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Foreword

Peter Mossack
Vice President of Research and Development
Software AG

What's all the fuss about a markup language? Read this book and you’ll
find out!

XML represents a movement. It is similar in nature to the “open”
movement. Open source, open interfaces, open (operating) systems. In
fact, XML is the next pillar in this movement. It can be viewed as the
open movement extended to the Internet. It is because of this that, as
a set of pure standards, XML is looked after by the World Wide Web
Consortium.

However, the whole world is talking XML, and the ramifications of its
universal adoption are only beginning to surface. Whole business models
will be affected by it; whole new business interests are being pursued be-
cause of it. The software industry itself will be rocked by it more than it
cares to admit. This is so because XML brings us into the promised land
of componentware. Take XML-based componentware, add the Internet,
and you get Web services. A very explosive mixture indeed!

By adhering to open standards, smaller companies with strong vertical
knowledge will be able to deliver components and services that can be in-
tegrated with those of other suppliers, and so be able to compete effec-
tively in their area of expertise.

Besides the purely technical merit of this, what lies at the bottom of
the movement is an unwillingness on the part of the consumer of tech-
nology, especially the corporate consumer, to be continually locked in by
megavendors of proprietary technology and application software.

Since a technology lock-in also implies economic dependency, there
are real business reasons behind the open movement. It is therefore very
important that people involved in making technology decisions, as well
as business decisions based on technology, understand the basis of it.

This book should not only help with this, but also provide the reader
with food for thought in conceiving and conceptualizing new strategic
applications based on XML technology.
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Preface

XML is an explosive mix. It is set in a triangle made up of document pro-
cessing, traditional data processing, and the Internet (see Figure P. 1). Its
language roots are in well-established document processing technologies
(SGML), its technology moves massively into the area of databases and
enterprise IT technology, and its application is mainly to establish com-
munication between collaborating parties on the Internet, extranet, and
intranet.
The same three ingredients also define electronic business:

Electronic Business = Internet + Enterprise IT + Documents

XML is thus well positioned as a core technology for the rapidly grow-
ing area of electronic business (see Figure P. 2). Its adoption by the indus-
try has consequently been quick. Although the initial hype has faded
away, XML has now achieved mainstream status in the corporate IT
world. The question of today for XML is not if but how.

A recent study done by the Giga Information Group (2001) among
companies that use XML shows

* 45% use XML for mission-critical applications.
¢ 13% use XML for non-mission-critical applications.
e 40% use XML for pilot applications.

The study shows also that XML is used in different areas. Not surprisingly
most areas are somehow connected to communication and integration:

* 33% use XML for data exchange and messaging.
e 27% use XML for application integration.

e 13% use XML for data integration.

e 12% use XML for content publishing.

¢ 6% use XML for the construction of portals.

e 6% use XML for other purposes.
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XML

Documents Databases

Figure P.1 Set between three technologies: XML.
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Figure P.2 A forecast showing the phenomenal growth of U.S. electronic
business, especially in the area of business-to-business (B2B). (Source:
Forrester Research.)
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Given these fairly disparate application areas and the triangle of docu-
ments, databases, and Internet, we witness an extraordinary culture
clash: document people trying to understand what a transaction is, data-
base analysts getting upset because the relational model doesn’t fit any-
more, and Web designers having to deal with schemata and rule-based
transformations.

Finally, when they have sorted out their differences, they start to real-
ize that agreement about “where to put the brackets” is only the first step
in mastering what is probably the most difficult thing on earth: human
communication. What lurks behind the standardization of communica-
tion structures are the semantic aspects of communications, the vocabu-
laries, thesauri, ontologies, and contexts—a topic that has been placed
onto the agenda of the W3C under the name “Semantic Web,” and opti-
mistically scheduled for 2003!

ABOUT THIS BOOK

It was this situation that made us write this book. The first step when dif-
ferent technologies meet is to do an inventory of what is there. The sec-
ond step is a critical review in the light of the new requirements. Finally a
synthesis can be tried and a new technology begins to emerge.

So, if you are expecting a description of the final tried-and-tested XML
architecture, this book isn’t for you. Such a thing does not exist, not yet.
(Maybe it never will.) But if you have an inquiring mind and want to look
over the fence, this book is definitely for you. But be warned: you may
end up more curious about XML and related technologies than you were
before. At least, that is what happened tous . . .

People with a background in document processing will find it interest-
ing how they can use conceptual modeling to model business scenarios
consisting of business objects, relationships, processes, and transactions
in a document-centric way. They might also discover that XML can be
used for some things that are very different from “library style” docu-
ments—standards such as SMIL and SVG allow the definition of rich
multimedia presentations.

Database people might wonder if XML is subject to relational normal-
ization and how this meshes with the hierarchical structure of XML doc-
uments. We will therefore revisit tried and tested modeling techniques
such as entity relationship modeling, but we will also introduce asset-

xix
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oriented modeling—a new technique that is better suited to capturing
the higher-order relationships between entities and artifacts.

Web designers will discover that XML puts them into a position to au-
tomatically generate visually pleasing Web pages and rich multimedia
shows from otherwise dry product catalogues by using XSLT and other
transformation tools. They will also learn why “hard linked” Web pages
are bad, and what the alternatives are to allow for sophisticated naviga-
tion by end users.

Business architects will see how XML can help them to define applica-
tions that can be quickly adapted to the ever-changing requirements of
the market. Hard-coded workflows and business rules in applications are
replaced by XML documents that can be changed quickly. Even better:
new technologies like ebXML allow business partners to negotiate com-
mon business processes in an automatic or semiautomatic fashion.

Chapter 1 sets the scenario. We compare the Internet with an un-
planned settlement. XML can be the glue that holds it all together to
build an infrastructure. We strongly argue that—because XML is really
about communication—the current challenge is to build medium-scale
well-working applications that can communicate with each other. We
present some architectural patterns that have proved to work.

Chapter 2 lays the groundwork. It discusses many of the W3C and other
basic standards and techniques related to XML: DTDs, XML Schema,
XPath, XPointer, Xinclude, XML Base, XLink, XQuery, XSL, SAX, DOM,
Schematron, and architectural forms.

Chapter 3 discusses techniques to model the structure of information.
We revisit good old entity relationship modeling and also introduce asset-
oriented modeling—a modeling method that is easy to use and fits well
into an XML-oriented architecture. We show how RDF can be utilized to
describe conceptual models, and how UML can deal with XML.

Chapter 4 moves from structure to meaning. Communication across
company borders and company mergers demonstrates that it is not suffi-
cient to agree about the structure of information. We discuss ways to
model semantics, such as ontologies and topic maps. If you want to know
what the Semantic Web is about, here it is!

Chapter 5 takes a close look at modeling processes such as workflows or
business processes. We show how process can be described by means of
XML.

Chapter 6 introduces a layered approach to communication. We discuss
channels, ports, messages, transactions, and scenarios in the context of
open communication across company borders.
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Chapter 7 illustrates ways of navigation that go beyond links in Web
pages. With WebML we discuss an integrated approach from conceptual
model to finished Web site. We revisit topic maps as a powerful means for
an independent navigation layer. We also discuss the navigational possi-
bilities that exist with peer-to-peer communication.

The topic of Chapter 8 is presentation. XML isn’t just about data repre-
sentation and communication; it is also the basis for powerful multi-
media standards such as SMIL, SVG, and XSL formatting objects.

Chapter 9 deals with document transformation, in particular with XSLT,
with its advantages and shortcomings. We take a look at alternatives, too.

Chapter 10 introduces recent standards that define an infrastructure for
electronic business. In particular we discuss SOAP, WSDL, UDDI, and
most importantly, ebXML.

Chapter 11 acts as a showcase for existing solutions. We look into (the
still rare) XML-related design tools, discuss XML-enabled database man-
agement systems and middleware solutions such as RosettaNet and
BizTalk (even the non-XML technology e-speak), and finally some XML-
related authoring tools.

The glossary explains relevant terms in the context of XML and elec-
tronic business.
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1.1
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1.3
1.4

Megapolis Internet
Implications
Architectural Patterns

Best Practices

ML would not exist if there were no Internet. Without
Xthe requirements of the open and diverse Internet com-
munity, the extensibility and standardization of XML would be
wasted. Therefore, XML architecture must take the Internet
into account: its topology, its philosophy, and its history.

In this chapter, we first take a look at the topology of
so-called nonplanned settlements, which applies to the Inter-
net. We argue that architects must, above all, be good com-
municators who facilitate mutual learning between the Net
squatters.

Aside from that, there are a few common concepts that
become more important in such an environment. Applica-
tions increasingly consist of collaborating but separate units,
instead of being implemented as monolithic blocks. Soft
logic, such as the formulation of business rules with XML,
allows reconfiguring applications rapidly, and techniques
derived from artificial intelligence allow the configuration in

a more declarative way.
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Finally, we look at some of the more common architectural patterns cur-
rently found on the Internet such as catalogues, workflow orchestration,
repositories, and more.

A list of top-level best practices for XML architecture closes this chapter.

1.1 MEGAPOLIS INTERNET

This section first reports on the outcome of a trip to the Bauhaus but then
moves quickly from African villages to communities on the Internet.

1.1.1 The Nonplanned Settlement

During a visit to the Bauhaus Institute in Dessau, Germany, one book in
the institute’s bookshop caught my attention. It was titled Non-planned
Settlements. My first thought was the Internet. My second thought was to
buy the book. On closer examination it turned out that it did not deal
with the Internet at all but with the topology of African villages and some
of the world’s megacities. One result of the author’s research was the dis-
covery that the network of roads, streets, and paths in these settlements
was arranged in such a way that the effort to travel between A and B plus
the effort to maintain this network is close to minimal (Schaur 1991).
Similar networks were found in nature (leaves, insect wings). The author
was also able to obtain these structures by simulation: because the equa-
tions proved to be too complex for silicon-based computers, more tradi-
tional means like soap water, wet threads, and sand were used.

Well, she got me hooked. I did a bit more research on unplanned set-
tlements and discovered that most unplanned settlements serve the re-
quirements of their residents better than formally planned settlements
(Portela 1992). Although unplanned settlements usually start with low-
quality housing, the housing and the infrastructure continually improve
and result in many cases in higher-quality housing than obtained with
formal planning because the inhabitants are in control (Figure 1.1).

What made me buy this book without further hesitation was the fact
that the Internet is nothing but a nonplanned settlement. That does not
mean, however, that the creation of Internet technology was unplanned;
in fact, Internet technology was created as the result of a careful planning
process by the U.S. Department of Defense. What I mean is that the cur-
rent topology of the Internet is not the result of a single planned process.
Nor was the speed with which the Internet and especially the World
Wide Web grew in any way anticipated. The computer and software in-
dustry, for example, was completely taken by surprise.
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Figure 1.1 Architecture that works. Structural patterns of a Mediterranean
megapolis.

Also the way the Internet would be used was not anticipated. First
planned as a computer network for military use, it was soon taken over
by scientists and became a major communication device between scien-
tific institutions worldwide. Then, beginning in 1995 the Internet be-
came commercial and—by now—electronic business is the main driving
force in the development of the Internet (Daum and Scheller 2000).

Five years later we are a bit wiser. We have witnessed tremendous suc-
cess stories on the Web, but we have also seen many dot.coms and some
other Internet squatters vanishing. Many ideas that looked good on pa-
per did not succeed in the field. Even a technically brilliant company like
Sun Microsystems (“The network is the computer”) had to retarget a ma-
jor development (Java moved from the browser to the server).

While the reasons for these “failure stories” are manifold—and not all
are of a technical nature—we feel that in many cases the problem was
that the Internet introduces a new set of challenges into software engi-
neering. Traditional software engineering concepts are certainly valid
within an enterprise context, but for the macro level of the settlement In-
ternet they are simply inappropriate.

Not required are architects who try to superimpose the tried-and-
tested constructs of the past—such as three- or four-tier client-server
architectures—onto the Internet world. Not that there is anything wrong
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with these models (they have served well within the enterprise world),
but what is really required in the global village are architects who act as
communicators and multipliers, architects who enable the inhabitants
of the Internet to learn from each other and to improve their levels of
skill and self-organization. The architects of systems become architects
of communication. Let’s see how.

1.1.2 Topology—Transactional, Relational,
Navigational

The first time two users were connected to the same computer, the com-
puter ceased to be a plain but expensive calculator and became a commu-
nication device. Data that was entered by one user could be read and
modified by another user.

The first of these systems evolved at a time when computer hardware
needed huge halls, air-conditioning, and specialist operators. Embedding
computers into end user devices was unthinkable. End users communi-
cated with the computer through teletypes and later through cathode ray
tubes (CRTs) and keyboards. In terms of software, a major paradigm
evolved at this time: the transactional multiuser database was developed.
These databases guaranteed that a user could safely process a certain work
unit (a transaction); the system guaranteed that a work unit was com-
pletely processed (or not at all) and that other users could not interfere.
Neither a system crash nor concurrent activities could corrupt the data.
The transactional approach is still a core paradigm of today’s enterprise
computing.

The situation changed when microelectronics made computers small
enough to fit on a desktop. When cheap workstations and PCs arrived on
the market, departments would simply buy these devices without asking
the computer center or corporate controllers for permission. They had
done this before with typewriters. In the view of the enterprises’ com-
puter centers this was just another case of unplanned settlement. It
evolved because it served the requirements of the users better than the
centralized IT departments could. New functionality in shrink-wrapped
packages could be bought in the computer shop around the corner. The
traditional way of sending a request to the IT department and waiting for
months for its realization had become too slow for a faster-moving busi-
ness world.

But, with the now ubiquitous desktop machines, users had acquired a
problem. Their computer had regressed from being a communication ma-
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chine to being a simple typewriter or calculator. Data was exchanged on
floppies, resulting in chaos and a data jungle.

To establish communication again, it was necessary to connect the
desktop machines to a network. Local area networks (LANs) were intro-
duced, and the former computer center now operated the enterprise’s
servers, where the critical data of the enterprise was held. This was the be-
ginning of the client-server era. The client on the desktop would be re-
sponsible for the (mostly graphic) user interface and for application logic,
while the server in the computer center would run the big databases and
care for database backup and security. The role of the computer center
had changed: instead of caring for individual “housing,” it cared for the
public infrastructure.

This had consequences for the database software, too. The old CODA-
SYL databases were too inflexible for this job. Because many different
clients with different requirements could hook up to the same server, it
was necessary that the same data could be interpreted in different “views”
(different combinations of data elements) depending on the application
of the client. Relational databases were able to solve this problem. Be-
cause these databases store the data in the form of very simple, basic
tables, they allow the arbitrary recombination of this data at will. While
relational technology had already developed alongside transactional sys-
tems, it had its breakthrough with client-server technology.

The Internet, and especially the World Wide Web, have changed this
landscape once again. In the classic client-server scenario the relation is
“many clients, one server,” and usually both client and server work in the
same enterprise environment. In the World Wide Web it is, in contrast,
not one server but millions of servers in millions of enterprises. Each
client can access any server on the Web and any Web service. In a few
years, it will be billions of servers: any device connected to the Internet
and able to hold data—a PC, a PDA, or an embedded device—can act as a
Web server.

What does this mean for the user? It means that a vast array of new
services are (or soon will be) available on the desktop, in the car, or in the
palm of the hand—services that were previously unthinkable, or services
that can be better performed by a third party than in-house. While in the
beginning of the Internet only a few basic services were offered (email,
home pages, search engines, file transfer), the landscape is now getting
more and more diverse. The range goes from financial services like credit
card validation, to community services such as an ontology server for
the knitwear industry or a knowledge base for hazardous chemicals, to
generic applications hosted by Internet service providers.

Relational
topology

Navigational
topology
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The most frequent activity for a Web client thus becomes—besides per-
forming transactions—navigation and service discovery. In real cities we
are used to using certain helpful devices to find what we want. There are
street and telephone directories. We know that shopping malls host the
tull spectrum of shops we need for daily life. If we don’t know our way
around, we can rely (more or less) on the expertise of a taxi driver or of a
passerby. And so on.

On the Internet things are similar. Within the short time of its exis-
tence the Internet has developed certain patterns that can help us in the
task of navigation. There are simple structures like Web rings or Web
communities, sophisticated search engines and directory services, and
fully serviced marketplaces and portals. More recently, peer-to-peer tech-
nology has gained a lot of attention, especially, but not only, for ex-
changing MP3 records.

1.1.3 Babel

The development of the Internet and the World Wide Web was made pos-
sible through the definition of open standards. Among those that have
shaped the Internet are

e TCP/IP (Transmission Control Protocol for the Internet)
e HTTP (Hypertext Transfer Protocol)

e SMTP (Simple Mail Protocol)

e FTP (File Transfer Protocol)

e HTML (Hypertext Markup Language)

All these standards serve a specific task—they have clearly defined seman-
tics. The HTML specification, for example, not only describes the syntax
of Web pages, but also defines how a browser has to process the elements
of an HTML Web page. Measured by numbers, these standards have been
a tremendous success. Given the decentralized nature of the Internet, it is
difficult to get reliable statistics, but it is estimated that by the end of
2000 more than 400 million users were connected to the Internet (Nua
Internet Surveys) and that servers stored about 2 billion Web pages, with
7 million new Web pages being created every day.

But the hardwired semantics of these standards (especially those of
HTML) have led to a problem: it is difficult to adapt this technology to
new application domains. Consequently HTML was subject to a number
of proprietary “enhancements” during the period of the “Browser Wars”
in the late 1990s. Today, Web pages consist of a wild mixture of HTML,
JavaScript, Java, Shockwave, and so on, augmented by server technology
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to generate dynamic Web pages such as ASP, JSP, Java Servlets, CGI, and
SO on.

The release of the XML recommendation in 1998 marks a break in this
tradition (Bray, Paoli, and Sperberg-McQueen 1998). XML was designed
not as a special-purpose language but as a “mother of languages,” a
generic metalanguage. The goal of its definition was extensibility. How-
ever, the initial perception of XML was that of a “successor for HTML,” a
misconception that needed to be clarified before XML could really take
off. The purpose of XML is not to become a better HTML (although one of
its applications, XHTML, is the designated successor of HTML) but to al-
low interested user groups the definition of their own specific languages.

And this is exactly what has happened since then. In the few years of
its existence, XML has been the basis for numerous (approximately 500)
language definitions, some of which are covered in this book. There is
probably not one single human being—except perhaps Robin Cover
(www.oasis-open.org/cover/)—who has an overview of all XML-based lan-
guage definitions.

In this context, some commentators have talked of “Babelization.”
This is, in fact, what this plethora of languages looks like at first sight. To
understand what is going on, we have to take a deeper look into human
nature in general.

1.1.4 Subcultures and Ontologies

You have probably already guessed it: the Bible is right—Babel belongs to
the human condition (Figure 1.2). Although English has become a world
language, it is hard to say which English is the world language. One word
processor lists the following flavors: English (Australia), English (Belize),
English (Great Britain), English (Ireland), English (Jamaica), English
(Canada), English (Caribbean), English (New Zealand), English (Philip-
pines), English (South Africa), English (Trinidad), English (USA), English
(Zimbabwe). This doesn’t mean that a reader of English (USA) necessarily
understands what a writer of English (USA) has written—not if they be-
long to different scientific communities or different trades. Medical sci-
entists speak a different language than nuclear scientists, and their
vocabulary vastly differs from that used by social scientists, computer
programmers, or butchers.

In the world of the Internet, XML can play a similar role as a univer-
sal language. It acts as a common substrate on which different special-
purpose languages can be developed. Some of the 500 XML-based lan-
guages exist because they serve specific purposes—for example, SMIL for

XML
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Figure 1.2 Architecture that didn’t work—the Tower of Babel.

multimedia presentations and VoiceXML for speech processing. Others
came into existence for the simple reason of competition: some manufac-
turer wanted to stake a claim in the virtual world of e-business.

Is this really so bad? We don’t think so. The existence of 500 XML-
based languages is not a sign of confusion; it simply shows that XML has
made its way into many different application areas.

Later we will see that the definition of an XML-based language can be
compared to the definition of a database schema: both define an ontol-
ogy, a—albeit narrow—concept of the world. As virtually each enterprise
and each organization fosters its own database schema, there would be
millions of “languages” to learn if we were to try to exchange data on a
bilateral basis between two companies using relational technology. This
has been more or less the approach of classic EDI (electronic data inter-
change). EDI worked well in some subcultures of the IT community, such
as the automotive industry, however, only on a bilateral basis.

But this approach does not work on the Internet: the number of agree-
ments between partners rises astronomically, and the process of negotia-
tion is too slow. What is needed in electronic business are standards that
apply to a whole community of prospective partners. Within the last few
years, such standards have been developed by industry associations and
interest groups. Horizontal standards (i.e., standards that apply to certain
tasks like procurement or product data exchange) have been developed

Team-Fly v
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by IT companies and universities. These standards act as unifying forces
across the various industries. In contrast, vertical standards, used within
an industry, divide the Web into subcultures, such as the automotive in-
dustry, the health industry, librarians, museums, and so on. Each of these
subcultures nurtures its own ontology; that is, it uses a certain vocabulary
and thinks in certain associations and contexts.

So why not use one language for all? The answer is simple:

e Complexity. A language able to express any topic in the world would be
so complex that nobody could define it, nobody could agree upon it,
nobody could implement it, and nobody could learn it.

e Responsiveness. The world is moving fast, especially the world of elec-
tronic business. Adapting a one-for-all language to ever-changing re-
quirements would require a constant change of this language, making
development with such a language almost impossible.

It is, therefore, a misconception to understand XML as the language for
all. We should rather see XML as a core technology for the implementa-
tion of special-purpose languages and document schemata. Within Inter-
net and electronic business, XML can play a similar role as SQL did for re-
lational databases. In contrast to SQL, the scope of XML goes far beyond
data storage and also covers domains such as communication, presenta-
tion, process control, and navigation.

1.1.5 Challenges

The Internet poses new challenges for software developers and software
architects alike—challenges that, if they existed in a closed enterprise sce-
nario, would play only a minor role there.

Communication

The ability to communicate across company borders is essential for future
enterprise IT systems. This includes communication not only with other
businesses but also with consumers and administration. New technolo-
gies like mobile computing and embedded systems extend the reach of
corporate IT systems. Typical-use cases include supply chain integration,
health system integration, remote monitoring (vending machines, home
appliances, industrial equipment), traffic control, and others.

Service-Oriented Architecture
The traditional integration of enterprise services via EDI happened to be
hardwired and manual. Establishing a new (bilateral) EDI relationship

One language
for all?
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between partners was a lengthy and expensive process. Within enter-
prises, however, more advanced IT technologies evolved. Component
technologies like CORBA allowed the integration of software components
in a flexible and dynamic way. Services offered by components could be
published within a network. Other components could discover these ser-
vices and establish a binding to them.

On the Internet these techniques proved to be too tightly coupled.
Emerging XML-based standards such as SOAP (see Section 6.5.2), WSDL
(Section 6.6.3), UDDI (Section 7.3), and ebXML (Section 10.3) were intro-
duced to allow for a loosely coupled, service-oriented architecture. Typi-
cal Web services include credit card validation, shipping, fulfillment,
marketplaces, mediation, brokerage, and so on.

Knowledge Retrieval

XML-based formats like RDF (Resource Description Framework) and XTM
(XML Topic Maps) allow the modeling of semantic networks (see Chap-
ters 4 and 7). Topic maps especially have become a core technology for
content management solutions, while RDF is seen by the W3C as the
basis for the construction of the future Semantic Web (Berners-Lee
1998a).

Navigation

The chaotic nature of the Internet requires powerful navigation tools.
Knowledge retrieval technologies will aid end users and software agents
in finding the target destination. Similar technologies, based on RDF,
topic maps, and directory services (see Section 7.3), will, for example,
allow manufacturers to locate possible suppliers for a product or service.

Mediation

The existence of hundreds of different subcultures on the Web, and also
the existence of millions of legacy systems, requires powerful mediation
services. Already existing are XML processors that are able to hook up
with relational databases and to map XML document types to relational
schemata. Similar services can mediate between different XML dialects
and schemata.

Flexibility and Responsiveness

The Internet changes every day. New sites are connected to the Internet;
new technologies and standards are introduced in short order. This
requires a software architecture that is flexible enough to incorporate



1.1 Megapolis Internet

new, and even previously unknown, technologies. The classical develop-
ment cycles of months and even years are out of the question: it must be
possible to make changes to business rules effective almost instantly.

The traditional way to implement business rules—hardwired within
program code—will certainly continue to exist in legacy code. For new
developments it will give way to “soft-coded” business rules—business
rules that are formulated in some description language, possibly an XML-
based description language (see Chapter 5). Business rules coded that way
are easy to change and to deploy and can even be exchanged between
applications.

Similarly, the navigational structures will cease to be hard-coded (i.e.,
links in HTML pages) but will give way to soft-coding techniques using
RDF (see Section 3.3), topic maps (Section 7.2), or XLink linkbases (Sec-
tion 7.1).

Process Model

The backbone of classical enterprise applications is the database transac-
tion. Although the transaction model works well in applications that are
orchestrated by human operators and with transactions spanning only a
short time (milliseconds to a few seconds), it does not work well for auto-
mated business processes that span a longer time, from a few hours to
even years. These long-running processes are typically found in electronic
business applications, enterprise application integration, and workflow
systems (see Chapter 5). They must be persistent (i.e., survive a system
crash or shutdown), be portable (which rules out proprietary formats),
and offer the possibility of compensating actions (e.g., canceling an
order). Several proprietary formats to describe business processes have
been developed, some of them based on XML. The definition of a com-
mon standard is still an issue.

Autonomy

Applications in electronic business have to organize business processes
autonomously. Human operators can be called in for certain tasks or for
assistance, but they no longer drive the process. Business processes must
be able to modify themselves, for example, when a change in environ-
ment conditions is detected, when new services are discovered, when the
best option is temporarily not available, or when new intelligence is
gained on how a certain goal may be achieved. For example, a sales agent
may react intelligently when the market situation changes (e.g., change
prices or move to a different marketplace).

Soft-coded
business rules

Long-running
processes
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Trusted Information Sources and Traceability

Since anybody can publish information on the Internet, the information
found there is sometimes not trustworthy. Systems that rely on informa-
tion found on the Internet, such as agents, knowledge retrieval systems,
intelligent search systems, or self-modifying processes, must be able to
distinguish between “hard” (trusted) and “soft” information sources.
Mediation systems and knowledge processors must be able to trace back
and reveal on what basis a certain result was obtained.

1.2 IMPLICATIONS

In the following sections we'll discuss some of the implications of XML
technology on the current IT landscape.

1.2.1 The Blurring of the Classical Application

On the Web the classical stand-alone application vanishes. Electronic
business applications turn more and more into temporary and changing
constellations of Web services. Single instances on the Web provide low-
order services such as authentication, credit card validation, directory ser-
vices, mediation services, logistics, and so on. Higher-order services such
as a whole business process invoke these lower-order services—in se-
quence or simultaneously.

Web services are currently the catchphrase, most notably since Mi-
crosoft announced its .NET initiative. As we have just pointed out, Web
services can act as building blocks for business processes, and all major
developments in this area, such as BizTalk, RosettaNet, or ebXML, pro-
vide a way to express the orchestration of business processes via XML
(Chapters 10 and 11).

Using the Web as an infrastructure for interaction will change the na-
ture of the Web itself. We are used to the Web as a huge library of hyper-
linked documents. (Try www.shibumi.org/eoti.htm for the ultimate link.)
Since the beginning of the Web, these documents have become more col-
orful, more animated, and interactive. However, the essential character
of the Web stayed the same: it is a library, consisting of (relatively) few
servers and an overwhelming mass of clients. The Web of the future will
consist of a huge mass of whatever-the-name-will-bes, combining the
functionality of servers and clients. These units will host active and
autonomous objects (or agents) that interact with each other in a peer-
to-peer (P2P) fashion. Maybe we will still call the Web “the Web” then,
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but we also might call it “the Brain.” We will look into P2P technology in
Section 7.4.

1.2.2 Collaboration Instead of Integration

Although at the end of the 1990s “enterprise application integration”
became the catchphrase of the IT industry, it now is becoming more and
more obvious that integration is not what the industry really needs. An
enterprise with a tightly integrated IT infrastructure (such as, for ex-
ample, a huge ERP system) in the e-business world would be about as
maneuverable as a big oil tanker in a yacht regatta.

Building ad hoc business relationships or setting up virtual enterprises
for specific business models does not require integration but collaboration
between autonomous partners. More often than not, collaboration with
external partners has proved to be more productive than cooperation be-
tween internal departments, so much so that the principle of collaborat-
ing autonomous work units is now even applied within the enterprise.
The traditional hierarchical enterprise structure has given way to a more
democratic model.

The consequences for XML architectures are that we don’t have to
think in terms of megaprojects, but in terms of medium-sized applica-
tions and specialized Web services with an open communication struc-
ture. XML with its extensibility allows for such loosely coupled, open
communication structures.

1.2.3 The Return of Al

Many techniques related to XML remind us of techniques developed
when artificial intelligence (Al) became an issue in the 1980s. Techniques
such as rule-based programming (e.g., in XSLT), semantic networks (e.g.,
with topic maps), agent technology, and reasoning on the Semantic Web
can draw on experiences had during this period when expert systems and
programming in logic comprised the latest hype.

This makes sense, indeed. As the Web becomes more complex every
day, Al methods become more necessary to successfully navigate the
Web, publish and discover business services, negotiate protocols, or me-
diate between different ontologies.

1.2.4 Soft Logic

Moving around and making business in the megapolis Internet re-
quires—as we pointed out—some intelligence. Other than in the closed

No
megaprojects!
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world of the enterprises’ information systems, we experience on the
Internet very diverse environments and conditions. The context of opera-
tion frequently changes. Software systems must be able to negotiate this
change of contexts. We will discuss this in detail in Section 4.4.

It requires, too, that systems have the ability to compromise. In many
cases it might not be possible to obtain the best solution. This could
have technical reasons, for example, when a server is down. Or it could
have business reasons, when for example a supplier is booked up by the
competition. In this case, an automated system must be able to go for a
good solution instead of the best solution (wait for the server to go up
again or search for another supplier).

In other cases, the distinction between “required” and “should” is by
design in order to achieve a certain normative behavior without impos-
ing restrictions that are too harsh. Administrations (such as customs or
environment control) usually have rules and laws that must be enforced
and others that should be enforced. If we model such behavior into soft-
ware agents, we end up with systems that can negotiate and find com-
promises (Raskin and Tan 1996). Then it is time to talk about ethics
for computers. Just see John McCarthy’s novel The Robot and the Baby
(McCarthy 2001).

1.3 ARCHITECTURAL PATTERNS

At the time of writing, XML has already made the transition from “if” to
“how.” It is no longer a question if corporations and software manufac-
turers will employ XML to provide solutions, but it is still very much a
question how this can be done. Often the methodology to be used is
unclear, and the available tools and infrastructure are still scarce and do
not have the same maturity as, for example, relational technology.

The biggest problem is the human factor. Today, software engineers in
the field of XML come from three directions: from the SGML camp, from
the object-oriented camp, and from the relational camp. We can there-
fore expect—and, indeed, we do experience—that techniques and skills
learned in these fields will be employed in the new field of XML. This will
occasionally result in frictions and misunderstandings, but it is not really
bad. Eventually the technological crossover will breed a new discipline of
design and programming, of which we now only see a glimpse.

This requires an attitude of learning mutually from each other and
opening the mind to new ideas. Members of the SGML camp, for exam-
ple, who are used to a more document-centric design style, will have to
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adapt to the more data-centric style. They will also find that concepts
such as entity relationship modeling and referential integrity are exciting
new fields where there remains a lot to do. Members of the SQL camp, in
contrast, will miss concepts of referential integrity in XML but will find
that the rich structuring possibilities that exist in XML open a whole new
world of database design. Finally members of the object-oriented camp
will sadly miss a behavior model in XML documents. On the other hand,
they may find it exciting that XML actually does make remote procedure
calls work across company, platform, and language boundaries.

This situation is also the reason why this book goes a bit deeper into
theory than usual. In the current situation, where none of the existing
design methods exactly fits the new technology, it can be beneficial to
take a close look at the science.

But before we do this, let’s take a look at some applications and struc-
tures that have already been built with XML. In the following two
sections we will list a few popular architectural patterns. As our earlier
metaphor of the unplanned settlement suggests, we will structure this
overview into the sections “Dwellings” and “Community Infrastructure.”

What you will not find in this book is a blueprint for a large-scale ap-
plication based on XML. Another large-scale application would be the
last thing we would want to build with XML. We do not need another
Tower of Babel, and we do not need another XML-ified ERP technology.
What we do need is for ERP manufacturers to open up their packages and
make the functions available as Web services—with the help of XML. In
fact, this is what they currently do.

1.3.1 Dwellings

In this section we present a few architectural patterns that could be com-
pared with a single dwelling, the typical “family home.” They are applica-
tions that either operate within an enterprise or organization or somehow
showcase the enterprise to the outside world. Usually these applications
follow the classical client-server architecture, which typically consists of
three tiers: a database tier, a middle tier, and a presentation tier.

Catalogues
This pattern is used for catalogues of all kinds, in particular for product
catalogues.

The database tier consists of a native XML database storing product
data in XML format or of a relational database containing product data
and an XML wrapping layer.

Patterns

Three tiers
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Figure 1.3 A transformation layer converts presentation-neutral catalogue
data into a variety of presentation formats.

The representation tier consists of client software, typically Web brows-
ers that are equipped with suitable multimedia plug-ins. The formats used
here are HTML or XHTML combined with XML-based multimedia for-
mats such as SVG and SMIL. Alternative clients are mobile, WAP-enabled
devices, eBook devices, or even plain old telephones that are driven via
VoiceXML.

Between these two tiers exists a transformation tier, typically imple-
mented in the form of XSLT style sheets, Java servlets, and/or Java Server
Pages (JSP) that transform the presentation-neutral product data into the
required presentation format (Figure 1.3).

Encyclopedias

This pattern can, as a matter of fact, be used to implement online ency-
clopedias, but it is also applicable to other forms of knowledge bases, any-
where that navigation structures are required that are independent from
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Figure 1.4 The navigation layer separates navigation from presentation and
content.

the physical layout of the data. It can be used to apply sophisticated nav-
igation techniques to whole Web sites, product catalogues, Web shops,
and so on. It allows the establishment of semantic relationships between
Web resources and can provide additional access structures to users such
as links, paths, indices, taxonomies, guided tours, and so on.

It adds a separate navigational layer that is independent from the
physical structure of the knowledge base (Figure 1.4). The separate navi-
gation tier can be implemented with technologies such as topic maps,
RDF, or XLink linkbases. This allows for easy modification of navigation
structures without touching the actual resources or the representation
logic. It also easily allows the implementation of different navigational
structures for different types of users.

17
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In combination with the catalogue pattern, different presentation
forms are possible.

Workflow System

While the previous two patterns leave the initiative to the end user, the
workflow pattern orchestrates the work tasks for a single end user or
multiple end users. However, workflows can react to user events, thus
leaving a controlled part of the initiative with the end user. Typical
applications are shopping systems, supply chain integration, and con-
tent management.

The workflow pattern again consists of an XML database tier (XML
repository) storing not only the resources and artifacts of the work pro-
cess, but also the description of the workflow itself.

The workflow tier (Figure 1.5) consists of a workflow engine interpret-
ing the workflow description, which is typically formulated in XML. De-
pending on the state of the workflow, certain resources or artifacts are
presented to the user for viewing or editing.

In combination with the catalogue pattern, different presentation
forms are possible.

A real world example of the application of this pattern is discussed in
Ahmed (2001). This content management system was designed for the
Society of Automotive Engineers (SAE) to automate their standards devel-
opment process. The system supports online browsing of documents in
HTML or PDF format, online change request authoring, online workflow
support for change request approval (including an electronic ballot pro-
cess), keyword searches, and browsing in archives.

1.3.2 Community Infrastructure

The infrastructure of the online community is constituted of facilities
that are provided for public use such as libraries, directories, market-
places, and other Web services. These facilities are provided by institu-
tions, enterprises, or individuals. They may be free to use, or they may be
available for a fee.

Typically such infrastructures are provided on the Internet, but intra-
nets and extranets may also offer such facilities for their respective
communities.

Libraries
Libraries are the oldest institutions on the Web. In fact, the Web can be
seen as one huge library. This was facilitated by standard protocol formats
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Figure 1.5 The workflow layer orchestrates tasks and services.

such as TCP/IP, HTTP, and HTML and the integration of the necessary
access software (TCP/IP stack, Web browsers) into operating systems.

Web Services

The introduction of Web services marks a paradigm shift for the Inter-
net—the conversion from a huge document base into an interconnected
network of clients, agents, and applications. A Web service is such an
application (usually with a specialized functionality). The service can be
invoked from a client or from another Web service (Figure 1.6). The invo-
cation can be of a simple request/response type, or it can have a more
complex protocol consisting of several messages exchanged. In Chapter
10 we discuss Web services in more detail.
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Figure 1.6 Distributed functionality: a call to Web services can cascade
through several service providers somewhere on the Internet.

Web services are based on three technological standards: SOAP, WSDL,
and UDDI (see Chapters 6 and 7); all of them are XML applications. SOAP
defines the transport format, WSDL is used to describe Web service access
points and protocols, and UDDI is used for the registration and discovery
of Web services in directories.

In the context of its .NET architecture, Microsoft has included SOAP in
their Windows operating system, thus allowing any Windows application
to use Web services. To give a simple example: a spreadsheet application
could use a Web service for currency conversion, thus always ensuring
that the current conversion rate is used.

Marketplaces
Marketplaces bring buyers and sellers together (Figure 1.7). They include
functionality such as product catalogue integration, content manage-
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Figure 1.7 The marketplace acts as a single point of access for buyers and
sellers.

ment for product catalogues, query routing, vocabulary matching, shared
ontologies, communication with other marketplaces, and so on.

Marketplaces can offer additional services such as order acquisition,
tulfillment, clearing, settlement, or payment flow. They also attract third-
party services such as buyer cooperatives, logistics, financial services, re-
searchers, directory services, and industry associations.

Advanced marketplaces offer support for business processes beyond
pure procurement. For example, they may provide services for supply
chain management and shared product development.

Portals
A portal serves as an entry point to an Internet community, a large enter-
prise, an online market, and so on. The portal aggregates information
from several sources and personalizes the presentation for each user
according to his or her preferences and role.

Portals also attract third-party services such as directory services, in-
dustry associations, trade publications, and news feeds.

Repositories
Repositories are used to register Web services, business partners, and
other resources. A service provider that wants to offer a particular Web
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Figure 1.8 Clients use a repository as an “introduction agency,” then
communicate on a peer-to-peer basis.

service can register the Web service with a UDDI directory (see Chapter
7). Clients that look for a particular Web service can query that directory
to find it.

Similarly a company that wants to engage in electronic business can
register with an ebXML repository (see Chapter 10) and store its company
profile. Another company looking for a partner can query the repository.
After finding a prospective partner in the repository it can negotiate the
details directly with this partner (Figure 1.8).

Repositories can also act as libraries for shared resources such as
common business objects, vocabularies, and other schemata. They may
offer extra services for adapting generic resources to local or industry
conventions.

1.4 BEST PRACTICES

The following (very general) principles apply when designing systems
that are flexible, open, and collaborative.
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e Reification. Instead of hard-coding relationships between entities and
process dynamics (business rules) within your application, model these
relationships as entities (see Section 3.2.2) and implement them in the
form of XML documents, a process that, in terms of logic, can be seen
as reification. (Reification = “to make into a thing.”)

Construct generic software that is able to interpret these documents.
That way it will be much easier to adapt your applications when
changes become necessary. Hard-coded business rules are at the core of
EDI’s inflexibility.

e Context awareness. Instead of constructing the same software modules
(and document schemata) again and again, construct generic software
modules and document schemata that are context aware and can
adapt to different contexts. An example is the definition of business
objects in ebXML (actually this is something learned from EDI).

* Autonomy. Instead of constructing huge applications and similarly
huge document schemata, construct small specialized units that do
what they can do best, but that also can collaborate with others. This
also means that the definition of basic units should be fairly complete,
specifying not only data structure but also semantics and behavior.
While agent technology may not yet be mature enough for produc-
tion, a lot can already be learned from this technology. We believe that
over time XML will move in this direction. XML schemata will allow
the definition of self-contained objects that exhibit a behavior and
that control their own life cycle.
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2.11 XML Resources

his chapter introduces most of the basic standards for
TXML. If you are familiar with the syntax and the infor-
mation model of XML, you can skip Section 2.2. If you are
new to XML or need to refresh your memory, you will find
this chapter helpful.

Schema definition is the subject of a long (and ongoing)
debate in the XML community. We introduce its origins,
derived from SGML (DTD), then discuss the now-released
W3C recommendation XML Schema. We will pick up the
schema thread again in Section 2.9, where we discuss tech-
niques that go beyond XML Schema such as Schematron,
architectural forms, and design patterns.

In between we discuss several standards that define ac-
cess to documents, document composition, and document

transformation, including XPath, XPointer, XInclude, XBase,
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XQuery, XSL, and the SAX and DOM APIs that allow access to document
structures from programming languages. Please note that document trans-
formation (including XSLT) is discussed in more detail in Chapter 9.

The XML recommendation (Bray, Paoli, and Sperberg-McQueen 1998)
was released in 1998 by the World Wide Web Consortium (the W3C). Ini-
tially the adoption of XML by the Internet community was quite slow—
because of a misconception. By many XML was seen as a successor to
HTML. When it became clear that this was not the case (although XML
deals with some of the deficiencies of HTML), but that XML is good for
anything else but Web pages, things started to move. The adoption of
XML by industry heavyweights such as IBM, Microsoft, Sun, SAP, and
Software AG gave massive momentum to XML.

The initial proposal for XML was based on an already existing standard
called the Standard Generalized Markup Language (SGML). SGML had its
immediate origins in 1986, but its roots go back well into the 1960s,
when at IBM Charles Goldfarb, Edward Mosher, and Raymond Lorie de-
fined the Generalized Markup Language (GML). Is it by accident or by in-
tention that this acronym also matches the initials of its three inventors?

The domain of SGML lies in document processing—for example, book
publishing. SGML is incredibly powerful but is also very complex—too
complex to be used on the Web. The specification alone has more than
500 pages. The XML working group cut this down to 26 pages while keep-
ing about 95% of the SGML functionality, in the process also depriving
Goldfarb of his initial. Goldfarb took revenge and wrote one of the best
books about XML (Goldfarb and Prescod 2000). This time he needed only
900 pages.

2.1 XML: A LANGUAGE FACTORY

The main purpose of XML seems to be to spawn other languages. By the
end of 2000 there existed about 500 XML-based special-purpose lan-
guages. Some of these are domain oriented (vertical) and define exchange
formats within an industry sector or another community. Others are task
oriented (horizontal) and act as global languages for specific technical or
application-oriented tasks, such as service description, procurement,
product life cycle management, and so on. For an overview of such
industry languages, see Section 10.4.

Although, at first sight, this might look a bit dazzling, this situation
has its benefits. There is a special-purpose language for almost any pur-
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pose. Because the base technology is the same for all these languages—
namely, XML—the learning curve for each of these languages is short: in
most cases it’s only a few new tags and attributes that must be learned.
The other advantage is that these languages can be processed with the
same basic tools. Transformations between these different languages can
be achieved by simple means such as XSLT style sheets (XSLT is an XML-
based language for document transformation). For example, it is possible
to query an XML database with an XQuery or XPath search expression
for product information. The result would be an XML document that de-
scribes the product in a transformation-neutral format. This document
can be transformed with an XSLT style sheet into presentation formats
such as XHTML, SMIL, WML, or even VoiceXML. Or the data could be
packed into a SOAP message and sent to a business partner. Or we could
compile sales figures and display them with the help of SVG, an XML-
based vector graphics standard.

