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Foreword

The minute I walked in the door, I knew something was wrong. My wife
waited until I took off my coat and sat down at the kitchen table. “I had some
bad news today,” Lori began. “Mom has cancer.” We talked for hours about
what it meant and what we could do to help. It was 1972, only a year after
President Nixon had declared “war on cancer,” and many of us thought that a
concerted national effort could lead to a cure in the same way that President
Roosevelt’s targeting of polio and President Kennedy’s quest to put men on
the moon had succeeded.

Over the next 20 years, I acquired an extensive layman’s knowledge of
cancer in the process of supporting research and seeking effective treatments for
my mother-in-law’s breast cancer and, later, my father’s malignant melanoma,
and the cancers of several other close relatives. By 1982, my brother and
I had assembled a professional staff to formalize our philanthropy through
our family charity, the Milken Family Foundation. Working closely with the
foundation’s medical and scientific advisors, we became very familiar with the
leading-edge work of our grant recipients. We were inspired by the progress
of pioneers such as Dennis Slamon in breast cancer, Bert Vogelstein in cancer
genetics, Owen Witte in leukemia, Lawrence Einhorn in testicular cancer, and
many other recipients of the foundation’s cancer research awards.

By the time I was diagnosed with advanced prostate cancer in 1993, I thought
I knew a lot about cancer. So the shock of my diagnosis was compounded by
the realization that I knew almost nothing about prostate cancer. How could I
have spent two decades working with cancer researchers and possess so little
knowledge of this disease that had already spread from my prostate to my
abdominal lymph nodes? How could I not know that this disease affects one
in six American men or that a man is more likely to develop prostate cancer
than a woman is to develop breast cancer?

It turned out that I was not alone. The public knew next to nothing about
prostate cancer. Articles in the popular press, which so often chronicled
the importance of pap smears, mammograms, and smoking cessation, rarely
mentioned that little walnut-sized organ surrounding men’s urethras. As far
as most men were concerned, this disease was something they didn’t want to
think about. Men seem to be more fatalistic than women and believe they’re
either living or dying so there’s no point in getting tested.
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Even more surprising was the lack of interest in the medical community. The
National Cancer Institute didn’t fund much research on prostate cancer because
they received few grant applications. Physician—scientists weren’t submitting
the applications because there appeared to be little funding available. It was a
vicious circle. The field was so moribund that one young investigator was told
by his mentor to avoid the “career suicide” of prostate cancer research.

Meanwhile, the pharmaceutical and biotechnology industries weren’t
allocating enough research funds to cancer drug development because they
didn’t think the return on the investment would justify the risk. And as I
traveled around the country to major academic research centers, I felt a growing
sense of frustration, and even anger, when I realized that each of these elite
institutions considered the others to be competitors rather than collaborators in
cancer research.

After extensive discussions with the heads of these centers and other
advisors, I concluded that a new organization was needed to bring focus and
a sense of urgency to the field of prostate cancer research. This organization,
which would become the Prostate Cancer Foundation (PCF), would need to:

Identify promising research not being funded by the National Cancer Institute;
Recruit the best and brightest investigators to energize the field;

Reduce paperwork requirements and fund projects quickly;

Require awardees to share the results of their work;

Help build centers of excellence in prostate cancer and link them digitally;
Encourage public—private partnerships;

Pursue a venture-funding model;

Act with urgency;

Build public awareness.

The Milken Family Foundation jump-started the process with early funding,
but since then, the majority of funds for more than 1400 competitive research
awards have been contributed by the public. Awardees gather each year at the
PCF’s Scientific Retreat to present their findings. Many of them are affiliated
with member institutions of the PCF Therapy Consortium comprising eight
leading cancer centers that now collaborate on prostate cancer programs.
Over the past 15 years, we’ve reached several important milestones. The
Department of Defense Prostate Cancer Research Program exceeds three-
quarters of a billion dollars in cumulative spending. Hundreds of bright young
investigators are launching careers in prostate cancer research. Prostate cancer
SPORE grants have increased fivefold. Articles about prostate cancer in popular
periodicals increased from 2500 in 1993 to nearly 36,000 in 2006. Federal
and state government funding of prostate cancer research is 20 times the 1993
level. Major states like New York and California allow taxpayers to check
off a donation to prostate cancer research on their tax returns. Institutions
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in dozens of countries around the world now participate in PCF collabora-
tions. The latest treatment options are described in a patient guide, and in a
separate professional guide, published by the PCF. Millions more men now
know about prostate-specific antigen (PSA) tests and DREs. Far more drugs
targeting prostate cancer are available or in development than even a few
years ago.

None of these achievements would mean much, however, if we weren’t
keeping more men alive and if they weren’t able to enjoy a good quality of life.
Fortunately, there’s progress here, too. Close to 40,000 prostate cancer patients
were dying each year in the early 1990s. With the aging of the baby-boom
cohort, that number was expected to increase to as many as 60,000 deaths
today. Instead, the number has fallen to below 28,000. The reasons are complex
and no one initiative should receive the credit, nor can we be complacent,
because without major breakthroughs, death totals could rise again as the first
baby boomers move through their seventh and eighth decades.

The work described in Prostate Cancer: Signaling Networks, Genetics,
and New Treatment Strategies, however, is cause for optimism. The authors
of the chapters included here—16 of whom are PCF awardees—are moving
quickly on the frontiers of science. They’re providing hope that the two million
Americans currently living with prostate cancer and the three million projected
to join them in the next decade will live long, fulfilling lives.

Building on the lessons of the PCF, we’ve established a separate organization
dedicated to removing the barriers to progress that so often frustrate the efforts
of the best researchers in all fields of medicine. This new group, known as
FasterCures and headquartered in Washington, D.C., does not fund medical
research. Rather, it figures out how we can improve the process of research
by creating more effective incentives, eliminating unnecessary bureaucracy,
improving professional training, linking biobanks, and other steps that shorten
the time from idea to bench to bedside. All readers of this book are invited
to join us in our effort to make cancer something that our grandchildren will
know only by reading history books.

Michael Milken, MBA

Michael Milken, called “The Man Who Changed Medicine” in a 2004
Fortune magazine cover story, is the founder and chairman of the Prostate
Cancer Foundation and of FasterCures/The Center for Accelerating Medical
Solutions. He has supported medical research for 35 years.



Preface

Prostate cancer remains a major healthcare challenge in the United States.
Currently, prostate cancer is the most commonly diagnosed malignancy and
the second leading cause of cancer-related deaths in men in the United States.
Alternate therapy approaches based on a deeper understanding of prostate
cancer are of vital importance. At this time, more than 218,000 new cases
of prostate cancer will be diagnosed per year in the United States, and more
than 27,000 men will die annually from this disease. We now know that the
economic, physical, and psychological burden will be significantly greater for
certain groups, including African American men. At this time, an African
American man is approximately 2.5 or more times likely to die from prostate
cancer than a Caucasian American man. Prostate Cancer: Signaling Networks,
Genetics, and New Treatment Strategies describes the most current under-
standing of the molecular mechanisms underlying the onset and progression
of prostate cancer. In an attempt to identify new molecular targets for therapy
development of prostate cancer, current concepts of steroid receptor and
protein kinase signaling pathways are reviewed. In addition, new perspec-
tives in radiation therapy, prediction of therapeutic response, new directions in
hormonal treatment, surgical intervention, and targeted therapies are described.

In the opening chapter, new information of histological changes in the
prostate associated with cellular atrophy and inflammation provides insight into
the pathogenesis of prostate cancer. Chapters 2 through 5 are focused on the
key genetic changes involved in prostate carcinogenesis and progression and
specific epigenetic abnormalities that accompany prostate cancer progression
to advanced disease. The molecular mutations, both low and high penetrant
variants, which predispose to and/or modify the response to treatment of
prostate cancer, are described. In Chapter 4, Dr. Gelmann focuses on the role
of cell cycle control, DNA repair, and oncogenic and tumor suppressor drivers
in prostate cancer. In Chapter 5, Drs. Helenius, Waltering, and Visakorpi
introduce the role of the somatic genetic changes and the important role of the
androgen receptor. Chapters 6 through 9 articulate the role of nuclear hormone
receptors in the onset and progression of prostate cancer. We find that the
androgen receptor is post-translationally modified not only by phosphorylation
but also by acetylation, and these specific post-translational modifications
provide new avenues for intervention. In Chapters 8 (Drs. Imamov, Lopatkin,
and Gustafsson) and 9 (Drs. Prins and Korach), the authors present an important

ix
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and balanced view on the role of both estrogen receptors o and [ in prostate
tumorigenesis.

Chapters 10 through 13 summarize recent advances in intracellular signaling
pathways, including the importance of hypoxia-inducible factor 1, the Ras—
MAP kinase pathway, the transcription factors STATS and STAT3, and the role
of Akt and PI3K kinase signaling in prostate cancer progression. Transcription
factor Stat5 as a therapeutic target and prognostic factor of poor clinical
outcome is described.

With the goal of identifying key molecular targets for therapeutic strati-
fication and prognostication, Chapters 14 through 20 focus on predictors of
clinical outcome and the values of specific molecular targets in the management
of prostate cancer. Advances in radiation therapy, hormonal therapy, and
surgical intervention are highlighted in Chapters 16 and 17. In Chapter 17,
Drs. Basillote, Ahlering, and Skarecky highlight recent data using the Da Vinci
Surgical System. In Chapter 18, Drs. Heath and Carducci outline key oppor-
tunities given by more than 200 novel agents currently under evaluation in
the treatment of prostate cancer. Chapter 19 describes new perspectives in
chemotherapy of prostate cancer. In closing, opportunities for early detection
and treatment of prostate cancer are outlined by Dr. Gomella and Dr. Valicenti.

As a collective medical community, our responsibility lies with engaging all
individuals participating in early detection and valuable preventative measures.
We are most grateful for the participation of our colleagues in creating this
book for the improvement of the treatment of patients with prostate cancer. We
acknowledge and share our gratitude to our patients and families who inspire
and guide us on a daily basis.

Richard G. Pestell, MD, PhD
Marja T. Nevalainen, MD, PhD
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1 Histopathology and Molecular
Biology of Prostate Atrophy

A Lesion Associated with Inflammation,
Prostate Intraepithelial Neoplasia, and Prostate
Cancer

Alexander Valdman, MD, PhD,
Robert B. Jenkins, MD, PhD,
Fusheng Lan, MD, PhD,

and Angelo M. De Marzo, MD, PhD

CONTENTS

INTRODUCTION

CLASSIFICATION OF FOCAL ATROPHY IN THE PROSTATE
HiSTOLOGICAL MAPPING STUDIES

MOLECULAR BIOLOGY OF PROSTATE ATROPHY
SUMMARY AND CONCLUSIONS

REFERENCES

1. INTRODUCTION

Prostate atrophy has been considered a possible precursor of prostate cancer
since the 1920s (/-3). Prostate inflammation has come into focus over the
last several years as a potential stimulus for the development of prostate
cancer. Because many prostate atrophy lesions are associated with inflam-
mation, and most inflammatory lesions are associated with atrophic epithelium,

From: Current Clinical Oncology: Prostate Cancer:
Signaling Networks, Genetics, and New Treatment Strategies
Edited by: R. G. Pestell and M. T. Nevalainen © Humana Press, Totowa, NJ

1



2 Valdman et al.

it is plausible that prostate atrophy represents a critical link between inflam-
mation and prostate cancer. There have been recent reviews focused on
inflammation and prostate cancer (4—9) and the histomorphology of prostate
atrophy (/0). Because there are no systematic reviews of studies that have
examined histopathological mapping of prostate atrophy lesions in relation to
prostate cancer, or of somatic genomic alterations in prostate atrophy, these
topics will be the subject of this chapter.

2. CLASSIFICATION OF FOCAL ATROPHY IN THE PROSTATE

The early systematic description and classification of epithelial atrophy of the
prostate can be attributed to Franks (/7). He divided morphological variants
of prostate atrophy into five patterns:

1. Simple atrophy
2. Sclerotic atrophy
3. Post-atrophic hyperplasia (PAH), of which there were two subtypes:

a. Lobular hyperplasia
b. Sclerotic atrophy with hyperplasia

4. Secondary hyperplasia

Although it was not explicitly stated, secondary hyperplasia would appear to
best correspond to what we would refer to today as high-grade prostatic intraep-
ithelial neoplasia (HGPIN). In order to standardize terminology regarding focal
atrophy of the prostate, De Marzo et al. (/2) developed a working group
classification of focal atrophy of the prostate, and the outcome of this is
a new classification system for the various morphological patterns of focal
atrophy lesions. According to the working group, focal prostate atrophy can
be classified into one of four subtypes as indicated in Table 1. In addition to
the classification above, it was proposed to refer to most simple atrophy and
PAH lesions as “proliferative inflammatory atrophy” (PTIA) (13). This grouping
term emphasizes the fact that many atrophy lesions are in fact associated
with inflammation (/4). In those atrophic lesions that are not associated with
inflammation, the term proliferative atrophy (PA) may be used (see Table 1
for usage details).

