
T
E
A
M
F
L
Y

System Architecture
with XML

System Architecture

withXML
Berthold Daum

Udo Merten

Acquisitions Editor Tim Cox
Assistant Publishing Services Manager Edward Wade
Production Editor Howard Severson
Editorial Coordinator Stacie Pierce
Cover Design Yvo Riezebos
Cover Image XXX
Text Design Mark Ong
Illustration Dartmouth Publishing Industries
Composition TBH Typecast, Inc.
Copyeditor Ken DellaPenta
Proofreader Mary Roybal
Indexer Ty Koontz
Printer Edwards Brothers

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann Publishers
is aware of a claim, the product names appear in initial capital or all capital letters. Readers,
however, should contact the appropriate companies for more complete information
regarding trademarks and registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier Science
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

06 05 04 03 02 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, or otherwise—without
the prior written permission of the publisher.

Library of Congress Control Number: xxxxxxxxxx
ISBN: 1-55860-745-5

This book is printed on acid-free paper.

vii

Foreword
Peter Mossack
Vice President of Research and Development
Software AG

What’s all the fuss about a markup language? Read this book and you’ll
find out!

XML represents a movement. It is similar in nature to the “open”
movement. Open source, open interfaces, open (operating) systems. In
fact, XML is the next pillar in this movement. It can be viewed as the
open movement extended to the Internet. It is because of this that, as
a set of pure standards, XML is looked after by the World Wide Web
Consortium.

However, the whole world is talking XML, and the ramifications of its
universal adoption are only beginning to surface. Whole business models
will be affected by it; whole new business interests are being pursued be-
cause of it. The software industry itself will be rocked by it more than it
cares to admit. This is so because XML brings us into the promised land
of componentware. Take XML-based componentware, add the Internet,
and you get Web services. A very explosive mixture indeed!

By adhering to open standards, smaller companies with strong vertical
knowledge will be able to deliver components and services that can be in-
tegrated with those of other suppliers, and so be able to compete effec-
tively in their area of expertise.

Besides the purely technical merit of this, what lies at the bottom of
the movement is an unwillingness on the part of the consumer of tech-
nology, especially the corporate consumer, to be continually locked in by
megavendors of proprietary technology and application software.

Since a technology lock-in also implies economic dependency, there
are real business reasons behind the open movement. It is therefore very
important that people involved in making technology decisions, as well
as business decisions based on technology, understand the basis of it.

This book should not only help with this, but also provide the reader
with food for thought in conceiving and conceptualizing new strategic
applications based on XML technology.

Preface xvii...
ABOUT THIS BOOK xix..
ACKNOWLEDGMENTS xxi...................................

Scenario 1..
MEGAPOLIS INTERNET 2.................................

The Nonplanned Settlement 2...................................
Topology-Transactional, Relational,
Navigational 4..
Babel 6..
Subcultures and Ontologies 7...................................
Challenges 9...

IMPLICATIONS 12..
The Blurring of the Classical Application 12................
Collaboration Instead of Integration 13.......................
The Return of AI 13...
Soft Logic 13...

ARCHITECTURAL PATTERNS 14.......................
Dwellings 15..
Community Infrastructure 18.......................................

BEST PRACTICES 22..

Groundwork 25..
XML: A LANGUAGE FACTORY 26......................
XML BASICS 27..

The Syntax 27...
The XML Information Model 33...................................

SCHEMA DEFINITION-STAGE 1 34....................
The Document Type Definition (DTD) 35....................
Advanced Topics 38..

SCHEMA DEFINITION-STAGE 2 39....................
DTD Deficiencies 39..
XML Schema 40..

ACCESS AND COMPOSITION 53.......................

XPath 53..
XPointer 54..
XInclude 57...
XML Base 58...

QUERYING XML 59..
Expression Types 60...
Discussion 64..

XSL (EXTENSIBLE STYLESHEET
LANGUAGE) 64..
XML APIs 65...

SAX 65..
DOM 66...
Binding 67...
Which API? 67...

SCHEMA DEFINITION-STAGE 3 68....................
A Feather Duster for XML Schemata 68.....................
Elements Versus Attributes 70....................................
XML Design Patterns 74...
Architectural Forms 76..

BEST PRACTICES 79..
Always Use Namespaces 79.......................................
Do Not Reinvent the Wheel 79....................................
Multipart Schemata? 80..
Avoid External Entities 80...
Never Change a Published Schema 80......................
Use Only Version-Controlled Schemata 80.................
Consider Equipping Each Document Element
with a UUID Attribute 81..
Adopt a Concise Style for Schema Design 81............
Do Not Use Exotic Language Elements 82.................

XML RESOURCES 83..

Structure 85..
THE EVOLUTION OF DATA MODELS 86............

CODASYL 87..
Hierarchical Databases 89..

T
E
A
M
F
L
Y

Team-Fly®

Relational Databases 89...
Navigational Architectures 95......................................

CONCEPTUAL MODELING 100.............................
The Entity Relationship Model 101................................
Asset-Oriented Modeling (AOM) 108............................
A Document-Centered Step-by-Step Approach 113.....
Smash the Enterprise Data Model? 132.......................
Best Practices 133..

THE RESOURCE DESCRIPTION
FRAMEWORK AND CONCEPTUAL
MODELING 134..

RDF Basics 135..
From ERM to RDF 139..
Advanced Modeling Techniques 143............................
Reification 150...
RDF Schema 152..
Reasoning with RDF 156..
Best Practices 158..

A U FOR AN X 158...
XML Modeling with UML 158..
XMI: Exchange Format for Model Data 163..................

Meaning 169...
FORMAL SEMANTICS 170....................................

Formal Semantics and Constraints 171........................
Constraints in Schema Definitions 173.........................

ONTOLOGIES 174..
Ontological Depth 174...
Operational Ontologies: DAML and OIL 180.................
Best Practices 183..

PHILOSOPHICAL EXCURSUS 184.......................
CONTEXT 185..

Ontologies and Contexts 186..
Binding to Contexts: Schema Adjunct 189....................

Modeling Processes 193...
CONCEPTS OF BUSINESS PROCESS
MODELING 194..

Overview of Process Paradigms 194............................
Notion of Workflows and Modeling 195.........................
Metamodeling Aspects 197...

BUSINESS PROCESS MODELING AND
SYSTEMS DEVELOPMENT 199............................

Background 199..
What Is a Business Process? 201.................................
Employing Formal Modeling 205...................................
A Business-Centered Modeling Approach 214.............
Process Design and Object Orientation 216.................

COMMUNICATION AND COOPERATION:
TOWARD AGENT- BASED SYSTEMS 216............

The Notion of Agent-Based Systems 217.....................
Typology and Applications of Agents 218.....................
Agent-Oriented Concepts 220.......................................
ADEPT 223...

PROCESS CONCEPTS AND XML 226..................
Actor-Driven Processes 226..
Open Communication Processes 226...........................
Contract-Based Interaction with tpaML 228..................
Self-Modifying Processes 229.......................................
The Business Process Management Initiative (
BPMI) 230...
Business Rules 233...

CONCLUDING REMARKS 238..............................

Communication 241..
HISTORY 242...
LAYERS OF COMMUNICATION 243.....................
CHANNELS AND PORTS 245................................
SPEECH ACTS 246..

MESSAGES 248...
Simple and Complex Messages 248.............................
SOAP 249...
XML Protocol (SOAP 1.2) 253......................................

TRANSACTIONS AND PROTOCOLS 253.............
ACID Transactions 253...
Transactional Web Services 254...................................
The Web Services Description Language
(WSDL) 255...

SEMANTICS OF COMMUNICATION 259..............
Content-Based Routing 259..
Ontology Mapping 260..

SECURITY 260...
Basics 261...
XML Security 262..
XML Signature 263..
XML Encryption 265..

Navigation and Discovery 267..................................
HYPERMEDIA 268..

A Short History of Hypermedia 268...............................
Hypermedia Navigation 269..

TOPIC MAPS 283...
A GPS for the Web 283...
Another Philosophical Excursus 294.............................
Topic Maps versus RDF 296...

DIRECTORY SERVICES (UDDI) 297.....................
PEER-TO-PEER ARCHITECTURES 300...............

Presentation Formats 303...
PRESENTATION AND REPRESENTATION 304...

Results from Multimedia Research 304........................
Dimensions of Multimedia Composition 307.................
The Advantage of Audiovisual Information 309.............
Multimedia Data Models 310...

VIEWING XML DATA ON THE WEB 312...............
Overview of Viewing XML Data 313..............................
HTML 315..
XHTML 317...
Formatting Objects with XSL 321..................................

USER INTERACTION WITH XFORMS 326............
Concepts of XForms 326...
Implementations 329...

EXCHANGING INFORMATION THROUGH
WAP DEVICES 330..

What Is WAP? 330..
WML 332...
WMLScript 333..
WBXML 334..
Links to WAP Tools 335..

GRAPHICAL AND MULTIMEDIA
PRESENTATION WITH XML 336...........................

SMIL 336...
SVG 340..
VoiceXML 342...

DOCUMENT-BASED TYPE SETTING 346............
PDF 346..
(La)TeX 347..

Transformation 351...
PROCEDURAL TRANSFORMATION 352..............
RULE-BASED TRANSFORMATION 355................
WHAT XSLT CAN DO 357......................................

Variables 357..
Keys 358...
Multiple Input Files 358...
Various Output Methods 358...
Metatransformations 359...
Modules 359..

WHAT XSLT CAN’T DO 360...................................

EXTENSIONS 360..
AUTHORING AND TESTING OF XSL
STYLE SHEETS 363...
PERFORMANCE ASPECTS 363............................
OTHER LANGUAGES 365.....................................

Omnimark 365...
Perl 365...
XDuce 366...

GENERATING WEB PAGES 367...........................

Infrastructure 369..
BUSINESS REQUIREMENTS 370.........................
WEB SERVICES 371..

Orchestration 372..
Availability 372..
Collaboration Instead of Integration 372.......................
Transactions 373...
Software Engineering 373...
Service Localization 374...

ebXML 374..
Basic Concepts 375..
Shared Repositories 376...
Contracts in ebXML 382..
The ebXML Process Model 383....................................
How Context Is Handled 388...
Future 393...

INDUSTRY VOCABULARIES 393..........................
Technical Vocabularies 393..
Scientific Vocabularies 394...
Horizontal Industry Vocabularies 394............................
Vertical Industry Vocabularies 394................................

Solutions 397...
DESIGN TOOLS 398..

Conceptual Design 398...

Process Design 399..
Schema Design 400..

DATABASE SYSTEMS 401....................................
Mapped Systems 402..
Native Systems 405..
Best Practices 406..

MIDDLEWARE 407...
e-speak 407...
RosettaNet 409...
BizTalk 414..

APPLICATION SERVERS 419...............................
AUTHORING 419..

Creating and Publishing Text- Based Content 419.......
WML Tools for Mobile Applications 421........................
Multimedia 422..
Converters 424..

CONTENT MANAGEMENT 424.............................

Glossary 427..

Bibliography 433..

Index 441..

xvii

Preface

XML is an explosive mix. It is set in a triangle made up of document pro-
cessing, traditional data processing, and the Internet (see Figure P. 1). Its
language roots are in well-established document processing technologies
(SGML), its technology moves massively into the area of databases and
enterprise IT technology, and its application is mainly to establish com-
munication between collaborating parties on the Internet, extranet, and
intranet.

The same three ingredients also define electronic business:

Electronic Business = Internet + Enterprise IT + Documents

XML is thus well positioned as a core technology for the rapidly grow-
ing area of electronic business (see Figure P. 2). Its adoption by the indus-
try has consequently been quick. Although the initial hype has faded
away, XML has now achieved mainstream status in the corporate IT
world. The question of today for XML is not if but how.

A recent study done by the Giga Information Group (2001) among
companies that use XML shows

• 45% use XML for mission-critical applications.
• 13% use XML for non–mission-critical applications.
• 40% use XML for pilot applications.

The study shows also that XML is used in different areas. Not surprisingly
most areas are somehow connected to communication and integration:

• 33% use XML for data exchange and messaging.
• 27% use XML for application integration.
• 13% use XML for data integration.
• 12% use XML for content publishing.
• 6% use XML for the construction of portals.
• 6% use XML for other purposes.

Prefacexviii

1999 2000 2001 2002 2003 2004

A
m

ou
nt

 U
.S

. $
 (

bi
lli

on
s)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800 Business to Consumer

Business to Business

Figure P.2 A forecast showing the phenomenal growth of U.S. electronic
business, especially in the area of business-to-business (B2B). (Source:
Forrester Research.)

Documents Databases

Internet

XML

Figure P.1 Set between three technologies: XML.

Preface xix

Given these fairly disparate application areas and the triangle of docu-
ments, databases, and Internet, we witness an extraordinary culture
clash: document people trying to understand what a transaction is, data-
base analysts getting upset because the relational model doesn’t fit any-
more, and Web designers having to deal with schemata and rule-based
transformations.

Finally, when they have sorted out their differences, they start to real-
ize that agreement about “where to put the brackets” is only the first step
in mastering what is probably the most difficult thing on earth: human
communication. What lurks behind the standardization of communica-
tion structures are the semantic aspects of communications, the vocabu-
laries, thesauri, ontologies, and contexts—a topic that has been placed
onto the agenda of the W3C under the name “Semantic Web,” and opti-
mistically scheduled for 2003!

ABOUT THIS BOOK

It was this situation that made us write this book. The first step when dif-
ferent technologies meet is to do an inventory of what is there. The sec-
ond step is a critical review in the light of the new requirements. Finally a
synthesis can be tried and a new technology begins to emerge.

So, if you are expecting a description of the final tried-and-tested XML
architecture, this book isn’t for you. Such a thing does not exist, not yet.
(Maybe it never will.) But if you have an inquiring mind and want to look
over the fence, this book is definitely for you. But be warned: you may
end up more curious about XML and related technologies than you were
before. At least, that is what happened to us . . .

People with a background in document processing will find it interest-
ing how they can use conceptual modeling to model business scenarios
consisting of business objects, relationships, processes, and transactions
in a document-centric way. They might also discover that XML can be
used for some things that are very different from “library style” docu-
ments—standards such as SMIL and SVG allow the definition of rich
multimedia presentations.

Database people might wonder if XML is subject to relational normal-
ization and how this meshes with the hierarchical structure of XML doc-
uments. We will therefore revisit tried and tested modeling techniques
such as entity relationship modeling, but we will also introduce asset-

Prefacexx

oriented modeling—a new technique that is better suited to capturing
the higher-order relationships between entities and artifacts.

Web designers will discover that XML puts them into a position to au-
tomatically generate visually pleasing Web pages and rich multimedia
shows from otherwise dry product catalogues by using XSLT and other
transformation tools. They will also learn why “hard linked” Web pages
are bad, and what the alternatives are to allow for sophisticated naviga-
tion by end users.

Business architects will see how XML can help them to define applica-
tions that can be quickly adapted to the ever-changing requirements of
the market. Hard-coded workflows and business rules in applications are
replaced by XML documents that can be changed quickly. Even better:
new technologies like ebXML allow business partners to negotiate com-
mon business processes in an automatic or semiautomatic fashion.

Chapter 1 sets the scenario. We compare the Internet with an un-
planned settlement. XML can be the glue that holds it all together to
build an infrastructure. We strongly argue that—because XML is really
about communication—the current challenge is to build medium-scale
well-working applications that can communicate with each other. We
present some architectural patterns that have proved to work.

Chapter 2 lays the groundwork. It discusses many of the W3C and other
basic standards and techniques related to XML: DTDs, XML Schema,
XPath, XPointer, Xinclude, XML Base, XLink, XQuery, XSL, SAX, DOM,
Schematron, and architectural forms.

Chapter 3 discusses techniques to model the structure of information.
We revisit good old entity relationship modeling and also introduce asset-
oriented modeling—a modeling method that is easy to use and fits well
into an XML-oriented architecture. We show how RDF can be utilized to
describe conceptual models, and how UML can deal with XML.

Chapter 4 moves from structure to meaning. Communication across
company borders and company mergers demonstrates that it is not suffi-
cient to agree about the structure of information. We discuss ways to
model semantics, such as ontologies and topic maps. If you want to know
what the Semantic Web is about, here it is!

Chapter 5 takes a close look at modeling processes such as workflows or
business processes. We show how process can be described by means of
XML.

Chapter 6 introduces a layered approach to communication. We discuss
channels, ports, messages, transactions, and scenarios in the context of
open communication across company borders.

T
E
A
M
F
L
Y

Team-Fly®

Preface xxi

Chapter 7 illustrates ways of navigation that go beyond links in Web
pages. With WebML we discuss an integrated approach from conceptual
model to finished Web site. We revisit topic maps as a powerful means for
an independent navigation layer. We also discuss the navigational possi-
bilities that exist with peer-to-peer communication.

The topic of Chapter 8 is presentation. XML isn’t just about data repre-
sentation and communication; it is also the basis for powerful multi-
media standards such as SMIL, SVG, and XSL formatting objects.

Chapter 9 deals with document transformation, in particular with XSLT,
with its advantages and shortcomings. We take a look at alternatives, too.

Chapter 10 introduces recent standards that define an infrastructure for
electronic business. In particular we discuss SOAP, WSDL, UDDI, and
most importantly, ebXML.

Chapter 11 acts as a showcase for existing solutions. We look into (the
still rare) XML-related design tools, discuss XML-enabled database man-
agement systems and middleware solutions such as RosettaNet and
BizTalk (even the non-XML technology e-speak), and finally some XML-
related authoring tools.

The glossary explains relevant terms in the context of XML and elec-
tronic business.

ACKNOWLEDGMENTS

This book incorporates many research and development results from a
number of XML-oriented communities. Our first debt of gratitude is to
our colleagues in and the members of those communities. Without their
work, this book would have never happened. We also render our deepest
appreciation to all the people that helped us in so many different ways at
the various stages in the writing of this book.

First we would like to thank Morgan Kaufmann Publishers and
dpunkt.verlag for giving us the opportunity to publish our work. It has
been a great pleasure, indeed, to work with the people at MKP and
dpunkt. Thanks go especially to Tim Cox and Stacie Pierce from Morgan
Kaufmann, who patiently helped us through the materialization and
publication of the book and had to put up with our slightly Teutonic En-
glish, and to Rene Schönfeldt from dpunkt, who guided us from the very
beginning of the project.

We also deeply acknowledge the work of our reviewers: Tom Jell,
Kevin Jones, Jeff Jurvis, Janne Kalliola, Eve Maler, Tom Marrs, and David

Prefacexxii

Orchard. Their enthusiasm, expertise, and wisdom have helped us in
bringing this project to success. Their invaluable advice has significantly
improved the book in detail and overall structure.

Our rough manuscript was brought into shape and was transformed
into a real book by the production staff at MKP. Howard Severson was the
production editor, Ken DellaPenta was the copyeditor, Mary Roybal did
the proofreading, and Ty Koontz did the indexing. After seeing the
marked-up manuscript, we know how much we owe these four.

Thanks go also to our friends at Software AG, especially to Nigel O.
Hutchinson, Michael Kay, Peter Mosack, Jonathan Robie, and Walter
Waterfeld for providing valuable insight into the world of XML Schema,
XQuery, XSLT, and native XML databases. Thanks go, too, to Tina
Eisinger from altova GmbH for helping us with the production of XML
Schema diagrams.

And finally, none of this could have been realized without the help of
our families and friends. Family members and partners, friends and col-
leagues suffered a lot—not only with us but sometimes also because of
us—in countless situations. When the going gets tough. . . . Our thanks
and love goes to all of you for helping us and patiently supporting our
work throughout the entire authoring process.

1

1Scenario

XML would not exist if there were no Internet. Without

the requirements of the open and diverse Internet com-

munity, the extensibility and standardization of XML would be

wasted. Therefore, XML architecture must take the Internet

into account: its topology, its philosophy, and its history.

In this chapter, we first take a look at the topology of

so-called nonplanned settlements, which applies to the Inter-

net. We argue that architects must, above all, be good com-

municators who facilitate mutual learning between the Net

squatters.

Aside from that, there are a few common concepts that

become more important in such an environment. Applica-

tions increasingly consist of collaborating but separate units,

instead of being implemented as monolithic blocks. Soft

logic, such as the formulation of business rules with XML,

allows reconfiguring applications rapidly, and techniques

derived from artificial intelligence allow the configuration in

a more declarative way.

1.1 Megapolis Internet

1.2 Implications

1.3 Architectural Patterns

1.4 Best Practices

Finally, we look at some of the more common architectural patterns cur-
rently found on the Internet such as catalogues, workflow orchestration,
repositories, and more.

A list of top-level best practices for XML architecture closes this chapter.

1.1 MEGAPOLIS INTERNET

This section first reports on the outcome of a trip to the Bauhaus but then
moves quickly from African villages to communities on the Internet.

1.1.1 The Nonplanned Settlement

During a visit to the Bauhaus Institute in Dessau, Germany, one book in
the institute’s bookshop caught my attention. It was titled Non-planned
Settlements. My first thought was the Internet. My second thought was to
buy the book. On closer examination it turned out that it did not deal
with the Internet at all but with the topology of African villages and some
of the world’s megacities. One result of the author’s research was the dis-
covery that the network of roads, streets, and paths in these settlements
was arranged in such a way that the effort to travel between A and B plus
the effort to maintain this network is close to minimal (Schaur 1991).
Similar networks were found in nature (leaves, insect wings). The author
was also able to obtain these structures by simulation: because the equa-
tions proved to be too complex for silicon-based computers, more tradi-
tional means like soap water, wet threads, and sand were used.

Well, she got me hooked. I did a bit more research on unplanned set-
tlements and discovered that most unplanned settlements serve the re-
quirements of their residents better than formally planned settlements
(Portela 1992). Although unplanned settlements usually start with low-
quality housing, the housing and the infrastructure continually improve
and result in many cases in higher-quality housing than obtained with
formal planning because the inhabitants are in control (Figure 1.1).

What made me buy this book without further hesitation was the fact
that the Internet is nothing but a nonplanned settlement. That does not
mean, however, that the creation of Internet technology was unplanned;
in fact, Internet technology was created as the result of a careful planning
process by the U.S. Department of Defense. What I mean is that the cur-
rent topology of the Internet is not the result of a single planned process.
Nor was the speed with which the Internet and especially the World
Wide Web grew in any way anticipated. The computer and software in-
dustry, for example, was completely taken by surprise.

Chapter 1 Scenario

The Internet’s
architecture

2

Also the way the Internet would be used was not anticipated. First
planned as a computer network for military use, it was soon taken over
by scientists and became a major communication device between scien-
tific institutions worldwide. Then, beginning in 1995 the Internet be-
came commercial and—by now—electronic business is the main driving
force in the development of the Internet (Daum and Scheller 2000).

Five years later we are a bit wiser. We have witnessed tremendous suc-
cess stories on the Web, but we have also seen many dot.coms and some
other Internet squatters vanishing. Many ideas that looked good on pa-
per did not succeed in the field. Even a technically brilliant company like
Sun Microsystems (“The network is the computer”) had to retarget a ma-
jor development (Java moved from the browser to the server).

While the reasons for these “failure stories” are manifold—and not all
are of a technical nature—we feel that in many cases the problem was
that the Internet introduces a new set of challenges into software engi-
neering. Traditional software engineering concepts are certainly valid
within an enterprise context, but for the macro level of the settlement In-
ternet they are simply inappropriate.

Not required are architects who try to superimpose the tried-and-
tested constructs of the past—such as three- or four-tier client-server
architectures—onto the Internet world. Not that there is anything wrong

1.1 Megapolis Internet 3

Figure 1.1 Architecture that works. Structural patterns of a Mediterranean
megapolis.

with these models (they have served well within the enterprise world),
but what is really required in the global village are architects who act as
communicators and multipliers, architects who enable the inhabitants
of the Internet to learn from each other and to improve their levels of
skill and self-organization. The architects of systems become architects
of communication. Let’s see how.

1.1.2 Topology—Transactional, Relational,
Navigational

The first time two users were connected to the same computer, the com-
puter ceased to be a plain but expensive calculator and became a commu-
nication device. Data that was entered by one user could be read and
modified by another user.

The first of these systems evolved at a time when computer hardware
needed huge halls, air-conditioning, and specialist operators. Embedding
computers into end user devices was unthinkable. End users communi-
cated with the computer through teletypes and later through cathode ray
tubes (CRTs) and keyboards. In terms of software, a major paradigm
evolved at this time: the transactional multiuser database was developed.
These databases guaranteed that a user could safely process a certain work
unit (a transaction); the system guaranteed that a work unit was com-
pletely processed (or not at all) and that other users could not interfere.
Neither a system crash nor concurrent activities could corrupt the data.
The transactional approach is still a core paradigm of today’s enterprise
computing.

The situation changed when microelectronics made computers small
enough to fit on a desktop. When cheap workstations and PCs arrived on
the market, departments would simply buy these devices without asking
the computer center or corporate controllers for permission. They had
done this before with typewriters. In the view of the enterprises’ com-
puter centers this was just another case of unplanned settlement. It
evolved because it served the requirements of the users better than the
centralized IT departments could. New functionality in shrink-wrapped
packages could be bought in the computer shop around the corner. The
traditional way of sending a request to the IT department and waiting for
months for its realization had become too slow for a faster-moving busi-
ness world.

But, with the now ubiquitous desktop machines, users had acquired a
problem. Their computer had regressed from being a communication ma-

Chapter 1 Scenario

Transactional
topology

4

chine to being a simple typewriter or calculator. Data was exchanged on
floppies, resulting in chaos and a data jungle.

To establish communication again, it was necessary to connect the
desktop machines to a network. Local area networks (LANs) were intro-
duced, and the former computer center now operated the enterprise’s
servers, where the critical data of the enterprise was held. This was the be-
ginning of the client-server era. The client on the desktop would be re-
sponsible for the (mostly graphic) user interface and for application logic,
while the server in the computer center would run the big databases and
care for database backup and security. The role of the computer center
had changed: instead of caring for individual “housing,” it cared for the
public infrastructure.

This had consequences for the database software, too. The old CODA-
SYL databases were too inflexible for this job. Because many different
clients with different requirements could hook up to the same server, it
was necessary that the same data could be interpreted in different “views”
(different combinations of data elements) depending on the application
of the client. Relational databases were able to solve this problem. Be-
cause these databases store the data in the form of very simple, basic
tables, they allow the arbitrary recombination of this data at will. While
relational technology had already developed alongside transactional sys-
tems, it had its breakthrough with client-server technology.

The Internet, and especially the World Wide Web, have changed this
landscape once again. In the classic client-server scenario the relation is
“many clients, one server,” and usually both client and server work in the
same enterprise environment. In the World Wide Web it is, in contrast,
not one server but millions of servers in millions of enterprises. Each
client can access any server on the Web and any Web service. In a few
years, it will be billions of servers: any device connected to the Internet
and able to hold data—a PC, a PDA, or an embedded device—can act as a
Web server.

What does this mean for the user? It means that a vast array of new
services are (or soon will be) available on the desktop, in the car, or in the
palm of the hand—services that were previously unthinkable, or services
that can be better performed by a third party than in-house. While in the
beginning of the Internet only a few basic services were offered (email,
home pages, search engines, file transfer), the landscape is now getting
more and more diverse. The range goes from financial services like credit
card validation, to community services such as an ontology server for
the knitwear industry or a knowledge base for hazardous chemicals, to
generic applications hosted by Internet service providers.

1.1 Megapolis Internet

Relational
topology

Navigational
topology

5

The most frequent activity for a Web client thus becomes—besides per-
forming transactions—navigation and service discovery. In real cities we
are used to using certain helpful devices to find what we want. There are
street and telephone directories. We know that shopping malls host the
full spectrum of shops we need for daily life. If we don’t know our way
around, we can rely (more or less) on the expertise of a taxi driver or of a
passerby. And so on.

On the Internet things are similar. Within the short time of its exis-
tence the Internet has developed certain patterns that can help us in the
task of navigation. There are simple structures like Web rings or Web
communities, sophisticated search engines and directory services, and
fully serviced marketplaces and portals. More recently, peer-to-peer tech-
nology has gained a lot of attention, especially, but not only, for ex-
changing MP3 records.

1.1.3 Babel

The development of the Internet and the World Wide Web was made pos-
sible through the definition of open standards. Among those that have
shaped the Internet are

• TCP/IP (Transmission Control Protocol for the Internet)
• HTTP (Hypertext Transfer Protocol)
• SMTP (Simple Mail Protocol)
• FTP (File Transfer Protocol)
• HTML (Hypertext Markup Language)

All these standards serve a specific task—they have clearly defined seman-
tics. The HTML specification, for example, not only describes the syntax
of Web pages, but also defines how a browser has to process the elements
of an HTML Web page. Measured by numbers, these standards have been
a tremendous success. Given the decentralized nature of the Internet, it is
difficult to get reliable statistics, but it is estimated that by the end of
2000 more than 400 million users were connected to the Internet (Nua
Internet Surveys) and that servers stored about 2 billion Web pages, with
7 million new Web pages being created every day.

But the hardwired semantics of these standards (especially those of
HTML) have led to a problem: it is difficult to adapt this technology to
new application domains. Consequently HTML was subject to a number
of proprietary “enhancements” during the period of the “Browser Wars”
in the late 1990s. Today, Web pages consist of a wild mixture of HTML,
JavaScript, Java, Shockwave, and so on, augmented by server technology

Chapter 1 Scenario

Navigation
and service
discovery

Open standards

Hardwired
semantics

6

to generate dynamic Web pages such as ASP, JSP, Java Servlets, CGI, and
so on.

The release of the XML recommendation in 1998 marks a break in this
tradition (Bray, Paoli, and Sperberg-McQueen 1998). XML was designed
not as a special-purpose language but as a “mother of languages,” a
generic metalanguage. The goal of its definition was extensibility. How-
ever, the initial perception of XML was that of a “successor for HTML,” a
misconception that needed to be clarified before XML could really take
off. The purpose of XML is not to become a better HTML (although one of
its applications, XHTML, is the designated successor of HTML) but to al-
low interested user groups the definition of their own specific languages.

And this is exactly what has happened since then. In the few years of
its existence, XML has been the basis for numerous (approximately 500)
language definitions, some of which are covered in this book. There is
probably not one single human being—except perhaps Robin Cover
(www.oasis-open.org/cover/)—who has an overview of all XML-based lan-
guage definitions.

In this context, some commentators have talked of “Babelization.”
This is, in fact, what this plethora of languages looks like at first sight. To
understand what is going on, we have to take a deeper look into human
nature in general.

1.1.4 Subcultures and Ontologies

You have probably already guessed it: the Bible is right—Babel belongs to
the human condition (Figure 1.2). Although English has become a world
language, it is hard to say which English is the world language. One word
processor lists the following flavors: English (Australia), English (Belize),
English (Great Britain), English (Ireland), English (Jamaica), English
(Canada), English (Caribbean), English (New Zealand), English (Philip-
pines), English (South Africa), English (Trinidad), English (USA), English
(Zimbabwe). This doesn’t mean that a reader of English (USA) necessarily
understands what a writer of English (USA) has written—not if they be-
long to different scientific communities or different trades. Medical sci-
entists speak a different language than nuclear scientists, and their
vocabulary vastly differs from that used by social scientists, computer
programmers, or butchers.

In the world of the Internet, XML can play a similar role as a univer-
sal language. It acts as a common substrate on which different special-
purpose languages can be developed. Some of the 500 XML-based lan-
guages exist because they serve specific purposes—for example, SMIL for

1.1 Megapolis Internet

XML

7

multimedia presentations and VoiceXML for speech processing. Others
came into existence for the simple reason of competition: some manufac-
turer wanted to stake a claim in the virtual world of e-business.

Is this really so bad? We don’t think so. The existence of 500 XML-
based languages is not a sign of confusion; it simply shows that XML has
made its way into many different application areas.

Later we will see that the definition of an XML-based language can be
compared to the definition of a database schema: both define an ontol-
ogy, a—albeit narrow—concept of the world. As virtually each enterprise
and each organization fosters its own database schema, there would be
millions of “languages” to learn if we were to try to exchange data on a
bilateral basis between two companies using relational technology. This
has been more or less the approach of classic EDI (electronic data inter-
change). EDI worked well in some subcultures of the IT community, such
as the automotive industry, however, only on a bilateral basis.

But this approach does not work on the Internet: the number of agree-
ments between partners rises astronomically, and the process of negotia-
tion is too slow. What is needed in electronic business are standards that
apply to a whole community of prospective partners. Within the last few
years, such standards have been developed by industry associations and
interest groups. Horizontal standards (i.e., standards that apply to certain
tasks like procurement or product data exchange) have been developed

Chapter 1 Scenario8

Figure 1.2 Architecture that didn’t work—the Tower of Babel.

T
E
A
M
F
L
Y

Team-Fly®

by IT companies and universities. These standards act as unifying forces
across the various industries. In contrast, vertical standards, used within
an industry, divide the Web into subcultures, such as the automotive in-
dustry, the health industry, librarians, museums, and so on. Each of these
subcultures nurtures its own ontology; that is, it uses a certain vocabulary
and thinks in certain associations and contexts.

So why not use one language for all? The answer is simple:

• Complexity. A language able to express any topic in the world would be
so complex that nobody could define it, nobody could agree upon it,
nobody could implement it, and nobody could learn it.

• Responsiveness. The world is moving fast, especially the world of elec-
tronic business. Adapting a one-for-all language to ever-changing re-
quirements would require a constant change of this language, making
development with such a language almost impossible.

It is, therefore, a misconception to understand XML as the language for
all. We should rather see XML as a core technology for the implementa-
tion of special-purpose languages and document schemata. Within Inter-
net and electronic business, XML can play a similar role as SQL did for re-
lational databases. In contrast to SQL, the scope of XML goes far beyond
data storage and also covers domains such as communication, presenta-
tion, process control, and navigation.

1.1.5 Challenges

The Internet poses new challenges for software developers and software
architects alike—challenges that, if they existed in a closed enterprise sce-
nario, would play only a minor role there.

Communication
The ability to communicate across company borders is essential for future
enterprise IT systems. This includes communication not only with other
businesses but also with consumers and administration. New technolo-
gies like mobile computing and embedded systems extend the reach of
corporate IT systems. Typical-use cases include supply chain integration,
health system integration, remote monitoring (vending machines, home
appliances, industrial equipment), traffic control, and others.

Service-Oriented Architecture
The traditional integration of enterprise services via EDI happened to be
hardwired and manual. Establishing a new (bilateral) EDI relationship

1.1 Megapolis Internet

One language
for all?

9

between partners was a lengthy and expensive process. Within enter-
prises, however, more advanced IT technologies evolved. Component
technologies like CORBA allowed the integration of software components
in a flexible and dynamic way. Services offered by components could be
published within a network. Other components could discover these ser-
vices and establish a binding to them.

On the Internet these techniques proved to be too tightly coupled.
Emerging XML-based standards such as SOAP (see Section 6.5.2), WSDL
(Section 6.6.3), UDDI (Section 7.3), and ebXML (Section 10.3) were intro-
duced to allow for a loosely coupled, service-oriented architecture. Typi-
cal Web services include credit card validation, shipping, fulfillment,
marketplaces, mediation, brokerage, and so on.

Knowledge Retrieval
XML-based formats like RDF (Resource Description Framework) and XTM
(XML Topic Maps) allow the modeling of semantic networks (see Chap-
ters 4 and 7). Topic maps especially have become a core technology for
content management solutions, while RDF is seen by the W3C as the
basis for the construction of the future Semantic Web (Berners-Lee
1998a).