All of these acronyms denote XML-based special-purpose languages.
We will discuss each in more detail in later chapters. At the moment, it is
only important to know that all of these languages are based on XML. As
in many cases, here, too, the whole is more than the sum of its parts.

2.2 XML BASICS

There are already many books about XML on the market, including the
one by Charles Goldfarb and Paul Prescod mentioned earlier (Goldfarb
and Prescod 2000). We will therefore explain the basic XML concepts
here only briefly.

2.2.1 The Syntax

The XML syntax rules define the “well-formedness” of XML documents.
“Well-formed” means that a document is syntactically correct. Any well-
formed XML document can be processed with a standard XML parser.

Markup

XML is a markup language—a document can be structured with the help
of syntactical markup elements, similar to those used in HTML. Identi-
fiable elements within a document are enclosed between start and end
tags:

<lastName>Goldfarb</TastName>

Tags
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In contrast to HTML, a start tag must always have a corresponding end
tag. (We are talking here of classic HTML. The new XHTML standard is
based on XML, so the strict XML syntax rules apply for XHTML as well.)

For empty elements there is a shorthand notation. Instead of writing
the canonical form <br></br>, we can write <br/>.

Also in contrast to HTML, upper and lower case does matter: <lastName>
is different from <Tastname>.

Elements can be decorated with attributes:

<title xml:lang="en-us">The XML-Handbook™</title>
<title xml:lang="de-de">Das XML-Handbuch</title>

Attributes consist of a name and a value. Unlike HTML, an attribute must
always have a value, and the value must always be enclosed in single or
double quotes. The attribute we have used here is one of the few prede-
fined attributes in XML (indicated by the namespace prefix xm1:). Conse-
quently, this prefix is forbidden for user-defined attributes (including
prefixes such as XML:, xML:, Xml:, etc.).

This particular attribute defines the language of an element. The value
of the attribute consists of a combination of language code and country
code. The language code follows I1SO639 (www.w3.org/WAI/ER/IG/ert/
is0639.htm), while the country code is the same as that used for Web
domain addresses. Using this attribute it is easy to create multilingual
documents, as shown in the following example.

Using markup, it is possible to create documents of an arbitrarily com-
plex structure:

<book>
<title xml:lang="en-us">The XML-Handbook™</title>
<title xml:lang="de-de">Das XML-Handbuch</title>
<authors>
<author aid="al">
<name>
<firstName>Charles</firstName>
<middleName>F.</midd1eName>
<lastName>Goldfarb</TastName>
</name>
</author>
<author aid="a2">
<name>
<firstName>Paul</firstName>
<lastName>Prescod</TastName>
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</name>
</author>
</authors>
</book>

Note that by nesting elements our document is organized as a tree struc-
ture. Compare this to the flat relational tables: we would have needed at
least three different tables to store such a data structure in a relational
database.

Also note that the elements can be variable in layout. The first author
has a middle name; the second has only a first and a last name. In a rela-
tional table this would have been modeled with the rather artificial con-
struct of a null value for the middle name of the second author.

Elements can contain an arbitrary mixture of subelements and text, a
fact that can cause some headache when mapping XML structures onto
object-oriented or relational structures. For example:

<title>

The XML-Handbook™

<subtitle>Second Edition</subtitle>
</title>

XML documents should be introduced by a prolog, at least with an
XML declaration in its minimal form:

<?xml version="1.0" ?>

XML'’s character set is Unicode, which allows XML to contain most of
the international characters. The default character encodings are UTF-8
and UTF-16 (Standard ASCII code is a subset of UTE-8), but other code sys-
tems can be specified with an XML declaration in the document prolog:

<?xml version="1.0" encoding="I1S0-10646-UCS-2" ?>

Comments are inserted into XML documents using the following
syntax:
<!-- This is a comment -->

That is basically all you need to know to write your first XML
document.

Extensibility
The X in “XML” stands for “extensible,” which more or less means that
you can introduce your own tags and attributes. And this is exactly the
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strength of XML. In HTML, in contrast, all tags and attributes are prede-
fined. Most of these tags are used for presentation purposes, and some are
used for navigation. This is sufficient for displaying nice Web pages but
not for processing business data over the Internet. For a search engine, an
agent, a partner application, or even a human reader, the markup <b>415-
555-1234</b> is quite meaningless. That this item will be printed in bold
type has no significance in this context. More important would be to
know what this number means. Is it a product number, a phone number,
or an employee number? Markup like <phone number>415-555-1234
</phone_number> is much more helpful here, and this is exactly what XML
was designed for. By using this type of semantic markup, a document can
be self-describing. In our earlier <book> document, for example, we can
easily identify the title and the authors.

However, it was not the goal of the XML designers that everybody
would now start to invent their own tags and attributes as they please.
The result would be total chaos, with nobody understanding each other’s
documents. Instead, it was intended that user groups, industry associa-
tions, and communities would get together and agree on certain docu-
ment types. By using a DOCTYPE instruction, an XML file can be tied to a
given document type:

<IDOCTYPE book SYSTEM "http://www.book.org/book">

The DOCTYPE instruction must be given within the document prolog,
after the XML specification. This instruction is not mandatory, but if it is
supplied, a validating parser can check the document structure against
the specified Document Type Definition (DTD). We will discuss DTDs in
more detail shortly. At the moment, it is sufficient to know that a DTD
defines the vocabulary (tag and attribute names) and the structure of doc-
uments. A document with a DOCTYPE declaration that conforms with the
specified document type is called valid.

It is important to know that even documents with a specified docu-
ment type remain extensible. The external DTD defines only the minimal
layout of a document. It is always possible to add additional elements
(and text) to such a document by extending the external DTD with a lo-
cal DTD subset (for an example, see Section 2.9.3). This allows users to
use standard DTDs but add custom elements for individual purposes. This
flexibility makes it easier for users to adopt existing standards.

Namespaces
Extensibility, however, creates some problems. When tag names can be
created at will, it is very likely that the same tag names will be used by
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different people for different purposes. This is normally not a problem as
long as documents are kept apart. But when documents are merged, or
modularized document types are combined, there can be name clashes.
For example, in an XSLT style sheet that transforms document A into
document B, we need to decorate the tags used for the XSLT control ele-
ments in order to differentiate them from the tags in the processed docu-
ments (see Chapter 9).

This is done with namespaces. You could compare a namespace to a
city or a township. There may be a Marine Parade in both Sydney and
Melbourne. By decorating the street name “Marine Parade” with a city
name, you can uniquely identify the street.

In XML, namespaces (Bray, Hollander, and Layman 1999) are repre-
sented by a URI (Uniform Resource Identifier)—either a URL (Uniform
Resource Locator) or a URN (Uniform Resource Name). Such identifiers
are constructed from a registered domain name, owned by the author,
and an arbitrary path expression. It is important to use a registered do-
main name and not some fantasy name, since only registered domain
names are globally unique. (However, in the examples in this book we
use fantasy names.) The path name is used to differentiate between sev-
eral namespaces defined by the domain owner. With this technique, any-
body who owns a registered domain name can create as many name-
spaces as he or she likes.

Namespaces can be used within a document in two ways, de-
fault namespaces and prefixes. First we will look at an example of a
default namespace:

<book xmins='http://www.books.org/computer/xml'>
<title>The XML-Handbook™</title>
<authors>

</authors>
</book>
In this example all tags in the book element now belong to namespace

http: //www.books.org/computer/xml. It is also possible to scope name-
spaces:

<book xmins='http://www.books.org/computer/xml'>
<title>The XML-Handbook™</title>
<authors xmins='http://www.books.org/authors'>

</authors>
</book>
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Now the <authors> element and all child elements belong to a different
namespace, http://www.books.org/authors.
Now let’s look at an example of prefixes:

<book xmins='http://www.books.org/computer/xml'>
<title>The XML-Handbook™</title>
<a:authors xmins:a='http://www.books.org/authors'>

</a:authors>
</book>

Prefixes can be chosen arbitrarily and are used as a shorthand notation
for the full namespace specification. By combining the prefix with a tag
name we have assigned only the tag <authors> to the namespace
http://www.books.org/authors. The child elements would still belong to
the default namespace http://www.books.org/computer/xml, unless we
prefix them with a:, too.

Advanced Topics
CDATA provides a way to denote text as unparsed character data:

<! [CDATA[
if(ThisYear < 100) ThisYear+=1900;
11>

CDATA is especially useful when you want to place some program code
into an XML element, or if you want an element to contain marked-up
text but want the markup to be treated as plain text. CDATA advises XML
processors not to parse the included text for subelements.

XML documents can contain processing instructions, for example, to
specify the URI of an attached style sheet:

<?xml:stylesheet type="text/xs1" href="mystyle.xs1"?>

(This syntax is specified in an extra W3C recommendation; see Clark
1999b.) This processing instruction indicates to a Web browser that the
document should not be displayed in its native form but should be trans-
formed with the referenced style sheet and that the result of that trans-
formation should be displayed.

Document text can contain predefined entity references. These are
used to substitute characters that are otherwise used in a special syntactic
role (see Table 2.1). For example:

<formula> 3&gt;2 </formula>
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Table 2.1 Character Entities in XML.

Character  Entity

& &amp;

" &quot;

! &apos;
&1t
&gt

Similarly, character references can be used. Characters can be specified
as decimal code numbers or as hexadecimal code numbers. For example,
both &#169; and &#xA9; denote the copyright character.

In addition, user-defined entities can be used. These must be declared
in a DTD—either inline within the document or in the external DTD (see
Section 2.3.1).! For example:

&legal; &pi;

2.2.2 The XML Information Model

Before we discuss the standards to access XML structures like XBase,
XPath, XPointer, XLink, and DOM, it is necessary to get a better under-
standing of the XML data model, also called the XML information set.
This is described in detail in Cowan and Tobin (2001). The XML informa-
tion set is independent of the actual format of a document: the docu-
ment may exist in the form of an XML text file, a DOM tree, and so on.

All XML documents have a tree structure, with the nodes of the tree
constituted of elements and attributes (see Figure 2.1). Attributes are always
leaf nodes; they do not have child nodes. Element nodes may have child
nodes. All nodes except the root node have one parent node.

The attribute nodes of an element form an unordered list; that is, it is
not possible to make statements about the order in which the attributes
of an element occur. In contrast the child elements of an element form
an ordered list. Consequently there is a positional order relation between
the child elements of an element. This means that we can rely on the po-
sition of an element when accessing parts of an XML document.

1 ' We are a bit sloppy here. To be correct, we have to speak of the “external DTD subset,”
since a DTD can consist of an external subset and an internal subset.

Tree structure
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@xml:lang

middle_name?

Figure 2.1 Structure of the <book> schema. <title> and <author> are marked
with “+” to indicate multiple occurrences. <midd1eName> is marked with “?”
to indicate that this element is optional. The attributes xm1:1ang and ISBN
are prefixed with “@”, indicating an attribute. Although this figure shows a
tree diagram, schema diagrams can be cyclic (recursive).

Each node—element or attribute—has a local name and can have a
namespace identifier. The local name (also the combination of local name
and namespace identifier) is not required to be unique within a docu-
ment: elements and attributes may appear with the same name in differ-
ent contexts (i.e., under different parent elements) in the document.?

Furthermore, elements can repeat within a context. In contrast, attri-
butes must not repeat within a context.

2.3 SCHEMA DEFINITION—STAGE 1

In this section, we take a look at schema definitions for XML. We begin
with the basic DTD, as defined in the XML V1.0 Recommendation.

2 This has consequences for the authoring of XML documents: it makes sense to always
qualify elements with a namespace prefix but not to qualify attributes.
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2.3.1 The Document Type Definition (DTD)

As we mentioned earlier, it is possible to classify XML documents into

document

types. This is achieved with a DOCTYPE definition. We have

already given an example of an external DOCTYPE definition:

<IDOCTYPE

book SYSTEM "http://www.book.org/book">

However, it is also possible to specity an internal DOCTYPE definition af-
ter the document prolog:

<IDOCTYPE

1>

book [

with the whole document type specification contained within the brack-
ets. This form, however, is of only limited use because the so-defined

document

type applies only to the current document. Normally a DTD

is provided as an external file (which may be extended by an internal
DOCTYPE definition).

Element Definition
Let’s now see what can be specified within a DTD.

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT

book (title+,authors)>

title ANY>

authors (author+)>

author (firstName,middleName?,lastName)>
author

aid ID #REQUIRED

role (contributor|editor) "contributor"s>
firstName (#PCDATA)>

middTleName (#PCDATA)>

lastName (#PCDATA)>

This could be a complete DTD for the earlier <book> example. We see that
each element in the document has a corresponding ELEMENT declaration
in the DTD. This declaration specifies how each element is structured. Element
The following element types are possible: structure

ANY

EMPTY
#PCDATA

The element can contain mixed content including character
data and child elements.

Denotes an empty element.

The element contains parsed character data. (Parsed char-
acter data must not contain characters such as “<” or “&”.)

The element contains a model group (discussed below).
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Model groups are constructed by child elements used in sequence or as
alternatives. Both operations may be nested to obtain complex structures:

(child) Single child element
(childl,child2,...,childn) Sequence of child elements
(childl|child2]|...|childn) Alternate child elements
(childl, (child2]| (chi1d3,child4)),

chi1ds) Complex child structure

In addition, each element can be postfixed with a modifier that denotes
the number of occurrences (cardinality) of the element and whether the
element is mandatory or optional:

No modifier = One occurrence, mandatory (1..1)

? One occurrence, optional (0..1)

+ Multiple occurrences, mandatory (0..n)
* Multiple occurrences, optional (1..n)
Earlier we had defined

<!ELEMENT authors (author+)>

because the element <authors> can contain multiple <author> elements
but must contain at least one of them. We had defined

<!ELEMENT author (firstName, middleName?, lastName)>

because the element <author> must contain the elements <firstName> and
<lastName> but may contain the element <middleName>.

The element definitions can be recursive, meaning that a child ele-
ment in a model group can refer to a previously defined parent element.

<!IELEMENT chapter (title,abstract?,section+)>
<!IELEMENT section
(title,(content | (abstract?,section+)))>

This defines the structure of book chapters. FEach chapter consists of a
mandatory title, an optional abstract, and multiple sections. Each section
consists of a mandatory title, followed either by content or by an
optional abstract and multiple nested sections.

If you have experience in the definition of formal languages, you
might have noticed that a DTD very much resembles the production
rules of a formal language. To be precise, DTDs form a subclass of forest-
regular grammars (FRG).
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And, in fact, DTDs are used to define other XML-based languages. So
there is an XHTML DTD, an SVG DTD, an SMIL DTD, an XSLT DTD, and

SO Oon.

Attribute Definition

In a similar way, attributes can be defined for each element. This is done
using ATTLIST, which lists all attributes of an element. Each attribute def-
inition consists of an attribute name, an attribute type, and a default

value.

In contrast to XML elements, which are typeless, attributes do have a

type:
CDATA
NMTOKEN

NMTOKENS
(writer|editor|artist)

NOTATION (n1|n2]...)

Character data.

Name token. (Valid name tokens consist of
letters, digits, and the characters “.”, “-”,
ll_ll, Or ll:ll.)

NMTOKEN list (separated by white space).

Enumeration. Each token must be a valid
name token.

Enumeration of notation symbols (see
below).

ID Element identifier. This must be a valid
name. Element identifiers must be unique
in the context of a document. (Names start
with a letter or with “_” and can contain
letters, digits, “.”, “-”, or “_". Names must
not start with the string “xml” or variations
such as “XML"”, xML, “XmL", etc.)

IDREF Reference to an element ID.

IDREFS IDREF list (separated by white space).

The following default value specifications can be used for attribute

definitions:

#IMPLIED Attribute is not required nor does it have a

default value.

#REQUIRED Attribute must be specified.

"fax","42","yes"  Default values. These apply when the attribute is
not specified.

#FIXED "v1" Fixed content. If specified, instances must match
this value.
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In our earlier example we defined

<IATTLIST author
aid ID #REQUIRED
role (contributor|editor) "contributor">

This means that the element <author> has a required attribute of type ID
and an optional attribute role. If the attribute role is specified, it can take
two valid values, “contributor” and “editor”. If it is not specified, the
default value “contributor” applies.

2.3.2 Advanced Topics

The ID and IDREF attribute types can be used to establish relations be-
tween elements, allowing the establishment of networklike document
structures that could not be captured in tree structures. In particular, it is
possible to define documents that model relational tables by using the ID
and IDREF constructs. ID acts as a primary key, while IDREF acts as a for-
eign key. Some XML parsers support the location of elements by ID.

The NOTATION attribute type is a kind of type extension mechanism for
elements. A NOTATION attribute advises XML processors that the element
to which the attribute is attached should contain content that complies
with the specified notation. An XML processor could then check the ele-
ment for specific content, possibly by using a helper application.

In practical applications the NOTATION construct is hardly used, espe-
cially now that there are better ways to define datatypes for XML ele-
ments with XML Schema. We will discuss this in Section 2.4.2.

Entities

A DTD can declare user-defined entities. These entities can be used within
the document text and will be resolved to the entity definition by XML
processors. User-defined entities are used to abbreviate frequently used
terms and phrases, or to introduce a symbolic notation for commonly
needed constants:

<IENTITY legal "AT1 rights preserved">
<!ENTITY pi "3.141593">

A DTD can also define external entities—entities that do not specify a
literal value within the DTD but refer to an external document. However,
this is beyond the scope of this discussion. Especially in the context of
message exchange and databases, we do not recommend the use of exter-
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nal entities. In traditional SGML environments, however, external enti-
ties are widely used for document composition.

Parameter Entities
Parameter entities are used only within a DTD; they do not appear in
XML instances. A parameter entity is just an abbreviation for a string that
is frequently used within a DTD and thus allows factoring out frequently
used strings.

A parameter entity can be declared through

<IENTITY % entity-name "string-value">

All occurrences of %entity-name; within the DTD will be substituted with
string-value. It is possible to nest parameter entities.

2.4 SCHEMA DEFINITION—STAGE 2

In the past, DTDs were the standard way to define a schema for an XML
document type. However, more than a dozen alternative schema defini-
tion languages have been created by several institutions and individuals.
The W3C itself has produced a new schema definition language, XML
Schema (XSD), which is discussed in Section 2.4.2.

2.4.1 DTD Deficiencies

The reason for the flood of schema definition languages lies in the defi-
ciencies of the DTD:

e Syntax: DTDs are not XML documents themselves. This is a problem
because the ubiquitous XML tools cannot be used to edit, validate,
parse, and transform DTDs.

® Namespaces: DTDs do not support namespaces. A DTD doesn’t stop
you from using prefix:name combinations for element and attribute
names, but it interprets these combinations as simple names. This can
lead to confusion.

e Datatypes: DTDs do not support datatypes in the classical sense. We
cannot define, for example, elements and attributes that must be nu-
meric or integer. The content of elements and the value of attributes
are always regarded as character data. This can have unpleasant ef-
tects when we want to compare two elements that contain numeric
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values: “~1” is regarded as smaller than “-2”; the floating point num-
ber “3.3e-10" is regarded as larger than “2.2e+16"; and so on.

Except for some datatypes for attributes (such as NMTOKEN, ID,
IDREEF, etc.), DTDs do not feature built-in datatypes. It is not possible
to create user-defined datatypes either.

* Bags: DTDs cannot specify unordered sequences of elements (bags). For
a given model group (el,e2,e3) the elements el . . . e3 must appear in
the document instance in the defined sequence. To simulate an un-
ordered sequence, all possible permutations must be given as alterna-
tives: ((el,e2,e3) | (el,e3,e2) | (e2,el,e3) |...).

e Context: In DTDs all elements are defined on the document level. This
makes it impossible to define context-sensitive elements—elements
with the same name but with different structure in different contexts.

e Cross-references: The support for cross-references in DTDs is poor. Only
attribute values can be used as keys, and it is not possible to combine a
key from several attributes. Keys are always defined on the document
level, so it is not possible to scope keys.

2.4.2 XML Schema

That was reason enough for the W3C to start with the definition of a new
schema language. The XML Schema working draft was first published in
May 1999. It could already rely on several other schema languages such
as XSchema, DDML, XML-Data, and SOX (Schema for Object-oriented
XML). One of the more recent additions was XDR, which was used by the
BizTalk community for schema definition. Now, with the XML Schema
recommendation (Fallside 2001) released in May 2001, most XML com-
munities—including the BizTalk community—are moving toward XML
Schema.

XML Schema is quite a complex standard. To begin to understand
XML Schema, it is best to think of it in terms of DTDs + Namespaces +
Datatypes and worry about the rest later. Because we have already cov-
ered DTDs and namespaces, we will begin with datatypes.

Datatypes

The introduction of a full type system (Biron and Malhotra 2001) for ele-
ments and attributes is the most important aspect of XML Schema. It
includes the attribute types known from DTDs but also introduces basic
datatypes as they are known in SQL or programming languages. User-
defined datatypes are possible, too.
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Built-in Datatypes The type system of XML Schema makes a clear dis-
tinction between value space and lexical space. While the value space is
constituted of an abstract collection of valid values for a datatype, the
lexical space contains the lexical representation of these values—the
tokens that can appear in the XML document. Depending on the permit-
ted formats, each value can have several lexical representations (see Fig-
ure 2.2).

XML Schema defines datatypes by attributing facets to datatypes.
Facets define single properties of datatypes; that is, the definition of a
datatype is made up of a collection of constituting facets. XML Schema
differentiates between fundamental facets and constraining facets.

Fundamental facets define the basic properties of datatypes. Funda-
mental facets are:

equal Defines equality between values of a datatype. For
example, two attributes are equal if their values (not
necessarily their string representations) are equal.

ordered Defines order relations between values of a datatype.
bounded Defines upper and lower bounds for the values of a
datatype.

cardinality Defines whether the value space of a datatype is finite,
countably infinite, or uncountably infinite. For example,

Value Space
May 13, 1999
Lexical Space
1999-05-13
1999-W19-4
99-05-13
1999-133

Figure 2.2 Possible lexical representations for a given date value.
Transformations between value space and lexical space are bidirectional:
parsing operations transform lexical representations into values; formatting
operations transform values into lexical representations.

a1

Value space and
lexical space

Facets
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enumerations are finite and integer numbers are
countably infinite.

Defines whether or not a datatype is numeric.

Constraining facets do not add new properties to a datatype but—as

length

minLength
maxLength
pattern

enumeration

whiteSpace

maxInclusive
maxExclusive

minlnclusive
minExclusive

totalDigits

fractionDigits

the name says—constrain existing fundamental facets. Constraining
facets are

Defines the length of a datatype value (number of
characters for strings, number of octets for binary,
etc.). For example, a country code such as us, de, uk,
fr, and so on would have a fixed length of 2.

Lower bound for the length of a datatype value.
Upper bound for the length of a datatype value.

Constrains the values of a datatype by constraining
the lexical space of a datatype to match a specified
character pattern. A pattern is defined via regular
expressions.

Example: '[0-9]-[0-9] {3}-[0-9] {5}-[0-9]"
constrains the lexical space of a datatype to the
format of an ISBN

Constrains the value space of a datatype to a specified
enumeration of values.

Constrains the value space of a datatype by imposing
a policy for whitespace handling: preserve (keep all
whitespace characters), replace (replace each
whitespace character with the blank character),
collapse (reduce all sequences of whitespace characters
with a single blank character).

Upper bound for the value space of a datatype.
Lower bound for the value space of a datatype.

Maximum total number of decimal digits in values of
datatypes derived from datatype decimal.

Maximum number of decimal digits in the fractional
part of values of datatypes derived from decimal.

Using these facets, XML Schema defines a rich set of built-in data-

types (see Figure 2.3). Some of these datatypes are primitives—they do
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not rely on the definition of other datatypes. Other datatypes are derived
datatypes—datatypes that are derived from primitive datatypes or from
other existing derived datatypes.

User-defined datatypes User-defined datatypes allow schema designers
to create custom datatypes. User-defined datatypes are always derived
datatypes. They are derived either from built-in datatypes or from other
user-defined datatypes. There are three methods for deriving a datatype
from another datatype: restriction, list, and union.

anyType
.rDerived by Extension

| or Restriction

------ Derived by List

| All Complex Types | anySimpleType ——  Derived by Restriction

[ I I I I I I I I
duration dateTime time date gYearMonth gYear gMonthDay gDay gMonth

I I I I I I I I
boolean base64Binary hexBinary  float double anyURI QName NOTATION

string Primitive Types decimal
normalizedString Integer
Derived Types n .
token nonPositivelnteger long nonNegativelnteger
language Name NMTOKEN negativelnteger int unsignedLong  positivelnteger
i
1
NCName NMTOKENS )
| short unsignedint
I I I
ID IDREF ENTITY
1 1
i i byte unsignedShort
1 1
IDREFS ENTITIES

unsignedByte

Figure 2.3 The hierarchy of built-in types in XML Schema. Primitive datatypes are presented
in reverse style. Derivation by list (extension) is indicated with a dotted line; derivation by
restriction, with a solid line.
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Restriction is done by adding more constraining facets. Here is an
example for constraining the value space of base type string by
enumeration:

<xsd:simpleType name="gender">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="male"/>
<xsd:enumeration value="female"/>
</xsd:restriction>
</xsd:simpleType>

Any datatype can be extended to a list of this datatype. The following
example shows the definition of a list of integer values between 0 and
255 of length 3. As we can see, it is possible to use the facet 1ength to con-
strain the size of a list.

<xsd:simpleType name="bytelList">
<xsd:Tist itemType="xsd:unsignedByte"/>
</xsd:simpleType>

<xsd:simpleType name="rgbColor">
<xsd:restriction base="bytelList"/>
<xsd:Tength value="3"/>
</xsd:restriction>
</xsd:simpleType>

With the union operation, it is possible to combine disparate datatypes
into a single datatype. In the following example we combine the rgbColor
datatype definition from above with a text-oriented color datatype. This
allows us to specify a color either by a triple of integers or by a keyword.

<xsd:simpleType name="unitedColor">
<xsd:union/>
<xsd:union memberTypes="rgbColor">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="red"/>
<xsd:enumeration value="green"/>
<xsd:enumeration value="blue"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
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This example also shows that an operator such as union may refer to an
existing datatype or may define member datatypes implicitly.

Complex Datatypes It would seem that where there is a simpleType dec-
laration, there must also be a complexType declaration. And, in fact, there
is. Complex types are used to combine several XML elements and
attributes into one datatype, so they are a central element in schema def-
inition (Thompson et al. 2001).

Here is an example:

<xsd:complexType name="price">

<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute name="currency" type="xsd:string" />
</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

This definition uses a simple content model (i.e., only character data, no
child elements) of type decimal and extends it with an attribute of type
string and with the name currency.

As we can see, complex types can constrain the content of an element
to a certain model. In particular, complex datatypes can construct aggre-
gations of child elements, as is possible with model groups in a DTD.

The content model can be defined as

* empty. The element must not have content but may have attributes.

Or it can be defined as a model group. Model groups consist of a list of
particles combined using connectors:

e sequence. An ordered sequence of child elements or other model
groups.

e choice. Alternative child elements or other model groups.

e all. An unordered sequence of simple or complex child elements (all
groups cannot contain other model groups).

e group. This connector allows naming a model group or referring to a
named model group. So model group definitions may be reused.

A particle consists of an element, a wildcard, or another model group
with optional minOccurs and maxOccurs properties that control the num-
ber of occurrences of the particle. These replace the “?”, “*”, “+” modi-
fiers known from DTDs but allow a finer control over the number of
occurrences.
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Wildcards are declared with the schema elements <xsd:any> and <xsd:
anyAttribute> and allow for the inclusion of elements and attributes
from foreign namespaces in the schema. For example, sections of
XHTML, SVG, RDF, and other content can be included in a document.

By default, a complex type must only contain element data; that is,
text cannot be interspersed with elements. To allow for mixed content
(i.e., interspersed text between child elements), the attribute mixed=
"true" must be declared in the definition of the complex type. Unlike
DTDs, XML Schema allows control over the number and order of child el-
ements within the mixed content.

Document Structure

To define an XML schema we need only four basic elements. The
<xsd:schema> element contains the whole schema definition and defines
the XML Schema namespace. As children of the <schema> element we
have the following:

e <xsd:element> defines elements. The first definition within <schema>
defines the root element of a document. These elements have either a
simple or a complex type.

e <xsd:complexType> defines the substructure of elements of that type,
that is, which attributes these elements have and which child elements
they contain.

e <xsd:simpleType> defines the type of a leaf element or of an attribute.

We demonstrate this in an example:
<?xml version="1.0"7>

<bookOrder orderDate="2001-01-27"
xmins:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xsi:schemalLocation="http://www.bookdomain.com/bookorder
http://www.bookdomain.com/bookorder.xsd"

<shipTo country="US">
<name>Venus Reader</name>
<street>585 Chapel Street</street>
<city>Papermoon</city>
<state>CA</state>
<zip>97989</zip>

</shipTo>
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<biT1To country="AU">

<name>Rick

Reader</name>

<street>18 Marine Parade</street>
<city>Albany</city>
<state>WA</state>

<zip>9832</zip>

</bi11To>

<note>Special Valentine's wrapping!</note>

<orderlist>

<item ISBN=

"0-3932-5855-9">

<title>The mint Tawn</title>
<quantity>1</quantity>

<price currency="USD">19.95</price>
<note>0n stock</note>

</item>
</orderlist>

</bookOrder>

In the root element of this document we declared the namespace for
XML Schema instances and the location of the schema definition. The
location declaration consists of a pair of values defining the namespace
http://www.bookdomain.com/bookorder and the schema location http://
www . bookdomain.com/bookorder.xsd. The namespace identifies the schema
definition by its target namespace definition, while the schema location
gives a hint to the processor about where to find the schema file.

The schema definition could look like this:

<xsd:schema

xmins:xsd="http://www.w3.0rg/2000/08/XMLSchema"
targetNamespace="http://www.bookdomain.com/bookorder">

<xsd:element name="bookOrder" type="bookOrderType"/>

<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element

name="bookOrderType">

name="shipTo" type="address"/>
name="bi11To" type="address"/>
ref="comment" minOccurs="0"/>

name="orderlist" type="items"/>
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</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:complexType name="address">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN"/>
</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positivelnteger">
<xsd:maxInclusive value="20"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="price">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute name="currency"
type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element ref="comment" minOccurs="0"/>
</xsd:sequence>
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<xsd:attribute name="ISBN" type="1isbhnType"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="ISBN">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{1}-d{4}-d{4}-d{1}"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Here we see that most elements are defined locally within the
complexType declaration. Only the root element <bookOrder> and the
<note> element are declared globally on the schema level, the <note> ele-
ment for the reason that it is used in various places. Also interesting is the
pattern definition for the ISBN datatype.

Namespaces

XML Schema provides full support for namespaces. Not only element and
attribute names can be associated with a target namespace but also type
names. The schema can enforce the specification of namespaces for ele-
ments and attributes individually or for all elements and attributes
defined in the schema. It is good practice to enforce namespace qualifica-
tion for elements but not for attributes.

Multinamespace documents are supported, too. Document instances
can use elements and attributes from multiple namespaces defined in the
corresponding schemata. Schema definitions may refer to types from
other namespaces by importing external schemata. Finally, the wildcards
any and anyAttribute allow the inclusion of content from foreign name-
spaces.

Nil Values, Uniqueness, and Keys
DTDs support only the concept of optional elements. An element is
either present or absent.

XML Schema also allows the expression of the absence of a value in
another manner by introducing the concept of “nillable” elements.
Within a schema an element can be defined as nillable. In the docu-
ment instance a nillable element can—via the attribute xsi:nil—indicate
that its content is indeed nil. An element with the attribute xsi:nil=
"true" may not contain content, but it can have other attributes.

Multiple
namespaces
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Of course, this concept was not introduced to split hairs about noth-
ingness but to support the exchange of data with relational databases. In
SQL databases, field contents can have the value null, so supporting a
similar concept in XML makes it easier to convert XML to SQL and vice
versa (for example, to export/import without a schema definition).

XML Schema provides the built-in datatypes ID and IDREF for model-
ing relations between document elements. However, the main purpose of
these datatypes is to provide backwards compatibility with existing XML
documents:

e Because ID and IDREF are attribute datatypes, it is not possible to
declare another datatype for a key. For example, is it not possible to de-
clare a primary key of type date. It is also not possible to use an ele-
ment as a key.

e ID and IDREF cannot handle composite keys. This is required if we
want to be compatible with relational databases.

e ID and IDREF cannot be scoped; that is, they always apply to the
whole document.

XML Schema therefore introduces several new constructs. The unique
clause defines elements, attributes, or combinations thereof that need to
be unique within a defined context:

<unique name="uniqueISBN">
<selector xpath="."/>
<field xpath="1item/@ISBN" />
</unique>

We assume that we have placed the definition of this unique clause into
the definition of element bookOrder/orderlist. We declare the attribute
ISBN (indicated by “@”) as unique within the context of bookOrder
/orderlist because we do not want more than one item within element
orderlist with the same ISBN. The xpath specification in the field element
locates the attribute relative to the context specified in the selector ele-
ment. (XPath is described in Section 2.5.1.) The <selector> clause could
contain several <field> clauses to specify field combinations as unique.

The key clause looks similar. It allows the definition of tuples of ele-
ments and attributes as primary keys. These tuples must be unique, and
they must exist within the defined context.

<key name="primaryKeyISBN">
<selector xpath="orderlist"/>
<field xpath="1item/@ISBN" />
</key>
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Assuming that we have placed the definition of this key clause into the
definition of the root element bookOrder, it allows us to access the items
in orderlist directly via a key.

Similarly there is a keyref clause to define foreign keys:

<keyref name="foreignKeyISBN" refer="primaryKeyISBN">
<selector xpath="undeliverableltems"/>
<field xpath="1item/@badISBN" />

</keyref>

Assuming that we have placed the definition of this keyref clause into
the definition of the root element bookOrder and that bookOrder contains
another element undeliverableltems that lists undeliverable items, we
have established here a cross-reference between undeliverableltems and
orderlist. To this purpose the keyref clause refers to the previously de-
fined key primaryKeyISBN via the refer attribute.

With the support for null values, full support for uniqueness, primary
and foreign keys, and the support for classical datatypes, XML Schema
improves the compatibility of XML with relational technology.

It is now easier to convert XML schemata into SQL schemata and vice
versa, and to import XML into relational databases or to export XML
from relational databases. However, whether this always makes sense re-
mains questionable. Relational databases require data structures to be
normalized, but XML documents are usually not. On the other hand,
normalized relational data structures do not contain all structural infor-
mation because some of this information is lost during the normalization
process—information that has to be added by the applications that pro-
cess this data. Exporting relational databases into XML results therefore
in a poor data model, losing some of the expressive power of XML. We
will discuss these modeling aspects in the next chapter.

Reuse Mechanisms

XML Schema provides a rich set of mechanisms that allow the reuse of

schema definitions or parts thereof:

o Attribute groups. Attribute groups can combine several attribute defini-
tions into a single named group. The whole group can then be refer-
enced by specifying the group name.

e Substitution groups. These work as a kind of alias mechanism for ele-
ments, allowing the substitution for occurrences of the so-called head
element of a substitution group with type-compatible members of the
same substitution group.

XML and SQL
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e Abstract type definitions. Type definitions can be classified as abstract.
These types can be used only to derive other types and not for element
or attribute definition.

e Inclusion and import. External schemata and types can be included or
imported into a schema definition. While inclusion works within a
single namespace, import can compose schemata across several name-
spaces. This allows the establishment of type libraries, for example, for
companywide datatypes.

* Redefinition. Redefinition works similarly to inclusion but allows the
modification of the included types.

e [nstance subtyping. XML Schema is flexible enough to allow instance el-
ements to be subtyped; that is, the original type is replaced with a de-
rived type (either a restricted or an extended type). This is achieved via
the xsi:type attribute.

Final Remarks about XML Schema

XML Schema marks a major step forward in schema definition for XML.
With its rich hierarchy of datatypes, support for user-defined datatypes,
support for namespaces, improved compatibility with relational data-
bases, and support for schema modularization and reuse, XML Schema
elevates XML from a mere document description language to a general
data description language.

There are, however, a few restrictions:

* XML Schema does not support XML entities, which can require the use
of both DTDs and XML Schema for document type definition. The or-
der of processing is such that first the entities defined in the DTD are
resolved (default values for attributes are also inserted into the docu-
ment) before the document is validated against the XSD schema.

e Modeling constraints are limited under XML Schema. Single-field con-
straints can be modeled via user-defined datatype definitions and the
unique construct. Cross-field constraints, however, such as referential
integrity constraints, are limited to the key/keyref construct. We will
discuss advanced schema validation techniques in Section 2.9.

e The definition of context-sensitive elements is possible via local ele-
ment definitions but not for recursive elements. Recursive elements
must be defined on the document level.

e XSD schemata can be quite long. In many cases, this will exclude XML
Schema from client-side validation because transmission takes too
long.
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2.5 ACCESS AND COMPOSITION

While XML and XML Schema can be regarded as the core standards for
XML, there are several other W3C specifications such as XPath, XPointer,
XInclude, XQuery, XSL, and DOM that regulate access to XML docu-
ments and their composition and transformation.

2.5.1 XPath

The XPath recommendation (Clark and DeRose 1999) defines how nodes
within XML documents can be accessed. XPath expressions are used in
many other standards. We have already seen XPath utilized in the unique,
key, and keyref constructs in XML Schema. XPath plays a crucial role in
standards such as XSLT (Chapter 9) and XQuery (Section 2.6).

Because the XML information set has a tree structure it should be easy
to pinpoint an element or an attribute by specifying all parent nodes,
because this is done with path expressions that specify a file within a file
directory. Therefore, for our <book> example, the expression

/book/@ISBN

identifies the ISBN attribute of the <book> element. In XPath's abbreviated
syntax, attribute names are always prefixed with “@” (in the full syntax
the prefix is attribute::).

That was easy. Things get a little bit more complicated when we have
to deal with recurring elements. What does, for example,

/book/authors/author/TastName

mean? Because the author element is recurring, the expression does not
unambiguously identify a single node. Instead it resolves to a node set.
The expression identifies the <lastName> elements in all <author> ele-
ments. In our example this would resolve to Goldfarb and Prescod. When
we discuss the features of XPath, it is important to remember that XPath
is operating with node sets and not only with single nodes.

To restrict node sets, XPath allows the specification of filters within a
path expression. Here is a very simple filter that helps us select a specific
author:

/book/authors/author[1] /1astName

Filters are always specified in brackets. The filter here selects the first ele-
ment within the node set obtained by

/book/authors/author

Tree structure

Node sets

Filters
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Using filters we can thus pinpoint a single element within an XML
document.

In the previous examples we have used only the parent-child relation
to specify a node set. In addition, XPath allows the specification of node
sets by exploiting other relations such as the ancestor-descendant re-
lation, the positional order relation, or the relation between namespace
and nodes. For this purpose, XPath provides axis specifiers such as
parent::, ancestor::, child::, descendant::, following::, namespace::,
and so on. However, what is mostly used is the abbreviated syntax, which
we use in Table 2.2.

Like everything else in XML, string comparisons are also case sensitive.
If we want to make case-insensitive comparisons, we have to translate
both operands of the comparison into upper case. This can be done with
the translate function:

translate("Goldfarb","abcdefghijklimnopgrstuvwxyz","ABCDEFGHIJKLMNO
PQRSTUVWXYZ")

However, this function, despite the rather extensive notation, does not
work well for uppercase-lowercase translations in all languages. XPath 2.0
will address this issue.

In addition to the translate function, XPath supports other functions
to test conditions or to compare contents (see Table 2.3).

2.5.2 XPointer

XPointer (DeRose, Maler, and Daniel 2001) is built on XPath. Its purpose
is to augment URI addressing, so that it becomes possible to address
fragments of an XML file. A similar feature is known in HTML: a specific
anchor within an HTML page can be addressed by complementing a URI
with the anchor name, for example,

http://www.bookshop.com/book/the _comic_book.html#reviews.

However, HTML requires the definition of an anchor element within the
target document. XPointer, in contrast, allows access to document ele-
ments that are not specifically marked. It does so by exploiting the ability
of XPath to pinpoint single elements within an XML document.

The syntax is simple:

document_uri#xpointer(xpath_expression)
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Table 2.2 Operators in XPath.

Operator Operation Example Result
/N1 document /book root node <book>
root node
//N1 arbitrary element //author all <author> nodes in the
within document document
N1/N2 parent-child /book/title all <title> elements that are
relation direct children of node <book>
N1//N2 ancestor-descendant /authors//1astName all <lastName> elements that
relation are descendants of node
<authors>
* wild card /book/*/author all <author> nodes that are
grandchildren of node <book>
namespace a:* all nodes in namespace a
current node .//@xml:1lang all xm1:1ang attributes which are
descendants of the current node
parent node ..//@ISBN all ISBN attributes which are
descendants of the parent node
N1,N2 concatenation /book//(title,author) all <title> and <author>
nodes that are descendants
of node <book>
N1[n] position /book//author[1,Tast()] first and last author
N1[N2] existence /book//author last names of all authors that
[midd1eName] /TastName have a middle name
N1[C2] filter /book/title all US-English titles
[@xm1:T1ang="US-EN']
= equality /book//author[lastName=  <firstName>Charles</firstName>
I= inequality 'Goldfarb'] /firstName
>, >=, <, <=  comparison /book//author list of all authors from 'K'
[TastName>="'K'] onward
7, * wildcards /book//author list of all authors with last name
[TastName="'G*"] starting with 'G'
or Boolean OR /book//author list of all authors with last name
[TastName="'G*" starting with 'G' or with 'P'
or lastName='P*']
and Boolean AND /book//author list of all authors with last name
[TastName='Goldfarb' Goldfarb and first name Charles
and firstName='Charles']
+, -, %, arithmetic /bookOrder/orderList/ computes wholesale prices
div, mod operators item/price*0.6 of all order items
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Table 2.3 Functions in XPath.

Function Operation Example Result

id('foo') selects the element id('al') the author element
with the ID of 'foo' with aid="al'

last() number of last node /book//author[1,1ast()] first and last author

position()
count (node-set)

not (object)

true(),
false()

number (object)
sum(node-set)

contains
(str,str)

translate(str,
str,str)

in current context

position of current
node in parent context

number of nodes
in node-set

all nodes of current

context without the
nodes contained in

operand

Boolean values true
and false

converts to numeric
value

sums up numeric values
of a node set

containment

translates a string
using a character
translation table

/book//author[position
() <3]
count (/book//author)

/book//author[not
(TastName="'Goldfarb')]

/book/title[false()]
number(price) > 20.00

sum(/item/price) div
count(/item/price)

/book[contains(title, 'XML')]

translate('XML', 'LMX', '1mx')

first and second
author

number of authors

all <author> nodes
with a last name not
equal to 'Goldfarb'

returns empty node
list

true if price is greater
than 20.00

computes average
price over all items

all book titles
containing 'XML'

returns 'xml’

Multiple targets

For example,

http://www.bookdomain.com/books/
the_xm1_handbook.xml#xpointer(//author[1])

addresses the first <author> element within our XML book example. If we
had omitted the [1], we would have addressed all <author> elements:
pointers can point to multiple targets.

