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Preface

The 1st European Workshop on Software Architecture (EWSA 2004) was held in
St Andrews, Scotland on 21–22 May 2004. The workshop provided an interna-
tional forum for researchers and practitioners from academia and industry to
discuss a wide range of topics in the area of software architecture and to jointly
formulate an agenda for future research. We were pleased to continue this forum
in EWSA 2005.

The importance of software architecture as a fundamental area of software
engineering continues to grow. In addition to describing the underlying structure
of software systems, architectures are now being used to model and understand
dynamic behavior. New areas of study, which have their roots in control systems,
are beginning to emerge. The field of autonomics requires an underlying software
architecture to describe the executing computation as does any control system
that involves system evolution. The range of papers in EWSA 2005 reflected
both the traditional and new applications of software architecture techniques.

EWSA 2005 distinguished between three types of papers: research papers
(which describe authors’ novel research work), a case study (which describes
experiences related to software architectures) and position papers (which present
concise arguments about a topic of software architecture research or practice).

The Programme Committee selected 18 papers (12 research papers, 4 position
papers, 1 case study, and 1 unrefereed invited paper) out of 41 submissions
from 20 countries (Australia, Belgium, Brazil, Chile, China, Czech Republic,
Finland, France, Germany, India, Italy, Ireland, Korea, Netherlands, Pakistan,
Portugal, Spain, Switzerland, UK, USA). All submissions were reviewed by at
least three members of the Programme Committee. Papers were selected based
on originality, quality, soundness and relevance to the workshop. Credit for the
quality of the proceedings goes to all authors of papers.

We would like to thank the members of the Programme Committee for pro-
viding timely and significant reviews and for their substantial effort in making
EWSA 2005 a successful workshop.

As with EWSA 2004, the EWSA 2005 submission and review process was
extensively supported by the Paperdyne Conference Management System. We
are indebted to Volker Gruhn, Dirk Peters and Clemens Schfer for their support.

Finally we acknowledge the support from Springer, which published these
proceedings in printed and electronic volumes as part of the Lecture Notes in
Computer Science series.

April 2005 Ron Morrison
Flavio Oquendo
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Managing Dynamic Reconfiguration in Component-
based Systems 

Thais Batista1,2, Ackbar Joolia2, Geoff Coulson2 

1 Computer Science Department , Federal University of Rio Grande do Norte (UFRN) 
59072-970, Natal - RN, Brazil 

thais@ufrnet.br 
2 Computing Department, InfoLab21, Lancaster University, 

LA1 4WA, Lancaster, UK 
{t.batista,a.joolia, g.coulson}@lancaster.ac.uk 

Abstract. We propose a meta-framework called ‘Plastik’ which i) supports the 
specification and creation of runtime component-framework-based software 
systems and ii) facilitates and manages the runtime reconfiguration of such sys-
tems while ensuring integrity across changes. The meta-framework is funda-
mentally an integration of an architecture description language (an extension of 
ACME/Armani) and a reflective component runtime (OpenCOM). Plastik-
generated component frameworks can be dynamically reconfigured either 
through programmed changes (which are foreseen at design time and specified 
at the ADL level); or through ad-hoc changes (which are unforeseen at design 
time but which are nevertheless constrained by invariants specified at the ADL 
level). We provide in the paper a case study that illustrates the operation and 
benefits of Plastik.  

1 Introduction 

Software architecture modeling using Architecture Description Languages (ADLs) 
is becoming increasingly popular in the early phases of system development [ 1,  2,  3]. 
Such languages facilitate the construction of high-level models in which systems are 
described as compositions of components. They play an important role in developing 
high quality software by supporting reasoning about structural properties early in the 
development process. This can make it easier to produce more extensible structures, 
locate design flaws, and better maintain consistency. 

At the same time there has been a parallel development of runtime component 
models which are targeted at the actual construction and deployment of systems 
[ 4, 5, 6, 7]. These component models are becoming quite sophisticated in their capabili-
ties for runtime reconfiguration. For example, they use reflective or runtime aspect-
oriented programming techniques to allow software to inspect, adapt and extend itself 
while it is running. This is particularly useful in inherently adaptive software envi-
ronments such as mobile computing and adaptive real-time systems [ 8]. 



It is clear that an integration of the two above-mentioned strands of development 
holds significant potential. Some early work has attempted to do this (see related 
work discussion in section 5) but this has typically suffered from two main limita-
tions: i) it has not taken a sufficiently comprehensive approach to formally specifying 
and constraining runtime reconfiguration at the ADL level, and ii) it has not lever-
aged the most recent developments in reconfigurable runtime component technolo-
gies. The ‘Plastik’ meta-framework described in this paper is an ADL/ component 
runtime integration that attempts to address such limitations.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Plastik’s system architecture  

The Plastik architecture, illustrated in figure 11, supports formally-specified run-
time reconfiguration of systems through an integration of an ADL and a reflective, 
component model runtime. The ADL level is based on ACME/ Armani [ 9, 10] which 
we have enhanced with new constructs for dynamic reconfiguration; and the runtime 
level is based on our OpenCOM component model [7] and its association notions of 
component frameworks and reflective meta-models [ 12]. 

Plastik supports both programmed and ad-hoc reconfiguration: 
• Programmed reconfiguration pertains to changes that can be foreseen at sys-

tem design time. In Plastik, this is supported at the ADL level in terms of 
‘predicate-action’ specifications. For example, consider a PDA-based video 
application that needs to run over both fixed and wireless networks. In such 
an environment, one could specify a programmed reconfiguration that 
switches from a MPEG decoder to an H.263 decoder (‘action’) when the 
PDA detects a drop in the quality of network connectivity (‘predicate’) [12]. 
In this example, the predicate could be expressed in our extended ADL as a 
function of a dynamic property of an underlying protocol component, and 
the associated action would take the form of (extended) ADL statements that 
replace the old component with the new one.  

                                                           
1  Section 3 expands on the various entities depicted in figure 1. 
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• Ad-hoc reconfiguration, on the other hand, is intended for changes that are 
not and cannot be foreseen at system design time. The approach here is to 
build general invariants into the specification of the system and to accept any 
change as long as the invariants are not violated. As an example, the above 
mobile computing scenario might be enhanced by the insertion of a jitter-
smoothing buffer which, despite not having been considered at design time, 
could nevertheless be usefully inserted at runtime.  

In addition, Plastik allows both programmed and ad-hoc reconfiguration to be 
initiated from multiple architectural levels (see section 3) which enables considerable 
flexibility.  

The remainder of this paper is structured as follows. Section 2 provides back-
ground on ACME/ Armani and on the OpenCOM component runtime; it also consid-
ers the relationship between the two technologies. Section 3 then details our approach 
to programmed and ad-hoc reconfiguration, and section 4 presents a case study which 
exemplifies the approach. Finally, section 5 discusses related work, and section 6 
offers our conclusions. 

2 Background on ACME/Armani and OpenCOM 

2.1 The ACME/Armani ADL 
 
The Plastik meta-framework’s ADL level provides the basis for specifying systems 

and enabling and constraining their reconfiguration. We have selected ACME [ 9] as 
our ADL because: 

 
• Unlike many ADLs it offers sufficient generality to straightforwardly describe 

a variety of system structures. Most ADLs are domain-specific so they do not 
provide generic structures to cope with a wide range of systems. 

• It comes with tools that provide a good basis for designing and manipulating 
architectural descriptions and generating code. 

 
The basic elements of ACME are as follows: Components are potentially compos-

ite computational encapsulations that support multiple interfaces known as ports. 
Ports are bound to ports on other components using first-class intermediaries called 
connectors which support so-called roles that attach directly to ports. Attachments 
then define a set of port/role associations. Representations are alternative decomposi-
tions of a given component; they reify the notion that a component may have multiple 
alternative implementations. The ACME type system provides an additional dimen-
sion of flexibility by allowing type extensions via the extended with construct. Prop-
erties are <name, type, value> triples that can be attached to any of the above ACME 
elements as annotations (apart from attachments). Finally, architectural styles define 
sets of types of components, connectors, properties, and sets of rules that specify how 



elements of those types may be legally composed in a reusable architectural domain 
(see example below).  

In addition, we adopt the Armani [ 10] extensions to ACME. Armani is a FOPL-
based sub-language that is used to express architectural constraints over ACME archi-
tectures. For example, it can be used to express constraints on system composition, 
behavior, and properties. Constraints are defined in terms of so-called invariants 
which in turn are composed of standard logical connectives and Armani predicates 
(both built-in and user-defined) which are referred to as functions. Although Armani 
appears to introduce an element of dynamicity, it is important to emphasise that 
ACME/Armani does not currently support dynamic runtime reconfiguration of sys-
tems (see also section 5). 

The ACME fragment below illustrates the main ACME/Armani concepts. The 
style definition includes two port types and two roles types. The OSIComp compo-
nent type then defines the central player in a layered communications system envi-
ronment. This definition includes a connector type which is used to connect protocol 
layers and an Armani invariant that states that a system must comprise a four-level 
stack.  

 
Style PlastikMF { 
          Port Type ProvidedPort, RequiredPort; 
          Role Type ProvidedRole, RequiredRole;  
          …. 
}; 
 
Component Type OSIComp: PlastikMF { 

ProvidedPort Type upTo, downTo; 
  RequiredPort Type downFrom, upFrom;  

 
    Property Type layer =  
       enum {application, transport, network, link}; 
}; 
 
Connector Type conn2Layers: PlastikMF { 

ProvidedRole Type source; 
RequiredRole Type sink;  

}; 
 
Invariant  
 Forall c:OSIComp in sys.Components 
  cardinality(c.layer = application) = 1 and 
  cardinality(c.layer = transport) = 1 and 
  cardinality(c.layer = network) = 1 and 
  cardinality(c.layer = link) = 1 and 
 
Property Type applicationProtocol; 
Property Type transportProtocol; 
Property Type networkProtocol; 
Property Type linkProtocol; 



 
Fig. 2. An example definition in ACME 
 
2.2 The OpenCOM reflective component model 
 
The OpenCOM component runtime has been extensively used over the past few 

years to build reconfigurable systems software elements such as middleware and 
programmable networking environments [ 11]. A high-level view of its programming 
model is given in figure 3. Components (the filled rectangles) are encapsulated units 
of functionality and deployment that interact with their environment (i.e. other com-
ponents) exclusively through interfaces (the small circles) and receptacles (the small 
cups). A component may support multiple interfaces and receptacles and may be 
internally composite (i.e. composed of other components). Components are deployed 
at runtime into environments called capsules (the outer dotted box) which support a 
runtime ‘capsule API’ containing operations to load/ unload components (and also to 
bind/ unbind interfaces and receptacles; see below). The loading of components into a 
capsule can be requested by any component inside or outside the capsule (this is re-
ferred to as third-party deployment). Interfaces are units of service provision offered 
by components; they are expressed in terms of sets of operation signatures and asso-
ciated datatypes. For programming language independence, OMG IDL is used as an 
interface definition language. Receptacles are ‘anti-interfaces’ used to make explicit 
the dependencies of components on other components: whereas an interface repre-
sents an element of service provision, a receptacle represents a unit of service re-
quirement. Receptacles are key to supporting a third-party style of composition (to 
complement the third-party deployment referred to above): when third-party deploy-
ing a component into a capsule, one knows by looking at the component’s receptacles 
precisely which other component types must be present to satisfy its dependencies. 
Finally, bindings, which are created via the capsule API, are associations between a 
single interface and a single receptacle. As with loading, the creation of bindings is 
inherently third-party in nature; it can be performed by any party inside or outside the 
capsule. 

 

 
Fig. 3. The OpenCOM component model  

In implementation, the OpenCOM programming model is supported by a small 
runtime of around 17KB in size. Components are written in C++ by default. As well 
as supporting the programming model concepts described above, the OpenCOM 
runtime also supports a set of so-called reflective meta-models [ 12] which facilitate 
reconfiguration of systems by permitting different system aspects to be inspected, 
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adapted and extended at runtime. In particular, OpenCOM employs the following 
meta-models:  

• an architecture meta-model which exposes the compositional topology of a 
system of deployed components in terms of a causally-connected graph struc-
ture;  

• an interception meta-model which allows one to interpose interceptors at bind-
ings between component interfaces; and  

• an interface meta-model which allows one to discover information about inter-
faces at runtime and to invoke interface types that are dynamically discovered 
at runtime. 

The final key aspect of OpenCOM is that it supports building systems in terms of 
the medium granularity (i.e. between components and whole systems) notion of com-
ponent frameworks (hereafter, CFs) [ 12]. CFs are tightly-coupled clusters of compo-
nents that cooperate to address some focused domain of functionality, and which 
accept ‘plug-in’ components that tailor or extend functionality in that domain. The 
idea is that one constructs systems by composing and configuring appropriate CFs. 
For example, one might develop a middleware system by composing CFs that address 
independent functionality domains such as protocol stacking, thread scheduling and 
request-handling [12]. Importantly, CFs incorporate policies and constraints that 
determine how and to what extent the CF can be runtime reconfigured. Typically, 
per-CF constraints are also imposed on the use of the reflective meta-models. Essen-
tially, reflection provides maximal openness and flexibility, whereas CFs channel and 
constrain this expressive ‘power’ into useful and safe forms.  

 
2.3 Mapping from ACME/Armani to OpenCOM 
 
As can readily be observed, there is a close correspondence between concepts in 

ACME/Armani and in OpenCOM. This correspondence is summed up in table 1. 
 

Table 1. ACME/Armani to OpenCOM correspondences  

ACME/Armani OpenCOM 
component (composite) component 
connector (composite) component 
port interface/ receptacle 
role interface/ receptacle 
attachment binding 
representation (composite) component 
property  interface operation 
style CF 
invariant CF constraints 

 
The style-to-CF correspondence is central. As domain-specific units of re-usable 

and dynamically reconfigurable functionality, OpenCOM CFs are the natural target 
abstraction for ADL-specified styles whose specification incorporates programmed 
reconfiguration and constraints on ad-hoc reconfiguration. This observation forms the 



basis for Plastik’s approach to reconfiguration as detailed in the next section. The fact 
that OpenCOM supports third-party deployment and binding is also crucial in ena-
bling the runtime to be manipulable from the ADL level. 

3 Approach to reconfiguration 

3.1 Architecture 
 
Before discussing our approach to programmed and ad-hoc reconfiguration, we 

briefly expand on the architecture diagram presented in figure 1.  
Note first that figure 1 has two ADL sub-levels: a style level and an instance level. 

The style level is used to define generic patterns—an example could be a ‘protocol 
stacking’ style which defined a basic set of elements and constraints for describing 
linear compositions of ‘protocol’ components. The instance level then particularises a 
style for a specific context while honouring any constraints imposed by the style. For 
example, one could define an ‘TCP/IP stack’ CF that imposed the additional con-
straints that the maximum number of levels was 4, that a stack can only be reconfig-
ured when a connection is dormant, and that a “TCP” component must always be 
placed above an “IP” component. 

Figure 1 also illustrates Plastik’s system configurator which is divided into two 
levels: an architectural configurator responsible for accepting and validating recon-
figuration requests at the ADL levels, and a runtime configurator responsible for 
managing the OpenCOM/ runtime level. There is one instance of the architectural 
configurator in the whole Plastik system, but there is one instance of the runtime 
configurator for each deployed CF. Both parts of the configurator are implemented in 
an interpreted scripting language called Lua [ 13]. The link between the ADL and the 
runtime levels is realised as an ACME/ Armani compiler (we use AcmeLIB [22] as 
the basis of this). The output of the compiler is a Lua program that instantiates Open-
COM elements that correspond to the ADL-level specifications. The compiler also 
generates finite state machines that implement Armani invariants as discussed below. 
These are located in the runtime configurator of each CF. More detail is given below. 
 
3.2 Programmed reconfiguration 
 

3.2.1 Limitations of ACME/ Armani 
As indicated in the introduction, we address programmed reconfiguration by pro-

viding appropriate extensions to ACME/Armani. Before introducing these extensions, 
we will briefly motivate them by analysing the limitations of ‘standard’ ACME/ Ar-
mani with respect to dynamic programmed reconfiguration. 

Programmed reconfiguration could potentially be expressed using the following 
existing ACME/Armani concepts as a basis:  
 

• The Armani ‘invariants’ are potentially useful in ensuring that a system pre-
serves the constraints imposed by the software architecture despite the dy-
namic insertion or removal of ACME elements.  



• The ‘extend with’ construct enables type extension, and could conceivably be 
applied to extend types at runtime.  

• The ‘representation’ construct could be used as a basis of switching from one 
representation of a component to another at runtime.  

• The ‘properties’ construct could also be used to describe how components 
may be changed at runtime.  

 
Nevertheless, these features are insufficient as a basis for runtime reconfiguration. 

First, the ‘extend with’ and ‘representation’ constructs do not address the most gen-
eral reconfigurations that might be required—e.g. those involving removal of compo-
nents or other elements. Second, ‘properties’ on their own are severely limited by the 
fact that they have no inherent semantics—which means that their interpretation is 
intuitive and depends on a shared understanding. Furthermore, neither properties nor 
any of the other constructs mentioned provide any way of specifying when reconfigu-
ration should take place or what should be changed in any particular configuration 
operation.  
 
3.2.2 ACME extensions for programmed reconfiguration 

The first extension is a conditional construct that allows the ADL programmer to 
express runtime conditions under which programmed reconfigurations should take 
place, together with a specification of what should change. The syntax of the con-
struct is as follows: 
 
On (<predicate>) do <actions> 
 
The ‘predicate’ is expressed using the standard Armani predicate syntax, and refers 

to properties attached to ACME components. Composite predicates involving multi-
ple properties are supported. As will be explained later, it is these properties that 
‘ground’ the predicate in the OpenCOM runtime system. The ‘actions’ are arbitrary 
ACME statements2 that are instantiated when the predicate becomes true. These 
statements could, for example, declare additional components and connect them into 
the existing architecture by declaring additional attachments. Where more than one 
action is specified, it is assumed that the set of actions will be instantiated in sequence 
and atomically. 

The second extension is a pair of constructs that specify the destruction of existing 
ACME elements: 

 
detach <element>  
remove <element>  

 
Detach is used to remove an attachment between a port and a role; and remove is 

used to destroy an existing component, connector or representation. Removal of ele-
ments is only possible when they are no longer involved in an attachment. The idea is 

                                                           
2 In this and the following extensions, we build on existing ACME constructs but apply them (such as 

here) in novel syntactical contexts. The semantics are, however, maintained.  
 



that remove and detach can be used as On-do actions to enable architectures to be 
dismantled as well as constructed. Given this capability, fully general runtime 
changes are possible, ranging from simple replacement of an element to a wide-
ranging reconfiguration that can modify the whole architecture. The use of remove 
and detach in conjunction with On-do is illustrated in figure 4: 

 
On (net_bandwidth = low) do { 

 detach MPEG-dec.req to conn-dec.p; 
 remove MPEG-dec; 

   Component H263-dec : decoder = new decoder extended with { 
     Property decoder-type = “H263”; 
   }; 

 Attachments 
         H263-dec.r to conn-dec.p; 

} 
 

Fig. 4. Example of use of the On-do statement 
 
When the given predicate becomes true (i.e. when the net_bandwidth property tran-
sits to the value low), the following reconfiguration sequence takes place: component 
MPEG-dec is detached from connector conn-dec and removed; and then a new H.263 
component is instantiated and attached to the same connector.  

The third extension that we propose is intended to express runtime dependencies 
between architectural elements. Managing dependencies among first-class entities is 
especially important to dynamic reconfiguration to avoid architectural mismatches 
when a new element is inserted in a system. The syntax of this extension is as fol-
lows: 

 
dependencies <statements> 
 
The dependencies statement allows expression of the fact that dynamic instantia-

tion/ destruction components is dependent on the creation/ destruction of other com-
ponents. Here is an illustration of the use of dependencies: 
 
Component transport: OSIComp = {  

... 
dependencies { 

   extended with {RequiredPort bufport}; 
Component bm: bufferManager;  
Invariant 
 forall p:ProvidedPort in bm.Ports  
  p.rate > 1000 
} 
 
Connector transtobuf { 
 ProvidedRole pr; 
 RequiredRole rr; 
} 



Attachments { 
 transport.bufport to transtobuf.rr; 

   bm.pp to transtobuf.pr; 
  } 
 } 
} 
 

Fig. 5. Example of use of the dependencies statement 
 
This specifies that the transport component depends on a buffer manager; there-

fore an instance of the latter is instantiated and attached whenever an instance of the 
former is created. (The example also includes an invariant that requires that the buffer 
manager must be able to accept data at a certain rate.) 

The fourth and final extension allows attachments to be specified for a type as well 
as for an instance (only instances are supported by standard ACME). The precise 
instance to be used is selected at runtime according to a policy specified by the asso-
ciated connector3. The syntax of the construct is as follows: 

 
<connector> to dynamic <componentport> 
 
An example of the use of the dynamic statement is shown in figure 6. This as-

sumes that ConnX contains a policy that determines which instance of the Network 
component type will be attached.  
 
Attachments {ConnX.r to dynamic Network.p} 

 
Fig. 6. Example of use of the dynamic statement 
 
Note that there is an analogue to this sort of dynamic component instantiation in 

Darwin [ 14]. However, in Darwin it is not possible to declare an attachment to a 
specified ‘provided’ port of a dynamic component. We consider that this makes the 
architectural description unclear and can lead to unexpected bindings at runtime. 

 
3.2.3 Supporting programmed reconfiguration at runtime 
 

This largely amounts to providing runtime support for the above-described ACME 
extensions for programmed reconfiguration. First, the predicate element of each On-
do statement is compiled into a runtime finite state machine (FSM) representation. All 
the FSMs for each Plastik CF are contained in the associated per-CF runtime configu-
rator. As mentioned, the ADL-level predicates are ‘grounded’ into the OpenCOM 
runtime through their embedded property elements. In particular, it is required that 
each ADL-level property is supported by corresponding ‘property operations’ in a 
distinguished interface of the OpenCOM component that underpins the ADL-level 
component to which the property is attached. There are simple lexical conventions 
that tie ADL-level property names to runtime level property operations, and the prop-

                                                           
3  We are also considering alternative means of specifying these policies. 



erty operation are discovered and bound to by the configurator at runtime using 
OpenCOM’s interface meta-model. Given this machinery, the FSMs are evaluated 
every time a runtime property operation reports (via a callback) a change in the value 
of the runtime property. This evaluation may then trigger an execution of the On-do 
statement’s ‘actions’ clause. 

Execution of the actions clause is carried out transactionally in case the whole se-
quence cannot be completed (e.g. if an attempt is made to remove an element that is 
still attached to some other element). It is also important to confirm that the proposed 
reconfiguration will not violate any general Armani-specified constraints elsewhere in 
the CF (whether at the style or the instance levels). These general constraints are 
discussed further in section 3.3. 

Implementation of the detach and remove actions make use of OpenCOM’s archi-
tecture meta-model to ensure that the required preconditions of these actions (see 
section 3.2.2) are satisfied. The load/unload and bind/unbind APIs of OpenCOM’s 
capsule API are then used to effect each actions. The dependencies statement causes 
the runtime to dynamically load (and bind) any dependent components whenever it 
instantiates an OpenCOM component whose ADL-level analogue specifies such a 
dependency. Finally, the implementation of the dynamic construct also builds directly 
on OpenCOMs load/ bind APIs. It involves the prior evaluation of an associated pol-
icy to select the appropriate instance—this is performed by Lua code generated from 
the policy statement. 

 
3.3 Ad-hoc reconfiguration 

 
By definition, ad-hoc reconfiguration is not specified at the ADL level. Rather, our 

approach is to constrain at the ADL-level the allowable range of permissible ad-hoc 
reconfigurations. For this we again rely on Armani invariants and similarly ground 
the invariants using property values that refer to the runtime level. 

In Plastik, ad-hoc reconfiguration can be initiated either at the ADL level or at the 
runtime level. ADL level ad-hoc reconfiguration involves submitting an architecture 
modification script to the architectural configurator. This script is written in our ex-
tended ACME and specifies a set of proposed runtime changes to a target ADL speci-
fication. The script may not include invariants at the top level. The changes are ap-
plied to the target specification which is then recompiled to produce a Lua diff script 
that is (transactionally) executed to reconfigure the runtime CF. As in the case of 
programmed reconfiguration, the runtime system confirms before making any 
changes that running the diff script will not violate any architectural constraints speci-
fied in the target ADL specification. Both style and instance level invariants are taken 
into account. Notice that because the architecture modification script is written in 
extended ACME, it is possible to dynamically add new programmed reconfiguration 
clauses to a running CF. 

Reconfiguration requests at the runtime level take the form of operations directly 
applied the OpenCOM reflective meta-models. This is the ‘traditional’ means of ex-
ploiting OpenCOMs reconfiguration capabilities. In Plastik, however, the meta-model 
APIs are hidden by automatically-generated per-CF wrappers so that calls on them 
are first validated by an evaluation of the invariants as discussed above.  



Supporting ad-hoc reconfiguration at both the ADL and runtime levels raises is-
sues of causality—i.e. to what extent are changes at one level reflected in the other? 
Our current approach is to provide full causality in the ADL-to-runtime direction, but 
not in the other direction. An implication of this is that a runtime-level ad-hoc recon-
figuration may cause rejection of a subsequent ad-hoc reconfiguration at the ADL 
level due to an inconsistency having being introduced—e.g. if the ADL-level recon-
figuration request refers to some component that has previously been removed by the 
runtime-level reconfiguration. In practice, we expect that most CFs will employ either 
ADL-level or runtime-level ad-hoc reconfiguration but not both. Use of the runtime 
level is appropriate in low-level system environments that are driven primarily by 
dynamic events in other low-level CFs. Use of the ADL-level, on the other hand, is 
more appropriate for higher-level CFs that are primarily driven by applications or 
GUIs.  

4 Case study  

To further illustrate the use of Plastik, we extend the running OSIComp example to 
demonstrate both programmed and ad-hoc reconfiguration of the example protocol 
stack illustrated in figure 7. 

 

 
 

Fig. 7. Example of a reconfigurable protocol stack 
 
4.1 Programmed reconfiguration 
 

To illustrate programmed reconfiguration consider changing the Application com-
ponent of our system from an MPEG decoder to an H.263 decoder on the basis of a 
change in available bandwidth (as outlined in the introduction and specified in figure 
4). The definition of the MPEG component, which derives from decoder which in 
turn derives from OSIComp, is as follows: 

 

Link

Network

Transport

Application

= connector

Buffer mgr



Component Type decoder:OSIComp = new OSIComp extended with 
{}; 
Component MPEG-dec: decoder = new decoder extended with { 

ProvidedPort transportProtocol:downTo = { 
 Property protocol:string=”tcp”; 
 Invariant 
    Forall p in self.ProvidedPorts  
                 p.protocol = transportProtocol 

}; 
Property layer = ‘application’; 
Property decoder-type=”MPEG”; 

}; 
 
(Note the invariant that requires that the component can only be connected to a 

transport protocol.) The programmed reconfiguration is specified in the below defini-
tion of the complete system.  
 

System OSIStack : PlastikMF { 
 
Component MPEG-dec:OSIComp; // Application Level 
Component Transport:OSIComp; 
Component Network:OSIComp; 
Component Link:OSIComp; 
 
Connector AppToTrans: conn2Layers; 
Connector TransToNet: conn2Layers; 
Connector NetToPhys: conn2Layers; 
 
Attachments{ 
 //connecting the Application to Transport layer 

Application.dataTo to AppToTrans.source; 
 Transport.dataFrom to AppToTrans.sink; 
 
 //connecting the Transport to Network layer 
 Transport.dataTo to TransToNet.source; 
 TransToNet.sink to dynamic Network.dataFrom;  
 
 //connecting the Network to Physical layer 
 dynamic Network.dataTo to NetToPhys.source;  
 Link.dataFrom to OuterApplication; 
}; 
On (Link.net_bandwidth = low) do 
{ 

 detach MPEG-dec.downTo to AppToTrans.source; 
    remove MPEG-dec; 

Component H263-dec : decoder = new decoder extended with   
{ 

     Property decoder-type = “H263”; 
     }; 

  Attachments 
         H263-dec.downTo to AppToTrans.source; 

}; 
}; 
 



The key part of this is the On-do statement, the predicate of which includes a 
Link.net_bandwidth property. This is a property of the link layer component and, as 
outlined in section 3.2.3, is realised at the runtime level as a dynamic ‘property opera-
tion’. Depending on its value, this property will trigger a programmed reconfiguration 
that replaces the MPEG-decoder component with an H.263-decoder component. 

 
4.2 Ad-hoc reconfiguration 

 
As mentioned, ad-hoc reconfiguration can be initiated from either the ADL level 

or the runtime level.  
As an example of ad-hoc reconfiguration at the ADL level consider changing the 

Transport component’s BufferManager with a larger BigBufferManager. The change 
script to achieve this is as follows:  
 
//inserting new Component BigBufferManager 
Component BigBufferManager{ 

ProvidedPort pp; 
RequiredPort rp; 
 … 

}; 
 
detach BufferManager.pp to transtobuf.pr; 
remove BufferManager; 
 
Component bbm: BigBufferManager = new BigBufferManager; 
Attachments{ 
 BigBufferManager.pp to transtobuf.pr;  
}; 

 
The script detaches and removes the old component, and then creates and attaches 

an instance of the new component. 
As an example of reconfiguration at the runtime level consider inserting a logging 

component between the Network and the Link layers. This could be implemented 
using the OpenCOM meta-models [7] as follows.  
 

Component_instance loggingI; 
Loaded_component logging; //new component to be loaded 
 
logging = load(comp_type_logging); 
loggingI = instantiate(logging); 
//use the Architecture meta-model to inspect and insert the 
Logging component 
 
if(ArchMM.connected(Network-comp, Link-comp)) 
{ 
 ArchMM.unbind(Network-comp,Link-comp); 
 ArchMM.bind(NEWBINDER,Network-comp,loggingI); 
 ArchMM.bind(NEWBINDER,loggingI,Link-comp); 
 ArchMM.insert(loggingI,CLSID); 
 ArchMM.updateLink(CLSID,Network-Comp); 
} 



This pseudo-C code uses the architecture meta-model to discover the current to-
pology of the system and then uses the OpenCOM’s capsule API to insert the logging 
component. Recall that the calls to the meta-model are ‘wrapped’ by Plastik so that it 
can be ensured that they do not break any architectural constraints that were specified 
at the ADL level 

5 Related work  

Relevant areas of related work are as follows: software architecture, frameworks 
that support reconfiguration, and component runtime systems.  

Software architecture. Dynamic ACME [ 15] is an ACME extension that models 
dynamic architectures. However, it is focused on constraining evolution of specifica-
tions rather than providing support for runtime reconfiguration.  

 ArchWare [ 16] shares some similarities with Plastik as it implements dynamic 
change via reflection and reification, and is driven by an ADL with formal support. 
ArchWare uses hyper-code, an active executing graph with a programmable interface, 
as a representation, for purposes of reflection, of the executing system.. In contrast, 
Plastik adopts a efficient component runtime as its execution element and focuses on 
the mapping from an (extended) ADL to this runtime.  

Mae (Managing Architectural Evolution) [ 17] is an architectural evolution envi-
ronment that uses xADL to specify architectures. Its basis for reconfiguration is a 
versioning mechanism combined with a check-out/check-in approach. A key differ-
ence between this work and ours is that Mae supports only programmed reconfigura-
tion (it achieves this by selecting architectural configurations from a ‘version space’). 
It also lacks a formal approach with which to impose constraints to ensure consis-
tency upon reconfiguration..  

Frameworks that support reconfiguration. [ 18] focuses on evolution guided by 
the idea that architectures must react to events and perform architectural changes 
autonomously. ‘Agents’ receive external events, monitor the global architecture, and 
capture and manage changes in the architecture. Each agent maintains a knowledge 
base with information about the architecture and rules for programmed reconfigura-
tion. The ‘B’ formalism is used to specify the architectural representation and con-
straints. This work has some similarities with Plastik in the sense they both use ADL 
and formal methods as a basis for implementing reconfiguration. Unlike Plastik, how-
ever, this work does not use reflection to implement dynamic reconfiguration and ad-
hoc reconfiguration is restricted because it is based on a-priori defined rules.  

FORMAware [ 19] is a reflective component-based framework that combines ex-
plicit architectural description and meta-information to constrain reconfiguration. To 
avoid inconsistency it checks architectural constraints according to style rules that 
restrict the types of architecture elements and possible configurations. A transaction 
service manages the reconfiguration. A fundamental difference between our work and 
FORMAware is that our proposal includes statements to improve ADL expressive-
ness for defining ad-hoc and programmed dynamic reconfiguration. In addition, 
unlike FORMAware, we adopt a formal approach to set constraints and ensure con-
sistency upon reconfiguration.  



Jadda (Java Adaptive component for Dynamic Distributed Architecture) [ 20] is 
another framework that relies on architecture specification to support dynamic recon-
figuration. It uses xADL and again no formal support is provided for constraining 
dynamic reconfiguration. Jadda’s support for ad-hoc reconfiguration is accomplished 
via a console that is used to submit a xADL file with the change specification. Al-
though it handles dynamic architectural changes, Jadda is limited to ad-hoc recon-
figuration with no formal support. Thus, it does not guarantee consistency.  

Component runtime systems. Fractal is a hierarchically-structured component 
model [ 5] that provides reflective features to support dynamic architectural reconfigu-
ration. It uses an XML-based ADL to specify the high level structure of an applica-
tion. Although this work resembles our proposal in outline it does not support ad-hoc 
reconfiguration nor define expressive constructs at the ADL level to describe recon-
figuration possibilities. In addition, the ADL has no formal support to ensure consis-
tency. Moreover, the relationship between the architecture level and the component 
runtime is not clearly specified in the literature.  

Finally, Koala [ 21] is a component model that uses an ADL based on Darwin to 
manage the complexity of software in electronics products. However, dynamic recon-
figuration is restricted to switching between components based on statically defined 
conditions. Moreover, changes in component structure need administrator approval.  

6 Conclusions 

We have proposed a meta-framework that relies on a style-based ADL associated 
with a formal approach to describe the architecture and behavior of systems. It di-
rectly supports programmed reconfiguration and also provides invariants that con-
strain ad-hoc reconfiguration. The ADL level is supported by a flexible configurable 
component runtime which grounds the ADL level in a viable implementation envi-
ronment. The paper focuses on extensions to ACME/Armani that express both pro-
grammed and ad-hoc reconfiguration. It also outlines the mapping from the ADL 
description to the OpenCOM component runtime entities and shows how ad-hoc 
changes can be initiated from either the ADL or the runtime level. 

Currently, we are using the AcmeLIB tools to implement the compiler and runtime 
FSM engines discussed in section 3. At the time of writing we do not have a fully 
implemented system but rather have successfully trialed key aspects of the design.  

Planned future work includes investigating further the issue of causality between 
changes made at the different architectural levels (see section 3.3), and carrying out 
experiments with more realistic application scenarios.  
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Abstract. In this work we present an agent-based architecture for Global 
Automation Systems. The architecture follows a layered abstract model that 
allows decoupling design responsibilities, promotes high cohesion within layers 
and clearly emphasizes the environment. A case of study is presented in the 
passenger transportation domain. 

1   Introduction 

In the era of Computer Integrated Manufacturing (CIM), an automation system was 
conceived as a strong and rigid hierarchy of control layers: Facility, Shop, Cell, 
Workstation, and Equipment. According to the USA-NBS CIM reference model [ 1], 
each layer is populated with a set of control modules (the device controller, the 
workcell controller, the cell controller, etc.) with precise responsibilities. In particular, 
a higher layer control module coordinates the control modules below it, and the 
flexibility of such systems is limited to the possibility of reconfiguring the production 
process off-line by re-programming each control module. A local area network or a 
hard-wired field-bus represents the communication medium between the different 
factories' sub-systems. The inter-factory communication is usually handled via 
telephone, fax, or e-mail. An example of this old style architecture is described in our 
past research [ 4]. 

In the era of the Internet, “global automation” is a new concept that transfers and 
extends classical process control and factory automation ideas to geographically 
distributed environments. It is supported by the current trends and technologies in the 
fields of information and telecommunication, in particular, embedding the Internet [ 7] 
in data acquisition and control devices. Global automation systems are conceived as 
flat interconnections of autonomous and decentralized decision making/control 
modules dominated by the two concepts of "heterarchy" and "proactivity": the former 
means that no hierarchy in decision making is enforced, the latter that each partner 
takes the initiative to reach a decision, and the global behavior of the system becomes 
an "emerging behavior" [ 3]. Control modules have decision-making capabilities and 
coordinate their activities by exchanging data and events according to a peer 
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architectural model and common protocols. They can represent, for instance, 
autonomous mobile robotic systems, factory cell controllers, or on-board monitoring 
systems in transport vehicles. 

Building global automation systems naturally poses new requirements and 
challenges in design. It means defining a new architectural model that is sufficiently 
flexible to be used at multiple levels of a global automation system, from the 
interfactory logistics of geographically distributed enterprises, to the coordination of 
production in a factory, down to monitoring and controlling production shops or 
coordination autonomous mobile robots inside a factory. 

This work presents our framework for building global automation systems. This 
framework has been expressed as a reusable architecture made up by layers with 
specific design responsibilities.  

The rest of the paper is structured as follows: Section 2 presents the related work. 
Section 3 describes our abstract architecture for multi-agent organizations. Section 4 
introduces the agent platform we have developed for building multi-agent software. 
Section 5 describes the agent-based architecture for implementing global automation 
systems. Section 6 tackle the passenger transportation system as a concrete case of 
study. Finally, on section 7 some conclusions are drawn. 

2   Related Work 

The early literature offers several examples of multi-agent architectures and 
organizations created for domain-specific applications. These architectures focus in 
the identification of agent’s roles and responsibilities, and the description of their 
interactions and communication mechanisms. As expected, due to their ad-hoc nature, 
they are hardly reusable outside their original domains.  

As opposite to the former approach, the recent holonic paradigm [ 9] offers a 
organizational model highly reusable, which can be applied at diverse abstraction 
levels and replicable in different domains. However, it is just a conceptual model that 
does not specify what services can be required and reused when implementing such a 
system. 

In terms of structure and services, the development of generic agent platforms (e.g. 
Jade [ 2], Zeus [ 10], etc.) presents concrete architectures with high degree of 
reusability, but made-up by low-granularity components (commonly, basic 
communication and directory services), that implement commonly agreed abstract 
models (e.g. FIPA). However, adopting them for the implementation of agent-based 
systems requires the development of new domain-specific agents. 

In order to improve the design reuse, recent studies establish the convenience in 
identifying and separating domain-specific aspects from those generic aspects that are 
common in families of systems. One example is the orientation followed by Sims et 
al. [ 12], that proposes the reuse of organizational coordination mechanisms across 
different problem domains and environmental situations. Nevertheless, their work just 
emphasizes organization and distribution of tasks and goals, while the system’s 
structure is not deeply treated.  
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On the other hand, even if the environment is an essential part in agent system’s 
structure, in practice agent architectures fail to adequately identify and consider its 
role. As indicated in [ 13], popular frameworks minimize the environment reducing it 
just to a message transport system or to a brokering infrastructure. 

Our approach innovates introducing a layered model, that identifies and classifies 
system’s components and services with different granularities. Those components and 
services that share similar levels of reuse from both, the structural and the 
organizational point of view, are grouped together. The model is built recognizing at 
its basis the physical environment, which is virtualized in superior levels, making 
explicit the way in which agents will interact with it. As consequence, a new agent 
platform, aimed to fulfill specific requirements in global automation systems 
(communication, scalability, QoS metrics, access to the physical world, etc.) was 
developed. Over this platform a reusable set of services are implemented.  

3   An Abstract Architecture for MAS 

In general terms we envision the use of agents as a way of representing software 
architectures. This vision is constructed as the abstract model depicted in Figure 1. 
This model has three main characteristics: 

− Decouples design responsibilities: the model presents the different aspects related 
to a multi-agent architecture in a separated way. Therefore, the design 
responsibilities can be clearly identified and assigned to different development 
projects or teams. 

− Promotes high cohesion within each layer: components within each layer are 
closely related from the functional and communicational point of view, in such a 
way that their interactions are optimized. 

− Clearly emphasizes the environment: traditional agent architectures consider the 
environment implicitly, in most cases just as a mere communication supplier. This 
model puts in evidence the complete environment, that is the physical and the 
virtual one. 

Physical world

Domain -Specific multi -agent system

Host resources

AgentÕs platform

Agent -based architecture

 

Fig. 1. The Abstract Architecture for MAS 
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The abstract model is composed by the following layers:  

− Domain-specific multi agent system (DSMAS): corresponds to a concrete instance 
of a multi-agent system, where domain-dependent agents are designed and 
interactions among them are well defined. In most cases agents at this level of 
abstraction are virtualizations of real entities pertaining to the application domain. 
DSMAS architectures can be reused within the scope of the context they were 
created for. A reusable DSMAS architecture constitutes an agent-based  framework 
for the development of systems within its domain. DSMAS architectures are 
supported by the services offered by the agent-based architecture.  

− Agent-based architecture (ABA): represent a reusable architecture to support the 
development of different kind of DSMAS. An example of ABA is the FIPA 
architecture [ 7], which establishes common services and functionalities that FIPA-
compliant agent systems must agree (e.g. the directory facilitator, ACL messages, 
etc.). This layer of the abstraction infrastructure is conceived to obtain 
interoperability between different and generic agent systems. The services offered 
at the ABA can be implemented as agent-based service (such as a yellow pages 
agent), or environment-dependent service (e.g access to some kind of physical 
device).  The ABA for global automation systems is described in Section 5. 

− Agent platform (AP): corresponds to the software that offers the base classes to 
build agents, and to virtualize environment-dependent services (such as interfaces 
to measurement devices, motors, communication, etc.). It also offers the execution 
environment that controls the entire agent’s life-cycle, and regulates its interactions 
with other agents, and other resources. In the case of global automation systems the 
G++ Agent platform (described in Section 4) is adopted at this level. 

− Host resources: represents the computing environment, in terms of CPU, memory, 
data storage, data communication, operating system, connected devices (such as 
thermometers, valves, engines, etc.). Examples of common environments are 
desktop computers, vehicles’ on-board units, and mobile robots. 

− Physical world: represents objects and concepts that are present or that can be 
observed in the real world.  

4   The G++ Agent Platform 

The G++ Agent platform is a Java framework for the development of agent-based 
systems, focusing in architectural aspects related to components distribution and 
communication. The structure of this agent platform follows the abstract architecture 
of section 3, and can be appreciated in Figure 2. 

It is important to notice that the G++ Agent Platform is a low-level agent 
infrastructure not committed to any standard agent architecture, e.g. FIPA, even if 
compatibility with standard specifications can be obtained. The FIPA standards 
represent the most complete specification (followed by the major producers of 
general-purpose platforms); however, it is oriented to achieve interoperation among 
agents, which is just one of the requirements of a global automation system. It does 
not suit very well facing other requirements, in particular related to security, 
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connectivity, and scalability when managing large-volume of communications (e.g. 
which in FIPA are delegated to single agents).  

The layers are the following: 

a) Host resources: the underlying layer is given by the host-dependent resources 
where the platform is in execution (such as network connectivity, resources of file 
system, etc.). The model does not make any special assumption about the 
characteristics of this layer other than be able to execute a Java virtual machine.  

b) Java Virtual Machine (JVM): the second layer corresponds to the JVM, which is 
a runtime environment that offers independence of the programming language from 
the hosting machine. The JVM allows portability of the code of the platform among 
different hosts.  

c) Agent’s execution environment: the layer immediately above corresponds to the 
execution environment for agents. This layer is responsible for controlling the agents’ 
lifecycle, and for offering the services that they require for their own activity 
(security, communication, mobility, data persistence, etc.).  

d) Agents: agents are located in the model’s top layer. They are autonomous 
components that manage their own thread of control, being capable to communicate 
between well-known interfaces, exchanging predefined data structures. Agents can 
exhibit reactive and a proactive behavior, accordingly with their assigned 
functionalities. 

The platform also provides an API to interface non agent-based applications within 
the system. Such an API is available in Java and in C++. 

4.1   Execution Environment Implementation 

The execution environment of the G++ agent platform provides connectivity services, 
being responsible for the interactions among all agents. It is also responsible for the 
virtualization of the interactions among agents and the physical environment, through 
the implementation of sensors and actuators objects that agents can access. The 

MobilityPersistence
External agent
management

Other services

Services management

Security management

Agent
management

Agent

Sensors
Management

Actuators
Management

Legs core

Agent

Sensor
Management

Actuators
Management

Agent
management

Container Legs

Java Virtual Machine Java Virtual Machine

Host resources Host Resources

Connectivity

Messaging

 

Fig. 2. The G++ platform’s layered model 
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platform offers two kinds of execution environment implementations, which are the 
Container and the Legs module as it is shown in Figure 2. 

a) Container 
It is the environment for the execution of contained agents. A container runs over a 
Java Runtime Environment, which allows the access to the resources offered by the 
host. The container offers to the contained agents common services such as messaging 
transport, local event communication, and support for access to external data 
repositories. Containers implement connectivity services among them for message 
interchange, and for agent and services migration. They also provide connectivity and 
state monitoring of external agents, and they instantiate proxies to make transparent 
the communication between external and internal agents. Message transport and event 
communication among containers are directed using routing tables managed by each 
container, accordingly with the topology of their network. These routing tables can be 
defined statically, or modified dynamically by certain agents. 

b) Legs module  
The platform can integrate agents running outside the container. These agents are 
called external agents or stand-alone agents.  

The execution of external agents is allowed by Legs (Local External aGent 
Support) modules, which are limited execution environments able to host and execute 
one agent at time. They provide connectivity to a container, and then, to the entire 
platform. As contained agents, external agents can access all the services provided by 
the underlying JVM, and some of the communication services offered by the 
container, but they cannot access other services, such as the agent mobility. External 
agents can be useful, for example, for the implementation of control systems running 
on-board of mobile devices (e.g. mobile robots).  

The implementation of external agents follows the same structure given for the 
implementation of contained agents. In fact, if a contained agent does not use 
resources restricted to contained agents, or host special resources, it can be 
transformed in an external agent just launching it from a LEGS module. 

4.2   The Communication Infrastructure 

Since early stages of the design, this agent platform has been envisioned as the 
cornerstone of the distributed architecture for global automation systems. In 
particular, under our conception this environment not only corresponds to the space 
where agents can perform their duties (as in all platforms), it is also aimed to provide 
a reliable communication infrastructure that agents can (and should) exploit to interact 
among themselves in a distributed application. As result, the G++ Agent Platform is 
able to offer an implementation of a global automation system that will delegate to the 
own agent’s container the conduction of the major traffic.  

The network of containers is the backbone infrastructure for message exchange in 
a global automation system, where communication among agents can be performed 
without awareness of the communicating parties’ location. To achieve this, containers 
implement routing tables that define the path used to reach other containers, whose 
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content is defined statically. As a restriction, in the current definition the platform is 
able to manage only acyclic network of containers. 

In our platform, inter-container messaging is a regular service offered to agents. In 
this way, when an agent wants to send a message to another, the sender asks the 
container to use the message transport service to deliver the message, using the 
parameters indicated in the request.  

The platform provides an agent-to-agent message exchange service. In such a 
service, the sender knows the name of the message’s receiver, and the message is 
directly routed according to this information. It is an asynchronous communication 
mechanism in which a certain informative content is communicated from a source to a 
well-defined agent.  

4.3   Global Time 

The platform is not able to guarantee the exact sequence of messages delivered to a 
receiver, due to that the inter-container protocol does not provide such guarantee. In 
fact, the platform delivers messages following the best effort policy, that is, no 
unnecessary delays are introduced in their expedition. However, messages can arrive 
in wrong order due to two main reasons: 1) the latency of the Internet, plus costs 
incurred in retransmissions of packets naturally tends to increase the time required to 
transmit a message over long distances, and 2) the interconnections between 
containers define the paths that messages have to follow from the source to the target, 
each node acting as a router. The processing time on each container has to be added to 
the network delays described above. 

However, the platform can guarantee the delivery of messages, detecting and 
informing the sender when they are not delivered within the pre-established time. A 
time window and a timestamp message field are used in the message for this scope. 
The time window value can also be infinite, which means no time window is 
specified. The message timestamp can also be useful to the message receiver, to 
determine the exact sequence of messages.  

The timestamp is a key data to support the quality of the messaging service, but its 
generation is not easy because requires the adoption of a global time, shared among 
containers. 

5   The Agent-Based Architecture for Global Automation Systems 

In this section is described the agent-based software architecture for Global 
Automation Systems. The architecture follows the abstract model described in Section 
3. It provides a set of agent-based meta-services to support advanced communication 
of the domain-specific systems built on top of it. 

This framework is sufficiently flexible to be used at multiple levels, from the 
monitoring and control system for a single production cell (the virtual SCADA), to 
the supply chain integration of a multi-national corporation (the virtual factory), up to 
the construction of a global virtual organization.  
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Conceptually GAP is similar to the open platforms in the network operating 
systems, but it has other scopes, contents and different goals. It is designed to 
addresses four main aspects related to (1) the innovative adoption of Internet in 
automation systems, (2) the logical structure of enterprise information systems; (3) 
the virtual interconnection of manufacturing centers; and (4) the seamless integration 
of wireless technologies.  

5.1   The GAP Services 

This agent-based architecture introduces a communication standard and a set of 
services to build global automation systems in different domains. The former defines 
the languages that will be used for exchange of information between entities 
participating in global automation systems. The latter, the set of services that are 
available for supporting their activity. Three services are offered at this level: 

a) Messaging: it provides persistence and reliability in direct messaging between 
senders and well-defined receivers. It is based on based on persistent messages 
queues, which allows time-decoupled communications among participants 

b) Event distribution: it implements the asynchronous publish/subscribe commun- 
ication model. Each container provides local event publication and notification 
services. The architecture for global automation systems includes agents for the 
management of distributed subscriptions and notifications (that is, among different 
service points). 

c) Service brokering: it supports dynamic reconfiguration of the relationships 
between service providers and consumers. Each container provides local event 
publication and notification services. The architecture for global automation systems 
includes agents for the management of distributed subscriptions and notifications (that 
is, among different service points). 

The design of the GAP services has explicitly considered the problem of 
distribution, particularly the unreliability of network connections, which makes 
indistinguishable crashed components from slow components. This problem, common 
to all implemented GAP services, was addresses through a mechanism of registration 
and renewal of the registration with the service provider, that interested users must 
perform during their lifecycle (this approach is similar to the “leasing” in the Jini 
technology [ 6]. 

The topology of the distributed system also requires being addressed at this level, 
because it defines the management of the relationship among the network. In our 
implementation, we suppose an acyclic peer-to-peer architecture of containers. This 
architecture allows bi-directional communication between containers, and it can be 
represented by an undirected graph. We have adopted this model because no 
hierarchy of responsibility is enforced, and because is simpler to manage than more 
general peer-to-peer architecture. In the other hand, a general peer-to-peer model can 
be traduced into an acyclic one eliminating the possible existence of multiple paths 
between containers. The selected architecture is less robust than the general acyclic 
architecture, but it was considered adequate for our initial laboratory tests.  
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6   Case of Study: A Passenger Transportation Planning System 

In the following, the passenger transportation concept is explained for then detailing 
the concrete MAS for this specific domain. 

Changes in transport requirements in European citizens have brought the 
opportunity to create new services aimed to fulfill special transportation demand, in 
addition to regular population mobility services. Those systems are known as 
demand-responsive transport (DRT) services, and their objective is to satisfy personal 
transportation requests at relatively low costs, thanks to an integrated planification in 
the use of the different available resources on transport networks. Traditional 
approaches in DRT service planning are focused on an isolated view of the whole 
system, in which categories of services are well defined, and separated solutions are 
provided for each category (e.g. advance request, immediate request, etc.) [ 11]. These 
systems are usually implemented as heuristic procedures that extend basics graph 
search algorithms, acting over large collections of data that describe the entities of the 
problem domain (vehicles, service requests, schedules). An example can be found in 
the research with the Advanced Dial-A-Ride with Time Windows (ADARTW) 
algorithm described in [ 5].  

In this work is defined the system architecture that can be used for the 
implementation of DRT services for a single operator that manages a heterogeneous 
fleet (e.g. composed by busses, minivans, vehicles for disabled people, etc.), without 
enforcing the division of the service in predefined categories. In the model, the 
operator receives service requirements coming from clients (pick-up place and time, 
delivery place and time, etc.), through a Web interface provided by an interface agent 
or directly by an external client agent. The model processes the requirement by 
interacting with internal agents that represent different vehicles of the fleet, to finally 
propose a feasible trip solution. The architecture considers the integration of a broker 
agent, responsible for the dynamic registration of new vehicle profiles. This agent, 
together with the definition of a shared ontology for describing services, makes it 
possible to manage a variable set of services that can be supplied along the time. As 
result is obtained a scalable and flexible architecture, able to support interoperability 
without loosing neither performance nor quality of the solutions, and with easy 
integration of Web resources. In this case is proposed the application of a distributed 
version of the ADARTW algorithm to perform service planning in DRT services. It 
takes into consideration a global utility function for the fleet operator, and specific 
utility functions for each single vehicle and customer.  

6.1   The DRT System 

The DRT system that is being treated consists of transport requests coming from a set 
of clients, which should be satisfied by the vehicle fleet pertaining to a single 
operator. Vehicles are characterized by different properties, but in general they have a 
limited capacity, periods of time during the day in which they are available, and area 
of geographic coverage. Transport requests commonly specify a pick-up and delivery 
place and time, and can include other descriptions, e.g. wheel-chair places, number of 
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seats, shared or exclusive use of the vehicle, etc. Properties required by clients can be 
classified in constraint-properties, i.e. characteristics that the service must ensure in 
order to be accepted, and weighted-properties, i.e. not mandatory characteristics 
having a positive contribution in the utility function of the client. 

Facing each request, the operator has to solve an assignment and scheduling 
problem, according to his objective function that evaluates the global utility and the 
service level given to his clients (an estimation of their utility function). As response 
the operator should return to the client a (possible not empty) set of feasible 
alternatives with relative costs that fit the constraint-properties and hold a high-level 
value for the weighted-properties. From this set, the client should select the better 
option in function of his own interests, or reject all the solutions and ask for a 
counterproposal.   

Earlier planning methodologies developed for DRT systems adopted centralized 
approaches, where the control and decision-making was done by only one entity that 
maximizes the global utility of the whole system (i.e. the utility for the operator and 
for his clients). In general, these approaches are able to produce better solutions if 
good estimators of the client utility can be identified, which is not always feasible (not 
all the clients share the same desires, nor appreciate them with the same importance). 
Recent decentralized or market-based approaches, in the other hand, exploit 
cooperative relationships in communities of agents that perform low-level planning, 
scheduling, execution, and control tasks, and where negotiation processes among 
them (e.g. contract-net, auctions, bargain, etc.) tend to maximize the utility of 
individual agents, leading to Pareto-optimal solutions. As opposite to centralized 
evaluations, optimization is done with less information and, as consequence, the 
solution could be far from the best for the whole system. 

In this implementation has been adopted a mixed approach, where a global 
optimization is done from the operator’s point of view, and a negotiation process is 
carried out between the clients and the operator, by means of ranked alternatives. In 
this case the operator tries to maximize the same objective that a centralized 
approach, but considering a service level evaluation personalized for each client. This 
allows producing a set of solutions closer to real client desires. 
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Fig. 3. The general architecture of the DRT system  
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6.2   The Transportation Agents 

We have grouped these specific agents in two layers. The Internet layer is in charge 
of the communication with the external world (vehicles, clients, other systems). In the 
other hand, the Scheduling layer encapsulates the scheduling and assignment services.   

In this work we have adapted the ADARTW algorithm to a multi-agent 
collaborative execution, delegating algorithm’s tasks to different agents. The main 
agents we identify are shown in Figure 4, and its roles are described as follows. 

The Internet layer of the architecture consists of: 1) Vehicle agents, that wrap real 
world transportation vehicles; 2) the Broker agent, that register available vehicles and 
its profiles; and 3) Client agents, that interfaces users with the system. 

Each Vehicle agent holds its own properties that define the kind of transport 
service offered, and its utility function. The Broker receives advertisement messages 
from Vehicles, describing their service characteristics, and registers them in its 
internal database.  

Clients agents are in charge of capturing the final user’s requirements and 
translating them into a suitable specification according to a specific ontology that we 
call Service ontology. Client agents should ask the corresponding human user for the 
constraint and weighted-properties of the desired service together with the preferences 
and level of importance given to each one. Client agents can also be developed 
externally to the platform but, independently of its origin, they act as factories of  the 
Trip-Request agents. 

The Scheduling layer of the architecture provides three kinds of agents that interact 
directly in the evaluation and creation of the routing plan: 1) Schedule agents, 
representing route plans of single vehicles, 2) Trip-Request agents, modeling single 
client request specifications, and 3) the Scheduler agent, implementing the assignment 
and scheduling policy. 

Schedule Agents are created by Vehicle agents when they advertise their 
availability to the Broker. Trip-Request agents, instead, are created by Clients agents 
every time a new service request has to be included in the system. The Trip-request 
agent performs a schedule-me request to the Scheduler agent, sending his service 
specification (constraint/utility-properties). With that information the Scheduler 
performs a query to the Broker, asking for all the vehicles that match the constraint-
properties indicated in the request. Afterwards the Broker returns a list of vehicles 
that fulfill the received profile and then the Scheduler performs an evaluate-trip 
request to each Schedule agent that corresponds to a vehicle in the list. In the 
evaluate-trip requests are sent the utility-properties specified by the Client through the 
Trip-Request.  

Each Schedule agent evaluates the insertion of a trip request (that means, the 
client) in his route, according to the weighted-properties received and his own ones. 
The Schedule agent returns to the Scheduler the trip’s feasibility and utility value, 
considering both client and vehicle utilities.  

Once the Scheduler has collected all the answers from the Schedule agents, it drops 
the solutions that not fulfill its policies of global utility (e.g. minimize total number of 
vehicles), and sends the remaining ones to the Trip-Request agent for its selection. 



Architecting Global Automation Systems over a Distributed Multi-agent Infrastructure 29 

 

Depending on the level of autonomy of the Trip-Request agent, it can select according 
to the preferences specified by the client or can contact him to make the final 
selection. 

The multi-agent architecture allows the planning process execution in a 
heterogeneous network of computer systems. Flexibility is given in this architecture 
by the possibility of dynamically adding new typologies of services and requests 
according to our service specification ontology, which is used to describe the transport 
services.  