Navigation
The chaotic nature of the Internet requires powerful navigation tools.
Knowledge retrieval technologies will aid end users and software agents
in finding the target destination. Similar technologies, based on RDF,
topic maps, and directory services (see Section 7.3), will, for example,
allow manufacturers to locate possible suppliers for a product or service.

Mediation
The existence of hundreds of different subcultures on the Web, and also
the existence of millions of legacy systems, requires powerful mediation
services. Already existing are XML processors that are able to hook up
with relational databases and to map XML document types to relational
schemata. Similar services can mediate between different XML dialects
and schemata.

Flexibility and Responsiveness
The Internet changes every day. New sites are connected to the Internet;
new technologies and standards are introduced in short order. This
requires a software architecture that is flexible enough to incorporate

Chapter 1 Scenario

Loose coupling

Semantic
networks and
Semantic Web

10

new, and even previously unknown, technologies. The classical develop-
ment cycles of months and even years are out of the question: it must be
possible to make changes to business rules effective almost instantly.

The traditional way to implement business rules—hardwired within
program code—will certainly continue to exist in legacy code. For new
developments it will give way to “soft-coded” business rules—business
rules that are formulated in some description language, possibly an XML-
based description language (see Chapter 5). Business rules coded that way
are easy to change and to deploy and can even be exchanged between
applications.

Similarly, the navigational structures will cease to be hard-coded (i.e.,
links in HTML pages) but will give way to soft-coding techniques using
RDF (see Section 3.3), topic maps (Section 7.2), or XLink linkbases (Sec-
tion 7.1).

Process Model
The backbone of classical enterprise applications is the database transac-
tion. Although the transaction model works well in applications that are
orchestrated by human operators and with transactions spanning only a
short time (milliseconds to a few seconds), it does not work well for auto-
mated business processes that span a longer time, from a few hours to
even years. These long-running processes are typically found in electronic
business applications, enterprise application integration, and workflow
systems (see Chapter 5). They must be persistent (i.e., survive a system
crash or shutdown), be portable (which rules out proprietary formats),
and offer the possibility of compensating actions (e.g., canceling an
order). Several proprietary formats to describe business processes have
been developed, some of them based on XML. The definition of a com-
mon standard is still an issue.

Autonomy
Applications in electronic business have to organize business processes
autonomously. Human operators can be called in for certain tasks or for
assistance, but they no longer drive the process. Business processes must
be able to modify themselves, for example, when a change in environ-
ment conditions is detected, when new services are discovered, when the
best option is temporarily not available, or when new intelligence is
gained on how a certain goal may be achieved. For example, a sales agent
may react intelligently when the market situation changes (e.g., change
prices or move to a different marketplace).

1.1 Megapolis Internet

Soft-coded
business rules

Long-running
processes

11

Trusted Information Sources and Traceability
Since anybody can publish information on the Internet, the information
found there is sometimes not trustworthy. Systems that rely on informa-
tion found on the Internet, such as agents, knowledge retrieval systems,
intelligent search systems, or self-modifying processes, must be able to
distinguish between “hard” (trusted) and “soft” information sources.
Mediation systems and knowledge processors must be able to trace back
and reveal on what basis a certain result was obtained.

1.2 IMPLICATIONS

In the following sections we’ll discuss some of the implications of XML
technology on the current IT landscape.

1.2.1 The Blurring of the Classical Application

On the Web the classical stand-alone application vanishes. Electronic
business applications turn more and more into temporary and changing
constellations of Web services. Single instances on the Web provide low-
order services such as authentication, credit card validation, directory ser-
vices, mediation services, logistics, and so on. Higher-order services such
as a whole business process invoke these lower-order services—in se-
quence or simultaneously.

Web services are currently the catchphrase, most notably since Mi-
crosoft announced its .NET initiative. As we have just pointed out, Web
services can act as building blocks for business processes, and all major
developments in this area, such as BizTalk, RosettaNet, or ebXML, pro-
vide a way to express the orchestration of business processes via XML
(Chapters 10 and 11).

Using the Web as an infrastructure for interaction will change the na-
ture of the Web itself. We are used to the Web as a huge library of hyper-
linked documents. (Try www.shibumi.org/eoti.htm for the ultimate link.)
Since the beginning of the Web, these documents have become more col-
orful, more animated, and interactive. However, the essential character
of the Web stayed the same: it is a library, consisting of (relatively) few
servers and an overwhelming mass of clients. The Web of the future will
consist of a huge mass of whatever-the-name-will-bes, combining the
functionality of servers and clients. These units will host active and
autonomous objects (or agents) that interact with each other in a peer-
to-peer (P2P) fashion. Maybe we will still call the Web “the Web” then,

Chapter 1 Scenario

Web services

12

but we also might call it “the Brain.” We will look into P2P technology in
Section 7.4.

1.2.2 Collaboration Instead of Integration

Although at the end of the 1990s “enterprise application integration”
became the catchphrase of the IT industry, it now is becoming more and
more obvious that integration is not what the industry really needs. An
enterprise with a tightly integrated IT infrastructure (such as, for ex-
ample, a huge ERP system) in the e-business world would be about as
maneuverable as a big oil tanker in a yacht regatta.

Building ad hoc business relationships or setting up virtual enterprises
for specific business models does not require integration but collaboration
between autonomous partners. More often than not, collaboration with
external partners has proved to be more productive than cooperation be-
tween internal departments, so much so that the principle of collaborat-
ing autonomous work units is now even applied within the enterprise.
The traditional hierarchical enterprise structure has given way to a more
democratic model.

The consequences for XML architectures are that we don’t have to
think in terms of megaprojects, but in terms of medium-sized applica-
tions and specialized Web services with an open communication struc-
ture. XML with its extensibility allows for such loosely coupled, open
communication structures.

1.2.3 The Return of AI

Many techniques related to XML remind us of techniques developed
when artificial intelligence (AI) became an issue in the 1980s. Techniques
such as rule-based programming (e.g., in XSLT), semantic networks (e.g.,
with topic maps), agent technology, and reasoning on the Semantic Web
can draw on experiences had during this period when expert systems and
programming in logic comprised the latest hype.

This makes sense, indeed. As the Web becomes more complex every
day, AI methods become more necessary to successfully navigate the
Web, publish and discover business services, negotiate protocols, or me-
diate between different ontologies.

1.2.4 Soft Logic

Moving around and making business in the megapolis Internet re-
quires—as we pointed out—some intelligence. Other than in the closed

1.2 Implications

No
megaprojects!

13

world of the enterprises’ information systems, we experience on the
Internet very diverse environments and conditions. The context of opera-
tion frequently changes. Software systems must be able to negotiate this
change of contexts. We will discuss this in detail in Section 4.4.

It requires, too, that systems have the ability to compromise. In many
cases it might not be possible to obtain the best solution. This could
have technical reasons, for example, when a server is down. Or it could
have business reasons, when for example a supplier is booked up by the
competition. In this case, an automated system must be able to go for a
good solution instead of the best solution (wait for the server to go up
again or search for another supplier).

In other cases, the distinction between “required” and “should” is by
design in order to achieve a certain normative behavior without impos-
ing restrictions that are too harsh. Administrations (such as customs or
environment control) usually have rules and laws that must be enforced
and others that should be enforced. If we model such behavior into soft-
ware agents, we end up with systems that can negotiate and find com-
promises (Raskin and Tan 1996). Then it is time to talk about ethics
for computers. Just see John McCarthy’s novel The Robot and the Baby
(McCarthy 2001).

1.3 ARCHITECTURAL PATTERNS

At the time of writing, XML has already made the transition from “if” to
“how.” It is no longer a question if corporations and software manufac-
turers will employ XML to provide solutions, but it is still very much a
question how this can be done. Often the methodology to be used is
unclear, and the available tools and infrastructure are still scarce and do
not have the same maturity as, for example, relational technology.

The biggest problem is the human factor. Today, software engineers in
the field of XML come from three directions: from the SGML camp, from
the object-oriented camp, and from the relational camp. We can there-
fore expect—and, indeed, we do experience—that techniques and skills
learned in these fields will be employed in the new field of XML. This will
occasionally result in frictions and misunderstandings, but it is not really
bad. Eventually the technological crossover will breed a new discipline of
design and programming, of which we now only see a glimpse.

This requires an attitude of learning mutually from each other and
opening the mind to new ideas. Members of the SGML camp, for exam-
ple, who are used to a more document-centric design style, will have to

Chapter 1 Scenario14

adapt to the more data-centric style. They will also find that concepts
such as entity relationship modeling and referential integrity are exciting
new fields where there remains a lot to do. Members of the SQL camp, in
contrast, will miss concepts of referential integrity in XML but will find
that the rich structuring possibilities that exist in XML open a whole new
world of database design. Finally members of the object-oriented camp
will sadly miss a behavior model in XML documents. On the other hand,
they may find it exciting that XML actually does make remote procedure
calls work across company, platform, and language boundaries.

This situation is also the reason why this book goes a bit deeper into
theory than usual. In the current situation, where none of the existing
design methods exactly fits the new technology, it can be beneficial to
take a close look at the science.

But before we do this, let’s take a look at some applications and struc-
tures that have already been built with XML. In the following two
sections we will list a few popular architectural patterns. As our earlier
metaphor of the unplanned settlement suggests, we will structure this
overview into the sections “Dwellings” and “Community Infrastructure.”

What you will not find in this book is a blueprint for a large-scale ap-
plication based on XML. Another large-scale application would be the
last thing we would want to build with XML. We do not need another
Tower of Babel, and we do not need another XML-ified ERP technology.
What we do need is for ERP manufacturers to open up their packages and
make the functions available as Web services—with the help of XML. In
fact, this is what they currently do.

1.3.1 Dwellings

In this section we present a few architectural patterns that could be com-
pared with a single dwelling, the typical “family home.” They are applica-
tions that either operate within an enterprise or organization or somehow
showcase the enterprise to the outside world. Usually these applications
follow the classical client-server architecture, which typically consists of
three tiers: a database tier, a middle tier, and a presentation tier.

Catalogues
This pattern is used for catalogues of all kinds, in particular for product
catalogues.

The database tier consists of a native XML database storing product
data in XML format or of a relational database containing product data
and an XML wrapping layer.

1.3 Architectural Patterns

Patterns

Three tiers

15

The representation tier consists of client software, typically Web brows-
ers that are equipped with suitable multimedia plug-ins. The formats used
here are HTML or XHTML combined with XML-based multimedia for-
mats such as SVG and SMIL. Alternative clients are mobile, WAP-enabled
devices, eBook devices, or even plain old telephones that are driven via
VoiceXML.

Between these two tiers exists a transformation tier, typically imple-
mented in the form of XSLT style sheets, Java servlets, and/or Java Server
Pages (JSP) that transform the presentation-neutral product data into the
required presentation format (Figure 1.3).

Encyclopedias
This pattern can, as a matter of fact, be used to implement online ency-
clopedias, but it is also applicable to other forms of knowledge bases, any-
where that navigation structures are required that are independent from

Chapter 1 Scenario16

Speech
VoiceXML

Vector Graphics
SVG

Multimedia
SMIL

eBook
Formats

Print Media
PDF

Web Browser
HTML/XHTML

Mobile
WAP

XML
Catalogue

Data

XSLT/Java
Servlets

XSLT/Java
Servlets

Figure 1.3 A transformation layer converts presentation-neutral catalogue
data into a variety of presentation formats.

the physical layout of the data. It can be used to apply sophisticated nav-
igation techniques to whole Web sites, product catalogues, Web shops,
and so on. It allows the establishment of semantic relationships between
Web resources and can provide additional access structures to users such
as links, paths, indices, taxonomies, guided tours, and so on.

It adds a separate navigational layer that is independent from the
physical structure of the knowledge base (Figure 1.4). The separate navi-
gation tier can be implemented with technologies such as topic maps,
RDF, or XLink linkbases. This allows for easy modification of navigation
structures without touching the actual resources or the representation
logic. It also easily allows the implementation of different navigational
structures for different types of users.

1.3 Architectural Patterns

Soft-coded
navigation tier

17

Figure 1.4 The navigation layer separates navigation from presentation and
content.

In combination with the catalogue pattern, different presentation
forms are possible.

Workflow System
While the previous two patterns leave the initiative to the end user, the
workflow pattern orchestrates the work tasks for a single end user or
multiple end users. However, workflows can react to user events, thus
leaving a controlled part of the initiative with the end user. Typical
applications are shopping systems, supply chain integration, and con-
tent management.

The workflow pattern again consists of an XML database tier (XML
repository) storing not only the resources and artifacts of the work pro-
cess, but also the description of the workflow itself.

The workflow tier (Figure 1.5) consists of a workflow engine interpret-
ing the workflow description, which is typically formulated in XML. De-
pending on the state of the workflow, certain resources or artifacts are
presented to the user for viewing or editing.

In combination with the catalogue pattern, different presentation
forms are possible.

A real world example of the application of this pattern is discussed in
Ahmed (2001). This content management system was designed for the
Society of Automotive Engineers (SAE) to automate their standards devel-
opment process. The system supports online browsing of documents in
HTML or PDF format, online change request authoring, online workflow
support for change request approval (including an electronic ballot pro-
cess), keyword searches, and browsing in archives.

1.3.2 Community Infrastructure

The infrastructure of the online community is constituted of facilities
that are provided for public use such as libraries, directories, market-
places, and other Web services. These facilities are provided by institu-
tions, enterprises, or individuals. They may be free to use, or they may be
available for a fee.

Typically such infrastructures are provided on the Internet, but intra-
nets and extranets may also offer such facilities for their respective
communities.

Libraries
Libraries are the oldest institutions on the Web. In fact, the Web can be
seen as one huge library. This was facilitated by standard protocol formats

Chapter 1 Scenario

Orchestration

18

T
E
A
M
F
L
Y

Team-Fly®

such as TCP/IP, HTTP, and HTML and the integration of the necessary
access software (TCP/IP stack, Web browsers) into operating systems.

Web Services
The introduction of Web services marks a paradigm shift for the Inter-
net—the conversion from a huge document base into an interconnected
network of clients, agents, and applications. A Web service is such an
application (usually with a specialized functionality). The service can be
invoked from a client or from another Web service (Figure 1.6). The invo-
cation can be of a simple request/response type, or it can have a more
complex protocol consisting of several messages exchanged. In Chapter
10 we discuss Web services in more detail.

1.3 Architectural Patterns 19

Figure 1.5 The workflow layer orchestrates tasks and services.

Web services are based on three technological standards: SOAP, WSDL,
and UDDI (see Chapters 6 and 7); all of them are XML applications. SOAP
defines the transport format, WSDL is used to describe Web service access
points and protocols, and UDDI is used for the registration and discovery
of Web services in directories.

In the context of its .NET architecture, Microsoft has included SOAP in
their Windows operating system, thus allowing any Windows application
to use Web services. To give a simple example: a spreadsheet application
could use a Web service for currency conversion, thus always ensuring
that the current conversion rate is used.

Marketplaces
Marketplaces bring buyers and sellers together (Figure 1.7). They include
functionality such as product catalogue integration, content manage-

Chapter 1 Scenario

SOAP, WSDL,
and UDDI

20

Figure 1.6 Distributed functionality: a call to Web services can cascade
through several service providers somewhere on the Internet.

ment for product catalogues, query routing, vocabulary matching, shared
ontologies, communication with other marketplaces, and so on.

Marketplaces can offer additional services such as order acquisition,
fulfillment, clearing, settlement, or payment flow. They also attract third-
party services such as buyer cooperatives, logistics, financial services, re-
searchers, directory services, and industry associations.

Advanced marketplaces offer support for business processes beyond
pure procurement. For example, they may provide services for supply
chain management and shared product development.

Portals
A portal serves as an entry point to an Internet community, a large enter-
prise, an online market, and so on. The portal aggregates information
from several sources and personalizes the presentation for each user
according to his or her preferences and role.

Portals also attract third-party services such as directory services, in-
dustry associations, trade publications, and news feeds.

Repositories
Repositories are used to register Web services, business partners, and
other resources. A service provider that wants to offer a particular Web

1.3 Architectural Patterns 21

Marketplace
Figure 1.7 The marketplace acts as a single point of access for buyers and
sellers.

service can register the Web service with a UDDI directory (see Chapter
7). Clients that look for a particular Web service can query that directory
to find it.

Similarly a company that wants to engage in electronic business can
register with an ebXML repository (see Chapter 10) and store its company
profile. Another company looking for a partner can query the repository.
After finding a prospective partner in the repository it can negotiate the
details directly with this partner (Figure 1.8).

Repositories can also act as libraries for shared resources such as
common business objects, vocabularies, and other schemata. They may
offer extra services for adapting generic resources to local or industry
conventions.

1.4 BEST PRACTICES

The following (very general) principles apply when designing systems
that are flexible, open, and collaborative.

Chapter 1 Scenario

Finding a partner
and services

22

Repository
Figure 1.8 Clients use a repository as an “introduction agency,” then
communicate on a peer-to-peer basis.

• Reification. Instead of hard-coding relationships between entities and
process dynamics (business rules) within your application, model these
relationships as entities (see Section 3.2.2) and implement them in the
form of XML documents, a process that, in terms of logic, can be seen
as reification. (Reification = “to make into a thing.”)

Construct generic software that is able to interpret these documents.
That way it will be much easier to adapt your applications when
changes become necessary. Hard-coded business rules are at the core of
EDI’s inflexibility.

• Context awareness. Instead of constructing the same software modules
(and document schemata) again and again, construct generic software
modules and document schemata that are context aware and can
adapt to different contexts. An example is the definition of business
objects in ebXML (actually this is something learned from EDI).

• Autonomy. Instead of constructing huge applications and similarly
huge document schemata, construct small specialized units that do
what they can do best, but that also can collaborate with others. This
also means that the definition of basic units should be fairly complete,
specifying not only data structure but also semantics and behavior.
While agent technology may not yet be mature enough for produc-
tion, a lot can already be learned from this technology. We believe that
over time XML will move in this direction. XML schemata will allow
the definition of self-contained objects that exhibit a behavior and
that control their own life cycle.

1.4 Best Practices 23

25

2Groundwork

This chapter introduces most of the basic standards for

XML. If you are familiar with the syntax and the infor-

mation model of XML, you can skip Section 2.2. If you are

new to XML or need to refresh your memory, you will find

this chapter helpful.

Schema definition is the subject of a long (and ongoing)

debate in the XML community. We introduce its origins,

derived from SGML (DTD), then discuss the now-released

W3C recommendation XML Schema. We will pick up the

schema thread again in Section 2.9, where we discuss tech-

niques that go beyond XML Schema such as Schematron,

architectural forms, and design patterns.

In between we discuss several standards that define ac-

cess to documents, document composition, and document

transformation, including XPath, XPointer, XInclude, XBase,

2.1 XML: A Language
Factory

2.2 XML Basics

2.3 Schema Definition—
Stage 1

2.4 Schema Definition—
Stage 2

2.5 Access and
Composition

2.6 Querying XML

2.7 XSL (Extensible
Stylesheet Language)

2.8 XML APIs

2.9 Schema Definition—
Stage 3

2.10 Best Practices

2.11 XML Resources

XQuery, XSL, and the SAX and DOM APIs that allow access to document
structures from programming languages. Please note that document trans-
formation (including XSLT) is discussed in more detail in Chapter 9.

The XML recommendation (Bray, Paoli, and Sperberg-McQueen 1998)
was released in 1998 by the World Wide Web Consortium (the W3C). Ini-
tially the adoption of XML by the Internet community was quite slow—
because of a misconception. By many XML was seen as a successor to
HTML. When it became clear that this was not the case (although XML
deals with some of the deficiencies of HTML), but that XML is good for
anything else but Web pages, things started to move. The adoption of
XML by industry heavyweights such as IBM, Microsoft, Sun, SAP, and
Software AG gave massive momentum to XML.

The initial proposal for XML was based on an already existing standard
called the Standard Generalized Markup Language (SGML). SGML had its
immediate origins in 1986, but its roots go back well into the 1960s,
when at IBM Charles Goldfarb, Edward Mosher, and Raymond Lorie de-
fined the Generalized Markup Language (GML). Is it by accident or by in-
tention that this acronym also matches the initials of its three inventors?

The domain of SGML lies in document processing—for example, book
publishing. SGML is incredibly powerful but is also very complex—too
complex to be used on the Web. The specification alone has more than
500 pages. The XML working group cut this down to 26 pages while keep-
ing about 95% of the SGML functionality, in the process also depriving
Goldfarb of his initial. Goldfarb took revenge and wrote one of the best
books about XML (Goldfarb and Prescod 2000). This time he needed only
900 pages.

2.1 XML: A LANGUAGE FACTORY

The main purpose of XML seems to be to spawn other languages. By the
end of 2000 there existed about 500 XML-based special-purpose lan-
guages. Some of these are domain oriented (vertical) and define exchange
formats within an industry sector or another community. Others are task
oriented (horizontal) and act as global languages for specific technical or
application-oriented tasks, such as service description, procurement,
product life cycle management, and so on. For an overview of such
industry languages, see Section 10.4.

Although, at first sight, this might look a bit dazzling, this situation
has its benefits. There is a special-purpose language for almost any pur-

Chapter 2 Groundwork

XML’s history

The roots
of XML

Special-purpose
languages

26

pose. Because the base technology is the same for all these languages—
namely, XML—the learning curve for each of these languages is short: in
most cases it’s only a few new tags and attributes that must be learned.
The other advantage is that these languages can be processed with the
same basic tools. Transformations between these different languages can
be achieved by simple means such as XSLT style sheets (XSLT is an XML-
based language for document transformation). For example, it is possible
to query an XML database with an XQuery or XPath search expression
for product information. The result would be an XML document that de-
scribes the product in a transformation-neutral format. This document
can be transformed with an XSLT style sheet into presentation formats
such as XHTML, SMIL, WML, or even VoiceXML. Or the data could be
packed into a SOAP message and sent to a business partner. Or we could
compile sales figures and display them with the help of SVG, an XML-
based vector graphics standard.

All of these acronyms denote XML-based special-purpose languages.
We will discuss each in more detail in later chapters. At the moment, it is
only important to know that all of these languages are based on XML. As
in many cases, here, too, the whole is more than the sum of its parts.

2.2 XML BASICS

There are already many books about XML on the market, including the
one by Charles Goldfarb and Paul Prescod mentioned earlier (Goldfarb
and Prescod 2000). We will therefore explain the basic XML concepts
here only briefly.

2.2.1 The Syntax

The XML syntax rules define the “well-formedness” of XML documents.
“Well-formed” means that a document is syntactically correct. Any well-
formed XML document can be processed with a standard XML parser.

Markup
XML is a markup language—a document can be structured with the help
of syntactical markup elements, similar to those used in HTML. Identi-
fiable elements within a document are enclosed between start and end
tags:

<lastName>Goldfarb</lastName>

2.2 XML Basics

Tags

27

In contrast to HTML, a start tag must always have a corresponding end
tag. (We are talking here of classic HTML. The new XHTML standard is
based on XML, so the strict XML syntax rules apply for XHTML as well.)

For empty elements there is a shorthand notation. Instead of writing
the canonical form
</br>, we can write
.

Also in contrast to HTML, upper and lower case does matter: <lastName>
is different from <lastname>.

Elements can be decorated with attributes:

<title xml:lang=”en-us”>The XML-Handbook™</title>
<title xml:lang=”de-de”>Das XML-Handbuch</title>

Attributes consist of a name and a value. Unlike HTML, an attribute must
always have a value, and the value must always be enclosed in single or
double quotes. The attribute we have used here is one of the few prede-
fined attributes in XML (indicated by the namespace prefix xml:). Conse-
quently, this prefix is forbidden for user-defined attributes (including
prefixes such as XML:, xML:, Xml:, etc.).

This particular attribute defines the language of an element. The value
of the attribute consists of a combination of language code and country
code. The language code follows ISO639 (www.w3.org/WAI/ER/IG/ert/
iso639.htm), while the country code is the same as that used for Web
domain addresses. Using this attribute it is easy to create multilingual
documents, as shown in the following example.

Using markup, it is possible to create documents of an arbitrarily com-
plex structure:

<book>
<title xml:lang=”en-us”>The XML-Handbook™</title>
<title xml:lang=”de-de”>Das XML-Handbuch</title>
<authors>
<author aid=”a1”>
<name>
<firstName>Charles</firstName>
<middleName>F.</middleName>
<lastName>Goldfarb</lastName>

</name>
</author>
<author aid=”a2”>
<name>
<firstName>Paul</firstName>
<lastName>Prescod</lastName>

Chapter 2 Groundwork

Attributes

Multilingual
documents

28

T
E
A
M
F
L
Y

Team-Fly®

</name>
</author>

</authors>
</book>

Note that by nesting elements our document is organized as a tree struc-
ture. Compare this to the flat relational tables: we would have needed at
least three different tables to store such a data structure in a relational
database.

Also note that the elements can be variable in layout. The first author
has a middle name; the second has only a first and a last name. In a rela-
tional table this would have been modeled with the rather artificial con-
struct of a null value for the middle name of the second author.

Elements can contain an arbitrary mixture of subelements and text, a
fact that can cause some headache when mapping XML structures onto
object-oriented or relational structures. For example:

<title>
The XML-Handbook™
<subtitle>Second Edition</subtitle>

</title>

XML documents should be introduced by a prolog, at least with an
XML declaration in its minimal form:

<?xml version=”1.0” ?>

XML’s character set is Unicode, which allows XML to contain most of
the international characters. The default character encodings are UTF-8
and UTF-16 (Standard ASCII code is a subset of UTF-8), but other code sys-
tems can be specified with an XML declaration in the document prolog:

<?xml version=”1.0” encoding=”ISO-10646-UCS-2” ?>

Comments are inserted into XML documents using the following
syntax:

<!-- This is a comment -->

That is basically all you need to know to write your first XML
document.

Extensibility
The X in “XML” stands for “extensible,” which more or less means that
you can introduce your own tags and attributes. And this is exactly the

2.2 XML Basics

Mixed elements

Prolog

Encoding

Comments

29

strength of XML. In HTML, in contrast, all tags and attributes are prede-
fined. Most of these tags are used for presentation purposes, and some are
used for navigation. This is sufficient for displaying nice Web pages but
not for processing business data over the Internet. For a search engine, an
agent, a partner application, or even a human reader, the markup 415-
555-1234 is quite meaningless. That this item will be printed in bold
type has no significance in this context. More important would be to
know what this number means. Is it a product number, a phone number,
or an employee number? Markup like <phone_number>415-555-1234
</phone_number> is much more helpful here, and this is exactly what XML
was designed for. By using this type of semantic markup, a document can
be self-describing. In our earlier <book> document, for example, we can
easily identify the title and the authors.

However, it was not the goal of the XML designers that everybody
would now start to invent their own tags and attributes as they please.
The result would be total chaos, with nobody understanding each other’s
documents. Instead, it was intended that user groups, industry associa-
tions, and communities would get together and agree on certain docu-
ment types. By using a DOCTYPE instruction, an XML file can be tied to a
given document type:

<!DOCTYPE book SYSTEM “http://www.book.org/book”>

The DOCTYPE instruction must be given within the document prolog,
after the XML specification. This instruction is not mandatory, but if it is
supplied, a validating parser can check the document structure against
the specified Document Type Definition (DTD). We will discuss DTDs in
more detail shortly. At the moment, it is sufficient to know that a DTD
defines the vocabulary (tag and attribute names) and the structure of doc-
uments. A document with a DOCTYPE declaration that conforms with the
specified document type is called valid.

It is important to know that even documents with a specified docu-
ment type remain extensible. The external DTD defines only the minimal
layout of a document. It is always possible to add additional elements
(and text) to such a document by extending the external DTD with a lo-
cal DTD subset (for an example, see Section 2.9.3). This allows users to
use standard DTDs but add custom elements for individual purposes. This
flexibility makes it easier for users to adopt existing standards.

Namespaces
Extensibility, however, creates some problems. When tag names can be
created at will, it is very likely that the same tag names will be used by

Chapter 2 Groundwork

Document type

30

different people for different purposes. This is normally not a problem as
long as documents are kept apart. But when documents are merged, or
modularized document types are combined, there can be name clashes.
For example, in an XSLT style sheet that transforms document A into
document B, we need to decorate the tags used for the XSLT control ele-
ments in order to differentiate them from the tags in the processed docu-
ments (see Chapter 9).

This is done with namespaces. You could compare a namespace to a
city or a township. There may be a Marine Parade in both Sydney and
Melbourne. By decorating the street name “Marine Parade” with a city
name, you can uniquely identify the street.

In XML, namespaces (Bray, Hollander, and Layman 1999) are repre-
sented by a URI (Uniform Resource Identifier)—either a URL (Uniform
Resource Locator) or a URN (Uniform Resource Name). Such identifiers
are constructed from a registered domain name, owned by the author,
and an arbitrary path expression. It is important to use a registered do-
main name and not some fantasy name, since only registered domain
names are globally unique. (However, in the examples in this book we
use fantasy names.) The path name is used to differentiate between sev-
eral namespaces defined by the domain owner. With this technique, any-
body who owns a registered domain name can create as many name-
spaces as he or she likes.

Namespaces can be used within a document in two ways, de-
fault namespaces and prefixes. First we will look at an example of a
default namespace:

<book xmlns=’http://www.books.org/computer/xml’>
<title>The XML-Handbook™</title>
<authors>
...
</authors>

</book>

In this example all tags in the book element now belong to namespace
http: //www.books.org/computer/xml. It is also possible to scope name-
spaces:

<book xmlns=’http://www.books.org/computer/xml’>
<title>The XML-Handbook™</title>
<authors xmlns=’http://www.books.org/authors’>
...
</authors>

</book>

2.2 XML Basics

Namespace URI

31

Now the <authors> element and all child elements belong to a different
namespace, http://www.books.org/authors.

Now let’s look at an example of prefixes:

<book xmlns=’http://www.books.org/computer/xml’>
<title>The XML-Handbook™</title>
<a:authors xmlns:a=’http://www.books.org/authors’>
...
</a:authors>

</book>

Prefixes can be chosen arbitrarily and are used as a shorthand notation
for the full namespace specification. By combining the prefix with a tag
name we have assigned only the tag <authors> to the namespace
http://www.books.org/authors. The child elements would still belong to
the default namespace http://www.books.org/computer/xml, unless we
prefix them with a:, too.

Advanced Topics
CDATA provides a way to denote text as unparsed character data:

<![CDATA[
if(ThisYear < 100) ThisYear+=1900;

]]>

CDATA is especially useful when you want to place some program code
into an XML element, or if you want an element to contain marked-up
text but want the markup to be treated as plain text. CDATA advises XML
processors not to parse the included text for subelements.

XML documents can contain processing instructions, for example, to
specify the URI of an attached style sheet:

<?xml:stylesheet type=”text/xsl” href=”mystyle.xsl”?>

(This syntax is specified in an extra W3C recommendation; see Clark
1999b.) This processing instruction indicates to a Web browser that the
document should not be displayed in its native form but should be trans-
formed with the referenced style sheet and that the result of that trans-
formation should be displayed.

Document text can contain predefined entity references. These are
used to substitute characters that are otherwise used in a special syntactic
role (see Table 2.1). For example:

<formula> 3>2 </formula>

Chapter 2 Groundwork

Processing
instructions

Entities

32

Similarly, character references can be used. Characters can be specified
as decimal code numbers or as hexadecimal code numbers. For example,
both © and © denote the copyright character.

In addition, user-defined entities can be used. These must be declared
in a DTD—either inline within the document or in the external DTD (see
Section 2.3.1).1 For example:

&legal; π

2.2.2 The XML Information Model

Before we discuss the standards to access XML structures like XBase,
XPath, XPointer, XLink, and DOM, it is necessary to get a better under-
standing of the XML data model, also called the XML information set.
This is described in detail in Cowan and Tobin (2001). The XML informa-
tion set is independent of the actual format of a document: the docu-
ment may exist in the form of an XML text file, a DOM tree, and so on.

All XML documents have a tree structure, with the nodes of the tree
constituted of elements and attributes (see Figure 2.1). Attributes are always
leaf nodes; they do not have child nodes. Element nodes may have child
nodes. All nodes except the root node have one parent node.

The attribute nodes of an element form an unordered list; that is, it is
not possible to make statements about the order in which the attributes
of an element occur. In contrast the child elements of an element form
an ordered list. Consequently there is a positional order relation between
the child elements of an element. This means that we can rely on the po-
sition of an element when accessing parts of an XML document.

2.2 XML Basics

Tree structure

33

Table 2.1 Character Entities in XML.

Character Entity

& &
“ "
‘ '
< <
> >

1 We are a bit sloppy here. To be correct, we have to speak of the “external DTD subset,”
since a DTD can consist of an external subset and an internal subset.

Each node—element or attribute—has a local name and can have a
namespace identifier. The local name (also the combination of local name
and namespace identifier) is not required to be unique within a docu-
ment: elements and attributes may appear with the same name in differ-
ent contexts (i.e., under different parent elements) in the document.2

Furthermore, elements can repeat within a context. In contrast, attri-
butes must not repeat within a context.

2.3 SCHEMA DEFINITION—STAGE 1

In this section, we take a look at schema definitions for XML. We begin
with the basic DTD, as defined in the XML V1.0 Recommendation.

Chapter 2 Groundwork

Namespace
identifier

Repetition

34

2 This has consequences for the authoring of XML documents: it makes sense to always
qualify elements with a namespace prefix but not to qualify attributes.

Figure 2.1 Structure of the <book> schema. <title> and <author> are marked
with “+” to indicate multiple occurrences. <middleName> is marked with “?”
to indicate that this element is optional. The attributes xml:lang and ISBN
are prefixed with “@”, indicating an attribute. Although this figure shows a
tree diagram, schema diagrams can be cyclic (recursive).

book

@ISBN

@xml:lang author+

title+ authors

name

first_name middle_name? last_name

2.3.1 The Document Type Definition (DTD)

As we mentioned earlier, it is possible to classify XML documents into
document types. This is achieved with a DOCTYPE definition. We have
already given an example of an external DOCTYPE definition:

<!DOCTYPE book SYSTEM “http://www.book.org/book”>

However, it is also possible to specify an internal DOCTYPE definition af-
ter the document prolog:

<!DOCTYPE book [
. . . .
]>

with the whole document type specification contained within the brack-
ets. This form, however, is of only limited use because the so-defined
document type applies only to the current document. Normally a DTD
is provided as an external file (which may be extended by an internal
DOCTYPE definition).

Element Definition
Let’s now see what can be specified within a DTD.

<!ELEMENT book (title+,authors)>
<!ELEMENT title ANY>
<!ELEMENT authors (author+)>
<!ELEMENT author (firstName,middleName?,lastName)>
<!ATTLIST author

aid ID #REQUIRED
role (contributor|editor) “contributor”>

<!ELEMENT firstName (#PCDATA)>
<!ELEMENT middleName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>

This could be a complete DTD for the earlier <book> example. We see that
each element in the document has a corresponding ELEMENT declaration
in the DTD. This declaration specifies how each element is structured.
The following element types are possible:

ANY The element can contain mixed content including character
data and child elements.

EMPTY Denotes an empty element.

#PCDATA The element contains parsed character data. (Parsed char-
acter data must not contain characters such as “<” or “&”.)

(...) The element contains a model group (discussed below).