XPointer introduces some extensions of its own:

#xpointer(string-range(path,substring))
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addresses all strings matching 'substring' within the element that is
specified by path. For example,

http://www.bookdomain.com/books/the xml1_handbook.xm]
#xpointer(string-range(//title, 'XML"))

addresses all 'XML' substrings in the <title> elements of our example.
Another feature of XPointer is the ability to address ranges within a
document:

#xpointer(startpoint/range-to(endpoint))
For example, the expression
#xpointer(//author[1] /firstName/range-to(lastName))

addresses the range from the <firstName> element to the <lastName> ele-
ment of the first <author> element in our book example.

We finish our short discussion of XPointer with two forms of abbrevi-
ated syntax that XPointer entertains:

#identifier
is equivalent to
#xpointer(id("identifier"))

meaning that it points to the element with the ID "identifier". Although
this notation is similar to a fragment pointer in HTML, there is a differ-
ence: in HTML the fragment is identified by an <A> element with a spe-
cific name attribute. XPointer, in contrast, can use this syntax to point to
any element that has an attribute of type ID.

#/1/3/2/1/2

addresses elements by counting, starting at the root element. When an
element is found, the process continues with the next number, counting
the child elements of that element, and so on. In the context of our
example the above specification would be equivalent to

#xpointer(/book/authors/author[2] /name/1astName)

2.5.3 Xinclude

XInclude (currently a working draft) specifies how to include external
XML documents (or, by using the XPointer notation, parts thereof) in a

Ranges
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target XML document (Marsh and Orchard 2001). As such it is designed
to eventually replace external entities.
For example:

<?xml version="1.0"?>
<book xmins:xi="http://www.w3.0rg/1999/XML/xinclude">

<xi:include href="legaldoc.xml"/>
</book>

with Tegal.xml defined as

<legaldoc>

The publishers' view may differ from the authors' expressed
opinion
</legaldoc>

This would result in the following document:

<?xml version="1.0"7>
<book xmins:xi="http://www.w3.0rg/1999/XML/xinclude">

<legaldoc>
The publishers' view may differ from the authors' expressed
opinion
</legaldoc>
</book>

XInclude can compose documents from different namespaces. The
attribute parse="text" allows the inclusion of unparsed text. Otherwise,
the default value of parse="xml1" forces the processor to parse the included
text and reject non-well-formed XML. If the parsed text contains nested
inclusions, these are resolved as well.

2.5.4 XML Base

XML Base is probably the shortest standard the W3C has ever published.
It specifies just a single attribute: xml:base (Marsh 2001). We will keep
this section similarly short. Basically, xm1:base specifies a base URI as the
basis for all relative URIs that appear in the element where xml:base is
specified. Typical applications are XLink and XInclude.
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2.6 QUERYING XML

XQuery currently has the status of a working draft (Chamberlin, Clark, et
al. 2001): “It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than work in progress.” Given that, here
we will take only a short browse through the major concepts of XQuery.
An extensive base of use cases, queries, and expected results is contained
in Chamberlin, Fankhauser, et al. (2001).

XQuery is derived from Jonathan Robie’s Quilt, which in turn utilizes
concepts from other query language proposals. There had been quite a
few: the definition of a standard query language for XML has a history.
Many of the results obtained by this work found their way into the defi-
nition of XPath (see Section 2.5.1). XQuery, therefore, addresses topics
that are not covered by XPath. XQuery expressions look a bit similar to
SQL expressions, and indeed XQuery borrows concepts from SQL and
OQL. Figure 2.4 shows XQuery in action.

i

_E!Ie Edit 'g‘iemv_luols Help
D& 3|®m|@] o]

HMPR12xgueny” |
8 {0ty B pases -l My softwARE AG
et THE XML COMPANY
<hih
{ FOR $bookl TH document("dats\xmp-data.xul”)//book, [ Target:
fhookZ TH document|“daca'\xnp-data.xwl”) f/ book
WHERE §bookl/title/text () > $bookZ/title/text () € Famino
AHD fbookl/fauthoxr = §bookZfauthor I'- alhost
FETURH WEhase I akShor
<book-paics |
{§bookl/title} & Filesystem
{§bookz/title) Directory: [leamples | ]
< /book-pair>)
/ -
iiblh}l | _.‘_| EXECUTE I
Output:

<?xml werzions"Ll.0"

<hib xmlns:ino="hrtp: //hanespaces, softwaresy. con/taning/ response2” yminsixql="http: //netalah, unc

<hook-paircs:
LTaclesTCPAIP Illustraceds /titles

<titlebAdvanced Frogramming in the Unix enviconment</title>
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Figure 2.4 XQuery in action: QuiP, an early implementation of XQuery,

doing a join over a document base of books.

Origins
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2.6.1 Expression Types

An XQuery expression can consist of a number of expression types.

Path Expressions
Path expressions are formulated using XPath (see Section 2.5.1), which is
currently also under revision (XPath 2.0). XQuery is expected to be a
superset of XPath 2.0.

In XQuery, only the abbreviated XPath syntax is used. The result of a
path expression is a list of nodes. For XQuery two operators were added:
the dereference operator and the range operator.

* The range operator RANGE x TO y specifies a range of nodes.

For example: //book/authors/author [RANGE 1 TO 2]/name results in
a list of name elements for two authors.

e The dereference operator => can follow an IDREF-type attribute. It re-
turns the element(s) that are referenced by the attribute. This operator
has a similar function as the id() function in XPath.

For example: //PurchaseOrder/Orderline/@pid=>Description would
extract the product id from a purchase order document, look up the
product element identified by this product id, and return the descrip-
tion of the product.

The XQuery Draft currently specifies the dereference operator only
for IDREF-type attributes, not for the more general keyref construct of
XML Schema.

Variables

XQuery supports the use of variables. Variable names are prefixed with
“$”. It is possible to assign a value to a variable (see below) and to reuse
that value in a later part of the same query. This is an important feature
for performing complex joins.

Element Constructors

Element constructors are, as the name says, used to construct new ele-
ments. These can constitute the result of the query, or they can be
assigned to a variable for later usage. Element constructors allow the out-
put of a query to be freely structured. For example:

<book ISBN = $ishn>
<title> $t </title>
<author> $a </author>
</book>
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Using variables in place of tag names is also allowed:

<$ProductOrService productID = $pid>

FLWR Expressions
“Flower” expressions are constituted from the keywords FOR, LET, WHERE,
and RETURN, which are used in this sequence. These keywords make an
XQuery expression look almost like an SQL expression.

The first part of a query consists of a FOR or LET clause or a combina-
tion. FOR is used where iterations are needed. For example:

FOR $a IN //book/authors

This iterates over all elements in authors, assigning with each iteration a
new author element to $a.
LET assigns the result of an expression to a variable. For example:

LET $v := //book/authors

This assigns the whole authors element to $v.

The second part is optional and consists of a WHERE clause. WHERE acts as
a filter. Only when the WHERE clause is true is the RETURN clause invoked.
The condition in the WHERE clause may be a Boolean expression con-
nected by AND, OR, or NOT. For example:

WHERE $a/Name/LastName = "Goldfarb"
AND $a/Name/FirstName = "Charles"

The last part of the expression consists of a RETURN clause. RETURN re-
turns the results of the FLWR expression. Its operand is usually a refer-
ence to a variable or an element constructor. For example:

RETURN $a/@aid

This would return the @aid attribute of the author element that was pre-
viously assigned to $a.

Expressions Involving Operators and Functions

Expressions can be constructed in XQuery using infix and prefix opera-
tors. Parentheses are used for nested expressions. XQuery supports the
usual set of arithmetic and logical operators. In addition it supports the
collection operators UNION, INTERSECT, and EXCEPT. The operators BEFORE
and AFTER can be used to select nodes by relative position.
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Conditional Expressions
Conditional expressions are constructed in the usual way with the key-
words IF, THEN, ELSE. For example:

IF name($e) = "Service"
THEN $e/Duration
ELSE <Duration xsi:nil="true"/>

Quantified Expressions

The keywords SOME and EVERY, in combination with SATISFIES, allow us to
test if some or all elements in a collection meet a specific condition. For
example:

FOR $b IN //book

WHERE SOME $p IN $b/authors SATISFIES
$p/Name/LastName = "Goldfarb"

RETURN $b/Title

List Constructors

Lists can be constructed with brackets; the list elements are separated by
commas. The empty list is represented by []. The function distinct() can
be used to remove duplicates from a list. The operator SORTBY can be used
to sort a list.

Expressions That Test or Modify Datatypes
XQuery uses the type system defined in XML Schema (see Section 2.4.2).
The keyword ELEMENT is used for element types defined with <xsd:any>.
LIST(x) is used for lists containing elements of type x.

It is possible to test the type of a node (INSTANCEOF) or to modify the
type of a node (CAST). The keyword TREAT allows us to narrow down a
type. For example:

IF $a INSTANCEOF postalAddress
THEN computePostage(TREAT AS postalAddress($a))

Functions

XQuery defines a set of built-in functions. We have already used the func-
tion name(), which returns the tag name of an element. Contained in
XQuery are the functions known from XPath, all the aggregation func-
tions of SQL (such as avg(), sum(), count(), max(), and min()), and some
other useful functions such as distinct() or empty().
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In addition, XQuery allows the definition of user-defined functions.
For example:

FUNCTION grandchildren(ELEMENT $e)
RETURNS LIST(ELEMENT)
{ $e/*/* }
Functions can be defined recursively. The following function lists all
part and subpart IDs for a product:

FUNCTION subpartIDs(ELEMENT $e)
RETURNS LIST(ELEMENT)
{
$e/@pid UNION subpartIDs($e/parts/@pid=>*)
}

Joins
Using this functionality, it is possible to construct powerful queries. The
use of variables allows the construction of any type of joins (there is no
special join operator in XQuery).

For example:

<books-with-or-without-reviews>
{
FOR $s IN document("book.xm1")
RETURN
<book>
{
$s/title, $s/authors
FOR $r IN document("reviews.xml")
[title = $s/title],
RETURN $r/review, $r/reviewer
1
</book>
SORTBY (authors/author[1] /name/TastName)
}

</books-with-or-without-reviews>

This is a left outer join, listing all books. If reviews exist for a specific
book, the reviews are merged into the result; if not, the book is listed
without reviews. The results are sorted according to the last name of the
first author.

User-defined
functions
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Here is another example:

<books-with-reviews>
{
FOR $s IN document("book.xm1"),
$r IN document("reviews.xm1")[title = $s/title]
RETURN
<book>
{
$s/title, $s/authors, $r/review, $r/reviewer
}
</book>
SORTBY (authors/author[1] /name/TastName)
}

</books-with-reviews>

This is the classic inner join, listing only the books having reviews. Note
that the join is accomplished with a filter expression ([title =
$s/title]). This construct allows for a very wide range of joins indeed;
the equality join is only a special case.

2.6.2 Discussion

XML is an integrative data format. A large amount of information on the
Web is in XML format, relational databases provide XML interfaces, and
knowledge bases using RDF (see Section 3.3) or topic maps (Section 7.2)
have an XML serialization format. With a language such as XQuery it
becomes possible to query and combine all these sources of wisdom.
While the proposed syntax is well suited for user interfaces and builds
on the knowledge of SQL-educated users, an alternate XML-ish syntax is
needed as well, to allow the programmatic generation of queries through
a DOM API or with the help of an XSLT style sheet. The W3C has pub-
lished a working draft for such a syntax (Malhotra, Robie, and Rys 2001).

2.7 XSL (EXTENSIBLE STYLESHEET LANGUAGE)

The XSL specifications define how XML documents can be transformed
into another format, especially into a presentation format. The specifica-
tions come in three parts: XPath, XSLT, and XSLFO.

XPath (see Section 2.5.1) was originally designed in the context of XSL.
Now it has become a separate recommendation that plays an important
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role both within XSL and within XQuery. Many other specifications, such
as XML Schema and XPointer, rely on XPath.

XSLT (XSL Transformations) specifies—as the name says—how XML
documents can be transformed into another XML (or non-XML) format.
XSLT has both declarative and procedural elements to specify transfor-
mations and relies heavily on XPath. Because of its importance as a
multipurpose tool for processing XML documents, we discuss XSLT ex-
tensively in Chapter 9.

One possible outcome of such transformations is formatting objects
(XSLFO). Formatting objects (see Section 8.2.4) conclude the XSL trilogy.
XSLFO can be compared to CSS in the HTML domain. It must be said
that the transformation into HTML + CSS is currently a more realistic ap-
proach for displaying XML documents than the transformation into
formatting objects because few Web browsers support formatting ob-
jects. However, formatting objects can be used as an intermediate format
when converting an XML document into a PDF document (see also Sec-
tion 8.6).

2.8 XML APIs

Application program interfaces for XML define how applications can
make use of existing parsers and other XML tools. Although applications
are free to treat an XML document as a plain character string and do the
parsing with custom logic, it is better if they avoid this and use a standard
parser such as SAX or DOM.

2.8.1 SAX

SAX (Simple API for XML) is not a W3C standard but a joint development
of the members of the XML-DEV mailing list. Various SAX parsers for
different programming languages, such as Java, C++, Python, Perl, or Del-
phi, are publicly available. The SAX specifications are published at
www.megginson.com.

SAX is an event-based parser—the parser reads an XML input stream.
In the case of events (such as startDocument, endDocument, startElement,
endElement, characters, ignorableWhitespace, and processingInstruc-
tion), the parser calls back similarly named methods or routines of the
host program, which can then take appropriate action. Because XML doc-
uments have a tree structure, the host program can analyze a document
with relative ease. Encountering a startElement event, the program

XSLT

XSLFO

Event based
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pushes the node onto a stack, while an endETement event removes the top
element from the stack. Using such a technique, the host program is al-
ways aware of the current context of an element.

SAX is relatively easy on resources. It does not require much memory
because it is not necessary to store the whole XML document in memory.
Because of its simplicity, SAX is easy to learn, too. On the other hand,
SAX is a read-only API: it is not possible to modify an existing XML doc-
ument via SAX.

The new SAX2 API additionally incorporates support for XML name-
spaces, filter chains, and querying.

SAX parsers are also called push-parsers because the parser pushes rec-
ognized tokens toward the client. Recently, so-called pull-parsers have
appeared, parsers where the client controls the parsing process. This pro-
vides increased flexibility to the client, and consequently newer DOM im-
plementations (see next section) use pull-parsing techniques.

2.8.2 DOM

The Document Object Model (DOM) is a full application programming
interface for XML documents. It allows clients not only to navigate
within XML documents but also to retrieve, add, modify, or delete ele-
ments and content. To provide a language-independent API description,
the DOM specification makes use of the OMG IDL (Object Management
Group Interface Description Language) as defined in the CORBA 2.2
specification.

In contrast to SAX, DOM stores the complete document structure in
memory. The document is first read in and parsed, and then a tree of
node objects is built in memory. Because at least one object is needed for
each document node, DOM is relatively heavy on resources. More recent
DOM implementations, however, such as Enhydra DOM (Java) and pull-
dom, contained in pyXML (Python), use lazy instantiation to save re-
sources. This technique requires slightly more overhead if you access an
element at the very end of a document, but should provide a SAX-like re-
source utilization when you access an element at the very beginning of a
document.

After the complete document has been parsed, control is passed back
to the host program. This program can then use the methods of the DOM
API to navigate the document tree and to retrieve content, modify nodes,
delete nodes, or insert new nodes. After processing, the document tree
can be written to an output stream.

The advantage of DOM for the programmer is that it is not he or she
who has to do the bookkeeping. Context information can be readily ob-
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tained via the DOM API. For programmers, DOM is the API of choice
when random access to document content is required.

Because the DOM API is very rich (the Element interface alone has 27
different methods, and DOM knows 17 different interfaces), for program-
mers there is some effort involved in mastering DOM programming.

A popular DOM implementation on Windows platforms is Microsoft’s
MSXML. Since it has a COM interface, it equips any COM-enabled Win-
dows application (including VBScript) with an XML DOM. Another pop-
ular DOM implementation is Xerces, from the Apache Software Founda-
tion, which exists in a Java and a C++ version. In the Java community
JDOM and DOM4J are popular. These APIs have a simpler (albeit non-
standard) interface.

There are currently three DOM API levels: DOM Level 1, DOM Level 2,
and DOM Level 3 (LeHors et al. 2001). Apart from other improvements,
DOM Level 2 adds an event model (McCarron et al. 2001) to the DOM
specification. DOM Level 3 adds an XML content model, load and save,
document validation with DTD or XML Schema, and better namespace
handling.

2.8.3 Binding

The Java Architecture for XML Binding (JAXB) is a recent (and still ongo-
ing) development that can replace SAX- and DOM-based solutions in Java
environments (JAXB 2001). JAXB includes a compiler that maps a DTD or
XML Schema to a set of Java classes (a binding schema must manually be
created to define this mapping). Document instances can then be con-
verted to Java class instances (objects) and vice versa. Because the JAXB
framework generates specific classes to represent the document type,
JAXB can achieve a higher processing speed than a SAX parser (which
works in interpretative mode and requires a call-back method invocation
with every token processed). After importing a document, the elements
and attributes can be accessed and manipulated as ordinary Java objects
and fields, providing a similar if not higher degree of ease of use than
DOM, but taking fewer resources. Note, however, that a DTD or schema is
required to process XML documents with JAXB.

Similar technology is available with Breeze XML Studio, Software AG’s
Bolero (Daum and Scheller 2000), Enhydra’s Zeus, and others.

2.8.4 Which API?

The decision on which of the three APIs (SAX, DOM, or JAXB) to use
depends largely on the platform. If you need access via a COM interface

Levels

67



68

Chapter 2 Groundwork

(for example, from VBScript), you have to use MSXML, so you are limited
to DOM and SAX2. In a Java environment, however, JAXB probably will
be the best choice once it is released. Currently, as we stated earlier,
JDOM and DOM4]J are popular in the Java community, although this
technology is still in beta status and provides no standard APIs.

The decision between DOM and SAX is not too difficult. If you want
not only to read documents but also to update them, use DOM. If your
documents contain cross-references (using ID and IDREF attributes), use
DOM because you need to go back and forth to evaluate the document. If
you need random access to document nodes, use DOM. If you don't
know how to implement a stack, use DOM.

Otherwise use SAX. It will happily noodle even mega- and gigabyte-
sized documents.

2.9 SCHEMA DEFINITION—STAGE 3

Even before the definition of the W3C’s XML Schema specification,
schema definition was the topic of heated debate, and it still remains
so after the final recommendation. The current discussion on “when to
use DTDs and when to use XML Schema” is an indication that XML
Schema is not the answer to all problems. In particular, XML Schema is
considered by many to be too complicated and too heavyweight. But it
also misses out on some finer points of schema definition such as cross-
element and cross-attribute checks, for example.

About a month after the release of the final XML Schema recommen-
dation, OASIS published a draft for “the next-generation schema lan-
guage,” called RELAX NG. RELAX NG is based on the earlier RELAX and
on James Clark’s TREX. It is lightweight like DTDs but includes support
for namespaces, for modularization (including the possibility of con-
structing unions, intersections, and differences of schemata), and for
datatypes (incorporating XML Schema datatypes), and it also has some
other improvements. Last but not least, a RELAX NG schema is—in con-
trast to a DTD—an XML document. Details are given in Clark and Murata
(2001) and Daum (2002).

2.9.1 A Feather Duster for XML Schemata

When we earlier discussed XML Schema, we had already observed that
XML Schema allows the definition of only the most basic constraints
such as datatypes and uniqueness. XML Schema fails when it comes to
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constraints that involve several elements or attributes. If we want, for
example, to enforce that attribute B must be present whenever attribute A
is present, or that attributes A and B are mutually exclusive, we are out of
luck. Or, if we want to enforce the presence of element C when attribute
A contains an “@” character, we are similarly left on our own.

Rick Jellife’s Schematron (Jellife 2001) is a tool that can do such con-
straint validation. Although Schematron is not a schema definition lan-
guage in its own right, it can be used alongside DTDs and XML Schema.

The concept of Schematron is as simple as it is ingenious. The tech-
nique used is a bit similar to the one used in XML Schema for the defini-
tion of unique, key, or keyref constraints (Jellife is a member of the XML
Schema working group). Each Schematron script consists of a number of
rules. Each rule first specifies a context node, via an XPath expression. On
the basis of the selected context node, other XPath expressions perform
tests. The success or failure of each test is reported. Since XPath is quite
powerful, the range of constraints that can be checked is very wide. In
particular it is possible to check for cross-element and cross-document
constraints.

Technically, Schematron utilizes XSLT to validate an XML document.
Using an appropriate XSL style sheet, the document is transformed into a
report that gives information about invalid structures within the docu-
ment. However, this requires that the XML document is already well
formed; otherwise it would not be possible to process it with XSLT.

Schematron uses a two-phase concept: The first step is only applied
once to a particular Schematron script and compiles it—with the help of
the Schematron processor style sheet—into a validation style sheet. In
the second step this validation style sheet is applied to individual docu-
ment instances.

Here is an example of a Schematron script that requires that the
<lastName> of a book author must be specified whenever a <firstName> was
specified.

<schema>
<pattern name = "author name checks">
<rule context = "book/authors/author/name">

<assert test = "not(firstName)
or (firstName and lastName)">
lastName missing in author&apos;s name
</assert>
</rule>
</pattern>
</schema>
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The context attribute in the <rule> element specifies the context node
book/authors/author/name. The <assert> element then tests for the con-
straint. If the test fails, the text content of the <assert> element goes into
the report.

Similar schema validation is possible with the Schema Adjunct Frame-
work discussed in Section 4.4.2.

2.9.2 Elements Versus Attributes

In the XML community (and previously in the SGML community) there
is a long and ongoing debate about when to use an element to model an
information or data item and when to use an attribute. At times the
debate has become almost a religious issue: each party is in the possession
of “The Truth”—even if their respective truths are mutually exclusive (for
the philosophical and logical background of this phenomenon, see Sec-
tion 4.3).

We are not inclined to take the position of either side but will simply
list the pros and cons of each approach. What we will find is that with
the definition of XML Schema some of the arguments against elements
do not hold any longer. In this respect, XML now differs from SGML.

The following is a boiled-down version of our <book> example from
Section 2.2 with the extensive use of attributes. The difference in size is
striking, and this is also the main reason why authors use attributes to
represent content.

<book title="The XML-Handbook™">
<authors>
<author aid="al" name="Charles F. Goldfarb"/>
<author aid="a2" name="Paul Prescod"/>
</authors>
</book>

You can also see that we have cut some corners in order to make it fit.
In particular we have kept only a single language for the title. To repre-
sent a multilingual title in one attribute (unlike elements, you cannot
have several attributes with the same name as children of a single ele-
ment), we would be required to invent a rather complex attribute format
(similar to CSS-style attribute syntax):

title="en-us:The XML-Handbook™;de-de:Das XML-Handbuch"

This in turn would require us to implement a custom parser to process
this complex attribute; furthermore we must postulate that no title ever
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contains a semicolon. Standard processors such as XSLT would not be
able to break this attribute string into pieces; it would require the use of
custom extension logic. Alternatively, we could create differently named
attributes—one for each language.

There is no problem parsing the author’s name. This attribute type
could be declared as NMTOKENS, so a parser would give us a list of tokens
consisting of first name, middle name, and last name. But beware: noth-
ing stops us from specifying a name like this:

<author aid="a2" name="Prescod, Paul"/>

Now the parser would return us “Prescod,” as the first name and “Paul” as
the last name (assuming that we always interpret the last list element as
last name). Custom logic would be required to look for a trailing “,” after
“Prescod” and swap the tokens accordingly (and remove the comma).

You can clearly see the drawbacks of attributes for representing com-
plex information.

A good compromise therefore might be

<author aid="a2"
<name first="Paul" last="Prescod"/>
</author>

or

<author aid="a2" first_name="Paul" last_name="Prescod"/>

However, in the second case we lose some structural information (that a
name is comprised of a first name and a last name).

Despite the problems in our naive approach to attributes, it is, in fact,
possible to represent any information structure using attributes only. This
is done in a way similar to relational databases: the data is normalized
and finally represented as an interrelated network of “flat” elements. The
relations between the data elements are not represented through the im-
plicit hierarchical relations between parent and child elements, but ex-
plicitly via ID, IDREF, and IDREFS attributes:

<book titles="title.l title.2"
authors="author.1 author.2"/>
<Title id="title.1" xml:lang="en-us">
The XML-Handbook™ </Title>
<Title id="title.2" xml:lang="de-de">
Das XML-Handbuch </Title>
<author id="author.1" aid="al" name="name.l"/>
<author id="author.2" aid="a2" name="name.2"/>

Compromise

“Flat”
documents
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<Name id="name.1l"
first="Charles" middle="F." last="Goldfarb"/>
<Name id="name.2" first="Paul" last="Prescod"/>

Here the structure of the document is established via matching ID and
IDREFS (IDREFS) keys (@titles, Gauthors, @name). The advantage is that we
can use the well-known relational techniques (see Section 3.1) to keep
the design of such a document sound. The disadvantage is that the docu-
ment is hard to read. Also it is not shorter than the original document—
on the contrary, it is longer. Constructing such a document also requires
some bookkeeping (to allocate unique keys to elements), and retrieving
information from such a document requires much cross-referencing and
joining.

Juxtaposed to this design there are also concepts that throw attributes
out altogether. This has culminated in the definition of MinXML (Park
2000), a minimal XML definition (without attributes, entities, CDATA,
mixed elements, etc). The logic to process such XML is surprisingly
simple; a parser can be formulated in 28 JavaScript statements (by Sjoerd
Visscher).

<book>
<title>
<lang>en-us</lang>
<text>The XML-Handbook™</text>
</title>
<title>
<lang>de-de</1ang>
<text>Das XML-Handbuch</text>
</title>
<authors>
<author>
<aid>al</aid>
<name>
<firstName>Charles</firstName>
<middleName>F.</midd1eName>
<lastName>Goldfarb</TastName>
</name>
</author>
<author>
<aid>a2</aid>
<name>
<firstName>Paul</firstName>
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<lastName>Prescod</TastName>
</name>

</author>

</authors>
</book>

The truth lies somewhere between these two extremes and largely de-
pends on context and personal taste. Is it essential that the documents be
as short as possible, or is it important that the processing logic be kept
simple? Is the document only to be used by machines, or is it also to be
read by humans? Are the documents machine generated or authored by
humans, and, if the latter, with which tools?

Here are a few strong reasons to prefer attributes:

1.

Attributes support the construction of relationships with ID/IDREF
keys.

A DTD can define default values only for attributes.

A DTD allows simple type definitions (ID, IDREF, NMTOKEN, and so on)
for attributes but not for elements.

. Attributes of an element form an unordered set. This can some-

times be handy when no sequence order between information
items is required.

. Attributes are much easier to access in DOM and SAX.
. When authoring document-centric XML in an appropriate XML ed-

itor, it is often more convenient to use attributes—as the name sug-
gests—for attributing text. The attributes will not litter the running
text, and spell checking is only applied to elements.

However, with the advent of XML Schema, these advantages of attributes

vanish, especially items 1-4, because XML Schema allows the definition

of unique keys, default values, types, and unordered sets for elements also.
And here are a few strong reasons to prefer elements:

1.

2.

An element can have multiple child elements of the same kind.
This is not possible with attributes.

Elements can be easily extended by adding child elements or
attributes.

. Attributes of an element always form an unordered set, so it is not

possible to establish a sequence order across attributes.

. Elements can contain whitespace and delimiters; whitespace han-

dling can be specified on the element level.

. Attributes are harder to search for in search engines.
. Attributes do not support nil values.

Pro attributes

Pro elements

73



74

Rules of thumb

Origins

Chapter 2 Groundwork

7. When editing data-centric XML in an XML editor, storing content
in attributes makes the editing process more difficult. Extra key-
strokes are often required to view the attributes.

So, with XML Schema the scale tips toward the use of elements. But we
wouldn’t discard attributes completely. There are two rules of thumb on
when to use what.

First, some authors recommend using elements to represent the enti-
ties of an entity relationship model (see Section 3.2) and using attributes
to represent the properties of these entities. But what about complex
properties? A name, for example, is clearly a property of an entity (such
as a customer) but has a complex structure (first name, middle name, last
name). So, we are not too sure about that case.

Second, use attributes to describe metadata (such as language identi-
fier, element author, element version, element ID, etc.) and use elements
to model content. This is more or less how we have used attributes and
elements in the past. However, what is content and what is metadata can
depend on the context. A good definition to distinguish content from
metadata is from Elliot Kimber:

One way to distinguish metadata from content is to ask the question “if I
removed this data, would my understanding of or ability to comprehend the
content change?” If the answer is no, it's metadata, if the answer is yes, it’s
content (or annotation, which is the third fundamental class of information).

2.9.3 XML Design Patterns

A good exercise when designing an XML Schema is to look at existing
schemata. Maybe we can utilize an existing schema and extend it a bit to
fit our own requirements. If this is not possible, it may still be possible to
pick up a few design elements (i.e., design patterns) and utilize them for
our own purposes.

Design patterns were introduced as a formal method into design by the
architect Christopher Alexander (who had a background in mathematics
as well). Alexander published on urban planning and building architec-
ture in the late 1970s. In the late 1980s design patterns were picked up by
software architects and found their culmination in the work of the “gang
of four,” Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Gamma et al. 1995). Since then patterns have become popular in soft-
ware design.

Design patterns describe the relationship between a problem, the con-
text of the problem, and the solution to the problem. They describe this
relationship in such a generic way that it becomes possible to transfer the
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way of solving the problem into a different context. Design patterns are
not invented: they are discovered when similar solutions are found to
solve similar problems in various contexts.

Now that XML has been around for a few years, design patterns are be-
ginning to emerge to solve problems with the design of XML documents.
These patterns can be fairly generic or can be more specific, for example,
to solve design problems in the area of electronic business. We therefore
find various design patterns connected with the various electronic busi-
ness platforms such as RosettaNet, BizTalk, or ebXML. These patterns are
published either on supporting Web sites in the form of guidelines, or as
reusable patterns stored in business community repositories.

A Web site dedicated to generic design patterns for XML is www.
xmlpatterns.com. At the time of writing, this Web site contained 28 pat-
terns: Catch-All Element, Choice Reducing Container, Collection Ele-
ment, Common Attributes, Consistent Element Set, Container Element,
Content Type Label, Declare Before First Use, Domain Element, Envelope,
Extensible Content Model, Flyweight, Generic Element, Head-Body, Mar-
ketplace, Metadata First, Metadata in Separate Document, Multi Root
Document Types, Multiple Document Types, Optional Container Ele-
ment, Parallel Design, Referenced Note, Reuse Document Types, Role
Attribute, Separate Metadata and Data, Short Understandable Names,
Universal Root, Use XML.

Here is an example for the Extensible Content Model pattern. The pat-
tern addresses the problem that at the time of designing a schema the de-
signer may not be able to predict all the possible use cases for the schema
and therefore wants to allow document authors to customize the schema
on the instance level.

The solution is that the schema designer adds an extension mecha-
nism to the schema definition. Since we already have discussed such a
mechanism (instance subtyping) for XML Schema (see Section 2.4.2), we
present here only a solution for DTDs. This solution is based on parame-
ter entities (see Section 2.3.2), which the document author can overwrite
on the instance level.

Let’s discuss this for the example of our book DTD. The book element
currently has only the child elements title and authors. If we want to al-
low document authors to add additional elements, we can do this in the
following way:

<IENTITY % details "">
<IELEMENT book (title+,authors %details;)>
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We have defined an empty parameter entity details and have appended
it to the definition of element book.

The document author can override the definition of parameter en-
tity details in the internal DTD subset and can then add additional
definitions:

DOCTYPE book SYSTEM "http://www.book.org/book" [
<IENTITY % details ", Price" >

<!ELEMENT Price (#PCDATA)>

1>

Given this definition the document body must then contain a Price ele-
ment after the authors element.

2.9.4 Architectural Forms

Architectural forms were first formally defined in SGML in 1997 as part of
the SGML Extended Facilities in ISO/IEC 10744:1997, Annex A.3, Archi-
tectural Form Definition Requirements (Kimber 1998). It did not take
long to adapt this technology to XML; a first SAX parser enabled for
architectural forms appeared with the XAF package from David Meggin-
son (1998). A recent development is APEX, an XSLT style sheet that pro-
vides the same functionality as XAF. APEX is published as part of the
National Institute for Standards and Technology (NIST) XSL Toolbox
(ats.nist.gov/xsltoolbox/), written by Josh Lubell.

Now, what are architectural forms? Architectural forms (AF) could be
roughly compared to a combination of interface and adaptor in object-
oriented programming. Concrete XML document types can relate to one
or multiple base architectures (which are document types, too). An AF-
aware parser can then validate whether document instances satisfy the
specified architectural forms. Elements that do not conform with a speci-
fied base architecture can be suppressed so that it is possible to generate
different views from a single document.

This technique allows the definition of specific document schemata
that implement given corporate standards. Rather than defining a single
huge and unwieldy XML schema containing every possible element used
within a corporation, the corporate standards are incorporated into
several rather small base architectures. The document schemata created
by different work groups can relate to these base architectures, and doc-
ument instances created according to these schemata can be checked
against these base architectures. Different vocabularies used in the
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base architectures are not a problem because AF allows the renaming of
elements.

To use architectural forms with a document, at least one base architec-
ture must be specified in a document in the form of an XML processing
instruction:

<?I1S10744:arch name="Person" auto="nArcAuto"?>

The pseudo-attribute name specifies the name of the base architecture. The
pseudo-attribute auto controls automatic association (see below). A docu-
ment may specify several base architectures simply by adding more pro-
cessing instructions.

We can then use the name of a base architecture within an element
definition to map the element of a document instance to an ele-
ment within the base architecture (or several base architectures). In the
following example we use three base architectures. One (<Product>) con-
trols the layout of the <book> element; the other two (<Person> and <Per-
sonld>) control the layout of <author> elements. We have emphasized
these base architectures. We see also how the elements <author>, <first-
Name>, <middleName>, and <lastName> are mapped to <Person>, <first>,
<middle>, and <last>.

<?1S10744:arch name="Product" auto="nArcAuto"?>
<?1S10744:arch name="Person" auto="nArcAuto"?>
<?1510744:arch name="PersonId" auto="nArcAuto"?>
<book Product="Product">
<title Product="name" xml:lang="en-us">
The XML-Handbook™
</title>
<title Product="name" xml:lang="de-de">
Das XML-Handbuch
</title>
<authors>
<author Person="Person" PersonID="PersonID" aid="al">
<name Person="name">
<firstName Person="first">Charles</firstName>
<middleName Person="middle">F.</midd1eName>
<lastName Person="1ast">Goldfarb</TastName>
</name>
</author>

</authors>
</book>

Using AF
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The three base architectures may look like these:

<Product>
<name xml:lang="en-us">
product-name
</name>
</Product>

<Person>
<name>
<first>first</first>
<middle>middle</middle>
<last>last</last>
</name>
</Person>

<Personld aid="al">
</Personld>

As we have already mentioned, it is possible to use a default mapping
of target document names to base architecture names. To enable this fea-
ture, the auto pseudo-attribute of the processing instruction is set to
auto="ArcAuto". The element within the target document is then mapped
to an element with the same name in the base architecture. Additional
syntactical elements allow us to ignore the base architecture for certain
child elements, to rename or ignore attributes, and to bridge references
between ID/IDREF attributes. The documentation in David Megginson's
XAF package describes these features in detail (Megginson 1998).

It is, of course, not necessary to specify all these mappings in the doc-
ument instance. We can easily define the attributes used to accomplish
the mapping, such as Product="name", as fixed-value attributes within the
DTD or within an XML Schema. Similarly, we can define the processing
instructions in the DTD or XML Schema, too. By using this technique,
document instances do not differ from document instances that do not
use architectural forms.

If we compare architectural forms with the reuse mechanisms found in
XML Schema, we find the following:

e XML Schema can compose a new schema from several smaller
schemata and type libraries, but architectural forms cannot. Rather
they allow checking given document instances against a set of “guide-
lines.”
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e Architectural forms do have a rename mechanism for element and
attribute names, which the include and import facilities in XML
Schema don’t offer. XML Schema, in contrast, has a redefinition mech-
anism, allowing the type of included elements to be changed.

e With architectural forms a document element can claim conformance
to multiple architectures simultaneously. This is not possible with
XML Schema.

2.10 BEST PRACTICES

In this section, we list a number of best practices that are discussed in the
XML community.

2.10.1 Always Use Namespaces

Small schemata are likely to be integrated into large schemata. Large
schemata are often developed by separate work groups in a modular fash-
ion. Because they prevent name conflicts, namespaces make it easier to
assemble large schemata from smaller ones—even if the work group con-
sists only of a single person. A good schema is very likely to be reused by
others!

In document instances, elements should always be qualified with a
namespace, either by using a default namespace or by using a namespace
prefix. This is not necessary for attributes because attribute names are de-
fined in relation to their context.

2.10.2 Do Not Reinvent the Wheel

Instead of designing every document type from scratch, use existing doc-
ument types (if possible use industry standards) and extend these to your
requirements. This will save you a lot of work, will usually result in
higher-quality schema definitions, and will ensure that core concepts of
your document are understood by others, too.

Most public repositories currently store XML schemas in the form of
DTDs. Extending such a schema is done with the traditional means of cut
and paste, since DTDs do not have an inheritance mechanism.

XML Schema has a powerful inheritance mechanism. Schema defini-
tions can be composed from schema modules using include and import.
Complex datatypes (i.e., nested elements) can be extended; that is,
attributes and child elements can be added. The wildcard mechanism
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(<xsd:any>) allows the definition of elements that follow a completely dif-
ferent schema (of a different namespace).

Remember that deep inheritance hierarchies can become hard to read.
In object-oriented programming, where inheritance is extensively used,
this phenomenon is known as the “yo-yo effect”— you have to go up and
down the inheritance hierarchy repeatedly to understand the result.

2.10.3 Multipart Schemata?

Some authors (in particular, see www.biztalk.org) warn against using multi-
part schemata because they multiply the dependencies between software
artifacts. These dependencies can make a system hard to maintain.
Things can get very complicated—especially if you build a full inheri-
tance hierarchy for document types and you have to maintain a corre-
sponding taxonomy of Java (and/or C++, JavaScript, etc.) classes. (The
same is true for architectural forms.) You could end up like Gulliver in Lil-
liput, held down by thousands of strings and unable to move.

Others, however, advocate the use of multipart schemata to construct
larger schemata from smaller components and type libraries (see, for ex-
ample, www.xfront.com).

2.10.4 Avoid External Entities

Similarly, external entities increase the dependencies between software
artifacts. Additionally, not all XML processors (including some databases
and messaging middleware) support external entities. For example, if you
want to embellish each XML document of a site with some corporate
information, it will be better to postprocess the documents using an XSLT
style sheet and add the required information in this way.

2.10.5 Never Change a Published Schema

This is a good practice exercised in component-oriented systems such as
COM. Instead of changing a published schema and probably burning its
users, create a new schema with each change. Be prepared for users to
continue to use the old schema version for a considerable time period.

2.10.6 Use Only Version-Controlled Schemata

Schemata that are not controlled by a version control system can change
at any time, leaving your application “out in the rain.” In particular, this



2.10 Best Practices

is the case when you use a schema from a public repository. Make sure
that the repository has a version control system in place.

If you are using multipart schemata, make sure that all parts are con-
trolled by the same version control system.

2.10.7 Consider Equipping Each Document
Element with a UUID Attribute

Universally unique identifiers (UUIDs) can be easily generated and can
identify objects uniquely. Equipping each element in a document
instance with such a UUID (as an attribute of type ID) helps to easily
identify an element. One advantage is that elements can keep their iden-
tity even through transformations (for example, with XSLT), when
merged with another document, or when moved to a different location.

2.10.8 Adopt a Concise Style for Schema Design

Here are a few recommendations found on the BizTalk.org Web site.
(Other communities might recommend slightly different authoring

styles.)

e Write element and attribute names in a style called “CamelCase.”
Elements reflecting an entity should be written in UpperCamelCase;
elements and attributes reflecting a property should be written in
TowerCamelCase. For example:

<author>
<name>
<firstName> ... </firstName>
<lastName> ... </lastName>
</name>
<author>

e Names should be meaningful. Names should describe the marked in-
formation item sufficiently. Avoid cryptic abbreviations. There is
always a chance that humans will read the document, at least in the
case of debugging. For example: do not write odate when you mean
orderDate.

e FElements and attributes should be named by their function, not
by their position in a set. For example: do not write <element 5>,
<element 6>, and so on when you can write <firstName>, <middleName>.

CamelCase

Meaningful
names
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¢ Do not use a complex string expression within elements that requires
custom parsing. Rather, break the string into single tokens and express
each token in a separate element. This will improve readability and ex-
tensibility. It also allows you to apply datatype definitions to each ele-
ment when defining a schema with XML Schema.

Note: XML Schema allows the definition of list datatypes. Such list
datatypes allow you to write several tokens of the same datatype
within a single element, separated by whitespace.

For example: rather than writing

<price> USD 9.95 </price>

write
<price>
<currency> USD </currency>
<amount> 9.95 </amount>
</price>
Lists like
<luckyNumbers> 35 23 48 29 96 42 <luckyNumbers>
are okay.

¢ To model conceptual entity properties, use XML elements, not attri-
butes. Attributes should be used for metadata such as element author,
element version, element origin, modification date, and so on. (But see
our discussion in Section 2.9.2.)
The reason for this is that an element is better suited for later exten-
sion than an attribute. You can always insert child elements into an ex-
isting element, but you cannot do so with an attribute.

2.10.9 Do Not Use Exotic Language Elements

Use only language elements that are commonly supported by existing
tools such as parsers, editors, viewers, and so on. For some XML-based
languages the W3C has published the results of conformance tests. These
reports list which language features are supported by which tools. Using
only features that are supported by most tools will improve portability of
your documents.
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2.11 XML RESOURCES

We have selected a few important Web sites that provide either an exten-
sive range of XML resources or other important contributions.

The World Wide Web Consortium (www.w3.0rg) is the reference point
for nearly every standard mentioned earlier—and more. In particular, in
case you didn’t know: XML is a W3C recommendation.

www.megginson.com is the source for SAX, SAX2, and XAF.

OASIS (www.oasis-open.org) is a clearinghouse of XML industry stan-
dards. In particular OASIS (in collaboration with UN/CEFACT) was respon-
sible for the ebXML standard and hosts the RELAX-NG specification.

Robin Cover'’s page (www.oasis-open.org/cover/), hosted by OASIS, con-
tains the latest XML-related industry news and discusses new industry
standards.

Also hosted by OASIS, www.xml.org, is a repository for XML schemata.
In collaboration with ZapThink, it also contains descriptions of about
400 XML-based industry standards. This site also gives access to the XML-
DEV discussion forum (www.xml.org/xml/xmldev.shtml).

www.xmlpatterns.com contains a collection of design patterns for XML.

www.xml.com is a site devoted to XML and related standards from
O'Reilly Publishers.

www.xmlhack.com is dedicated to news related to XML core tech-
nologies.

www.xfront.com discusses programming techniques for schema au-
thors. It also has excellent XML Schema and XSL tutorials.

www.w3schools.com offers a number of Web-related tutorials. There is
also a section on XML and XML-related standards.

www.xmlresources.com is an XML-related portal with links to books,
tools, tutorials, and more.

www.xmlArchitecture.org is the supporting Web site for this book.

Another good source for examples, tutorials, and tools is the XML-
related pages of the various large and small software manufacturers.
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n this chapter we discuss conceptual modeling techniques
I in the context of XML-based applications. After revisiting
the classic entity relationship model, we introduce asset-
oriented modeling—an approach to conceptual modeling
that is specifically targeted at XML environments.

