decision are encapsulated in a Mental State Processor 
(P) and the management of mental state entities (creation, modification, deletion) is 
encapsulated in a Mental State Manager (G). These concepts and their dependencies 
are represented in meta-classes of the meta-model (see Fig 2). They may be assigned 
with a graphical representation for the modelling language, which can be particular to 
the INGENIAS tools or UML like (see Fig 3). 
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Fig. 2. Fragment of the INGENIAS Agent viewpoint meta-model. Stereotypes indicate the 
intended use of each entity at M1 level, i.e., the model level. A class stereotype means that 
instances of the entity (in the model) will be classes. Association  means that the entities will be 
instantiated into edges among class instances. AssociationEnd details which kind of entities 
will be connected by an Association. The stereotype notation is based on GOPRR [10] and 
helps making the diagram more compact and readable. The UML superstructure, also, defines 
special entities to represent relationships, namely Relationship, Association, or Directed Rela-
tionship, all of them elements of the Kernel package.  
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Fig. 3. Correspondence of meta-model entities with graphical representation in the model with 
INGENIAS notation and UML-like 
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The current INGENIAS MAS meta-model is rather complex (at least in size). The 
interested reader can navigate through the specification, which is available on-line at 
http://grasia.fdi.ucm.es/ingenias/metamodel. Some statistics of the number of entities 
are given in Table 1.  

Table 1. Statistics of basic MOF primitives applied in the INGENIAS meta-model 

Class 87 
Association 85 
AssociationEnd 137 

 
This complexity is due to the required level of detail for producing complete mod-

els which could be transformed into executable code. However, it is a decision of the 
developer to use the meta-model with an adequate degree of abstraction. In the initial 
specification of the INGENIAS methodology there are guidelines, based on the Uni-
fied Process, that indicate which elements and diagrams should be produced in each 
stage of the development. Indeed, the more precise has to be the description of the 
functionality, the more information the models should incorporate. 

3   Agent MDD Tools: The INGENIAS Development Kit (IDK) 

A MDD process requires support tools for modelling, verification and for transforma-
tion of the models. These functionalities are available in the IDK. The IDK is an open 
source set of tools for the development of MAS. The foundation of the IDK is the 
INGENIAS MAS meta-model, presented in the previous section. The IDK is meta-
model independent in the sense that it can be regenerated automatically from the 
meta-model, though this feature is not available in the open source version. Therefore, 
changes in the meta-model can be quickly applied in the tools. This is necessary to 
support the evolution of the meta-model as we gain experience in the entities needed 
to build MAS applications. Besides, as INGENIAS is a research project, it requires 
the ability to extend and refine the meta-model specification in order to integrate new 
features from experimental and theoretical results. 

For instance, the IDK MAS Model Editor (a graphical tool for defining MAS mod-
els), is generated, as shown in Fig. 4, from the meta-model specification, graphical 
representations for concepts (icon files), and a description of editor attributes (for 
instance, the associations between entities in the meta-model and their graphical rep-
resentation, as icon files). The generation is driven by an interpreter of meta-model 
descriptors and an editor template (which determines the general aspect and distribu-
tion of editor elements) following a similar mechanism as the modules which will be 
presented below. An advantage of this approach is that changes in the definition of 
meta-models can be easily applied to generate personalized editors. As a proof of 
concept, an editor for holonic manufacturing systems has been built by another re-
search group using the IDK framework [8]. 
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Fig. 4.  Generation of the IDK MAS Model Editor from meta-model specifications 

The editor is the primary tool for the MAS developer, but a MDD approach re-
quires also verification and validation tools, and transformation engines to derive 
source code in the target platform, documentation, or some other  model. This is sup-
ported in the IDK by modules. Modules (or plugins) in INGENIAS are programs that 
process specifications and produce some output: 

• Source code. There is an infrastructure that facilitates the transformation of the 
specification into source code. This is based on the definition of code tem-
plates for each target platform and information extraction procedures from the 
current models.  

• Reports. Specifications can also be analysed to check, for instance, whether 
they have certain properties or whether special semantics (defined by the  
developer) are being respected, or to collect statistics of usage of different  
elements.  

• Modifications on current specification diagrams. Though this feature is in beta 
stage, a module could insert and/or modify entities in the diagrams, or in-
sert/delete diagrams. This feature is useful to define personal assistants that  
interact with the tool. 

• Other models. As we produce source code, there is no difference in producing 
as well other models following different meta-models.  

Modules are built in the top of a framework that provides facilities to traverse 
specifications, extract information from specifications, and put the extracted informa-
tion into templates. A module is typically written in Java according to some strict 
instructions (implementing concrete interfaces, model information extraction  
procedures, templates, packaging it all into jar files, and deploying the result in a 
concrete folder) if the developer intends to integrate it with the IDK, though another 
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alternatives may be used. Models are stored in XML, so other transformation tech-
niques could be used, like XSLT, and custom model to text conversions could be 
applied, like a raw DOM parsing of the XML tree and producing as output directly 
some code. 

4   Developing a Transformation Module in the IDK 

Developing a module for code generation is usually an iterative process through sev-
eral steps. This process runs in parallel with the main development when the target 
platform is new (i.e., there is no transformation module supporting it in IDK). The 
main development process consequently relies in the ability of the module construc-
tion process to elaborate in a timely manner a code generation process that enacts the 
transformation of models into executable code. 

In our case, the basis for code generation is the availability of code templates for 
the target platform. This is usually the most difficult to obtain as it requires a good 
knowledge of how to implement agents in the target platform. Our experience has 
shown that this can be accomplished through an iterative process, in which the devel-
oper defines progressively the architecture of the code for the target platform and the 
transformations from specification to code templates. This process could be sketched 
in several steps: 

1. Small initial prototype. The developer produces a simple prototype of the ap-
plication. Initially, the developer would centre into one or more features of the 
specification, easy to implement if possible. For instance, how to use the spe-
cific facilities of the target platform to make two agents interact. As a result, 
the developer gains knowledge on the target platform and has a prototype of 
an application on the target platform that realizes a small part of the specifica-
tion with a selected set of features. 

2. Marking up the prototype code. Looking at both the prototype and the specifi-
cation, it is possible to identify parts of the prototype that match parts of the 
specification. As a result, the developer identifies possible mappings from the 
specification to the prototype code. This is reflected in a prototype code 
marked up with tags. The marked-up pieces of source code are called tem-
plates. 

3. Generating/modifying a module. A module has to traverse the specification in 
order to obtain the information required to instantiate and fill in the prototype 
templates. The IDK provides an API for traversing specifications and Java 
packages for building modules. In concrete, the module engineer has to extend 
the class BasicToolImp for verification and validation modules or the class Ba-
sicCodeGeneratorImp for code generation modules. Other classes may be cre-
ated as well. 

4. Deploying the module. The resulting Java classes and templates of the module 
are put together into a jar file. This jar file is deployed in a specific folder 
where the IDK MAS Model Editor can load it dynamically. 

5. Testing the module. Testing is performed from the IDK MAS Model Editor. 
By executing the module over the specification, the developer can check if the 
diagram is traversed properly and if all templates have been filled in as they 
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should. Also, as templates demand concrete information, it may be possible 
that this is not present or that it is not expressed as it should. Therefore, it may 
turn out that the specification was not correct or incomplete. In this sense, any 
module can be useful to validate the specification against some completeness 
criteria. As a result, several kinds of problems may appear: with the code gen-
erated by the module, with the traversal of the specification, or with the speci-
fication itself. 

6. Debugging. If something goes wrong, debug the prototype and go to: 
a. Step 2. If there is new code that was not marked up before. 
b. Step 3. If the failure was in the module and the data traversal. 
c. Step 4. If there was a failure in the prototype and could be solved 

without marking up the code again. 
7. Refinement and extension. When the module is finished, it can translate dia-

gram specifications into code or perform verification of some properties. How-
ever, the module performs these tasks with a reduced set of the diagram speci-
fication. The next step would be to take the code generated by the module and 
extend it so that it can satisfy other parts of the specification. Therefore, we 
would go back to step 1. 

In this way, modules produce code using a template based approach. As an exam-
ple, Fig. 5 shows how to generate code for a rule based system, in this case JESS 
(Java Expert System Shell, http://herzberg.ca.sandia.gov/jess). A developer defines a 
template of a JESS rule (steps 1 and 2) and extracts data from the MAS specification 
(step 3) to generate the rest of rules. Rules need a condition, an action, and a name. 
These data are expressed using a concrete structure that will be presented later. As a 
result, we get two different rules, which are instantiated from the same template. 

 
 Template 

 
<repeat id="rules"> 
           (defrule <v>name</v> 
            <v>cond</v>=> <v>accion</v> 
      ) 
</repeat> 

Data 
repeat id="rules"    
   var name= "R1"            
   var cond= "A"          
   var action= "(assert B)"    
repeat id="rules" 

     var name= "R2" 
     var cond= "B" 

    var action= "(printout t done)“ 

Generated code 
(defrule R1 
 A => (assert B) 
) 
(defrule R2 
 B => (printout t done) 
) 

 

Fig. 5. An example of code generation for a set of JESS rules 

These elements are configured within a module and deployed in the IDK (step 4), 
and tested over the specification of a MAS (step 5). As a result of the testing, we 
would obtain the generated code presented in Fig. 5. Whether this satisfies the  
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requirements or not would trigger step 6. This procedure has been used in several 
developments, which are commented in section 6. 

As readers may deduce, other transformation techniques based on XML transfor-
mations to get source code may be similar: they all need to determine what source 
code is to be produced, what information from the model is relevant, and go through a 
strong testing process to ensure that the transformation chain works as expected. In 
any case, producing source code from a model requires time and expertise of both the 
expected semantics of the models and the target platform where the source code will 
be deployed. Besides, a module intending to process a whole specification rarely can 
be built in one iteration. It requires a step-wise analysis of the requirements detailed in 
the models 

Assuming this hypothesis, there are several common conflicts between this flow of 
activities and the main development flow that one may expect: 

• Models can be modified without knowledge of the workers involved in the de-
velopment of a module. The specification of the problem may grow in differ-
ent directions, and some of them may be incompatible with the assumptions 
made to develop the transformation. 

• The transformation procedure, whatever it is, determines the models and vice-
versa. On one hand, obtaining source code implies assuming unambiguous 
semantics of the models. At the end, only models which are valid according to 
these semantics will be considered, but is all the relevant information being 
considered? On the other hand, a step-wise construction of a transformation 
implies that each step is compatible with the previous one, and, sometimes, 
this happens to be false. A transformation may consider new elements of the 
specification that could require to identify new dependencies that did not exist 
before.  

These problems are not easily solvable. We have alleviated them by synchronizing 
the activities in the MDD version of INGENIAS. So, instead of building independ-
ently models and the model transformation, both flows should evolve in parallel with 
frequent cross-checks to ensure that current transformation can indeed grow to incor-
porate new elements of the specification and to avoid adding information which 
would not be realized in the final delivers. 

5   An Agent MDD Process 

To solve previous dependencies between the elaboration of the models and the con-
struction of the transformations, we have refined the initial INGENIAS process taking 
into account MDD principles.  

This starts by considering two main roles in the development process: 

• The MAS developer, as shown in Fig. 6, uses the IDK MAS Model Editor to 
specify MAS models. These models can be verified and validated with 
analysis and simulation modules. Once they have been validated, code gen-
eration modules facilitate the implementation to deploy in a target platform. 
When the system has been produced, the testing activities start. In case of  
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Model with IDK editor Analysis and 
simulation of model 

Deploy MAS 
Code generation 

Testing 

 

Fig. 6.  MAS developer activities 

• detecting failures, the developer would come back to the modelling. Also, 
the developer may come back to modelling to add new features. 

• The INGENIAS engineer, as shown in Fig. 7, knows the INGENIAS meta-
model and can customize the editor for a specific purpose (this may require 
modifications on the meta-model) and produce new modules for verification 
and validation, or for code generation in some target platform.  

Most development process identify more roles, but here we are interested in solv-
ing the dependencies between the model transformation construction and the model 
 

Defines domain specific 
metamodel and can 
personalize editor 

Builds transformations 
for simulation 
environment 

Builds transformations 
for target platform code 

Builds tools for 
verification of model 

properties 

 

Fig. 7. INGENIAS engineer activities 
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elaboration activities. Sometimes these roles can be played by the same person, which 
normally occurs when the application under development has to be deployed in a 
novel target platform, so a new code generation module is required. But, in principle, 
at least one person of the development team needs to have the skills of a INGENIAS 
engineer to create new modules, the rest can just edit models and execute modules to 
work on the specifications. In the later case, the INGENIAS developer and the MAS 
developer have to synchronize their activities. 

Defects in the meta-model will appear when the MAS developer is modelling. 
Hence, the INGENIAS engineer should ensure that a new editor is available before 
the new modelling – system generation round happens.  

The transformation has to be built during the modelling or testing stage. Initially, 
there are available transformations for the initial stages that can be used in the mean 
time (they are included in the IDK). However, these, probably, have to be adapted to 
the new domain. By scheduling the module adaptation effort during the modelling and 
testing stages, the MAS developer should not be affected by the delays. Therefore, 
new versions of the module should be ready right before the code generation. This 
deadline can be too strict sometimes, and, indeed, it can be a bottleneck in the devel-
opment, since it prevents the generation of new bug-free systems. Our experience 
with this respect is that having already tested initial generic transformations saves 
most of the effort and makes this process more feasible. 

6   Evaluation and Related Works 

The INGENIAS approach to code generation is in line with Wasserman [18], who 
proposes a rapid application development environment where graphical specifications 
are translated to executable code by  using code skeletons. This technique has evolved 
into more sophisticated scripting languages that acted as mappers of specification to 
code. Examples of such environments are METAEDIT+ [10] and WithCLASS [11]. 
The first is a meta-case tool that supports mapping of specifications to any kind of 
code. The second, a UML compliant tool, also provides facilities to translate diagrams 
to code, which is based on script language. There is, however, one significant differ-
ence between IDK and those tools, apart of the scope of INGENIAS, which is clearly 
oriented to agent-oriented systems. The IDK offers programmatic infrastructure to 
generate new modules with a clear interface to manipulate meta-models. 

The experience of this approach in several projects has shown increase in produc-
tivity as transformations allow to reuse the experience on the use of platforms in fur-
ther projects using similar infrastructure. Also, the smooth approach to the platform 
with the incremental-iterative method towards the development of modules, in paral-
lel with the modelling of the MAS, facilitates learning through a risk-driven process. 
However, the application of transformations has revealed some problems, such as:  

• Debugging transformations. For instance, it is not trivial, given a chain of 
transformations, to detect which one is not working as it should. Also, a trans-
formation may meet the requirements set initially and, at the same time, be in-
sufficient according to the code generation needs. This may happen, for in-
stance, if there are different developers for different transformations to be 
chained later on.  



 Model Driven Development of Multi-Agent Systems 295 

• The maintenance of the transformations. Once created, a transformation 
should be reused in different developments. This implies documenting appro-
priately the transformation or elaborating extension points to incorporate new 
functionality with low impact. 

So far, there are some relevant experiments where these ideas have been validated 
and have contributed to the evolution of the IDK tools. These tools provide some code 
generation facilities and have allowed us to study the ability of other people to create 
IDK modules: 

• Robocode. Based on a work from Elsa Yañez, an undergraduate student. Ro-
bocode is a platform for learning JAVA by describing the behaviour of fight-
ing tanks in a simulated environment (see http://robocode.sourceforge.net/). 
This is interesting from an agent perspective as tanks can be driven autono-
mously and collaborate in teams. The goal of the student was to provide a 
graphical front-end with the IDK for the design of the control of individual 
tanks and of the team. Once defined, the module developed by the student pro-
duces source code that can be compiled and executed by Robocode. 

• Tank Soar. Based on a work from Juan Antonio Recio, a PhD student. It de-
fines transformations for a model describing an example of the SOAR archi-
tecture for the control of tanks within a labyrinth. Control of the tanks are ex-
pressed by means of several rules according to what SOAR expects. These 
rules are expressed in terms of the elements identified by the INGENIAS De-
velopment Kit. 

• Juul BokHandle case study. It describes a bookshop that sells books to univer-
sity students. The company has an agreement with professors and students to 
obtain a list of books used in their courses and sell them at special prices. The 
bookseller is considered an organization in which there are departments in 
charge of sales and departments in charge of logistics. This organization has to 
negotiate with other organizations, editorials, for acquiring books at the best 
prices and with specific timing constraints. It can also negotiate for special ar-
rangements for certain books that are demanded in concrete courses. Sales can 
be conventional or through internet.  

 
• Cinema Ticket Selling. Based on a work from Carlos Celorrio, a PhD student. 

It describes a scenario where an interface agent interacts with a buyer agent to 
buy a ticket to go to the cinema. The buyer agent has to locate a seller agent 
that will sell the cinema ticket, and move towards the node the seller agent is 
allocated into. After migrating, it buys the ticket, and then moves back to its 
original location to give back the ticket to the interface agent. 

Some models used for these developments are included within the IDK and serve 
as examples of the use of transformation modules included in the IDK distribution: 

• Communication facilities. There are two variants of this module, one based on 
JADE (http://jade.tilab.com) and another based on JADE Leap. In both, it pro-
duces session oriented communication facilities for different process entities. 
Concretely, the code generator produces state machines each one representing 
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the partial knowledge a participant has of a conversation  modelled with the 
IDK. The JADE Leap code generator adds to these the capability of code mo-
bility and task execution. Mobility and task execution is specified again in the 
IDK. JADE and JADE Leap provide a FIPA compliant middleware for agent 
communications. They differ in how communication is envisioned and that 
JADE provides also management services for agents and agent platform do-
mains.  

• Servlet Based Workflow Simulation. It transforms a specification of task exe-
cution into a servlet. This servlet simulates different existing workflows where 
different tasks and actors take part. By traversing the specification, it detects 
which tasks are the initial ones and what happens, i.e. what tasks are enabled, 
when a concrete one is executed. 

• Document generation. To facilitate development, it is important to be able to 
document the specification. This module, instead of producing code, uses tem-
plates of reports to produce different HTML documents that can be reviewed 
by developers. 

All these transformation modules were built according to the process presented in 
section 4. 

7   Conclusions 

Our experience in the application of MDD techniques to the development of multi-
agent systems (MAS) with INGENIAS has shown the convenience of the parallel 
evolution of both application modelling and transformations definition, especially 
when the target environment and application domain are new for the developer. The 
proposed process promotes the evolution of the MAS model and transformations for 
the chosen target platform, in a sequence of small incremental steps. Each step goes 
trough strict testing before proceeding to the next step. In this way, the MDD process 
becomes agile, in the sense that iterations take into consideration small parts of the 
MAS model, which determine the elements of the meta-model that are taken into 
account by the implementation of the transformation. Note that in this process, while 
building the transformation, there may be elements of the model that are required and 
where not considered. So there is a feedback between model and transformation  
developments. 

Once that the transformation modules for a target platform are available, this ex-
perience can be reused in further developments. It is also interesting to note that, 
given the IDK infrastructure, it is possible to specify different implementation strate-
gies for the same target platform. Each strategy may depend on particular application 
concerns, for instance. 

An advantage of using agent-based modelling in a MDD context is that agent con-
cepts promote a more abstract language for problem domain modelling than standard 
UML. This makes it easier to consider the definition of domain modelling languages 
as extensions of the agent-oriented language. In INGENIAS, this has been done to 
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adapt the language to a more specific one for holonic manufacturing systems [8] and 
for social simulation environments [16]. 

Our experience in the development of IDK is that, as a general framework, MDD 
favours the use of meta-models and these ideas can be used when considering build-
ing tools for agent oriented development in the same way as for other software para-
digms (such as the object one). However, it is quite difficult to provide complete 
meta-models suitable for specific platforms (such as JADE) in a similar way as MDA 
proposes. For this reason we propose a process for partial and incremental transforma-
tions that can be driven by application needs. This can provide support to developers, 
but getting the whole solution still requires further research. 
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Abstract. In object-oriented software development, UML artefacts are
used to illustrate and define the structure and the behaviour of the soft-
ware system, while the semantics is usually described in a formal or in-
formal specification language. The specification often consists of sets of
constraints defined over the software components. When implementing
the model, the specification is taken into consideration by the imple-
mentor. Since a significant proportion of the implementation consists of
human-generated code, errors may be introduced in the implementation
model. To detect these errors, the specified constraints need to be checked
in the implementation. In this paper, we present Limes, an imperative
constraint implementation language, which adopts aspect-oriented pro-
gramming to describe constraint checking in a non-invasive way. Limes
can be used at the design level, and can add constraint checking to the
implementation.

1 Introduction

The Unified Modeling Language (UML) is a language for specifying and
constructing the artefacts of software systems, and thereby allows to create
models of systems. While UML models specify the structure and behaviour of
systems, the semantics of the individual artefacts are usually captured in spec-
ifications expressed in a number of languages, most of them being declarative.
Often specifications consist of sets of constraints specified over the artefacts.
One specification language is the Object Constraint Language (OCL). Origi-
nally developed by IBM, the OCL is now part of the UML specification. In
model driven engineering (MDE), UML models are often transformed directly
into an implementation language. Since the transformation from the model to
the implementation is not fully automated, some level of manual implementation
is required. However, human-generated code might deviate from the specifica-
tion, due to possible programming errors, or a misinterpretation or disregard of
it. It is, therefore, desirable to be able to automatically check the implementation
against the specification. However, an automatic translation of the specified con-
straints into executable code, and an instrumentation of this code into the target
program is not a straightforward task. This is due to the large gap between the
abstraction level of the specification language and that of the implementation

A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 299–315, 2006.
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language. While the former is normally a declarative language specificly designed
for writing specifications, the latter is normally an imperative general-purpose
language. Even though tools exist to instrument OCL constraints to the tar-
get program, these tools are language specific and they often make assumptions
about implementation details.

In this paper we introduce Limes1, a language which allows to imperatively
specify how and when to check the constraints of a model in a platform indepen-
dent way. It provides information to add constraint checking to the implementa-
tion of the model, and by adopting aspectual behaviour it is able to perform the
checking in a non-invasive way, i.e. without the need to manipulate the imple-
mentation. Limes code does not rely on any implementation specific information,
and can therefore be written while still being a the design level. The specifica-
tion of Limes is confined within the domain of constraint checking. Alltogether,
Limes allows to narrow the gap between specification and implementation and
integrates well with MDE. Limes code provides all the information necessary to
put the constraints into operation, and thus can be considered an implementa-
tion of the constraint checking.

The remainder of this paper is organised as follows: Section 2 provides a
discussion on the fundamental concepts behind aspect-oriented programming.
Section 3 forms the main part of the paper and provides an overview of the
language, demonstrating its main features with examples. Section 4 outlines
the architecture of our current prototypical Limes compiler. Section 5 discusses
related work, followed by Sect. 6 discussing some general aspects of Limes . Sec-
tion 7 concludes the paper and sketches some areas of future work.

2 Background: Aspect-Oriented Programming (AOP)

Despite the success of object-orientation in the effort to achieve separation of
concerns, certain properties cannot be directly mapped in a one-to-one fashion
from the problem domain to the solution space, and thus cannot be localised
in single modular units, but their implementation cuts across other units. This
crosscutting phenomenon manifests over the inheritance hierarchy. As a result,
developers are faced with a number of problems including a low level of co-
hesion of modular units, strong coupling between modular units and difficult
comprehensibility, resulting in programs that are more error prone. Crosscut-
ting concerns include persistence, authentication, synchronisation and logging.

Aspect-Oriented Programming (AOP) [1,2] addresses those concerns by intro-
ducing the notion of an aspect definition, which is a modular unit that explicitly
captures and encapsulates a crosscutting concern, and therefore “can not be
cleanly encapsulated in a generalized procedure (i.e. object, method, procedure,
API)” [1]. Even though AOP is neither limited to object-oriented programming
nor to the imperative programming paradigm, we will restrict this discussion to
the adoption of AOP in that context. There is currently a growing number of
1 ["li:m@s], named after the ancient Roman wall built to keep out “barbarians”. Limes

was designed to keep out bugs.
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approaches and technologies to support AOP. Our work is based on the linguis-
tic model introduced by the general-purpose aspect-oriented language AspectJ
[3] which is perhaps the most notable technology today, with a collection of
supporting tools and an active developer community.