2.3 Schema Definition—Stage 1

Element
structure

35

Model groups are constructed by child elements used in sequence or as
alternatives. Both operations may be nested to obtain complex structures:

(child) Single child element

(child1,child2,...,childn) Sequence of child elements

(child1|child2|...|childn) Alternate child elements

(child1,(child2|(child3,child4)),
child5) Complex child structure

In addition, each element can be postfixed with a modifier that denotes
the number of occurrences (cardinality) of the element and whether the
element is mandatory or optional:

No modifier One occurrence, mandatory (1..1)

? One occurrence, optional (0..1)

+ Multiple occurrences, mandatory (0..n)

* Multiple occurrences, optional (1..n)

Earlier we had defined

<!ELEMENT authors (author+)>

because the element <authors> can contain multiple <author> elements
but must contain at least one of them. We had defined

<!ELEMENT author (firstName, middleName?, lastName)>

because the element <author> must contain the elements <firstName> and
<lastName> but may contain the element <middleName>.

The element definitions can be recursive, meaning that a child ele-
ment in a model group can refer to a previously defined parent element.

<!ELEMENT chapter (title,abstract?,section+)>
<!ELEMENT section

(title,(content | (abstract?,section+)))>

This defines the structure of book chapters. Each chapter consists of a
mandatory title, an optional abstract, and multiple sections. Each section
consists of a mandatory title, followed either by content or by an
optional abstract and multiple nested sections.

If you have experience in the definition of formal languages, you
might have noticed that a DTD very much resembles the production
rules of a formal language. To be precise, DTDs form a subclass of forest-
regular grammars (FRG).

Chapter 2 Groundwork

Model groups

Constraints

Recursion

Formal
languages

36

And, in fact, DTDs are used to define other XML-based languages. So
there is an XHTML DTD, an SVG DTD, an SMIL DTD, an XSLT DTD, and
so on.

Attribute Definition
In a similar way, attributes can be defined for each element. This is done
using ATTLIST, which lists all attributes of an element. Each attribute def-
inition consists of an attribute name, an attribute type, and a default
value.

In contrast to XML elements, which are typeless, attributes do have a
type:

CDATA Character data.

NMTOKEN Name token. (Valid name tokens consist of
letters, digits, and the characters “.”, “-”,
“_”, or “:”.)

NMTOKENS NMTOKEN list (separated by white space).

(writer|editor|artist) Enumeration. Each token must be a valid
name token.

NOTATION (n1|n2|...) Enumeration of notation symbols (see
below).

ID Element identifier. This must be a valid
name. Element identifiers must be unique
in the context of a document. (Names start
with a letter or with “_” and can contain
letters, digits, “.”, “-”, or “_”. Names must
not start with the string “xml” or variations
such as “XML”, xML, “XmL”, etc.)

IDREF Reference to an element ID.

IDREFS IDREF list (separated by white space).

The following default value specifications can be used for attribute
definitions:

#IMPLIED Attribute is not required nor does it have a
default value.

#REQUIRED Attribute must be specified.

“fax”,”42”,”yes” Default values. These apply when the attribute is
not specified.

#FIXED “v1” Fixed content. If specified, instances must match
this value.

2.3 Schema Definition—Stage 1

Attribute types

Default values

37

In our earlier example we defined

<!ATTLIST author
aid ID #REQUIRED
role (contributor|editor) “contributor”>

This means that the element <author> has a required attribute of type ID
and an optional attribute role. If the attribute role is specified, it can take
two valid values, “contributor” and “editor”. If it is not specified, the
default value “contributor” applies.

2.3.2 Advanced Topics

The ID and IDREF attribute types can be used to establish relations be-
tween elements, allowing the establishment of networklike document
structures that could not be captured in tree structures. In particular, it is
possible to define documents that model relational tables by using the ID
and IDREF constructs. ID acts as a primary key, while IDREF acts as a for-
eign key. Some XML parsers support the location of elements by ID.

The NOTATION attribute type is a kind of type extension mechanism for
elements. A NOTATION attribute advises XML processors that the element
to which the attribute is attached should contain content that complies
with the specified notation. An XML processor could then check the ele-
ment for specific content, possibly by using a helper application.

In practical applications the NOTATION construct is hardly used, espe-
cially now that there are better ways to define datatypes for XML ele-
ments with XML Schema. We will discuss this in Section 2.4.2.

Entities
A DTD can declare user-defined entities. These entities can be used within
the document text and will be resolved to the entity definition by XML
processors. User-defined entities are used to abbreviate frequently used
terms and phrases, or to introduce a symbolic notation for commonly
needed constants:

<!ENTITY legal “All rights preserved”>
<!ENTITY pi “3.141593”>

A DTD can also define external entities—entities that do not specify a
literal value within the DTD but refer to an external document. However,
this is beyond the scope of this discussion. Especially in the context of
message exchange and databases, we do not recommend the use of exter-

Chapter 2 Groundwork

Identifiers

NOTATION

38

T
E
A
M
F
L
Y

Team-Fly®

nal entities. In traditional SGML environments, however, external enti-
ties are widely used for document composition.

Parameter Entities
Parameter entities are used only within a DTD; they do not appear in
XML instances. A parameter entity is just an abbreviation for a string that
is frequently used within a DTD and thus allows factoring out frequently
used strings.

A parameter entity can be declared through

<!ENTITY % entity-name “string-value”>

All occurrences of %entity-name; within the DTD will be substituted with
string-value. It is possible to nest parameter entities.

2.4 SCHEMA DEFINITION—STAGE 2

In the past, DTDs were the standard way to define a schema for an XML
document type. However, more than a dozen alternative schema defini-
tion languages have been created by several institutions and individuals.
The W3C itself has produced a new schema definition language, XML
Schema (XSD), which is discussed in Section 2.4.2.

2.4.1 DTD Deficiencies

The reason for the flood of schema definition languages lies in the defi-
ciencies of the DTD:

• Syntax: DTDs are not XML documents themselves. This is a problem
because the ubiquitous XML tools cannot be used to edit, validate,
parse, and transform DTDs.

• Namespaces: DTDs do not support namespaces. A DTD doesn’t stop
you from using prefix:name combinations for element and attribute
names, but it interprets these combinations as simple names. This can
lead to confusion.

• Datatypes: DTDs do not support datatypes in the classical sense. We
cannot define, for example, elements and attributes that must be nu-
meric or integer. The content of elements and the value of attributes
are always regarded as character data. This can have unpleasant ef-
fects when we want to compare two elements that contain numeric

2.4 Schema Definition—Stage 2 39

values: “–1” is regarded as smaller than “–2”; the floating point num-
ber “3.3e–10” is regarded as larger than “2.2e+16”; and so on.

Except for some datatypes for attributes (such as NMTOKEN, ID,
IDREF, etc.), DTDs do not feature built-in datatypes. It is not possible
to create user-defined datatypes either.

• Bags: DTDs cannot specify unordered sequences of elements (bags). For
a given model group (e1,e2,e3) the elements e1 . . . e3 must appear in
the document instance in the defined sequence. To simulate an un-
ordered sequence, all possible permutations must be given as alterna-
tives: ((e1,e2,e3) | (e1,e3,e2) | (e2,e1,e3) | . . .).

• Context: In DTDs all elements are defined on the document level. This
makes it impossible to define context-sensitive elements—elements
with the same name but with different structure in different contexts.

• Cross-references: The support for cross-references in DTDs is poor. Only
attribute values can be used as keys, and it is not possible to combine a
key from several attributes. Keys are always defined on the document
level, so it is not possible to scope keys.

2.4.2 XML Schema

That was reason enough for the W3C to start with the definition of a new
schema language. The XML Schema working draft was first published in
May 1999. It could already rely on several other schema languages such
as XSchema, DDML, XML-Data, and SOX (Schema for Object-oriented
XML). One of the more recent additions was XDR, which was used by the
BizTalk community for schema definition. Now, with the XML Schema
recommendation (Fallside 2001) released in May 2001, most XML com-
munities—including the BizTalk community—are moving toward XML
Schema.

XML Schema is quite a complex standard. To begin to understand
XML Schema, it is best to think of it in terms of DTDs + Namespaces +
Datatypes and worry about the rest later. Because we have already cov-
ered DTDs and namespaces, we will begin with datatypes.

Datatypes
The introduction of a full type system (Biron and Malhotra 2001) for ele-
ments and attributes is the most important aspect of XML Schema. It
includes the attribute types known from DTDs but also introduces basic
datatypes as they are known in SQL or programming languages. User-
defined datatypes are possible, too.

Chapter 2 Groundwork40

Built-in Datatypes The type system of XML Schema makes a clear dis-
tinction between value space and lexical space. While the value space is
constituted of an abstract collection of valid values for a datatype, the
lexical space contains the lexical representation of these values—the
tokens that can appear in the XML document. Depending on the permit-
ted formats, each value can have several lexical representations (see Fig-
ure 2.2).

XML Schema defines datatypes by attributing facets to datatypes.
Facets define single properties of datatypes; that is, the definition of a
datatype is made up of a collection of constituting facets. XML Schema
differentiates between fundamental facets and constraining facets.

Fundamental facets define the basic properties of datatypes. Funda-
mental facets are:

equal Defines equality between values of a datatype. For
example, two attributes are equal if their values (not
necessarily their string representations) are equal.

ordered Defines order relations between values of a datatype.

bounded Defines upper and lower bounds for the values of a
datatype.

cardinality Defines whether the value space of a datatype is finite,
countably infinite, or uncountably infinite. For example,

2.4 Schema Definition—Stage 2

Value space and
lexical space

Facets

41

Figure 2.2 Possible lexical representations for a given date value.
Transformations between value space and lexical space are bidirectional:
parsing operations transform lexical representations into values; formatting
operations transform values into lexical representations.

May 13, 1999

1999-05-13

99-05-13

1999-133

1999-W19-4

Value Space

Lexical Space

enumerations are finite and integer numbers are
countably infinite.

numeric Defines whether or not a datatype is numeric.

Constraining facets do not add new properties to a datatype but—as
the name says—constrain existing fundamental facets. Constraining
facets are

length Defines the length of a datatype value (number of
characters for strings, number of octets for binary,
etc.). For example, a country code such as us, de, uk,
fr, and so on would have a fixed length of 2.

minLength Lower bound for the length of a datatype value.

maxLength Upper bound for the length of a datatype value.

pattern Constrains the values of a datatype by constraining
the lexical space of a datatype to match a specified
character pattern. A pattern is defined via regular
expressions.
Example: ’[0-9]-[0-9] {3}-[0-9] {5}-[0-9]’
constrains the lexical space of a datatype to the
format of an ISBN

enumeration Constrains the value space of a datatype to a specified
enumeration of values.

whiteSpace Constrains the value space of a datatype by imposing
a policy for whitespace handling: preserve (keep all
whitespace characters), replace (replace each
whitespace character with the blank character),
collapse (reduce all sequences of whitespace characters
with a single blank character).

maxInclusive Upper bound for the value space of a datatype.
maxExclusive

minInclusive Lower bound for the value space of a datatype.
minExclusive

totalDigits Maximum total number of decimal digits in values of
datatypes derived from datatype decimal.

fractionDigits Maximum number of decimal digits in the fractional
part of values of datatypes derived from decimal.

Using these facets, XML Schema defines a rich set of built-in data-
types (see Figure 2.3). Some of these datatypes are primitives—they do

Chapter 2 Groundwork

Type hierarchy

42

not rely on the definition of other datatypes. Other datatypes are derived
datatypes—datatypes that are derived from primitive datatypes or from
other existing derived datatypes.

User-defined datatypes User-defined datatypes allow schema designers
to create custom datatypes. User-defined datatypes are always derived
datatypes. They are derived either from built-in datatypes or from other
user-defined datatypes. There are three methods for deriving a datatype
from another datatype: restriction, list, and union.

2.4 Schema Definition—Stage 2 43

Figure 2.3 The hierarchy of built-in types in XML Schema. Primitive datatypes are presented
in reverse style. Derivation by list (extension) is indicated with a dotted line; derivation by
restriction, with a solid line.

duration

boolean

string

base64Binary NOTATIONhexBinary float double

decimal

integer
normalizedString

anyURI QName

dateTime time date gYearMonth gYear gMonthDay gDay gMonth

token nonPositiveInteger long nonNegativeInteger

negativeInteger int unsignedLong positiveInteger

short unsignedInt

language Name NMTOKEN

NCName NMTOKENS

ID IDREF ENTITY

IDREFS ENTITIES

byte unsignedShort

unsignedByte

anySimpleType

anyType

All Complex Types

Primitive Types

Derived Types

Derived by Extension
or Restriction Derived by List

Derived by Restriction

Restriction is done by adding more constraining facets. Here is an
example for constraining the value space of base type string by
enumeration:

<xsd:simpleType name=”gender”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”male”/>
<xsd:enumeration value=”female”/>

</xsd:restriction>
</xsd:simpleType>

Any datatype can be extended to a list of this datatype. The following
example shows the definition of a list of integer values between 0 and
255 of length 3. As we can see, it is possible to use the facet length to con-
strain the size of a list.

<xsd:simpleType name=”byteList”>
<xsd:list itemType=”xsd:unsignedByte”/>

</xsd:simpleType>

<xsd:simpleType name=”rgbColor”>
<xsd:restriction base=”byteList”/>
<xsd:length value=”3”/>
</xsd:restriction>

</xsd:simpleType>

With the union operation, it is possible to combine disparate datatypes
into a single datatype. In the following example we combine the rgbColor
datatype definition from above with a text-oriented color datatype. This
allows us to specify a color either by a triple of integers or by a keyword.

<xsd:simpleType name=”unitedColor”>
<xsd:union/>
<xsd:union memberTypes=”rgbColor”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”red”/>
<xsd:enumeration value=”green”/>
<xsd:enumeration value=”blue”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Chapter 2 Groundwork44

This example also shows that an operator such as union may refer to an
existing datatype or may define member datatypes implicitly.

Complex Datatypes It would seem that where there is a simpleType dec-
laration, there must also be a complexType declaration. And, in fact, there
is. Complex types are used to combine several XML elements and
attributes into one datatype, so they are a central element in schema def-
inition (Thompson et al. 2001).

Here is an example:

<xsd:complexType name=”price”>
<xsd:simpleContent>
<xsd:extension base=”xsd:decimal”>
<xsd:attribute name=”currency” type=”xsd:string” />
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

This definition uses a simple content model (i.e., only character data, no
child elements) of type decimal and extends it with an attribute of type
string and with the name currency.

As we can see, complex types can constrain the content of an element
to a certain model. In particular, complex datatypes can construct aggre-
gations of child elements, as is possible with model groups in a DTD.

The content model can be defined as

• empty. The element must not have content but may have attributes.

Or it can be defined as a model group. Model groups consist of a list of
particles combined using connectors:

• sequence. An ordered sequence of child elements or other model
groups.

• choice. Alternative child elements or other model groups.
• all. An unordered sequence of simple or complex child elements (all

groups cannot contain other model groups).
• group. This connector allows naming a model group or referring to a

named model group. So model group definitions may be reused.

A particle consists of an element, a wildcard, or another model group
with optional minOccurs and maxOccurs properties that control the num-
ber of occurrences of the particle. These replace the “?”, “*”, “+” modi-
fiers known from DTDs but allow a finer control over the number of
occurrences.

2.4 Schema Definition—Stage 2

Simple content

Complex content

45

Wildcards are declared with the schema elements <xsd:any> and <xsd:
anyAttribute> and allow for the inclusion of elements and attributes
from foreign namespaces in the schema. For example, sections of
XHTML, SVG, RDF, and other content can be included in a document.

By default, a complex type must only contain element data; that is,
text cannot be interspersed with elements. To allow for mixed content
(i.e., interspersed text between child elements), the attribute mixed=
”true” must be declared in the definition of the complex type. Unlike
DTDs, XML Schema allows control over the number and order of child el-
ements within the mixed content.

Document Structure
To define an XML schema we need only four basic elements. The
<xsd:schema> element contains the whole schema definition and defines
the XML Schema namespace. As children of the <schema> element we
have the following:

• <xsd:element> defines elements. The first definition within <schema>
defines the root element of a document. These elements have either a
simple or a complex type.

• <xsd:complexType> defines the substructure of elements of that type,
that is, which attributes these elements have and which child elements
they contain.

• <xsd:simpleType> defines the type of a leaf element or of an attribute.

We demonstrate this in an example:

<?xml version=”1.0”?>

<bookOrder orderDate=”2001-01-27”
xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
xsi:schemaLocation=”http://www.bookdomain.com/bookorder

http://www.bookdomain.com/bookorder.xsd”
>

<shipTo country=”US”>
<name>Venus Reader</name>
<street>585 Chapel Street</street>
<city>Papermoon</city>
<state>CA</state>
<zip>97989</zip>

</shipTo>

Chapter 2 Groundwork

Wildcards

Mixed content

46

<billTo country=”AU”>
<name>Rick Reader</name>
<street>18 Marine Parade</street>
<city>Albany</city>
<state>WA</state>
<zip>9832</zip>

</billTo>

<note>Special Valentine’s wrapping!</note>

<orderlist>
<item ISBN=”0-3932-5855-9”>

<title>The mint lawn</title>
<quantity>1</quantity>
<price currency=”USD”>19.95</price>
<note>On stock</note>

</item>
</orderlist>

</bookOrder>

In the root element of this document we declared the namespace for
XML Schema instances and the location of the schema definition. The
location declaration consists of a pair of values defining the namespace
http://www.bookdomain.com/bookorder and the schema location http://
www.bookdomain.com/bookorder.xsd. The namespace identifies the schema
definition by its target namespace definition, while the schema location
gives a hint to the processor about where to find the schema file.

The schema definition could look like this:

<xsd:schema
xmlns:xsd=”http://www.w3.org/2000/08/XMLSchema”
targetNamespace=”http://www.bookdomain.com/bookorder”>

<xsd:element name=”bookOrder” type=”bookOrderType”/>

<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”bookOrderType”>
<xsd:sequence>
<xsd:element name=”shipTo” type=”address”/>
<xsd:element name=”billTo” type=”address”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”orderlist” type=”items”/>

2.4 Schema Definition—Stage 2

Schema location

Target
namespace

47

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

<xsd:complexType name=”address”>
<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN”/>

</xsd:complexType>

<xsd:complexType name=”Items”>
<xsd:sequence>
<xsd:element name=”item” minOccurs=”1”

maxOccurs=”unbounded”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”title” type=”xsd:string”/>
<xsd:element name=”quantity”>
<xsd:simpleType>
<xsd:restriction base=”xsd:positiveInteger”>
<xsd:maxInclusive value=”20”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”price”>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base=”xsd:decimal”>
<xsd:attribute name=”currency”

type=”xsd:string”/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element ref=”comment” minOccurs=”0”/>

</xsd:sequence>

Chapter 2 Groundwork48

T
E
A
M
F
L
Y

Team-Fly®

<xsd:attribute name=”ISBN” type=”isbnType”/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:simpleType name=”ISBN”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{1}-d{4}-d{4}-d{1}”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Here we see that most elements are defined locally within the
complexType declaration. Only the root element <bookOrder> and the
<note> element are declared globally on the schema level, the <note> ele-
ment for the reason that it is used in various places. Also interesting is the
pattern definition for the ISBN datatype.

Namespaces
XML Schema provides full support for namespaces. Not only element and
attribute names can be associated with a target namespace but also type
names. The schema can enforce the specification of namespaces for ele-
ments and attributes individually or for all elements and attributes
defined in the schema. It is good practice to enforce namespace qualifica-
tion for elements but not for attributes.

Multinamespace documents are supported, too. Document instances
can use elements and attributes from multiple namespaces defined in the
corresponding schemata. Schema definitions may refer to types from
other namespaces by importing external schemata. Finally, the wildcards
any and anyAttribute allow the inclusion of content from foreign name-
spaces.

Nil Values, Uniqueness, and Keys
DTDs support only the concept of optional elements. An element is
either present or absent.

XML Schema also allows the expression of the absence of a value in
another manner by introducing the concept of “nillable” elements.
Within a schema an element can be defined as nillable. In the docu-
ment instance a nillable element can—via the attribute xsi:nil—indicate
that its content is indeed nil. An element with the attribute xsi:nil=
”true” may not contain content, but it can have other attributes.

2.4 Schema Definition—Stage 2

Multiple
namespaces

49

Of course, this concept was not introduced to split hairs about noth-
ingness but to support the exchange of data with relational databases. In
SQL databases, field contents can have the value null, so supporting a
similar concept in XML makes it easier to convert XML to SQL and vice
versa (for example, to export/import without a schema definition).

XML Schema provides the built-in datatypes ID and IDREF for model-
ing relations between document elements. However, the main purpose of
these datatypes is to provide backwards compatibility with existing XML
documents:

• Because ID and IDREF are attribute datatypes, it is not possible to
declare another datatype for a key. For example, is it not possible to de-
clare a primary key of type date. It is also not possible to use an ele-
ment as a key.

• ID and IDREF cannot handle composite keys. This is required if we
want to be compatible with relational databases.

• ID and IDREF cannot be scoped; that is, they always apply to the
whole document.

XML Schema therefore introduces several new constructs. The unique
clause defines elements, attributes, or combinations thereof that need to
be unique within a defined context:

<unique name=”uniqueISBN”>
<selector xpath=”.”/>
<field xpath=”item/@ISBN”/>

</unique>

We assume that we have placed the definition of this unique clause into
the definition of element bookOrder/orderlist. We declare the attribute
ISBN (indicated by “@”) as unique within the context of bookOrder
/orderlist because we do not want more than one item within element
orderlist with the same ISBN. The xpath specification in the field element
locates the attribute relative to the context specified in the selector ele-
ment. (XPath is described in Section 2.5.1.) The <selector> clause could
contain several <field> clauses to specify field combinations as unique.

The key clause looks similar. It allows the definition of tuples of ele-
ments and attributes as primary keys. These tuples must be unique, and
they must exist within the defined context.

<key name=”primaryKeyISBN”>
<selector xpath=”orderlist”/>
<field xpath=”item/@ISBN”/>

</key>

Chapter 2 Groundwork

Cross-
references

50

Assuming that we have placed the definition of this key clause into the
definition of the root element bookOrder, it allows us to access the items
in orderlist directly via a key.

Similarly there is a keyref clause to define foreign keys:

<keyref name=”foreignKeyISBN” refer=”primaryKeyISBN”>
<selector xpath=”undeliverableItems”/>
<field xpath=”item/@badISBN”/>

</keyref>

Assuming that we have placed the definition of this keyref clause into
the definition of the root element bookOrder and that bookOrder contains
another element undeliverableItems that lists undeliverable items, we
have established here a cross-reference between undeliverableItems and
orderlist. To this purpose the keyref clause refers to the previously de-
fined key primaryKeyISBN via the refer attribute.

With the support for null values, full support for uniqueness, primary
and foreign keys, and the support for classical datatypes, XML Schema
improves the compatibility of XML with relational technology.

It is now easier to convert XML schemata into SQL schemata and vice
versa, and to import XML into relational databases or to export XML
from relational databases. However, whether this always makes sense re-
mains questionable. Relational databases require data structures to be
normalized, but XML documents are usually not. On the other hand,
normalized relational data structures do not contain all structural infor-
mation because some of this information is lost during the normalization
process—information that has to be added by the applications that pro-
cess this data. Exporting relational databases into XML results therefore
in a poor data model, losing some of the expressive power of XML. We
will discuss these modeling aspects in the next chapter.

Reuse Mechanisms
XML Schema provides a rich set of mechanisms that allow the reuse of
schema definitions or parts thereof:
• Attribute groups. Attribute groups can combine several attribute defini-

tions into a single named group. The whole group can then be refer-
enced by specifying the group name.

• Substitution groups. These work as a kind of alias mechanism for ele-
ments, allowing the substitution for occurrences of the so-called head
element of a substitution group with type-compatible members of the
same substitution group.

2.4 Schema Definition—Stage 2

XML and SQL

51

• Abstract type definitions. Type definitions can be classified as abstract.
These types can be used only to derive other types and not for element
or attribute definition.

• Inclusion and import. External schemata and types can be included or
imported into a schema definition. While inclusion works within a
single namespace, import can compose schemata across several name-
spaces. This allows the establishment of type libraries, for example, for
companywide datatypes.

• Redefinition. Redefinition works similarly to inclusion but allows the
modification of the included types.

• Instance subtyping. XML Schema is flexible enough to allow instance el-
ements to be subtyped; that is, the original type is replaced with a de-
rived type (either a restricted or an extended type). This is achieved via
the xsi:type attribute.

Final Remarks about XML Schema
XML Schema marks a major step forward in schema definition for XML.
With its rich hierarchy of datatypes, support for user-defined datatypes,
support for namespaces, improved compatibility with relational data-
bases, and support for schema modularization and reuse, XML Schema
elevates XML from a mere document description language to a general
data description language.

There are, however, a few restrictions:

• XML Schema does not support XML entities, which can require the use
of both DTDs and XML Schema for document type definition. The or-
der of processing is such that first the entities defined in the DTD are
resolved (default values for attributes are also inserted into the docu-
ment) before the document is validated against the XSD schema.

• Modeling constraints are limited under XML Schema. Single-field con-
straints can be modeled via user-defined datatype definitions and the
unique construct. Cross-field constraints, however, such as referential
integrity constraints, are limited to the key/keyref construct. We will
discuss advanced schema validation techniques in Section 2.9.

• The definition of context-sensitive elements is possible via local ele-
ment definitions but not for recursive elements. Recursive elements
must be defined on the document level.

• XSD schemata can be quite long. In many cases, this will exclude XML
Schema from client-side validation because transmission takes too
long.

Chapter 2 Groundwork

Advantages

Restrictions

52

2.5 ACCESS AND COMPOSITION

While XML and XML Schema can be regarded as the core standards for
XML, there are several other W3C specifications such as XPath, XPointer,
XInclude, XQuery, XSL, and DOM that regulate access to XML docu-
ments and their composition and transformation.

2.5.1 XPath

The XPath recommendation (Clark and DeRose 1999) defines how nodes
within XML documents can be accessed. XPath expressions are used in
many other standards. We have already seen XPath utilized in the unique,
key, and keyref constructs in XML Schema. XPath plays a crucial role in
standards such as XSLT (Chapter 9) and XQuery (Section 2.6).

Because the XML information set has a tree structure it should be easy
to pinpoint an element or an attribute by specifying all parent nodes,
because this is done with path expressions that specify a file within a file
directory. Therefore, for our <book> example, the expression

/book/@ISBN

identifies the ISBN attribute of the <book> element. In XPath’s abbreviated
syntax, attribute names are always prefixed with “@” (in the full syntax
the prefix is attribute::).

That was easy. Things get a little bit more complicated when we have
to deal with recurring elements. What does, for example,

/book/authors/author/lastName

mean? Because the author element is recurring, the expression does not
unambiguously identify a single node. Instead it resolves to a node set.
The expression identifies the <lastName> elements in all <author> ele-
ments. In our example this would resolve to Goldfarb and Prescod. When
we discuss the features of XPath, it is important to remember that XPath
is operating with node sets and not only with single nodes.

To restrict node sets, XPath allows the specification of filters within a
path expression. Here is a very simple filter that helps us select a specific
author:

/book/authors/author[1]/lastName

Filters are always specified in brackets. The filter here selects the first ele-
ment within the node set obtained by

/book/authors/author

2.5 Access and Composition

Tree structure

Node sets

Filters

53

Using filters we can thus pinpoint a single element within an XML
document.

In the previous examples we have used only the parent-child relation
to specify a node set. In addition, XPath allows the specification of node
sets by exploiting other relations such as the ancestor-descendant re-
lation, the positional order relation, or the relation between namespace
and nodes. For this purpose, XPath provides axis specifiers such as
parent::, ancestor::, child::, descendant::, following::, namespace::,
and so on. However, what is mostly used is the abbreviated syntax, which
we use in Table 2.2.

Like everything else in XML, string comparisons are also case sensitive.
If we want to make case-insensitive comparisons, we have to translate
both operands of the comparison into upper case. This can be done with
the translate function:

translate(“Goldfarb”,”abcdefghijklmnopqrstuvwxyz”,”ABCDEFGHIJKLMNO
PQRSTUVWXYZ”)

However, this function, despite the rather extensive notation, does not
work well for uppercase-lowercase translations in all languages. XPath 2.0
will address this issue.

In addition to the translate function, XPath supports other functions
to test conditions or to compare contents (see Table 2.3).

2.5.2 XPointer

XPointer (DeRose, Maler, and Daniel 2001) is built on XPath. Its purpose
is to augment URI addressing, so that it becomes possible to address
fragments of an XML file. A similar feature is known in HTML: a specific
anchor within an HTML page can be addressed by complementing a URI
with the anchor name, for example,

http://www.bookshop.com/book/the_comic_book.html#reviews.

However, HTML requires the definition of an anchor element within the
target document. XPointer, in contrast, allows access to document ele-
ments that are not specifically marked. It does so by exploiting the ability
of XPath to pinpoint single elements within an XML document.

The syntax is simple:

document_uri#xpointer(xpath_expression)

Chapter 2 Groundwork

Axis specifiers

Upper and lower
case

Functions

54

2.5 Access and Composition 55

Table 2.2 Operators in XPath.

Operator Operation Example Result

/N1 document /book root node <book>
root node

//N1 arbitrary element //author all <author> nodes in the
within document document

N1/N2 parent-child /book/title all <title> elements that are
relation direct children of node <book>

N1//N2 ancestor-descendant /authors//lastName all <lastName> elements that
relation are descendants of node

<authors>

* wild card /book/*/author all <author> nodes that are
grandchildren of node <book>

: namespace a:* all nodes in namespace a

. current node .//@xml:lang all xml:lang attributes which are
descendants of the current node

.. parent node ..//@ISBN all ISBN attributes which are
descendants of the parent node

N1,N2 concatenation /book//(title,author) all <title> and <author>
nodes that are descendants
of node <book>

N1[n] position /book//author[1,last()] first and last author

N1[N2] existence /book//author last names of all authors that
[middleName]/lastName have a middle name

N1[C2] filter /book/title all US-English titles
[@xml:lang=’US-EN’]

= equality /book//author[lastName= <firstName>Charles</firstName>
!= inequality ‘Goldfarb’]/firstName

>, >=, <, <= comparison /book//author list of all authors from ‘K’
[lastName>=‘K’] onward

?, * wildcards /book//author list of all authors with last name
[lastName=‘G*’] starting with ‘G’

or Boolean OR /book//author list of all authors with last name
[lastName=‘G*’ starting with ‘G’ or with ‘P’
or lastName=’P*’]

and Boolean AND /book//author list of all authors with last name
[lastName=‘Goldfarb’ Goldfarb and first name Charles
and firstName=‘Charles’]

+, -, *, arithmetic /bookOrder/orderList/ computes wholesale prices
div, mod operators item/price*0.6 of all order items

For example,

http://www.bookdomain.com/books/
the_xml_handbook.xml#xpointer(//author[1])

addresses the first <author> element within our XML book example. If we
had omitted the [1], we would have addressed all <author> elements:
pointers can point to multiple targets.

XPointer introduces some extensions of its own:

#xpointer(string-range(path,substring))

Chapter 2 Groundwork56

Table 2.3 Functions in XPath.

Function Operation Example Result

id(‘foo’) selects the element id(‘a1’) the author element
with the ID of ‘foo’ with aid=’a1’

last() number of last node /book//author[1,last()] first and last author
in current context

position() position of current /book//author[position first and second
node in parent context () < 3] author

count(node-set) number of nodes count(/book//author) number of authors
in node-set

not(object) all nodes of current /book//author[not all <author> nodes
context without the (lastName=’Goldfarb’)] with a last name not
nodes contained in equal to ‘Goldfarb’
operand

true(), Boolean values true /book/title[false()] returns empty node
false() and false list

number(object) converts to numeric number(price) > 20.00 true if price is greater
value than 20.00

sum(node-set) sums up numeric values sum(/item/price) div computes average
of a node set count(/item/price) price over all items

contains containment /book[contains(title,’XML’)] all book titles
(str,str) containing ‘XML’

translate(str, translates a string translate(‘XML’,’LMX’,’lmx’) returns ‘xml’
str,str) using a character

translation table

Multiple targets

addresses all strings matching ‘substring’ within the element that is
specified by path. For example,

http://www.bookdomain.com/books/the_xml_handbook.xml
#xpointer(string-range(//title,’XML’))

addresses all ‘XML’ substrings in the <title> elements of our example.
Another feature of XPointer is the ability to address ranges within a

document:

#xpointer(startpoint/range-to(endpoint))

For example, the expression

#xpointer(//author[1]/firstName/range-to(lastName))

addresses the range from the <firstName> element to the <lastName> ele-
ment of the first <author> element in our book example.

We finish our short discussion of XPointer with two forms of abbrevi-
ated syntax that XPointer entertains:

#identifier

is equivalent to

#xpointer(id(“identifier”))

meaning that it points to the element with the ID “identifier”. Although
this notation is similar to a fragment pointer in HTML, there is a differ-
ence: in HTML the fragment is identified by an <A> element with a spe-
cific name attribute. XPointer, in contrast, can use this syntax to point to
any element that has an attribute of type ID.

#/1/3/2/1/2

addresses elements by counting, starting at the root element. When an
element is found, the process continues with the next number, counting
the child elements of that element, and so on. In the context of our
example the above specification would be equivalent to

#xpointer(/book/authors/author[2]/name/lastName)

2.5.3 XInclude

XInclude (currently a working draft) specifies how to include external
XML documents (or, by using the XPointer notation, parts thereof) in a

2.5 Access and Composition

Ranges

57

target XML document (Marsh and Orchard 2001). As such it is designed
to eventually replace external entities.

For example:

<?xml version=”1.0”?>
<book xmlns:xi=”http://www.w3.org/1999/XML/xinclude”>
...
<xi:include href=”legaldoc.xml”/>

</book>

with legal.xml defined as

<legaldoc>
The publishers’ view may differ from the authors’ expressed

opinion
</legaldoc>

This would result in the following document:

<?xml version=”1.0”?>
<book xmlns:xi=”http://www.w3.org/1999/XML/xinclude”>
...
<legaldoc>

The publishers’ view may differ from the authors’ expressed
opinion
</legaldoc>

</book>

XInclude can compose documents from different namespaces. The
attribute parse=”text” allows the inclusion of unparsed text. Otherwise,
the default value of parse=”xml” forces the processor to parse the included
text and reject non–well-formed XML. If the parsed text contains nested
inclusions, these are resolved as well.

2.5.4 XML Base

XML Base is probably the shortest standard the W3C has ever published.
It specifies just a single attribute: xml:base (Marsh 2001). We will keep
this section similarly short. Basically, xml:base specifies a base URI as the
basis for all relative URIs that appear in the element where xml:base is
specified. Typical applications are XLink and XInclude.

Chapter 2 Groundwork

Namespace
support

58

T
E
A
M
F
L
Y

Team-Fly®

2.6 QUERYING XML

XQuery currently has the status of a working draft (Chamberlin, Clark, et
al. 2001): “It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than work in progress.” Given that, here
we will take only a short browse through the major concepts of XQuery.
An extensive base of use cases, queries, and expected results is contained
in Chamberlin, Fankhauser, et al. (2001).

XQuery is derived from Jonathan Robie’s Quilt, which in turn utilizes
concepts from other query language proposals. There had been quite a
few: the definition of a standard query language for XML has a history.
Many of the results obtained by this work found their way into the defi-
nition of XPath (see Section 2.5.1). XQuery, therefore, addresses topics
that are not covered by XPath. XQuery expressions look a bit similar to
SQL expressions, and indeed XQuery borrows concepts from SQL and
OQL. Figure 2.4 shows XQuery in action.

2.6 Querying XML

Origins

59

Figure 2.4 XQuery in action: QuiP, an early implementation of XQuery,
doing a join over a document base of books.

2.6.1 Expression Types

An XQuery expression can consist of a number of expression types.

Path Expressions
Path expressions are formulated using XPath (see Section 2.5.1), which is
currently also under revision (XPath 2.0). XQuery is expected to be a
superset of XPath 2.0.