RDF is the W3C'’s official framework to model complex
Web-based information structures and semantics. Currently,
RDF is undergoing a revision process that will result in a new
syntax and content model. If you are not particularly inter-
ested in RDF, you may want to skip Section 3.3.

Finally, we discuss how UML can be utilized with XML.
UML is a de facto standard for object-oriented scenarios and
is also used in some XML applications such as ebXML as the

modeling method of choice.
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3.1 THE EVOLUTION OF DATA MODELS

Currently, the main role of XML is certainly that of a communication for-
mat, but we also see applications for data storage and knowledge bases.
The many proposals for an XML query language alone indicate that the
application of XML is wider than pure message transmission. But even
when used as a message format, modeling techniques become important:
a BizTalk message, for example, is organized like a small database con-
taining several business documents, business objects, and attachments.

Therefore in this chapter we take a close look at various modeling tech-
niques. We think this is necessary because we know of many cases where
schemata were designed that are practically unusable. You may have
heard of infamous “all-in-one” documents, where a single document
contains all information entities found in the problem domain, resulting
in document sizes of 50 MB and more.

We have seen schemata that disregard the hierarchical possibilities of
XML and store everything as a network of elements that refer to each
other via ID and IDREF attributes, resulting in unreadable documents.

So, data modeling is an issue for XML. And because XML is very ex-
pressive, it allows us to adopt very intuitive modeling techniques. Given
the current education of system and database analysts in relational mod-
eling techniques, XML requires a rethink. Smashing complex objects into
atomic pieces, as is done in the relational model, is not required for XML
(in fact, it would cause poor performance and unreadable documents).
That is the reason why we—after revisiting existing data models—return
to the mother of all information modeling techniques, the entity rela-
tionship model. In fact, this technique has been enhanced in the mean-
time. With asset-oriented modeling, we will discuss a modeling tech-
nique that is more suitable for XML.

We continue here with our earlier thesis that a major paradigm shift is
happening in computing. In Chapter 1 we stated that IT infrastructures
moved from transactional architectures to client-server architectures in
the 1980s and are now moving from client-server architectures toward
navigational systems. This shift is reflected by fundamental changes in
data structures:

e Transactional architectures are characterized by the hierarchical and
the network (CODASYL) data models. These models started to evolve
in the 1960s and are still in use today. Large amounts of operational
data still reside in database systems such as IMS.
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¢ Client-server architectures were characterized by relational data mod-
els. Relational databases became the standard database technology in
the 1980s and dominated the database market in the 1990s. The rela-
tional data model structures information in a way that allows different
clients to interpret data items in various combinations.

e Navigational IT architectures require a new data model, which is still
evolving. It seems that data models based on regular grammars (Daum
2002) are promising. At least, XML fits into this category.

3.1.1 CODASYL

CODASYL/DBTG (Conference on Data System Languages/Data Base Task
Group) dates back to 1971 (Olle 1978) and was the basis for many data-
base implementations, including IDMS (Cullinet), DMS-1100 (Sperry
Univac), IDS II (Honeywell), and UDS (Siemens).

In CODASYL schemas are defined with the Data Definition Language
(DDL), while operations on the data are expressed through the Data
Manipulation Language (DML). Language bindings exist to COBOL,
FORTRAN, and others.

CODASYL data structures are closely related to the classical COBOL
data record: A record consists of one or several items. Each item may have
one or several occurrences (repeating group). Each record has a permanent
internal identification (database key), allowing fast localization of records.

Sets define the relationship between records. Each set has one owner
record (or “system” for the root owner record) and one or several member
records. This restricts relationships to 1:1 and 1:# relationships. As shown
in Figure 3.1(a), n:m relationships must be modeled by defining two 1:n
sets and one dummy record.

Although the relationship between records within a set is strictly hier-
archical, there is no global hierarchy between records. By defining several
sets, a record may have several owners (Figure 3.1(b)), or records may mu-
tually own each other (Figure 3.1(c)). It is also possible to define several
differently named set types on the same record types (Figure 3.1(d)).

The record-oriented storage format makes CODASYL databases highly
efficient. This is one of the reasons why a substantial amount of opera-
tional data is still stored in this format.

The problem with CODASYL databases, however, is their inflexibility.
New requirements almost always require remodeling the data schema.
This may affect existing applications and requires extensive integration
tests.

Records

Relationships
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Figure 3.1 Different types of relationship sets: (a) n:m relationship;
(b) several owners; (¢) mutual ownership; (d) multiple relationships.
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The change of a data schema subsequently requires a reorganization of
the physical database, meaning considerable downtime for the connected
applications.

3.1.2 Hierarchical Databases

Hierarchical databases are similar to CODASYL databases. The main dif-

ference is that the database consists of a set of hierarchical trees. If the

same record is contained in several trees or tree branches, one record is

determined to be the main record. Its copies are mirrored through the use

of pointer records. Thus, the redundancies in the database are removed.
A typical example of a hierarchical database system is IBM's IMS.

3.1.3 Relational Databases

The relational concept is based on a simple idea: the database should
store data in the most atomic form, while the data structures are imposed
on the data by the client (application). This concept fits well into the
client-server approach, which began to evolve in the 1980s with the ap-
pearance of workstations and desktop computers that are connected to a
central database server. Different clients thus can utilize the same data
items in many different constellations. The introduction of new applica-
tions does not require the reorganization of the physical database. Popu-
lar representatives of this database model are IBM’s DB2 and the Oracle
database management system.

Relational technology is based on a sound mathematical theory—the
relational algebra introduced by E. F. Codd in 1970 (Codd 1970). In rela-
tional databases data is organized in tables. Each table represents a basic
relationship between primitive data items such as customer name and
customer number. Tables have rows (called tuples in relational algebra)
and columns (attributes). The attributes are named via a schema defini-
tion; the rows, however, remain anonymous and unordered. Rows can be
selected by content via a key.

Preparing data models for relational databases requires a sequence of
normalization steps. Each step splits complex data structures into simpler
constructs and reduces redundancies and dependencies between data
items.

The example in Database Table 3.1, Orders-by-Supplier, shows a
schema definition with the attributes SUPPLIER#, NAME, CITY, SIZE, OR-
DERS. As it is, this example table cannot be stored in most rational data-
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base management systems (RDBMSs) because it is not in first normal
form (1NF). A table is said to be in first normal form if all attributes
(columns) are atomic. The column ORDERS contains nonelementary val-
ues. It is therefore necessary to decompose this table into several tables.
The problem here is that the column ORDERS contains lists of element
tuples. Lists are by definition ordered: list elements have a clearly defined
sequence. Table rows, however, do not have a natural sequence. If we
want to translate the list into a table structure, we have to introduce an
additional attribute, POSITION, to maintain the original position of each

Database Table 3.1 Unnormalized Database Table

for Orders-by-Supplier Schema.

Orders-by-Supplier
Supplier# Name
44-8983 UnitedComb
64-3890 Sparkle Ltd
61-7123 Softtouch

City

Leads
Wellington

Sydney

Size

small
medium

big

Orders (product#,
product, amount)

(45A13, Comb, 50)
(317-88, Toothbrush, 12)

(10456, Shampoo, 36),
(10872, Powder, 20)

Database Table 3.2 TNF Database Table for Orders-by-Supplier Schema.

Orders-by-Supplier
Supplier# Name
44-8983 UnitedComb
64-3890 Sparkle Ltd
61-7123 Softtouch
61-7123 Softtouch

City

Leads
Wellington
Sydney

Sydney

Size
small
medium
big

big

Product#

45A13

317-88

10456

10872
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element. This would allow an application to reconstruct the original se-
quence by using a SORT operator (see Database Table 3.2).

Because this table combines supplier information with order data, it
exhibits several anomalies:

e Supplier information cannot be stored without storing an order.

¢ When all orders of a supplier are deleted, the supplier information is
lost.

e When the address of a supplier changes, all orders referring to that
supplier must be updated.

Similar anomalies exist for the product information. For example, if all
orders for a product are deleted, we lose the information about which
product name belongs to which product number and who supplies which
product.

At this point it becomes necessary to talk about keys. Unlike in CODA-
SYL and hierarchical databases, where pointers reference a physical
record (a rudimentary form of object identity), keys in relational systems
relate to content. A primary key is a single attribute or a combination of
attributes that can identify a single row. In our example above, the com-
bination of SUPPLIER# and PRODUCTH# is a suitable primary key.

A 1NF table is said to be in second normal form (2NF) if all attributes
depend fully on the primary key. This is not the case in Database Table
3.2. The attribute CITY depends only on SUPPLIER#, not on the combi-
nation of SUPPLIER# and PRODUCT#. To obtain 2NF, we have to decom-
pose the table Orders-by-Supplier into the three tables Orders, Suppliers,
and Products (Database Tables 3.3-3.5).

Product Amount Position
Comb 50 1
Toothbrush 12 1
Shampoo 36 1

Powder 20 2
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Database Table 3.3 2NF Database Table for Suppliers.

Suppliers

Supplier# Name City Size
44-8983 UnitedComb Leads small
64-3890 Sparkle Ltd Wellington medium
61-7123 Softtouch Sydney big

Database Table 3.4 2NF Database Table for Products.

Products

Product# Product Supplier#
45A13 Comb 44-8983
317-88 Toothbrush 64-3890
10456 Shampoo 61-7123
10872 Powder 61-7123

Database Table 3.5 2NF Database Table for Orders.

Orders

Product# Amount Position

45A13 50 1
317-88 12 1
10456 36 1

10872 20 2
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Because supplier and product information now is stored separately
from the order data, the anomalies mentioned earlier do not appear.
However, the knowledge of how suppliers and products relate to orders is
no longer contained in the database and must be provided by the appli-
cation using this data.

The next step in the normalization process is the third normal form
(3NF). A table is said to be in 3NF if none of the attributes depends tran-
sitively from a primary key. If, for example, the SIZE attribute in the table
Suppliers (Database Table 3.3) relates to the supplier, the table is already
in 3NF. But if SIZE relates to CITY, then SIZE depends transitively (via
CITY) from SUPPLIER#. In this case we have to—you may have guessed
it—decompose again (see Database Tables 3.6 and 3.7). Otherwise, we
would lose information about cities when we delete a supplier from
the table.

Database Table 3.6 3NF Database Table for Suppliers.

Suppliers

Supplier# Name City
44-8983 UnitedComb Leads
64-3890 Sparkle Ltd Wellington
61-7123 Softtouch Sydney

Database Table 3.7 3NF Database Table for Cities.

City
Name Size
Leads small

Wellington medium

Sydney big

3NF
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The normalization process continues with BCNF (Boyce-Codd Normal
Form), 4NF, and 5NFE. We will stop at this point—the advantages and
drawbacks of the relational method are already clear.

Cleanly separating mixed information into individual tables allows
client applications to apply any kind of queries without having to modify
the underlying database schema. This is not possible in CODASYL data-
bases: in these databases the access paths must be explicitly defined in the
set definitions.

By using standard SQL queries it would be possible to interrogate our
database for

e suppliers for a given order position

e orders for a given product

e orders for a given supplier

e products coming from “Leads”

¢ products supplied by suppliers in small cities

However, this flexibility comes at a price. First, database operations will
be relatively slow. To read all orders from supplier Softtouch we would
need five select operations, four join operations, and one sort operation.
Therefore, during the design of a relational database, the sequence of nor-
malization steps is usually followed by a series of denormalization and op-
timization steps, with the goal of obtaining a less fragmented physical
data storage. The art of relational database design lies in finding the right
compromise between flexibility and performance.

Second, while normalization removes the anomalies discussed earlier,
it also loses structural information contained in the conceptual data
model. In some cases foreign/primary key relationships can maintain
some of this information. In many cases, however, structural information
is hidden as join operations in applications and query expressions. For
example, a foreign/primary key relationship cannot model a many-to-
many relationship.

The loss of structural information introduces integrity problems. After
normalization a DBMS has no knowledge about the structural relation-
ship between tables. Therefore the DBMS cannot control the structural
integrity of the data. Deleting a CITIES tuple, for example, would leave
suppliers homeless.

Relational database management systems solve this problem by rein-
troducing structural information into the schema definition in the form
of integrity rules and triggers. These constraints and triggers allow the
database system to reject violating operations or to perform additional
operations that are required to keep the structure of the database intact.
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For example, we could inhibit the deletion of any CITIES tuples that are
referenced by SUPPLIER tuples. Or, when a SUPPLIER is deleted we could
trigger the deletion of the referenced CITIES tuple if it is not referenced
by other SUPPLIER tuples. It is clear that these constraints introduce ad-
ditional overhead.

XML, in contrast, does not define such mechanisms. In this respect,
SQL is a more mature technology. But, on the other hand, in many cases
these mechanisms are not required in XML. With XML, since it is not
necessary to “flatten” complex structures into third normal form, partial
deletion or modification of an information structure in a database is less
likely. However, to maintain the integrity of a whole information model,
rules for referential integrity are required.

3.1.4 Navigational Architectures

The explosive growth of the Internet and the World Wide Web has led to
a technology shift similar to that generated by the introduction of the
personal computer one and a half decades ago. But progress does not stop
there. At the end of the decade, practically every person in the industrial
countries, and a considerable percentage of people in the rest of the
world, will own one or more devices to access the Internet. When wire-
less technology starts to outperform standard telephone lines by orders of
magnitude, this access will probably be wireless. Or, embedded into a
device, it will do its work unnoticed by the user.

Because these devices must be cheap, mobile, and almost disposable,
many of them will be built as thin clients (with rich multimedia and zero
deployment for user friendliness, though) with a browser (perhaps a voice
browser) interface—or, in the case of embedded devices, as very thin
servers. The storage of strategic data and processing of information will
be the duty of a vast grid of highly specialized servers, connected through
powerful fiber optics backbones. At the same time, these devices will also
be able to share their local resources with others. Although currently this
is mostly done with MP3 records, the technology is not restricted to this
format (see Section 7.4).

This scenario may remotely resemble the transactional scenario of the
1970s where thin clients (the famous green-black screens) were con-
nected to powerful mainframes (powerful in the terms of the past, that
is). However, there is a major difference: through the Internet the clients
of today are connected not just to a single server but to a network of mil-
lions of information sources. These shareable information sources are
highly heterogeneous in nature. It is unlikely that there will ever be a
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common global formal model of control, administration, or registration
of information sources. In addition, content, format, and availability of
these information sources are under constant change.

This scenario contrasts radically with traditional enterprise scenarios
consisting of multiple distributed heterogeneous database systems and
data warehouses. In these systems, global data schemata are designed
and decided on a priori. Databases connected to the system must comply
with the global schema. “Global” in this context, of course, means “en-
terprisewide,” not “worldwide.”

In the world of electronic business, however, the requirements are dif-
ferent (Bayardo et al. 1997):

. recent emerging technologies such as internetworking and the World
Wide Web have significantly expanded the types, availability, and volume of
data available to an information management system. Furthermore, in these
new environments, there is no formal control over the registration of new
information sources, and applications tend to be developed without com-
plete knowledge of the resources that will be available when they are run. The
data and the structure may bear little relationship to the semantics. There-
fore, there can be no static mapping of concepts to structured data sets, and
querying is reduced to search engines that dynamically locate relevant infor-
mation based on keywords.

To establish, for example, a customer-supplier relationship over the
Internet requires the following steps:

e Locate a supplier that provides the required services. For example: Find
a supplier in the immediate vicinity of Los Angeles who can supply up
to 5,000 yellow toothbrushes every two weeks. Today this is done via
digital marketplaces (see Chapter 10).

* Negotiate a common trade protocol (this includes common process
and data models and common semantics) with the supplier found.

e Construct collaborating workflows that orchestrate the cooperation
with this supplier.

e Inform partners during the cooperation about relevant changes in
business process and data model.

All of these steps add requirements to a suitable data model:

e Metainformation must be in a format suitable for publishing to pro-
spective partners. Metainformation describes data elements, data struc-
tures, authorship, version, origin, and so on. This is probably the most
vital issue. In an open environment such as the Internet, it would be
naive to believe that a single data format can fit all purposes (see also
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Chapter 1). Publishing the “blueprint” of the information model (the
conceptual model) together with the information set enables clients—
users, software agents, and mediators—to construct their own “mind
map” of the information sources and to perform searches and transfor-
mations efficiently.

To enable public access to metadata, the relationships between infor-
mation elements must be defined independently of the application.
This is not the case with the relational model, where knowledge about
the information structures is hardwired within applications. Metadata
can either be published as an intrinsic part of a document itself, as is
partly the case with XML documents, or it can be published separately,
as is the case with conceptional models (see, for example, WebML in
Section 7.1.2), XML schemata (see DTD and XML Schema in Chapter
2), or metadata descriptions (see RDF in Section 3.3). For electronic
business, dedicated standards like WSDL (Section 6.6.3), UDDI (Section
7.3), or ebXML (Section 10.3) exist to publish metadata.

Users should be allowed to add knowledge to published metadata, for
example, to define new relationships between information elements or
to add a note to a certain document type. This is necessary because no
designer or system analyst can anticipate all possible use cases.

When querying data, it must be possible to control the choice of selec-
tion criteria and of the access paths to information elements (apart
from security considerations) completely with a query expression. This
is the case in the relational data model, but not in the CODASYL data
model, where only predefined access paths (sets) can be used.
Document repositories should be able to maintain the integrity of doc-
uments and the referential integrity between documents. Referential
integrity between the documents within an enterprise is an absolute
requirement. In the open world of the World Wide Web, however,
maintaining full referential integrity is not always possible—we all
know the all-too-common 404 response code.

Documents should be easy to transform into different structures. This
is important if we want to exchange business documents with part-
ners, and if these documents follow different standards.

The definition of business objects must recognize the different con-
texts and environments the business object can interact with. This re-
quirement is unique to the open world of electronic business, where
the same business object can pass through several environments, for
example, in a supply chain scenario. Such a scenario can span across
several countries and continents, where different legal and administra-
tive contexts exist that business objects have to satisfy.
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e All data formats (including metadata) should comply with interna-
tional standards. Proprietary formats are counterproductive in an open
environment. However, because standardization is a slow process and
because standards often cover only the smallest common denomina-
tor, the use of proprietary formats is sometimes inevitable. The better
choice, of course, is to extend a standard format rather than to com-
pletely roll your own.

XML and XML- based technology fit well into this scenario. XML has
its roots in the document standard SGML, and document-oriented
formats are what is required here. For thousands of years information
exchange between organizations was organized through document-based
formats. The storage of information within an enterprise, in contrast, was
organized through the use of index-card-based (or record-based) for-
mats—even long before electronic data processing.

CODASYL and relational databases mimic the index-card-oriented for-
mat and are therefore well suited to cover data storage requirements
within the enterprise. Records and tables closely resemble the classic in-
dex card box, where only the owner of the box knows how to interpret
the data. XML breaks radically with this tradition. XML documents can
be self-explanatory to human readers and are designed to be interpreted
by external partners.

Let’s see how XML and related standards satisfy the requirements out-
lined in the bulleted list above:

* Metainformation must be in a format suitable for publishing to prospective
partners. Metainformation describes data elements, data structures, author-
ship, version, origin, and so on.

XML documents contain substantial metadata within a document.
Named tags enclose every document element. Attributes can optionally
be used to specify additional metainformation such as author or ver-
sion for each element. Documents can have an arbitrary tree structure
because document elements can be nested. Thus, a certain amount of
metainformation is automatically published with each document.

Additional metadata can be published through XML schema defini-
tions such as DTDs or XML Schema definitions. This schema informa-
tion can be used to optimize query processing, to obtain a mental
model of the document type, to visualize the document structure, and
to control editing tools when documents are created and modified.

Where XML falls short is in the definition of constraints that go be-
yond datatypes and cross-references.
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e To enable public access to metadata, the relationships between information

elements must be defined independently of the application.

The relationships between document elements are defined by the
intrinsic document structure and are thus contained in the document.
However, due to the hierarchical structure of XML documents, not
every relationship can be expressed in terms of the parent-child ele-
ment relationship. Also, the basic XML 1.0 standard does not define
provisions to specify relations to external information items such as
other XML documents and non-XML objects.

In the following sections we discuss how to express relationships—
especially relationships in the context of conceptual modeling—be-
tween documents. Relationships should be best expressed as separate
“data maps” apart from the information elements.

Users should be allowed to add knowledge to published metadata.

RDF (see Section 3.3) allows making statements about information
items (in fact any resource) and publishing that knowledge. Also, topic
maps (see Section 7.2) provide a mechanism to add knowledge to in-
formation items.

When querying data, it must be possible to control the choice of selection cri-
teria and of the access paths to information elements (apart from security
considerations) completely with a query expression.

While XML documents adhere to a strictly hierarchical structure
with nested elements, XPath query constructs allow the use of any ele-
ment or element combination within an XML document as a selection
criterion, and access to single elements within an XML document.
However, although XPath is very powerful, it is not a full query lan-
guage. There are deficiencies in the area of text retrieval, there is no
join operator, and the aggregating functions known from SQL are
missing. Several proposals for dedicated XML query languages have
been made in the past. With XQuery, a W3C standard is now on the
way (see Section 2.6).

Document repositories should be able to maintain the integrity of documents
and the referential integrity between documents.

Although XML processors can validate the structural integrity of a
document against its schema definition (DTD or XML Schema), se-
mantic integrity and referential integrity are still weak points in XML.
While relational technology provides a standard way to add semantic
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and referential integrity via integrity rules and triggers, XML reposito-
ries currently require application logic or the definition of proprietary
server extensions to implement semantic and referential integrity.

e Documents should be easy to transform into different structures.

The XSLT style sheet language allows the formulation of powerful
document transformations. In Chapter 9 we will discuss XLST in more
detail. In Section 3.2 we explain how to normalize models to allow
document transformations without information loss.

e The definition of business objects must recognize the different contexts and
environments the business object can interact with.

The Schema Adjunct Framework (SAF) defines a two-layered ap-
proach to add behavior to XML documents. SAF allows the definition
of abstract operations that are interpreted by context-specific proces-
sors. We will discuss SAF in more detail in Section 4.4.2.

ebXML defines business objects in relation to specific contexts. It
identifies a set of context drivers for business applications. We discuss
ebXML in detail in Section 10.3.

o All data formats (including metadata) should comply with international
standards.

XML and the related specifications are W3C standards and have
wide industry support. Topic maps are an ISO standard. There are sev-
eral de facto industry standards for the exchange of business data, but
the ebXML format is a UN/CEFACT standard.

Because XML is a document standard and documents have the pur-
pose of being exchanged, data modeling is only one aspect of an XML
architecture. Other aspects are the definition of process models, com-
munication models, and navigation models. We will discuss these as-
pects in Chapters 5, 6, and 7.

3.2 CONCEPTUAL MODELING

Conceptual modeling is an early but important step in the design of in-
formation systems. While originally applied only to databases, concep-
tual modeling techniques are now applied to object-oriented systems,
too. In this section we will see how conceptual modeling can be utilized
for XML-based architectures.
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3.2.1 The Entity Relationship Model

Usefulness from what is not there.
—Lao-Tse

Developed by Peter Chen in the 1970s, entity relationship modeling (ERM)
can be considered to be the ancestor of all modern modeling methods
(Chen 1976). The acronym ERD may be more popular—meaning entity re-
lationship diagram, the graphical representation of an entity relationship
model.

In the years following its original conception ERM has spun off many
(~80) children and grandchildren. Among them are the following:

e Nijssen’s Information Analysis Methodology (NIAM) eventually became
Object Role Modeling (ORM) (Halpin 1999).

e Semantic Object Modeling (SOM) was developed by David Kroenke
(19995) during the same period of time.

e [nformation engineering was developed by Clive Finkelstein and became
popular through collaboration with James Martin (Martin 1993).

e The Unified Modeling Language (UML) was published by the Object
Management Group in 1997 (Booch, Jacobson, and Rumbaugh 1997).
UML covers the wide area of object-oriented modeling including dy-
namic aspects. The data modeling part, however, closely resembles
ERM. Because UML has become a de facto modeling standard in OO
system design, we will discuss it in Section 3.4 in detail. UML was sub-
mitted to the International Standards Organization to become an ISO
standard.

e The Higher Order Entity Relationship Model (HERM) by Bernhard Thal-
heim was developed in the 1990s (Thalheim 2000). Unlike the rela-
tively informal ERM, HERM has a solid mathematical foundation.

Most of the later developments based on ERM had the goal of improv-
ing the conceptual design method for relational databases and, as it be-
came popular, for object-oriented programming. Because the document
metaphor established by SGML and XML does not really fit into the rela-
tional or object-oriented philosophy, we will refrain at this point from
any discussion of any specialized modeling method and go back to the
roots.

ERM (Thalheim 1999) models the world in terms of entities, attributes,
and relationships. The scope of ERM, at the time it became popular, was to
define an enterprise data model, or enterprise scheme, representing the
overall logical structure of the enterprise database.
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Entities

Chen described entities as “. . . a ‘thing’ which can be distinctly identi-
fied.” Chen also said: “There are many ‘things’ in the real world. It is the
responsibility of the database designer to select the entity types which are
most suitable for his/her company.”

The vagueness of this definition made ERM, in fact, a very generic con-
cept and has probably led to the overwhelming success of the method by
inviting dozens of researchers to try to improve it.

To be a bit more verbose: An entity is an object that is distinguishable from
other objects. Entities have attributes that make them distinguishable. An
entity may be a concrete object such as a person, a machine, a building,
and so on, or it may be an abstract notion such as a project, a holiday, a
nation, an account, and so on.

ERM differentiates between dominant entities and subordinate entities.
Dominant entities exist in their own right; the existence of a subordinate
entity depends on another entity. In commercial programming dominant
entities are also called business objects.

Entity Set
An entity set is a set of entities of the same type, for example, a set of cus-
tomers, a set of invoices, a set of trucks, and so on. Entity sets can over-
lap: an entity can belong to more than one entity set. For example, a
student tutor belongs to both entity sets, students and teachers.

In ERM diagrams, entity sets are displayed as rectangles (see Figure 3.2).

Attributes
Entities may have attributes. In fact, there are no entities without at-
tributes because attributes characterize entities: they define the type of an
entity. An attribute consists of an attribute name and an atomic attribute
value, for example, Price: 19.95. Formally, an attribute is a function that
maps a set of entities onto a value domain.

In an ERM diagram, attributes are displayed as ellipsoids connected by
straight lines to the owning entity sets, resulting in the typical ERM mil-
lipedes (see Figure 3.3).

Customer Product

Figure 3.2 Entity sets in an ERM diagram.
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Customer Product

Figure 3.3 Entity sets with attributes.

In some cases it is difficult to decide what should be modeled as an
attribute and what as a separate entity. Consider the entity Driver. The
driver’s license could be modeled as an attribute of Driver. Alternatively
it could be modeled as a separate entity. The second solution would re-
quire the definition of an extra relationship holds_11icense but allows the
detailed modeling of the actual license. In the first case we can only
model the license as an atomic value, presumably the license number, be-
cause attribute values must be atomic.

We will see that the same discussion pops up again with the question
of whether to use attributes or elements to specify content within an
XML document. The question of whether an item should be modeled as
an entity or as an attribute can only be decided on the basis of the con-
text in which the data model will be used. Generally, an item should be
modeled as an entity if it plays a role within a business process.

Keys
An attribute or a combination of attributes that uniquely identifies an
entity is called a superkey. The smallest possible superkey (i.e., a superkey
for which no subset of attributes exists that can act as a superkey) is called
a candidate key. From the set of candidate keys, database designers can
select a primary key to identify an entity within an entity set.

Entity sets that do not possess a primary key are called weak entity sets.
Entity sets that do have a primary key are called strong entity sets. This
concept is closely related to dominant and subordinate entities. Weak
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Account Transaction

Figure 3.4 Subordinate entity Transaction.

entity sets consist of subordinate entities, while strong entity sets consist
of dominant entities.

Consider, for example, the entities Account and Transaction. A transac-
tion is usually identified with a transaction number that is unique only in
the context of a given account. The set of Transaction entities therefore
forms a weak entity set. Clearly, Transaction entities are subordinate to
Account entities.

In an ERM diagram weak entity sets are displayed with a double-
outlined rectangle (see Figure 3.4).

The original ERM version did not define a special notation for keys.
Later versions mark unique attributes with double-outlined ellipsoids.

Relationships

Peter Chen stated: “Relationships may exist between entities” (Chen
1976). There is a little more to add: relationships associate two or more
entities with each other. For example, given the entities Customer and
Product, the relationship Order denotes a specific association between
customers and products.

Within a relationship each entity has a particular role. In our example
the customer entity issues an order, while the product is subject to an
order.

Relationships have an arity: relationships associating two roles are
called binary, relationships associating three roles are called ternary, and
SO on.

ERM allows the definition of certain constraints for relationships: roles
have a cardinality. Roles can be restricted to incorporate a single entity, or
they may incorporate multiple entities. In a binary relationship this re-
sults in four different constraints: one-to-one, one-to-many, many-to-
one, and many-to-many. Our orders relationship is typically a one-to-
many relationship because a single customer can order several product
items. In addition, roles may be optional. That is, the role incorporates
single or multiple entities only in some situations. In a binary relation-
ship this results in 16 different constraints.
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OrderNumber

Customer Product

Figure 3.5 Order relation between Customer and Product.

Relationships may have attributes, too. For example, the relationship
orders may possess the attribute OrderNumber.

Relationship Set
A relationship set is a set of relationships of the same type, for example,
all existing orders from a given set of customers to a given set of products.

In an ERM diagram, relationship sets are displayed as diamonds and
are connected by lines to the entities participating in the relationship (see
Figure 3.5). The cardinality of a relationship is shown with an arrow. An
arrow pointing to an entity denotes the “one” side of a relationship.
Lines without arrows denote the “many” side of a relationship.

Later improvements to the ERM model replace the arrowheads with  Cardinality
numbers below the connecting lines. This allows the specification of the
minimum and maximum number of entity occurrences (cardinality)
within a role; for example, (1,n) would typically replace the “one-to-
many” specification. This notation also allows the specification of op-
tional roles: (0,1) specifies a cardinality of minimum 0 and maximum 1,
making the role optional.

Existence-Dependent Relationship

This relationship is one of three that are treated special in ERM (the other
two are aggregation and generalization, to be discussed shortly). It defines
the special relationship between associated dominant and subordinate
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Account Transaction

Figure 3.6 Existence-dependent relationship between Account and
Transaction.

entities. Subordinate entities can only exist if the dominant entity exists.
For example, Transaction entities for an Account entity only exist if the
Account entity exists.

In ERM, existence-dependent relationships are depicted in the form of
a diamond like any other relationship but with the predefined name “E”
(see Figure 3.6).

Aggregation
Aggregation is a special form of relationship. What is special here is that
an association of aggregated entities is treated as a higher-level entity
itself. Often, subordinate entities are aggregated with a dominant entity
and thus form a new complex entity. However, it is also possible to aggre-
gate several dominant entities into a new higher-level entity. For exam-
ple, the entities Customer and Product and the relationship orders could
be aggregated into a new entity Order.

In an ERM diagram aggregations are depicted as ERM diagrams within
a rectangle (see Figure 3.7).

Generalization

Generalization is a special form of relationship that relates entities to an
abstract entity. For example, a customer may order products or services.
We can model this by introducing an abstract entity ProductOrService
and associating the concrete entities Product and Service via an IS_A rela-
tionship to ProductOrService. Although not covered as a special concept
in the original version of ERM, generalization is depicted in later ERM
versions in the form of triangles (see Figure 3.8).

This original ERM notation is still in use today, predominantly at uni-
versities and in the scientific community. Industry has adopted notations
of later ERM flavors, for example, the crow’s foot notation (see Figure 3.9).

The most striking difference is that attributes are displayed within en-
tities and that relationships are displayed as a straight decorated line. This
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Figure 3.7 Aggregation of the “orders” relationship into a new complex entity.

makes it difficult to denote attributed relationships. Attributed relation-

ships are therefore modeled as separate entities (see Figure 3.10).

UML uses yet another notation. We leave this to Section 3.4, where

UML is discussed in more detail.
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Figure 3.8 Generalization of Product and Service.

3.2.2 Asset-Oriented Modeling (AOM)

In this section we introduce a modeling method that is specifically
targeted toward the construction of document-centric (i.e., XML)
applications.

AOM is loosely based on the higher order entity relationship model
(HERM), introduced by Bernhard Thalheim during the 1990s (Thalheim
2000). This method was developed for object-oriented modeling and in-
cludes modeling techniques for structure as well as for semantics, such as
constraints and operations. It introduces a solid mathematical founda-
tion into conceptual modeling.

Because HERM (and thus AOM) allows complex, structured attributes
within entities, the structure of an AOM model can be very close to the
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Figure 3.9 Elements of the crow’s foot notation.

Customer Order Product
CustomerlD places OrderNumber contains Number
Name Name
Phone Price

Figure 3.10 The Order example in crow’s foot notation.

structure of a final XML representation. This, and the fact that HERM
(and thus AOM) allows the definition of higher-order associations (i.e.,
associations of associations), leads to much simpler models than those
obtained with ERM. AOM, in addition, does away with the artificial sepa-
ration between entity type and relationship type. (It was E. F. Codd who
stated that there is no reason to distinguish between entity type and rela-
tionship type (Codd 1991).) AOM also introduces a notation and an in-
formation model based on regular expressions that are closer to XML and
that extend the flexibility of the method considerably.

Core Concepts
AOM is based on three core concepts: properties, assets, and arcs.
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Properties can be either simple attributes or can be rather complex and
deeply structured. A property can be compared to a node (element) in an
XML document. We use the following notation to specify properties:

name(..) Structure

(childl,..,childn) Sequence (ordered)

(chi1dl&..&childn) Bag (unordered)

(childl]|..|childn) Alternative

+ Repetition (1. . .n)

* Repetition (0. . . n)

? Optional (0...1)

[n..m] Arbitrary cardinality (n...m) withO<n<m
lab{} Label definition

lab Label reference

(Labels are used to define recursive property structures. For example,
Tab{part(Tab*)} defines a treelike part list of arbitrary depth.)

Assets cover both entities and relationships. This means that tradi-
tional relationships known from ERM are treated as assets, too. (In terms
of logic this means that relationships are immediately reified.) The
advantage is that this way we can define relationships between relation-
ships and can classify relationships, both of which the classic ERM can-
not do. We use rounded rectangles to visualize an asset and unidirec-
tional arcs to visualize how they relate to other assets (see Figure 3.11).

There are two exceptions that are not modeled as assets: the is-a rela-
tionship and the has relationship between a dominant entity and a weak
entity. These relationships simply become arcs between the two assets in-
volved in those relationships as shown in Figure 3.12. For an is-a rela-
tionship the subordinate asset points to the parent asset, while for a has
relationship the dominant asset points to the weak asset. However, in
many cases weak entities simply degenerate into a structured property of
an asset.

The is-a relationship and the has relationship look very similar, indeed.
In fact, they do almost the same thing. However, there is a subtle differ-
ence: in a has relationship an asset acquires the whole target asset, while
in an is-a relationship an asset acquires only the properties of the target
asset. We therefore denote an is-a relationship with the role name “is-a.”

In addition, each asset has a primary key. Keys consist of a single prop-
erty or a combination of properties. Composite keys are denoted as
property sets within curly brackets, for example, {first-name, last-name}.
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_ - Asset Name

/" Product 3~ -

ProductNo -|- - - - Keys
ProductNo  |_
Name =~ Properties
Price(Currency,

Amount)+

;/ "~~~ ~ Constraints

Figure 3.11 Visualization of an asset type. The constraint area is reserved
for additional integrity constraints. They can be informal or formal
specifications, for example, OCL expressions or Schematron (see Section
2.9.1) constraint rules.

Similar to the notation used for properties, we use DTD syntax to de-
note the cardinality of the relations between assets, as shown in Figure
3.13.

+ l..n
* 0..n
? 0..1
n..m n..m

The last notation, n..m, asks for an XML Schema implementation,
since DTDs cannot easily express this type of constraint. Note that this
type of constraint can lead to models whose set of constraints can never
be satisfied.

Arcs connect assets with each other. Each arc is unidirectional. In addi-
tion, an arc can be labeled with a role name at the source end.

HERM introduces an additional construct into modeling that we also
use in AOM: clusters. Clusters are a union of disjoint asset types. Clusters
replace the generalization construct found in ERM and are denoted by
a circle containing the character “I” (the XML choice operator). (See Fig-
ure 3.14.)

Advantages
AOM has the following advantages over classical modeling methods:

* Because relationships are also represented as assets, defining higher-
order relationships (relationships between relationships) is trivial.
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Person
Name
Name
(FirstName,
LastName) Product
PhoneNo* ProductNo
ProductNo
Name
Price(Currency,
S Amount)+
)
Customer - w
CustomerID Order
OrderNo
CustomerlD |
OrderNo

—

Account

AccountNo

AccountNo
Balance

—

Figure 3.12 The properties Person/Name and Product/Price exhibit a deeper
structure than is possible in traditional ERM diagrams. We use the notation
known from XML DTDs to denote cardinality of properties, subproperties,
and relations. Hence, a customer can have multiple phone numbers, and a
product has one or multiple price entries (for different currencies). Classical
entity types (Person, Customer, Account, Product) and relationship types (Order)
are all modeled as asset types. The relationship between the dominant entity
Customer and the weak entity Account degenerates to a simple arc. The same is
the case for the classical is-a relationship between Customer and Person.

e Similarly, it is easy to define classifications over relationships (e.g., the
relationship between Director and Manager would belong to the class
of relationships between Employer and Employee).

e n-ary relationships (with n > 2) don't create problems.

e Implementation in XML is straightforward.

e Reverse engineering of relational databases is easy.
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Figure 3.13 AOM diagram for a more complete Order example (Person and Account left out).
We use the notation known from XML DTDs to denote cardinality of relations between assets.
A department can receive multiple orders, and each order contains at least one position. Note
that what would traditionally be modeled as a weak entity type—Position—is simply modeled
as an asset type connected to Order.

A more detailed discussion of AOM is given by Daum (2002) and at

www.aomodeling.org.

3.2.3 A Document-Centered Step-by-Step Approach

In this section we describe a step-by-step approach, starting with an infor-
mal description, then constructing a model using the AOM approach,
and finally transforming the AOM model into an XML schema. The

results are XML data structures that closely represent the model.
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Figure 3.14 A cluster comprised of the Product and Service assets. We have attributed the arcs
emanating from forwards and receives to role names.

Step 1
Informal A popular method is to start with an informal verbal description of the
description scenario:

e Customer A orders Products or Services.

e Department B receives these Orders.

e Department B forwards an Order to Department C or D.
e An Order has Positions.

e Each Position has an amount and a Product or a Service.

A short grammatical analysis separates these sentences into nouns
(Customer, Product, Service, Department, Order) and verbs (order, re-
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ceive). In traditional ERM all nouns would be modeled as entities, and all
verbs would be modeled as relationships. However, there is an ambiguity:
the verb “orders” and the noun “Order” relate to the same concept.

Step 2

We avoid this problem by modeling both verbs and nouns as assets. We
determine which properties each asset has and which property combina-
tion can act as a minimal key. We identify as asset types Customer, Prod-
uct, Service, Department, Order, forwards, receives.

The verb “has” is not modeled as an asset. Instead, “has amount” re-
sults in a property of asset Position, and “has Product or Service” results
in a cluster (for the “or”) with arcs leading to Product and Service.

As we identify the asset types we also represent the relations between
the asset types by connecting them with arcs. Because an Order can have
more than one Position asset, we represent this cardinality constraint by
attributing this arc to the character “+”.

Department appears in two roles: as a forwarder and as a receiver. To dif-
ferentiate between both, we label the arc emanating from “receives” with
the respective role names. Optionally, we identify other roles with an ap-
propriate role label.

Step 3
In this step, we make sure of the following:

* Asset types are primitive—their properties do not contain assets that
could be modeled as independent asset types. This is similar to the first
normal form (1NF) in relational theory. For example, the asset type
Order must not embed customer data.

e Asset types are minimal—they do not contain redundant properties,
meaning none of their properties can be derived from other properties.

e Asset types should have a key. Keys must be minimal—they must
consist of the smallest set of properties that can uniquely identify an
instance.

e Asset types must be complete—other assets contained in the scenario
can be derived from the defined asset types.

e Asset types must not be redundant—none of the defined asset types can
be derived from other asset types.

¢ All asset types must have a unique meaning.

Step 4

An asset type is in partitioned normal form (PNF) if the atomic properties of
an asset constitute a key of the asset and all nonatomic properties are in
partitioned normal form themselves.
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The advantage of PNF assets is that their structure can be transformed
without information loss. PNF is especially essential if we plan to store as-
sets in relational databases. Relational technology requires fragmenting
complex structures into flat relational tables. Keys that span complex
structures are lost during such a transformation to first normal form.

In our example, all asset types are in PNE Customer, for example,
has the atomic property CustomerID as key. The nonatomic property Name
(FirstName, LastName) is in PNF because the combination of the atomic
subproperties FirstName and LastName constitutes a key.

In some cases, however, PNF is too strict. If we were to drop CustomerID
from Customer, we would need to use Name (FirstName,LastName) as key.
Consequently, Customer would not be in PNE

Step 5
Business objects are assets that play a role in a business process. This
requires that we have a rough idea about the business process model (see
Chapter 5). In our example, Customer, Product, Service, and Department
are business objects (Figure 3.15). Business objects can consist of several
assets. Formally we can cast any hierarchy (if we interpret the arcs as a
relation between superior and inferior) of asset types into a business object.
The top-level asset serves as the identifying asset of the business object.
We demarcate each business object with a rectangle and use a bold out-
line for the identifying asset.

Step 6

In this step we identify business documents. Usually, business documents
are exchanged between the business objects engaged in a business pro-
cess. In our example, we have only one business document, consisting of
Order and Position.

Formally we can cast any hierarchy of asset types into a business docu-
ment. The top-level asset serves as the identifying asset of the business
object. In our case this is the asset Order.

We demarcate each business document with a dashed rectangle and
use a bold outline for the identifying asset.

Step 7

Usually not all asset types make their way into a business document. In

our example, the asset types “receives” and “forwards” are left over.
Asset types that are neither part of business objects nor part of business

documents can serve various purposes. In our case “receives” and “for-
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Figure 3.15 Identifying business objects and business documents.

wards” serve as audit trails for the documents received and forwarded. We
would, of course, implement those assets as XML schemata, too.

Other assets that describe the relationships between business docu-
ments may result in the definition of business rules. Also in this case we
would opt for an XML implementation, instead of “hard-coding” these
rules into the application. The result is ease of maintenance and much
higher responsiveness to change requests.
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= CustomerID
[ xsd:string
=FirstName
[ xsd:string
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s e [xsdistring
\V4
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Figure 3.16 Schema diagram for Customer.

Step 8
We can now define the XML schemata. At this point we have to decide
how to implement is-a roles. There are two options: include the proper-
ties of the target asset in the current asset, or use XML Schema’s inheri-
tance mechanisms, such as global complex types. The latter option is
only applicable as long as we deal with single inheritance. Multiple inher-
itance is not possible with XML Schema.

Figure 3.16 shows the Customer schema (generated with XMLSpy). Here
is the corresponding code:

<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="Customer">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CustomerID" type="xsd:string"/>
<xsd:element name="Name">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="FirstName" type="xsd:string"/>
<xsd:element name="LastName" type="xsd:string"/>
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Figure 3.17 Schema diagram for Product.