3. HISTOLOGICAL MAPPING STUDIES

Several studies addressed the frequency and topographical relationship of
focal atrophy and prostate cancer. In the classic article by Franks (75), a case—
control study was performed in autopsy material. He reported the incidence
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Table 2
Data Summarized from Franks (15)
Cancer Post-sclerotic hyperplasia
No Yes Total
No 68 (58.6%) 48 (41.3%) 116 (62.7%)
Yes 29 (42%) 40 (58%) 69 (37.3%)
Total 97 (52.3%) 88 (47.7%) 185 (100%)

of sclerotic atrophy and post-sclerotic hyperplasia! (Table 2). Of 69 cases in
which prostate cancer was found, which he regarded as “latent carcinoma,”
21% contained sclerotic atrophy and 56% contained post-sclerotic hyperplasia.
In comparison, in 116 cases from men over 50 years of age without prostate
carcinoma, sclerotic atrophy alone was found in 17% cases and post-sclerotic
hyperplasia in 41.5% cases. Although he did not report statistical analysis,
a Pearson y? test of his results indicates that there was a statically signif-
icant increase in the fraction of cancer cases with post-sclerotic hyperplasia
(x* =4.7754, p = 0.029) than in cases without carcinoma.

In the group of 32 men under 50 years of age, sclerotic atrophy alone
was found in 15.75% of cases and post-sclerotic hyperplasia in 9.25%. These
latter results show a clear positive correlation of the extent of some types of
focal atrophy and age. Franks also reported direct merging of post-sclerotic
hyperplasia atrophy lesions at times with small invasive carcinoma lesions (/5).

Liavag (16) reported the incidence of atrophy in 324 autopsies of males at
the age of 40 and above in which 87* (26.8%) were found to have incidental
cancer. In this study, which is the only reported one that attempted to measure
the extent of prostate atrophy, atrophy was categorized as slight, moderate,
or marked. Both atrophy and carcinoma increased with age. Atrophy was
found in 100% of the prostates with carcinoma and in 90.3% of the prostates
without carcinoma, and this difference was significant (p < 0.01). There was a
highly significant difference in the extent of atrophy in cases versus controls
(» < 0.00001), such that atrophy was more “severe” in prostate specimens with
cancer (85% severe atrophy in cancer cases and 49% in non-cancer patients;
the difference was indicated to be statistically significant, but the p value was
not given). In the same study, Liavéag also reported direct merging of atrophy
lesions with small invasive carcinoma lesions.

'We assume this corresponds to the Franks description of the pattern of PAH
referred to as sclerotic atrophy with hyperplasia.
2Note that in this study, only three sections of the prostate were examined.
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Billis (17) assessed the presence of prostate atrophy in the peripheral zone
of prostates from 100 consecutively autopsied men older than 40 years of
age. He found focal atrophy in 85 prostates and subtyped it into simple,
hyperplastic (PAH), and sclerotic. In 65 (76.47%) of 85 cases, the histologic
subtypes were combined. In 33 (50.76%) of these 65 cases, the three subtypes
were seen concomitantly. Cancer was found in 29 of 100 cases. Atrophy was
reported in 24 of 29 cases with carcinoma (83%) and in 61 of 71 cases without
carcinoma (86%). The author concluded that there was no relation of atrophy
to “latent carcinoma.” In a more recent study by the same authors (/8), neither
a topographic relation nor a morphologic transition was seen between prostatic
atrophy and carcinoma or HGPIN. One potential limitation of these studies,
however, was that the authors only reported on whether atrophy was present or
absent, and not on the extent of atrophy. Given that almost all cases harbored
some atrophy, it follows that without examining large numbers of specimens
(i.e., >300 cases as in Liavag (16)) in order to uncover a potential link between
prostate atrophy and carcinoma in these types of studies, it is likely that merely
indicating its presence is not adequate; rather the quantitative extent of atrophy
should be measured and correlated with cancer.

Putzi and De Marzo (/9) examined the two-dimensional topographic
relationship between simple atrophy and PAH to HGPIN lesions and prostate
carcinoma lesions in 14 radical prostatectomy (RP) specimens. The prostate-
ctomy specimens chosen were those in which only minimal carcinoma was
present (<0.5 cc total tumor volume) in order to reduce the possibility that
HGPIN lesions represented intraprostatic dissemination of carcinoma and to
examine the topology of carcinoma lesions that were very likely to be close to
their point of inception. In these 14 specimens, the total number of spatially
separate HGPIN lesions was 629. The topographic relation was described as
“merging” when HGPIN or carcinoma merged directly with focal atrophy
within a given acinus or duct. Lesions were considered “adjacent” when the
neoplastic-appearing epithelium was in very close proximity (<100 pum), but did
not merge with atrophy. Lesions were described as “near” when the individual
duct/acinus of HGPIN or carcinoma was separated from a distinct acinus/duct
containing PIA by less than 1 mm but were further away than “adjacent.”
Finally, lesions were described as distant when the HGPIN or carcinoma lesion
was more than 1 mm from any atrophic area. The results showed that HGPIN
merged with atrophy in 267 (42.5%) of 629 lesions. It was adjacent in 57
lesions (9%), was near in 233 lesions (37%), and was distant from atrophy in 72
lesions (11.5%). Thus, focal atrophy was within 1 mm of HGPIN in 88.5% of
such PIN lesions. In the same study, carcinoma was not found to merge directly
with focal atrophy; it was adjacent in 24 (30.4%) of 79 lesions, was near in 46
lesions (58.2%), and was distant from focal atrophy in nine lesions (11.4%).
Thus, for all of these “microcarcinoma” lesions, focal atrophy was within 1
mm 88.6% of the time. This was higher than the fraction of carcinoma lesions
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that were within 1 mm of HGPIN (70%). In many cases, there were regions in
which atrophic areas appeared to demonstrate gradations of increasing nuclear
atypia from no atypia in the purely atrophic cells to significant atypia in the
HGPIN regions (Fig. 1). In summary, the study revealed frequent morpho-
logic transitions between HGPIN and focal atrophy. In subsequent studies, we
have noted direct merging at times between focal atrophy and small carcinoma
lesions occurs (20), as did Montironi et al. (27). The primary limitation of this
study was the relatively small number of patients, albeit very high-resolution
mapping was performed such that every PIN lesion and every cancer lesion
was examined in detail. Other limitations of the study were that the pattern of
prostate atrophy was not noted, just that it was either PAH or simple atrophy,
and that no morphometric measurements were used to quantify the gradations
in nuclear atypia between atrophy and PIN lesions.

oy

Atrophic with Atypia

Atrophic

R .

Fig. 1. High-grade prostatic intraepithelial neoplasia (HGPIN) merging with focal atrophy
lesion. (A) Medium power view of a focus of proliferative inflammatory atrophy (PIA)
showing a single prostatic acinus (center) illustrating merging of atrophic epithelium
with epithelium containing HGPIN (original magnification x100, hematoxylin and eosin).
(B) High-power view of area outlined in (A). Arrows indicate atrophic acini and atrophic
acini with atypia. Note the progression from atrophic acini with atypia to PIN. The charac-
teristics of atypical atrophic cells are slightly enlarged nuclei and occasional nucleoli,
whereas cell with HGPIN show enlarged nuclei, numerous prominent nucleoli, and
chromatin clumping (original magnification X600, hematoxylin and eosin). Reprinted with
permission (19).
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Anton (22) assessed whole mount sections from 272 randomly selected RP
and 44 cystoprostatectomy specimens for the presence, location, and number
of foci of PAH, and then correlated these with the presence and location of
carcinoma foci. PAH was identified in 86 (32%) prostatectomy and in 12
(27%) cystoprostatectomy specimens. The distribution of PAH foci was the
following: peripheral zone (91%), transition zone (8%), central zone (1%),
and apex (49%), mid (39%), and base (12%). For prostatectomy specimens,
183 foci of PAH showed no atrophy in a mirror image area of the prostate
opposite the focus of PAH. Of the foci, 33% showed carcinoma either within
or within 2 mm of the focus of PAH. For the mirror image area without PAH,
carcinoma was identified either within or within 2 mm of the area in 40%
(p = 0.19). The frequency of PAH in cystoprostatectomy specimens and its
relationship to incidental carcinoma were not significantly different from those
of RP specimens (p = 0.60, x?). Therefore, PAH was found to be a relatively
common lesion, most often seen in the peripheral zone of the apical third of the
gland. PAH did not, however, appear to have any association with carcinoma.
A limitation of this study is that the authors did not consider other patterns of
prostate atrophy, which are more common than PAH.

Tsujimoto et al. (23) examined 28 RP specimens containing carcinoma and
reported on PAH lesions. They found that 7 of 28 (25%) of cases harbored
PAH and these lesions were multifocal in 85.7% of cases. They also reported
on details of histological findings including the presence and size of nucleoli
and presented a review table of the literature up until that point. They found
that PAH lesions were “near” HGPIN and carcinoma lesions in 43% of cases.

In a recent study by Tomas et al. (24), the authors evaluated the extent and
type of atrophy lesions in 50 patients with prostate carcinoma and 31 patients
with benign prostatic hyperplasia (BPH). Atrophy lesions were classified
according to the working group (/2). The study revealed that atrophy foci were
present in 100% cases with and without carcinoma. However, in cases with
carcinoma, atrophy associated with inflammation (PIA) was a significantly
more frequent finding than atrophy without inflammation (PA) (1.63 and 0.76
foci per slide, respectively; p < 0.001). In BPH patients, the opposite was seen;
PA was more frequent than PIA (2.28 and 1.27, respectively; p < 0.001).

If prostate atrophy is a precursor to prostate cancer, then it is plausible that
having focal atrophy on prostate needle biopsy that does not contain carcinoma
may be associated with an increased risk of prostate cancer on follow-up
biopsies. In a study by Postma et al. (25) in the group of 202 randomly selected
benign sextant biopsies with a follow-up time of at least 8 years and total
incidence of atrophy of 94%, there was no association between atrophy and
incidence of prostate cancer or HGPIN. As in the other studies indicated above,
none of these studies examining the association between prostate atrophy on
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needle biopsy specimens and subsequent cancer found on needle biopsy used
quantitative methods to assess the degree of atrophy.

Nevertheless, because our work supports the concept that some forms of
prostate atrophy may be risk factor lesions and at times precursors to HGPIN
and/or microcarcinomas, it is not expected that the mere presence or absence
of focal atrophy on a prostate biopsy would be predictive of cancer on a repeat
biopsy. We expect that many years, likely a decade or more, would need to
elapse before atrophy lesions might progress to a carcinoma that would be
large enough to sample on random sextant or even 10-12 core biopsies.

4. MOLECULAR BIOLOGY OF PROSTATE ATROPHY

A number of molecular changes have been reported in prostate atrophy.
Chromosome 8 abnormalities represent a frequent molecular change in prostate
cancer. Several studies have been reported in which fluorescent in situ
hybridization (FISH) was used to examine focal atrophy lesions. In the study
by Macoska et al., (26) FISH was performed simultaneously with two probes,
one for a locus on chromosome 8p [cosmid containing the lipoprotein lipase
(LPL)] and another with sequences that recognize the centromeric region from
chromosome 8 (8c). Disomy was defined in individual cells when the FISH
signals for the 8p and 8c probes were each 2 (2,2). Chromosomal alterations
were defined in individual cells as 8p loss when the number of FISH signals
for 8p,8c in an individual cell was 0,2 or 1,2; concomitant 8p loss and 8c gain
was determined by 8p,8c counts of 0,3, 1,3, or 2,3. Then, after counting 200
individual cells for each of these chromosome-alteration categories for each
tissue type in each patient examined, the percentage of nuclei in each category
was obtained. Then for each lesion or tissue type (atrophy, benign, cancer,
and hyperplastic), the means of each of these percentages were computed and
compared between groups. Although atrophy tended to have a mean percentage
of nuclei with 8p loss that was greater than normal (8p loss nuclei = 34.7%
in atrophy and 28.6% in benign and 35.7% in hyperplastic tissues), and 8c
signals that were greater than normal (data not shown), these differences were
not statistically significant, albeit only seven cases of atrophy were examined.
However, the percentage of nuclei with concomitant 8p loss and 8c gain was
statistically significantly higher in atrophy (1.57%) compared with “benign”
(0.88%) and hyperplasic tissues (0.6%) (p < 0.05). Although this analysis
provides some information regarding the population of cells within lesions as a
whole, it does not attempt to determine whether an individual case of prostate
atrophy contains true clonal alterations. Therefore, Macoska et al. developed
a cut point approach in which a given tissue type in a given case was judged
to show loss or gain (26). Because they found that in all benign tissues the
mean percentage of disomic nuclei was 41.4% and the range was 35.2-47.6%,
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they considered that an individual case was disomic if it fell within that range.
For 8p loss, they determined that mean percentage of nuclei with 8p loss in all
benign tissues was 33.1% with an SD of 11.2 Therefore, Sp loss was defined
when the percentage of nuclei with 0,2 or 1,2 8p,8c signal counts was at least
44.3% (mean + 1 SD). When defined in this manner, none of the benign tissues
(normal, atrophy, and hyperplastic) showed 8p loss, yet 84% of cancer lesions
showed 8p loss (10/25 with 8p loss only, and 11/25 with concomitant 8p loss
and 8c gain).

Shah et al. (27) also examined prostate atrophy lesions (simple atrophy
and PAH) compared with normal, HGPIN, and carcinoma lesions, using FISH
in which the number of cells with three or more signals for chromosome 8
centromere was counted. They found that the fraction of cells with three signals
increased going from normal to all other histological lesions, although this
was not statistically significant. They did find, however, when examining the
percentage of cells with three or more chromosome 8 centromere signals, that
there was a significant increase in the percentage of cells in atrophy—the mean
percentage was 1.3% in benign, 2.1% in simple atrophy, 2.8% in HGPIN, 4%
in PAH, and 6% in carcinoma, respectively (27). In this study, the authors did
not attempt to categorize individual cases of atrophy as having gain of 8c, just
the overall mean and SD for the percentage of cells with 3 or more 8c signals
was enumerated. Note that Macoska et al. (26) did not comment on 8c gain
only.