In XQuery, only the abbreviated XPath syntax is used. The result of a
path expression is a list of nodes. For XQuery two operators were added:
the dereference operator and the range operator.

• The range operator RANGE x TO y specifies a range of nodes.
For example: //book/authors/author [RANGE 1 TO 2]/name results in

a list of name elements for two authors.
• The dereference operator => can follow an IDREF-type attribute. It re-

turns the element(s) that are referenced by the attribute. This operator
has a similar function as the id() function in XPath.

For example: //PurchaseOrder/Orderline/@pid=>Description would
extract the product id from a purchase order document, look up the
product element identified by this product id, and return the descrip-
tion of the product.

The XQuery Draft currently specifies the dereference operator only
for IDREF-type attributes, not for the more general keyref construct of
XML Schema.

Variables
XQuery supports the use of variables. Variable names are prefixed with
“$”. It is possible to assign a value to a variable (see below) and to reuse
that value in a later part of the same query. This is an important feature
for performing complex joins.

Element Constructors
Element constructors are, as the name says, used to construct new ele-
ments. These can constitute the result of the query, or they can be
assigned to a variable for later usage. Element constructors allow the out-
put of a query to be freely structured. For example:

<book ISBN = $isbn>
<title> $t </title>
<author> $a </author>

</book>

Chapter 2 Groundwork60

Using variables in place of tag names is also allowed:

<$ProductOrService productID = $pid>

FLWR Expressions
“Flower” expressions are constituted from the keywords FOR, LET, WHERE,
and RETURN, which are used in this sequence. These keywords make an
XQuery expression look almost like an SQL expression.

The first part of a query consists of a FOR or LET clause or a combina-
tion. FOR is used where iterations are needed. For example:

FOR $a IN //book/authors

This iterates over all elements in authors, assigning with each iteration a
new author element to $a.

LET assigns the result of an expression to a variable. For example:

LET $v := //book/authors

This assigns the whole authors element to $v.
The second part is optional and consists of a WHERE clause. WHERE acts as

a filter. Only when the WHERE clause is true is the RETURN clause invoked.
The condition in the WHERE clause may be a Boolean expression con-
nected by AND, OR, or NOT. For example:

WHERE $a/Name/LastName = “Goldfarb”
AND $a/Name/FirstName = “Charles”

The last part of the expression consists of a RETURN clause. RETURN re-
turns the results of the FLWR expression. Its operand is usually a refer-
ence to a variable or an element constructor. For example:

RETURN $a/@aid

This would return the @aid attribute of the author element that was pre-
viously assigned to $a.

Expressions Involving Operators and Functions
Expressions can be constructed in XQuery using infix and prefix opera-
tors. Parentheses are used for nested expressions. XQuery supports the
usual set of arithmetic and logical operators. In addition it supports the
collection operators UNION, INTERSECT, and EXCEPT. The operators BEFORE
and AFTER can be used to select nodes by relative position.

2.6 Querying XML 61

Conditional Expressions
Conditional expressions are constructed in the usual way with the key-
words IF, THEN, ELSE. For example:

IF name($e) = “Service”
THEN $e/Duration
ELSE <Duration xsi:nil=”true”/>

Quantified Expressions
The keywords SOME and EVERY, in combination with SATISFIES, allow us to
test if some or all elements in a collection meet a specific condition. For
example:

FOR $b IN //book
WHERE SOME $p IN $b/authors SATISFIES
$p/Name/LastName = “Goldfarb”

RETURN $b/Title

List Constructors
Lists can be constructed with brackets; the list elements are separated by
commas. The empty list is represented by []. The function distinct() can
be used to remove duplicates from a list. The operator SORTBY can be used
to sort a list.

Expressions That Test or Modify Datatypes
XQuery uses the type system defined in XML Schema (see Section 2.4.2).
The keyword ELEMENT is used for element types defined with <xsd:any>.
LIST(x) is used for lists containing elements of type x.

It is possible to test the type of a node (INSTANCEOF) or to modify the
type of a node (CAST). The keyword TREAT allows us to narrow down a
type. For example:

IF $a INSTANCEOF postalAddress
THEN computePostage(TREAT AS postalAddress($a))

Functions
XQuery defines a set of built-in functions. We have already used the func-
tion name(), which returns the tag name of an element. Contained in
XQuery are the functions known from XPath, all the aggregation func-
tions of SQL (such as avg(), sum(), count(), max(), and min()), and some
other useful functions such as distinct() or empty().

Chapter 2 Groundwork62

In addition, XQuery allows the definition of user-defined functions.
For example:

FUNCTION grandchildren(ELEMENT $e)
RETURNS LIST(ELEMENT)

{ $e/*/* }

Functions can be defined recursively. The following function lists all
part and subpart IDs for a product:

FUNCTION subpartIDs(ELEMENT $e)
RETURNS LIST(ELEMENT)

{
$e/@pid UNION subpartIDs($e/parts/@pid=>*)
}

Joins
Using this functionality, it is possible to construct powerful queries. The
use of variables allows the construction of any type of joins (there is no
special join operator in XQuery).

For example:

<books-with-or-without-reviews>
{

FOR $s IN document(“book.xml”)
RETURN
<book>
{
$s/title, $s/authors
FOR $r IN document(“reviews.xml”)

[title = $s/title],
RETURN $r/review, $r/reviewer

}
</book>

SORTBY(authors/author[1]/name/lastName)
}
</books-with-or-without-reviews>

This is a left outer join, listing all books. If reviews exist for a specific
book, the reviews are merged into the result; if not, the book is listed
without reviews. The results are sorted according to the last name of the
first author.

2.6 Querying XML

User-defined
functions

63

Here is another example:

<books-with-reviews>
{
FOR $s IN document(“book.xml”),

$r IN document(“reviews.xml”)[title = $s/title]
RETURN
<book>
{
$s/title, $s/authors, $r/review, $r/reviewer

}
</book>

SORTBY(authors/author[1]/name/lastName)
}
</books-with-reviews>

This is the classic inner join, listing only the books having reviews. Note
that the join is accomplished with a filter expression ([title =
$s/title]). This construct allows for a very wide range of joins indeed;
the equality join is only a special case.

2.6.2 Discussion

XML is an integrative data format. A large amount of information on the
Web is in XML format, relational databases provide XML interfaces, and
knowledge bases using RDF (see Section 3.3) or topic maps (Section 7.2)
have an XML serialization format. With a language such as XQuery it
becomes possible to query and combine all these sources of wisdom.

While the proposed syntax is well suited for user interfaces and builds
on the knowledge of SQL-educated users, an alternate XML-ish syntax is
needed as well, to allow the programmatic generation of queries through
a DOM API or with the help of an XSLT style sheet. The W3C has pub-
lished a working draft for such a syntax (Malhotra, Robie, and Rys 2001).

2.7 XSL (EXTENSIBLE STYLESHEET LANGUAGE)

The XSL specifications define how XML documents can be transformed
into another format, especially into a presentation format. The specifica-
tions come in three parts: XPath, XSLT, and XSLFO.

XPath (see Section 2.5.1) was originally designed in the context of XSL.
Now it has become a separate recommendation that plays an important

Chapter 2 Groundwork

Syntax

XPath

64

role both within XSL and within XQuery. Many other specifications, such
as XML Schema and XPointer, rely on XPath.

XSLT (XSL Transformations) specifies—as the name says—how XML
documents can be transformed into another XML (or non-XML) format.
XSLT has both declarative and procedural elements to specify transfor-
mations and relies heavily on XPath. Because of its importance as a
multipurpose tool for processing XML documents, we discuss XSLT ex-
tensively in Chapter 9.

One possible outcome of such transformations is formatting objects
(XSLFO). Formatting objects (see Section 8.2.4) conclude the XSL trilogy.
XSLFO can be compared to CSS in the HTML domain. It must be said
that the transformation into HTML + CSS is currently a more realistic ap-
proach for displaying XML documents than the transformation into
formatting objects because few Web browsers support formatting ob-
jects. However, formatting objects can be used as an intermediate format
when converting an XML document into a PDF document (see also Sec-
tion 8.6).

2.8 XML APIs

Application program interfaces for XML define how applications can
make use of existing parsers and other XML tools. Although applications
are free to treat an XML document as a plain character string and do the
parsing with custom logic, it is better if they avoid this and use a standard
parser such as SAX or DOM.

2.8.1 SAX

SAX (Simple API for XML) is not a W3C standard but a joint development
of the members of the XML-DEV mailing list. Various SAX parsers for
different programming languages, such as Java, C++, Python, Perl, or Del-
phi, are publicly available. The SAX specifications are published at
www.megginson.com.

SAX is an event-based parser—the parser reads an XML input stream.
In the case of events (such as startDocument, endDocument, startElement,
endElement, characters, ignorableWhitespace, and processingInstruc-
tion), the parser calls back similarly named methods or routines of the
host program, which can then take appropriate action. Because XML doc-
uments have a tree structure, the host program can analyze a document
with relative ease. Encountering a startElement event, the program

2.8 XML APIs

XSLT

XSLFO

Event based

65

pushes the node onto a stack, while an endElement event removes the top
element from the stack. Using such a technique, the host program is al-
ways aware of the current context of an element.

SAX is relatively easy on resources. It does not require much memory
because it is not necessary to store the whole XML document in memory.
Because of its simplicity, SAX is easy to learn, too. On the other hand,
SAX is a read-only API: it is not possible to modify an existing XML doc-
ument via SAX.

The new SAX2 API additionally incorporates support for XML name-
spaces, filter chains, and querying.

SAX parsers are also called push-parsers because the parser pushes rec-
ognized tokens toward the client. Recently, so-called pull-parsers have
appeared, parsers where the client controls the parsing process. This pro-
vides increased flexibility to the client, and consequently newer DOM im-
plementations (see next section) use pull-parsing techniques.

2.8.2 DOM

The Document Object Model (DOM) is a full application programming
interface for XML documents. It allows clients not only to navigate
within XML documents but also to retrieve, add, modify, or delete ele-
ments and content. To provide a language-independent API description,
the DOM specification makes use of the OMG IDL (Object Management
Group Interface Description Language) as defined in the CORBA 2.2
specification.

In contrast to SAX, DOM stores the complete document structure in
memory. The document is first read in and parsed, and then a tree of
node objects is built in memory. Because at least one object is needed for
each document node, DOM is relatively heavy on resources. More recent
DOM implementations, however, such as Enhydra DOM (Java) and pull-
dom, contained in pyXML (Python), use lazy instantiation to save re-
sources. This technique requires slightly more overhead if you access an
element at the very end of a document, but should provide a SAX-like re-
source utilization when you access an element at the very beginning of a
document.

After the complete document has been parsed, control is passed back
to the host program. This program can then use the methods of the DOM
API to navigate the document tree and to retrieve content, modify nodes,
delete nodes, or insert new nodes. After processing, the document tree
can be written to an output stream.

The advantage of DOM for the programmer is that it is not he or she
who has to do the bookkeeping. Context information can be readily ob-

Chapter 2 Groundwork

SAX2

Performance
issues

Random access

66

tained via the DOM API. For programmers, DOM is the API of choice
when random access to document content is required.

Because the DOM API is very rich (the Element interface alone has 27
different methods, and DOM knows 17 different interfaces), for program-
mers there is some effort involved in mastering DOM programming.

A popular DOM implementation on Windows platforms is Microsoft’s
MSXML. Since it has a COM interface, it equips any COM-enabled Win-
dows application (including VBScript) with an XML DOM. Another pop-
ular DOM implementation is Xerces, from the Apache Software Founda-
tion, which exists in a Java and a C++ version. In the Java community
JDOM and DOM4J are popular. These APIs have a simpler (albeit non-
standard) interface.

There are currently three DOM API levels: DOM Level 1, DOM Level 2,
and DOM Level 3 (LeHors et al. 2001). Apart from other improvements,
DOM Level 2 adds an event model (McCarron et al. 2001) to the DOM
specification. DOM Level 3 adds an XML content model, load and save,
document validation with DTD or XML Schema, and better namespace
handling.

2.8.3 Binding

The Java Architecture for XML Binding (JAXB) is a recent (and still ongo-
ing) development that can replace SAX- and DOM-based solutions in Java
environments (JAXB 2001). JAXB includes a compiler that maps a DTD or
XML Schema to a set of Java classes (a binding schema must manually be
created to define this mapping). Document instances can then be con-
verted to Java class instances (objects) and vice versa. Because the JAXB
framework generates specific classes to represent the document type,
JAXB can achieve a higher processing speed than a SAX parser (which
works in interpretative mode and requires a call-back method invocation
with every token processed). After importing a document, the elements
and attributes can be accessed and manipulated as ordinary Java objects
and fields, providing a similar if not higher degree of ease of use than
DOM, but taking fewer resources. Note, however, that a DTD or schema is
required to process XML documents with JAXB.

Similar technology is available with Breeze XML Studio, Software AG’s
Bolero (Daum and Scheller 2000), Enhydra’s Zeus, and others.

2.8.4 Which API?

The decision on which of the three APIs (SAX, DOM, or JAXB) to use
depends largely on the platform. If you need access via a COM interface

2.8 XML APIs

Levels

67

(for example, from VBScript), you have to use MSXML, so you are limited
to DOM and SAX2. In a Java environment, however, JAXB probably will
be the best choice once it is released. Currently, as we stated earlier,
JDOM and DOM4J are popular in the Java community, although this
technology is still in beta status and provides no standard APIs.

The decision between DOM and SAX is not too difficult. If you want
not only to read documents but also to update them, use DOM. If your
documents contain cross-references (using ID and IDREF attributes), use
DOM because you need to go back and forth to evaluate the document. If
you need random access to document nodes, use DOM. If you don’t
know how to implement a stack, use DOM.

Otherwise use SAX. It will happily noodle even mega- and gigabyte-
sized documents.

2.9 SCHEMA DEFINITION—STAGE 3

Even before the definition of the W3C’s XML Schema specification,
schema definition was the topic of heated debate, and it still remains
so after the final recommendation. The current discussion on “when to
use DTDs and when to use XML Schema” is an indication that XML
Schema is not the answer to all problems. In particular, XML Schema is
considered by many to be too complicated and too heavyweight. But it
also misses out on some finer points of schema definition such as cross-
element and cross-attribute checks, for example.

About a month after the release of the final XML Schema recommen-
dation, OASIS published a draft for “the next-generation schema lan-
guage,” called RELAX NG. RELAX NG is based on the earlier RELAX and
on James Clark’s TREX. It is lightweight like DTDs but includes support
for namespaces, for modularization (including the possibility of con-
structing unions, intersections, and differences of schemata), and for
datatypes (incorporating XML Schema datatypes), and it also has some
other improvements. Last but not least, a RELAX NG schema is—in con-
trast to a DTD—an XML document. Details are given in Clark and Murata
(2001) and Daum (2002).

2.9.1 A Feather Duster for XML Schemata

When we earlier discussed XML Schema, we had already observed that
XML Schema allows the definition of only the most basic constraints
such as datatypes and uniqueness. XML Schema fails when it comes to

Chapter 2 Groundwork68

T
E
A
M
F
L
Y

Team-Fly®

constraints that involve several elements or attributes. If we want, for
example, to enforce that attribute B must be present whenever attribute A
is present, or that attributes A and B are mutually exclusive, we are out of
luck. Or, if we want to enforce the presence of element C when attribute
A contains an “@” character, we are similarly left on our own.

Rick Jellife’s Schematron (Jellife 2001) is a tool that can do such con-
straint validation. Although Schematron is not a schema definition lan-
guage in its own right, it can be used alongside DTDs and XML Schema.

The concept of Schematron is as simple as it is ingenious. The tech-
nique used is a bit similar to the one used in XML Schema for the defini-
tion of unique, key, or keyref constraints (Jellife is a member of the XML
Schema working group). Each Schematron script consists of a number of
rules. Each rule first specifies a context node, via an XPath expression. On
the basis of the selected context node, other XPath expressions perform
tests. The success or failure of each test is reported. Since XPath is quite
powerful, the range of constraints that can be checked is very wide. In
particular it is possible to check for cross-element and cross-document
constraints.

Technically, Schematron utilizes XSLT to validate an XML document.
Using an appropriate XSL style sheet, the document is transformed into a
report that gives information about invalid structures within the docu-
ment. However, this requires that the XML document is already well
formed; otherwise it would not be possible to process it with XSLT.

Schematron uses a two-phase concept: The first step is only applied
once to a particular Schematron script and compiles it—with the help of
the Schematron processor style sheet—into a validation style sheet. In
the second step this validation style sheet is applied to individual docu-
ment instances.

Here is an example of a Schematron script that requires that the
<lastName> of a book author must be specified whenever a <firstName> was
specified.

<schema>
<pattern name = “author name checks”>
<rule context = “book/authors/author/name”>
<assert test = “not(firstName)

or (firstName and lastName)”>
lastName missing in author's name

</assert>
</rule>

</pattern>
</schema>

2.9 Schema Definition—Stage 3

Schematron

Based on XSLT

69

The context attribute in the <rule> element specifies the context node
book/authors/author/name. The <assert> element then tests for the con-
straint. If the test fails, the text content of the <assert> element goes into
the report.

Similar schema validation is possible with the Schema Adjunct Frame-
work discussed in Section 4.4.2.

2.9.2 Elements Versus Attributes

In the XML community (and previously in the SGML community) there
is a long and ongoing debate about when to use an element to model an
information or data item and when to use an attribute. At times the
debate has become almost a religious issue: each party is in the possession
of “The Truth”—even if their respective truths are mutually exclusive (for
the philosophical and logical background of this phenomenon, see Sec-
tion 4.3).

We are not inclined to take the position of either side but will simply
list the pros and cons of each approach. What we will find is that with
the definition of XML Schema some of the arguments against elements
do not hold any longer. In this respect, XML now differs from SGML.

The following is a boiled-down version of our <book> example from
Section 2.2 with the extensive use of attributes. The difference in size is
striking, and this is also the main reason why authors use attributes to
represent content.

<book title=”The XML-Handbook™”>
<authors>
<author aid=”a1” name=”Charles F. Goldfarb”/>
<author aid=”a2” name=”Paul Prescod”/>

</authors>
</book>

You can also see that we have cut some corners in order to make it fit.
In particular we have kept only a single language for the title. To repre-
sent a multilingual title in one attribute (unlike elements, you cannot
have several attributes with the same name as children of a single ele-
ment), we would be required to invent a rather complex attribute format
(similar to CSS-style attribute syntax):

title=”en-us:The XML-Handbook™;de-de:Das XML-Handbuch”

This in turn would require us to implement a custom parser to process
this complex attribute; furthermore we must postulate that no title ever

Chapter 2 Groundwork

Attribute
oriented

70

contains a semicolon. Standard processors such as XSLT would not be
able to break this attribute string into pieces; it would require the use of
custom extension logic. Alternatively, we could create differently named
attributes—one for each language.

There is no problem parsing the author’s name. This attribute type
could be declared as NMTOKENS, so a parser would give us a list of tokens
consisting of first name, middle name, and last name. But beware: noth-
ing stops us from specifying a name like this:

<author aid=”a2” name=”Prescod, Paul”/>

Now the parser would return us “Prescod,” as the first name and “Paul” as
the last name (assuming that we always interpret the last list element as
last name). Custom logic would be required to look for a trailing “,” after
“Prescod” and swap the tokens accordingly (and remove the comma).

You can clearly see the drawbacks of attributes for representing com-
plex information.

A good compromise therefore might be

<author aid=”a2”
<name first=”Paul” last=”Prescod”/>

</author>

or

<author aid=”a2” first_name=”Paul” last_name=”Prescod”/>

However, in the second case we lose some structural information (that a
name is comprised of a first name and a last name).

Despite the problems in our naive approach to attributes, it is, in fact,
possible to represent any information structure using attributes only. This
is done in a way similar to relational databases: the data is normalized
and finally represented as an interrelated network of “flat” elements. The
relations between the data elements are not represented through the im-
plicit hierarchical relations between parent and child elements, but ex-
plicitly via ID, IDREF, and IDREFS attributes:

<book titles=”title.1 title.2”
authors=”author.1 author.2”/>

<Title id=”title.1” xml:lang=”en-us”>
The XML-Handbook™ </Title>

<Title id=”title.2” xml:lang=”de-de”>
Das XML-Handbuch </Title>

<author id=”author.1” aid=”a1” name=”name.1”/>
<author id=”author.2” aid=”a2” name=”name.2”/>

2.9 Schema Definition—Stage 3

Compromise

“Flat”
documents

71

<Name id=”name.1”
first=”Charles” middle=”F.” last=”Goldfarb”/>

<Name id=”name.2” first=”Paul” last=”Prescod”/>

Here the structure of the document is established via matching ID and
IDREFS (IDREFS) keys (@titles, @authors, @name). The advantage is that we
can use the well-known relational techniques (see Section 3.1) to keep
the design of such a document sound. The disadvantage is that the docu-
ment is hard to read. Also it is not shorter than the original document—
on the contrary, it is longer. Constructing such a document also requires
some bookkeeping (to allocate unique keys to elements), and retrieving
information from such a document requires much cross-referencing and
joining.

Juxtaposed to this design there are also concepts that throw attributes
out altogether. This has culminated in the definition of MinXML (Park
2000), a minimal XML definition (without attributes, entities, CDATA,
mixed elements, etc). The logic to process such XML is surprisingly
simple; a parser can be formulated in 28 JavaScript statements (by Sjoerd
Visscher).

<book>
<title>
<lang>en-us</lang>
<text>The XML-Handbook™</text>

</title>
<title>
<lang>de-de</lang>
<text>Das XML-Handbuch</text>

</title>
<authors>
<author>
<aid>a1</aid>
<name>
<firstName>Charles</firstName>
<middleName>F.</middleName>
<lastName>Goldfarb</lastName>

</name>
</author>
<author>
<aid>a2</aid>
<name>
<firstName>Paul</firstName>

Chapter 2 Groundwork

Minimal XML

72

<lastName>Prescod</lastName>
</name>

</author>
</authors>

</book>

The truth lies somewhere between these two extremes and largely de-
pends on context and personal taste. Is it essential that the documents be
as short as possible, or is it important that the processing logic be kept
simple? Is the document only to be used by machines, or is it also to be
read by humans? Are the documents machine generated or authored by
humans, and, if the latter, with which tools?

Here are a few strong reasons to prefer attributes:

1. Attributes support the construction of relationships with ID/IDREF
keys.

2. A DTD can define default values only for attributes.
3. A DTD allows simple type definitions (ID, IDREF, NMTOKEN, and so on)

for attributes but not for elements.
4. Attributes of an element form an unordered set. This can some-

times be handy when no sequence order between information
items is required.

5. Attributes are much easier to access in DOM and SAX.
6. When authoring document-centric XML in an appropriate XML ed-

itor, it is often more convenient to use attributes—as the name sug-
gests—for attributing text. The attributes will not litter the running
text, and spell checking is only applied to elements.

However, with the advent of XML Schema, these advantages of attributes
vanish, especially items 1–4, because XML Schema allows the definition
of unique keys, default values, types, and unordered sets for elements also.

And here are a few strong reasons to prefer elements:

1. An element can have multiple child elements of the same kind.
This is not possible with attributes.

2. Elements can be easily extended by adding child elements or
attributes.

3. Attributes of an element always form an unordered set, so it is not
possible to establish a sequence order across attributes.

4. Elements can contain whitespace and delimiters; whitespace han-
dling can be specified on the element level.

5. Attributes are harder to search for in search engines.
6. Attributes do not support nil values.

2.9 Schema Definition—Stage 3

Pro attributes

Pro elements

73

7. When editing data-centric XML in an XML editor, storing content
in attributes makes the editing process more difficult. Extra key-
strokes are often required to view the attributes.

So, with XML Schema the scale tips toward the use of elements. But we
wouldn’t discard attributes completely. There are two rules of thumb on
when to use what.

First, some authors recommend using elements to represent the enti-
ties of an entity relationship model (see Section 3.2) and using attributes
to represent the properties of these entities. But what about complex
properties? A name, for example, is clearly a property of an entity (such
as a customer) but has a complex structure (first name, middle name, last
name). So, we are not too sure about that case.

Second, use attributes to describe metadata (such as language identi-
fier, element author, element version, element ID, etc.) and use elements
to model content. This is more or less how we have used attributes and
elements in the past. However, what is content and what is metadata can
depend on the context. A good definition to distinguish content from
metadata is from Elliot Kimber:

One way to distinguish metadata from content is to ask the question “if I
removed this data, would my understanding of or ability to comprehend the
content change?” If the answer is no, it’s metadata, if the answer is yes, it’s
content (or annotation, which is the third fundamental class of information).

2.9.3 XML Design Patterns

A good exercise when designing an XML Schema is to look at existing
schemata. Maybe we can utilize an existing schema and extend it a bit to
fit our own requirements. If this is not possible, it may still be possible to
pick up a few design elements (i.e., design patterns) and utilize them for
our own purposes.

Design patterns were introduced as a formal method into design by the
architect Christopher Alexander (who had a background in mathematics
as well). Alexander published on urban planning and building architec-
ture in the late 1970s. In the late 1980s design patterns were picked up by
software architects and found their culmination in the work of the “gang
of four,” Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Gamma et al. 1995). Since then patterns have become popular in soft-
ware design.

Design patterns describe the relationship between a problem, the con-
text of the problem, and the solution to the problem. They describe this
relationship in such a generic way that it becomes possible to transfer the

Chapter 2 Groundwork

Rules of thumb

Origins

74

way of solving the problem into a different context. Design patterns are
not invented: they are discovered when similar solutions are found to
solve similar problems in various contexts.

Now that XML has been around for a few years, design patterns are be-
ginning to emerge to solve problems with the design of XML documents.
These patterns can be fairly generic or can be more specific, for example,
to solve design problems in the area of electronic business. We therefore
find various design patterns connected with the various electronic busi-
ness platforms such as RosettaNet, BizTalk, or ebXML. These patterns are
published either on supporting Web sites in the form of guidelines, or as
reusable patterns stored in business community repositories.

A Web site dedicated to generic design patterns for XML is www.
xmlpatterns.com. At the time of writing, this Web site contained 28 pat-
terns: Catch-All Element, Choice Reducing Container, Collection Ele-
ment, Common Attributes, Consistent Element Set, Container Element,
Content Type Label, Declare Before First Use, Domain Element, Envelope,
Extensible Content Model, Flyweight, Generic Element, Head-Body, Mar-
ketplace, Metadata First, Metadata in Separate Document, Multi Root
Document Types, Multiple Document Types, Optional Container Ele-
ment, Parallel Design, Referenced Note, Reuse Document Types, Role
Attribute, Separate Metadata and Data, Short Understandable Names,
Universal Root, Use XML.

Here is an example for the Extensible Content Model pattern. The pat-
tern addresses the problem that at the time of designing a schema the de-
signer may not be able to predict all the possible use cases for the schema
and therefore wants to allow document authors to customize the schema
on the instance level.

The solution is that the schema designer adds an extension mecha-
nism to the schema definition. Since we already have discussed such a
mechanism (instance subtyping) for XML Schema (see Section 2.4.2), we
present here only a solution for DTDs. This solution is based on parame-
ter entities (see Section 2.3.2), which the document author can overwrite
on the instance level.

Let’s discuss this for the example of our book DTD. The book element
currently has only the child elements title and authors. If we want to al-
low document authors to add additional elements, we can do this in the
following way:

<!ENTITY % details ““>

<!ELEMENT book (title+,authors %details;)>

...

2.9 Schema Definition—Stage 3

Web site

Extending DTDs

75

We have defined an empty parameter entity details and have appended
it to the definition of element book.

The document author can override the definition of parameter en-
tity details in the internal DTD subset and can then add additional
definitions:

DOCTYPE book SYSTEM “http://www.book.org/book” [

<!ENTITY % details ”, Price” >

<!ELEMENT Price (#PCDATA)>

]>

Given this definition the document body must then contain a Price ele-
ment after the authors element.

2.9.4 Architectural Forms

Architectural forms were first formally defined in SGML in 1997 as part of
the SGML Extended Facilities in ISO/IEC 10744:1997, Annex A.3, Archi-
tectural Form Definition Requirements (Kimber 1998). It did not take
long to adapt this technology to XML; a first SAX parser enabled for
architectural forms appeared with the XAF package from David Meggin-
son (1998). A recent development is APEX, an XSLT style sheet that pro-
vides the same functionality as XAF. APEX is published as part of the
National Institute for Standards and Technology (NIST) XSL Toolbox
(ats.nist.gov/xsltoolbox/), written by Josh Lubell.

Now, what are architectural forms? Architectural forms (AF) could be
roughly compared to a combination of interface and adaptor in object-
oriented programming. Concrete XML document types can relate to one
or multiple base architectures (which are document types, too). An AF-
aware parser can then validate whether document instances satisfy the
specified architectural forms. Elements that do not conform with a speci-
fied base architecture can be suppressed so that it is possible to generate
different views from a single document.

This technique allows the definition of specific document schemata
that implement given corporate standards. Rather than defining a single
huge and unwieldy XML schema containing every possible element used
within a corporation, the corporate standards are incorporated into
several rather small base architectures. The document schemata created
by different work groups can relate to these base architectures, and doc-
ument instances created according to these schemata can be checked
against these base architectures. Different vocabularies used in the

Chapter 2 Groundwork

Base
architectures

76

base architectures are not a problem because AF allows the renaming of
elements.

To use architectural forms with a document, at least one base architec-
ture must be specified in a document in the form of an XML processing
instruction:

<?IS10744:arch name=”Person” auto=”nArcAuto”?>

The pseudo-attribute name specifies the name of the base architecture. The
pseudo-attribute auto controls automatic association (see below). A docu-
ment may specify several base architectures simply by adding more pro-
cessing instructions.

We can then use the name of a base architecture within an element
definition to map the element of a document instance to an ele-
ment within the base architecture (or several base architectures). In the
following example we use three base architectures. One (<Product>) con-
trols the layout of the <book> element; the other two (<Person> and <Per-
sonId>) control the layout of <author> elements. We have emphasized
these base architectures. We see also how the elements <author>, <first-
Name>, <middleName>, and <lastName> are mapped to <Person>, <first>,
<middle>, and <last>.

<?IS10744:arch name=”Product” auto=”nArcAuto”?>
<?IS10744:arch name=”Person” auto=”nArcAuto”?>
<?IS10744:arch name=”PersonId” auto=”nArcAuto”?>
<book Product=”Product”>
<title Product=”name” xml:lang=”en-us”>

The XML-Handbook™
</title>
<title Product=”name” xml:lang=”de-de”>
Das XML-Handbuch

</title>
<authors>
<author Person=”Person” PersonID=”PersonID” aid=”a1”>
<name Person=”name”>
<firstName Person=”first”>Charles</firstName>
<middleName Person=”middle”>F.</middleName>
<lastName Person=”last”>Goldfarb</lastName>

</name>
</author>
...

</authors>
</book>

2.9 Schema Definition—Stage 3

Using AF

77

The three base architectures may look like these:

<Product>
<name xml:lang=”en-us”>
product-name

</name>
</Product>

<Person>
<name>
<first>first</first>
<middle>middle</middle>
<last>last</last>

</name>
</Person>

<PersonId aid=”a1”>
</PersonId>

As we have already mentioned, it is possible to use a default mapping
of target document names to base architecture names. To enable this fea-
ture, the auto pseudo-attribute of the processing instruction is set to
auto=”ArcAuto”. The element within the target document is then mapped
to an element with the same name in the base architecture. Additional
syntactical elements allow us to ignore the base architecture for certain
child elements, to rename or ignore attributes, and to bridge references
between ID/IDREF attributes. The documentation in David Megginson’s
XAF package describes these features in detail (Megginson 1998).

It is, of course, not necessary to specify all these mappings in the doc-
ument instance. We can easily define the attributes used to accomplish
the mapping, such as Product=”name”, as fixed-value attributes within the
DTD or within an XML Schema. Similarly, we can define the processing
instructions in the DTD or XML Schema, too. By using this technique,
document instances do not differ from document instances that do not
use architectural forms.

If we compare architectural forms with the reuse mechanisms found in
XML Schema, we find the following:

• XML Schema can compose a new schema from several smaller
schemata and type libraries, but architectural forms cannot. Rather
they allow checking given document instances against a set of “guide-
lines.”

Chapter 2 Groundwork

Default mapping

AF vs. XML
Schema

78

T
E
A
M
F
L
Y

Team-Fly®

• Architectural forms do have a rename mechanism for element and
attribute names, which the include and import facilities in XML
Schema don’t offer. XML Schema, in contrast, has a redefinition mech-
anism, allowing the type of included elements to be changed.

• With architectural forms a document element can claim conformance
to multiple architectures simultaneously. This is not possible with
XML Schema.

2.10 BEST PRACTICES

In this section, we list a number of best practices that are discussed in the
XML community.

2.10.1 Always Use Namespaces

Small schemata are likely to be integrated into large schemata. Large
schemata are often developed by separate work groups in a modular fash-
ion. Because they prevent name conflicts, namespaces make it easier to
assemble large schemata from smaller ones—even if the work group con-
sists only of a single person. A good schema is very likely to be reused by
others!

In document instances, elements should always be qualified with a
namespace, either by using a default namespace or by using a namespace
prefix. This is not necessary for attributes because attribute names are de-
fined in relation to their context.

2.10.2 Do Not Reinvent the Wheel

Instead of designing every document type from scratch, use existing doc-
ument types (if possible use industry standards) and extend these to your
requirements. This will save you a lot of work, will usually result in
higher-quality schema definitions, and will ensure that core concepts of
your document are understood by others, too.

Most public repositories currently store XML schemas in the form of
DTDs. Extending such a schema is done with the traditional means of cut
and paste, since DTDs do not have an inheritance mechanism.

XML Schema has a powerful inheritance mechanism. Schema defini-
tions can be composed from schema modules using include and import.
Complex datatypes (i.e., nested elements) can be extended; that is,
attributes and child elements can be added. The wildcard mechanism

2.10 Best Practices 79

(<xsd:any>) allows the definition of elements that follow a completely dif-
ferent schema (of a different namespace).

Remember that deep inheritance hierarchies can become hard to read.
In object-oriented programming, where inheritance is extensively used,
this phenomenon is known as the “yo-yo effect”— you have to go up and
down the inheritance hierarchy repeatedly to understand the result.

2.10.3 Multipart Schemata?

Some authors (in particular, see www.biztalk.org) warn against using multi-
part schemata because they multiply the dependencies between software
artifacts. These dependencies can make a system hard to maintain.
Things can get very complicated—especially if you build a full inheri-
tance hierarchy for document types and you have to maintain a corre-
sponding taxonomy of Java (and/or C++, JavaScript, etc.) classes. (The
same is true for architectural forms.) You could end up like Gulliver in Lil-
liput, held down by thousands of strings and unable to move.

Others, however, advocate the use of multipart schemata to construct
larger schemata from smaller components and type libraries (see, for ex-
ample, www.xfront.com).

2.10.4 Avoid External Entities

Similarly, external entities increase the dependencies between software
artifacts. Additionally, not all XML processors (including some databases
and messaging middleware) support external entities. For example, if you
want to embellish each XML document of a site with some corporate
information, it will be better to postprocess the documents using an XSLT
style sheet and add the required information in this way.

2.10.5 Never Change a Published Schema

This is a good practice exercised in component-oriented systems such as
COM. Instead of changing a published schema and probably burning its
users, create a new schema with each change. Be prepared for users to
continue to use the old schema version for a considerable time period.

2.10.6 Use Only Version-Controlled Schemata

Schemata that are not controlled by a version control system can change
at any time, leaving your application “out in the rain.” In particular, this

Chapter 2 Groundwork80

is the case when you use a schema from a public repository. Make sure
that the repository has a version control system in place.