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PhoneNo" type="xsd:string"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Here we have implemented each property as elements, and subproperties
as children of these elements.
Figure 3.17 shows the Product schema. Here is the corresponding code:

<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="Product">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ProductNo" type="xsd:string"/>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Price" maxOccurs="unbounded">
<xsd:complexType>
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=ProductNo
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Figure 3.18 Schema diagram for Service.

<xsd:sequence>
<xsd:element name="Currency" type="xsd:string"/>
<xsd:element name="Amount" type="xsd:decimal"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

The diagram for Service (Figure 3.18) resembles the diagram for Prod-
uct. The code is also similar:

<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="Service">
<xsd:complexType>
<xsd:sequence>
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=DepartmentNo
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Figure 3.19 Schema diagram for Department.

<xsd:element name="ProductNo" type="xsd:string"/>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Price" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Currency" type="xsd:string"/>
<xsd:element name="Amount" type="xsd:decimal"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Duration" type="xsd:positivelnteger"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Figure 3.19 shows the schema for Department. Here is the correspond-
ing code:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="Department">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DepartmentNo" type="xsd:string"/>
<xsd:element name="Name" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
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Figure 3.20 Schema diagram for Order.

The business object Order has arcs that lead to other business objects
(see Figure 3.20). These are implemented as elements, too. For example,
the arc leading to business object Customer is implemented as an element
Customer with a child element CustomerID that contains the foreign key
value.

The cluster combining the arc leading to Product and Service is imple-
mented as a choice particle containing elements Product and Service,
each with a child element ProductNo containing the foreign key value.

Here is the code for Order:

<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="Order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderNo" type="xsd:string"/>
<xsd:element name="Customer">
<xsd:complexType>
<xsd:sequence>
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<xsd:element name="CustomerID" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Position" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Amount"
type="xsd:positivelnteger"/>
<xsd:choice>
<xsd:element name="Product">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ProductNo"
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Service">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ProductNo"
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

The asset receives also has arcs that lead to other business objects (see
Figure 3.21). These arcs are labeled with role names. We use these role
names as names for the elements representing the arcs (Receiver and Mes-
sage) and add an annotation that informs about the target asset. Here is
the code:

123
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=RefNo
[ xsd:string
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Figure 3.21 Schema diagram for receives.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="receives">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="RefNo" type="xsd:string"/>
<xsd:element name="Receiver">
<xsd:annotation>
<xsd:documentation>
refers to Department
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DepartmentNo"
type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Message">
<xsd:annotation>
<xsd:documentation>
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Figure 3.22 Schema diagram for forwards.

refers to Order
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderNo" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
The schema diagram (Figure 3.22) and code for forwards are similar.
<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="forwards">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="RefNo" type="xsd:string"/>
<xsd:element name="Forwarder">
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<xsd:annotation>
<xsd:documentation>
refers to Department
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DepartmentNo"
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Receiver">
<xsd:annotation>
<xsd:documentation>
refers to Department
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DepartmentNo"
type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Message">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="OrderNo"
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

This completes the definition of the schemata. Now let’s look at some
examples of instances of the schemata we have defined.
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Here is an instance of the Customer schema:
<?xml version="1.0" encoding="UTF-8"?>

<Customer xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="customer.xsd">
<CustomerID>c7790-404</CustomerID>
<Name>
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Name>
<PhoneNo>415-555-1234</PhoneNo>
<PhoneNo>415-555-1235</PhoneNo>
</Customer>

Now let’s look at an instance of the Product schema:
<?xml version="1.0" encoding="UTF-8"7?>

<Product xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="product.xsd">
<ProductNo>p6745-3</ProductNo>
<Name>Authoring System</Name>
<Price>
<Currency>USD</Currency>
<Amount>7500.00</Amount>
</Price>
<Price>
<Currency>EUR</Currency>
<Amount>8570.00</Amount>
</Price>
</Product>

Here is an instance of Service:
<?xml version="1.0" encoding="UTF-8"7>

<Service xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="service.xsd">
<ProductNo>s9171-4</ProductNo>
<Name>Training</Name>
<Price>
<Currency>USD</Currency>
<Amount>1500.00</Amount>
</Price>
<Price>



128

Chapter 3 Structure

<Currency>EUR</Currency>
<Amount>1730.00</Amount>
</Price>
<Duration>3</Duration>
</Service>

Here are two instances of Department:
<?xml version="1.0" encoding="UTF-8"?>

<Department xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="department.xsd">
<DepartmentNo>d17</DepartmentNo>
<Name>Corporate Sales</Name>
</Department>

<?xml version="1.0" encoding="UTF-8"?>

<Department xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="department.xsd">
<DepartmentNo>d23</DepartmentNo>
<Name>Shipping</Name>
</Department>

An example of an instance of the Order schema could look like this:
<?xml version="1.0" encoding="UTF-8"?>

<Order xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="order.xsd">
<OrderNo>238</0rderNo>
<Customer>
<CustomerID>c7790-404</CustomerlD>
</Customer>
<Position>
<Amount>5</Amount>
<Product>
<ProductNo>p6745-3</ProductNo>
</Product>
</Position>
<Position>
<Amount>1</Amount>
<Service>
<ProductNo>s9171-4</ProductNo>
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</Service>
</Position>
</0Order>

An instance of the receives schema:
<?xml version="1.0" encoding="UTF-8"7>

<receives xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="receives.xsd">
<RefNo>x832</RefNo>
<Receiver>
<DepartmentNo>d17</DepartmentNo>
</Receiver>
<Message>
<OrderNo>238</0rderNo>
</Message>
</receives>

Finally, here is an example of an instance of forwards:
<?xml version="1.0" encoding="UTF-8"?>

<forwards xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="forwards.xsd">
<RefNo>f773</RefNo>
<Forwarder>
<DepartmentNo>d17</DepartmentNo>
</Forwarder>
<Receiver>
<DepartmentNo>d23</DepartmentNo>
</Receiver>
<Message>
<OrderNo>238</0rderNo>
</Message>
</forwards>

Step 9
In some cases business objects and business documents can become too
large. This has several drawbacks:

e Parsing a large document takes a long time. This affects almost any
processing of XML documents (for example, transformation with an
XSLT style sheet) because most processing involves parsing.
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e Processing a large document with a DOM parser requires a large
amount of resources. The whole document is converted into object
form (each document node becomes a separate object), and this whole
set of objects is kept resident in memory.

e Collaborative authoring of large documents is awkward. Some data-
base systems (and also standards like WebDAV) support locking only
on the document level. So when one author changes a document, the
document is locked for others.

Therefore it is necessary to split large documents into smaller ones.
This is possible on the conceptional level, for example, by splitting a large
business object into a main object and aggregate parts. Each part would
be modeled as a unary relationship type to which the main object relates.

Step 10
With XML Schema we can define the schemata for each business object
and business document.

However, we still need a way to describe the overall layout of the com-
plete model. One way to do this is to embed annotations into the
schemata, similar to the ones we used in a previous example:

<xsd:annotation>
<xsd:documentation>
refers to Order via OrderNo
</xsd:documentation>
</xsd:annotation>

However, this is an informal way and is hardly suitable to support auto-
mated systems. Also, by including the model structure in the schemata,
the document base becomes hard to maintain. Changes in the model
would require changes in many schemata.

It is much better to describe the model separately from individual
schemata. One possible way is by using RDF, which we will discuss in de-
tail in Section 3.3.

Another possibility is to describe the complete model using the AOM
serialization syntax, which is XML based (see www.aomodeling.org). Here is
a short excerpt showing the description of the assets Order, Position,
Product, and Service:

<level2>
<displayLabel>0rder</displayLabel>
<asset id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A40"
name="0Order">
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<primaryKey
fields="uuid:0016B448-EB27-47E3-AC09-9655CEF46A41" />

<property id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A41"
name="0rderNo" />
<arc target="uuid:0016B448-EB27-47E3-AC09-9655CEF46A20" />
<arc maxOccurs="unbounded"
target="uuid:0016B448-EB27-47E3-AC09-9655CEF46A50" />
</asset>
<asset id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A50"
name="Position">
<property name="Amount"/>
<cluster>
<arc target="uuid:0016B448-EB27-47E3-AC09-9655CEF46A60" />
<arc target="uuid:0016B448-EB27-47E3-AC09-9655CEF46A70" />
</cluster>
</asset>
</level2>

<level2>
<displayLabel>Product</displayLabel>
<asset id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A60"
name="Product">
<primaryKey
fields="uuid:0016B448-EB27-47E3-AC09-9655CEF46A61" />
<property id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A61"
name="ProductNo" />
<property name="Name" />
<property name="Price">
<sequence max0Occurs="unbounded">
<property name="Currency">
<property name="Amount">
</sequence>
</property>
</asset>
</level2>

<level2>
<displaylLabel>Service</displayLabel>
<asset id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A70"
name="Service">
<primaryKey
fields="uuid:0016B448-EB27-47E3-AC09-9655CEF46A71" />
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<property id="uuid:0016B448-EB27-47E3-AC09-9655CEF46A71"
name="ProductNo" />
<property name="Name" />

<property name="Duration"/>
<property name="Price">
<sequence max0Occurs="unbounded">
<property name="Currency">
<property name="Amount">
</sequence>
</property>
</asset>

</level2>

Note that the Tevel2 elements enclose business objects. UUIDs are
used to establish ID/IDREF structures between AOM items.

3.2.4 Smash the Enterprise Data Model?

The enterprise data model postulates that the data of an enterprise should
be described by one coherent, complete, and consistent data model.

The idea of the enterprise data model has its roots in the classical
transactional systems. When the data of an enterprise is kept in a single
database, it is relatively easy to watch over constraints—for example, en-
sure that referenced entities are not deleted or that identifiers are kept
unique. The same still holds for distributed databases that employ so-
phisticated transaction protocols (like the two-phase commit) to main-
tain the integrity of all connected databases.

However, data kept in the central repository is only a part of an enter-
prise’s data set. A large amount of information accessible over the enter-
prise’s intranet is kept scattered across multiple independent databases
and file systems, even on the notebook computers and PDAs of the com-
pany’s employees. And often the consistency and integrity of that data
are in rather sad condition.

In addition, the existence of a global enterprise data model can be a
drag factor for the IT infrastructure of an enterprise. Many enterprises
today have a flat organization, with business units acting virtually
autonomously, networking with other business units as they do with ex-
ternal partners. The enterprise data model, however, reflects a more hier-
archical company structure. Business units that want to introduce new
business policies have to apply to a central unit for a change of the data
model. And vice versa—a change in the global model requires notifying
every business unit about the change.
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Chen, Thalheim, and Wong (1999) argue against bottom-up techniques
and postulate a solid modeling concept with a top-down approach:

It is very important to have a clean conceptual model of major components
and services to guide us in this integration process. It should work like a
multi-level “map,” starting from a high-level map, which can be expanded
into low-level maps in a hierarchical way. Each new software module con-
structed should follow this conceptual “guidance” model (map) and provide
a self-description on details of the components and interfaces specified by the
conceptual guidance map.

But, when bottom-up and quick-and-dirty methods flourish and top-
down engineering techniques are avoided, there may be a reason. The
reason could be that these top-down methods are not flexible enough to
catch up with an ever faster changing work environment: “. . . in the flat
organizations of today this kind of top-down strategies may not be suit-
able, as groups and local units need to control and define information re-
sources according to their practices” (Forsberg and Dannstedt 1999).

The mess in today’s intranets is just an indication that the hierarchical
enterprise data model increasingly fails to deliver. Too slow to follow the
rapid changes of the business environment of today, this model made
people turn to the more flexible ad hoc solutions of Web technology.

This does not mean that conceptual modeling is wrong. It simply
means that conceptual modeling techniques and Web technologies have
to converge. Earlier in this chapter we have shown that the way from a
conceptual model to the definition of business documents and business
rules is relatively straightforward. We feel that this approach is a step in
the right direction. Business objects, business documents, and business
rules are the constituents of business processes. Doing business on the
Web implies negotiating how the business processes of the parties in-
volved in a transaction can collaborate. We will discuss in later chapters
how to model such processes.

Also required is the development of Web technologies that can make a
conceptual model go live—the conceptual model can be easily trans-
formed into a navigational structure. An example of such a transforma-
tion is given in the discussion of WebML in Section 7.1.2.

3.2.5 Best Practices

We recommend the following practices:

¢ Identify business objects and business documents. In the case of a pur-
chase order, for example, the order is a business document, while order
lines are subordinate assets. Model business objects and business docu-
ments as separate documents.
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e Real-world entities are a good guide for detecting business objects. A
customer, for example, is such an entity. The address of a customer, in
contrast, is not such an entity but only a property of the customer en-
tity. A customer address would therefore be modeled as a subordinate
entity and as an element within an XML customer document.

¢ Using such an approach will result in an intuitive model. However, in
many cases it is difficult to decide on what should be modeled as a
business object. What is a dominant entity and what is not can depend
on the context. When we said earlier that a customer address should
be modeled as a property, we were referring to the average business
case. However, in the context of a direct mailing service or the telecom
industry, a street address is an asset and a business object.

e Whenever possible, use the partitioned normal form for all business
objects and business documents. As we just pointed out, models can
depend on the context. In electronic business, where trade relation-
ships are hard to predict, sometimes partners will have different ideas
about which entity is a business object and which is not. It is therefore
essential that business objects and business documents can be struc-
turally transformed without information loss. The partitioned normal
form guarantees exactly that.

¢ Good starting points for identifying business objects are the electronic
business standards such as Rosetta, BizTalk, and ebXML. These stan-
dards define core business objects. The definitions of these business ob-
jects are made available through public repositories. Using these defi-
nitions will increase the chance that potential business partners will
“speak the same language.” If you cannot find a particular business ob-
ject in such a repository, you can contribute your own definitions to
the repository, thus making them available to others. Remember that
electronic business is not only about the collaboration of business pro-
cesses but also about the collaboration of developers.

3.3 THE RESOURCE DESCRIPTION FRAMEWORK
AND CONCEPTUAL MODELING

In this section we will introduce the Resource Description Framework
(RDF). RDF can be seen as an enabling technology for semantic modeling,
as a generic “assembler language” on top of which domain and task spe-
cific languages can be built. RDF applications include the Dublin Core
and also DAML and OIL—Ilanguages for the description of ontologies that
we will discuss in Section 4.2.2.
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In this section we show how RDF can be used to describe the concep-
tual models developed in the previous chapter.

RDF has been a W3C recommendation since February 1999 (RDF
1999). The accompanying Resource Description Framework Schema Spe-
cification is, at the time of writing, a candidate recommendation (RDF
2000).

RDF provides an open standard for describing Web resources—but not
just Web resources. In fact, RDF allows statements to be made about any-
thing, even about off line resources and the weather. As long as you can
identify a resource with a URI (Universal Resource Identifier), you can use
RDF to say something about this resource. And because you can assign a
unique URI to almost anything, including your children, your dog, and
your Nintendo, RDF has a wide application range.

3.3.1 RDF Basics

We said that RDF allows you to make statermments about resources. This is
exactly the core point of RDE. RDF does not require modifying existing
resources. An RDF description of a resource is a separate entity, and, as
you have probably guessed, as a separate entity it can become a resource,
too. So, you can make statements about statements about statements,
and so on. An ideal base for gossip. And, yes, no RDF description has the
exclusive rights to describe a resource. There can be many RDF statements
distributed over the Web that describe the same resource.

Now, what sort of statements can you make about a resource?

RDF statements have a very simple structure. Each statement has the
form of a triple, consisting of predicate, subject, and object. For example, in
the sentence “John has phone number 415-555-6789”, the subject is
“John” because we are talking about him, “has phone number” is the
predicate, and the object is the actual phone number, “415-555-6789”.

We can see this statement from a different viewpoint. We could say
that the phone number is a property of John. This property is called (has
the name) “phone number”, and the value of the property is “415-555-
6789”. In RDE, all statements have this form: Subject has property. Each
property consists of a name/value pair, with property values being string
literals or references to other resources.

By now you are probably asking yourself, “Isn’t that similar to entity
relationship diagrams where entities have attributes?” You are right,
and that’s why we called this section “The Resource Description Frame-
work and Conceptual Modeling.” RDF is one way to describe conceptual
models.

The first RDF
statement
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Until now we haven't talked about relationships. In fact, RDF does not
know relationships as a separate concept. In RDF relationships are noth-
ing other than properties. The relationship “John is married to Mary”
would be expressed as “John has marriage with Mary”. “marriage with
Mary” becomes a property of John. “marriage with” is the name of the
property, and “Mary” is the value. Note that this statement does not tell
us anything about Mary! It is a statement about John. To make this rela-
tionship bidirectional we would have to issue an additional statement
“Mary has marriage with John”.

These are more or less the basics of RDE Simple, easy to understand,
and very powerful. Before we discuss some advanced features, let us sum-
marize the basic concepts and present a few examples. Table 3.1 lists the
different ingredients of a statement.

Note that literals can be plain strings but they can also contain
markup. For example, a literal could contain an XML structure. However,
the RDF standard explicitly disavows a definition of equivalence between
literals containing markup. This is because at the time the RDF standard
was released, there existed no standard defining the equivalence between
two XML documents. In the meantime, the XML canonical form has
been standardized (Boyer 2001). This standard allows the comparison of
two XML documents for equivalence by reducing the document layout to
a canonical format. Future RDF versions may therefore contain a defini-
tion of equivalence for marked-up literals.

RDF is an abstract, conceptual framework for defining and using meta-
data, independent of any concrete implementation and syntax. However,
to write RDF statements we require a concrete means of expression. One
possibility is directed labeled graphs (also called “node and arc dia-
grams”). (See Figure 3.23.)

Table 3.1 Anatomy of an RDF Statement.

Statement Property Domain Example
Subject Resource http://www.ourfamily.org/John
Predicate Property PhoneNo
name
Object Property Resource “415-555-6789"

value or literal
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"415-555-6789"

www.ourfamily.org/John

PhoneNo

Figure 3.23 Simple node and arc diagram. The resource (ellipsoid) has one
literal property value (rectangle).

In directed labeled graphs (DLGs) resources are shown as ellipsoids.
Property values that are literals (strings) are shown as rectangles. An arc
points from the subject to the object and is labeled with the predicate
(property name). In an entity relationship diagram such a property would
be represented as an attribute.

Another way to represent an RDF statement is the actual RDF syntax as
defined in the RDF specification. (Currently, the RDF syntax is going
through a revision cycle; see Beckett 2001.) This syntax is based on XML.
Each RDF description is represented as an XML element. However, this
does not mean that such a description can only describe XML resources:

<rdf:RDF>
<rdf:Description about="http://www.ourfamily.org/John">
<p:PhoneNo>
415-555-6789
</p:PhoneNo>
</rdf:Description>
</rdf:RDF>

As you can see, all tags defined by the RDF recommendation are prefixed
with the identifier rdf:, which has been assigned somewhere to the RDF
namespace URI. The about attribute identifies the subject of the state-
ment. The property of the subject is defined as a child element of the
rdf:Description element. The tag denotes the property name, while the
property value is expressed as element content. The prefix p: denotes a
problem domain namespace, which, for example, we could have defined
using an XML namespace declaration such as

xmins:p="http://www.telecom.com/schema/"

Syntax
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If you've been well educated in object-oriented (OO) thinking, by now
you probably feel a bit dizzy. If you think of resources in terms of object
orientation, everything in RDF seems to be turned upside down. Where is
data encapsulation? Where is information hiding? In OO, the properties
of objects are private by default, unless they are published via the object’s
interface. In RDF, in contrast, you talk about existing resources—possibly
resources at a foreign site. In most cases you would not even be able to
modify a resource when you want to add a new property. RDF allows you
to attach a new property from the outside.

Now let’s see how to present a relationship between two resources (see
Table 3.2 and Figure 3.24). In Figure 3.24 the property value (object) is
shown as an ellipsoid, too, because the value is another resource (identi-
fied by a URI). RDF allows the definition of several properties that associ-
ate two resources. This means that in terms of ERM an RDF property is
equivalent to a named role within an unnamed relationship. RDF does
not offer specific constructs to define named relationships. (Of course,

Table 3.2 Relationship between Two Resources.

Statement Property Domain Example
Subject Resource http://www.ourfamily.org/John
Predicate Property Marriage_with
name
Object Property Resource http://www.ourfamily.org/Mary
value or literal

www.ourfamily.org/Mary

www.ourfamily.org/John
Marriage_with

Figure 3.24 Here the property value is another resource.
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you could name a relationship by making a statement about a statement,
which we will discuss shortly.)

<rdf:RDF>
<rdf:Description about="http://www.ourfamily.org/John">
<f:Marriage_with>
http://www.ourfamily.org/Mary
</f:Marriage_with>
</rdf:Description>
</rdf:RDF>

Note that we have used another problem domain namespace here. The Namespaces
prefix f: may be defined as

xmins:f="http://www.ourfamily.org/schema/"

Authors of RDF descriptions are well advised to make extensive use of
the namespace facilities available with XML. This avoids later conflicts
when RDF descriptions are merged, which could be required, for exam-
ple, in the case of company mergers or other marriages. Our two exam-
ples can easily be merged into one single description:

<rdf:RDF>
<rdf:Description about="http://www.ourfamily.org/John">

<p:PhoneNo>
415-555-6789
</p:PhoneNo>

<f:Marriage with
rdf:resource="http://www.ourfamily.org/Mary" />
</rdf:Description>

</rdf:RDF>

3.3.2 From ERM to RDF

Figure 3.25 shows how a previous ERM example is transformed into RDE.
This example required the description of two resources, one for a Cus-
tomer instance, and another for a Product instance. The relationship
between Customer and Product is modeled through a property of the Cus-
tomer instance.

Note that in RDF we are talking about instances, while an entity rela-
tionship diagram is about types of entities and relationships. We will see
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<«

Customer Product
(@)
"W99-783" "900-757"
ID ProductNo
"Some Toys" "Ted"

A Name Name

"510-555-4545" "49.95"

A Price

PhoneNo

www.some-toys.com

www.bears.com/teddy757

orders

(b)
Figure 3.25 ERM converted to RDF: (a) entity relationship diagram; (b) directed labeled graph.
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later how the Resource Definitions Schema Specification allows us to talk
about resource types.

The following code shows the RDF serialization of the example in Fig-
ure 3.25.

<rdf:RDF>
<rdf:Description about="http://www.some-toys.com">
<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545</sales:PhoneNo>
<sales:orders
rdf:resource="http://www.bears.com/teddy757" />
</rdf:Description>
<rdf:Description about="http://www.bears.com/teddy757">
<bears:ProductNo> 900-757 </bears:ID>
<bears:Name> Ted </bears:Name>
<bears:Price> 49.95 </bears:Price>
</rdf:Description>
</rdf:RDF>

The entity relationship diagram in Figure 3.25(a) shows that the orders
relationship is a 1:n relationship. We had ignored that when translating
the diagram into RDFE. How do we describe such a relationship in RDF?

Two RDF constructs deal with multiple occurrences: Bag and Seq (se-
quence). A Bag contains unordered property values; a Seq contains or-
dered property values. Both containers are allowed to contain duplicate
values—there is no concept of uniqueness in RDE. Figure 3.26 shows our
example with bags.

Technically a bag or a sequence is an anonymous intermediate re-
source of type rdf:Bag or rdf:Seq. (Note that the type is specified as just
another property.) The RDF syntax specification, however, provides a
shorthand notation in the form of tags: <rdf:Bag> and <rdf:Seq>. The
elements of a bag or a sequence are identified by an <rdf:1i .../> tag:

<rdf:Description about="http://www.some-toys.com">

<sales:ID> W99-783 </sales:ID>

<sales:Name> Some Toys </sales:Name>

<sales:PhoneNo> 510-555-4545 </sales:PhoneNo>

<sales:orders>

<rdf:Bag>

<rdf:1i rdf:resource="http://www.bears.com/teddy757"/>
<rdf:1i rdf:resource="http://www.bears.com/teddy766" />

Bags and
sequences
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"W99-783" "900-757"

ProductNo

"Some Toys" "Ted"

Name
"49.95"

"510-555-4545"

PhoneNo Price

www.some-toys.com

www.bears.com/teddy757

_ more bears
rdf:li

orders

rdf:li

rdf:Bag

Figure 3.26 Using bags for teddies. Resource collections can be represented with Bag and Seq.

<rdf:1i rdf:resource="http://www.bears.com/teddy565" />
<rdf:1i rdf:resource="http://www.bears.com/teddyl123"/>
</rdf:Bag>
</sales:orders>
</rdf:Description>

The syntax for the Seq container is similar.



3.3 The Resource Description Framework and Conceptual Modeling 143

An additional, third construct, called A1t (alternative), allows the spec- Alternatives
ification of a list of possible property values from which one is selected.
The selection of one list element excludes the others from the relation-
ship. In our example, using Alt instead of Bag could mean that the first
available teddy in the list is preferred and that the other bears quoted
serve as alternatives when the first bear isn’t available.
Earlier we stated that RDF can describe any resource. Now, when we
define a Bag of resources, can we talk about this container and its con-
tents? Of course we can.
First, we define the Bag as a resource in its own right:

<rdf:Bag ID="bag of bears">
<rdf:1i rdf:resource="http://www.bears.com/teddy757" />
<rdf:1i rdf:resource="http://www.bears.com/teddy766" />
<rdf:11 rdf:resource="http://www.bears.com/teddy565" />
<rdf:11 rdf:resource="http://www.bears.com/teddy123"/>
</rdf:Bag>

This Bag is now its own resource, which can be identified via the URI
“#bag_of_bears”. So, we can make a statement about this resource:

<rdf:Description about="#bag_of bears">
<sales:ordered by rdf:resource="http://www.some-toys.com"/>
</rdf:Description>

Additionally, we can make statements about each member of the Bag.
To do so, RDF provides a special attribute aboutEach:

<rdf:Description aboutEach="#bag_of bears">
<sales:ordered by rdf:resource="http://www.some-toys.com"/>
</rdf:Description>

The aboutEachPrefix attribute can be used to make statements about the
set of members in a container selected by a URI pattern—for example,
about all resources in a Web site:

<rdf:Description aboutEachPrefix="http://www.bears.com/">
<bears:Trademark>"The Bears Company</Bears:Trademark>
</rdf:Description>

3.3.3 Advanced Modeling Techniques

In this section, we show how constructs known from entity relationship
modeling can be expressed in RDFE.
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N-ary Relationships

We have to give some consideration to n-ary relationships. ERM allows
ternary, quaternary, and so on relationships, where one relationship asso-
ciates three, four, or more entities with each other. RDF statements, how-
ever, can model only binary relationships: subject to object. Aware of this
problem, the RDF specification recommends a way around it. Let’s con-
sider the following cases:

e Lecturer Miles recommends book XML Bible for course 3A.
e Lecturer Miles recommends book OO Design for course 2B.
e Lecturer Davis recommends book SGML Praxis for course 3A.

On the level of entity sets we could hardly split this ternary relation-
ship into two binary relationships. We would lose information. The trick
RDF uses is to introduce intermediate resources on the instance level:

<RDF

xmins="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:col="http://www.college.edu/schema#">

<Description about="http://www.college.edu/staff/Miles">

<col:Recommendation rdf:parseType="Resource">
<col:recommended_reading rdf:resource=
"http://wwww.college.edu/1ibrary/XML Bible" />
<col:course rdf:resource=
"http://wwww.college.edu/courses/3A" />
</col:Recommendation>
<col:Recommendation rdf:parseType="Resource">

<col:recommended_reading rdf:resource=
"http://wwww.college.edu/1ibrary/00 Design/>
<col:course rdf:resource=
"http://wwww.college.edu/courses/2B" />
</col:Recommendation>

</Description>

<Description about="http://www.college.edu/staff/Davis">
<col:Recommendation rdf:parseType="Resource">
<col:recommended reading rdf:resource=
"http://wwww.college.edu/1ibrary/SGML_Praxis"/>
<col:course rdf:resource=
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"http://wwww.college.edu/courses/3A" />
</col:Recommendation>
</Description>
</RDF>

The col:Recommendation elements defined within the Description ele-
ments act as intermediate resources. Intermediate resources do not exist
as real resources. They are of a purely fictive nature and are only visible
within the scope of the containing element.

At this point we have to explain the rdf:parseType attribute. The
parseType attribute changes the interpretation of the element content.
Two values are possible: Literal or Resource.

e The value Literal specifies that the element content must not be in-
terpreted by an RDF processor. For example, when an element contains
some other XML or HTML markup, this value should be specified.
(Note: RDF explicitly disavows definition of equivalence between liter-
als containing markup!)

e The value Resource specifies that the element content must be treated
as if it were the content of a Description element.

This technique of modeling n-ary relationships can also be used to
model attributed relationships (see Figure 3.27). A binary relationship
with one attribute, for example, is modeled in the same way as a ternary
relationship without an attribute:

<rdf:Description about="http://www.some-toys.com">

<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545 </sales:PhoneNo>
<sales:orders>
<sales:Order rdf:parseType="Resource">
<sales:0rderNumber> 9993-333 </sales:OrderNumber>
<rdf:Bag>
<rdf:1i rdf:resource="http://www.bears.com/teddy757" />
<rdf:1i rdf:resource="http://www.bears.com/teddy766"/>
<rdf:1i rdf:resource="http://www.bears.com/teddy565" />
<rdf:1i rdf:resource="http://www.bears.com/teddy123"/>
</rdf:Bag>
</sales:0rder>
</sales:orders>
</rdf:Description>

Literals and
resources

Attributed
relationships
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Figure 3.27 Modeling relationships with attributes: (a) entity relationship diagram; (b) directed
labeled graph.
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This substitution is, as we can see, very similar to what is done in ERM
dialects that do not know attributed relationships when we have to model
attributed relationships: the relationship is modeled as an entity; that is, it
is reified. In RDE, the distinction between relationships and entities blurs
because each relationship can become a resource in its own right.

Aggregations
The possibility of defining resources “on the fly” can be used to model ag-
gregations, too (see Figure 3.28):

<rdf:Description about="http://www.bears.com/sales">
<bears:DepNo> 45/3 </bears:DepNo>
<bears:receives>
<rdf:Seq>
<rdf:1i>
<sales:0Order rdf:ID="#order9993-333"
rdf:parseType="Resource">
<sales:0rderNumber> 9993-333 </sales:0rderNumber>
<sales:Customer
rdf:resource="http://www.some-toys.com
rdf:parseType="Resource">
<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545 </sales:PhoneNo>
<sales:orders>
<rdf:Bag>
<rdf:1i
rdf:resource="http://www.bears.com/teddy757" />
<rdf:Ti
rdf:resource="http://www.bears.com/teddy766" />
<rdf:Ti
rdf:resource="http://www.bears.com/teddy565" />
<rdf:1i
rdf:resource="http://www.bears.com/teddy123" />
</rdf:Bag>
</sales:orders>
</sales:Customer>
</sales:0Order>
</rdf:1i>
</rdf:Seq>
</bears:receives>

</rdf:Description>
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facing page).
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3.3.4 Reification

Note that until now we have used RDF only to talk about resource in-
stances. To make statements about resource classes (or resource types) on
the schema level, we need to investigate the possibilities defined in the
Resource Definition Schema Specification.

But before we do this, let’s explain quickly how we can make state-
ments about statements. Because the subject of a statement has to be a re-
source, we have to cast the statement about which we want to make a
statement into a resource—a process that is also called reification. “Reifica-
tion” comes from Latin and means “to make into a thing.” By reifying a
statement into a resource, we make it into a thing that we can talk about.

Consider the following statement: “Mary has phone number 415-555-
4321.” We can easily model this statement in RDF:

<rdf:RDF>
<rdf:Description about="http://www.ourfamily.org/Mary">
<p:PhoneNo> 415-555-4321 </p:PhoneNo>
</rdf:Description>
</rdf:RDF>

Now consider: “John says, ‘Mary has phone number 415-555-4321.""
Here the statement “Mary has phone number 415-555-4321” becomes
the subject X in the statement “X is attributed to John.”

There are several ways to model a statement as a resource, but the easi-
est is to equip the Description element with a bagID attribute:

<rdf:Description bagID="AboutMary"
about="http://www.ourfamily.org/Mary">

<p:PhoneNo> 415-555-4321 </p:PhoneNo>
</rdf:Description>

Every statement within the Description element is reified and becomes a
resource within a Description bag. We can now make statements about
these resources:

<rdf:Description aboutEach="#AboutMary">
<p:attributedTo> John </p:attributedTo>

</rdf:Description>
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Warning: If we consider an RDF statement as a “thought,” then reifica-
tion opens the opportunity to “think” about “thoughts.” So be very care-
tul which sort of RDF statements you place on the Web—maybe it’s you
who caused the Web to become self-conscious!

In terms of formal logic, a set of basic RDF statements constitutes a
first-order logic system. With reification (i.e., making statements about
statements) we get a second-order logic system, and second-order systems
have their problems. In 1931, Kurt Godel showed that second-order sys-
tems are logically incomplete, in contrast to first-order systems, for which
he had previously (in 1930) proved completeness. The basic idea of
Godel'’s proof of incompleteness is to construct a statement that makes a
statement about itself: it claims that itself cannot be proved.

But avoiding reification wouldn’t help us much further. In 1936
A. Church proved that even for the first-order predicate logic there is no
general method to decide on the correctness or incorrectness of a state-
ment within a finite time span using a mechanical device such as a Tu-
ring machine. And since our fastest computers cannot do better than a
Turing machine, we have a problem, even if we don’t use reification.

However, for RDF the practical implications remain minor. Although
in the design of computer languages decidability plays a crucial role (for
example, Backus-Naur grammars are always decidable) because we want a
parser to stop with a result after a finite time span, this is not a critical
element in an open system such as the Internet. Almost always the com-
plete set of RDF statements on the Web will be incomplete and even con-
tradictory. A search engine that operates on such a set of RDF statements
will therefore be constructed in such a way that it will successfully answer
queries in most cases. In some cases, however, such a search engine
would have to stop reasoning after a given time span and report its failure
to find a result.

Second-order logic can be very helpful in representing the results of a
query. With first-order logic, the query “Who won the U.S. election in
2000?” would simply return “George Bush or Al Gore”. We wouldn’t have
needed a billion-dollar computer network for that sort of answer. With
second-order logic, however, the answer could be something like this:
“The Republican Web site claims George Bush as the winner, and the
Democratic Web site claims Al Gore as the winner.” Although we already
knew this from TV, it gives us a much clearer picture of what is going on.
To make the result of a query fraceable we require the ability to make
statements about statements.
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3.3.5 RDF Schema

In the previous subsections we showed how to use RDF to describe re-
sources on the Web and elsewhere. All this happened on the level of indi-
vidual resources or collections of individual resources, that is, always on
the instance level.

The RDF Schema Specification (RDES) enables us to define a taxonomy
of resources in terms of resource classes, superclasses, and subclasses. For
each of these classes we can define which types of statements may be
made about the instances of these classes, that is, which types of proper-
ties can be associated.

This does not mean that we always have to define RDF schemata when
we want to describe some resource. RDF can be used without accompany-
ing RDF schemata—the use of RDFS is optional.

This is similar to XML. Well-formed XML documents can be processed
without a DTD, but when a DTD is defined, the documents that refer to
the DTD as DOCTYPE can be checked for validity. In contrast with DTDs,
RDF schemata do not just define the structure of an RDF statement but
can also define semantic constraints. For example, it is possible to restrict
the range and the value domain of given statement types.

In a previous subsection now and then we used the rdf:type property,
for example, rdf:type="rdf:Bag". This property connects a resource in-
stance to a resource type or resource class. In the case of rdf:Bag this was
a predefined RDF resource class. RDFS, in addition, allows us to declare
our own user-defined resource classes. In many ways, the RDES type sys-
tem is similar to the class hierarchies in object-oriented programming.
However, there is a major difference: in object-oriented programming
you define a class by specifying features (attributes and methods) of the
class. This is usually done in the context of the class definition.

RDFS works just the other way around: properties (statements) are the
subject of specification, and you describe to which resource classes they
apply. This is done via the rdfs:domain and rdfs:range constraints. The
rdfs:domain constraint describes to which resource classes a given prop-
erty applies, while the rdfs:range constraint describes the allowed range
for the property value.

In the following example we show how to model a generalization.
Defined are three classes, ProductOrService, Product, and Service, with
Product and Service being subclasses of ProductOrService:

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">
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<rdfs:Class rdf:ID="ProductOrService">
<rdfs:comment>
Abstract superclass for products and services.
</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="Product">
<rdfs:comment>The class of products.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ProductOrService"/>
<rdfs:Class>

<rdfs:Class rdf:ID="Service">
<rdfs:comment>The class of services.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ProductOrService"/>
</rdfs:Class>

<rdf:Property ID="Number">

<rdfs:range rdf:resource=
"http://www.examples.com/classes#CatNumbers" />
<rdfs:domain rdf:resource="#ProductOrService"/>

</rdf:Property>

<rdf:Property ID="Duration">
<rdfs:range rdf:resource="#Duration"/>
<rdfs:domain rdf:resource="#Service"/>
</rdf:Property>

<rdfs:Class rdf:ID="Duration"/>
<Duration rdf:ID="One day"/>
<Duration rdf:ID="Two_days"/>
<Duration rdf:ID="Three days"/>
</rdf:RDF>

Note that the rdfs:Class tag starts the definition of a resource class.
This tag is defined in the RDEFS specification, hence the namespace prefix
rdfs:. The ID attribute defines the class name. We define three classes:
ProductOrService, Product, and Service, with Product and Service being
subclasses of ProductOrService.

The elements rdf:Property define resources of type Property. The ID at-
tribute defines the property name. Resource definitions are standard RDF
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operations, hence the namespace identifier rdf:. We define two proper-
ties: Number and Duration.

The element rdfs:range defines the value range for each property. In
the case of the property Number, the range definition refers to a resource
http://www.examples.com/classes#CatNumbers. We assume that the data-
type CatNumbers is defined in this resource. For property Duration a new
datatype is created on the spot: a class Duration is defined, and several re-
sources of type Duration enumerate the possible values. Each property
can have only a single rdfs:range specification.

The element rdfs:domain defines to which resource classes each prop-
erty applies. We have specified class ProductOrService as the domain for
property Number. Because the classes Product and Service are subclasses of
ProductOrService, the property applies to Product and Service, too. In
contrast, the property Duration applies only to class Service. Each prop-
erty may have multiple rdfs:domain specifications.

rdfs:domain and rdfs:range belong to RDFS, hence the namespace
identifier rdfs:. Because RDF and RDEFS are separate specifications, they
also use two different namespaces for their syntactical elements. That can
be disturbing: schema authors must constantly switch between the two
namespaces. Somehow, this reminds us of the tourist who drowned in
Finland because all the lakes, islands, and peninsulas confused him and
he ended up mistaking a lake for land.

As we have seen, subclasses do inherit properties from their parent
classes (Product and Service inherited Number from ProductOrService). At
the very top of the RDEFS class hierarchy is the predefined class rdfs:Re-
source, which includes all RDF resources as instances. In RDFS, a subclass
can inherit from several parent classes by using several rdfs:subClassOf
clauses. In object-oriented programming this is called multiple inheri-
tance. Multiple inheritance has quite a reputation in OO because inherit-
ing from multiple parents can lead to name clashes between features with
different implementations. In RDFS, however, this cannot happen be-
cause property definitions are resources in their own right and are unique
within their namespace.

What is possible for classes is also possible for properties. Properties
can be defined as subproperties of (several) other properties:

<rdf:Property ID="Number">
</rdf:Property>

<rdf:Property ID="ProductNumber">
<rdfs:subProperty0f rdf:resource="#Number" />
</rdf:Property>
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What's left? Currently, RDFS defines only a limited set of constraint Extension
properties: rdfs:domain and rdfs:range. To define additional constraints mechanism
we need an extension mechanism. This is provided by means of class
rdfs:ConstraintProperty, a subclass of class rdf:Property. Both rdfs:
domain and rdfs:range are instances of rdfs:ConstraintProperty.

For example, it would be possible to define a new constraint property
myext:unique as a new instance of class rdfs:ConstraintProperty:

<rdfs:ConstraintProperty ID="myext:unique">
<rdfs:domain rdf:resource=
"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:range rdf:resource=
"http://www.w3.0rg/2000/01/rdf-schema#Class"/>
</rdfs:ConstraintProperty>

<rdf:Property ID="Number">
<rdfs:range rdf:resource=
"http://www.examples.com/classes#CatNumbers" />
<rdfs:domain rdf:resource="#ProductOrService"/>
<myext:unique rdf:resource=
"http://www.examples.com/classes#UniqueNumbers"/>
</rdf:Property>

By using this extension mechanism it becomes possible to define all
sorts of constraints. However, the RDFS specification only defines the se-
mantics of the constraints rdfs:range and rdfs:domain.

This has a reason of course: A constraint such as unique could hardly
be handled identically in all environments. While it is easy to guarantee
the value of a property to be unique within the confined space of a trans-
actional database, the same constraint becomes impossible to guarantee
in an open environment such as the Internet.

Wish List

This leaves us with some wishes (which are also wishes for other schema
definition systems). Earlier in this book, in Chapter 1, we postulated that
future software systems must be able to distinguish between the “re-
quired” and the “should.” What we would like to see is the introduction
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of the concept of soft constraints. In contrast to hard constraints, which  Soft constraints

know only one possible policy (strict enforcement in all environments),
soft constraints would know a variety of possible policies that may
depend on the context.
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Let’s look at an example. The unique constraint mentioned earlier
could know the following policies:

* Reject: Reject a transaction when a property violates this constraint.
This type of policy could be used in transactional systems. Here it is
relatively easy to check for uniqueness, and uniqueness is absolutely
necessary for certain properties (for example keys).

* Repair: Here an agent could travel the network and try to repair invalid
properties asynchronously. This type of policy could be used within an
intranet, where an agent of that kind would possess the necessary ac-
cess rights for reading and modifying data.

* Report: Here an agent could travel the network and report any invalid
properties. This type of policy could be used within an extranet, where
an agent of that kind would possess the necessary access rights for
reading data.

e Ignore: Nothing is done here. The typical environment for this policy is
the Internet, where it would be completely senseless to enforce
uniqueness of a certain property.

3.3.6 Reasoning with RDF

The XML syntax that we have used above for RDF statements is only one
of many possible representations. The statement shown in Figure 3.23
could also be expressed in the form of a triple {predicate, subject, object}:

(PhoneNo,www.ourfamily.org/john,"415-555-6789")

In this form, an RDF statement can be easily stored in a relational
database.
With a little bit more transformation we arrive at

PhoneNo (www.ourfamily.org/john,"415-555-6789")

a form that should be familiar to all readers who have some background
in logic programming. In the logic programming language Prolog, for
example, such a construct is called a fact. A Prolog program consists of a
collection of facts and rules (in general rules have the form “A holds if B
and/or C holds”). A query will start an inference engine that applies rules
to facts in order to return a result. No procedural programming is
required.

The question that immediately springs to mind is, Why not add rules
to RDF and use RDF for logic programming? This was exactly the goal of
a W3C effort called METALOG.
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METALOG had two objectives: First it extended RDF with the possibil-
ity of defining logic rules. Second it provided an almost natural language
interface to RDE. The RDF syntax that we have presented here is not very
user friendly but rather is designed to store and process RDF in an XML
environment. A user-friendly syntax could greatly improve the adoption
of RDF on a wider scale. As stated by Marchiori and Saarela (2000): “Meta-
log allows users to write metadata, inference rules and queries in English-
like syntax.”

The previous RDF statement could be expressed as follows:

"www.ourfamily.org/john" has as "PhoneNo" "415-555-6789".
If John has several phone numbers, we could write

"www.ourfamily.org/john" has as "PhoneNo" "415-555-6789" and "212-
555-0001".