In our recent study (28), we examined prostate tissues using tissue
microarrays (TMAs) with FISH simultaneously using a cocktail of three
different probes, which included 8p22 (LPL), 8 centromere, and 8q24. For
each tissue type in each patient (normal-appearing epithelium, atrophy, PIN,
and carcinoma) from RP specimens, we recorded the percentage of cells with
1, 2, 3, or more signals for each of the three differently labeled probes. At
least 30 cells were counted in each Tissue microarray (TMA) spot. In order to
determine whether clonal genetic alterations were present, we used a stringent
cut point based method. For example, to categorize a lesion as having 8p loss,
60% or more cells should have 0 or 1 8p22 signal and the overall 8p22/8c
signal is less than 0.8. The gain category for any of the three probes was
determined if 30% or more epithelial nuclei contained three or more signals for
the probe. Although there was a significant increase in the percentage of cells
in atrophy that harbored three or more signals for 8c compared with normal
(2.4% for atrophy vs. 1.2% for normal; p = 0.024), no TMA cores containing
prostate atrophy were considered to have gained chromosome 8 centromere in
a clonal fashion. Using these strict cut points, we also found that (i) no cases
of normal lesions contained 8p22 loss or 8q24 gain; (ii) 12% of HGPIN lesions
contained 8p22 loss; (iii) 0% of HGPIN contained 8q24 gain; and (iv) 52%
of carcinoma lesions contained 8p22 loss, and this correlated with Gleason
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grade (74% 8p22 loss for Gleason patterns 4—5 and 33% 8p22 loss for Gleason
pattern 3). It was noted that the fraction of cases of HGPIN with 8p22 loss and
8924 gain was lower than in any other previously published study, although
certainly (for 8p22 loss) higher than in atrophy lesions.

Yildiz-Sezer et al. (29) also examined prostate atrophy using FISH with
the same 8p22 (LPL), 8 centromere, and 8q24 probes used by Bethel et al.
using prostate TMAs from RP specimens. For each case, they also counted
the number of signals for each probe in each nucleus and determined the
average number of signals of each per case. Like Macoska et al., they placed
their nuclei into the following categories of disomy, monosomy 8, 8p22
loss, 824 gain, and concomitant 8p22 loss and 8q24 gain. About 3.6% of
normal nuclei from non-cancer patients had 8p22 loss, and 10.26% of normal-
appearing epithelial nuclei from cancer patients, 14.17% of atrophy nuclei,
17.08% of PIN nuclei, and 21.2% of cancer nuclei were considered to harbor
8p22 loss. It is not clear, however, how many cases of each tissue type
harbored what would be considered clonal changes, yet we presume it was
quite low, and perhaps even zero in atrophy, given the overall means that were
reported.

In another recent study, Yildiz-Sezer et al. (30) examined focal prostate
atrophy lesions for genomic abnormalities on the X chromosome. Strikingly,
using comparative genomic hybridization (CGH) analysis, they reported that
90% of prostate cancer lesions and 70% of focal atrophy lesions contained
gains of the entire X chromosome. The results were further verified using FISH
with an X chromosome-specific centromeric probe. Although these results are
certainly novel and intriguing, as in the other studies reported above, it seems
that clonal alterations were not found. For example, if an entire chromosome
X was gained in the majority of cells in the population of interest, than the
ratio of signals in the lesional tissue compared with the normal tissue would
be approximately 2. However, in this study the authors used a cut point for
gain of 1.2. Again, although statistically significantly different than the normal
tissues in this study, the results suggest that only a subset of cells harbor this
change. Similarly, by FISH analysis, the mean number of cells with gain of
X chromosome centromeric signals was 4.28% in normal epithelium, 18.4%
in atrophy, and 23.9% in carcinoma. Using a cutoff of 10% of cells showing
gain in which to consider a given lesion to harbor gain, 13/20 (65%) of
atrophy lesions showed gain and 18/20 (90%) of carcinoma lesions showed
gain. Consistent with the idea that these changes do not represent true clonal
alterations that were selected for, there have been no previous reports of gain
of the entire X chromosome in prostate cancer (see Sun et al. (37), for recent
meta-analysis).

In summary, chromosomal abnormalities similar to those found in PIN and
carcinoma occur in a subset of atrophic lesions. In these studies, however, it
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appears that there were no cases in which clonal alterations were identified
in atrophy. Assuming that these changes are due to biological differences
and not some non-biologically based systematic experimental artifact, such as
difficulties with overlapping nuclei and counting FISH signals, these changes
are likely indicative of genomic damage and/or the emergence of genomic
instability in PIA/PA. Because some of the changes reported (8c gain, 8p loss,
and 8q gain) are similar to changes that are found as clonal alterations in the
truly neoplastic appearing cells in invasive carcinoma, and at times in PIN, the
findings are consistent with a hypothesis in which non-clonal DNA alterations
begin to arise in atrophy lesions at an increased frequency as compared with
normal-appearing epithelium from the same patients, and that these could
later be selected for during the process of neoplastic transformation. This is
consistent with the findings that atrophy lesions tend to show an apparent stress
response suggestive of oxidative DNA damage that could lead to chromosomal
alterations.

4.1. Mutational Analysis in Prostate Atrophy Lesions

There have been very few studies in which specific genes have undergone
sequence analysis using DNA isolated from focal atrophy lesions of the
prostate. Tsujimoto et al. (23) used laser capture microdissection of PAH
(N = 7 patients with 89 lesions) (a form of focal atrophy), BPH, HGPIN,
and adenocarcinoma lesions to isolate genomic DNA and perform mutational
analysis for exons 5-8 of p53. p53 mutations were found in 2 of 38 PAH
lesions (5.3%), 4 of 16 carcinoma lesions (25%), and 1 of 24 PIN lesions
(4.2%), yet benign glands never showed mutations. In this study, cases were
first screened by single-stranded conformation polymorphism (SSCP) analysis
in order to uncover potential mutations. Interestingly, in the figure shown, the
SSCP band appeared to be a minor component of the total, suggesting that the
mutations detected were likely not clonal.

Tsujimoto et al. (32) also examined normal, PAH, PIN, and carcinoma
lesions by microdissection for somatic mutations in the AR gene (encoding the
androgen receptor), in which they used nested PCR to determine the repeat
length in the CAG repeat in exon 1, the GGC repeat in exon 1, and the BAT-25
and the BAT-26 repeats in AR alleles. They reported that although there were
no somatic alterations in the GGC, BAT-25, or BAT-26 repeats in any of the
lesions, there were somatic decreases in the CAG repeat length in 3 of 89
(3.4%) cancer lesions, 6 of 75 (8%) PIN lesions, 4 of 24 (16.7%) PAH lesions,
and 0 of 56 (0%) benign areas. In the cases shown, there was a prominent band
at the shorter repeat location along with a weak but present band at the wild-
type location. It is not clear whether this represents contamination with normal
cells or a heterogeneous population in the lesional tissues. It was of interest
here too that the presumed precursor lesions harbored a higher frequency of
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changes than the cancer lesions. Thus, it appears that there is some evidence
of genetic instability in PAH lesions, but that AR mutations do not appear to
have been selected for in most cases of localized carcinoma lesions.

4.2. Epigenetic Somatic Genome Alterations

GSTPI CpG island hypermethylation is a very common somatic genome
alteration described for human prostate cancer (33). GSTP1 CpG island hyper-
methylation is associated with acquired defects in defense mechanisms against
oxidant and electrophilic DNA damage (33). As a consequence, cells lacking
GSTP1 activity are more sensitive to oxidative stress caused by inflammation.
In a study from our group, we compared CpG island methylation status in
normal epithelium (n = 48), BPH (n = 22), and PIA lesions (n = 64). We
found hypermethylation of the GSTPI promoter region in a small subset of
atrophy cases. GSTP1 promoter methylation was found in O of 48 regions form
normal-appearing epithelium (0%), 0 of 22 regions of BPH (0%), 4 of 64 PTA
lesions (6.3%), 22 of 32 HGPIN lesions (68.8%), and 30 of 33 of carcinoma
lesions (90.9%) (20). The results regarding PIN and carcinoma were similar
to result obtained previously by Nelson et al. (34,35).

5. SUMMARY AND CONCLUSIONS

In summary, focal prostate atrophy is known to be associated with chronic
inflammation in the majority of cases, and we have put forth the terms prolifer-
ative inflammatory atrophy and proliferative atrophy for most of these lesions.
We reviewed studies in which morphological and molecular evidence have
been explored to relate these lesions to prostate cancer. From the data we
have so far, it seems that these extremely common lesions may at times
represent precursors to PIN and or adenocarcinoma. Because they are so
common and often extensive, most are not going to directly evolve into
carcinoma. Rather, the molecular genetic data so far accumulated appear
to indicate that a fraction of cells in some atrophy lesions have developed
somatic DNA alterations consistent with those found as clonal changes in
carcinoma lesions, and less frequently in PIN lesions. Thus, the term “risk
factor lesion” may be somewhat more appropriate than “precursor lesion” for
focal atrophy. Although PIN lesions have morphological features of neoplastic
cells, whereas atrophy lesions do not, the likelihood of individual PIN lesions
progressing to cancer is also presumably quite low. Much work needs to be
done before focal atrophy is considered a true risk factor for prostate cancer.
Nevertheless, because it is so tightly linked to inflammation, strategies to
prevent prostate cancer may eventually involve the suppression of prostate
inflammation.
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1. INTRODUCTION

Alterations in gene expression are caused by a number of epigenetic
processes including DNA methylation and chromatin remodeling. Aberrations
in these processes, leading to abnormal gene expression patterns, are nearly
ubiquitous in human cancers and can carry the same importance as mutations
in the initiation and progression of human cancers, including prostate cancer.
In this chapter, we will first provide an overview of these epigenetic processes
in normal physiology and in carcinogenesis. Then we will describe some of the
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specific epigenetic abnormalities that accompany prostate cancer progression.
Finally, we will discuss how these epigenetic abnormalities can be targeted to
enhance prostate cancer detection, risk stratification, prevention, and therapy.

2. EPIGENETIC PROCESSES IN PHYSIOLOGY AND CANCER
PATHOPHYSIOLOGY

Virtually all somatic cells within any individual contain identical primary
genomic DNA sequence information. Yet cells of different lineages, organs,
and even different microenvironments within the same organs have vastly
differing phenotypes and gene expression profiles. The heritable processes by
which cells establish unique gene expression patterns without changing their
primary gene sequence are referred to as epigenetic processes. These processes
constitute an entire level of coding beyond the primary gene sequence and
are likely responsible for establishing the vast spectrum of gene expression
changes observed during development and differentiation. Dysregulation of
these processes appears to be one of the earliest and most frequent somatic
changes in human cancers, contributing to the initiation of malignant transfor-
mation and progression to advanced disease.

2.1. DNA Methylation

Among the most widely studied of these epigenetic processes is DNA
methylation. In vertebrate genomes, DNA methylation occurs predominantly
at the 5-position of cytosine (C) in self-complementary CpG dinucleotides
by the action of DNA methyltransferase (DNMT) enzymes. This process is
known to be central to several physiological processes including development,
imprinting (/-3), X chromosome inactivation (4), suppression of parasitic and
repetitive DNA elements (5-8), and transcriptional regulation (9—11).

One of the most striking illustrations of the importance of DNA methylation
occurs early in development, just after fertilization. In certain mammals, after
fertilization, the male pronucleus, even before any DNA replication and before
fusing with the egg pronucleus, undergoes a rapid process of active DNA
demethylation, reaching peak demethylation within a few hours (1/2). The egg
genome also undergoes widespread demethylation, but in a slower process
dependent on DNA replication (/2). Although the cause and consequence of
these DNA demethylation events are largely unknown, it has been conjectured
that demethylation of the parental genomes is essential in order to begin repro-
gramming of epigenetic processes in the developing embryo by erasing the
epigenetic programming that marked the parental genomes. These demethy-
lation steps may be a necessary component for establishing undifferentiated,
toti- and pluri-potent stem cells. Likewise, it is possible that such demethy-
lation events occurring abnormally in somatic cells might lead to formation of
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cancer stem cells and carcinogenesis. These possibilities are currently under
intense investigation.

Another important aspect of this epigenetic reprogramming during devel-
opment is the establishment of imprinting. Imprinting is the process by which
a given gene’s expression is limited to either the maternal or paternal copy,
but not both. CpG methylation modifications are often found to mark either
the active or inactive allele in distinct regions called differentially methylated
domains in imprinted genes. Loss of imprinting (LOI) often occurs in cancer
cells, including prostate cancer cells, leading to inappropriate expression or
repression from both the maternal and paternal alleles of a normally imprinted
gene (13,14). This LOI is often associated with changes in the DNA methy-
lation patterns at these genes (15,16). Whether these DNA methylation changes
are a cause or effect of the LOI process is still debated.

The process of X chromosome inactivation is presumably used for gene
dosage limitation in female cells and is mediated by the expression and binding
of the Xist RNA to the target X chromosome, widespread CpG methylation
throughout the target X chromosome, and recruitment of chromatin remodeling
complexes that tightly package the target X chromosome into transcriptionally
inactive heterochromatin [reviewed in (/7)]. These inactive X chromosomes
are referred to morphologically as Barr bodies, appearing as highly condensed
heterochromatin-like regions (/8-20). The precise role of DNA methylation
changes in silencing the inactive X chromosome, and whether this process is
dysregulated in cancer cells, are still largely unknown.