If you are using multipart schemata, make sure that all parts are con-
trolled by the same version control system.

2.10.7 Consider Equipping Each Document
Element with a UUID Attribute

Universally unique identifiers (UUIDs) can be easily generated and can
identify objects uniquely. Equipping each element in a document
instance with such a UUID (as an attribute of type ID) helps to easily
identify an element. One advantage is that elements can keep their iden-
tity even through transformations (for example, with XSLT), when
merged with another document, or when moved to a different location.

2.10.8 Adopt a Concise Style for Schema Design

Here are a few recommendations found on the BizTalk.org Web site.
(Other communities might recommend slightly different authoring
styles.)

• Write element and attribute names in a style called “CamelCase.”
Elements reflecting an entity should be written in UpperCamelCase;
elements and attributes reflecting a property should be written in
lowerCamelCase. For example:

<author>
<name>
<firstName> ... </firstName>
<lastName> ... </lastName>

</name>
<author>

• Names should be meaningful. Names should describe the marked in-
formation item sufficiently. Avoid cryptic abbreviations. There is
always a chance that humans will read the document, at least in the
case of debugging. For example: do not write odate when you mean
orderDate.

• Elements and attributes should be named by their function, not
by their position in a set. For example: do not write <element_5>,
<element_6>, and so on when you can write <firstName>, <middleName>.

2.10 Best Practices

CamelCase

Meaningful
names

81

• Do not use a complex string expression within elements that requires
custom parsing. Rather, break the string into single tokens and express
each token in a separate element. This will improve readability and ex-
tensibility. It also allows you to apply datatype definitions to each ele-
ment when defining a schema with XML Schema.

Note: XML Schema allows the definition of list datatypes. Such list
datatypes allow you to write several tokens of the same datatype
within a single element, separated by whitespace.

For example: rather than writing

<price> USD 9.95 </price>

write

<price>
<currency> USD </currency>
<amount> 9.95 </amount>

</price>

Lists like

<luckyNumbers> 35 23 48 29 96 42 <luckyNumbers>

are okay.

• To model conceptual entity properties, use XML elements, not attri-
butes. Attributes should be used for metadata such as element author,
element version, element origin, modification date, and so on. (But see
our discussion in Section 2.9.2.)

The reason for this is that an element is better suited for later exten-
sion than an attribute. You can always insert child elements into an ex-
isting element, but you cannot do so with an attribute.

2.10.9 Do Not Use Exotic Language Elements

Use only language elements that are commonly supported by existing
tools such as parsers, editors, viewers, and so on. For some XML-based
languages the W3C has published the results of conformance tests. These
reports list which language features are supported by which tools. Using
only features that are supported by most tools will improve portability of
your documents.

Chapter 2 Groundwork

Avoid custom
parsing

Later extensions

82

2.11 XML RESOURCES

We have selected a few important Web sites that provide either an exten-
sive range of XML resources or other important contributions.

The World Wide Web Consortium (www.w3.org) is the reference point
for nearly every standard mentioned earlier—and more. In particular, in
case you didn’t know: XML is a W3C recommendation.

www.megginson.com is the source for SAX, SAX2, and XAF.
OASIS (www.oasis-open.org) is a clearinghouse of XML industry stan-

dards. In particular OASIS (in collaboration with UN/CEFACT) was respon-
sible for the ebXML standard and hosts the RELAX-NG specification.

Robin Cover’s page (www.oasis-open.org/cover/), hosted by OASIS, con-
tains the latest XML-related industry news and discusses new industry
standards.

Also hosted by OASIS, www.xml.org, is a repository for XML schemata.
In collaboration with ZapThink, it also contains descriptions of about
400 XML-based industry standards. This site also gives access to the XML-
DEV discussion forum (www.xml.org/xml/xmldev.shtml).

www.xmlpatterns.com contains a collection of design patterns for XML.
www.xml.com is a site devoted to XML and related standards from

O’Reilly Publishers.
www.xmlhack.com is dedicated to news related to XML core tech-

nologies.
www.xfront.com discusses programming techniques for schema au-

thors. It also has excellent XML Schema and XSL tutorials.
www.w3schools.com offers a number of Web-related tutorials. There is

also a section on XML and XML-related standards.
www.xmlresources.com is an XML-related portal with links to books,

tools, tutorials, and more.
www.xmlArchitecture.org is the supporting Web site for this book.
Another good source for examples, tutorials, and tools is the XML-

related pages of the various large and small software manufacturers.

2.11 XML Resources 83

85

3Structure

In this chapter we discuss conceptual modeling techniques

in the context of XML-based applications. After revisiting

the classic entity relationship model, we introduce asset-

oriented modeling—an approach to conceptual modeling

that is specifically targeted at XML environments.

RDF is the W3C’s official framework to model complex

Web-based information structures and semantics. Currently,

RDF is undergoing a revision process that will result in a new

syntax and content model. If you are not particularly inter-

ested in RDF, you may want to skip Section 3.3.

Finally, we discuss how UML can be utilized with XML.

UML is a de facto standard for object-oriented scenarios and

is also used in some XML applications such as ebXML as the

modeling method of choice.

3.1 The Evolution of Data
Models

3.2 Conceptual Modeling

3.3 The Resource
Description
Framework and
Conceptual Modeling

3.4 A U for an X

3.1 THE EVOLUTION OF DATA MODELS

Currently, the main role of XML is certainly that of a communication for-
mat, but we also see applications for data storage and knowledge bases.
The many proposals for an XML query language alone indicate that the
application of XML is wider than pure message transmission. But even
when used as a message format, modeling techniques become important:
a BizTalk message, for example, is organized like a small database con-
taining several business documents, business objects, and attachments.

Therefore in this chapter we take a close look at various modeling tech-
niques. We think this is necessary because we know of many cases where
schemata were designed that are practically unusable. You may have
heard of infamous “all-in-one” documents, where a single document
contains all information entities found in the problem domain, resulting
in document sizes of 50 MB and more.

We have seen schemata that disregard the hierarchical possibilities of
XML and store everything as a network of elements that refer to each
other via ID and IDREF attributes, resulting in unreadable documents.

So, data modeling is an issue for XML. And because XML is very ex-
pressive, it allows us to adopt very intuitive modeling techniques. Given
the current education of system and database analysts in relational mod-
eling techniques, XML requires a rethink. Smashing complex objects into
atomic pieces, as is done in the relational model, is not required for XML
(in fact, it would cause poor performance and unreadable documents).
That is the reason why we—after revisiting existing data models—return
to the mother of all information modeling techniques, the entity rela-
tionship model. In fact, this technique has been enhanced in the mean-
time. With asset-oriented modeling, we will discuss a modeling tech-
nique that is more suitable for XML.

We continue here with our earlier thesis that a major paradigm shift is
happening in computing. In Chapter 1 we stated that IT infrastructures
moved from transactional architectures to client-server architectures in
the 1980s and are now moving from client-server architectures toward
navigational systems. This shift is reflected by fundamental changes in
data structures:

• Transactional architectures are characterized by the hierarchical and
the network (CODASYL) data models. These models started to evolve
in the 1960s and are still in use today. Large amounts of operational
data still reside in database systems such as IMS.

Chapter 3 Structure

Rationale for
this chapter

Paradigm shift

86

• Client-server architectures were characterized by relational data mod-
els. Relational databases became the standard database technology in
the 1980s and dominated the database market in the 1990s. The rela-
tional data model structures information in a way that allows different
clients to interpret data items in various combinations.

• Navigational IT architectures require a new data model, which is still
evolving. It seems that data models based on regular grammars (Daum
2002) are promising. At least, XML fits into this category.

3.1.1 CODASYL

CODASYL/DBTG (Conference on Data System Languages/Data Base Task
Group) dates back to 1971 (Olle 1978) and was the basis for many data-
base implementations, including IDMS (Cullinet), DMS-1100 (Sperry
Univac), IDS II (Honeywell), and UDS (Siemens).

In CODASYL schemas are defined with the Data Definition Language
(DDL), while operations on the data are expressed through the Data
Manipulation Language (DML). Language bindings exist to COBOL,
FORTRAN, and others.

CODASYL data structures are closely related to the classical COBOL
data record: A record consists of one or several items. Each item may have
one or several occurrences (repeating group). Each record has a permanent
internal identification (database key), allowing fast localization of records.

Sets define the relationship between records. Each set has one owner
record (or “system” for the root owner record) and one or several member
records. This restricts relationships to 1:1 and 1:n relationships. As shown
in Figure 3.1(a), n:m relationships must be modeled by defining two 1:n
sets and one dummy record.

Although the relationship between records within a set is strictly hier-
archical, there is no global hierarchy between records. By defining several
sets, a record may have several owners (Figure 3.1(b)), or records may mu-
tually own each other (Figure 3.1(c)). It is also possible to define several
differently named set types on the same record types (Figure 3.1(d)).

The record-oriented storage format makes CODASYL databases highly
efficient. This is one of the reasons why a substantial amount of opera-
tional data is still stored in this format.

The problem with CODASYL databases, however, is their inflexibility.
New requirements almost always require remodeling the data schema.
This may affect existing applications and requires extensive integration
tests.

3.1 The Evolution of Data Models

Records

Relationships

87

Chapter 3 Structure88

Figure 3.1 Different types of relationship sets: (a) n: m relationship;
(b) several owners; (c) mutual ownership; (d) multiple relationships.

1:n

1:m

bu
ys

bo
ug

ht
_b

y

(a)

(c)

Part

co
ns

is
ts

_o
f

be
lo

ng
s_

to

Product

CP

Customer

CustomerSupplier

buy
s

supplies

(b)

Product

Product

bu
ys

re
tu

rn
s

(d)

Customer

Product

T
E
A
M
F
L
Y

Team-Fly®

The change of a data schema subsequently requires a reorganization of
the physical database, meaning considerable downtime for the connected
applications.

3.1.2 Hierarchical Databases

Hierarchical databases are similar to CODASYL databases. The main dif-
ference is that the database consists of a set of hierarchical trees. If the
same record is contained in several trees or tree branches, one record is
determined to be the main record. Its copies are mirrored through the use
of pointer records. Thus, the redundancies in the database are removed.

A typical example of a hierarchical database system is IBM’s IMS.

3.1.3 Relational Databases

The relational concept is based on a simple idea: the database should
store data in the most atomic form, while the data structures are imposed
on the data by the client (application). This concept fits well into the
client-server approach, which began to evolve in the 1980s with the ap-
pearance of workstations and desktop computers that are connected to a
central database server. Different clients thus can utilize the same data
items in many different constellations. The introduction of new applica-
tions does not require the reorganization of the physical database. Popu-
lar representatives of this database model are IBM’s DB2 and the Oracle
database management system.

Relational technology is based on a sound mathematical theory—the
relational algebra introduced by E. F. Codd in 1970 (Codd 1970). In rela-
tional databases data is organized in tables. Each table represents a basic
relationship between primitive data items such as customer name and
customer number. Tables have rows (called tuples in relational algebra)
and columns (attributes). The attributes are named via a schema defini-
tion; the rows, however, remain anonymous and unordered. Rows can be
selected by content via a key.

Preparing data models for relational databases requires a sequence of
normalization steps. Each step splits complex data structures into simpler
constructs and reduces redundancies and dependencies between data
items.

The example in Database Table 3.1, Orders-by-Supplier, shows a
schema definition with the attributes SUPPLIER#, NAME, CITY, SIZE, OR-
DERS. As it is, this example table cannot be stored in most rational data-

3.1 The Evolution of Data Models

Pointers

Tables

89

base management systems (RDBMSs) because it is not in first normal
form (1NF). A table is said to be in first normal form if all attributes
(columns) are atomic. The column ORDERS contains nonelementary val-
ues. It is therefore necessary to decompose this table into several tables.

The problem here is that the column ORDERS contains lists of element
tuples. Lists are by definition ordered: list elements have a clearly defined
sequence. Table rows, however, do not have a natural sequence. If we
want to translate the list into a table structure, we have to introduce an
additional attribute, POSITION, to maintain the original position of each

Chapter 3 Structure90

Database Table 3.1 Unnormalized Database Table
for Orders-by-Supplier Schema.

Orders-by-Supplier

Supplier# Name City Size Orders (product#,
product, amount)

44-8983 UnitedComb Leads small (45A13, Comb, 50)

64-3890 Sparkle Ltd Wellington medium (317-88, Toothbrush, 12)

61-7123 Softtouch Sydney big (10456, Shampoo, 36),
(10872, Powder, 20)

Database Table 3.2 1NF Database Table for Orders-by-Supplier Schema.

Orders-by-Supplier

Supplier# Name City Size Product#

44-8983 UnitedComb Leads small 45A13

64-3890 Sparkle Ltd Wellington medium 317-88

61-7123 Softtouch Sydney big 10456

61-7123 Softtouch Sydney big 10872

1NF

element. This would allow an application to reconstruct the original se-
quence by using a SORT operator (see Database Table 3.2).

Because this table combines supplier information with order data, it
exhibits several anomalies:

• Supplier information cannot be stored without storing an order.
• When all orders of a supplier are deleted, the supplier information is

lost.
• When the address of a supplier changes, all orders referring to that

supplier must be updated.

Similar anomalies exist for the product information. For example, if all
orders for a product are deleted, we lose the information about which
product name belongs to which product number and who supplies which
product.

At this point it becomes necessary to talk about keys. Unlike in CODA-
SYL and hierarchical databases, where pointers reference a physical
record (a rudimentary form of object identity), keys in relational systems
relate to content. A primary key is a single attribute or a combination of
attributes that can identify a single row. In our example above, the com-
bination of SUPPLIER# and PRODUCT# is a suitable primary key.

A 1NF table is said to be in second normal form (2NF) if all attributes
depend fully on the primary key. This is not the case in Database Table
3.2. The attribute CITY depends only on SUPPLIER#, not on the combi-
nation of SUPPLIER# and PRODUCT#. To obtain 2NF, we have to decom-
pose the table Orders-by-Supplier into the three tables Orders, Suppliers,
and Products (Database Tables 3.3–3.5).

3.1 The Evolution of Data Models

Keys vs. pointers

2NF

91

Product Amount Position

Comb 50 1

Toothbrush 12 1

Shampoo 36 1

Powder 20 2

Chapter 3 Structure92

Database Table 3.3 2NF Database Table for Suppliers.

Suppliers

Supplier# Name City Size

44-8983 UnitedComb Leads small

64-3890 Sparkle Ltd Wellington medium

61-7123 Softtouch Sydney big

Database Table 3.4 2NF Database Table for Products.

Products

Product# Product Supplier#

45A13 Comb 44-8983

317-88 Toothbrush 64-3890

10456 Shampoo 61-7123

10872 Powder 61-7123

Database Table 3.5 2NF Database Table for Orders.

Orders

Product# Amount Position

45A13 50 1

317-88 12 1

10456 36 1

10872 20 2

Because supplier and product information now is stored separately
from the order data, the anomalies mentioned earlier do not appear.
However, the knowledge of how suppliers and products relate to orders is
no longer contained in the database and must be provided by the appli-
cation using this data.

The next step in the normalization process is the third normal form
(3NF). A table is said to be in 3NF if none of the attributes depends tran-
sitively from a primary key. If, for example, the SIZE attribute in the table
Suppliers (Database Table 3.3) relates to the supplier, the table is already
in 3NF. But if SIZE relates to CITY, then SIZE depends transitively (via
CITY) from SUPPLIER#. In this case we have to—you may have guessed
it—decompose again (see Database Tables 3.6 and 3.7). Otherwise, we
would lose information about cities when we delete a supplier from
the table.

3.1 The Evolution of Data Models

3NF

93

Database Table 3.6 3NF Database Table for Suppliers.

Suppliers

Supplier# Name City

44-8983 UnitedComb Leads

64-3890 Sparkle Ltd Wellington

61-7123 Softtouch Sydney

Database Table 3.7 3NF Database Table for Cities.

City

Name Size

Leads small

Wellington medium

Sydney big

The normalization process continues with BCNF (Boyce-Codd Normal
Form), 4NF, and 5NF. We will stop at this point—the advantages and
drawbacks of the relational method are already clear.

Cleanly separating mixed information into individual tables allows
client applications to apply any kind of queries without having to modify
the underlying database schema. This is not possible in CODASYL data-
bases: in these databases the access paths must be explicitly defined in the
set definitions.

By using standard SQL queries it would be possible to interrogate our
database for

• suppliers for a given order position
• orders for a given product
• orders for a given supplier
• products coming from “Leads”
• products supplied by suppliers in small cities

However, this flexibility comes at a price. First, database operations will
be relatively slow. To read all orders from supplier Softtouch we would
need five select operations, four join operations, and one sort operation.
Therefore, during the design of a relational database, the sequence of nor-
malization steps is usually followed by a series of denormalization and op-
timization steps, with the goal of obtaining a less fragmented physical
data storage. The art of relational database design lies in finding the right
compromise between flexibility and performance.

Second, while normalization removes the anomalies discussed earlier,
it also loses structural information contained in the conceptual data
model. In some cases foreign/primary key relationships can maintain
some of this information. In many cases, however, structural information
is hidden as join operations in applications and query expressions. For
example, a foreign/primary key relationship cannot model a many-to-
many relationship.

The loss of structural information introduces integrity problems. After
normalization a DBMS has no knowledge about the structural relation-
ship between tables. Therefore the DBMS cannot control the structural
integrity of the data. Deleting a CITIES tuple, for example, would leave
suppliers homeless.

Relational database management systems solve this problem by rein-
troducing structural information into the schema definition in the form
of integrity rules and triggers. These constraints and triggers allow the
database system to reject violating operations or to perform additional
operations that are required to keep the structure of the database intact.

Chapter 3 Structure

Costs

Integrity

94

For example, we could inhibit the deletion of any CITIES tuples that are
referenced by SUPPLIER tuples. Or, when a SUPPLIER is deleted we could
trigger the deletion of the referenced CITIES tuple if it is not referenced
by other SUPPLIER tuples. It is clear that these constraints introduce ad-
ditional overhead.

XML, in contrast, does not define such mechanisms. In this respect,
SQL is a more mature technology. But, on the other hand, in many cases
these mechanisms are not required in XML. With XML, since it is not
necessary to “flatten” complex structures into third normal form, partial
deletion or modification of an information structure in a database is less
likely. However, to maintain the integrity of a whole information model,
rules for referential integrity are required.

3.1.4 Navigational Architectures

The explosive growth of the Internet and the World Wide Web has led to
a technology shift similar to that generated by the introduction of the
personal computer one and a half decades ago. But progress does not stop
there. At the end of the decade, practically every person in the industrial
countries, and a considerable percentage of people in the rest of the
world, will own one or more devices to access the Internet. When wire-
less technology starts to outperform standard telephone lines by orders of
magnitude, this access will probably be wireless. Or, embedded into a
device, it will do its work unnoticed by the user.

Because these devices must be cheap, mobile, and almost disposable,
many of them will be built as thin clients (with rich multimedia and zero
deployment for user friendliness, though) with a browser (perhaps a voice
browser) interface—or, in the case of embedded devices, as very thin
servers. The storage of strategic data and processing of information will
be the duty of a vast grid of highly specialized servers, connected through
powerful fiber optics backbones. At the same time, these devices will also
be able to share their local resources with others. Although currently this
is mostly done with MP3 records, the technology is not restricted to this
format (see Section 7.4).

This scenario may remotely resemble the transactional scenario of the
1970s where thin clients (the famous green-black screens) were con-
nected to powerful mainframes (powerful in the terms of the past, that
is). However, there is a major difference: through the Internet the clients
of today are connected not just to a single server but to a network of mil-
lions of information sources. These shareable information sources are
highly heterogeneous in nature. It is unlikely that there will ever be a

3.1 The Evolution of Data Models

Thin devices

Networks

95

common global formal model of control, administration, or registration
of information sources. In addition, content, format, and availability of
these information sources are under constant change.

This scenario contrasts radically with traditional enterprise scenarios
consisting of multiple distributed heterogeneous database systems and
data warehouses. In these systems, global data schemata are designed
and decided on a priori. Databases connected to the system must comply
with the global schema. “Global” in this context, of course, means “en-
terprisewide,” not “worldwide.”

In the world of electronic business, however, the requirements are dif-
ferent (Bayardo et al. 1997):

. . . recent emerging technologies such as internetworking and the World
Wide Web have significantly expanded the types, availability, and volume of
data available to an information management system. Furthermore, in these
new environments, there is no formal control over the registration of new
information sources, and applications tend to be developed without com-
plete knowledge of the resources that will be available when they are run. The
data and the structure may bear little relationship to the semantics. There-
fore, there can be no static mapping of concepts to structured data sets, and
querying is reduced to search engines that dynamically locate relevant infor-
mation based on keywords.

To establish, for example, a customer-supplier relationship over the
Internet requires the following steps:

• Locate a supplier that provides the required services. For example: Find
a supplier in the immediate vicinity of Los Angeles who can supply up
to 5,000 yellow toothbrushes every two weeks. Today this is done via
digital marketplaces (see Chapter 10).

• Negotiate a common trade protocol (this includes common process
and data models and common semantics) with the supplier found.

• Construct collaborating workflows that orchestrate the cooperation
with this supplier.

• Inform partners during the cooperation about relevant changes in
business process and data model.

All of these steps add requirements to a suitable data model:

• Metainformation must be in a format suitable for publishing to pro-
spective partners. Metainformation describes data elements, data struc-
tures, authorship, version, origin, and so on. This is probably the most
vital issue. In an open environment such as the Internet, it would be
naive to believe that a single data format can fit all purposes (see also

Chapter 3 Structure

New
requirements

Publishing
metadata

96

Chapter 1). Publishing the “blueprint” of the information model (the
conceptual model) together with the information set enables clients—
users, software agents, and mediators—to construct their own “mind
map” of the information sources and to perform searches and transfor-
mations efficiently.

• To enable public access to metadata, the relationships between infor-
mation elements must be defined independently of the application.
This is not the case with the relational model, where knowledge about
the information structures is hardwired within applications. Metadata
can either be published as an intrinsic part of a document itself, as is
partly the case with XML documents, or it can be published separately,
as is the case with conceptional models (see, for example, WebML in
Section 7.1.2), XML schemata (see DTD and XML Schema in Chapter
2), or metadata descriptions (see RDF in Section 3.3). For electronic
business, dedicated standards like WSDL (Section 6.6.3), UDDI (Section
7.3), or ebXML (Section 10.3) exist to publish metadata.

• Users should be allowed to add knowledge to published metadata, for
example, to define new relationships between information elements or
to add a note to a certain document type. This is necessary because no
designer or system analyst can anticipate all possible use cases.

• When querying data, it must be possible to control the choice of selec-
tion criteria and of the access paths to information elements (apart
from security considerations) completely with a query expression. This
is the case in the relational data model, but not in the CODASYL data
model, where only predefined access paths (sets) can be used.

• Document repositories should be able to maintain the integrity of doc-
uments and the referential integrity between documents. Referential
integrity between the documents within an enterprise is an absolute
requirement. In the open world of the World Wide Web, however,
maintaining full referential integrity is not always possible—we all
know the all-too-common 404 response code.

• Documents should be easy to transform into different structures. This
is important if we want to exchange business documents with part-
ners, and if these documents follow different standards.

• The definition of business objects must recognize the different con-
texts and environments the business object can interact with. This re-
quirement is unique to the open world of electronic business, where
the same business object can pass through several environments, for
example, in a supply chain scenario. Such a scenario can span across
several countries and continents, where different legal and administra-
tive contexts exist that business objects have to satisfy.

3.1 The Evolution of Data Models

Annotation

Flexible queries

Integrity

Transformations

Context
awareness

97

• All data formats (including metadata) should comply with interna-
tional standards. Proprietary formats are counterproductive in an open
environment. However, because standardization is a slow process and
because standards often cover only the smallest common denomina-
tor, the use of proprietary formats is sometimes inevitable. The better
choice, of course, is to extend a standard format rather than to com-
pletely roll your own.

XML and XML- based technology fit well into this scenario. XML has
its roots in the document standard SGML, and document-oriented
formats are what is required here. For thousands of years information
exchange between organizations was organized through document-based
formats. The storage of information within an enterprise, in contrast, was
organized through the use of index-card-based (or record-based) for-
mats—even long before electronic data processing.

CODASYL and relational databases mimic the index-card-oriented for-
mat and are therefore well suited to cover data storage requirements
within the enterprise. Records and tables closely resemble the classic in-
dex card box, where only the owner of the box knows how to interpret
the data. XML breaks radically with this tradition. XML documents can
be self-explanatory to human readers and are designed to be interpreted
by external partners.

Let’s see how XML and related standards satisfy the requirements out-
lined in the bulleted list above:

• Metainformation must be in a format suitable for publishing to prospective
partners. Metainformation describes data elements, data structures, author-
ship, version, origin, and so on.

XML documents contain substantial metadata within a document.
Named tags enclose every document element. Attributes can optionally
be used to specify additional metainformation such as author or ver-
sion for each element. Documents can have an arbitrary tree structure
because document elements can be nested. Thus, a certain amount of
metainformation is automatically published with each document.

Additional metadata can be published through XML schema defini-
tions such as DTDs or XML Schema definitions. This schema informa-
tion can be used to optimize query processing, to obtain a mental
model of the document type, to visualize the document structure, and
to control editing tools when documents are created and modified.

Where XML falls short is in the definition of constraints that go be-
yond datatypes and cross-references.

Chapter 3 Structure

Standard
formats

Document
format vs.
record format

Publishing
metadata

98

T
E
A
M
F
L
Y

Team-Fly®

• To enable public access to metadata, the relationships between information
elements must be defined independently of the application.

The relationships between document elements are defined by the
intrinsic document structure and are thus contained in the document.
However, due to the hierarchical structure of XML documents, not
every relationship can be expressed in terms of the parent-child ele-
ment relationship. Also, the basic XML 1.0 standard does not define
provisions to specify relations to external information items such as
other XML documents and non-XML objects.

In the following sections we discuss how to express relationships—
especially relationships in the context of conceptual modeling—be-
tween documents. Relationships should be best expressed as separate
“data maps” apart from the information elements.

• Users should be allowed to add knowledge to published metadata.

RDF (see Section 3.3) allows making statements about information
items (in fact any resource) and publishing that knowledge. Also, topic
maps (see Section 7.2) provide a mechanism to add knowledge to in-
formation items.

• When querying data, it must be possible to control the choice of selection cri-
teria and of the access paths to information elements (apart from security
considerations) completely with a query expression.

While XML documents adhere to a strictly hierarchical structure
with nested elements, XPath query constructs allow the use of any ele-
ment or element combination within an XML document as a selection
criterion, and access to single elements within an XML document.
However, although XPath is very powerful, it is not a full query lan-
guage. There are deficiencies in the area of text retrieval, there is no
join operator, and the aggregating functions known from SQL are
missing. Several proposals for dedicated XML query languages have
been made in the past. With XQuery, a W3C standard is now on the
way (see Section 2.6).

• Document repositories should be able to maintain the integrity of documents
and the referential integrity between documents.

Although XML processors can validate the structural integrity of a
document against its schema definition (DTD or XML Schema), se-
mantic integrity and referential integrity are still weak points in XML.
While relational technology provides a standard way to add semantic

3.1 The Evolution of Data Models

Annotation

Flexible queries

Integrity

99

and referential integrity via integrity rules and triggers, XML reposito-
ries currently require application logic or the definition of proprietary
server extensions to implement semantic and referential integrity.

• Documents should be easy to transform into different structures.

The XSLT style sheet language allows the formulation of powerful
document transformations. In Chapter 9 we will discuss XLST in more
detail. In Section 3.2 we explain how to normalize models to allow
document transformations without information loss.

• The definition of business objects must recognize the different contexts and
environments the business object can interact with.

The Schema Adjunct Framework (SAF) defines a two-layered ap-
proach to add behavior to XML documents. SAF allows the definition
of abstract operations that are interpreted by context-specific proces-
sors. We will discuss SAF in more detail in Section 4.4.2.

ebXML defines business objects in relation to specific contexts. It
identifies a set of context drivers for business applications. We discuss
ebXML in detail in Section 10.3.

• All data formats (including metadata) should comply with international
standards.

XML and the related specifications are W3C standards and have
wide industry support. Topic maps are an ISO standard. There are sev-
eral de facto industry standards for the exchange of business data, but
the ebXML format is a UN/CEFACT standard.

Because XML is a document standard and documents have the pur-
pose of being exchanged, data modeling is only one aspect of an XML
architecture. Other aspects are the definition of process models, com-
munication models, and navigation models. We will discuss these as-
pects in Chapters 5, 6, and 7.

3.2 CONCEPTUAL MODELING

Conceptual modeling is an early but important step in the design of in-
formation systems. While originally applied only to databases, concep-
tual modeling techniques are now applied to object-oriented systems,
too. In this section we will see how conceptual modeling can be utilized
for XML-based architectures.

Chapter 3 Structure

Transformations

Context
awareness

Standard
formats

100

3.2.1 The Entity Relationship Model

Usefulness from what is not there.
—Lao-Tse

Developed by Peter Chen in the 1970s, entity relationship modeling (ERM)
can be considered to be the ancestor of all modern modeling methods
(Chen 1976). The acronym ERD may be more popular—meaning entity re-
lationship diagram, the graphical representation of an entity relationship
model.

In the years following its original conception ERM has spun off many
(~80) children and grandchildren. Among them are the following:

• Nijssen’s Information Analysis Methodology (NIAM) eventually became
Object Role Modeling (ORM) (Halpin 1999).

• Semantic Object Modeling (SOM) was developed by David Kroenke
(1995) during the same period of time.

• Information engineering was developed by Clive Finkelstein and became
popular through collaboration with James Martin (Martin 1993).

• The Unified Modeling Language (UML) was published by the Object
Management Group in 1997 (Booch, Jacobson, and Rumbaugh 1997).
UML covers the wide area of object-oriented modeling including dy-
namic aspects. The data modeling part, however, closely resembles
ERM. Because UML has become a de facto modeling standard in OO
system design, we will discuss it in Section 3.4 in detail. UML was sub-
mitted to the International Standards Organization to become an ISO
standard.

• The Higher Order Entity Relationship Model (HERM) by Bernhard Thal-
heim was developed in the 1990s (Thalheim 2000). Unlike the rela-
tively informal ERM, HERM has a solid mathematical foundation.

Most of the later developments based on ERM had the goal of improv-
ing the conceptual design method for relational databases and, as it be-
came popular, for object-oriented programming. Because the document
metaphor established by SGML and XML does not really fit into the rela-
tional or object-oriented philosophy, we will refrain at this point from
any discussion of any specialized modeling method and go back to the
roots.

ERM (Thalheim 1999) models the world in terms of entities, attributes,
and relationships. The scope of ERM, at the time it became popular, was to
define an enterprise data model, or enterprise scheme, representing the
overall logical structure of the enterprise database.

3.2 Conceptual Modeling

ERM spinoffs

ERM explained

101

Entities
Chen described entities as “. . . a ‘thing’ which can be distinctly identi-
fied.” Chen also said: “There are many ‘things’ in the real world. It is the
responsibility of the database designer to select the entity types which are
most suitable for his/her company.”

The vagueness of this definition made ERM, in fact, a very generic con-
cept and has probably led to the overwhelming success of the method by
inviting dozens of researchers to try to improve it.

To be a bit more verbose: An entity is an object that is distinguishable from
other objects. Entities have attributes that make them distinguishable. An
entity may be a concrete object such as a person, a machine, a building,
and so on, or it may be an abstract notion such as a project, a holiday, a
nation, an account, and so on.

ERM differentiates between dominant entities and subordinate entities.
Dominant entities exist in their own right; the existence of a subordinate
entity depends on another entity. In commercial programming dominant
entities are also called business objects.

Entity Set
An entity set is a set of entities of the same type, for example, a set of cus-
tomers, a set of invoices, a set of trucks, and so on. Entity sets can over-
lap: an entity can belong to more than one entity set. For example, a
student tutor belongs to both entity sets, students and teachers.

In ERM diagrams, entity sets are displayed as rectangles (see Figure 3.2).

Attributes
Entities may have attributes. In fact, there are no entities without at-
tributes because attributes characterize entities: they define the type of an
entity. An attribute consists of an attribute name and an atomic attribute
value, for example, Price: 19.95. Formally, an attribute is a function that
maps a set of entities onto a value domain.

In an ERM diagram, attributes are displayed as ellipsoids connected by
straight lines to the owning entity sets, resulting in the typical ERM mil-
lipedes (see Figure 3.3).

Chapter 3 Structure

Dominant
entities

102

Figure 3.2 Entity sets in an ERM diagram.

Customer Product

In some cases it is difficult to decide what should be modeled as an
attribute and what as a separate entity. Consider the entity Driver. The
driver’s license could be modeled as an attribute of Driver. Alternatively
it could be modeled as a separate entity. The second solution would re-
quire the definition of an extra relationship holds_license but allows the
detailed modeling of the actual license. In the first case we can only
model the license as an atomic value, presumably the license number, be-
cause attribute values must be atomic.

We will see that the same discussion pops up again with the question
of whether to use attributes or elements to specify content within an
XML document. The question of whether an item should be modeled as
an entity or as an attribute can only be decided on the basis of the con-
text in which the data model will be used. Generally, an item should be
modeled as an entity if it plays a role within a business process.

Keys
An attribute or a combination of attributes that uniquely identifies an
entity is called a superkey. The smallest possible superkey (i.e., a superkey
for which no subset of attributes exists that can act as a superkey) is called
a candidate key. From the set of candidate keys, database designers can
select a primary key to identify an entity within an entity set.

Entity sets that do not possess a primary key are called weak entity sets.
Entity sets that do have a primary key are called strong entity sets. This
concept is closely related to dominant and subordinate entities. Weak

3.2 Conceptual Modeling

Attribute
vs. entity

Strong and weak
entity sets

103

Figure 3.3 Entity sets with attributes.

Customer Product

Phone

CustomerID

Name Name Number

Price

entity sets consist of subordinate entities, while strong entity sets consist
of dominant entities.

Consider, for example, the entities Account and Transaction. A transac-
tion is usually identified with a transaction number that is unique only in
the context of a given account. The set of Transaction entities therefore
forms a weak entity set. Clearly, Transaction entities are subordinate to
Account entities.

In an ERM diagram weak entity sets are displayed with a double-
outlined rectangle (see Figure 3.4).

The original ERM version did not define a special notation for keys.
Later versions mark unique attributes with double-outlined ellipsoids.

Relationships
Peter Chen stated: “Relationships may exist between entities” (Chen
1976). There is a little more to add: relationships associate two or more
entities with each other. For example, given the entities Customer and
Product, the relationship Order denotes a specific association between
customers and products.

Within a relationship each entity has a particular role. In our example
the customer entity issues an order, while the product is subject to an
order.

Relationships have an arity: relationships associating two roles are
called binary, relationships associating three roles are called ternary, and
so on.

ERM allows the definition of certain constraints for relationships: roles
have a cardinality. Roles can be restricted to incorporate a single entity, or
they may incorporate multiple entities. In a binary relationship this re-
sults in four different constraints: one-to-one, one-to-many, many-to-
one, and many-to-many. Our orders relationship is typically a one-to-
many relationship because a single customer can order several product
items. In addition, roles may be optional. That is, the role incorporates
single or multiple entities only in some situations. In a binary relation-
ship this results in 16 different constraints.

Chapter 3 Structure

Role

Arity

Constraints

104

Figure 3.4 Subordinate entity Transaction.

Account Transaction

Relationships may have attributes, too. For example, the relationship
orders may possess the attribute OrderNumber.