The “and” keyword would be translated into an RDF Bag construct con-
taining both phone numbers.
We can also use verbs as predicates:

"www.ourfamily.org/mary" "lives with" "www.ourfamily.org/john".
This would translate into
Tives_with(www.ourfamily.org/mary,www.ourfamily.org/john)

To allow the definition of rules, Metalog adds the operators “implies”,
“and”, “or”, and variables to RDF. Variables are denoted with the first
character in upper case.

We can now define a rule that reasons about the two facts defined
earlier:

if X "lives with" Y and Y has as "PhoneNo" Z
then X has as "PhoneNo" Z.

Note that the keyword “and” has a different meaning here. It is used as a
logical “and”, not as an indicator for an RDF Bag. Which “and” is which
is decided by the context. Similarly, the keyword “or” can be used for a
logical “or” or to denote an RDF Alt. The keyword “order” is used for an
RDF Seq.

Finally we can query our little expert system with

what "PhoneNo" does "www.ourfamily.org/mary" have?
which would result in a new statement:

"www.ourfamily.org/mary" has as "PhoneNo" "415-555-6789" and
"212-555-0001".
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3.3.7 Best Practices
We recommend the following practices:

e When writing RDF descriptions always use namespaces to identify the
problem domain. This allows merging RDF descriptions at a later time
without pain. The identification of problem domains, the definition of
namespaces, and the definition of a namespace vocabulary are closely
related to the definition of an ontology (see Section 4.2).

¢ When modeling relationships between two entities, make sure not
only to define the relationship as an RDF property of one entity but
also to define the inverse relationship as a property of the target entity.

3.4 AUFORANX

In this section, we discuss UML-modeling techniques in the context of
XML. Due to an “impedance mismatch” between both technologies,
modeling XML-based systems with UML can be tricky.

3.4.1 XML Modeling with UML

The Unified Modeling Language (UML) is a framework for modeling com-
plex information systems that has become an industry standard within
the last decade. UML emerged as the successor of three previously leading
object-oriented modeling methods (Booch, OMT, and OOSE). It com-
bines these three methods into one consistent modeling method. Addi-
tionally, it addresses problems, such as process modeling, that these
methods previously did not fully address.

UML has been endorsed by the Object Management Group (OMG) as a
standard modeling method. The OMG is an international organization
promoting the theory and practice of object-oriented technology in soft-
ware development. The OMG is also the organization behind Common
Object Request Broker Architecture (CORBA), so it should not be a sur-
prise that UML has strong links to CORBA.

UML 1.4 has been submitted to the International Organization for
Standardization (ISO) and will become an ISO standard. In addition, UML
has been selected by UN/CEFACT as the standard modeling method for
ebXML.

UML comprises six different models:

1. The use case model, for requirement analysis (business model)
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2. The class model, for modeling the static structures of information
objects

3. The state model, for modeling the dynamic behavior of objects

4. The activity implementation model, which describes work unit

actions

. The interaction model, which describes scenarios and message flows

6. The deployment model, which describes the deployment of soft-
ware subsystems

9]

UML and ERM

In the context of this section we are interested only in the class model
(item 2 in the previous list). The UML class model resembles more or less
the classic entity relationship model. However, the nomenclature is dif-
ferent (entities are called objects, entity sets are called classes, and rela-
tionship sets are called associations). After all, UML is an object-oriented
modeling language. Figure 3.29 shows an example of a UML class
diagram.

Compared to the entities in ERM the main difference is that objects are
dynamic—they display a behavior. Each object has attributes whose val-
ues determine the state of the object. In addition, objects can have opera-
tions (methods), which can inform about the value of attributes and
which can change the value of attributes (i.e., change the object’s state).
Obijects relate to each other by sending messages (calling each other’s
methods) or by aggregation.

The attributes of an object determine the fype of an object. Objects
equipped with the same set of attributes have the same type. This can be
compared with the entity set in ERM. Both methods and attributes of an
object determine the class of an object. Objects with the same sets of
methods and attributes are instances of the same class. This means that in-
stances of a class all expose the same behavior. ERM does not have an
equivalent to the class construct because ERM does not model dynamic
behavior. In UML, however, it is possible to model class hierarchies. Sub-
classes can inherit features from abstract superclasses. Generalization is
modeled via superclasses.

Associations can be constrained in UML at both ends by a multiplic-
ity (cardinality) specification. The most common specifications are O . . 1,
0..%1,1..* (OneOptional, ManyOptional, OneMandatory, ManyMandatory).

Associations can be bidirectional or unidirectional (navigability). For
example, when an object sends a message to another object, the sender
knows the receiver, but the receiver does not necessarily know the sender.
Each end of an association may have a role name.
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Association
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Figure 3.29 UML class diagram. Attributes are listed below the class name. Associations can be
named (in addition, role names are possible). The cardinality is denoted in explicit numbers
(n:m), with an asterisk denoting an unbounded number of occurrences. Subclasses inherit
attributes from superclasses.

Stereotypes

One outstanding feature of UML is the powerful extension mechanism
offered with stereotypes. A stereotype is always based on existing UML
constructs but introduces new semantics.

UML and AOM

Asset-oriented models can be mapped onto UML, too. To do so we map
every asset onto a UML class. The arcs between the assets become UML
associations that are named with the respective role names. Compared to
traditional UML modeling, this approach is very powerful. Because classi-
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cal relationships are modeled as assets, too, and are thus mapped onto
UML classes, we do not have problems representing relationships be-
tween relationships and n-ary relationships in UML.

However, UML requires the introduction of extra classes:

Complex properties must be resolved into classes, since UML classes
can possess only simple properties.

Clusters must be represented as generalized classes in UML. The cluster
members are represented as subclasses of these generalized classes.

UML and XML

XML documents can be modeled in UML as aggregations of objects, basi-
cally one UML class element per XML element plus some auxiliary ele-
ments. Conallen (2000), Booch et al. (1999), and Heintz and Kimber
(1999) describe how a DTD or XML Schema can be mapped onto UML
(and vice versa, how UML can be used to design a DTD):

XML element types are modeled in UML as <<DTDETement>> stereotype
elements.

XML attributes can be mapped directly to UML attributes. XML at-
tributes are atomic values of a certain datatype. This requires the defi-
nition of appropriate datatypes in the UML model.

XML element content (such as character data) can be modeled as an
attribute with a <<DTDE1ementPCDATA>> stereotype.

XML elements of content type ANY are modeled with a <<DTDElement-
ANY>> stereotype.

XML elements of content type EMPTY are modeled with a <<DTDElement-
EMPTY>> stereotype.

The ownership between elements (parent-child) is indicated by direc-
tional associations.

Model groups are represented by new stereotyped elements. Since
model groups are anonymous, dummy names must be introduced in
the UML model. Sequence groups are represented by a <<DTDSequence-
Group>> stereotype; choice groups, by a <<DTDChoiceGroup>> stereotype.
The order of sequences is captured as ordinal values in role constraints.
Multiplicity of elements is mapped directly into the corresponding
UML constraints (see Table 3.3).

Mixed elements in XML (i.e., elements containing character data com-
bined with child elements) can be mapped onto model groups (see ear-
lier). A mixed element can be described as a repeated alternative of
content and child elements.
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Table 3.3 Cardinality Notations in XML and UML.

XML UML
(no modifier) 1

? 0..1
+ 1..*
* 0 *

Using this technique, it becomes possible to import a DTD (e.g., an
industry standard DTD) into UML, do a few modifications, and ex-
port it again. The leading UML case tools support such import and export
processes.

In a similar fashion, XML Schema definitions can be mapped onto
UML structures. This is described in detail by Carlson (2001).

The advantages of this technique are that DTDs and schemata can be
visualized (but good schema editors can do that, too) and that the docu-
mentation is improved. It is also possible to generate program code from
the UML model, such as Java code. We obtain wrapper code that is quite
intuitive and allows easy access to the XML document structures.

From UML to XML

Note, however, that the UML model obtained with this method is an
implementation model and not a conceptual model. This technique
requires that the UML model follow the structures of the XML document.
But how do we generate XML schemata from a preexisting conceptual
UML model?

One possibility could be to exploit the code generation facilities of
UML tools. Most UML case tools can generate program code, and some
allow user-defined production rules, allowing the generation of any code
including XML schemata. However, this technique relies very much on
the proprietary features of the respective tool.

A better option is to use the fact that most UML tools can export XMI
code. XMI (see Section 3.4.2) was developed to exchange modeling data
between different modeling tools. Thus, XMI contains the modeling
data in a standardized format. And because XMI is an XML language, we
can transform XMI modeling data into any other XML format—in-
cluding XML Schema—with the help of an XSLT style sheet (see Chapter
9). An example style sheet is available at the authors’ Web site (www.
xmlArchitecture.org).
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So, to create XML schemata out of a UML model, we have to perform
three steps:

1. Export the model in XMI format.

2. Write an appropriate XSLT style sheet (or generate it with an appro-
priate tool).

3. Translate the XMI data with the help of the XSLT style sheet into
the target format.

UML and RDF

XML schema creation is not the only interesting aspect when looking at
the relationship between UML and XML. In Table 3.4 we compare the
modeling capabilities of UML with those of RDF (Chang 1998). Keep in
mind that UML is an object-oriented technique, while ERM and RDF are
not.

RDF and UML are fairly equivalent when it comes to modeling the
static aspects of an information set. RDF has some restrictions in the con-
straint area: cardinality and optionality constraints are expressed via con-
tainers that only allow expressing 1:(0,n) relationships. This is rather
weak compared to the rich set of constraint expressions that are available
in UML. But keep in mind that RDF was designed for the World Wide
Web, where mandatory associations are very hard to control; unresolved
links are all too common on the Web.

The similarities between RDF and UML allow us to use UML as a design
method for RDF resource descriptions. What is not possible, in general, is
to map any UML model in terms of native RDF statements.

That does not mean that it is impossible to describe any UML model us-
ing RDF statements. For example, Melnik (2000) takes the approach of
defining every identifiable UML element as an RDF resource. A set of RDF
statements can thus describe any UML model. But note that these state-
ments are statements about the UML model, and not about the real-world
entities that are the subjects of the UML model—we are on a higher level
of abstraction.

3.4.2 XMI: Exchange Format for Model Data

The XML Metadata Interchange (XMI) is the industry standard for encod-
ing UML models into XML (XMI 1999). Endorsed by OMG and supported
by major industry partners such as IBM and Oracle, the XMI specification
can be considered as a part of the UML specification.
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Table 3.4 Comparing UML with ERM and RDF.

Chapter 3 Structure

UML ERM RDF
Class definition Entity set RDES class definition
Single and multiple Generalization rdfs:subClassOf

inheritance
Attributes (named)
Roles (named)

Associations (named)
Directed associations

n-ary associations

Association qualifiers

Aggregation

Composition

Visibility control (public,
protected, private)

Operations

Interfaces
Template classes
Utility classes

Arbitrary cardinality
constraints

Optionality constraints
are part of the cardinal-
ity constraint concept.

Mutual exclusion
constraint

User-defined constraints

MetaModel (stereotypes)

Attributes (named)
Roles (named)

Relationships (named)

Not supported in original
ERM

n-ary relationships

Not supported

Supported via enclosing
entities

Supported via existence-
dependent relationships

No visibility control
(everything is public)

No means to model
behavior

No interfaces
No template classes
No utility classes

Cardinality constraints:
1:1, 1:n, m:1, m:n

Optionality constraints
mandatory (1,1), (1,m),
optional (0,1), (0,m)

Not supported in original
ERM

Not supported in ERM

Not supported in ERM

(single and multiple inheritance)
Named properties with literal value
Named properties with resource value

Implicit via properties with resource
value (unnamed)

Statements always have a direction
(subject — object).

Only binary associations. Higher-
order associations can be modeled via
intermediate resources.

Not supported

Not explicitly supported. Aggregation
can be modeled through properties.

Not explicitly supported. Compo-
sition can be modeled through
properties.

Visibility control would not make
sense. Properties are attached to
resources by the public.

No means to model behavior

No interfaces
No template classes
No utility classes

Multiplicity can be modeled with
containers (Bag, Seq, URI pattern).

Via containers. These allow only for
(0,n) constraints but not for (0,1)
and (1,m) constraints.

Possible via the Alt construct

Possible through extension
mechanism

RDF allows making statements about
anything, including RDFS definitions.
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XMI is based on the OMG’s Meta Object Facility (MOF). MOF is the
OMG’s adopted technology for defining metadata and representing it as
CORBA objects. Because UML is also based on MOF, XMI presents itself as
an interchange format for UML.

This origin positions XMI for possible application domains. XMI is pre-
dominantly used to exchange model data between different development
tools, such as UML toolkits, development studios, and so on. The authors
of the XMI specification give the following motivation for the design of
XMI (XMI 1999):

The reality is that no single tool exists for both modeling the enterprise and
documenting the applications that implement the business solution. A com-
bination of tools from different vendors is necessary but difficult to achieve
because the tools often cannot easily interchange the information they use
with each other. This leads to translation or manual re-entry of information,
both of which are sources of loss and error.

When all of the development tools understand XMI, round-trip engi-
neering across multivendor development platforms becomes a possibility.
In addition, XMI makes it easy to exchange model data across distributed
development environments. While it was difficult or impossible to ex-
change model parts between heterogeneous UML tools in the past, XMI
opens up that possibility, provided the participating tools know how to
import XMI and merge the imported parts into an existing model. Fur-
thermore, XMI allows the development of catalogues of design patterns
in a vendor-neutral format.

Finally, XMI can be used as an intermediate step when generating
XML Schema definitions out of UML (see Section 3.4.1).

As an example let’s look at the XMI serialization for the UML diagram
in Figure 3.29. All definitions made in the model—classes, attributes, as-
sociations, cardinality—are represented as independent XML elements
and identified via the xmi . id attribute. These elements relate to each other
by utilizing XML’s ID/IDREF mechanism.

<?xml version="1.0" encoding="UTF-8"?>
<XMI xmi.version="1.0">
<XMI.header>
<XMI.documentation>
<XMI.exporter>Novosoft UML Library</XMI.exporter>
<XMI.exporterVersion>0.4.19</XMI.exporterVersion>
</XMI.documentation>
<XMI.metamodel xmi.name="UML" xmi.version="1.3"/>
</XMI.header>

Exchanging
model data

Round-trip
engineering
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<XMI.content>

<Model_Management .Model xmi.id="xmi.1"

xmi.uuid="127-0-0-1-ca208:e5f13cb504:-8000">

<Foundation.Core.ModelETement.name>

orderModel

</Foundation.Core.ModelElement.name>

<Foundation.Core
<Foundation.Core
<Foundation.Core
<Foundation.Core
<Foundation.Core

.ModelETlement.isSpecification xmi.value="false"/>

.GeneralizableElement.isRoot xmi.value="false"/>

.GeneralizableElement.isLeaf xmi.value="false"/>

.GeneralizableElement.isAbstract xmi.value="false"/>

.Namespace.ownedElement>

<Foundation.Core.Class xmi.id="xmi.2"

xmi.uuid="127-0-0-1-ca208:e5f13cb504:-7fff">

<Foundation.Core.ModelETement.name>

Customer

</Foundation.Core.Mode1Element.name>

<Foundation.
<Foundation.
<Foundation.
<Foundation.
<Foundation.

<Foundation.

Core
Core
Core
Core
Core
Core

.ModelETement.isSpecification xmi.value="false"/>
.GeneralizableElement.isRoot xmi.value="false"/>
.GeneralizableETlement.isLeaf xmi.value="false"/>
.GeneralizableElement.isAbstract xmi.value="false"/>
.Class.isActive xmi.value="false"/>
.ModelElement.namespace>

<Foundation.Core.Namespace xmi.idref="xmi.1"/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.Classifier.feature>

<Foundation.Core.Attribute xmi.id="xmi.3">

<Foundation.Core.ModelETement.name>

CustomerID

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelETement.isSpecification xmi.value="false"/>

... 2 more pages . . .

<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>

<Foundation.Core.Class.isActive xmi.value="false"/>

<Foundation.Core.ModelElement.namespace>

<Foundation.Core.Namespace xmi.idref="xmi.l"/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.GeneralizableETement.generalization>

<Foundation.Core.Generalization xmi.idref="xmi.9"/>

</Foundation.Core.GeneralizableElement.generalization>



3.4 AUforan X

<Foundation.Core.Classifier.feature>
<Foundation.Core.Attribute xmi.id="xmi.20">
<Foundation.Core.ModelElement.name>
Duration
</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelETement.isSpecification xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Classifier xmi.idref="xmi.19"/>
</Foundation.Core.Feature.owner>
</Foundation.Core.Attribute>
</Foundation.Core.Classifier.feature>
</Foundation.Core.Class>
<Foundation.Core.Generalization xmi.id="xmi.9"
xmi.uuid="127-0-0-1-ca208:e5f13cb504:-7ff5">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.ModelElement.namespace>
<Foundation.Core.Namespace xmi.idref="xmi.1"/>
</Foundation.Core.ModelElement.namespace>
<Foundation.Core.Generalization.child>
<Foundation.Core.GeneralizableElement xmi.idref="xmi.19"/>
</Foundation.Core.Generalization.child>
<Foundation.Core.Generalization.parent>
<Foundation.Core.GeneralizableElement xmi.idref="xmi.7"/>
</Foundation.Core.Generalization.parent>
</Foundation.Core.Generalization>
</Foundation.Core.Namespace.ownedElement>
</Model_Management .Model>
</XMI.content>
</XMI>

As we can see, XMI was not designed for human consumption. The in-
tent of XMI is to exchange information between machines. But even for
computers an XMI-serialized UML model can be a stress test: UML repos-
itories of 200 MB or more are not uncommon, and the full serialization of
such a model would result in XMI documents that easily break into the
gigabyte class.
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oon after the first XML hype ceased, software architects

and engineers became aware that it is not sufficient just
to know “where to put the brackets” to make systems collab-
orate. Even more important than syntax is agreeing about an
ontology—a system of meaning.

In this chapter we introduce formal semantics, context,
and ontologies. If you plan to implement collaborative appli-
cations, this is required reading.

One way to specify semantic aspects formally is the defini-
tion of constraints. In Section 4.1, we take a close look at con-
straints and how they can be defined in schemata, especially
in XML Schema. Constraints are, however, only one aspect of
the definition of formal semantics. Ontologies provide addi-
tional means for the declaration of formal semantics. In Sec-

tion 4.2, we discuss the different levels of ontological depth
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and introduce languages for the definition of ontologies such as DAML and
OIL. In Section 4.3, we take an excursion into the Western philosophy of the
past 2,000 years. We learn that context is important when interpreting the
meaning of a message, especially in a globalized environment. This leads into
Section 4.4, where we take a closer look at the formal treatment of context.
In Section 4.4.2, we discuss a practical approach for implementing context-
aware semantics with XML: the Schema Adjunct Framework.

4.1 FORMAL SEMANTICS

The Internet is about sharing information. This involves publishing the
information, navigating to the relevant information, and interpreting
that information. HTML is hardly able to fulfill these requirements, and
XML was designed to fill this gap.

The markup of XML has been called by some a “semantic markup.”
This is in contrast to HTML, where most of the markup elements are
purely representational. In XML, as common belief has it, the markup de-
notes the meaning of an element.

However, when we take a formal approach, we discover that the oppo-
site is true. What conveys meaning to a human reader does not necessar-
ily do the same to a machine. In XML, it is the tag name that allows hu-
man readers to associate a meaning with an element, provided the tag
name matches an entry in the internal dictionary of the reader’s brain. If
the tag name is outside the scope of the reader’s expertise, the tag is
meaningless. Two readers with different backgrounds may even interpret
the same tag as having two different meanings.

Consider the tag <motion>. A reader with a political background may
interpret the tag as a motion in a deliberative assembly. In contrast, a
reader with a medical background may interpret it as being related to
sickness.

An XML parser does none of the above. It just reports that this is a tag
and that the tag name is “motion.” That’s all. Parsers are about syntax,
not about semantics.

With the purely representational HTML, it is just the opposite. The
semantics of the tag <B> are clearly defined in the HTML specification and
put into action by any Web browser. Elements enclosed between <B> and
</B> are printed in bold. Tags in HTML have clearly defined semantics—of
course, only in the context of document representation and navigation.
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The XML specification does not define semantics for tags. Tags in XML
are user defined, so it is the responsibility of the user to associate a mean-
ing with each tag. Most XML-based languages do so, but they do it in a
rather informal way. For example, SVG and SMIL, both XML-based repre-
sentation languages, define the meaning of each tag. The semantics of
the tags are described in the SVG and SMIL specifications and are imple-
mented in the SVG and SMIL browser plug-ins.

Unfortunately, there is no standard way to define semantics formally
for an XML-based language. DTDs allow only the description of the vo-
cabulary and the structure of a document. Also XML Schema does not go
much further in this respect. This is hardly sufficient to establish commu-
nication in the global village (Doerr 1998):

To summarise, we are on the brink of a technological revolution, which will
render obsolete the need for homogeneous data formats for communication.
Rather, we must engage in providing formal definitions of the underlying
semantics in our data. Not the superficial identity of structure, but the seman-
tic compatibility is needed. This will enable far richer services to be created
than standardisation could ever provide.

Let’s begin at the end. What is required for the correct interpretation of
information is that both sender and receiver (or publisher and surfer) not
only speak the same language, but also share the same conceptualization of
the information. This includes a shared vocabulary, a shared set of con-
straints, and a shared conceptual framework such as type hierarchies and
other relationships between classes of information items:

e The shared vocabulary guarantees that syntactical tokens (words) carry
the same meaning for both sender and receiver. Such vocabularies
are developed from the vocabulary used in a given community or
industry.

* A shared conceptual framework—if it is complete—guarantees that the
understanding of the information is not influenced by unspecified
background knowledge.

Let’s now see what is required to specify semantics in a formal and
machine-readable way.

4.1.1 Formal Semantics and Constraints

To understand how to formally define meaning we look at a few exam-
ples. Here is one from school:
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What is our understanding of a square? A square is a rectangle where width
equals height. Similarly we can define a rectangle as a four-sided polygon
where all sides intersect at angles of 90 degrees.

From this simple definition we can already deduce two concepts:

e Relation. To define “square,” we relate it to “rectangle.” To define “rec-
tangle,” we relate it to “polygon.”

¢ Constraint. To distinguish between “rectangle” and “polygon,” we de-
fine constraints (four sides, 90-degree angles). To distinguish between
“square” and “rectangle,” we define additional constraints (width
equals height). As a matter of fact, relations can also be seen as con-
straints. The fact that a square is a rectangle does certainly constrain
the shape of a square.

Let’s apply these simple concepts to a more complex object:

What is our understanding of a car? A car is a vehicle. It has an engine and
more than two wheels. A car is driven by a driver.

Here we see different relations at work: is_a, has, driven_by. There is also
a constraint: “more than two.” Again, the relations “is a vehicle,” “has an
engine,” and “driven by a driver” can also be seen as constraints.

In addition, we can list some background knowledge that helps us to
understand the meaning of the notion “car” without defining it in the
strict sense:

Cars are used for transportation. Cars take part in road traffic. Cars have acci-
dents. Cars are produced by car manufacturers and are sold by car dealers.
Cars add to the greenhouse effect. And so on.

The concept of a car is thus interrelated with other concepts and gains
additional meaning by that. The most important sentence here is proba-
bly the first one: concepts are best described by their practical purpose or
effect. Remember that the meaning of a command in a computer lan-
guage is determined by the effect the command has when the application
is executed.

However, humans are not computers. They learn the meaning of a
term in a different manner, usually in a complex process of abstraction
and differentiation. When you think of “car,” the first thing that proba-
bly comes to mind is the mental image of a sedan. The sedan object acts
as a prototype (Gardner 19835) for the category “car” and is probably
what a child first associates with “car.” Only later we learn that the con-
cept “car” also contains other car types such as race cars, railroad cars,
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pickups, vans, cabriolets, and so on. We learn to differentiate between
these by learning the differences from the prototype.

4.1.2 Constraints in Schema Definitions

In a generic language such as XML it is possible to standardize semantics
only in the most fundamental way. DTDs, for example, support only the
absolute minimum. They allow datatype definitions such as NAME, ID, and
IDREF only for element attributes. (A datatype definition is a constraint
and thus defines semantic properties.) These datatype definitions are
required for generic XML processors to function properly. Some DOM
implementations can, for example, locate an element by its ID. Therefore
the processor must know which element attributes must be treated as IDs.
It relies on the semantics of the ID datatype.

XML Schema goes a step further and allows datatype definitions for
XML elements, too. The standard already defines a rich ensemble of data-
types but also allows users to define their own datatypes. User-defined
datatypes are derived from existing datatypes by adding constraining
facets to them.

The datatypes in XML Schema allow users to specify a given document
element as string, date, numeric, and so on. This allows generic XML
processors to check a given document more thoroughly. It also improves
XML-OO mapping: when an OO class hierarchy is generated from an
XML Schema definition, the generator can automatically produce the
correct datatypes for the fields representing the elements. This is not pos-
sible from a DTD.

However, this is where XML Schema stops. It only allows putting con-
straints in the form of datatypes onto individual elements; it does not al-
low the definition of constraints across multiple elements (if we forget the
unique/key/keyref constraints for a moment). Let’s look at an example:

<size>
<width>210</width>
<height>297</height>
</size>

Here we can use datatype definitions to make sure that both width and
height are numbers. We can even define minimum and maximum values
for both. However, in XML Schema there is no way to define that
<height> must always be <width> multiplied by 1.414, as is the case with
the DIN A paper formats.

Datatypes

Cross-field
constraints
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4.2 ONTOLOGIES

Semantic modeling has a tradition in knowledge engineering and in
agent technology but is also applied to many other fields in information
technology, such as database design, object-oriented analysis, informa-
tion retrieval, and so on. In these areas, the term “ontology” is used to
denote a knowledge domain or the semantic domain for an agent
(Uschold and Gruninger 1996):

Ontologies are agreements about shared conceptualizations. Shared concep-
tualizations include conceptual frameworks for modelling domain knowl-
edge; content-specific protocols for communication among inter-operating
agents; and agreements about the representation of particular domain theo-
ries. In the knowledge sharing context, ontologies are specified in the form of
definitions of representational vocabulary. A very simple case would be a type
hierarchy, specifying classes and their subsumption relationships. Relational
database schemata also serve as ontologies by specifying the relations that
can exist in some shared database and the integrity constraints that must
hold for them. (Tom Gruber, 1994, SRKB Mailing list)

The term “ontology” has its origin in philosophy, in which it refers to
the discipline that deals with the subject of existence. Ontology is the
theory of “what there is” (Quine). In our context, however, the meaning
of the term is slightly different: it is a formal description of the concepts
and relationships that exist within a domain (and as such is not a disci-
pline but an artifact). This means that an ontology relates to a specific vo-
cabulary and a specific language (other than the philosophical discipline,
which deals with existence but not language). Note that an ontology is
an agreement. This agreement need not necessarily cover the whole con-
ceptualization of a given domain but can cover just a part of it; that is, it
can provide a view onto the domain. An ontology thus acts as a contract
between partners, enabling them to communicate safely within the con-
text of the information domain. For example, a software agent that com-
mits to an ontology will be able to semantically interpret the information
items covered by that ontology and to communicate with other agents
committing to that ontology. Thus, an ontology establishes a community
of Internet users.

4.2.1 Ontological Depth

In the simplest form an ontology is just a vocabulary. In this sense, a DTD
can define an ontology. If different partners agree on a DTD, they also
agree on the ontology defined through the DTD because the tag names
declared in the DTD define a common vocabulary. When, for example,
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two agents agree to share such an ontology, they can exchange messages
using the vocabulary of the ontology.

However, the definition of an ontology does not stop here. As we ex-
plained earlier, the meaning of terms is established by defining relation-
ships between them. One of the most natural relationships is classifica-
tion—establishing relationships between objects and classes, subclasses,
and parent classes. A system of such relationships is called a taxonomy,
and the relationships are usually called is-a relationships. This sort of on-
tology is typically established by object-oriented systems. Many existing
ontologies are defined using only those hierarchical relationships.

However, ontologies can also include nonhierarchical relationships. As
we have seen in the previous example and in previous chapters, there are
many possible relationships between objects besides the hierarchical is-a
relationships. For example, the relationship is-driven-by between car and
driver is not a hierarchical relationship but is important enough to be de-
scribed in an ontology. Such relationships are typical in entity relation-
ship diagrams and in relational databases, and consequently each rela-
tional database schema defines its own ontology.

Besides describing relationships, ontologies can also impose con-
straints. Constraints are defined as axioms. An axiom is a logical state-
ment that cannot be proved from other statements but from which other
statements can be derived. In mathematics, whole theories (like group
theory or set theory) are derived from relatively small sets of axioms. In
our car ontology, the statement “A car has at least three wheels” is such a
constraint. In relational databases constraints are defined via integrity
rules. Some object-oriented languages also include the ability to define
constraints (e.g., assertions in C++ and contracts in Eiffel).

Thalheim (2000) classifies constraints into a hierarchy. Under static
constraints, he includes the following:

e Structural: These include conditions about the structure of the model,
about relationships between entities, and so on.

e Semantic: These include semantic restrictions, such as multivalued
(cross-field) dependencies.

* Representational: These are used to constrain the actual representation
of the model in a system to a certain physical structure.

e Design: These are used to make the schema design more user friendly.

Under dynamic constraints, he includes the following:

e Transition: These restrict the application of operations depending on
the current state of an object.
e Temporal: These constrain the possible state sequences.
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Constraints may depend on the context or the application. A dynamic
constraint that inhibits, for example, changing the value of the attribute
family status from “widowed” to “never married” makes sense in the
context of a business process but must not be applied when we want to
correct a wrong data entry.

While static constraints are closely related to schema definitions and
databases (relational databases, for example, can protect the structural
and referential integrity of data with the help of integrity rules and trig-
gers), dynamic constraints are closely related to process models. A busi-
ness process defines the possible state changes of a set of business objects,
which business events cause these state changes, and which operations
are triggered by these state changes.

It is not always possible to enforce constraints, especially in electronic
business scenarios that involve communication across company borders.
It is often only possible to postulate a desired behavior of a system.

Soft constraints are used here to model the “should” instead of the
“must” (Thalheim 2000). Using soft constraints requires a different logi-
cal calculus: deontic logic is used to formulate soft constraints and to rea-
son about them. Deontic logic allows reasoning about the ideal, norma-
tive, and actual behavior of the system. Deontic logic adds three new
operators to the classic predicate logic:

e Prohibitions (F) specify that certain actions or states are forbidden.

e Obligations (O) specify normative behavior—which actions and states
are desirable.

e Permissions (P) specify states or actions that are permitted.

However, formulating soft constraints properly is not trivial. Deontic
logic tends to produce paradoxical results, and in reality there often exist
obligations that contradict each other. Such conflicts must be handled
somehow, for example, by prioritizing the application of constraints.

Often, the use of soft constraints can be avoided by using context-
sensitive hard constraints. (Remember that contexts can change over
time.)

Our previous example is such a case. We could (sloppily) formulate
that the family status “never married” should never follow “widowed.”
An application that would try to do so would get a warning. The better
choice, however, is to make this constraint a context-sensitive “must”
rule, that is, not to apply it during maintenance tasks but to enforce it in
all other tasks.

But back to ontologies. Guarino and Welty (1998) define several levels
of ontological depth:



4.2 Ontologies

1. Lexicon: vocabulary with natural language definitions

2. Simple Taxonomy

3. Thesaurus: taxonomy plus related terms

4. Relational model: unconstrained use of arbitrary relations
5. Fully axiomatized theory

Ontologies that only implement level 1 (a vocabulary) are, however, of
limited use. They may help simplify and standardize data exchange be-
tween partners but do not allow machines to reason about the meaning
of an information item.

This only becomes possible at deeper levels. When we, for example,
want to build a house, the machine could automatically look up a rela-
tional model to find out that we need artisans like bricklayers, carpenters,
and electricians to build the house. This is possible because in this ontol-
ogy these terms are related to the term “house” via a semantic web.

At this stage it is important to note that all relations within an ontol-
ogy are “intentional”—they refer to conceptional items (symbols) and
not to “the real thing.” In our example, relations are established between
the conceptional terms “house,” “bricklayers,” “carpenters,” and “electri-
cians,” but not to real houses, real bricklayers, and so on. In Section 7.2
we will discuss how such a conceptional network of relations is finally
mapped onto real resources.

The last stage in ontology definition, the fully axiomatized theory, is
usually too hard to obtain in practical applications. Most applications use
a limited set of constraints that are obtained from heuristic analysis but
that are far from a complete and consistent set of axioms able to found a
mathematical theory. Nevertheless, the use of constraints is important
and adds significantly to data integrity and consistency.

Clearly, with each level more work is required to define an ontology.
This is true not only for the initial definition but also for maintenance.
Adding a new word to a lexicon is a fairly simple task, but on deeper
levels we also have to add new relations, update existing relations, and
check constraints for consistency.

When we said that a relational database schema defines an ontology,
we were at the root of the problem. There are as many ontologies as there
are database schemata in the world—and consequently ontologies are a
hot topic. In a time of company mergers, enterprise application integra-
tion, Internet portals, and supply chain integration, ontologies clash
fairly often and must be reconciled. In the past, the traditional tactic used
with EDI was to negotiate bilateral agreements. However, this is hardly

A myriad of
ontologies
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sufficient to meet the demands of a networked and globalized business
community.

Several researchers (Uschold et al. 1997; Smith and Zaibert 1997) and
institutions have therefore started to define ontologies that can be used
as a common platform within an industry or a sector of an industry. The
introduction of XML, in particular, has led to widespread activity in the
definition of shared ontologies, which has resulted in a rich collection of
industry-specific XML DTDs. These definitions can only be the begin-
ning, since simple shared vocabularies as provided by DTDs are not really
satisfactory, as we stated earlier.

The intention of these activities is not to convert existing systems, but
to define a “pivot” (or top-level) ontology that can provide a common
language with which incompatible systems can communicate. Such a
pivot ontology can be shared by a large community of users. Instead of
negotiating a communication protocol between any two partners on a bi-
lateral basis, it is only necessary to define the translation between the
proprietary system and the shared pivot ontology. By now there are a
large number of such top-level ontologies. The HL-7 standard, for exam-
ple, establishes a top-level ontology for the health industry. In electronic
business communication the situation is a bit more fractionated, since
several organizations have defined competing standards. With ebXML,
UN/CEFACT has started a standardization process that should result in a
top-level ontology for electronic business communication. We will dis-
cuss ebXML in Section 10.3.

Guarino (1998) identifies four types of ontologies:

e Top-level ontologies: These are shared by a large community and define
only very general terms.

e Domain-related ontologies (vertical): These apply to a certain knowledge
domain, for example, an industry sector such as the pharmaceutical
industry or the computer industry.

» Task-related ontologies (horizontal): These apply to a certain task, for ex-
ample, procurement or software requirements analysis.

o Application-related ontologies: These describe the concepts of an appli-
cation, referring to specialization of both a domain and a task ontol-
ogy. Within an application-related ontology, the items defined in a
domain-related ontology appear mostly in a specific role.

Ontologies are used during different stages of the application life cycle.
Software applications can be constructed as ontology-aware or ontology-
driven applications—the ontology is actively used by the application at
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runtime. This is, for example, the case with software agents. Software
agents are usually constructed as specialist applications that operate only
within a narrowly defined domain. Larger-scale applications involve a va-
riety of specialist agents that are required to communicate with each
other. In order to understand the meaning of the messages exchanged,
agents must be able to access and interpret the underlying ontology.

Another example is query processing. Internet portals that combine a
multitude of different businesses and services under one roof, for exam-
ple, must be able to relate customer queries to the underlying ontologies
(mostly database schemata) of the participating partners. To interpret a
query correctly, they need access to the proper ontology.

During software development the use of ontologies can save time and
money. By using an ontology we can make sure that the participating
software analysts, designers, and programmers talk the same language. By
separating the definition of ontologies proper into top-level ontology,
domain- and task-related ontologies, and application-related ontologies,
we can make sure that we can reuse previous definitions. Especially for
top-level ontologies, but also for domain-related ontologies, we can often
reuse existing designs (such as DTDs, ebXML scenarios, or electronic busi-
ness languages) that have already been defined by industry associations,
standardization bodies, or manufacturers of electronic business systems.
It is also a good idea to build up libraries of domain- and task-related
ontologies.

There are three main areas in software systems where ontologies are
used. First, most business applications are database based, and each data-
base schema incarnates an ontology. As we mentioned earlier, naviga-
tional software systems such as Internet applications require partners to
publish “maps” for their systems. This includes the publication of all or
parts of the underlying conceptual models of the database schemata in-
volved. That is, the ontology defined by the conceptual database model
must be described in an appropriate way. (Publishing a database schema
itself is of limited use because relational normalization and optimization
can obscure the concept behind the design.)

Second, especially with relational database technology, a lot of concep-
tual knowledge is actually not contained in the database schemata but is
contained in the application in the form of SQL commands and program
logic. Applications contain knowledge not only about the data, but also
about business processes. Although legacy applications contain this
knowledge in hard-coded form within the program logic, the current
trend is toward the explicit representation of that knowledge in the form
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of soft-coded business rules. Again, the explicit use of ontologies can help
to document this knowledge in a consistent form, allowing this knowl-
edge to be reused in other projects or to be utilized by software agents.

Finally, ontologies can be used with user interfaces. One possible appli-
cation is the authoring of help pages. With a clearly defined and pub-
lished ontology, an end user can get information about the meaning of
terms and how they are related to each other.

The constraints defined in an ontology can be used to validate user in-
put. An example of this would be XForms, which not only can validate
user input according to the datatype definitions in the corresponding
XML Schema but also can apply other constraints. The relations between
conceptual entities defined in an ontology can be used to generate auto-
matic document layouts. Current commercial systems (such as K-infinity
from intelligent views, www.i-views.de) are able, for example, to produce
documents where semantically interrelated topics are placed close to-
gether, if possible on the same Web page.

4.2.2 Operational Ontologies: DAML and OIL

OIL (Ontology Interchange Language) includes a whole family of lan-
guages such as Standard OIL, Instance OIL, and Heavy OIL. It has also
been used as the basis for defining the ontology markup language DAML-
Ont (“DAML” stands for DARPA Agent Markup Language). DAML-OIL (a
version of the DAML language) is very close to Standard OIL. We will
restrict ourselves to a discussion of Standard OIL (Bechhofer et al. 2000).
Current implementations of OIL rely on proprietary representations or
on RDE For better readability we use here an informal notation that, if
required, can easily be translated into XML or RDE.

The basic constructs of OIL are classes, slots, and individuals. Individu-
als are instances of classes. Classes constitute a class hierarchy—a class
can be a subclass of other classes:

class-def holding
subclass-of enterprise

class-def enterprise
subclass-of organization

Classes can have multiple parents:

class-def owning-director
subclass-of director owner
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Axioms allow the assertion of additional facts about the classes within

an ontology:

disjoint: Specifies a list of classes. No individual is allowed to be a
member of more than one of the classes listed:

disjoint enterprise government-institution

This states that no individual can be both an enterprise and a govern-
ment institution.

covered: Specifies a class that must be covered by a list of other classes.
Each individual belonging to that class must belong to at least one of
the classes from the list:

covered employee by director manager worker

disjoint-covered: Same as covered, except that the classes specified in
the list are also disjoint.
equivalent: Defines a list of synonym class names.

Classes can own slots. Slots represent properties (i.e, on the instance

level, slots contain values) and can be used to define relations between in-
stances. Slots can be defined as subslots of other slots:

slot-def has-director
subslot-of has-manager

Slots can also be defined as an inverse of an already existing slot:

slot-def manages
inverse has-manager

So far, OIL closely resembles the entity relationship model. It exceeds

the capabilities of ERM when it comes to the definition of constraints:

Slot values can be constrained to be of a particular type:

slot-constraint has-director
value-type director

Valid value types can also be declared as an enumeration of individual
value types:

slot-constraint has-partner
value-type (one-of customer supplier shareholder)
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Slot values can be constrained to be of a particular cardinality:

slot-constraint has-director
max-cardinality 3 director
min-cardinality 1 director

Slot values can be constrained to be of a particular value (also called
filler). A filler value refers to one or more individuals.

class-def plc
subclass-of enterprise
slot-constraint has-company-form
has-filler proprietary Timited

Slot value constraints can also use order relations such as min, Tess-
than, greater-than, equal, and range to refer to individuals:

class-def Targe-company
subclass-of enterprise
slot-constraint employee-number
has-filler min 500

Slot value constraints can be written as expressions using the Boolean
operators and, or, and not:

slot-constraint external-owner
(owner and (not owning-director))

Further, slots can be defined with additional properties that improve

the ability to make logical deductions from slot properties. Valid proper-
ties are:

Transitive: If both (x,y) and (y,z) are instances of the slot, then (x,z)
must also be an instance of the slot:

slot-def bigger-than
properties transitive

For example, if company A is bigger-than company B and company
B is bigger-than company C, then company A is bigger-than com-
pany C.

Symmetric: If (x,y) is an instance of the slot, then (y,x) must also be an
instance of the slot:

slot-def business-partner
properties symmetric
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For example, if company A is a business-partner to company B, then
company B is also a business-partner to company A.

e Functional: If (x,y) is an instance of the slot, then there is no z unequal
to y such that (x,z) is an instance of the slot. Note that the properties
functional and transitive are mutually exclusive.

slot-def has-sole-owner
properties functional

For example, if company A is the sole owner of company B, then com-
pany B cannot be owned by another company (including the owner of
company A).

In addition to the OIL definitions, OIL files contain a container ele-
ment with metadata describing the file. The container element follows
the Dublin Core Metadata Element Set (DCMI 2000) and contains ele-
ments such as title, creator, subject, description, publisher, type, format,
identifier, source, language, and so on.

The current version of OIL suffers from a few limitations:

e No support for constraints across slots: Each slot constraint affects only a
single slot. Multivalued constraints such as width*height*depth < 100
cannot be specified.

e No default reasoning (only monotonic logic): In OIL, subclasses can in-
herit values from superclasses but cannot overwrite inherited slot val-
ues. If we have, for example, a class bird with the slot main-method-of-
movement and a filler value of “flying,” we would have trouble when
declaring the class emu as a subclass of bird. This could lead to major
restructuring activities when an existing ontology is extended.

e No support for second-order logic: A reification mechanism (such as in
RDF) does not exist in OIL.

4.2.3 Best Practices
We recommend the following practices:

e If a vocabulary is already used by the users in the targeted domain, use
this vocabulary.

e If different vocabularies are commonly used in the targeted domain,
use these vocabularies and provide a mapping between them. For ex-
ample, in an ornithology ontology you would provide a vocabulary of
bird names in common English and one in scientific Latin names.

Limitations
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Users should be able to extend these mappings ( i.e., specify more
synonyms).

e Provide a semantic definition for each term. This should be accessible
by users who require an explanation of a term.

e Use a classification that is familiar to the user.

e Use namespaces to allow the later merging of ontologies.

4.3 PHILOSOPHICAL EXCURSUS

In the Western world, the Greek philosopher Aristotle (384-322 B.c.) has
been the reference point for ontology questions for more than 2,000
years. For Aristotle, the formal model of logic consists of a single subject
(the Me) making statements about the world of objects (the Not-Me).
Within such a dualistic construction, statements are either true or false.
In fact, “tertium non datur” (i.e., the rejection of logical values other than
“True” and “False”) is a fundamental axiom of Aristotelian logic.