AspectJ has influenced the design dimensions of several other general-purpose
aspect-oriented languages, and provided the community with a common vocab-
ulary based on its own linguistic constructs. In the AspectJ model, an aspect
definition provides behaviour to be inserted over functional components. This
behaviour is defined in method-like blocks called advice blocks. However, unlike
a method, an advice block is never explicitly called. Instead, it is activated by
an associated construct called a pointcut expression. A pointcut expression is
a predicate over well-defined points in the execution of the program which are
referred to as join points. When the program execution reaches a join point cap-
tured by a pointcut expression, the associated advice block is executed. Even
though the specification and level of granularity of the join point model differ
from one language to another, common join points in current language specifica-
tions include calls to methods and execution of methods. Most aspect-oriented
languages provide a level of granularity which specifies exactly when an advice
block should be executed, such as executing before, after, or instead of the code
defined at the associated join point. As a result, with an aspect-oriented lan-
guage we are able to make quantified statements such as “whenever there is a
call to a particular method (or a group of methods), before running the code
that should run, execute the code in a given advice block.”

A program in any general-purpose aspect-oriented language is essentially two-
dimensional: One dimension describes the functional components written as de-
finitions of classes, while another dimension describes aspect definitions written
in an aspect language [1]. Like a class definition, an aspect definition can also
contain state and behaviour (variables and methods). Additionally it can contain
pointcut expressions and advice blocks. Furthermore, much like functional com-
ponents must be composed to perform a computation, functional components
and aspects must also be composed. This composition is referred to as “weaving”
and it is performed by a special tool called a weaver. The weaver evaluates the
pointcut expressions and determines the join points where the code of the advice
block is inserted. The weaving process (Fig. 1) may take place either statically
or dynamically.

As an example, consider a system where all calls to any method of some
target classes should be logged. The implementation of logging would be scat-
tered over a number of modules. In this example, the method calls constitute
the join points where logging behaviour must be executed. An aspect definition
encapsulating the logging behaviour would contain an advice block to perform
the logging—perhaps creating an entry in a log file—and bind the advice block
to a pointcut expression defined as a disjunction over relevant method calls.
Once any of the methods captured by the pointcut expression is called, the as-
sociated advice block executes. The join point model and the related pointcut
expression mechanism of AspectJ is highly expressive, including support
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Fig. 1. The weaving process

for pattern expressions. In the example, pattern expressions would allow the
definition of a logging aspect with such a complex behaviour as: “log all calls of
set* methods in subclasses of a certain base class.”

3 Limes: A Constraint Checking Language

Limes is a language to specify how and when to check constraints. It allows
the description of constraint checking for a model, relying exclusively on struc-
tural information. Therefore Limes code can be written independently of the
particular implementation of the model, and provides a platform independent
model (PIM) for the constraint checking. In order to transform it to a platform
specific model (PSM), we can follow either one of the following two approaches:
First, constraints written in Limes can be transformed into the implementation
language of the program to be checked, and second, these constraints can be
transformed directly into executable code.

In the subsequent subsections we will first discuss the requirements for Limes
and then provide an overview of the language, demonstrating its main features
with examples. We will also discuss the problem of invariant checking and list
conditions which an implementation of a system must fulfil in order to allow
for the instrumentation of the model generated from its corresponding Limes
definitions. The core specification of the Limes grammar is listed in the appendix
of this paper.

3.1 Requirements for Limes

Our objective in building the requirements of Limes was to create a language
which allows the specification of constraint checking for an implementation of a
model without knowledge about implementation details. We aimed at the con-
straints defined by the types of assertions in the Design by Contract (DbC) prin-
ciple [4]: preconditions, postconditions and invariants. Additionally, we placed
the following requirements:

Describe constraints separately. Constraint checking should be described
separately, without the need to modify the model or its implementation.
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Free of side effect. The instrumentation of constraints should not affect the
normal execution of the program, except for some unavoidable overhead in
the execution speed of the program.

Platform independence. Limes code should not rely on any platform specific
features.

Customisability. To allow the refinement of the constraint checking with im-
plementation specific code, constraint checking specified in Limes should be
modifiable in a non-invasive way.

Detailed context information. When detecting a violation of a constraint,
as much information about the location of the error as possible should be
made available.

Transformable. Limes should be easily transformable into different aspect-
oriented languages. This allows to rapidly develop a transformation into
various target languages, and thereby support a transformation to PSMs.

3.2 Features of Limes

Limes offers the following features:

Encapsulation of constraint checking. Constraint checking information is
encapsulated in aspect definitions.

Minimisation of side effects. Though imperative by nature, Limes prevents
the introduction of any side effects other then changing terminating to non-
terminating behaviour, and changes in exectution speed and ressource usage.

Semantic checking at Design Level. The semantic analysis of Limes code
is based exclusively on structural model information and hence it can be
performed with only a PIM available. It is not necessary to defer the semantic
checking until the source code is generated.

Non-invasive customisability. It is possible to customise how and when to
perform the constraint checking in the implementation of the main program
using aspect inheritance.

Transformable. The specification of Limes was held as simple as possible. Ad-
ditionally, we added only language features which can be mapped to existing
aspect-oriented languages such as AspectC++ [5], AspectJ and Eos [6] (an
aspect-oriented extension for C#). Therefore, transformation of Limes to
common aspect-oriented languages should be straightforward.

3.3 An Overview of Limes

Limes is an imperative aspect-oriented language to implement constraint check-
ing. It uses the notion of aspect definitions, pointcut expressions and advice
blocks to encapsulate the checking of constraints. The constraint checking code
relies on type information from the model which can be available in various
forms, e.g. as a UML model, as the source of the implementation or as the byte
code of the checked program.

In this subsection, we will provide an overview of Limes, illustrating its main
features with examples. The examples will implement constraints for the class
shown in Fig. 2.
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Fig. 2. Example class diagram

Aspects to Encapsulate Constraint Checking. Limes uses aspect defini-
tions to encapsulate the checking of constraints. One aspect specifies the con-
straints for a single class. The name of the class to be checked is given in square
brackets after the aspect name. Listing 1 shows the basic syntax of an aspect.

1 aspect PersonConstraints [Person] {
2 // constraint checking code here
3 }

Listing 1. Aspect stub

Pointcuts and Advices to Attach the Constraint Checking Code. A
pointcut expression specifies the points in the execution where a constraint must
be checked, and an advice block specifies the checking policy. The deployment
of the pointcut and advice mechanism allows a non-invasive addition of the
constraint checking to the corresponding class. Listing 2 shows the grammar
rule specifying the syntax for the definition of an advice block. The syntax is
specified in EBNF according to the rules provided in the appendix.

1 advice_def = advice_type ( typed_parameter_list ) [[
2 pointcut_expr ]] advice_body.
3 advice_type = ������ | ����� | ������ ����� | ����	
.

Listing 2. Grammar rule for an advice definition

The typed parameter list specifies the pointcut signature, a list of parameters
available in the advice body. The parameters must be bound by (i.e. provided by)
the pointcut expression. A pointcut expression is a predicate of atomic pointcut
expressions.Amongothers, the following atomicpointcut expressions are available:

1. execution(methodPattern): matches the execution of any method matching
the specified method pattern.

2. this(identifier): binds the current object (this) to the parameter of the
pointcut signature named identifier.
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3. args(identifier1, identifier2,. . .): binds the parameters of the matched
methods to the parameters named identifier1, identifier2, . . . of the pointcut
signature.

The body of the advice block contains the code performing the checking of
constraints. An advice block can be executed before, after, before and after,
or instead of (around) the code corresponding to the join point(s) specified in
the pointcut expression. During the execution of an around-advice, the original
behaviour defined by the join point can be invoked through a call to the spe-
cial function proceed(). Listing 3 shows an advice definition implementing the
checking of a precondition of the divorce() method. The pointcut expression
given in line 2 together with the type of the advice (before) specify that the ad-
vice is executed before the execution of the divorce() method in class Person.
Additionally, the current Person instance is bound to the parameter self. The
meaning of the keyword const in line 1 is explained subsequently. To check the
precondition, the advice calls the special function precondition() which tests
the condition given as the first argument.

1 before(const Person self)
2 [[ this(self) && execution(void Person.divorce()) ]] :
3 { precondition(self.spouse != null , "divorce()"); }

Listing 3. Demonstrating precondition checking

Concepts to Prevent Side Effects. The specification of Limes provides var-
ious concepts to avoid the introduction of side effects through code written in
Limes into the checked program.

To reduce the possibility of introducing an infinite loop, no conditional loop
construct was added. The only type of loop in Limes is a foreach loop which
allows the iteration over a collection with a fixed set of elements. However, it is
still possible to create infinite loops by using recursive function calls.

Another provision is that every around advice must contain exactly one
proceed() call which must not be conditional2. This ensures that the original
behaviour defined by the join point is executed.

Finally we added a const concept similar to the one supported by the C++
programming language [7]. This concept allows to define an object as being
constant, i.e. denoting that its fields cannot be modified and none of its mutator
methods (methods that modify its object) can be called. This relies on the model
to provide the information which methods are mutators. In our implementation
which utilises the UML model, every non-query method is assumed to be a
mutator. Similarly, a constant object can only be given as an argument to a
method, if the method declares that parameter not to be modified, which again
relies on the model providing this information. Furthermore, whenever a call to
2 A less restrictive condition would be that in every execution path proceed() must

be called exactly once, but this is harder to check at compile time.
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a method of a constant object returns an object, the returned object is assumed
to be constant to prevent exposing internal objects. The const keyword can be
added as a modifier to a variable definition, marking its referenced object to be
constant. Advice parameters bound by pointcut expressions must be defined as
const, since they expose objects of the main program. Consequently a constant
variable can only be assigned to another constant variable.

Special Functions to Perform the Condition Checking. Limes offers a
number of special functions to support the implementation of constraint check-
ing. First, there are precondition(),postcondition(), and invariant(), each
of them checking the corresponding constraint. As the first argument they re-
quire a boolean expression specifying the condition to be checked. Additional
arguments can be given to specify context information about the constraint. To
allow transformations to a target implementation language to implement differ-
ent strategies in order to handle constraint violations, the semantics of those
functions is only partially defined Only that the constraint is violated if the first
argument evaluates to false, that those functions do not return a value, and the
meaning of the additional arguments is defined by Limes . For example, while
one transformation might raise an exception, another might choose to merely
log the constraint violation. A possible Java implementation corresponding to
the precondition() call given in Listing 3 line 3 is shown in Listing 4.

1 if (!(self.spouse != null))
2 System.err.println("Precondition " + expression.toString()+
3 " for "+class+"."+method+" violated");

Listing 4. Transformed precondition call

Other special functions available in Limes include copy() and equals().
Function copy() is defined to return a non-constant, deep copy of a given object.
Function equals() performs a value comparison of its two arguments. Addition-
ally there is an == operator, which checks whether its operands refer to the same
object. Listing 5 shows an advice definition using copy() to save the old state
of an object.

1 around(const Person self)
2 [[ this(self) && execution(void Person.birthday()) ]] :
3 {
4 Person old = copy(self);
5 proceed();
6 postcondition(old.getAge()+1==self.getAge(), "birthday()");
7 }

Listing 5. Advice definition utilising the copy() function

������� to Deal with Collections. Associations with a multiplicity greater
than one are common in software models and therefore a constraint language
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must support this concept. For Limes a small hierarchy of Collection classes
including Collection, Bag, Set and Sequence is defined. Those classes provide
a small interface allowing the convenient implementation of the most common
constraints. Additionally, we introduced a foreach loop which iterates over a
Collection and allows to check more complex conditions. An advice definition
implementing the invariant that each sibling’s siblings must contain the self-
object is shown in Listing 6. The information on whether a variable refers to a
collection, must be provided by the model providing the type information. The
UML model utilised by the current Limes implementation provides this informa-
tion by explicitly illustrating collections through associations with a multiplicity
greater than one.

1 before after(const Person self) [[ publicFunction(self) ]] : {
2 foreach(const Person current : self.siblings) {
3 invariant(current.contains(self));
4 }
5 }

Listing 6. Advice definition utilising foreach

Function and Pointcut Overriding to Support Customisability. Limes
was designed to support the implementation of complex constraints. However,
unanticipated needs occur in practice, which would usually lead to unconven-
tional, error prone and unreadable workarounds (i.e. hacks). To reduce the
need for those hacks, Limes supports aspect inheritance which enables the non-
invasive customisation of constraint checking specified in Limes . If Limes proves
not to be powerful enough to specify how to perform the constraint checking,
virtual methods can be used to allow the target implementation language to
refine the constraint checking code. If Limes proves not to be powerful enough
to specify when to perform the constraint checking, pointcut definitions can be
overridden in the target implementation. An example to illustrate this is given
in Listing 7.

1 aspect PersonConstraints [Person] {
2 abstract void checkComplexPrecondition(const Person self);
3 before(const Person self) [[ this(self) &&
4 execution(void Person.marry(Person)) ]] :
5 {
6 checkComplexPrecondition(self);
7 }
8 abstract pointcut underageCheck(const Person self);
9 before(const Person self) [[ underageCheck(self) ]] : {

10 invariant(self.age>=18 || self.spouse==null, "notUnderage");
11 }
12 }

Listing 7. Customisable aspect
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Here, the advice definition to check the precondition of the marry() method
(lines 3–7) calls the abstract method checkComplexPrecondition(). This re-
quires that the method is implemented in a derived aspect. In line 8 we define
an abstract pointcut named underageCheck, which is used in the second advice
definition (lines 9–11) to specify when to check the invariant notUnderage. Be-
cause the pointcut is abstract, it must be implemented in a derived aspect. The
derived aspect can be defined in the implementation language used for the main
program, and thereby use its full feature set for both the pointcut definition and
the implementation of the abstract method. Listing 8 shows an AspectJ defin-
ition of an aspect that extends and customises the aspect PersonConstraints
shown above. It is also possible to override method and pointcut definitions.
The concept of overriding pointcut definitions is similar to the overriding of
methods. Note that when overriding or implementing pointcut definitions, the
pointcut signatures must match.

1 aspect PersonConstraintsRefine extends PersonConstraints {
2 void checkComplexPrecondition(Person self)
3 { /* an AspectJ precondition check */ }
4 pointcut underageCheck(Person self) : <an AspectJ pointcut expression> ;
5 }

Listing 8. Customising an aspect in AspectJ

3.4 Invariant Checking with Limes

While specifying when to check pre- and postconditions is rather straightforward,
specifying when to check invariants requires careful consideration. According to
Bertrand Meyer, “[an] invariant must be satisfied after the creation of every in-
stance of the class, (and) be preserved by every exported routine of the class (that
is to say, every routine available to clients)”[4]. Most often this is interpreted
as an invariant must be satisfied after the constructor execution, and before and
after the execution of every public method. However, we believe that it is valuable
to also be able to specify invariants which must hold true before and after the
execution of protected methods. The example in Listing 9 shows the code for
checking the constraint that a married person should not be underage.

1 aspect PersonConstraints [Person] {
2 pointcut protectedPublic(const Person self) [[
3 (execution(* Person.ctor(..)) || execution(protected+ * Person.*(..)))
4 && this(self) && !cflow(within(PersonConstraints)) ]];
5 before after(const Person self) [[ protectedPublic(self) ]] : {
6 invariant(self.getAge()>=18 || self.spouse==null, "notUnderage");
7 }
8 }

Listing 9. Demonstrating invariant checking
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In lines 2–4 the pointcut protectedPublic is defined. It captures the exe-
cution of the constructor (ctor) and the execution of every method specified
protected or less restrictive (i.e. protected and public). The !cflow(within(
PersonConstraints)) pointcut expression excludes every join point where the
control flow is within the execution of any code in the PersonConstraints. It
avoids invoking the advice when calling getAge() from the advice itself which
would trigger an infinite loop. The before after advice in lines 5–7 executes
before and after the join points captured by protectedPublic. This is equiva-
lent to defining the same advice twice, once as a before, and once as an after
advice. Note that even though this seems to execute the advice before a con-
structor call, Limes defines that before after does not execute advice blocks
before constructor calls.

While it is easy to provide a pointcut expression to check invariants after
the constructor execution and before and after the execution of every (public)
method, this has two major drawbacks. First, it results in checking invariants
unnecessarily frequently, and second it does not necessarily detect invariant vi-
olations at the points in the execution of the program where these violations
take place. Consider, for example, an object A containing a reference to an
object B. Now, if an invariant is specified for A which involves B, and B is
changed outside of A, this constraint might be violated. The violation will go
undetected until a (public) method of A is called. Using the pointcut language,
it is possible to give a more sophisticated definition of when to check an invari-
ant. Through abstract pointcuts it is also possible to delegate the definition of
when to perform the checking to the implementation of the model. There the
implementation language might provide a sophisticated join point model. Since
a fine-grained specification of the condition under which invariants must be eval-
uated normally requires intimate knowledge of the implementation, we believe
it would be justified to delegate this task to the implementor of the model in
this case.

3.5 Target Language Requirements

When Limes should be transformed into the general-purpose implementation
language used for the rest of the system, the target implementation must meet
some requirements to allow for an easy transformation, the most notable of which
are listed below:

1. The implementation must be written in an aspect-oriented language (or an
aspect-oriented extension for the language must exist) which supports the
notion of aspect definitions, pointcut expressions and advice blocks.

2. The implementation language must be able to express the pointcut expres-
sions available in Limes .

3. The implementation must allow to perform a value comparison of objects.
4. The implementation must provide a consistent way to iterate over collections.
5. The implementation must provide a consistent way to create deep-copies of

objects.
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4 Implementation

We have implemented a parser and analyser for Limes in AspectJ. Together they
create an abstract syntax tree (AST) decorated with type information. The AST
can be used as the basis for further transformations, and is accessible through
a Java API using the Visitor design pattern, but could also be serialised and
read using another programming language. The parser is generated using the
Java Compiler Compiler (JavaCC) [8] and creates the initial AST. The analyser
decorates the AST with type information, accessing the type information of
the model through a type information provider. Information providers based on
different types of models can be implemented. We have only implemented one
provider, based on the UML model. Other possible models include various inter-
nal models of CASE tools, but also the source code of a program or some kind
of byte code. The support of different model types allows for an easy integration
of Limes support into existing CASE tools, which often have their own internal
model format. It also allows to add constraint checking to existing applications
without any high-level models available.

We have also implemented a Limes to AspectJ converter, which transforms the
decorated AST into AspectJ. The implementation was mostly straightforward.
The only major difficulty was the transformation of the atomic return pointcut
expression available in Limes which exposes the return value of a method, since
there is no such pointcut expression in AspectJ.

5 Related Work

Besides DbC, Unit testing [9] is another approach that aims at detecting im-
plementation errors. It is used to test software artefacts by calling operations
of them with a fixed set of input data, and checking assertions about the state
after the operation. However, unit testing can only test with input data provided
by the test case designer, who might not forsee all the input data possible dur-
ing the execution of the program. On the other hand, constraint checking can
check the constraints during the whole test cycle of the software. Nevertheless,
unit testing provides a valuable addition to constraint checking, as it allows the
specification of a fixed set of input data which is consequently tested. In fact,
the combination of unit testing and automated constraint checking provides a
powerful method for error detection [10].

Even though for many major programming languages without native DbC
support frameworks and tools exist to add this missing feature, limited support
exists for an automatic instrumentation of constraints specified for a model.
Java is a notable exception here, where OCL is the main target for research
dealing with constraint instrumentation. For example, the Dresden OCL Toolkit
(DOT) [11,12] provides support for parsing and semantic checking of OCL ex-
pressions. Through a generator, the DOT is capable of generating Java code. In
his work, Wiebicke [13] extends the DOT with the capability to instrument con-
straints to Java programs. To achieve this, the original source code is modified
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and the constraint checking code is added. Wiebicke also lists a number of other
tools dealing with the instrumentation of constraints. Since the DOT can also
be utilised by other code generators, we feel it could also provide the basis for
transforming OCL expressions to Limes code.

Another approach towards monitoring OCL constraints is proposed by Rich-
ters and Gogolla [14]. It is based on the USE tool [15] which allows to validate
OCL constraints for an instance of a UML model. In order to test and validate
an implementation, the authors use aspect orientation to detect changes in the
implementation objects, and map those back to the modelling level, keeping
an instance of the UML model synchronised with the implementation objects.
They then validate the OCL constraints for the model instance. This approach
requires a duplication of the application data and is implemented for the Java
language.

Briand et al. [16] propose the adoption of grammar rules to transform OCL
constraints into aspects, which instrument the constraint checking to the target
program. Even though the approach is based on AspectJ and on some assumption
about the implementation of the UML model, it could be adapted to transform
OCL constraints to Limes code. In [17] the authors generalise their ideas and
explain how AspectJ can be used to instrument constraints in general. Since the
join point model used in Limes is similar to the one of AspectJ, this work could
provide valuable guidelines for implementing constraint checking in Limes .

The issue when to check invariants and how to achieve this using AspectJ
is discussed in [18]. The authors analyse OCL invariants and classify them ac-
cording to the navigation paths. For each type, they provide a pattern to create
aspects to check the invariants, focussing on specifying when to perform the
check. The work provides guidelines for defining more sophisticated pointcut ex-
pressions for the check of invariants, then simply checking before and after every
(public) method call. However, some of those patterns rely on per-instance as-
pects which are not available in Limes .

In [19] the authors facilitate AspectJ to implement internal and external oper-
ation contracts. Since the contracts are defined on the design level, Limes seems
to be well suited to implement the operation contracts, and thereby enforcing
operation semantics independently of the implementation language.

6 Discussion

There are two elements in Limes which will probably have a significant impact
on the performance of the program where the constraints are checked. The first
is the special function copy(), used to create a deep copy of an object. This
can become very expensive for deep object hierarchies. Note that the problem
of circular references must be addressed by Limes compilers implementing a
deep copy mechanism. The second is the iteration over a collection, as this can
lead to a large number of iterations. Particularly in combination with a frequent
invariant checking (e.g. after every public method), this might significantly slow
down the program. Even though this is not a problem for the program deployed
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to the end user since the constraint checking can be disabled, it will become a
problem if the program becomes so slow that it cannot be tested anymore.

The avoidance of introduction of side effects is a major concern for a con-
straint checking language. When using a fully compliant Limes compiler and
having a model that truthfully provides information about its components, the
only side effect that can be introduced through Limes code is changing terminat-
ing into non-terminating behaviour. However, in reality this might not always
be given. We therefore discuss possible limitations that might lead to an in-
troduction of side effects. First, there is the information about a method not
modifying the object. For UML models this is defined by the modeller through
the isQuery-attribute, but its enforcement is not supported in most implemen-
tation languages. Therefore, the implementation of a supposedly non-modifying
method might not hold up to its promise and modify some properties of the ob-
ject, allowing to introduce side effects through Limes code calling such a method.
In the same way, the const-information about method parameters might not be
honoured in the implementation. Another source for a potential introduction of
side effects is the case where the implementation of the special function copy()
does not create a full deep copy, but copies some parts flat.

One might argue about the use of a high-level, imperative constraint checking
language. After all, there exist formal specification languages like OCL or Z and
general-purpose aspect-oriented languages capable of implementing constraints.
Especially so, since techniques exist for the automatic conversion from OCL to
AspectJ. However, we believe that it would be valuable to have a platform inde-
pendent language specifically designed for the specification of constraint check-
ing. First, there are persons more comfortable with using imperative languages
which might find writing Limes code easier than writing a declarative speci-
fication. Second, the conversion from a declarative to an imperative language
requires a complex transformation which must be written once for each speci-
fication language to each implementation language. Here, Limes could serve as
an intermediate language, first converting the specification language into Limes ,
and then converting Limes into the implementation language. For each specifi-
cation language, this requires the complex transformation from the declarative
to an imperative language to be implemented only once, leaving only the easier
transformations from Limes to the target implementation language to be done
multiple times. Compared to implementing the constraints manually in the tar-
get implementation language, Limes provides the advantage of being platform
independent and being specifically designed for this task.

7 Conclusion and Future Work

In this paper we provided an overview of Limes . By demonstrating its main fea-
tures with examples, we discussed how Limes can be utilised to implement DbC
constraints. Conceptually, Limes is located between an expression based speci-
fication language like OCL, and a general-purpose implementation language. It
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can help bridging the semantic gap between the high level expression and the
low level implementation language.