7   Conclusions 

In this work we have described the agent architecture that follows an abstract model 
for the implementation of MAS. Its design was driven by the interest to obtain a 
decoupled and scalable system that supports the integration of agents with their 
environment. This is a differentiating point when comparing it with other 
architectures whose functionalities are more focused in distributed artificial 
intelligence or in agent mobility. 

The architecture was applied to a case of study in the passenger transportation 
domain, where the specific agents were identified for a distributed planification of trip 
requests. 
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Abstract. This paper outlines our experience of using a reflective π-calculus 
based Architecture Description Language (ADL) to create an 'Active' Software 
Engineering Environment (SEE). It describes the concept of an 'Active' SEE 
developed as part of the, EU supported, project ArchWare. It analyses a small 
fragment of that implementation to illustrate the suitability, of the ADL lan-
guage and environment, for the task of implementing such 'Active' systems. 

1   Introduction 

We define a Software Engineering Environment (SEE) as a software environment 
tailored to the production of software systems. We define an ‘active’ SEE as an SEE 
where a user (typically a Software Developer) can redefine, with immediate effect, 
any software engineering process supported by that environment and to which the 
appropriate change permissions have been given. In order for this to be possible, an 
‘active’ SEE contains a definition of the environment’s software processes as an ‘ac-
tive’ model. 

We define an active model [1] as being a model in which the specification and the 
execution of that model remain in lock-step with each other. In other words changes 
to either the specification or the actual execution are reflected in the other. 
The advantages of building such an ‘active’ SEE are that the various steps, or phases, 
used in the development of a software artifact, can be evolved to suit the contexts 
which apply following any previous step(s). In particular we note that the develop-
ment of large software systems requires complex engineering processes that are often 
tactical and cannot be completely preplanned at the start of a project. For example, 
development of some complex software definition is usually more complex than a 
series of strict refinement steps. Thus, in an active SEE, refinement steps can be 
changed to reflect the conditions that apply following some previous step(s). This 
yields a software process akin to the concept of retrenchment [14] and provides a far 
more flexible software development process than one that is defined by a, more tradi-
tional, strict refinement approach. 
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2   The Design of the Active SEE 

Given that the objective is to build an SEE in which a software developer remains in 
control of the various software construction processes, then the design of the SEE 
needs to constrain such a developer only when it is helpful to do so. The design of the 
framework for the environment should thus be made as simple and unconstraining as 
possible. Essentially the requirement is to define an abstract architecture with a set of 
minimal but extensible capabilities. This notion of starting with an abstract, yet ex-
ecutable, architecture specification and then continually evolving this specification in 
lock-step with its execution is fundamental to our ‘active’ model paradigm. 

In the case of an SEE, the core idea for such an architecture derives from the, 
rather obvious, observation that, at every step of a software development process, a 
developer is creating some artifact. Such an artifact will be used in some subsequent 
step; typically by a software process tailored to this input. This observation, of course, 
yields a concise recursive definition of an SEE. An SEE is an environment which 
yields an artifact, in fact a software or a software related artifact. It consists of a set of 
steps in which each step yields an artifact. Thus we can consider an SEE as a set of 
smaller SEEs, each SEE being tailored to producing a specific type of artifact. Thus a 
specification type SEE yields a specification and so on. In our example active SEE, 
this set of artifact producing steps is represented as a graph. The nodes of the graph 
represent SEEs and the arcs the relationships between these SEEs.  

We can now set about implementing an instance of this active SEE. In this exam-
ple the graph of SEEs is implemented as a structure which we term a ‘Tower’. It is so 
called because it consists of a multi-dimensional set of hierarchical graphs. The faces 
of the ‘Tower’ represent the different views that might be taken of this SEE.    

The ‘Tower’ is built as a set of Nodes joined by a set of relationships. The relation-
ships represent the derivative process used to develop one Node from another. 

Through an analysis of software engineering processes, we identified three types of 
generic processes that occurred when software related artifacts were manipulated. 
Thus a step in a software development process could then be classified as being one 
of these three generic step types. These are: 

• A Refine process - develops a more detailed definition of the original com-
ponent. The child is thus a more concrete refinement of its parent. 

• A Partition process - develops a child of the original component. The child is 
a part explosion of its parent by decomposition. 

• A Satisfy process – creates a set of constraints that need to be satisfied by the 
parent.  

Each Node is essentially the reference to an SEE, whose purpose is to produce an 
artifact referenced from the Node, and also contains references to the software proc-
esses available from that Node. These processes are divided into two sets. One set of 
processes are to support the definition of further Nodes (SEEs) as outlined above and 
another set are to support the development of the required artifact. The Do process in 
the Fig. 1 represents the process that will support the development of the relevant 
artifact.  
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Fig. 1. The Initial Tower NODE 

3   Implementation of the SEE 

The system was implemented as a contribution to the EU Framework V project 
ArchWare [4]. ArchWare provides support for a reflective π-calculus based Architec-
ture Definition Language (ADL) [2,15]. It is reflective in the sense that it supports the 
notion that a running program can generate new fragments and integrate these into its 
own execution [17]. In order to support dynamic evolution the system also supports 
the notion of reification; that is the ability of the system to provide a concrete repre-
sentation of its internal state. It is worth noting that such an ADL also satisfies our 
requirements for a Process Modelling Language, an important ingredient of an SEE. 
This is hardly surprising as software architecture and process models are both descrip-
tions of software structures and behaviours. In particular a Process Modelling Lan-
guage is basically concerned with the specification of behaviours and the possible 
 

 

Fig. 2. An Initial ArchWare System 

interactions between these behaviours. However, and significantly, since processes in 
the real world are subject to constant adaptation, it is imperative that this network of 
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behaviours can be dynamically reconfigured. The π-calculus notions of mobility and 
renaming gives us such capabilities.  

The Tower is implemented as an ADL model executing on an ArchWare server. A 
Tower Browser, for browsing and interacting with the Tower model, and a Hypercode 
Editor [8], for browsing and editing the ADL, run as clients and are implemented in 
Java. The clients are each connected to the server via a Transformer/Connector. This 
network is provided as part of basic pre-configured ArchWare system, allowing the 
ArchWare system itself to be evolved using this SEE. The arrangement is shown in 
figure 2. 

4   Using the Active SEE 

An initial user interface to the Tower is provided by the Tower Browser and a user 
begins his interaction with the SEE through this Tower Browser. The Tower Browser 
displays the graph of Nodes available to a specific user and provides the capability to 
select Nodes. The act of selecting a Node connects the user to the processes, already 
enacting in the server, available via that Node. A user may thus utilise the Refine, 
Partition and Satisfy processes that enlarge the Node graph as detailed above. 

The user may also communicate with the process that will ‘explode’ a Node. The 
explosion results in the display of the internal structure of the Node processes. All 
Nodes, initially, consist of a software component termed an ‘ArchWare Tower Com-
ponent’ and an empty artifact. The Tower Component consists of two processes. 
Firstly a Produce Process (P) which is responsible for the reproduction of Nodes from 
that Node and the artifact attached to that Node. Secondly an Evolve Process (E) 
which is responsible for the ‘fitness for purpose’ of the associated Produce Process 
(P). P is installed by E and generates feedback that is processed by E. 

 

Fig. 3. Initial NODE Showing the ArchWare Tower Component 

Further explosion of the Produce Process results in the display of the various proc-
esses available i.e Refine, Partition, Satisfy and Do (the process which produces the 
artifact referenced by the relevant Node). Further explosion of the Evolve Process 
displays its sub-processes, essentially forming an evolution step. All these processes 
are themselves ArchWare Tower Components and hence consist of P/E pairs with 
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steps to enact the relevant process (P) and steps to ensure the fitness for purpose of 
these steps (E). This Evolve process is the means by which the Refine, Partition and 
Satisfy processes are customised by evolution. 

Thus the environment has the capability to extend itself by creating more SEEs 
(Nodes) and evolving all the processes (Ps) associated with these Nodes. The default 
action, associated with creating a new Node, is to link the Node to its parent with the 
appropriate relationship (Refine, Partition, Satisfy) and install the parent processes in 
the new child i.e the child inherits the process steps of its parent. These process steps 
can be dynamically evolved using the capabilities of the reflective ADL system. 

The initial Partition Process thus produces a new child Node with a Partition rela-
tionship to its parent. The initial Refine Process invokes the Hypercode Editor which 
allows users to browse and edit ADL text presented in the form of Hypercode ADL 
text. Thus the initial Tower consists of a single Node with these initial processes en-
acting. The Tower is executing in an persistent reflective environment and then 
‘evolves’ into the required development structure as a software project proceeds. This 
is a rather interesting example of an architecture that grows as it is used. As noted 
previously such architectures are the basis for ‘active’ software systems. 

5   Context for the Work 

The SEE Tower was first implemented using the ProcessWeb system [5], a system 
supporting a process language called the Process Management Language (PML). This 
system was constructed using the persistent language PS-algol [13] from the  Univer-
sity of St Andrews. The system has many of the same properties as the new Arch-
Ware system in that it was possible, using the facilities of the PS-algol system, to 
implement a reflective system allowing for the creation of an ‘active’ SEE. The PML 
language is an Object Oriented language with built-in Objects to represent Roles and 
the Interactions between Roles. Roles are objects with their own single thread of 
computation and communicate by sending messages through Interactions. 

After some 20 years of usage of this language by the IPG at Manchester, it was 
timely to construct a new system reflecting our experiences of the ProcessWeb sys-
tem. The new system was constructed as a contribution to the ArchWare project.  

ArchWare adopted the same basic architecture as ProcessWeb, since this had 
worked so well for the last 20 years. However this time, the persistent language was 
ProcessBase (PBase) [10] a language developed at St Andrews as part of the Compli-
ant System Architecture projects; EPSRC funded collaborations between IPG in Man-
chester and the Persistent Programming Group at St Andrews [16]. In fact this PBase 
language was used to implement an early prototype of the Tower environment and 
this demonstrated that the underlying facilities provided by the PBase Abstract 
Machine (PBAM) were sufficient to support the implementation strategy. 

As a Process Modelling language, the ArchWare ADL language was a clear ad-
vance on ProcessWeb PML in two main respects. Firstly the language adopted the 
semantics of the π-calculus [3] giving formal semantics to the machine, in contrast to 
PML which had only been defined by its implementation. This ensures that we are 
able to reason about designs and also have some chance of developing the formal 
techniques needed to demonstrate the safety of user defined evolutions of such de-
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signs. Secondly the notion of Roles and Interactions was replaced by the much finer 
grain notions of Behaviours and Connections (equivalent to the processes and chan-
nels of the π-calculus). Our experience with PML, and in particular the production of 
a book on Process Modelling [6], defining a development approach based on PML, 
had shown that the notions of Roles and Interactions, although extremely powerful, 
were too course grained for many types of models. These notions, as a result of their 
granularity, also imposed a very strong style on all the process models. In particular 
we felt the need to be able to define many different types of interactions between 
objects reflecting the rich array of communication mechanisms that are used in real 
life process situations. The primitive concepts of Behaviours and Connections allow 
these to be flexibly modelled. Indeed the PML notions of Roles and Interactions can 
clearly be constructed using these ADL concepts. 

6   The Mechanisms Supporting Evolution in the ArchWare System 

The ADL environment supports the notion of HyperCode [8,9]. HyperCode supports 
incremental change in long-lived systems, where internal system state and data are 
preserved over the change. This is referred to as dynamic evolution. In contradistinc-
tion, static evolution implies no dependency between states of the system before and 
after the implementation of change.  

We construct a simplified example supporting the basic operation of a P/E pair of 
ADL processes. The example is simplified for the benefit of the user and paper brev-
ity but it illustrates the approach taken to construct the entire Tower, some 4,000 lines 
of ADL code. This example demonstrates both static and dynamic evolution, two 
essential properties of ‘active’ environments. An operational process, a Produce proc-
ess (P) is instantiated, and the user decides to evolve it using an Evolve process (E).  
A Hypercode Editor is launched, the user makes the necessary changes, and evaluates 
the new definition (during this activity the Producer is performing its normal opera-
tional functions). A reference to the compiled behaviour is returned to the model 
where it replaces the previous instance.  

The ArchWare environment incorporates two modes of evolution – programmatic 
and HyperCode. They both make use of a Callable Compiler, provided as a built-in 
function in the ADL system, however the former handles source and object code in 
the conventional manner (the association between source and object is maintained 
manually), and the latter manipulates only hyperlinked source code that maintains the 
correspondence with the current executing object code. 

As mentioned previously ADL provides a basic type, termed a behaviour, and 
structures can be defined on behaviours in an analogous way to types in expression 
based languages; these structures are defined using the concept of abstractions. Appli-
cation of such an abstraction yields the execution of its constituent behaviours.  

7   The Evolution Cycle Example 

There follows a simple example of the implementation of a possible evolution cycle 
based on the concepts of the producer/evolver pairs (P/E) outlined earlier. This simple 
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cycle is the important element in the construction of the active SEE. It is also typical 
of the structures used to develop the Tower model. The implementation in both ADL 
and its predecessor ProcessWeb PML are given.  

Producer 
This is an abstraction that contains two operational behaviours, one for periodically 
sending incremented messages and one for receiving them. There is also a primitive 
infrastructure that listens for messages from the Evolver indicating impending evolu-
tion and reacts to them. When an evolution is imminent, the Producer’s messaging 
behaviours are shut down in an orderly manner and this concludes with a signal to the 
Evolver process to proceed with the evolution. The life cycle of the Producer is sim-
ply start up, run and quit.  

The preservation of internal state and data, during dynamic evolution, is handled 
by the Hypercode System. The Hypercode system displays a textual representation of 
the executing ADL script including references to current stored values through the 
notion of Hyperlinks. Only hyperlinked values are preserved over system change.  

Evolver 
This behaviour has a connection to the user and loads and launches the Producer. It 
ensures that the Producer is always ‘fit for purpose’. In this example we assume that 
the feedback from the Producer is via the user, i.e. the user observes the Producer’s 
behaviour, detects that a change is needed, decides what this change will be and initi-
ates the change. When the user signals an evolution, the Evolver launches the Hyper-
code Server, waits for the user to complete, and handles the modified behaviour. It is 
comprised of the simple Loader with an additional Evolution Cycle. The loader 
merely reads a file of ArchWare ADL. It is compiled using the ArchWare ADL Call-
able Compiler, and is executed. The user interacts with this model to load the desired 
Evolver. This ArchWare ADL, compiled using the Callable Compiler, possesses the 
necessary Hypercode tags for the operation of the Hypercode Editor. 

The Evolution Cycle 

• The user sends an evolve message to the Evolver. 
• The user launches the client Hypercode Editor.  It is populated by a link to 

the executing producer. 
• Exploding the link displays a snapshot of the value of the Producer (this 

value is text plus hyperlinks - the Producer’s abstraction definition). The 
Producer continues to execute normally. 

• The Producer’s abstraction definition is now modified by the user.  
• The resulting hyperlink is sent back to the model (it is a link to a compiled 

abstraction). 
• The executing instance of Producer is shut down and the abstraction of the 

modified producer is applied and the system is now ready for a new evolu-
tion cycle. 

The ADL implementation 
The ADL implementation is shown in fig 4. We do not describe the implementation in 
detail as this would require a deviation into the nature of ADL. This is not relevant to 
this particular paper and the important point to note is that this represents a highly 
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abstract definition of the evolution cycle. It essentially merely defines the structure of 
the cycle in terms of connections and behaviours. The Hypercode Editor essentially 
provides the full environment for browsing, editing, compiling and linking the re-
quired change. 

Fig. 4. The ADL Implementation 

The PML implementation 
The equivalent, well as equivalent as possible, implementation in PML is shown in fig 
5. Again there is neither relevance nor space to explain the intricacies of the PML 
text. However note that here the equivalent action to the Hypercode Editor behaviour 
has to be explicitly programmed into the PML (The Edit, Compile sequence and the 
FreezeRole,GetRoleData sequence).  

As with ADL, the main PML logic is concerned with the structure of the evolution 
cycle, this time expressed in terms of Roles and Interactions. 

8   Discussion 

Active Models 
The example illustrates the tight link that needs to exist in active systems between   
the object and source representations, a mapping that the HyperCode maintains,   

 

recursive value evolCycle=abstraction()

      {via userConn send "Ready for next Evolution>'n"
       via userConn receive trigger
       via userConn send "Sending the operational behaviour (applied
abstraction) to the HCE'n"
       value zzz = 'operationalBehaviour
       value newProducerAbs = edit(any(zzz),"Producer-2")
       via evolConn send "I want to evolve you"
       via evolConn receive proceed
       value projectString = location("")
       projectString :=  project newProducerAbs as Z onto

abstraction[params:any]  :
                       {locAbs:= Z; "abstraction[params:any]"}
                  default        : "default"
       via userConn send "Applying modified ProducerAbs'n"
       value anotherparam = any(evolConn)
       value thisAbs =  'locAbs
       operationalBehaviour := thisAbs(params=anotherparam)
       evolCycle() !applies the abstraction evolveCycle

} !end evolCycle



38 B. Warboys et al. 

 

effect a software development process closely bound to an executing system, i.e. 
specially tailored for maintenance and evolution of the Producer. The activities that 
typically occur in practice  – handling change, specifying and aggregating changes,  
 

Fig. 5. The PML Implementation 

design, implementation analysis and test – could all be defined and embedded in this 
process.  Clearly safeguards are required to guarantee that the evolved system will 
behave as predicted and this is the subject of ongoing research into formal reasoning 
support for this notion of evolution. 

EvolRole isa Role with
parts
   zzz : String  ! source PML for Producer
   newClasses : Classes
   producerRole : Role
   roleData : tableof ( String -> Any )
   initData : tableof ( String -> Any )
...
actions
evolCycle :
  Give( interaction = toUser, gram = "Ready..." )
  Take( interaction = fromUser, gram = msg )
  ! Edit and compile a new Producer based in the old source
  Give( interaction = toUser, gram = "About to edit source ..." )
  Edit ( oldSource = zzz, newSource = newProducerSource )
  Compile (  currentClasses = classes, source = newProducerSource,
                    newClasses = newClasses, errors = compErrors )
  ! Stop the current P and extract relevant current state
  Give( interaction = evolConnSending, gram = "I want ..." )
  Take( interaction = evolConnReceiving, gram = proceedMsg )
  Give ( interaction = toUser, gram = "Modifying producerRole ..." )  FreezeRole( roleInst = producerRole)
  GetRoleData( roleInst = producerRole, currentData = roleData )
  initData( 'evolConnGetMsg' )  := roleData( 'evolConnGetMsg' )
  initData( 'evolConnGiveMsg' )  := roleData( 'evolConnGiveMsg' )
  ! Start revised P initialised with the relevant state
  StartRole ( classes = newClasses, className = "Producer",
                    roleInst = producerRole,
                    initalData = initData )
when    true  ! run this action repeatedly - it will wait for user input

end with ! end EvolRole

 

thus providing a single computational model of a system. The ‘Evolution Cycle’ is in  
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This example also illustrates that the actual installation of the change must be care-
fully choreographed to ensure an orderly shut down of the old system and its re-
placement with the new one. Key to this is the set of behaviours in the Producer that 
only come into play when a change is about to be installed. They take no part in the 
operational functioning of the Producer. 

The software process briefly illustrated here consists of an enacting definition of a 
number of associated tasks. Clearly there is no guarantee that this process will be 
correct forever thus it will be wise to associate with it another E, i.e. our E will, on 
closer inspection, reveal an Ee/Pe pair where Pe undertakes the evolution of P, and 
which itself can be evolved by Ee. 

Architectural Simplicity 
The model also illustrates that by describing and building systems using such an evo-
lutionary approach (the active model) the structure of the system can be defined as a 
highly abstract model, essentially concentrating on the basic components and their 
interconnections. However, and significantly, this specification of the abstract system 
also acts as the initial implementation in our ‘single computational model’ approach. 
The π-calculus [3] giving us both the necessary tools for flexibility and mobility as 
well as a language in which to describe and indeed execute abstract specifications of 
systems. 

The evolvable nature of the resulting environment allows for the development of 
more concrete process steps at every stage of the software development process. Of 
course the model recurses and so such development of the SEE is under the same 
controls, or indeed lack of them, as the SEE itself provides. 

9   Conclusions 

This type of approach to software development and software evolution will, in the 
long run, enable software development environments to be far more responsive to the 
needs of business. Indeed applying the approach to business systems in general means 
that such environments will thus enable, rather than constrain, business evolution.  

The active architecture paradigm, illustrated here with the construction of an SEE, 
has two clear advantages. Firstly architectures may be developed by evolving abstract 
specifications of their structures whilst at the same time using the abstract specifica-
tion as a prototype of the final system. Secondly the resulting final concrete system 
retains the evolutionary power of the development system and thus is able to react to 
new requirements. In particular it has the ability to deal with emergent behaviour, 
perhaps the most important requirement of new systems developed for the future 
world of autonomic and ambient computing systems [7,11,12]. 
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Abstract. The increment of the complexity of systems requires new techniques 
that allow manipulating it adequately. Software architecture is becoming an 
important part of software design, which helps developers to handle the 
complexity of large systems. In addition, the management of the evolution as 
well as the maintenance of complex systems are two of most important 
problems to be solved by software engineering. Several solutions have been 
considered, one of them being the separation of concerns. These concepts have 
been extended along the life cycle and thus, Aspect Oriented Software 
Development (AOSD) arose. In this paper the architectural design phase and 
Aspect Oriented concepts are considered jointly. A proposal introducing aspects 
modelling in the architecture design phase is presented. The research is based 
on the combined use of a conventional architecture description language and an 
exogenous co-ordination model. When new requirements are going to be 
included in the system, the proposal provides the required steps to allow its 
evolution and maintenance by specifying an Aspect Oriented Architecture, 
which will permit us to change the system easily. 

1   Introduction 

More and more the complexity of systems to be developed increases and new design 
techniques are necessary. In addition, the structure of the systems changes throughout 
their life cycle and evolves to adapt it to new situations, making it necessary to 
develop the systems keeping an easy maintenance. 

On the one hand, new approaches propose the Software Architecture as an important 
part of the design phase helping to manage the systems complexity as well as to define 
the system structure in such a way that its maintenance and evolution are easy. 

On the other hand, AOSD, which extends aspect oriented (AO) programming 
concepts to the early stages, gives approaches to allow for the early identification of 
the aspects; their extraction, representation, and composition are their main goals 
(early aspects [1]). It recommends considering crosscutting concerns throughout the 
life cycle to obtain a clear designs and untangled code. Crosscutting concerns can be 
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encapsulated into so-called aspects. AOSD provides techniques for modularising and 
composing concerns which are difficult to untangle using the traditional ones. 

Software Architecture is an appropriate moment in the life cycle to consider 
aspects, because it is when the structural definition of the systems is done. The 
suitability of the definition of an AO architecture design appears when it is observed 
that crosscutting concerns cross the architectural components, contaminating 
components and connectors, and the final design become complex.  

The aspects can be considered as first class elements of architectural development. 
For this, having mechanisms to identify and specify them during the architectural 
design is needed; as well, its interaction with other architectural elements must be 
defined. Recently, a great number of research whose results show the benefits of an 
architectural approach have been presented [1], [2]. Therefore, the complex systems 
design is easier. 

Systems, throughout their life, need to be maintained due to the changes in the 
world that they represent. This means that the requirements defining the changes of 
the system need to be considered. The design of systems can be redefined by adding, 
eliminating or changing elements of the current design structure.   

In this paper a proposal to model aspects at architectural design phase is shown. 
Some methodological considerations about how to deal with the integration of the 
aspect separation at the architectural level are made. This allows us to manage the 
evolution of systems by considering the changes as aspects. To achieve it, the aspects 
are extracted during the architectural design stage. The model, which proposes to give 
a structural specification of an AO system, is based on the combined use of a 
conventional architecture description language (ADL) and an exogenous co-
ordination model. In particular, LEDA [3] has been chosen as ADL and Coordinated 
Roles [4] as co-ordination model. The formal basis of the language will allow us to 
reason about the properties of the software architecture as well as to execute a 
prototype of the system from its architecture design. The generated systems have a 
clear design, easy evolution and maintainability. In addition, the language needs to be 
extended to express the AO concepts. 

The proposal is a contribution to obtain an AO life cycle: a methodology is defined 
to evolve architectures, based on Aspect orientation. An ad-hoc architectural 
reconfiguration is obtained when a new requirement is added by a software architect, 
who can obtain a “new design” from the current system by applying the proposal. In 
others words, it is possible to apply aspectual concepts to a system, which need to 
evolve due to new requirements or unanticipated changes. It is assumed that the new 
requirements that will be modelled as aspects1 at the software architecture phase have 
been identified in earlier steps. So, from an initial system, a tool allows us to obtain 
the design of the extended one with new requirements (considering them as aspects). 
The definition of an AO-ADL gives the necessary support to do it. 

The article is structured as follows: in section 2, the proposal is presented, 
considering the development process of the AO systems during the architectural 
stage. The proposal includes the definition of an architectural structure with two 
levels, the component level and the aspect level. Also, how to manage the aspect 

                                                           
1 New requirements considered as aspects can crosscut or not the architectural modules of 

current system. 

.
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separation at the architectural design as a co-ordination problem is shown. In section 
3 related works are presented and section 4 presents some future works and 
conclusions. 

2   A Proposal to Develop AO Systems at Architectural Level 

In this section a proposal to carry out the design of AO systems from an architectural 
point of view is presented, considering the aspects as first class entities. So, the 
problem of developing AO Systems can be considered as a special way of 
maintaining and evolving the systems. In the software architecture phase, they are 
defined as a set of components, describing their high level functionality, which are 
connected through a set of architectural connectors. The aim of the proposal is to 
show how the evolution of systems (addition and change of requirements) can be 
managed using aspect. The system extension is obtained by applying aspect 
restrictions (new requirements) without modifying the existent components and 
connecting the new elements to the existent ones. The following is considered: 

1. The systems are built from independent components.  
2. To build complex systems, taking into account AOSD concepts, aspects will be 

considered as design artefacts [5]. So, it is possible to manipulate them through the 
whole development process. Moreover, these artefacts must be connected to the 
other components of the system. By using this aspectual feature, new requirements 
can be added to a designed system. 

3. In the architectural design, the systems must be described with an ADL. 

Before an aspect can be considered as a design component and then incorporated 
into a system, it is necessary to identify and specify it by describing its interfaces as 
well as its conditions of application. Then the interactions (architectural connectors) 
between the aspects and the components of the system can be defined taking that 
information into account. 

In previous works [5], [6] we propose that in software architecture, the aspects 
separation in a system can be treated as a co-ordination problem. For this purpose, 
exogenous co-ordination control driven models can be applied to add new 
requirements. 

In the proposal, the system is initially designed without considering the 
crosscutting concerns but adding them later. The final goal is to obtain the execution 
of a prototype of the extended system (including the new requirements as aspects). 

The steps of the proposal are the following (Figure 1): a) to consider the detailed 
specification of the system; b) to create a design model and to define the system 
architecture, by using an ADL to obtain its high level design specification (note that 
in these steps the crosscutting concerns are ignored); c) to make the system evolve by 
adding new requirements like aspects in order to get the extended one in an oblivious 
way [7]; and finally, d) to define the architecture of the extended system as an AO 
architecture. A co-ordination model is used to manage the interaction between aspects 
and components. An architectural structure with two levels is defined, the first one 
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Fig. 1. Steps of the proposal 

To clarify the concepts, a simple example is presented:   
 “A bank system manages the accounts of its clients who deposit and withdraw 
money from their bank account, and consult their balance from an ATM service. The 
client begins his interaction with the system when he introduces his credit card. After 
that, the ATM reads it, and then it can go on carrying out the requested operation, 
abort it by holding the card, or return it without doing any operation. If the operation 
is going on, the ATM system checks the current situation of the client’s account on 
which the requested operation is being done. Besides, it is also necessary to consider 
an audit operation, which controls some functions of the system. The audit operation 
has been identified as a crosscutting concern during the requirement specifications. 
Here it will be considered as an aspect. The audit aspect is a new requirement 
modifying the server (B_manager) behaviour without modifying the design 
components in the initial system”.   

1 Specifying the system (the Basic System)
using Use Case Diagram. Without Aspects

2. Creating the Basic System Design Model

Extenting with
Aspects

no

       Yes

3 Adding an aspect

4 Defining an Aspect Oriented
architectural structure.

5 Espressing the Extended System
in an ADL. Generating a prototype

Adding more
aspects

Yes

     no

The prototype execution

2.1 The Sequence Diagrams for the
Basic System.

2.2 Describing the Basic System
Design Components .

2.3 Describing the Basic System
Software Architecture in an ADL.

2. Creating the Basic System Design Model

3.1 Defining an Extension and
Identifying the Extension Points.

3.2 Redefining the Sequence Diagrams
Associated to the Extensions.

3 Adding an aspect

4.2 Defining the Common-Items

4.3 Defining the rules R

4.5 Defining the BlackBoard

4.4 Defining the Control Process

4 Defining an A.O. architectural structure

4.1 Defining  the set A
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defines the basic system structure and the second (aspect level) defines a structure 
supporting the added aspects.  
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The following sections describe the steps to be taken with our proposal to solve the 
problem. 

2.1   Specifying the System 

In this step the system is specified without considering aspects; they will be included 
later (step 3). The system (basic system) specifications are firstly expressed by using 
UML diagrams. Figure 2(a) shows the use cases diagram for the example basic 
system. A full description of each use case needs to be done to express its 
documentation. The template proposed by Coleman [8], including some modifications 
is used. 

Fig. 2. (a)UC Diagram for the Basic System  (b) Sequence Diagram for Modifying Account UC 

The use case "modifying account" documentation is expressed partially in Table 1. 

Table 1. Extracted Documentation for “Modifying Account” UC 

Use Case name Modifying account 
Description Changes a bank account state 
Comment Client requests an operation 

2.2   Creating the Basic System Design Model 

In this section the system architectural description is shown. The different steps to be 
taken are developed in the following subsections: 

The Sequence Diagrams for the Basic System. A sequence diagram is obtained 
from each use case, containing the design components of the system. The interactions 
are represented as well. 

Figure 2(b) represents the associated sequence diagram to "modifying account" use 
case showing the design components and their interactions. 

reject card checking card

create an account close an account

modifying account

client

ATM B_Manager Account

Client : client

Mang_Op
Req(Op,Cant)

Answ
Answ

OpReq

Answ
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The Decomposition of the System in Design Components. After the detailed 
specification of the system has been done, its architecture is defined. The 
designcomponents are specified by describing their interfaces and the interactions by 
considering the relationships between components. They are established during the 
system specification and expressed in the sequence diagram.  

Describing the System Architecture. To formalise the obtained design model (as a 
set of components and their interactions), an ADL is used. The selected one is LEDA 
in whose architecture two levels can be distinguished: the component level 
representing the system functionality, and the role level. The control of the system is 
due to the roles because they manage the interactions among the components (these 
being passive elements and doing only the computations). It would be possible to use 
other languages as ArchJava or Acme [9], [10].  

 
 

 

 

 

 

 

 

 

 

 

Fig. 3. The Basic System Description in LEDA 

The architectural description of the example in LEDA is in Figure 3. There, the 
components of the system are defined in the composition section (the atm component 
as a client and the b_manager as a server). The roles ProvideM and RequireM define 
the characteristics of the interactions. The attachment section represents the glue 
defining the system associations between components and roles.  

2.3   Adding a New Requirement as an Aspect 

After defining the basic system, aspects are added to introduce new requirements 
obtaining the extended system. This is either to complete the system specification with 

component atm { 
interface none;
composition

 atm : Client;
b_manager: Server;

attachments 
atm.requireM(executeopman,typeop,cant,balance)<>
b_manager.provideM(executeopman,typeop,cant,balance);
} 
component Client{

interface
   requireM:RequireM;
} 

component S erver{
interface
   provideM:ProvideM;
} 

role ProvideM(executeopman,typeop,cant,balance){

 
spec is 

executeopman?(answer).(value)answer!(value).
ProvideM(executeopman,typeop,cant,balance); 

} 
role RequireM(executeopman,typeop,cant,balance) {
spe c is 

(answer)executeopman!(answer).answer?(value).
RequireM(executeopman,typeop,cant,balance); 

} 

instance atm:Atm;
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the identified crosscutting concerns, or to evolve the system. The extended system is 
defined keeping up the obliviousness principle [7], according to the following steps. 
(In the example, B_manager behaviour is modified when the audit aspect is applied). 

Adding an Aspect by Defining an Extension and Identifying the Extension 
Points.  The aspect to be added is considered as a special kind of use case [11]: a Use 
Case Extension (Audit aspect in Figure 4). The points where the added aspect 
interacts with the basic system use cases must be determined. They are the extension 
points [12]. Besides, how each aspect interacts with the system must be defined (its 
application conditions). For each extension point the following must be indicated: the 
events triggering the aspects execution; the preconditions (conditions of execution) to 
be satisfied; and when they will be executed (before or after the action triggering the 
event). All this information will be expressed in the extended use cases diagram, and 
then transcribed to a template (extending Coleman's). For each use case and aspect to 
create a table is proposed. This is obtained from the above (Table 1) and extended 
with the information aforementioned. Table 2 shows the associated information with 
the use case and the aspect in the study case.  

 

reject card

audit operation

checking card

create an account

close an account

modify an account

client 

extend

extend

--Extension Point--
before or after doing the 

requested 

 

Fig. 4. UC Diagram for the Extended System 

Table 2. Documentation for the “Modifying Account” UC and the Audit Aspect 

Use Case name Modifying Account 
Description. Changes a bank account state …. 
Extending Use Case  Audit. UC   
Extension Points List  Call to Manage_op operation.  
Event Receive Message. 
Application Condition None 
When Clause  None (after is the default value) 

Redefining the Sequence Diagrams Associated to the Extension. For each use case 
extended with an aspect, the sequence diagram is redefined. This new diagram 
contains the components in the initial use case to be extended and the aspect 
component to be added. New interactions are not defined yet.  
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Before specifying the nature of the new interactions it is necessary to define a new 
element, which contains the aspect component and manages its interaction, which we 
call Aspect-Manager (Figure 5). This new element is considered now as an abstract 
component but later it will be the Aspect Level in the model (2.4 section).  

ATM B_Manager Account    AspectManager

client : client 
OpReq 

The AspectManager component detects the Mang_Op 
event sent to B_ Manager, intercepts the operaton, and 
orders the aspect execution before or after the 
operation  in B_Manager is executed (depending on if 
some onditions are satisfied).

Mang_Op

gestOp(op)
Req(Op,Cant)

Answ
Answ

Answ
Answ 

AspExc

AspExc

The aspect can be executed  
before or after the execution of the 
requested operation in B_Manager

 
 

Fig. 5. Sequence Diag for Modifying Account UC with an Aspect 

Table 3. “Modifying Account” UC Documentation for each extension point, aspect and 
component 

 
 

 

 

 

The Aspect-Manager function is to co-ordinate and manage the interaction between 
the aspect and the other components in this scenario. The description of the Aspect-
Manager behaviour is the following:  

- Aspect-Manager is waiting for an event occurrence.       
- When one is detected, it is intercepted and analysed.   
- If the operation triggering the event is not associated to the aspect managed by 

Aspect-Manager, the operation continues its normal sequence.   
- On the contrary, Aspect-Manager studies whether the conditions for the aspect 

application are satisfied, and if the aspect must be applied before or after the 
requested operation.  

- The associated information to the extension points identified in the use cases 
diagram should be propagated to the sequence diagrams: a table is defined for 
each extension point, aspect, and the corresponding design component. For 
the case study the Table 3 is obtained. 

 

Insertion Point  Manage_op 
Extension Point Call to Manage_op. 

Aspect Audit 
Component B_manager 

  Event Receiving Message  
  Application Condition   None. 
  When Clause  None. 
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These three elements jointly define one point on a design component in which an 
extension point is detected. It is called Insertion Point. This concept is near the join 
point concept, but at a higher level. For each extension point, aspect and design 
component one or more insertion points can be defined.  

2.4   Defining an Architectural Structure to Support the System Changes by 
Adding Aspects 

The Aspect-Manager definition allows that, when new requirements (aspects) are 
added, the design components are not changed. To manage this during the 
architectural design, a two level architecture is proposed: The Component Level, to 
define the basic system and the Aspect Level2 to include the new components 
supporting the added aspect and the management of its interaction. This makes it 
possible to define a new workspace but independent of the basic system architecture.  

 

Common Items (C-I)

   C-Ii(IP)={IPi_id, Com_id, Ev, 
  Cond, when_Cla

A1
 

Rules R

ControlProcess CP
  (coordinator) 

C1 

C2 

C3 

Component Level 

Aspect Oriented Architecture   

BlackBoard

(Notified Events)

Aspect Level

 

Fig. 6. Extended System Arch., Component and Aspect Levels 

The Aspect Level is constituted by (Figure 6): a set of aspect components (A), a 
static structure that we call Common-Items (C-I), a set of rules (R) specifying 
interactions between the first level and the second one, a Control Process (CP) and a 
dynamic structure, the BlackBoard (BB). Each element is defined bellow. 

The Set A. A is the set of aspects. Each is defined as a design component, having an 
interface providing the operations that determine its operability. In the case study, the 
Audit operation is the considered aspect.  

Common Items (C-I). All information from previous steps is contained in this 
structure, in which the associations between the components and the aspect are 
considered, as well as the conditions for their application. 

The C-I table is generated from the previous ones having the following columns: 

                                                           
2 Aspect-Manager component aforementioned is from now the Aspect Level in the model. 

- Insertion Point -IP-. It is each cutting point identified in the sequence 
diagram. IP must be in the component interface.   
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- Component: The name of the component affected by the above IP. 
- Aspect: The name of the aspect to be applied.    
- Event: The event type triggering the aspect application. It can be "received 

message (synchronous or asynchronous)" or “reached state”.   
- Condition/s: They are the conditions that must be satisfied allowing the aspect 

functionality to be executed.   
- When Clause: It indicates when the aspect can/must be applied (after or 

before). 

In table C-I there is a row for each insertion point. So, the detailed specification of 
the system lets us obtain this structure completely defined. In the case study, the C-I 
structure is in Table 4.   

Table 4. C-I values for the case study 

IP Component Aspect Event Condition WhenClause 
Manage_op B_manager Audit Receive Message  None None (after) 

Rules. The set of rules is defined to describe the characteristics of the interaction 
between the aspect component (at the aspect level) and the components in the 
underlying level. They provide the actions to be executed when applying the aspects, 
considering the conditions to be satisfied. The left side specifies the list of conditions 
to be satisfied (deduced from the information in the C-I structure) to execute the 
actions on the right side (deduced from the set A of aspects). For each C-I row, a rule 
is defined. Its general syntax in pseudocode is: 

IF  (event)  and  (IP OF Comp)  and  (cond)  THEN 

DO  [Aspect_Op_Name(param)]  WHEN  when_condition  

being Aspect_Op_Name (param) the name of one operation  
provided by an aspect component. 

An IP can be affected by more than one aspect. In this case it is necessary to 
consider the event and cond items in the associated column of C-I to solve the 
conflict. As a result of this, two rules or one complex rule (considering priority) can 
be generated. In the example, the associated rule to our aspect extension is:   

IF  (RM3)  and  (Manage_op  OF B_manager)  and  (null) THEN   
 DO  Audit_op  WHEN  after   

 

Control Process CP. The Control Process manages the  o-ordinated execution of t  he 
extended system considering the rules information. It co-ordinates the execution of the 

                                                           
3 RM : Receive Message. 
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components affected by the triggered events and each aspect associated to them. After 
executing an aspect the basic system behaviour can change. 
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To solve the problem of co-ordinating the aspects and the components execution an 
exogenous control-driven co-ordination model [13] is considered [5], [6]. The 
selected one has been Coordinated Roles (CR) [4], based on event notification 
protocols. In CR, each co-ordinator is monitoring the system in a transparent way to 
the components. When an event is detected by a CR co-ordinator, it executes the co-
ordination actions associated to the events. The events can be treated in a synchronous 
way (the component affected by the triggered event is blocked until the event is 
treated) or an asynchronous way (the component affected by the triggered event 
continues its execution while the event is been treated).  

As the extended system can become complex because of the number of aspects to 
be included, CP is constituted by:   

- Several co-ordinators (in CR sense): Each is defined for each design 
component having one insertion point. A co-ordinator can manage several 
aspects associated to the same IP. 

- A co-ordinator of co-ordinators named SuperCoordinator. Its definition is 
necessary when several aspects are being included (section 2.8.3). 

The detailed CP execution is described in section 2.8.4.  

Blackboard. The Blackboard is a dynamic structure, which stores the triggered 
events (waiting to be treated) during the system execution. The information stored for 
each event is: the Event type; the insertion point name (IP); the name of the 
component affected by the IP; and the values of the conditions on the left side of the 
rules. This information will be compared with those in the C-I structure.  

The events and their associated information are written by the co-ordinator when 
they are detected, then read by the SuperCoordinator who makes the comparisons 
with the information in C-I. The treated event is eliminated from the blackboard by 
the same co-ordinator causing its insertion. 

2.5   Expressing the Extended System in an ADL  

The next step is to describe the extended system in terms of the ADL. This implies 
enlarging the basic system description by adding the aspect level elements. This is the 
Aspect-Manager information. As it was shown, this design component is mainly 
constituted by two elements: the aspects establishing the extension of the system; and 
the Control Process managing the complex interaction between the aspect and the 
basic system components by co-ordinating both executions. 

The Aspect Level definition in LEDA (the selected language) is as follows:   

- Each aspect will be a LEDA component.   
- The co-ordinators and the SuperCoordinator will be LEDA components, too.   
- We will define as LEDA roles the interactions between:  

• Each server component triggering an event and its associated co-
ordinator.   

• Each co-ordinator and the SuperCoordinator. 
• Each co-ordinator and its associated aspect. 
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Fig. 7. Extended Syhjfhgdrchitecture in LEDA 

These new elements lead us to consider a new set of high order instructions. In this 
way, an aspect oriented architecture description language (AO-ADL) is obtained. The 
extended system description in this AO-ADL can be generated automatically from the 
basic system description in a partial way. This is possible because at the design level, 
aspects, co-ordinators and SuperCoordinator have a known behaviour. Roles in 
LEDA which define associations between components (new and old) can be 
generated partially too. Figure 7 shows the extended system in LEDA for the case 
study. The basic system architecture (Figure 3) has been enlarged with new 
instructions to obtain the extended system description. (marked in bold). 

2.6   Generating a Prototype  

After the extended system description in the ADL is done, the system behaviour can 
be known at design time by executing a prototype of an AO system from the 
architectural design phase (if the ADL makes it possible). In addition, due to the 
LEDA formal basis (Π−calculus), it is possible to demonstrate the properties of the 

component atm {
interface none;
composition

atm : Client;
bmanager: Server;
audit :Aspect;
coor : Coordinator;
sc : Supercoordinator;

attachments
      atm.requireM(executeopman,typeop,amount,
balance) <> coor.intercept(executeopman,typeop,
amount,balance);
     coor.calltosc(scoperation,a,b) <>
sc.replytoco(scoperation,a,b);
     coor.act(aspectop,typeop, amount,balance,
executeopman,x) <> bmanager.provideM(aspectop,
typeop,amount,balance,executeopman,x)<>
audit.modify(aspectop,typeop,amount,balance,execu
teopman,x);
}
component Client{
interface
   requireM:RequireM;
}
component Server{
interface

provideM:ProvideM;
}
component Aspect {
interface
   modify:Modify;
}
component Coordinator {
var
    match : Boolean;
    after : Boolean := true;
interface

act:Act;
calltosc:Calltosc;
intercept:Intercept;

}
component Supercoordinator {
interface

replytoco:Replytoco;
}
role ProvideM(aspectop,typeop,amount,balance,
executeopman,x){
spec is
executeopman?(answer).t.(val)answer!(val).Provide
M(aspectop,typeop,amount,balance,executeopman,x);
}

role RequireM(aspectop,typeop,amount,balance) {
spec is
(answer)executeopman!(answer).answer?(val).t.Requ
ireM(aspectop,typeop, amount, balance);
}
role Modify(aspectop,typeop, amount,balance,
executeopman,x){
spec is
aspectop?(reply).t.(val)reply!(val).Modify(aspect
op,typeop,amount,balance,executeopman,x);
}
role
Act(aspectop,typeop,amount,balance,executeopman,x
){
spec is
[match=FALSE](answer)executeopman!(answer).answer
?(val).t.Act(aspectop,typeop,amount,balance,execu
teopman,x)
+[match=TRUE and
after=FALSE](reply)aspectop!(reply).reply?(val).(
answer)executeopman!(answer).answer?(value).t.Act
(aspectop,typeop,amount,balance,executeopman,x)
+[match=TRUE and after=TRUE](answer)executeop
man!(answer).answer?(val).(reply)aspectop!(reply)
.reply?(value).t.Act(aspectop,typeop,amount,balan
ce,executeopman,x)   ;
}
role
Intercept(executeopman,typeop,amount,balance){
spec is
(val)answer!(val).Intercept(executeopman,typeop,a
mount,balance)
+ executeopman?(answer).t.Intercept(executeopman,
typeop,amount,balance);
}
role Replytoco(scoperation,a,b){
spec is
scoperation?(answer).t.(val)answer!(val).Replytoc
o(scoperation,a,b);
}
role Calltosc(scoperation,a,b){
spec is
(answer)scoperation!(answer).answer?(val).Caltosc
(scoperation,a,b);
}

instance atm:ATM;
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extended system architecture. So, it is possible to see how a system evolves by 
enlarging in this way the current one with new requirements. 

2.7   Eliminating Aspects or Requirements   

Adding aspects or new requirements to make the system evolve supposes following 
steps 3 to 6 of the proposal. To remove aspects, the corresponding elements and the 
associated information to them must be extracted from the aspect level. In both cases 
it is necessary to study how the rules need to be modified. 

2.8   Detailed Description of the Aspect Level Components 

In this section, the design components in the aspect level are described but only its 
high level description is presented. 

Describing the Client and Server Components. The proposal follows the client-
server philosophy to make it possible to introduce new elements in an existent system. 
A client is a design component, which requires services provided by another, the 
server.  

Two related components in the basic system can be represented as in Figure 8a. 
They are a part of the component level. When the extended system is defined, the 
client-server association is intercepted for a new “co-ordinator” component, which 
will determine (following the proposal) if an aspect will be applied or not (Figure 
8b4). The client and server components ignore the co-ordinator existence. 

Fig. 8. (a) Basic System. Client-Server relation   (b). Extended System. Client-Server relation 

Describing the Co-ordinator. A co-ordinator is defined associated with both an 
aspect and a server component. A co-ordinator is considered in association with an 
event required to a server component (for instance, to receive the request of executing 
one operation of the server interface). The triggered event makes the aspect execution 
possible, depending on if some conditions are satisfied. The Co-ordinator only acts if 
the detected event has been associated to the aspect co-ordinated by it5. 

After the extended system design specification has been completed, the co-
ordinator behaviour is defined by the information kept in Common-Items and the set 

                                                           
4 The LEDA representation is followed in the figure expressing this ternary association. 
5 In especial cases, a coordinator can coordinate the execution of several aspects. 
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of rules (allowing their right side to be executed). A co-ordinator is defined for each 
rule.6 

Description of the Co-ordinator’s Operation. When a triggered event is detected by 
the co-ordinator, it determines if this event is associated to the aspect, which it co-
ordinates. In this case, the co-ordinator writes on the blackboard the associated 
information to the detected event. Then, it notifies this occurrence to 
SuperCoordinator, (see 2.8.3), and it waits for the reply. This reply depends on the 
value of the conditions when the event is triggered. Three situations can be 
considered: no rule is satisfied; some rule is satisfied and when clause = before; some 
rule is satisfied and when clause = after. Due to lack of space this is not presented in 
this paper. 

Describing the SuperCoordinator (SC). The goal of this component is to determine 
if the conditions in the rules associated to an event are being satisfied when it is 
triggered (at run-time, their values are written in the blackboard by a co-ordinator). 
SC analyses the run-time information associated with the triggered events by looking 
for a match with the value of the conditions defining the co-ordination policies 
(rules).  

The SC component has been introduced to reduce the co-ordinator workload. This 
is because in complex systems, the information associated to several triggered events 
can be written in the blackboard by a co-ordinator before SC considers those 
previously written. In this case, the events would be awaiting their study by SC.  

To solve this situation, a dynamic re-definition of SC is proposed. A new 
component named SC_Generator is created. When the SC is invoked by a co-
ordinator, the SC_Generator dynamically creates a new SC instance, which only 
pays attention to the co-ordinator request for whose service it was created. In this 
way, having a request queue is avoided, because each SC instance pays attention to a 
request at the same time as any other. When its execution is finished, the instance is 
destroyed7. When each SC instance is created, it acts as follows (Figure 9):   

 

 Fig. 9. The SuperCoordinator Description 

It receives from its associated co-ordinator the notification of a triggered event (1). 
Then, it reads the information on the blackboard (2), and checks if this matches with 

                                                           
6 In special cases, it is possible that the coordinator behaviour was defined by more than one.  
7 The events are considered according to the order in that they arrive. 
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the left side of any rule. After that, SC returns the control to the co-ordinator, which 
invoked it by notifying the result of its execution (3). If there is a match, the co-
ordinator will execute the rule (that is, the aspect). In any other case, it doesn't.  
Finally, the SC instance is destroyed.  

Detailed Description of the Control Process Execution. Once the elements of the 
Control Process have been described, it is easier to explain its detailed execution. We 
can distinguish between the Control Process execution for a received message 
synchronous event and for an asynchronous one. 

The Control Process Description for Received Synchronous Messages. When a 
component (client) requests an operation to another (server) the Control Process 
functionality can be described as follows (Figure 10):  

 

 

 

 

 

 

 

 

  
 

Fig. 10. CP Behavior Description to Sync Messages 

- The associated co-ordinator component detects the triggered event (1, 2), then it 
stores in the Blackboard the following information (3): the triggered event, the 
insertion point name and the name of the component triggering the event (section 
2.4.5). After that, the co-ordinator (3’) notifies the SuperCoordinator and remains 
waiting for the reply.   

- SuperCoordinator receives the co-ordinator notification (3') and analyses the 
associated events information (in the blackboard) looking for a match with one of 
the rules defining its behaviour – checking the value of their conditions- (co-
ordination policy). The results of the search are notified to the co-ordinator (4), so 
that it knows what actions to take. 

- When the co-ordinator receives this notification, it acts as follows: 
• If no rule matches, the co-ordinator deletes from the blackboard the 

information of the considered event and returns the control to the server 
component without executing the aspect.   

• If a rule matches, the co-ordinator has to co-ordinate both the execution of 
the aspect and the server component, considering the when-clause value -
before (5) or after (5’)-. This co-ordinator executes the right part of the 
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matching rule (the aspect) and deletes from the blackboard the information 
of the considered event. 

- For its part, server and/or aspect components notify the co-ordinator when the 
operation is finished. Then, the co-ordinator acts in consequence (6) and finishes 
its activity. 

The CP definition for received asynchronous messages is similar to the before. It is 
not presented here due to lack of space.  

3   Related Works 

Extracting aspects at the early phases in the life cycle is the aim of several works. In 
general, each one deals with the problem from different perspectives. Some of them 
have been selected to be compared with our proposal.  

The aim of ASAAM, into AOSD project [14], is to specify architectural aspects by 
using rules allowing them to be deduced. To identify the components which crosscut 
the design by using scenarios is another goal. In [15] the aspects in CBSD are studied. 
There, identifying the requirements of the AO components is delayed until the design 
level. MDSoC [16] introduces the hyperslice concept, which lets us encapsulate and 
manage the interaction among aspects and its integration into the system by using 
HiperJ as a tool. We think this model is too near to the implementation phase. Other 
remarkable researches are [17], [18], [19]. 

[20], [21], [22] refer to the early identification of aspects. They work around 
requirement engineering and, perhaps for this reason, the way the systems defined 
under these proposals can be executed is not defined. [23], [24] consider AOSD from 
a structural perspective. None of them proposes using an ADL to describe the AO 
systems at the design level, neither to use co-ordination models to express the aspects 
interaction with the functional components. 

In [25] an ADL to design the AO systems is described. This language is based on 
XML schemes, which gives several advantages. However, at this moment, XML lacks 
a strong formal base. In [26], an ADL to design AO systems is described too. In this 
case the selected and extended language is Rapide [27] obtaining AO-Rapide, and the 
Reo [13] co-ordination model is used to define architectural connectors between 
functional components and the aspectual ones. 

4   Conclusions and Future Works  

In this paper a methodological approach to design AO system is presented. Aspect 
separation is managed at the architectural level by defining a special architectural 
structure and treating the aspect separation as a co-ordination problem. An exogenous 
co-ordination model (Coordinated Roles) is considered to realise co-ordination tasks 
observing the obliviousness principle. The proposal makes it possible to give an 
architectural definition of systems by changing their behaviour at design time, by 
adding or eliminating logical restrictions, without changing the components 
constituting it. The defined architecture gives us an architectural dynamism by adding 
and removing components and interactions. 

A. Navasa, M.A  Pérez, and J.M. Murillo .
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So, the systems are built from design components describing their functional 
behaviour, and a set of design components doing the aspect policies. Defining the 
interactions between new and old components is necessary as well. The designed 
systems considering the proposal have a clear design and highly cohesive components 
because the functional and aspectual components remain separated. These systems 
will also have easy maintenance, evolution and adaptation to unanticipated changes. 

The incremental development process proposed to design extended systems from 
initial ones allows us to enlarge them with new requirements by considering them as 
aspects. Including the new requirements is done having a minimum impact on the 
architecture of the existent system and with no changes over the design components 
of the current system.  

It is necessary to adequately express the system characteristics and using an ADL 
does this. The selected ADL and the co-ordination model have a strong formal base, 
which makes possible to analyse and verify the system properties. Besides it is 
possible to simulate the system execution during the design phase. 

The way to extend the language in order to adapt it to develop AO systems was 
shown. The extensions will allow us to execute the aspects (considered as design 
components) and the functional components over which they are applied, in a co-
ordinated way. Finally, the model is platform independent.  

The proposal presented refers to an aspect oriented architectural model. Our 
current task is, on the one hand, to obtain an aspect independent model, and on the 
other, to generalize the AO-ADL to obtain a new aspect independent ADL with an 
improved language infrastructure where the AO elements will be considered as real 
notions in the language. 

The ongoing research has the following tasks, as well: to create a tool to generate 
the new system in the most automatic way and to formalise the LEDA extensions and 
the other architectural elements. Finally, other languages like ArchJava and Acme are 
being studied to express the proposal.   
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Abstract.  This paper presents a solution to the evolution problem of software 
architectures. This solution is provided by PRISMA. PRISMA is an architecture 
modeling approach that integrates the advantages of Component-Based 
Software Development (CBSD) and Aspect-Oriented Software Development 
(AOSD). This integration is reflected in its model and in its Architecture 
Description Language (ADL). In this paper, PRISMA is presented as a 
framework to evolve aspect-oriented and component-based architectures by 
requirements-driven evolution. The evolution is supported by means of a meta-
level and the reflexive properties of PRISMA ADL which have been 
implemented as a middleware. In addition, it is demonstrated how the evolution 
services of the PRISMA meta-level permit the run-time evolution of software 
architectures using an industrial case study, the TeachMover Robot. 

1   Introduction 

Complex information systems frequently undergo changes in their functional and 
non-functional requirements. This is due to the fact that they are exposed to a high set 
of variability sources and they have a dynamic nature. In these software systems, the 
reconfiguration of the architecture topology at run-time is one of the most important 
requirements, especially in real-time systems. The relevance of this dynamic 
reconfiguration is due to the fact that complex systems usually cannot stop their 
activity. 

In the last few years, there has been greater interest in evolution research in order 
to reduce the time and the cost of the maintenance process and to provide a solution 
for dynamic evolution. Thus, dynamic evolution appears as one of the main 
challenges of software.  

Software architectures [4] have emerged as a solution for the design and the 
development processes of complex information systems. There is a wide variety of 
architectural models, but there is no consensus about the different concepts and 
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approaches. However, there is no doubt whatsoever that dynamic evolution of 
architectures is necessary to overcome changes in the requirements. This evolution 
must be able to evolve the structure as well as the behaviour of architectures. 

PRISMA is an approach to develop complex information systems. This approach 
provides a model and an architecture description language (ADL). The PRISMA 
model defines software architectures by integrating aspect-oriented software 
development (AOSD) [1] and component-based software development (CBSD) [18]. 
In this paper, we present how the PRISMA model provides a solution for dynamic 
evolution and supports changes in aspect-oriented architectures requirements by 
means of a meta-level. The meta-level contains the definitions of architectural 
elements as data in order to update them by executing evolution services. In this way, 
the execution of services is reflected in the architecture by its updating the data (the 
concept of reflection). As a result, the PRISMA meta-level allows for the evolution 
of components and aspects as well as the dynamic reconfiguration of architectures.  

The PRISMA prototype has been developed as a middleware using the .NET 
technology. This middleware contains the PRISMA meta-level in order to evolve the 
architectures at run-time. The dynamic reconfiguration of PRISMA approach has 
been tested using a real case study, the TeachMover robot. The TeachMover robot 
belongs to the tele-operation systems domain. One of the main features of systems of 
this kind is that they must deal with changes in architecture without stopping their 
execution. In this paper, we briefly introduce the Teach Mover robot case study and 
how the meta-level supports the dynamic reconfiguration of its architecture. 

The structure of the paper is as follows: Section 2 presents a brief summary of the 
PRISMA model and the meta-model. Section 3 details the main characteristics of the 
PRISMA evolution. Section 4 presents the tele-operation domain and the 
TeachMover case study which is used through out the paper to exemplify the 
presented evolution techniques. Section 5 explains how the PRISMA evolution has 
been implemented. Section 6 compares related works on architecture evolution. 
Finally, conclusions and further work are presented in section 7. 

2   Architectural Model 

The PRISMA architectural model allows the definition of architectures of complex 
software systems [12]. Its main contributions are the integration of the AOSD [5] and 
the CBSD [17] and its reflexive properties. In this way, PRISMA specifies different 
characteristics (distribution, safety, context-awareness, coordination, etc.) of an 
architectural element (component, connector) using aspects, and it has a meta-level to 
evolve its architectural models. 

A PRISMA architectural element can be seen from two different views, internal 
and external. The internal view (see Figure 1) shows an architectural element as a 
prism. Each side of the prism is an aspect of this architectural element. In this way, 
we represent that an architectural element of PRISMA is formed by a set of aspects; 
whereas, the external view (see Figure 1) is an architectural element that 
encapsulates its functionality as a black box and publishes a set of services that it 
offers to the rest of the architectural elements. 
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Internal View External View 

Fig. 1. Views of an Architectural Element 

The PRISMA meta-level has been represented by means of a metamodel which 
contains one metaclass for each PRISMA concept. These metaclasses define the set of 
properties and evolution services for each considered concept in the model.  