Relationship Set
A relationship set is a set of relationships of the same type, for example,
all existing orders from a given set of customers to a given set of products.

In an ERM diagram, relationship sets are displayed as diamonds and
are connected by lines to the entities participating in the relationship (see
Figure 3.5). The cardinality of a relationship is shown with an arrow. An
arrow pointing to an entity denotes the “one” side of a relationship.
Lines without arrows denote the “many” side of a relationship.

Later improvements to the ERM model replace the arrowheads with
numbers below the connecting lines. This allows the specification of the
minimum and maximum number of entity occurrences (cardinality)
within a role; for example, (1,n) would typically replace the “one-to-
many” specification. This notation also allows the specification of op-
tional roles: (0,1) specifies a cardinality of minimum 0 and maximum 1,
making the role optional.

Existence-Dependent Relationship
This relationship is one of three that are treated special in ERM (the other
two are aggregation and generalization, to be discussed shortly). It defines
the special relationship between associated dominant and subordinate

3.2 Conceptual Modeling

Cardinality

105

Figure 3.5 Order relation between Customer and Product.

Customer Product

Phone

CustomerID

Name Name Number

PriceOrderNumber

orders

entities. Subordinate entities can only exist if the dominant entity exists.
For example, Transaction entities for an Account entity only exist if the
Account entity exists.

In ERM, existence-dependent relationships are depicted in the form of
a diamond like any other relationship but with the predefined name “E”
(see Figure 3.6).

Aggregation
Aggregation is a special form of relationship. What is special here is that
an association of aggregated entities is treated as a higher-level entity
itself. Often, subordinate entities are aggregated with a dominant entity
and thus form a new complex entity. However, it is also possible to aggre-
gate several dominant entities into a new higher-level entity. For exam-
ple, the entities Customer and Product and the relationship orders could
be aggregated into a new entity Order.

In an ERM diagram aggregations are depicted as ERM diagrams within
a rectangle (see Figure 3.7).

Generalization
Generalization is a special form of relationship that relates entities to an
abstract entity. For example, a customer may order products or services.
We can model this by introducing an abstract entity ProductOrService
and associating the concrete entities Product and Service via an IS_A rela-
tionship to ProductOrService. Although not covered as a special concept
in the original version of ERM, generalization is depicted in later ERM
versions in the form of triangles (see Figure 3.8).

This original ERM notation is still in use today, predominantly at uni-
versities and in the scientific community. Industry has adopted notations
of later ERM flavors, for example, the crow’s foot notation (see Figure 3.9).

The most striking difference is that attributes are displayed within en-
tities and that relationships are displayed as a straight decorated line. This

Chapter 3 Structure

Alternative
notations

106

Figure 3.6 Existence-dependent relationship between Account and
Transaction.

EAccount Transaction

3.2 Conceptual Modeling 107

Figure 3.7 Aggregation of the “orders” relationship into a new complex entity.

Customer Product

PhoneName Name Number

DepNo Department

orders

receives

Order

OrderNumber

CustomerID Price

makes it difficult to denote attributed relationships. Attributed relation-
ships are therefore modeled as separate entities (see Figure 3.10).

UML uses yet another notation. We leave this to Section 3.4, where
UML is discussed in more detail.

3.2.2 Asset-Oriented Modeling (AOM)

In this section we introduce a modeling method that is specifically
targeted toward the construction of document-centric (i.e., XML)
applications.

AOM is loosely based on the higher order entity relationship model
(HERM), introduced by Bernhard Thalheim during the 1990s (Thalheim
2000). This method was developed for object-oriented modeling and in-
cludes modeling techniques for structure as well as for semantics, such as
constraints and operations. It introduces a solid mathematical founda-
tion into conceptual modeling.

Because HERM (and thus AOM) allows complex, structured attributes
within entities, the structure of an AOM model can be very close to the

Chapter 3 Structure108

Figure 3.8 Generalization of Product and Service.

Price

Customer

Product

Phone

CustomerID

Name

Name Number

Name

Price

Product
OrService

orders

Service

Number

Duration

T
E
A
M
F
L
Y

Team-Fly®

structure of a final XML representation. This, and the fact that HERM
(and thus AOM) allows the definition of higher-order associations (i.e.,
associations of associations), leads to much simpler models than those
obtained with ERM. AOM, in addition, does away with the artificial sepa-
ration between entity type and relationship type. (It was E. F. Codd who
stated that there is no reason to distinguish between entity type and rela-
tionship type (Codd 1991).) AOM also introduces a notation and an in-
formation model based on regular expressions that are closer to XML and
that extend the flexibility of the method considerably.

Core Concepts
AOM is based on three core concepts: properties, assets, and arcs.

3.2 Conceptual Modeling 109

Figure 3.9 Elements of the crow’s foot notation.

EntityName

Key

Other attributes

RelationName

Entity

Existence
dependent

"one" Option "many"

Relation

EntityName

Other attributes

Key

Figure 3.10 The Order example in crow’s foot notation.

places contains

Product

Name

Number

Price

Customer

Phone

CustomerID

Name

Order

OrderNumber

Properties can be either simple attributes or can be rather complex and
deeply structured. A property can be compared to a node (element) in an
XML document. We use the following notation to specify properties:

name(…) Structure

(child1,…,childn) Sequence (ordered)

(child1&…&childn) Bag (unordered)

(child1|…|childn) Alternative

+ Repetition (1 . . . n)

* Repetition (0 . . . n)

? Optional (0 . . . 1)

[n..m] Arbitrary cardinality (n . . . m) with 0 ≤ n ≤ m

lab{} Label definition

lab Label reference

(Labels are used to define recursive property structures. For example,
lab{part(lab*)} defines a treelike part list of arbitrary depth.)

Assets cover both entities and relationships. This means that tradi-
tional relationships known from ERM are treated as assets, too. (In terms
of logic this means that relationships are immediately reified.) The
advantage is that this way we can define relationships between relation-
ships and can classify relationships, both of which the classic ERM can-
not do. We use rounded rectangles to visualize an asset and unidirec-
tional arcs to visualize how they relate to other assets (see Figure 3.11).

There are two exceptions that are not modeled as assets: the is-a rela-
tionship and the has relationship between a dominant entity and a weak
entity. These relationships simply become arcs between the two assets in-
volved in those relationships as shown in Figure 3.12. For an is-a rela-
tionship the subordinate asset points to the parent asset, while for a has
relationship the dominant asset points to the weak asset. However, in
many cases weak entities simply degenerate into a structured property of
an asset.

The is-a relationship and the has relationship look very similar, indeed.
In fact, they do almost the same thing. However, there is a subtle differ-
ence: in a has relationship an asset acquires the whole target asset, while
in an is-a relationship an asset acquires only the properties of the target
asset. We therefore denote an is-a relationship with the role name “is-a.”

In addition, each asset has a primary key. Keys consist of a single prop-
erty or a combination of properties. Composite keys are denoted as
property sets within curly brackets, for example, {first-name, last-name}.

Chapter 3 Structure

Properties

Assets

is-a relationships

110

Similar to the notation used for properties, we use DTD syntax to de-
note the cardinality of the relations between assets, as shown in Figure
3.13.

+ 1..n

* 0..n

? 0..1

n..m n..m

The last notation, n..m, asks for an XML Schema implementation,
since DTDs cannot easily express this type of constraint. Note that this
type of constraint can lead to models whose set of constraints can never
be satisfied.

Arcs connect assets with each other. Each arc is unidirectional. In addi-
tion, an arc can be labeled with a role name at the source end.

HERM introduces an additional construct into modeling that we also
use in AOM: clusters. Clusters are a union of disjoint asset types. Clusters
replace the generalization construct found in ERM and are denoted by
a circle containing the character “|” (the XML choice operator). (See Fig-
ure 3.14.)

Advantages
AOM has the following advantages over classical modeling methods:

• Because relationships are also represented as assets, defining higher-
order relationships (relationships between relationships) is trivial.

3.2 Conceptual Modeling

Arcs

Clusters

111

Figure 3.11 Visualization of an asset type. The constraint area is reserved
for additional integrity constraints. They can be informal or formal
specifications, for example, OCL expressions or Schematron (see Section
2.9.1) constraint rules.

ProductNo
ProductNo
Name
Price(Currency,
 Amount)+

Product
Asset Name

Keys

Properties

Constraints

Chapter 3 Structure112

Figure 3.12 The properties Person/Name and Product/Price exhibit a deeper
structure than is possible in traditional ERM diagrams. We use the notation
known from XML DTDs to denote cardinality of properties, subproperties,
and relations. Hence, a customer can have multiple phone numbers, and a
product has one or multiple price entries (for different currencies). Classical
entity types (Person, Customer, Account, Product) and relationship types (Order)
are all modeled as asset types. The relationship between the dominant entity
Customer and the weak entity Account degenerates to a simple arc. The same is
the case for the classical is-a relationship between Customer and Person.

is-
a

Name
Name
 (FirstName,
 LastName)
PhoneNo*

Person

CustomerID

CustomerID

Customer

AccountNo

AccountNo
Balance

Account

OrderNo

OrderNo

Order

ProductNo
ProductNo
Name
Price(Currency,
 Amount)+

Product

• Similarly, it is easy to define classifications over relationships (e.g., the
relationship between Director and Manager would belong to the class
of relationships between Employer and Employee).

• n-ary relationships (with n > 2) don’t create problems.
• Implementation in XML is straightforward.
• Reverse engineering of relational databases is easy.

3.2 Conceptual Modeling 113

Figure 3.13 AOM diagram for a more complete Order example (Person and Account left out).
We use the notation known from XML DTDs to denote cardinality of relations between assets.
A department can receive multiple orders, and each order contains at least one position. Note
that what would traditionally be modeled as a weak entity type—Position—is simply modeled
as an asset type connected to Order.

+

CustomerID
CustomerID
Name
 (FirstName,
 LastName)
PhoneNo*

Customer

ProductNo

ProductNo
Name
Price(Currency,
 Amount)+

Product

OrderNo

OrderNo

Order Amount

Position

DepartmentNo

DepartmentNo
Name

Department

RefNo

RefNo

forwards
RefNo

RefNo

receives

A more detailed discussion of AOM is given by Daum (2002) and at
www.aomodeling.org.

3.2.3 A Document-Centered Step-by-Step Approach

In this section we describe a step-by-step approach, starting with an infor-
mal description, then constructing a model using the AOM approach,
and finally transforming the AOM model into an XML schema. The
results are XML data structures that closely represent the model.

Step 1
A popular method is to start with an informal verbal description of the
scenario:

• Customer A orders Products or Services.
• Department B receives these Orders.
• Department B forwards an Order to Department C or D.
• An Order has Positions.
• Each Position has an amount and a Product or a Service.

A short grammatical analysis separates these sentences into nouns
(Customer, Product, Service, Department, Order) and verbs (order, re-

Chapter 3 Structure

Informal
description

114

Figure 3.14 A cluster comprised of the Product and Service assets. We have attributed the arcs
emanating from forwards and receives to role names.

+

CustomerID
CustomerID
Name
 (FirstName,
 LastName)
PhoneNo*

Customer

ProductNo

ProductNo
Name
Price(Currency,
 Amount)+

Product

OrderNo

OrderNo

Order Amount

Position

DepartmentNo

DepartmentNo
Name

Department

RefNo

RefNo

forwards
RefNo

RefNo

receives
Forwarder

Receiver

Message

Receiver
Message

ProductNo

ProductNo
Name
Duration
Price(Currency,
 Amount)+

Service

ceive). In traditional ERM all nouns would be modeled as entities, and all
verbs would be modeled as relationships. However, there is an ambiguity:
the verb “orders” and the noun “Order” relate to the same concept.

Step 2
We avoid this problem by modeling both verbs and nouns as assets. We
determine which properties each asset has and which property combina-
tion can act as a minimal key. We identify as asset types Customer, Prod-
uct, Service, Department, Order, forwards, receives.

The verb “has” is not modeled as an asset. Instead, “has amount” re-
sults in a property of asset Position, and “has Product or Service” results
in a cluster (for the “or”) with arcs leading to Product and Service.

As we identify the asset types we also represent the relations between
the asset types by connecting them with arcs. Because an Order can have
more than one Position asset, we represent this cardinality constraint by
attributing this arc to the character “+”.

Department appears in two roles: as a forwarder and as a receiver. To dif-
ferentiate between both, we label the arc emanating from “receives” with
the respective role names. Optionally, we identify other roles with an ap-
propriate role label.

Step 3
In this step, we make sure of the following:

• Asset types are primitive—their properties do not contain assets that
could be modeled as independent asset types. This is similar to the first
normal form (1NF) in relational theory. For example, the asset type
Order must not embed customer data.

• Asset types are minimal—they do not contain redundant properties,
meaning none of their properties can be derived from other properties.

• Asset types should have a key. Keys must be minimal—they must
consist of the smallest set of properties that can uniquely identify an
instance.

• Asset types must be complete—other assets contained in the scenario
can be derived from the defined asset types.

• Asset types must not be redundant—none of the defined asset types can
be derived from other asset types.

• All asset types must have a unique meaning.

Step 4
An asset type is in partitioned normal form (PNF) if the atomic properties of
an asset constitute a key of the asset and all nonatomic properties are in
partitioned normal form themselves.

3.2 Conceptual Modeling

Assets and arcs

Normalization

Partitioned
normal form

115

The advantage of PNF assets is that their structure can be transformed
without information loss. PNF is especially essential if we plan to store as-
sets in relational databases. Relational technology requires fragmenting
complex structures into flat relational tables. Keys that span complex
structures are lost during such a transformation to first normal form.

In our example, all asset types are in PNF. Customer, for example,
has the atomic property CustomerID as key. The nonatomic property Name
(FirstName, LastName) is in PNF because the combination of the atomic
subproperties FirstName and LastName constitutes a key.

In some cases, however, PNF is too strict. If we were to drop CustomerID
from Customer, we would need to use Name(FirstName,LastName) as key.
Consequently, Customer would not be in PNF.

Step 5
Business objects are assets that play a role in a business process. This
requires that we have a rough idea about the business process model (see
Chapter 5). In our example, Customer, Product, Service, and Department
are business objects (Figure 3.15). Business objects can consist of several
assets. Formally we can cast any hierarchy (if we interpret the arcs as a
relation between superior and inferior) of asset types into a business object.
The top-level asset serves as the identifying asset of the business object.

We demarcate each business object with a rectangle and use a bold out-
line for the identifying asset.

Step 6
In this step we identify business documents. Usually, business documents
are exchanged between the business objects engaged in a business pro-
cess. In our example, we have only one business document, consisting of
Order and Position.

Formally we can cast any hierarchy of asset types into a business docu-
ment. The top-level asset serves as the identifying asset of the business
object. In our case this is the asset Order.

We demarcate each business document with a dashed rectangle and
use a bold outline for the identifying asset.

Step 7
Usually not all asset types make their way into a business document. In
our example, the asset types “receives” and “forwards” are left over.

Asset types that are neither part of business objects nor part of business
documents can serve various purposes. In our case “receives” and “for-

Chapter 3 Structure

Business objects

Business
documents

Other assets

116

wards” serve as audit trails for the documents received and forwarded. We
would, of course, implement those assets as XML schemata, too.

Other assets that describe the relationships between business docu-
ments may result in the definition of business rules. Also in this case we
would opt for an XML implementation, instead of “hard-coding” these
rules into the application. The result is ease of maintenance and much
higher responsiveness to change requests.

3.2 Conceptual Modeling 117

Figure 3.15 Identifying business objects and business documents.

Order

Customer

Department

+

CustomerID
CustomerID
Name
 (FirstName,
 LastName)
PhoneNo*

Customer
Product

ProductNo

ProductNo
Name
Price(Currency,
 Amount)+

Product

OrderNo

OrderNo

Order Amount

Position
DepartmentNo

DepartmentNo
Name

Department

RefNo

RefNo

forwards
RefNo

RefNo

receives

Forwarder Receiver

Message
Receiver

Message Service

ProductNo

ProductNo
Name
Duration
Price(Currency,
 Amount)+

Service

Step 8
We can now define the XML schemata. At this point we have to decide
how to implement is-a roles. There are two options: include the proper-
ties of the target asset in the current asset, or use XML Schema’s inheri-
tance mechanisms, such as global complex types. The latter option is
only applicable as long as we deal with single inheritance. Multiple inher-
itance is not possible with XML Schema.

Figure 3.16 shows the Customer schema (generated with XMLSpy). Here
is the corresponding code:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”Customer”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”CustomerID” type=”xsd:string”/>
<xsd:element name=”Name”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”FirstName” type=”xsd:string”/>
<xsd:element name=”LastName” type=”xsd:string”/>

Chapter 3 Structure118

Figure 3.16 Schema diagram for Customer.

Customer

CustomerID

PhoneNo

FirstName

LastName

Name

xsd:string

xsd:string

xsd:string

xsd:string

type

type

type

type

0...∞

XML schemata

T
E
A
M
F
L
Y

Team-Fly®

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”PhoneNo” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Here we have implemented each property as elements, and subproperties
as children of these elements.

Figure 3.17 shows the Product schema. Here is the corresponding code:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”Product”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”ProductNo” type=”xsd:string”/>
<xsd:element name=”Name” type=”xsd:string”/>
<xsd:element name=”Price” maxOccurs=”unbounded”>
<xsd:complexType>

3.2 Conceptual Modeling 119

Figure 3.17 Schema diagram for Product.

Product

ProductNo

Name

Currency

Amount

Price

xsd:string

xsd:string

xsd:decimal

xsd:string

type

type

type

type

1...∞

<xsd:sequence>
<xsd:element name=”Currency” type=”xsd:string”/>
<xsd:element name=”Amount” type=”xsd:decimal”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

The diagram for Service (Figure 3.18) resembles the diagram for Prod-
uct. The code is also similar:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”Service”>
<xsd:complexType>
<xsd:sequence>

Chapter 3 Structure120

Figure 3.18 Schema diagram for Service.

Service

ProductNo

Name

Currency

Amount

Price

xsd:string

xsd:string

xsd:decimal

xsd:string

type

type

type

type

1...∞

Duration
xsd:positiveIntegertype

<xsd:element name=”ProductNo” type=”xsd:string”/>
<xsd:element name=”Name” type=”xsd:string”/>
<xsd:element name=”Price” maxOccurs=”unbounded”>
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Currency” type=”xsd:string”/>
<xsd:element name=”Amount” type=”xsd:decimal”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”Duration” type=”xsd:positiveInteger”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure 3.19 shows the schema for Department. Here is the correspond-
ing code:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”Department”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”DepartmentNo” type=”xsd:string”/>
<xsd:element name=”Name” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

3.2 Conceptual Modeling 121

Figure 3.19 Schema diagram for Department.

DepartmentNo

Name

Department

xsd:string

xsd:string

type

type

The business object Order has arcs that lead to other business objects
(see Figure 3.20). These are implemented as elements, too. For example,
the arc leading to business object Customer is implemented as an element
Customer with a child element CustomerID that contains the foreign key
value.

The cluster combining the arc leading to Product and Service is imple-
mented as a choice particle containing elements Product and Service,
each with a child element ProductNo containing the foreign key value.

Here is the code for Order:

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”Order”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”OrderNo” type=”xsd:string”/>
<xsd:element name=”Customer”>
<xsd:complexType>
<xsd:sequence>

Chapter 3 Structure122

Figure 3.20 Schema diagram for Order.

Order

OrderNo

CustomerID

Amount

Position

xsd:string

xsd:string

xsd:positiveInteger

type

type

type

1...∞

Customer

ProductNo
xsd:stringtype

Product

ProductNo
xsd:stringtype

Service

<xsd:element name=”CustomerID” type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”Position” maxOccurs=”unbounded”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”Amount”

type=”xsd:positiveInteger”/>
<xsd:choice>
<xsd:element name=”Product”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”ProductNo”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”Service”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”ProductNo”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

The asset receives also has arcs that lead to other business objects (see
Figure 3.21). These arcs are labeled with role names. We use these role
names as names for the elements representing the arcs (Receiver and Mes-
sage) and add an annotation that informs about the target asset. Here is
the code:

3.2 Conceptual Modeling 123

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”receives”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”RefNo” type=”xsd:string”/>
<xsd:element name=”Receiver”>
<xsd:annotation>
<xsd:documentation>
refers to Department

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”DepartmentNo”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”Message”>
<xsd:annotation>
<xsd:documentation>

Chapter 3 Structure124

Figure 3.21 Schema diagram for receives.

receives

RefNo

DepartmentNo

OrderNo
Message

xsd:string

xsd:string

xsd:string

type

type

type

Receiver
refers to Department

refers to Order

refers to Order
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”OrderNo” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

The schema diagram (Figure 3.22) and code for forwards are similar.

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>

<xsd:element name=”forwards”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”RefNo” type=”xsd:string”/>
<xsd:element name=”Forwarder”>

3.2 Conceptual Modeling 125

Figure 3.22 Schema diagram for forwards.

forwards

RefNo

DepartmentNo

OrderNo
Message

xsd:string

xsd:string

xsd:string

type

type

type

Forwarder
refers to Department

DepartmentNo
xsd:stringtype

Receiver
refers to Department

<xsd:annotation>
<xsd:documentation>
refers to Department

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”DepartmentNo”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”Receiver”>
<xsd:annotation>
<xsd:documentation>
refers to Department

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”DepartmentNo”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”Message”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”OrderNo”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

This completes the definition of the schemata. Now let’s look at some
examples of instances of the schemata we have defined.

Chapter 3 Structure126

Here is an instance of the Customer schema:

<?xml version=”1.0” encoding=”UTF-8”?>

<Customer xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”customer.xsd”>

<CustomerID>c7790-404</CustomerID>
<Name>
<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Name>
<PhoneNo>415-555-1234</PhoneNo>
<PhoneNo>415-555-1235</PhoneNo>

</Customer>

Now let’s look at an instance of the Product schema:

<?xml version=”1.0” encoding=”UTF-8”?>

<Product xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”product.xsd”>

<ProductNo>p6745-3</ProductNo>
<Name>Authoring System</Name>
<Price>
<Currency>USD</Currency>
<Amount>7500.00</Amount>

</Price>
<Price>
<Currency>EUR</Currency>
<Amount>8570.00</Amount>

</Price>
</Product>

Here is an instance of Service:

<?xml version=”1.0” encoding=”UTF-8”?>

<Service xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”service.xsd”>

<ProductNo>s9171-4</ProductNo>
<Name>Training</Name>
<Price>
<Currency>USD</Currency>
<Amount>1500.00</Amount>

</Price>
<Price>

3.2 Conceptual Modeling 127

<Currency>EUR</Currency>
<Amount>1730.00</Amount>

</Price>
<Duration>3</Duration>

</Service>

Here are two instances of Department:

<?xml version=”1.0” encoding=”UTF-8”?>

<Department xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”department.xsd”>

<DepartmentNo>d17</DepartmentNo>
<Name>Corporate Sales</Name>

</Department>

<?xml version=”1.0” encoding=”UTF-8”?>

<Department xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”department.xsd”>

<DepartmentNo>d23</DepartmentNo>
<Name>Shipping</Name>

</Department>

An example of an instance of the Order schema could look like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<Order xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”order.xsd”>

<OrderNo>238</OrderNo>
<Customer>
<CustomerID>c7790-404</CustomerID>

</Customer>
<Position>
<Amount>5</Amount>
<Product>
<ProductNo>p6745-3</ProductNo>

</Product>
</Position>
<Position>
<Amount>1</Amount>
<Service>
<ProductNo>s9171-4</ProductNo>

Chapter 3 Structure128

T
E
A
M
F
L
Y

Team-Fly®

</Service>
</Position>

</Order>

An instance of the receives schema:

<?xml version=”1.0” encoding=”UTF-8”?>

<receives xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”receives.xsd”>

<RefNo>x832</RefNo>
<Receiver>
<DepartmentNo>d17</DepartmentNo>

</Receiver>
<Message>
<OrderNo>238</OrderNo>

</Message>
</receives>

Finally, here is an example of an instance of forwards:

<?xml version=”1.0” encoding=”UTF-8”?>

<forwards xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”forwards.xsd”>

<RefNo>f773</RefNo>
<Forwarder>
<DepartmentNo>d17</DepartmentNo>

</Forwarder>
<Receiver>
<DepartmentNo>d23</DepartmentNo>

</Receiver>
<Message>
<OrderNo>238</OrderNo>

</Message>
</forwards>

Step 9
In some cases business objects and business documents can become too
large. This has several drawbacks:

• Parsing a large document takes a long time. This affects almost any
processing of XML documents (for example, transformation with an
XSLT style sheet) because most processing involves parsing.

3.2 Conceptual Modeling

Segmentation

129

• Processing a large document with a DOM parser requires a large
amount of resources. The whole document is converted into object
form (each document node becomes a separate object), and this whole
set of objects is kept resident in memory.

• Collaborative authoring of large documents is awkward. Some data-
base systems (and also standards like WebDAV) support locking only
on the document level. So when one author changes a document, the
document is locked for others.

Therefore it is necessary to split large documents into smaller ones.
This is possible on the conceptional level, for example, by splitting a large
business object into a main object and aggregate parts. Each part would
be modeled as a unary relationship type to which the main object relates.

Step 10
With XML Schema we can define the schemata for each business object
and business document.

However, we still need a way to describe the overall layout of the com-
plete model. One way to do this is to embed annotations into the
schemata, similar to the ones we used in a previous example:

<xsd:annotation>
<xsd:documentation>
refers to Order via OrderNo

</xsd:documentation>
</xsd:annotation>

However, this is an informal way and is hardly suitable to support auto-
mated systems. Also, by including the model structure in the schemata,
the document base becomes hard to maintain. Changes in the model
would require changes in many schemata.

It is much better to describe the model separately from individual
schemata. One possible way is by using RDF, which we will discuss in de-
tail in Section 3.3.

Another possibility is to describe the complete model using the AOM
serialization syntax, which is XML based (see www.aomodeling.org). Here is
a short excerpt showing the description of the assets Order, Position,
Product, and Service:

<level2>
<displayLabel>Order</displayLabel>
<asset id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A40”

name=”Order”>

Chapter 3 Structure

Overall layout

130

<primaryKey
fields=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A41”/>

<property id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A41”
name=”OrderNo”/>

<arc target=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A20”/>
<arc maxOccurs=”unbounded”

target=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A50”/>
</asset>
<asset id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A50”

name=”Position”>
<property name=”Amount”/>
<cluster>
<arc target=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A60”/>
<arc target=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A70”/>

</cluster>
</asset>

</level2>

<level2>
<displayLabel>Product</displayLabel>
<asset id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A60”

name=”Product”>
<primaryKey

fields=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A61”/>
<property id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A61”

name=”ProductNo”/>
<property name=”Name”/>
<property name=”Price”>
<sequence maxOccurs=”unbounded”>
<property name=”Currency”>
<property name=”Amount”>

</sequence>
</property>

</asset>
</level2>

<level2>
<displayLabel>Service</displayLabel>
<asset id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A70”

name=”Service”>
<primaryKey

fields=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A71”/>

3.2 Conceptual Modeling 131

<property id=”uuid:0016B448-EB27-47E3-AC09-9655CEF46A71”
name=”ProductNo”/>

<property name=”Name”/>

<property name=”Duration”/>
<property name=”Price”>
<sequence maxOccurs=”unbounded”>
<property name=”Currency”>
<property name=”Amount”>

</sequence>
</property>

</asset>

</level2>

Note that the level2 elements enclose business objects. UUIDs are
used to establish ID/IDREF structures between AOM items.

3.2.4 Smash the Enterprise Data Model?

The enterprise data model postulates that the data of an enterprise should
be described by one coherent, complete, and consistent data model.

The idea of the enterprise data model has its roots in the classical
transactional systems. When the data of an enterprise is kept in a single
database, it is relatively easy to watch over constraints—for example, en-
sure that referenced entities are not deleted or that identifiers are kept
unique. The same still holds for distributed databases that employ so-
phisticated transaction protocols (like the two-phase commit) to main-
tain the integrity of all connected databases.

However, data kept in the central repository is only a part of an enter-
prise’s data set. A large amount of information accessible over the enter-
prise’s intranet is kept scattered across multiple independent databases
and file systems, even on the notebook computers and PDAs of the com-
pany’s employees. And often the consistency and integrity of that data
are in rather sad condition.

In addition, the existence of a global enterprise data model can be a
drag factor for the IT infrastructure of an enterprise. Many enterprises
today have a flat organization, with business units acting virtually
autonomously, networking with other business units as they do with ex-
ternal partners. The enterprise data model, however, reflects a more hier-
archical company structure. Business units that want to introduce new
business policies have to apply to a central unit for a change of the data
model. And vice versa—a change in the global model requires notifying
every business unit about the change.

Chapter 3 Structure

Possible drag
factor

132

Chen, Thalheim, and Wong (1999) argue against bottom-up techniques
and postulate a solid modeling concept with a top-down approach:

It is very important to have a clean conceptual model of major components
and services to guide us in this integration process. It should work like a
multi-level “map,” starting from a high-level map, which can be expanded
into low-level maps in a hierarchical way. Each new software module con-
structed should follow this conceptual “guidance” model (map) and provide
a self-description on details of the components and interfaces specified by the
conceptual guidance map.

But, when bottom-up and quick-and-dirty methods flourish and top-
down engineering techniques are avoided, there may be a reason. The
reason could be that these top-down methods are not flexible enough to
catch up with an ever faster changing work environment: “. . . in the flat
organizations of today this kind of top-down strategies may not be suit-
able, as groups and local units need to control and define information re-
sources according to their practices” (Forsberg and Dannstedt 1999).

The mess in today’s intranets is just an indication that the hierarchical
enterprise data model increasingly fails to deliver. Too slow to follow the
rapid changes of the business environment of today, this model made
people turn to the more flexible ad hoc solutions of Web technology.

This does not mean that conceptual modeling is wrong. It simply
means that conceptual modeling techniques and Web technologies have
to converge. Earlier in this chapter we have shown that the way from a
conceptual model to the definition of business documents and business
rules is relatively straightforward. We feel that this approach is a step in
the right direction. Business objects, business documents, and business
rules are the constituents of business processes. Doing business on the
Web implies negotiating how the business processes of the parties in-
volved in a transaction can collaborate. We will discuss in later chapters
how to model such processes.

Also required is the development of Web technologies that can make a
conceptual model go live—the conceptual model can be easily trans-
formed into a navigational structure. An example of such a transforma-
tion is given in the discussion of WebML in Section 7.1.2.

3.2.5 Best Practices

We recommend the following practices:

• Identify business objects and business documents. In the case of a pur-
chase order, for example, the order is a business document, while order
lines are subordinate assets. Model business objects and business docu-
ments as separate documents.

3.2 Conceptual Modeling

Flat hierarchies

133

• Real-world entities are a good guide for detecting business objects. A
customer, for example, is such an entity. The address of a customer, in
contrast, is not such an entity but only a property of the customer en-
tity. A customer address would therefore be modeled as a subordinate
entity and as an element within an XML customer document.

• Using such an approach will result in an intuitive model. However, in
many cases it is difficult to decide on what should be modeled as a
business object. What is a dominant entity and what is not can depend
on the context. When we said earlier that a customer address should
be modeled as a property, we were referring to the average business
case. However, in the context of a direct mailing service or the telecom
industry, a street address is an asset and a business object.

• Whenever possible, use the partitioned normal form for all business
objects and business documents. As we just pointed out, models can
depend on the context. In electronic business, where trade relation-
ships are hard to predict, sometimes partners will have different ideas
about which entity is a business object and which is not. It is therefore
essential that business objects and business documents can be struc-
turally transformed without information loss. The partitioned normal
form guarantees exactly that.

• Good starting points for identifying business objects are the electronic
business standards such as Rosetta, BizTalk, and ebXML. These stan-
dards define core business objects. The definitions of these business ob-
jects are made available through public repositories. Using these defi-
nitions will increase the chance that potential business partners will
“speak the same language.” If you cannot find a particular business ob-
ject in such a repository, you can contribute your own definitions to
the repository, thus making them available to others. Remember that
electronic business is not only about the collaboration of business pro-
cesses but also about the collaboration of developers.

3.3 THE RESOURCE DESCRIPTION FRAMEWORK
AND CONCEPTUAL MODELING

In this section we will introduce the Resource Description Framework
(RDF). RDF can be seen as an enabling technology for semantic modeling,
as a generic “assembler language” on top of which domain and task spe-
cific languages can be built. RDF applications include the Dublin Core
and also DAML and OIL—languages for the description of ontologies that
we will discuss in Section 4.2.2.

Chapter 3 Structure134

In this section we show how RDF can be used to describe the concep-
tual models developed in the previous chapter.

RDF has been a W3C recommendation since February 1999 (RDF
1999). The accompanying Resource Description Framework Schema Spe-
cification is, at the time of writing, a candidate recommendation (RDF
2000).

RDF provides an open standard for describing Web resources—but not
just Web resources. In fact, RDF allows statements to be made about any-
thing, even about off line resources and the weather. As long as you can
identify a resource with a URI (Universal Resource Identifier), you can use
RDF to say something about this resource. And because you can assign a
unique URI to almost anything, including your children, your dog, and
your Nintendo, RDF has a wide application range.

3.3.1 RDF Basics

We said that RDF allows you to make statements about resources. This is
exactly the core point of RDF. RDF does not require modifying existing
resources. An RDF description of a resource is a separate entity, and, as
you have probably guessed, as a separate entity it can become a resource,
too. So, you can make statements about statements about statements,
and so on. An ideal base for gossip. And, yes, no RDF description has the
exclusive rights to describe a resource. There can be many RDF statements
distributed over the Web that describe the same resource.

Now, what sort of statements can you make about a resource?
RDF statements have a very simple structure. Each statement has the

form of a triple, consisting of predicate, subject, and object. For example, in
the sentence “John has phone number 415-555-6789”, the subject is
“John” because we are talking about him, “has phone number” is the
predicate, and the object is the actual phone number, “415-555-6789”.

We can see this statement from a different viewpoint. We could say
that the phone number is a property of John. This property is called (has
the name) “phone number”, and the value of the property is “415-555-
6789”. In RDF, all statements have this form: Subject has property. Each
property consists of a name/value pair, with property values being string
literals or references to other resources.

By now you are probably asking yourself, “Isn’t that similar to entity
relationship diagrams where entities have attributes?” You are right,
and that’s why we called this section “The Resource Description Frame-
work and Conceptual Modeling.” RDF is one way to describe conceptual
models.

3.3 The Resource Description Framework and Conceptual Modeling

The first RDF
statement

135

Until now we haven’t talked about relationships. In fact, RDF does not
know relationships as a separate concept. In RDF relationships are noth-
ing other than properties. The relationship “John is married to Mary”
would be expressed as “John has marriage with Mary”. “marriage with
Mary” becomes a property of John. “marriage with” is the name of the
property, and “Mary” is the value. Note that this statement does not tell
us anything about Mary! It is a statement about John. To make this rela-
tionship bidirectional we would have to issue an additional statement
“Mary has marriage with John”.

These are more or less the basics of RDF. Simple, easy to understand,
and very powerful. Before we discuss some advanced features, let us sum-
marize the basic concepts and present a few examples. Table 3.1 lists the
different ingredients of a statement.

Note that literals can be plain strings but they can also contain
markup. For example, a literal could contain an XML structure. However,
the RDF standard explicitly disavows a definition of equivalence between
literals containing markup. This is because at the time the RDF standard
was released, there existed no standard defining the equivalence between
two XML documents. In the meantime, the XML canonical form has
been standardized (Boyer 2001). This standard allows the comparison of
two XML documents for equivalence by reducing the document layout to
a canonical format. Future RDF versions may therefore contain a defini-
tion of equivalence for marked-up literals.