Even though we have tested Limes in a small scale, a test in a real system
including measurements of the runtime performance needs to be done in or-
der to see how well Limes can scale up. Furthermore, until now we have only
implemented a translator of Limes to AspectJ. To prove that our approach
is not limited to that particular language, we plan to implement translations
to AspectC++ and Eos. The current specification of Limes provides the ba-
sic features necessary to implement constraint checking. However, there are a
number of improvements to be done. For example, an atomic pointcut expres-
sion to match query methods could be used to avoid invariant checking for
methods which cannot modify the state of the object. In case of well known
error conditions, e.g. signalled by exceptions, it might be reasonable to allow
a violation of certain constraints. Hence, allowing to restrict constraint check-
ing to take place only if methods exit normally is another desirable feature.
Also, we plan to provide access for the advice definitions to context informa-
tion about the current join point. This can provide valuable information, like
the called method, in case of a constraint violation, and thereby support the
detailed context information requirement listed in Sect. 3.1. Currently this in-
formation must be explicitly handed in the form of an argument to the checking
functions.
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A Grammar

In this appendix we provide the grammar for Limes . The grammar is described
in EBNF, as defined by the ISO 14977 standard [20], with the following two
deviations from the standard: First a sequence of terminals and non-terminals is
not separated by commas, and second we use a “+” to denote that the proceeding
group must be repeated one or more times. Besides, we mark terminals by setting
them in bold font or by underlining them.

unit = [package] {aspect}.
package = ������� identifier {. identifier}.
aspect = ������ identifier [ type ] { aspect_body }.
aspect_body = {variable_def | method_def | pointcut_def | advice_def}.

full_qualified_name = identifier {. identifier}.
type = full_qualified_name.
simple_method_call = identifier ( argument_list ).
argument_list = [expr {, expr}].
nested_identifier = {(identifier | simple_method_call) .} identifier.
identifier = letter alphanum*.
alphanum = letter | digit.
letter = � | 	 | .. | 
 | � | � | .. | 
 | _.
digit = � | � | .. | �.

method_def = abstract_method_def | concrete_method_def.
abstract_method_def = �	������ method_signature ;.
concrete_method_def = method_signature block.
method_signature = ([�����] type | ����) identifier ( typed_parameter_list ) [�����].
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variable_def = variable_decl [ = expr() ] ;.
variable_decl = [�����] type identifier.
typed_parameter_list = [variable_decl {, variable_decl}].
untyped_parameter_list = [identifier {, identifier}].

advice_def = advice_type ( typed_parameter_list ) [[ pointcut_expr ]] advice_body.
advice_type = 	����� | ����� | 	����� ����� | ������.
advice_body = block.

pointcut_def = abstract_pointcut_def | concrete_pointcut_def.
abstract_pointcut_def = �	������ �������� pointcut_signature ;.
concrete_pointcut_def = �������� pointcut_signature [[ pointcut_expr ]] [;].
pointcut_signature = identifier ( typed_parameter_list );

expr = unary_expr {binop unary_expr}.
unary_expr = simple_expr | ( expr ) | unop unary_expr.
simple_expr = method_call | nested_identifier | real_literal | integer_literal |

string_literal | bool_literal | ����.
method_call = {(identifier | simple_method_call) .} simple_method_call.
binop = logical_binop | arithmetical_binop.
unop = logical_unop | arithmetical_unop.
arithmetical_unop = ++ | -- | -.
arithmetical_binop = + | - | * | / | < | > | <= | >= | == | !=.
logical_binop = && | ||.
logical_unop = !.
bool_literal = ���� | �����.
real_literal = digit+ . digit+.
integer_literal = digit+.
string_literal = " any_char_not_quote* ".

pointcut_expr = unary_pc_expr {logical_binop unary_pc_expr}.
unary_pc_expr = simple_pointcut_expr | ( pointcut_expr ) | logical_unop unary_pc_expr.
simple_pc_expr = call_pc | execution_pc | within_pc | cflow_pc | target_pc |

this_pc | args_pc | return_pc | pointcut_reference.
call_pc = ���� ( method_pattern ).
execution_pc = ��������� ( method_pattern ).
within_pc = ������ ( type_pattern ).
cflow_pc = ����� ( pointcut_expr ).
target_pc = ������ ( full_qualified_name ).
this_pc = ���� ( full_qualified_name ).
result_pc = ������ ( full_qualified_name ).
args_pc = ���� ( full_qualified_name {, full_qualified_name} ).
pointcut_reference = identifier ( untyped_parameter_list ).
method_pattern = [access_pattern] (type_pattern | ����) [type_pattern .]

id_pattern (signature_pattern) [�����].
id_pattern = wildcard_literal.
type_pattern = wildcard_literal {. wildcard_literal} [+].
signature_pattern = [type_pattern {, type_pattern} [, ..] | ..].
access_pattern = [!] access_modifier [+].
access_modifier = ��	��� | ��������� | ������� | �������.
wildcard_identifier = * {alphanum+ [*]} | letter {alphanum} {* alphanum+} [*].

block = { command_sequence }.
command_sequence = (block | try_block | statement)+.
try_block = ��� block (����� ( variable_decl ) block)+.
statement = foreach_stmt | if_stmt | expr_stmt | assign_stmt | return_stmt |

loop_control_stmt | skip_stmt.
foreach_statement = ������� ( variable_decl : expr ) block.
if_else_statement = �� ( expr ) block [���� block].
expr_stmt = expr ;.
assign_stmt = (variable_decl | nested_identifier) = expr ;.
return_stmt = ������ [expr] ;.
loop_control_stmt = (	���� | ��������) ;.
skip_stmt = ���� ;.
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Abstract. In the Model-Driven Architecture initiative, software artefacts are 
represented by means of models that can be manipulated. Such manipulations 
can be performed by means of transformations and queries. The standard 
Query/Views/Transformations and the standard language OCL are becoming 
suitable languages for these purposes. This paper presents an algebraic 
specification of the operational semantics of part of the OCL 2.0 standard, 
focusing on queries. This algebraic specification of OCL can be used within the 
Eclipse Modeling Framework to represent models in an algebraic setting and to 
perform queries or transformations over software artefacts that can be 
represented as models: model instances, models, metamodels, etc. In addition, a 
prototype for executing such OCL queries and invariants over EMF models is 
presented. This prototype provides a compiler of the OCL standard language 
that targets an algebraic specification of OCL, which runs on the term rewriting 
system Maude. 

Keywords: MDA, OCL queries and invariants, metamodeling, algebraic 
specification. 

1   Introduction 

Model-Driven Development is a field in Software Engineering that, for several years, 
has represented software artefacts as models in order to improve productivity, quality, 
and economic income. Models provide a more abstract description of a software 
artefact than the final code of the application. A model can be built by defining 
concepts and relationships. The set of primitives that permit the definition of these 
elements constitutes what is called the metamodel of the model. 

Interest in this field has grown in software development companies due to several 
factors. Previous experiences with Model Integrated Computing [1] (where embedded 
systems are designed and tested by means of models before generating them 
automatically) have shown that costs decrease in the development process. The 
consolidation of UML as a design language for software engineers has contributed to 
                                                           
* This work was supported by the Spanish Government under the National Program for Re-

search, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01. 
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software Model-Driven Development by means of several CASE tools that permit the 
definition of UML models and automated code generation. The emergence of 
important model-driven initiatives such as the Model-Driven Architecture [2], which 
is supported by OMG, and the Software Factories [3], which is supported by 
Microsoft, ensures a model-driven technology stock for the near future. 

Model-Driven Development has evolved into the Model-Driven Engineering field, 
where not only design and code generation tasks are involved, but also traceability, 
model management, metamodeling issues, model interchange and persistence, etc. To 
fulfil these tasks, model transformations and model queries are relevant tasks that 
must be solved. In the MDA context several open-standards are proposed to handle 
this. The standard Meta-Object Facility (MOF) [4] provides a way to define 
metamodels. The standard proposal Query/Views/Transformations (QVT) [5] will 
provide support for both transformations and queries. While model transformation 
technology is being developed [6-8], the Object Constraint Language (OCL) remains 
as the best choice for queries. 

OCL [9] is a textual language that is defined as a standard “add-on” to the UML 
standard. It is used to define constraints and queries on UML models, allowing the 
definition of more precise and more useful models. It can also be used to provide 
support for metamodeling (MOF-based and Domain Specific Metamodeling), model 
transformation, Aspect-Oriented Modeling, support for model testing and simulation, 
ontology development and validation for the Semantic Web, among others. Despite its 
many advantages, while there is wide acceptance for UML design in CASE tools, 
OCL lacks a well-suited technological support.  

In this paper, we present an algebraic specification of generic OCL queries, by 
using Maude [10], that can be used in a MOF-like industrial tool. Maude is a high-
level language and a high-performance system supporting executable specification 
and declarative programming in rewriting logic. From a technological point of view, 
Maude provides a flexible parser, reflection, parameterization and an efficient 
implementation of associative-commutative-pattern matching that permits obtaining 
efficient executable specifications, among many other features. From a theoretical 
point of view, rewriting logic is an expressive logical framework, in which many 
other logics can be naturally expressed due to its reflective character. In addition, 
several formal analysis tools have been build for Maude taking advantage of its 
reflective features: the Maude Church-Rosser Checker, the Maude Inductive Theorem 
Prover, the Maude Sufficient Completeness Checker, the Maude termination tool, 
among others (see [11] for a roadmap). 

The algebraic specification of OCL has been developed in the MOMENT 
framework (MOdel manageMENT) [12], which provides a set of generic operators to 
deal with models. The MOMENT operators use OCL queries to perform model 
queries and transformations, so that the part of OCL that provides support for 
methods and messages has not been taken into account. 

The structure of the paper is as follows: Section 2 provides an example; Section 3 
describes the algebraic specification of OCL, indicating the support for basic data 
types and collection types, and the support for collection operations; Section 4 
presents the integration of the algebraic specification of OCL within an industrial 
modelling framework; Section 5 provides the architecture of the prototype; Section 6 
presents some related works; Section 7 provides some conclusions and ongoing work. 
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2   The Coach Company Example 

The Meta-Object Facility standard (MOF) [4] provides a metadata management 
framework and a set of metadata services to enable the development and inter-
perability of model and metadata-driven systems. The main achievement of this 
standard is the definition of a common terminology in the Model-Driven Architecture 
initiative, which can be used conceptually in other model-driven approaches.  

As an example we have modelled a simple coach company in UML. In this design, 
a coach has a specific number of seats and can be used for regular trips or for private 
trips. In regular trips, the tickets are bought individually. In private trips, the whole 
coach is rented for a trip. The model is shown in UML notation in Fig. 1. The 
example provides a specific UML model, and the queries are applied to its instances. 
The OCL-like specification that is presented can also be used for queries over any 
software artefact that might be defined following the MOF conceptual framework: 
metamodels, regular models, and instances of models. 

 

Fig. 1. Coach company model 

OCL queries1 permit a more precise definition of the model above by adding 
constraints. For instance, we can indicate that overbooking is not allowed in a regular 
trip by means of the following invariant: 

context Coach: 
inv: self.trips -> select( t:Trip | t.oclIsType(RegularTrip))  

-> forAll(r:Trip | r.oclAsType(RegularTrip).passengers -> size()  
<= r.coach.numberOfSeats -> sum())  

3   Algebraic Specification of Generic2 OCL Queries 

In this section, we describe the parameterized algebraic specification of OCL that 
permits the query of either metamodels or UML models. The Maude term rewriting 
system [10] has been used for this purpose. Maude provides an algebraic specification 
language that belongs to the OBJ family3. Its equational rewriting mechanism 

                                                           
1 We consider that an invariant is built on an OCL query that returns a Boolean value. Thus, 

although we talk about invariants, we are also using OCL queries. 
2 In this work, OCL genericity refers to the possibility of reusing the OCL specification for any 

software artefact that can be represented as a model, including metamodels. 
3 In this paper, we assume some basic knowledge about algebraic specifications and OBJ-like 

notation. We refer to [12] for more details. 
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animates the OCL algebraic specification over a specific model instance, providing 
the operational semantics for OCL expressions. We have developed a plug-in that 
embeds the Maude environment into the Eclipse framework so that we can use it for 
our purposes. 

3.1   Overview of the Parameterized OCL Algebraic Specification 

In Maude, functional modules describe data types and operations on them by means 
of membership equational theories. Mathematically, such a theory can be described as 
a pair (Σ, E ∪ A), where: Σ is the signature that specifies the type structure (sorts, 
subsorts, kinds, and overloaded operators); E is the collection of equations and 
memberships declared in the functional module; and A is the collection of equational 
attributes (associativity, commutativity, and so on) that are declared for the different 
operators. Computation is the form of equational deduction in which equations are 
used from left to right as simplification rules, with the rules being Church-Rosser and 
terminating.  

OCL collection types and their operations have been defined in a parameterized 
algebraic specification, called OCL-SUPPORT{X :: TRIV}. Fig. 2 shows the elements 
involved in the parameter passing mechanism diagram. TRIV is the algebraic 
specification of the formal parameter, which is called theory in Maude.  

p

MM

p’

h

TRIV OCL-SUPPORT{X::TRIV}

SigMM OCL-SUPPORT{MM}

Formal parameter inclusion

Actual parameter inclusion
Actual parameter
specification

Value
specification

parameter
passing
morphism

induced
passing
morphism

Formal parameter
specification

Parameterized
specification

 

Fig. 2.  Parameter passing diagram for the OCL-SUPPORT{X :: TRIV} parameterized module 

SigMM is an algebraic specification that is obtained from a specific metamodel 
automatically. The SigMM specification constitutes the actual parameter for the OCL-
SUPPORT{X :: TRIV} module and provides a constructor for each type that is defined 
in the metamodel and an inheritance hierarchy among the types that appear in the 
metamodel. The MM view is the morphism that relates the elements of the TRIV 
formal parameter to the elements of the SigMM actual parameter.  

OCL collection types and related operations have been generically specified in the 
parameterized module OCL-SUPPORT{X :: TRIV}, where the formal parameter X has 
the trivial theory as type. The trivial theory only contains a sort Elt (referred to as 
X$Elt in the OCL specification) that represents the sort of elements that can be 
contained in an OCL collection. This sort represents the OCLAny type of the standard 
OCL specification. The OCL-SUPPORT{X::TRIV} module imports the basic data 
types and provides the constructors that are needed to define collections of elements. 
It provides collection operations as well. 
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In Fig. 2, p and p’ are inclusion morphisms that indicate that the formal parameter 
specification is included in the parameterized specification, and that the actual 
parameter specification is included in the value specification, respectively. The h 
morphism is the induced passing morphism that relates the elements of the 
parameterized module to the elements of the OCL-SUPPORT{MM} value specifi-
ation by using the MM parameter passing morphism. 

3.2   Algebraic Specification of OCL Types 

Types in OCL are divided into basic data types, collection types, and user-defined 
types. In this section, the algebraic support for the first two kinds of types is 
presented. 

3.2.1   Basic Data Types 
In OCL, there are four basic data types that have a direct correspondence to Maude 
basic data types. In Table 1, we show the correspondences between OCL 2.0 and the 
Maude data-type system and their corresponding primitives. In the table, when the 
operations have different symbols in OCL and Maude, we indicate the Maude symbol 
in brackets. 

Table 1. OCL and Maude data-type correspondences 

OCL 2.0 Maude Common operators 
Boolean Bool or, and, xor, not, = (==), <> (=/=), implies, if-then-else-endif (if-then-else-fi) 
Integer Int = (==), <> (=/=), <, <=, >, >=, +, -, *, / (quo), mod (rem), abs, max, min  
Real Float /, round (ceiling), floor 
String String concat (+), size (length), substring(substr), = (==), <> (=/=) 

3.2.2   Collection Types 
OCL provides four specific collection types that are defined as follows: 

− A Set is a collection that contains instances of a valid OCL type, where order is not 
relevant and duplicate elements are not allowed. 

− An OrderedSet is a set whose elements are ordered. 
− A Bag is a collection that may contain duplicate elements. Elements in a bag are 

not ordered. 
− A Sequence is a bag whose elements are ordered. 

To take into account the uniqueness and order features of an OCL collection, we 
introduce two intermediate sorts and their constructors (shown in Table 2): 
Magma{X} and OrderedMagma{X}. Basically, we define the sort Magma{X} as the 
sort of the term that represents a group of elements that are not ordered by means of 
the association and the commutativity attributes. The constructor for this sort has the 
symbol “,” and is associative and commutative. Thus, working with integers, “1, 2, 3” 
is a term that represents a valid Magma{Int}. In addition, we can state that “1,2,3” and 
“3,2,1” represent the same group of elements modulo the commutative and asso-iative 
attributes. 

Instead, the constructor of the sort OrderedMagma{X} does not have the commu-
ativity property, producing terms that represent ordered concatenations of elements. 
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The constructor for this sort has “::” as symbol and permits building ordered groups 
of elements by using the common syntax for lists in functional programming. Thus, 
the term “1 :: 2 :: 3” represents a valid ordered magma of integers, and “1 :: 2 :: 3” is 
different from “3 :: 2 :: 1” because the constructor “::” is not commutative. 

Table 2. Specification of groups of elements 

 
 
Terms of the sort Magma{X} are used to define sets (line 8), while terms of the sort 

OrderedMagma{X} are used in ordered sets (line 10). In Table 2, we show the Maude 
code that specifies the Set and OrderedSet types. In our specification, collections of 
collections are allowed by indicating that one collection can be an element of another 
collection (line 4). The sort Collection{X} can be considered as an abstract concept on 
the grounds that there is no specific constructor for it. Each collection has a constant 
constructor that defines an empty collection (lines 9, 11). The types Bag and Sequence 
have also been specified, similarly to the Set and OrderedSet types, respectively. In 
this specification, the uniqueness property of both the collection Set and the collection 
OrderedSet is checked in the operations that join two collections: union, inter- 
section and including for Set, and union, append, prepend, insertAt and including for 
OrderedSet.  

A view has been defined for each Maude simple data type in order to deal with 
collections of simple data types. For instance, to deal with collections of integers, the 
following view is defined: view Int from TRIV to INT is sort Elt to Int . endv   

This view is used to instantiate the OCL-SUPPORT{X} module as OCL-
SUPPORT{Int}. This way, the following example is a valid collection of integers: 

OrderedSet{ Set{1, 2, 3} :: Bag{1, 2, 3, 3} :: Sequence{3 :: 3 :: 2 :: 1}} 

3.3   Loop Operations or Iterators 

Two kinds of operations on collection types can be distinguished in OCL 2.0: regular 
operations and loop operations or iterators. Regular operations provide common func-
tionality over collections. Loop operations or iterators permit looping over the 
elements in a collection while performing a specific action. In this paper, we focus on 
the second type of operations.  

Every loop operation has an OCL expression as parameter. This is called the body, 
or body parameter, of the operation. As a guiding example, we use a standard OCL 
expression that permits obtaining the odd numbers from a set of integers: 

Set{1,2,3,4,5,6} -> select(i  | i.mod(2) <> 0) 

1. sort Magma{X} OrderedMagma{X} . 
2.  subsort X$Elt < Magma{X} OrderedMagma{X} . 
3.  sorts Collection{X} Set{X} OrderedSet{X} . 
4.  subsort Collection{X} < X$Elt . 
5.  subsorts Set{X} OrderedSet{X} < Collection{X} . 
6.  op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] . 
7. op _::_ : Magma{X} Magma{X} -> Magma{X} [assoc ctor] . 
8.  op Set{_} : Magma{X} -> Set{X} [ctor] . 
9. op empty-set : -> Set{X} [ctor] . 
10.  op OrderedSet{_} : OrderedMagma{X} -> OrderedSet{X} [ctor] . 
11. op empty-orderedset : -> OrderedSet{X} [ctor] .
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In this expression, select is the iterator operation and the expression (i | i.mod(2) 
<> 0) is the body. Both iterator operations and body expressions are considered in the 
algebraic specification separately. This separation is needed to simulate higher-order 
functions in Maude by considering body functions as terms that can be passed as 
arguments to iterator operations.  

Using the example of the selection of odd numbers from an integer set, we study 
first how to specify the body of the select expression i  | i.mod(2) <> 0. Expression 
bodies can be evaluated to several types depending on the kind of operator in which 
they are used. For instance, the body expression of a select evaluates to a boolean 
value. Depending on the return type of the body expression, a symbol is associated to 
it indicating the name of the body expression. For the example, we obtain: 

 op isOdd : -> BoolBody{Int} [ctor] . 

The body expression is built by using the following operation: 

op _::_`(_;_`) : Magma{X} BoolBody{X} ParameterList Collection{X} -> Bool  . 

where the first argument is a term that represents a magma of elements, the second 
argument is the corresponding body symbol, the third argument is a variant list of 
parameters that can be empty, and the fourth argument is the whole initial collection 
to which the first argument belongs. To define a body function, the axioms must be 
provided by the user in Maude notation. For the example, we define the following 
equation: 

var intN : Int .  var intCol : Collection{Int} .  var PL : ParameterList . 
eq intN :: isOdd ( PL ; intCol ) = ((intN rem 2) =/= 0) . 

Once the body expression has been defined, we provide an algebraic specification 
of the operational semantics of the select operation for sets. The different collection 
operations have been defined as function symbols (terms of the sorts that are shown in 
Table 3), depending on the return type of each operation. For instance, the select 
operation, which returns a collection of elements, is defined as follows: 

op select : -> Fun{X} [ctor] . 

The operational semantics of iterator operations is defined independently of body 
operations. This fact permits the reuse of the algebraic specification of iterator 
operations simulating them as higher-order functions. Three axioms constitute the 
algebraic specification of the select operator for sets (as shown in Maude notation in 
Table 4). These are the arguments of select: BB is a variable that contains the boolean 
body expression, PL is a parameter list for the body operator, and Col is the original 
set. The first axiom considers the recursion case where there is more than one element 
in the set. If the body function validates to a true value, the element is added to the 
resulting set. Finally, the recursion over the rest of the elements continues. The 
second axiom considers the recursion case when only one element remains in the set 
so that the recursive trail ends. The third axiom considers the case where the set is 
empty. 

To invoke an iterator in an OCL-like way, the following operation is used: 

op _->_`(_;_;_`) : Collection{X} Fun{X} BoolBody{X} ParameterList Collection{X} -> 
Collection{X} . 
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where the first argument is the collection to be looped, the second argument is an 
iterator symbol, the third argument is the body operation, the fourth argument is a list of 
arguments for the body operation, and the fifth argument is the proper collection that is 
looped. The fifth argument is useful when the collection must be navigated in the body 
operation. When the iterator is processed, if this argument is not added, the recursion 
mechanism consumes the elements of the collection, and queries over the whole 
collection would not be complete. To invoke the select iterator over a set of integers 
with the body isOdd we use: Set{1, 2, 3, 4, 5, 6} -> select(isOdd ; empty-params ; empty-set) . 

Table 3. OCL collection operations that have been specified 

Collection operator symbols Iterator 
symbols 

 Return 
type 

Collection Set Ordered-
Set 

Bag Sequence Collection 

Fun{X} Collec-
tion 

union, 
flatten, 
including, 
excluding, 
iterate 

--, 
inter-
secti-on

--, 
insertAt, 
append, 
prepend 

intersection insertAt, 
append, 
prepend 

select, 
reject, any,  
sortedBy, 
collect, 
collectNest
ed, iterate 

EltFun{X} Element   first, last, 
at 

 first, last, 
at 

 

BoolFun{X} Boolean 
value 

includes, 
includesAll, 
excludes, 
excludesAll, 
isEmtpy, 
notEmpty 

    one, forAll, 
forAll2

4
, 

exists, 
isUnique 

IntFun{X} Integer 
value 

count, size, 
sum, product 

 indexOf  indexOf  

Table 4. Axiomatic specification of the select operation for sets 

 

4   Algebraic Specification of Metamodels and Models 

The advantage of OCL is that user-defined types can be used in expressions to 
perform queries on software artefacts (namely models). User-defined types are the 
types that can be used in a model: classes, associations, enumerations, and so on. One 
of the keys to success in the use of the OCL algebraic specification is the integration 
with an industrial modelling environment. In this way, OCL expressions can be 
                                                           
4 The forAll2 operation has been included to provide support when two iterators are being used 

in the forAll operation. 

eq Set{ N , M } -> select ( BB ; PL ; Col ) = 
if (N :: BB ( PL ; Col )) then  

Set{ N } -> including ( ( Set{ M } -> select ( BB ; PL ; Col )) ) -> flatten 
else Set{ M } -> select ( BB ; PL ; Col ) fi . 

eq Set{ N } -> select ( BB ; PL ; Col ) = if (N :: BB ( PL ; Col )) then Set{ N } else empty-set fi . 
eq empty-set -> select ( BB ; PL ; Col ) = empty-set .
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evaluated in a graphical model without having to prepare the information in a specific 
format manually. 