In the following, we present the main concepts of the PRISMA metamodel and 
their metaclasses with their evolution services. 

2.1   Aspect 

In our work, an aspect represents a specific concern (safety, coordination, 
distribution, etc) that crosscuts the software architecture, this means, those concerns 
that do not crosscut the architecture will not be an aspect. In order to avoid these 
crosscutting-concerns, a PRISMA architectural element is formed by a set of aspects 
that describe it from the different concerns of the architecture. The kind of aspects 
that form an architectural element depends on the concerns of the information system 
that we are specifying. 

PRISMA is based on OASIS [6] to define the semantics of architectural models in 
a formal way and to preserve its main advantages, that is, the validation and the 
verification of architectural models and the automatic generation of code from the 
ADL. Due to the fact that PRISMA is based on OASIS, aspects are defined by 
attributes, services, preconditions, valuations, triggers and protocols. In addition, an 
aspect defines a concern and may specify the semantics of some interfaces (set of 
services published by a component). In Figure 2, we present the aspect package of the 
PRISMA metamodel. 

The evolution services of the aspect metaclass (see Table 1) allow us to create and 
destroy aspects. Moreover, they permit the modification of their name, the interfaces 
that they specify, and the kind of characteristics that they define as well as the 
addition and removal of properties from the aspect.  

The NewAspect service allows us to create a new aspect; its parameters define its 
name and the kind of properties that the aspect specifies. However, the DestroyAspect 
service destroys an aspect.  
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Fig. 2. The aspect package of the PRISMA metamodel 

Table 1. Evolution services of the Aspect metaclass 

 

 Metaclass Aspect 

  new NewAspect(name: string, type: AspectType1); 

  destroy DestroyAspect; 

  usingInterface(name: string); 

  removeInterface(name: string); 

  changeName (Newname: string); 

  changeType(Type: AspectType); 

  addAttribute (name: string, Type: type); 

  removeAttribute(name: string); 

  addServices(name:string, Type:type,  

              ParameterList:string); 

  removeService(name: string); 

   … … 

 End_Metaclass Aspect; 

                                                           
1 AspectType is a predefined enumerated type which contains the following list of values: 

coordination, distribution, quality, presentation, context_awareness, navigational and others. 
However, the user can also define new kinds of aspects.  
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In addition, a set of services to modify a specific aspect are provided. For example, 
the AddAttribute service adds a new attribute to the aspect, but the removeAttribute 
service deletes an attribute from the aspect. Finally, services to change the aspect are 
provided (changeName, changeType, etc).  

These evolution services have associated constraints which must be satisfied 
before or after their execution in order to maintain the consistence of the architecture. 

- Weaving 

Simply defining an aspect (crosscutting concerns) is not enough. The methods 
indicating how an aspect is weaved (connected) with the rest of the aspects must also 
be determined. The weaving indicates that the execution of an aspect service can 
generate the invocation of services in other aspects (see Figure 3). Nevertheless, in 
order to preserve the independence of the aspect specification from the aspect 
weaving, the weaving is specified externally to the aspect. 

As a PRISMA architectural element is formed by a set of aspects, the weaving is 
part of the architectural element specification; it is the glue of the aspects forming a 
prism (Internal View). This glue is achieved using the weaving methods that the 
model provides. The weaving methods are operations that describe the causality of the 
weaving services. The weaving methods which are typical of the AOP are the 
following: 

- after: aspect1.service is executed after aspect2.service 
- before: aspect1.service is executed before aspect2.service 
- instead: aspect1.service is executed in place of aspect2.service 

Aspect1

Aspect2 Aspect3

W
eaving

W
eavin

g

Weaving

Aspect1

Aspect2 Aspect3

Aspect1Aspect1
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Fig. 3. Aspect weaving 

Next, we present the weaving package of the PRISMA metamodel (see Figure 4) 
and the evolution services of the weaving metaclass (see Table 2). 

Similar to the aspect metaclass, the weaving metaclass (see table 2) allows us to 
create and destroy weavings. Moreover, its evolution services permit the modification 
of its properties. This update is separated into three parts, the first two of them modify 
one of the services that participate in the weaving and the third one changes the 
weaving operator. 
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Fig. 4. The weaver package of the PRISMA metamodel 

Table 2. Evolution services of the Weaving  metaclass 

Metaclass Weaving 

   New NewWeaving(SourceAspect: string,  

                  SourceService:string,  

                  Operator:{after, before, instead}, 

                  TargetAspect:string,  

                  TargetService: string); 

   destroy DestroyWeaving(); 

   ChangeSourceWeaving (NewAspect: string,                        

                        NewService: string); 

     ChangeOperator(NewOperator:{after, before,instead}); 

   ChangeTargetWeaving (NewAspect: string,  

                        NewService: string); 

End_Metaclass Weaving; 

 

2.2   Architectural Elements 

2.2.1   Components 
A PRISMA component is an architectural element that captures the functionality of 
the information system and does not act as a coordinator between other architectural 
elements. It is formed by an identifier, a set of aspects, its weaving relationships and 
the ports that offer and request services of a specific interface. 

We present the component package of the PRISMA metamodel in Figure 5 and the 
evolution services of the component metaclass in Table 3. 

The NewComponent service allows us to create a new component. However, the 
DestroyComponent service destroys the component. In addition, a set of services to 
modify a component is provided. For example, the AddPort service adds a new port to 
the component, but the removePort service deletes a port from the component.  
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It is important to take into account that there are evolution services that affect the 
architecture configuration such as the AddPort and the RemovePort services. The 
execution of services of this kind leads to the execution of other evolution services in 
order to adapt the configuration, thereby preserving the consistency of the 
architecture. For example, if a port is removed, its connections must be deleted. 

 

Fig. 5. The component package of the PRISMA metamodel 

Table 3. Evolution services of the Component  metaclass 

 

Metaclass Component 

  new     NewComponent(Name: string); 

  destroy DestroyComponent(Name:string); 

          AddAspect (Name: string, type: AspectType); 

          RemoveAspect(name: string); 

          AddPort(Name: string, Interface: string); 

          RemovePort(name: string); 

          AddWeaving(InAspect: string,InService:string, 

                 OutAspect:string, OutService: string); 

          RemoveWeaving(name: string); 

End_Metaclass Component; 
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2.2.2   Connectors 
A PRISMA connector is an architectural element that acts as a coordinator between 
other architectural elements. It is formed by an identifier, a set of aspects, its weaving 
relationships and one or more roles, whose signature is a specific interface. These 
roles represent points of interaction among components. 

 

Fig. 6. The connector package of the PRISMA metamodel 

Table 4. Evolution services of the Connector  metaclass 

 

Metaclass Connector 

  new     NewConector(Name: string); 

  destroy DestroyConector(); 

  AddAspect(Name: string, type: AspectType); 

  RemoveAspect(name: string); 

  AddRole(Name: string, Interface: string); 

  RemoveRole(name: string); 

  AddWeaving(InAspect: string,  

  InService:string, 

  OutAspect:string,  

  OutService: string); 

  RemoveWeaving(name: string); 

End_Metaclass Connector; 
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We present the connector package of the PRISMA metamodel in Figure 6 and the 
evolution services of the connector metaclass in Table 4. 

Similar to the component metaclass, the connector metaclass (see table 4) allows 
us to create and destroy connectors. Moreover, it permits the modification of its 
properties, and it can affect the architecture configuration. 

2.2.3   Systems 
PRISMA components can be simple or complex. The complex ones are called 
systems. A PRISMA system is a component that includes a set of connectors, 
components and other systems that are correctly attached. Figure 7 presents the 
system package of the PRISMA metamodel and Figure 5 shows the inheritance 
relationship between the metaclasses component and system. 

The evolution services of the system metaclass allow us to create and destroy 
systems. Moreover, the system metaclass permits the modification of the system name 
and the set of components, connectors, attachments, bindings and ports that it 
includes. A system definition must specify the connection and composition 
relationships (attachments and bindings, respectively) among the architectural 
elements that it contains. The attachment relationship establishes the connection 
among ports of components and roles of connectors. The binding relationship defines 
the composition between the system and the architectural elements which it contains  
by means of its ports. The signatures of the metaclass services are presented in  
Table 5. 

 

Fig. 7. The system package of the PRISMA metamodel 

Similar to the component metaclass, the system metaclass (see Table 5) allows us 
to create and destroy systems. Moreover, it permits the modification of its properties, 

and it can affect the architecture configuration.  
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Table 5. Evolution services of the System  metaclass 

Metaclass System 

   new NewSystem(Name: string); 

   destroy DestroySystem; 

   AddComponent(SystemName: Name: string); 

   RemoveComponent(name: string); 

   AddConnector(Name: string); 

   RemoveConnector(name: string); 

   AddAttachment(Component: string, Port: string,  

                Connector: string, Role: string); 

   RemoveAttachment(name: string); 

   AddBinding(Architectural_element: string, 

              CPort: string, System: string,  

              SPort: string); 

   RemoveBinding(name: string); 

   AddPort(Name: string, Interface: string); 

   RemovePort(name: string); 

End_Metaclass System; 

3   PRISMA Evolution 

PRISMA supports software evolution by means of a meta-level and the reflexive 
properties of its ADL. In this way, PRISMA provides the evolution of aspect-oriented 
software architectures and their dynamic reconfiguration.  

The PRISMA architectures are defined at two different levels of abstraction: the 
type definition level and the configuration level. The first level defines architectural 
types (interfaces, aspects, components, connectors and systems) with a high 
abstraction level. The PRISMA types defined in this level are stored in a PRISMA 
library so that they can be reused by other types or specific architectures. The second 
level designs the architecture of software systems by creating and interconnecting 
instances of the defined architectural types in the previous level. In other words, in 
this level, we specify the topology of a specific software system. 

The fact that PRISMA architectures are defined at two different levels of 
abstraction implies that the PRISMA evolution can be classified into two kinds: type 
evolution and configuration evolution (reconfiguration).  

The evolution of types is achieved by invoking evolution services that do not affect 
the structure of the architecture or the communication among architectural elements. 
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These evolution services only update the internal specification of architectural 
elements (internal view).  

An architecture configuration is evolved by invoking evolution services that update 
the number of architectural elements, the communication among them, and the 
structure of the architecture. These evolution services affect the external view of the 
architectural elements and belong to the interface, port, role, attachment, binding, 
component, connector and system metaclasses (see Table 3, 4 and 5). The evolution 
services of the port and role metaclasses can modify the architecture configuration 
because they can create and destroy ports or roles of a specific component or 
connector, respectively. At the same time, these changes can produce the evolution of 
the architecture attachments and the architecture bindings by creating, destroying or 
modifying them. This is due to the fact that attachments and bindings are defined by 
using ports and roles. In addition, the creation of new instances of components, 
connectors and systems produces a big change in the architecture because it implies 
other changes such as new ports, roles, attachments or bindings. In the same way, the 
destruction of instances of components, connectors and systems produces meaningful 
changes in the architecture. 

Finally, it is important to keep in mind that the evolution of PRISMA architectures 
can be done at run-time. The evolution at run-time allows the dynamic 
reconfiguration of PRISMA architectures. This dynamic reconfiguration is achieved 
by executing evolution services at run-time. In this way, it is possible to enforce the 
business rules that produce the architectural changes at run-time.  

4   A Case Study: The TeachMover Robot 

We are currently working on the PRISMA: Model Compiler of Aspect-Oriented 
Component-Based Software Architectures Microsoft® Research Cambridge project. 
This project consists of the specification of industrial systems such as the EFTCoR 
teleoperation system [13]. EFTCoR is a robotic platform that cleans the hulls of ships 
and that has strong requirements in terms of adaptability to different devices, safety 
for operators, response time, etc. These systems need dynamic reconfiguration to 
overcome their large set of variability sources.  

Before developing the software architecture of EFTCoR [3], we specified and 
implemented the PRISMA architecture of the TeachMover robot [19]. The 
TeachMover is simpler than EFTCoR, but it has the same architectural features. We 
are now implementing EFTCoR reusing the implemented components of the 
TeachMover robot. 

The TeachMover robot is composed by a set of joints that permit its movement:  
Base, Shoulder, Elbow and Wrist. In addition, it has a Tool to perform different tasks. 
In this case study, the tool is a gripper where open and close actions allow it to pick 
up objects (see Figure 8). The functionality of the TeachMover robot is to move 
objects from an initial position to a final one. The movements of the robot are ordered 
by an operator from a computer. 
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Fig. 8. The TeachMover Robot 

The TeachMover architecture has a lot of components, connectors and attachments 
at different levels of abstraction. Due to the complexity of the system, in this paper, 
we only focus on the higher level of abstraction because it is more familiar to the 
reader and it is easier to understand. Figure 9, shows this level of the Teach Mover 
architecture. It consists of two components, Operator and RUC(Robot Unit 
Controller) that are connected through a connector (CnctMovement). The components 
and connector are inside of a system called Teach Mover. In addition, this system 
includes two attachments to link each component with the connector by means of 
their ports and roles (Commands, Robot). Figure 9 also shows that the Operator and 
the Robot are local (they are situated in the same node) as they form part of the same 
system. 

Fig. 9.  Architecture Configuration between the Operator and the Robot 

5   PRISMA Meta-level Implementation 

The main purpose of PRISMA is to become a framework to model software 
architectures, providing their automatic code generation,  evolution and  maintaince. 
Therefore, we have implemented the PRISMA approach using the .Net platform as a 
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middleware to execute PRISMA software architectures. The middleware provides the 
evolution services of the metalevel to evolve PRISMA software architecture. 

This section introduces the PRISMA middleware and explains how the 
implemented evolution services of the middleware are used in a reconfiguration case 
of the TeachMover architecture. 

5.1   PRISMA Middleware 

To implement PRISMA applications, an abstract middleware which sits above the 
.Net platform has been developed (see Figure 10). This middleware offers the extra 
functionalities and characteristics of PRISMA which .Net does not directly offer. 
Thus, each PRISMA type (Aspects, Components, Attachments and Bindings) has been 
mapped to a .Net construct. In this way, the evolution services of the PRISMA meta-
level are provided by the middleware. 
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Fig. 10. The PRISMA Middleware 

As PRISMA also specifies software architectures of distributed systems, this has 
also been taken into account in the development of the middleware. A PRISMA 
middleware has to run on each node where a PRISMA application needs to be 
executed (see Figure 11). Each middleware manages the architectural element 
instances that are executing in a specific node, providing the instances with necessary 
 

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 

Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 

Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 

Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 
Middleware

PRISMA 

Middleware

 

Fig. 11. PRISMA middleware running in distributed nodes 
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maintenance and evolution services. In order to maintain the consistence of the 
distributed software architecture and to make the instances work as if they were local 
instances, each middleware is able to interchange information with the other 
middlewares of the different nodes of a software architecture. We have used the .Net 
Remoting technology [10] to implement the distributed communication. 

In our case study (see Figure 9), each node of the Teach Mover architecture must 
have a middleware running in order to enable the execution of the software 
architecture.  

5.2   Dynamic Reconfiguration in the TeachMover Architecture 

In this section we are going to demonstrate how the evolution techniques previously 
presented are applied to the TeachMover Robot case study and how an evolution 
service unchains other evolution services to preserve the consistency of the 
architecture.  

As mentioned above, the TeachMover robot belongs to the tele-operation domain 
and one of the main features of systems of this kind is the fact that they need to deal 
with changes in architecture without stopping their execution. One of the 
requirements that emerged after the teach mover architecture was implemented is that 
the operator could move the robot from computers located in different places. Taken 
into account that the initial configuration of the TeachMover architecture is the one 
shown in Figure 9, our first implementation version of this system does not satisfy 
this requirement. This is because the operator component is forced to be at the same 
computer (node) as the robot controller (RUC) component. This restriction exists 
because these components are inside the same system and the operator component 
cannot move itself without moving the entire system. For this reason, the initial 
configuration does not allow the operator component movement from one computer 
to another and to access to the robot controller (RUC) component in a distributed 
way. In order to overcome this requirement at execution time, the architecture can 
reconfigure itself by externalizing the Operator component from the TeachMover 
system.  In this way, the Operator component can access the TeachMover system 
from another node independently of which node it is working at.  

Figure 12 shows how the architecture should be configured for the operator be able 
to move the robot from different places. As Figure 12 shows the Operator component 
is connected to the TeachMover system in a distributed way and is not part of the 
system. To perform this change, a set of meta-level services must be executed at run-
time. These services are provided through the PRISMA middleware, which contains 
the meta-level implementation. The set of executed meta-level services is discussed 
bellow. It is important to keep in mind that the new Node, where the Operator 
component is going to be moved to, should also have the middleware executing. 

When the operator component decides to move to a new node (Node_2), it notifies 
the decision to the middleware of Node_1. This middleware request the 
NewComponent(Operator) service of the meta-class Component from the middleware 
of Node 2 (see Table 3). The same Operator Component exists at both, Node_1 and 
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Fig. 12.  The reconfiguration of the architecture in Figure 8 caused by the mobility  
of the Operator 

Node_2 (this is performed by serializing the type). When the Operator component is 
created in Node_2, the middleware of Node_1 is notified and it destroys the Operator 
component on its site. Node_1 performs this by executing the 
DestroyComponent(Operator) of its meta-class Component. The results are shown in 
Figure 13. The operator component is at Node_2 and the TeachMover system, which 
encapsulates the attached CnctMovement and RUC, is at Node_1.  

 

Fig. 13.  The result of applying the NewComponent (Operator) and DestroyComponent 
(Operator) to the architecture in Figure 9 

However, this is not enough to enable the Operator component to communicate 
with the RUC component. Therefore, the middleware of Node_1 requests from the 
TeachMover system to execute the AddPort(RCommands, ICommands)  of the meta-
class System (see Table 5). This service adds a port to the TeachMover system called 
RCommands of the ICommands interface type. The middleware then requests 
TeachMover system to execute the AddBinding(CnctMovement, Commands, 
TeachMover, RCommands) of the meta-class System. Thus, a binding is created 
between the TeachMover and the CnctMovement. Once this is performed, the Node_1 
middleware request the execution of the AddAttachment( Operator, Commands, 
TeachMover, RCommands)service to middleware of Node_2 in order to create an 
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attachment between the distributed TeachMover and Operator 2 . The final 
configuration of the architecture is achieved without stopping the execution of the 
system, the final configuration of the architecture (see Figure 12). This proposal 
allows the operator to become a mobile component which can access the robot in a 
distributed manner.  

6   Related Works 

This work is focused on providing a complete framework to support architecture 
evolution. This evolution framework is for a specific model called PRISMA. 
PRISMA takes into account various relevant solutions such as Component-Based 
Design, the Separation of Concerns Aspect-Oriented and a powerful reflexive meta-
level.  

Many Architecture Definition Languages (ADLs) that support evolution have been 
proposed. Each one has positive and negative aspects. An interesting comparison 
between these languages is done in the work by [14]. The proposal by Loques & Leite 
[7] is very similar to our approach. Their Model R-RIO incorporates dynamic 
reconfiguration by means of a reflexive architecture, but the use of the meta-level is 
quite different from ours. Other approaches use meta-programming techniques but at 
an implementation level such as the work by [9]. In GUARANA [11], a complex 
meta-level is defined at compilation time in an ad-hoc and independent way. 

However, these proposals do not provide technological support for evolution that 
preserves the features of the model. Moreover, they have not been tested with 
complex case studies such as tele-operation systems. Furthermore, there is no aspect-
oriented ADLs that provide evolution techniques for aspects, components and 
dynamic reconfiguration of architectures. As a result, PRISMA is presented as a 
framework to evolve aspect-oriented and component-based software architectures of 
complex systems at run-time. 

7   Conclusions and Future Work 

In this paper, the PRISMA model has been briefly presented in order to show how it 
is possible to define aspect-oriented architectures. The paper classifies evolution into 
different kinds and explains how the model overcomes each kind of evolution. Thus, a 
solution for the evolution of aspect-oriented software architectures has been provided. 
As a result, the cost of people and time invested in the maintenance process of the 
PRISMA architectural models is reduced.  

It is also important to keep in mind that the division of the PRISMA architecture 
specifications into two levels of abstraction allows us to distinguish between the 
evolution of reusable types and the evolution of a specific architecture. 

                                                           
2  The connector between the Operator component and the TeachMover system has been 

omitted because it is a relay station. The connector is implicitly supported by the existing 
attachment between the Operator and the TeachMover. 
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This paper presents the main concepts of the PRISMA metamodel in detail , it also 
presents its implementation by means of a middleware and the results that we have 
achieved executing a real case study such as the TeachMover robot. 

Further work will be dedicated to improving the automatic code generation of the 
middleware. 

 want to improve the generation code-time and the run-
time of the middleware by means of generating only the part of the metalevel that

 is  needed to evolve the volatile part of a specific architecture. 
Over the long term, our work with regard to software evolution will be related to 

the data evolution problem of software architectures, where we will apply our 
previous experience about data migration and data evolution of object-oriented 
conceptual schemas [14, 15, 16]. 
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Abstract. More and more software applications have to be able to dynamically 
change during execution in order to adapt to changes in their environment. In 
the context of architecture-centred software development, this capability has to 
be expressed at the architectural level, inducing the need of architecture de-
scription languages capable of representing dynamic architectures. In this paper 
we propose an architecture description language for dynamic software architec-
tures, the ArchWare C&C-ADL. This language uses the component-connector 
view, and is constructed as an architectural style on top of a more generic ADL, 
the ArchWare π-ADL (formal ADL based on strongly typed π-calculus). The 
mechanisms the language offers for the management of dynamic behaviour of 
software systems, as well as all the advantages of the language design are 
stressed in the paper. We illustrate the language concepts using dynamic client 
server architectures. 

Keywords: software architectures, dynamic systems, architecture description 
language.  

1   Introduction 

More and more economic activities rely on software to achieve their business goal, 
becoming thus software intensive. The change in the economic environment has to be 
reflected at the level of the software support. The software applications have thus to 
be able to dynamically change during execution in order to adapt to the environment 
evolution. We distinguish among static, dynamic and evolvable systems. The static 
systems do not evolve while executing. The dynamic systems are generally systems 
that are able to evolve while executing, according to evolution patterns established at 
the design phase1. The evolving systems are systems that are able to evolve while exe-
cuting, but the evolution has not been necessarily being established at the design 
phase. 
                                                           
1 A typical example of dynamic system is a client-server with a back-up server. When the main 

server is down, the system dynamically reconfigure itself such that client requests are redi-
rected towards the back-up server. 
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During the past years, the work on the engineering of software intensive applications 
considered the software architecture as a central point in the development process: the 
architecture is specified early in the software lifecycle, and constitutes the model that 
drives the entire engineering process. Thus, first considered at an abstract level, the ar-
chitecture is stepwise refined till obtaining a concrete representation which sometimes 
can be used for automatic code generation. Software properties can be specified and 
verified early in the development process, where error recovery costs are lower. A for-
mal refinement guaranties property preservation from one step to another.   

The adoption of this architecture-centric software development process induced 
the proposition of several languages to support the definition of software architec-
tures: Architecture Description Languages (ADLs). All the proposed ADLs address 
the software structure, and give means for describing topological aspects of the archi-
tecture. Some of the ADLs allow also the representation of the system behaviour, bas-
ing most of the time their behaviour formalization on process algebras [2,3,6,20,19]. 
For representing dynamic systems, ADLs taking into account behavioural aspects are 
better suited, as they allow to represent the way the system changes [3,6,20]. ADLs 
that do not address system behaviour using algebraic foundations may represent dy-
namic change by combining topology representation with temporal logic [28]. Other 
generic formalisms were used to reason upon a system architecture dynamic change, 
like the use of a chemical abstract machine model (based on a general term rewriting 
system, it describes arbitrary reconfigurations of architectures) [11] and use of graph 
grammars to describe the allowable topologies of architectures [13]. 

This paper proposes an innovative ADL called ArchWare C&C-ADL allowing the 
description of dynamic software architectures. The language proposed is in the align-
ment of efforts made in language such as Dynamic Wright [3] and π-Space [6] and 
proposes facilities for handling dynamic behaviour for component connector architec-
tures. The language proposed is original in the way dynamic behaviour is handled, as 
well as in the way the language is constructed. 

The language design, its formal foundations and research context are presented 
(section 2), followed by  the language concepts, insisting on those that differentiate it 
from other propositions (sections 3). The language is then presented throughout illus-
trative examples (section 4), and positioned with respect to other existing approaches 
(section 5). 

2   Language Foundations and Design   

The work presented here has been partially funded by the European Commission in 
the framework of the IST ArchWare Project (IST–2001–32360) [1]. The ArchWare 
project aims to develop and validate an innovative architecture-centric software engi-
neering framework, i.e., architecture description and analysis languages, architectural 
styles, refinement models, architecture-centric tools, and a customisable software en-
vironment. The main concern is to guarantee required quality attributes throughout 
evolutionary software development (initial development and evolution), taking into 
account domain-specific architectural styles, reuse of existing components, support 
for variability on software products and product-lines, and run-time system evolution.  
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The ADLs proposed in the literature use a component-connector view of architec-
ture design. This component-connector view is the starting point from which speciali-
sation is possible in the form of more specific component types, or trough the use of 
style mechanisms. The approach adopted in ArchWare was to start not from a com-
ponent-connector view of software architecture, but from a more generic one, a core 
formal language based on architectural elements, coupled with a style mechanism al-
lowing the construction of more specific languages. The component connector lan-
guage we propose (ArchWare C&C-ADL) is constructed in such a way, as presented 
here after. 

The core formal language – Archware π-ADL [20,7,19] - is based on the high-
order π-calculus algebra [18], persistent programming and dynamic system composi-
tion and decomposition [10]. Archware π-ADL is a well-formed extension of π-
calculus for defining a calculus of communicating and mobile architectural elements. 
These architectural elements are defined in terms of behaviours. A behaviour ex-
presses in scheduled way both the interaction of an architectural element and its inter-
nal computation. Behaviours can be connected through connections, along which val-
ues can be transmitted. These actions (concerning communication as well as internal 
computing) are scheduled using similar π-calculus operators for expressing sequence, 
choice, composition, replication and matching. Architectural constituents are defined 
by composing behaviours, communicating through connections. An architecture is it-
self an architectural element. Moreover, π-ADL provides a mechanism for reusing pa-
rameterised behaviour definitions which can be embedded in abstractions. Such ab-
stractions are instantiated as behaviours by application.  

Architectural styles provide a design vocabulary. In the ArchWare approach, when 
a style is defined, it is possible to associate a new syntax; thus the style provides a 
more specialized architecture description language. The basic style mechanism (core 
style mechanism), consists in associating properties to Archware π-ADL behaviour 
abstractions. The properties are expressed using another language of the ArchWare 
family: the Archware Analysis Language2, or Archware AAL [3].   

A more elaborated language is built on top of this basic style mechanism, allowing 
style formalisation – ArchWare Architectural Style Language, or ArchWare ASL 158. 
Using ArchWare ASL, one formalises styles around three main concepts:  style con-
straints (rules that architectures must follows to satisfy a style), style analyses (used 
to evaluate particular architecture characteristics) and style constructors (reusable pa-
rameterised ArchWare π-ADL definitions).  

Style constraints are the essence of a style and delimit a design space in which every 
architecture satisfies a common set of properties, i.e., they characterise an architecture 
family corresponding to the style. The language offers the possibility to constrain struc-
tural, behavioural and non-functional characteristics of architectures, using a formalism 
based on predicate logic. This formalism is a sub-part of ArchWare AAL [4]. 

Style constructors provide support for the design of architectures following the 
style, by allowing their rapid creation through an instantiation mechanism. They con-
stitute a library of reusable elements.  

                                                           
2 The AAL is a formal language defined as an extended calculus subsuming the modal µ-

calculus [10] and the predicate calculus for expressing structural and behavioural properties 
on software architectures. 
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The architectures following a styles respect all the style constraints, i.e. they share 
common properties. Style analysis permit to go further in the analysis of properties, 
by evaluating additional properties on architectures following the style. The system is 
open, in the sense that analysis can be described in model specific languages per-
formed by external tools. 

This paper presents the ArchWare C&C-ADL [8,15], a component – connector 
language for the definition of dynamic software systems architectures. The language 
is the associated notation of a Component-Connector Style defined using ArchWare 
ASL. The concepts of components and connectors are architectural element styles. 
They can be easily specified, or changed in order to better suit users expectations. For 
instance, a component is an architectural element style. It has an associated style con-
structor, allowing to actually define a component (by instantiating the constructor). As 
the instantiation of a component result is a ArchWare π-ADL description, the lan-
guage is a formal one. 

The component and connector style proposed imposes a minimum set of con-
straints, allowing for instance the connection of two connectors. In order to obtain a 
more restrictive component-connector language, one can do it by simply defining a 
sub-style of the component-connector style we propose. If one agrees with the pro-
posed concepts (and associated constraints) but doesn’t like the syntax, it can again 
easily adapt it to best suit her/his needs.  

The ArchWare C&C-ADL design provides the benefits of giving a formal founda-
tion as well as adaptable concepts and notations. The paper presents the language, and 
not the associated style defined using ArchWare ASL, style for which details can be 
found in [15,8]. The following section presents the main concepts of the language. 

 3   ArchWare C&C-ADL Concepts 

Most of the existing ADLs propose to model software architectures using a composi-
tional approach, components and connectors. Components entail system functional-
ities, while connectors allow the communication between components. The compo-
nents and connectors interfaces are generally structured using ports (or other 
equivalent concepts), allowing to more easily see whether different components and 
connectors can be attached (the compatibility check is made at the port level rather 
than at the component level). 

Parts of the Archware C&C-ADL concepts we propose are similar to some pro-
posed by other ADLs for representing the structure (ports, components, connectors) or 
the behaviour (based on process algebras), and will be rapidly introduced (cf. section 
3.1). We will focus then on concepts that make the originality of our proposition, 
which is most related to the way dynamic aspects of architectures are represented and 
handled (cf. section 3.2).  

3.1   Architecture Description Basic Concepts   

The language takes a compositional approach for building architectures. Components 
and connectors are first class citizens. They can be either atomic, either composed by 
other components and connectors. 
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Atomic architectural elements3 have a behaviour, represented in ArchWare π-
ADL, basically expressed in terms of communication actions along connections, en-
hanced with dynamic specific actions (cf. section 3.2). The component interface, rep-
resented by a set of connections, is structured in ports. Each port has a protocol 
(which is a projection of the element behaviour).  

Composite architectural elements are composed by several components and con-
nectors. A composite behaviour results from the parallel composition of the behav-
iours of elements that compose it, which at a lower level, comes to parallel composi-
tion of ArchWare π-ADL behaviours. In order to interact, the compatible ports of 
components and connectors are attached. The composite has its own ports, to which 
ports of the composing elements are bound. 

 

a1

c1 c2

c3

attributs

port

connections

  

 
Composite element 

Atomic element 

behavior 

 

Fig. 1. Architectural elements structure 

 Atomic as well as composite elements may also have attributes, which store differ-
ent properties. Attributes can be used in the architectural element parameterisation, as 
behaviour actions can be guarded by conditions related to attribute values. We will see 
further how this can be achieved, when presenting the language illustration (section 4). 

3.2   Dynamism Related Architecture Description Concepts 

The dynamism of architectures can be considered at different levels, and three such 
levels are proposed9. The lowest one named first-level or interactive dynamism, just 
requires the dynamic communication of data in a fixed structure. Languages that do 
represent architectural behaviour are at this level of dynamism. We found in this class 
all the languages which are based on process algebras, like [6,5,3,2,1,9]. The second 
level allows the modification of this structure, usually expressed as the creation and 
removal of component instances and links; this could be named structural dynamism 
and it’s the one found in most of current proposals. The third level allows the modifi-
cation of the infrastructure in which structures are defined; that is, the dynamic 
(re)definition of new component types, named architectural dynamism [9].  

Our proposition allows to represent the three levels of dynamism. This is possible 
due to its construction on top of ArchWare π-ADL, completed with dynamics specific 
behavioural actions, meta-entities and choreographers, as presented hereafter. 

                                                           
3 We will use the term architectural element to talk about components or connectors, in cases 

where there are no differences between the two. 
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Dynamics Specific Behavioural Actions. As mentioned, our architectural elements 
behaviour representation is based on ArchWare π-ADL. In order to ease the representa-
tion of the topology modifications, we enriched the ArchWare π-ADL behaviour actions 
with actions dedicated to the dynamic creation (of connections, ports and architectural 
elements) and reconfiguration (dynamic attachment and detachment, inclusion and ex-
clusion of architectural elements. In the case of atomic architectural elements these ac-
tions concern connections and ports. 

Meta-entities – Everything Is Dynamic. In our approach everything is potentially 
dynamic, which means that whatever entity, from connection to composite architec-
tural elements, can be duplicated several times. An architectural entity definition can 
serve at the dynamic creation of several occurrences. In order to handle this, we intro-
duce the concept of meta-entity, as a matrix containing an entity definition together 
with information allowing the creation, suppression (dynamic or not) and manage-
ment of several occurrences.  

A meta-entity is defined by: a name which references it, a production unit allowing 
the creation of new occurrences, a list containing references towards all the occurrences 
created from the meta-entity, a reference (position on the list) for the latest occurrence4.  

Choreographer – Management of Composite Elements Dynamics. Components 
and connectors are seen as black-boxes when they are composed (the verification of 
their compatibility can be made by analysing their ports). The interconnections are 
made by explicit ports attachments. How can this architecture evolve? Who should 
handle it? When defined, components and connectors have no knowledge of the envi-
ronment in which they will be used (composed), and thus we consider they cannot be 
the one that handle the topology of the system for which they are a part. We propose 
(as in other languages [3,13,25,27]) a special entity explicitly modelled for handling 
the composite dynamics: the choreographer. The latter is in charge of changing the 
topology when needed, namely by: 

• changing the attachments between architectural elements, 
• create dynamically new instances of architectural elements, 
• exclude elements from the architecture (make the decoupling),  
• include existing element that arrive into the architecture (couple them with 

the rest of the architecture).  

This section focused on the language concepts, without whatsoever syntactic re-
sentation. The following section presents the language (its syntax) through examples. 

4   ArchWare C&C-ADL Illustration by Examples 

In this section the ArchWare C&C-ADL is presented using dynamic client-server ar-
chitectures, where clients and servers are defined by meta-components which are then 
instantiated in an architecture. A version in which the server is dynamic, and the ar-
chitectures takes into account the server breakdown in order to reconfigure is pre-
sented in section 4.1. This architecture is then enhanced, and clients can join the ar-
chitecture dynamically (cf. section 4.2). 
                                                           
4 This is of course completely transparent to the language users. 
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4.1   Client – Server Architecture  

Let us consider an architecture which has one client, one connector and one server. 
Whenever the server goes down, a new instance is dynamically created and linked to 
the connector, in a transparent manner to the clients that request the server services. 
The server can only go down between two request proceedings. 

The architecture is presented in an incremental way. First a simple port definition 
is explained, then the definition of a client that entails the port definition. Tthe server 
and the link connector are then examined, to finally get to the global view where all 
the elements are put together and the dynamic change of the server is handled.   

Ports definitions have three parts. The first is dedicated to the declaration of con-
nections. These declarations correspond to meta-connections. The second part is dedi-
cated to the initial configuration, i.e., what connections are created when the port is 
instantiated. The third part is dedicated to the port protocol, described using Arch-
Ware π-ADL.   

Let us have a look at the following port definition: 

The previous definition can be used inside a component or connector definition, 
where a meta-port with this definition can be declared:  

The Client Component. Atomic components have three main parts. The first is dedi-
cated to the meta-ports declaration. A configuration part  indicates which are the port 
occurrences initially created, while a computation part indicates the component be-
haviour. The following declaration of a Client meta-component declares in a ports 
part of its definition a port access with the previous definition.  

 

 

 

acc port with { 

 connections { 
  call is connection(Any), 

  wait is connection(Any)} 

 configuration { 
  new call; new wait } 
 protocol { 
  via call send ; 

  via wait receive ; 

  recurse } 

} – end meta-port access 

  
 

 

The connections part of 

the definition declares two 

meta-connections, call and 

wait, from which several 

occurrences can be created. 

The configuration part indi-

cates the creation of one connec-

tion call, and one connection 

wait. 

The protocol described indicates a 

succession of send on the call connec-

tion and receive on the wait connection, 

which can be repeated infinitely. 

acc access is  port with { … } 
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The Server Component. The following definition concerns the server meta-
component, which is also defined as an atomic component. 

 Client is component with{ 

 ports {  

  access is port with { … } 

 } 

 configuration { new access  }

 computation { 

  via access~call send any(); 

  unobservable; 

  via access~wait  

        receive reply:Any; 

  recurse } 

} – end meta-component Client 
  

 

Declaration of meta-port access 

The client behaviour consists on 

sending a request on the call 

connection of the access port, 

do something and then receive a 

reply on the access port wait 

connection. 

One instance of the access meta-

port in the initial configuration 

  

 Server is component with{ 

 ports {  

  sAccess is port with { 

   connections { 

    request is connection(Any), 

    reply is connection(Any)  } 

   configuration { new request; new reply } 

   protocol { 

    via request receive request:Any ; 

    via reply send any(); 

    recurse } 

 } 

 } 

 attributes {down: boolean default value is false } 

 configuration { new sAccess }  

 computation { 

  via attribute~down 

      receive v:Boolean; 

  if not(v) then { 

   choose  

    { via sAccess~request 

         receive request:Any; 

      unobservable; 

      via sAccess~reply  

         send any() } 

    or 

    { via attribute~down  

         send true} 

      then recurse 

 } } 

}– end meta-component Server 

 
 

Definition of meta-port sAccess 

with two connections request 

and reply 

attribute down stores the state of the server. 

The value of the down attribute is 

constantly checked. If the server is not 

down it can either handle a request 

(receive, treat, send reply) or stop (set 

the down attribute value to true). Thus 

the server cannot stop while process-

ing a request. After making the 

choice, the servers recourses (attribute 

is checked, and then the choice is 

made, etc. 
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The server has a port via which requests can be addressed and answered. The 
server posses a Boolean attribute (down) which stores its state, with the default value 
false. If the server is not down then there are two choices: it can stop or receive a 
request, treat it, and send a response. At this level of abstraction, the internal proce-
dure of the request is not important, and is represented by an unobservable action. In 
this way it is modelled at the architectural level that the server cannot stop while han-
dling a request.  

Attributes values are accessed via communication actions along a port with the 
name attribute. Thus in order to read the value of the down attribute, the server 
makes a receive on the down connection of the port attribute, in the beginning 
of its computation. In order to modify the attribute value, the server makes a send on 
the same connection. 

The Link Connector. The connector between the Client and the Server is and 
atomic connector named Link. It has two ports, one for communicating with the 
server (serverAccess, with two connections request and reply) and one for 
communicating with the client (clientAccess with two connections call and 
wait)5. One instance of each is created in the configuration part. The connector be-
haviour (represented in the routing part of its definition), consists in receiving a re-
quest from the client, send it to the server, then receive a response from the server and 
send it to the client.  
 
 
 
 
 
 
 
 
 
 
 
 
 

DynamicClientServer Composite. The global architecture is defined as a composite 
component, named DynamicClientServer. A composite component has a part 
dedicated to the meta-ports declarations as well as one to the different constituents 
(meta components and meta-connectors). The configuration part specifies the initial 
occurrences of ports and constituents, as well as the attachments between the con-
stituents’ ports or the bindings to the composite ports. The choreographer describes 
the dynamic behaviour.   

For the DynamicClientServer, three meta-elements are declared in the con-
stituents part, corresponding to the previous definitions of Client, Server and 

                                                           
5 We do not detail the port definitions. 

 Link is connector with{
 ports { clientAccess is port with { … }, 
      serverAccess is port with { … }   
 } 
 configuration { new clientAccess ;  new serverAccess } 
 routing { 
  via clientAccess~call receive request:Any; 
  via serverAccess~request send request; 
  via serverAccess~reply receive reply:Any; 
  via clientAccess~wait send reply;  
  recurse  
 } 
}– end meta-connector Link 
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Link. The configuration gives the initial topology, composed by a client, a server and 
a link connector.   

The dynamic change of the server (and associated attachments) is handled by the 
choreographer. The later constantly looks at the down attribute for the current server. 
The current instance is referenced by Server#last. If the server is down, it is de-
tached from the connector. A new instance is created and attached to the connector. 
The choreographer has access to all the ports of all the composite elements (the at-
tachment is implicit, and thus not specified at the level of the configuration part). The 
attributes of a component which is part of the composite can be accessed by the cho-
reographer by giving the component name, and then by following the procedure al-
ready explained in the server presentation.  

Note that the DynamicClientServer composite has no ports, thus the architec-
ture is closed. The following section presents an enhanced version of this architecture, 
with mobile clients joining the architecture. 

4.2   Client-Server Architecture with Mobile Clients 

Here after is a new version, where mobile clients can enter the architecture dynami-
cally. The architecture, which we call EnhancedDynamicClientServer, contains 
the same meta-components (Client and Server). The connector Link is replaced by 
the DynamicLink and the choreographer definition changes also. 
 

 

 DynamicClientServer is component with{ 

 ports {  

 } 

 constituents { 

  Client is component with{ … } 

  Server is component with{ … } 

  Link is connector with{ … } 

 }– end constituents  

 choreographer {  

  via Server#last~attribute~down  

     receive down:Boolean; 

  if (down) then { 

    detach Server#last~sAcess  

       from Link~serverAccess ; 

   new Server; 

   attach  Server#last~sAcess  

       to Link~serverAccess;  

   recurse} 

  else recurse 

 }  

 configuration {  

  new Server; new Client ; new Link; 

  attach Server~sAcess to Link~serverAccess; 

  attach Client~acess to Link~clientAccess } 

 } – end DynamicClientServer 

  

DynamicClientServer 

is a composite component 

The choreographer constantly 

looks for the down attribute 

value of the last server cre-

ated. If the value is true, the 

server is detached from the 

connector, a new instance is 

created and attached to the 

connector. 

In the configuration part a 

client, a server and a con-

nector are created and at-

tached.  
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DynamicLink Connector. The connector becomes dynamic in the sense that 
whenever a new client joins the architecture, it has to adapt, so that the client can 
be attached to it (a new port is created), and that the requests coming from the cli-
ent are transmitted to the server.  

 

The ports definition include the ones of the Link connector (clientAcess and 
serverAccess), one occurrence of each being created in the configuration part. A 
port newClient is added, via which the connector can be notified about the fact that 
a new client joined the architecture. The routing part indicates that the connector can 
either handle a request (get the request from a client, send it to the server, receive the 
replay, and send it back to the client), either handle the arrival of a new client. 

We recall that each meta-entity entails a sequence of all its occurrences, thus the 
clientAcess meta-port handles the sequences of occurrences. By clientAc-
cess#any, we make reference to whatever element of the sequence. When the con-

 

 DynamicLink is connector with{ 

 ports {  

  clientAccess is port with { … }, 

  serverAccess is port with { … }, 

  newClient is port with { 

   connections { 

    createI is connection(Any), 

    createO is connection(Any) } 

   configuration { new createI; new createO } 

   protocol { 

    via createIn receive; 

    via createOut send ; 

    recurse 

   } 

  } 

 configuration {  

    new clientAccess ; 

    new serverAccess } 

 routing { 

  choose { 

   via clientAccess#any=i~call  

       receive requete:Any; 

   via serverAccess~request  

       send requete; 

   via serverAccess~reply  

       receive reponse:Any; 

   via clientAccess#i~wait  

       send reponse } 

  or {  

   via newClient~createIn receive; 

   new clientAccess; 

   via newClient~createOut send }  

  then recurse 

  } 

}– end meta-connector DynamicLink  

  
 

The connector receives on one of 

its clientAcess ports referenced 

by clientAcess#any a request. 

The actual occurrence number is 

stored in the variable i. The con-

nector transmits the request to the 

server, and then receives the reply 

and gives it to the client that re-

quested it (clientAccess#i). 

The connector makes a interac-

tion via its newClient port, 

which means that a new client 

joined the architecture. It cre-

ates a new clientAccess port 

and notifies by a send on the 

newClient port that it’s 

definition changed.  
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nector creates a new clientAccess occurrence, the port is added to the sequence, 
and thus become eligible for receiving requests.  

The connector topology and behaviour changes thus dynamically. 

EnhancedDynamicClientServer Composite. The new composite has a port, along 
which mobile clients can join the architecture. This port, named newClient, has two 
connections along which clients can transit.  

 EnhancedDynamicClientServer is component with{ 

 ports {  

  newClient is port with { 
   connections { 

    createIn is connection(Client), 

    createOut is connection(Client) } 

   configuration { new createIn; new createOut} 

   protocol { 

    via createIn receive c:Client ; 

    via createOut send c; 

    recurse } 

 } 

 constituents { 

  Client is component with{ … } 

  Server is component with{ … } 

  DynamicLink is connector with{ … } 

 }– end constituents  

 configuration {  

  new Server; new Client ; new DynamicLink; 

  attach Server~sAcess to DynamicLink~serverAccess; 

  attach Client~acess to DynamicLink~clientAccess } 

 choreographer {  

  choose { 

   via Server#last~attribute~down receive down:Boolean; 

   if (down) { 

     detach Server#last~sAcess  

         from DynamicLink~serverAccess ; 

     new Server; 

     attach Server#last~sAcess  

          to DynamicLink~serverAccess } 

  } 

   or { 

      via newClient~createOut receive c : Client; 

      insert component c in Client ; 

      via DynamicLink~newClient~createIn send ; 

      via DynamicLink~newClient~createOut receive ; 

      attach DynamicLink~clientAccess#last to c~access 

     } 

   then recurse 

 }  

} – end DynamicClientServer  
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The Server and Client constituents are the same as the ones in our previous archi-
tecture, the Link connector is replaced by the DynamicLink connector we just pre-
sented. The configuration part creates one occurrence of each, and makes the proper at-
tachments. Note that the newClient port is not bound to none of the constituents com-
ponents. The choreographer uses this port, and it has implicit access to it.  

The choreographer has always the choice to either respond to a server breakdown 
(made in the same way as DynamicClientServer), or handle the arrival of a new client. 

When a new client arrives it joins the architecture via the createOut connection 
of the newClient port. The choreographer receives it and inserts it into the architec-
ture, in the meta-element Client. This actually adds the client to the list of occur-
rences handled by the meta-element Client6. The choreographer makes a communi-
cation with the DynamicLink connector, which is announced about the client arrival. 
When it receives a message from the connector, this means that the connector has a 
new clientAccess port created for the client connection, port which can be refer-
enced by DynamicLink~clientAccess#last in order to attach the new client to it.  

5   Related Work 

In architecture research, there are two widely accepted approaches to software archi-
tecture description: one concentrates on the problem of "coordination", the other on 
the "refinement of abstract specifications"7. Our work clearly inserts in the second ap-
proach, where several ADLs have been proposed. Good presentations of the state of 
the art can be found in the literature [17,14]. Rather than giving an extensive over-
view, we will focus here on the languages which are more relevant to our proposition, 
namely π-Space [6] and Dynamic Wright [3], which equally use a component-
connector view of the architecture, represent behaviour and allow representing dy-
namic architectures. Other generic formalisms were used to reason upon a system ar-
chitecture, like the use of a chemical abstract machine model (based on a general term 
rewriting system, it describes arbitrary reconfigurations of architectures) [11] and use 
of graph grammars to describe the allowable topologies of architectures [13]. 

π-Space [6] is a language for dynamic architecture and architecture behaviour de-
scriptions. Wright [2] is a language for modelling and analysis behaviour of concur-
rent systems, which Dynamic Wright [3] with additional mechanisms for handling 
dynamic architectures. 

Dynamic Wright uses CSP for representing behaviour, an algebra which (unlike 
the π-calculus used by π-Space) does not allow to represent dynamic behaviour. In 
order to represent dynamic behaviour, Dynamic Wright introduces special control ac-
tions and the configuror, which establishes several configurations among which one 
can alternate during execution.  

In ArchWare C&C-ADL composite elements dynamic change is equally handled 
by a special entity, the choreographer. For composite architectural elements, the ini-
tial configuration is established in the configuration part, which indicates which meta-

                                                           
6 It is also possible for elements different than the ones already existing in the architecture to 

join the architecture, as the elements transit connections with their meta-definition attached.  
7 9 presents some of the common aspects between the two approaches. 
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entities are first instantiated. Once the first occurrences are created, the system can 
execute (in the sense that the components run), or it can dynamically change. The 
choreographer has the global view and controls the dynamic change. The Dynamic-
ClientServer example illustrated the structural dynamism, with the creation of in-
stances and links. The EnhancedDynamicClientServer show how new elements 
can join the architecture. 

The DynamicLink connector is an example of atomic connector, which dynami-
cally adapts to the insertion of a new client. This can be seen as architectural dyna-
mism [9], as the connector internal behaviour changes, so that it takes into account the 
new client.  

π-Space [6] is the ADL that is closer to our proposition, as it is also based on π-
calculus8, and allows to represent dynamic architectures. π-Space targets the elements 
that are potentially dynamic in an architecture, limiting the dynamic change of the ar-
chitecture. The initial configuration includes an instance of all declared elements, and 
attachments are described in the where part of the composite (corresponding to our 
configuration part). The dynamic change is managed in composite elements by rules 
(described in a dedicated part whenever) which explain topological changes due to the 
creation of new elements. An example of such a rule is that the creation of a new cli-
ent induces the creation of a new port on the connector and attaches the client to the 
connector. The dynamic change of a composite can be triggered by one of its compos-
ite components.  

The main differences on how dynamic change is handled in ArchWare C&C-ADL 
and π-Space are the following. Firstly, by making each entity potentially dynamic we 
have simplified to the user the entity definition (targeting no longer needed), and we 
have increased the reusability of components definitions (elements which were not 
“dynamic” in some usages, become so in others). The way we handle dynamic change 
is different. In π-Space a dynamic change (an attachment for instance) is initiated by 
an atomic component. In order to increase components and connectors reuse, we con-
sider them at a composite level as black boxes; they are defined independently of their 
environment and have no knowledge of their attachments to other elements, the cho-
reographer being the one that entirely orchestrates the creation of new instances, the 
attachments and detachments between components. ArchWare C&C-ADL goes fur-
ther equally towards mobile architecture description9, by allowing the transition of ar-
chitectures along connections, while π-Space limits to connection mobility.  

Most ADLs (including the two cited above), essentially provide a built-in model of 
architecture description and formalise topological constraints. The reason of this is 
that most ADLs enforce a hard coded component-and-connector model and that struc-
ture is certainly the most understandable and visible part of an architecture. But one 
can notice, that behavioural and attribute aspects are often taken into account, and 
they are certainly an essential point of the work on architecture description. 

                                                           
8 Unlike ArchWare π-ADL, π-Space is not strongly typed, which reduces the number of verifi-

cations that can be performed at architectural level. Actually it is based on an un-typed ver-
sion of π-calculus. 

9 Lots of aspects related to mobility are of course still to be studied. We do not claim the de-
scription of mobile architectures, but we provide some basic mechanisms to do it.  
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ArchWare π-ADL is a general-purpose ADL providing features for building user-
defined component-and-connector viewpoints (ArchWare C&C-ADL is such a view-
point) and architectural styles, including structural, behavioural and semantic proper-
ties. It was designed following a compliant architectural model (in a layered style) in 
order to support compliant software applications that are dynamic and evolvable.  

Being based on ArchWare π-ADL, ArchWare C&C-ADL takes advantage of all 
the interesting features ArchWare π-ADL possesses (formal foundation with property 
checking, behaviour description, on-the-fly dynamicity and mobility). It gives a com-
ponent-and-connector view which is not too restrictive, allowing constructing further 
user-specific component-connectors views of architectural description. 

6   Further Considerations 

This paper presented the ArchWare C&C-ADL, a language for describing dynamic 
software architectures, addressing the structural as well as the architectural dynamism 
9. As illustrated by the examples provided, on the fly changes may concern the con-
nectivity between architectural elements, creation of new element occurrences, 
change in the definition of existing elements, as well as the introduction of new ele-
ments in architectures. The language gives the possibility to indicate at the architec-
tural level when the change may take place. Thus for the server example, it is possible 
to indicate that the server should stop only between two requests. Further in the re-
finement process up to implementation, this can be backed by mechanisms allowing 
recovering if the failure occurs while processing a request. The server change was 
completely transparent to the clients that send requests to it. Other examples in the lit-
erature considered a simpler architecture, with a main server and a backup one [3].  

In our enhanced client server architecture, we show how mobile architectural ele-
ments can join the architecture at whatever point in time. The connector changed in 
order to take into account the new client arrival, in a transparent manner for the server 
that processes the requests as well as for the clients already present in the architecture. 
The language permits equally to detach elements from a composite and send them to 
migrate in other composite elements.  

The ArchWare C&C-ADL is constructed as associated syntax of an architectural 
style defined in a formal language. This gives a lot of flexibility and increases the 
language usability. The style constraints are not too restrictive, such that the user can 
adapt it to its proper needs. The change can also be made only at the syntactic level. 
In this paper we show how one can use the language in order to create architectures. 
More specific styles can be created from the Component-Connector style, and then in-
stantiated. We created several such sub-styles (including client-server, the pipe-and-
filter, data indirection and layered) in the ArchWare project, which form the Arch-
Ware Foundation Styles Library [8]. The Component-Connector style (which entails 
the semantics of the ArchWare C&C-ADL) consists the root of the library. The 
ArchWare C&C-ADL has been extensively used by our industrial as well as academic 
project partners, but also by other research actors, outside the project [23]. The use of 
the language is often made in conjunction with the use of the associated style, in order 
to create more specific styles. Nevertheless, ArchWare C&C-ADL is not imposed in 
order to use the ArchWare environment, and we have cases in which styles have been 
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built for specific domains not from component-connector style, but in the same way 
as the component-connector style [24].  

Architecture descriptions written in ArchWare C&C-ADL correspond to architec-
tural style instantiations, which lead to ArchWare π-ADL descriptions. As the associ-
ated component-connector style is written using ArchWare ASL, the associated tool-
kit is used in order to generate the architectures (the toolkit includes an architecture 
instantiator) [16]. Once the ArchWare π-ADL descriptions obtained (the definition is 
complained with the style), the user has the possibility use several other tools in the 
ArchWare environment, including the ArchWare Animator [26], which allows to 
animate the architectural descriptions, or verification tools for verifying additional ar-
chitectural properties. The architecture can be executed with the virtual machine, or it 
can be refined towards a target language.  

Currently the language handles anticipated changes, like in our example a new cli-
ent joining the architecture. Future work will consider unanticipated change, and in-
vestigate mechanisms allowing the choreographer to handle such changes. Another 
aspect that has also to be further investigated is the case of distributed systems, and 
how that impacts the choreographer current design.  
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Abstract. There is a general agreement on the fact that architectural design is
crucial to build software that meets initial needs. Nonfunctional properties play an
important role, however methods are not still mature. We have defined a pattern-
based architectural design method driven by quality properties. Our goal is to
apply it to design a platform to model scientific calculation. We do not intend
to re-write a new Simulation Code (Quantum Chemistry, Molecular Dynamics
etc ...) nor to integrate various existing Codes inside an external envelope, with
some scripting language, which is the usual practice in most of these calculation
environments. Our intention is rather to spend the necessary time to design ratio-
nally the architecture and the objects of a modeling framework. In this platform
the architecture is crucial to handle a unique calculation structure, shared by all
the components of the platform.

1 Introduction

Architectural design is a stepwise process which identifies the key strategies for the
large-scale organization of systems under development [17]. Most of the existing meth-
ods consider that nonfunctional requirements are crucial, especially when the applica-
tion must respond to critical issues and to a changing environment. However, the usage
of requirements that drive the architectural decisions is poorly addressed by methodol-
ogists and practitioners, even if nonfunctional requirements engineering is now consid-
ered in recent research trends as a key issue for the design of adaptable architectures
[6, 11, 19, 20, 25, 26, 28]. On the other hand, the reuse of catalogued pattern is made
difficult for the lack of unambiguous and standard textual descriptions and graphic no-
tations. The proposed method is an architectural design process, focused on the use of
architectural patterns [30] defined as <problem-solution> couples, specified in UML
2.0 [31]. Both problem and solution include functional and nonfunctional requirements.
The architectural decisions taken to obtain acceptable solutions are driven by quality
goals that are associated to the nonfunctional requirements [25].

The main goal of this paper is to discuss the application of the above architectural
design method to define an open and homogeneous platform for scientific calculation,

R. Morrison and F. Oquendo (Eds.): EWSA 2005, LNCS 3527, pp. 94–112, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



Pattern-Based Architectural Design Driven by Quality Properties 95

integrating the main activities performed by scientists in the domains of theoretical
chemistry, biology and physics (project FRAMES, FRamework for Atomic, Molecular
and Extended Systems). We do not intend to re-write a new Simulation Code (Quan-
tum Chemistry, Molecular Dynamics etc ...) or to integrate various existing codes in-
side an external envelope, with some scripting language which is the usual practice in
most of these calculation environments. Our intention is rather to spend the necessary
time to design rationally the architecture and the objects of a modeling framework. The
FRAMES platform should allow a friendly development of new calculations, reusing
also existing old FORTRAN code and should facilitate to scientists the specification and
execution of a calculation. The platform will manipulate a main object, a ”calculation”,
that may use other calculations and integrate different elements in order to achieve the
main functionalities. The ”openness” of the platform is required to offer the scientific
community free access to programs and/or results.

In the scientific domains using extensively computer models, the user is most of the
time also a programmer. This make the code evolve rapidly and in an anarchical way.
To avoid this defect common to all software developed in these domains, a preliminary
architectural design of these particular requirements has necessarily to be done.

This paper is structured as follows, besides this introduction: Section 2 describes
the definition structure of the patterns. The pattern-based architectural design process
is described in Section 3. Section 4 presents the FRAMES platform and the application
of the method Section 5 discusses some related works on architectural design. The
conclusion presents final remarks and perspectives.

2 Architectural Patterns

Several patterns libraries are available [5, 9, 30]. These libraries describe patterns focus-
ing on the solutions proposed. But the problem is only informally described [15]. As a
consequence, it is really difficult to choose the adequate pattern to solve a current prob-
lem [24]. We aim at providing help to guide the choice and application of architectural
patterns. To do so, we add to the actual pattern description the precise definition of the
problem part in terms of functional and nonfunctional requirements. The pattern struc-
ture usually contains several clauses concerning both the problem part and the solution
part. The problem is described within several clauses:

• Specific design problems are informally stated in the Intent clause. We explicitly
include the problem functionality. Scenarios may be given in the Motivation clause.