CpG methylation also appears to be involved in the transcriptional repression
of parasitic transposable elements and repetitive elements by maintaining them
in a closed chromatin state that suppresses transcription and genomic rearrange-
ments (5-8). Indeed, the majority of CpG dinucleotides contained in repetitive
elements such as LINEI retrotransposon sequences are normally methylated
in adult somatic cells [reviewed in (21)]. Cancer cells have a tendency to
develop undermethylation at these repetitive elements (22), and therefore may
be more prone to genomic rearrangements (23,24), possibly by homologous
recombination or by expression of intact retrotransposons.

The role of DNA methylation in transcriptional regulation has been the
subject of much recent research. The self-complementary CpG dinucleotide
is usually methylated in the normal somatic cell genome and is highly
under-represented compared with all other dinucleotides (25). This under-
representation presumably occurs because spontaneous hydrolytic deami-
nation of 5-methyl-cytosine (SmC) to thymine in germ cell genomes has
led to depletion of CpG dinucleotides during evolution (25). Despite this
overall under-representation of CpG dinucleotides, dense clusters of CpG
dinucleotides, termed CpG islands (CGls), which are usually unmethylated
in normal somatic cell genomes, are found at the transcriptional regulatory
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regions of ~60% of mammalian genes (26). In the unmethylated state, these
CGIs can be housed in chromatin structures that take on active conformations.

DNA methylation at these CGIs is associated with recruitment of chromatin-
remodeling complexes that condense the local chromatin in a manner that
resembles the facultative heterochromatin seen in the inactive X chromosome
in female somatic cells (25). This condensed local chromatin structure is highly
resistant to loading of RNA polymerase II at the transcriptional start site
of the associated gene and therefore leads to its transcriptional inactivation
(25). Such DNA methylation-induced gene-silencing events have long been
supposed to mediate tissue- and developmental/differentiation stage-specific
gene expression profiles. However, only recently, with the use of unbiased
genome methylation detection technologies, have such tissue differentially
methylated and expressed genes been identified in a systematic fashion in a
mammalian genome (27).

Much work has focused on the derangement of these physiological DNA
methylation processes in the initiation and propagation of human malignancies.
Early studies examining aberrations in DNA methylation in human cancers
showed that cancer genomes have decreased genomic SmC content compared
with normal genomes and also become undermethylated at CpG dinucleotides
within the coding sequences of known genes (28-33). Although the exact
consequences of these changes were unknown, subsequent work has suggested
that this undermethylation of DNA sequences may result in genomic instability
due to increased rearrangements (23,24,34,35).

Cancer genomes have also been identified to often harbor abnormal DNA
hypermethylation at CGI sequences resulting in an inappropriate silencing of
the associated gene (36,37). Like gene deletions and mutational silencing, DNA
hypermethylation and the resulting epigenetic transcriptional repression have
been postulated to be an important means by which cancer cells acquire and
maintain their malignant phenotype (38). These findings underline a funda-
mental enigma in the generation of abnormal DNA methylation patterns in
cancer cells, in which there may be a decrease in overall genomic 5SmC content
with a paradoxical increase in CpG methylation at certain CGIs (39).

Independent of the mechanism(s) by which abnormal epigenetic gene
silencing arises during cancer initiation, abnormal DNA methylation changes,
resulting in phenotypic gene expression changes, appear subject to selection for
cell growth and/or survival. In one experiment, using Luria Delbruck fluctu-
ation analysis, Holst et al. showed that a small minority of normal human
mammary epithelial cells (HMECs) develop hypermethylation and silencing
of the pl6/INK4a gene, which encodes a cell cycle regulatory protein, and
that these cells are highly selected for during the passaging of HMECs in
culture (40). Indeed, almost all of the HMECs that escaped senescence harbored
hypermethylated and silenced p/6/INK4a alleles (40). This somatic epigenetic



Chapter 2 / Epigenetic Gene Silencing in Prostate Cancer 21

alteration therefore permits the cells to continue proliferating while unaffected
HMECs undergo cell senescence (40). The equivalence of epigenetic and
genetic alterations during cancer development is further demonstrated by exper-
iments with human colorectal carcinoma 116 (HCT-116) colorectal cancer
cells, which, like some of the HMEC cells described above, lack pl16/INK4a
function. HCT-116 cells contain one mutant gene encoding p/6/INK4a, with a
frameshift mutation in the coding sequence, and one wild-type gene, showing
marked hypermethylation at the CGI region and repression of expression from
this normal allele (4/). Remarkably, p/6/INK4a CGI hypermethylation changes
are only present at the wild-type and not the mutant gene (4/), presumably
because hypermethylation of the CGI at the mutant allele would not have
provided a growth advantage. CGI hypomethylation changes may also be
subject to selection. For example, by long-term exposure to doxorubicin and
other antineoplastic drugs that are substrates for P-glycoprotein-mediated efflux
pumping, it is possible to select for rare variants of MCF7 breast cancer cells
that stably express high levels of the P-glycoprotein and GSTP1 due primarily
to loss of hypermethylation at the corresponding regulatory CGls (42,43).
Nonetheless, the detailed mechanisms by which cancer cells first acquire de
novo methylation changes and then maintain them through the subsequent
growth expansion and progression of the transformed cells remain largely
unknown.

2.2. DNA Methyltransferase Enzymes

The mammalian DNMTs, which include DNMT1, DNMT3a, and DNMT?3b,
are central to the establishment and maintenance of methylation changes during
physiological processes as well as during carcinogenesis. These enzymes
catalyze the transfer of a methyl group from S-adenosyl-methionine to the
5-position of cytosine bases in CpG dinucleotides. On the basis of their
propensity to modify C to SmC in unmethylated versus hemimethylated double-
stranded DNA oligonucleotides in vitro, the mammalian DNMTs have been
classified as primarily “de novo” (DNMT3a and DNMT3b) or “maintenance”
(DNMT1) methyltransferases (44—47). Under this classification, the de novo
methyltransferases would initiate new CpG methylation patterns, whereas the
maintenance methyltransferase would maintain established CpG methylation
patterns during replication and mitosis. The idea that DNMT3a and DNMT3b
are de novo methyltransferases was further supported by data showing that
targeted disruption of these genes in mice results in a blockage of de novo
methylation in embryonic stem cells and early embryos without abrogating
maintenance of pre-existing imprinted methylation patterns (48). While it is
likely that DNMT1, which is targeted to the advancing replication fork, is
most responsible for maintaining methylation patterns during genome dupli-
cation, it is clear that the DNMTs may cooperate and/or complement each
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other to establish and maintain methylation patterns. For example, HCT-116
human colon cancer cells carrying targeted homozygous disruptions of the
DNMTI or DNMT3b genes lose only 20 and 3% of their genomic methylation
levels, respectively (49,50). However, HCT-116 colon cancer cells carrying
targeted homozygous disruptions of both DNMT1 and DNMT3b lose approxi-
mately 95% of their genomic methylation levels, suggesting that DNMT3b may
cooperate with and/or complement DNMT1 in maintaining genomic methy-
lation patterns during genome duplication and mitosis (50).

Although it is clear that the fidelity of CpG methylation pattern mainte-
nance must be somehow corrupted in cancer cells, the means by which de
novo increases and decreases in CpG dinucleotide methylation appear during
carcinogenesis have not been fully established. Aberrant DNMT expression and
function may contribute both to DNA hypermethylation and DNA hypomethy-
lation during cancer development. In this regard, of all the DNMTs, DNMT1
appears most likely to play a major role in cancer development. Both too
much and too little DNMT1 function has been implicated in the generation of
the abnormal DNA methylation patterns typical of cancer cells. Forced over-
expression of DNMT1 in normal cells directly causes increased DNA methy-
lation and epigenetic gene silencing (5/-53). Additionally, DNMT1 is required
for c-fos transformation of rodent fibroblasts in vitro, for intestinal polyp
development in Apc™"/+ mice, and for tobacco carcinogen-induced murine
lung cancer development in vivo (54-57). By contrast, under-production of the
enzyme also results in carcinogenesis; mice carrying one disrupted Dnmt/ allele
and one hypomorphic Dnmtl allele and exhibiting only 10% of normal DNMT
activity develop genomic instability and T-cell lymphomas (58,59). Whether
such manipulations to increase and decrease DNMTT1 activity are appropriate
models for true endogenous DNMT1 function is still unknown, but is an
area of active investigation. Some evidence for increased DNMT1 function
in cancer cells has recently emerged, however. For instance, increases in the
endogenous expression of DNMT1 with accompanying abnormalities in DNA
methylation have been reported for mouse prostate cells carrying disrupted Rb
genes, linking the pRb—E2F pathway to regulation of DNA methylation (60).
However, levels of mRNA encoding DNMTI, when normalized to prolifer-
ation, does not appear to be commonly over- or under-expressed in cancer
cells compared with normal cells (6/). Nonetheless, DNMT1 protein levels
appear to be extensively regulated via targeted ubiquitin-mediated proteasome
degradation pathways, and many cancer cells display marked defects in this
DNMT1 degradation pathway. As a result, DNMT1 protein over-expression
appears to occur even in the absence of increases in DNMT1 mRNA levels (62).
The degree to which increased DNMT1 protein levels contribute to aberrant
DNA methylation patterns, epigenetic gene silencing, and carcinogenesis is
still unknown.
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2.3. Selective Methylated-DNA-Binding Proteins, Chromatin
Structure, and Histone Modifications

The mechanisms by which DNA methylation changes are translated to epige-
netic gene silencing are under intense investigation. In one model, CpG methy-
lation occurring in transcription-factor-binding sites directly prevents binding
of the transcription factor and thereby prevents gene expression. In a second
model, chromatin-remodeling complexes that include selective methylated-
DNA-binding (mDB) proteins, histone deacetylases (HDACs), and histone
methyltransferases (HMTs) are recruited to sites of DNA methylation and
condense the local chromatin into a transcriptionally non-permissive confor-
mation. It is likely that both of these models occur, each in different genomic
contexts [reviewed in (63,64)].

Currently, two major classes of mDB proteins have been recognized
based on the structural domains that allow these proteins to selectively
bind methylated, but not unmethylated, DNA (Fig. 1). The first of these
to be identified were the so-called methylated-DNA-binding domain (MBD)
containing proteins [reviewed in (64)]. There are five well-characterized
members of this family (MBD1, MBD2, MBD3, MBD4, and MECP2), though
a recent bioinformatics search of genome and protein databases suggested that
there may be up to 11 of these proteins (65). However, of the five well-
characterized members, only MBD1, MBD2, and MECP2 are known to bind
with high affinity and specificity to methylated DNA. Members of the more
recently identified second class of mDB proteins, called ZBTB proteins, contain
kruppel-like C2H?2 zinc fingers, rather than MBD, to facilitate selective binding
to methylated DNA (66,67). These members include Kaiso, ZBTB4, and
ZBTB38, of which Kaiso is the best characterized (66,67). Kaiso is a bimodal
DNA-binding protein capable of binding a specific unmethylated consensus
sequence as well as methylated DNA containing two consecutive methylated
CpG dinucleotides (66,68). Nonetheless, Kaiso, ZBTB4, and ZBTB38 have all
been shown to bind methylated DNA and facilitate transcriptional repression
(66,67).

In addition to their characteristic methylated-DNA-binding domains, the
mDB proteins contain transcriptional repression domains (TRDs) that recruit
other components of the repressive chromatin-remodeling complex, which
ultimately allow transcriptional silencing [Fig. 1; reviewed in (64)]. When
we speak of chromatin structure, we refer to the structural conformation
of local genomic DNA and all bound proteins. Typically, genomic DNA
is not free-floating but rather intricately wrapped around histone octamers,
forming nucleosomes, and bound by numerous protein complexes to form
complex quaternary structures. Modifications on histone octamer subunits
lead to structural changes that affect the spacing of these nucleosomes as
well as the accessibility of the surrounding DNA to other proteins, including
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RNA polymerases [reviewed in (69)]. Among the best characterized of these
modifications are methylation and acetylation of histone subunits. Acety-
lation of H3 subunits, catalyzed by histone acetyltransferases (HATSs), leads
to open chromatin structures, whereas deacetylation of H3 subunits, catalyzed
by HDAC S, leads to condensed, transcriptionally repressed, chromatin struc-
tures [reviewed in (69)]. Methylation and demethylation at histone subunits
are catalyzed by the actions of HMTs and histone demethylases (HDMs),
respectively (70-73) [reviewed in (74)]. These histone methylation modifi-
cations make up a complex code that directs the local chromatin to be
either permissive or non-permissive for transcription. The precise nature
of this code is only now being unraveled. Nonetheless, the mDB proteins
provide a clear link between DNA methylation changes, which they bind
through their methylated-DNA-binding domains, and these chromatin struc-
tural changes, through the action of their TRDs. For instance, MECP2’s TRD
allows recruitment of Sin3 and Sin3-bound HDACsS that facilitate conden-
sation of the local chromatin structure and transcriptional repression (75).
The MBD2 protein, a member of the large 1 Mega-Dalton MeCP1 transcrip-
tional repression complex, contains a TRD that recruits other members of
this complex, including Mi-2/NuRD chromatin-remodeling complex compo-
nents such as MBD3, HDAC1, and HDAC?2, histone-binding proteins RbAp46
and RbAp48, the SWI/SNF helicase/ATPase domain-containing protein Mi-2,
MTAZ2, and other proteins (76). MBD1 can recruit the SETDBI1 histone H3-K9
methyltransferase, coupling DNA methylation with histone methylation (77).
SETDBI1 can in turn recruit DNMT?3a to establish de novo methylation patterns,
suggesting that there is a cyclical interplay between chromatin modification
and DNA methylation (78). Kaiso facilitates DNA methylation-dependent
transcriptional repression by recruitment of the HDAC-containing N-CoR co-
repressor complex (79). Therefore, these mDB proteins can transduce DNA
methylation changes to transcriptional repression changes via the recruitment
of chromatin altering co-repressor complexes. This transduction is crucial to
DNA methylation-mediated epigenetic gene silencing. For instance, cells from
MBD2-deficient mice, as well as human cancer cells treated with siRNA-
targeting MBD2 mRNA, are unable to repress transcription from exogenously
hypermethylated promoters in transient transfection assays (80,81).