In our case, we have chosen the Eclipse Modeling Framework (EMF) [13]. EMF is 
a modeling environment that is plugged into the Eclipse platform and provides a sort 
of implementation of the MOF. It brings code generation capabilities and enables the 
automatic importation of software artefacts from heterogeneous data sources. 

Within the EMF, Ecore is the set of primitives that is used as metametamodel. 
Ecore can be viewed as an implementation of a subset of the class diagram of the 
MOF metamodel (or of the UML metamodel). An Ecore model is mainly constituted 
by EClass instances (informally called classes) that are related to each other by means 
of inheritance relationships and EReference instances (informally called references in 
Ecore and associations in UML)5. Using the MOF terminology, an Ecore model may 
represent either a metamodel at the M2-layer (for instance, the UML metamodel) or a 
model at the M1-layer (for instance, a UML model). Similarly, an Ecore model 
instance may represent either a model that conforms to a metamodel at the M1-layer 
(for instance, a UML model) or a model instance at the M0-layer (for instance, the 
instances of a UML model). From now on, the OCL support is explained by using the 
example of the UML model, although it would be exactly the same as defining OCL 
queries over Ecore metamodels.  

To perform OCL queries over EMF software artefacts, three types of projection 
mechanisms have been specified. The first obtains an algebraic specification from a 
metamodel. The second represents a model as a term in Maude. Finally, the third is 
the OCL expression compiler that targets Maude code. 

4.1   A Model as an Algebraic Specification 

The first projection mechanism obtains the algebraic specification6 that corresponds to 
a specific Ecore model automatically by assigning a code template to each concept of 
the Ecore metamodel. The algebraic specification that is generated by means of these 
templates is used as an actual parameter for the OCL-SUPPORT{X::TRIV} module 
(see Fig. 2). 

As example, we explain the code that is generated for an Ecore class. An Ecore 
class is constituted by attributes and references. This information is used to generate 
an algebraic sort that represents the collection of instances of this class and a 
constructor, whose arguments are: an internal identifier (represented by the type Qid7 
in Maude), a group of arguments that represent the attributes (basic data types in 
Maude) and a group of identifier collections (representing references). For instance, 
                                                           
5 For further information on the Ecore metamodel and the representation of Ecore models we 

refer to [13]. 
6 The algebraic specification that is generated for a given metamodel (defined in EMF as an 

Ecore model) permits the representation of models as algebraic terms. Thus, models can be 
manipulated by our model management operators. Algebraic specifications of this kind do not 
specify operational semantics for the concepts of the metamodel; they only permit the 
representation of information for model management issues. 

7 A Qid value is defined by a quote followed by an string (see [12] for further details). For 
instance, ‘trip1 is a valid Qid value. Qid values are used to define implicit instance identifiers 
in our framework. 
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when this code template is applied to the RegularTrip class in Fig. 1, we obtain the 
following Maude code: 

sort RegularTrip . 
op `(RegularTrip_ _ _ _ _`) : Qid Int Int OrderedSet {QID} OrderedSet {QID}  -> RegularTrip [ctor] . 

where the first argument is the internal identifier of the instance, the second argument 
is the inherited tripnr attribute, the third argument is the availableSeats argument, the 
fourth argument is the inherited coach reference (UML role), and the fifth argument is 
the passengers reference (UML role). This template is only applied to specific 
classes. When a class is defined as abstract, the code only contains the declaration of 
the sort and no constructor is generated, indicating that this class cannot be 
instantiated. 

4.2   An Instance of a Model as an Algebraic Term 

The second projection mechanism permits us to serialize an Ecore model instance as a 
term of the algebraic specification that corresponds to the Ecore model. The instance 
of a model is represented as a set of instances of the classes that constitute the model 
MM. This second projection mechanism is constituted by several code templates that 
serialize each class instance to a term of the sort that has been generated from the 
corresponding class by means of the first projection mechanism. 

For example, the instance of the model Trip (shown in Fig. 3) is serialized as a set, 
where all the elements are instances of the classes of the model, by using the 
constructors of the serialized algebraic specification sigMM, as follows: 

Set { (Coach ‘coach1 1 10 OrderedSet { ‘person1 } ), 
(RegularTrip ‘trip1 1 9 OrderedSet {‘coach1 } OrderedSet { ‘person1} ), 
(Person ‘person1 "Peter" OrderedSet { ‘trip1 } )  }  

The internal structure of a term is transparent to the user of the algebraic specifi-
cation due to some navigation operations, which permit the user to navigate in an 
OCL-like way throughout the roles and attributes of the objects of the model instance. 

tipnr : int = 1
availableSeats : int = 9

trip1 : RegularTrip

name : string = Peter

person1 : Person
id : int = 1
numberOfSeats : int = 10

coach1 : Coach

 

Fig. 3. Object diagram defined as an instance of the model defined in Fig. 1 

Finally, the OCL-SUPPORT{MM} module provides all the operations that are 
needed to define an instance of a model (constructors to define collections, to define 
basic data type values and user-defined types) and to apply OCL queries to instances 
of any model (collection operations, iterators, and user-defined navigation 
operations).  

4.3   Translation of OCL Expressions into Maude Code 

The third projection mechanism compiles standard OCL code to Maude code that 
uses operations of the OCL-SUPPORT{MM} module, which have been introduced in 
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Section 3. As example of this compilation process, we show that the query that is used 
in the invariant in Section 2 can be written by defining the body expression of the 
forAll iterator as a body operation. This body operation checks that all regular trips 
have a lower number of passengers than the number established by the 
numberOfSeats attribute of the corresponding Coach instance. The Maude code that is 
automatically obtained for the body expression of the forAll operator (by using the 
operator that is explained in Section 3.3) in the example is as follows: 

var self : trip-Trip . var tripModel : Set{trip} .  
op notOverbooked : -> BoolBody{trip} [ctor]. 
ceq self :: notOverbooked ( PL ; tripModel ) = 
 ((((self :: oclAsType ( ? "RegularTrip" ; tripModel )) :: passengers ( tripModel))  
 -> size) <= ((self :: coach ( tripModel ) :: numberOfSeats) -> sum))  
if self :: trip-Trip . 
eq self :: notOverbooked ( PL ; tripModel ) = false [owise]. 

where: self is a variable of type Trip and tripModel is a set that represents the model 
instance to be queried; expressions with the form c :: att permit the navigation of an 
attribute att of the class instance c; and expressions with the form c :: ref ( 
ModeInstance ) are used to navigate the instances associated to the class instance c 
through the reference ref in the model instance ModelInstance. The invariant is coded 
as follows: 

red tripModel -> select ( oclIsTypeOf ; ? "Coach" ; tripModel ) -> forAll(notOverbooked; empty-params ; 
tripModel) . 

where tripModel is a variable that contains the model instance to be checked, and the 
select and the forAll operation provide the body expression of the invariant in Maude 
code by using the oclIsTypeOf operator and the above body expression notOver-
booked. Thus, we check if all the instances of the class Coach hold the notOver-
booked invariant. 

5   MOMENT-OCL: A Prototype for Executing Algebraic OCL 
Expressions Within the Eclipse Modeling Framework 

The OCL algebraic specification that has been presented in the paper permits both the 
representation of models as sets and the use of queries and invariants over them. This 
permits the use of OCL expressions in algebraic model transformations, such as those 
presented in [6]. In addition, we have developed a simple OCL editor that permits the 
evaluation of OCL queries and invariants over EMF models or model instances. In 
this section, we provide a brief description of the architecture of this prototype, which 
is called MOMENT-OCL. 

Fig. 4 shows the components of the MOMENT-OCL prototype that permit the 
execution of algebraic OCL expressions over EMF models: 

− The OCL Projector component is the module that projects the OCL expression to 
Maude code. It makes use of the Kent OCL library [14] to validate the syntax and 
the semantics of the expression. The process of compilation from OCL to Maude 
follows the typical structure of a language processor. The process is divided in two 
phases: an initial analysis phase and a second synthesis phase.  
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In the first phase, we have reused the OCL support of the Kent Modelling 
Framework (KMF) [14], which provides lexical, syntactical and semantical 
analysis of OCL expressions over an EMF model. KMF analyzes an OCL 
expression, taking into account the semantics of the model, and produces an 
Abstract Syntax Tree (AST) to represent the data that is needed in the synthesis 
phase. 

 

Fig. 4. MOMENT-OCL Architecture 

In the second phase, once an OCL expression has been analyzed by KMF 
correctly, the AST is parsed and Maude code for body expressions, queries and 
invariants are produced in order to evaluate OCL expressions over EMF models in 
Maude.  

− The Module Loader component obtains the algebraic specification from a meta-
model, by instantiating the OCL-SUPPORT{X::TRIV} module with the signature 
obtained for a specific metamodel. This algebraic specification is extended with the 
Maude code obtained from the compilation of OCL expressions by means of the 
OCL Projector component. The Module Loader uses three other components: the 
M2 Projector, which projects a metamodel MM (the Coach model in the example) 
as the signature SigMM; the M1 Bridge, which projects a model (model instance in 
the example) as a term of the corresponding algebraic specification OCL-
SUPPORT{MM}; and the Kernel Loader, which instantiates the parameterized 
algebraic specification of OCL with the signature SigMM, providing the formal 
environment where OCL expressions for the model MM can be evaluated. 

− The OCL Editor permits the definition of OCL queries and invariants over EMF 
models and provides syntactical and semantical analyses of the expressions by 
reusing this functionality from the KMF. It permits the evaluation of queries and 
invariants. If we consider an invariant or query, we can analyze the expression 
syntactically and semantically, evaluate it by showing the result, or parse it to 
Maude code, as indicated in Fig. 4. 

6   Related Works 

Although OCL is not as well supported as UML in some CASE tools, there is a 
growing interest in providing support for OCL in order to achieve different goals. In 
[15], several tools that support OCL are studied. Taking them and others into account, 
some technological examples, which are classified by their main goal, are provided: 
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− Model transformation: MOMENT, ATL, YATL. 
− Model verification: the KeY System. 
− Requirements validation: ITP/OCL, the USE tool, the Dresden OCL Toolkit,  

Borland Together, OSLO, Rational Software Modeller. 
− Code generation (also for requirements validation): Octopus, OCLE, Kent OCL 

tool. 
− OCL Testing: HOL/OCL. 

 

Fig. 5. MOMENT-OCL screenshot 

Nevertheless, only a few of them rely on formal methods to provide support for the 
operational semantics of OCL, and even fewer tools are integrated in (commercial) 
CASE tools. We focus on some tools that rely on formal methods in this section. 

The KeY system [16] provides functionality for formal specification and deductive 
verification within a commercial CASE tool (Together Control Center). In this 
approach, the user defines a software artefact in UML that can be annotated with OCL 
constraints. The OCL constraints are translated into formulas of JavaDL (a dynamic 
logic for Java) that can be reduced by means of an interactive theorem prover.  

The USE tool [17] provides interactive validation of OCL constraints over a 
model. This tool reads the input model and the OCL constraints from textual 
resources, supporting class diagrams, object diagrams and sequence diagrams. After-
wards, objects and links can be graphically created to define a snapshot of a running 
system. This tool has been extended for the automatic generation of test cases and 
validation cases. 

The ITP/OCL tool [18] provides automatic validation of UML static class dia-
grams with respect to OCL constraints. It provides an algebraic OCL specification 
using Maude, where UML class diagrams and object diagrams are formalized by 
means of algebraic specifications in membership equational logic and where OCL 
constraints are defined as formulas in membership equational logic theories. A 
graphical front-end is being developed for the ITP/OCL tool, which permits the 
definition of class diagrams and the definition of correct object diagrams. 
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In these last approaches, only UML diagrams are considered for validating OCL 
expressions. In the MOMENT-OCL specification, OCL queries can be automatically 
applied either to metamodels or to models that may be defined in EMF by making use 
of the Maude parameterization mechanism, following a more automated model-driven 
oriented approach. In our approach, while Maude is used to execute OCL expressions, 
the OCL expressions can be applied to graphical model-based software artefacts 
through the EMF. Whenever EMF, and related support, is used to develop a (domain 
specific or UML) modelling environment, we can use MOMENT-OCL to provide 
invariant checking and query evaluation. Thus, our philosophy does not consist in 
developing a new modelling environment to provide OCL support, we provide it for 
other existing modelling approaches. Other java-based approaches that integrate OCL 
within the EMF are [14, 19, 20], from which we took the Kent library to reuse the 
analysis phase for the ocl compilation. 

By using Maude, we avoided the development of a new plugin for providing 
support for OCL from scratch. We specified many first-order properties in member-
ship equational logic by means of operators that are applied modulo associativity and 
commutativity. In addition, the underlying membership equational logic enjoys a 
precise mathematical semantics [21] and an efficient implementation in Maude [22]. 

7   Conclusions and Further Work 

OCL is becoming a de-facto standard for defining constraints and queries in the 
Model-Driven Engineering field. The number of tools that provide support for this 
language is growing, and although the operational semantics of OCL is said to be 
formal, only a few tools rely on formal methods to define its operational semantics. 

In this paper, we have introduced an algebraic specification of part of the 
operational semantics of OCL 2.0 from an implementation point of view. This specifi-
cation takes advantage of several features of Maude for the sake of reuse: parameter-
ization, associative-commutative-pattern matching, a flexible parser, among others.  

In the specification we have taken into account the Ecore metamodel8 and part of 
the OCL standard that permits the definition of queries and invariants. This 
specification is used to perform model queries in the EMF and to represent EMF 
software artefacts as algebraic specifications or as terms. Such terms can be 
manipulated by means of model management operators in the MOMENT framework 
(MOdel manageMENT) [12], which provides a set of generic operators to deal with 
models. The MOMENT operators use OCL queries to perform model queries and 
transformations, so that the part of OCL that provides support for methods and 
messages has not been taken into account. 

The OCL specification has been developed generically so that it can be used for 
any kind of metamodel, model or model instance. Thus, not only can OCL be studied 
in an algebraic setting, it can also be used in the well-known modelling environment 
EMF. Further work consists in exploiting the formal features of the OCL specification 
from a more-theoretical point of view and its application to real case studies.  

                                                           
8 Interface and simple data type definition has not been addressed yet in the specification. 
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Abstract. MDA generally involves applying multiple model transfor-
mations. These transformations need to be applied in a particular con-
figuration, depending on the targeted platform. Several techniques exist
to manage the configuration of various software elements or components.
These techniques focus on the composition rules of the various elements.
A well-known application area of such techniques are Software Product
Lines, in which the various features that make up a software product
need to be configured. In this paper, we will investigate how several of
these techniques can be applied to manage the configuration of model
transformations in an MDA context.

1 Introduction

Model transformations play a central role in Model-Driven Engineering, but
currently they are often applied stand-alone, much like a compiler. In an MDA
context, however, various model transformations need to be combined and inte-
grated in a build process. The type of transformations that are generally used in
combination are refinement and refactoring transformations. Since these model
transformations cannot always be combined safely [1], configuration techniques
can help manage the composition of model transformations in an MDA context.
In a model-driven build process, however, other transformations than refactoring
and refinement transformations can occur (e.g. translation to other languages),
which means that the configuration techniques must support model transforma-
tions in general.

Several techniques exist to manage the configuration of various software el-
ements or components. These techniques focus on the composition rules of the
various elements. The problem domain of configuration existed already within
the Artificial Intelligence research area, and several techniques were used to
support configuration decisions [2]. In the domain of Software Product Lines
(SPL) [3], configuration techniques are used heavily to express the composition
rules of the various features that make up a software product.
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In this paper, we will investigate how several of these techniques can be
applied to manage the configuration of refinement and refactoring transforma-
tions in an MDA context. First, an introduction of the configuration techniques
is given. A running example is introduced to illustrate the model transforma-
tion configuration issues that can occur. Several criteria that are relevant for
the configuration of model transformations are introduced for the purpose of
comparison. After applying the selected configuration techniques to our running
example, a comparison is made, based on the criteria given earlier. To conclude,
we discuss the scope and impact of this comparison.

2 Configuration Techniques

This section gives an introduction of several techniques that can be used to
configure model transformations.

2.1 Knowledge-Based Systems

Since the 1980’s configuration and a configuration task are well-known prob-
lem domains in Artificial Intelligence (AI). A configuration is defined in AI
as an arrangement of parts and a configuration task is defined as a problem-
solving activity that selects and arranges combinations of parts to satisfy given
specifications [2]. Knowledge-based systems are used to make configuration de-
cisions. Other AI approaches are constraint reasoning, model-based reasoning,
case-based reasoning and Description Logics.

In configuration tasks, much of the “design” work goes into defining and
characterising the set of possible parts. The set of parts must be designed so
they can be combined systematically and so they cover the desired range of
possible functions. A specification language for a configuration task describes the
requirements that configurations must satisfy. Configuration decisions are made
incrementally. Depending on the alternatives chosen, different required parts
will be needed, and different further requirements will be noted. This dynamic
aspect of the problem suggests the use of dynamic and hierarchical constraint
methods.

One of the first and best known knowledge-based configuration systems is
the XCON system for configuring VAX computer systems [4]. This configura-
tion system has a component database containing the parts and a container
template database that describes how parts can physically contain other parts.
The knowledge for driving the configuration task is represented mostly by pro-
duction rules. The decision making process is organised in stages and subtasks.

2.2 Domain-Specific Languages

Domain-specific languages (DSLs) cover a broad spectrum of applications [5]. For
the purpose of this paper, we focus on the use of DSLs for configuring refactoring
and refinement transformations. The tools for developing a DSL can be classified
into the following two categories:
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– Grammar definition and/or meta-modelling languages and frameworks
– Transformation engines (including rule-based rewrite engines and code gen-

erators)

The main vehicle for expressing the constraints within which transforma-
tions may be combined, is the grammar definition formalism (e.g. SDF [6])
or meta-modelling language (e.g. MOF [7] or Ecore [8]). Since the expressive-
ness/efficiency of grammar definition and meta-modelling languages is limited,
additional tools are used to express complex constraints. These tools include
transformation languages (e.g. ASF+SDF [6] rewrite rules, Stratego/XT [9] and
the ATLAS Transformation Language (ATL [10]) and specialised constraint lan-
guages (e.g. OCL [11]).

2.3 Feature Modelling

Feature Modelling has its origin in the Feature Oriented Domain Analysis meth-
od (FODA) [12]. Its initial goal was to document the results of analysing the
commonalities and variabilities [13] of software product families/lines. Feature
models allow to express variability at an abstract level without committing to
any particular variability mechanism. The modelling of the semantic context
of features requires some additional modelling formalisms. For example, con-
straints can specify the valid and invalid feature combinations. These constraints
can be expressed in, for example, OCL. Several graphical tools for feature mod-
elling exist, however, tool support for transformations and code generation is
limited.

Recently some efforts have been made to formalise feature models. In [14] a
translation of feature models into a context-free grammar is presented.

Feature models can also be used for configuration purposes, demonstrated
by Czarnecki et al. [15]. In this context, a configuration consists of the features
that were selected according to the variability constraints defined by the feature
model. Configuration also refers to the process of deriving a configuration from
a feature model. The configuration process is a transformation process that takes
a feature model and yields another feature model, such that the set of the con-
figurations denoted by the latter diagram is a true subset of the configurations
denoted by the former diagram [15].

The relationship between feature modelling and domain specific languages
(see subsection 2.2) is explored by van Deursen et al. in [16]. An important
conclusion is that feature models can be translated into a DSL grammar (or
meta-model). This is illustrated by their Feature Description Language (FDL),
which follows the same structure as a BNF grammar.

3 Running Example: Instant Messaging Client

As a running example, we use the case study of an instant messaging client,
which has been designed using the Unified Modeling Language (UML). Fig. 1
shows a UML class diagram of parts of the Platform-Independent Model (PIM)
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for a simple instant messaging client. The instant messaging client is able to send
and to receive messages over different kinds of networks (e.g. Jabber/Internet or
SMS)1. It also keeps a list of contacts for each supported network. The Instant-
MessagingClient both uses and implements the ExceptionReporter interface: it
reports raised exceptions either on the command line or on a Network that
implements ExceptionReporter (e.g. a Loop-back network). The design is split
up in a model, edit, view and networking part, each in their own package (the
edit and view packages are not shown). Concrete view and network types are
specified in separate models. These “satellite” models can be merged with the
central PIM using a merging model transformation.

<< Observer , Singleton , Applet >>

InstantMessagingClient

+ init ():
+ start ():
+ stop ():
+ onRecvMsgChange (r:Message):
+ onRecvContactChange (c:Contact ):
+ report (e:Exception ):
−loadSettings ():

model

Contact

+ userId :String
+ name :String
+ status :String

<< Observable >>

ContactList

+ getIdentity (forNw :Network ):Identity
+ getUserName (userId :String ):String

list+

contact+

*
{ordered }

<< Observable >>

NetworkSpecificData

<< Observable >>

Conversation

contact+

Identity

+ password :String

Message

+ sender :String
+ recipient :String
+ content :OclAny

+ send ():
conversation+

message+

edit

contactList+

networking

<< Observable >>

Network

+ name :String
+ recvMsg :Message
+ recvContact :Contact

+ send (msg :Message):
+ login (uid :String ,pwd :String ):
+ logout
+ addContact (c:Contact ):
+ removeContact (c:Contact ):
+ getDefault ():Network[]

model+

conversation+

*{ordered }
model+

<< subscribe >>

model+

<< subscribe >>

network+

1..*
{ordered }

<< subscribe >>

network+

BelongsToNetwork

ExceptionReporter

Fig. 1. Partial PIM class diagram for a simple instant messaging client

The example PIM contains several elements that are not available in the
programming language used for the target platform. These elements are the
“Applet”, “Observer”, “Observable”, “subscribe” and “Singleton” stereotypes,
the “String”, “Integer”, “Exception” and “OclAny” data types, association re-
lationships and specifications of operations (e.g. in OCL, a dynamic diagram or
an Action Language). Model transformations are used to translate each of these
elements to one or more elements that are available in the target programming
environment. The following transformations are applied:

– There are two alternative refinement transformations that generate imple-
menting attributes for associations. Each of them uses a different API for
representing collection types.

1 The Network class in the model actually represents a network connection; this is
why InstantMessagingClient “owns” Network.
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– Depending on the result of these transformations, there are two alternative
transformations that generate accessor methods for each attribute, again
using different collection type APIs. Note that if one chooses a particular
“associations-to-attributes” transformation, one has to choose the “attri-
butes-to-accessors” transformation that uses the same collection type
API.

– There are two alternative transformations that generate observer pattern
infrastructure: one uses existing API and the other generates all infrastruc-
ture. Since the “observer” transformations need to adapt accessor methods,
they depend on the “attributes-to-accessors” transformations.

– There are two alternative transformations that either generate Java applet
infrastructure or J2ME MIDlet infrastructure.

– There is one transformation that generates singleton pattern infrastructure.
This transformation needs to take into account the initialisation control flow
of a class, which is non-standard for applets and MIDlets (the singleton pat-
tern is not allowed to create an object). Hence, this transformation depends
on the applet infrastructure transformations.

– There is one transformation that generates wrappers for asynchronous
methods.

– There are two alternative transformations that translate any OCL types to
native Java types. One uses the simple Java collections, which are provided
by all Java implementations. The other uses the Java 2 collections frame-
work. Note that these are the two collection type APIs that are also used
in the “associations-to-attributes” and “attributes-to-accessors” transforma-
tions. Hence, one again has to choose the transformation with the same col-
lection type API as has been chosen before. In addition, this transformation
should be run after all other transformations that may introduce references
to OCL types.

After these transformations are run, a final transformation is run that trans-
lates the model into code (i.e. a code generator).

4 Criteria for Comparison

Model transformations have specific properties that impose their requirements on
the configuration technique. This section discusses the requirements for each of
these properties and states the comparison criteria for evaluating the
requirements.

4.1 Generality

Model transformations are more general than the software model they are ap-
plied to; they can also be applied to models of another software product line. The
configuration rules for the transformations must therefore be separated from the
configuration rules of the software product line itself. This way, the configuration
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rules of the transformations are reusable over multiple software product lines.
The comparison criteria can be summarised as follows:

– modularity (of configuration rules);
– reusability (of configuration rule modules).

4.2 Mutual Conflicts and Dependencies

The result of applying two or more particular transformations may yield an in-
consistent result or two transformations cannot even be executed in combination
at all [1]. This issue is generally known as the feature interaction problem [17].
Such constraints are inherent to the specific transformations and the configu-
ration rules must be sufficiently expressive to capture them. In addition, the
configuration rules must express the interaction constraints in an efficient way,
allowing for better maintainability of the configuration rules. To allow the con-
figuration technique to scale up to a large number of transformations, it must
be possible to check the transformation interaction constraints locally. The com-
parison criteria can be summarised as follows:

– expressiveness (of interaction constraints for transformations);
– maintainability (of configuration rules);
– locality (of configuration rule verification).