• Participants are classes or objects already existing that can be used as parameters
of the pattern. They are partially described or defined in the Structure.

• The Applicability clause contains a list of situations in which the pattern can be
applied.

In addition, we add the following information:

• In the Context clause, the nonfunctional requirements.
• The new Quality clause contains a quality model [14, 23] related to the problem

context, expressing the expected quality properties as measurable items. It is used
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to associate quality characteristics to functional and nonfunctional requirements.
Goals may be assigned to each characteristic. Here, and at this step of the develop-
ment, we have chosen as a ranking: high, medium, low. This ranking can be refined
during later development steps into finer ranking. The goals guide the choice of a
solution according to nonfunctional requirement priorities. Goal rankings and pri-
orities can be assigned by the stakeholders involved using existing techniques such
as voting or consensus.

Patterns are defined by experimented software engineers to describe their solution
proved in practice. However, it is important when dealing with critical systems, to en-
sure their correctness that the problem stated will effectively be solved by the pattern.
Pattern validation consists in proving :

• That thesolutionpreserves thebehaviordescribedin theproblempartof thepattern[1]
• That the solution respects the quality goals specified in the pattern.

Example of a pattern description: Repository (based on Shared Memory [22, 29]).
Problem definition.

• Intent: Several components of a software system need to communicate directly or
indirectly, that is exchange (share) potentially large and evolving data in order to
meet system requirements.

• Functional requirements: data sharing (provide and require data) (Figure 1).

Structure of the problem: The UML architectural description is decorated with tags
denoting the characteristics from the Quality Model.

• Components are executed on different processors, notification mechanisms are gen-
erally implemented to notify the concurrent components of any change of the shared
data

Fig. 1. Data Sharing
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Funct(Interoperability): Goal High
Reliability (maturity): Goal High
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• Additional mechanisms need to be provided to implement the control part. They
depend on the application characteristics and the execution platform.

• Nonfunctional requirements and quality model:
– Data are shared:

� Functionality (Interoperability) Attribute: presence of a mechanism; Met-
rics: Boolean; Goal: High

– Data must be completely and correctly transmitted.
� Reliability: Maturity (robustness) provide mechanisms to avoid failures;

Attribute: presence of a mechanism; Metrics: Boolean; Goal: High
– Limited transmission time.

� Efficiency: Performance with respect to time behavior; Attribute: latency;
Metrics: time behavior percentage; Goal: Low

– Communication must be flexible to meet changing requirements, since rela-
tionships between components can evolve statically and dynamically.
� Maintainability: Changeability (flexibility) of the components relationships;

Attribute: size; Metrics: measure of complexity; Goal: Low
– Components can be changed or replaced over time:

� Reliability: Consistency: provide a mechanism (e.g. to replace a compo-
nent interface); Attribute: presence of a mechanism; Metrics: Boolean;
Goal: High

Structure of the Solution:

• A set of software components, containing the knowledge of the domain, commu-
nicate to each other to meet system requirements. They do not know each other
(indirect communication); they are only defined by their needs to perform the com-
putations (their inputs) and the results they can provide (their outputs). When a
component produces some information that is of interest for other components, it
stores it in the shared repository. The other components will retrieve it if needed.

• A repository that is accessible by every component (read and write accesses). This
repository can store all the data that need to be exchanged by components during
system execution.

Notice that the repository is a centralized solution (it may become unavailable in
case of communication failure) that implies indirect communication among the com-
ponents; hence a new maintainability (decoupling) requirement has been added to the
problems domain quality model.

3 Pattern-Based Architectural Design Process

The basic idea behind the proposed process is to focus on the problem and not to go
straight to the design of its solution [3, 15]. In our case, the problem statement is charac-
terized by both its functional and nonfunctional requirements. The functional require-
ments are generally derived from the users needs and the nonfunctional requirements
are more related with the problems environment, domain or context, which can have
different views according to the stage of the development, such as the problems real
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Fig. 2. Data sharing with Repository

world and the systems operational environment [25]. However, in problem domains
where time and resources are critical or changing, each functionality can be also as-
sociated with a quality goal that must be satisfied to ensure the accomplishment of the
functionality in the final software system, running in a specific operational environment.
Moreover, when a nonfunctional requirement such as the fact that an ad hoc network
has no supporting infrastructure, is formulated, it implies that a new functionality or im-
plicit functionality, such as the handling of transient connections, has to be considered
in the applications designed for such an environment. The quality properties related to
functional and nonfunctional requirements are specified in the quality model associated
to the problem domain. Notice that the solutions can introduce new quality features that
must be added to the quality model.

Our pattern-based architectural development process is a top-down stepwise ap-
proach. At each step, an architectural pattern has to be chosen in order to solve some
functional or nonfunctional requirement. A pattern is defined as a <problem-solution>
couple. The problem part permits to choose the right pattern that will solve some prob-
lem of the current underdevelopment system. The general pattern-based architectural
design process is the following:

Initial Input: Problem definition (”cahier des charges”)
I. Requirement Engineering
a) Identification of the business requirements: users, environment & operation

and data requirements
Artifacts:
• Use Case Model to express user (functional) requirements,
• UML Sequence Diagrams and State charts, to express the systems behavior
• Formal specification to guarantee the consistency and completeness of the re-

quirements
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b) Identification of the nonfunctional requirements
Artifacts:
• Quality Model to express the quality properties related to the nonfunctional

requirements.
c) For each functionality: identification of the quality characteristics

Artifacts:
• Quality properties for each functionality

d) First definition of the architecture
Artifacts:
• UML 2.0 model of the architecture: a configuration including components and

connectors and decorated by tags denoting the quality properties and con-
straints. Tags can decorate components, connectors and/or the configuration.

II. Iterative development of the Architecture

1. Choice and application of an architectural pattern
An applicable architectural pattern is selected from an available patterns library.
A pattern is applicable if:

i. its problem functional part matches with the functional description of the prob-
lem to be solved

ii. it gives a solution to a nonfunctional requirement. Pattern application consists
in replacing the identified problem that matches with the chosen pattern prob-
lem part, by the pattern solution part.

Artifacts:
• UML 2.0 model of the architecture under development

2. Step a is applied iteratively until all the quality characteristics have been consid-
ered for each functionality. Existing techniques to outline and solve conflicts and
tradeoffs can be applied at this stage [7, 8, 10, 11]. At the end of this process, the
architecture has been developed satisfying the nonfunctional requirements.

The requirement engineering process is detailed in what follows.

Initial Input: the problem definition (”cahier des charges”) is provided by the orga-
nization giving the problem.
I. Requirement Engineering

a) Identification of the business requirements: users, environment & operation
and data requirements
These requirements can be elicitated using a four step process [21] which is an
extension of the method proposed by Heisel and Souquires [13]. A classification
of requirements has been added to facilitate the identification of nonfunctional re-
quirements and derive the corresponding quality properties [25]. This method to
perform the early phases of the software life cycle in a systematic way, supports
two phases, namely requirements elicitation and specification development. It starts
with a brainstorming process where the problem domain and the requirements are
described in natural language [12]. This informal description is then transformed
into a formal representation. On the formal representation, interaction analyses are
performed. Their purpose is to obtain a consistent set of requirements. It is described
in four steps, as follows:
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1. Interaction Analysis. The objective of this first step is to understand the busi-
ness requirements given by the client and expressed informally by the cahier
des charges in order to identify the users or actors (humans and non humans)
and the actions (functionalities derived from the user requirements) that are
important for the software system. UML Use Cases are defined providing the
artifact for this step.

2. Invariant Properties Analysis. Then it is important to understand the software
system itself and its interactions with its environment or context. Three kinds
of properties are described to help the requirements identification: facts, hy-
pothesis and needs. The facts are static properties concerning the problem do-
main, the trivial knowledge about the application domain that the analyst can
hardly invent. Here will be described the objects that will have to be modeled
by the system, their states and attributes. The preconditions on transitions or
modifications of their state will also be identified, as should be the physical
limitations. The hypotheses are properties concerning the software system en-
vironment that is supposed to be always satisfied. These properties can change
during the development process. They are in general simplifications that are
considered at the beginning of a process. The expected behavior of the envi-
ronment will be also described here. The needs concern the desired behavior of
the software system and they must meet specific quality goals. They are in gen-
eral temporal or structural properties. Facts, hypothesis and needs are basically
constraints which are included in the business rules [25]. They comprise pol-
icy, data processing and technology constraints and they are used to precise the
quality properties corresponding to the nonfunctional requirements. They must
be specified, for example, by means of a quality model related to the problem
domain. These properties are written in natural language but must be traced
during the whole development.

3. Description of the Desired Behavior. The comprehension of the dynamic be-
havior of the future system is obtained by the description of the manner the
actors will interact with it. Two steps are necessary: first, UML Sequence Di-
agrams are defined in order to describe some typical behavior. Second, the
complete expected behavior of the system is described. UML State Charts are
defined to describe the global interaction of a software system with each ac-
tor of its environment. OCL expressions can also be used to specify both the
invariant properties and the behavior.

4. Complete Description of the System. In order to guarantee the correctness of
the requirements, that is their consistency and their completeness, it is impor-
tant to be able to put together all the information distributed among the different
documents already written. To do so, all the existing documents are translated
into a formal specification [27]. Formal specifications can be expressed using
the B development method [1] that covers the software process from the spec-
ification to the implementation. B notation is based on set theory, the language
of generalized substitutions and first order logic. Specifications are composed
of abstract machines similar to modules or classes; they consist of a set of
variables, properties on these variables called the invariant and operations. The
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state of the system is only modifiable by operations. Several relations can link
the machines of a specification.

b) Identification of the nonfunctional requirements
According to ISO 9126-1 [14], quality is defined as a set of features and charac-
teristics of a product or service that bear on its ability to satisfy stated or implied
needs. Different perspectives of quality can be considered: internal quality (mea-
sured during the development process), external quality (measured when the system
is accomplished but not yet delivered) and quality in use (measured when the system
is running on the end-user environment) views. The overall quality of a product can
be the expressed by a combination of the different views. The internal and external
quality models propose a set of six independent high-level quality characteristics
(functionality, reliability, efficiency, maintainability, portability, usability), (see Ta-
ble 1) which are defined as a set of attributes of a software product by which its
quality is described and evaluated. In practice, some influence could appear among
the characteristics, however, in this work they will be considered independently to
simplify our presentation. The quality characteristics are used as the targets for val-
idation at the various stages of development.

Fig. 3. Relations among the quality model elements

They are refined (see Figure 3) into sub-characteristics, until the attributes or measur-
able properties are obtained. In this context, metric or measure is defined as a mea-
surement method and measurement means to use a metric or measure to assign a value.

In order to monitor and control software quality during the development process
and on the final product, the internal and/or external quality characteristics must
be related to the requirements of the intermediate products or artifacts such as the
architecture, obtained from development activities, [23, 24, 25]. This mapping and
selection of the attributes is a non-trivial activity [11], depending much on the stake-
holder personal experience, unless the organization provides an infrastructure to col-
lect and to analyze previous experience on completed projects. The model should be
adapted or customized to the specific problem domain. In this sense, for a particular
software product we could have a subset of the six characteristics. In the ISO 9126-1
standard, no guidelines are given about this customization [23, 24].

c) For each functionality: identification of the quality characteristics
The quality model defined for the problem domain is used to characterize the quality
properties that hold when some functionality is accomplished. The goals can be used
to guide the choice of the patterns to be applied in Step II.
Note that similar properties and metrics can be found in [22]. However the qualities
are presented neither as a domains standard quality model, nor they are related with
the problem requirements.

d) First definition of the architecture A first UML 2.0 model of the architecture is
described as a configuration including components and connectors and decorated by
tags denoting the quality properties and constraints.
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Table 1. ISO 9126-1 Generic Quality Model

Characteristic Description
Functionality The capability of the software product to provide functions

which meet stated and implied needs when the software is
used under specified conditions (what the software does to
fulfill needs)

Reliability The capability of the software product to maintain its level
of performance under stated conditions for a stated period
of time

Usability The capability of the software product to be understood,
learned, used and attractive to the user, when used under
specified conditions (the effort needed for use)

Efficiency The capability of the software product to provide appropri-
ate performance, relative to the amount of resources used,
under stated conditions

Maintainability The capability of the software product to be modified. Mod-
ifications may include corrections, improvements or adap-
tations of the software to changes in the environment and
in the requirements and functional specifications (the effort
needed to be modified)

Portability The capability of the software product to be transferred
from one environment to another. The environment may in-
clude organizational, hardware or software environment

4 The FRAMES latform

The FRAMES platform should allow carrying out complex calculations. It should help
the not-expert user to define a new calculation, and will be able to check both the a
priori coherence of a calculation request and the a posteriori validity and precision of
the obtained result.

In what follows we will describe the design process of the architecture of the
FRAMES platform taking into account some nonfunctional requirements. We apply
the pattern-based architectural development process. The platform should propose two
main functionalities: (i) write a calculation, that is defining an algorithm to solve some
problem describing the context in which it should be calculated and its parameters, and
(ii) make a calculation. To do so, a non programmer user has to choose a calculation
and to give its parameters.

4.1 Requirements Engineering

a. Identification of the Business Requirements
To abridge this presentation, this step will not be detailed. Only the use case model is
presented in Figure 4. Two main functionalities are identified: write a new calculation
by a ”programmer” user and make a calculation. ”Make” means that the ”non program-
mer user” must provide easily all the information required to execute a calculation or a
simulation.

P
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Fig. 4. Use case model for FRAMES

b. Identification of Nonfunctional Requirements
Main nonfunctional requirements for FRAMES are:

• calculations must be validated and should support flexibility to dynamic changes
and extensions;

• the Input language used to define a calculation must be attractive and easy to use
for an experimenced scientific user;

• the users tasks must be helped whenever possible; resources (time and space) uti-
lization must be checked before and during the calculation to ensure acceptable
performance levels;

• the results of the calculations should be available, accurate, exportable and reusable;
• the existing old code is meant to be reused but not changed; it should also be accu-

rate and interoperable within the platform.

The quality model. The nonfunctional requirements for the FRAMES platform are re-
lated with the ISO 9126-1 quality model. A goal, ranked low, medium and high ac-
cording to its importance, is used to prioritize a quality property, whenever possible.
Goal values are assigned on a vote basis by the stakeholders. At this stage of the devel-
opment,most of thequality properties will be associated to an attribute whose Boolean
value will become true when some mechanism will be provided to take into account the
quality. Instead, the attribute for efficiency and maintainability is size, whose metrics
involve complexity measures.

Quality Model for FRAMES

Nonfunctional requirement: Calculations must be validated and support flexibility to
changes and extensions

• Functionality:
◦ Suitability Goal: High

Make a calculation

Write  a new calculation

Programmer
user

Non
programmer

user
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• Reliability
◦ Maturity to avoid failures, Recoverability, fault tolerance Goal : Medium

• Maintainability
◦ Changeability: to handle multiple versions of a calculation Goal: High
◦ Testability: Goal: High

Nonfunctional requirement: Input language used to define a calculation must be at-
tractive and easy to use for an experimented scientific user

• Functionality:
◦ Suitability Goal: High

• Usability
◦ Understandability, Learnability Goal: High

Nonfunctional requirement: Users must be helped whenever possible

• Functionality:
◦ Suitability Goal: High

• Usability
◦ Understandability,Operability Goal: High

Nonfunctional requirement: Resources (time and space) utilization must be checked
before and during the calculation to ensure acceptable performance levels

• Efficiency:
◦ Time behavior, Ressource behavior Goal: High

Nonfunctional requirement: The calculations results should be available, accurate,
exportable and reusable

• Functionality:
◦ Accuracy Goal: High

• Portability:
◦ Adaptability Goal: High

• Reliability:
◦ Availability Goal: High

Nonfunctional requirement: Existing old code is to be reused;

• Functionality:
◦ Interoperability Goal: High

• Reliability:
◦ Availability Goal: High

• Maintainability: of existing old code
◦ Changeability Goal: None



Pattern-Based Architectural Design Driven by Quality Properties 105

c. For each functionality: identification of the quality characteristics
The main functionalities concerning directly the calculation have been refined and re-
lated with their corresponding quality characteristics, taken from the FRAMES quality
model, specifying also the expected quality goals for each functionality.

Functional requirement: Make a Calculation.
Request (execute) and validate a calculation in a friendly and easy to use context.
The non programmer needs reliable edition mechanisms for the input language and
efficient execution of the calculation

• Functionality:
◦ Suitability to provide an appropriate set of functions to guarantee that the re-

quired calculations are obtained Goal: High
• Efficiency:

◦ Time Behavior while introducing the algorithm to execute the calculation.
(property of the input language) Goal: High

• Reliability:
◦ Maturity to avoid failure Goal: Medium
◦ Recoverability (properties of the input language) Goal: Medium
◦ Consistency to deal with multiple versions of a calculation. Goal: Medium

• Usability:
◦ Attractiveness Goal: High
◦ Operability Goal: High
◦ Learnability Goal: High

Functional requirement: Make a Calculation.
Read results: non programmer users need powerful visualization and analysis mecha-
nisms to understand and interprete the results

• Functionality:
◦ Accuracy Goal: High

• Efficiency:
◦ Resource utilization to store and update results Goal: High

• Portability:
◦ Adaptability to export the results to other platforms Goal: High

• Reliability:
◦ Consistency in storage and update of results. Goal: High

• Usability:
◦ Understandability Goal: High

Functional requirement: Write a new Calculation.
Addition of new algorithm (code), reusing also legacy (old) code. The programmer user
needs efficient mechanisms, for example an editor to write and a compiler to execute
the program

• Functionality:
◦ Interoperability with legacy code Goal: High

• Efficiency:
◦ Time behavior during execution Goal: High

• Reliability:
◦ Availability of legacy code Goal: High

• Maintainability:
◦ Changeability, testability to validate the new code. Goal: High
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d. Architecture of the FRAMES Platform
Figure 5 shows the problem, stated according to the ”cahier des charges”. The Library
component is introduced here as existing old code that has to be reused and cannot be
modified. Note that the properties in the tags are just to denote the properties of the
quality model.

The first solution presented in Figure 6 introduces two components to take into
account the main functionalities of the FRAMES platform as expressed by the use case
model (Figure 3). Each architectural element is decorated by tags with the required
quality properties. Interoperability for the connector means that the data exchanged
must be understood by the components.

The quality properties are associated to each component and connector. Now we
have to take them into account choosing an adequate solution that is for example a
pattern that will solve the problem. For example, we notice that all connectors require
interoperability. That means that these components share the calculations. The solution
shown in Figure 7 shows the introduction of a new component, a ”Calculation Man-
ager” acting as a repository, as a mechanism to handle the interoperability requirement.
With Repository we achieve in addition high changeability and reliability (Figure 2).

Following the same approach, all the components of Figure 7 should be analyzed
with respect to nonfunctional requirements and new component introduced as solutions
should be justified by their quality properties. For example, if the problem is to ensure
usability and reliability issues in Make a calculation, an ”Interpreter” new component
to handle the input language for entering the calculation could be introduced using
the interpreter pattern [9]. In the same way, for Calculation Manager, looking at the
nonfunctional requirements ”Calculations must be validated and support flexibility to

Fig. 5. Problem: FRAMES platform for scientific calculation
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Fig. 6. First architecture: solution for performing the calculation

changes and extensions” and ”Resources (time and space) utilization must be checked
to ensure acceptable performance levels” and their quality properties, we could think
to introduce two new components, one responsible for the execution of the calculation,
”Programming Environment” (a compiler or interpreter to achieve fault-tolerance,
performance and testability) and the other for the storage and update of results, ”Cal-
culation Results Manager” (a repository pattern to achieve consistency, space admin-
istration and changeability). Moreover, to analyze (understandability issue) and export
(adaptability issue) the results of the calculation, a new ”Visualization and Analy-
sis Tools” component can be introduced offering powerful visualization mechanisms.
Finally, in order to fulfill the properties for the FRAMES configuration, a ”GUI” com-
ponent is introduced, to provide access to the overall functionality (suitability). The user
interface should comply with user interface design standards, to assure attractiveness,
changeability and maturity. Adaptability to export the results will be accomplished by
the visualization & analysis component, through the GUI component. Figure 8 shows
the resulting architecture (http://galileo.lct.jussieu.fr/˜FRAMES/en/).

Make a Calculation

Library
(legacy code)non

programmer
user

programmer
user

FRAMES

-  Suitability: High
-  Adaptability: High
-  Maturity, availability: High
-  Attractiveness, learnability: High
-  Changeability: High

- Time behavior: High
- Availability: High
- Testability: High

- Suitability: High
- Time behavior, resource utilization: High
- Maturity, recoverability, consistency: Medium
- Attractiveness, understandability, operability,
   learneability: High

Write a new Calculation
- Accuracy: High
- Availability: High
- Changeability: None

 - Interoperability: High
 - Availability: High

-Interoperability: High
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Fig. 7. Second architecture: solution to handle interoperability between the maincomponents

5 Related Works

Architectural Design Process

Architectural design [5, 7, 26], on one hand identifies the key strategies for the large-
scale organization of the system under development [17]. These strategies include for
example, the mapping of packages to processors, bus and protocol selection, at a quite
low level of abstraction. On the other hand, at a higher level, a rough structure or archi-
tectural style or pattern, like for example layers, is identified. This style is considered as
a starting point for further refinement or transformation. The first selection or evaluation
can be made on the basis of prioritizing on a scenario the quality characteristics related
to the style and to the architectural patterns constituting the style. This is the approach
taken by Clements et al [7] using the ATAM (Attribute Tradeoff Analysis Method).
Conflicts and tradeoffs are analyzed and outlined but not solved. Architectural refine-
ment or choice of architectural patterns is not considered. Other methods and/or tech-
niques complement ATAM for this purpose. Some of our works extend this approach
[23, 24] by introducing a standard quality model and general architectural metrics. The
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Fig. 8. FRAMES Architecture

evaluation and selection of the architecture is then performed on the basis of the goal
values of the quality attributes computed for some of the quality characteristic. In this
sense, architectures are responses to specific quality requirements [8, 28]. In [32], the
authors propose to extend the ATAM approach for enterprise information systems (EIS)
automating the performance and reliability analysis, on the basis of a specific architec-
tural style. The approach followed by J. Bosch [4] is based on the transformation of the
initial architecture. Each transformation (quality attribute-optimizing solution), gener-
ally improves one or more quality attributes, affecting others negatively. The process
stops when an evaluation of the architecture indicates that the quality goals initially
established for the systems are reached to an acceptable extent. Formal or semiformal
specification of the architecture, using for example an ADL (Architecture Description
Language), is recommended to apply a simulation technique. The Rational Unified Pro-
cess (RUP) [17] is a general architecture centered framework for software development.
Architectural design is considered a crucial early stage for minimizing the risks in-
volved in the overall software project development. Main functionalities relevant to the
architecture should be selected and prioritized in order to propose an initial candidate
architecture. Detailed guidelines on the process are left to users framework customiza-
tion [26]. However, neither P. Krutchen [17], nor J. Bosch [4], even acknowledging its
importance, provide precise guidelines to specify quality characteristics and measures
for the architectural quality attributes [26]. Notice that architectural choices are made
at high abstraction level, at early stages of software development, where an execution
environment is not always present.
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Architectural Patterns

Another important research based on patterns libraries [2, 5, 9, 30], is to provide a pat-
tern description schema to give support to architectural design, improving the descrip-
tions of the existing catalogues. The approach of Lucena et al [2] considers different
views, according to an MVC model, the ADV (Abstract Data View) model. This model
allows creating design patterns descriptions at various levels of granularity, ranging
from program design to software architecture, while maintaining separation of concerns
among the different components. However, even if the approach allows the modeling
of different abstraction levels, nonfunctional requirements issues are not considered
at all, nor their influence on functional requirements. Another approach is the ABAS
(Attribute-Based Architectural Style) [16], now included in ATAM, which is a pattern
description including explicitly the quality characteristics related to the pattern. In [23]
the introduction of the ISO 9126-1 global view of a quality model for the problem
domain, defined before using the ABAS structure, has facilitated and accelerated the
analysis stage, enriching also the ABAS information structure.

From Requirements to Architectures

The problem of identifying nonfunctional requirements and the related quality prop-
erties needed to accomplish the overall systems functionality is in general superficially
treated or even not addressed at all. The main functionality of the problem related with
the architecture has to be identified in order to be implemented and tested early, accord-
ing to [17]. However, it is not clear how to identify or prioritize them. In [24], an archi-
tectural evaluation method that can be used as an ATAM step is proposed, which takes
into account the quality properties related to the problem domain. These are associated
with the problems main functionalities in order to rank them according to the impor-
tance of the initial quality requirements. In [11] a classification of requirements is used
to relate them with the architectural elements (components, connectors and configura-
tions). In our approach we also use a classification, considering early the requirements
of the problem context, constraining a first architectural solution. UML tags are used to
relate the requirements and their quality values to the architectural elements expressed
in UML 2.0. In [11] requirements relevant to the architecture are chosen, refined and
prioritized using consensus or voting techniques. We use a standard quality model to
specify the quality properties for each requirement. Priorities and conflicts are solved on
consensus or vote basis, but these issues are not explicitly treated in this presentation.
The properties of the problems context are considered in [11] as a consequence of the
refinement and related to the C2 architectural style as a last step of the process. Choice
of styles or patterns is not considered. In the present work, the quality model associated
to the problem domain is driven from the problems nonfunctional requirements, which
mainly affect the problems context. The functional requirements are then related with
the corresponding quality properties, which are also expressed as a standard quality
model. A. van Lamsweerde [20] proposes a pattern-based architecture refinement pro-
cess. This process starts from a first architectural description based on the functional



Pattern-Based Architectural Design Driven by Quality Properties 111

requirements. Then, at each step of the refinement process, a pattern is applied to take
into account one nonfunctional goal. L. Chung et al. [6] consider also patterns solving
one nonfunctional requirement. Let us note that none of them defines formally the re-
finement. We have done it using the refinement notion from the B Method applied to the
patterns (the solution part of a pattern refines its problem part). These processes imply
tradeoff analysis that must be carried out using a qualitative reasoning [10] based on
degree of consensus and vote [11].

6 Conclusion

In this paper, we have investigated the development process to construct the FRAMES
platform. This project is of wide importance and its architecture is crucial: it will con-
dition the allocation of the tasks to be done among the different FRAME project par-
ticipants. The idea is to find the architectural patterns that will propose a solution to
take into account all the nonfunctional properties listed above. The contribution of this
process is to take into account very early in the development the quality requirements.
The process has led us to introduce some components whose functionality is to take in
charge some non functional requirement so the architecture defined will satisfy them.
These architectural elements are introduced in the configuration as a response to precise
quality goals. Naturally, the functional requirement must be satisfied by the architecture
and this can be verified by proving that the defined architecture is a refinement of the
initial one. Concerning the Calculation Manager, it appears that this component is quite
complex. The data stored are huge and persistency must be handled. Our process can be
applied to refine precisely this component. Note that the configuration properties have
to be maintained and their goals fulfilled by the FRAMES platform.
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Abstract. The problem of constructing pattern systems is two-fold.
First, the individual patterns should be identified and documented. Sec-
ond, proper methodologies for abstracting the relationships between the
patterns should be used. This paper proposes using concern architec-
ture views for building and documenting pattern systems. It further
shows how an individual concern can be treated with pattern compo-
sition leading to a better alignment between requirements, design, and
code. A novel algorithm for pattern composition is therefore presented.
As an example, we build and document a pattern system for annotating
a specialization interface of the J2EE framework using a prototype tool
environment supporting the approach.

Keywords: Software architecture, pattern systems, concern architecture
views, pattern composition.

1 Introduction

Pattern systems are collections of patterns each of which solves a specific design
issue. While individual patterns are essential tools in software development, the
power behind many of the well-known patterns is unleashed only when applying
them together [1]. However, although individual patterns are easy to understand
and apply given adequate documentation and tools, pattern systems are gener-
ally much more complex.

While patterns solve design problems, the alignment between requirements,
design and code remains a challenge. The main causes of misalignment can be
traced to modularity issues. At the requirements level, there are no notions
for a class or a pattern, which are only introduced at later development stages
when applying object-oriented analysis and design. This causes problems with
scattering and tangling, as a requirement can be addressed by more than one
class each of which also treats other requirements.

The aspect-oriented solution [2] is to base units of modularity on concerns,
cutting across several conventional units such as classes. Ideally, each concern,
i.e. a conceptual matter of interest such as a user requirement, should be modu-
larized into an entity that treats only this particular concern and nothing else,
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thus providing better alignment. Early identification of concerns is profitable to
identifying elements in the solution domain [3], which helps e.g. in establishing
critical trade-offs before the system architecture is derived [4].

In this paper, we introduce a modularization concept for pattern systems,
based on concern architecture views [5]. Instead of using concerns to capture
entities cutting across classes, our concerns cut across the patterns which form
a pattern system. To tackle the complexity resulting from scattering and tan-
gling by providing a one-to-one match between concerns and the corresponding
patterns, we should be able to compose the patterns treating any concern into
a single more complex pattern. Thus, a composition operation for patterns is
needed. Ideally, this operation produces a composite pattern matching what-
ever concern implemented by the pattern system. Instead of operating on design
patterns [6], we use a more general role-based pattern concept which allows
concern-based architecting with different domains and notations, such as J2EE
and UML. In order to validate our concepts, we have built a prototype tool
environment known as MADE [7].

The rest of the paper is organized as follows. In the next section, we discuss
our methodology for documenting pattern structures and introduce concern ar-
chitecture views for abstracting the relationships in pattern systems. Further-
more, we discuss how concerns can be treated as a composition of patterns and we
briefly introduce our toolset. An approach for pattern composition is presented
in Section 3. In Section 4, we apply our methodology to build and document an
annotation for the specialization interface of J2EE framework. Section 5 com-
pares the work to other existing solutions and concepts. Finally, Section 6 draws
conclusions.

2 Pattern Systems and Concern Architecture Views

In this section, we first describe our approach for building and documenting
pattern systems. Then, our notation for describing the internal structure of pat-
terns is presented. We further discuss how the patterns are applied and composed
treating individual concerns. An overview of our toolset ends the section.

2.1 Concern Architecture Views of Pattern Systems

Building pattern systems is a challenging task; a pattern system is more than a
plain list of disjoint patterns [1]. A pattern system should describe three main
issues: the rationale of the system, the way the individual patterns are collabo-
rating, and their effective use and instantiation order. The building process can
be regarded as a two phase activity. Firstly, the individual patterns are identi-
fied (identification phase). Secondly, the patterns are put together in a unified
context reflecting their main characteristics and inter-relationships as well as
defining the way they should be applied (documentation phase).

Figure 1 describes our approach for building and documenting pattern sys-
tems. Firstly, the requirements of the system under development are identified.
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Requirements Concerns

R1 R2

Pattern Instantiation

R1

R2

<<Pattern>>

<<Pattern>>

<<Pattern>>

<<Pattern>>

Fig. 1. Process for building and documenting pattern systems

This is illustrated in the left part of the figure in the example case of R1 and R2.
Secondly, each of the identified requirements is encapsulated by a separate con-
cern, shown in the middle part of the figure. At this phase, possible overlapping
between the concerns are identified. The overall concern structure is referred to
as concern architecture view. In order to address each concern in the concern ar-
chitecture view, proper patterns treating that particular concern are identified.
The relationships between the patterns are made explicit in the sense that re-
lated patterns are grouped under the same concern and their inter-dependencies
are highlighted, indicating the possible instantiation orders.

The right-hand side of the figure shows a possible instantiation of the pattern
system. The same pattern can be instantiated several times. When instantiated,
a pattern has roles bound to a number of concrete elements. Thus, each pattern
ties together the code points implementing part of the concern treated by that
pattern. This leads to better traceability and alignment in the sense that there
is a one-to-one match between concerns and the corresponding patterns. To
achieve this, however, we need to compose the patterns treating any concern
in the concern architecture view into a single more complex pattern. Therefore,
our methodology defines a composition operation for patterns and presents a
pattern composition algorithm.

2.2 Pattern Structure

A pattern is an arrangement of software elements for solving a particular prob-
lem. Depending on the nature of the problem, we may speak of architectural
patterns [1], design patterns [6], etc. In this work, we will give a simple struc-
tural characterization of a generic pattern concept.

A pattern is a structural entity composed of a number of roles. The role con-
cept has been already widely discussed [8, 9]. In our methodology, each role has
a type that corresponds to the kind of concrete element (class, method, field)
bound to the role. Roles may have properties like dependencies on other roles,
cardinality, and constraints. To illustrate these properties, let us consider two
pattern roles classRoleA and classRoleB that stand for class roles. Role class-
RoleA is said to be dependent upon classRoleB if the class bound to classRoleA
depends on the class bound to classRoleB, for example if the first class inherits
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the second. The cardinality of classRoleA specifies the number of classes that
may play the role. An example constraint on classRoleA could be an ”inheri-
tance constraint” meaning that the class bound to classRoleA should extend the
class bound to classRoleB. A more detailed discussion on the role-based pattern
concept, we use in this paper, is presented in [10].

2.3 Applying Patterns

In order to illustrate the relationship between patterns and concern architec-
ture views, an example of a simple J2EE system consisting of two concerns
’Synchronous Communication’ (SC) and ’Asynchronous Communication’ (AC)
is depicted in Figure 2(a). SC and AC represent two possible techniques for
achieving more optimized communication with entity beans over the network.
In case of synchronous communication, a ’Session Facade’ solution using a session
bean should be used whereas in case of asynchronous communication, a ’Mes-
sage Facade’ solution relying on a message-driven bean should be considered
[11]. However, since the application might need both types of communication,
both concerns might interact with the same bean, say an entity bean. This is
represented in the overlapping region in the concerns.

Generally, once the system concerns are identified, proper patterns for solv-
ing these concerns are defined. Figure 2(a), for example, shows three patterns
EntityEJB, SessionEJB, and MessageEJB. Patterns SessionEJB and EntityEJB
solve concern SC and patterns MessageEJB and EntityEJB solve concern AC.
In addition to identifying the patterns, Figure 2(a) documents the concerns
of the pattern system. The figure depicts the relationships and dependencies
between patterns and the concern structure. The purpose of every pattern is
explicitly specified, this is implied by the concern it implements. Moreover, the
dependencies between the patterns shows the partial order of applying the pat-
terns. Therefore, the way the individual patterns should be instantiated becomes
straightforward, as discussed next.

<<Pattern>>

EntityEJB

<<Pattern>>

SessionEJB
<<Pattern>>

MessageEJB

Synchronous
Communication

Asynchronous
Communication

(SC) (AC)

<<Concern>> <<Concern>>

<<model>>

D

<<model>>

DEntity

<<model>>

DEntityMessage

<<model>>

DEntitySession

<<model>>

DEntitySessionMessage

SC AC

SC + AC

Applying SessionEJB Applying MessageEJB

Applying MessageEJB Applying SessionEJB

Applying EntityEJB

(a) Concern architecture view of patterns (b) Resulting models

Fig. 2. Applying patterns
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Figure 2(b) depicts the instantiations of the patterns shown in Figure 2(a)
and documents the effects of applying the patterns in the order implied by the
dependencies depicted in the concern architecture view. The design is started
from scratch, denoted by an empty model D in Figure 2(b). First, pattern Enti-
tyEJB is instantiated by defining the concrete classes, objects, and methods etc.
needed and binding those to the pattern roles. Obviously, because we started
from scratch, there are no predefined elements to bind to the pattern roles.
The model obtained by instantiating the pattern EntityEJB specializes D and
is denoted by DEntity.

Let us then consider the branch on the left-hand side of Figure 2(b). Pattern
SessionEJB is instantiated by binding some of the units defined by DEntity to
SessionEJB’s roles. Additionally, new elements might need to be defined to be
bound to the remaining unbound roles. This way a new model DEntitySession, a
specialization of DEntity, is created. Similarly, pattern MessageEJB is instanti-
ated after SessionEJB, creating DEntitySessionMessage treating both concerns.
However, the instances of SessionEJB and MessageEJB are independent. The
independence implies that the application order of the patterns could have been
the other way around. This option is illustrated by the branch on the right-hand
side of Figure 2(b).

The concern architecture view described above helps us to separate important
concerns related to the problem which the pattern system solves. On the one
hand, if the solution corresponding to concern AC needs to be examined in
isolation, the corresponding model DEntityMessage can be easily obtained and
pattern SessionEJB is discarded. On the other hand, if SC needs to be changed
and the changes occur only in SessionEJB, we can replace SessionEJB with
some other pattern, for instance. This enables us to solve the problem without
touching MessageEJB. However, if the changes occur in EntityEJB, the concern
architecture view tells us to be careful also with MessageEJB.

2.4 Composing Patterns Treating Concerns

Based on the discussion above, our methodology defines a one-to-one mapping
between concerns and patterns. In general, however, a concern is defined by
multiple patterns. Thus, the requirement encapsulated in the concern becomes
scattered over the different patterns. The solution to this problem is to treat
each concern in the concern architecture view as one large pattern instead of
a collection of small patterns. A pattern composition operation is needed that
forms a composite pattern out of other individual patterns.

Assuming a role-based pattern specification, we need to define proper abstrac-
tions and techniques for pattern composition. Our approach, however, is not to
statically create a new composite pattern and add it to the pattern system. In-
stead, every concern in the concern architecture view defines a composition and
treats the concern as a single pattern leaving it possible to identify the indi-
vidual constituent patterns. The advantage of this is that pattern composition
becomes more dynamic and flexible in the sense that new combinations of the
patterns can be easily created (and later removed) without the need of changing
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the pattern catalogue. In addition, this can be useful in tool development, as-
suming that we recover the constituent patterns. For instance, we might wish to
expose in the solution domain the effects of different patterns in the generated
instance models. Naturally, pattern composition can be performed recursively,
i.e. composite pattern can be further composed.

2.5 MADE Toolset

In order to validate our methodology, we have developed a concern-based pattern-
driven tool environment known as MADE [7]. MADE patterns are role-based
structures supporting different formalisms such as Java, UML and XML no-
tations. The MADE platform itself is the result of integrating three differ-
ent tools: JavaFrames [10], xUMLi [12] and Rational Rose. JavaFrames is a
pattern-oriented development environment built on top of Eclipse, whose soft-
ware development facilities are also used extensively. Rational Rose is used as
UML editor. The third component, xUMLi, is a tool-independent platform for
processing UML models and is used for integrating JavaFrames and Rational
Rose.

Figure 3 shows an overview of the MADE environment. Rational Rose repre-
sents the upper part of the environment. As an example of an integrated editor,
implementation code is displayed in a Java editor (middle view). The left view
represents the part of the environment where concerns and the patterns they
treat are specified and applied. In this case, the view displays the concerns and

Bindings

Design Model

Java Code

Concerns / Patterns

Tasks

Fig. 3. MADE environment
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the patterns identified in 2(a). When a pattern is selected, MADE transforms the
pattern into a task list. This is done by generating a task for each unbound role
that can be bound in the current situation, taking into account the dependencies
and cardinalities of roles.

Tasks are displayed in the Task view. Typically, by performing a task, the user
generates the default element to be bound to the role, as specified by the pattern.
The user, however, might bind the role to an existing element. This is the case,
for instance, when the role is overlapping with another role which has already
been bound in a different pattern treating the same concern. It is essential that
both roles are bound to the same element. Otherwise, the two patterns would
combine in a wrong way leading to an undesirable implementation of the concern.

The bindings between roles and concrete elements are recorded by the tool
and are shown in the bindings view of Figure 3. In this way, the environment
preserves the information how concerns are addressed in the model. In Section
4, we discuss various features of the MADE tool leading to a better alignment
in a J2EE pattern system.

3 Pattern Composition

In this section, we show how pattern composition can be defined and applied
using the role-based pattern concept. We also present a novel algorithm for role-
based pattern composition. We finally show how composition is achieved in the
MADE toolset.

3.1 Definition

First of all, the composition of two patterns corresponding to a concern re-
sults in a pattern. The composition operator we define is a binary operator that
takes two arbitrary patterns and returns a possibly larger one. Given two ar-
bitrary patterns X and Y, if roleX and roleY are overlapping roles in patterns
X and Y respectively, then the composition of X and Y can be expressed as
Z = +(X,Y, {(roleX, roleY)}). Z is said to be the composite pattern of X and
Y. The composition formula specifies the two patterns to be composed followed
by a set of tuples defining the overlapping roles. In the composite pattern Z, the
role representing the overlapping of roleX and roleY, say roleZ, is said to be the
unified role of roleX and roleY.

Given the above definition, we can define the following composition properties:

– Two roles roleX and roleY can overlap only if they are of the same role type.
– Two roles roleX and roleY can overlap only if the parent roles of roleX and

roleY (the roles where roleX and roleY are contained), if any, are overlapping
too.

– If roleX and roleY are two overlapping roles, then the cardinality of the
unified role roleZ is reduced to the more restricted cardinality of the two
roles.
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– If roleZ is the unified role of roleX and roleY, then roleZ has at most the
total number of dependencies (both outgoing and incoming) of roleX and
roleY. If roleX has n dependencies and roleY has m dependencies, then roleZ
has at most n+m dependencies and at least max(n, m) dependencies. This
is because some of the dependencies (dependencies having the same target
role) of roleX and roleY can be the same.

– Similarly, roleZ is associated with the constraints of roleX and roleY. If roleX
has n constraints and roleY has m constraints, then roleZ has at most n+m
constraints and at least max(n, m) constraints. The constraints having the
same type and value are treated to be the same.

– Patterns X and Y are said to be disjoint if they have no overlapping roles. X
and Y are said to be fully composed if there is a one-to-one mapping between
all roles of X and Y.

In order to present our composition methodology, we treat a role-based pat-
tern as a directed graph: nodes denote roles whereas edges denote dependencies.
When composing two arbitrary patterns, the two directed graphs (each repre-
senting one pattern) are not statically composed. Instead, we compose them on
the fly in order not to loose the identity of the constituent patterns.

3.2 Towards Tool Support for Pattern Composition

In the following, we present a concrete algorithm realizing the composition prop-
erties discussed earlier. The algorithm has been implemented in the MADE
toolset. Figure 4(a) shows three graphs representing patterns P, Q, and S. The
patterns, each defining its own role structure, treat the same concern X. For
this, the concern has references denoted by Rp for pattern p, Rq for pattern Q,
and Rs for pattern S. In addition, concern X enforces a set of composition rules.
In this case, the composition rules say that roleA in pattern P overlaps with
roleD in pattern Q. This is denoted by the expression Rp.RoleA = Rq.RoleD.
We refer to such a diagram as pattern composition graph. The reason behind
this particular representation is that our target, as we have mentioned in the
previous section, is not to statically create a new composite pattern.

Rp Rq

{Rp.RoleA = Rq.RoleD}

RoleB

RoleC

Pattern P

RoleA

Pattern Q

RoleD

RoleEConcern X involving
P, Q and S

RoleG

Pattern S

RoleF

RoleH

Rs

Composition rules

Rp Rq

{Rp.RoleA = Rq.RoleD}

Concern X involving
P and Q

Pattern P

RoleA +

Pattern Q

RoleD +

(a) Original (b) Partial

Fig. 4. Pattern composition graph
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Figure 4(b) shows a partial version of Figure 4(a). The graph shows the
patterns and the roles that are involved in the composition operation. In order
to make the case more interesting, we assume that there can be multiple instances
of roles roleA and roleD. This is marked by the ’+’ sign attached to the role.
In this case, when creating an instance for the two overlapping roles, say a
first instance, the algorithm creates a separate binding for each role. Then, it
associates the two bindings forcing them to point to the same instance. However,
since the algorithm is executed stepwise, the binding in one pattern should not
be allowed if the other pattern does not provide the corresponding binding.
This situation is described in more details in the next discussion. In the case
where the cardinality of either roles is ’1’, there is exactly one instantiation. The
composition, therefore, becomes trivial.

Figure 5 shows four steps for applying concern X in Figure 4(b). X1, P1, and
Q1 are respectively the instances of concern X and patterns P and Q. In step 1,
the algorithm attempts to create an instance of roleA (denoted by a striped role
A1 in P1). However, this operation cannot be completed since the corresponding
node in Q1 has not been created. The state of the node A1 is said to be ’not
doable’. This is marked in Figure 5 by the label on top of the striped node. In
step 2, the algorithm creates the node D1. Initially, the state of D1 is ’not doable’
but because a ’not doable’ instance of roleA exists, the state of A1 and D1 is
changed to ’doable’ and the association between A1 and D1 is performed. This
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Fig. 5. Instantiation steps
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means that the task of creating an instance for roles roleA and roleD (which is
the same instance for both roles) can be done. The association is marked by a
dashed line linking the two striped nodes. Striped nodes without labels indicate
that the instantiation of the role is ’doable’. Because the cardinality of roleA
and roleD is ’+’, other instances of roleA and roleD can be created. In step 2,
for example, a new node A2 is prepared for being instantiated. In step 3, the
corresponding node D2 is created and linked to A2. As a result, A2 changes state
from ’not doable’ to ’doable’. The instantiation order is marked on top of the
node. A2, for example, has instantiation order 2 meaning that it is the second
instantiation of roleA. In step 4, a concrete element for the tuple (A1, D1) has
been created. This is marked by the linked dark nodes A1 and D1. In addition,
a third node A3 has been created and is prepared for a possible instantiation.

3.3 Proof of Correctness

In brief, when composing patterns P and Q, each instance of roleA must be iden-
tical to its corresponding instance of roleD. The composition algorithm should
not yield to situations where instances of roleA and roleD have wrong correspon-
dences. In other words, the instances of roleA and roleD should not be linked in
an erroneous mode. In order to prove the correctness of the above pattern com-
position algorithm, we have to prove two important conditions. The first is that,
given a fixed number of instantiations, the algorithm should eventually termi-
nate. The second condition ensures partial correctness. The partial correctness
is expressed in terms of a set of invariants that should hold before and after the
execution of every iteration in the algorithm. A complete proof of correctness
along with a discussion are presented in [13].

3.4 Composition in MADE

Figure 6 shows how patterns are organized and applied in the MADE tool envi-
ronment. Patterns are organized using architecture nodes. There are three types
of architecture nodes: catalogue, concern, and deployment. Individual patterns
are created under the Catalogue root node. At this stage, each pattern is re-
garded as a separate entity treating a specific concern in a software system and
completely unrelated to other patterns. For example, there are two patterns
named P and Q as discussed in Figure 4(b). The concerns of a software system
are represented using concern nodes and are hierarchically represented under
the Concerns root node, as shown in Figure 6. The figure, for example, depicts
a concern named X. This concern is treated by the composition of two patterns:
P and Q. The concern defines rules how the two patterns are composed. The
composition rules are textually specified using pairs of pattern roles. In this case,
the role RoleA in pattern P overlaps with the role RoleD in pattern Q.

Application development is carried out by considering those concerns relevant
to the application needs. Using MADE, the developer selects which concern
she wants to realize. The environment then takes care of which patterns to
instantiate. The Deployment root node in Figure 6 shows the situation where
concern X is considered. During the instantiation process, when a developer binds
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Application node

Concern node

Catalogue node

Fig. 6. Composing patterns in MADE

a role that has an overlapping counterpart, the overlapping role is automatically
bound to the same concrete element.

4 Example: J2EE

In this section, we apply our approach to build and document a pattern system
for annotating a part of the J2EE framework. We first identify the requirements,
the concerns encapsulating these requirements, and the patterns treating these
particular concerns. We further show an example of a J2EE pattern composition
and finally discuss the benefits of using our methodology.

4.1 Building a J2EE Pattern System

In order to illustrate our concepts, we have applied our approach to build a
pattern system for developing J2EE applications. For simplicity, however, we
do not discuss all the patterns. An example requirement for J2EE development
environments is the ability to generate bean-managed persistence entity beans.
In addition, such environments should be able to optimize the communication
between the container and the bean, decouple client code from the business logic
implementing the bean, and enable support for multiple datasources. We treat
each of these requirements as a separate concern. Figure 7 shows the concern
architecture view corresponding to the above requirements. The view consists of
the following concerns:

– BMP Entity Bean Concern: This concerns abstracts the creation of bean-
managed persistence entity beans. It consists of two overlapping sub-concerns:
• Optimization Concern: Optimizes the communication between the bean

and the container.
• Database Transparency Concern: Separates the data layer from business

logic layer.
– Decoupling Client from Business Concern: Abstracts the non-functional re-

quirement of separating client code from business-logic code.
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Fig. 7. J2EE concern architecture view

For implementing the above concerns, the following patterns are identified.
Figure 7 shows the relationships between the patterns:

– EntityEJB Pattern: Defines the architectural skeleton of the bean-managed-
persistence entity bean.

– PrimaryKey Pattern: Encapsulates the use of a primary key class for every
generated entity bean.

– DataAccessObject Pattern: Makes the enterprise components transparent to
the actual persistent store.

– ValueObject Pattern: Optimizes the number of remote calls over the network.
– SessionFacade Pattern: Interface that reduces the number of business objects

exposed to the client over the network and encapsulates the complexity of
their interaction.

– BusinessDelegate Pattern: Loose coupling between clients at the presentation
tier and the services implemented in the enterprise beans.

4.2 Composing J2EE Patterns

The left part of Figure 7 shows all the patterns forming the pattern system
and the concerns abstracting their purpose and relationships. The right part
of the figure shows the concern architecture view after composing these pat-
terns. Patterns EntityEJB, ValueObject, DataAccessObject, and PrimaryKey
are composed into a larger pattern. In addition, patterns SessionFacade and
BusinessDelegate are similarly combined into a single pattern. Conceptually,
the first composite pattern, for example, represents a better solution for imple-
menting entity beans. Therefore, the goal of the composition, in this case, is
to provide the user with a single pattern managing the construction of entity
beans.
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Fig. 8. Composition graph of EntityEJB and DataAccessObject

In order to show how the above composition is achieved, we consider the
case of the ’Database Transparency’ concern shown in Figure 7. The concern is
composed of two patterns EntityEJB and DataAccessObject, which have over-
lapping roles: Bean and DAO. Role Bean defines the methods in the bean imple-
mentation class whereas role DAO specifies concrete database implementation
for these methods. Bean role is logically part of the EntityEJB pattern whereas
DAO role is logically part of the DataAccessObject pattern. When generating a
new entity bean, the pattern system user should instantiate both patterns and
the results of the first are used for the second. Thus, the user of the pattern
system wants to treat the two pattern instantiations as one instantiation. The
solution is to compose the two patterns and to treat the ’Database Connectiv-
ity’ concern as a composite pattern of EntityEJB and DataAccessObject. The
composition rules of the two patterns discussed above are shown in Figure 8.
Roles Bean and DAO are a part of both patterns and are treated as overlapping
roles.

An example MADE annotation of the above J2EE pattern system is shown
in the Architecture view of Figure 9. The pattern system has been used to
develop a simple J2EE application generating both UML class diagrams and
Java code. The application is a web-based to-do list where a list of users and
their associated tasks are accessed in a relational database. The BMP Entity
Bean concern, for example, has been considered to implement an entity bean
for representing users. Using MADE, it is possible to align concerns with the
patterns they treat and the model elements they implement. Furthermore, it is
possible to trace the model elements back to the patterns and concerns they
address.

The above situation is illustrated in Figure 9. Database Transparency con-
cern, addressed by patterns EntityEJB and DataAccessObject, is highlighted in
the generated models. In the Rose model, where all the UML model elements
addressing the user entity bean are shown, the highlighted model elements are
displayed in darker color. Furthermore, the Concern view at the top left of the
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Fig. 9. Alignment in MADE

figure shows Java elements that correspond to the highlighted concern. The Java
elements can further be displayed in the Java editor.

4.3 Evaluation

Buschmann et al. specified a number of requirements that pattern systems in
general should meet [1]. In what follows, we show how our methodology helps in
realizing these requirements.

– Providing a sufficient base of patterns: The concerns in the concern archi-
tecture view, such as the one shown in Figure 7, are used to build the proper
patterns, each addressing a specific problem. As a result, a basic pattern cat-
alogue is built. The patterns are then composed and specified in the MADE
tool.

– Describing all the patterns uniformly : The purpose of each pattern in the
pattern system is highlighted in the concern architecture view. Moreover,
concern architecture views help comparing the patterns to each other. In
the MADE tool, all patterns are specified using the same properties.

– Exposing the various relationships between the patterns: The concern archi-
tecture view depicts various relationships among the patterns such as the
inter-pattern dependencies and their relationship to the different concerns.
In MADE, these are used to impose a certain pattern instantiation order.

– Organizing the constituent patterns: The patterns annotating the J2EE frame-
work specialization interface, for example, are organized into a number of
concerns. The collaborations of the patterns are also highlighted. Using the
MADE tool, concern nodes are used to compose related patterns.

– Supporting the construction of software systems: The various relationships
depicted in the concern architecture view entail the partial order of applying
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the patterns. In addition, the MADE environment reveals which patterns to
instantiate in order to realize a certain concern.

– Support for system evolution: Our methodology realizes this requirement in
different ways. Firstly, new patterns can be added to the pattern system
by augmenting the existing concerns with new patterns or by considering
completely new concerns. Secondly, our technique for pattern composition
can be used to build new patterns from existing ones. Thirdly, concern ar-
chitecture views tell which concerns are affected when a pattern is removed
from or added to the pattern system. In the MADE tool, new patterns can
be added while others can be deleted.

5 Related Work

In our methodology, a pattern corresponds to a specific aspect in the pattern
system. The relationship between patterns and aspects have been identified in
earlier works. An AspectJ implementation of design patterns described in [14]
shows modularity improvements in 17 of the 23 GOF patterns.

The idea of structuring software artifacts based on concerns they treat has
also been used in the Hyperspace approach [15, 16]. Hyperspace is a conceptual
model for advanced separation of concerns that must be instantiated for some
language or notation before applicable. A system is described using hyperslices
which can be seen to correspond to our patterns. Hyperslices can be composed
recursively to hypermodules which contain composition rules for the compo-
nent slices. In principle, the Hyperspace model could be instantiated for pattern
systems. However, in contrast to the concern architecture view utilized in our
approach, Hyperspace does not provide a direct support for an architectural view
where the relationships between different patterns would be given explicitly.

The most related UML-based approach is Theme [17, 18], which can be seen
as an instantiation of the Hyperspace approach. Theme is based on ideas of
Subject-Oriented Design [19] combined recently with a support for require-
ments capturing and management. Subject-Oriented Design facilitates finding
and managing the design subjects (concerns) of the system. Moreover, so-called
Composition Patterns define rules for composing (possibly overlapping) design
subjects. Compared to Theme, we enforce architectural relationship between
concerns and the role-based patterns constituting them, and have implemented
our composition algorithm for patterns in the MADE toolset.

In [20], an approach for using role diagrams to document object collabora-
tion based patterns is presented. The approach defines the notion of composite
pattern to be a pattern described as a composition of other patterns and sug-
gests a technique to cope with the complexity of the composition. However, the
methodology does not define a proper scope in which the pattern composition
rules should be defined. In our approach, concerns define the scope of the pattern
composition. Every time a concern is instantiated, the composition rules defined
in the concern are used in the role binding process. Moreover, our work defines
an algorithm for pattern composition. The algorithm ensures that the binding
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process does not yield to instantiation problems and can be easily implemented
by role-based pattern tools.

Composition has been regarded as an essential operation in various fields of
software engineering. Batory et al. treat models as a series of layered refinements
[21]. Individual features (reflecting different concerns) are composed together in
a step-wise refinement fashion to form complex models. Models can be programs
or other non-code representations. In order to support their concepts, the au-
thors have developed a toolset for feature composition, called AHEAD. The
toolset provides similar functions to those of the MADE tool. The MADE envi-
ronment, however, solves two problems not otherwise addressed in [21]: Tracing
concerns in the generated models and checking the validity of models against
the architectural rules.

6 Conclusions

A pattern system is made of a number of patterns that interact with each other.
Unfortunately, these patterns are tangled in the final design and their docu-
mentation becomes complicated. In this paper, we have proposed using concern
architecture views for building and documenting pattern systems. Each con-
cern in the concern architecture view captures a specific area of interest in the
problem being solved by the pattern system. Concerns are used to identify the
constituent patterns. Concern architecture views can then be used to abstract
the relationships between the individual patterns and the way they should be in-
stantiated. As a single concern can be scattered over multiple patterns, we treat
concerns as a composition of patterns. For this, we have proposed an algorithm
for pattern composition.

We have applied our approach to build and document a pattern system for
annotating a part of the J2EE framework. Our approach allows individual pat-
terns to be easily identified and the relationships between the patterns to be
clearly highlighted. Furthermore, the presented methodology enables the key
requirements of pattern systems to be conveniently realized. In [7], we have pre-
sented a tool environment supporting our approach and built a concern-based
development environment for Symbian applications. In order to be able to com-
bine patterns treating the same concern, we have extended the tool to support
pattern composition.
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Abstract. Behavioral analysis of middleware-based applications typi-
cally requires the analysis of the middleware and the application, in a
monolithic way. In terms of model-checking, this is a complex task and
may result in the well known “state-explosion” problem. These consider-
ations led us to investigate a compositional verification approach which
decomposes the system in accordance with its Software Architecture.
The architectural decomposability theorem we defined in previous work
decomposes the system into three logical layer: (i) application compo-

nents, (ii) proxies and, (iii) middleware. This logical separation allows
for reducing the global system validation to the verification of local be-
haviors.

In this paper, we engineer the architectural decomposability theorem
to the analysis of middleware-based applications by automatically gener-
ating the proxies needed by the components in order to properly interact
with each other via the middleware. In particular, following the Model

Driven Architecture approach and by making use of the Abstract State

Machine formalism, we describe a set of transformation rules that allow
for deriving correct proxies for using CORBA. By means of the proposed
transformations, the correctness of the proxy behavioral models is guar-
anteed without the need to validate them with respect to the assumptions
posed by the theorem.

1 Introduction

Due to the widespread diffusion of network-based applications, middleware tech-
nologies [1] increased in significance. They cover a wide range of software systems,
including distributed objects and components, message-oriented communication,
and mobile application support. Thus, methodologies and tools are in need to
analyze and verify middleware-based applications since the early stages of the
software life-cycle.