The philosophical system of Aristotle was adopted for the Catholic
Church by Thomas Aquinas (1225-1274) and thus has deeply influenced
thinking in the Western world. During the whole medieval age the teach-
ings of the Catholic Church served as the only possible view for inter-
preting the world. The majority of people lived in an ideologically consis-
tent and coherent environment. Communities that favored a (slightly)
different view of the world were prosecuted as heretics.

During the 16th century, this “one and only ontology” world would be
severely shattered by the developing natural sciences. Nicolaus Coperni-
cus (1473-1543) and Galileo Galilei (1564-1642) challenged the geocen-
tric view of the universe and replaced it with a heliocentric view of our
solar system. The reaction of the Catholic Church is well recorded. Ear-
lier, the German reformer Martin Luther (1483-1546) had challenged the
ideological basis of the Catholic Church, and for the first time in me-
dieval Europe people had a choice between two belief systems. The dom-
inant and monolithic ideology of medieval Europe had received its first
crack. There were more to follow.

Philosophers, however, needed a bit longer to get used to the idea that
there was more than one possible worldview. The possibility of multiple
ontologies was first mentioned by the German philosopher Georg Wil-
helm Friedrich Hegel (1770-1831).

In the 20th century it was the philosopher Gotthard Giinther who
combined a system of multiple ontologies (polycontexturality) with a
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multileveled logic calculus (Giinther 1979). Gilinther replaced the Aris-
totelian one-observer view of the world with a society of multiple ob-
servers. Each of these observers may live in a different contexture (i.e., so-
cial, cultural, ethical systems) and may arrive at different models of the
same world. If these observers do not communicate with each other, each
of them has its own Aristotelian view of the world. The “tertium non
datur” still holds for each of them. However, if the observers communi-
cate and gather intelligence about each other’s worldviews, they will have
to drop the “tertium non datur” axiom. Besides their own world model,
they have to recognize the world models of others. Giinther formalized
this model by using different levels of logical values. The immediate
worldviews of an observer can be expressed in the first level of logical val-
ues, such as True; and False;. A world model acquired from another ob-
server is expressed with second-level logical values, such as True, and
False,. A world model acquired from another observer via a third ob-
server is expressed with third-level values, and so on.

It is obvious that, although within the primary worldview the old Aris-
totelian values of “True” and “False” are still intact, they now do not have
the same rigidity as before because we acknowledge the possibility that
alternate worldviews might be correct as well.

Also obvious is that by default the communication between observers
can only be of an informal nature. Consistent logical systems are only de-
fined within a given context and, in general, cannot be used for knowl-
edge transfer between different ontologies. The consequence for daily life
is that some means of informal communication, such as natural language
or heuristic mediation systems, is inevitable.

4.4 CONTEXT

The development of common, shared ontologies can formalize the previ-
ously mentioned communication process, but the development of a
shared ontology (such as the negotiation of a shared XML vocabulary)
must rely on informal means.

At present this task is left to humans and requires not only technical
but also social and political skills. Although it is possible to “lift” knowl-
edge from a limited context into a more general context and to “tran-
scend” knowledge (McCarthy 1998) from one context into another, the
rules for “lifting” and “translating” must be defined by humans. Humans
can traverse multiple contexts with relative ease because they do not rely
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on formalized logic models. (On the other hand, they are also prone to
misinterpretation and errors.) When two individuals or groups establish
communication, they can rely on several things:

e Humans are usually familiar with several contexts. For example, a
lawyer is not only a lawyer, but also a car driver, a husband or wife, a
citizen, a cat lover, and so on. Communication with a partner becomes
possible when both partners share at least one context.

e Humans share one common context: the experience of the real world.
This includes the experience of one’s own body. Bodily functions (e.g.,
eating, sleeping) are universal.

e Even foreign contexts are often very similar in structure. If you learn,
for example, a foreign language or a computer language, learning a sec-
ond foreign language or a second computer language will be much eas-
ier because some concepts and patterns are very similar.

e Humans can use metaphors; that is, they can transcend experience
from one context to another context. In concurrent computing, for ex-
ample, we say that a thread goes to sleep, thus using a term that origi-
nally describes one of our bodily functions. Or, even if I am not a me-
chanic, I can have a clear idea about what a T-bar is because I can
associate the shape of the bar with the shape of the letter T.

As John McCarthy (1998) observed, the human ability to transcend
between contexts is a precondition for making scientific discoveries and
also for understanding somebody else’s scientific discoveries.

4.4.1 Ontologies and Contexts

What now is the relationship between ontology and context? An ontol-
ogy defines the vocabulary, the axioms, and the constraints of a certain
problem domain. The context, in contrast, defines the set of assumptions
that must hold to make the vocabulary, the axioms, and the constraints
valid. The context determines which terms belong to the vocabulary and
which axioms and which constraints are formulated. Depending on the
context, this can even lead to contradictory statements: “Vampires do not
exist” and “Vampires always hop” cannot both be true in the same ontol-
ogy. Vampires that do not exist can obviously not hop. However, the first
statement is valid in the context of the European Enlightenment, and the
second statement is true in the context of Chinese horror movies.

Or consider a rule that might be used to control a robot: “Item A is
above item B if item A is on top of item B.” This sentence is obviously
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only true in the context of gravity. Under zero gravity the expression “on
top of” makes no sense at all and should not be in our vocabulary.

Even structural relationships can depend on context. As we already
mentioned in Section 3.2.5, the entity StreetAddress can be modeled as a
property of the business object customer within the context of procure-
ment but would be modeled as a business object in its own right within
the context of direct mail or utilities.

Some contexts are fairly simple and include only a few assumptions.
ebXML, for example, lists possible context drivers that determine the spe-
cific contextual assumptions for ebXML artifacts (see Section 10.3). But in
general contexts are rich—they contain so many assumptions that they
cannot be completely listed (Guha 19935):

Contexts are objects in the domain, i.e., we can make statements about con-
texts. They are rich objects in that a context cannot be completely described.
The contextual effects on an expression are often so rich that they cannot be
captured completely in the logic. This is what leads us to incorporate contexts
as objects in our ontology.

R. V. Guha and John McCarthy collaborated in the formulation of an
algebra of contexts. Practical application of this theory was the introduc-
tion of contexts into the Cyc knowledge base, a “common sense” knowl-
edge base filled over 12 years with facts about this world and now con-
taining over 1 million rules (Lenat 2001):

The third, and perhaps most important lesson we learned along the way was
that it was foolhardy to try to maintain consistency in one huge flat CYC
knowledge base. We eventually carved it up into hundreds of contexts or
microtheories. Each one of those is consistent with itself, but there can be
contradictions among them. Thus, in the context of working in an office it’s
socially unacceptable to jump up screaming whenever good things happen,
while in the context of a football game it’s socially unacceptable not to.

Guha and McCarthy developed an algebra for operations between con-
texts. This algebra is based on the operator ist(c,p), which stands for p is
true in context c. Note that this statement is valid in some outer context ¢’
(we cannot make statements without being in a context). Therefore the
complete expression would be written as ¢’ : ist(c,p), but usually the ab-
breviated version ist(c,p) is used.

The goal of this algebra is to enable Al systems to navigate between dif-
ferent contexts. To solve a particular problem we can move from an outer
context into a particular context (enter context p), solve the problem
there, and move back to the outer context (exit context p). Statements
valid in a particular context can be lifted into a more general context. For
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example, the statement “Item A is above item B if item A is on top of item
B” is true in a context where gravity is greater than zero. This statement
can be lifted into a gravity-independent context by adding a clause: “Item
A is above item B if item A is on top of item B and gravity is greater than
zero.” The operations of entering a context, exiting a context, and lifting
statements can be fully formalized. This allows the modularization of
large knowledge bases (as in the case of Cyc).

In many cases specialized contexts can establish an exception from the
more general context. Here is an example:

e A regatta is a race between boats.
¢ Boats travel on water.

From these two statements it should follow that a regatta takes place on
water. But not so in Alice Springs, Central Australia. The annual Todd
River Regatta does not take place on water for the simple reason that the
river is dry. (The boats have holes in the bottom for the crew to put their
feet through.) In this special context, regattas do not take place on water.

This example also explains the difference between monotonic and
nonmonotonic reasoning. In monotonic reasoning, when a statement P
follows from a set of statements A and additional statements are added to
A, then P remains true. This is not the case with nonmonotonic reason-
ing. Adding new statements to A can cause P to become false. This is ex-
actly what happens when we move from a wider context (all regattas) to
a narrower context (the Todd River Regatta). Because the context now
contains an additional assumption (dry riverbed), our theory about re-
gattas comes to a different conclusion. (Prospective regatta participants
should be aware that in years when the Todd River carries water the re-
gatta is canceled.)

The question, of course, is, Couldn’t we design a correct model from
the start so that we do not need nonmonotonic reasoning? The answer is
that this is not always possible. When we formulate our model, we might
not know all possible exceptions that could violate our knowledge base.
Especially in an open environment such as the World Wide Web, it is al-
most certain that at some stage we will discover exceptions to the rule.
Nonmonotonic reasoning allows us to add these new cases as explicit ex-
ceptions to the knowledge base, instead of completely remodeling the
whole knowledge base.

But back to contexts. Although we have a formal model for the re-
lationship between outer, more general contexts and inner, more special-
ized contexts, we have no model for the relationships between arbitrary
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contexts. We cannot formalize a general theory to franscend context
(McCarthy 1998):

Human intelligence involves an ability that no-one has yet undertaken to put
into computer programs—namely the ability to transcend the context of one’s
beliefs.

Consequently, Al systems that must translate between different con-
texts have to be told how. A human knowledge engineer has to define the
rules for the mediation between different contexts.

4.4.2 Binding to Contexts: Schema Adjunct

And now back to XML. Earlier we mentioned that each database schema
forms an ontology. If this is so, what is the context of such an ontology?
Clearly, the context of a database schema is represented by the applica-
tions (and possible future applications) that access this database schema.
The definition and layout of the database schema are founded on certain
assumptions about how this schema will be used. These assumptions
were analyzed during the design phase of the database applications. The
final applications incarnate those assumptions. The binding between
applications and database schemata is usually hardwired.

A similar logic applies to XML. Although XML documents contain
some of their metadata in the form of tags and attributes, they do not
contain information about implicit assumptions that should be known
when the document is processed. Consequently the context for XML
schemata is set by the applications and services that process the XML
instances.

A specific feature of XML is the hierarchical structure of document ele-
ments. This can be translated into a hierarchy of contexts, starting with
the widest context on the root level and continuing with narrower con-
texts on the child level, and so on.

We can therefore describe a binding between document and context
for each document element separately. For example, if we want to bind
the document to an object-oriented application, the most natural way is
to replicate the document structure by an isomorphic class structure. In
other cases—especially if we want to bind an XML document to already
existing applications or services—the binding may not be so straight-
forward. Traditionally, those bindings take the form of hardwired pro-
gram code that in some way interprets the output of SAX or DOM parsers
and takes appropriate action.
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SAF A more flexible approach is possible by means of the Schema Adjunct
Framework (SAF). SAF describes the binding between XML document
nodes and application functions in a declarative way (Buck 2000):

To process XML instances for a given schema, many environments need addi-
tional information which is typically not available in the schema itself. Such
information includes mappings to relational databases, indexing parameters
for native XML databases, business rules for additional validation, interna-
tionalization and localization parameters, or parameters used for presentation
and input forms. Some of this information is used for domain-specific valida-
tion, some to provide information for domain-specific processing.

The Schema Adjunct Framework has a two-layer architecture:

e The adjunct: The adjunct introduces additional information not con-
tained in the document schema. The adjunct specifies additional se-
mantic information such as constraints and operations in an abstract
way. The adjunct itself is formulated in XML syntax, too. The concept
used to attach additional information to document elements is similar
to the concept used in Schematron (see Section 2.9).

® The adjunct processor: The processor is implemented in a suitable imple-
mentation language (XSLT, Java, C++, and so on). It interprets the doc-
ument instance, schema, and adjunct. Based on the abstract opera-
tions defined in the adjunct, the adjunct processor mediates between
the document and a target application.

Let’s look at an example (see Figure 4.1). We have defined an XML doc-
ument type representing customer records. We want to map these in-
stance documents to database tables in a relational database, and we
want to generate HTML forms for updating customer entries from the
XML documents. We define one adjunct that associates SQL tables and
columns with the elements of our customer document. A generic adjunct
processor for SQL reads the adjunct information and mediates between
the XML datastreams and the SQL database. Because this processor is
generic, we can use it for other document types, too.

To translate the XML documents into HTML forms, we define another
adjunct that associates the document elements with abstract form ele-
ments. Here we use two different adjunct processors. One translates doc-
ument instances—based on the adjunct information—into HTML. The
second processor accepts the input data from the HTML form and trans-
lates it back—again based on the adjunct information—into an XML doc-
ument. Although the first processor could be written as an XSLT style
sheet, the second processor would probably be implemented in the form
of a Java servlet. Here is the code:
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Figure 4.1 Using the Schema Adjunct Framework to build a simple XML-based application.

<schema-adjunct
target = "http://www.softcorp.com/product.xsd"

xmins:xfg = "http://www.softcorp.com/xml-form-gen.xsd"
-->

<element which = 'Product'>
<xfg:form/>
</element>

<element which = 'Product/Name'>
<xfg:1abel>Product name</xfg:1abel>
<xfg:type>text</xfg:type>
<xfg:tag>prdnm</xfg:tag>
</element>

<element which = 'Product/Price[Currency="USD"]/Amount'>
<xfg:label>Price(USD)</xfg:1abel>
<xfg:type>decimal</xfg:type>
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<xfg:tag>prdprc</xfg:tag>
</element>

</schema-adjunct>

The adjunct refers to an XML Schema definition (target). Each element
clause selects an element for processing (which). The child elements con-
tained in each element clause define abstract operations that are to be in-
terpreted by the adjunct processor.

By separating the semantics into an abstract layer and an implementa-
tion layer, the Schema Adjunct Framework is well suited to implementing
the constraints and operations defined in a conceptual model in a flexible
and portable way. The fact that adjunct definitions are XML documents
themselves is an additional advantage: adjunct definitions can be created,
maintained, and parsed with the usual XML tools and, if necessary, can
be structurally transformed with the help of XSLT style sheets.
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Why bother dealing with business processes in this
book at all? Since XML could be looked at as being
a technological basis for integration within the IT domain, we
definitely have to take processes into account. We have seen
at least two phases in IT: data integration and application
integration. Giving the process paradigm appropriate weight,
we can observe the phase of integrating processes of mani-
fold kinds in different environments and with arbitrary scope
in their business domains.

That is why in this chapter we will give an overview of pro-
cess modeling, starting with some terminological aspects. We
then present workflows as a special perception of processes.
From that we will show some problems in the field of process
analysis and modeling and present a somewhat uncommon

perspective of business processes. These considerations are
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based on mechanisms that are known from research on cooperative software
agents, specifically communication-based interaction, cooperation, and coor-
dination. Finally we give some hints on applying XML technology to process
modeling and implementation.

5.1 CONCEPTS OF BUSINESS PROCESS MODELING

Business processes have proved to be an adequate paradigm in describing
value-creating activities within and between enterprises—in both the old
economy and the new (or Internet) economy. In turn, processes may
serve to describe interactions between any participants in Internet plat-
forms (e.g., portals, marketplaces, etc.).

Such “interactions” refer to business transactions, which encompass
the collection and exchange of information, the negotiation of contracts,
and the exchange of goods. This is part of what is called the “primary
market transaction.” The secondary transaction takes place in payment,
logistics, and so forth.

Since we face interaction relationships (i.e., communication, synchro-
nization, data manipulation, etc.) between entities, we have to consider
process interfaces. XML-based formats in that context may be used to
specify process contents and interfaces and thus support the interprocess
understanding.

Section 11.3 will give an overview of business formats possibly able to
meet this demand. For now, we present some conceptual considerations
in approaching the problem of describing or specifying process-oriented
contents from a model perspective.

5.1.1 Overview of Process Paradigms

Since we present XML-based modeling approaches for business processes
in this section, we first have to differentiate several views of the issue. We
will not discuss the pros and cons of process paradigms. Instead we will
cover the modeling and exchange of process information with respect to
exploiting XML and its related developments.

Most often processes are regarded as a sequence of intra- or inter-
organizational activities, tasks, or functions that represent some value
creation. The activities may be performed by people or technical devices
(e.g., computer-based systems). This perception of a process leads us to
the workflow paradigm, discussed in Section 5.1.2.
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Alternatively it may be helpful to consider the interaction rather than
the operation. By doing so, we have to deal with communication between
people and/or systems involved in the execution of a process implemen-
tation and the agreements made to perform the necessary process steps.
Therefore Section 5.4 deals with contract-based, communication-based,
and actor-based approaches to process modeling.

An important aspect in process analysis, modeling, and implementa-
tion is the ability to handle any changes to the process design over time.
In that sense we may have to deal with process life cycles rather than
with static objects. Therefore it may be important for processes to encom-
pass the property of self-modification. This may in the first place refer to
adopting changes due to external effects being relevant for the outcome
of the process, and therefore the owner of the process, without any need
for manual manipulation. Such an approach is closely related to the
actor- or agent-based perspective. An overview is given in Section 5.4.4.

5.1.2 Notion of Workflows and Modeling

The concept of a “workflow” reflects the traditional view of the imple-
mentation of processes in organizational environments. Broken down to
bare techniques, the workflow view implies the modeling of business pro-
cesses as sequences of complex activities that may be split into parallel
sequences and/or partitioned into subsequences or elementary activities
(actions). Agents, singly or in a group, are then assigned to execute these
activities.

The prevailing workflow metaphor depicts a business process as a
stream or flow of documents and/or (intermediate or finished) products,
processed stepwise by each agent in turn, that is, when the particular
work piece comes flowing past them, and then passed on toward the next
processing station. This, of course, very much resembles assembly line
production. Common examples for such workflows are the assembly of a
tax declaration or the processing of travel expenses.

A basic control element is given by task lists. For each agent or pro-
cessing station a task list holds the tasks to be processed next at that sta-
tion. An entry in the list encompasses the documents or other objects to
be processed as well as the corresponding processing tools.

A workflow then is used to describe a well-structured and/or standard-
ized process, as it can be identified in public and company administra-
tions. It is not a useful instrument for ill-structured processes. We will
defer discussion of that until later in this section.

Process life
cycles

Workflow
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Such implementations of workflows are workflow instances controlled
by workflow management systems (WFMSs). In contrast the definition of
workflows is part of conceptual modeling on the metalevel, that is, the
workflow schema. Thus a WFEMS supports the metamodeling of work-
flows and allows the creation of instances that it keeps track of. The
Workflow Management Coalition (WFMC) has specified several com-
ponents of an overall architecture, including interfaces for workflow
definition and cooperation on the workflow engine level. For further
information, have a look at www.wfimc.org.

Regarding common approaches to process specification, we select
an example well known from the enterprise resource planning system
SAP/R3: event-driven process chains (EPCs). We are not going to discuss
the pros and cons of EPCs here. Instead we will present EPCs as a semi-
formal modeling approach within this section, a viable solution to mod-
eling workflows. Nonetheless we will sketch some of the drawbacks to
adequate modeling.

The basic idea of EPCs is to model process behavior as a sequence of
events and functions. Events represent temporal or logical conditions to
be fulfilled before executing a function. A function then may be thought
of as a work step to be performed within the context of a business process.

Figure 5.1 shows an example of a workflow given as an EPC in ARIS
(www.ids-scheer.com). While this is a coarse-grained top-level view, func-
tions 1, 2A, and 2B are usually decomposed into detailed representations.

Function
2A

)\ 4
Function Function
D, oxED,
K

A

Function
_>

Figure 5.1 Example of an ARIS EPC.
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The problems with using EPC-like modeling approaches are many.
Some of them are inherent to the methodology; others arise from the
inadequacy of the tools available for modeling. Here is a summary of the
drawbacks that we consider important:

e The set of constructional elements, mainly events and functions, stems
from the industrial production domain, which is characterized by deal-
ing with standardized processes. Process steps are triggered mainly by
temporal conditions. The process is deterministically given by a se-
quence of actions. This concept is definitely valid for exactly that class
of processes.

e The strict alternation of event and action in EPCs does not represent
the real world adequately. Events should represent temporal and logi-
cal conditions to be fulfilled rather than functioning as syntactic sepa-
rators within the sequence of functions.

* Decomposition for refinement is done on a modular basis. Once the
boundaries of a component to be refined have been modeled (via so-
called process interfaces), they will not change in the refined versions.
So new connections with other components cannot be established
without explicitly changing the complete model on higher levels of
abstraction. In addition, process model graphics are more likely to be
decomposed due to the limited place of output media than due to log-
ical considerations.

e The decomposition problem gives proof that reverse engineering is not
supported—or, if so, just to a very limited extent—by the correspond-
ing tools.

Section 5.2 includes a further discussion of this topic and the demands
of today’s business environment.

5.1.3 Metamodeling Aspects

Metamodels describe the elements and their relationships within a spe-
cific model type. This means that syntax as well as semantics is defined.
Concrete models therefore are built on the concepts that the metamodels
describe. Figure 5.2 shows a simplified metamodel of EPCs, given as an
entity relationship model. The connectors, also represented in the meta-
model, allow the process analyst and modeler to express parallel and
alternative paths within an EPC, using logical AND, OR, and XOR opera-
tors. Additionally a function may be associated with an organizational
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Figure 5.2 Simplified metamodel of EPCs.

unit that performs the function and an information object needed to per-
form the function. From the IT or implementational view, an informa-
tion object then may be mapped to a data element stored in a database.

The metamodel developed here clearly does not meet the modeling
semantics of EPCs. The construction procedure would require order-
ing rules such as “events and functions are strictly alternating when
hiding the connectors” or “let an EPC start with either an event or a pro-
cess interface,” where a process interface may represent either an event
or a function.

Metamodels are important components in business process manage-
ment, and we will make use of them in the following section. From the
conceptual perspective they semiformally explain the modeling elements
in the particular context. From the perspective of frameworks that sup-
port modeling they build the basis for checking mechanisms as well as for
model generation (e.g., via appropriate rule-based engines).
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Metamodels, roughly speaking, function as information models, as do
ontologies (see Section 4.2). In the process management context they
hold process-related knowledge or metainformation to be worked with or
to be communicated between software entities.

XML may be employed to specify workflows from the perspective of
metamodeling as well as from the perspective of the concrete instance of
a workflow. DTDs may be used for the exchange of such specifications as
well as for the storage of the specification in appropriate repositories. The
exchange of workflow information between two interacting software
components could be realized using advanced schema definition mecha-
nisms, such as the Resource Description Framework (RDF), discussed in
Section 3.3.

Information
models

A concrete application area for the exchange of process information Workflow

would be the migration of workflows in distributed workflow manage-
ment environments (e.g., for the purpose of load balancing). Since a
workflow system can control only the workflows that it has some under-
standing of, passing control of a workflow instance from engine to engine
would imply sending the metadata (i.e., the workflow schema) as well.

An example more complex than what we have presented here can
be found at www.ebxml.org/project_teams/business_process/wip/metamodel/
version2.0.pdf. Section 10.3 presents ebXML as a process-related XML
technology.

5.2 BUSINESS PROCESS MODELING
AND SYSTEMS DEVELOPMENT

In this section we first sketch the current situation in business process
(re-)engineering (BPE) and point out shortcomings in practice, especially
for a certain class of business processes that can be structurally character-
ized as being highly dynamic. These are likely to be found in service busi-
nesses. We present an approach to business processes that in general
promises more adequate engineering of such conventionally rather
intractable processes.

5.2.1 Background

These days there is a growing dissatistaction with the established way of
analyzing and describing business requirements and deriving IT solutions
for the processes thus defined. This is true even though the concrete
understanding of the modeling of, and IT support for, business processes
differs from case to case.

migration
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We consider business process engineering as a paradigm for investigat-
ing business information for use in appropriate IT development. We will
focus on currently observable practice, in which processes are mostly
considered as plain workflows, as has been sketched earlier. As a result,
and to simplify matters, we generally call these conventional approaches
the “workflow view” of business activities.

The main technique for describing this kind of workflow view is a
chart, a graphical network, the nodes of which are either events or ac-
tions (often called “functions”). In this chart, a starting event precedes
an action and a result event follows the action—or more than one result
event if there are alternative outcomes of an action. The result event
of one action usually serves as the starting event for the next one, or
result events of several actions are somehow connected to start an action.
Alternative paths (i.e., mutually exclusive paths) and parallel paths
through this kind of event-action-chaining net are distinguishable only
by the kind of “connectors” (with propositional logic semantics) at path
branches or junctions. Well-known examples are event-driven process
chains in ARIS (Scheer and Niittgens 2000), as seen earlier, and the
activity diagrams in UML (Fowler and Scott 1997).

Workflows can be executed using a workflow management system
(WFMS). In a WFMS configuration, people or systems (applications,
machines) are assigned to perform the actions by processing documents
or work pieces that are usually supplied by WFMS service components.
Often workflows are classified into (ill-structured) ad hoc, semistructured,
and (well-structured) standard workflows. Standard workflows are com-
pletely supportable by WFMS; semistructured, partly; and ad hoc work-
flows, not at all (Back and Seufert 2000).

Unfortunately, the structure class of a workflow is often recognized
only after implementing it and then observing its mismatch with reality.
The result of the analysis and conception phase may be a nice workflow
graphic that is commonly agreed upon to exactly describe what happens
in the departments under investigation. But the WEMS solution set up
accordingly may turn out not to be workable because the workflow had
almost completely “evaporated” in the course of its implementation and
trial. This may be due to the fact that the initially analyzed process is
ad hoc and highly dynamic rather than well structured.

For greater flexibility, newer WFMSs have been equipped with
exception-handling mechanisms or some means for explicitly allowing
deviation in practice. Watering down the workflow principles this way
demands, naturally, a kind of metacontrol. This may be based on a means
of process monitoring to detect diverging behavior of the actors.
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The fact that such divergence happens (and that workflow designers
have provided for “emergency exits”) is evidence of the inadequacy
not just of a particular workflow but rather of the whole traditional
workflow concept when applied to business processes that are not really
well structured.

The established workflow view (the activity- and work-piece-centered
view of business processes) is probably inadequate for a whole class of
business processes for the following reasons (among others):

* It requires a rigid, fixed process structure.

e [t presupposes that all choices are decidable.

¢ [t views agents as being event-triggered. That is, they are called, by the
workflow, to work on a certain object in a precisely defined way and
then sit idle until the next work piece comes flowing by.

The class of processes for which the workflow view is inappropriate can
be identified as being complementary to the class of processes for which
the workflow view initially was conceived (namely, the industrial produc-
tion processes). For these, the conditions listed in the preceding para-
graph hold. But for administrative or service processes, or for highly
dynamic business processes generally (those that deal interactively with
people), another view is needed. This especially applies to businesses act-
ing in changing market conditions and therefore being subject to perma-
nent organizational changes.

The degree to which a business process is dynamic affects its potential
for automation, which in turn corresponds to the degree of the possible
shift or delegation of responsibility from units involved in the perfor-
mance of a business process to units designing (the automation of) a busi-
ness process. Instead of narrowing the responsibility of actors to single
work steps within a workflow, designers need a much wider scope. In
other words, as far as any actor (human or machine) is intended to be a
logical part of some transaction (in the IT sense), decentralized responsi-
bility is not possible. And, since responsibility and flexibility are the flip
sides of the same coin, hopes for introducing flexible reaction into a
workflow will always be dashed.

5.2.2 What Is a Business Process?

Capturing the dynamics of business processes certainly necessitates addi-
tional concepts in modeling: communication, parallelism, nondetermin-
ism, and mobility. These concepts have a sound basis in formal process
calculi, especially Milner’s n-calculus (Milner 1999).
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Let’s first look at the definition of a “business process.” We regard a
business process as

* anetwork of interacting abstract agents, each of them playing certain
business-related roles,

e working concurrently, organizing their cooperation using preestab-
lished or ad hoc—created communication channels,

e implicitly or explicitly using or negotiating contracts with clients or
other agents, realizing a cascade of contracts specifying the value cre-
ation, where a distinct contract is to achieve given and explicitly stated
goals or subgoals, and

e where real world agents are assigned to work for the roles they play
(i.e., because of their competence), with such assignments spanning
organizational structures.

The benefits we expect from this view are many. The degree to which
these benefits really become visible, however, depends on the kind of
business and, to a lesser degree, on the kind of enterprise organization:
the more service oriented the business and, therefore, the higher the pro-
cess dynamics, the greater the benefits of this approach! Let’s look at the
benefits from three different perspectives.

Benefits in Process Design

The design of a new business process can profit substantially from the
following method: We start by (1) stating and decomposing the goals
that the business process is to meet, then we proceed to (2) derive initial
contracts to serve the business goals and to identify “contractors” and
the roles they play in a cooperation net. This forward business process
engineering may be continued by (3) defining the internal nature of the
roles and their external communication behavior, eventually arriving
at a model in which (4) resources are allocated to roles and tasks and
where we, finally, can (5) use this model configuration to derive require-
ments for IT systems to support tasks, roles, and even whole interaction
structures.

Benefits in Process Reengineering

Optimization of an existing business process is also greatly facilitated by
the changed view of the circumstances. Reengineering a business process
first requires an “as is” model of the process. This means in particular the
modeling of what it has actually grown into, not what it once was con-
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ceived to be and therefore is believed by some managers to still be (but
perhaps never was). In such a model, we must determine the degree of
support for newly defined or persisting business goals by the existing
business process. Degrees of support can never really be measured if, from
the findings, all aspects that do not fit into an idealized notion of the
business must be cut away, as is often the case with the Procrustean bed
of the workflow view. When an adequate business process model has
been reached, we can reconstruct the roles and, further on, the (implicit!)
contracts according to which the roles are observed to act. By examining
the reconstructed contracts, the gap between the actual and the desired
goal support will become visible, and we can see how contracts and/or
roles will have to be changed, or what changes have to be made to the
inventory of contracts, roles, and tasks, in order to close the gap.

Figure 5.3 summarizes the elements of the reverse and forward engi-
neering approaches to process design and their relationship as it is com-
monly found in real world projects. “Reverse engineering” denotes the
reconstruction of real contracts from given physical situations. “Forward
engineering” is constructing ideal contracts from the goals of an enter-
prise. A gap analysis on the contract level may also contribute to the eval-
uation of process implementations.

Stakeholder

Roles/Objects

Goals

Activities

Subgoals

L Objectives
Objectives

Construction Reconstruction

Contracts

Figure 5.3 Integrating construction and reconstruction in business process analysis.
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Benefits in Process Optimization

Not surprisingly, one way to optimize an existing business process is to
optimize its IT support. This is the usual motivation for business process
modeling and BPE. The real problem in improving IT support is deter-
mining its purpose and its scope; that is, the problem is identifying the
“real” requirements for better IT systems. Directly asking the actual hu-
man agent will yield a much too narrow view. But asking a manager will
yield a view that is usually more and more idealized and removed from
reality the higher up the management hierarchy you go. So, instead of
directly asking for requirements, we have to inductively build a model of
the whole business environment of an IT system. This procedure might
start by asking agents to whom they are talking; what information they
are exchanging this way; how they would categorize what they are doing
today and what they did yesterday and the day before that; which re-
sources they use; how they see their work supported by IT systems; to
whom they turn for advice; and so on. That is, we gather information
pieces that allow us to build a model of what is really going on (e.g., what
interdepartmental shortcuts exist, often with undocumented data flow;
what undocumented resources are used and in what undocumented
ways; what undocumented procedures have come into existence; how
people have tried to optimize their tasks, often only locally and thus
sometimes degrading global performance; and much more).

From what has been said so far, it appears that a WEMS is normally not
the proper software choice to support business processes in business areas
where BPE really shows its benefits. In these cases, a collaborative support
system (CSS) may be more appropriate. But, usually, software is needed
that is specially geared to the service tasks of the business in question.
And there it is important to know the requirements as exactly as possible.
So “off-the-shelf” products might not be the answer.

Although such knowledge of real requirements might also be gained in
other ways, business process reverse engineering is a viable solution in
order to get the basis for optimal IT support of whole business processes
or the appropriate parts. Even if only partial support is needed, it is
important to reverse engineer the whole business process—or at least as
much as can be done within the limits of a project—in order to get a
complete enough picture.

To sum up, we see the benefits of our approach

e for forward engineering of business processes, in which design of
much more flexible processes is facilitated, but also
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e for business process reverse and reengineering, in which much more
adequate modeling allows for more complete and more correct repre-
sentation of established processes.

There is another area where the new view promises substantial benefits,
although we have not yet explored it sufficiently and we do not know
exactly, at the present time, how to handle it technically. It is the area
of continuous change management, a hot topic in the age of e-business.
We expect the mobility concept to be very useful for integrating changes
to business processes directly, on the same level, into the business process
model. Traditionally, workflow changes must be managed in a metalevel
model, whose objects are the different versions of a workflow model.
That means changes are done to the workflow model, not within it. Work-
flows share this fate with program sources, of course: that is how the
ordinary source management system works. And as with changes to pro-
grams, adapting a workflow means a whole run through an editing-
recompiling-retesting-reinstalling cycle.

In a collection dealing with business process management (van der
Anlst, Desel, and Oberweis 2000), where all contributors work strictly
within the workflow view, an essay (Ellis and Keddarn 2000) asserts that
“a workflow change is a workflow,” thus underscoring the metalevel
problem. Although the modalities of change as listed in the article, as
well as the techniques for change description presented there, are also
important for a n-calculus-based change management, the mobility fea-
ture of m-calculus seems to allow changes to be an integral part of the
business process model. Alas, even if we knew how to handle such
dynamism within business process engineering, there still remains the
nontrivial task of reflecting such changes within the IT systems support-
ing dynamically changing business processes. Component-based soft-
ware, however, seems to facilitate the needed flexibility. Actually, adding
and exchanging components in a running IT system is a research field
presently addressed on the basis of n-calculus (Henderson 1997). So, the
hope is to demonstrate in the not-too-distant future that business process
change is not a business process but an integral feature of a differently,
more adequately, engineered business process. We will pick up this aspect
again in Section 5.4.4.

5.2.3 Employing Formal Modeling

Imposing an inappropriate “grid” for process description results in the
distortion or complete loss of important information. The degree to
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which this inadequacy becomes obvious depends very much on the busi-
ness sector. Workflow-oriented business process modeling may indeed be
appropriate for industrial manufacturing, where we usually find well-
structured processes, but it is definitely inadequate for service branches,
especially in the financial sector, such as insurance companies and banks
(although the term “production process” is used in such organizations as
well). The latter business sectors do not have the rigid structure of indus-
trial production. Instead, there is much more dynamism and change,
quite often imposed by the rapidly changing social and legal environ-
ment of these businesses. That is, we find mainly ad hoc or semistruc-
tured processes. This is certainly true in the current wave of mergers and
acquisitions in the financial sector, with all its organizational implica-
tions, which leads us back to the problem of change management.

Although we have been dealing with rather descriptive aspects so far,
this chapter will present a formal modeling approach, based on the con-
cepts of Milner’s n-calculus (Milner 1999). Although this is not the place
to fully introduce n-calculus, we will briefly sketch its main features, as far
as they are relevant to BPE.

A calculus is a collection of elements and rules that specify how to
combine these elements. A process calculus then is a collection of formal
elements that represent physical, social, or formal processes and rules to
construct and combine process elements.

Such calculi have been developed to describe and understand the be-
havior of complex systems by abstracting from specific attributes. In par-
ticular, this may refer to state transitions and concurrency in such
systems. Examples are petri nets, Hoare’s Communicating Sequential Pro-
cesses (CSP), and the Calculus of Communicating Systems (CCS). Com-
plex “real world” systems to be investigated may be found as technical,
social, or natural processes in machines, electronic devices, communica-
tion systems, organizations, enterprises, societies, and other dynamic
systems.

CCS, also developed by Milner around 1980, is meant to describe the
observable behavior of parallel processes in process systems. The behavior
is given by the interaction, that is, the communication between single
processes. Furthermore behavioral equivalence between process systems
can be determined, which allows the analysis of systems with regard to
building process classes. Process calculi may also allow the description of
nondeterminism. So the n-calculus basically adds the concept of mobility.

Let’s first have a closer look at communication in the n-calculus. Com-
munication in that context is a formal act of synchronization or hand-
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shaking between two interacting processes rather than a mechanism to
exchange structured messages. Technically communication is performed
via channels, referred to by channel names. Channel names can be used
only for bilateral communication—but by more than two processes, lead-
ing us to one type of nondeterminism.

Process systems are processes existing in parallel, each of which is for-
mulated by a so-called process term. These terms basically are sequences
of possible communications. Since communications are directed, terms
normally encompass sending (outgoing) as well as receiving (incoming)
communications.

In Figure 5.4 a process system is given by two parallel processes Travel-
Agency and Traveler. The two processes communicate via a channel
named by the pair confirm (for an outgoing communication) and confirm
(for an incoming communication). They may be thought of as ports of a
virtual connection. Note that communications are always directed.

Consider this short example:

TravelBusiness := TravelAgency | Traveler
TravelAgency := request . offer . book . confirm . 0
Traveler := request . offer . book . confirm . 0

The process system named TravelBusiness includes the two parallel pro-
cesses TravelAgency and Traveler from Figure 5.4. Each of these processes
is described by a process term. The dot indicates the sequence (i.e., the
flow of communicational steps of single processes). The sequence of
performing communications leads to what is understood as process
evolvement. Roughly speaking, when a process comes to a receiving
communication in its process term, it blocks until the communication is
performed; that is, it is triggered by receiving the handshake communi-
cation via the channel in question. It then evolves to the next state. So,
having performed a handshake communication, both process terms
evolve to the next step. This is close to state transitions in automata, but

confirm
Travel

Agency

N

»| Traveler

confirm

Figure 5.4 Communication channel between processes.
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not necessarily finite or deterministic. By the way, the “.0” indicates the
evolvement toward the termination of the process. It may be left off for
abbreviation.

Since more than two processes can use the same channel, with pre-
cisely the same name, nondeterminism can be expressed. Consider again
the following simplified example for our travel business (see also Figure
5.5):

TravelBusiness := TravelAgencyl | TravelAgency? |

Traveler
TravelAgencyl := request . offer . book . confirm
TravelAgency? := request . offer . book . confirm
Traveler := request . request . offer . book . confirm

Here we do not know how the process system evolves (i.e., which of
the travel agencies wins the race with its offer). In this simple example
both travel agencies are identical, and both receive the traveler’s request
(probably sent to both by request.request) and make an offer. The trav-
eler will book at only one agency. The “losing” agency will block at the

confirm

offer

request

request

Travel
Agency?

confirm

Traveler

book

offer

confirm

Figure 5.5 Nondeterminism in process systems.
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book step. By the way, we also do not know which agency receives the
request first. Although this example is rather simple, it shows that the n-
calculus provides us with mechanisms to model real world situations that
cannot be clearly expressed at modeling time. Our example leaves totally
open which travel agency the traveler will get a ticket from after all.

Mobility is one mode of evolvement given by means of communi-
cation links (or channels) that die or are dynamically created during the
lifetime of the process system. So we can describe the fact that a commu-
nication channel is moved from one component of a process system (or
“agent” in our terminology) to another. The set of communication links
of an agent describes its neighborhood and, as a consequence, its loca-
tion. Then we can also move the agent itself by moving its communica-
tion links and thereby creating a new location.

In our previous example we can think of the situation where the travel
agency cannot handle a request in time and therefore delegates the task
of preparing an offer to its subagency (see Figure 5.6). For that purpose a
new channel reply is established that is moved via names offerl and
offer2 from TravelAgencyl to TravelAgency? (indicated by the block
arrow). The reply channel functions as a process handle that is passed
along to TravelAgency2. By that mechanism, TravelAgency?2 is able to
send its offer to Traveler although it does not even directly know the

delegate

Mobility

Traveler

Trave] offer2
—>
Agency?
book book
Travel P request
Agencyl |
delegate request
confirm

Figure 5.6 Mobility in process systems.
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reply channel. TravelAgency2 just works out the offer; booking and con-
firmation in our example are dealt with by TravelAgencyl and Traveler.
The n-calculus notation of this example is as follows:

TravelBusiness := TravelAgencyl | TravelAgency? |
Traveler
TravelAgencyl := request(offerl) . delegate<offerl> .
book . confirm
TravelAgency? := delegate(offer2) . offer2
Traveler := (new reply)request<reply> . reply .

book . confirm

We will now incorporate the features sketched so far into a model-
ing approach. Modeling based on n-calculus means viewing a business
process as a system of what we will call “rn-processes,” processing concur-
rently, in parallel. A b-process is performed (1) by the interaction of such
m-processes (this interaction is externally observable) and (2) by activities
internal to these n-processes.

So, a business process is actually represented on two layers: (1) the
interaction layer and (2) the elementary task layer. At first sight, this does
not seem to differ so much from the workflow model, but in fact it does
so significantly: In the n-processes system, there is no globally imposed
scheduler, and no predefined network of interaction flow. The inter-
action structure of a “n-system” emerges as its n-processes evolve, that is,
as single m-processes proceed (advance their state) by communicating
with other m-processes. This means a decentralized control structure,
organized by cooperation. As long as mobility is neglected, a structure of
possible communication channels can be determined a priori for a nt-sys-
tem by examining the individual structures of the n-processes, that is, by
looking up which “front ends” or “back ends” of channels appear within
a term (expression) defining a m-process. An instance of m-calculus
communication, as stated earlier, is directed and a singular event, mean-
ing, loosely speaking, a channel is one-way and used at most once. But
since concurrent n-processes can compete simultaneously for the same
channel, it is often impossible to predetermine who will win and which
communication will take place. Similarly, within a n-process, the evolu-
tion path can branch, and it is often not possible to decide locally in
advance which path will be taken. We will come back later to these kinds
of nondeterminism.
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Mobility now adds the creation of new channels “on the fly,” estab-
lishing new front or back ends, or both. This way “process handles” can
be passed along, which is logically equivalent to moving processes. This
feature, which we explained earlier, is quite useful and is applicable to
diverse cases of real world modeling. Milner gives the technical example
of a mobile phone in a car that must disconnect from, and reconnect to,
transmitters as it is moved over cell boundaries. Here “mobility” is the
movement of the cellular phone’s link to another transmitter rather than
the movement of the phone as the car is moving. Typical business pro-
cess examples could include the following:

¢ Servicing moving clients, such as travelers or customers in big shop-
ping centers, with special information (e.g., pertaining to places, pos-
sible activities, possible contacts, etc.)

e Maintaining or offering service relations when customers (people as
well as companies) move their site of operation (e.g., by shifting ser-
vices for relocated customers to another branch of a bank)

¢ Introducing people or entire units into organizations and business net-
works and helping them within such environments (e.g., initiating
new employees in the processes of their departments and of the whole
company, or guiding and supporting students at universities, or pro-
viding citizens with communal and other public services)

e Accompanying a product life cycle, for material products as well as for
service products (e.g., as offered by banks), especially when different
phases of a product life cycle necessitate different services

Rather than just treating the symptoms, inadequacies in the workflow
view are remedied to a large extent only if a business process model is
built around the concepts of communication, parallelism, nondetermin-
ism, and mobility, derived from n-calculus. With these concepts, the real-
ity of an enterprise or organization can be modeled much more ade-
quately. Such a model prominently features agents:

1. Agents cooperate actively to reach the goals set for a business
process.

2. Agents work concurrently and interactively.

3. Agents know who is the expert for a particular job step, or who rou-
tinely performs particular tasks.

4. Agents communicate with each other about orders or completion
reports of orders, information, and availability of material or (inter-
mediate) products.
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5. In certain situations, agents decide for themselves what to do next
or whom to ask for help with a task.