4.3 Platform Dependencies

The result of applying a particular refinement transformation may introduce re-
quirements on the execution context (or target platform) of the software (e.g.
require library javax.swing or javax.microedition.lcdui). It is possible that
the selected transformations impose platform dependencies that cannot be sat-
isfied by any concrete execution context (that is currently available). In [18], a
method for specifying context constraints independently from concrete context is
described. This method uses a query that searches for concrete context instances
that satisfy a particular context constraint. Explicitly including this query into
a configuration model results in a higher-order model. It is sufficient to enable
the inclusion of the parameters for such a query, however, since the query never
changes. This can be done by annotating the model transformation rules in the
configuration. The comparison criteria can be summarised as follows:

– extensibility (of configuration rules with annotations).

5 Case Study

In this section, the configuration techniques introduced in section 2 are applied
to the Instant Messaging running example. The particular advantages and limi-
tations are discussed for each technique.
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5.1 Knowledge-Based Systems

A knowledge-based formalism that promises useful properties for configuration is
Description Logics [19]. An implementation of Description Logics that has proven
its scalability and modularity is the OWL-DL ontology language [20]. Below is
an ontology that describes the configuration rules for our running example2:

Refinement � owl : Thing

implies : Refinement × Refinement (transitive)

Java1Refinement � Refinement

Java2Refinement � Refinement

Accessors � Java1Refinement

Java2Accessors � Java2Refinement

Applet � Refinement

MIDlet � Refinement

AssociationAttributes � Java1Refinement

Java2AssociationAttributes � Java2Refinement

AsyncMethods � Refinement

UMLtoJava � Refinement

DataTypes � Java1Refinement

Java2DataTypes � Java2Refinement

Observer � Refinement

JavaObserver � Refinement

Singleton � Refinement

RefinementConfiguration � Refinement

CompleteRefinementConfiguration � RefinementConfiguration

CompleteRefinementConfiguration ≡ ∃ implies UMLtoJava

� ∃ implies (Accessors � Java2Accessors)

� ∃ implies (Applet � MIDlet)

� ∃ implies (AssociationAttributes �
Java2AssociationAttributes)

� ∃ implies AsyncMethods

� ∃ implies (DataTypes � Java2DataTypes)

� ∃ implies (JavaObserver � Observer)

� ∃ implies Singleton

InvalidRefinementConfiguration � RefinementConfiguration

ImpliesInvalidConfiguration � InvalidRefinementConfiguration

ImpliesInvalidConfiguration ≡ ∃ implies InvalidRefinementConfiguration

Java1AndJava2 � InvalidRefinementConfiguration

Java1AndJava2 ≡ ∃ implies Java1Refinement

� ∃ implies Java2Refinement

AppletAndMIDlet � InvalidRefinementConfiguration

AppletAndMIDlet ≡ ∃ implies Applet

� ∃ implies MIDlet

ObserverAndJavaObserver � InvalidRefinementConfiguration

ObserverAndJavaObserver ≡ ∃ implies JavaObserver

� ∃ implies Observer

2 The abbreviated syntax of the Protégé ontology editor (http://protege.stanford.
edu) is used.
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Note that only the refinement transformations are covered in this ontology.
A separate ontology has been defined for the features that are specific to the
Instant Messaging product line, which includes references to this ontology. This
separate ontology is not shown here due to size constraints.

The ontology uses the “implies” property to determine which refinement
transformations are included in the transformation. This property is transitive,
which allows refinement transformations that are implied by other refinement
transformations to be transitively included in the global refinement configura-
tion.

The “CompleteRefinementConfiguration” concept is equivalent to a logic ex-
pression, which allows for automatically determining its instances. This logic
expression states which refinement transformations should at least be implied
to have a complete configuration. The sub-concepts of “InvalidRefinementCon-
figuration” again use logic expressions, this time to express the conditions for
an invalid combination of refinement transformations. For each instance of “Re-
finementConfiguration” one can check whether it is complete and/or invalid. If
neither can be inferred, it is an incomplete configuration. If both are inferred, it
is an inconsistent configuration. In OWL-DL, it is also possible to define annota-
tions for each element. Such annotations can be used to define external (context)
constraints for each refinement transformation.

Note that the order in which transformations have to be executed cannot be
efficiently defined within the chosen concept structure. An alternative structure
can be defined that uses separate properties to chain the refinement transfor-
mations together. For example, the following property can be used to chain
AssociationAttributes and Accessors together:

impliesAccessors : AssociationAttributes × Accessors

Such a property cannot be made transitive, because the domain and range are
different. Because of this, completeness and incorrectness concepts will have to
be defined separately for each refinement transformation concept.

Since OWL is built on top of RDFS [21], OWL supports annotation through
RDFS. Therefore, OWL-DL supports attaching external constraints such as plat-
form dependencies.

5.2 Domain-Specific Languages

Using the DSL technique, one can define a grammar or meta-model that de-
scribes the legal configurations of model transformations. Below is an EBNF
grammar for our running example:

InstantMessagingClient = ‘InstantMessagingClient’ UserInterface+
Network+ RefinementConfiguration .

UserInterface = ‘AWT’ | ‘Swing’ | ‘LCDUI’ .
Network = JabberNetwork | ‘Local’ | ‘SMS’ .
JabberNetwork = ‘Jabber’ JabberTransport .
JabberTransport = ‘DefaultJabber’ | ‘MEJabber’ .
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RefinementConfiguration = AssocAttrRefinement
AccessorsRefinement
ObserverRefinement
AppletRefinement
SingletonRefinement
AsyncMethodsRefinement
DataTypesRefinement
CodeGenerator .

AssocAttrRefinement = ‘AssociationAttributes’ |
‘Java2AssociationAttributes’ .

AccessorsRefinement = ‘Accessors’ | ‘Java2Accessors’ .
ObserverRefinement = ‘Observer’ | ‘JavaObserver’ .
AppletRefinement = ‘Applet’ | ‘MIDlet’ .
SingletonRefinement = ‘Singleton’ .
AsyncMethodsRefinement = ‘AsyncMethods’ .
DataTypesRefinement = ‘DataTypes’ | ‘Java2DataTypes’ .
CodeGenerator = ‘UMLtoJava’ .

The part up to RefinementConfiguration is specific to the Instant Messaging
product line. The part after describes the configuration rules for the refinement
transformations in general. Note that EBNF does not provide a means to sep-
arate the specific part of the grammar from the general part. The grammar
allows for configurations that have one or more user interfaces, one or more
network protocols and exactly one refinement configuration. It is not possible
to express that there may only be one user interface of each kind in an effi-
cient way (without dropping the “at-least-one-user-interface” constraint). Simi-
larly, the valid combinations of refinement transformations cannot be efficiently
expressed (see sub-section 5.1). In such a case, transformations can be used
to explicitly validate a configuration using additional configuration rules. The
ASF+SDF grammar framework provides a rule-based rewriting system for this
purpose.

An alternative for defining an EBNF grammar for our DSL is to define a
meta-model. The Eclipse Modeling Framework (EMF) [8] provides the Ecore
language that allows one to define and use meta-models. Fig. 2 shows a graphical
representation of the meta-model that describes the configuration rules for the
instant messaging client. This meta-model refers to another meta-model for the
“RefinementConfiguration”. The meta-model that describes the configuration
rules for the refinement transformations is shown in Fig. 3. Only part of this
meta-model is shown due to space constraints.

EMF allows for defining annotations for each element. For our example, we
have used annotations to associate platform dependencies to the meta-classes.
These platform dependencies are defined in a separate model [18]. In our ex-
ample, the “InstantMessagingClient” meta-class (see Fig. 2) has an annotation
“InstantMessengerConstraints.owl#InstantMessagingClientPlatform”. This an-
notation points to the “InstantMessagingClientPlatform” element in the “In-
stantMessengerConstraints.owl” model. Similarly, the “AssociationAttributes”
meta-class (Fig. 3) has an annotation to the “AssociationAttributesPlatform”
element in separate platform constraints model for the refinement transforma-
tions. Note that there is also a “ContextConstraint” annotation in Fig. 3. All
context constraint annotations point to this annotation to indicate they are of
the context constraint “type”.
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Fig. 2. EMF meta-model of the instant messaging client features

Fig. 3. Part of the EMF meta-model of the refinement model transformations

Similarly to grammars, Ecore meta-models also cannot express certain con-
straints in an efficient way. One can use OCL expressions to define extra con-
straints or one can define a model transformation that explicitly checks the
extra constraints. In the case of Ecore, ATL can be used to transform the model
into a “true” or “false” statement, indicating either a valid or an invalid model.
In addition, it is harder to enforce sequence for the refinement transformations,
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because meta-modelling is closer to a graph structure than a tree structure.
The only way to enforce sequence in the meta-model is to use nesting of model
elements, since the nesting follows a tree structure again. An alternative way of
enforcing the sequence is to encode it in a model transformation. Such a model
transformation could be used to place the chosen refinement transformations in
the correct order.

5.3 Feature Modelling

Feature models are generally visualised with feature diagrams. Fig. 4 shows a
partial feature diagram for our running example. Not all features are shown due
to space constraints.

InstantMessagingClient

UserInterface Network RefinementConfiguration

AWT Swing LCDUI Jabber Local SMS

AssociationAttributes Java2AssociationAttributes

AssociationAttributesRefinement

AccessorsRefinement

Accessors Java2Accessors ObserverRefinement

Observer JavaObserver

DefaultJabber MEJabber

Fig. 4. Partial feature diagram of the instant messaging client features

Similar to meta-modelling, a tree structure is necessary to express sequence.
Note that it is possible to express the constraints of having at least one user
interface, yet any of them may occur only once. This is due to the nature of
feature diagrams in which features can occur only once by default. Extensions
to feature diagrams exist that allow for expressing feature multiplicities [14]. It
is not possible to efficiently express the additional constraints on valid refine-
ment transformation combinations. The Feature Modeling Plugin tool3 solves
this problem by allowing XPath constraints to be defined. Note that this solu-
tion works on the XML representation level, not on the feature diagram level.
3 http://gp.uwaterloo.ca/fmp/
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The Feature Modeling Plugin also allows for annotations, such that external
constraints can be attached.

6 Comparison and Discussion

This section compares the different configuration techniques for each criterion
listed in section 4. Table 1 gives an overview of how well each technique fulfils
the requirements. The scale is divided into five steps, ranging from -- to ++.

Regarding modularity, meta-modelling provides the best mechanism, since
it explicitly supports modules of language elements (i.e. packages and meta-
models). The OWL-DL knowledge-based approach supports different ontology
namespaces, but this is implemented on the level of RDFS. Grammars and fea-
ture models have no explicit support for modularity. This can be added by
building on top of a language – and corresponding tool – that supports mod-
ularity. The Feature Modeling Plugin, for example, is built on top of EMF’s
Ecore language. This way, the Feature Modeling Plugin can use EMF to access
elements of the feature model. This mechanism works the same for local and
inter-model references.

OWL-DL is designed for reusability: OWL-DL allows for the definition of
common vocabularies with particular semantics. Each ontology that builds on
top of that vocabulary inherits those semantics. Meta-modelling does not provide
real reuse by itself. EMF supports reuse of meta-models through its XMI [22]
layer. Feature modelling more or less provides reusability through staged con-
figuration: specialisations of feature models are derived from a general feature
model to outline the scope for a product line subset. Grammars offer no native
support for reuse, but this can again be added by building the grammar on top
of a language that does support reuse.

If one includes the transformation engines for DSLs (both for grammars and
meta-modelling), the expressiveness is beyond what is necessary for our purposes.
The expressiveness of the OWL-DL knowledge-based system is sufficient, but is
inefficient for expressing sequence. The expressiveness of feature models is also
sufficient, but inefficient for expressing more complex constraints.

Table 1. Comparison of configuration techniques
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Knowledge-based systems + ++ + - +/- ++
DSL - grammar - - ++ + +/- +/-
DSL - meta-modelling ++ + ++ + +/- ++
Feature modelling - +/- + - + +
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The inefficiency in expressing certain constraints can cause reduced main-
tainability for both the knowledge-based approach as well as feature modelling.
A change in these constraints may require extensive refactoring of the configu-
ration rules. This is not such an issue for the DSL-based techniques, which allow
complex constraints to be expressed in a separate constraint checking transfor-
mation.

The locality principle requires that configuration constraints do not require
global checking for a local modification of the configuration. This principle inher-
ently holds for feature modelling, since constraints can only apply to the directly
neighbouring elements. For all other techniques, the user of that technique is re-
sponsible for keeping the complexity of the constraints in check. If one constraint
requires the checking of too many related constraints, the constraint checking
will not scale sufficiently.

Extensibility, in this context, refers to the possibility to annotate the config-
uration rules with external constraints (e.g. platform dependencies), such that
the configuration system can be “extended” with an extra constraint checking
mechanism. Both OWL-DL and meta-modelling are built on top of languages
that provide support for annotations. Feature models in general do not provide
annotation support, but the Feature Modeling Plugin implementation does. The
Feature Modeling Plugin annotations can be accessed through the underlying
modelling framework. EBNF grammars in general also do not provide anno-
tation support, but most grammar frameworks support comments. These com-
ments are not as easily accessible through the grammar framework, however (one
must usually know the navigation path to these comments).

7 Conclusion

In this paper, we have introduced and compared a number of configuration
techniques for the purpose of configuring model transformations in an MDA
context. Based on a number of specific model transformation properties, several
comparison criteria have been derived. The comparison shows the feasibility of
each configuration technique for each of these criteria. The paper then discusses
which aspects of the configuration techniques contribute to the required criteria.

In the discussion of DSLs, the language definition formalism is used to de-
scribe a particular set of model transformations. DSL techniques can also be used
to define a “Transformation Configuration DSL”. This allows for representing
concepts like “platform dependency” as first-class language elements instead of
annotations. If “model transformation” and “platform dependency” are part of
the language definition, the particular instances of model transformations and
their platform dependencies become an expression in that language. Configura-
tions of transformations again contain occurrences (i.e. instances) of the various
model transformation instances. This is commonly addressed by adding an ex-
plicit “instanceOf” relationship to the language definition (examples are UML
and OWL). Of course, when adding your own “instanceOf” relationship, you
also have to provide the semantics for it. This usually boils down to providing
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your own tool support to check whether your particular configuration of model
transformation occurrences complies with the configuration rules you defined for
the model transformations. This comes close to a “DSL-within-a-DSL” and leads
to the discussion of whether we need a special language definition formalism for
“Transformation Configuration”. Such a special language definition formalism is
considered out of the scope of this comparison, since it does not yet exist.

In the comparison, we did not explicitly consider step-wise refinement [23].
This is a paradigm for developing a complex program from a simple program
by adding features incrementally. In the AHEAD tool an arbitrary number of
programs and features is expressed as nested sets of equations. This model uses
algebraic specifications, which can be reduced to a DSL approach that provides
a language definition formalism and an algebra that operates on this formalism.
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Abstract. There is little agreement on terminology in model composition, and 
even less on key characteristics of a model composition solution. We present 
three composition frameworks: the Atlas Model Weaver, the Epsilon Merging 
Language, and the Glue Generator Tool, and from them derive a core set of 
common definitions. We use this to outline the key requirements of a model 
composition solution, in terms of language and tool support. 

1   Introduction 

Model composition involves combining different models in a Model-Driven Deve-
lopment process. Model composition is an emerging research field, based on related 
work in aspect-oriented modelling [14], database schema integration [11,12], and 
model transformation [15]. There is not, as yet, an agreed vocabulary, glossary, and 
set of definitions on model composition. Nor is there an agreed set of basic require-
ments for model composition languages and tools. 

This paper addresses these issues by deriving a common set of definitions for 
model composition, and from this deriving a set of fundamental requirements for 
model composition languages and tools. We base our presentation on an assessment 
of three functional frameworks: the Glue Generator Tool [7, 8], the Epsilon Merging 
Language [6], and the Atlas Model Weaver [10]. Based on these frameworks, we 
derive a set of common definitions, before presenting a set of solution requirements. 

Let us consider the simplified situation where there are three models Ma, Mx and 
Mb conforming to metamodels MMa, MMx and MMb. A typical transformation 
problem may be stated as follows: given Ma and Mx compute Mb. Mx is the 
transformation model that, when applied to Ma, produces Mb. There are no specific 
constraints on metamodels MMa and MMb, but metamodel MMx defines the trans-
formation language, for example ATL [15]. Alternatively, computing Mx from Ma 
and Mb is clearly a more difficult issue, different from a transformation. This 
situation corresponds to one kind of composition problem which is, in general more 
complex. In this case we have usually no constraint on metamodels MMa, MMx or 
MMb. We see here that model transformation is quite well understood while model 
composition still needs further investigation. Furthermore, a composition may 
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sometimes also be perceived as a transformation with two input models and one 
output model. 

Which kind of composition scheme are we going to use in the aforementioned 
composition examples? Can the composition of Ma and Mb to produce Mx be comp-
letely automated or do we need in some cases to resort to some external inter-vention? 
Can we define merging heuristics that could be applied to Ma and Mb in order to 
produce Mx? Should model composition be considered as a one shot operation or 
could it be decomposed in several phases of discovering correspondences first and 
then transforming these correspondences into operational mappings that could be 
solved by multi-input model transformation? There are many open questions in the 
field of model composition. There are also several partial solutions. What we need is 
to place these various solutions within one common conceptual framework in order to 
identify a canonical scheme that will allow us to compare them and to show their 
complementarities.  

This paper is organized as follows. Section 2 describes three model composition 
solutions that have been independently developed in the context of the ModelWare 
European Integrated project. These solutions are addressing different goals and may 
be typical of which kind of problems could be solved by model composition 
techniques. Section 3 provides a glossary and some common definitions because we 
recognize that without solid foundations it will not be possible to produce any 
canonical scheme for model composition. These definitions are based on graph 
theory. Building on the two previous parts, Section 4 proposes an initial set of 
requirements for model composition frameworks. While this work does not claim 
completeness, it concludes that the problem of model composition should not be 
confused with plain model transformation. The issues are much broader and there is 
an urgent need for additional work in this field. 

2   Model Composition Frameworks 

We now describe three functional model composition frameworks, and from these 
descriptions identify a canonical scheme for model composition based on a glossary 
and a common set of definitions. A significant summary of the state-of-the-art in 
model composition would be a useful contribution but goes beyond the scope of this 
paper. In particular, related work may be found in XML, aspect-oriented program-
mming, data engineering, the semantic web, and elsewhere. 

2.1   Atlas Model Weaver (AMW) 

The Atlas Model Weaver is a model composition framework that uses model weaving 
and model transformations to produce and execute composition operations. The 
model resulting from a composition may contain parts or all of the elements of the 
input models, and it may also have new elements. AMW has been used to handle 
several problems in data engineering [16]. The tool is available as open source from 
the Eclipse GMT project [10]. 

Let us illustrate the composition of two simple object models MA and MB into a 
model MAB. MA contains class Teacher. MB contains classes Professor and 
AssistantProfessor. From this example, we illustrate three possibilities (there may be 
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more) of output model. First, MAB contains one class Professor that contains the 
information from all the other three classes. Second, MAB contains classes Professor 
and AssistantProfessor; Teacher is combined with Professor. Third, MAB has three 
classes: Professor, AssistantProfessor as in the previous scenario, and a new class 
VisitingProfessor. This class contains information about occasional visitors. 

There are different options to implement a composition operation. One is to write a 
transformation by hand. However, model composition scenarios have a set of 
frequently used primitives with specific semantics, such as “merge”, “override” or 
“extends”. These primitives link concepts that represent similar information. We must 
raise the abstraction level of current transformation languages to create composition 
links. The links must be saved, as they are the specification of the operation.  

In AMW, the production of a composition operation is divided in two phases. First, 
a weaving model captures the links between the input model elements, for example 
indicating that Teacher and Professor are combined into Professor, or that Visiting-
Professor is a new class to be created. The weaving model conforms to a weaving 
metamodel. It is a domain specific metamodel dedicated to composition scenarios. It 
contains elements such as “rename”, “override”, “merge”, and elements specifying 
how to solve conflicts between the input models. 

Second, the weaving model is used to generate a transformation. This transfor-
mation is the final composition operation. The code complexity is not an issue here 
because the transformation is automatically produced. The transformation takes two 
input models and produces the composed model as output. 

2.1.1   Weaving Model 
In order to provide a description of a weaving model, let us suppose we have two 
metamodels LeftMM and RightMM. We need to establish links between their 
elements. The type of links specifies how the elements are composed. Some issues 
need be considered regarding the set of links between elements of both metamodels: 

• The set of links cannot be automatically generated because it is often based on 
design decisions or various complex heuristics; 

• It should be possible to save this set of links as a whole, in order to use them later 
to produce the composition operation. 

The weaving model conforms to a weaving metamodel WMM. The weaving model 
is produced by a match operation. A match operation is a combination of automatic 
techniques with user interaction. The produced weaving model relates with the source 
and target metamodels LeftMM and RightMM. Figure 1 illustrates the conformance 
relations of LeftMM, RightMM and WM. 

 

Fig. 1. Weaving conformance relations 
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Each composition link conforms to WMM, which specifies a composition oper-
ation. The link types are divided into matching and composition links. Matching links 
specify the equivalences between elements. Composition links specify how to solve 
conflicts and how to compose the related elements, e.g., equivalent elements are 
merged into one and the right element name is taken as default. 

There is no standard weaving metamodel capable of capturing every semantics to 
compose models. However, various weaving metamodels have a set of common 
concepts: all  provide means to establish links between model elements. We capture 
this in a basic weaving metamodel, and obtain different semantics by extending it. 
This extension operation takes two metamodels as input and returns a weaving 
metamodel. The output metamodel contains all elements from the input metamodels. 

Figure 2 describes our basic weaving metamodel, which contains a WElement, the 
base element from which all the elements inherit. WModel is the root element. WLink 
can be extended to define different matching and composition links, and refers to 
multiple endpoints. WLinkEnd indicates the type of elements that are be composed. 
WElementRef has an identifier (ID) that points to the elements of the input models. 
Each extension of WElementRef implements a different identification mechanism, for 
example XMI-ID. WModel also contains WModelRefs, which is equivalent to the 
reference of WLinkEnd and WElementRef, but for models as a whole. 

Fig. 2. Basic weaving metamodel 

2.1.2   Weaving and Transformations as a Composition Operation 
The weaving model is a high-level specification for the composition operation. It is 
not an executable entity, i.e., there is no specific composition engine to execute it. The 
composition operation is obtained by translating the weaving model into a 
transformation model. It is automatically produced by a higher-order transformation 
(HOT). A HOT is a transformation that either takes a transformation model as input, 
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either produces a transformation model as output, or both. There is one different HOT 
for every weaving metamodel, which defines the semantics of the weaving meta-
model by transforming its instances to executable transformations. 

The elements of the weaving models are transformed into specific composition 
code patterns. For instance one may define an element called Union that combine 
Professor and AssistantProfessor into a single element. Every time the weaving 
model is modified, the composition operation is regenerated. The composition opera-
tions are produced for different transformation languages, such as ATL, SQL or 
XSLT. They are further serialized into the appropriated format (often text). The 
serialized form takes as input the models to be composed. It executes the composition 
between the data sources in the dedicated transformation engine. 

2.2   Glue Generator Tool 

The Glue Generator Tool (GGT) [7, 8] is a framework dedicated to the reuse of 
existing MDA [1] applications, without alteration, to build new ones. In the MDA 
approach, this reuse relates to both PIM and PSM reuse, and to composition as well as 
extension or modification of existing PIMs and PSMs. 

The GGT framework comes with: 

• a metamodel of composition rules, implemented with EMF. Three categories 
of rules are proposed [7]. The correspondence rules are used to put in 
correspondence related model elements. The merge rules are dedicated to the 
composition. They identify which model elements from the source models will 
merge. The override rules are dedicated to the modification. They identify 
which model elements in a source model will be replaced. 

• a Glue Generator Tool for EJB 2.0, implemented using an EMF repository.  

2.2.1   Scope of Work and Approach  
GGT supports construction of a new application from existing ones in the case where 
the original applications were built using PIMs, PSMs, transformations and code. It 
also supports functionality extension of applications built using an MDA approach, 
and in both cases without modifying the original applications. 