RDF is an abstract, conceptual framework for defining and using meta-
data, independent of any concrete implementation and syntax. However,
to write RDF statements we require a concrete means of expression. One
possibility is directed labeled graphs (also called “node and arc dia-
grams”). (See Figure 3.23.)

Chapter 3 Structure136

Table 3.1 Anatomy of an RDF Statement.

Statement Property Domain Example

Subject Resource http://www.ourfamily.org/John

Predicate Property PhoneNo
name

Object Property Resource “415-555-6789”
value or literal

RDF and ERM

Nodes and arcs

In directed labeled graphs (DLGs) resources are shown as ellipsoids.
Property values that are literals (strings) are shown as rectangles. An arc
points from the subject to the object and is labeled with the predicate
(property name). In an entity relationship diagram such a property would
be represented as an attribute.

Another way to represent an RDF statement is the actual RDF syntax as
defined in the RDF specification. (Currently, the RDF syntax is going
through a revision cycle; see Beckett 2001.) This syntax is based on XML.
Each RDF description is represented as an XML element. However, this
does not mean that such a description can only describe XML resources:

<rdf:RDF>
<rdf:Description about=”http://www.ourfamily.org/John”>
<p:PhoneNo>
415-555-6789

</p:PhoneNo>
</rdf:Description>

</rdf:RDF>

As you can see, all tags defined by the RDF recommendation are prefixed
with the identifier rdf:, which has been assigned somewhere to the RDF
namespace URI. The about attribute identifies the subject of the state-
ment. The property of the subject is defined as a child element of the
rdf:Description element. The tag denotes the property name, while the
property value is expressed as element content. The prefix p: denotes a
problem domain namespace, which, for example, we could have defined
using an XML namespace declaration such as

xmlns:p=”http://www.telecom.com/schema/”

3.3 The Resource Description Framework and Conceptual Modeling

Syntax

137

Figure 3.23 Simple node and arc diagram. The resource (ellipsoid) has one
literal property value (rectangle).

www.ourfamily.org/John

"415-555-6789"

PhoneNo

If you’ve been well educated in object-oriented (OO) thinking, by now
you probably feel a bit dizzy. If you think of resources in terms of object
orientation, everything in RDF seems to be turned upside down. Where is
data encapsulation? Where is information hiding? In OO, the properties
of objects are private by default, unless they are published via the object’s
interface. In RDF, in contrast, you talk about existing resources—possibly
resources at a foreign site. In most cases you would not even be able to
modify a resource when you want to add a new property. RDF allows you
to attach a new property from the outside.

Now let’s see how to present a relationship between two resources (see
Table 3.2 and Figure 3.24). In Figure 3.24 the property value (object) is
shown as an ellipsoid, too, because the value is another resource (identi-
fied by a URI). RDF allows the definition of several properties that associ-
ate two resources. This means that in terms of ERM an RDF property is
equivalent to a named role within an unnamed relationship. RDF does
not offer specific constructs to define named relationships. (Of course,

Chapter 3 Structure

RDF vs. OO

Relationships

138

Figure 3.24 Here the property value is another resource.

www.ourfamily.org/John

www.ourfamily.org/Mary

Marriage_with

Table 3.2 Relationship between Two Resources.

Statement Property Domain Example

Subject Resource http://www.ourfamily.org/John

Predicate Property Marriage_with
name

Object Property Resource http://www.ourfamily.org/Mary
value or literal

T
E
A
M
F
L
Y

Team-Fly®

you could name a relationship by making a statement about a statement,
which we will discuss shortly.)

<rdf:RDF>
<rdf:Description about=”http://www.ourfamily.org/John”>
<f:Marriage_with>

http://www.ourfamily.org/Mary
</f:Marriage_with>

</rdf:Description>
</rdf:RDF>

Note that we have used another problem domain namespace here. The
prefix f: may be defined as

xmlns:f=”http://www.ourfamily.org/schema/”

Authors of RDF descriptions are well advised to make extensive use of
the namespace facilities available with XML. This avoids later conflicts
when RDF descriptions are merged, which could be required, for exam-
ple, in the case of company mergers or other marriages. Our two exam-
ples can easily be merged into one single description:

<rdf:RDF>

<rdf:Description about=”http://www.ourfamily.org/John”>

<p:PhoneNo>
415-555-6789

</p:PhoneNo>

<f:Marriage_with
rdf:resource=”http://www.ourfamily.org/Mary”/>

</rdf:Description>

</rdf:RDF>

3.3.2 From ERM to RDF

Figure 3.25 shows how a previous ERM example is transformed into RDF.
This example required the description of two resources, one for a Cus-
tomer instance, and another for a Product instance. The relationship
between Customer and Product is modeled through a property of the Cus-
tomer instance.

Note that in RDF we are talking about instances, while an entity rela-
tionship diagram is about types of entities and relationships. We will see

3.3 The Resource Description Framework and Conceptual Modeling

Namespaces

139

Chapter 3 Structure140

Figure 3.25 ERM converted to RDF: (a) entity relationship diagram; (b) directed labeled graph.

(a)

Customer Product

Phone

CustomerID

Name Name Number

Price

orders

(b)

www.some-toys.com www.bears.com/teddy757

"900-757""W99-783"

"Some Toys"

"510-555-4545"

PhoneNo

Name

ID ProductNo

Name

Price

orders

"49.95"

"Ted"

later how the Resource Definitions Schema Specification allows us to talk
about resource types.

The following code shows the RDF serialization of the example in Fig-
ure 3.25.

<rdf:RDF>
<rdf:Description about=”http://www.some-toys.com”>
<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545</sales:PhoneNo>
<sales:orders

rdf:resource=”http://www.bears.com/teddy757”/>
</rdf:Description>
<rdf:Description about=”http://www.bears.com/teddy757”>
<bears:ProductNo> 900-757 </bears:ID>
<bears:Name> Ted </bears:Name>
<bears:Price> 49.95 </bears:Price>

</rdf:Description>
</rdf:RDF>

The entity relationship diagram in Figure 3.25(a) shows that the orders
relationship is a 1:n relationship. We had ignored that when translating
the diagram into RDF. How do we describe such a relationship in RDF?

Two RDF constructs deal with multiple occurrences: Bag and Seq (se-
quence). A Bag contains unordered property values; a Seq contains or-
dered property values. Both containers are allowed to contain duplicate
values—there is no concept of uniqueness in RDF. Figure 3.26 shows our
example with bags.

Technically a bag or a sequence is an anonymous intermediate re-
source of type rdf:Bag or rdf:Seq. (Note that the type is specified as just
another property.) The RDF syntax specification, however, provides a
shorthand notation in the form of tags: <rdf:Bag> and <rdf:Seq>. The
elements of a bag or a sequence are identified by an <rdf:li .../> tag:

<rdf:Description about=”http://www.some-toys.com”>
<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545 </sales:PhoneNo>
<sales:orders>
<rdf:Bag>
<rdf:li rdf:resource=”http://www.bears.com/teddy757”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy766”/>

3.3 The Resource Description Framework and Conceptual Modeling

Bags and
sequences

141

<rdf:li rdf:resource=”http://www.bears.com/teddy565”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy123”/>

</rdf:Bag>
</sales:orders>

</rdf:Description>

The syntax for the Seq container is similar.

Chapter 3 Structure142

Figure 3.26 Using bags for teddies. Resource collections can be represented with Bag and Seq.

www.some-toys.com

"W99-783"

"Some Toys"

"510-555-4545"

www.bears.com/teddy757

"900-757"

"Ted"

"49.95"

PhoneNo

Name

ID ProductNo

Name

Price

rdf:Bag

rdf:type

orders

more bears

rdf:li

rdf:li

rdf:li

rdf:li

An additional, third construct, called Alt (alternative), allows the spec-
ification of a list of possible property values from which one is selected.
The selection of one list element excludes the others from the relation-
ship. In our example, using Alt instead of Bag could mean that the first
available teddy in the list is preferred and that the other bears quoted
serve as alternatives when the first bear isn’t available.

Earlier we stated that RDF can describe any resource. Now, when we
define a Bag of resources, can we talk about this container and its con-
tents? Of course we can.

First, we define the Bag as a resource in its own right:

<rdf:Bag ID=”bag_of_bears”>
<rdf:li rdf:resource=”http://www.bears.com/teddy757”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy766”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy565”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy123”/>

</rdf:Bag>

This Bag is now its own resource, which can be identified via the URI
“#bag_of_bears”. So, we can make a statement about this resource:

<rdf:Description about=”#bag_of_bears”>
<sales:ordered_by rdf:resource=”http://www.some-toys.com”/>

</rdf:Description>

Additionally, we can make statements about each member of the Bag.
To do so, RDF provides a special attribute aboutEach:

<rdf:Description aboutEach=”#bag_of_bears”>
<sales:ordered_by rdf:resource=”http://www.some-toys.com”/>

</rdf:Description>

The aboutEachPrefix attribute can be used to make statements about the
set of members in a container selected by a URI pattern—for example,
about all resources in a Web site:

<rdf:Description aboutEachPrefix=”http://www.bears.com/”>
<bears:Trademark>™The Bears Company</Bears:Trademark>

</rdf:Description>

3.3.3 Advanced Modeling Techniques

In this section, we show how constructs known from entity relationship
modeling can be expressed in RDF.

3.3 The Resource Description Framework and Conceptual Modeling

Alternatives

143

N-ary Relationships
We have to give some consideration to n-ary relationships. ERM allows
ternary, quaternary, and so on relationships, where one relationship asso-
ciates three, four, or more entities with each other. RDF statements, how-
ever, can model only binary relationships: subject to object. Aware of this
problem, the RDF specification recommends a way around it. Let’s con-
sider the following cases:

• Lecturer Miles recommends book XML Bible for course 3A.
• Lecturer Miles recommends book OO Design for course 2B.
• Lecturer Davis recommends book SGML Praxis for course 3A.

On the level of entity sets we could hardly split this ternary relation-
ship into two binary relationships. We would lose information. The trick
RDF uses is to introduce intermediate resources on the instance level:

<RDF

xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:col=”http://www.college.edu/schema#”>

<Description about=”http://www.college.edu/staff/Miles”>

<col:Recommendation rdf:parseType=”Resource”>
<col:recommended_reading rdf:resource=

“http://wwww.college.edu/library/XML_Bible”/>
<col:course rdf:resource=

“http://wwww.college.edu/courses/3A”/>
</col:Recommendation>

<col:Recommendation rdf:parseType=”Resource”>

<col:recommended_reading rdf:resource=
“http://wwww.college.edu/library/OO_Design/>

<col:course rdf:resource=
“http://wwww.college.edu/courses/2B”/>

</col:Recommendation>

</Description>

<Description about=”http://www.college.edu/staff/Davis”>
<col:Recommendation rdf:parseType=”Resource”>
<col:recommended_reading rdf:resource=

“http://wwww.college.edu/library/SGML_Praxis”/>
<col:course rdf:resource=

Chapter 3 Structure144

“http://wwww.college.edu/courses/3A”/>
</col:Recommendation>

</Description>
</RDF>

The col:Recommendation elements defined within the Description ele-
ments act as intermediate resources. Intermediate resources do not exist
as real resources. They are of a purely fictive nature and are only visible
within the scope of the containing element.

At this point we have to explain the rdf:parseType attribute. The
parseType attribute changes the interpretation of the element content.
Two values are possible: Literal or Resource.

• The value Literal specifies that the element content must not be in-
terpreted by an RDF processor. For example, when an element contains
some other XML or HTML markup, this value should be specified.
(Note: RDF explicitly disavows definition of equivalence between liter-
als containing markup!)

• The value Resource specifies that the element content must be treated
as if it were the content of a Description element.

This technique of modeling n-ary relationships can also be used to
model attributed relationships (see Figure 3.27). A binary relationship
with one attribute, for example, is modeled in the same way as a ternary
relationship without an attribute:

<rdf:Description about=”http://www.some-toys.com”>

<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545 </sales:PhoneNo>
<sales:orders>
<sales:Order rdf:parseType=”Resource”>
<sales:OrderNumber> 9993-333 </sales:OrderNumber>
<rdf:Bag>
<rdf:li rdf:resource=”http://www.bears.com/teddy757”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy766”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy565”/>
<rdf:li rdf:resource=”http://www.bears.com/teddy123”/>

</rdf:Bag>
</sales:Order>

</sales:orders>
</rdf:Description>

3.3 The Resource Description Framework and Conceptual Modeling

Literals and
resources

Attributed
relationships

145

Chapter 3 Structure146

(a)

Customer Product

Phone

CustomerID

Name Name Number

PriceOrderNumber

orders

(b)

rdf:Bag"9993-333"sales:Order

rdf:typerdf:type sales:OrderNumber

orders

more bears

rdf:li

rdf:li

rdf:li

rdf:li

sales:orderlines

www.some-toys.com

"W99-783"

"Some Toys"

"510-555-4545"

www.bears.com/teddy757

"900-757"

"Ted"

"49.95"

PhoneNo

Name

ID ProductNo

Name

Price

Figure 3.27 Modeling relationships with attributes: (a) entity relationship diagram; (b) directed
labeled graph.

This substitution is, as we can see, very similar to what is done in ERM
dialects that do not know attributed relationships when we have to model
attributed relationships: the relationship is modeled as an entity; that is, it
is reified. In RDF, the distinction between relationships and entities blurs
because each relationship can become a resource in its own right.

Aggregations
The possibility of defining resources “on the fly” can be used to model ag-
gregations, too (see Figure 3.28):

<rdf:Description about=”http://www.bears.com/sales”>
<bears:DepNo> 45/3 </bears:DepNo>
<bears:receives>
<rdf:Seq>
<rdf:li>
<sales:Order rdf:ID=”#order9993-333”

rdf:parseType=”Resource”>
<sales:OrderNumber> 9993-333 </sales:OrderNumber>
<sales:Customer

rdf:resource=”http://www.some-toys.com”
rdf:parseType=”Resource”>

<sales:ID> W99-783 </sales:ID>
<sales:Name> Some Toys </sales:Name>
<sales:PhoneNo> 510-555-4545 </sales:PhoneNo>
<sales:orders>
<rdf:Bag>
<rdf:li
rdf:resource=”http://www.bears.com/teddy757”/>

<rdf:li
rdf:resource=”http://www.bears.com/teddy766”/>

<rdf:li
rdf:resource=”http://www.bears.com/teddy565”/>

<rdf:li
rdf:resource=”http://www.bears.com/teddy123”/>

</rdf:Bag>
</sales:orders>

</sales:Customer>
</sales:Order>
</rdf:li>

</rdf:Seq>
</bears:receives>

</rdf:Description>

3.3 The Resource Description Framework and Conceptual Modeling 147

Chapter 3 Structure148

Figure 3.28 Modeling aggregation with RDF: (a) entity relationship diagram (figure continued on
facing page).

OrderNumber

receives

Order

(a)

Customer Product

PhoneName Name Number

orders

CustomerID Price

DepNo Department

T
E
A
M
F
L
Y

Team-Fly®

3.3 The Resource Description Framework and Conceptual Modeling 149

Figure 3.28 Modeling aggregation with RDF: (b) directed labeled graph.

www.bears.com/sales

order9993-333

"45/3"

DepNo

"9993-333"
OrderNo

receives

rdf:Bag

rdf:type

rdf:li

www.some-toys.com www.bears.com/teddy757

"900-757" "Ted"

"49.95"

"W99-783"
"Some Toys"

"510-555-4545"

PhoneNo

Name
ID

ProductNo Name

Price

rdf:Bag

rdf:type

orders

more bears
rdf:li

rdf:li

rdf:li

rdf:li

(b)

3.3.4 Reification

Note that until now we have used RDF only to talk about resource in-
stances. To make statements about resource classes (or resource types) on
the schema level, we need to investigate the possibilities defined in the
Resource Definition Schema Specification.

But before we do this, let’s explain quickly how we can make state-
ments about statements. Because the subject of a statement has to be a re-
source, we have to cast the statement about which we want to make a
statement into a resource—a process that is also called reification. “Reifica-
tion” comes from Latin and means “to make into a thing.” By reifying a
statement into a resource, we make it into a thing that we can talk about.

Consider the following statement: “Mary has phone number 415-555-
4321.” We can easily model this statement in RDF:

<rdf:RDF>

<rdf:Description about=”http://www.ourfamily.org/Mary”>

<p:PhoneNo> 415-555-4321 </p:PhoneNo>

</rdf:Description>

</rdf:RDF>

Now consider: “John says, ‘Mary has phone number 415-555-4321.’”
Here the statement “Mary has phone number 415-555-4321” becomes
the subject X in the statement “X is attributed to John.”

There are several ways to model a statement as a resource, but the easi-
est is to equip the Description element with a bagID attribute:

<rdf:Description bagID=”AboutMary”
about=”http://www.ourfamily.org/Mary”>

<p:PhoneNo> 415-555-4321 </p:PhoneNo>

</rdf:Description>

Every statement within the Description element is reified and becomes a
resource within a Description bag. We can now make statements about
these resources:

<rdf:Description aboutEach=”#AboutMary”>

<p:attributedTo> John </p:attributedTo>

</rdf:Description>

Chapter 3 Structure150

Statements
about
statements

Warning: If we consider an RDF statement as a “thought,” then reifica-
tion opens the opportunity to “think” about “thoughts.” So be very care-
ful which sort of RDF statements you place on the Web—maybe it’s you
who caused the Web to become self-conscious!

In terms of formal logic, a set of basic RDF statements constitutes a
first-order logic system. With reification (i.e., making statements about
statements) we get a second-order logic system, and second-order systems
have their problems. In 1931, Kurt Gödel showed that second-order sys-
tems are logically incomplete, in contrast to first-order systems, for which
he had previously (in 1930) proved completeness. The basic idea of
Gödel’s proof of incompleteness is to construct a statement that makes a
statement about itself: it claims that itself cannot be proved.

But avoiding reification wouldn’t help us much further. In 1936
A. Church proved that even for the first-order predicate logic there is no
general method to decide on the correctness or incorrectness of a state-
ment within a finite time span using a mechanical device such as a Tu-
ring machine. And since our fastest computers cannot do better than a
Turing machine, we have a problem, even if we don’t use reification.

However, for RDF the practical implications remain minor. Although
in the design of computer languages decidability plays a crucial role (for
example, Backus-Naur grammars are always decidable) because we want a
parser to stop with a result after a finite time span, this is not a critical
element in an open system such as the Internet. Almost always the com-
plete set of RDF statements on the Web will be incomplete and even con-
tradictory. A search engine that operates on such a set of RDF statements
will therefore be constructed in such a way that it will successfully answer
queries in most cases. In some cases, however, such a search engine
would have to stop reasoning after a given time span and report its failure
to find a result.

Second-order logic can be very helpful in representing the results of a
query. With first-order logic, the query “Who won the U.S. election in
2000?” would simply return “George Bush or Al Gore”. We wouldn’t have
needed a billion-dollar computer network for that sort of answer. With
second-order logic, however, the answer could be something like this:
“The Republican Web site claims George Bush as the winner, and the
Democratic Web site claims Al Gore as the winner.” Although we already
knew this from TV, it gives us a much clearer picture of what is going on.
To make the result of a query traceable we require the ability to make
statements about statements.

3.3 The Resource Description Framework and Conceptual Modeling 151

Gödel, Church,
and RDF

Implications
for RDF

3.3.5 RDF Schema

In the previous subsections we showed how to use RDF to describe re-
sources on the Web and elsewhere. All this happened on the level of indi-
vidual resources or collections of individual resources, that is, always on
the instance level.

The RDF Schema Specification (RDFS) enables us to define a taxonomy
of resources in terms of resource classes, superclasses, and subclasses. For
each of these classes we can define which types of statements may be
made about the instances of these classes, that is, which types of proper-
ties can be associated.

This does not mean that we always have to define RDF schemata when
we want to describe some resource. RDF can be used without accompany-
ing RDF schemata—the use of RDFS is optional.

This is similar to XML. Well-formed XML documents can be processed
without a DTD, but when a DTD is defined, the documents that refer to
the DTD as DOCTYPE can be checked for validity. In contrast with DTDs,
RDF schemata do not just define the structure of an RDF statement but
can also define semantic constraints. For example, it is possible to restrict
the range and the value domain of given statement types.

In a previous subsection now and then we used the rdf:type property,
for example, rdf:type=”rdf:Bag”. This property connects a resource in-
stance to a resource type or resource class. In the case of rdf:Bag this was
a predefined RDF resource class. RDFS, in addition, allows us to declare
our own user-defined resource classes. In many ways, the RDFS type sys-
tem is similar to the class hierarchies in object-oriented programming.
However, there is a major difference: in object-oriented programming
you define a class by specifying features (attributes and methods) of the
class. This is usually done in the context of the class definition.

RDFS works just the other way around: properties (statements) are the
subject of specification, and you describe to which resource classes they
apply. This is done via the rdfs:domain and rdfs:range constraints. The
rdfs:domain constraint describes to which resource classes a given prop-
erty applies, while the rdfs:range constraint describes the allowed range
for the property value.

In the following example we show how to model a generalization.
Defined are three classes, ProductOrService, Product, and Service, with
Product and Service being subclasses of ProductOrService:

<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>

Chapter 3 Structure152

Taxonomy
of resources

Semantic
constraints

<rdfs:Class rdf:ID=”ProductOrService”>
<rdfs:comment>
Abstract superclass for products and services.

</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID=”Product”>
<rdfs:comment>The class of products.</rdfs:comment>
<rdfs:subClassOf rdf:resource=”#ProductOrService”/>

<rdfs:Class>

<rdfs:Class rdf:ID=”Service”>
<rdfs:comment>The class of services.</rdfs:comment>
<rdfs:subClassOf rdf:resource=”#ProductOrService”/>

</rdfs:Class>

<rdf:Property ID=”Number”>

<rdfs:range rdf:resource=
“http://www.examples.com/classes#CatNumbers”/>

<rdfs:domain rdf:resource=”#ProductOrService”/>

</rdf:Property>

<rdf:Property ID=”Duration”>
<rdfs:range rdf:resource=”#Duration”/>
<rdfs:domain rdf:resource=”#Service”/>

</rdf:Property>

<rdfs:Class rdf:ID=”Duration”/>

<Duration rdf:ID=”One_day”/>

<Duration rdf:ID=”Two_days”/>

<Duration rdf:ID=”Three_days”/>

</rdf:RDF>

Note that the rdfs:Class tag starts the definition of a resource class.
This tag is defined in the RDFS specification, hence the namespace prefix
rdfs:. The ID attribute defines the class name. We define three classes:
ProductOrService, Product, and Service, with Product and Service being
subclasses of ProductOrService.

The elements rdf:Property define resources of type Property. The ID at-
tribute defines the property name. Resource definitions are standard RDF

3.3 The Resource Description Framework and Conceptual Modeling 153

operations, hence the namespace identifier rdf:. We define two proper-
ties: Number and Duration.

The element rdfs:range defines the value range for each property. In
the case of the property Number, the range definition refers to a resource
http://www.examples.com/classes#CatNumbers. We assume that the data-
type CatNumbers is defined in this resource. For property Duration a new
datatype is created on the spot: a class Duration is defined, and several re-
sources of type Duration enumerate the possible values. Each property
can have only a single rdfs:range specification.

The element rdfs:domain defines to which resource classes each prop-
erty applies. We have specified class ProductOrService as the domain for
property Number. Because the classes Product and Service are subclasses of
ProductOrService, the property applies to Product and Service, too. In
contrast, the property Duration applies only to class Service. Each prop-
erty may have multiple rdfs:domain specifications.

rdfs:domain and rdfs:range belong to RDFS, hence the namespace
identifier rdfs:. Because RDF and RDFS are separate specifications, they
also use two different namespaces for their syntactical elements. That can
be disturbing: schema authors must constantly switch between the two
namespaces. Somehow, this reminds us of the tourist who drowned in
Finland because all the lakes, islands, and peninsulas confused him and
he ended up mistaking a lake for land.

As we have seen, subclasses do inherit properties from their parent
classes (Product and Service inherited Number from ProductOrService). At
the very top of the RDFS class hierarchy is the predefined class rdfs:Re-
source, which includes all RDF resources as instances. In RDFS, a subclass
can inherit from several parent classes by using several rdfs:subClassOf
clauses. In object-oriented programming this is called multiple inheri-
tance. Multiple inheritance has quite a reputation in OO because inherit-
ing from multiple parents can lead to name clashes between features with
different implementations. In RDFS, however, this cannot happen be-
cause property definitions are resources in their own right and are unique
within their namespace.

What is possible for classes is also possible for properties. Properties
can be defined as subproperties of (several) other properties:

<rdf:Property ID=”Number”>
</rdf:Property>

<rdf:Property ID=”ProductNumber”>
<rdfs:subPropertyOf rdf:resource=”#Number”/>

</rdf:Property>

Chapter 3 Structure154

Inheritance

What’s left? Currently, RDFS defines only a limited set of constraint
properties: rdfs:domain and rdfs:range. To define additional constraints
we need an extension mechanism. This is provided by means of class
rdfs:ConstraintProperty, a subclass of class rdf:Property. Both rdfs:
domain and rdfs:range are instances of rdfs:ConstraintProperty.

For example, it would be possible to define a new constraint property
myext:unique as a new instance of class rdfs:ConstraintProperty:

<rdfs:ConstraintProperty ID=”myext:unique”>
<rdfs:domain rdf:resource=

“http://www.w3.org/1999/02/22-rdf-syntax-ns#Property”/>
<rdfs:range rdf:resource=

“http://www.w3.org/2000/01/rdf-schema#Class”/>
</rdfs:ConstraintProperty>

<rdf:Property ID=”Number”>
<rdfs:range rdf:resource=

“http://www.examples.com/classes#CatNumbers”/>
<rdfs:domain rdf:resource=”#ProductOrService”/>
<myext:unique rdf:resource=

“http://www.examples.com/classes#UniqueNumbers”/>
</rdf:Property>

By using this extension mechanism it becomes possible to define all
sorts of constraints. However, the RDFS specification only defines the se-
mantics of the constraints rdfs:range and rdfs:domain.

This has a reason of course: A constraint such as unique could hardly
be handled identically in all environments. While it is easy to guarantee
the value of a property to be unique within the confined space of a trans-
actional database, the same constraint becomes impossible to guarantee
in an open environment such as the Internet.

Wish List
This leaves us with some wishes (which are also wishes for other schema
definition systems). Earlier in this book, in Chapter 1, we postulated that
future software systems must be able to distinguish between the “re-
quired” and the “should.” What we would like to see is the introduction
of the concept of soft constraints. In contrast to hard constraints, which
know only one possible policy (strict enforcement in all environments),
soft constraints would know a variety of possible policies that may
depend on the context.

3.3 The Resource Description Framework and Conceptual Modeling

Extension
mechanism

Soft constraints

155

Let’s look at an example. The unique constraint mentioned earlier
could know the following policies:

• Reject: Reject a transaction when a property violates this constraint.
This type of policy could be used in transactional systems. Here it is
relatively easy to check for uniqueness, and uniqueness is absolutely
necessary for certain properties (for example keys).

• Repair: Here an agent could travel the network and try to repair invalid
properties asynchronously. This type of policy could be used within an
intranet, where an agent of that kind would possess the necessary ac-
cess rights for reading and modifying data.

• Report: Here an agent could travel the network and report any invalid
properties. This type of policy could be used within an extranet, where
an agent of that kind would possess the necessary access rights for
reading data.

• Ignore: Nothing is done here. The typical environment for this policy is
the Internet, where it would be completely senseless to enforce
uniqueness of a certain property.

3.3.6 Reasoning with RDF

The XML syntax that we have used above for RDF statements is only one
of many possible representations. The statement shown in Figure 3.23
could also be expressed in the form of a triple {predicate, subject, object}:

(PhoneNo,www.ourfamily.org/john,”415-555-6789”)

In this form, an RDF statement can be easily stored in a relational
database.

With a little bit more transformation we arrive at

PhoneNo(www.ourfamily.org/john,”415-555-6789”)

a form that should be familiar to all readers who have some background
in logic programming. In the logic programming language Prolog, for
example, such a construct is called a fact. A Prolog program consists of a
collection of facts and rules (in general rules have the form “A holds if B
and/or C holds”). A query will start an inference engine that applies rules
to facts in order to return a result. No procedural programming is
required.

The question that immediately springs to mind is, Why not add rules
to RDF and use RDF for logic programming? This was exactly the goal of
a W3C effort called METALOG.

Chapter 3 Structure

METALOG

156

METALOG had two objectives: First it extended RDF with the possibil-
ity of defining logic rules. Second it provided an almost natural language
interface to RDF. The RDF syntax that we have presented here is not very
user friendly but rather is designed to store and process RDF in an XML
environment. A user-friendly syntax could greatly improve the adoption
of RDF on a wider scale. As stated by Marchiori and Saarela (2000): “Meta-
log allows users to write metadata, inference rules and queries in English-
like syntax.”

The previous RDF statement could be expressed as follows:

“www.ourfamily.org/john” has as “PhoneNo” “415-555-6789”.

If John has several phone numbers, we could write

“www.ourfamily.org/john” has as “PhoneNo” “415-555-6789” and “212-
555-0001”.

The “and” keyword would be translated into an RDF Bag construct con-
taining both phone numbers.

We can also use verbs as predicates:

“www.ourfamily.org/mary” “lives_with” “www.ourfamily.org/john”.

This would translate into

lives_with(www.ourfamily.org/mary,www.ourfamily.org/john)

To allow the definition of rules, Metalog adds the operators “implies”,
“and”, “or”, and variables to RDF. Variables are denoted with the first
character in upper case.

We can now define a rule that reasons about the two facts defined
earlier:

if X “lives_with” Y and Y has as “PhoneNo” Z
then X has as “PhoneNo” Z.

Note that the keyword “and” has a different meaning here. It is used as a
logical “and”, not as an indicator for an RDF Bag. Which “and” is which
is decided by the context. Similarly, the keyword “or” can be used for a
logical “or” or to denote an RDF Alt. The keyword “order” is used for an
RDF Seq.

Finally we can query our little expert system with

what “PhoneNo” does “www.ourfamily.org/mary” have?

which would result in a new statement:

“www.ourfamily.org/mary” has as “PhoneNo” “415-555-6789” and
“212-555-0001”.

3.3 The Resource Description Framework and Conceptual Modeling 157

3.3.7 Best Practices

We recommend the following practices:

• When writing RDF descriptions always use namespaces to identify the
problem domain. This allows merging RDF descriptions at a later time
without pain. The identification of problem domains, the definition of
namespaces, and the definition of a namespace vocabulary are closely
related to the definition of an ontology (see Section 4.2).

• When modeling relationships between two entities, make sure not
only to define the relationship as an RDF property of one entity but
also to define the inverse relationship as a property of the target entity.

3.4 A U FOR AN X

In this section, we discuss UML-modeling techniques in the context of
XML. Due to an “impedance mismatch” between both technologies,
modeling XML-based systems with UML can be tricky.

3.4.1 XML Modeling with UML

The Unified Modeling Language (UML) is a framework for modeling com-
plex information systems that has become an industry standard within
the last decade. UML emerged as the successor of three previously leading
object-oriented modeling methods (Booch, OMT, and OOSE). It com-
bines these three methods into one consistent modeling method. Addi-
tionally, it addresses problems, such as process modeling, that these
methods previously did not fully address.

UML has been endorsed by the Object Management Group (OMG) as a
standard modeling method. The OMG is an international organization
promoting the theory and practice of object-oriented technology in soft-
ware development. The OMG is also the organization behind Common
Object Request Broker Architecture (CORBA), so it should not be a sur-
prise that UML has strong links to CORBA.

UML 1.4 has been submitted to the International Organization for
Standardization (ISO) and will become an ISO standard. In addition, UML
has been selected by UN/CEFACT as the standard modeling method for
ebXML.

UML comprises six different models:

1. The use case model, for requirement analysis (business model)

Chapter 3 Structure

Standardization

158

T
E
A
M
F
L
Y

Team-Fly®

2. The class model, for modeling the static structures of information
objects

3. The state model, for modeling the dynamic behavior of objects
4. The activity implementation model, which describes work unit

actions
5. The interaction model, which describes scenarios and message flows
6. The deployment model, which describes the deployment of soft-

ware subsystems

UML and ERM
In the context of this section we are interested only in the class model
(item 2 in the previous list). The UML class model resembles more or less
the classic entity relationship model. However, the nomenclature is dif-
ferent (entities are called objects, entity sets are called classes, and rela-
tionship sets are called associations). After all, UML is an object-oriented
modeling language. Figure 3.29 shows an example of a UML class
diagram.

Compared to the entities in ERM the main difference is that objects are
dynamic—they display a behavior. Each object has attributes whose val-
ues determine the state of the object. In addition, objects can have opera-
tions (methods), which can inform about the value of attributes and
which can change the value of attributes (i.e., change the object’s state).
Objects relate to each other by sending messages (calling each other’s
methods) or by aggregation.

The attributes of an object determine the type of an object. Objects
equipped with the same set of attributes have the same type. This can be
compared with the entity set in ERM. Both methods and attributes of an
object determine the class of an object. Objects with the same sets of
methods and attributes are instances of the same class. This means that in-
stances of a class all expose the same behavior. ERM does not have an
equivalent to the class construct because ERM does not model dynamic
behavior. In UML, however, it is possible to model class hierarchies. Sub-
classes can inherit features from abstract superclasses. Generalization is
modeled via superclasses.

Associations can be constrained in UML at both ends by a multiplic-
ity (cardinality) specification. The most common specifications are 0 . . 1,
0 . . *, 1, 1 . . * (OneOptional, ManyOptional, OneMandatory, ManyMandatory).

Associations can be bidirectional or unidirectional (navigability). For
example, when an object sends a message to another object, the sender
knows the receiver, but the receiver does not necessarily know the sender.
Each end of an association may have a role name.

3.4 A U for an X

Nomenclature

Objects

Attributes

Associations

159

One outstanding feature of UML is the powerful extension mechanism
offered with stereotypes. A stereotype is always based on existing UML
constructs but introduces new semantics.

UML and AOM
Asset-oriented models can be mapped onto UML, too. To do so we map
every asset onto a UML class. The arcs between the assets become UML
associations that are named with the respective role names. Compared to
traditional UML modeling, this approach is very powerful. Because classi-

Chapter 3 Structure160

Figure 3.29 UML class diagram. Attributes are listed below the class name. Associations can be
named (in addition, role names are possible). The cardinality is denoted in explicit numbers
(n:m), with an asterisk denoting an unbounded number of occurrences. Subclasses inherit
attributes from superclasses.

Customer

CustomerID
Name
Phone

ProductOrService

Name
Number
Price

orders 1..*

Product

<<>>

Service

Duration

<<>>

Attributes Class Name
Association
Name Cardinality

Generalization

Subclasses

Superclass

Stereotypes

cal relationships are modeled as assets, too, and are thus mapped onto
UML classes, we do not have problems representing relationships be-
tween relationships and n-ary relationships in UML.

However, UML requires the introduction of extra classes:

• Complex properties must be resolved into classes, since UML classes
can possess only simple properties.

• Clusters must be represented as generalized classes in UML. The cluster
members are represented as subclasses of these generalized classes.

UML and XML
XML documents can be modeled in UML as aggregations of objects, basi-
cally one UML class element per XML element plus some auxiliary ele-
ments. Conallen (2000), Booch et al. (1999), and Heintz and Kimber
(1999) describe how a DTD or XML Schema can be mapped onto UML
(and vice versa, how UML can be used to design a DTD):

• XML element types are modeled in UML as <<DTDElement>> stereotype
elements.