Recently model checking has been proposed to verify an entire system [2, 3, 4],
i.e. both the middleware and the application, in a monolithic way. The approach
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turned out to have two major drawbacks: (i) it may result in the well known
“state-explosion” problem and, (ii) the middleware needs to be verified every
time. These considerations naturally have led us to investigate the compositional

verification approach [5, 6, 7] in order to validate the middleware once and for
all and reusing the results of the validation as base for verifying the applications
built on top of such middleware. The key idea of compositional verification is to
decompose the system specification into properties that describe the behavior of
its subsystems. In general, checking local properties over subsystems does not
imply the correctness of the entire system. The problem is due to the existence
of mutual dependencies among components.

In [8] we presented the architectural decomposability theorem that allows the
decomposition of software applications built on top of a middleware by exploiting
the structure imposed on the system by the Software Architecture (SA) [9]. This
allows the verification of middleware-based applications since the early phases
of the software life-cycle. In fact, once the application specification (behavioral
and structural) has been defined, the designer might want to validate it with
respect to some desired behaviors. Next, the communication facilities are pro-
vided to the application by means of a middleware infrastructure. In essence,
the high level SA is refined in order to realize the desired communication policy
by means of additional components. These are the proxy components1 towards
the middleware that allow the application to transparently access the services
offered by the middleware. The decision of using services offered by a middleware
may invalidate all behaviors stated at the previous phases. In fact, middlewares
usually have a well defined business-logic that could not be suitable for the appli-
cation purposes. Consequently, the system has to be re-verified by considering
also a full-featured model of the middleware. In such a context, the architec-

tural decomposability theorem helps the designer to choose the right middleware
by (i) freeing him from the middleware model implementation and, (ii) hiding
low-level details. Actually, the designer must have a deep knowledge about the
middleware and its internal mechanisms needed to identify and properly model
the Proxy entities.

In this paper, we present techniques and tools to engineer the architecture
decomposability theorem. In particular, we propose an approach that, following
the Model Driven Architecture [10] (MDA) methodology, automatically gener-
ates the proxy models that correctly use the middleware. MDA separates the
application logic from the underlying platform technology and represents this
logic with precise semantic platform independent models (PIMs), i.e. abstract
descriptions that do not refer to the underling technologies. The proposed ap-
proach starts from the system SA and the components behaviors, given as PIMs.
Then by applying several transformation rules, formally described by means of
Abstract State Machines (ASMs) [11], the models of proxies are obtained. By
means of the proposed transformations, the correctness of such models, w.r.t.

1 While in [8] we referred to these components as interfaces, here we make use of the
term proxies in order to distinguish them from the well defined CORBA Interfaces.
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the use of the middleware, is guaranteed without the need of validation of the
hypothesis required by the theorem. In order to illustrate the approach, we use
an ATM distributed system implemented on top of the CORBA middleware [12],
as running example throughout the entire paper. Due to space limits, we only
give a fragment of the system.

The paper is organized as follows. Section 2 presents some preliminary con-
cepts, Section 3 briefly introduces the architectural decomposability theorem and
applies the overall approach to the running example. Finally, Section 4 draws
some conclusions and discusses future work.

2 Background

2.1 Model Driven Architecture

The Model-Driven Architecture [10] (MDA) approach pursues the conceptual
separation between the abstract specification of a system and the specification
of its implementation w.r.t. a specific technology. Models play a central role in
MDA and they can be distinguished in those describing the system in a platform-
independent manner (PIMs – Platform Independent Models) and in others de-
scribing the same system but bound to a specific target platform (PSMs – Plat-
form Specific Models). Mapping a description at a higher level of abstraction to
a lower one is performed by transforming models. The transformation process
encodes the refinement knowledge which used to make the target models con-
crete and aware of the technological assets being used. At the moment, there is
no standard language for defining transformation among models, although OMG
issued a Meta-Object Facilities (MOF) Query/View/Transformation (QVT) re-
quest for proposal [13] which is expected to provide a standard mechanism for
transforming models.

2.2 Abstract State Machines

The ability to simulate arbitrary algorithms on their natural levels of abstrac-
tion, without implementing them, makes Abstract State Machines [14] (ASMs)
appropriate for high-level system design and analysis (see [15]) and a candidate
for specifying model transformation. Generating models in a formal setting not
only facilitates traceability, reuse and evolution of software systems, but also
represents a basis to reason about the properties of the generation process as
encoded into unambiguous transformation descriptions.

Due to space limitation, we briefly introduce ASMs here and we refer to
[14, 11] for a detailed description. ASMs are intended to bridge the gap between
specification and computation by providing more versatile Turing-complete ma-
chines. They form a variant of first-order logic with equality, where the funda-
mental concept is that functions are defined over a set U and can be changed
point-wise. The set U referred to as the superuniverse in ASM parlance, always
contains the distinct elements true, false, and undef. Apart from these, U can
contain numbers, strings, and possibly anything, depending on the application
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domain. Being slightly more formal, we define the state λ of a system as a map-
ping from a signature Σ (which is a collection of function symbols) to actual
functions. We write fλ for denoting the function which interprets the symbol f

in the state λ. Subsets of U , called universes, are modeled by unary functions
from U to true, false. Such a function returns true for all elements belonging to
the universe, and false otherwise. A function f from a universe U to a universe
V is a unary operation on the superuniverse such that for all a ∈ U , f(a) ∈ V

and f(a) = undef otherwise. The universe Boolean consists of true and false.
A basic ASM transition rule is of the form

f(t1, . . . , tn) := t0

where f(t1, . . . , tn) and t0 are closed terms (i.e. terms containing no free vari-
ables) in the signature Σ. The semantics of such a rule is to evaluate all the
terms in the given state, and update the function corresponding to f at the
value of the tuple resulting out of evaluating (t1, . . . , tn) to the value obtained
by evaluating t0. Rules are composed in a parallel fashion, so the corresponding
updates are all executed at once. Of course not all functions can be updated,
for instance the basic arithmetic operations (such as addition) are typically not
redefinable.

3 Compositional Verification of Middleware-Based SA

In this section, we illustrate compositional verification by means of an exam-
ple which is going to be used throughoutly the paper. Given an architectural
description of the system and a set of properties which presents the desired
behaviors, specified by means of message sequence charts [16] (MSC), the archi-
tectural decomposability theorem states that the verification of the entire system
is guaranteed provided that the components satisfy the hypothesis2.

Let us consider the high-level SA description (depicted in Fig. 1.a) of an
ATM system that allows users to: (i) buy a refill card for its mobile phone and,
(ii) check its bank account. The system has been designed as the composition of
a set of distributed components whose behavior is described as state machines
(an example is shown in Fig. 2): a User, the Phone Company, the Bank Account

and a Transaction Manager that manages all the interactions between the user
and the other entities. In Fig. 1.b a property of the ATM system behavior,
represented as an MSC (in the remainder referred to as Z), is satisfied by the
high level SA. The property states that every time a refill card is bought, the
corresponding credit is withdrawn from the user’s bank account.

As already mentioned, the development of distributed applications often re-
lies on a middleware infrastructure which provides the required communication
services. In architectural terms this means that the high-level SA will be refined

2 The interested reader can find more details about the theorem on [8], although it is
not required to follow the approach we present.
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in a more detailed SA that presents additional components, i.e. the middleware
and the proxies. In Fig. 3.a, the CORBA middleware communicates through
the proxies with the application components User, Transaction Manager, Phone

company and Bank Account. In this context, the designer’s challenge is to under-
stand if Z is still valid on the refined architecture. In fact, due to the introduction
of CORBA that offers services to the application, the property Z may be falsified
by the new SA.

In Fig. 3.b and Fig. 4 the architectural decomposability theorem has been
instantiated on the ATM system and Z is split in a set of local properties that
the subparts of the system must satisfy. In this new contest a relabelling func-
tion is applied to the components in order to let them to communicate through
the middleware (for example the components in Fig. 2 have been relabelled as
shown in Fig. 5). The properties that have to be proved are graphically denoted
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in the upper left corner of each component. For verification purposes, CORBA
is substituted with a set of properties P that characterizes its behavior. The
properties we consider for CORBA are reported in the Appendix (they are writ-
ten in Linear Temporal Logic (LTL) [17]). In the following we define the set of
properties V , defined in LTL, that assess the correct usage of CORBA.

V Properties

1. ¤(¬get IOR(ID) ∪ reg IOR(ID))
In order to retrieve the object reference, the object has to be already regis-
tered.
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2. ¤(¬ < METHOD > ∪ get IOR(ID))
In order to use the object methods 3 the object reference must be obtained.
It is obtained by asking for it (get IOR(ID)).

The approach described in [8] assumes that the proxies models are explicitly
given and then verified with respect to the set V .

In the following we show how these two steps can be collapsed by only assum-
ing the component models and the constraints V through a set of transformation
rules which allow, by construction, the generation of correct proxies.

3.1 Proxy Generation

The model transformations presented in this section are specified through ASMs,
a mathematical setting which already showed a certain effectiveness in sys-
tem analysis and verification (see [11]). The transformation process (depicted
in Fig. 6) starts with an encoding step which takes the model of a component
and returns an algebra encoding it. The ASM rules are applied on the source
algebra to generate another algebra which contains an algebraic representation
of the state machine of the proxy. For instance, if we consider the TM compo-
nent in the ATM application described in Sect. 3, in order to let it communicate
with the other components via CORBA it requires a proxy component which
is obtained by transforming the component model itself. The state machine of
the transaction manager and of the associated proxy are illustrated in Fig. 9,
respectively.

3 In the formula, <METHOD> is just a placeholder that must be replaced by an
actual method signature
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Fig. 7. The algebra A(M) of the TM model

From State Machines to Algebras. A state machine M defines an algebra
A(M) whose sets A(M)State contains the representatives of all states in the
model M , while A(M)MessageInstance contains individuals corresponding to the
transitions in M . The parameters used to invoke methods are represented in
A(M)Parameter as tuples of parameter identifiers of the form < p1, p2, . . . , pn >.
By applying iteratively the rules we obtain algebras which encode the target
models. During the transitions the elements representing the source model are
not deleted, thus the target algebra contains both the source and target model.
This causes certain domains to be subsorted in order to distinguish among source
and target elements of the same kind.

A number of functions are given to represent properly the information given
by the models and some of them are reported in Table 1. As an example, Fig. 7
depicts the algebra obtained from the fragment of the state machine model
depicted in Fig. 5.b.

Transformation Rules. The transformations are given in XASM, an ASM
implementation whose compiler is freely available [18]. Due to space limitation
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Table 1. Some functions

Function symbol Description

source : MessageInstance → State given an element in MessageInstance

returns the source state of the message

target : MessageInstance → State given an element in MessageInstance

returns the target state of the message

sender : MessageInstance → Component given an element in MessageInstance

returns the component that sends
the message

receiver : MessageInstance → Component given an element in MessageInstance

returns the component that receives
the message

instanceOf : MessageInstance → Message given an element in MessageInstance

returns the message of which the
message is an instance

params : MessageInstance → Parameters∗ given an element in Message

returns the parameters used in the
message

only the most important rules are reported here. The transformation process
consists of two macro steps: the first one initializes the target algebra, while the
second iteratively extends it by transforming the method instances of the source
algebra. The transformation rules are designed in order to preserve the mes-
sage sequences given in the source model, assuming that the communication via
CORBA is synchronous. This is accomplished by means of an auxiliary function
border which keeps track of the states whose outgoing messages still have to be
transformed. At each iteration a state in the border is taken into account and
all its outgoing messages are transformed. Additionally, a state is added in the
border if it is a non-visited target state of the message under transformation.
The rules which implement such transformation strategy are the following:

– Main: it is the main rule and triggers the other ones, in particular it defines
all universes and functions, and has some control over the states which has
to be visited according to the information held by the border function as
follows

asm MAIN is
universes – Universe declarations section
...

function – Function declarations section
...

function initial
init

– Initializations describing the source model
...
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endinit

if initial=undef
then

executed:=REGS
executed:=RESOLVE
border(sourceInitState):=true
initial:=true

endif
choose x in CompState : border(x)=true

executed:=VISIT(x)
endchoose

endasm

– Regs: it generates the registration CORBA dependent of the component
whose proxy is being generated, by extending the target algebra with a reg
message having as parameter the name of the component which have to be
registered as follows

asm REGS -> Bool
used as function in MAIN
is
if (exists y in CompReceive: type(y)=INVOCATION)
then

extend ProxyState with a,b and ProxySend with m
source(m):=a
target(m):=b
instanceOf(m):=getMessage(”reg IOR”)
params(m):=[getPar(name(component)),getPar(ior(component))]
sender(m):=proxy
receiver(m):=middleware
...

endextend
...

endif
return true

endasm

– Resolve: it generates the resolutions CORBA dependent in order to retrieve
the identifier of all components with whom to communicate as follows

asm RESOLVE -> Bool
used as function in MAIN
is
choose x inCompSend:(type(x)=INVOCATION)and(considered(receiver(x))=undef)
extend ProxySend with m and ProxyReceive with m2 andProxyState with b,c,d

if ( anchorInitialState!=undef)
then
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source(m):=anchorInitialState
else extend ProxyState with a

source(m):=a
endextend

endif
target(m):=b
instanceOf(m):=getMessage(”get IOR”)
params(m):=[getPar(name(receiver(x)))]
type(m):=INVOCATION
sender(m):=proxy
receiver(m):=middleware
source(m2):=b
target(m2):=c
instanceOf(m2):=getMessage(”result”)
params(m2):=[getPar(ior(receiver(x)))]
type(m2):=RETURN
sender(m2):=middleware
receiver(m2):=proxy
extend ProxyMessageInstance with m3

instanceOf(m3):=getMessage(”condition”)
...

endextend
endextend
...

endchoose
return true

endasm

– Visit: given a state of the source model it transforms all outgoing messages
and manages the function border explained above. An extract of the rule is
the following:

asm VISIT(sourceCurrState:CompState) -> Bool
used as function in MAIN
is
function – Function declarations section
...

do forall x in CompMessageInstance
if (type(x)=INVOCATION) and (source(x)=sourceCurrState)
then

if CompSend(x)=true
then

executed:=SENDTRANSF(x)
else

executed:=RECEIVETRANSF(x)
endif
if (transformed(target(x))=undef)
then border(target(x)):=true
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endif
endif

enddo
do forall x in CompMessageInstance

if (type(x)=RETURN) and (source(x)=sourceCurrState)
then

if CompSend(x)=true
then

executed:=SENDTRANSF(x)
else

executed:=RECEIVETRANSF(x)
endif
if transformed(target(x))=undef
then

border(target(x)):=true
endif

endif
enddo
if VISITED(sourceCurrState)
then

border(sourceCurrState):=undef
endif
return true

endasm

– Visited: given a state in the source model return if it has been visited or if
there are messages which are not yet transformed.

– SendTransf: given a sending message in the source model it generates the
transformed one extending the target algebra as reported in the following
extract:

asm SENDTRANSF(m:CompMessageInstance) -> Bool
used as function in VISIT
is
extend ProxyState with b andProxyReceive with m1 and ProxySend with m2

if (transformed(source(m)) = undef)
then

source(m1):=anchorInitialState
else

source(m1):=transformed(source(m))
endif
target(m1):=b
instanceOf(m1):=instanceOf(m)
params(m1):=params(m)
sender(m1):=component
receiver(m1):=proxy
source(m2):=b
if transformed(target(m))=undef
then
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extend ProxyState with c
transformed(target(m)):=c
target(m2):=c

endextend
else

target(m2):=transformed(target(m))
endif
...

params(m2):=params(m)
sender(m2):=proxy
receiver(m2):=middleware
...

endextend
return true

endasm

– ReceiveTransf: given a receiving message in the source model it generates
the transformed in the target algebra following a similar logic of the Sender-

Transf rule.

Figure 8 depicts a fragment of the target algebra representing the subpart of
the state machine model in Fig. 9.b obtained by means of the transformation on
the source algebra given in Fig. 7.

Fig. 8. The algebra A(M) of the TM proxy model
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Fig. 9. TM State Machine models

Properties Preserving Transformations. As already discussed, by automat-
ing the application of the architectural decomposability theorem, the correctness
of the target models is granted without the need to validate each of them w.r.t.
the theorem hypothesis. In particular, we need to prove that the generated state
machines are satisfying the V properties listed in Sec. 3 by construction. The
following sketches such proof.

A generated state machine is obtained by means of precise transformation
steps which consist of an initialization step and subsequent message transfor-
mations. The first step generates a fragment of the target model which includes
the registration of the component whose proxy is being generated and the iden-
tification of all the components with whom it communicates via CORBA. The
initialization step suffices to guarantee that the properties V 1 and V 2 are pre-
served. In fact, the model fragments are generated by means of the Regs and
Resolve rules described in the previous section. The rule Regs assures the preser-
vation of the registration property V 1 by generating a component registration
message (and the corresponding source and target states) as shown in Fig. 9.b.
Analogously, the property V 2 is guaranteed by the rule Resolve since such a
rule generates the resolve messages to the middleware to retrieve the component
identifiers as stated by the V 2.

4 Conclusion and Future Work

The paper illustrates how to engineer the architectural decomposability theorem
to the analysis of middleware-based applications by automatically generating
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the proxies needed by the components in order to properly interact with each
other via the CORBA middleware. In particular, model transformations, proper
of the MDA approach, are used to generate the proxy models required by the
middleware-based SA. Such transformations are expressed formally and unam-
biguously in terms of ASMs, which allows the verification of the correctness of
the transformation w.r.t. the properties of interest.

The transformations have been implemented by means of the XASM com-
piler and both the sources and the binaries are available for download (please
refer to [19]). A stronger tool support is to be pursued in future work in order
to assist the designer in all the stages described in this work: (i) design the
high-level application SA and validate it with respect to desired behaviors, (ii)
choose an appropriate middleware, (iii) automatically refine the high-level SA
by proxies generation and validate it with respect to the behaviors defined in
(i), (iv) automatically generate the source code of the proxies. Once again, code
generation should exploit as much as possible the potential of MDA by means
of refinement mappings.
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Appendix

P Properties

1. after an object registration request, the object reference has been stored into
the IOR repository:

¤((reg IOR(o)) → ♦serverRegistered[o])

2. after an object retrieve request, the object reference, if it exist, will be re-
turned:

¤((get IOR(o)) → (♦(result IOR(refo))W (¬serverRegistered[o])))

3. A synchronous method invocation is eventually followed by a return message:

¤(sync meth inv → ♦return)

4. (a) An asynchronous method invocation is eventually received by the suit-
able server:

¤(async meth inv → ♦ServerRecv)

(b) An asynchronous result retrieval is eventually followed by the return:

¤(result inv → ♦return)
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Abstract.  The growing importance of context-awareness in the construction of
adaptable systems requires the development of formal models and notations that
can bring this new dimension from middleware concerns into the higher levels
of modelling.  In this paper, we propose a formal approach to the design of
context-aware systems that is well integrated with the concepts and techniques
that have been proposed for software architectures.  This approach is based on a
set of primitives through which the notion of context can be modelled as a first-
class entity and context-awareness addressed explicitly as an additional dimen-
sion of architectural elements. We illustrate the approach around an image
search system.

1 Introduction

In recent years, we have been witnessing a growing interest for software systems that
are able to adapt autonomously at run-time.  This is justified in part by the need for
developing applications that can cope with highly dynamic execution environments.
Typical examples are distributed applications with components executed in distinct
devices under a wide range of operational conditions that can change over time.  This
new breed of applications are usually known as context-aware systems because they
must be responsive to the context in which they execute in order to adapt to changes
as they occur.

Much of the work in what has become known as context-aware computing is be-
ing devoted to the development of middleware infrastructures that facilitate the im-
plementation of this new generation of systems (e.g., [3,7,8,19,20]).  In these ap-
proaches, the context-aware aspects are divided between the application logic and an
infrastructure responsible for the gathering, management and dissemination of con-
textual information [6,13].  As a result, software developers can concentrate on the
application logic without having to be concerned with the way context information
needs to be sensed.  This separation is important because it promotes the development
of general context widgets that can be used, and reused, as components in different
configurations of the infrastructure [8].



The added level of complexity that this new dimension brings to software devel-
opment suggests that context-awareness should be also addressed at higher levels of
abstraction and in earlier phases of the development lifecycle.  As remarked in [22],
formal models and high-level notations are needed that provide suitable support for
modelling and designing context-aware systems before infrastructural concerns come
into play.  Software designers should have the means for exploring different design
solutions that take advantage of contextual information and defining the specific no-
tions of context that are best suited for the systems that are envisaged.

Consider, as an example, the problem of searching a database of images stored in
a remote site.  Assume that a cheap algorithm is available that quickly identifies im-
ages that are potentially interesting.  We may think of several different solutions de-
pending on how much awareness the system can have of the context in which it is
operating.  For instance, a simple and context-unaware solution consists in deciding
that all the images must be downloaded from the server and then processed locally.
A more flexible solution proposed in [2] consists in executing the cheap algorithm
remotely and, depending on the size of the selected images and the current bandwidth,
deciding if the remaining more intensive computation should be performed remotely
or if the selected images should be dispatched to be locally processed.   Other context
information, such as the processing power that is available, could be used for taking
the decision on where to process the selected images, giving rise to different design
solutions for the problem.

In most approaches to software development, context-awareness is not addressed
explicitly and, hence, it is not possible to represent explicitly this kind of design deci-
sions: they are simply programmed.  This implies that if, for some reason, one needs
to change the system to operate according to a different strategy, the system needs to
be reprogrammed, possibly interfering with the way orthogonal concerns have been
captured in the code.  In this paper, we address the design of context-aware systems at
the higher architectural levels where such decisions can be modelled in terms of first-
class entities and evolved in a compositional way.

Given that context-awareness is especially relevant in the presence of distribution
and mobility, we focus our attention in software architectures that address loca-
tion-dependence explicitly.  More concretely, we show how the description of con-
text-awareness aspects of systems can be integrated with the techniques that we have
been developing within the IST-2001-32747 project AGILE – Architectures for Mo-
bility for supporting distribution and mobility in software architectures  [14,15].  The
resulting architectural approach promotes the separation of concerns by awarding
first-class status to the notion of context.  On the one hand, it supports the description
of context dependencies of a system’s architecture in an explicit way through context
models that can be understood independently of the specification of the system be-
haviour.  On the other hand, it allows these aspects to be refined and evolved inde-
pendently of the other concerns.

As such, this paper extends preliminary work presented in [16] where we have fo-
cused on the algebraic semantics of much simpler and less expressive design abstrac-
tions for context-awareness.  We decided to use the same example so that the reader
who is familiar with that first proposal can appreciate the added expressive power that



we are now proposing.  On the other hand, we are now omitting much of the algebraic
semantics of the whole approach, and concentrate on the new and revised features.

Most of the added expressive power comes from context models, which are also
explored in this paper as requirement specifications for the gathering and dissemina-
tion of contextual information.  Indeed, context models provide an important abstrac-
tion mechanism for modelling, in a formal way, context information in middleware
infrastructures that support context sensing.

In Section 2, we briefly review the basic principles of our approach to architectural
modelling of distributed and mobile systems and the way it is supported in CommU-
nity, a prototype language for architectural description.  In Section 3, we discuss the
context-sensitive behaviour of distributed systems and present the primitives through
which architectural models can be made context-aware.  We show how higher level
notions of context can be modelled and how they can support separation of concerns.
In Section 4, we address context modelling in the development of systems that are
responsible for the gathering and dissemination of contextual information.  We con-
clude in Section 5 by discussing related and future work.

2 Distributed and Mobile Architectures in CommUnity

As already mentioned, context-awareness is particularly relevant in the presence of
mobility.  When components are allowed to move across networks, the availability
and responsiveness of resources and services are often difficult to predict and out of
control [1].  For instance, when visiting a site, a piece of mobile code may fail to link
with the libraries that it requires for execution according to its specification.  Compu-
tational resources such as CPU and memory can no longer be assumed to be fixed as
in conventional computing.

Given that, in these situations, the context that a component perceives is to a great
extent related with its location, it is important that context-awareness be addressed in
approaches that, like CommUnity [10], do not adopt location-transparency as an ab-
straction principle and address distribution as a first-class concern in par with com-
putation and coordination.  In this section, we provide a brief review of the primitives
that are used in CommUnity to capture distribution and mobility and illustrate how
they support the description of mobile systems at an architectural level of design.  A
more detailed account of this approach can be found in [14,15].

CommUnity is a parallel program design language in the style of Unity [5] and
Interaction Processes [11] that we have been developing for formalising architecture
description primitives.  A CommUnity design is defined in terms of channels, actions
and location variables.

Channels provide the means for the exchange of data between different compo-
nents.  The declaration of a channel as input or output defines its role in the exchange
of data with the environment.  Declaring a channel to be private means that it models
internal exchanges of data, i.e. between different parts of the component, and that
these exchanges are not perceived by the environment.  Output and private channels
are said to be local because they are controlled by the component, i.e. the environ-



ment cannot modify the values that are made available on these channels.  Input
channels are used by the component to read data from the environment.

Actions provide points for rendez-vous synchronisation.  Each action is associated
with a set of guarded commands that is executed atomically.  These commands are of
the form

exp → x1:=exp1 || x2:=exp2 || …

and define computations over the data that is available in the channels.  The expres-
sion exp defines the enabling condition of the command.  When the command is exe-
cuted, all the assignments are preformed atomically.

Location variables act as “containers” for data and code that can be moved across
a communication network.  Every local channel x is statically associated with a loca-
tion variable l (we write x@l).  The same happens for the guarded commands associ-
ated with actions.  The idea is that the position of the space where the values of a
channel are available or a command is executed is determined by the position of the
container in which the channel or the command was placed.

We start with a very simple design of one of the components of the image search
system – the filter.  The role of this component in the system is to interact with the
database in order to obtain the images that are potentially interesting and calculate the
size of these images.

Fig. 1. The design Filter

According to this design, the database is made available by the environment
through the input channel db.  Once the filter is requested to begin its activity through
the execution of the action beg, it first requests access to the database (action req),
then it proceeds with the filtering activity, after which it computes the size of the im-
ages.  The selected images and their size are made available to the environment
through the output channels img and size.  After releasing the database (action rel),
action end becomes enabled meaning that the activities of the filter have ceased.

Designs are defined over a collection of data types that are used for structuring the
data that the channels transmit and define the operations that perform the computa-
tions that are required.  In order to remain independent of any specific language for
the definition of these data types, we take them in the form of an algebraic specifica-
tion.  In the example, the images are modelled through a data type that involves the
domain image.  Filter also makes use of the operations filterop and imgsize that ab-
stract the selection process of the images considered to be of interest and the compu-
tation of the size of these images, respectively.

In what concerns distribution, the design Filter models a centralised component

design Filter is
inloc lf:Loc
in db:set(image)
out img@lf:set(image), size@lf:nat
prv s@lf:[0..4]
do beg@lf: s=0 → s:=1
[] req@lf: s=1 → s:=2
[] filt@lf: s=2 → s:=3|| img:=filterop(db)
[] rel@lf: s=3 → s:=4|| size:=imgsize(img)
[] end@lf: s=4 → skip



because all its constituents are located at the same variable lf.  The fact that lf is de-
clared as input means that it is under the control of the environment, i.e. the position
where the filter performs its activities is determined by the rest of the system in which
it is integrated as a component.  The underlying space of distribution and mobility is
constituted by the set of possible values of a special data sort Loc and whatever op-
erations are necessary to characterise locations such as hierarchies or taxonomies.

By taking advantage of mobility, we may opt for the migration of the filter to the
host of the database.  This decision can be integrated in the design of the filter as fol-
lows.

Fig. 2. The design MobileFilter

This design has two input location variables lr and lc accounting for the location of
the database server and the client application, respectively.  The location of the filter
(lf) is now captured by an output variable because it became under the control of the
extended component.  MobileFilter models a filter that can only migrate after it has
begun its activities.  Furthermore, it can only request access to the database after it has
been moved to the database host.  The command that gives rise to the migration,
modelled by the assignment lf:=lr, is issued at the location of the client.

It is important to notice that the design decisions concerning filter migration can be
modelled in an independent way through the following “mobility controller”:

Filter

lf

MobCont

filt pos

 l

reqrel

db
img

end

move

size
 lc

 lr

beg pre

Fig. 3. Externalisation of the design decisions concerning the mobility of the filter

This controller externalises design decisions into an explicit connector that can be
superposed over different components.  In particular, it can be applied to the filter at
hand, as depicted above.

In CommUnity, interaction between a component and its environment relies on the
synchronisation of actions and exchange of data through input and output channels.
The design of interactions between different components is supported through con-

design MobCont is
inloc lr, lc: Loc
outloc l: Loc
prv q@l:[0..2]
do pre@l: q=0 → q:=1
[] move@l: q=1 → q:=2

    @lc: true → l:=lr
[] pos@l: q=2 → skip

design MobileFilter is
inloc lr, lc:Loc
outloc lf:Loc
in db:set(image)
out img@lf:set(image), size@lf:nat
prv s@lf:[0..4], q@lf:[0..2]
do beg@lf: s=0 ∧ q=0 → s:=1|| q:=1
[] move@lf: q=1 → q:=2

    @lc: true → lf:=lr
[] req@lf: s=1 ∧ q=2 → s:=2
[] filt@lf: s=2 → s:=3|| img:=filterop(db)
[] rel@lf: s=3 → s:=4|| size:=imgsize(img)
 [] end@lf: s=4 → skip



figurations; these are diagrams that exhibit interconnections between components.  In
configuration diagrams, components only depict their public elements.  The lines
connecting actions establish synchronisation points – these actions have to be exe-
cuted synchronously.  The lines connecting channels or location variables establish
I/O communication.  In contrast with most architecture description languages, these
“boxes and lines” have a mathematical semantics: configuration diagrams are in fact
diagrams in a category of CommUnity designs whose morphisms capture notions of
superposition [10].  The semantics of such a diagram is given by its colimit [9].  In the
case of the configuration above, this colimit returns exactly the design MobileFilter.

For completeness, we conclude this section by providing the architecture of an
image search system.  In this system, the filter algorithm is executed remotely.  Upon
its termination, the filtered images are downloaded by the Checker and checked lo-
cally, wherever the client is located.

Filter
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filt pos
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db

img

end

size

beg pre

 lr lc

BaseClient

endF begF

 lc

endC begC

Checker

end beg

 lch
fImg

cImg

cImg

res

chk

Fig. 4. An architecture of an Image Search System

3 Context-Aware Architectures in CommUnity

Section 2 introduced the primitives made available in CommUnity for the design of
mobile systems and illustrated how they support the explicit representation of distri-
bution/mobility in software architectures.  In this section, we show how context-
awareness can be integrated in this architectural approach in a way that supports the
definition of application specific notions of context and the design of components and
connectors that have to deal with changes of context as part of their intrinsic behav-
iour.

In our approach, “local contexts” exist in the positions of the underlying space of
mobility. They are all instances of a given type.  This type captures static properties of
contexts, i.e. features that are common to all instances as available in given locations.
However, not all instances need to be the same, of course.  Hence, for instance, when

design BaseClient is
outloc lc:Loc
in cImg:set(img)
out res@lc:set(img)
prv t@lc:[0..4]
do begF@lc: t=0 → t:=1
[] endF@lc: t=1 → t:=2
[] begC@lc: t=2 →  t:=3
[] endC@lc: t=3→  t:=4|| res:=cImg

design Checker is
inloc lch:Loc
in fImg:set(img)
out cImg@lch:set(img)
prv t@lch:[0..2]
do beg@lch: t=0 → t:=1
[] chk@lch: t=1 → t:=2|| 
                   cImg:=checkop(fImg)
[] end@lch: t=2 → skip



an action migrates from a location to another, the type of the resources that it needs
for its computations will have been statically determined, i.e. at design time, but the
actual resources available (say arithmetic precision) will only be known at run time.

3.1 Context-Sensitiveness

So far, we have neglected how behaviour is affected by factors like network connec-
tivity or the set of services that are available at each location.  Consider, for instance,
MobileFilter as presented in Section 2.  The filter may not be able to migrate to the
database host for reasons such as restrictive security policies enforced at the destina-
tion or simply because of lack of connectivity.   Once at the database host, the be-
haviour of the filter still depends on the context of execution.  For instance, the filter-
ing of the images cannot be performed if the computational services that this activity
requires cannot be found at the given location.

This shows that there exists a dimension of context-sensitiveness that is orthogo-
nal to context-awareness: even a component that, like MobileFilter, does not take
advantage of context information, has a context-sensitive behaviour.  This dimension
is related with what was identified in [6] as the active aspect of context – the aspect
that concerns the characteristics of the surrounding environment that are determinant
in the behaviour of mobile computing systems.  In contrast, the passive aspect of
context consists of the characteristics that are relevant but not critical.

In CommUnity, each of the architectural dimensions – computation, communica-
tion and distribution – depends on different characteristics of the environment: Com-
putations, as performed by individual components, are constrained by the resources
and services available at the positions where the components are located; Communi-
cation among components can only take place when they are located in positions that
are “in touch” with each other; Movement of components from one position to an-
other is constrained by “reachability”.

Therefore, in CommUnity, the active aspect of context consists of computational
resources, computational services, connectivity and reachability.  These characteris-
tics of the environment are considered as part of the context of any system design,
regardless of its particular application domain.

More concretely, a context type in CommUnity has an application-independent
part defined by the four special observables <rsc,serv,bt,reach>.  The intuition be-
hind these observables and the nature of their observations is given below.
– The observations of rsc are natural numbers and should be regarded as measures

of the computational resources available locally.
– The observable serv provides access to the local interpretations (in the sense of

implementations) of the operations of the underlying data type specification.
Given an operation f:s1...sn→s, serv(f) can be undefined, meaning that there is not
a local interpretation of f.  If defined, serv(f) is a pair (F,amm) where F is a com-
putational service that transforms n-tuples of values of type s1...sn  in a value of
type s and amm is a natural number that represents the level of resources required
by F.  In order to remain independent of any language for the definition of these
computational services, we take them simply as mathematical functions. We shall



use [s1...sn→s] to denote the type of (F,amm).
– The observations of bt and reach are sets of positions of the space (i.e., values of

type Loc). They represent the positions reachable from the self position through,
respectively, communication and movement.
These observables play a determinant role in the behaviour of a system, which is

captured by the context-sensitive semantics of CommUnity designs as formally de-
fined in [16].   The enabling condition of a distributed action depends on the values of
rsc, serv, bt and reach.  More specifically, a distributed action g is enabled in a certain
state iff, in this state, the positions where its local actions execute are mutually in
touch (bt) and, for each such position l:
– the channels that need to be read or written are located in positions that are in

touch with the position of l (bt);
– the operations and resources necessary to evaluate the guard and perform the

computations are available;
– location variables are only assigned positions that are within reach (reach);
– the guard evaluates to true.

Furthermore, the effects of an action on the system state are determined by the
“interpretations” of the operations used to specify these effects (serv) at each of the
locations where the action execution is distributed.

CommUnity, equipped with this context-sensitive semantics, provides us with the
means to design systems that deal with situations where the availability of critical
resources is not guaranteed.  The absence of a critical resource is not regarded as a
runtime error but rather as a blocking condition of the actions whose execution de-
pends on this resource.  By defining alternative actions that are enabled in these situa-
tions, we can specify how the system is required to operate in such situations.

For instance, in order to model a filter that performs the filtering activities locally
if migration to the database host is not possible, we only need to introduce the action

in MobileFilter.  This action can be executed in the same system state as move and,
hence, if the action move is blocked because the remote location lr is unreachable, the
system can make progress through the execution of stay. If the location lr is reach-
able, then both actions can be executed and a non-deterministic choice will be made.

Fig. 5.  A context-aware Filter

[] stay@lf: q=1 → q:=2

design FlexibleFilter is
inloc lr, lc:Loc
outloc lf:Loc
in db:set(image)
out img@lf:set(image), size@lf:nat
prv s@lf:[0..4], q@lf:[0..2], op@lf:[set(image)->set(image)]
do beg@lf: s=0 ∧ q=0 → s:=1|| q:=1|| op:=serv(filterop)
[] move@lf: q=1 → q:=2

     @lc: true → lf:=lr
[] stay@lf: q=1 ∧ lr∉reach → q:=2
[] req@lf: s=1 ∧ q=2 → s:=2
[] filt@lf: s=2 → s:=3|| img:=op(db)
[] rel@lf: s=3 → s:=4|| size:=imgsize(img)
[] end@lf: s=4 → skip



3.2 Context-Awareness

In order to obtain a more expressive model of context-aware computing, software
designers should be able to take advantage of contextual information by explicitly
defining how it affects the behaviour of the system.  For instance, in the case of the
filter, we would like to be able to express that the decision to download the images
from the remote database is restricted to the situations in which the migration to the
database host is not possible.  This can be achieved as presented in Figure 5.

The design FlexibleFilter uses two new primitives – the special observables reach
and serv.  The observable reach is used for expressing that the remote execution of
the filter is preferred to the local execution.  This is achieved by defining that action
stay is blocked if lr∈reach.  Because this expression is evaluated at lf, the contextual
information that is used is the one available there and, hence, lr∉reach means that lr
is not reachable from lf.  The observable serv is used for ensuring that the filtering
activity, even when performed remotely, uses the interpretation of filterop available
locally in the client host.  To this purpose, we introduced a new private channel op
that, at the beginning of the filtering activity, is assigned the local interpretation of
filterop and keeps it with the filter, as part of its state.  Moreover, the command asso-
ciated to action filt was modified so that the filtering activity is performed with the
computational service available in channel op.

Indeed, the abstract data type specification associated with a CommUnity design
identifies the nature of the data and operations that may be required at the positions of
the distribution topology, e.g. in terms of libraries or packages.  Different positions
may provide different implementations for these data types.  It may also happen that a
given position does not provide an implementation for all the operations that may be
required for the execution of a given action.  We know all too well that software in-
stallation often fails because required libraries are missing in the target platform…

This justifies that, in CommUnity, part of the context identifies the libraries avail-
able at every location (serv) and that given functions can be transmitted as data from
one location to another, either because they are missing, or to make sure that a spe-
cific version is used instead of the default available at the target.  Such facilities are
already available in most platforms.  For instance, one of the central and unique fea-
tures of RMI is its ability to download the bytecodes (or simply code) of an object's
class if the class is not defined in the receiver's virtual machine.

We have illustrated the use of application-independent observables in the specifi-
cation of designs.  If other characteristics of the environment are considered relevant
for the design of the system, they have to be defined as part of its context type.

3.3 Context Types

A context type includes the fixed set of observables defined in 3.1 and an application-
dependent set of other observables.  Each observable is of the form obs:s1...sn→s,
where s1,...,sn, s are sorts of an abstract data type specification that includes the sort
Loc of locations.  These data sorts are used for structuring the required contextual



data.  Other operations may be defined for manipulating that data as required by the
application.

Each observable represents a specific context concept. It identifies the nature of
observations that are relevant for the system at hand and the way this information is
accessed by the application.  Dependencies between different types of contextual in-
formation can be expressed through axioms of the specification.

The integration of context-aware decisions in the behaviour of CommUnity designs
is based on the simple use of terms built over observables in the guards and effects of
local actions.  In the evaluation of these terms, it is the location of the action that de-
termines the position of the space where the required observations are made.

Consider the design of an image search system in which the choice of where to
perform the checking of the images selected by the filter is based on their size, the
processing power available in the remote and local machines, and the bandwidth
available between the two hosts.  This context-aware decision can be achieved by
superposing the following mobility controller over the checker.

Fig. 6.  A context-aware Mobile Controller

FlexMobCont models a controller similar to the one we designed for controlling
the mobility of the filter.  In order to accommodate the criteria for migration, we in-
troduced an action stay and an input channel sz (accounting for the size of the selected
images) and we modified the guard of move.

The observables bdw and ppw, the nature of their observations and the criteria for
migration are defined by the context type network&cpu.  This context type defines
that, in a given position of the space, the system is interested in a measure of the
bandwidth available between this position and all the others, delivered as a natural
number.  These values are constrained to be related with the observations of connec-
tivity (bt) in the obvious way.  It is also defined that every local context must have
information about the processing power (ppw) available at every position of the space.

The structure of the observations of ppw is defined by ppwData and operations
newPpw, better and crit.  The operation better is used to decide if the checker should
migrate to the database host.  The criteria to perform the migration, modelled by the
operation crit, are based on the estimated transfer time of the images: migration
should be carried out if the transfer of the images will take too long (above timeTher-
eshold) or if there are too many images to scan (above sizeThereshold) and the proc-
essing power available remotely is considered better than the one available locally.

Context types may also include derived observables – observables whose values

design FlexMobCont is
inloc lr, lc:Loc
outloc l:Loc
in sz:nat
prv q@l:[0..2]
do pre@l: q=0 → q:=1
[] move@l: q=1 → q:=2

    @lc: crit(bdw(lr),ppw(lc),ppw(lr),sz) → l:=lr
[] stay@l: q=1 → q:=2

    @lc: ¬crit(bdw(lr),ppw(lc),ppw(lr),sz) → skip
[] pos@l: q=2 → skip



are completely determined by the values of the other observables.  This is extremely
useful for defining higher-level notions of context based on simpler sensed contexts.

Fig. 7. The context type network&cpu

For instance, we can extend the context type network&cpu with:

This defines a new observable migr whose values have not to be sensed but rather
inferred from bdw and ppw.  Intuitively, migr indicates whether, according to the cri-
teria defined by crit, the actual context is favourable for migration or not.

We can now use this new observable to design a controller with the same func-
tionally of FlexMobCont: we only need to replace crit(bdw(lr),ppw(lc),ppw(lr),sz) by
migr(lr,lc,sz) in the guards of actions move and stay.

Although the functionality expressed in the two designs is the same, they provide
different support for evolution and reuse.   Because the condition migr(lr,lc,sz) is less
specific than crit(bdw(lr),ppw(lc),ppw(lr),sz), if we use the new controller for the mo-
bility of a component, we have more chances of being able to change the design deci-
sion adopted for migration just by replacing network&cpu by an appropriate context
type.  All that is required is that the new condition can be expressed in terms of the
values available in the channel sz and the locations lr and lc.

4 Context Modelling

So far, we have addressed context modelling from the perspective of the software

derived observervables
migr: Loc Loc nat ->bool
migr(l1,l2,s)=crit(bdw(l1),ppw(l2),ppw(l1),s)

context type network&cpu is
sensed observables

bdw: Loc -> nat
// bandwidth available between self and given position

ppw: Loc -> ppwData
// processing power available in the given position

constrained by p:Loc
bdw(p)=0 ≡ p∉bt

sorts
ppwData
// defines the nature of observations of ppw

operations
newPpw: nat natPercentage -> ppwData
// creates a ppwdata from the power of the processor and the
// percentage of processing power in use

better: ppwData ppwData -> bool
// Is the first ppw “better” than the second one?

crit: nat ppwData ppwData nat -> bool
// Are the given conditions favourable for migration?

factor: nat
timeThreshold, sizeThreshold: nat

axioms v1,v2,perc1,perc2,b,s:nat, p1,p2:ppwData
(1) better(newPpw(v1,perc1), newPpw(v2,perc2)) ≡

(v1/v2)>factor ∧ (100-perc1)*v1>(100-perc2)*v2
(2) crit(b,p1,p2,s) ≡

s*b>timeThreshold ∨ (s>sizeThreshold ∧ better(p2,p1))



designer that is in charge of the application logic.   Our focus has been on the defini-
tion of modelling primitives that allow software architects to represent and organise
the contextual information in which a system is interested and to take advantage of
contextual information in the specification of system components and connectors.

The use of contextual information by an application assumes the existence of an-
other system that senses the current context and delivers it to the application.  In this
section, we address context modelling from the perspective of the development of
context-sensing systems – the systems responsible for the gathering, management and
delivery of contextual information.

We start by analysing the role of context types in the development of context-
sensing systems.  Our view is that there exists one context-sensing system working on
behalf of each context-aware application.  In situations in which several applications
are interested in the same contextual data, this does not mean that the sensing work
has to be replicated because, for instance, the corresponding sensing systems can be
components of an infrastructure that centralises the collection of all contextual data.

From the perspective of context-sensing systems, context types play the role of re-
quirement specifications.  They define what must be sensed, how the sensed data must
be abstracted and the interface offered by the sensing system to the application layer.
This interface consists of the observables through which it is possible to gain access
to contextual data (both sensed and derived) and the operations through which it is
possible to manipulate this data.  Because the sensing system provides an encapsula-
tion of contextual data as an abstract data type, all the operations that manipulate
contextual data have to be provided by this system.

As specifications of requirements for context-sensing systems, there are important
issues that context types do not address.  One of these issues is the type of sensing
that should be adopted for each sensed observable – on demand or continuous.   In the
case of on demand sensing, the information about the actual context is collected only
when there is a request issued by the application, which waits for this information to
proceed.  In the case of continuous sensing, the sensing system is supposed to be pro-
actively collecting the contextual information.  Because this tends to be a costly ac-
tivity, and different applications typically have different needs, it is important that
designers have the means to describe at which frequency new data has to be obtained.

Mechanisms for expressing this kind of requirements can be easily integrated with
the notion of context type, giving rise to what we designate by context model.  An
example of a context model for the image search system is presented in Figure 8.

Fig. 8. The context model network&cpu

In a context model, sensed observables are grouped according to the type of sens-
ing they require.   For observables that require continuous monitoring, the frequency
at which data should be gathered is also defined using data types, keeping the level of

context model network&cpu is
contex type network&cpu
on-demand

ppw: Loc->ppwData
continuous

bdw: Loc->nat with frequency 50:natPercentage



abstraction (it would not make sense to ask designers to provide real time require-
ments for their high-level designs).

Another important concern in context modelling is to guarantee that the application
and the context-sensing system have a common semantic understanding of the sensed
information.  This requires context models that support the definition of what has to
be sensed in a precise way.  Because the models we proposed are not powerful
enough, we envisage their extension with mappings to standard ontologies represent-
ing the diversity of environment characteristics that is reasonable to sense in specific
domains.  The idea is for these mappings to establish the semantic understanding of
each sensed observable of the context type.  Unfortunately, despite recent develop-
ments in the area of the Semantic Web in this direction [19,21], such standardised
ontologies are not yet available.

5 Concluding Remarks

In this paper, we addressed the integration of context-awareness in the set of aspects
that systems architectures should be able to deal with.  Having adopted an infra-
structure-centred view of context-awareness development, we focused on the defini-
tion of modelling primitives that allow software architects (i) to represent and organ-
ise the contextual information that a system requires and (ii) to take advantage of
contextual information in the specification of the components and connectors of the
system.

Our proposal is based on the extension of system architectures with a new design
element – context models, which supports the modelling of the context of a system as
a first-class entity separable from its application logic.

Taking an example in which mobility is used as a tool to adapt to variations in the
execution environment, we illustrated how CommUnity supports the design of com-
ponents and connectors that take advantage of contextual information to adapt their
behaviour.  Adaptable behaviour is specified essentially through the specification of
sets of alternative actions – actions that are enabled at the same system’s states but not
in the same context.

A complementary and important approach to adaptation in software architectures is
the one that addresses adaptation at the configuration level through dynamic recon-
figuration.  Most of the work devoted to adaptation in software architectures focuses
on this kind of adaptation (e.g., [4,12,18]).  However, existing approaches fail to give
a first-class status to the notion of context.  Either they are developed having in mind
specific aspects of the execution environment (essentially, performance-oriented as-
pects) or they support implicit definitions of context, hard-wired in different parts of
the system architectural description.  For this reason, we plan to investigate structural
adaptation of systems architectures that include context models as design elements.

A related approach that is important to mention is the conceptual model for con-
text-aware architectures proposed in [17].  In this work, an infrastructure-centred view
is not adopted.  Instead, context sensing is viewed just as an aspect of the system;
components and connectors are themselves involved in the gathering of context in-



formation.
Because context models can be understood independently of the rest of the archi-

tecture, they were also investigated in this paper as specifications of requirements for
context-sensing systems.  This is an important perspective because it contributes to
the understanding of the abstractions that should be provided by the middleware in-
frastructures that support the development of context-aware applications. As men-
tioned in [13], most existing infrastructures are built upon informal context models
that lack in expressive power.

Context modelling concepts and techniques have also been investigated in the field
of Pervasive Computing where some formal models of context have been proposed
[13,20].  Compared with ours, these models are more powerful: for instance, they
address uncertainty in and quality of contextual information.  However, because these
models were developed with different aims, they do not provide adequate support for
defining abstract notions of contexts as required for the high-level design of context-
aware systems.  For instance, the aim of the context model of [20] is to provide a uni-
form representation of contextual information in context infrastructures for entities
such as context providers, synthesizers and consumers.  The language used in [13] is
an information modelling technique suited for describing the context information
available through a context infrastructure.  Based on these fine-grained models,
higher-level concepts can be defined and used as programming abstractions.

As far as modelling techniques are concerned, ContextUnity [22] is the approach
most closely related to ours.  In ContextUnity, systems are also designed by assuming
that contextual information is transparently maintained.  However, although the
model of context is, as in CommUnity, explicit and separable from the behaviour
specification, it cannot be externalised and modelled as an independent system di-
mension.  In ContextUnity each component of the system is regarded as an autono-
mous agent and has a specific notion of context that is defined by a set of observables
whose values depend exclusively on variables of other components in the system.  As
we have seen, context information in CommUnity is orthogonal to the decomposition
of the system in components; it refers to any collection of characteristics and proper-
ties of the environment that are relevant to the system and are not under its direct
control.  This, we believe, adds flexibility and adaptability to system models as con-
text-awareness is addressed as an independent architectural concern.
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Abstract. In this position paper we outline the challenges that face safety criti-
cal systems. We identify the need to shift the validation emphasis from process 
to product, and state how formal proofs would be of great benefit by providing 
stronger evidence for safety case arguments. We also argue that a successful so-
lution for the incremental certification problem could bring benefit to all levels 
of system design. A better understanding of the non-functional behaviour and 
methods for expressing, embedding into design, and managing properties that 
play a role in this aspect of safety critical systems are urgently needed. We also 
speculate that research into trusted components and compositional architectures 
is vital for the future of safety critical systems design. In partnership with BAE 
SYSTEMS, Rolls Royce, and QinetiQ, we have developed a framework and an 
architectural description language that addresses these issues. 

1   Introduction 

Safety critical systems are a family of systems where safety is of paramount impor-
tance. Examples of such systems can be found in the avionics, automotive, space and 
medical industries. They are predominantly driven by real-time embedded software 
and are often referred to as the high integrity real time systems (HIRTS).  

Safety is broadly defined as the freedom from accidents and losses [1]. Sometimes 
there is no safe alternative to normal service, in which case, the system must be de-
pendable to be safe. A dependable system is defined [2] as one that has the following 
six attributes: availability, reliability, safety, confidentiality, integrity, maintainability. 
We commonly use the term dependable system as one for which reliance may justi-
fiably be placed on certain aspects of the quality of service that it delivers. Depend-
ability is thus concerned primarily with fault tolerance (i.e., providing an acceptable 
level of service even when faults occur). It is not difficult to see that many of the at-
tributes above are highly desirable in numerous other categories of modern software 
systems and how the results of research into these attributes could be applied to soft-
ware engineering whose primary concern is not safety. For example, availability of a 
web service is not critical in the same sense as the availability of landing gear in an 
aircraft. It is, however, critical from the business perspective and – highly desirable. 
Another example would be a reliable banking system. Not really the same meaning as 
a reliable car at high speeds, but nevertheless – highly desirable. 

HIRTS software, like most other classes of software today, is becoming increas-
ingly large and complex. Typical problem is that of poor visibility of the underlying 
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architecture which blurs the dependency links between the requirements specifica-
tions, design-time artefacts and the implemented system. Under the circumstances, 
maintenance of the system is becoming ever more difficult. Even minor modifications 
require huge investment in time and money. It is often said that the cost of change is 
hugely disproportionate to the size of change.  

Safety is a system property, not a component property, so any safety analysis needs 
to consider the entire system and not simply its components. Consequently, research 
into software and system architectures and modelling is regarded as crucial in the 
safety critical systems domain.  

2   Challenges 

Many safety critical applications demand a level of dependability that cannot be es-
tablished by the state-of-the-art testing technology [3]. This being the case, the valida-
tion emphasis has shifted from the analysis of the product to the analysis of the devel-
opment process of the product [4] (see, for example, the well-known ARINC DO-
178B standard [5] for software in airborne systems). If results of the software archi-
tecture research are to become widely deployed, this emphasis will have to change. 
System design will have to consist of the reuse and integration of pre-validated hard-
ware/software components.  

In many cases, such as in the avionics industry, systems need to be certified before 
they are deployed. If changes are made to the system, common sense would suggest 
that only the modified parts are certified again. Sadly this is not the case, due to the 
lack of visibility of what the impact of the change is. Current practice is that for all 
but the most insignificant changes the recertification process involves the full system. 
This is known as the incremental certification problem. It is often thought of as an is-
sue during the maintenance phase of the product lifecycle. Recently, the most com-
mon cause for system modifications (or, upgrades) is hardware obsolescence. With 
current advances in the electronics manufacturing industry, the average shelf-life of a 
hardware component is rapidly decreasing. However, if a solution is found to the in-
cremental certification problem, it could be applied at almost every level of system 
design and every stage of the product lifecycle, not only the maintenance. Constant 
changes in requirements during the early stages of design impose continuous source 
of change and headache for software architects, designers and developers. Were they 
to have assurance that the modifications (or, increments) they are making to the sys-
tem architecture, design and implementation is controllable, and satisfies the system 
goals such as safety, the benefit would be profound. 

A safety case for a HIRTS system plays one of key roles in certifying the system. 
There is no definitive statement of what constitutes a safety case but there appears to 
be a commonality (amongst various definitions) as to what the purpose of safety case 
is, and that is to present a clear, comprehensive and defensible argument, supported 
by calculation and procedure that a system will be acceptably safe throughout its life 
(and decommissioning). Typically a safety case will contain a high level argument 
(HLA) and supporting evidence (SE). The HLA sets out the principles on which the 
design is based and reasons why the design should satisfy the safety requirements. 
The SE provides detailed analysis of the implementation to show that the design has 
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the predicted properties, and hence that the system meets its safety requirements. The 
safety case would benefit greatly if the evidence presented was based on some formal-
ism, i.e. providing formal proof with basis in mathematics. 

Correct operation of the system (as laid out in its requirements specification) is 
only one part of the validation problem. Establishing correctness of non-functional 
behaviour or quality attributes of the system proves to be arduous indeed. Methods for 
expressing, embedding into design, and managing properties that play a role in these 
aspects of safety critical system are urgently needed. 

3   State-of-the-Art 

Our research group, DARP (Defence and Aerospace Research Partnership) HIRTS is 
funded by the UK government and the Ministry of Defence, and partnered by BAE 
SYSTEMS, Rolls-Royce and QinetiQ. The work within our strand (Model Based Sys-
tems Engineering) takes an architecture-centric view of the development process, and 
emphasises the use of contracts as a way of controlling the dependencies between 
components (subsystems) in the architecture. Most of our case studies come from the 
civil avionics domain.  

In order to address the challenges mentioned above, our approach was to explore 
and build on the current best practice. We have reviewed a number of wide spread 
modelling and software architecture technologies and came to a conclusion that all, by 
some distance, fall short of providing the necessary assurance needed for a safety 
critical system. 

The Model Driven Architecture (MDA) [6] identifies design abstraction layering as 
essential and suggests ways of mapping between these layers. Such approach is nec-
essary if one is to have visibility of architecture from the source code, or the other 
way around. MDA, however, claims that in the absence of consensus on hardware 
platforms, operating systems, network protocols, and programming languages, there 
must be a consensus on interfaces and inter-operability. Such view is narrow-minded 
and naïve, as it purely reflects on the functional characteristics of a system. 

The Unified Modelling Language (UML) [7] is a great tool for visualising systems 
(or, parts of a system), as well as for a diagrammatical communication between vari-
ous stakeholders, such as the requirements analysts, designers, engineers, and so on. It 
is now regarded as a useful lowest common denominator (much like SQL) between 
different vendors, but not much more beyond that. Its most serious drawback is its 
lack formalism, a grave reminder for the safety engineering community to steer away 
from it. 

Another important approach is the IEEE 1471 standard [8]. This endeavour ad-
dresses the activities of creation, analysis, and sustainment of architectures of soft-
ware-intensive systems, and the recording of such architectures in terms of architec-
tural descriptions. It is, possibly, the most complete conceptual framework for the 
architectural descriptions. However, it is brutally cut off at the model level, and pro-
vides no recommendation on how to bridge the gap between the design and imple-
mentation. 

We also looked into a number of ADLs (Architecture Description Language). 
AADL [9] (Architecture, Analysis and Design Language), formerly known as the 
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Avionics ADL, effectively tackles many issues present in complex embedded real 
time applications. On the other hand, modelling with AADL appears to be too inten-
sive and detailed from the very start. The concept of layered abstraction is absent. Al-
though attractive in many respects for hard real time systems engineering, the lack of 
lightweight modelling could prevent AADL from gaining widespread acceptance. 

Acme [10] began as a common interchange format for architecture design tools. 
Currently, it provides a generic, extensible infrastructure for describing, representing, 
generating, and analysing software architecture descriptions. Acme has many traits of 
the cutting-edge research thinking and modelling tool vendors, the key one being ex-
tensibility – providing a platform as a starting point from which a specific approach 
can be developed. Nonetheless, the support it offers is not sufficient in the safety 
critical systems domain. A vital ingredient is missing: for Acme language to be re-
garded as formal, apart from syntax and semantics, it fails to define the underlying 
proof theory, i.e. rules for inferring useful information from a specification. 

4   Where Next? 

Our view is that two aspects of software design for safety critical systems are vital for 
its future. They are: trusted components and compositional architectures.  

Broadly speaking, trusted components are those of which we can expect to behave 
correctly with a high degree of confidence. A trusted component will, as a rule, im-
pose a set of pre-conditions on the user of the component (normally another software 
component). If these pre-conditions are met, then the trusted component will perform 
its declared function and, upon termination, satisfy a set of post-conditions. The post-
conditions describe what must be true at the end of execution (if the pre-conditions 
were true). Trusted components may also declare invariants and rely conditions. The 
invariants describe what must be true at both the start and end of component execu-
tion, and the rely conditions describe what must be true throughout the execution [11].  