As a preliminary requirement, GGT considers that the reuse of PIMs must not 
modify the existing PIMs. Consequently it provides a designer with means to express 
PIM reuse in terms of model composition, extension, and modification. Currently, 
PIMs are expressed in UML 2.0 in terms of class and sequence diagrams. This 
expression of composition (EC) is in addition to the existing PIMs to be composed (or 
extended or modified). Once this expression EC is available, GGT provides a means 
for its automatic translation into its corresponding pieces of model at the PSM level. 
The result of this translation is called glue, since it binds the existing PSMs according 
to EC. As such, the Glue depends not only on the expression EC but also on the type 
of PSMs that it binds.  

For the sake of concreteness, we focus on a specific type of PSM in the presen-
tation that follows: Enterprise Java Beans (EJBs).  
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2.2.2   Glue for EJB PSMs 
The authors in GGT defined the concept of Glue for EJB PSMs according to three 
statements we established from the analysis of the mapping rules of the UML class 
and sequence diagrams onto EJB platforms: 

• R1) a business class maps onto an Entity bean. Its attributes, depending on 
whether they are persistent or not, map onto persistent or simple fields. 

• R2) a process class maps onto a Session bean. Its attributes map onto fields. 
• R3) An association or a dependency between classes, depending on the nature 

of the class (business or process), maps onto EJB Relationships or EJB 
references between the corresponding beans. 

These three statements can be detailed as follows: 

S1) Translating EC is mapping the composition and the override rules expressed 
between PIM elements onto effective merge and replacement of their corresponding 
EJB PSM elements. 

The three rules Ri illustrate how to map PIM elements onto EJB PSM elements, 
and can be used for the translation of EC defined at PIM level by a designer.  

S2) The unit of composition or override at PIM level is the class. 
At the PIM level, the designer can express some composition rules aimed at 

merging some PIM elements, such as:  

1) The merge of features (attributes/ operations) of different classes into one 
feature (attribute/ operation);  

2) The merge of classes of different packages into one class;  
3) The merge of sub-packages of different other packages into one package. 

However, since the encapsulation unit of PIM is the class, all these merges consist 
in merging classes. The merge of the packages consists of merging their corres-
ponding classes. In addition, the merge of attributes or operations must initially deal 
with the merge of their container, which are classes. This also holds for the override 
rules, which consist of replacing elements of one PIM by those of another.  

S3) The composition or the override of classes is the merge or the replacement of 
the corresponding beans 

When considering the three rules Ri mentioned above, we note that the classes at 
PIM level map onto beans.  

These three statements enable us to define the Glue as a PSM binding entity 
responsible for the merge or replacement of beans. These two operations and how the 
Glue achieves them are described in depth in [8]. 

2.2.3   Architecture of the Tool  
The Glue Generator Tool is responsible for automatic generation of the Glue from the 
expression of composition defined at PIM level by a designer. To this end, it inputs a 
composition model defining a set of composition rules, and outputs the Glue that will 
bind the corresponding PSMs. It consists of the Analyzer, the Generator and the 
Controller (Figure 3). 
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The Analyzer parses the input composition rules to build a merge tree or a 
replacement tree according the categories of these rules while checking the semantic 
and syntactic well-formedness of rules. For semantic well-formedness, the authors of 
GGT defined a set of constraints on the rules and have developed automated 
constraint checking operations that run at composition model load time in the 
analyzer. 

The Generator is the builder of Glue and consequently is specific to the platform 
on which the applications run. We currently provide a generator for EJB 2.0 platform 
and another for JMX platform. A generator consists of an API and its implementation. 
The API should allow Controller to create/read/modify the models based on the 
specific platform. The Controller is the processor of GGT. It manages the generation 
of Glue using the API of the Generator. It parses the merge tree and triggers the 
generation of glue according to a generation mechanism. Since the Glue depends on 
the kind of platforms, the generation of the controller also depends on the platforms. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Architecture of GGT 

2.3   Epsilon Merging Language 

The Epsilon Merging Language (EML) is a metamodel agnostic language for expres-
sing model compositions. It includes a model comparison and model transformation 
language as subsets, and is built atop a generic model management language called 
the Epsilon Object Language (EOL) [6], which is inspired by OCL. An EML 
specification consists of a set of rules describing how model compositions should be 
carried out. Rules in EML are of three types: match rules, merge rules, and transform 
rules. Match rules can be further subdivided into comparison and conformance rules 
(examples to follow). Each match rule has a unique name and two metaclass names as 
parameters. The rule itself is composed of a compare part and a conform part. The 
rule is executed for all pairs of instances of the metaclasses that appear in the source 
models. The compare part of a match rule determines whether two instances match, 
using a minimum set of (syntactic) criteria. The conform part applies only to instances 
that satisfy the compare part of a rule; the conformance rule part refines this match. If 
the conformance part of the rule fails, then an exception is raised. An example is 
shown in Figure 4: 
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abstract rule ModelElements 
match l: Left!ModelElement 
with r: Right!ModelElement 
extends Elements { 

 
compare { 

return l.name = r.name 
and l.namespace.matches(r.namespace); 

} 
} 
 
rule Classes 

match l: Left!Class 
with r: Right!Class 
extends ModelElements { 

 
conform { return l.isAbstract = r.isAbstract; } 

} 

Fig. 4. Matching rules in EML 

The rule on ModelElements is abstract and provides basic behaviour that is used by 
rules that extend it; EML supports rule reuse via inheritance. The behaviour of this 
abstract rule is to match model elements that have identical names (l.name=r.name) 
and matching namespaces. A similar match rule is used for classes. Classes match 
when they obey the rules declared in their parent and when the conform part of the 
rule holds, i.e., when classes are either both abstract or both not abstract. 

2.3.1   EML Model Element Categorisation 
After the execution of all match rules in an EML specification, all model elements are 
categorised in four groups: those that match and conform; those that match but do not 
conform; those that do not match; and those to which no match rule has applied (the 
last category of element produces warnings). The results of this matching process are 
used in the merging process. In particular, elements that match and conform will be 
merged with their identified opposite. The specification of merging is captured in 
merge rules. Elements that do not match will be transformed into model elements 
compatible with the target metamodel. This is captured using transformation rules.  

2.3.2   EML Merge Rules 
Merge rules in EML are used to specify the behaviour necessary to compose two 
instances of model elements that match and conform. Each merge rule consists of a 
unique name, two metaclass-typed parameters, and a list of the model elements that 
the rule creates in the target model. 

For all pairs of matching instances of the two paramters, the rule is executed and 
the declared empty model element(s) are created in the target model.. The contents of 
the newly created model element are defined by the body of the merge rule. Two 
examples of merge rules are shown in Figure 5: 

 
 



354 J. Bézivin et al.  

rule ModelElements {   rule Classes { 
   merge l: Left!ModelElement     merge l: Left!Class 
   with r: Right!ModelElement     with r: Right!Class 
   into m: Merged!ModelElement     into m: Merged!Class 
         extends ModelElements  
 
   m.name := l.name;      m.feature := l.feature. 
   m.namespace:=l.namespace.equivalent()      includeAll(r.feature). 
}           equivalent(); 

        } 

Fig. 5. EML Merge Rule 

 
Figure 5 presents two merge rules, one for merging ModelElements and a second 

for merging UML classes (“Classes”). The first rule applies to all Model Elements 
and produces a new, merged ModelElement whose name is that of the left original 
model element, and whose namespace is that of the left original model element. In the 
second rule, the two parameters, l:Left!Class and r:Right!Class, are declared; the 
merge rule is also declared to produce an instance of the Merged!Class metaclass. The 
“Classes” rule creates a new instance of the Class metaclass, carries out all operations 
declared in its parent (ModelElements), and sets the feature list of the new class to be 
the union of all features from the left and right arguments. 

There is a slight twist to the merging rule that takes the union of all features from 
the left and right model elements: the use of the equivalent() operation. This operator 
returns the equivalent of the model element to which it is applied in the target model. 
The equivalent of an element is the result of a merge rule if the element has a 
matching element in the opposite model; otherwise it is the result of a transform rule. 
This operator is necessary because the target and source metamodels may differ, and 
it ensures that all source elements are expressed in the target metamodel. 

A key aspect of merging models in EML is that many merge rules can in fact be 
inferred from the structure of the metamodel itself: for example, when merging two 
classes, a basic merge rule can automatically be inferred that merges the contents of 
the classes (i.e., behavioural features and attributes). Such inferred rule sets we call 
strategies; further details on them (and on EML) can be found in [6]. 

3   Glossary and Common Definitions 

We propose a set of definitions for a model composition framework. They are an 
extraction of the common points of AMW, GGT and EML. The formal definitions are 
intended as a starting point for a common canonical scheme. 

The three frameworks follow standards of model-driven development. This means 
they all have models as the central concept. The models are represented as graphs. In 
this case it is straightforward to converge to a graph model representation. 

Definition 1 (Directed graph). A directed multigraph G = (NG, EG, ΓG) consists of a 
finite set of nodes NG and a finite set of edges EG and a mapping function ΓG : EG → 
NG × NG. 
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Definition 2 (Model). A model M = (G, ω, μ) is a triple where: 

    - G = (NG, EG, ΓG) is a directed multigraph, 
    - ω is itself a model (called the reference model of M) associated to a graph Gω = 

(Nω, Eω, Γω), 
    - μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of G to 

nodes of Gω. This means both nodes and edges of G are constrained by nodes  
from Gω. 

The relation between a model and its reference model is called conformance. This 
definition allows an indefinite number of levels. However we observe from different 
domains that usually only three levels are sufficient. We call these three levels 
metametamodel (M3), metamodel (M2) and terminal model (M1). 

We illustrate the three levels with different technical spaces: 

    - relational database (RDBMS): the instances (M1), the relational schemas (M2) 
and the relational data model (M3). 

    - XML: the XML documents (M1), XML schemas (M2) and the XML schema 
definition (M3). 

Definition 3 (Metametamodel). A metametamodel is a model that is its own 
reference model. 

A metametamodel is self-defined. This allows using the same set of composition tools 
for the three levels in a uniform way. 

Definition 4 (Metamodel). A metamodel is a model such that its reference model is a 
metametamodel. 

Definition 5 (Terminal model). A terminal model is a model such that its reference 
model is a metamodel. 

The three approaches provide a way to capture the correspondences between the 
models to compose. In AMW, the weaving model has matching and composition 
links. In GGT, the expression of composition (EC) is a model with correspondence, 
composition and override rules. EML provides comparison rules (ECL) that produce a 
weaving model that contains the relationships between the model elements. 
Differently from the previous two approaches, the composition rules are not specified 
within the same model. They specify merge rules that take as input the result of the 
comparison rules. 

We thus define a correspondence model that captures links between different 
models. The metamodel of the correspondence model (correspondence metamodel) is 
extensible, because different matching and composition links are defined (match, 
override, correspondence, equality, merge, JoinClasses). 

Definition 6 (Correspondence model). A correspondence model C = (GC, ω, μ) 
represents links between elements of different models, such that: 

    - S = {Mi = (Gi, ωi, μ); i = [1..n]} is a set of models, 
    - GC has two types of nodes: links and link endpoints, 
    - for each link endpoint, there is an edge coming from a link, 
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    - each link endpoint refers to an element e of a model Mi from the set S by the 
means of identification functions. An identification function ρ takes a link 
endpoint as input and returns an element of a model from the set S. 

Consider two models MA and MB and a correspondence model C. MA contains 
classes FirstName and LastName, MB contains class Name. The correspondence 
model C contains three link endpoints; each endpoint refers to elements FirstName, 
LastName and Name, respectively. There is one link element with outgoing edges to 
all the three end points. 

The correspondence model is created by different procedures. In AMW, the 
weaving model is created by a user interface and pluggable match algorithms (in Java 
code). In GGT, the expression of composition is created by a user interface based on 
EMF. In EML, a match operation is defined using comparison rules (ECL). These 
rules search for relationships between the models elements. The process of creating 
the correspondence model is encapsulated in a match operation. The matching rules 
produce a weaving model as result. 

Definition 7 (Match operation). Match is an operation C = Match (S) that takes a set 
of models S = {Mi = (Gi, ωi, μi); i = [1..n]} as input, searches for equivalences 
between their elements and produces a correspondence model C as output.  

The match operator does not have fixed semantics. The semantic is defined with 
comparison and conformance rules. Comparison rules determine syntactic similarities 
between model elements. Conformance rules identify if a subset of syntactically 
similar elements are semantically compatible. 

In all solutions there are translation and generation procedures. In AMW, 
transformations are used for executing the composition. The composition operation is 
generated using HOTs. In GGT, a Glue is automatically produced from the expression 
of composition. In EML, transformations are used as part of composition rules to add 
elements that do not match in the input models. This generation procedures are 
subsumed in the notion of model transformations. AMW uses metamodel extension to 
extend the basic weaving metamodel before generating a transformation. The 
definitions of metamodel extension and model transformation are given below. 

Definition 8 (Metamodel extension operation). The operation MMA = Extend 
(MMA, MMB) takes two metamodels MMA = (GA, ω, μ) and MMB = (GB, ω, μ) as 
input and extends GA with all nodes and edges of GB. The operation main requirement 
is to create at least one new edge in the resulting metamodel from an element mA ∈ 
NGA ∪ EGA to an element mB ∈ NGB ∪ EGB. We assume that there are no conflicts 
between the two metamodels. 

Consider two class-based metamodels MMA and MMB. MMA contain classes Person 
and Address. One person refers to many addresses. MMB contain classes Teacher and 
Student. MMA is extended with the elements of MMB. The class Professor, classes 
Teacher and Student are copied to MMA, and they is an inheritance relation with 
Person. 

Definition 9 (Model transformation). A model transformation is an operation that 
takes a set of models as input, executes a set of rules over the model(s) elements and 
produces a set of models as output. 
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A transformation has the following signature OUT = T(IN) where T is the 
transformation name, IN is a set of input models and OUT a set of output models. The 
transformation T translates the input models IN into the output models OUT. A 
transformation is a model. This means that all general operations on models may be 
applied to transformations (including transformations). 

In AMW, the weaving model is a high-level specification for the composition. It 
produces a transformation that is the executable composition operation. This 
transformation receives two or more models as input and produces the composed 
model as output. In GGT, the compose operation is a Glue. A Glue is a domain 
specific structure to compose models. A Glue does not create a new composed model, 
but an intermediary structure (for example a Bean for composing EJBs) that virtually 
compose two input models. In EML, there are a set of merge rules to execute the 
composition. Model elements that are not explicitly referenced in the merge rules are 
composed by the means of merge strategies. 

Finally we define the compose operation on two models: 

Definition 10 (Compose operation). The compose operation MAB = Compose (MA, 
MB, CAB) takes two models MA, MB and a correspondence model CAB between them 
as input and combines their elements into a new output model. 

In the three approaches there are some differences in the terminology to specify what a 
composition is. Besides composition, the second most employed term is merge. 
However it is advisable to separate merge and composition. Composition is a more 
general operation. The semantic is specified in the different operations by a set of rules, 
and it varies from case to case. Merge, however, is a special case of model composition. 
Merge has information preservation constraints, i.e., all the information from the input 
models should be present in the output models, and no duplicate information. 

Definition 11 (Merge operation). The merge operation MAB = Merge (MA, MB, CAB) 
takes two models MA, MB and a correspondence model CAB between them as input, 
and returns a model MAB including all the information from MA and MB, without 
duplicate information. The correspondence model is created by the match operation. It 
specifies the elements that are going to be merged. 

4   Requirements for Model Composition Frameworks 

We now identify a core set of requirements for a model composition framework. By 
doing so we attempt to complement the canonical definitions for model composition 
presented in Section 3 with a concrete set of minimal requirements for a model 
composition framework. Obviously, this is an initial set of requirements and it will 
likely need refinement after more practical experience and experiments with the 
frameworks have been carried out. 

4.1   Requirements for a Model Composition Framework 

A model composition framework must provide at least the following operations: 

• means to identify corresponding elements in the models that are to be composed 
(e.g., MOF classes with the same MOF identifier may be said to correspond, e.g., 
a weaving model or a set of rules). 



358 J. Bézivin et al.  

• means to define how corresponding elements are to be merged and composed in 
producing the target model; 

• means to define how elements that do not correspond can be transformed to the 
target metamodel, in order to, e.g., not lose information. 

• means to manage and reuse correspondences, merges, and compose operations. 
In AMW this is supported via metamodel extension (e.g., by extending a weaving 
model), whereas in EML this is supported via rule inheritance. 

Thus, a model composition framework should also provide the means to carry out 
transformations (e.g., via MOF 2.0 QVT or ATL) to satisfy the fourth requirement. In 
order to satisfy the first two requirements, a model composition framework should 
include the means to compare models. 

Two desirable, practical requirements can be identified from the previous sections: 

• A model composition framework should provide the means for minimising the 
effort expended by the developer to write composition or merge operations, e.g., 
by allowing rules to be inferred by metamodel structure (e.g., merging strategies 
in EML) or by allowing expressions of composition or weaving models to be 
reused. 

• A model composition framework should be metamodel independent to support 
backwards compatibility, future extension, and a wide suite of modelling tools. 

4.2   Requirements on Model Composition Tools 

Tool support for model composition must provide at least the following: 

• validation and verification of model composition operations, i.e., syntax and type 
checking of rules, merging models, etc. 

• a virtual machine (or similar means) for executing composition operations; 
• a debugger, for analysing failures and inconsistencies that arise during the 

composition process 
• a serialisation mechanism for loading and saving models. 

4.3   Comparison of AMW, GGT, and EML 

We summarise the three previously described model composition frameworks against 
the requirements identified in Section 4.1 and 4.2. The results of the comparison are 
in Table 1; columns represent a particular framework, whereas rows represent a 
model composition framework operation or feature. We note that all three 
frameworks provide reasonably comprehensive coverage of tool requirements (though 
only AMW provides debugging support via its integration with ATL). 

We can observe from the summary in Table 1 that already we are seeing a conver-
gence of functionality in several of the existing frameworks: all three frameworks 
support most, if not all of the operations described in the canonical set of definitions, 
and it is already possible to loosely couple some of the frameworks (AMW and EML) 
together via weaving models. 
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Table 1. Comparison of model composition frameworks 

 GGT AMW EML 
Compose Glue Weaving model Merge rules 
Merge Glue Weaving model Merge rules that 

are information 
lossless. 

Transform Automatically 
carried out. 

ATL 
transformations 

Transform rules 

Match Expression of 
correspondence 
(EC), via EMF GUI 

Weaving model via 
EMF GUI 

Comparison rules 
which produce 
weaving models. 

Correspondence EC Weaving model Comparison rules 
Metamodel extn. No Yes Indirectly, via 

generation of 
weaving model 
imported by 
AMW. 

Tool support No debugger. All. No debugger. 

5   Conclusions 

The main contributions of this paper are a canonical set of definitions regarding 
model composition, and set of requirements for model composition frameworks. The 
intent is that the canonical scheme, definitions, and requirements will be helpful for 
comparing different model composition solutions, building new solutions, and 
assessing the completeness and coherency of existing solutions. The contributions of 
this paper may also be helpful in any future standardisation efforts – within or without 
of the OMG – on model composition. We expect to work further on more closely 
aligning the three frameworks described in this paper, and to explore additional 
operations that engineers find helpful in model composition scenarios. 

The fact that three different solutions for model composition have been developed 
in the same project is not the mere result of hazard. It shows that the problem is of 
practical importance and takes multiple forms. There is an obvious need for 
unification and conceptualization in the field. As discussed in [15], the QVT OMG 
model transformation proposal [2] only marginally addresses the composition issues. 
What we have done in this paper is to gather some experimental material that may 
help giving first class status to model composition as has been done previously with 
model transformation techniques. 
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Abstract. The crucial point in Model Driven Architecture (MDA1) is
that software and system development are based on abstract models that
are successively transformed into more specific models, ideally resulting
in the desired system. To this end, developers must be enabled to model
different aspects like structure, behavior, consistency constraints of the
system. This results in a variety of related models, which in turn need
tool support on the metalevel. However, there is a lack of tools offer-
ing uniform support for metamodel definition, analysis, transformation,
and integration. In this paper we present the metamodeling framework
MOFLON that addresses these issues by bringing together the latest
OMG standards with graph transformations and their formal semantics.
MOFLON provides a combination of visual and textual notations and of-
fers powerful modularization concepts. Using MOFLON, developers can
generate code for specific tools needed to perform the desired modeling
tasks.

1 Introduction

Implementing the Model Driven Architecture (MDA) paradigm in software and
system development means that the developers start with modeling the structure
and behavior of the desired system on an abstract level using their favorite
modeling tools. These abstract models will then successively be transformed into
more specific models ideally resulting in the desired system. Thus, developers
have to deal with lots of different models, and need domain- and project-specific
tool support in defining, analyzing, transforming, and integrating them.

Metatools provide assistance with the realization of the required tool support.
Current solutions either are limited to a subset of model-related tasks, lack a
proper formal foundation, are not compliant to common standards, or make
use of not standard compliant or unfortunate notations. Therefore, they do not
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provide full support for the realization of MDA-enabling tools, make it hard to
validate such tools, cannot easily be integrated with related approaches, or are
difficult to use and understand.

In this paper we present our metamodeling framework MOFLON2 that ad-
dresses these deficiencies. MOFLON aims at compliance to the latest OMG
standards, and integrates them with the well-known formalism of graph trans-
formations.

Section 2 presents some industrial case studies that motivate our efforts. In
Section 3 we provide a running example that will be used in Section 4 in order to
illustrate the application of MOFLON. In Section 5, we present the architecture
of our metamodeling framework. We compare our solution with related ones in
Section 6. In Section 7, we summarize our results and discuss further steps.

2 Case Studies

To begin with, we use MOFLON in its own development process. Initially, we
created a simplified MOF 2.0 [1] metametamodel in Rational Rose, exported
it as XMI and generated the resulting Java representation using an existing
code generator [2]. This Java code forms the core of the schema editor and the
code generator. Meanwhile, we are able to generate this core from a metameta-
model, which consists of the complete UML 2.0 Infrastructure Library and MOF
2.0 specification with a small number of deviations. During this bootstrapping
process, we gained a very deep insight in the advantages and shortcomings of the
latest OMG specifications and were able to improve the MOFLON machinery.

Several industrial partners from various domains (medical imaging, multi
purpose industrial printers and enterprise storage solutions) have faced the task
of restructuring their software architectures to deal with increased complexity
and adopt new technologies. As business needs demand continuous output of
new releases, all projects require an evolutionary analysis approach to monitor
restructuring progress during the ongoing development of “normal” features.
MOFLON is used to support these efforts by generating individual reverse en-
gineering and architecture monitoring tools from project-specific metamodels,
metrics, and consistency rules [3].

Our industrial partner from the automotive sector develops integrated sys-
tems such as adaptive cruise control or windscreen wipers with rain sensors. The
development processes involve quite a number of different tools each specialized
in certain tasks (e.g. requirements engineering, modeling of software and hard-
ware functionality, test case maintenance). Thus, the data of a project as a whole
is distributed over different tools. Typically, these tools are commercial-of-the-
shelf (COTS) that are rarely designed to integrate with each other. Nevertheless,
the data stored in the separate tools is related. Our running example (cf. Sec-
tion 3) demonstrates how these relationships can be detected automatically and
utilized for integration purposes. Our integration approach is part of the tool
integration framework Toolnet [4].
2 http://gforge.echtzeitsysteme.org/projects/moflon/



MOFLON: A Standard-Compliant Metamodeling Framework 363

Fig. 1. Consistency between DOORS and Matlab/Simulink

From industrial case studies we have learned, that we need metamodel-based
support for repositories, standard-compliant tool interfaces, constraint- and de-
sign rule-checking, as well as intra- and inter-model transformations. In our case
however, it turned out that unlike classical meta-CASE tools, that we need no
support for generating diagram editors.

3 Example: Automobile Comfort System

In this section, we introduce an illustrative toy example that describes a very
small system development project motivated by a real world scenario from the
automotive domain. We present tasks that a developer is confronted with, and
demonstrate what kind of support he needs. The project deals with the devel-
opment of an integrated automobile comfort system. The comfort system is a
collection of several subsystems that assists the driver in a number of different
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Fig. 2. Example of the application of design guidelines in Matlab/Simulink

ways. In the following we primarily turn our attention to the Headlight Rec-
ommendation Subsystem (HRS). According to these requirements the developer
chooses to design the system using the system modeling tool Matlab/Simulink
(cf. Fig. 1 at the bottom). The left side depicts the Automobile Comfort System
that is connected to a number of sensors. These sensors internally are connected
to the corresponding subsystems as shown on the right side.