6. In special problem situations, agents try to find somebody who can
help or who knows whom to consult for help.

7. In the case of new goals, agents may accept new duties and establish
new communication links in order to react flexibly to a changing
world.

The concept of communication accounts substantially for items 1, 2, 3,
and 4; parallelism, for items 1 and 2; nondeterminism, for item 5; and
mobility for items 6 and 7, in this very incomplete list of cooperation
aspects.

Nondeterminism is certainly not a desirable feature for an IT system
specification, but it is a requisite for modeling business processes—cer-
tainly in service-oriented business sectors and probably also generally.
Nondeterminism can be understood as modeling the fact that the mod-
eler either does not have (or does not want to spend the effort to supply)
enough information to always exactly determine a process evolvement
(i.e., to exactly differentiate between the conditions for each individual
path of a branch) has no way to determine beforehand which one of
equally possible communications within a system of parallel processes
may succeed. Such situations are more likely to occur the more concur-
rency exists in the system realizing a business process. Thus, to model
(some) business processes really precisely and in detail requires the delib-
erate introduction of nondeterminism into the model.

Moreover, nondeterminism in a business process model reflects a high
degree of decentralized control in the performance of this business pro-
cess. To describe the organization of this kind of decentralized control
(i.e., cooperation), an additional concept is needed—contracts. A contract
specifies how a provider services a client, where both service consumer
and service supplier are peers. This distinguishes contracts from orders or
commands in a traditionally viewed organization and identifies them as a
means of modeling cooperation and delegation, rather than hierarchical
function decomposition. Obviously, this distinction also corresponds to
the view of a business process as “stretching horizontally” through an
enterprise as opposed to “climbing up and down” a Tayloristically struc-
tured organization hierarchy.

So the previous enumeration of features to be modeled for agents ac-
cording to the new view has to be complemented with the feature of
contracting. The contracting ability of an agent means that the agent is
authorized to negotiate the way he or she produces and delivers a result,
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or to decide to responsibly employ the help of other agents for a partial
process. In such a way, a cascade of contracts may be found in an ade-
quate business process model.

An additional notion has proved helpful: we denote what agents con-
tribute to a certain business process as the role they play in that business
process. This abstraction allows us to make clear that the same agent may,
probably at different times, be part of different business processes, play-
ing different roles. The notion of roles also allows us to describe a busi-
ness process without naming concrete people or IT systems.

The main reason for obtaining more adequate business processing
models is to make a shift in the perception of business—the shift from a
view of structured activities to a view of communicating agents, actively
cooperating to achieve common goals, and with a contracting ability of
their own. This is roughly expressed by the slogan that calls for a transi-
tion from “process-driven people” toward “people-driven processes,” or
more generally toward “agent-driven processes.”

This “shifted view” is actually a view dual with the traditional way of
viewing business processes: instead of focusing on activities and their
sequence, the dualistic view entails focusing on roles that agents play,
and on their interaction, structuring, and organizing of the b-process
“from the inside” (i.e., by cooperation) instead of being fixed into a rigid
structure controlled from the outside.

Some interesting points can be made with regard to this dualism: The
basic elements of the workflow concept, events and (complex) activi-
ties—corresponding respectively to states and transitions (e.g., as known
from Petri Nets)—are purely abstract entities. The new basic elements,
agents (as players of roles) and communications, however, can be directly
observed.

In a workflow, agents do not initially appear, although they may ap-
pear in a workflow configuration as actors assigned to activities. So, com-
paring workflow configurations with our b-processes, we might assert the
following correspondence:

e Agent (in a role, n-process) <> actor (assigned to activity)
e Communication <> event
e Internal task <> elementary activity

The sore point of this correspondence is the comparison of “commu-
nication” and “event.” There is an additional convention needed, some-
thing like “An event as a result of an activity performed by actor X shall
be understood as a sending communication by an agent in role X; an
event starting an activity performed by actor Y shall correspond to a
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receiving communication by role Y.” Whether this actually works gener-
ally is not yet clear.

This “dualistic transformation” is trivialized if we first apply a
dimension-reducing projection from the new onto the old view’s “space”:
if nondeterminism and mobility are completely removed, and parallel-
ism partly, from the new view, what is left over can easily be transformed
into a workflow (configuration).

The last point, the conditionally possible “projection” from the
“space” of the new view onto that of the old one, is another way of say-
ing that the new view encompasses the old. In other words, the conven-
tional workflow view is just a special case of the new view of business
process engineering.

5.2.4 A Business-Centered Modeling Approach

Enterprise modeling may have several goals. So far we have focused on
business process modeling. Its basic goal from the IT perspective is to ana-
lyze the behavior of an organization and get a summary of the informa-
tion demands. Data modeling is much more technology centered and

Modeling, Administration, and Manipulation Tools Presentation

Model Schemas

Representation

Transformation and
Refinement Rules

Rule Base

Data Management

Model and Business Databases

Figure 5.7 Elements of the model-building procedure for process design.
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deals with the identification of structural elements and relationships to
be mapped into the IT world.
Basic elements of a business-centered view of process modeling can be Business-
divided into three tiers, as shown in Figure 5.7. centered method
The main layer is the representation of model information on the
metalevel. Here the model schemas are given for several methodological
views:

e The business domain model, representing the business structure

e The contract model, defining the parameters of collaborative value
creation

e The process model, defining the behavioral aspects in process systems

¢ The valuation model, representing all task-oriented information

¢ The allocation model, linking physical to virtual entities in the overall
model.

Figure 5.8 shows an ERM of a sample metamodel representing the busi-
ness domain information.

. . Business Domain Communication
Model View |[€«—is_a Model ——has—>» Model ]
has
has
has

4 Y

Goal Model Contract | |oc 5| Contract communicates
Model with
haS haS Y

¢ @ Pi Process
Goal @ @ 57

Role 154
Y
Objective - is_a
Business
Object
is_a
Information
Object

Figure 5.8 Sample metamodel view of the business domain model.
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Additionally the modeling procedure and seamless integration of model
views are supported by a mechanism for transformation in the horizontal
direction and refinement in the vertical direction, both forward and back-
ward in the ideal case. This approach heads in a rule-based direction.

5.2.5 Process Design and Object Orientation

After all, why not use OO modeling for adequate BPE? You could employ
UML diagrams to visualize facts contained in a model according to the
new view. For example, UML collaboration diagrams (Fowler and Scott
1997) are handy for presenting the interaction structure of roles, display-
ing the roles as object symbols and the channels (i.e., the possible com-
munications) as message arrows. That is, we are using UML constructs in
a very special way. When showing such a diagram to someone familiar
with UML, we have to point out this reinterpretation in order to avoid
misunderstanding.

The trouble is that the OO approach is a solution only on the technical
level, on the software level, not on the BPE level. This is a significant dif-
ference: a business process is not just another view of an IT systems land-
scape; a business process encompasses IT support but comprises much
more than the IT side. Especially in the service businesses, we may see
business processes only very sparingly supported by IT. An OO model is,
in the first place, a model of some software system or, in other words, a
technical specification of some software. A business process model de-
scribes the business domain ideally without any IT aspects in mind,
which is certainly not the case in workflow modeling.

Nonetheless, business process modeling and OO modeling are related:

¢ In forward business process engineering, one of the results of building
a business process model and of its evaluation can be a specification of
an OO model—a specification of a specification of some software.

e In business process reengineering and reverse engineering, an OO
model is an important input for (re-)constructing the business process
model.

5.3 COMMUNICATION AND COOPERATION:
TOWARD AGENT-BASED SYSTEMS

In the previous section we argued for a paradigm shift in regarding and
dealing with business processes in today’s organizations, by replacing the
management of structures with a management of communication. Com-
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plex business transactions take place in highly dynamic cooperative net-
works rather than rigid sequences of production steps vertically or hori-
zontally placed along the so-called value chain (Porter 1998).

Agent-oriented technologies have become of increasing interest for the
design and development of software systems. There are high expecta-
tions: “the next significant breakthrough in software development” and
“the new revolution in software” (Jennings and Woolridge 1998). In turn,
huge market opportunities with billions of dollars of revenues are fore-
seen (Guilfoyle 1998). Since agent technologies are discussed in various
contexts, we first give a short overview.

5.3.1 The Notion of Agent-Based Systems

Agents, or software agents, were originally part of artificial intelligence
(AI) research work. Thus many concepts in the field of multiagents sys-
tems are closely related to Al concepts. Instead of contributing to the dis-
cussion about what an agent really is (for a discussion of that topic, see
Miiller and Jennings 1997), we will summarize several aspects as being
basic attributes of agents.

Figure 5.9 gives an overview of agent attributes. Reactivity is the ability
of an agent to perceive information from its environment and perform
an action accordingly. It may have either sensors for that purpose or an
internal model of its environmental system (deliberative agent). Depend-
ing on its goals, an agent may also be self-induced and perform actions
that may influence its environment (goal orientation and proactivity).
The ability to learn implies the ability to deduce from its observations
and adapt accordingly. Here we find Al concepts such as knowledge or
rule bases.

Autonomy is one of the most important aspects that makes agent tech-
nology interesting for software development. Agents perform their tasks
autonomously in the sense that interaction with a controlling entity such
as a human user is not needed—or, if so, only to a small degree. To
achieve its goals an agent may move among nodes within a communica-
tion network (mobility) to reduce the communication overhead. Such
migration approaches are known from distributed computing.

Another essential attribute is communication—interaction both with
human users and with other agents. The latter case requires the existence
of agent languages with appropriate protocols (a subject of later discus-
sion). Communication also serves to coordinate agents performing com-
plex tasks cooperatively. Thus cooperation is only possible if agents can
communicate with each other.
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Figure 5.9 Overview of essential attributes of intelligent agents.

Attributes such as autonomy, communication, reactivity, and proactiv-
ity are commonly considered essential for agents. From the perspective of
Al, mental attributes may be added, such as knowledge; belief, desire, and
intention; emotion; and creativity. Mobility is usually considered to be

optional.

5.3.2 Typology and Applications of Agents

The attributes discussed in the previous subsection may serve as classifi-
cation factors for agents, leading to the typology shown in Figure 5.10.
This is just a sampling of the approaches observable in the field of agent-
based research and applications. This classification allows for combina-
tion; for example, we may find applications of smart, collaborative,
mobile agents (Franklin and Graesser 1997).
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Typology of
Agents
Collaborative Mobile Reactive Heterogeneous
Agents Agents Agents Agent Systems
Interface Information Hybrid Smart
Agents Agents Agents Agents
Figure 5.10 A typology of agent concepts.
The concept of agents has been given a great push by the Internet. The Internet agents

shift toward information processing in changing networked environ-
ments has led to the problem of efficiency in dealing with increasing
amounts of information. So the class of interface and information agents
has become of particular interest—for example, robots that preselect
information from mailboxes, lists, and similar resources, or personal
assistants that help to find resources on the Web.

Much of the research in the field of interface agents has been done
at the Massachusetts Institute of Technology (MIT). We will mention just
some of the applications developed there. Prominent examples are Cal-
endar Agent, for the management of appointments (Kozierok and Maes
1993); NewT, to train agents for news selection (Maes 1994); and Kasbah,
an agent-based marketplace for music titles (Chavez and Maes 1996).
Currently we face a new wave in personal assistance in Web-based
applications. Constructed with 3D modeling techniques, these agents
have a human appearance and interact with users through natural speech
interfaces.

Another class is given by the more general concept of collaborative
agents—autonomous software units that perform tasks on behalf of a sin-
gle user or a group of users. Autonomy, as stated earlier, means that an
agent decides on the basis of its own (e.g., rule-based) knowledge. Agents

Collaborative
agents
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may be mobile—they may move within a computer network to get their
jobs done and return with the result.

Since tasks may be diversified, agents may also be grouped into agent
systems to perform complex tasks. If agents of several types are grouped,
we may consider the result a heterogeneous (multi-)agent system.

There are further categories and applications of agents that we will not
discuss here but that are documented in a variety of publications: docu-
ment retrieval, air traffic control, management of telecommunication
networks, computer integrated manufacturing, medical care systems, and
many more.

The large number of agent-based approaches demonstrates that agent-
oriented computing is a viable technical solution for mapping certain
classes of complex systems to the IT world. In particular, to come back to
our original problem, this is true for the support of business processes,
from conceptual modeling to implementation, via computer-based tech-
niques and systems.

5.3.3 Agent-Oriented Concepts

An essential concept of agents is communication, which builds the basis
for the “social” capabilities of agents. This implies that agents interact on
the basis of an agent communication language. ACL is an example of
such a language. ACL has three components: a vocabulary, the outer lan-
guage KIF (Knowledge Interchange Format), and the inner language
KQML (Knowledge Query and Manipulation Language).

Agent communication is performed by message passing. ACL messages
are expressions that are defined using the KQML. These expressions con-
sist of terms and sentences in accordance with the vocabulary, which is
context specific and defined in an extensible dictionary.

A KQML message is abstract; that is, it is independent from its content,
which is just one component of the KQML message itself. The vocabulary
is often referred to as the “information model” or the “ontology.” A
receiver has to understand the ontology to be able to process the message
on the semantic level. Ontologies were discussed in Section 4.2 (see also
Uschold and Gruninger 1996). On the message-passing level, speech acts
are defined. Since speech acts will be discussed later in Section 6.4, we
will just outline the idea here.

Messages are of a certain speech act type. A concrete instance of a
speech act type is called a performative. Several types are defined, such as
tell to transmit a message, ask-one to check for a fact, or broker-one to
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delegate the execution of a speech act (Finin et al. 1993). Here is an exam-
ple that asks for a stock rate (Mayfield, Labrou, and Finin 1996):

(<ask-one>
:content  (PRICE IBM ?price)
:receiver stock-server
:language LPPROLOG
:ontoTogy NYSE-TICKS

The speech act or statement defined in the content field is based on
what has been defined within the language field. The general structure of
a performative thus is fixed by the given fields. Finally, to give an impres-
sion of the relevant aspects and complexity, Figure 5.11 shows the overall
structure of language concepts in the field of agent technology.

Many types of agents in a variety of applications rely on cooperation
to perform their tasks. So far we have said nothing about how the neces-
sary exchange of services is coordinated. At least two types of communi-
cation can be identified: deliberative and negotiation.

An example of negotiation-based agent coordination is the contract Negotiation
net approach (Dauts and Smith 1983). Services are exchanged according
to service level agreements (SLAs) that have been negotiated among the
participants. These SLAs may be considered as contracts in the sense of
our notion of business processes discussed earlier.

A contract net specifies a network of nodes given by agents that act
according to market mechanisms. In multiagent systems, special man-
agers are usually implemented and provided with the necessary knowl-
edge to tender services. Processors then supervise the contract building.

Alternatively, auction-based mechanisms have been proposed for the
coordination of service exchange. We will not discuss the economic im-
plications of negotiation and auctions in detail, but we will just state
that auctions give much more transparency to the market and therefore
promise more efficiency in resource allocation.

Additionally the conditions are commonly known in advance. This
reduces the complexity for modeling the realization of appropriate mech-
anisms in agent systems. The appropriate strategies differ from type to
type since we may deal with the English, the Dutch, or Vickrey auction,
to mention just a few. Some parameters are still up to the single partici-
pant to define.
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Figure 5.11 Agent communication languages in the context of agent technologies.

Agent The question of how to communicate and coordinate in agent systems

architectures is answered by architectures. Architectures support the organization of
the cooperation within multiagent systems (Genesereth and Ketchpel
1994). From the perspective of communication, there are two cases:
(1) directly (i.e., bi- or multilaterally by broadcast mechanisms or specific
channels) and (2) supported (i.e., via special components that pass the
messages from a sender forward to the receiver).
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In the first case, either service requests or service profiles (specification
sharing) are sent. On that basis receivers can act according to their goals
and answer (react) appropriately. In the second case, services are nor-
mally registered in central directories or knowledge containers of the
coordinating entities, and the sender does not need to know the receiver.

Such entities are called facilitators in federated systems that specifically
support agent coordination. Agents delegate some of their autonomy to
the facilitator, which acts on their behalf by sending messages on the
basis of general information and requirements about its clients.

Agent architectures aim at abstracting from proprietary approaches
and providing a conceptual framework for the design and development
of agent systems. Examples of architectures are InteRRaP, GRATE, and
ADEPT. ADEPT is the topic of the following subsection.

5.3.4 ADEPT

An architecture of particular interest is the Advanced Decision Environ-
ment for Process Tasks (ADEPT). It aims to support business processes
with agent-based IT solutions. ADEPT has been a research project under
the participation of British Telecom. Its basic results and concepts will be
outlined here (for more details, see Norman et al. 1996 and Jennings et al.
1996).

ADEPT allows the mapping of simple or complex organizational units
to an agency. Agencies deliberately provide services to and/or request ser-
vices from other agencies. An agency can be thought of as executing part
of a business process that may have been modeled conceptually as a
result of a business process reengineering project.

An agency may encompass other agencies or agents. The responsible
agent controls its agency, coordinates its services, and represents them to
the rest of the system world. From an organizational perspective, it could
be considered the head of a department, with the agency being the
department. According to our earlier arguments, we will not consider the
allocation of real world objects to conceptual elements in detail.

Figure 5.12 shows the logical structure defined by ADEPT. Agency Y
consists of agencies E, F, and G and the responsible agent. TD1, TD2, TE1,
and TE2 are atomic tasks to be performed by agents, that is, by the re-
sponsible agent and in turn by so-called subsidiary agents within the
agency.

In agency E we have zoomed into the responsible agent, which
encompasses five logical and functional components. Services provided
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Figure 5.12 Components and structure of agent-based process management in ADEPT.

by the agency are mapped to the self model (SM), which additionally
holds the execution schedules of agents. The acquaintance model (AM)
encapsulates knowledge about other agents, including their capabilities
and a history of service requests. The execution schedule is maintained
by the situation assessment module (SAM). For that purpose it needs sev-
eral types of information, such as requests by other agents, services that
it has already agreed upon, and service- as well as negotiation-oriented
information.

The service execution module (SEM) initializes and manages the
services that the agent has committed to provide. It also requests ser-
vices required from other agents. The interaction management module
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(IMM) represents the interests of an agent in the negotiation procedures.
It is triggered by the SAM.

The exchange of information and services is based on communication
performed among the communication modules. They pack messages and
pass them toward the receiving agent. On the implementation level,
CORBA services (i.e., the object request broker) may be employed for that
purpose.

The communication protocol in ADEPT is based on speech acts that
express the intent of an agent. The content may be coded in KIF syntax;
the semantics are given by the ontology, as we outlined in the previous
subsection. So the structure of a message follows the KQML approach.
Some examples of negotiation-oriented actions are propose, counter-
propose, accept, reject, confirm, and deny. The basic structure is the
following:

(message
(action: <communicative-act>)
(sender: <agent-id>)
(recipient: <agent-id>)

(conversation: <conversation-id>)

(service: <service-name>)
(info-model: <model-id>)
(content: <expression>)

The CM not only manages the logical distribution of messages, but it
also encodes and decodes the content according to the language. This
allows agents that “speak” different languages to communicate with each
other, as long as the CM has access to the necessary information in the
AM.

We will not discuss the outcome of the project in detail, but we should
mention that ADEPT has been applied to some business processes at
British Telecom (BT), for example, the Provide Customer Quote Service
(see www.mmrg.ecs.soton.ac.uk/nrj/projects/paam96/paam2.html). Research
on collaborative agents at BT laboratories has resulted in the devel-
opment of the agent-building tool kit ZEUS (www.labs.bt.com/projects/
agents.htm).
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5.4 PROCESS CONCEPTS AND XML

So far we have put a lot of effort into describing our notion of business
processes, the necessary paradigm shift for adequate process modeling,
and agent-oriented techniques to support business process modeling and
execution. Now we will finally give some hints as to what the contribu-
tion of XML to these topics might be. Since this is a field of ongoing
research and practical work, the purpose of some of the statements made
in this section is more to give an idea than to present the solution.

5.4.1 Actor-Driven Processes

The heading of this subsection generalizes to a certain extent what we
stated earlier: a paradigm shift from process-driven people to people-
driven processes. We have to overcome conceptual and implementa-
tional patterns that have been well elaborated in assembly line industrial
production.

Instead we have to consider active and collaborative entities, whether
we call them “agents,” “actors,” or whatever. These entities contribute
to value creation, which is the goal of a business process, assuming they
have a common understanding of the process or business domain or at
least compatible targets.

Since collaboration requires interaction, communication is a main
attribute of such considerations. We first discuss a special aspect of com-
munication in the next subsection. This is followed by a discussion of
contracts, another important feature, that aims at specifying the condi-
tions of value creation steps between collaborating entities.

5.4.2 Open Communication Processes

The design and implementation of IT systems will lead to much better
results if designers and system architects understand the business domain
that is supposed to be supported by IT solutions. Business process analy-
sis and modeling may be a helpful approach to gaining the necessary
information.

In larger business contexts, processes do not perform without interact-
ing with their environment. In particular, they exchange information
and work pieces with other processes. So, instead of dealing with single
isolated processes, we deal with systems of interacting processes, inter-
action performed by communication.

Communication in the real world as well as in computer systems is the
common means of exchanging information and/or services among sev-
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eral entities. In informatics the concept is used in a variety of approaches,
for example, client-server architectures in general, or CORBA to mention
just one in particular. Agent-based systems seem especially promising at
this point.

But there are still some unanswered questions. In the context of com-
munication, the feature of dynamics encompasses the possibility of
changing communication channels between interacting entities or—
what is even worse—entities may migrate, disappear, or appear arbitrarily.
In a real world business, think of a service unit or a whole department
that moves to another location, has been closed, or is newly established.
These events lead to changes in the communication structure of the pro-
cess system.

Although migration or closing down could be handled by communi-
cating the new contact information to the known partners in advance,
the problem of communicating with unknown entities still has to be
solved. There are two possible situations: (1) a process seeks another pro-
cess (e.g., for the reason of collaborating or exchanging services), or (2) a
new process has been established and it needs to integrate with a process
system “at runtime.”

These two situations share a common problem: how can a process find
other processes to get its job done? First, the processes must be a proper
fit for one another in terms of offering the required services. Second, they
must have compatible interfaces. And third, a mechanism must exist to
publish this information.

The first two requirements are answered by mechanisms that may be
implemented using XML-based technologies and incorporating concepts
from other fields such as agent communication languages. The third
requirement, however, is a lot more difficult without central mechanisms
such as directories or broker services. The third requirement is, at the
same time, the most interesting since in real world systems we often find
many chaotic aspects that do not rely on fixed structures or predefined
knowledge of “how to do something.” On the other hand, we often find
lots of business cases where centralized mechanisms make sense.

Bi- or multilateral communication between agents usually is session
oriented. Sessions can only be established if agents are able to identify
each other. Centralized (i.e., broker-based) communication is commonly
realized via message passing. Message passing is the mechanism of choice
in many communication-oriented services and protocols, such as CORBA
in object-oriented systems and KQML/KIF in the context of agent
technologies.
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For “anonymous” publishing mechanisms (i.e., the sender does not
know the receiver(s)), our first thought would be a broadcast service that
provides an infrastructure that messages can be pushed at. A potential
receiver would have to actively and deliberatively poll over such a public
message queue.

5.4.3 Contract-Based Interaction with tpaML

tpaML (Trading Partners Agreement Modeling Language) is a markup lan-
guage specification proposed by IBM. It has been integrated with IBM’s
B2B e-commerce products, particularly the WebSphere B2B Integrator,
which has been built on top of the WebSphere Commerce Suite.

The basic idea is to set up an electronic contract (TPA) on the basis of
XML. A TPA defines how trading partners interact on several layers. In
particular, it defines contract terms and conditions, participant roles,
identification, communication properties, security properties, actions,
sequencing rules, and error handling or recovery procedures (Sachs et al.
2000; Ennser et al. 2000).

The language to stipulate all this information is tpaML. The resulting
contracts are enforced by the integration software that controls the busi-
ness transactions of two partners over the Internet.

There are three concrete layers for TPAs. First, the business protocol
layer is the interface between the business application functions and the
TPA-defined actions. It provides rules for sequencing the messages
between servicing parties. Second, the document exchange layer provides
abstracting services for document handling between the business proto-
col and transport layers, including time-stamping, logging, auditing, and
nonrepudiation. Finally, the transport layer delivers messages according
to the selected communication protocol, including security aspects.

A TPA is an XML document described by a DTD or schema. From this
description the document code is generated on the computer systems of
the trading partners that agreed on the TPA. The following is the basic
structure of a TPA as a snippet of XML, enriched by some additional tags
in the transport section:

<TPA>
<TPAInfo> <!-- Preamble: TPAname, role, definitions,
participants, etc. -->
</TPAInfo>

<Transport> <!-- communication and transport security -->
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<HTTP>
<Version>version</Version>
<HTTPNode> <!-- one for each party -->
<OrgName Partyname=name/>
<HTTPAddress> <URL> .. </URL> </HTTPAddress>
</HTTPNode> ..
<HTTP>

<!-- communication and transport security
information -->

</Transport>
<DocExchange> <!--exchange and security --> </DocExchange>
<BusinessProtocol>
<Servicelnterface>
<!--Action definition etc. for each provider -->
</Servicelnterface>
</BusinessProtocol>
</TPA>

Such a TPA has to be set up and then agreed upon by the partners.
Then code is generated on either side, including the local registration
information and the code necessary to enforce the corresponding rules of
interaction.

5.4.4 Self-Modifying Processes

The attribute of self-modification comes into play for adaptations of busi-
ness entities due to environmental changes. Change management is a
structured procedure for performing all necessary organizational transfor-
mations that keep an enterprise competitive. Usually short-term changes
are considered that are supposed to meet current client demands, techno-
logical innovations, political or economic circumstances, and so on.
Additionally we may also consider long-term changes that influence
“long transactions,” using an IT-related term. As an example, we can
think of a process that manages all activities related to the financial de-
mands of a customer. The process then covers the “life cycle” of the
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customer. At some point a bank account is needed, then some life insur-
ance, followed by some investments, a mortgage, asset management, and
SO on.

Changing processes on the conceptual level leads to changing process
implementations on the fly or at runtime. This is done by replacing some
implementations by other implementations. Therefore mechanisms are
needed that allow the generation of process instances. This is what we
consider a metalevel problem.

Minor changes in processes may be dealt with by parameterization. For
example, an audit mechanism could control processes by tuning them
with appropriate parameter values. The behavior of processes may be
dealt with on the implementation level as well, for instance, through arti-
ficial intelligence such as rule-based mechanisms. Structural changes in
processes, however, must be considered on the metalevel.

A metamodel describes a process or a class of processes (i.e., its struc-
ture, the relationship of its components, and its behavior). From that
description an instance of a process may be derived, including appropri-
ate real world allocations for process objects. The n-calculus (see Section
5.2.2) provides the modeler with an advanced means to anticipate certain
types of changes, mainly through the mobility feature.

A solution on the conceptual level implies having formal transforma-
tion mechanisms for forward and reverse engineering that allow the
incorporation of changes at the implementation site backward into the
corresponding model views and, in turn, the generation of appropriate
process instances from changed metamodels.

Since the support for such a task through formal means is still an open
research field, automated adaptation and self-modification are a future
result. Nonetheless the BPMI, presented next, claims to enable process
implementations to change across systems, over time, and dynamically
in response to changing conditions.

5.4.5 The Business Process Management
Initiative (BPMI)

The Business Process Management Initiative (www.bpmi.org) aims at pro-
moting and developing standards for the design, deployment, execution,
maintenance, and optimization of business processes, particularly collab-
orative processes in electronic business. Two open specifications have
been defined, the Business Process Modeling Language (BPML) and the
Business Process Query Language (BPQL).
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A business process describes some transaction, based on a finite-state
machine, between two business partners. Interaction takes place through
a common (i.e., public) interface, supporting the exchange of informa-
tion among the private process implementations. The private implemen-
tations are considered to be participants in the process. The public
interface may be supported by common protocols such as ebXML, to be
discussed in Section 10.3.

Although the private implementations could be specified using the
BPML, the execution of business processes is supported using the BPQL.
Figure 5.13 presents an architectural overview of the scope of BPMI.

Similarly to XML, which describes data on the metalevel, the BPML al-
lows the modeling of business processes on the metalevel and indepen-
dently of any existing back-office system or protocol. The schema for
BPML can be thought of as building the basis for the specification of pro-
cesses in a specific business process modeling language. BPML representa-
tions encompass control, data, and event flows as well as support for
defining business rules, security roles, and transaction contexts.
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A draft of the BPML specification is available from www.bpmi.org. Here
is a short excerpt from the BPML XML Schema, defining the process
element:

<xsd:element name="process">
<xsd:annotation>
<xsd:documentation xml:lang="en">
Process definition
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="processDefinition">
<xsd:sequence>
<xsd:group ref="extension"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

The complex type process definition encompasses metadata for ad-
vertising, searching and categorizing, rule sets to express conditions and
dependencies, complex activities representing flows of control, and sim-
ple activities to perform data processing, communication, and system
operations or actions. These entities again are defined in further detail by
the schema definition.

As stated earlier, the BPMI specifications deal with processes in elec-
tronic businesses. They aim at process integration in intra- and inter-
enterprise computing. Therefore distributed transactions (synchronous as
well as asynchronous) are supported that allow the embedding of appli-
cations within business processes. Process integration with BPML refers to
the following targets:

¢ Integrating applications as process components
¢ Interleaving processes and transactions
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e Process model exchange between business process management
systems

The BPQL is an interface to the execution-oriented components of
process management infrastructures. Such infrastructures typically en-
compass a component that controls the execution of processes (i.e., a
process server), which may be compared to a workflow engine. Addition-
ally a component is available to hold data such as process descriptions
and related information (i.e., a process repository).

The execution of process instances can be controlled through an inter-
face based on SOAP (see Section 6.5.2). The repository can be queried
through an interface based on WebDAYV, a set of HTTP extensions to col-
laboratively edit and manage files on remote Web servers (www.webdav
.org). Process models managed by the process repository through the
BPQL interface can be exposed as UDDI (Section 7.3) services for process
registration, advertising, and discovery purposes.

5.4.6 Business Rules

Business rules contain business knowledge that describes the parameters
(i.e., policies and procedures) of transactions and work processes in a
“what to do if something happens under certain conditions” manner. A
common example of such a business rule would be the specification of
when and how a buyer can make changes to his or her order (see the fol-
lowing subsection). For example, this would encompass temporal condi-
tions followed by corresponding reactions.

Business-rule-related topics encompass their formulation or specifica-
tion, how to mine them from existing data, possibly the building of rule-
driven business systems, and their management in evolving business
environments. In this subsection we focus on the formulation and speci-
fication of business rules. Traditionally business rules, like other business
logic, have been hard-coded in business application code or buried in
other IT components, such as stored procedures in DBMSs, and could not
be easily accessed or even managed by nontechnical staff. XML-based
specification is a solution to this problem.

That type of formulation might rely on more general principles, such
as ontologies and knowledge representation, with background from arti-
ficial intelligence, such as inference and deduction. We will not discuss
this in detail. Instead we present some general approaches to XML-based
business rule definition. A more extended overview of the topic is given
by Thorpe (2001).
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Business Rules in Contracts—The BRML

Agent communication was the starting point for business rule research
at IBM (www.research.ibm.com/rules/home.html). In the Business Rules for
E-Commerce (BREC) project, rule-based business processes for e-commerce
were investigated.

ACL messages (see Section 5.3.3) can be regarded as containers that
hold the business rules described in an appropriate language. ACL'’s outer
language, KIE, was not designed to be the proper choice for this. Instead
Courteous Logic Programs (CLP) are used, which are an extension of as
well as a complement to KIF.

Aiming for the integration of such a language with the Web would
require coding CLP in XML. Such an XML DTD is given as the Business
Rules Markup Language (BRML). The BREC research aimed at supporting
the translation of rules to and from heterogeneous rule systems or lan-
guages, as well as to and from KIF (logic.stanford.edu/kif), along with pro-
viding an XML-based interchange language, such as BRML, to perform
such translation.

Consider the following rule: “A customer may modify an order 14 days
or more prior to delivery if he or she is a preferred customer.” Given as a
logic program expression, this rule would result in

<leadTimeRule>orderModificationNotice(?0rder, days 14)
preferredCustomerQOf (?Buyer,?Seller)
~ purchaseOrder(?0rder, ?Buyer,?Seller)

The “?” indicates a logical variable. Let’s translate this into BRML
notation:

<?xml version="1.0">

<IDOCTYPE brml SYSTEM "brml.dtd">

<clp>

<erule rulelabel="TeadTimeRule">
<head>
<cliteral predicate="orderModificationNotice">

<variable name="Order"/>
<function name="days 14"/>

</cliteral>
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</head>
<body>
<and>
<fcliteral predicate="preferredCustomer0Of">
<variable name="Buyer"/>
<variable name="Seller"/>
</fcliteral>
<fcliteral predicate="purchaseOrder">
<variable name="Order"/>
<variable name="Buyer"/>
<variable name="Seller"/>
</fcliteral>
</and>
</body>
</erule>
</clp>

As stated before, IBM aimed at having a language that supports a com-
mon understanding of business rules in contracts among agents and the
modification, communication, and execution of rules by agents. An
implementation of BRML is IBM’s Common Rules Java Library (www
.research.ibm.com/rules/commonrules-overview.html), which is a follow-up to
the ABE agent framework.

The Rule Markup Initiative
The Rule Markup Language (RuleML) is based on an initiative that several
parties (including the BRML group) participate in. The design of RuleML
(www.dfki.uni-kl.de/ruleml/) is grounded on a hierarchy of rules (see Figure
5.14). The hierarchy represents specialization relations, starting from the
top-level reaction rules.

Reaction rules are known in active database research as event-condition-
action constructs. Such rules are triggered if the defined event occurs,
which requires some observation mechanism. Then the condition,
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Figure 5.14 Rule hierarchy in RuleML.

simple or complex, is checked. Finally, if the condition evaluates to true,
the action is fired; that is, the procedure it contains is executed. This is a
straightforward application of rules of that type.

Integrity constraints are also forward oriented. They check for inconsis-
tency and signal if the conditions are fulfilled. Events are given by manip-
ulation operations on databases.

Here is the structure of a reaction rule, including an action to signal an
inconsistency, which would be based on the definition of a correspond-
ing integrity constraint that it implements.

<rule>
<_body>
<and> premises </and>
</_body>
< head>
<signal> inconsistency </signal>
</_head>
</rule>

A derivation rule is a specialization of reaction rules where the action is
to draw a conclusion if the condition is fulfilled. These rules can be ap-
plied in either direction: forward assertion of conclusions from condi-
tions as well as backward assertion of conditions from conclusions. Facts
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are a further specialization having an empty list of premises so that the
conclusion is always drawn.

So far the main effort of the initiative has been toward derivation
rules and facts. RuleML has been hierarchically modularized into a
directed acyclic graph of DTDs for these rules, which is open for further
sublanguages.

Exchange via Rule Engines—The SRML

The Simple Rules Markup Language (SRML) is a proposal for a general-
purpose interlingua that allows the definition of rules on the basis of
XML for their exchange between rule engines (xml.coverpages.org/srml
.html). A major goal is to abstract the process rules from concrete rule
engines, and thereby be vendor independent.

This idea is based on providing a DTD to the rules community that
specifies a subset of common rule engine language constructs. Rules
defined according to that schema can be translated and executed appro-
priately on the target system.

An example in traditional syntax is

rule Discount {
when { ?s:ShoppingCart (purchaseAmount > 100) ; }
then { update ?s { discount = 0.1 }; } }

which rule marked up becomes

<rule name="Discount">
<conditionPart>

<simpleCondition className="ShoppingCart"
objectVariable="s">

<binaryExp operator="gt">
<field name="purchaseAmount"/>
<constant type="float" value="100"/>
</binaryExp>
</simpleCondition>
</conditionPart>

<modi fy>

SRML
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<variable name="s">
<assignment>
<field name="discount">
<constant type="float" value="0.1"/>
</assignment>
</modify>
<actionPart>
</actionPart>
</rule>

So, not very surprisingly, SRML rules have a condition part and an
action part. Actions provided by the schema are modify, assert, and
retract. The condition is built from one or more test expressions.

5.5 CONCLUDING REMARKS

Since we have been working on several different concepts in this chapter,
let’s summarize the main results and relations. So, what was this chapter
all about? Recall our initial and still overall argument that process engi-
neering is needed in today’s business-oriented information management.
The process paradigm is powerful and is adequate for the analysis and
description of business knowledge. The resulting models may be used in
either (re-)organization projects or IT development. In both cases, we
expect to gain a sound basis for higher-quality solutions.

We also introduced a process-oriented approach based on the concepts
of the n-calculus. It included the features of mobility and nondetermin-
ism for the following two reasons:

e First, since business organizations and environments are subject to in-
creasing dynamism, change management should be supported. There-
fore formal mechanisms are needed to provide a basis for realizing
integrated process engineering methodologies. Such an approach in-
cludes information analysis, modeling, seamless forward and reverse
engineering, and finally simulation of process designs. The n-calculus
provides concepts and an algebraic notation that may contribute to an
appropriate solution at this point.
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e Second, we argued for business concepts given in terms of a manage-
ment of communication rather than of structures, as well as people-
driven processes rather than process-driven people. This results from
the observation that business activities are interactions, and inter-
action is either communication or the exchange of goods. The prevail-
ing workflow-oriented view of business processes may be appropriate
for industrial processes, but it is not appropriate for service processes.
So we need a modeling approach that is communication based. The
n-calculus promises to help at this point, too, by describing systems of
communicating processes.

On the technical level the approach that we outlined in the first
two sections of this chapter is very similar to what is known from agent-
oriented technologies, where we find many concepts and research results
that may be applied to the process context. These range from the under-
standing of communication protocols to the formulation of business
knowledge in terms of rules, for instance. We then gave an overview of
software agents and systems, leading us to the ADEPT system to support
service processes in telecommunication.

Finally, the role of XML in the field of business-process-oriented ap-
proaches had to be made clear. To do this, we summarized the initiatives
taken and results gained so far in this area. We focused on the formula-
tion of process features in XML that have been identified before, all for
the purposes of representation and exchange. This chapter outlined the
BPMI architecture, and other efforts such as ebXML will be dealt with in
Chapters 10 and 11.
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or early transactional systems, data storage was one of
F the most challenging aspects of computing. Today, with
ubiquitous networks, the focus of software engineering has
moved to communication. In this chapter we first introduce
the conceptual aspects of communication. After describing a
layered communication model, we look at the transportation
environment for messages: channels and ports. Then we dis-
cuss the theory of speech acts that helps us to structure the
exchange of messages and leads to protocol patterns.

In Section 6.5, we look closer into the anatomy of message
implementation, and we discuss SOAP and XML Protocol as
practical examples. In Section 6.6, we discuss both the classi-
cal ACID transactions and the newer, process-oriented, long-
living transactions and how those transactions concepts can
be applied to Web services. Security issues are covered in Sec-
tion 6.8. This includes a discussion of two security-related

standards: XML Signature and XML Encryption.
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6.1 HISTORY

As early as 1975 John McCarthy proposed a Common Business Commu-
nication Language (CBCL) (McCarthy 1999). As McCarthy observed,
“Developing an expressive Common Business Communication Language
has proved unexpectedly difficult.” The problem is not so much the syn-
tax but that the problem is open-ended. You cannot stop at some stage
and claim that all aspects are covered. For each business rule that is cov-
ered by the model, it is easy to find a more complicated business rule that
is not yet covered. Just take the following rules describing shipment
orders as an example:

1. Ship by express mail.

2. Ship by standard mail, but insure the parcel up to a value of $1,000.

3. Ship by truck, provided the truck is air-conditioned.

4. Ship by integrated rail/truck door-to-door service, provided the
refrigeration chain is not interrupted for longer than 90 minutes.
Request printed temperature protocol from pickup to delivery.

5. And so on.

We can see the problem. What would be required to cover all possible
cases is a language with the expressive power of natural language. Natural
language, however, is awkward to process with computers.

McCarthy solved the problem by devising an extensible business lan-
guage based on a language popular for building artificial intelligence
applications: LISP. In CBCL the shipment orders could look like this:

(shipment (carrier mail) (method express))

(shipment (carrier mail) (method standard) (insurance
(insured sum 1000)))

and so on.
We can easily translate these rules into XML. Each list head makes a
tag, and nested lists make child elements:

<shipment>
<carrier> mail </carrier>
<method> express </method>
</shipment>

<shipment>
<carrier> mail </carrier>
<method> standard </method>
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<insurance>
<insured_sum> 1000 </insured_sum>
</insurance>

</shipment>

and so on.

People trained in LISP will like the CBCL format better because it is
more compact. However, we find that XML makes it easier to determine
the end of each structure: there is no need to count parentheses. A docu-
ment standard such as XML was needed to bring John McCarthy’s idea
of an extensible business communication language to widespread adop-
tion. No wonder: exchanging documents is at the core of all business
communication.

6.2 LAYERS OF COMMUNICATION

The classical process model as it is used in enterprise application integra-
tion (EAI) and workflow applications is not really applicable in an open
electronic business scenario. These process models are described in terms
of state transition diagrams, Petri nets, and message sequence charts (such as
activity diagrams in UML). These techniques are well suited to the closed
world of enterprise business processes and workflows and for “closed
world” long-term business relationships as we find them in typical EDI
partnerships.

The situation in electronic business, however, is different. Electronic
business processes typically cross the boundaries of companies and long-
term partnerships. Especially with smaller businesses (and for larger cor-
porations that use the concept of autonomous work groups), there is a
high degree of autonomy between the business partners. Collaborations
frequently change and often are mediated through a market mechanism.
For example, a manufacturer who wants to ship certain items to a cus-
tomer will not use a single shipper but will dynamically select a shipper
according to price, availability, quality, and so on. In some cases it may be
necessary to use alternative services, for example, when the pilots are on
strike or the rivers are flooded. In these cases, the manufacturer must be
able to quickly align his or her own business processes with those of a
temporarily selected shipper.

Traditional modeling techniques such as state transition tables or Petri
nets have problems with this kind of required flexibility. Early experi-
ences with the application of these techniques to electronic business

Temporary
partnerships
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scenarios have led to the conclusion that the models become too com-
plex when we want to cover each possible exception and contingency.

Researchers have therefore looked into ways to make the traditional
process model more flexible or to use alternative methods to describe
open processes. In the previous chapter, we looked at Milner’s n-calculus
as one possibility. In this chapter we will take a close look at the speech act
theory (SAT) and communication patterns, so-called protocols, which are
a basis for modeling transactions and access to Web services in electronic
business. In later chapters we will see that some recent technologies such
as ebXML and RosettaNet are based on similar principles.

These concepts follow a layered metamodel, as in Figure 6.1 (Weigand,
van den Heuvel, and Dignum 1998):

* Messages are the most elementary part of such an architecture. A mes-
sage can be a simple signal, such as an acknowledgment, or it can
be quite complex, containing one or several business documents. A
message may relate to its operational context (i.e., the transaction that
it is a part of).

e Transactions are composed of messages (or other transactions). That
means that transactions can be nested, allowing the construction of
complex transactions from simple transactions. A transaction is con-
sidered as a logical unit of work that transforms the states of the par-
ticipating systems from one valid state to another valid state. In the
simplest case a transaction consists of two messages, a request and a re-

Scenario

Contract

Business Process

Business Service

Transaction

Message

Figure 6.1 Layered communication architecture in electronic business.
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sponse. Transactions can be classical ACID transacti