However, the degree of functional redundancy/complementarity between
the mDB proteins still needs clarification. Although complete disruption of
DNMT1 or DNMT3b in murine models results in severe developmental deficits
and embryonic lethality, Mbd2~/~ and Mecp2~/~ mice are completely viable
(48,80,82,83). Indeed, their only phenotypes are that the Mbd2~/~ mice exhibit
an abnormality in maternal nurturing behavior and the Mecp2~/~ mice develop
characteristics highly similar to those of patients with Rett syndrome, which
results from mutations in the MECP2 gene (80,83). The viability of these
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mice is perhaps due to a certain amount of redundancy between the numerous
different mDB proteins. However, it is also evident that many of the mDB
proteins have unique properties both in vitro and in vivo that cannot be comple-
mented by other mDB proteins. Methylated CGIs in cells are often occupied
by either MECP2 or MBD2, but not both (84). Some of this specificity may
be due to their biochemical properties. For instance, whereas MBD2 appears
to bind methylated CpGs in any genomic context, MECP2 seems to prefer
binding to methylated CpG sites that are adjacent to a run of four or more A/T
bases (84), while Kaiso prefers binding of at least two consecutive methylated
CpG dinucleotides (68). Nonetheless, it is likely that mDB proteins may have
some capacity to complement each other, but still maintain non-redundant,
unique functions.

Additionally, chromatin structure and gene expression can be modulated
even in the absence of DNA methylation changes. A multitude of histone
modification enzymes, including HMTs, HDMs, HATs, and HDACs, have
been described that alter chromatin structure and gene expression without
the requirement for recruitment to methylated DNA sites. Among these, the
polycomb group complexes, which contain the EZH2 HMT, are crucial for
establishing selective gene repression during development (85). Several studies
have even suggested that silencing by these enzymes can occur independently
of DNA methylation changes and in some cases can even instruct downstream
DNA methylation changes, in order to set up long-term repression, as evidenced
by the recent observation that EZH2 can recruit DNMTs to genomic sites
targeted for transcriptional repression (85-87).

3. ABNORMALITIES IN EPIGENETIC GENE SILENCING
DURING PROSTATE CANCER INITIATION
AND PROGRESSION

The first gene found to be silenced via somatic CGI hypermethylation
in prostate cancer was GSTPI, which encodes the m-class glutathione S-
transferase (GST) enzyme (36). This genome change remains the most common
somatic genome abnormality of any kind (>90% of cases) reported thus far for
prostate cancer, appearing earlier and more frequently than other gene defects,
including the recently described fusions between TMPRSS2 and ETS family
genes, that arise during prostate cancer development (88,89). The GST enzymes
catalyze the detoxification of carcinogens and reactive chemical species via
conjugation to glutathione. Loss of m-class GST function by CGI hyperme-
thylation and silencing likely sensitizes prostatic epithelial cells to damage
from dietary carcinogens and inflammatory oxidants, perhaps explaining
the well-documented contribution of diet and lifestyle factors to prostatic
carcinogenesis (88,90). In support of this hypothesis, mice carrying disrupted
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Gstpl/2 genes are more susceptible to developing skin cancers after treatment
with the carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) than wild-
type mice (91). Furthermore, m-class GST-deficient human prostate cancer
cells in culture accumulated high levels of genome damage when exposed
to 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP),
a dietary agent known to have toxicity in the prostate (92—-94).

Provocatively, GSTPI CGI hypermethylation, which is not present in normal
prostatic cells (or any other normal cells), seems to arise first in a fraction of
proliferative inflammatory atrophy (PIA) lesions, the earliest prostate cancer
precursors. The blunted, dysfunctional luminal epithelia in these PIA lesions,
which are often surrounded by an inflammatory infiltrate, typically express
high levels of stress response genes, including GSTPI, GSTAI, and COX2
(95-97). Induction of these genes is likely a reaction to the electrophilic and
oxidative stress in their inflammatory milieu (95,98). However, a fraction of
PIA lesions exhibit loss of GSTPI expression (99). Recent reports suggest
that this loss is likely due to GSTPI promoter CGI hypermethylation in these
PIA lesions, as evidenced by the observation that a similar fraction of PIA
lesions exhibit GSTPI CGI hypermethylation (99). As the prostate lesions
progress to prostatic intraepithelial neoplasia (PIN) lesions, which are known
prostate cancer precursors, and to prostatic carcinomas, there is a progressive
accumulation of cells with GSTP1 CGI hypermethylation and loss of GSTP/
expression, suggesting that these characteristics are selected for during the
earliest stages of prostate cancer progression (90,99-101). The recognition
that DNA hypermethylation changes characteristic of prostate cancer cells first
appear in PIA lesions suggests that chronic or recurrent inflammation may be
involved in the de novo acquisition of abnormal DNA methylation patterns.
In support of this hypothesis, a recent report suggested that interleukin 1B-
triggered nitric oxide generation led to silencing of the FMRI and HPRT genes
by hypermethylation of their regulatory CGIs (/02). Activated macrophages,
expressing high levels of the inducible form of nitric oxide synthetase (iNOS),
have been detected around PIA lesions in human prostate tissues (Lee B.H.
et al., personal communication, 2006).

Since the recognition by Lee et al. in 1994 that the GSTPI CGI was
frequently hypermethylated in prostate cancers, more than 40 other genes
have been reported to be targets of CGI hypermethylation-associated epige-
netic gene silencing in prostate cancers [reviewed in (/03)]. Synthesizing
evidence from existing reports, we found that CGI hypermethylation changes
occur in at least two waves: first in prostate cancer precursor lesions, possibly
driving the initiation of neoplastic transformation, and second in malignant
prostate carcinoma cells, possibly driving malignant progression to advanced
disease. For example, in one case series, hypermethylation of CGIs at GSTP1,
APC, RASSFla, COX2, and MDRI was present in the >90% of localized
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prostate cancer lesions and faithfully maintained in the majority of advanced
metastatic cancers. These changes likely occurred in a highly coordinated
wave very early during prostate carcinogenesis. On the contrary, hyperme-
thylation at the ERa, hMLHI, and pl6/INK4a CGIs was rare in primary
cancers, but more common in metastatic cancer deposits (/04). Additionally,
in a study of metastatic prostate cancers obtained from rapid autopsies of men
succumbing to their advanced prostate cancer, CGI hypermethylation profiles
appeared to be maintained in a nearly clonal pattern during the process of
metastatic dissemination to multiple anatomically distinct sites. Indeed, almost
all metastatic deposits from the same patient harbored nearly identical patterns
of methylation. This observation provides evidence that abnormal DNA methy-
lation patterns may arise before prostate cancer cell growth and expansion at
metastatic sites (104).

As discussed earlier, paradoxically, cancer genomes are thought to have a
decreased SmC content despite hypermethylation at certain CGIs. Although
somatic DNA hypomethylation has also been described in prostate cancer,
it has not been studied in as great a detail thus far as somatic hypermethy-
lation. In an early analysis, reduction of total SmC levels was found to be
rare in primary prostate cancers, but more common in prostate cancer metas-
tases (32). In a more recent study, methylation of LINE-1 sequence promoter
CGls, which are repeated thousands of times in the human genome, was found
to be decreased in 53% of all the prostate cancer cases analyzed. Interest-
ingly, LINE-1 hypomethylation changes occurred in 67% of cases with lymph
node metastases but only 8% of cases without lymph node metastases (105).
Additionally, CGI hypermethylation changes at GSTPI, RARB2, RASSFla,
and APC appeared to precede these LINE-1 hypomethylation changes, which
were generally detected in cancers of higher stage and histologic grade (106).
These hypomethylation changes may be associated with genetic instability, as
evidenced by reports describing a correlation between DNA hypomethylation
and losses or gains of sequences on chromosome 8 (58,107).

Chromatin structural changes, marked by histone modifications, and alter-
ations in the protein complexes binding the regulatory regions of genes and
modulating their expression, have also been described in prostate cancer, but
have not yet been catalogued in a detailed fashion. One change that has been
found in microarray studies is the pronounced over-expression in prostate
cancer metastases of the enhancer of zeste homolog 2 (EZH2), a histone H3-
K27 methyltransferase component of the polycomb group complexes (108).
This over-expression likely contributes to prostate cancer progression by
the dysregulated repression of specific genes through H3-K27 methylation.
Indeed, siRNA-mediated reduction of EZH?2 in prostate cancer cells resulted in
inhibition of cell proliferation whereas forced EZH?2 over-expression triggered
repression of a specific set of genes (/08). This repression was likely because
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of histone H3-K27 methylation by EZH2, facilitating assembly of repressive
chromatin structures at these sites (85,/08). One candidate target of EZH2-
mediated repression is the DAP2IP gene, encoding a GTPase-activating protein
that can effect Ras signaling and tumor necrosis factor (TNF)-associated
apoptosis (109,110). Forced over-expression of EZH2 in normal prostate cells
led to histone H3-K27 methylation at the DAB2IP promoter and associated
DABZ2IP suppression, whereas siRNA depletion of EZH2 in cancer cells
increased DAP2IP expression (110). However, whether EZH2 over-expression,
which is likely regulated by the pRB-E2F pathway and required for cell
replication (/171), simply reflects increased proliferation in prostate cancer
metastases or indicates epigenetic gene dysregulation has not been firmly
established.

4. CGI HYPERMETHYLATION AS A MOLECULAR BIOMARKER
FOR PROSTATE CANCER

Molecular screening for prostate cancer by assaying for prostate-specific
antigen (PSA) in serum has had dramatic consequences on the recognized
natural history of prostate cancer, allowing detection of prostate cancer as
localized disease amenable to definitive treatment with radical prostatectomy
and/or radiation therapy (//2). This trend may be responsible, in part, for the
recent decline in prostate cancer mortality. However, PSA screening is riddled
with several limitations, including a relatively high false-negative rate. For
instance, in the Prostate Cancer Prevention Trial (PCPT), 24.4% of men on
the placebo treatment arm who entered the study with “normal” serum PSA
values and underwent prostate biopsies at the end of the trial were found to
have prostate cancer (//3,114). The current approach to prostate biopsy for
prostate cancer detection and diagnosis, featuring ultrasound-guided random
sampling of "0.3% of prostate tissue rather than targeted sampling of a radio-
graphically imaged lesion (as is routine for other cancers), leaves much to be
desired. With the current approach, several controversies remain concerning
the optimal number of sampling tissue cores to be obtained and regarding
which men should undergo repeat biopsies if cancer is not detected (/15,116).
Furthermore, autopsy studies suggest that 29% of men between the age of 30
and 40 and 64% of men between the age 60 and 70 harbor small prostate
cancers (/17). Clearly, only a minority of these men, approximately 5% of all
men, will develop symptomatic or life-threatening disease. Consequently, the
wisdom of prostate cancer screening and early detection has been questioned
(118). To confront these challenges, researchers have sought new molecular
biomarkers that could be useful for prostate cancer screening and diagnosis
and for directing treatment choices for men with prostate cancer.
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Somatic epigenetic alterations, particularly DNA methylation changes, offer
a great source of potential molecular biomarkers for prostate cancer for several
reasons. First, somatic CGI hypermethylation changes have been nearly univer-
sally identified in all human cancers, including prostate cancer. Second, these
somatic CGI hypermethylation changes appear to be more prevalently associated
with prostate cancer and other cancers than other somatic genetic changes such
as mutations, deletions, and translocations. Finally, a number of sensitive and
specific strategies are being developed to detect CGI methylation from scant
genomic DNA sources such as bodily fluids and biopsy specimens (/79—121).

There are currently three major strategies for distinguishing methylated
DNA from unmethylated DNA (Table 1). The first of these takes advantage of
the selectivity of so-called methylation-sensitive restriction enzymes (MSRE)
to digest only unmethylated DNA while leaving methylated DNA intact. The
undigested methylated DNA can then be detected by a variety of techniques
including Southern blot (30,122-124), PCR (125,126), real-time PCR (121),
microarray hybridization (/27), and multiplex ligation-dependent amplification
(128). While this strategy can be extremely sensitive when coupled with PCR,
capable of detecting single copies of methylated DNA, it also has a few
important limitations, including a propensity for false-positive results arising
from incomplete digestion of unmethylated DNA, and the inability to inter-
rogate methylation at CpG dinucleotides outside of the recognition sequence of
the MSRE. MSRE-based sequencing and microarray approaches have also been
developed to characterize whole-genome methylation patterns in a relatively
unbiased manner (27,129,130), but are limited to interrogating CpG methy-
lation only within the recognition sequence of the specific restriction enzyme.
Utilization of the McrBC methylation-specific homing endonuclease, which
digests at a very wide variety of sequence contexts, can circumvent this problem
(131) but is still limited by the unpredictability of digestion.

A second strategy uses sodium bisulfite to deaminate cytosine to uracil
while leaving SmC intact (/32), creating DNA sequence differences at C
versus SmC after PCR amplification. These DNA methylation-based sequence
differences can then be mapped at single-base resolution by a technique called
bisulfite genomic sequencing (/33,134). In this technique, PCR primers are
complementary to the bisulfite converted alleles but do not overlap with poten-
tially methylated cytosines (those in CpG dinucleotides). PCR amplification,
cloning of PCR products into plasmids, and subsequent sequencing will reveal
the prevalence of each pattern of CpG methylation in the original sample at
single-base resolution. Although this technique has become the gold standard
for determination of DNA methylation patterns, it is limited by the fact that
it is very labor intensive and not easily amenable to high-throughput analysis,
and is not well-suited to sensitive identification of low-prevalence methylation
patterns.