Compositional architectures are, ideally, those that guarantee not to violate the 
principle of composition upon the integration of (trusted) components. This principle 
states that the properties established at the component level will also hold at the sys-
tem level [12]. From the point of view of analysis of compositional architectures, two 
key factors are of greatest significance. Firstly, it is important to distinguish between 
properties and services of a component prior to the integration into the system, and 
the emergent ones generated by such integration. In many cases, the new services are 
more than a sum of the individual services. For example, the integration of the chassis 
and engine in an aeroplane gives rise to a new kind of service – the transport service. 
Secondly, the non-functional behaviour analyses need to target specific domains by 
means of domain modelling. In case of safety critical systems, the software architec-
ture and modelling research needs to draw upon the vast pool of traditional techniques 
on how to safely compose systems. These techniques include PHA (Preliminary Haz-
ard Analysis), FTA (Fault Tree Analysis), SHA and SSHA (System and Subsystem 
Hazard Analysis), FMECA (Failure Mode and Effect Criticality Analysis) and many 
others.  
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5   Contributions 

In our endeavour to address the challenges facing the modern safety critical software 
we have developed an approach called Architectural Information Modelling (AIM) 
[13]. In this approach we hope to have addressed all issues that were outlined in the 
previous text. AIM incorporates support for many aspects of modern software engi-
neering such as: software architectures and design, domain modelling and safety en-
gineering. Its meta-model is divided into three distinct categories of system design as 
shown in the picture below (Fig. 1.). 

As part of the development process, we have also defined a formal notation – the 
AIM architectural description language. 

The infrastructure of AIM builds on the well established paradigm for software ar-
chitectures using components, connectors and their configuration at its core. The 
properties help to describe the non-functional characteristics of these components, 
connectors and their configurations. Finally, the constraints limit the freedom of the 
designer according to the system and safety requirements and prescribe design rules 
according to the agreed architectural style. 

 

Fig. 1. AIM meta-model categories 

In particular, we have found that the following nine top level constructs are essen-
tial for modelling systems in the HIRTS domain: Model, Environment, Class, Imple-
mentation, Collection, Constant, Type, Property and Contract [13]. 

AIM comes with a predefined architectural style (a collection of types for compo-
nents, connectors, interfaces, and properties together with a set of rules for how ele-
ments of those types may be composed) well suited for the HIRTS domain. Like 
Acme, AIM is a fully extensible and open semantic framework allowing for other ar-
chitectural styles to be defined, too. Furthermore, AIM is MDA-compatible by sup-
porting multiple layers of abstraction. A lightweight, informal is supported for early 
stage design evaluation, leading to a rich formal model capable of mapping out a 
sound skeleton for system implementation.  

We have also successfully performed simple mappings to MetaH (a predecessor to 
AADL), Acme and a limited set of UML constructs. We hope to be able to export 
AIM specifications to other notations and exploit external tools for model checking, 
theorem proofs, and various other kinds of analyses. 
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6   Conclusion 

In this position paper we have outlined the challenges that need to be addressed in or-
der to better manage the complexity and the development demands of the safety criti-
cal system. We have identified the need to shift the validation emphasis from process 
to product, and stated how formal proofs would aid in achieving this by providing 
stronger evidence for safety case arguments. We have also argued that a successful 
solution for the incremental certification problem could bring benefit to all levels of 
system design. Finally, better understanding of the non-functional behaviour and 
methods for expressing, embedding into design, and managing properties that play a 
role in this aspect of safety critical systems are urgently needed. We have also tried to 
indicate that research into trusted components and compositional architectures is vital 
for the future of HIRTS design.  
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Coppito 67100, L’Aquila, Italy

{inverard, mostarda}@di.univaq.it

Abstract. This paper illustrates an approach to add security policies
to a component-based system. We consider black-box-components-based
applications, where each component can run concurrently in a differ-
ent domain. The problem we want to face is to detect at run time that
a component might start interacting with the other components in an
anomalous way trying to subvert the application. This problem cannot
be identified statically because we must take into account the fact that a
component can be modified for malicious purposes at run time once de-
ployed. We propose a specification-based approach to detect intrusions at
architectural level. The approach is decentralized, that is given a global
policy for the whole system, i.e. a set of admissible behaviors, we auto-
matically generate a monitoring filter for each component that looks at
local information of interest. Filters then suitably communicate in order
to carry on cooperatively the validation of the global policy. With respect
to centralized monitors, this approach increases performance, security
and reliability and allows the supervision of complex applications where
no centralized point of information flow exists or can be introduced.

1 Introduction

This paper describes a specification-based approach to detect intrusions at ar-
chitectural level. We assume to have a black-box-components-based application
where all components run concurrently and interact each other exchanging ser-
vices. At architectural level, we speak about intrusions when legitimate com-
ponents perform unauthorized actions; e.g., a rogue client can be built by an
attacker that uses his authorizations to subvert the application.

Intrusions at architectural level may be detected by using static approaches,
e.g. by using model checking techniques. However, components can be dynami-
cally modified for malicious purposes and the statically validated properties can
be violated. Run-time tools monitoring for evidence of intrusions can provide a
solution to these problems. Nowadays, several run-time monitors are available:
they are referred to as Intrusion Detection Systems (IDSs), and their main task
is to analyze the observable behaviors of a system in order to recognize malicious
behaviors. The effectiveness of an IDS is usually measured in terms of: detec-
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tion efficiency: the amount of intrusions that are correctly recognized; false

alarms rate: the amount of correct behaviors detected as intrusions.
There are three main types of IDSs detection techniques: misuse, anomaly

and specification-based. Misuse detection systems [1] are explicitly programmed
to recognize well-known attacks. These systems recognize intrusions by matching
the pattern of observed data with the set of predefined (intrusion) signatures.
They can perform focused analysis thus having a low false alarms rate. However,
they cannot detect unknown types of attacks, since it is not possible to spec-
ify a signature for a still unknown vulnerability. Furthermore, IDS complexity
grows with the number of well-known attacks. Anomaly detection systems as-
sume that an attack will cause deviation from normal behaviors, thus detection
can be done by comparing actual activities with known correct behaviors. Dif-
ferent approaches have been used to model normal behaviors: statistics-based
[2], rule-based [3], immunology-based [4]. The advantage of this kind of systems
is the ability of detecting novel attacks and the fact that it is not required spe-
cific knowledge about correct information flows. However, it is not easy to define
what is a normal behavior, to set up anomaly thresholds, to have a good de-
tection efficiency and moreover not all intrusions need to produce an anomalous
behavior. Specification-based systems [5] use some kind of formal specification to
describe the correct behaviors of the system. The detection of violations involves
monitoring deviations from the formal specification, rather than matching spe-
cific well-know attacks. The advantage of this approach is the ability to detect
previously unknown attacks at the expense of providing a formal specification
of correct information flows.

Besides the problems mentioned above, all the described approaches when
implemented suffer a number of further problems:

– the monitoring tools are subject to tampering, since they are software that
can be itself target of attacks. 1.

– correct monitoring of points where there is a high level of information flow
may be problematic (loss of data);

– in complex systems no centralized point of information flow can exist, so
distributed solutions are needed;

– IDSs have to be scalable with respect to the number of components to be
monitored, i.e. augmenting the components number must not result in an
increased execution response time of the monitoring tool.

This paper presents a specification-based intrusion detection approach to face
intrusions at architectural level. The application to be monitored is composed
by black-box components that run concurrently in different domains. We as-
sume to know the services required/offered by each component that is name /
formal parameters / returned values, (i.e. the component interface), the topol-
ogy of the application in terms of potential interactions among components (the

1 Tamper is a term to indicate ”any act that results in the improper alteration of the

application code.” [6]
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connectors) and the specification of the acceptable behaviors the system has to
comply with. The latter is given by means of a language that defines the correct
behaviors of the system.

We propose a polynomial algorithm that combines the specification and the
architectural information in order to distribute the specification checking on the
component where the information to be supervised flows. More specifically, this
algorithm builds a set of local wrappers (filters), one for each component. Wrap-
pers locally monitor the component behavior and communicate with each other
in a peer-to-peer fashion to discover attacks scattered over several components.
Moreover, in order to address the attacks to the security measures filters are
able to detect filter tampering [6]. In the remaining of the paper we will use the
terms wrapper/filter interchangeably.

We choose a specification-based monitoring as opposed to anomaly base de-
tection since it permits to detect unknown attacks and reduces the false alarm
rate. Moreover, since our approach to intrusion detection is distributed it allows
the monitoring of complex applications where there is no central point of infor-
mation flow. However, the distributed approach also brings obvious overheads
in terms of message exchange.

The contribution of this paper is in proposing a way to automatically generate
a set of local filters (one for each component) that detect components dynamic
misbehavior. Our approach also permits to build a tamper resistant IDS [6],
i.e. an IDS which is resistant to modification and observation. The approach
we propose is architectural since it relies on architectural information about
components (interface) and connections (topology).

2 Related Work

Most of the advanced tools for intrusion detection send distributed data to a
centralized unit that relates them in order to detect violations. This centralized
design poses problems of: scalability, fault tolerance and security. Attacks to and
faults of the central unit can deactivate the monitoring of the distributed system.
An increasing number of sensors that forward data can cause loss of information
or increase the monitoring system reaction time.

Systems like NetSTAT [7], and Emerald [8], and GrIDS [9] try to solve the
above problems by means of a layered structure. Data are locally processed and
events that are part of distributed attacks are forwarded to an higher entity.
Although such systems try to address the problem of scalability, nodes close to
the root of the hierarchy can still be overloaded and they represent a single point
of failure or vulnerability.

CSM[10] faces these problems by means of a peer-to-peer design. It has no
centralized unit thus data are exchanged among peers to correlate them.

All the above mentioned tools recognize well-known kinds of attacks by means
of intrusion patterns (misuse based). Patterns are usually defined at networking
level and they are monitored by distributed sensors that sniff traffic. Such tools
have dedicated hosts and a management network separated from the one used by
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the application data. This choice is dictated by the fact that monitoring systems
are themselves software that can be tampered.

Our approach aims at lifting monitoring technology from the operating sys-
tem and network level to the application architecture level. We choose a peer-to-
peer design to address fault tolerance and scalability. Our wrappers reside on the
same host of the component code; thus we cannot rely on separated host/network
to avoid their tampering. However, in our monitoring tool filters that interact
with a tampered filter can detect its anomalous behavior.

The idea to monitor distributed systems at application level is not new. The
ORA organization[4] monitors applications in anomaly based fashion. They char-
acterize the normal behavior of the components interaction by using an immunol-
ogy approach. While they are able to detect previously unknown attacks, not
all intrusions deviate from normal behavior. We choose a specification-based
monitoring to overcome such problem and to reduce the false alarm rate.

The DIANA tool[11] uses a specification-based approach to monitor dis-
tributed programs in a decentralized way. Safety properties are specified on each
distributed process by means of a variant of a past time linear temporal logic.
Formula related to a particular process can refer to remote states of other pro-
cesses by using particular operators. Remote state information is delivered only
when there is an explicit interaction with that process. Therefore a process lo-
cally computes a formula by using the information of remote states it is aware
of. This logic seems not adequate to express security behaviors, since it may well
happen to monitor applications (part of) whose components do not explicitly
interact but their local states contribute to discover an attack.

Ponder [12] is an object oriented and declarative language mainly adopted
for Object-Oriented distributed systems. A set of agents deployed at different
hosts allow the monitoring. This language is specifically tailored to define roles,
subjects domains and policies. However agents could overload the host to be
monitored and they can be target of tampering. Breach on the security measures
can become a means to attack the distributed application to be monitored.

Our monitoring language defines the security policy and it is tailored to
express distributed correlation of information at architectural level. We deal only
with observable messages exchanged at architectural level. Given the policy to
monitor, filters are automatically generated and deployed.

3 Enforcement Mechanisms and IDSs Specification

Based

Earlier IDSs were only involved in monitoring activities and analyzing log files.
Today’s IDSs embed reactive utilities that are undertaken when an attack is
detected. For instance an IDS can react to an attack by terminating the ses-
sion, blocking or shunning the traffic, creating session log files or restricting the
accesses.

The time required to detect an attack and the time to react to such attack
are relevant parameters that characterize the effectiveness of an IDS. Ideally
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an attack should be detected when it is in progress, this would allow either to
avoid the attack or to have a faster recovery. In the worst case an attack that is
terminated can be unrecoverable and important information can be lost.

Our specification based IDS captures every message exchanged among the
components of the system to be monitored. It verifies that the messages comply
with the formal specification, then it releases the messages. An attack is detected
when the IDS finds a mismatch between the observed messages and the formal
specification. In this case it reacts with the following default actions. The log

reaction in which all activities related to the attack are logged. The enforcing

reaction in which IDS releases every captured sequence verifying the formal
specification. In other words, if our IDS captures a sequence of messages that
verify the specification, then it deliveries the messages to the related components.
Therefore our monitoring system can be also seen as an enforcement mechanism
(EM).

As defined in [13] enforcement mechanisms compare a formal specification
with the system steps. When there is a violation of the formal specification
an EM can either terminate the system execution or replace an unacceptable
execution step with an acceptable one. Any EM is assumed to be isolated from
the system and any input to the system must be forwarded to it.

However in a system composed by black-box components running in different
domains an EM might not have the right to terminate the system execution.
Therefore our enforcing mechanism replaces an unacceptable behavior with an
acceptable one.

We use the formal specification introduced in [13] to build our EM on the ba-
sis of an automaton that specifies the policies to be enforced. Our contribution
is the algorithm to automatically distribute the EM on each component that
composes the system. The distribution phase creates one filter for each compo-
nent. Each filter embeds only the part of control related to the local information
of interest. The use of the automaton is twofold: on one side it permits to re-
duce the overhead of messages exchanged among the filters. On the other side
it allows an acceptable tradeoff between detection time and expressiveness of
the language used to describe the security policies. As described in [13], relevant
security properties can be described by means of security automata. In the fol-
lowing section we categorize these security policies by means of definitions and
examples.

4 Violations at Architectural Level

Systems must embed security features to resist to attacks. However, nothing is
perfect. Even the best protected system must be monitored to detect security
violations. In a component based system, we characterize attacks as: interface

attacks and trace attacks. Interface attacks are carried out by requesting a service
with bad formatted inputs: anomalous inputs can produce a buffer overflow or
code injections, so that attackers can gain unauthorized accesses. Traces attacks

aim at subvert the correct communication among components. In the following
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we list some subcases of traces attacks. Sequence attacks are related to the order
in which messages are exchanged among components. For instance, a component
may access a service before performing authentication, or a component may
request exclusive access to a data base component without releasing it before
exiting. Synchronization attacks are performed by synchronizing components in
a suspicious way. This is the case in which two components require a write service
offered by a data base component. This could lead the system in an erroneous
state in which one of the component could not have access to the system any
more. Coordination attacks concern an anomalous cooperation of a component
to reach some global goal. For instance, in a collaborative writing system, a
component cannot cooperate with another component in order to read or write
a different piece of file. Distributed attacks are scattered over several sources.
These attacks look innocents when local-component traffic is considered, but
they result in a violation when data are related. An example of this type of
attacks is given by a chain of requests among components.

We detect violations in a component based application by checking that the
system behaviors match a well defined policy. Here, a policy is a set of rules that
dynamically regulate the behavior of a system neither changing the components
code nor requiring their cooperation. In particular, security policies define what
actions are permitted or not permitted, for what or for whom, and under what
conditions. Policies can define correct communications among components, ac-
cess and protection to components, authentication, monitoring of the responses
and correct use of services. To define policies, we provide an ad-hoc language
based on state machines. We also provide an algorithm to automatically generate
a set of wrappers, starting from the given policy and the system architecture.
Our wrappers are distributed one for each component and embed the part of
policies that define the component local interactions. Although wrapper can im-
plement confidentiality, we mainly focus on policies related to communications,
access, correct use of services, monitoring of the responses and protection of
components.

5 The Model of the System

At the architectural level, a system is viewed as composed by a set of compo-
nents communicating with each other. We consider distributed-black-box com-
ponents running concurrently and communicating either asynchronously and/or
synchronously. We know that messages exchanged among distributed compo-
nents can always be totally ordered [14], thus, a global trace of the system can
be obtained. In this Section, we will give the basic definitions which our frame
relies on. In all these definitions, we will assume that a global system clock ex-
ists. However, this assumption is needed only for modelling purposes, and it will
be relaxed in Section 6, where we describe how our filters distribution algorithm
works.

We focus on architectural system traces, i.e. on strings containing all messages
observed at architectural level. A message encodes information about the type of
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communication, i.e. a request or a reply, the kind of service and its parameters
and the (returned) data. We also assume, without loss of generality, that all
messages are uniquely identified. Two requests of the same service from two
different components originate two distinct messages.

We introduce some definitions that will be used in the following.

Definition 1. Let T be a string m1m2m3 . . . mimi+1 . . .. T is an architectural
system trace if the following properties hold:

– ∀mk ∈ T mk codifies a service request to a component or a valid answer to

some request.

– if i < k then t(mi) ≤ t(mk), where t(m) denotes the global system time at

which the message occurred.

Definition 2. A sequence of messages ml1
ml2

ml3
. . . mli

mli+1
. . . is a sub-

trace of some system trace m1m2m3 . . . mimi+1 . . . if l1l2l3 . . . lili+1 . . . is a

subsequence of 1, 2, 3, . . . , i, i + 1, . . .

Definition 3. Two subtraces sa
1sa

2sa
3 . . . sa

i
sa

i+1 . . . and sb
1s

b
2s

b
3 . . . sb

k
sb

k+1 . . . are

said to be distinct if and only if ∀i, j sa

i
6= sb

j
.

Definition 4. Given two distinct subtraces T1: sa
1sa

2sa
3 . . . sa

i
sa

i+1 . . . and T2:
sb
1s

b
2 sb

3 . . . sb

k
sb

k+1 . . . of T, a merge trace T1⊕ T2 is a subtrace of T defined by

s1s2s3 . . . sjsj+1 . . . where:

– sr ∈ T1 ⊕ T2 if and only if sr ∈ T1 or sr ∈ T2

– for each si and sj ∈ T1 ∪ T2 if t(si) < t(sj) then si appears before sj in

T1 ⊕ T2

The definition of subtrace permits to define for each component C a compo-
nent local trace that is all messages locally sent/received by a component.

Definition 5. Let C be a component and T an architectural system trace. TC =
mc

1 mc
2m

c
3 . . . mc

k
mc

k+1 . . . is a component local trace of C if it is a subtrace of

T and each mc

i
is a message that codifies either a request or a provided service

of the component C.

In our model, the architectural system trace is produced by messages exchanged
among all the components. Each running component Ci in the system defines a,
local to the component, subtrace TCi

. These sets of local traces constitute a parti-
tion of the architectural-system trace. In other words, if T : m1m2m3 . . . mimi+1 . . .

is an architectural-system trace, {TC1
, TC2

, TC3
, . . . , TCn

} the sets of local traces
observed by the components of the system, then

⋂
1≤i≤n

TCi
= ∅ and the merge

of TCi
is equal to T .

Our purpose is to analyze the system architectural trace T produced at run-
time to detect if T contains subtraces that violate the defined policies.

We provide an ad-hoc language based on state machines to specify policies
(see [15]). It allows the definition of constrains on the input data of the services,
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on the ordering of the messages, on the synchronization among requests and on
the relations among messages scattered over several components(see Section 4).
The defined policy can establish when a component can access a service and it
permits to monitor the response of a component. In this paper we do not show
syntax and semantics of the language [15].

Our language permits to define the following automaton [13].

Definition 6. A secure automaton is 4-tuple A = (Q, q0, I, δ) where: Q is a

finite set of automaton states, q0 ∈ Q the initial state, I is a finite set of input

symbols and δ(Q × I) → Q is a transition function.

Definition 7. A secure automaton A = (Q, q0, I, δ) parses a sequence T =
m1m2m3 . . . mimi+1 . . . one symbol at a time from left to right. Let qi−1 ∈ Q

be the current state of A and let mi be the next symbol to read. A accepts mi if

there exists a transition rule δ(qi−1,mi).

Definition 8. Let A = (Q, q0, I, δ) be a secure automaton and T = m1m2m3

. . . mimi+1 . . . be a sequence of symbols in I. Let q0 be the starting state of A

and m1 be the first symbol to read. A accepts the sequence T if for each current

state qi−1 and next symbol mi, A accepts mi. qi = δ(qi−1,mi) is the new state

of A and mi+1 the next symbol to read.

Definition 9. The language ℓ(A) recognized by A = (Q, q0, I, δ) is composed by

all sequences of symbols in I accepted by A.

This acceptance criterion permits to recognize finite and infinite sequences
of symbols(see [13]).

In the context of component based systems, the 4-tuple of the secure au-
tomaton is constrained by the following rules. I is a finite set of symbols that
represent messages at architectural level. Messages are of the form: !s denoting
outgoing message and ?s incoming message from/to a component, respectively. δ

represents the policy that defines the correct messages exchange among compo-
nents. We call such secure automaton: Global Secure Automaton. Global, since
the alphabet I is a subset of all messages exchanged among components.

In Figure 1, we show a component-based system composed of three different
types of components. A database component C1 can accept a login event which
corresponds to an authentication service, encoded as ?login. The message !fail

models a failure answer that C1 can send to a non-authorized client while the

C2

!ok

C1

C3
?ok

?fail

!login

?login

!fail
?p

!p

Fig. 1. Architectural view of the system

?p

!p

!ok

?ok

!fail

?fail

!login ?login

q6 q5

q4

q3

q2q1q0

Fig. 2. Global secure automata
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message !ok is sent to an authorized client. A printer component C2 can accept
incoming requests of print encoded as ?p. A client component C3 requires login
and print services encoded as messages !login and !p, respectively and waits for
incoming messages of successful/unsuccessful login encoded as ?ok/?fail.

The global secure automaton (see figure 2) expresses a security policy in
which a !login request to the authentication component C1, once received, can
be followed by either !fail or !ok messages. The service !p can then be required
only after a reception of an ?ok message.

The global secure automaton permits to monitor architectural system traces
(see Definition 1). It performs a state transition for each observable message of
the system and detects an attack when a message is not accepted.

Our main purpose is to automatically distribute the global secure automaton,
so to monitor the distributed-component-based application in a peer-to-peer
fashion. An algorithm produces a set of local secure automata that are assigned
one for each component. Therefore, a local secure automaton can only observe
the component local trace (see Definition 5) of the component it resides on.
After the generation process each local secure automaton is implemented as a
wrapper(filter) that envelops the component it supervises.

Notice that we consider deterministic automata. This permits to simplify
the distribution algorithm and to reduce synchronization messages among fil-
ters. This choice is not a limitation, since, a non-deterministic automaton can
be always translated to a deterministic automaton that accepts the same lan-
guage. Moreover, we recall that a property is an high level description of the
constraints imposed on the system components communications and not a com-
plete description of the component-based-application behavior. In the remaining
of the paper the notation mCi ∈ Ci stands for messages locally sent/received by
the component Ci.

6 Local Automata Generation

The monitor is conceived as a logically centralized process that makes a transi-
tion for each observable event of the system. A specification-based IDS can use
the global secure automaton to realize the centralized monitoring by recogniz-
ing the languages defined by the security policies. Whenever these policies are
violated an alarm is raised.

The algorithm to distribute the global secure automaton creates one filter
for each component. The filter on a component C (in the following, we will
denote it by ℑC) implements a local secure automaton which, looking at the
component local trace TC (see Definition 5), detects a violation of the policies
expressed by the global secure automaton. Obviously, by considering only the
local-component trace of C mC

1 mC
2 mC

3 . . . mC

k
mC

k+1 . . . is not sufficient to locally
detect a violation of the policy. Therefore, ℑC has to parse an enriched trace
that also contains context information provided by other filters. After the local
parsing, ℑC can provide context information to other filters that need it. We
call such information exchanged among filters dependency information.
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Definition 10. Let ℑC be the filter of the component C. Dependency informa-

tion is of the form !f(m,D) or ?f(m′, S) where D and S range on the name

of the application components. The message !f(m,D), outgoing dependency, is

sent by ℑC to filter ℑD in order to communicate that the C-component mes-

sage m has been observed. The message ?f(m′, S),incoming dependency, is an

incoming information sent by filter ℑS. With this information ℑS communicates

to ℑC that it has observed a S-component message m′.

Dependencies ensure that the merge (see Definition 4) of local-component
traces result in a global trace of the system which satisfies the secure property
expressed by the global-secure automaton. Hence, dependencies are a way to
synchronize filters and to detect the violation of policies. Note that dependen-
cies are sufficient to impose an order on messages; this allows us to relax the
assumption that a global system clock exists (see Section 5).

A filter ℑC captures both local-component message and incoming dependen-
cies (?f(m,S)) and outputs the outgoing dependencies (!f(m,D)) that will be
used by other filters. In order to generate local automata we combine software
architecture information with the global secure automaton. This combination is
twofold: on one side permits to build local secure automata by projecting each
transition of the global secure automaton (labelled with an architectural mes-
sage, see Definition 6) on the component that accepts/sends the message. On the
other side, it permits to enrich local secure automata with transitions that an-
alyze and produce dependencies. Connections among components may be used
to route context information messages through components filters 2. Referring
to the example in Figure 1 whenever ℑC1

needs to send a message to ℑC2
it has

to route the message through the filter of C3.
Informally, the algorithm for filters generation can be described as follows:

1. Local automata generation: For each component C, the set of automata
A1A2...AnC

is generated. These automata are the parts of the global secure
automaton that processes events concerning interactions of the component
C.

2. Dependencies generation:Let A1A2...AnC
be the set of automata related

to the component C. This step provides the needed context dependencies
to ensure a complete and correct local message parsing. Furthermore, it
connects the local automata A1A2...AnC

of C in order to build a complete
local secure automaton.

In the following we informally describe the algorithm and we illustrate its appli-
cation by means of the example shown in Section 5. A more complete description
is available in [16].

2 The need of routing depends on the communication infrastructure on which the
software architecture is built. For instance a component-based application may use
communication layers that enable components to communicate with each other. In
this case, a filter could send messages directly to another, which would avoid the
overhead of routing messages via other filters.
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6.1 Local Automata Generation

Given a global secure automaton A = (Q, q0, I, δ), this step builds, for each
component C of the system, a local secure automaton ℑC = (QC , q0C , IC , δC).
Informally ℑC is obtained by considering each rule q1 = δ(q,m) defined in A.
In the case that m is a C-component message such rule is reflected in a ℑC-rule
q1 = δC(q,m), the states q,q1 are added to QC and the message m is added to
IC . Therefore in the following we use two conventions: one is that we use exactly
the same name q both for a state of the global automaton and the state of the
filters where q has been projected. The other one is that, when it is clear from the
context, we indifferently use either the rule q′ = δ(q,mC) or its ℑC-projection
q′ = δC(q,mC).

Looking at the global secure automaton A, the sequence of interactions that
happen locally on a component C originates a local secure automaton ℑC .
In other words, ℑC does not include interactions among components that do
not involve C. Therefore ℑC can result in a set of disconnected sub-automata
A1A2 . . . AnC

, each one modelling local interactions on C separated by interac-
tions among different components.

The local automaton generation step is done locally to the component C. The
time complexity is O(|δ|) where |δ| is the number of transitions of the global se-
cure automaton. No new states are added, then the space complexity is linear.

Referring to the example in Section 5, after the local automata generation
step the global secure automaton of Figure 2 is partitioned on each component
of the system. Figure 3 shows such partition. For instance parts of the global
automaton related to messages: ?login, !ok and !fail constitute the local secure
automaton on component C1, given that such messages are locally observed on
that component. The same discussion can be done for the local secure automata
of the components C2 and C3.

These local secure automata are not sufficient to validate the related compo-
nent traces, therefore the next step shows how to add dependency transitions.
Besides synchronization among local secure automata, dependencies are also
used to link the disconnected automata A1A2 . . . AnC

of each ℑC (if any).

6.2 Dependencies Generation

The dependencies generation step takes as input the local secure automata and
it adds dependencies information. Such information enforces the synchronization

?login

q3

q5

q6

q4q1 q2

C1 !fail

!ok

q0 q1 q4

?ok

?fail

!login

C2

q6q0
?p

?ok

?login

!ok

!fail

!login

?fail

C3 !p
?p

q3

!p

Fig. 3. Local automata generation
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among the interested set of filters, so that merging the component local traces
(see Definition 4) results in a trace accepted by the global secure automaton.
For space reasons, we cannot provide a complete illustration of the dependen-
cies generation step. Therefore we divide it into three phases and we sketch the
basic idea of each phase. A complete and formal treatment of the whole step is
described in [16].

Phase 1. In phase 1 the dependencies generation step provides the basic de-
pendencies that are needed to synchronize a set of filters so that exactly one of
them acquires the right to accept a local-component message.

A global secure automaton A = (Q, q0, I, δ) can define a set of transitions
exiting from a state q, with q ∈ Q. We consider the case in which from q two
transitions exit: q1 = δ(q,mC1) and q2 = δ(q,mC2) with mC1 ∈ C1 and mC2 ∈

C2, and q 6= q1 6= q2.
Local automata generation (see Section 6.1) ensures that the rules q1 =

δ(q,mC1) and q2 = δ(q,mC2) are projected to the filters ℑC1
and ℑC2

respec-
tively. Phase 1 adds the rules q1 = δC1

(q, !f(mC1 , C2)) and q2 = δC1
(q, ?f(mC2 , C2)

to ℑC1
, and the rules q2 = δC2

(q, !f(mC2 , C1)) and q1 = δC2
(q, ?f(mC1 , C1) to

ℑC2
.
From the point of view of A if it is in the state q then either the transition

q1 = δ(q,mC1) or q2 = δ(q,mC2) can be applied. From the filters point of
view such possibility is lost since these rules are independently applied by the
two different filters residing on the two different components. The rules q1 =
δC1

(q, !f(mC1 , C2)) and q2 = δC2
(q, !f(mC2 , C1)) are a means used by the filters

to overcome this problem. Suppose that both filters ℑC1
and ℑC2

are in the state
q. Each one of them can observe its local message, mC1 , mC2 respectively. In a
single computation only one of them will participate in the (global) computation
by parsing its message and leading to the state successor of q, that is either q1

or q2. However as far as the local automata ℑC1
and ℑC2

are concerned no
matter who parses the message they must both move to the defined successor
state, that is they will both reach either q1 or q2. For example, if ℑC1

observes
the message mC1 , it alerts ℑC2

of this observation by sending the dependency
message !f(mC1 , C2) and waits for an acknowledgment. If ℑC1

receives the ℑC2

acknowledgement, then this means that it has got the right from ℑC2
to move

on and both filters move to state q1. ℑC1
by consuming the message mC1 by

means of the rule q1 = δ(q,mC1). ℑC2
by consuming the dependency message

!f(mC1 , C2), by means of the rule q1 = δC2
(q, ?f(mC1 , C1). In the case that

both filters, at the same time, send the dependencies with each other then a
synchronization protocol( see [16]) establishes that exactly one filter acquires
the right to accept a component local message.

Phase 1 of the dependencies generation step considers a state q of a filter ℑC

and its purpose is twofold: on one side it adds a set of transitions exiting from q

labelled with outgoing dependencies. On the other side it adds a set of transition
exiting from q labelled with incoming dependencies. The outgoing dependencies
are needed to know the filters with whom ℑC has to synchronize, in order to ac-
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quire the right to parse a C-component message that labels a transition exiting
from q. We call these outgoing dependencies synchronization dependencies and
the protocol used by the filters to exchange these dependencies synchronization

protocol. (see [16] for more details).

Phase 2. Phase 2 of the dependencies generation adds dependencies that are
used by a filter to enable the parsing of local-component messages of other fil-
ters. A global secure automaton A can define a chain of rules q1 = δ(q,mC1)
and q2 = δ(q1,m

C2), with mC1 ∈ C1, and mC2 ∈ C2, and q 6= q1. The local
automaton generation ensures that the rules q1 = δ(q,mC1) and q2 = δ(q1,m

C2)
are projected on the filters ℑC1

and ℑC2
, respectively. From the A point of

view, this chain of rules defines a constraint among the messages mC1 and mC2 .
That is, the message mC1 must be accepted before the message mC2 . However,
from the local filters point of view, this constraint is lost, since the chain of
rules is divided onto the filters ℑC1

and ℑC2
. Therefore, the filter ℑC2

can au-
tonomously accept the message mC2 before the message mC1 is accepted by the
filter ℑC1

. The problem is solved by adding dependencies. The dependencies
generation adds to ℑC1

the rule q1 = δC1
(q, !f(mC1 , C2)) and to ℑC2

the rule
q1 = δC2

(q, ?f(mC1 , C1). Therefore ℑC2
can move to the state q1, by means of

the rule q1 = δC′(q, ?f(mC1 , C1)). However this rule can be applied only when
the filter ℑC1

sends the outgoing dependency !f(mC1 , C1). This is a means for
filter ℑC1

to impose the right ordering among the messages mC1 and mC2 . We
call such outgoing dependencies enabling dependencies, since they are used to
enable the local-filter parsing when there is the right context condition.

Phase 3. Note however that, after the addition of such dependencies, some local
automaton can still be disconnected. Phase 3 on one side links together the local
disconnected automata A1A2 . . . AnC

through ε moves. On the other side it sets
the initial state of all local automaton as the initial state of the global secure
automaton.

The time-complexity to produce each local-automaton is O(|δ|2) where |δ| is
the number of transitions of the global secure automaton. The local dependencies
generation does not add states with respect to the states of the global-secure
automaton A. Therefore, the space-complexity is linear.

Figure 4 outlines the basic activities of a filter ℑC that is in a state q. In 4.1
a background thread buffers every C-component message in the message buffer
and every incoming dependency in the dependencies buffer. In 4.2 ℑC picks up
a C-component message m from the message buffer, if any. Steps 4.3-4.5 log and
refuse m if it is recognized as an attack. On the contrary in 4.6 the filter ℑC tries
to parse m by means of the rule q1 = δC(q,m). In 4.6b it starts the synchroniza-
tion protocol in order to acquire the right to parse the message m. In the case
that ℑC gains the right it applies the rule q1 = δC(q,m) and sends the enabling
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1. a background thread buffers every C-component message in the message buffer and every incoming dependency
in the dependencies buffer.

2. ℑC -main process picks up a C-component message m from its message buffer, if any.
3. if m is not a C-local component message then it releases the message and logs a warning.
4. if m is a C-local component message that cannot be accepted in a successive state of ℑC then it trashes the

message and raises an alarm.
5. if m is a message that cannot be accepted in the state q it logs a warning and it puts back the message on the

buffer.
6. if m can be accepted by means of the rule q1 = δC (q, m) then

(a) if (q1 = q) then it releases the message m and goes to step 7.
(b) if (q1 6= q) then it starts the synchronization protocol.
(c) if it acquires the right to accept the message m then it sends the enabling dependencies, it applies the

rule q1 = δC (q, m) and goes to step 7.

(d) if ℑ
C′ , with ℑ

C′ 6= ℑC acquires the right to parse the message m′ then

– it puts back m on the local-component buffer.
– it retrieves the rule q′ = δC(q, ?f(m′, C′)) and it moves without non-local message observation.

7. it picks up an incoming dependencies from its local-dependencies buffer that can be accepted, if any.

Fig. 4. ℑC-filter behavior in a state q

In the remaining of the paper we make use of a set of assumptions that, al-
though not mandatory, allow the simplification of the presentation. We assume
first of all that messages among filters are not lost and that messages sent be-
tween local filters are received in the same order they are sent. When drawing
the local secure automaton multiple transitions from the same source and target
are indicated by using one arrow with multiple labels.

We use the example in Section 5 to illustrate the whole approach. Figure 5
shows the local automata related to components C1, C2 and C3 as produced by
the dependencies generation. Initially all local filters have state q0. When the
component C3 sends a !login request to C1 the local secure automaton ℑC3

captures the request. It observes that a !login message can be accepted then
it sends the !f(!login, C1) dependency and the !login message to C1. Finally,
ℑC3 moves to state q1. The local filter on C1 receives the incoming message
!f(!login, C1) sent by ℑC3 and it changes its state to q1, since in q0 it is wait-
ing for an incoming message ?f(!login, C3). In state q1 the filter on component
C1 can accept the incoming ?login message and it changes to the q2 state. We
can observe that component C2 can provide a print service ?p only after some
external events happened. These events are provided by C3 after a correct au-
thentication is performed. At run time an attack is detected if a local automaton
cannot accept a component local message, or if a local automaton is not able
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C1 !fail
!ok

q0 q1 q4
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!f(!fail,C3)
!f(!login,C1)
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Fig. 5. Dependencies generation

dependencies. Otherwise it moves through incoming dependencies. Finally step
4.7 checks and applies the dependencies that are stored in the dependencies
buffer.
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source of attack. For example, in Figure 5 if component C3 requests the service
!p without previous !login, the local filter ℑC3 captures the message and detects
an error because it was waiting for a !login request.

The overhead of messages generated by the filters is strictly related to the
policies defined in the global secure automaton. A local automaton adds depen-
dency messages when non-interacting components behavior has to be related. Let
q be a state of the global secure automaton. Let m1m2 . . . mn be n messages,
related to n different components residing on n different hosts H1H2 . . . Hn. Sup-
pose that the messages m1m2 . . . mn label a transition exiting from the state q.
In the worst case when a local secure automaton on the host Hi moves from a
state q to a state q′,with q 6= q′, then at most n dependencies can flow on the
distributed system. In practice dependency synchronization messages are rela-
tively small in size and, depending on the system architecture, it is possible to
bound the number of the messages exiting from a state q related to different
components/hosts.

Correctness and completeness of our algorithm derive from the following the-
orem that is described in [16].

Theorem 1. Let A = (Q, q0, I, δ) be a global secure automaton, {C1, C2, C3

. . . Ci . . .} a set of components. Let ℑCi
be the automaton related to component

Ci as produced by the algorithm. A accepts an architectural trace m1m2m3

. . . mimi+1 . . . iff all component traces TCi
are accepted by ℑCi

.

As discussed in Section 1 the main problem of security tools is tampering.
Intruders can blind the security measures, so to violate the policies or use secu-
rity measure against the system itself. In our approach, a component changing
behavior is detected but problems can still arise if an intruder decides to at-
tack by modifying both the filter’s and the component’s behaviors. Referring
to (Figure 5), the intruder can change C3 so that it requests a printer service
?p without no previously !login and can change accordingly filter ℑC3. ℑC3

is therefore changed so that it does not have anymore a !login transition and
the related signaling message, leaving only the transition from q5 to q6. In other
words, the component and its related filter are changed to provide a different
behavior. When C3 sends a !p request, the local filter ℑC3 does not detect any
violation. The filter on component C2, ℑC2, receives the correct !f(!p, C2) signal
and provides the printer service. The solution to this problem is to add further
dependencies on the local secure automaton. For instance, ℑC2 can be enriched
to rely on the context information that the ?login message took place on filter
ℑC1. A new step (tampering step) can use local automata as generated by the
dependencies generation step to add further dependencies. In other words this
means to add redundant context information so that Theorem 1 is still true and
both a component and related filter tampering can be detected.

to accept an external context information. In both cases, the information stored
inside the filter gives details about the violation, providing a means to detect the
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7 Conclusion and Further Work

We have presented a distributed specification-based approach to detect intru-
sions at architectural level. Its peer-to-peer design allows the supervision of
complex applications where no centralized point of information flow exists or
can be introduced. This distributed solution presents several advantages with
respect to centralized monitors. It is scalable, since the monitoring of an increas-
ing number of components does not rely on a single point of data correlation,
so to avoid problems of detection reaction time, loss of data and scalability. It
provides an approach to face the problem of security measures tampering. A fil-
ter can detect a component that violates the policy, and other filters control and
analyze the filter behavior to discover its tampering. The disadvantage of our
approach concerns the potential message traffic increase due to the dependency
messages exchanged among filters. This is the inevitable cost to pay to achieve
a filters distribution which is correct and complete with respect to a centralized
approach. However this overhead depends on the software architecture of the
system to monitor and on the adopted security policies. Thus the suitability of
the approach has to be measured taking into account these two factors.

At present our research proceeds in three directions. A prototypal version
of the tool to generate local filters starting from a global secure automaton
specification has been developed [15]. The approach has been applied to an
industrial component-based application [17]. We are refining and extending the
approach considering cases in which more than one component and the related
filters are changed at the same time. We are also considering the use of context
free languages to specify policies.
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1 Introduction

The most difficult step in the design process of a system is clearly the tran-
sition from the requirements to the architecture. Requirements obtained from
the various stakeholders must be transformed into an architecture that can be
understood by developers. The power plant system we use in this study was de-
rived from [1, 2]. We first created a goal-oriented requirements specification from
the information available using the KAOS requirement specification language
[3, 4, 5]. Since the description was not complete we often had to make do with
inadequate data.

The first method used was developed by Axel van Lamsweerde (Univer-
sity of Louvain - Belgium) and is described in [6]. The various steps are ex-
plained in detail in Section 3.1 We describe some of the problems encountered
during the derivation process. The second method used was that of Dewayne
Perry and Manuel Brandozzi (University of Texas at Austin) [7, 8, 9]. The re-
sulting architecture and some of the derivation issues are described in Section
3.2.

After obtaining both architectures we compared them and suggested some
further work. In the case of the Perry/Brandozzi method we have made im-
provements to solve the problems we encountered and added the consideration
of styles and patterns for non functional properties.

This case study [10] was structured as follows. First the authors together cre-
ated the KAOS specification of the problem. Second Jani and Vanderveken then
used the two methods to transform this specification into architecture specifica-
tions with Perry acting as mentor, arbitor and oracle in recording process issues
and providing direction at critical points in the process. The authors together
evaluated and compared the results.
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2 Requirements Derivation Using KAOS

2.1 Goal Model

Given the fact that KAOS is a goal-oriented requirement specification method
we logically began by trying to extract the goals of the system. A definition of
the system was implicitly given in [1]. However the description of the powerplant
monitoring system provided was partial and lacked details. So, throughout the
requirement extraction process, we had to rely on experience and our common
sense to create requirements that are as realistic as possible.

The following steps were followed to build the goal model. First of all, the
informal definition of goals mentioned in [1] were carefully written down. From
that, a goal refinement tree was built and completed by a refinement/abstraction
process. The version we obtained at that point was still totally informal. Tem-
poral first-order logic [11] was then used to formalize the goals and to ensure
our refinement tree was correct, complete and coherent. The use of refinement
patterns as described in [3] served as guidance. The milestone-driven pattern in
particular was applied numerous times. It prescribes that some milestone states
are mandatory in order to reach a final one. This pattern is presented in fig 1.
The patterns were a great help to track and to correct incompleteness and inco-
herence. Furthermore they enabled us to save a huge amount of time by freeing
us to do the tedious proof work.

Because of the iterative nature of the requirements gathering process, the goal
model underwent subsequent changes. The reasons for that varied: coherence
between the different models forming the KAOS specifications, enhancements,
simplifications,etc.

The goal refinement tree is globally structured in two parts. This shape re-
flects the two main goals the system has to ensure to monitor the powerplant.
The occuring faults have to be detected and the alarms resulting from those
faults have to be managed. The roots of the two resulting subtrees are respec-
tively FaultDetected and AlarmCorrectlyManaged. They are subsequently refined
using the various patterns until the leaf goals are assignable to a single agent
from the environment or part of the software.

As an illustration of the use of the milestone refinement pattern let’s consider
the goal AlarmRaisedIfFaultDetected with its formal definition

(∀f : Fault,∃!l : Location,∃!a : Alarm
)(

Detected(f, l) ⇒ ♦Raise(f, a)
)

(1)

Fig. 1. Milestone refinement pattern
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This goal is refined using the milestone refinement pattern by instantiating
the parameters as follows:

A :
(∀f : Fault,∃!l : Location

)(
Detected(f, l)

)
(2)

M :
(∃fi : FaultInformation

)(
f ≡ fi ∧

Transmitted(fi, PRECON,ALARM)
)

(3)

T :
(∀fi : FaultInformation,∃!a : Alarm

)(
Raised(fi, a)

)
(4)

The application of that pattern in particular results here from the fact that
the information concerning the detected faults has to be transmitted to the
ALARM to enable it to raise the proper alarm. This intermediate state is a
necessary step to reach the final state, i.e., raising the alarm.

To have a system as robust as possible various goals were added to the
goal diagram. Among these added goals, one class takes care of the correct
working of all the sensors and ensures the data provided is consistent and co-
herent. The goals SanityCheckPerformed and ConsistencyCheckPerformed be-
long to this class. Another class – represented by the goal DataCorrectlyUp-
dated – makes sure the updates are well performed by the database. The pur-
pose of some goals is to maintain the powerplant in a consistent state (e.g.,
FaultStatusUpdated, AlarmStatusUpdated). Communication has also been con-
strained in order to prevent any transmission problems and results in the re-
finement of the goal DataTransmittedToDB where refinement is shown in
Fig. 2.

DataTransmittedToDB

  NoDataIntroduced    NoDataLost    SequencePreserved    DataTransmittedInTime  

Fig. 2. Communication refinement subtree

The three first subgoals ensure the correctness of the transmission while the
last one sets a time limit. This constraint varies througout the system depending
on the importance of the communication channel. The FaultInformation has
to be transmitted from PRECON to ALARM within 1 second while answer a
request can take a little longer – 5 seconds. The three first subgoals have been
formally refined as followed 3:

3 X stands for SensorInformation, FaultInformation, AlarmInformation, FaultDiagno-
sis and AlarmDiagnosis.
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NoDataIntroduced :
(∀x : Data

)(
Transmitted(X, , ) ∧ x ∈ Transmitted( ) ⇒ x ∈ X

)
(5)

NoDataLost :
(∀x : Data

)(
x ∈ X ∧ Transmitted(X, , ) ⇒ x ∈ Transmitted( )

)
(6)

SequencePreserved :
(∀x, y : Data,∃u, v : Data

)(
x, y ∈ X ∧ Transmitted(X, , )

∧Before(x, y,X) ⇒ u, v ∈ Transmitted(X) ∧
Before(u, v, T ransmitted(X)) ∧ x = u ∧ y = v

)
(7)

They prescribe that no alteration has occured on the data transmitted i.e.,
no data has been introduced or lost and the sequential order has been preserved.

The formal definition of the last subgoal depends on the time constraint. If
we consider for example the transmission of a FaultInformation – which has the
strongest time constraint – the formalization is:

DataTransmittedWithinT imeConstraint :
¬Transmitted(fi, PRECON,ALARM) ⇒ ♦≤1s

Transmitted(fi, PRECON,ALARM) (8)

2.2 Object Model

Entities present in the objects were first derived from the informal definition of
the goals. All the concepts of importance were modelled either under the form
of an object or of a relationship. Attributes were then added to the different
entities to characterize them. Some of the attributes were extracted from the
problem definition but most of them proceed necessarily from the underlying
domain from two main reasons.

First, certain goal definitions need the presence of specific attributes. For
example the attribute WorkCorrectly of Sensor was needed by the goal Sanity-
CheckPerformed.

Second, the definition of the properties of the various entities – expressed by
invariants – requires specific attributes. As an illustration consider the following
invariant of the object Alarm which expresses that all the alarms still active
cannot have a deactivation time:

Activated = true ⇒ DeactivationT ime = null (9)

The purpose of certain attributes is to prepare for change. The reconfiguration
function was not taken into account in the elaboration of the different models
due to lack of time. However we believe that basically the only effect will be to
modify the allowed range of temperature and pressure. Attributes representing
the minimum, the maximum and desired value of both pressure and temperature
were consequently added to the objects SteamCondenser and CoolingCircuit.
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Last, a few attributes were added to build a more complete model. The
justification was common sense. Among these are the attributes Type and Power
of the object PowerPlant.

The last step in the elaboration of the goal model was the formalization
of the domain invariants characterizing the differents entities. The model was
refined many times due to the iterative nature of the requirement extraction
process.

The main characteristic of the model is that two different levels of repre-
sentations are used for the concepts Sensor, Fault and Alarm. The first level
refers to the object itself while the second one refers to its representation in the
software. This distinction was introduced for robustness reasons. In fact it en-
ables us to manage the case where the representation of the object is not correct
which would be unfortunate but can happen. The two levels are constrained by
an invariant prescribing that all the attributes have to be identical.

The representation of the three main objects – Sensor, Fault and Alarm –
are linked together by a diagnosis relationship. The information provided by the
sensor permits the detection of the faults and the description of a fault is the
rationale for the raising of an alarm. Consequently the relationship FaultDiagno-
sis links SensorInformation and FaultInformation while AlarmDiagnosis links
FaultInformation and AlarmInformation. Those two relationships are one-one.
It is a modelling choice. We chose that a fault is the result of one and only one
error detected by one sensor and that each fault raises one and only one alarm.
The resulting simplicity and the ease of traceability is the reason for that.

2.3 Agent Model

The definition of the agents was extracted mostly from [1, 2]. We drew inspiration
from the existing agents as well. Each leaf goal from the Goal Model was assigned
to an agent. We made sure that every agent had the capacity to assume the
responsibility for that goal. By capacity we mean that every agent could monitor
or control, every single variable appearing in the formal definition of a goal the
agent has to ensure. For further details refer to [5].

However a new agent was introduced : MANAGEMENT UNIT. Its purpose is to
ensure that all the sensors are working properly. It was added for robustness.

Finally the operations needed to operationalize the differents goals were as-
signed to their responsible agents. This step will be explained later in the Op-
eration Model section.

The agents PRECON, ALARM, COMM, DB and Sensor come from [1] though their
names are different from there. PRECON is in charge of the detection of all the
faults that might occur either in the cooling circuit or in the steam condenser.
ALARM takes care of the alarm management. COMM ensures the reliability and the
performance of all the communcication throughout the system. DB stores all the
data persistently and answers all the requests concerning current values of the
sensors, faults and alarms. The Sensor agent acquires the data from the field.
The additional agent – MANAGEMENT UNIT – checks the sensors to see if they work
properly.
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The agents belong to one of two different categories: they are part of the
software-to-be or part of the environment. For example, PRECON belongs to the
former while Sensor belongs to the latter. This distinction in agents results
also in goal differentiation. In fact the goals assigned to environment agents are
expectations while the others are requirements. This led us to the introduction of
the MANAGEMENT UNIT agent. Sensor is an environment agent and so all the goals
assigned to it are expectations. But obviously we canot assume that the goals
SanityCheckPerformed and ConsistencyCheckPerformed will be true without
the intervention of reliable software devices. Moreover these kinds of tests should
not be the responsibitlity of the Sensor from a conceptual point of view.

2.4 Operation Model

The operation model was the the last one to be constructed because it relies on
a precise formal definition of the goals. The operations contained in the model
were derived in such a way that they operationalize some goal present in the goal
model. A complete operationalization of a goal is a set of operations (described
by their pre-, trigger- and postconditions) that guarantee the satisfaction of
that goal if the operations are applied. That is where all the difficulty lies:
finding complete operationalizations. We extensively used the operationalization
patterns described in [4] to derive complete operation specifications. It enabled us
to save a lot of time on proofs. We found the application of the operationalization
pattern very systematic.

Two patterns were particularly useful and we used them numerous times.
The first one is the bounded achieve pattern described in Fig. 3. Its applicabilty
condition (i.e., C ⇒ ♦≤dT ) is pervasive. In fact most of our system’s goals have
that form. The operation specification prescribes that ¬T becomes T as soon as
C ∧ ¬T holds for d − 1 time units. It is then straightforward to see that such a
specification operationalizes the goal C ⇒ ♦≤dT .

The second most useful pattern was the immediate achieve pattern described
in Fig. 4. Its applicability condition prescribes here that the final state T has to
be reached as soon as C becomes true. In this case it is a bit more difficult to
see why the satisfaction of the two operations guarantee the satisfaction of the
goal (the interested reader can find a complete proof in [4]). The first operation

Fig. 3. Bounded achieve operationalization pattern
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Fig. 4. Immediate achieve operationalization pattern

prescribes that as soon C becomes true the operation must be applied if ¬T
holds in order to reach the final state T . The second operation may be applied
when C does not hold if the precondition T is true, making the postcondition
¬T true.

Once all the operations were derived the were assigned to the agent respon-
sible for the goal operationalized by those operations.

3 Architecture Derivations

3.1 Method 1: Axel van Lamsweerde

This method [6] prescribes the use of three different steps: abstract a dataflow
architecture from the KAOS specifications; derive and refine the dataflow using
styles to meet architecturals constraints; refine the resulting architecture using
design patterns to achieve non-functional requirements.

Step 1: Abstract a dataflow architecture The initial architecture is obtained from
data dependencies between the different agents. The agents become software
components while the data dependencies are modelled via dataflow connectors.
The procedure followed is divided into two sub-steps.

1. Each agent that assumes the responsibility of a goal assigned to the software-
to-be becomes a software component together with its operations.

2. For each pair of components C1 and C2, create a dataflow connector between
C1 and C2 if

DataF low(d,C1, C2) ⇔ Controls(C1, d) ∧ Monitors(C2, d) (10)

One can note certain features. Due to the fact that the COMM agent does not
control any variables no arrow comes from it. In fact COMM carries all the data
among the different components but does not do any modifications. Moreover
there is a dataflow connector between PRECON and ALARM while the real dataflow
goes through COMM. This situation also happen between Sensor and Precon. The
real dataflow passes through DB but there is no dataflow derived.

We believe that the underlying cause is the presence of low-level agents – DB
and COMM – performing low-level functionalities – storage and transmission of
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     Transmitted(d,C1,C2)     
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CentralizedCommunicationVia(C)

Distributed(C1,C2)

Fig. 5. Centralized communication architectural style

data respectively – in the requirements. They were however needed to achieve
certain goals. It resulted in a rather strange architecture.

Step 2: Style-based architectural refinement to meet architectural constraints In
this step, the architectural draft obtained from step 1 is refined by imposing a
“suitable” style, that is, a style whose underlying goals matched the architectural
constraints. The main architectural constraint of our system [1, 2] is that all the
components should be distributed. In fact, in the real system, only PRECON had
to be built and integrated in to a pre-existing architecture characterized by
centralized communications and by distributed components.

The only transformation rule mentionned in [6] did not match our architec-
tectural constraints so we had to design a new one on the basis of what was
needed. The resulting transformation rule is shown in Fig. 5.

Once applied to the architecture every single communication is achieved in
a centralized way through the communication module. The architectural con-
straints are now met.

Step 3: Pattern-based architecture refinement to achieve non-functional require-
ments The purpose of this last step is to refine further the architecture to achieve
the non-functionnal requirements. These non-functional requirements (NFGs)
can belong to two different categories: they are either quality-of-service or devel-
opment goals. Quality-of-service goals include, among others, security, accuracy
and usability. Development goals encompass desirable qualities of software such
as MinimumCoupling, MaximumCohesion and reusabilty.



Deriving Architecture Specifications from KAOS Specifications 193

Fig. 6. Fault-tolerant refinement pattern

Fig. 7. Consistency maintainer refinement pattern

This step refines the architecture in a more local way than the previous one.
Patterns are used instead of styles. The procedure is divided further into two
intermediary steps.

1. For each NFG G, identify all the connectors and components G may con-
strain and, if necessary, instantiate G to those connectors and constraints.

2. Apply the refinement pattern matching the NFG to the constrained com-
ponents. If more than one is applicable, select one using some qualitative
technique (e.g., NFG prioritization).

Two refinement patterns were used on our system. The first is presented
in Fig. 6. We wanted to have fault-tolerant communication between PRECON
and ALARM because it is the core of the system. The most critical functions
(i.e., the fault detection and the alarm management) are performed in these
two component. That’s why we wanted to make these modules as resistant as
possible to any kinds of failure. One could note that the pattern was not applied
exactly like it is defined in Fig. 6. The presence of the component COMM between
PRECON and ALARM was however ignored because we believed it had no influence
on the capacity of the pattern to achieve its goal.

The second refinement pattern is shown in Fig. 7. It was introduced be-
cause both Sensor and Management Unit access and modify the same data –
SensorInformation. We wanted to make sure that all the modifications made
from both sides are consistent.

3.2 Method 2: Perry and Brandozzi

This method converts the goal oriented requirement specifications of KAOS into
architectural prescriptions [7, 8, 9].

The components in an architecture prescription can be of three different
types - process, data or connector. Processing components perform transforma-
tions on the data components. Data components contain necessary information
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for processing. The connector components, which can be implemented by data
and/or processing components, provide mechanisms for component interactions.
All components are characterized by goals that they are responsible for. The
interactions and restrictions of these components characterize the system. The
following is a sample component -

Component PRECON
Type Processing
Constraints FaultDetected

RemedyActionSuggested
PeriodicalChecksPerformed&ReportWritten

Composed of FaultDetectionEngine
FaultInformation
FaultDiagnosis
SensorInformation
SensorConnect

Uses /

This example shows a component called PRECON. Type denotes that the
component is a processing component. The constraints are the various goals
realized by PRECON. Composed of defines the subcomponents that implement
PRECON in the next refinement layer. The last attribute Uses, indicates the
components interacted with and the connectors used for their interactions.

There are well defined steps to go from KAOS entities to APL entities. The
following table illustrates possible derivations.

KAOS entities APL entities

Agent Process component / Connector component
Event -
Entity Data component
Relationship Data component
Goal Constraint on the system / on a subset

One or more additional processing, data
or connector components.

In this method we create a component refinement tree for the architecture
prescription from the goal refinement tree of KAOS. This is a three step process
and may be iterated.

Step 1. In the first step we derive the basic prescription from the root goal of
the system and the knowledge of the other systems that it has to interact with.
In this case the software system is responsible for monitoring the power plant.
Thus the root goal is assigned to the processing component ”PowerPlantMoni-
toringSystem”.

This goal is then refined into PRECON, ALARM, DataBase and Communi-
cation components. These refinements are obtained by selecting a specific level
of the goal refinement tree. If we only take the root of the goal refinement tree,
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the prescription would end up being too vague. On the other hand if we pick the
leaves, we may end up with a prescription that is too constrained. Therefore we
pick a certain level of the tree which we feel allows us to create a very well de-
fined prescription while avoiding a specification that overly constrains the lower
level designs.

Step 2. Once the basic architecture is in place, we obtain potential sub compo-
nents of the basic architecture. These are obtained from the objects in KAOS
specification. We derive data, processing and connector components that can
implement PRECON, ALARM, DataBase and Communication components. If
in the third step we don’t assign any constraints to these components, they are
removed from the system’s prescription.

The following are Preskriptor specifications of some candidate objects from
the requirement specifications.

Component Fault
Type Data
Constraints . . .
Composed of . . .

Component FaultInformation
Type Data
Constraints . . .
Composed of . . .

Component SensorConnect
Type Connector
Constraints . . .
Composed of . . .

Component QueryManager
Type Processing
Constraints . . .
Composed of . . .

Since all the components derived from the KAOS’ specification are data, we
need to define various processing and connector components at this stage. At
the next step we decide which of these components would be a part of the final
prescription.

Step 3. In this step we determine which of the sub goals are achieved by the
system and assign them to the previously defined components. With the goal
refinement tree as our reference, we decide which of the potential components
of step two would take responsibilities for the various goals. Note that this is a
design decision made by the architect based on the way he chooses to realize the
system. The components with no constraints are discarded, and we end up with
the first complete prescription of the system.
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Components like Fault were discarded from the prescription because they
were not necessary to achieve the sub goals of the system. Instead of the Fault
component we chose to keep FaultInformation. Different architects may make
different decisions.