The developer is provided with a requirements document stored in the re-
quirements management tool DOORS as shown in Fig. 1 at the top. The require-
ments state that the Automobile Comfort System consists of four subsystems
including the HRS. He models the HRS as depicted in Fig. 2 at the left-hand
side, providing the HRS with a number of light sensors. It calculates the average
of all measured values by using a Sum and a Product block. If the Relay block
calculates that the average is below a certain threshold, the HRS informs the
driver by activating the LED.

As the developer is designing the system another developer is still working on
the requirements refining, changing, and maintaining them. The system designer
has to merge these changes into his system in order to keep it consistent with
the requirements document. In particular, the requirements correspond to the
subsystems of the Automobile Comfort System. Finally, the system designer has
to ensure that he has implemented all requirements. Besides the requirements
document the system designer is provided with modeling guidelines to which he
must adhere to. Among others, the guidelines demand that the designer should
not use Sum blocks with more than two Input Ports3. As a matter of fact this
is not enforced by Matlab/Simulink itself. Nevertheless, the guidelines force the
developer to change his model into another model that might look like the one
depicted in Fig. 2 on the right-hand side. The Sum block has been replaced by an
equivalent cascade of Sum blocks that only have two Input Ports each. Without
any tool support the system designer has to fulfill the tasks of consistency pre-
serving, traceability maintenance, and guideline constraint checking by hand.
Although this is not impossible for rather small projects it is very time consum-
ing and error prone in medium or large scale projects. The situation becomes
even worse if the number of developers, involved tools, and documents increase.

3 A code generator produces erroneous code for blocks with more than two inputs.
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Fig. 3. Metamodel of Matlab/Simulink in Rational Rose

In the following we present how developers can specify their tasks on an abstract
level. From these specifications we can then generate the needed tool support.

4 Generating Tool Support with MOFLON

In the following sections we describe how tool support for the outlined sce-
nario can be generated with MOFLON. The scenario as described before is
clearly a matter of metamodeling. For the application of transformations of
Matlab/Simulink models as well as for the application of the integration be-
tween DOORS requirements and Matlab/Simulink models, the metamodels of
both tools have to be defined. Based on these metamodels, the transformations,
analysis, and integration operations can be specified.

4.1 Specifying Metamodels

MOFLON uses MOF 2.0, the latest OMG metamodeling-standard, as metameta-
model. MOF 2.0 is characterized by powerful concepts for modularization, ab-
straction, and refinement of large metamodels. In the following the new concepts
of MOF 2.0 are demonstrated on the metamodel of Matlab/Simulink which is
introduced in detail. Fig. 3 depicts a screenshot of Rational Rose that shows a
very simplified part of the Matlab/Simulink metamodel. The metamodel could
have been modeled in MOFLON directly as well. But since COTS modeling tools
are very popular among our industrial partners, MOFLON offers an XMI import
to allow the users to retain their established modeling customs. The imported
metamodel is shown as screenshot of MOFLON in Fig. 4. It shows the packages
Abstraction, Sources, and Subsystems from Fig. 3 in detail. The metamodel
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Fig. 4. Imported Metamodel of Matlab/Simulink in MOFLON

is decomposed in several packages. The package Abstraction describes the
general dependencies between the most general elements Model, Block, Port,
and Connection.

Those general concepts are reused and refined in the packages Sources and
Sinks by importing Abstraction. In package Sources for instance, the relation-
ship between the special block Source and the special port outPort is redefined
in such a way that a Source always has exactly one outPort. The concepts,
namely the classes, of the Sinks and Sources are extended in Subsystems by
the application of package merges, the metamodel refinement concept of MOF
2.0. In Subsystems the class Source is extended by a navigable association
end because each subsystem has at least one source. Due to the package merge
to Sources the attributes (and association ends) of the classes Source in the
packages Sources and Subsystems are merged in the class Source in package
Subsystems.

Beside the redefinition of association ends in MOF 2.0, another very helpful
feature is the subsetting of assocation ends as demonstrated by the association
ends block and source. A subsystem contains an arbitrary number of blocks
but at least one sink and one source. The mandatory sinks and sources are also
blocks and should, therefore, be available through the association end block.
Thus source is declared as subset of block which means that all instances of
Source that are linked with an instance of Subsystem are available via source
as well as via block. The declaration of block as union of its subsets causes
the collection of Block-instances which is represented by block to be composed
from all subsets of block.
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Fig. 5. Design guideline as OCL 2.0 constraint in MOFLON

From such a description of the abstract semantics of Matlab/Simulink it is
possible to generate Java code with JMI-compliant (Java Metadata Interface
[5]) interfaces. The code can be used to create, query, destroy, and serialize
instances of the specified metamodel according to the static semantics specified
in MOF 2.0. It can easily be integrated based upon an event mechanism which
is compatible with the Netbeans Metadata Repository (MDR) [6]. Regarding
the outlined example, the metamodels of DOORS and Matlab/Simulink act as
basis on which design guidelines and transformation can be defined. They also
provide the basis for the integration of DOORS and Matlab/Simulink models as
instances of the generated metamodel representations.

4.2 Adding Constraints

With MOF 2.0 as metamodeling language, we are able to specify the abstract
syntax of a modeling language, but to specify its static semantics, we need con-
straints as discussed in this section. For instance, it is not possible to express
that a block’s name has to be unique within a subsystem. In such cases, ad-
ditional constraints are needed. The Object Constraint Language (OCL) [7] as
the textual constraint language within the OMG standardization scenario is the
appropriate choice to fill this gap. On the one hand OCL can be used to ex-
press the static semantics of a metamodel more precisely, on the other hand it is
also possible to specify additional information about the usage and application
of the metamodel, like for instance design guidelines. Concerning the outlined
example, the design guideline stating that a Sum-block should not have more
than two input ports can be expressed in OCL. Fig. 5 shows the appropriate
constraint. OCL constraints can only be evaluated on instances of the associ-
ated metamodel. Thus, the evaluation of OCL constraints is a matter of the
generated code. MOFLON integrates the Dresden OCL compiler framework [8]
consisting of a parser and a code generator which generates code for the evalua-
tion of invariants in a first version. In the long run, support for body constraints
as well as pre- and postconditions is also planned. The generated code checks
the compliance of the metamodel instances to the specified invariants.

Currently, we are working on the implementation of several (incremental)
constraint evaluation strategies as well as on the integration of constraint check-
ing with the execution of appropriate repair actions. A repair action in form of
a transformation has to be triggered if a constraint is broken.
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Fig. 6. Repair action as example of a graph transformation rule

4.3 Defining Model Transformation

Until now, we are only able to describe the syntax and static semantics of a
modeling language. Still missing are means to specify queries and transforma-
tions on models. We also need to define actions that can be invoked if constraint
violations are detected. Object-oriented graph transformation languages provide
an intuitive means to implement such queries and transformations. When we
designed MOFLON, we decided to adopt the graph transformation engine of the
Fujaba Toolsuite [9], as it uses UML-like graph schemata and generates Java
code from specifications. The transformation language is called Story Driven
Modeling (SDM). In [10], we discussed the necessary modifications to adopt the
SDM machinery for MOF 2.0 and JMI code generation.

The graph transformation Sum::normalize() in Fig. 6 can be used as re-
pair action, until the constraint discussed in section 4.2 is no longer violated.
The rule reads as follows: The given Sum block, that we try to normalize, is
called this. If it is associated with at least three different Inputs and one
Output, the rule matches. The links to the third matched Input i3 and the
Output o1 are removed. As a replacement, this is connected to a new Output
o2. Input i3 is connected to a new Sum block s1. Output o2 is connected to a
new Input i4 through a new Line l1. Input i4 is then connected to s1, which
finally is connected to the original Output o1 to preserve the context. Currently,
Fujaba is being equipped with a new template-based code generator [11] that
allows developers to generate code for various target languages and interfaces.
While the core developers are creating the templates for the proprietary Fu-
jaba interface, we are busy with completing alternative templates to generate
JMI-compliant code for transformations that works directly with the Java repre-
sentation generated by the MOFLON code generator for the schema part. As a
result, the code generated by MOFLON includes executable transformations that
can be executed manually or triggered as repair actions of violated constraints.
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Fig. 7. Schema for the specification of TGG rules

Considering the outlined example, the surveillance of design guidelines can al-
ready be realized until this point.

4.4 Specifying Model Integration

Finally, the model of the Automobile Comfort System should be kept consistent
with the requirements document and vice versa4. To this end the developer must
identify which model elements in Matlab/Simulink correspond to which require-
ments in DOORS. Since the correspondences should be used for traceability
purposes as well as for consistency checking, consistency recovery, and change
propagations it is preferable to have a declarative model integration approach.
Using a declarative approach means that the developer has to specify only a
single rule from which all needed operational rules for the desired integration
tasks can be derived automatically. As we are using SDM which is based on
graph transformations in Section 4.3 on the one hand and we want to provide a
declarative approach on the other hand it is reasonable to rely on triple graph
grammars [12] for that purpose. For a more detailed discussion on this decision
the reader is referred to [13].

Triple Graph Grammars are based on a schema as common graph gram-
mars do [14]. In our approach the schema is a metamodel that declares types
for correspondences and links classes from the corresponding tools’ metamod-
els. Fig. 7 shows the schema specified with MOFLON we use in our toy ex-
ample. The schema declares a correspondence type ModuleRealizedByModel.

4 For a more realistic integration scenario the reader is referred to [12].
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Fig. 8. Example of a declarative TGG rule

This type expresses that each Module from DOORS corresponds to one Model
from Matlab/Simulink and vice versa. Accordingly, the schema declares a type
RequirementRealizedBySubsystem. Besides the schema a Triple Graph Gram-
mar provides a set of declarative rules. Generally speaking, the rules describe the
simultaneous evolution of the tools’ models and the correspondence model. Rule
8 at the top states that a DOORS Module m1 is created simultaneously with a
Matlab/Simulink Model m2 which correspond to each other. The name attributes
of m1 and m2 respectively are set to the value of the rule’s parameter n. Rule 8 in
the middle describes the simultaneous addition of a Requirement r1 to a Module
m3 and a Subsystem s1 to a Model m4 that corresponds to m3. Again, the rule
sets the heading of r1 as well as the name of s1 to the value of the parameter n.
Accordingly, rule 8 at the bottom specifies the simultaneous addition of a (Sub-
)Requirement r3 to a Requirement r2 and a Subsystem s3 to a Subsystem
s2 that corresponds to r2. From these declarative rules we can automatically
derive a number of operational graph rewriting rules. Fig. 9 gives an example
of such an rule. This rule is used to transform the given Requirement r into a
corresponding Subsystem s5. s5 will be added to a Subsystem s4 which corre-
sponds to a Requirement r4 that contains r. The value of the name attribute
of s5 will be set to the name of r. Furthermore, a correspondence link between r
and s5 will be created. For additional operational rules that can be derived from
each declarative integration rule automatically the reader is referred to [12].

4.5 Applying the Generated Code

As we have shown above, MOFLON generates Java code from all specifications.
In particular, MOFLON generates JMI interfaces from the tools’ metamodels.
In order to access the tools’ data in our running example the implementations of
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Fig. 9. Example of an operational integration rule

these interfaces have to realize adapters on the tools’ APIs. These implementa-
tions can either be written manually or generated from templates. The Java code
generated from the constraints, model transformations, and model integration
operations complies to the JMI interfaces, and can, therefore, be mapped onto
tool operations by the adapters. Thereby, using MOFLON we are able to real-
ize the needed tool support for model-driven development related tasks which
a developer is confronted with. Note that our case studies does not force us to
deal with concrete syntax. Nevertheless, the integration of metamodels generated
with MOFLON into graphical editor frameworks is possible as well.

5 MOFLON Architecture

In this section, we provide an overview of the internal MOFLON architecture.
When we started to design MOFLON in 2003, our goal was to reuse existing tech-
nology where possible and focus on conceptual improvements. Back then, there
were no MOF 2.0-editors and code generators available, but there were several
graph transformation tools. After comparing different approaches, we decided to
realize MOFLON on top of the Fujaba Toolsuite which already featured graph
transformations for UML-like graph schemata.

Fig. 10 provides an overview of MOFLON and Fujaba parts working together.
Note that the large MOFLON block is divided into three layers: On top are var-
ious editor components to manipulate data. In the center, repositories symbolize
metamodels, constraints and transformation rules. The bottom layer consists of
several code generators working together in MOFLON. Domain-specific meta-
models and tool representations can be created either using a commercial CASE
tool such as Rational Rose or directly using the new MOF 2.0 Editor plugin for
Fujaba. Metamodels from external tools are exported as XMI and imported by
MOFLON using an XMI interchange plugin. As most commercial tools do not
yet support MOF 2.0, new features must be entered using certain conventions
with respect to stereotypes or comments. We would like to mention that we have
been able to import the complete UML 2.0 Infrastructure + Superstructure as
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Fig. 10. MOFLON architecture overview

provided by the OMG5, apart from some specification errors, which had to be
fixed manually. The metamodel is kept in memory, as instance of a JMI-compliant
Java representation of the MOF 2.0 metametamodel.

Graph transformation rules are edited using the SDM editor that already
exists in Fujaba. These rules are also kept in memory and augment the MOF
2.0 metamodel instance conceptually, by providing visually specified implemen-
tations of methods defined in the schema. In our current implementation, we
use the object adapter pattern ([15], p. 141) to map each MOF element to one
or more Fujaba metamodel interfaces, which the SDM rules actually are built
on. As most adapters are generated from XML descriptions, we could adopt the
Fujaba graph rewriting engine with reasonable effort rather than writing our
own.

The TGG editor, which actually consists of a schema and a rule editor has
also been adopted from Fujaba. The Triple Graph Grammar, i.e. TGG schema
and rules are also stored in memory. Upon user request, ordinary SDM rules are
generated from these TGG rules using a MOFLON-specific translation.

The metamodel can be refined using OCL constraints. They are used to de-
fine invariants and derived attributes as well as pre- and postconditions and
body constraints for methods implemented by graph transformations. Opposed
to that, assertions are used to express application conditions in graph transfor-
mations. While constraints have been factored out in Fig. 10 to be discussed
separately, they are actually stored as strings within the metamodel. Graph
transformations are used to define repair actions for constraint violations. We
also allow to directly enter Java code for constraint expressions as preliminary
alternative for OCL constraints.

From the MOF metamodel, JMI-compliant Java code is generated by XSLT
transformation with an descendant of the MOMoC code generator [2]. This gen-

5 http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-05.zip
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erator also deals with constraints provided as Java code. We are currently work-
ing on the integration of the Dresden OCL compiler [8] to generate Java code
for OCL 2.0 constraints. Java code for graph transformations is generated using
Fujaba’s latest Velocity-based code generator [11].

According to the JMI standard, the resulting Java representation features
tailored and reflective interfaces, XMI import and export. Besides, the generated
code features an event mechanism that makes our approach interface-compatible
with MDR [6]. Depending on the requirement of the concrete task, we combine
the generated code with suitable parsers, tool adapters and user interfaces to
create a specific solution for model analysis, transformation, and integration.

6 Related Work

Like MOFLON, there are a number of approaches for metamodeling and model
transformation, for an extensive overview, cf. [16]. In this section we focus on
tools that are specifically interesting for our approach.

Some tools like GReAT [17], MoTMoT [18], and MDR [6] value OMG stan-
dard-compliant schemata like MOF and UML, while Microsoft Domain Specific
Language Tools [19], GME [17], MetaEdit+ [20], PROGRES [21], prefer propri-
etary metametalanguages. Fujaba [9] mixes standard and proprietary elements,
EMF Transformation Engine / GMF [22,23] only implements EMOF, a small
subset of the current standard, and tools like AToM3[24] use ER-Diagrams that
could be considered “standard” some time ago.

Only MOFLON puts a strong emphasis on complete standard compliance
with MOF 2.0 to benefit from its new features. Among these are strong mod-
ularization and refinement possibilities. Tools like [19,24] provide no schema
modularization at all, others like [9,17,20,21] provide either hierarchies or view
mechanism to structure data. MOFLON uses package imports, package merges,
element imports, redefinition of association ends etc. with full effect on identifier
visibility not only in schemata but also constraints and graph transformations.

Many tools [19,24,17,23,25,26], often meta-CASE tools, deal with the con-
crete syntax of modeling languages to create diagram editors. MOFLON is more
about model analysis, transformation and integration and hence, does not sup-
port concrete syntax.

MOFLON provides local model transformations through graph transforma-
tions, which is also true for [21,9,17,24,18]. Other tools [22,27] only provide
textual model transformations or none at all [19,6]. Like MOFLON, only some
of these tools [21,9,17,18] use visual rule application strategies to compose large
transformations. While Fujaba and hence MOFLON use a proprietary syntax
embedding Story Patterns inside UML Activity Diagrams, MoTMoT is truely
standard-compliant by providing an adequate UML profile, but at the cost of
defining story patterns as class diagrams, which appears quite unnatural to us.

MOFLON and Tefkat[22] provide declarative model-to-model transforma-
tions that are QVT-like. Opposed to that, GReAT only provides the possibility
to define operational model-to-model transformations.
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7 Conclusion

MOFLON is an integrated, standard-compliant metamodeling environment that
provides full support for the new MOF 2.0 modularization and refinement con-
cepts. Due to JMI-compliance and the event mechanism, the model repository
can either exist in main memory or in a NetBeans Metadata Repository [6]. Be-
sides, MOFLON features constraint checking based on the Dresden OCL com-
piler [8]. A visual graph transformation language with control flow diagrams
for rule-application strategies has been adopted from Fujaba [9] to perform lo-
cal model transformations. For model-to-model-integration, we use a declarative
QVT-like approach based on Triple Graph Grammars. Finally, MOFLON has a
template-based code generator supporting XSLT and Velocity technology.

We are currently completing the first public MOFLON-release. In the near
future, we will work on an incremental constraint checking algorithm adapted
from PROGRES [28]. Finally, we plan to merge MOFLON with DiaGen II [25] to
be able to generate support for both syntax-directed and free-hand diagram edit-
ing, constraint-based layout, and parsing of diagrams, thus making MOFLON
also a meta-CASE tool.
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Abstract. In MDE, model transformations should be efficiently tested so that it 
may be used and reused safely. Mutation analysis is an efficient technique to 
evaluate the quality of test data, and has been extensively studied both for 
procedural and object-oriented languages. In this paper, we study how it can be 
adapted to model oriented programming. Since no model transformation 
language has been widely accepted today, we propose generic fault models that 
are related to the model transformation process. First, we identify abstract 
operations that constitute this process: model navigation, model’s elements 
filtering, output model creation and input model modification. Then, we 
propose a set of specific mutation operators which are directly inspired from 
these operations. We believe that these operators are meaningful since a large 
part of the errors in a transformation are due to the manipulation of complex 
models regardless of the concrete implementation language. 

1   Introduction 

Validation refers to a process that aims at increasing our confidence that software 
meets its requirements. It usually relies on a combination of reasoning and testing, 
and encompasses unit, integration, and acceptance testing. Testing is thus a key aspect 
of software development, because of its cost and impact on final product reliability. 

In the case of model-driven development, classical views on testing and their 
associated testing models are not well-suited to the significant changes this software 
paradigm has induced to the development process. The standardization of a model 
transformation language (QVT) reveals the need of a systematic way for specifying 
and implementing the model transformations. However, as for any other program, 
faults may occur in a model transformation program which must be detected through 
testing. Programming a model transformation is a very specific task which implies 
operations a classical programmer does not usually manipulate, such as navigating the 
input/output metamodels or filtering model elements in collections. If a skilled 
programmer of a model transformation can still introduce classical faults in the 
program, specific faults appear. These specific faults are more at a semantic level than 
classical programming faults. For instance, the programmer may have navigated a 
wrong association from class A to class B, thus manipulating class incorrect instances 
of the expected type. He may also be wrong in the criteria used to select some class 
instances (e.g. selecting all classes while he should have selected only persistent 
ones).  Such faults are related to new fault categories we introduce in this paper. 
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A fundamental step in the elaboration of a test environment for a given software 
programming paradigm consists of defining criteria to estimate the quality of a test 
dataset. Structural coverage criteria are a classical way to have such an estimate. 
However, they are not directly related to the capacity of a test dataset to reveal faults 
(e.g. a faulty statement can be executed and covered several times without provoking 
the error). 

In this paper, we focus on mutation analysis as a convincing way to check the 
efficiency of a test dataset for detecting faults in the program under test. Mutation 
analysis consists of systematically creating faulty versions of a program (called 
mutants) and of checking the efficiency of a test dataset to reveal the faults in these 
erroneous programs. The main interest of mutation analysis is to provide an estimate 
of the quality of a test dataset with the proportion of faulty programs it detects. 
Instead of structural test adequacy criteria, this estimate really reflects the “fault 
revealing power” [1] of the test dataset. To be effective, the mutation analysis must 
create mutant programs which correspond to realistic faults. In this paper, we first 
study the limitations of classical mutation operators for seeding model transformation 
programs. Then, we analyze the main activities involved in a model transformation, 
independently of a specific model transformation language. This analysis of model 
transformation leads to its decomposition in four main activities, which are fault-
prone. Mutation operators are then proposed at this generic level of decomposition, 
which correspond to faults a programmer may (realistically) introduce into his code. 
The contribution of this paper is thus two-fold:  

− a study of the specific faults a programmer may do in a model transformation, 
− a definition of specific mutation operators for applying mutation analysis to model 

transformations and asses the quality of a test dataset. 

The paper is structured as follows. Section 2 recalls the general process of mutation 
analysis. Section 3 explains the limitations of classical fault categories (classical 
mutation operators); studies the fault-prone activities involved in model 
transformations and introduce the notion of semantic mutation operators. Section 4 
details the mutation operators dedicated to model transformations while Section 5 
illustrates the application of two operators on several implementations of a same 
model transformation. 

2   Mutation Testing 

Mutation analysis is a testing technique that was first designed to evaluate a test 
dataset. It also allows to improve their effectiveness and fault revealing power [1, 2]. It 
has been originally proposed in 1978 [3], and consists in creating a set of faulty 
versions or mutants of a program with the ultimate goal of designing a test set that 
distinguishes the program from all its mutants. A mutant is the program modified by 
the injection of a single fault. In practice, faults are modelled as a set of mutation 
operators where each operator represents a class of software faults. To create a mutant, 
it is sufficient to apply its associated mutation operator to the original program. 
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A test set is relatively adequate if it distinguishes the original program from all its 
non-equivalent mutants. Otherwise, a mutation score is associated with the test set to 
measure its effectiveness in terms of percentage of the revealed non-equivalent 
mutants. 

It is to be noted that a mutant is considered equivalent to the original program if it 
does not exist any input data on which the mutant and the original program produce a 
different output. A benefit of the mutation score is that even if no error is found, it 
still measures how well the software has been tested giving the user information about 
the program test quality. It can be viewed as a kind of reliability assessment for the 
tested software. The value of the mutation analysis is based on one assumption: if the 
test dataset can detect that all the mutants contain fault, then this set is able to detect 
real involuntary errors.  
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Fig. 1.  Mutation process 

The process of mutation analysis is presented in Figure 1 with the execution of 
each test datum against all the mutants of the program. An oracle function is used to 
determine if the failure is detected. This function compares each mutant’s result with 
the result of the program P; the latter being considered as correct. If the results differ, 
it means that the test data exhibit the fault; the test data kill the mutant. During the test 
selection process, a mutant program is said to be killed if at least one test data detects 
the fault injected into the mutant. Conversely, a mutant is said to be alive if no test 
data detects the injected fault. If a mutant is alive, there are two possibilities: 

• the mutant is equivalent, 
• actual test data are not able to highlight this fault: the mutant is still alive and the 

test dataset must be involved. New test data may be generated or existing ones can 
be modified.  

The equivalent mutants are suppressed from the set of mutants and a list of killed 
mutants is obtained. The mutation score for the test dataset is computed, which is the 
proportion of killed mutants compared to the total number of non-equivalent mutants; 
this score quantifies the quality of the test dataset. 
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If the score is insufficient, we have to improve the test set, which could be done 
with new test data or actual data involving. 