To circumvent these problems, one can use another bisulfite-based strategy,
called methylation-specific PCR (MSP) (735), which uses PCR primers
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targeting the bisulfite-induced sequence changes to specifically amplify
either methylated or unmethylated alleles, and can be used to detect the
presence of a single pattern of methylation in each reaction. Quantitative
variations of this technique, such as MethyLight (/36), HeavyMethyl (137),
RT-MSP (104), and MethylQuant (/38), employ methylation-specific oligonu-
cleotide primers in conjunction with Tagman probes or SYBR Green-
based real-time PCR amplification to quantitate alleles with a specific
pattern of methylation. Other bisulfite-based strategies use restriction enzyme
digestion of bisulfite-conversion-generated restriction sites (COBRA) (139),
single-nucleotide primer extension (MS-SNuPE) (7/40), pyrosequencing (141),
microarray hybridization (/42—-144), golden gate assay/universal bead arrays
(145), or base-specific cleavage/mass spectrometry (/46) to provide quanti-
tative information regarding the levels of methylation at individual or groups
of CpG dinucleotides. A number of bisulfite-based techniques capable of inter-
rogating methylation patterns at multiple sequences in parallel have also been
developed. All of these techniques can be highly sensitive and specific for
detection of DNA methylation. However, the bisulfite-based techniques are in
general somewhat cumbersome, involving time- and labor-intensive chemical
treatments that damage DNA, limiting sensitivity and throughput. Additionally,
PCR primer design becomes difficult because of the reduction in genome
complexity after bisulfite treatment, leading to an inability to interrogate the
methylation pattern at some or all CpG dinucleotides in a genomic locus of
interest.

A third strategy for detection of DNA methylation, first introduced in 1994
by Cross et al., uses column- or bead-immobilized recombinant methylated-
CpG-binding domain (MBD) proteins or anti-SmC antibodies to enrich for
methylated DNA fragments for subsequent detection by Southern blot, PCR,
or microarray hybridization (26,147—-151). New assays featuring capture and
enrichment of methylated DNA coupled with PCR appear highly sensitive and
specific and easily adapted to high-throughput platforms. One limitation of
these assays, however, might be a propensity for false-positive results due to
non-specific capture of unmethylated DNA fragments. However, one recent
approach, termed COMPARE-MS, uses MBD-mediated capture in conjunction
with MSRE digestion to further enhance specificity and eliminate false-positive
results while maintaining exquisite sensitivity down to five genomic equiva-
lents of methylated alleles (/52). Finally, of all the techniques mentioned, the
methylated DNA capture and enrichment strategies show the most promise for
determination of whole-genome methylation patterns by utilization of whole-
genome tiling microarrays and whole-genome promoter microarrays (Yegna-
subramanian et al., unpublished data, 2006) (150,153—155).

One of the most promising epigenetic gene-silencing-based biomarkers for
prostate cancer is the CGI hypermethylation of the GSTP/ gene regulatory
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region (36,88,90). The CGI in the GSTPI promoter is devoid of SmC in
normal cells of the prostate and other tissues, but in almost all prostate cancers
that have been carefully studied, the GSTP/ CGI is densely methylated and
the gene is transcriptionally silenced (90,156,157). In a recent review of 24
published studies, it was found that more than 81% of the 1071 prostate cancer
cases analyzed in these studies harbored GSTPI CGI hypermethylation (/03).
The sensitivity of assays for GSTPI CGI hypermethylation varied considerably
and depended on the specific assays used and the region of the GSTP/ CGI
targeted by these assays (/03). Using one of the new methylated DNA capture
and enrichment strategies, called COMPARE-MS, we found that GSTPI CGI
hypermethylation exhibited 99.2% sensitivity and 100% specificity for distin-
guishing prostate cancer DNA from normal prostate tissue DNA (/52). Because
of this exquisite potential for screening/diagnostic sensitivity and specificity,
several different GSTPI CGI hypermethylation assays are under clinical devel-
opment for prostate cancer screening and diagnosis. Many of these assays have
already demonstrated efficacy in detecting GSTPI hypermethylation and thus
the presence of prostate cancer DNA, from multiple tissue sources including
prostate tissue biopsies, prostate secretions, urine, and blood (121,158-160).
CGI hypermethylation changes at other loci, including APC, RASSFla, PTGS2,
and MDRI, may also serve as useful biomarkers in distinguishing prostate
cancer from non-cancerous tissue with high sensitivity (97.3—-100%) and speci-
ficity (92—-100%) (104). Undoubtedly, new epigenetically-silenced genes will
be added to this list in the future.

CGI hypermethylation changes may also serve as useful biomarkers for risk
stratification in prostate cancer. A recent study demonstrated that the quantity of
hypermethylated GSTPI CGIs in the serum of patients with localized prostate
cancer directly correlated with Gleason grade, pathologic stage, and PSA recur-
rence after radical prostatectomy (/2/). Likewise, hypermethylation at the
EDNRB, RARB, RASSFla, ERB, and TIGI have been correlated with known
prognostic indicators, such as Gleason score and tumor stage (104,161-164).
Additionally, the quantitative CGI hypermethylation levels at the PTGS2 gene
regulatory region predicted prostate cancer recurrence after radical prostate-
ctomy, independently of tumor stage and Gleason grade (/04). These genes,
and others yet to be discovered, may be targets for epigenetic silencing during
progression to a more malignant phenotype. Identification of such genes may
lead to a better understanding of the molecular pathophysiology of prostate
cancer progression, help identify new targets for drug therapy of advanced
prostate cancer, and define patient subpopulations that may benefit from
existing therapies. For example, EDNRB encodes the endothelin-B receptor,
a clearance receptor for endothelin-1 (ET1). ET1 is produced at high levels
by metastatic prostate cancers as part of autocrine and paracrine signaling
loops (165,166). Loss of this clearance receptor by CGI hypermethylation
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(167) could lead to unchecked activation of the endothelin-A receptor, which
is thought to be involved in the pathogenesis of osteoblastic bony prostate
cancer metastases (/68—170). Therefore, loss of the endothelin-B receptor may
promote the formation of prostate cancer metastases to bone. Atrasentan, an
endothelin-A receptor antagonist, has shown promise for treatment of refractory
prostate cancer in randomized clinical trials (/71,172). It is possible that
CGI hypermethylation-induced epigenetic silencing of EDNRB might define
prostate cancer cases for which ET1-signaling loops contribute to disease
progression, and may therefore help identify a subset of patients that might
benefit most from atrasentan therapy.

So far, assays for detection of epigenetic changes as biomarkers for cancer
detection and prognostication have focused on the identification of CGI hyper-
methylation changes, with little attention to other epigenetic alterations, such
as genomic hypomethylation, LOI, and chromatin structural changes at specific
genes. As more robust assays for these other alterations become available,
the correlations between these epigenetic changes and prostate cancer disease
initiation and progression can be tested, perhaps providing new molecular
biomarkers for the disease.

5. EPIGENETIC GENE SILENCING AS A TARGET
FOR PROSTATE CANCER PREVENTION AND TREATMENT

Unlike mutations, deletions, translocations, and amplifications, somatic
changes in DNA methylation and chromatin structure are potentially reversible,
making epigenetic genome defects one of the most attractive rational thera-
peutic targets in human cancer. Several therapeutic approaches have been
undertaken so far to reactivate expression from epigenetically silenced genes
in cancer cells. The two general strategies under most advanced development
feature interference with the maintenance of abnormally hypermethylated CpG
dinucleotides at the promoters of the silenced genes, and/or interruption of
the action of histone- and chromatin-modifying enzymes responsible for the
construction of repressive chromatin.

Several inhibitors of DNMTs, capable of reducing DNA methylation at
the loci of epigenetically silenced genes, are under development for cancer
treatment, including (i) the nucleoside analogs 5-aza-cytidine (Vidaza®) and
5-aza-deoxycytidine (decitabine or Dacogen®), both of which have been
approved by the US Food and Drug Administration (FDA) for the treatment
of myelodysplasia, (ii) zebularine, an orally bioavailable agent, and (iii) the
non-nucleosides procainamide, procaine, and hydralazine (/73—178). Unfor-
tunately, even though 5-aza-cytidine and decitabine clearly provide benefit
when used to treat myelodysplasia, whether this benefit is attributable to the
cytotoxic actions of the drugs against neoplastic cells or to the reactivation
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of silenced gene expression remains to be determined. Nucleoside analogs
inhibit DNMTs only after incorporation into genomic DNA during replication,
as DNMT catalytic attack on the modified cytosine base in DNA results in
trapping of the enzyme in a covalent reaction intermediate, leading both to a
reduction in genome-wide DNA methylation and to cell death (/79). Clearly,
cell death, or arrest of cell growth, that is associated with nucleoside analog
DNMT inhibitor treatment might then be either a direct consequence of drug-
associated cytotoxicity or an indirect consequence of reactivation of silenced
cancer genes. Stable reversal of epigenetic gene silencing of course can only
be seen among cells that survive nucleoside analog treatment. Nonetheless,
the drugs do reduce DNA methylation when used clinically, especially when
administered at certain doses: in a study of myeloid leukemias treated with
decitabine, the SmC content in genomic DNA was found to fall by an average
of 14% (from 4.3% of all cytosine bases to 3.7%), with a near-linear decrease
in methylation when decitabine was used at low doses (between 5 and 20
mg/m? each day), but not when the drug was used at higher doses (between
100 and 180 mg/m?* each day) (180). Perhaps, at lower doses of nucleoside
analog DNMT inhibitors, a reduction in DNA methylation is the predom-
inant treatment response, whereas at higher doses, cytotoxicity overwhelms
this epigenetic effect. Of note, a phase II clinical trial (n = 14) for men
with androgen-independent metastatic prostate cancer has been conducted with
decitabine, given at a fairly high dose of 75 mg/m? intravenously every 8 h for
three doses, repeated every 5—8 weeks (/81). The treatment resulted in stable
disease for two of the 12 men who could be assessed for response for as long
as 10 weeks (/817). There has not been a completed study with 5-aza-cytidine
or decitabine used at lower doses for prostate cancer treatment to truly test
the potential efficacy of epigenetic gene “reactivation.” This quandary even
bedevils preclinical experiments for prostate cancer. As an example, in the
transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model of
prostatic carcinogenesis, prolonged treatment with decitabine prevented both
the appearance of hypermethylation at the Mgm¢ promoter and the progression
of PIN to invasive metastatic prostate cancer (/82). However, even in this
controlled model system, whether these beneficial effects of decitabine reflect
reversal of gene silencing has not been established. As for safety, nucleoside
analogs are known to cause myelotoxicity as the major dose-limiting side
effect, and the incorporation of an abnormal base into the DNA template clearly
carries risks of mutations (/83).

Non-nucleoside DNMT inhibitors offer the possibility of fewer safety
concerns and the prospect of a more direct “proof-of-concept” test of epigenetic
gene reactivation therapy for prostate cancer and other neoplastic diseases.
Procainamide, a drug approved by the FDA for the treatment of cardiac
arrhythmias, procaine, an approved anesthetic agent, and hydralazine, a drug
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approved for the treatment of hypertension, all inhibit DNMTs without myelo-
toxicity or mutations (/84—186). Detailed mechanistic studies of procainamide
inhibition of DNA methylation have revealed several features of the drug that
may make it an attractive candidate for further development as epigenetic
therapy in certain clinical settings. The agent has been found to be a highly
selective inhibitor of DNMT1 at concentrations that can be achieved clini-
cally, with little or no activity toward DNMT3a or DNMT3b (/86). Also,
the drug only antagonizes the activity of the enzyme on hemimethylated
DNA substrates, but not on unmethylated DNA substrates, suggesting that
maintenance methylation activity during DNA replication may be targeted
selectively over de novo methylation activity (/86). Furthermore, even when
inhibiting DNMT1 activity on hemimethylated DNA substrates, procainamide
functions as a partial competitive inhibitor, never fully stopping methylation.
For these reasons, although the drug may have somewhat less activity than
nucleoside DNMT inhibitors in the treatment of some cancers, the agent may
have a more favorable safety profile. Mice carrying one disrupted Dnmtl allele
and one hypomorphic Dnmtl allele, with both reduced maintenance and de
novo DNA methylation activity, exhibit genomic instability and develop T-
cell lymphomas, hinting that excessive inhibition of DNMT]I activity might
cause certain cancers (e.g., lymphomas) even while preventing or treating
others [e.g., epithelial tumors; see (58,59)]. It is possible that procainamide,
by partially inhibiting only the maintenance methylation activity of DNMTI,
might maintain efficacy for prostate cancer treatment while avoiding the
risk for lymphomagenesis. In preclinical studies using LNCaP cells propa-
gated as xenograft tumors on immunodeficient mice, procainamide reactivated
silenced GSTP1 expression, with a trend toward greater anti-tumor activity than
decitabine (1/76). Long-term use of procainamide has not been associated with
genetic instability or with an increased lymphoma risk, although prolonged
procainamide treatment has been correlated with drug-induced lupus, more
commonly arising in women than in men (/85,187). Procainamide is clearly
ready for clinical “proof-of-concept” testing in men with prostate cancer.