It is interesting to note that in our first iteration of the prescription Com-
munication was a leaf connector with no subcomponents. It was responsible for
realizing the necessary communication of the system. However the power plant
communication was not uniform throughout the system. Different goals had dif-
ferent time, connection and security constraints for communication. In our first
iteration we assumed that Communication component could handle these vary-
ing types of requirements on it. However then we realized that replacing the
Communication component by more narrowly focused components was a step
that helped illustrate these differences. Therefore we created the components
UpdateDBConnect, FaultDetectionEngineAlarmManagerConnect and QueryD-
BConnect. As the names suggest, each of these were responsible for the commu-
nication in different parts of the system. Therefore it was easier to illustrate the
different time and security constraints needed for each of these.

The following are the prescriptions for the sub components

Component UpdateDBConnect
Type Connector
Constraints Secure

TimeConstraint = 2 s
Composed of /
Uses /

Component QueryDBConnect
Type Connector
Constraints TimeConstraint = 5 s
Composed of /
Uses /

Component FaultDetectionEngineAlarmManagerConnect
Type Connector
Constraints Fault Tolerant

Secure
TimeConstraint = 1 s

Composed of /
Uses /

Step 4. Achieving non-functional requirements An additional fourth step in the
prescription design process focuses on the non-functional requirements. Goals
like reusability, reliability etc can be achieved by refining the prescription. This
step is iterated till all the non-domain goals are achieved.

For this system we introduced additional constraints on the Database and
the connector between Alarm and Precon (FaultDetectionEngineAlarmManager-
Connect). In the case of Database an additional copy of the Database was in-
troduced to ensure fault tolerance. With the introduction of a copy additional
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issues arose. For example, we needed to ensure that if the main database recov-
ers from a failure, all the changes made on the second database since the failure
should now be made on the main database. Once that’s done the control should
be shifted to the main database. This and several other additional constraints
were thus defined.

As a second step, we also defined two copies of Alarm and Precon. This again
created additional constraints. For example, each time one copy of Precon fails,
the other one should take over without affecting the functioning of Alarm.

Other constraints to be considered include no data lost, sequence preserved,
data transmitted in x time, mediation, transformation, coordination, hardware
interaction, software interaction, human interaction, interoperability, security,
fault tolerance, consistency, recovery, post recovery, retrieval of information, up-
date of information etc.

Step 5. Box diagram Once the architecture was created we added a box diagram
illustrating the various components and connectors. The component tree created
as a result of the three steps did not show how the various components are linked
through the connectors. The box diagram helps in visualizing this and thus gives
a more complete view of the architecture.

4 Problems and Issues

There were some issues common to both architectures. First neither architec-
ture has means of addressing fault tolerance, reliability etc as architectural con-
straints. The architectures are derived only from the goal oriented requirements,
and there is a possibility that for some cases fault tolerance etc may be introduced
for architectural reasons. Neither method has a well defined way of dealing with
this. Secondly, we often had to work with inadequate information on the func-
tioning of the power plant. We were unable to find any information on certain re-
quirements like performance. Therefore performance was not included. However
in a real world power plant system performance is an extremely critical issue.

4.1 Architecture 1

Step 1 proceeded well in generating a useful data flow architecture. However,
in Step 2 where architectural styles are applied, there were only a few sample
styles to look at. The power plant architecture was relatively small and we were
unable to apply many of these styles to the architecture.

The third step requires the use of patterns to achieve non-functional require-
ments. There were various sample patterns given, however the small size of the
power plant architecture limited the choice of patterns to apply. In some cases
the patterns were not well documented so it was difficult to understand their
application. On the other hand there were cases where it was required to apply
two or more patterns to the same components. It was difficult to decide how to
combine the patterns to realize this.
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Fig. 8. Interoperability refinement pattern

Another issue with the architecture was the creation of new components
during the course of the derivation that had no operations. We also had to
create some new connectors that did not have a complete definition.

Fig 8 and fig 6 show how to apply patterns to achieve interoperability and
fault tolerance between components. However it is difficult to see how the pat-
terns would be applied if components C1 and C2 needed to achieve both in-
teroperability and fault tolerance. Another consideration is the order in which
we apply these patterns to achieve a combination matters. There were no clear
guidelines.

We were unable to find suitable patterns for some other non functional re-
quirements. For example, the power plant architecture required certain time
constraints on different functions, but there were not suitable patterns to incor-
porate these time constraints with the architecture.

To achieve fault tolerance some components were replicated as illustrated
in the pattern. It was difficult to determine which and how many components
should be replicated. There wasn’t enough information available on the function-
ing of the power plant to assign higher priority to some components and lower to
others. The final decision was made based on the limited information provided.

An additional problem was illustrating the need to ensure consistency be-
tween the two replicated components. The communication between the compo-
nents would change with the introduction of replicated components; however, it
was difficult to explain how.

The alarm component was replicated since it was critical to ensure smooth
functioning of the power plant. However we could not define the method of
communication between the two copies of alarm, nor the method used to ensure
consistency. It was also difficult to determine how the communication between
Alarm-Operator and Alarm-Communication would change with the presence of
an additional component and how this would change the current connector.

We could not determine the need for interoperability due to the lack of de-
tailed system information.

The final architecture we obtained used a communication component to fa-
cilitate all communication for the system. However the communication between
components often had different features and constraints. There were hardware
connections, software connections, redundant components, different time con-
straints and different reliability constraints. It was not possible to incorporate
these differences in communication in the architecture. One possibility discussed
was to define communication as a connector instead of a component.
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4.2 Architecture 2

Our first hurdle was the very first step. The architect is given a large degree of
freedom in choosing an initial overall structure. While this may be appropriate
for an experienced architect, it was difficult for us to determine how to start
and how much to try to do in the first step. It was also difficult to realize how
much leeway was allowed for each of the steps. We were unable to find sufficient
guidance on the various steps in the process. There were no examples where
we could find both the complete goal tree and the complete component tree.
This would have allowed us to compare the trees and understand better the
progression required to create the architecture. Some of the questions were

– What decisions regarding the architecture are made at step 1. Do we simply
assign a root goal or do we need to anticipate the next steps and have a basic
structure thought out?

– Is it possible to have refinement where the tree had more than three levels?
– If all the sub goals (of a root goal) are realized by a component, does the

root goal (for those sub goals) still need to be assigned to a component?
– Ideally in the second step KAOS objects are used to create sub components.

Was it possible to use agents in this step also? Sensor Management Unit was
an agent that we thought could be made a sub-component. However finally
we used SensorInformation (which was an object) instead.

– Is it possible for a goal (and thus constraints) to be shared between sub
components

Once the architecture was created we also added a box diagram illustrating
the various components and connectors. The component tree created as a result
of the three steps did not show how the various components are linked through
the connectors. The box diagram helped in visualizing this and thus gave a more
complete view of the architecture.

Once we obtained the component tree and the box diagram it provided us
with different views. The tree seemed to indicate a hierarchy whereas the actual
structure is quite different. The box diagram helped us realize the architecture
as a network. Therefore there were different views of the system and structure
based on the way we chose to look at it.

Additionally there were some components in the architecture that had no
connectors. For example the AlarmInformation component under Alarm is a data
component with various constraints on it, however it did not have a connector.

In the component tree and the resulting architecture there is no way to tell the
data that is being passed through a connector. This made the architecture more
difficult to understand. This information is particularly critical to describing
the connectors. An alternative discussed for this problem was the possibility of
having data as a constraint for a connector.

We also considered ways to explore the richness of connectors. Connectors
can have different responsibilities like mediation, transformation and coordina-
tion. This richness would lead to a better design if we could portray this in the
architecture prescription.
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5 Comparison Between the Two Methods

The most significant difference is that the first architecture is more low level.
The components are described together with the operations that they have to
perform creating a more rigid design. The second method uses an architecture
prescription language which tends to be more high level. This allows the designer
to pick a better solution at a low level. However at the same time it provides
less guidance in getting to the solution.

The first method provides a more ’network type’ view showing the various
relationships and interactions between the components. The second method re-
sulted in a component tree which was more hierarchical in nature. We needed an
additional box diagram to better explain the component interaction. However
both views though different were useful.

The first method was more systematic in the beginning. There was a clearly
laid out approach for going from requirements to an architecture. The initial
steps were simple enough to consider the possibility of automation in the future.
However in the second method one of our biggest hurdles was getting past the
first step. It was difficult to determine the basic composition with which to start.
This was probably due to the high level nature of this method.

As we continued with the architecture derivation the first method got a little
more confusing. We had problems choosing the appropriate patterns, and ap-
plying combinations of patterns. There was inadequate documentation on them
to help in the process. On the other hand the second method became more
manageable once we decided on an initial structure.

An interesting difference was that in the first method there were no con-
straints on the various connectors. Instead the focus was on the data that is
passed through those connectors. In the second method we were able to specify
various constraints for each of the connector, but there was no way of specifying
the data that is passed through. In both cases we were unable to specify the
differences possible in the nature of various types of connectors. For example,
connectors for fault tolerant components may provide mediation. There was no
way to specify this in either case.

With respect to non-functional requirements, in the first method we applied
them by choosing the appropriate pattern. However in the second method we
created additional constraints on the components to realize the non-functional
requirements.

The second method takes as input the requirement specifications in KAOS
and provides as output an architecture prescription. Obtaining a architecture
prescription was a challenging process. There were several points where we were
unclear on how to proceed. Therefore some suggestions are proposed in this
section to make the various derivation steps easier to follow. The biggest problem
encountered was with the very first step. It was difficult to determine how much
of the architecture needs to be in place when deciding the first step. We did not
know how to pick the components to determine the root and the second level of
the component tree.
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One way of approaching this is that the root goal of the component tree is
simply the name of the system that is being implemented. In order to determine
the second level of this tree we look at the second level of the goal tree. This
gives a good idea of some of the high level goals of the system. We also look at
some of the main subsystems that the given system would need to interact with
in order to realize these goals.

The next step is to determine how detailed we want the second level of the
component tree to be. We can choose to keep the second step simple which
would typically include basic manager type components and a main connector
component. These components are further spilt into detailed subsystems later.

In the Power plant problem, the subsystems that the main system interacts
with are used to determine the second level components. This makes the second
level of the tree more detailed. In this case - Precon, Alarm and Databases are
the major subsystems that the power plant interacts with so these form the
second level of the component tree. A communication component is also present
to ensure proper communication between these various subsystems. The agents
in the goal model are a way to start looking for the various subsystems involved.
In both cases we looked at agents that are subsystems not agents that are people.

It is important to note that in both processes there is always a connector
element present at the second level

Once the basic tree is in place the remaining steps are easy to follow.
The next problem faced was that the architecture specifies the various con-

nectors in the subsystem. We can specify the constraints on these connectors.
However there is no way to specify the data being passed through them. Various
components do specify the connectors they use however information regarding
the data being passed is absent under the connector description. A data flow
model for this method would be useful in this. Another possibility is specify-
ing data as a constraint for various connectors. Data along with the constraints
would form a complete connector description

Once the component tree was in place it was felt that there was still a missing
element to understand the architecture completely. The component tree gave us
a hierarchical type view of the system; but that was not adequate so we added a
box diagram to give us a network type view. This is essential in understanding
how the system worked. This diagram also helped in understanding the con-
nectors of the system because it told us the way these connectors linked to
components. This thereby helped in getting an understanding of the data that
would be passed through these connectors. Understanding of the data passed is
essential to getting a complete description of the connectors.

6 Conclusions

In this research we took a real world example of a power plant system and
systematically obtained goal-oriented requirement specifications. We then cre-
ated two architectures that satisfy the requirements. We analyzed and compared
the results. Both architectures provided us with different but nonetheless use-
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ful views of the system. We used our example to create further well defined
derivation methods making this critical step of the system design process easier.

Subsequently, this case study became the foundation for two masters theses:
Jani explored how styles and patterns provide some non-functional constraints
such as reliability and fault tolerance in the Perry/Brandozzi approach [12]; and
Vanderveken investigated adding a behavioral view to van Lamsweerde’s KAOS
methods and precisely describing and applying transformation patterns. [13].

A good start, but much further work still needs to be done.
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Abstract. In this paper we present a systematic check of the confor-
mance of the implemented and the intended software architecture. Nowa-
days industry is confronted with rapidly evolving embedded systems. In
order to effectively reuse design artefacts such as requirements, archi-
tectural views and analysis, as well as the code base, it is important to
have a consistent overview in each phase of the development process. In
this paper we propose a conformance check framework that combines a
colloquial engineering model and a conformance check system based on
commodity technology, albeit the model and the system can be used in
their own right. An academic experiment exemplifies the application of
our framework.

1 Introduction

The current trend in embedded systems is product families rather than single
products. Today’s customers appeal to products that have a sense of uniqueness,
products that are compatible but slightly different than those of their friends.
The answer from industry is to set-up flexible product lines, which include a
range of disciplines: from product development to product manufacturing. The
efficacy of these product lines for evolving systems is mainly determined by the
amount and ease of reuse of existing artefacts.

The maintenance phase of a product has always been significant and will
increasingly be so. The growth of the complexity of systems is one reason, the
trend towards product families is another reason. From our participation in two
international industrial research projects [1,2] we learned that new products are
rarely developed from scratch and that reuse of existing development artifacts
is typically ad-hoc [3]. These observations triggered research in the field of con-
formance checking as a first step in enhancing the functionality of a product
or adapting it to a changed environment. The conformance check baselines a
consistent set of development artifacts and as such provides a starting point for
a more structured approach to reuse.

We address the problem of conformance checking by means of a conformance
check framework, describing the necessary steps. In order to be practically appli-
cable in industry, it is required that such a framework suits the development or-
ganisation, builds on proven technology, and that its application is non-intrusive.
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Fig. 1. Aligning architecture intention and implementation realisation

In general conformance checking could be applied on all related artefacts pro-
duced by the different domains of expertise in the software development process.
In this paper we focus on the coordination between the domains of architecture
and implementation.

The communication between the two domains is through views that are as-
sociated with a viewpoint [4], addressing a specific set of concerns. Views are de-
veloped in the architecture domain of expertise to specify the intentions, design
restrictions, and design permissions for the eventual product implementation,
i.e., the design space of Figure 1. Views can also be generated in the implemen-
tation domain of expertise [5]. These views predicate the properties of the actual
implementation from an architectural perspective.

When views from the architecture and implementation domain are associ-
ated with a common viewpoint it is possible to identify discrepancies between
the intended and implemented architecture. In Figure 1 there is apparently a
mismatch, which can be resolved by either updating the architecture or the im-
plementation. However, the semantic gap between the elements and relations
used in architectural views and the programming language constructs available
to implement them makes it difficult to reconstruct a view associated with an
architectural viewpoint from an implementation.

In this paper we propose and experiment with, a conformance check frame-
work (ccf) that combines a colloquial engineering model and a conformance
check system (ccs). The ccs facilitates conformance checks through the defi-
nition of a design-space conformance viewpoint bridging the semantic gap be-
tween the implementation and architecture domain. Views associated with this
viewpoint can be generated from the implementation and derived from the ar-
chitectural views. The engineering model takes an architectural view on product
development. It is based on the two principal categories of views described in
literature [6,7,8]: runtime views and development views. We consider views from
both categories in our experiments to attain a good coverage of the difficulties
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Fig. 2. Digital music box reader system

and possibilities of determining architectural conformance. We implemented the
ccs using existing technology. Our experiments demonstrate the definition of
conformance viewpoints and the visualisation of discrepancies between the in-
tended (specified) architecture and the implemented (predicated) architecture.
The ccf emphasises the role of conformance checks for maintainability of op-
erational systems. Because of our academic interests, part of the result of our
treatise will be an agenda for further research.

This paper is organised as follows. This introduction is concluded with the
presentation of a running example. In Section 2 we present our conformance
check framework, the two principal categories of views of the ccf and their
relation are treated in detail in Section 3. Section 4 is devoted to a case study
where we systematically conform a viewpoint from the set of runtime views and
a viewpoint from the set of development views, thus implementing the ccs. In
Section 5 we discuss our ccf, the applied technology, and related work. Finally,
Section 6 presents conclusions on our work.

1.1 Running Example

The running example in this paper is the development of an academic system: a
digital music box (dmb) that reads data from a paper disc (record). The record is
a plotted spiral track of pulse-width modulated data bits. The disc rotates with
a constant speed. The system tracks the spiral, reads the data bits, and then
maps those bits to symbols. A string of symbols will be fed to an output device
that transforms the string into audible music. Here we focus on the process of
reading the record and the generation of the symbol stream. The physical system
is composed of a traditional turn table and a set of simple light sensors that can
be moved axially by a motor; the control is implemented on a simple micro
controller. The controller is programmed in Java. Figure 2 gives an overview of
the reader system.



206 H.W. van Dijk, B. Graaf, and R. Boerman

2 Conformance Check Framework

Architecture is typically described using different views each addressing a dif-
ferent set of concerns. We therefore need to be explicit about the architectural
view involved in the conformance check. For this purpose our framework in-
cludes an engineering model that involves the two principle categories of views
for conformance checking: development views and runtime views. The model
is complemented with a strategy for conformance checking and a generic con-
formance check system. The latter can be implemented with readily available
technology.

2.1 Engineering Model

Our engineering model shows the architectural views involved in a product’s life
cycle. To position our engineering model, we consider a generic product model
for embedded system development: the Vorgehensmodell (V-model [9]).

The V-model binds the analysis or design activities of product development
with the synthesis or integration activities. Given a context with changing re-
quirements and environment, and where new products are not developed from
scratch, it is essential that the process model facilitates flexible interactions be-
tween different domains of expertise in the software development process. Thus
generally, specifications flow forward from analysis to synthesis, whereas the re-
turn flow from synthesis to analysis carries predicated properties of the system.

We take an architecture centric position to product development. The ar-
chitecture of a system provides a reasoning framework of that system; it is a
common understanding of the involved stakeholders. Ideally the architecture
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explicitly rationalises all important design decisions, in practice however archi-
tecture documentation mainly concerns the structural effects, manifested in the
graphical presentation of the different architectural views [6, 4, 8].

The understanding of the working system takes a central position in the
communication among stakeholders. This is indicated by the central role of the
runtime view in Figure 3. The process view in Kruchten’s “4+1” view model [6];
the different component-and-connector (c&c) views described in [8]; and also
data and control flow diagrams known from structured analysis and design meth-
ods are all known examples of views that capture the structural organisation of
a working system. Runtime views address the question: how does the system
work? In order to arrive at a system functioning as presented in the runtime
views, the periphery of the runtime views consists of views driving the actual im-
plementation of software and hardware. Those views that capture the structural
organisation of the implementation units are known as the set of development
views and address the question (concern): how is the system developed? Exam-
ples of development views on the organisation of the software implementation
units (modules) are decomposition views and uses views [8].

The compilation configuration, indicated by the double arrows in Figure 3,
describes the integration of the constituent elements of a system, as described
in the development views, into the working system, as described by the runtime
views. It specifies the allocation of software modules of a development view to
components of a runtime view and it additionally describes the allocation of that
component to a hardware unit of the appropriate development view.

Figure 4 situates our engineering model in the V-model. It shows the two
principal sets of views (the runtime view and the development view) and their
configuration. Obviously development views are mainly used during coding and
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implementation, runtime views are used to operate the system, compile config-
urations are used during the system integration (compilation) phase.

2.2 Conformance

Our engineering model suggests to check views from the set of runtime and
development views, in order to arrive at a sufficient coverage of discrepancy
detection between the specified and implemented system. A distinct constraint
for a practical implementation of a conformance check system is the prevention of
interference with ordinary system development. Therefore we regard the domains
of architecture and implementation as autonomous activities, circumventing the
use of an integrated development model.

practice, the implementation and architecture domains differ considerably
with respect to the level of detail at which the involved concepts are defined.
Implementation level constructs can be defined formally. At least there is a
compiler that deterministically attaches meaning to implementation concepts.
In the architecture domain, however, concepts do not typically have a universal,
unambiguous meaning and their semantics is only specified, if at all explicitly,
informally. Taking into account the fact that architectural decisions are typically
made in the early phase in a product’s life-cycle, we consider this a virtue of the
architecture domain.

A conformance check between a specification and predication among two do-
mains of expertise without affecting them requires the definition of a common
viewpoint. The semantics of such a design-space conformance viewpoint must be
clearly interpretable by both domains of expertise. Thus there must be a bidi-
rectional mapping between the design-space conformance view and the domain-
specific views. Mismatches between the design-space conformance views derived
from the two domains-specific views identify potential discrepancies, or architec-
ture violations. Whether a mismatch indeed implies a discrepancy involves more
detailed knowledge of the relevant design decisions.

In Section 3 we develop design-space conformance viewpoints for a runtime
view and a development view, plus their respective mappings from a typical
set of architectural views and implementation views. Although implementation
will mainly use the development views, it must obey the runtime views so as
to facilitate their proper implementation in later stages of the product’s life
time. Predicated properties of the realised system contain the evidence that the
development view has been properly implemented and that the runtime views
can be realised in later stages of the product’s life time. Our conformance check
system (Section 2.3) gathers and extracts the specifications and the attributes
in terms of the predefined conformance viewpoints, checks their conformance,
and visualises the result.

In this paper we consider the architectural view as leading. From the per-
spective of an implementation there are three important situations for any entity
or relation: covered, excess, and deficit [10]. A covered relation (or entity) has a
corresponding relation in the architecture domain. An excess relation only exists
in the implementation domain and a deficit relation only exists in the architec-
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ture domain. The result of a conformance check is a set of entities and relations
that are attributed according to the three types above; the significance of mis-
matches found depends in general on the involved design decisions. Therefore
discovery of mismatches should serve as a trigger to investigate further if they
are allowed and possibly documented elsewhere. If not, they are considered to
be discrepancies that reduce the conceptual integrity of a system and may result
in unexpected dependencies, reducing the system’s maintainability.

A conformance check can be used to evaluate specific concerns. As an ex-
ample, we can locate the set of design-decision related to a selected quality
attribute. The set of design decision determines a set affected views. This set of
views can be used to define a design-space conformance view, the set of design
decisions determines the impact of possible discrepancies found during a confor-
mance check. An alternative use is to incorporate a conformance check in the
system integration test set of a product, e.g., as part of the nightly build process.

2.3 Conformance Check System

The conceptual conformance check system (ccs) of Figure 5 outlines the pro-
cess to identify discrepancies. A fact extractor derives views, associated with
the design-space conformance viewpoint, from architecture and implementation
domain artefacts. The subsequent comparison of the derived design-space con-
formance views is done based on a set of comparison rules. These rules are used
for simple graph matching to identify mismatches, and more involved for se-
lecting those mismatches that are actually related to discrepancies. Finally, a
presentation filter visualises the comparison results.

Comparison
rules

Comparator

Fact
Extractor

Fact
Extractor

Architecture Implementation

Presentation Visual

Conformance
viewpoint

Fig. 5. Conceptual ccs

3 Deriving Conformance Viewpoints

In this section we describe how design-space conformance viewpoints can be de-
rived for the two principle categories of architectural viewpoints. In particular
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we consider suitable (informal) semantics of the conformance viewpoints, their
checkable mismatches, and their respective mappings from both the implemen-
tation and the architecture domain viewpoints.

3.1 Development Views

A development view describes a decomposition of the system in terms of imple-
mentation (e.g. source code) units, often called modules, and their dependencies.
These modules, supposedly coherent units of functionality, are eventually as-
signed to development teams. Dependency relations between the modules of a de-
velopment view are important, several types of them exists such as uses, allowed-
to-use, and shares-data-with relations. Here we will focus on use dependencies.

Figure 6 depicts a development view of the digital music box architecture of
Section 1.1 that reveals the use dependencies between the different modules. This
view is part of the specification of the system, resulting from the architecting
phase. The chosen viewpoint contains a module element and a use dependency
relation, both indicated by UML stereotypes.

+ reset: void

+ start:void
+ stop:void

<<module>>
.appLayer.Playercontrol

+ start:void
+ stop:void

<<module>>
.funcLayer.armControl

+ start:void
+ stop:void

<<module>>
.funcLayer.diskReader

+ getSpeed:void

<<module>>
.hwLayer.speedSensor

+ setSpeed:void

<<module>>
.hwLayer.transMotor

+ getBit:void

<<module>>
.hwLayer.dataSensor

+ getAccuracy:void

<<module>>
.hwLayer.trackSensor

<<uses>><<uses>><<uses>>

<<uses>> <<uses>>

<<uses>><<uses>>

Fig. 6. Uses (module) view

Typically the implementation-level modularisation constructs do not match
one-to-one with the architecture-level modules. Implementation engineers typi-
cally have reasons to further refine the provided decomposition of the develop-
ment views. This is safe, provided the decomposition is registered, e.g., anno-
tated. A simple, yet sufficient, method is to augment the implementation with
belongs-to clauses that associate decomposed subsystems with a module of the
architectural uses view. With the advent of integrated development environ-
ments dealing with these annotations is simple. Eclipse could, for instance, be
easily changed such that this information is requested from the programmer in
the wizard for defining a new class. Subsequently this information could be in-
cluded in the header of the skeleton code generated by the wizard. The belongs-to
clauses can be automatically retrieved during the fact extraction phase. Gather-
ing these facts yields a design-space conformance view consisting of aggregates
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of implementation units. As an example consider Listing where the following
belongs-to relations are defined: BelongsTo(X;A), BelongsTo(Y ;B,C).

Next to modules a uses view defines use relations [8]. The mere wording
of use has conflicting interpretations [11]. As we strive for a clear definition of
viewpoints, the meaning of “use” has to be clearly defined in order to determine
the existence or possibly inexistence of a particular use relation. We start with
the definition given by Clements et al [8]: “Unit A is said to use unit B if A’s
correctness depends on a correct implementation of B being present.”

We take a pragmatic position by mapping the architectural use relation to
a checkable tuple: a link plus an action that effectuates the link. The link is a
reference to the used module and the action can be anything from a function
call to an attribute access. This design-space conformance viewpoint only cov-
ers part of the architectural concept of using, as it does not take into account
that the used module needs to be implemented correctly, it merely requires it to
be present. Furthermore the architectural uses dependency does not necessar-
ily require a direct reference in the implementation; more complicated indirect
dependencies can also correspond to a use relation. In fact the design-space
viewpoint captures calls and shares-date-with dependency relations, which are
different specialisations of the depends-on relation.

A link from module X to module Y typically emerges as a reference, e.g., a
declaration of an attribute of type B in class A, where A and B belong to X and
Y respectively. The necessary action is determined by a method invocation or
attribute access of that reference. Combining the links, actions and belongs-to
relations, the example of Listing 1 contains the following use relations, as defined

1

// @belongsTo module X
Class A {

private B objB;
void A() {

B = new B();
}
void doA(C objC ) {

B.doB( C );
}

}

// @belongsTo module Y
Class B {

void doB( C objC ) {
C.doC();

}
}

// @belongsTo module Y
Class C {

private A objA;
void doC() {

// stub
}

}

Listing 1. Sample source code
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by the design-space conformance viewpoint: Uses(Y ;X) and Uses(Y ;Y ). The
absence of a relation is not a property (fact), e.g. NotUses(X;Y ).

3.2 Runtime Views

Runtime views on software architectures are frequently specified using component-
and-connector (c&c) views [8]. The box-and-line diagrams created early during
software design, usually are c&c type of views. c&c views are detailed run-
time views addressing concerns such as concurrency and flow of data. Architec-
tural components are loci of computation and state. Architectural connectors
are loci of interaction. Both are architectural abstractions of elements that con-
sume resources, either processing time or memory. A complete c&c view is an
abstraction of a system during runtime.

To describe c&c views we adhere to the terminology of architecture descrip-
tion languages (ADL), e.g., [12]. Typically in c&c views components are associ-
ated with the connectors by means of attachments. Components and connectors
habitat processes that interact with their environment through associated inter-
faces. In case of a component the interface is called a port, whereas in case of
connector we call it a role. In order to establish interaction between two compo-
nents over a connector we can attach component ports to connector roles, with
the limitation that an attachment is only allowed if the component interacts
using the port as interface and according to the expectations described by the
connector role, i.e. port and role need to be compatible.

Figure 7 depicts a runtime view of the digital music box architecture of
Section 1.1. It shows concurrently executing components as communicating-
processes. The components interact through different types of connectors. Al-
though UML is not the preferred modelling language, mapping of ADL con-
structs to UML is sometimes awkward, it can be done [13, 14]. Following an
approach proposed by Garlan et. al. in [14], we represent component types and
components by classes and objects, connectors by links (labelled with connector
type names), and ports by link-roles (labelled with port type names). As we are
only using relatively simple connectors we do not consider connector roles.

Components, ports, connectors, and roles are architectural concepts that may
or may not have explicit counterparts in the development views or implemen-
tation. Source code is not merely a refinement of these architectural elements
as in the case of development views, making the mapping between the archi-
tecture runtime views and implementation domain constructs indirect and more
difficult.

The main concern of the c&c view in Figure 7 is concurrency. For such a
view the components, processes, correspond to implementation mechanisms for
concurrency and parallelism, such as processes, threads and tasks. For example
in the case of a system implemented in Java, a component corresponds to a
subclass of the thread class and all other classes it instantiates.

Connectors correspond to the mechanisms that allow these threads and tasks
to interact, for instance inter-process-communication mechanisms, remote-proce-
dure calls, or shared-data. As opposed to the architectural connectors these im-
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Fig. 7. Communicating-processes view

plementation-level communication constructs have an obvious direction. There-
fore in the design-space conformance view we add a direction to the connectors
defined in the architectural view. We need to consult the architect or the archi-
tecture documentation to discover the intentions. For message-based connectors
the direction corresponds to the direction of the first message, i.e. from the
component initiating the interaction to the other component. The direction of
shared-data connectors is from the component writing in the shared-data to the
component reading from the shared-data, assuming that components do not read
and write to the shared-data, which in our case was a valid assumption.

4 An XML Implementation of the ccs

Our sample implementation of the ccs, depicted in Figure 8, uses readily avail-
able XML technology; the Xlinkit toolkit is the heart of our ccs.

Fact extraction involves two steps: a transformation of the sources (archi-
tecture and source code documents) onto XML format followed with a filtering
and interpretation operation to populate the design-space viewpoint. In our ex-
periment, the architecture has been described in UML, using its accompanying
XML schema: XMI. The implementation has been coded in Java. The (static)
facts about the implementation reside in the Abstract Syntax Tree (AST), which
can be retrieved by replacing the code generation back end of a compiler. In this
case we used an XML specification JavaML [15] that is generated by a patched
version of the Jikes compiler. Similar technology is available for many other
programming languages [16].
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XMI−UML

viewpoint
Conformance

JavaML

Architecture:

− mappings
− views

Implementation:
− sources
− annotations

Comparator:
Xlinkit

Presentation:
XSLT

Visual:

GraphML

Xlinkit
Fact Extractor:

Xlinkit
Fact Extractor:

Comparison
rules: CLIX

Fig. 8. Implementation of ccs

The filtering operation uses the Xlinkit technology [17] as a lightweight
rule-based link generation tool. It combines current XML technology such as
XPath, Xlink, and XSLT. The Xlinkit rules that map architecture and imple-
mentation domain facts to the design-space conformance viewpoint (see Sec. 3)
Figure 8, are specified in so-called CLIX [18] constructs.

The Xlinkit tool is also used as a comparator in the ccs. It takes the XML
representations of the design-space conformance views and a set of CLIX com-
parison rules, which identify possible mismatches between the extracted confor-
mance views and subsequently identify those mismatches that actually involve
discrepancies. The result is a set of Xlink hyperlinks between the two confor-
mance views. The comparison rules basically check the semantic consistency of
the two design-space conformance views. The hyperlinks either represent evi-
dence of a correct (covered relation) or an incorrect (deficit or excess relation)
interpretation of the architectural views by the implementation domain.

Finally the information presentation phase takes the hyperlinks and produces
a visual representation. This is done with an XSLT transformation engine. The
result is in our case a graph, which is specified in GraphML, a flexible XML
schema. Graph visualisation and layout tools are indispensable for the interpre-
tation of the results, here we used graphviz and Yed.

4.1 Development Views

The uses view of Figure 6 was one input of the ccs. Derivation of the design-space
conformance view from this UML model is straightforward because of the use
of stereotypes to denote modules and use relations. Simple XPath expressions
suffice to generate a canonical XML model for the following phases in the ccs.
A visual representation, through XSLT, is given in Figure 9(a).



On the Systematic Conformance Check of Software Artefacts 215

hwlayer::
DataSensor

hwlayer::
TransMotor

applicationlayer::
PlayerControl

functionlayer::
DiskReader

hwlayer::
SpeedSensor

hwlayer::
TrackSensor

functionlayer::
ArmControl

DataSensor TransMotor

PlayerControl

DiskReader

uses

ArmControl

uses

uses

SpeedSensor

uses

TrackSensor

usesuses uses

(a) Architecture

uilayer::
PlayerControl

applicationlayer::
OutputControl

functionlayer::
NotePlayer

functionlayer::
ArmControl

functionlayer::
DiscReader

hwlayer::
TrackSensor

hwlayer::
TransMotor

hwlayer::
DataSensor

PlayerControl

ArmControl DiscReader

OutputControl

NotePlayer

TrackSensor TransMotor DataSensor

(b) Implementation

Fig. 9. Uses views

Recovering the design-space use-view from the implementation involves the
interpretation of Java language constructs and the belongs−to annotations. Lo-
cating a module is simply done by retrieving the belongs−to attribute of identi-
fied classes in the sources. Locating a use-relation is more involved however. We
demand access from a source class to a target class. It is insufficient for a source
class to only maintain a reference to a target class or invoke a constructor for that
target. Access involves the explicit invocation of a method in the target class or
a field update of the target class. The CLIX expression to identify access is not
very elegant, merely enumerating all possibilities. The resulting visualisation is
given in Figure 9(b).

The comparison phase of the ccs co-locates facts from the conformance views
extracted from the architecture and implementation domains. It binds entities
from both domains through their names and determines covered, excess, and
deficit relations. Note that in the current implementation we determine manually
which mismatches actually involve discrepancies.

In the presentation phase of our ccs we map the entities and relations to a
graph in which covered, excess, and deficit relations are coloured and shaped.
The result is in Figure 10. The trapezoid shaped vertices and the edges with
open delta arrowheads represent the deficit entities and relations respectively.
Partly these relations originate from name mismatches, e.g. DiskReader and
DiscReader. One entity has not been implemented: the SpeedSensor. The paral-
lelepiped shaped vertices and the closed delta arrowheads represent the excess re-
lations, e.g, showing name mismatches. But also real excessive relations emerge:
NotePlayer and OutputControl. The covered relations use boxed vertices and
sharp short arrowheads on the edges.

4.2 Runtime Views

The design-space conformance views resulting from the fact extraction in the
architecture domain is given in Figure 11(a). It corresponds to the component-
and-connector view in Figure 7. As explained in Section 3.2 we necessarily added
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Fig. 10. Uses conformance view

direction to the connectors. In the design-space conformance view we represent
components by rectangles and connectors by ellipses with arrows to indicate the
direction.

Creating a c&c view from static sources is very application specific. For the
transformation of sources to XML of the data gathering phase we use the same
technology as for the development view. The filtering stage is now a multi-stage
approach that extracts, combines, and interprets facts by cascading Xlinkit
extracted reports. In this case we used two stages.

The first stage extracts associations from the source code and identifies au-
tonomous threads of control. The associations identification reuses the CLIX
rules of the static case. Autonomous threads are, in this case, defined as classes
with a main-method or classes that extend the Java thread class. The second
stage gathers the actual instantiated threads as well as interaction between
thread instances. We recognise two types of communication links: a method
call and a buffered stream with read and write access. The resulting graph is
given in Figure 11(b).

Comparing the c&c runtime views of Figure 11 involves as before merg-
ing the namespaces. We have multiple mismatches here, as the names in the
source code are derived from the names used in the development view. Further-
more implementation-level constructs used to implement interaction are often
not named, e.g. procedure calls. Subsequently the components, connectors, and
ports must be identified. Since the recovered c&c views from the sources lack
ports and roles altogether we transform the conformance view by inserting ports
and roles when appropriate. Comparing the design-space views results in the
identification of covered, excess, and deficit constructs.
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Fig. 11. c&c views

The resulting diagram is not shown, but considering the namespace mapping
of the components (output 7→ OutputControl, read 7→ DiscReader, track 7→
ArmControl, and trackMotor 7→ TransMotor) of the two views in Figure 11 it is
immediate that the connectors are more detailed in Figure 11(b). This is because
it shows the different occurrences of interaction over each connector separately.
Furthermore the PlayerControl component is an excess component not present
in the architecture specification. It was intended as a connector between the read
and track components, however in the implementation it included handling user
interaction for which it required a separate thread.

5 Discussion

In this section we discuss issues that emerged in the execution of the experiment
of the previous section.
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Consistency and Technology Imperfections. The architectural views are
expressed in UML, using stereotypes to identify modules and use dependen-
cies. However, the current version of UML cannot enforce the consistent use
of stereotypes, which potentially may yield false alerts in our ccs. Additionally
UML does not offer support to conveniently specify all elements of component-
and-connector views. For instance, the style we used to describe the component-
and-connector views in UML does not represent connectors as first-class UML
modelling elements, making it inconvenient to specify connector types and prop-
erties. The forthcoming UML 2.0 standard expectedly has better support for
specifying software architectures.

Similarly, extracting the uses conformance view from the sources too depends
on the applied (programming) style, e.g. usage of patterns, coding conventions,
and so forth. Our systematic approach to conformance can be extended partly to
the domain of consistency verification. Modelling style and programming style
violations can be captured in rules that when checked provide insight in the
overall consistency of the design or implementation [19] with respect to these
rules. It is generally accepted that consistency is a desirable quality attribute.

There are two more unfortunates with our method of identifying use relations
in the implementation domain. First it is unclear whether the implemented enu-
meration to locate use relations is complete and second the applied XPath
technology does not support a transitive closure function, which is necessary to
handle nested access (e.g. A.B.C.foo()). The required breadth of the enumera-
tion depends again on the programming style. For instance, the use of getter
and setter methods circumvents the need to look for direct field access.

Intriguing research questions are to what extent we can include consistency
checks in the mapping from the architecture and implementation domain views
to the design-space conformance views and whether we can circumvent the need
of enumerations in rules. The latter could be realised, for instance, by using
canonical (intermediate) representations of artefacts?

Conformance Interpretation . In the conformance phase of the ccs, we merge
the namespaces of the architecture and implementation domains. The current
implementation uses string matching. Because of the human in the loop this
is a workable situation. An alternative approach for string matching would be
a graph matching and merging approach, in theory, because these algorithms
execute in non-polynomial time. Graph matching thus automatically retrieves
part of the mappings from the architecture and implementation domains to the
design-space conformance viewpoint, e.g., compare the Figures 11 and 7.

Conformance checking identified covered, excess, and deficit constructs. This
seems a sensible situation. However situations may occur that require more de-
tail, i.e., specialisation of the identified constructs; an excess construct, for in-
stance, may emerge due to namespace mismatches.

Research questions here involve means to specify, and possibly automatically
resolve, conformance check results.
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System Dynamics. Our ccf does not address the behaviour of the imple-
mented system. Although various formalisms exist to describe the intended be-
haviour of a system, e.g., csp and statecharts, these are not commonly used in
practice [3]. Requiring such a view would therefore interfere with our prerequisite
to develop a non-intrusive method for conformance checking. Furthermore, we
use static views derived from the source whereas proper validation of the correct
behaviour requires run-time information.

The runtime view conformance check has been executed based on a straight-
forward static code evaluation. This approach has drawbacks. Simple static eval-
uations consider the entire design space, including configurations that will not be
reached in reality. Another option is to use run-time evaluations, however such
a method is confined to the set of configurations of the executed test set. Al-
ternatively sophisticated parsing and graph rewriting techniques could be used.
In our implementation we rely on the consistent use of an architecture model
with carefully chosen naming conventions. This yields static attachments that
reveal the system configuration in the parse tree. Dynamic attachments cannot
be retrieved this way.

The research question here is to find flexible parsing and logical reasoning
techniques, maybe in combination with the use of runtime information.

More Related Work . Conformance checking is a systematic and quantitative
approach that gives an indication of maintainability, whereas better known archi-
tecture evaluation methods such as scenario-based assessment methods (see [20])
and inspection methods (see [21]) are qualitative methods.

Methods for systematic architectural conformance checking have indepen-
dently been compared in [22] and [23]. They categorise methods for architec-
tural conformance checking, such as software reflexion methods [10] and their
own expressive methods. In [22] design-space viewpoints are defined in a re-
lational partition algebra, whereas in [23] a logic meta-modelling technique is
used. Our ccf adopts the pragmatics of the efficient methods, while introducing
a semantic interpretation of available artefacts.

An alternative would involve the use a code generation framework, such as
the Ptolemy framework [24], extend the implementation language with architec-
tural constructs as was done in ArchJava [25], or use an MDA-approach [26].
Such an approach directly connects architecture to implementation, improving
consistency between the domains. However, this requires at least a change in
the way of working of the implementation domain; it has to use a new language.
This poses a barrier for implementing such an approach in practical settings.

6 Conclusions

In this paper we propose a conformance check framework (ccf) that systemati-
cally determines discrepancies between an intended architecture and the realised
architecture. Illuminating these differences is a preparatory step for architecture-
driven maintenance and evolution in which previously developed artefacts are
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reused for reasons of efficiency. Our ccf is non-intrusive. It coordinates the in-
teraction between the architecture and the implementation domain of expertise,
while regarding them autonomously. It uses readily available, possibly tailored,
technology for the actual implementation of the conformance check system (ccs).

The ccf combines a colloquial engineering model and the ccs. The engi-
neering model defines two principal categories of views on a system: runtime
and development views. Checking the conformance of views from both cate-
gories requires different type of approaches. The engineering model also defines
the concepts of the ccs. Two domains of expertise that independently develop
view-based reasoning frameworks and a common design-space conformance view-
point. The ccs relies on a clear definition of the design-space viewpoint and the
mappings from the architectural and implementation views to this common con-
formance viewpoint.

The design-space viewpoint captures checkable concepts, which are the con-
sensus between verifying abstract properties of the architecture domain and
emerging properties of the implementation domain. Possible discrepancies be-
tween the domains are revealed as mismatches between the derived design-space
conformance views and the impact of a mismatch on either of the domains;
the severity of a mismatch is identified as part of the transformation from a
domain specific viewpoint to the design-space viewpoint. We gave examples of
design-space viewpoints for two principal categories of views and their mappings
from architecture and implementation artefacts to this design-space viewpoint.
The case study we executed uses and configures XML technology. Although the
results are promising we encountered intriguing research questions, such as to
what extent we can include consistency checks in ccf and how to use parsing
and logic reasoning technology to implement the ccs.
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Abstract. Documenting software architectures is a key aspect to achieve suc-
cess when communicating the architecture to different stakeholders. Several ar-
chitectural views have been used with different purposes during the design 
process. The traditional view on software architecture defines this in terms of 
components and connectors. Also, the “4+1” view model proposes several 
views from the same design to satisfy the interests of the different stakeholders 
involved in the modelling process. In this position paper we try to go a step be-
yond previous proposals, to detail the idea of considering the architecture as a 
composition of architectural design decisions. We will propose a set of ele-
ments, information and graphical notation to record the design decisions during 
the modelling process.    

1   Introduction 

For years, the field of software architecture has been growing in width and depth; as 
key cornerstones of this evolution we could cite the discovery of architectural pat-
terns, the agreed definition of software architecture in itself, the increasingly adopted 
lexical support for them (UML, for example), the generation of educated architects, 
the application of software architecture principles to the development of sets of sys-
tems (product lines and families), and so on. Very recently, the scope of work in the 
field has been widening even more by identifying quality attributes and their impact 
on the architecture of the systems, applying the architectures to distributed systems, 
and pieces in architecture that support the medium-term evolution of systems. 

However, very recently the software architecture community has been facing its 
own limitations. The practical implementation of systems following the architectural 
approach proposed by this community is getting more and more complex, up to the 
extent of rendering the application of architectural approaches useless. Just an exam-
ple of this fact is the perceived complexity (and instability) in the usage of platforms 
for enterprise computing; technologies such as J2EE have been available for several 
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years, but obtaining their promised benefits in practice seems still far of the average 
architect. Even more problems appear in the maintenance phase, due to the lack of 
explicit support for architectural decisions, as shown in [9].  

In this position paper, we recall part of the original definitions of the software ar-
chitecture [14][15], just to discover how poor has been supported one part of the ar-
chitecting process. We also claim that the lack of coverage of this part of the architec-
ture has lead to unmanageable complex architectures (such as those mentioned be-
fore); we propose to add some lexical support for this kind of key architectural infor-
mation missed. At the far end of this vision, is the understanding of the architectural 
process as a decision making –and therefore a social and communication- process. Let 
us face it: building software architectures is taking design decisions but, once the 
architecture is there, these decisions evaporate. 

2   Software Architecture Description 

The software architecture of a system can be defined, using a well-known classical 
definition [15] as the structure of components, their relationships, and the principles 
and guidelines governing their design and evolution over time. 

As for the representation of a system architecture composed by components and 
connectors, several graphical notations have been used, including UML. Also, differ-
ent architecture description languages (ADL) (e.g.: ACME, C2, Wright, etc.) have 
been proposed and used to formalize the graphical notations describing the architec-
ture. The need to describe the architectural products from different points of view [10] 
depending of the context and interests of the variety of stakeholders involved in the 
process has lead to define several views for each context and stakeholder. In this way, 
Kruchten’s proposal [13] defines “4+1” views representing different viewpoints. 
These viewpoints shown in figure 1 are the following: 

• Logical view: Represents an object-oriented decomposition of the design 
supporting the functional requirements of the future system. 

• Process view: Represents the concurrency and synchronization aspects of 
the design and some non-functional requirements. Distribution aspects and 
processes (i.e.: executable units) of the systems as well as the tasks are rep-
resented in the process view. 

• Physical view: Represents the mapping of the software onto hardware 
pieces. Non-functional requirements are represented in this view and the 
software subsystems are represented through processing nodes. 

• Development view: Represents the static organization of the software in its 
environment. The development architecture view organizes software subsys-
tems into packages in a hierarchy or layers. The responsibility of each layer 
is defined in the development view. 

• Use case view: Represents the scenarios that reflect the process associated 
to a set of system’s requirements. This view is redundant to the previous 
ones but it serves to discover architectural elements and for validation pur-
poses. 
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Fig. 1. The “4+1” view model (Kruchten) 

The correspondence between the views of figure 1 can be performed to connect 
elements from one view to another. There are other classifications of views to be 
taken into account, and some of them have received widespread attention by the 
community of practitioners in the area (see [8] and [17]). In addition to this, other 
authors [12] propose a viewtype of the architecture associated to aspects. These au-
thors introduce a conceptual model called aspect architecture which is considered as 
a software architecture viewtype. They propose a new UML diagram type called 
“concerns diagram” for modelling architectural views of aspects. Finally, in [5] the 
authors mention a new classification for architectural views called viewtypes for 
documenting purposes. A viewtype defines the types of elements and relationships 
used to describe the architecture from a particular point of view or perspective. More 
than defining new architectural views, they [5] try to modernize and make clear for 
the stakeholders the documentation generated during the architectural construction 
process. Also, they mention the need to record the rationale of the design decisions as 
part of the information needed when documenting software architectures but they do 
not mention how to record these design decisions in order to be used afterwards if 
needed. 

The architectural construction process involves several elements and aspects for 
which the resultant software architecture constitutes the most visible part of the over-
all design process. Software projects involve several actors or stakeholders during the 
project lifecycle and the “view” of these stakeholders is quite different for each them. 
Therefore, the need to represent different views or viewpoints at the design level is a 
usual task [8].  

There are many situations such as: the loss or non-existence of designs, reengineer-
ing legacy systems, evolution of architectural products, or even changes in the devel-
opment team; in which it is mandatory to record the design decisions from which the 
software architecture was obtained at a first instance. Design decisions represent the 
cornerstone to obtain suitable software architectures because they represent the ra-
tionale that motivated the election of architectural patterns and styles, the functional 
blocks that represent systems and subsystems in the architecture, the relationships 
among them and the control of the architecture. Our position in this paper and follow-
ing recent proposals [3] is to modernize the concept of software architecture making 
the design decisions explicit, and adding them a “new” viewpoint respect to the tradi-
tional approaches. Our proposal tries to detail the representation of this decision view 
in the architectural construction process. The traditional views of software architec-
ture provide information enough to understand the pieces of the system under devel-
opment, and also information useful to trace the requirements and features the system 
must fulfill, but, to date, there is no information about why a certain component or 
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connector has been chosen, nor why other similar elements have been rejected in the 
architecture. Is this information about the “why” what we try to represent in the deci-
sion view. 

3   Requirements for the Decision View in Software Architecture 

Again on the software architecture definition, we have seen that the structure of the 
system’s components and relationships is described using the traditional architectural 
views. Also in the software architecture there are “principles and guidelines” that are 
out of the scope of the traditional architectural views. Since the information about 
principles and guidelines is still required to create the system, current practice is to 
create natural language documentation (or even worse, keep the knowledge on the 
architects’ minds). 

But even for these less traditional topics there are proposals worth taking into ac-
count, although most of them come from the domain of requirements engineering, 
such as the NFR (non-functional requirements) framework proposed by Chung [4], 
that characterizes stakeholders and their relationships in order to structure the decision 
making process launched by the tradeoffs between conflicting quality requirements. 
Also, in this track we can allocate the well-known ATAM method [2] and derivatives. 
These methods are practical enough to be used in industrial settings; however, these 
methods focus on the decision making process based on stakeholders. There are rea-
sons important in order to understand the decisions taken as a result of these decision 
making processes, that are not made explicit, and therefore the reasons for decisions 
can not be linked to the architectural information (the other traditional views). 

Using version management on the architectural views (storing the changes made 
on each of the architectural views) is not a complete solution; first this method was 
attempted some years ago and lead to so many deltas (in configuration management 
terminology) that the method shown to be useless; even worse, if the deltas were not 
annotated with the knowledge that drive the architects to the next version, it was im-
possible to replay the process. 

Recent advances for supporting traceability between requirements and architec-
tures can also help in solving part of the problem [16]. In fact, for those decisions that 
come directly from requirements affecting architectural elements in a 1:1 relationship, 
the approach may be useful. But for the decisions affecting to large regions of the 
architectural models (this is the case with architectural significant requirements [11] 
and some quality attributes), the traceability mechanisms introduce much more com-
plexity and therefore render useless. 

There are other methods –albeit old- that may help in describing the decisions that 
guide the architecting process: the design space theory, the application of Quality 
Function Deployment, Design Decision Trees [1][7], etc. When these formalisms and 
methods were first applied to software architecture, the lack of unified notation for the 
other architectural views was a key problem; nowadays, the problem seems to be 
partially solved by using UML. 
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Some of the requirements stated then for the support of the decision view seem ap-
plicable right now [6]:  

 
• Multi-perspective support to provide support to the different stakeholders. 
• Visual representation so the decisions can be easily understood and “re-

played”. 
• Complexity control: since in large systems the set of decisions is also large, 

some kind of mechanism (hierarchy, navigation, abstraction) is required in or-
der to keep it under control. The “scalability” requirement is closely related to 
this one. 

• Groupware support: this is now as an acknowledged fact that several stake-
holders must interact in order to check and solve their conflicts. 

• Gradual formalization because the decision making process is a learning 
process and thus the decisions evolve over time. 

Once a lexical support for design decisions representation is found, the architecting 
process becomes a knowledge management process in which the product of the appli-
cation of this knowledge produces the architectural models of the other views. We 
understand by “knowledge management process” that dealing with the explicit de-
scription of knowledge, the definition of the links from that knowledge to the organi-
zation that holds it and to any other element affected by this knowledge, and the sup-
port to the evolution of the knowledge and the links. Therefore, the process is able to 
explain why these elements have been chosen, which have been discarded and how 
this particular selection fulfills the system requirements. Some of the activities in this 
architectural-knowledge management process are: 

• Growth-refinement: The design decisions are not isolated. As mentioned be-
fore, there is a gradual formalization that appears when architectural assess-
ment activities are performed (both during the creation of the architecture and 
when architectural recovery and architectural conformance activities are 
done). The knowledge base formed by decisions is enlarged. 

• Dissemination and learning: The knowledge base containing decisions is the 
key asset in order to learn the architecture process and this is precisely the 
point we try to illustrate at the beginning of this contribution: in order to cope 
with large or complex architectures, the ability to record and replay the deci-
sions, provided by the explicit description of them is a key element. 

• Exploration-application: the application of design decisions should get to the 
same architecture if the stakeholders, requirements and trade-offs are the same. 
Applying the same decisions on a different set of requirements would lead to a 
different architecture. 

4   The Decision View of Software Architecture 

The need to represent design decisions as a key aspect in the architectural construc-
tion process has lead us to propose a new view called the decision view. This new 
view has to be defined and represented in the architecture documentation so any of 
the stakeholders can use it later if needed.  
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Several reasons for record design decisions are: changes in the development team, 
design recovery needs, loss of designs, forward and backward traces between re-
quirements and design products, etc. From our point of view, the explicit representa-
tion of design decisions becomes a key factor for building and communicating the 
software architecture.  

Design decisions should connect requirements and architectural products in order to 
record and discover the rationale of the decisions taken during the design construction 
process. The information we believe a design decision should include for representing 
this using a UML notation or similar is the following: 

• Iteration Number: Due that the software architecture is the outcome of an 
iterative process in which several design decisions are taken, we need to re-
cord the iteration of a particular decision. 

• Following Iteration: It points to the following iteration in the design proc-
ess, where iteration means the next step in the application of the design deci-
sions, that renders an architectural model (maybe an intermediate model). 

• Decision Rule: Represents the name of the decision rule taken by the archi-
tect. The motivation of the decision should be explicitly described here.  

• Decision Rule Number: It numbers a specific decision rule 
• Following Decision Rule Number: It points to the following decision rule 

and is used for tracing purposes or for tracking the decisions made. 
• Pattern / Style Applied: Represents the pattern or style applied for a par-

ticular design decision. They are used to impose restrictions to a particular 
architectural element during the design construction process.  

• Associated Use Cases: Represents the numbers or names of one or more use 
cases associated to a particular design decision. This is used to connect the 
architectural product to a set of requirements.   

Figure 2 provides a graphical representation of a decision element which can be 
modelled employing a new UML element. This new element will serve to record and 
represent the design decisions with the information given above. Let us remark that, 
being a prospective work, the structure and lexical support for decisions is not defini-
tive; in particular, the figure shows a sequential structure of decisions, but more com-
plex topologies for interconnection may appear (binary trees [11] may be considered 
as a typical topology, although more complex decision networks may appear). 
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Fig. 2. Representation of the information included in the decision element 
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In this way, we can modify the figure proposed by Kruchten [13] to include the 
decision view as an intermediate element between requirements and other design 
views, such as figure 3 shows. The arrows in the figure indicate precedence or causal-
ity (so, for example, the decision view affects the physical view). The determination 
of the phase on which these views should be created is delegated to the development 
process. Also important to notice that this decision view is dealing with the software 
architecture, so it is likely that there is another decision view for requirements specifi-
cation. 
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Fig. 3. The decision view model of software architecture  

One key aspect when recording design decisions is how to associate these to archi-
tectural elements when we represent graphically the architectural products. For each 
of the iterations performed during the design process, we can assign a decision ele-
ment (shown in figure 2) to each architectural element or work product. Adding 
backward traceability from the architectural element to the decisions that affect it may 
be helpful in the dissemination and learning activities mentioned in section 3. For 
subsequent iterations, the design decisions elements will expand to describe the ra-
tionale of the design decisions taken during the process.  

 Decision element 
Iteration 1.  

(a) 1st version of the Architecture  

Decision element 
Iteration 2 

Decision element 
Iteration 3 

Decision element 
Iteration 4 

(a) 2nd version of the Architecture  
 

Fig. 4. Decisions elements associated to architectural elements 

Figure 4 shows an example of two iterations performed during an architectural 
construction process. The first iteration applies a layered style for the architecture and 
assigns a decision element for that. The following iteration applies other architectural 
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styles and design decisions rules for each layer. The decisions elements shown in 
figure 4 are used to record and link the decisions taken. 

5   A Proposal for the Implementation of the Decision View 

In our proposal, so far, the key elements in the decision view are the links, or the 
relations between pieces of information, plus pieces of text for the rationale. The 
implementation of such should be the simplest if some kind of success in the indus-
trial stage is sought. A principle just discovered in other branches of engineering may 
well be applied here: the quality and size of the links are more important than the 
qualities of the nodes. The practical application of this fact is that the decision view 
can be deployed as a hyperlinked documentation on top of the other views. We fore-
see two potential implementations for this network of knowledge: the provision of 
specific notations for decisions as extensions to the UML, supported by specific tools; 
and also the mapping of the knowledge structure to a web-based network that fosters 
the usage of the decision view as a communication and cooperation tool. 

We are currently working towards this view; we expect that, once a knowledge 
base containing architectural decisions is created, and these decisions are linked be-
tween them and to the elements of the other architectural views, some activities per-
formed in the development of the system can be supported by the navigation on that 
network of models. This way of understanding the software development can be 
called “building by browsing”. 
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Abstract. Even modern component architectures do not provide for
easily manageable context-sensitive adaptability, a key requirement for
ambient intelligence. The reason is that components are too large – pro-
viding black boxes with adaptation points only at their boundaries – and
to small – lacking good means for expressing concerns beyond the scope
of single components – at the same time. We present a framework that
makes components more fine-grained so that adaptation points inside of
them become accessible, and more coarse-grained so that changes of sin-
gle components result in the necessary update of structurally constrained
dependants. This will lead to higher quality applications that fit better
into personalized and context-aware usage scenarios.

1 Introduction

Most of the software sold nowadays are off-the-shelf products designed to meet
the requirements of very different types of users. One way to meet these re-
quirements is to design software that is flexible in such a way that it can be
used in very different contexts. Thus, look and feel, functionality, and behavior
have to be tailorable or even adaptive according to the task that needs to be
fulfilled. Especially out of an organizational context most users have to tailor
their software on their own. Taken into account that experiences in the use of
computer systems in general increase exceedingly, tailorable and end user devel-
opment applications become interesting topics. Component architectures were
basically developed with the idea of higher reusability of parts of software. Fur-
thermore, it is shown that they also build a basis for highly flexible software
[1]. In this case the same operations that are used to compose software out of
single components now can be applied to existing (component-based) software
during runtime. Therefore, the basis for a tailoring language consists basically of
three kinds of operations: choosing components, parameterizing them, binding
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them together. In this way very simple operations that can be easily understood
by end users enhance the possibilities of tailoring software in a powerful way
(cf. [2]).