The relevance of mutation analysis is based on the mutants’ relevance, which itself 
strongly depends on the mutation operators relevance. Classical mutation testing is 
related to a set of faults specified by mutation operators which define syntactic 
patterns which are identified in the program in order to inject a fault. Classical 
mutation operators include relational and arithmetic operator replacement (for 
example replacing a ‘+’ with a ‘-‘), variable and method calls replacements, statement 
deletion. Some operators dedicated to OO programs, and especially to Java, have been 
introduced by Ma et al. in [4], (method redefinition, inherited attributes etc.). These 
faults are related to the notions of classes, generalization, and polymorphism. These 
operators take into consideration specificities related to the semantics of OO 
languages, but remain simple faults which can be introduced by a syntactic analysis of 
the program. To execute mutation testing with these operators, the faults are inserted 
systematically everywhere the pattern is found in the code.  

In the next part 3, we explain why we don’t want to transpose this classical 
mutation process to the model oriented development. 

3   Adapting Mutation Analysis to Model Driven Development 

This section studies the application of mutation to model transformation programs, 
and shows that the classical mutation operators are not suitable for these specific 
programs. Faults at this level are related to the main activities involved in a model 
transformation. 
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Fig. 2. Model transformation process and a model transformation mutant creation 

3.1   Mutation Analysis in a Model Development Context 

Before proposing fault models specific to the model transformations, we need to 
analyze the activities involved in development which may be fault-prone. The  
Figure 2 illustrates the general model transformation process. An input model is 
transformed and an output model is returned. Each one has its own metamodel, the 
transformation uses these metamodels to know which action it can process on the 
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input and the output models. The mutants produced by the mutation operator 
insertions has to preserve this conformity with the metamodels, they must be able to 
process the input models and must not create output models that do not conform to 
output metamodels. Thus mutation operators must be directly connected to the 
metamodel notion.  

3.2   Limitations of Classical Mutation Operators 

All the classical and OO operators can be applied to model transformations programs, 
but their relevance to this very particular context is limited due to the following 
reasons: 

• Mutant significance: seeded faults are far from the specific faults a transformation 
programmer may do if he is competent. Indeed, the transformation programmer 
will make an incorrect model transformation, which seems correct from his point 
of view, and not only a classical programming fault. He may forget some particular 
cases (e.g. forget to deal with the case of multiple inheritances in an input model), 
manipulate the wrong model elements etc.  An incorrect model transformation will 
differ from the correct one by complicated modification in the transformation 
program, and not necessarily by a single faulty statement, as in classical appro-
aches to mutation. A semantic fault, defined to represent fault in the transfor-
mation, produces viable mutants, which are not detected simply at compilation, 
execution or during the rest of the programming.  

• Mutant viability: a simple fault has a high probability to generate a non viable 
mutant program (that does not compile or run correctly). Since a transformation 
program navigates both the input and the output metamodels, most simple faults 
will disturb this navigation in a non-consistent way (e.g. trying to navigate non-
existing association due to a syntactic replacement). Thus, these faults will be 
detected either during programming, at compilation or at runtime. This approach 
generates many mutants which are not viable candidates for mutation analysis. 

• Implementation language independency: The semantic operators have to reflect the 
type of fault which may appear during the implementation of a transformation. The 
first constraint to define these operators is that they can not take advantage of a 
transformation language's syntax. Indeed, today there are lots of model transfor-
mation languages which all have their specificities and which are very hetero-
geneous (object oriented, declarative, functional, mixed). To be independent from a 
given implementation language is an important issue. That leads us to choose to 
focus on the semantic part of the transformation instead of the syntactic one 
imposed by a language, that’s studied next part (3.3). 

Classical mutation operators (object oriented or not) are still useful, to check code 
or predicate coverage, for example. However they depend on the language which is 
used in the implementation, thus they have to be completed by injecting faults which 
make sense, in terms of erroneous model transformations. These new operators that 
we propose in the section 4 try to capture specific faults that take into account the 
semantics of a particular type of program: model transformations. Such mutation 
operators are called semantic operators.  
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3.3   Semantic Faults for Model Transformations Activities 

The operators introduced have to be defined based on an abstract view of the 
transformation program, by answering the question: which type of fault could be done 
during a model transformation implementation? For example, if a transformation 
traverses the input model to find the elements to be transformed then a fault can 
consist of the navigation of the wrong association in the metamodel, or of selecting 
the incorrect elements in a collection. During a transformation, output model elements 
have to be created; a fault can consist of creating elements with the wrong type or 
wrong initialization. The analysis of these possible faults for a model transformation 
leads to distinguish 4 abstract operations linked to the main treatments composing a 
model transformation: 

• navigation: the model is navigated thanks to the relations defined on its 
input/output metamodels, and a set of elements is obtained. 

• filtering: after a navigation, a set of elements is available, but a treatment may be 
applied only on a subset of this set. The selection of this subset is done according 
to a filtering property. 

• output model creation: output model elements are created from extracted 
element(s). 

• input model modification: when the output model is a modification of the input 
model, elements are created, deleted or modified. 

These operations define a very abstract specification of transformations, which 
highlights the fault-prone steps of programming a model transformation. However, 
we believe they explore the most frequent important model manipulations for trans-
formations. Operators defined at this level will have to be wrapped to real languages.  

Any model transformation combines and mixes these 4 operations of navigation/ 
filtering (read mode) and output/input model modification (write mode). Let us 
consider the transformation UML to RDBMS to illustrate this decomposition (see Fig. 
3). In the class diagram of the input model, the persistent classes are selected and 
correspondent tables are created with columns corresponding to the attributes. First 
the input model (a) is navigated to find the classes (b) which are filtered to keep the 
persistent ones (c). A table is created for each one (d). Then the navigation covers the 
persistent classes to find their attributes (e) (inherited attributes too) and corres-
ponding columns are created (f). Finally columns are filtered (g) to find an appro-
priate key which is created (h). 

Navigation, filtering, creation, modification are fault-prone operations which are 
sequentially dependent: while the navigation returns elements, these elements are 
often filtered before being used for model creation (or modification).  We obtain a 
basic cycle which is repeated to compose a complete model transformation. The 
decomposition of a model transformation into such basic cycles provides an abstract 
view useful to inject faults. So, we define mutation operators which are applied on 
these basic cycles, by injecting faulty navigation/filtering/creation/modification 
operations.  
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Fig. 3.  Process of the transformation studied 

4   Mutation Operators Dedicated to Model Transformations 

Based on the analysis of the fault-prone operations which constitute a model transfor-
mation, we propose several new mutation operators. They act on the navigation and 
the filtering processed by the transformation on input or output models and the 
creation of the output model.  

We present our operators starting with there names and abbreviations. Then we give 
a concise explanation of their functionality. The UML to RDBMS transformation and 
the Figure 4 (which represents a simple metamodel) will help us to illustrate our oper-
ators in a third time. Finally, we explain when these operators are the most pertinent. 

4.1   Mutation Operators Related to the Navigation 

Relation to the same class change (RSCC): This operator replaces the navigation of 
one association towards a class with the navigation of another association to the same 
class (when the metamodel allows it). 

Example: the class A has three relations b1, b2, and b3 to the class B: if the 
original transformation navigates A.b1 then the operator replaces b1 with b2 and 
b3, making two mutants. 

Different cases could occur when a wrong relation is navigated towards the same 
class, depending on the cardinality. To replace A.b1 with A.b2 leads to a cardinality 
difference. The results are respectively a variable and a collection, so the compilation 
will fail. On another hand, replacing b2 with b3 leads to a relevant fault (complex to 
detect): both returning a collection of instances of B. Thus the rest of the 
transformation being not affected, the fault is harder to detect. 

Relation to another class change (ROCC): This operator replaces the navigation of 
an association towards a class with the navigation of another association to another 
class.  

Example: the class A has several outgoing relations: b1, b2, b3 (to B) and c (to 
C), if the transformation navigates A.b1 then the operator creates one mutant, 
replacing b1 with c. 
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This operator is really relevant when the expected class and the unwanted one have 
same properties used in the rest of the transformation (same attribute, method or 
outgoing relation). Due to inheritance, this case is very common because it directly 
makes direct use of the generalization process. If the wrong navigation leads to a class 
which has a common parent with the wanted class, the parent’s attributes, methods 
and relations are inherited by both classes. As a consequence the rest of the 
transformation should not be affected by this fault. In our example, the classes B and 
C have a common parent E, so they inherited of the same attribute name. 

Relation sequence modification with deletion (RSMD): During the navigation, the 
transformation can navigate many relations successively. This operator removes the 
last step off from the composed navigation. 

Example: from an instance of A, we can obtain a collection of instances of F with 
the composed navigation A.b1.f. In the generated mutant, the navigation becomes 
A.b1 and the result is not a collection of instances of F but of instances of B. 

This operator leads to the same cases than the ROCC operator, which justifies its 
relevance. 

Relation sequence modification with addition (RSMA): This operator does the 
opposite of RSMD. The number of mutants created depends on the number of 
outgoing relations of the class obtained with the original transformation. 

Example: a relation is added: A.c becomes A.c.d for example. Only one mutant 
is created because the class C has a single outgoing relation. 

This operator leads to the same cases than the ROCC operator, which justifies its 
relevance. 
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Fig. 4.  Metamodel example 

Mutation operators related to the filtering 
Filtering manipulates collections to select only the elements useful for the transfor-
mation. In a general way, a filter may be considered as a guard on a collection, 
depending on specific criteria. Two types of filtering are considered. First, instances 
of a given class may be selected in function of their properties (attributes…). That’s 
the property filtering. The second one can select some instances among a collection of 
instances of generic classes. That’s the type filtering. 
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Collection filtering change with perturbation (CFCP): This operator aims at modi-
fying an existing filtering, by influencing its parameters. One criterion could be a 
property of a class or the type of a class; this operator will disturb this criterion. 

 Example: in our transformation UML to RDBMS, this operator generates a mutant 
which filters depending on a wrong stereotype instead of the “persistent” one. 
Filtering depending on the type of the classes could also be disturbed in the Figure 4 
example. The transformation could act on a collection of the generic class E. The 
instances in this collection are of type E, B, C or F (the classes of its children). If a 
filtering on this collection selects only the instances of B, this operator creates three 
mutants: one selects the instances of C, another the instances of E and the last the 
instances of F. 

Two kinds of filtering are considered. In the simplest case, the filtering acts on a 
collection of instances of the same class, and depends on one of its properties. Then it 
is viable because the rest of the transformation won’t be influenced. Indeed, the 
expected erroneous collections just have a different size. Secondly, we can consider 
the filtering depending on the type. To filter a collection of a generic class depending 
on this class or any of the classes of its children makes no difference. All these classes 
share the same inherited properties (attributes, methods, relations), so the fault 
injected by this operator will not be discovered. 

Collection filtering change with deletion (CFCD): This operator deletes a filter on a 
collection; the mutant returns the collection it was supposed to filter. 

Example: in the UML to RDBMS example, only persistent classes are used. The 
navigation provides all the classes and the filtering selects the persistent ones to create 
correspondent tables. The operator suppresses the filtering and the transformations 
will create tables for all classes, even the ones that are not persistent. It could be a 
filtering depending on the class types: the filtering of a collection of classes of type E 
and its specialization classes could be useful to select only the A instances. The 
mutant will kept all the instances without type consideration. 

This operator leads to the same cases than the CFCP operator, which justifies its 
relevance. 

Collection filtering change with addition (CFCA): This operator does the opposite 
of CFCD. It uses a collection and processes a useless filtering on it. This operator 
could return an infinite number of mutants, we have to restrict it. We choose to take a 
collection and to return a single element arbitrarily chosen.  

Example: we do not need to illustrate this one because of its clearness. 
This operator leads to the same cases than the CFCP operator, which justifies its 

relevance. 

Mutation operators related to the creation 
These operators are based on two abstract operations: the creation of the output model 
elements and the creation part of the modification operation. 

Class’ compatible creation replacement (CCCR): This operator replaces the cre-
ation of an object by the creation of an object of a compatible type. It could be an 
instance of a child class, of a parent class or of a class with a common parent.  
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Example: if the transformation creates an instance of B (one child of E), then the 
operator creates three mutants: one creating an instance of C, one an instance of F, the 
last an instance of E. 

This operator is really interesting because the wrong created class and the right one 
have common inherited properties (relations, methods and attributes), then the rest of 
the transformation could be not affected and the fault is not detected. 

Classes’ association creation deletion (CACD): This operator deletes the creation of 
an association between two instances. 

Example: when the transformation creates the relation b1 between an instance of A 
and an instance of B, the corresponding mutant does not create this relation. 

If the relation not created has the cardinality 1 in the metamodel (or a bigger one 
fixed) then its absence can affect the rest of the transformation. But if the cardinality 
is n, then the transformation will not much be affected. The model can have an 
instance of A connected towards several instances of B with relations b1. If one 
relation is not created, the navigation A.b1 will just return a collection deprived of 
one element, without detectable consequence. 

Classes’ association creation addition (CACA): This operator adds a useless cre-
ation of a relation between two class instances of the output model, when the 
metamodel allows it. 

In our example, the metamodel (Figure 4) allows three different relations between 
A and B. Then if the transformation manipulates instances of A and B then the 
operator generates three mutants, each one creating one of the relations b1, b2, b3 
between A and B, even if one of them already exists (then overwritten relation could 
point to a different instance that the original one). 

The errors injected by this operator are not easily detectable: collections will just 
have one item added and relations of cardinality 1 will just be created or overwritten. 

These faults are directly linked to the way we design model transformations which 
are divided following the four abstract operations (navigation, filtering, creation, 
modification). These operators aim to generate viable mutants with pertinent faults to 
improve the value of the mutation analysis. This allows improving test dataset 
capacity to detect the faults of the programmer. 

5   Examples  

In this section, we present how two of our mutation operators are implemented in 
different languages. This reveals that the distance between the specification of a 
semantic mutation operator and its implementation varies with the model transfor-
mation language. This also emphasizes the need to present a semantic vision of the 
mutation analysis in model oriented programming instead of a syntactic one directly 
associated to specific languages. 

We use samples of a model transformation written for the workshop MTIP (part of 
the MoDELS 2005 Conference). We selected three different languages to illustrate 
the different implementations of two mutation operators (CFCP and CFCD). The 
model transformation studied is quite similar to the UML to RDBMS transformation 
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used in this paper: we study the filtering operation which selects the persistent classes 
to create correspondent tables. 

The mutation operator CFCP will perturb the filter. In this example, the mutation 
operator takes the negation of the filtering condition: the non persistent classes are 
selected. More complex perturbations may be implemented (e.g. replacing is_ persistent 
with any other Boolean attribute of the class).  The mutation operator CFCD will delete 
the filtering, tables are created for all the classes. Due to the fact the example is very 
simple, the seeded faults would be easily detected with a simple oracle function.  

5.1   Operator Implementation with an Imperative Model Transformation 
Written in Kermeta 

The transformation written in Kermeta is published in [5]. The excerpt is: 

getAllClasses(inputModel) 
    .select{c|c.is_persistent} 
    .each { c |  var table:Table init Table.new 
      Table.name:=c.name 
      Class2table.storeTrace(c,table) 
      Result.table.add(table) 
 } 

In this example, the filtering (on the collection elts) is just a conditional expression, 
line 2. If we apply the CFCP operator, a mutant is generated with the code: 

getAllClasses(inputModel) 
    .select{c|not c.is_persistent} 
    .each { c |  var table:Table init Table.new 
      Table.name:=c.name 
      Class2table.storeTrace(c,table) 
      Result.table.add(table) 
 } 

If we apply the CFCD operator, a mutant is generated with the code: 

getAllClasses(inputModel) 
    .each { c |  var table:Table init Table.new 
      Table.name:=c.name 
      Class2table.storeTrace(c,table) 
      Result.table.add(table) 
 } 

In Kermeta, filtering a collection is really simple because the operation select has 
this role. So mutation operators related to the filtering are quite simple to implement. 

5.2   Operator Implementation with a Declarative Model Transformation 
Written in Tefkat 

The transformation written in Tefkat is published in [6]. The sample is: 

RULE ClassAndTable(C, T) 
  FORALL Class C { 
    is_persistent: true; 
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    name: N; 
  } 
  MAKE Table T { 
    name: N; 
  } 
  LINKING ClsToTbl WITH class = C, table = T 
; 

In this example the filtering (on the collection elts) is just a conditional expression, 
line 3. If we apply the CFCP operator, a mutant is generated with the code: 

RULE ClassAndTable(C, T) 
  FORALL Class C { 
    is_persistent: false; 
    name: N; 
  } 
  MAKE Table T { 
    name: N; 
  } 
  LINKING ClsToTbl WITH class = C, table = T 
; 

If we apply the CFCD operator, a mutant is generated with the code: 

RULE ClassAndTable(C, T) 
  FORALL Class C { 
    name: N; 
  } 
  MAKE Table T { 
    name: N; 
  } 
  LINKING ClsToTbl WITH class = C, table = T 
; 

With this declarative language, code modifications are also relatively simple. The 
rules are written close to the transformation design. Mutation operator implementation 
does not affect many statements of code. 

5.3   Operator Implementation with a Language Not Devoted to the MDE, Java 

We wrote the entire transformation using Eclipse Modeling Framework (EMF). The 
sample we are interested in is: 

Vector cls = getClasses(modelUse); 
Iterator itCls = cls.iterator(); 
while (itCls.hasNext()){ 
  Class c = (Class)(itCls.next()); 
  if (not c.is_persistent){ 
      cls.remove(c); 
  } 
} 
createTables(cls); 
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In this example the filtering (on the collection cls) is implemented from line 2 to 9. 

If we apply the CFCP operator, a mutant is generated with the code: 

Vector cls = getClasses(modelUse); 
Iterator itCls = cls.iterator(); 
while (itCls.hasNext()){ 
  Class c = (Class)(itCls.next()); 
  if (c.is_persistent){ 
      cls.remove(c); 
  } 
} 
createTables(cls); 

If we apply the CFCD operator, a mutant is generated with the code: 

Vector cls = getClasses(modelUse); 
createTables(cls); 

If the CFCP operator modifies only one statement, the CFCD one affects a larger part 
of the program. In Java, the distance between the specification of the mutation 
operator and their implementation can be higher. 

5.4   Implementing Semantic Mutation Operators 

The feasibility of the implementation depends on the operators and the language.  
To have a comparison basis with existing mutation tools (MuJava [4]), we applied 
manually the operators on the Java implementation and we get the following results: 

 RSCC ROCC RSMD RSMA CFCD CFCP CFCA CACD CACA CCCR Total 
#mutants 5 13 2 7 2 6 7 3 1 0 46 

implementation
difficulty 

A A A A A B B A C B  

The first line presents the number of generated mutants for each operator (46 
mutants were generated), and the second line gives a qualitative estimate of the 
difficulty for seeding the program per operator. An “A” means that the operator is 
easy to implement, a “B” that it is difficult and a “C” that it forces a very careful 
analysis of the code. Depending on the target language, this difficulty may be 
different, but we believe that it still corresponds to the difficulty to automate the fault 
injection with a dedicated tool. 

With MuJava, 96 mutants were generated and 19 were not viable (detected at 
compile or runtime). With the specific mutants, 2 were not viable among the 46. 
Combining classical and dedicated mutants would allow a more complete verification 
of the quality of a test dataset. Classical mutant operators capture simple program-
ming faults which still exists in any programming language, but the semantic 
operators go further and improve the level of confidence in the dataset by capturing 
fault related to the MDD. 
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6   Related Work 

Several works consider model transformations as an essential feature in model driven 
development (MDD) [7, 8]. However, there are few works concerned with the 
validation of these particular programs. 

As stated earlier, the validation of model transformations has not been studied 
much yet. In [9], the authors present the testing issues they have encountered when 
developing a model transformation engine, and what solutions they have adopted. 
They note the similarity between this task and that of testing transformations 
themselves, and address a number of mainly technical issues associated with using 
models as test data. In [10], Lin et al., identify all the core challenges for model 
transformation testing, and propose a framework that relates the different activities. 
The authors focus more particularly on the problem of model comparison which is 
necessary for the comparison of models produced by the original program and the 
mutants. They give a first algorithm inspired by graph matching algorithms. In [11], 
Küster considers rule-based transformations and addresses the problem of the 
validation of the rules that define the model transformation, i.e. syntactic correctness 
and termination of the set of rules. In [12], we looked at the problem of test data 
generation for model transformation and proposed to adapt partition testing to define 
test criteria to cover the input metamodel (that describes the input domain for a 
transformation). 

Mutation analysis has often been studied in classical and object oriented programs, 
like Java [2, 4]. In [13], authors studied how to apply mutation to components’ 
interfaces. They do not base their analysis at the code implementation level of a 
component, but at its interface level. In [14], mutation analysis is studied in a UML 
context. The idea is to propose a taxonomy of faults when designing UML class 
diagrams.  The work presented in this paper focuses on the specific faults related to 
model transformations and not on the way models may be faulty. 

7   Conclusion and Future Work 

The approach presented in this paper aims at adapting mutation analysis for building 
trust into model transformation programs using this technique. By measuring the 
quality of a test dataset with mutation, we seek to build trust in a model transfor-
mation passing those tests. To adapt mutation analysis, we first studied the main 
activities involved in a model transformation and deduced some categories of faults a 
programmer may do. Mutation operators have been proposed for the specific 
paradigm of model transformation and illustrated on several implementations of the 
same model transformation. 

Further work will consist in addressing the issue of the operators implementation  
in a tool (for a well-chosen model transformation language) and in conducing  
experi-mental studies for validating the relevance of mutation operators to the MDD 
context.  



390 J.-M. Mottu, B. Baudry, and Y. Le Traon 

References 

1. Voas, J.M. and K. Miller, The Revealing Power of a Test Case. Software Testing, 
Verification and Reliability, 1992. 2(1): p. 25 - 42. 

2. Offutt, A.J., J. Pan, K. Tewary, and T. Zhang, An experimental evaluation of data flow 
and mutation testing. Software Practice and Experience, 1996. 26(2). 

3. DeMillo, R., R. Lipton, and F. Sayward, Hints on Test Data Selection : Help For The 
Practicing Programmer. IEEE Computer, 1978. 11(4): p. 34 - 41. 

4. Ma, Y.-S., J. Offutt, and Y.R. Kwon, MuJava : An Automated Class Mutation System. 
Software Testing, Verification and Reliability, 2005. 15(2): p. 97-133. 

5. Muller, P.-A., F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet, F. Fondement, P. Studer, and J.-
M. Jézéquel. On Executable Meta-Languages applied to Model Transformations. in Model 
Transformation in Practice Workshop, part of the MoDELS 2005 Conference. 2005. 
Montego Bay, Jamaica. 

6. Lawley, M. and J. Steel. Practical Declarative Model Transformation With Tefkat. in 
Model Transformation in Practice Workshop, part of the MoDELS 2005 Conference. 
2005. Montego Bay, Jamaica. 

7. Bézivin, J., N. Farcet, J.-M. Jézéquel, B. Langlois, and D. Pollet. Reflective model driven 
engineering. in UML'03. 2003. San Francisco, CA, USA. 

8. Judson, S.R., R. France, and D.L. Carver. Model Transformations at the Metamodel Level. 
in Workshop in Software Model Engineering (in conjunction with UML'03). 2003. San 
Francisco, CA, USA. 

9. Steel, J. and M. Lawley. Model-Based Test Driven Development of the Tefkat Model-
Transformation Engine. in ISSRE'04 (Int. Symposium on Software Reliability 
Engineering). 2004. Saint-Malo, France. 

10. Lin, Y., J. Zhang, and J. Gray, A Testing Framework for Model Transformations, in 
Model-Driven Software Development - Research and Practice in Software Engineering. 
2005, Springer. 

11. Küster, J.M. Systematic Validation of Model Transformations. in WiSME'04(associated to 
UML'04). 2004. Lisbon, Portugal. 

12. Fleurey, F., J. Steel, and B. Baudry. Validation in Model-Driven Engineering: Testing 
Model Transformations. in MoDeVa. 2004. Rennes, France. 

13. Ghosh, S. and A. Mathur, Interface mutation. Software Testing, Verification and 
Reliability, 2001. 11(4): p. 227-247. 

14. Trung, D.-T., S. Ghosh, F. Robert, B. Baudry, and F. Fleurey. A Taxonomy of Faults for 
UML Designs. in 2nd MoDeVa workshop - Model design and Validation, in conjunction 
with MoDELS05. 2005. Montego Bay, Jamaica. 



Author Index

Alustiza, Beatriz 13
Amelunxen, Carsten 361
Azmoodeh, Manooch 188

Baudry, Benoit 376
Bediaga, Aitor 78, 90
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Menárguez Tortosa, Marcos 158
Mesing, Benjamin 299
Mottu, Jean-Marie 376

Nytun, Jan P. 268

O’Keefe, Greg 113
Oriente, Joaqúın 316
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