The other general therapeutic approach to epigenetic gene silencing in cancer
features the targeting of enzymes that contribute to the construction and/or
maintenance of repressed chromatin complexes encompassing the transcrip-
tional regulatory regions of key cancer genes. The most advanced drug
discovery activity has targeted HDACs, the enzymes responsible for antago-
nizing activation of transcription accompanying the activity of HATs, with a
growing portfolio of small molecule HDAC inhibitors reaching early clinical
and/or advanced preclinical development, including sodium phenylbutyrate,
valproic acid, suberoylanilide hydroxamic acid (SAHA), pyroxamide, N-acetyl
dinaline (CI-994), LAQ824, LBH-589, MS-275, depsipeptide (FR901228),
and many others (/88-191). These inhibitors have generally displayed very
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promising efficacy in cancer models, including prostate cancer models
(192-200). The agents thus far tested in clinical trials have produced a number
of side effects, such as nausea, vomiting, diarrhea, fatigue, and edema, but have
not commonly caused severe adverse events (/88,189,191). With this favorable
safety profile, combinations of HDAC inhibitors and other agents will likely
be feasible. Already, there has emerged strong preclinical evidence that combi-
nations of DNMT inhibitors and HDAC inhibitors more effectively reactivate
silenced gene expression in cancer cells (57,201). The clinical activity of
HDAC inhibitors against prostate cancer is under active clinical study.
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1. INTRODUCTION

Although the vast majority of prostate cancer cases are sporadic in nature,
there is mounting evidence strongly supporting the existence of prostate cancer
genetic risk factors. These genetic risk factors come in two flavors, rare
highly penetrant mutations and common low-penetrant variants. Major research
studies in the area of hereditary prostate cancer (HPC) are underway to help
elucidate the rare highly penetrant alleles, which segregate in families with
multiple affected family members. Likewise, several large cohort studies have
been recently initiated to search for common low-penetrant variants in the
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general population, which are associated with increased risk of prostate cancer.
Unlike other common cancers, such as breast cancer and colorectal cancer,
no clear-cut high-penetrant gene has been discovered, which when mutated
causes prostate cancer. It is more commonly believed that prostate cancer is
a heterogenous disease, with both high- and low-penetrant genes cooperating
toward the prostate cancer phenotype. It is our hope that with continued inves-
tigation, the discovery of key prostate cancer susceptibility genes will lead to
earlier diagnosis of prostate cancer and will help us better comprehend the
underlying etiology of this disease.

2. WHAT EVIDENCE EXISTS FOR FAMILIAL CLUSTERING
OF PROSTATE CANCER?

The heritability of prostate cancer is most strikingly supported by the study
of twins from Sweden, Denmark, and Finland (/). In this study, concordance
of cancer between monozygotic versus dizygotic twins was determined for
various cancer types. As shown in Fig. 1, heritability was highest for prostate
cancer. A positive correlation between familial clustering and risk of prostate
cancer is evident based on a trend of increasing risk of disease with increasing
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Fig. 1. Estimates of heritability for cancer types based on twin data reported by Lichtenstein
etal. (/).
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number of affected first- or second-degree relatives. Multiple complex segre-
gation analyses support Mendelian inheritance of prostate cancer. Carter et al.
(2) suggested that familial clustering was best explained by autosomal dominant
inheritance of a rare (¢ = 0.003) high-risk allele leading to an early onset form of
prostate cancer. Penetrance estimations were 88% by age 85 for carriers versus
5% for non-carriers. This rare, highly penetrant allele was estimated to account
for ~45% of early onset disease and ~9% of all prostate cancer cases. Complex
segregation analysis reported by Gronberg et al. (3), using a population-
based sample of 2857 nuclear families ascertained from an affected father
diagnosed with prostate cancer in Sweden, revealed that the observed clustering
was best explained by a high-risk allele inherited in a dominant mode, with
a relatively high population frequency of 1.67% and a moderate lifetime
penetrance of 63%. Schaid et al. (4) performed complex segregation analysis
on 4288 men who underwent radical prostatectomy for clinically localized
prostate cancer. Although no single-gene model of inheritance clearly explained
familial clustering of disease, the best fitting model for familial clustering
was explained by inheritance of a rare autosomal dominant allele (¢ = 0.006),
with an age-adjusted penetrance of 89% by age 85 for carriers versus 3% for
non-carriers. Results from a segregation analysis of 1476 Australian prostate
cancer families supported evidence for an X-linked or recessive model for
prostate cancer inheritance (5). More recently, complex segregation analysis
showed that familial clustering of prostate cancer was equally well explained
by (i) a dominant Mendelian model with a susceptibility allele frequency of
2.4%, and risk of those affected by age 80 of 75.3% and 8.2% in African-
American carriers and non-carriers, respectively, or (ii) a multifactorial model
with multiple genes, each having low to moderate penetrance being respon-
sible for most inherited prostate cancer susceptibility (6). These reports suggest
that the vast majority of familiar prostate cancer cases are associated with
rare, highly penetrant, susceptibility alleles, but data also exist supporting a
multifactorial model.

3. IS PROSTATE CANCER A HERITABLE DISEASE?

Linkage analysis and positional cloning have been applied successfully to the
discovery of susceptibility genes for breast cancer (BRCAI, BRCA2) (7,8),
colon cancer (HNPCC and mut genes) (9,10), and renal cell carcinoma (VHL,
MET) (11,12). However, of the most common cancers, prostate cancer is the
only malignancy for which a reproducible rare, high-penetrant allele has not yet
been identified. Segregation analyses have prompted the collection of highly
aggregated prostate cancer families for genome-wide genetic analysis in order
to facilitate the identification of rare, highly penetrant HPC genes. The first
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reported genome-wide scan (GWS) to search for HPC genes suggested a major
susceptibility locus on human chromosome 1 (designated HPCI) using 91
families from the USA and Sweden (/3). In a GWS, a set of evenly spaced
genetic markers is genotyped in DNA from both prostate cancer cases and their
family members. Statistical analysis is performed to determine a “logarithm
(to the base 10) of the odds score,” or LOD score. The LOD score is a statistical
estimate determined for each genetic marker to determine the probability of
the marker being linked to the disease versus it being totally independent or
non-linked to the disease locus. A maximum multipoint LOD score of 5.43
was achieved for a group of markers mapping to 1q24—q31, meaning that
there was nearly 1,000,000 to 1 odds that this group of markers was linked
to the disease. As prostate cancer and other cancers are heterogeneous, it was
assumed that only a subset of the families studied was linked to the region
on chromosome 1. Therefore, the linkage analysis was performed assuming
heterogeneity, with approximately 34% of the 91 families contributing to the
linkage to chromosome 1. This region or locus on human chromosome 1 was
named hereditary prostate cancer 1 or HPCI. Several HPCI confirmatory
studies followed, the results of which were mixed (/4-19). Other independent
GWS studies of HPC families quickly followed with reports of linkage at
several regions of the genome including Xq, 1p, 1q(q42), 8p, 16q, 17p, and
20q (20-26). Confirmation of linkage to most if not all of these regions
in independent data sets has been limited or controversial. More recently, a
series of GWSs from multiple research groups was reported in a single issue
of the journal Prostate (Prostate. Issue 57, 2003). Markers at 11 different
genomic regions (with only one overlapping with previous studies) had non-
parametric LOD scores (NPL) greater than 2.0 [reviewed in (27)]. The results
of these studies strongly support significant heterogeneity in familial prostate
cancer.

To deal with the issue of heterogeneity, the International Consortium for
Prostate Cancer Genetics (ICPCG) was formed in 1999. This consortium is
currently comprised of 11 independently collected HPC data sets. The details of
the ICPCG data set are shown in Table 1, as recently reported by Xu et al. (28).

Table 1
Mean age at Number of prostate Race Total number
diagnosis (years) cancer cases within of families
a family
<65 >65 2 3 4 =5 White Black

606 625 285 424 255 269 1166 48 1233
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The first study reported by the ICPCG was a combined linkage analysis of
772 families, which were genotyped with the same set of markers mapping
within the HPCI region (/9). A positive but marginal LOD score of 1.4
was achieved at the HPCI locus under the assumption of heterogeneity.
The second study reported by the ICPCG was a combined analysis of
the HPC20 (20q13) linkage region, initially reported by Berry et al. (23).
No evidence of linkage at the HPC20 locus was obtained by the ICPCG
combined analysis (29). More recently, a meta-analysis from 12 independent
GWS scans was reported by the ICPCG (28). This study of more than
1200 HPC families was the largest of its kind, with these data holding the
most promise for identifying key prostate cancer susceptibility loci. Table 2
summarizes the results for all linkage analyses reported by the ICPCG (28).
Five regions of the genome (5q12, 8p21, 15q11, 17g21, and 22q12) showed
LOD scores >1.86, which were suggestive of linkage (Fig. 2). A signif-
icant linkage result was seen at 22ql2, where a LOD score of 3.57 was
seen in 269 families with more than five affected family members. These
data tell us two things: (i) prostate cancer does aggregate in families and
linkage can identify putative HPC loci and (ii) there is significant heterogeneity
in HPC.

Table 2

Results of ICPCG Genome-Wide Meta Analysis (28)
Chromosomal region LOD score Families contributing to the
(nearest marker) LOD score
5q12 (D5S2858) 2.28 All (N = 1233)
8p21 (D8S1048) 1.97 All (N = 1233)
15q11 (D15S817) 2.10 All (N = 1233)
17q21 (D17S1820) 1.99 All (N = 1233)
22q12 (D22S283) 1.95 All (N = 1233)
1q25 (D1S2818) 2.62 >5 cases (n = 269)
8q13 (D8S543) 2.41 >5 cases (n = 269)
13q14 (D13S1807) 2.27 >5 cases (n = 269)
16p13 (D16S764) 1.88 >5 cases (n = 269)
17g21 (D17S1820) 2.04 >5 cases (n = 269)
22q12 (D22S283) 3.57 >5 cases (n = 269)
3p24 (D3S2432) 2.37 Age at dx <65 (n=600)
5935 (D5S1456) 2.05 Age at dx <65 (n=6006)
11¢22 (D11S898 2.20 Age at dx <65 (n=6006)

Xq12 (DXS7132) 2.30 Age at dx <65 (1= 606)
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Fig. 2. Chromosomal ideograms showing regions of the human genome linked to hereditary
prostate cancer.

4. HAS AN HPC GENE BEEN IDENTIFIED?

Through positional candidate cloning efforts within putative HPC loci, three
genes have been reported that harbor inactivating mutations, which segregate
with prostate cancer in high-risk families; including the HPC2/ELAC?2 gene,
the ribonuclease L (RNASEL) gene, and macrophage scavenger receptor 1
(MSR1) gene (25,30,31). Map positions of these genes can be found in Fig. 2.

Positional candidate cloning of an HPC locus at 17pl11 (HPC2) revealed
germline mutations (including a frameshift and non-conservative missense
changes) in the HPC2/ELAC2 gene in multiple families, which segregated with
prostate cancer in large Mormon kindreds (25). HPC2/ELAC?2 is a member
of an uncharacterized gene family predicted to encode a metal-dependent
hydrolase domain that is conserved among eukaryotes, archaebacteria, and
eubacteria (25).



Chapter 3 / Inherited Genetic Changes in Prostate Cancer 59

Positional candidate cloning within the HPCI locus (1q24—q31) resulted
in the identification of two inactivating germline mutations in the RNASEL
gene, which were found to segregate with prostate cancer in two HPCI-linked
families (30). This gene encodes an interferon inducible 2—-5A oligoadenylate-
dependent ribonuclease, which degrades double-stranded RNA during viral
infection and general cellular apoptosis (32). Biochemical analysis of RNASEL
mutations shows functional consequences on enzymatic activity (30,33).

More recently, germline mutations (including one nonsense mutation)
were identified in the MSRI gene, which segregate with prostate cancer in
8p22—p23 linked families (37). The MSRI gene encodes a member of a
family of macrophage-specific trimeric integral membrane glycoproteins impli-
cated in many macrophage-associated physiological and pathological processes
including atherosclerosis, Alzheimer’s disease, and host defense. Importantly,
a replication study in Germany has produced two new deleterious germline
mutations that track with prostate cancer in families (34).

To date, these are the only genes known to harbor deleterious mutations,
which seem to track specifically with prostate cancer in families. However,
because of the small number of families with mutations, these genes are
probably only responsible for a very small percentage of HPC. More research
in this area in larger data sets is needed to discover other important genes
containing deleterious mutations predisposing to prostate cancer.

5. ARE COMMON VARIANTS ASSOCIATED WITH PROSTATE
CANCER RISK:?

As mentioned in the previous section of this chapter, common variants in HPC
genes can increase the risk for men with familial disease, as well as men with
sporadic disease. Common variants, the most common of which are known
as single-nucleotide polymorphisms (SNPs), in a number of genes have also
been shown to increase risk of developing prostate cancer. These common
variants have relatively high allele frequencies in the normal population (minor
allele frequencies >5%), as opposed to rare highly penetrant alleles, which are
generally not found at high frequency in the normal population (minor allele
frequency <1%). The approach for discovery of these common variants relies
on the analysis of cases and health controls. Generally, allele frequencies are
calculated for genetic variants in both the case and control set, and minor allele
frequencies are compared between the two groups. The discovery of a variant
with different minor allele frequencies signifies a potential genetic risk factor.
Several other factors weighing heavily on the results of these variants include
the strength of association, the frequencies of the risk alleles, the sample size,
and the selection of SNPs to be used in the study.
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The discovery of these variants has for many years relied on a priori
knowledge of gene function. Those genes found to harbor highly penetrant
mutations have also been analyzed for their role as common risk factors for
prostate cancer. Two common missense variants (Ser217Leu and Ala541Thr)
in the HPC2/ELAC2 gene have been reported, which are associated with
increased risk of developing prostate cancer in unselected cases (25,35-37).
In the largest independent study reported using more than 400 prostate cancer
cases and more than 400 controls from Europe, the authors concluded that the
association with prostate cancer risk for these two variants was weak at best.
A more significant association was seen in a set of more than 200 cases and
more than 200 controls of Japanese decent (38).