2 Intelligent Dealing with Complexity

Still, there are several open questions according to how tailoring can be eased
for end users. For instance, there is a need for a graphical front end that al-
lows visual tailoring techniques. Here one problem is how invisible components
can be presented to the users. In different studies it was shown (cf. [1]) that
users are able to tailor their GUIs very easily. Nevertheless, the problem of find-
ing an appropriate visual tailoring environment for both - visible and invisible
components - is still unsolved.

A second problem is that tailoring becomes harder when more flexibility is
needed. Flexibility in component architectures designed for tailorable applica-
tions is reached by a higher degree of decomposition [1]. That means, the more
components are needed to design software, the more flexible it can be tailored
as there are many fine-grained components that can be parameterized or ex-
changed.

Our goal is to design a stable basis for highly flexible software systems. Com-
ponent architectures are appropriate in this case and thus concentrating on the
second problem.

There are several approaches which may ease the use of software in different
contexts. In our case we believe in a combination of tailorable software (user is
in an active role) and adaptive techniques (software does adaptions by itself).
This might be helpful to cope with the complexity problem. Combining both
techniques means that tailoring activities are followed by automatic adaptions
of the system which checks for dependencies within the composition and adjusts
it.

Another point is the inspection of contexts: How do contexts look like and
how can they influence the software system? The abstraction of different use
contexts and their explicit description can reduce complexity of the components
as context descriptions influence more the whole composition. If the context
changes, users have only to switch the current context description which leads
to changed functionality of the whole composition.

Furthermore, one source of complexity is that many applications run dis-
tributed and networked. In such systems (client-server, peer-2-peer) tailoring
becomes even harder as adaptations on one client or one server might have de-
pendencies on another part of the application which runs on a different machine.
In such cases server components have to behave according to different clients. In
section 3 we describe three basic techniques which can overcome these problems.
After that we show how they can be integrated within one component framework
in section 4.
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3 Contributing Parts

We build our framework for CSI on top of three pillars: Generalized aspect
weaving (3.1), adaptation of thread-local features (3.2), and structure elicitation
and constraint checking (3.3).

3.1 LogicAJ

Modularization on component level fails on crosscutting concerns[3]. These can
not be located in one place and are therefore scattered over several compo-
nents. Examples are persistence, distribution[4], security1[5], synchronization
and parallelization. Aspect languages modularize crosscutting concerns in a
new construct: aspects. Aspects keep the code belonging to the concern in
one place and describe where the code should be woven into the base
program.

The following properties are necessary for an aspect language in an adaptive
environment:

Expressiveness: In an evolving environment aspects must deal with an
unanticipated structure of components and types. Aspects must therefore be
highly generic to be independent from the lexical structure of a base program.

Static Type Safety: Expressiveness should not come with a loss of static
type safety. Runtime checks and reflective techniques should not be used to avoid
runtime errors in aspect execution and weaving2.

Dynamic: Aspects need to be applicable and removable at runtime to react
on changes of the application context.

Current aspect languages refer to fixed names for concrete entities of the base
program, where reusable implementations would require role names that can be
bound to concrete entities when the pattern (resp. aspect) is instantiated. There-
fore, these implementations must be modified for every program and program
modifications.

A generic aspect language allows aspects to use logic variables that can range
over syntactic entities of the host language. In a Java-based generic aspect lan-
guage, for instance, logic variables could match anything from packages and types
down to individual statements, modifiers and throws-declarations. In particular,
it is possible to create new code based on previous matches. In this respect, logic
variables are more expressive than ”*” pattern matching (e.g in AspectJ), where
two occurrences of ”*” do not represent the same value.

The modularization of crosscutting concerns by dynamic aspects enables the
application to be configurable at runtime. Dependent on the context different
aspects adapt the application.

1 authentication, secure socket code, ...
2 the application of the aspect to the base program.
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For example consider a client application connected to a server with sensitive
data. Depending on the current network connection different aspects are woven:
If the connection is unsecured3 the simple socket code is replaced with a ssl
implementation. After detecting poor network performance a caching aspect is
applied. Now the user maximizes the application window. An aspect adapts the
content and shows based on the profile of the user more detailed information on
the current task.

In a distributed environment these changes affect components which may also
be used by other components in a different context. The next section (3.2) shows
how we can deal with different component adaptations at the same time.

3.2 Dynamic Scoping

A definition is said to be dynamically scoped if at any point in time during
the execution of a program, its binding is looked up in the current call stack as
opposed to the lexically apparent binding in the source code of that program. The
latter case is referred to as lexical scoping. An important property of dynamic
scoping is that it fits naturally with multi-threaded programs when the new
binding to a dynamically scoped variable is restricted to the current thread.
Almost all programming languages in wide use employ lexical scoping but do
not offer dynamic scoping. Notable exceptions are Common Lisp, various Scheme
implementations, and recent attempts at introducing dynamic scoping into C++
[6] and Haskell [7].

We have achieved a similar level of usefulness when adding dynamic scoping
for function definitions, and we have described two different working imple-
mentations of that idea in [8, 9]. A similar extension for Java looks as follows.
Assume we have a method in a mobile application that performs an operation
which may cause a large cost on the user’s side. For example, it contacts a payed
service on the network. The user may be interested in that method behaving
differently depending on various contexts. For example, it should pop up a di-
alog that asks for authentication first for security reasons, it should simulate
some useful response from the service in order to explore the possibilities, or it
should just prevent the method from executing at all when lending the mobile
device to some other user. An activation of such context-specific behavior looks
as follows:

with {
contactExpensiveService () {

if askUser("Are you sure?") proceed();
else throw new ServiceException();

}
}{
runApplication();

}

3 For example, the connection uses an untrusted network and no VPN connection is
active.
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An important ingredient to make such context-specific behavior work is the
proceed command that executes the original definition of the redefined method.
This is reminiscent of proceed in AspectJ [3] and call-next-method in CLOS.
Without such a proceed command, a dynamically scoped redefinition would
only be able to completely replace an existing method (and this is an important
difference to dynamically scoped variables).

According to the code above, the new definition for contactExpensive
Servicefirst asks the user for an acknowledgement and then either proceeds
with execution of the original method or rejects its execution. Without a no-
tion of dynamically scoped methods, such a behavior modification would only
be possible by inserting appropriate if statements into the base code, leading
to error-prone and hard-to-maintain code. With dynamically scoped methods,
all the different contexts are cleanly separated within their threads and can
be modified independently from each other. So in the case of method defini-
tions, dynamic scoping again helps to avoid cluttering code with context-specific
behavior.

3.3 Structural Constraints

Complex software usually comprises many variation points each with a num-
ber of different variants (as defined by van Gurp et al. in [10]). As a result
increasing adaptability leads to a combinatorial explosion of potential adapta-
tions. Separation of concerns as shown in sections 3.1 and 3.2 prevents the code
from being polluted by scattered and intransparent conditional statements. But
nevertheless the complexity shows up when the variation points are designed
or the software is going to be configured, i.e. when one particular adaptation
scenario has to be chosen. We need to know which variants can or should
be combined and which must not or what consequences a certain adaptation
implies.

This knowledge is not contained in the software per se. It is meta-information
derived from application semantics or technical context for example and usu-
ally only given implicitly as Dolstra et al. point out in [11]. To tackle these
issues, we integrate the framework PatchWork which allows for modelling com-
plex structural conditions as explicit meta-data. It enables defining structure
schemata relations between role sets with constraints imposed on them. In-
stances of a structure schema can be checked against these relational constraints
and the software composition can be guided by the relational
structure.

We demonstrate the usage of such structural meta-data with the following
scenario: assume our software system comprises three functionalities a, b and c
and offers the user two different and complete ways to access them, menu-driven
and via key shortcuts. Both the functionality set and the set of access ways are
configurable, hence they represent variation points [10].

Now, we want to enhance our software with a third way of user access via
speech recognition. Figure 1 illustrates the performed adaptations. The table
shows an instance of an underlying structure schema defining three role sets
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New way 
of access
speech

recognition
key

shortcuts
menu-
driven

Functionality
(F)

i s, ci k, ci m, cc
i k, bi m, bb

i s, ai k, ai m, aa

User Access (U)

Fig. 1. Structural meta-data in the background supporting software adaptation

(functionalities F , user access ways U and implementations I), a ternary relation
R between them, and a constraint on R which guarantees accessibility of each
function by each user access way. The initial situation is depicted with solid lines
in the table. Initially holds F = {a, b, c}, U = {menu-driven, key-shortcut}, and
I = {im,a, im,b, im,c, ik,a, . . .}.

First, we add speech recognition as a new user access way. It is repre-
sented in our meta-data as a new player for the user-access-ways role, i.e.
speech-recognition ∈ U . The underlying structure schema declares R to be total
in F × U , so we are forced to add valid tuples for each functionality to R, as
shown in figure 1 with dotted lines.

In a second step we realize that functionality b is too complex to be accessed
by speech recognition (i.e. there will be no element is,b shown as the empty grey
cell in figure 1). Hence, we must loosen our initial totality condition on R to allow
that speech recognition does not offer access to all functionalities. We adjust the
structure schema so that the constraint on R only demands totality in F so that
it still guarantees at least one way of access for each functionality. Even though
this may look like we simply give up a part of our initial requirements, we are
forced to do that explicitly and consciously.

Finally as a third step we consider what happens when the usage context
allows only to use speech recognition, i. e. U = {speech-recognition}. Now,
totality of R in F is violated because the required tuple for b is missing. This
could for example lead to automatically reducing the functionality set to F =
{a, c} so that the structural constraints hold again.

In reality the situation quickly gets more complex since one has to take
into account contextual aspects like: device capabilities, access rights, loca-
tion etc., therefore explicit modelling structural constraints becomes even more
useful.

4 Summary

Our three approaches provide the following additional means to influence the
behavior of component-based applications (see Figure 2): (1) LogicAJ helps im-
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1

3

2

Fig. 2. Our approaches for an advanced component framework: (1) Generic aspect-

oriented programming allows dealing with advanced crosscutting concerns; (2) dy-

namic scoping allows influencing the program’s behavior from certain contexts without

interfering with others; (3) PatchWork allows expressing and controlling structural

constraints

plementing aspects that implement crosscutting concerns and are highly generic
to be applicable in different contexts. (2) Dynamically scoped methods provide
a mechanism for behavioral changes of an application that can be confined to
thread boundaries without affecting other threads, leading to a natural map-
ping of contexts to threads. (3) Finally, elicitation of structural constraints and
automatic checking of such constraints ensure that local changes to single com-
ponents either do not violate coarse-grained, non-localizable dependencies, or
else even trigger the subsequent automatic correction of dependents to adapt to
the new environment.

These different approaches already substantially improve context-sensitive
adaptability. However, a combination of these approaches has interesting syn-
ergistic effects: Dynamically scoped methods can be extended towards dynami-
cally scoped activation of generic aspects while structural constraints are au-
tomatically maintained beyond traditional component-based means of adap-
tation. We have carried out first experiments to see whether our approaches
indeed complement each other in this way, and the results thereof are very
promising.

Security of adaptation is another important issue because new functional-
ity may come from an untrustworthy source. Existing protection mechanisms
must not be corrupted or by-passed and missing mechanisms should be added
automatically.

Future work includes building a stable and secure software architecture that
incorporates the ideas that we have sketched in this paper on the technology
side, and carrying out user studies to understand to what extent end users are
capable of dealing with our new abstractions.
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Abstract. In this paper we motivate an Architecture Description Lan-
guage (ADL) for mobile distributed systems based on the π-calculus.
Different from other approaches, the non-functional properties, which
are essential when mobile architectures are described, are treated in a
flexible manner by inserting logical formulae for expressing and checking
non-functional properties into π-calculus processes. A formal example is
given to illustrate the approach before the constituents of the ADL are
sketched.

1 Motivation

Modeling the architecture of mobile distributed systems using a domain-specific
architecture description language (ADL) is considered as an useful approach [1],
since the influence of mobility emphasizes the necessity to examine functional
properties of software architectures as well as non-functional properties. This
corresponds to the fact that “mobility represents a total meltdown of all stabil-
ity assumptions ... associated with distributed computing” [2], which subsumes
the problems software engineers have to face in practice when they build mo-
bile distributed systems. Examples for these problems are network structures,
which are no longer fixed and where nodes may come and go, communication
failures due to lost links over wireless networks, or restricted connectivity due
to low bandwidth of mobile communications links. These all have in common
that they affect the non-functional properties of a system like performance, ro-
bustness, security, or quality of service. Besides non-functional properties, these
intrinsic challenges of mobile systems may also affect the functional aspects of
a system, since a mobile system may have to provide extra functionality (like
replication facilities, caching mechanisms etc.) in order to ensure usability in
situations where the aforementioned problems occur. With Con Moto (Italian
for “in motion”) we propose an ADL which enables system developers to address
these issues during the early stages of system development in order to allow them
to make appropriate design choices for mobile systems.
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2 Introduction

ADLs have been area of research for many years. It is commonly understood
that an ADL comprises three essential constituents: components, connectors and
configurations [3]. Roughly speaking, components model the entities of software
systems which perform computations or store data, connectors model the inter-
action of components, and configurations are connected graphs of components
and connectors. Based on this understanding and the motivation given before,
we can list the requirements for an ADL for mobile distributed systems:

– A mobile ADL must be able to model dynamic aspects of a system like the
dynamic instantiation of components or the change of communication links
during system execution.

– A mobile ADL should be able to model different communication channels
with non-functional properties like reliability or bandwidth. This is necessary
to analyze systems and to find possible problems that might arise when a
connection fails. Therefore specialized connectors might be necessary.

– A mobile ADL should allow the composition of non-functional properties in
order to be able to model the complex dependencies which are prominent in
mobile distributed systems.

– A mobile ADL should be formally based, so that simulation and reasoning
about the model is possible.

With Con Moto we strive to fulfill these requirements. The remainder of this
paper is structured as follows. After an overview of the related work in section
3, an introduction in π-calculus (section 4.1) is given which acts as basis for
the formal example in section 4.2, which illustrates the core concept of our
considerations. After depicting the use of the formal model in Con Moto (section
5), a conclusion is drawn.

3 Related Work

ADLs in general have been topic of research in previous years. The necessity for
modeling non-functional properties in architecture description has been recog-
nized by Shaw and Garlan [4]. The classification work of Medvidovic and Taylor
[5] present a sound compilation of properties of ADLs. From their work it be-
comes obvious, that none of the ADLs presented there is suitable for modeling
dynamic aspects of mobile systems. In the past, this fact lead to the develop-
ment of mobile ADLs which have recently been presented. The ArchWare project
with its π-ADL [6] is one result of these efforts. Another mobile ADL can be
found in the works of Issarny et al. [7]. Both present an ADL for mobile systems
based on Milner’s π-calculus [8]. These ADLs have in common that they are able
model the dynamics of mobile systems, which is due to their theoretical foun-
dation in the π-calculus. Although they vary in terms of elaboration and tool
support, the fundamental difference—from the perspective of this paper—is the
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treatment of non-functional properties, which is absent in the π-ADL approach.
Issarny addresses non-functional properties in her work, but the treatment of
non-functional properties is bound to a global conformance condition, which
must hold for a predefined set of non-functional properties assigned to com-
ponents and connectors, and does not allow the composition of non-functional
properties, which is novel in our approach. Currently, there is other research
in the area non-functional properties of software systems. This work is mainly
based on the Lamport’s TLA+ language [9], which is a logic for specifying and
reasoning about concurrent and reactive systems. Zschaler [10] presents a spec-
ification of timeliness properties of component based systems, but these as well
as the underlying work of Aagedal [11], where the integration of TLA+ approach
into architectural description is proposed, the models in TLA+ lack the support
for mobility and are thus not regarded further.

4 System Model

4.1 Use of π-Calculus

Similar to the approach of Issarny et al. [7], we base Con Moto on a service-
oriented interaction paradigm, i.e. a component abstracts a networked service
which invokes operations of peer components and dually executes operations that
are invoked. Processes are the foundation for grasping the functional aspects of
the architectural description. Since we use Milner’s π-calculus [8] for modeling,
we give a very brief introduction into the monadic π-calculus (c.f. [12]) first:
The simplest entities of the π-calculus are names. These can be seen as names
of communication links and used by processes for interaction. These processes
evolve by performing actions. Capability for actions are expressed as prefixes, of
which we use three kinds1:

π ::= x(y) | x(z) | [x = y]π . (1)

The first capability is to send the name y via the name x, and the second to
receive a name via x. The third is a conditional capability: the capability π if x

and y are the same name. The processes and summations of the π-calculus are
given by:

P ::= M | P |P ′
| !P (2)

M ::= 0 | π.P | M + M ′
| 1. (3)

The semantics are as follows. 0 means inaction, the prefix π.P means that P can
be executed after π has been exercised; the sum M + M ′ models a choice, the
composition P |P ′ is known as parallelism; !P means replication. 1 is an extension
by ourselves and has the notion of a“dummy”process: A process that can always

1 We omit the non-observable action τ and binding of names for shortness.
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be executed and does not perform any actions. We need this extension in our
later example.2 However, for modeling non-functional properties it is not enough
to just exchange names between processes. We therefore make use of the polyadic
π-calculus, which extends the monadic π-calculus in that way that tuples can be
passed by actions instead of names. This leads to the following prefixes

π ::= x(ỹ) | x(z̃) | [x = y]π, (4)

where no names occur more than once in the tuple z̃ in an input prefix. In the
following example we will use this polyadic π-calculus to illustrate our core idea.
However, an formally exact treatment of this issue would require the usage of
typed π-calculi, which we omit here for the sake of readability.

4.2 Formal Example

As in Issarny’s work [7], we use processes given in π-calculus for expressing the
functional properties of our architecture. We now extend the processes to cover
also non-functional properties. The core idea behind this approach is, that every
action in our processes can return its non-functional properties like execution
time, memory consumption, availability etc. We will now introduce two compo-
nents and their services and will show how their non-functional properties can be
handled. However, we show the treatment only for abstract non-functional prop-
erties, since concrete properties would increase formal complexity, but would not
contribute to the core idea.

buy()

Component A

reserve()

commit()

Component B

Z

Fig. 1. Example components in UML-like notation

Assume the following scenario: as intuitively depicted in Figure 1 we have two
components A and B. A offers the service buy(), whereas B offers the services
reserve() and commit(), which are subsequently invoked during the execution of
buy(). Since reserve() and commit() have a certain set of non-functional prop-
erties, it is intuitively clear that the non-functional properties of buy() should be
a composition of the properties of reserve() and commit().

If we leave away all other aspects and just model the functional behaviour of
A and B, we write in monadic π-calculus:

PB

def
= reserve(x).reserve(x).0 | commit(x).commit(x).0 (5)

2 Although 1 is formally not absolutely necessary for our modeling purposes, it en-
hances readability in the later examples. Formally we define the following reaction
for our “dummy” process: 1.π → π.
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component A: { provides { buy() nfprop α() }
requires { reserve() ensure β′()

commit() ensure γ′() } }

component B: { provides { reserve() nfprop β()
commit() nfprop γ() }

requires { ∅ } }

connector Z: { nfprop ζ() }

Fig. 2. Example components in textual notation

PA

def
= buy(x).reserve(x).reserve(x).commit(x).commit(x).buy(x).0 (6)

The process PB models the behavior of component B and the process PA for the
component A. For invocation of the service buy() (which we assume is modeled
by reading a value by buy(x)), an output reserve(x) is made to the processes
in component B which models the invocation of reserve(). After reserve() has
returned (the input operation reserve(x)), commit() is invoked similarly. Finally,
buy() returns. This is modeled by the output buy(x).

We now introduce the non-functional properties. The idea is as follows: Every
service returns its non-functional properties when it terminates. In the textual
notation in Figure 2, the keyword nfprop indicates a function which computes
the non-functional properties of a given service (e.g. α() evaluates to the non-
functional properties of buy()). These functions are defined for all services a
component provides, which are listed after the keyword provides. Since non-
functional properties have to be checked throughout the execution of the system
(which refers to the global conformance condition in the work of Issarny), we
also introduce a function for each service required by a component (indicated by
the keyword requires in the example), which grasps the non-functional require-
ments for the service and therefore evaluates to true if these requirements are
met. These functions are also given in the example after the keyword ensure. In
our example, β′() models the non-functional requirements for reserve() in com-
ponent A. For completeness, we now also model the connector Z, through which
the services of B are invoked. This connector also has a function ζ() to determine
its non-functional properties. We now integrate the functions for computing and
checking non-functional properties into our examples 5 and 6:

P ′
B

def
= reserve(x).reserve(〈x, β()〉).0 | commit(x).commit(〈x, γ()〉).0 (7)

P ′
A

def
= buy(x).reserve(x).reserve(〈x, p〉).[β′(p)]1.

commit(x).commit(〈x, q〉).[γ′(q)]1.buy(〈x, α(p, q)〉).0 (8)

Now, reserve() is invoked as earlier. However, reserve() returns a tuple, the
name x as before and its non-functional properties p. Now, in the execution
of buy() it is checked, whether the requirement β′ holds for the properties p.
If this is the case, the process can continue by executing the “dummy”-process
1. The same two steps are performed for commit(). Finally, the function α is
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evaluated in order to retrieve the composed non-functional property of buy() and
returned in the extended output statement. If we want to model the influence
of the connector Z, we have to use its transfer function ζ() and apply it to the
non-functional properties returned by reserve() and commit(), i.e. we have to
replace all occurrences of p and q with ζ(p) and ζ(q) respectively. Therefore, our
process from 8 is transformed into

P ′′
A

def
= buy(x).reserve(x).reserve(〈x, p〉).[β′(ζ(p))]1.

commit(x).commit(〈x, q〉).[γ′(ζ(q))]1.buy(〈x, α(ζ(p), ζ(q))〉).0 (9)

Comparing the formulae 6 and 9, we see that the pure functional modeling of
the behavior of component A could be evolved to a specification which includes
abstract non-functional properties, allowing their composition and checking. This
was achieved by subsequently applying transformation steps and enriching the
formal functional specification.

5 Use of Model in Con Moto

In the following section we will discuss how the presented approach for modeling
non-functional properties will be used in the ADL Con Moto. Here, models of
software systems need to be given in a textual representation as indicated in
Figure 2. However, in order to ease system composition, Con Moto will also
provide a graphical representation which is based on concepts of UML 2.0 for
modeling software architecture, which allows the use of components, ports and
connectors. An example of a architectural diagram in UML style is given in the
Figure 1.

In the textual representation, there is also the need for expressing the func-
tional properties of the system, hence the invocations of processes, which can
be compiled into π-calculus processes like those we used in the example. This is
work which has to be done by the system designers, since the functional aspects
are crucial for the modeling of mobile systems. Additionally, the designers have
to provide the functions evaluating and checking the non-functional properties.

The composition of the processes as in our example can be done automatically
by the Con Moto environment, so that for the designer there is the clear sepa-
ration between functional and non-functional aspects in order to keep modeling
complexity at a low level. After the Con Moto environment has composed the
functional and non-functional properties into a enriched π-calculus specification,
there is the model which allows checking.

A general useful approach for checking π-calculus models for certain prop-
erties is to apply model checking techniques. There are rather straight-forward
transformations which allow the generation of input for model checkers from π-
calculus models. One transformation of this kind is presented in the work of Song
and Compton [13]. They propose a formalism for converting π-calculus mod-
els into the Promela language used by the SPIN model checker [14]. Although
in their paper, Song and Compton restrict their transformation to monadic π-
calculus, an extension to polyadic and typed π-calculus is possible. Our approach
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of integrating conditions for non-functional properties can also be added to the
approach presented in [13]. Although it should be noted, that mapping the free
conditions to Promela makes restrictions of this language apply to our conditions.
But we are confident, that the power of Promela is sufficient for our modeling
purposes.

It should be emphasized that we did not make any conclusions about com-
plexity of a Con Moto model with regard to model checking yet. It can easily be
imagined that choosing certain non-functional property definitions can lead to a
state explosion in the model checker which makes checking of the model impos-
sible. Nevertheless, since a Promela representation of the model also allows the
simulation of the model, certain aspects of the architecture can also be checked
by simulation.

6 Conclusion

We presented a formal foundation for modeling non-functional properties in ar-
chitectural description. The main contribution to the research is that it facilitates
a general treatment of non-functional properties, ensuring compositionality as-
pects and flexible checking, which provides a powerful tool for specifying mobile
dynamic systems. After motivating our approach we showed that it is possi-
ble to pass non-functional properties in π-calculus processes. Since we enriched
these processes with checking conditions, it is possible to extend the existing ap-
proaches for mobile ADLs with a general treatment of non-functional properties
and hence prepare the groundwork for our ADL Con Moto.

Ongoing work is to elaborate the formal underpinning of the chosen approach:
The approach has to be written down in a formal correct way using polyadic
typed π-calculus, and properties of the extended notion of π-calculus processes
have to be proven. The mapping of π-calculus to Promela has to be finished
in order to provide tool support. Furthermore, an Eclipse plugin is in work
which will allow the integration of architecture modeling with Con Moto into
the accepted development process. Summing up, we are confident, that these
contributions can add substantial benefit to the early stages of mobile system
design.
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Abstract. This document studies in some detail the recently developed con-
cept of aspect at the architecture level. This concept introduces a novel kind of
modularization and composition in software, and therefore it defines new struc-
tures which must be studied by Software Architecture, determining the architec-
tural features of aspects. However the opposite strategy can also be considered;
namely, a new conceptual model can be defined, including an architecture-level
notion of aspect. This would provide a new abstraction to describe software struc-
tures, thus effectively providing an additional dimension in architecture descrip-
tion, and would enable the study of the specific compositional problems in this
dimension. The document starts by addressing the relevance of this kind of study,
and continues by discussing why the new notions are necessary. Then it continues
by including a brief enumeration of the more relevant notions derived from this
aspectual framework, with particular emphasis on their relationship with software
components. Next the document explores the different forms in which these no-
tions could be incorporated into the context of Software Architecture, revealing
a rather extensive variety of approaches, and also the relationships and partial
equivalences between them. The paper concludes by noting a number or open
questions and futures areas of research within this context.

Eurythmia est commodus in conpositionibus membrorum aspectus
VITRUVIUS, DE ARCHITECTVRA

1 Introduction

Software Architecture has many facets and features. It is a discipline which studies the
design decisions at an early stage of the software development process, the compro-
mises between them, the effect of these decisions on analysis requirements and they
way they propagate throughout this development process. It is also the branch of Soft-
ware Engineering which considers systems and their subsystems as a whole, a place
where it is possible to evaluate their global properties and their impact, and also to de-
cide which of those properties are the driving forces in our design. It is also a point of
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view from which the software architect can conceive large-scale abstractions such as
design variations, product families or architectural styles.

But above all Software Architecture is a discipline devoted to the study of modu-
larization and composition, and their consequences. In this regard it is an incarnation
of the principle of Separation of Concerns, which states that every concern or inter-
est should be dealt with in a separate module. Once these modules have been defined,
the structures combining them appear, and they must be studied toghether with their
consequences. Hence the need for Software Architecture.

Recently the principle of Separation of Concerns has been used to provide a new
approach to sofware development, which has become popular under the global name of
Aspect-Oriented Software Development. Aspects are software entities encapsulating a
given concern, just like modules; but the nature of their decomposition is quite different
from the one which has been used before.

Though originally related to the implementation stage, aspects have now been ex-
tended to cover the whole of the software development cycle. They have been found
particularly useful in the initial stages of software development, where they are known
under the name of early aspects. This refers, basically, to their application in Require-
ments Engineering and Software Architecture.

The term architectural aspect was originally coined by Bedir Tekinerdoğan. It is
no doubt intuitive by exploiting the analogy of implementation-level concepts, but this
analogy can also be problematic, as it could be assumed as a direct one-to-one transla-
tion of the concepts in the AspectJ model [22].

This paper tries to study the notion of architectural aspects from the point of view
of Software Architecture. This means that the expression is used in both senses here.
We will describe the most important architectural features of existing aspectual models,
and also describe some possible approaches to incorporate relevante aspectual notions
and, more importantly, their relationships, into Software Architecture.

1.1 Some Open Problems of an Aspectual Nature

Recent research suggests that the degree of information hiding provided by traditional
methods of encapsulation is still unadequate [7].The best known sympton is often iden-
tified with some kind of aliasing, and implies that some entity is able to access some
location it was not supposed to. But the opposite problem also happens. Sometimes
it is more difficult to provide a legitimate client with some required access, with-
out making it public or permanent.While this applies to implementation-level mod-
ules, it is even more critical for modularization in-the-large. Components were orig-
inally conceived as the ultimate notion which would fulfill the promise of sofware
reuse, and they depend heavily on encapsulation.But in spite of their ideal appare-
ance, black-box components are not tenough. They must exchange flexibility for pa-
rameterization; consequently, now the greatest difficulty of their use is perhaps their
configuration.

In the last decade, the need for grey-box components, which allow for some kind of
principled adaptation under certain circumstances, has been ever more evident. This is
the reason why reflection, traditionally considered as a complex and obscure feature of
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some experimental systems, is now present at the core of the most popular component
platforms.Introspection is of critical importance in Java. Not only it is the essence of
their basic beans; it is also a necessary step of every remote invocation.The role of
reflection in the .NET Architecture is even more fundamental, as it is present on the
internal definition of any entity and protocol in the platform. Again, the reason for this
is the need to provide controlled access to internal features.

While not the only reason, this is also the main reason why aspect-oriented ap-
proaches had become so popular in the last years. They provide most of the capabilities
of reflection with regard to the definition of grey-box components, and at the same time
the concept itself is much easier to understand. The principle of separation of concerns
is logical and easily accepted. It’s just a matter of deal with one concern at a time, defer-
ring their combination to a later step. Moreover, this reasoning is easily transported to
other stages in the software process, and seems to bring the promise of a more efficient
and comfortable development methodology.

The aspect-oriented research community is starting to study relationships between
aspects and the properties of aspectual composition, something that should be studied
at an architectural level. Even if the relationship was just pure, traditional composi-
tion, Software Architecture should be studying it. If it is not, and it is actually a novel
concept, it should be added to the Software Architecture Body of Knowledge.

Recently, Rinard et al. [38] have presented an initial classification studying the fea-
tures which define the relationship between aspects and objects. Though the study is
situated at the implementation level, it is abstract enough to have already provided very
useful insights on the nature of the interaction between aspectual and compositional
entities. These insights can be easily extended to architecture-level aspects.

For instance, this interaction can be defined to augment, narrow, or replace the
behaviour of the component, or also to combine it the the behaviour of the aspect. In
turn, these behaviours can be designed to be independent, or to directly interfere with
each other; their mutual influence can also be indirect; the aspect can actuate where the
component only reads, or simply observe what is the component doing.

But once that aspects have been introduced in the compositional model, the most
critical issue is that of their composition. Ideally, the composition of different concerns
should provide a combined concern, but often this is not so simple. Moreover, the most
usual kind of aspectual composition is held between aspects of the same concern. These
aspects can describe complementary, opposite or partially conflicting strategies; there-
fore their interaction might be very complex and requires a detailed study.

In fact, a growing body of research is being devoted to the study of this impor-
tant topic [4, 10, 13]; probably the first results in this direction were the ones achieved
by Kienzle et al. [25] while considering the potential of aspects to be reused as con-
ventional components. Their composition has to consider their dependencies; an aspect
can be independent, uni-directionally (preserving or modifying) dependent and circular
dependent with regard to another. The latter leads directly to composite aspects.

Kienzle and Guerraoui have also raised another critical question; namely, if certain
behaviours and interaction schemes can effectively be aspectized or not [24]. Ironically,
their study deals with the problems in the presence of concurrency, which was histori-
cally the first concern to be modularized as an aspect. However their conclusion in this
case is to question the real need for obliviousness in intercepted components.
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2 Structural Features of Non-architectural Aspects

In this section we will study in some detail the most interesting structural features of
several existing proposals for aspect orientation, which are not situated at the architec-
tural level. The purpose is twofold: first, we would clarify the notions in the concrete
application of these ideas, outlining some basic models of aspect-orientation and the
differences with many of their variants. But also this would help us to identify the main
structural concepts in those models, providing a first impression of which of those con-
cepts deserve to be translated to the architecture level.

First we will briefly comment on the distinction between the terms concern and
aspect. Then we will describe in detail the most important concepts in the aspectual
model, and finally we survey the most successful combinations of aspectual and com-
ponent models; this would prepare us to later describe architecture-level models.

2.1 Concerns and Aspects

The Merriam-Webster Dictionary [1] lists six different meanings for the word concern.
Among these, the more relevant in this context define it as a marked interest of regard,
and a matter of consideration. An independent part of the global problem that the sys-
tem under consideration is designed to solve. It has also a connotation, also present in
other languages, which implies that it is a source of worry, some affair which cannot
be simply ignored. Therefore, an eclectic definition, which would be valid even when
considering it as a concept at the architecture level, could be a specific area of active
interest.

But in English it has also another connotation which is unusual in other languages.
A concern is also a gadget or contrivance: a small device or development, serving some
practical purpose. This implies that a concern can be conceived not only as an area of
interest, but also as the concrete module encapsulting this interest. This dual meaning
is sometimes very useful, but it also introduces some confusion sometimes.

The word aspect has only four meanings, and two of them can be safely discarded.
The original meaning of the term refers to the appareance or countenance of something.
But this appareance implies also the perspective from which this object is seen. There-
fore the word aspect has evolved to mean also a particular status or phase in which
something is observed; one of its possibly many facets.

There is not a very strict distinction between these two terms in natural language.
When applied to the field of computing, this has helped to popularize the term aspect,
but it is also the source of a lot of confusion.

In the context of Aspect Orientation, a concern is conceived as an area of interest, a
part of the problem to solve, or even a general feature or quality attribute to be achieved.
Well known examples are non-functional concerns like security, fault tolerance or syn-
chronization. On the other hand, an aspect is just a kind of module which is conceived
to encapsulate the behaviour related only to an specific concern. In the conventional
approach, the behaviour corresponding to a concern is tangled with other concerns,
therefore making more difficult to reason and act upon them. Also, this behaviour has
to be scattered throughout the system to be able to achieve a global effect. The purpose
of the definition of aspects is to be able to modularize this concern-specific behaviour,
therefore avoiding these two problems.
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However, sometimes the term concern is used to refer to a module encapsulating a
particular interest [44], and the term aspect is used to refer to a global facet of the system
under discussion. In the remainder of this document, we will avoid this confusion by
using the terms in the sense already noted. The only exception is the occasional use of
the term aspect in two different senses, like in the title itself. When talking about an
aspect of something, the term refers to a feature or property, in the global sense; in any
other case, it refers always to an aspectual module.

Many authors relate the need for aspects to the presence of crosscutting concerns.
Crosscutting means that it breaks through encapsulation barriers, ignoring or surpassing
them. But of course this definition is relative, as it assumes that these encapsulation bar-
riers already exist in the first place. In fact, it depends of the symmetry of the conceptual
model [17]. Most popular aspectual models are asymmetric; they assume the presence
of a dominant decomposition: traditional composition, basic functional modularization.
That’s why asymmetric aspects are assumed to be non-functional.

But in symmetric models [15, 37, 44], the notion of crosscutting does not make sense
anymore. A concern is a dimension, and every module is supposed to be able to crosscut
each other, merging together. There are only components, basic modules; the term of
aspect is rarely used itself.

Asymmetric models must identify crosscutting concerns and then define aspec-
tual entities to encapsulate them. Symmetric models just define modules to encap-
sulate concerns, without the need to consider whether they are crosscutting or not.
That’s the reason why symmetric models seem to be more elegant and adequate, es-
pecially at the architectural level. However, asymmetric models are easier to combine
with existing approaches to software development, and therefore they are still more
practical.

2.2 Concepts in Non-architectural Aspects

In this section we will briefly describe most of the novel concepts which have appeared
in the context of aspect-oriented systems and platforms, or at least those which are
relevant from an architecture-level point of view. Our main purpose here is to provide an
independent and concise description for those, as many of them are too closely related
or bound to a particular technological platform.

Most of these concepts were introduced in the context of the AspectJ language [22],
an extension of Java which is not only considered as the most popular aspect-oriented
platform, but it is also the one which has a patent on the term aspect [23]. Indeed, the
term itself was coined in this context [28], even when it was not the first in using the
concept. Therefore, the strict meaning of the expression aspect-oriented is restricted
to this particular approach, although in the general sense it covers the many proposals
using these notions. For the remainder of this document, we would refer to the AspectJ
conceptual model as the reference model. This should not be interpreted as implying
any architectual connotation, it just defines a starting point.

The basic concept in the reference model, and also in most of existing approaches
to Aspect Orientation, is the notion of join point. In fact, the reference model itself
has been described as a join point interception model [30]. Moreover, the particular
interception mechanism is the distinguishing feature of most of these approaches. A
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join point is a point in a module’s behaviour where additional behaviour, related to
some specific concern, can be inserted. The thread of control is intercepted and deviated
towards some aspectual module, where the relevant actions are specified. Eventually,
control returns to the original module, which continues its behaviour from the join point.
This pattern is not sequential; in a concurrent model, join points can be provided by
synchronizations, rather than deviations [5]. The effect is the same, namely to interleave
both behaviours, therefore inserting the new concern into the original module.

Join points are a consequence of the separation of concerns approach; concerns are
independently described, but they must join together to define a single system. The
combination process depends on the identification of common points between almost
independent structures. The reference model is asymmetric because one of these struc-
tures is considered as the mainstream, and the rest as their extensions.

Another primitive element is known as the advice. It describes a piece of behaviour
designed to be attached to join points, providing the support for some concern. It is not
actually an aspectual notion, as it just defines some “optional” behaviour, and could
appear as part of other models; but it is necessary to complement the previous concept,
providing the active part of the interception. In most existing proposals, an advice can
be inserted before or after a join point, or even instead of it.

The insertion of advices in join points does not provide a mechanism to guaran-
tee separation of concerns. Usually a concern doesn’t affect another in just one point;
otherwise there would be no need to insist on separation. The relevant advice must be
inserted simultaneously in several places, to scatter the additional behaviour. Therefore
some kind of quantification abstraction is required, to refer to a set of join points at the
same time. This set is known as pointcut in the reference model. The pointcut is defined
by a pointcut designator, often a logical expression. Although at the implementation
level this expression has often a lexical nature, this restriction should not be considered
at the architecture level, where the nature should be mostly structural.

Considering all of the above, an aspect can be simply defined as a module gathering
a set of advices related to the same concern, and the corresponding pointcuts which
provide their linking with the relevant places in other components.

The attachment of advice to a concrete pointcut creates the mirror image of a method
in the object-oriented paradigm; instead of being invoked by the main program, the
advice is inserted by the pointcut in the point where it should be executed. At the ar-
chitecture level, this reveals than an aspect is basically the same that a component, but
substituing invocation by interception mechanisms.

Related to the notion of pointcut is the notion of crosscut. A pointcut just defines the
set of join points in which a particular advice is going to be inserted. But usually more
than an advice is required, and even more than a pointcut for each advice. A crosscut
is the set of all the join points relevant to a particular concern, the intersection of all its
pointcuts; therefore it indicates where this concern crosscuts another. Usually this no-
tion is implicit, but some models make it explicit, particularly event-based aspects [14],
which defines crosscuts using explicit events.

In the reference model, advices and pointcuts are mostly coupled; they are defined
in the same aspect. This can be compensated by using abstract pointcuts and reflec-
tive capabilities, but is is still considered a limitation. Many variants try to decouple
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these notions. That’s the case of JAC [35, 36], one of the first proposals in providing
dynamic aspects. Dynamic aspects are attached and removed from the system at run-
time, so they cannot be limited in the way they are bounded. So advices are joined in
specific aspectual components named wrappers, and pointcuts are defined in a bind-
ing entity designated with the (perhaps misleading) name of aspect-component, which
dynamically relates advices in wrappers to base components.

Those aspectual wrappers should not be confused with conventional wrappers [18].
Although they are obviously related concepts, their approach is rather different; while
the former relies on some interception mechanism, and leave the existing connection
structures unaffected, the latter use traditional composition to enclose the wrappees
inside themselves, and achieve a total control of both their interaction and their vis-
ibility. In fact, their relationship is an interesting open problem at the architectural
level.

The process of inserting advices into the corresponding join points, therefore com-
bining aspects and components into a global behaviour, receives the name of weaving.
The weaving can be implicit, provided by predicates defining pointcuts; or explicit, de-
scribed as a mapping from aspects to components. The reference model chooses the first
option; some other variants prefer the second one. Sometimes the specification of an ex-
plicit weaving is encapsulated in a specific element known as connector, which has the
responsibility to manage this aspectual interaction [26, 30, 41]. These connectors must
not be confused with architectural connectors.

The reference model provides also the additional notion of introduction or inter-
type declaration. It is simply an additional piece of behaviour which is inserted into a
component, toghether with its entry point. It is simply an extension; differently from
advice, introductions are not interleaved with the original behaviour, but just composed
with it. The purpose of introductions is to provide a component with a new, indepen-
dent concern. In particular, introductions are used to connect components which were
previously unrelated, defining the ends of a new association.

Another slightly different notion is that of hookset, conceived by Eric Tanter et
al [43] in the context of the Reflex language. Reflex is designed as a reflective language
which uses an aspectual approach to define a model of partial behavioural reflection.
Instead of inserting an advice into a join point, Reflex defines a link between a meta-
object and a hookset; the effect is quite similar and can be used to provide aspect-
orientation. Then a hookset is basically a pointcut; but the most interesting feature is
that it is not intensional, but extensional. Instead of being defined by a predicate, it is
created by composing other hooksets by using set-theoretic operations, starting with
primitive hooksets, which essentially contain one join point definition.

As already noted, symmetric models usually don’t use the term aspect, as this now
implies the existence of components in a dominant decomposition. Instead they use
several different incarnations of the most general notion of concern. Some approaches
consider the system from the point of view of the different stakeholders, to later com-
bine them using aspectual techniques. Probably the first incarnation of this idea was
the notion of viewpoints [32], designed to capture requirements. Very similar, and even
more influential, was the concept of subject [16], which tried to shift the emphasis from
objects to the entities which use and act on them.
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The notion of subject has evolved into two different, but related models. The work
of Clarke et al. [9, 6] defines the concept of theme; basically, a modular part of a view-
point, describing a particular concern from some concrete perspective. When a theme
describes a crosscutting concern, which has a lot of interactions to some others, it can
be shaped as a composition pattern. This is basically a generic structure, which is pa-
rameterized to be easy to combine with some others.

The other model takes a more radical approach; every concern is considered as a
dimension to structure software, which can be used to define modules with different
criteria. Dimensions are made first-class, and modules are defined for each one of them.
These are known as hyperslices, and could be defined as symmetric aspects. One hy-
perslice can then be combined (merged) with another in another dimension, creating
a composite hypermodule which is defined in a new, derived dimension. The process
continues until a single hypermodule has been reached.

Some other related concepts refer to concrete weaving or compilation techniques,
and thus they are not of particular interest at the architectural description level. These
are notions like join point shadow, dynamic join point or morphing aspect. We will not
consider them in the remainder of this document.

There are still some other relevant, but less extended concepts. Most of them re-
fer to particular approaches to the above model, but some of them provide a different
interception mechanism, like composition filters [2], or the support for better compo-
sition, like superimpositions [39]. They will be mentioned in subsequent sections.But
the purpose of this section was to outline a general picture of the conceptual struc-
ture of aspect-oriented proposals, which will be complemented by subsequent
sections.

2.3 On the Symbiosis of Components and Aspects

Even at the implementation level, many authors have noted that aspects and software
components serve a similar purpose, namely, to encapsulate a given concern to be later
able to reuse it. Beyond objects or classes, components try to fulfill the promise of soft-
ware reuse by creating almost independent, coarse-grain entities which are conceived to
be transportable. A well-designed component must provide a clearly defined function,
and in this regard, it encapsulates a concern. Moreover, most of the modern component
platforms include a set of pre-defined components and libraries, which are able to pro-
vide support for generic non-functional concerns, such as concurrency or transactional
interaction, in a transparent manner. In this regard, the only real difference between
these “traditional” components and the notion of aspects is the way they are decom-
posed into modules and composed in subsystems. The core distinction is not the kind
of modules, but the relationship between them.

Therefore, aspects and components are not opposite abstractions, and they may be
combined in the same context. Some existing platforms, such as JBoss [8], conceive
then as orthogonal concepts, and allow to freely combine them. For instance, an as-
pect can be used to provide a component with the transactional features provided by
another, instead of using the conventional interface. But there have also been several
attempts to merge both concepts in an unified model, instead of maintainting them
separate.
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Next we will briefly comment on six of these efforts, which are among the most
evolved aspectual models. These are of particular interest, as they provide some hints
about the way aspectual concepts could be considered in the context of Software Ar-
chitecture. Although components of this kind are not exactly architectural components,
there are yet enough similarities between them to provide a good comparison.

The first one is also the most evolved and influential of them. There are several dif-
ferent proposals, which we group under the name of the aspectual component model.
It was originally conceived as a regular component model, known as adaptive plug &
play components. It was designed to allow external adaptation and composition, and
it is reminiscent of several Architecture Description Languages. The evolution of this
model led towards the definition of aspectual component [26], still the best known
among them. With just a minimal modification, they allow for the specification of as-
pects within the same model. The main purpose of this approach is to allow aspects to
be considered as regular components; so they can be intercepted themselves, and also
they can use conventional composition mechanisms. The approach has since evolved;
subsequent proposals have defined pluggable composite adapters and, finally, aspectual
collaborations [27]. The latter emphasize their capability to describe complex interac-
tion patterns by composing aspects and modules, and even collaborations.

The model defines a collaboration (or component) as a wrapper over some partici-
pant, which is a placeholder for a module. The collaboration defines expected methods
in participants, which are equivalent to join points, and aspectual methods, which are
equivalent to advices. It can also attach external participants, which can be collabora-
tions themselves, then leading to a “Matrioska doll” model [27].

The main novelty of the aspectual component model was the concept of connector,
which has been later adopted by other proposals. It provides the mapping which binds
abstract participants to concrete modules, in a many-to-many relationship. In the last
version, the mapping has been included as part of the collaboration itself.

Closely related to this family is Caesar [30]. This model is defined as a blend of
aspectual components and the reference model; it has also been clearly influenced by
JAC [36]. It provides a high-level structural module over the join point interception
model, which is known as aspect collaboration interface; it is basically a less-coupled
version of an aspectual collaboration, which defines provided and expected facets. The
model includes aspect implementations to define provided facets; their combination
with the interface defines a weavelet. An evolved connector, known as aspect binding,
defines the binding of expected facets to base entities; it can also provide a mapping for
one-to-many wrappers, and even pointcuts and advices, similar to those in the reference
model. This last feature is really reminiscent of aspect-components in JAC.

The third model is defined in JAsCo [41]. It is also conceived as a combination of
aspectual components and the reference model; but the major concern here is to achieve
a balance between invasive adaptation and black-box modularization. The model pro-
vides a mechanism to define an invasive component adapter; a structure which is able
to control a component’s external interaction and also to adapt its internal behaviour,
but with some restrictions which respect encapsulation barriers.

The JAsCo model is defined as an extension of Java beans, but this can be safely
generalized to apply to any component model. It just adds two elements to this model:
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aspect beans and connectors. An aspect bean is basically the combination of an aspect
and a component. It defines a set of advices, which are known as hooks, but it also
defines regular methods, and it is able to send events. This means it is still a compo-
nent, and therefore it can be composed to other components in the conventional way.
Connectors are the kind of explicit weaving mechanism which was already explained
in section 2.2; they simply map hooks in aspect beans to methods in components, in a
many-to-many relationship. The model is simple, but well balanced.

A very evolved variant of the JAsCo model is the component model in FuseJ [42].
In this proposal, “there are no aspects” and everything is a component. The model itself
is reminiscent of the structure of many ADLs. Every component defines a set of gates
composing an interface, and those gates are linked together by using connectors. This
connectors specify a mapping between gates and their properties, which can define their
interaction as regular or aspectual. This interaction determines aspect orientation.

The fifth model is that of Jiazzi [29]. It is a framework designed to provide com-
positional primitives to the Java language, which are basically architectural in nature.
Like a typical ADL, it provides external linking and hierarchical composition, creating
compounds by combining units. The model includes the definition of mixin-like compo-
nents, conceived to extend basic units; together with the support for cyclic linking, this
allow independent features which crosscut unit boundaries to be packaged in separate
components. Combined with external linking, this can substitute feature addition and
other external patterns. In summary, instead of being an aspectual model designed to
use components, Jiazzi defines a component model which provides an indirect support
for aspect orientation, which could be defined to be language-independent.

The approach of Jiazzi is reminiscent of open classes and some existing architecture-
related proposals, like mixin layers [40], which are used to modularize collaborations
between components. The mechanism is also similar to that of role-model compo-
nents [45], which use a mixin to implement each of the roles in a component.

Finally, we should briefly mention the recent proposal of open modules [4]. These
are aspects defined with a strong encapsulation interface. The argument is that grey-
box components of the type discussed above compromise safety and security, and ad-
vocate the use of some access control mechanism. Open modules are basically com-
ponents which also define exported pointcuts in their interface. This means that the
component is exposing a number of join points just in case some aspect needs to in-
tercept them; they are optional extension points which can be used or not. The rest
of the component is encapsulated, and cannot be intercepted except under special
circumstances.

3 Models for Architectural Aspects

Although the concepts of Aspect Orientation are relatively new, the number of essen-
tially different proposals that use them is growing fastly. Most of these proposals are
described at the implementation level, but also many of them could be easily translated
to the architecture level. The purpose of this section is to consider the structural defi-
nitions already outlined in this document, and describe the form that a hypothetical (or
even existing) model of architectural aspects could take.
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There is not any mainstream proposal for the description of architectural aspects
yet. In fact, there is a surprinsingly large number of alternatives. Instead of describing
a particular model, we provide an initial classification of aspect-oriented models with
regard to their conceptual structure. This has been designed to cover the whole range
of existing proposals, and should help us to identify the similarities between many of
them, and also the relationships between several close, if not equivalent, approaches.
We enumerate these appproaches in the remainder of this section.

1. There Are No Aspects. This model uses only conventional architectural elements,
and therefore it suggests that there is no need to introduce any additional aspectual
entity at this level. There are two different reasonings which could lead towards this
option. One of them is to simply suggest that aspects are irrelevant and therefore
there is no need to consider them at this level. The other approach decides not to de-
fine any aspectual notion, as it is not considered necessary, because aspect-oriented
features are provided by some standard compositional mechanism. An example of
this approach is Jiazzi [29], already exposed in the section 2.3.

2. Architectural Aspects. This model does consider aspects as relevant at this level,
and define some explicit entity to gather their influence. This is, an architecture-
level counterpart of implementation-level aspects is defined.
(a) Components as Aspects. Instead of providing some additional abstraction, this

approach prefers to use conventional components to play the role of aspects.
This has the advantage of maintaining an uniform model. A good example of
this approach is the proposal by Navasa et al. [31], which defines a two-layered
coordination structure to support weaving.

(b) Connectors as Aspects. This approach complements the previous one; it uses
connectors instead of components to play the role of aspects. This makes sense,
as aspects are often introduced by intercepting interaction, which is held by
connectors. There exists some preliminary work in this direction [12], and it
is also related to the composition filters [2] approach, although these filters are
not exactly comparable to architectural connectors.

(c) Derived Components This model provides some kind of second-class definition
of an aspectual entity, which is conceived as a variant of the regular component.
There is still only one kind of component, but some of them are provided with
additional features. This approach has been considered mostly at the design
level [3, 35]. Aspects are defined by stereotyping regular components.

(d) Aspectual Components. This approach is close to the previous one. The model
is still uniform and there is only one kind of component, but the component
model itself is defined to include aspectual capabilities. Therefore even regular
components have aspectual features. The best example of this approach is the
JAsCo model [41], but the more strict approach of FuseJ [42] can also be in-
cluded in this category. Curiously enough, Lieberherr’s aspectual components
approach [26] are not included, as it will be considered below.

(e) First-class Architectural Aspects. This model is perhaps the most obvious choice.
It just consists of providing a direct translation of the reference model [22] to
the architectural level. The idea is to provide a component-like aspectual en-
tity, a first-class architectural aspect. The model would be explicitly designed
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to be non-uniform and asymmetric, and require some kind of pointcut abstrac-
tion, similar to aspect-components in JAC [35, 36]. Curiously enough, currently
there not exists a proposal for architectural aspects of this kind; the approach
of open modules [4] could be however a first step in this direction.

3. Aspectual Binding. This model considers that there is no need to have an explicit
aspectual entity. The distinguishing feature of aspect orientation is that it provides a
novel kind of interaction, so the architectural model should only consider to provide
a new kind of binding mechanism between components.
(a) Aspectual Interaction. This model considers interaction as a low-level abstrac-

tion, and provides some explicit means to intercept it at the architectural level,
thus providing aspect orientation. Again composition filters [2] appear in this
category, which is somehow related to the idea of using connectors. The event-
based approach of Douence et al. [14] might also be included.

(b) Aspectual Composites. This is a refinement of the former; it tries to define a
high-level structure encapsulating this kind of aspectual interaction. Therefore
it uses an architectural approach for this problem. In this category we group
proposals such as aspectual components [26], aspectual collaborations [27] or
even Caesar [30]; they were described in the section 2.3. Clarke’s composi-
tional patterns [9] can also be included as a design abstraction.

(c) First-Class Aspectual Binding. This model is a generalization of the previous
approach. Binding is an architectural abstraction, and this novel kind of binding
deserves a first-class concept. The best example of this approach is the work
on superimposition by Katz et al. [21, 39]. Katzian superimposition is defined
as a theoretical relationship which defines a high-level compositional structure.
This approach has also been taken by our own work [11].

4. Concern Models. This is a symmetric model; it assumes that we have a regular ADL

with standard compositional features, but with some internal concern model.
(a) Internal Concerns. In this approach, concerns are explicitly considered in the

internal definition of architectural abstractions, but this definition is fixed. Be-
haviour related to concerns can be specified as part of the specification. This is
the approach defined by Kandé [19] in his concern-based architecture.

(b) First-Class Concerns. This approach improves the former by including concern
definitions as explicit entities at the architectural level. These are “symmetric
aspects”, which are part of the component definition. A component is described
as a set of aspects, an explicit weaving and a common interface. This is the
approach used in the PRISMA component model [37]

5. Multiple Dimensions. This is quite similar to the previous one. The main differ-
ence is that the concern model is not internal, but explicit. Concerns are large-scale
entities which can be manipulated as such.
(a) Concern Views. This approach defines the architecture of every concern in an

independent view, and these views are later related using some mechanism. Ob-
viously this approach is quite similar to architectural viewpoints, and therefore
it is very consistent. The best example is given by concern architecture views,
an approach which is also based on superposition [15, 20]. Clarke’s themes
have a similar philosophy [6, 9] can also be included in this category.
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(b) First-Class Dimensions. This is the architectural equivalent of the MDSoC
model defined by Ossher and Tarr [33, 44]. Every component has its own di-
mension in this model, and the architectural structure is only created as those
dimensions are being merged. Although it is very expressive, the convenience
of using this sort of approach has still to be determined.

4 Conclusions

Throughout this paper we have tried to outline the basic notions behind the concept of
Aspect Orientation, and consider how these notions can be conceived in the specific
context of Software Architecture. Even when both fields have a long history, they are
also fairly young in their current incarnation; and although they are intrinsically related,
their combination is still a recent idea. However, they have received a considerable
attention and interest in the last years, and therefore the survey we have presented in
previous sections must be necessarily incomplete.

In particular, there is a very interesting and important body of work concerning the
use of formal methods to study the specification of aspect-oriented models and mech-
anisms. This kind of work has the advantage of describing the concepts independently
of a particular language or platform, and therefore it provides very interesting insights
about the real nature of the concepts under question.

There are still a good number of open structural problems in Aspect Orientation
which would benefit a lot from an explicit architectural perspective. Moreover, archi-
tecture is a concern itself and it has even defined as an aspect. These fields have a lot of
points in common, and they should be carefully explored.

For example, composition of aspects, the definition of priorities in this composi-
tion, and the resolution of structural dependencies between them are all structural is-
sues which can be specified and studied by using architectural techniques. On the other
hand, the concept of dynamic aspects [34, 35], which are added to or removed from the
system’s structure, provides an intriguing approach to describe a particularly complex
kind of architectural dynamism.

As a testimony of the great interest which exists about this topic in the Software
Architecture research community, we have consciously cited three of the papers in this
workshop [15, 31, 37], which are devoted to this topic. The three of them are completely
different, but they are all state-of-the-art contributions to these issues.

In summary, this is a novel field with a great number of open questions, and the
opportunities for useful and relevant research abound.
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wold, Mehmet Akşit, and Karl J. Lieberherr, editors, Proc. 2nd Intl. Conf. on Aspect-Oriented
Software Development (AOSD’03), pages 90–100, Boston, March 2003. ACM Press.

31. Amparo Navasa, Miguel Angel Pérez, and Juan Manuel Murillo. Aspect Modelling at Archi-
tecture Design. In Ron Morrison and Flavio Oquendo, editors, Second European Workshop
on Software Architecture (EWSA’05), Lecture Notes in Computer Science, Pisa, June 2005.
Included in this volume.



262 C.E. Cuesta et al.

32. Bashar Nuseibeh, Jeff Kramer, and Anthony C.W. Finkelstein. Framework for Expressing the
Relationships Between Multiple Views in Requirements Specifications. IEEE Transactions
on Software Engineering, 20(10):760–773, October 1994.

33. Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns and The Hyper-
space Approach. In Proceedings of the Symposium on Software Architectures and Compo-
nent Technology: The State of the Art in Software Development. Kluwer, 2000.

34. Renaud Pawlak, Jean-Philippe Retaillé, and Lionel Seinturier. Programmation Orientée As-
pect pour Java/J2EE. Eyrolles, 2004.

35. Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Gérard Florin, Fabrice Legond-Aubry,
and Laurent Martelli. JAC: an Aspect-based Distributed Dynamic Framework. Software –
Practice and Experience, 34:1119–1148, 2004.

36. Rénaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli, Fabrice Legond-
Aubry, and Gérard Florin. Aspect-Oriented Software Development with Java Aspect Com-
ponents. In Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors,
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