Several studies have reported the association of mutations in the RNASEL
gene with risk of prostate cancer in patients with a positive family history of
prostate cancer (33,39—42). Replication has been inconsistent. Several of the
RNASEL associations have been to the R462Q missense variant. Importantly,
biological studies of this particular RNASEL variant show that it causes signif-
icant reduction in RNASEL protein function. Researchers have now identified
the presence of gamma-retroviral sequences in prostate tumors in homozygous
carriers of the R462Q variant. The viral sequences were 25 times more likely to
occur in tumors from patients carrying two copies of the R462Q variant (43).
Although there is currently no link between this virus and tumor initiation,
these findings raise the possibility for a direct relationship between a viral
infection and the development of prostate cancer in genetically susceptible
individuals.

Replication studies using independent data sets to assess risk associated
with common MSR/ variants have produced conflicting results to date
(44—46). Interestingly, one report demonstrated significant differences in allele
frequencies between African-American prostate cancer cases and controls for
common variants in MSR/ (44). A recent meta-analysis of eight published
studies produced positive association for MSRI common variants and increased
prostate cancer risk (47). Although there is some evidence for these genes
being involved in prostate cancer susceptibility, the limited validation studies
and controversial reports would suggest that a true, highly penetrant gene for
prostate cancer has not as of yet been identified.

A number of other genes have also been studied for their role in prostate
cancer susceptibility. Many of these candidate genes are selected because of
their association with a pathway important in normal prostate growth and
development. One obvious pathway is the steroidogenesis pathway, as it relates
to the metabolism of androgens. A partial diagram of the androgen biosynthesis
pathway is illustrated in Fig. 3. One family of genes intimately involved in this
pathway is the cytochrome p450 family (CYPs). Members of the CYP family
of genes have many roles, including metabolism of drugs and metabolism



Chapter 3 / Inherited Genetic Changes in Prostate Cancer 61

Hydroxy/Methoxy
Qestrogens

S

Transcription of androgen
responsive genes

Transcription of androgen
responsive genes

Fig. 3. Diagram of the androgen metabolism pathway.

of steroid hormones. Because of their obvious role in metabolizing steroid
hormones, they have been targeted as a potentially important group of genes,
which might harbor common genetic variants that modulate risk of prostate
cancer.

Common variants in the genes encoding CYP1B1, CYP17, and CYP3A4
have been studied extensively. Moderate risks have been reported for SNPs
within all three of these genes. The most ominous and extensively studied
is the CYP3A4 gene. An original study of variants within this gene also
showed significantly different allele frequencies between African Americans
and Caucasians (48,49). This has also been followed up by reports showing
a similar frequency trend for a specific promoter mutation following trends
in prostate their cancer incidence rates in the USA (50-52). This gene has
been extensively studied in African Americans and some have associated
variation within this gene with prostate cancer risk and aggressive prostate
cancer (53). However, it should be noted that one study did not associate
CYP3A4 variation with prostate cancer in African Americans and reported that
positive associations may be confounded by overall differences in population
allele frequencies (population stratification) (54). Further studies in extremely
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large cohorts are needed to clarify the true risk associated with CYP3A4 variants
and risk of prostate cancer.

Another gene involved in steroid hormone metabolism that has been studied
for its association with prostate cancer risk is the steroid 5-alpha reductase
gene (SRD5A2). An original study of SRD5A2 showed significant differences
in allele frequencies across populations (55). Two interesting missense variants
in the SRD5A2 gene have been shown to modulate enzymatic activity for
metabolism of testosterone and are associated with increased risk of prostate
cancer in several populations including African Americans (56—58). The results
of a recent meta-analysis of nine independent case—control studies looking at
SRD5A2 variants and their association with prostate cancer risk suggest that
the true effects of these variants on prostate cancer risk are modest and likely
to account for only a small percentage of prostate cancer cases (59).

One of the most important genes involved in prostate growth and devel-
opment is the androgen receptor (AR) gene. The AR gene has been extensively
studied for its potential role in prostate cancer predisposition. Two trinu-
cleotide repeat polymorphisms map within exon 1 of the AR gene, and length
differences of these repeats have been shown to modulate androgen receptor
transactivation (60,61). Shorter repeats are strongly associated with higher
AR transactivation. Furthermore, several groups have reported associations
between AR trinucleotide repeat length and prostate cancer risk and pheno-
typic characteristics of disease in African Americans using case—control studies
(62-65). Interestingly, there are significantly different allele frequencies in
trinucleotide repeat lengths, with shorter repeats being in admixture disequi-
librium in African Americans (66,67). These data raise an interesting question
of whether the association between these AR variants and prostate cancer
represents a true effect, or whether these associations are due to population
stratification of these variants across populations.

Among the other genes commonly studied for their association with prostate
cancer risk are those that encode the vitamin D receptor and the glutathione
S-transferases. Results of a meta-analysis of multiple case—control studies of
vitamin D receptor variants and prostate cancer risk suggest that the variants
analyzed in this study are unlikely to be major risk factors for prostate cancer
susceptibility (68). Likewise, the results of a meta-analysis of 11 independent
studies concluded that common variants in glutathione S-transferase are not
likely to play a major role in prostate cancer susceptibility (69).

Finally, in 2006 researchers at deCode Genetics reported significant evidence
for a major prostate cancer risk gene based upon a whole-genome analysis
in the homogeneous Icelandic population (70). This large study relied upon
several thousand prostate cancer cases and age-matched control individuals,
and resulted in the discovery of an important prostate cancer risk locus
on human chromosome 8 near the c-myc proto-oncogene. The results were
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replicated in both European and African-American data sets. The authors
concluded that the population attributable risk (PAR) of the 8q24 locus was
16% in African Americans, considerably higher than the PAR for the European
populations studied (5-11%) (70). The authors speculate that this allele may
partially account for the disparate prostate cancer incidence rates seen among
African-American men. In an independent study, an admixture approach was
used to search for prostate cancer susceptibility loci in a multiethnic cohort of
prostate cancer cases and controls (77). In this study, a set of ~1500 genome-
wide admixture informative markers (AIMs) were used. These markers show
marked differences in minor allele frequencies between populations. Analysis
of the admixture data from ~1600 African Americans showed a statisti-
cally significant association between prostate cancer and markers mapping
to 8g24, with the signal primarily associated with a late age at diagnosis
(<72 years of age) (71). These data provided the first independent validation
for a prostate cancer susceptibility locus at 8q24. A second confirmation
report from this same group, using a densely spaced set of markers across
the broad 8q region, suggested at least three independent susceptibility loci
within 8q24 (72). Moreover, results of a large independent GWS using nearly
500,000 SNPs genotyped in ~1200 prostate cancer cases and ~1200 matched
controls revealed the strongest evidence for prostate susceptibility to SNPs
within the 8q24 region of the genome (73). Recently, there have been four
independent confirmation reports supporting the association of prostate cancer
with variants mapping within 824, making this the first universally replicated
prostate cancer susceptibility locus (74-77). However, the true disease-causing
variant or gene is yet to be identified.

The analysis of candidate genes and pathways for the discovery of common
variants associated with risk will continue to be of extreme importance to the
field. It is believed that these variants are associated with the larger set of
sporadic prostate cancer cases as opposed to true hereditary cases. However,
because of underpowered sample sets, the road to discovery will remain littered
with false-positive and false-negative findings.

6. CAN TUMOR SUPPRESSOR GENES DOUBLE AS PROSTATE
CANCER RISK FACTORS:?

Candidate gene selection is based primarily on interesting functional and physi-
ological associations between genes and disease. Another important class of
genes that hold promise as potential modifiers of cancer risk is the tumor
suppressor genes. Several known tumor suppressor genes have been studied
for their potential role in prostate cancer susceptibility through the use of
case—control studies. These include BRCA2, ATM, KLF6, and EPHB?2.
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BRCAZ2 is one of two genes unambiguously involved in inherited predispo-
sition to breast cancer. BRCA?2 is known to play a critical role in DNA damage
repair. For many years, it has been known that male carriers of deleterious
BRCAI or BRCA2 mutations are at higher risk of developing prostate cancer.
Usually, these men belong to families with multiple breast and ovarian cancer
cases as well. So these genes have not been touted as prostate cancer genes,
per se. However, recent case—control studies show increased population risk
of prostate cancer in men carrying BRCA2 mutations. Edwards et al. (78)
reported that BRCA2 germline mutations conferred a twofold increased risk of
developing early onset prostate cancer. Using a set of 250 unselected prostate
cancer cases of Ashkenazi decent and more than 1400 Ashkenazi male controls,
Kirchhoff and colleagues reported a significant association between prostate
cancer and several Ashkenazi BRCA2 founder mutations (79). However, in a
smaller study using Canadian Ashkenazi prostate cancer cases and controls,
founder mutations were not found to be associated with elevated prostate
cancer risk (80). Another key factor in the process of DNA damage repair is
ATM. In a study of more than 600 prostate cancer cases and more than 400
controls, common genetic variants in ATM were shown to be associated with
increased prostate cancer risk (8/). These findings implicate the DNA damage
pathway as possibly important in prostate cancer predisposition.

Another tumor suppressor gene, which has been studied for a potential role
in prostate cancer susceptibility, encodes the KLLF6 tumor suppressor. KLF6 is
a krupple-like zinc finger transcription factor of yet unknown function. Somatic
mutations were originally discovered in prostate tumors, and wild-type KLF6
was shown to suppress tumor growth (82). There have now been reports of
KLF6 mutations in multiple somatic tumor types including astrocytic gliomas,
hepatocellular carcinoma, and colorectal cancer (83-85); however, conflicting
reports have also been published. In a large study of more than 1200 sporadic
prostate cancer cases, more than 800 HPC cases, and more than 1200 controls,
moderate associations were seen between prostate cancer risk and a common
intronic polymorphism (86). Data were also presented, which showed that the
intronic polymorphism affects splicing and causes mislocalization of KLF6.
The large sample size and functional data support an important role for KLF6
in prostate cancer susceptibility.

In a study published in 2004, Huusko and colleagues presented results impli-
cating the EPHB2 tyrosine kinase as a prostate cancer tumor suppressor (87).
A deleterious nonsense mutation was discovered in the DU145 prostate cancer
cell line, and somatic mutations were found in clinical prostate tumors at a
rate of ~9% (87). Furthermore, it was reported that wild-type EPHB2 signif-
icantly decreased tumorigenic growth in DU145 prostate cancer cells, which
lack endogenous EPHB2. To assess a possible role in prostate cancer risk,
Kittles and colleagues screened the EPHB2 gene for germline mutations in
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a set of 72 African-American HPC cases (88). They discovered the presence
of a common nonsense mutation, which was three times more prevalent in
the African-American population as compared with the Caucasian population.
Further analysis of this nonsense variant in 285 African sporadic prostate
cancer cases and 329 healthy controls showed a significant association between
this variant and HPC in African Americans (88).

Tumor suppressors are known to play a vital role in the initiation and
progression of cancer. However, their role in prostate cancer predisposition
remains in question. As is the case for other candidate prostate cancer risk
genes, analyses need to be carried out in large, sufficiently powered sample
sets using robust statistical methodologies. Until then, we may only be able to
speculate about the roles of these tumor suppressor genes in prostate cancer
susceptibility.

7. SUMMARY

Dating back to the mid to late 1980s, we have had evidence for a genetic role
for prostate cancer. Early segregation analyses have supported the existence of
highly-penetrant prostate cancer genes. Genetic linkage analyses in multiplex
prostate cancer families have led to the discovery of candidate regions;
however, many of these regions have not been validated across multiple
independent sample sets, so their validity is in question. To help deal with
this problem, the ICPCG, with its 2000 multiplex families, is sure to make a
major impact in the field of HPC research. This consortium holds the most
promise for discovering the more significant rare highly-penetrant mutations,
which lead to early onset HPC.

The search for common low-penetrant germline variants is also critical
to our overall understanding of prostate cancer susceptibility. A number of
candidate gene studies have implicated various genes and pathways in prostate
cancer predisposition. Aside from candidate gene approaches, which require
us to know something about the genes/pathways role in prostate development,
another approach is to search the entire genome for variants, which show
allele frequency differences between prostate cancer cases and controls. The
discovery en masse of millions of SNPs within the human genome and recent
technological advances now make this type of study possible. One can now
scan more than 80% of known human variation using “whole genome” SNP
microarrays containing hundreds of thousands of SNPs. These studies do not
rely on prior knowledge of gene function and are sure to shed light on new
important pathways associated with prostate cancer development. There will
still remain a great need for sufficiently powered sample sets to perform these
types of studies. One major effort to deal with the issue of sample size is the
National Cancer Institute Breast and Prostate Cancer Consortium. Currently,
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this pooled set of large cohorts contains more than 8000 prostate cancer cases
and more than 9500 male controls (89). With the aid of more elegantly designed
studies and analytical tools to deal with issues such as gene—gene interaction,
this group is poised to make a major impact in the field of prostate cancer
genetic risk research.

We must remain patient and steadfast in our quest to discover important
genetic risk factors for prostate cancer. Once reliable studies are completed
and validated, we will be on our way toward a far better understanding of
the etiology of prostate cancer. More importantly, we might be able to exploit
these findings to develop more sensitive tools for early diagnosis of prostate
cancer and for better treating this dreadful disease.
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