• XML attributes can be mapped directly to UML attributes. XML at-
tributes are atomic values of a certain datatype. This requires the defi-
nition of appropriate datatypes in the UML model.

• XML element content (such as character data) can be modeled as an
attribute with a <<DTDElementPCDATA>> stereotype.

• XML elements of content type ANY are modeled with a <<DTDElement-
ANY>> stereotype.

• XML elements of content type EMPTY are modeled with a <<DTDElement-
EMPTY>> stereotype.

• The ownership between elements (parent-child) is indicated by direc-
tional associations.

• Model groups are represented by new stereotyped elements. Since
model groups are anonymous, dummy names must be introduced in
the UML model. Sequence groups are represented by a <<DTDSequence-
Group>> stereotype; choice groups, by a <<DTDChoiceGroup>> stereotype.

• The order of sequences is captured as ordinal values in role constraints.
• Multiplicity of elements is mapped directly into the corresponding

UML constraints (see Table 3.3).
• Mixed elements in XML (i.e., elements containing character data com-

bined with child elements) can be mapped onto model groups (see ear-
lier). A mixed element can be described as a repeated alternative of
content and child elements.

3.4 A U for an X 161

Using this technique, it becomes possible to import a DTD (e.g., an
industry standard DTD) into UML, do a few modifications, and ex-
port it again. The leading UML case tools support such import and export
processes.

In a similar fashion, XML Schema definitions can be mapped onto
UML structures. This is described in detail by Carlson (2001).

The advantages of this technique are that DTDs and schemata can be
visualized (but good schema editors can do that, too) and that the docu-
mentation is improved. It is also possible to generate program code from
the UML model, such as Java code. We obtain wrapper code that is quite
intuitive and allows easy access to the XML document structures.

From UML to XML
Note, however, that the UML model obtained with this method is an
implementation model and not a conceptual model. This technique
requires that the UML model follow the structures of the XML document.
But how do we generate XML schemata from a preexisting conceptual
UML model?

One possibility could be to exploit the code generation facilities of
UML tools. Most UML case tools can generate program code, and some
allow user-defined production rules, allowing the generation of any code
including XML schemata. However, this technique relies very much on
the proprietary features of the respective tool.

A better option is to use the fact that most UML tools can export XMI
code. XMI (see Section 3.4.2) was developed to exchange modeling data
between different modeling tools. Thus, XMI contains the modeling
data in a standardized format. And because XMI is an XML language, we
can transform XMI modeling data into any other XML format—in-
cluding XML Schema—with the help of an XSLT style sheet (see Chapter
9). An example style sheet is available at the authors’ Web site (www.
xmlArchitecture.org).

Chapter 3 Structure

Using XMI

162

Table 3.3 Cardinality Notations in XML and UML.

XML UML

(no modifier) 1

? 0 . . 1

+ 1 . . *

* 0 . . *

So, to create XML schemata out of a UML model, we have to perform
three steps:

1. Export the model in XMI format.
2. Write an appropriate XSLT style sheet (or generate it with an appro-

priate tool).
3. Translate the XMI data with the help of the XSLT style sheet into

the target format.

UML and RDF
XML schema creation is not the only interesting aspect when looking at
the relationship between UML and XML. In Table 3.4 we compare the
modeling capabilities of UML with those of RDF (Chang 1998). Keep in
mind that UML is an object-oriented technique, while ERM and RDF are
not.

RDF and UML are fairly equivalent when it comes to modeling the
static aspects of an information set. RDF has some restrictions in the con-
straint area: cardinality and optionality constraints are expressed via con-
tainers that only allow expressing 1:(0,n) relationships. This is rather
weak compared to the rich set of constraint expressions that are available
in UML. But keep in mind that RDF was designed for the World Wide
Web, where mandatory associations are very hard to control; unresolved
links are all too common on the Web.

The similarities between RDF and UML allow us to use UML as a design
method for RDF resource descriptions. What is not possible, in general, is
to map any UML model in terms of native RDF statements.

That does not mean that it is impossible to describe any UML model us-
ing RDF statements. For example, Melnik (2000) takes the approach of
defining every identifiable UML element as an RDF resource. A set of RDF
statements can thus describe any UML model. But note that these state-
ments are statements about the UML model, and not about the real-world
entities that are the subjects of the UML model—we are on a higher level
of abstraction.

3.4.2 XMI: Exchange Format for Model Data

The XML Metadata Interchange (XMI) is the industry standard for encod-
ing UML models into XML (XMI 1999). Endorsed by OMG and supported
by major industry partners such as IBM and Oracle, the XMI specification
can be considered as a part of the UML specification.

3.4 A U for an X 163

Chapter 3 Structure164

Table 3.4 Comparing UML with ERM and RDF.

UML ERM RDF

Class definition Entity set RDFS class definition

Single and multiple Generalization rdfs:subClassOf
inheritance (single and multiple inheritance)

Attributes (named) Attributes (named) Named properties with literal value

Roles (named) Roles (named) Named properties with resource value

Associations (named) Relationships (named) Implicit via properties with resource
value (unnamed)

Directed associations Not supported in original Statements always have a direction
ERM (subject –> object).

n-ary associations n-ary relationships Only binary associations. Higher-
order associations can be modeled via
intermediate resources.

Association qualifiers Not supported Not supported

Aggregation Supported via enclosing Not explicitly supported. Aggregation
entities can be modeled through properties.

Composition Supported via existence- Not explicitly supported. Compo-
dependent relationships sition can be modeled through

properties.

Visibility control (public, No visibility control Visibility control would not make
protected, private) (everything is public) sense. Properties are attached to

resources by the public.

Operations No means to model No means to model behavior
behavior

Interfaces No interfaces No interfaces

Template classes No template classes No template classes

Utility classes No utility classes No utility classes

Arbitrary cardinality Cardinality constraints: Multiplicity can be modeled with
constraints 1:1, 1:n, m:1, m:n containers (Bag, Seq, URI pattern).

Optionality constraints Optionality constraints Via containers. These allow only for
are part of the cardinal- mandatory (1,1), (1,m), (0,n) constraints but not for (0,1)
ity constraint concept. optional (0,1), (0,m) and (1,m) constraints.

Mutual exclusion Not supported in original Possible via the Alt construct
constraint ERM

User-defined constraints Not supported in ERM Possible through extension
mechanism

MetaModel (stereotypes) Not supported in ERM RDF allows making statements about
anything, including RDFS definitions.

XMI is based on the OMG’s Meta Object Facility (MOF). MOF is the
OMG’s adopted technology for defining metadata and representing it as
CORBA objects. Because UML is also based on MOF, XMI presents itself as
an interchange format for UML.

This origin positions XMI for possible application domains. XMI is pre-
dominantly used to exchange model data between different development
tools, such as UML toolkits, development studios, and so on. The authors
of the XMI specification give the following motivation for the design of
XMI (XMI 1999):

The reality is that no single tool exists for both modeling the enterprise and
documenting the applications that implement the business solution. A com-
bination of tools from different vendors is necessary but difficult to achieve
because the tools often cannot easily interchange the information they use
with each other. This leads to translation or manual re-entry of information,
both of which are sources of loss and error.

When all of the development tools understand XMI, round-trip engi-
neering across multivendor development platforms becomes a possibility.
In addition, XMI makes it easy to exchange model data across distributed
development environments. While it was difficult or impossible to ex-
change model parts between heterogeneous UML tools in the past, XMI
opens up that possibility, provided the participating tools know how to
import XMI and merge the imported parts into an existing model. Fur-
thermore, XMI allows the development of catalogues of design patterns
in a vendor-neutral format.

Finally, XMI can be used as an intermediate step when generating
XML Schema definitions out of UML (see Section 3.4.1).

As an example let’s look at the XMI serialization for the UML diagram
in Figure 3.29. All definitions made in the model—classes, attributes, as-
sociations, cardinality—are represented as independent XML elements
and identified via the xmi.id attribute. These elements relate to each other
by utilizing XML’s ID/IDREF mechanism.

<?xml version=”1.0” encoding=”UTF-8”?>

<XMI xmi.version=”1.0”>

<XMI.header>

<XMI.documentation>

<XMI.exporter>Novosoft UML Library</XMI.exporter>

<XMI.exporterVersion>0.4.19</XMI.exporterVersion>

</XMI.documentation>

<XMI.metamodel xmi.name=”UML” xmi.version=”1.3”/>

</XMI.header>

3.4 A U for an X

Exchanging
model data

Round-trip
engineering

165

<XMI.content>

<Model_Management.Model xmi.id=”xmi.1”

xmi.uuid=”127-0-0-1-ca208:e5f13cb504:-8000”>

<Foundation.Core.ModelElement.name>

orderModel

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value=”false”/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value=”false”/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value=”false”/>

<Foundation.Core.GeneralizableElement.isAbstract xmi.value=”false”/>

<Foundation.Core.Namespace.ownedElement>

<Foundation.Core.Class xmi.id=”xmi.2”

xmi.uuid=”127-0-0-1-ca208:e5f13cb504:-7fff”>

<Foundation.Core.ModelElement.name>

Customer

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value=”false”/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value=”false”/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value=”false”/>

<Foundation.Core.GeneralizableElement.isAbstract xmi.value=”false”/>

<Foundation.Core.Class.isActive xmi.value=”false”/>

<Foundation.Core.ModelElement.namespace>

<Foundation.Core.Namespace xmi.idref=”xmi.1”/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.Classifier.feature>

<Foundation.Core.Attribute xmi.id=”xmi.3”>

<Foundation.Core.ModelElement.name>

CustomerID

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value=”false”/>

. . . 2 more pages . . .

<Foundation.Core.GeneralizableElement.isAbstract xmi.value=”false”/>

<Foundation.Core.Class.isActive xmi.value=”false”/>

<Foundation.Core.ModelElement.namespace>

<Foundation.Core.Namespace xmi.idref=”xmi.1”/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.GeneralizableElement.generalization>

<Foundation.Core.Generalization xmi.idref=”xmi.9”/>

</Foundation.Core.GeneralizableElement.generalization>

Chapter 3 Structure166

<Foundation.Core.Classifier.feature>

<Foundation.Core.Attribute xmi.id=”xmi.20”>

<Foundation.Core.ModelElement.name>

Duration

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value=”false”/>

<Foundation.Core.Feature.owner>

<Foundation.Core.Classifier xmi.idref=”xmi.19”/>

</Foundation.Core.Feature.owner>

</Foundation.Core.Attribute>

</Foundation.Core.Classifier.feature>

</Foundation.Core.Class>

<Foundation.Core.Generalization xmi.id=”xmi.9”

xmi.uuid=”127-0-0-1-ca208:e5f13cb504:-7ff5”>

<Foundation.Core.ModelElement.isSpecification xmi.value=”false”/>

<Foundation.Core.ModelElement.namespace>

<Foundation.Core.Namespace xmi.idref=”xmi.1”/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.Generalization.child>

<Foundation.Core.GeneralizableElement xmi.idref=”xmi.19”/>

</Foundation.Core.Generalization.child>

<Foundation.Core.Generalization.parent>

<Foundation.Core.GeneralizableElement xmi.idref=”xmi.7”/>

</Foundation.Core.Generalization.parent>

</Foundation.Core.Generalization>

</Foundation.Core.Namespace.ownedElement>

</Model_Management.Model>

</XMI.content>

</XMI>

As we can see, XMI was not designed for human consumption. The in-
tent of XMI is to exchange information between machines. But even for
computers an XMI-serialized UML model can be a stress test: UML repos-
itories of 200 MB or more are not uncommon, and the full serialization of
such a model would result in XMI documents that easily break into the
gigabyte class.

3.4 A U for an X 167

T
E
A
M
F
L
Y

Team-Fly®

169

4Meaning

Soon after the first XML hype ceased, software architects

and engineers became aware that it is not sufficient just

to know “where to put the brackets” to make systems collab-

orate. Even more important than syntax is agreeing about an

ontology—a system of meaning.

In this chapter we introduce formal semantics, context,

and ontologies. If you plan to implement collaborative appli-

cations, this is required reading.

One way to specify semantic aspects formally is the defini-

tion of constraints. In Section 4.1, we take a close look at con-

straints and how they can be defined in schemata, especially

in XML Schema. Constraints are, however, only one aspect of

the definition of formal semantics. Ontologies provide addi-

tional means for the declaration of formal semantics. In Sec-

tion 4.2, we discuss the different levels of ontological depth

4.1 Formal Semantics

4.2 Ontologies

4.3 Philosophical
Excursus

4.4 Context

and introduce languages for the definition of ontologies such as DAML and
OIL. In Section 4.3, we take an excursion into the Western philosophy of the
past 2,000 years. We learn that context is important when interpreting the
meaning of a message, especially in a globalized environment. This leads into
Section 4.4, where we take a closer look at the formal treatment of context.
In Section 4.4.2, we discuss a practical approach for implementing context-
aware semantics with XML: the Schema Adjunct Framework.

4.1 FORMAL SEMANTICS

The Internet is about sharing information. This involves publishing the
information, navigating to the relevant information, and interpreting
that information. HTML is hardly able to fulfill these requirements, and
XML was designed to fill this gap.

The markup of XML has been called by some a “semantic markup.”
This is in contrast to HTML, where most of the markup elements are
purely representational. In XML, as common belief has it, the markup de-
notes the meaning of an element.

However, when we take a formal approach, we discover that the oppo-
site is true. What conveys meaning to a human reader does not necessar-
ily do the same to a machine. In XML, it is the tag name that allows hu-
man readers to associate a meaning with an element, provided the tag
name matches an entry in the internal dictionary of the reader’s brain. If
the tag name is outside the scope of the reader’s expertise, the tag is
meaningless. Two readers with different backgrounds may even interpret
the same tag as having two different meanings.

Consider the tag <motion>. A reader with a political background may
interpret the tag as a motion in a deliberative assembly. In contrast, a
reader with a medical background may interpret it as being related to
sickness.

An XML parser does none of the above. It just reports that this is a tag
and that the tag name is “motion.” That’s all. Parsers are about syntax,
not about semantics.

With the purely representational HTML, it is just the opposite. The
semantics of the tag are clearly defined in the HTML specification and
put into action by any Web browser. Elements enclosed between and
 are printed in bold. Tags in HTML have clearly defined semantics—of
course, only in the context of document representation and navigation.

Chapter 4 Meaning

Semantic
markup?

170

The XML specification does not define semantics for tags. Tags in XML
are user defined, so it is the responsibility of the user to associate a mean-
ing with each tag. Most XML-based languages do so, but they do it in a
rather informal way. For example, SVG and SMIL, both XML-based repre-
sentation languages, define the meaning of each tag. The semantics of
the tags are described in the SVG and SMIL specifications and are imple-
mented in the SVG and SMIL browser plug-ins.

Unfortunately, there is no standard way to define semantics formally
for an XML-based language. DTDs allow only the description of the vo-
cabulary and the structure of a document. Also XML Schema does not go
much further in this respect. This is hardly sufficient to establish commu-
nication in the global village (Doerr 1998):

To summarise, we are on the brink of a technological revolution, which will
render obsolete the need for homogeneous data formats for communication.
Rather, we must engage in providing formal definitions of the underlying
semantics in our data. Not the superficial identity of structure, but the seman-
tic compatibility is needed. This will enable far richer services to be created
than standardisation could ever provide.

Let’s begin at the end. What is required for the correct interpretation of
information is that both sender and receiver (or publisher and surfer) not
only speak the same language, but also share the same conceptualization of
the information. This includes a shared vocabulary, a shared set of con-
straints, and a shared conceptual framework such as type hierarchies and
other relationships between classes of information items:

• The shared vocabulary guarantees that syntactical tokens (words) carry
the same meaning for both sender and receiver. Such vocabularies
are developed from the vocabulary used in a given community or
industry.

• A shared conceptual framework—if it is complete—guarantees that the
understanding of the information is not influenced by unspecified
background knowledge.

Let’s now see what is required to specify semantics in a formal and
machine-readable way.

4.1.1 Formal Semantics and Constraints

To understand how to formally define meaning we look at a few exam-
ples. Here is one from school:

4.1 Formal Semantics

Semantic free

Understanding
shared
information

171

What is our understanding of a square? A square is a rectangle where width
equals height. Similarly we can define a rectangle as a four-sided polygon
where all sides intersect at angles of 90 degrees.

From this simple definition we can already deduce two concepts:

• Relation. To define “square,” we relate it to “rectangle.” To define “rec-
tangle,” we relate it to “polygon.”

• Constraint. To distinguish between “rectangle” and “polygon,” we de-
fine constraints (four sides, 90-degree angles). To distinguish between
“square” and “rectangle,” we define additional constraints (width
equals height). As a matter of fact, relations can also be seen as con-
straints. The fact that a square is a rectangle does certainly constrain
the shape of a square.

Let’s apply these simple concepts to a more complex object:

What is our understanding of a car? A car is a vehicle. It has an engine and
more than two wheels. A car is driven by a driver.

Here we see different relations at work: is_a, has, driven_by. There is also
a constraint: “more than two.” Again, the relations “is a vehicle,” “has an
engine,” and “driven by a driver” can also be seen as constraints.

In addition, we can list some background knowledge that helps us to
understand the meaning of the notion “car” without defining it in the
strict sense:

Cars are used for transportation. Cars take part in road traffic. Cars have acci-
dents. Cars are produced by car manufacturers and are sold by car dealers.
Cars add to the greenhouse effect. And so on.

The concept of a car is thus interrelated with other concepts and gains
additional meaning by that. The most important sentence here is proba-
bly the first one: concepts are best described by their practical purpose or
effect. Remember that the meaning of a command in a computer lan-
guage is determined by the effect the command has when the application
is executed.

However, humans are not computers. They learn the meaning of a
term in a different manner, usually in a complex process of abstraction
and differentiation. When you think of “car,” the first thing that proba-
bly comes to mind is the mental image of a sedan. The sedan object acts
as a prototype (Gardner 1985) for the category “car” and is probably
what a child first associates with “car.” Only later we learn that the con-
cept “car” also contains other car types such as race cars, railroad cars,

Chapter 4 Meaning

Background
knowledge

How humans
learn

172

pickups, vans, cabriolets, and so on. We learn to differentiate between
these by learning the differences from the prototype.

4.1.2 Constraints in Schema Definitions

In a generic language such as XML it is possible to standardize semantics
only in the most fundamental way. DTDs, for example, support only the
absolute minimum. They allow datatype definitions such as NAME, ID, and
IDREF only for element attributes. (A datatype definition is a constraint
and thus defines semantic properties.) These datatype definitions are
required for generic XML processors to function properly. Some DOM
implementations can, for example, locate an element by its ID. Therefore
the processor must know which element attributes must be treated as IDs.
It relies on the semantics of the ID datatype.

XML Schema goes a step further and allows datatype definitions for
XML elements, too. The standard already defines a rich ensemble of data-
types but also allows users to define their own datatypes. User-defined
datatypes are derived from existing datatypes by adding constraining
facets to them.

The datatypes in XML Schema allow users to specify a given document
element as string, date, numeric, and so on. This allows generic XML
processors to check a given document more thoroughly. It also improves
XML-OO mapping: when an OO class hierarchy is generated from an
XML Schema definition, the generator can automatically produce the
correct datatypes for the fields representing the elements. This is not pos-
sible from a DTD.

However, this is where XML Schema stops. It only allows putting con-
straints in the form of datatypes onto individual elements; it does not al-
low the definition of constraints across multiple elements (if we forget the
unique/key/keyref constraints for a moment). Let’s look at an example:

<size>
<width>210</width>
<height>297</height>

</size>

Here we can use datatype definitions to make sure that both width and
height are numbers. We can even define minimum and maximum values
for both. However, in XML Schema there is no way to define that
<height> must always be <width> multiplied by 1.414, as is the case with
the DIN A paper formats.

4.1 Formal Semantics

Datatypes

Cross-field
constraints

173

4.2 ONTOLOGIES

Semantic modeling has a tradition in knowledge engineering and in
agent technology but is also applied to many other fields in information
technology, such as database design, object-oriented analysis, informa-
tion retrieval, and so on. In these areas, the term “ontology” is used to
denote a knowledge domain or the semantic domain for an agent
(Uschold and Gruninger 1996):

Ontologies are agreements about shared conceptualizations. Shared concep-
tualizations include conceptual frameworks for modelling domain knowl-
edge; content-specific protocols for communication among inter-operating
agents; and agreements about the representation of particular domain theo-
ries. In the knowledge sharing context, ontologies are specified in the form of
definitions of representational vocabulary. A very simple case would be a type
hierarchy, specifying classes and their subsumption relationships. Relational
database schemata also serve as ontologies by specifying the relations that
can exist in some shared database and the integrity constraints that must
hold for them. (Tom Gruber, 1994, SRKB Mailing list)

The term “ontology” has its origin in philosophy, in which it refers to
the discipline that deals with the subject of existence. Ontology is the
theory of “what there is” (Quine). In our context, however, the meaning
of the term is slightly different: it is a formal description of the concepts
and relationships that exist within a domain (and as such is not a disci-
pline but an artifact). This means that an ontology relates to a specific vo-
cabulary and a specific language (other than the philosophical discipline,
which deals with existence but not language). Note that an ontology is
an agreement. This agreement need not necessarily cover the whole con-
ceptualization of a given domain but can cover just a part of it; that is, it
can provide a view onto the domain. An ontology thus acts as a contract
between partners, enabling them to communicate safely within the con-
text of the information domain. For example, a software agent that com-
mits to an ontology will be able to semantically interpret the information
items covered by that ontology and to communicate with other agents
committing to that ontology. Thus, an ontology establishes a community
of Internet users.

4.2.1 Ontological Depth

In the simplest form an ontology is just a vocabulary. In this sense, a DTD
can define an ontology. If different partners agree on a DTD, they also
agree on the ontology defined through the DTD because the tag names
declared in the DTD define a common vocabulary. When, for example,

Chapter 4 Meaning

Definition

Vocabulary

174

two agents agree to share such an ontology, they can exchange messages
using the vocabulary of the ontology.

However, the definition of an ontology does not stop here. As we ex-
plained earlier, the meaning of terms is established by defining relation-
ships between them. One of the most natural relationships is classifica-
tion—establishing relationships between objects and classes, subclasses,
and parent classes. A system of such relationships is called a taxonomy,
and the relationships are usually called is-a relationships. This sort of on-
tology is typically established by object-oriented systems. Many existing
ontologies are defined using only those hierarchical relationships.

However, ontologies can also include nonhierarchical relationships. As
we have seen in the previous example and in previous chapters, there are
many possible relationships between objects besides the hierarchical is-a
relationships. For example, the relationship is-driven-by between car and
driver is not a hierarchical relationship but is important enough to be de-
scribed in an ontology. Such relationships are typical in entity relation-
ship diagrams and in relational databases, and consequently each rela-
tional database schema defines its own ontology.

Besides describing relationships, ontologies can also impose con-
straints. Constraints are defined as axioms. An axiom is a logical state-
ment that cannot be proved from other statements but from which other
statements can be derived. In mathematics, whole theories (like group
theory or set theory) are derived from relatively small sets of axioms. In
our car ontology, the statement “A car has at least three wheels” is such a
constraint. In relational databases constraints are defined via integrity
rules. Some object-oriented languages also include the ability to define
constraints (e.g., assertions in C++ and contracts in Eiffel).

Thalheim (2000) classifies constraints into a hierarchy. Under static
constraints, he includes the following:

• Structural: These include conditions about the structure of the model,
about relationships between entities, and so on.

• Semantic: These include semantic restrictions, such as multivalued
(cross-field) dependencies.

• Representational: These are used to constrain the actual representation
of the model in a system to a certain physical structure.

• Design: These are used to make the schema design more user friendly.

Under dynamic constraints, he includes the following:

• Transition: These restrict the application of operations depending on
the current state of an object.

• Temporal: These constrain the possible state sequences.

4.2 Ontologies

Taxonomy

Relational system

Axiomatic theory

Constraints
revisited

175

Constraints may depend on the context or the application. A dynamic
constraint that inhibits, for example, changing the value of the attribute
family_status from “widowed” to “never married” makes sense in the
context of a business process but must not be applied when we want to
correct a wrong data entry.

While static constraints are closely related to schema definitions and
databases (relational databases, for example, can protect the structural
and referential integrity of data with the help of integrity rules and trig-
gers), dynamic constraints are closely related to process models. A busi-
ness process defines the possible state changes of a set of business objects,
which business events cause these state changes, and which operations
are triggered by these state changes.

It is not always possible to enforce constraints, especially in electronic
business scenarios that involve communication across company borders.
It is often only possible to postulate a desired behavior of a system.

Soft constraints are used here to model the “should” instead of the
“must” (Thalheim 2000). Using soft constraints requires a different logi-
cal calculus: deontic logic is used to formulate soft constraints and to rea-
son about them. Deontic logic allows reasoning about the ideal, norma-
tive, and actual behavior of the system. Deontic logic adds three new
operators to the classic predicate logic:

• Prohibitions (F) specify that certain actions or states are forbidden.
• Obligations (O) specify normative behavior—which actions and states

are desirable.
• Permissions (P) specify states or actions that are permitted.

However, formulating soft constraints properly is not trivial. Deontic
logic tends to produce paradoxical results, and in reality there often exist
obligations that contradict each other. Such conflicts must be handled
somehow, for example, by prioritizing the application of constraints.

Often, the use of soft constraints can be avoided by using context-
sensitive hard constraints. (Remember that contexts can change over
time.)

Our previous example is such a case. We could (sloppily) formulate
that the family status “never married” should never follow “widowed.”
An application that would try to do so would get a warning. The better
choice, however, is to make this constraint a context-sensitive “must”
rule, that is, not to apply it during maintenance tasks but to enforce it in
all other tasks.

But back to ontologies. Guarino and Welty (1998) define several levels
of ontological depth:

Chapter 4 Meaning

Deontic logic

Ontology levels

176

1. Lexicon: vocabulary with natural language definitions
2. Simple Taxonomy
3. Thesaurus: taxonomy plus related terms
4. Relational model: unconstrained use of arbitrary relations
5. Fully axiomatized theory

Ontologies that only implement level 1 (a vocabulary) are, however, of
limited use. They may help simplify and standardize data exchange be-
tween partners but do not allow machines to reason about the meaning
of an information item.

This only becomes possible at deeper levels. When we, for example,
want to build a house, the machine could automatically look up a rela-
tional model to find out that we need artisans like bricklayers, carpenters,
and electricians to build the house. This is possible because in this ontol-
ogy these terms are related to the term “house” via a semantic web.

At this stage it is important to note that all relations within an ontol-
ogy are “intentional”—they refer to conceptional items (symbols) and
not to “the real thing.” In our example, relations are established between
the conceptional terms “house,” “bricklayers,” “carpenters,” and “electri-
cians,” but not to real houses, real bricklayers, and so on. In Section 7.2
we will discuss how such a conceptional network of relations is finally
mapped onto real resources.

The last stage in ontology definition, the fully axiomatized theory, is
usually too hard to obtain in practical applications. Most applications use
a limited set of constraints that are obtained from heuristic analysis but
that are far from a complete and consistent set of axioms able to found a
mathematical theory. Nevertheless, the use of constraints is important
and adds significantly to data integrity and consistency.

Clearly, with each level more work is required to define an ontology.
This is true not only for the initial definition but also for maintenance.
Adding a new word to a lexicon is a fairly simple task, but on deeper
levels we also have to add new relations, update existing relations, and
check constraints for consistency.

When we said that a relational database schema defines an ontology,
we were at the root of the problem. There are as many ontologies as there
are database schemata in the world—and consequently ontologies are a
hot topic. In a time of company mergers, enterprise application integra-
tion, Internet portals, and supply chain integration, ontologies clash
fairly often and must be reconciled. In the past, the traditional tactic used
with EDI was to negotiate bilateral agreements. However, this is hardly

4.2 Ontologies

A myriad of
ontologies

177

sufficient to meet the demands of a networked and globalized business
community.

Several researchers (Uschold et al. 1997; Smith and Zaibert 1997) and
institutions have therefore started to define ontologies that can be used
as a common platform within an industry or a sector of an industry. The
introduction of XML, in particular, has led to widespread activity in the
definition of shared ontologies, which has resulted in a rich collection of
industry-specific XML DTDs. These definitions can only be the begin-
ning, since simple shared vocabularies as provided by DTDs are not really
satisfactory, as we stated earlier.

The intention of these activities is not to convert existing systems, but
to define a “pivot” (or top-level) ontology that can provide a common
language with which incompatible systems can communicate. Such a
pivot ontology can be shared by a large community of users. Instead of
negotiating a communication protocol between any two partners on a bi-
lateral basis, it is only necessary to define the translation between the
proprietary system and the shared pivot ontology. By now there are a
large number of such top-level ontologies. The HL-7 standard, for exam-
ple, establishes a top-level ontology for the health industry. In electronic
business communication the situation is a bit more fractionated, since
several organizations have defined competing standards. With ebXML,
UN/CEFACT has started a standardization process that should result in a
top-level ontology for electronic business communication. We will dis-
cuss ebXML in Section 10.3.

Guarino (1998) identifies four types of ontologies:

• Top-level ontologies: These are shared by a large community and define
only very general terms.

• Domain-related ontologies (vertical): These apply to a certain knowledge
domain, for example, an industry sector such as the pharmaceutical
industry or the computer industry.

• Task-related ontologies (horizontal): These apply to a certain task, for ex-
ample, procurement or software requirements analysis.

• Application-related ontologies: These describe the concepts of an appli-
cation, referring to specialization of both a domain and a task ontol-
ogy. Within an application-related ontology, the items defined in a
domain-related ontology appear mostly in a specific role.

Ontologies are used during different stages of the application life cycle.
Software applications can be constructed as ontology-aware or ontology-
driven applications—the ontology is actively used by the application at

Chapter 4 Meaning

Building
communities

Ontology types

When and where

178

T
E
A
M
F
L
Y

Team-Fly®

runtime. This is, for example, the case with software agents. Software
agents are usually constructed as specialist applications that operate only
within a narrowly defined domain. Larger-scale applications involve a va-
riety of specialist agents that are required to communicate with each
other. In order to understand the meaning of the messages exchanged,
agents must be able to access and interpret the underlying ontology.

Another example is query processing. Internet portals that combine a
multitude of different businesses and services under one roof, for exam-
ple, must be able to relate customer queries to the underlying ontologies
(mostly database schemata) of the participating partners. To interpret a
query correctly, they need access to the proper ontology.

During software development the use of ontologies can save time and
money. By using an ontology we can make sure that the participating
software analysts, designers, and programmers talk the same language. By
separating the definition of ontologies proper into top-level ontology,
domain- and task-related ontologies, and application-related ontologies,
we can make sure that we can reuse previous definitions. Especially for
top-level ontologies, but also for domain-related ontologies, we can often
reuse existing designs (such as DTDs, ebXML scenarios, or electronic busi-
ness languages) that have already been defined by industry associations,
standardization bodies, or manufacturers of electronic business systems.
It is also a good idea to build up libraries of domain- and task-related
ontologies.

There are three main areas in software systems where ontologies are
used. First, most business applications are database based, and each data-
base schema incarnates an ontology. As we mentioned earlier, naviga-
tional software systems such as Internet applications require partners to
publish “maps” for their systems. This includes the publication of all or
parts of the underlying conceptual models of the database schemata in-
volved. That is, the ontology defined by the conceptual database model
must be described in an appropriate way. (Publishing a database schema
itself is of limited use because relational normalization and optimization
can obscure the concept behind the design.)

Second, especially with relational database technology, a lot of concep-
tual knowledge is actually not contained in the database schemata but is
contained in the application in the form of SQL commands and program
logic. Applications contain knowledge not only about the data, but also
about business processes. Although legacy applications contain this
knowledge in hard-coded form within the program logic, the current
trend is toward the explicit representation of that knowledge in the form

4.2 Ontologies 179

of soft-coded business rules. Again, the explicit use of ontologies can help
to document this knowledge in a consistent form, allowing this knowl-
edge to be reused in other projects or to be utilized by software agents.

Finally, ontologies can be used with user interfaces. One possible appli-
cation is the authoring of help pages. With a clearly defined and pub-
lished ontology, an end user can get information about the meaning of
terms and how they are related to each other.

The constraints defined in an ontology can be used to validate user in-
put. An example of this would be XForms, which not only can validate
user input according to the datatype definitions in the corresponding
XML Schema but also can apply other constraints. The relations between
conceptual entities defined in an ontology can be used to generate auto-
matic document layouts. Current commercial systems (such as K-infinity
from intelligent views, www.i-views.de) are able, for example, to produce
documents where semantically interrelated topics are placed close to-
gether, if possible on the same Web page.

4.2.2 Operational Ontologies: DAML and OIL

OIL (Ontology Interchange Language) includes a whole family of lan-
guages such as Standard OIL, Instance OIL, and Heavy OIL. It has also
been used as the basis for defining the ontology markup language DAML-
Ont (“DAML” stands for DARPA Agent Markup Language). DAML-OIL (a
version of the DAML language) is very close to Standard OIL. We will
restrict ourselves to a discussion of Standard OIL (Bechhofer et al. 2000).
Current implementations of OIL rely on proprietary representations or
on RDF. For better readability we use here an informal notation that, if
required, can easily be translated into XML or RDF.

The basic constructs of OIL are classes, slots, and individuals. Individu-
als are instances of classes. Classes constitute a class hierarchy—a class
can be a subclass of other classes:

class-def holding
subclass-of enterprise

class-def enterprise
subclass-of organization

Classes can have multiple parents:

class-def owning-director
subclass-of director owner

Chapter 4 Meaning

Basic constructs

180

Axioms allow the assertion of additional facts about the classes within
an ontology:

• disjoint: Specifies a list of classes. No individual is allowed to be a
member of more than one of the classes listed:

disjoint enterprise government-institution

This states that no individual can be both an enterprise and a govern-
ment institution.

• covered: Specifies a class that must be covered by a list of other classes.
Each individual belonging to that class must belong to at least one of
the classes from the list:

covered employee by director manager worker

• disjoint-covered: Same as covered, except that the classes specified in
the list are also disjoint.

• equivalent: Defines a list of synonym class names.

Classes can own slots. Slots represent properties (i.e, on the instance
level, slots contain values) and can be used to define relations between in-
stances. Slots can be defined as subslots of other slots:

slot-def has-director
subslot-of has-manager

Slots can also be defined as an inverse of an already existing slot:

slot-def manages
inverse has-manager

So far, OIL closely resembles the entity relationship model. It exceeds
the capabilities of ERM when it comes to the definition of constraints:

• Slot values can be constrained to be of a particular type:

slot-constraint has-director
value-type director

• Valid value types can also be declared as an enumeration of individual
value types:

slot-constraint has-partner
value-type (one-of customer supplier shareholder)

4.2 Ontologies 181

• Slot values can be constrained to be of a particular cardinality:

slot-constraint has-director
max-cardinality 3 director
min-cardinality 1 director

• Slot values can be constrained to be of a particular value (also called
filler). A filler value refers to one or more individuals.

class-def plc
subclass-of enterprise
slot-constraint has-company-form

has-filler proprietary_limited

• Slot value constraints can also use order relations such as min, less-
than, greater-than, equal, and range to refer to individuals:

class-def large-company
subclass-of enterprise
slot-constraint employee-number

has-filler min 500

• Slot value constraints can be written as expressions using the Boolean
operators and, or, and not:

slot-constraint external-owner
(owner and (not owning-director))

Further, slots can be defined with additional properties that improve
the ability to make logical deductions from slot properties. Valid proper-
ties are:

• Transitive: If both (x,y) and (y,z) are instances of the slot, then (x,z)
must also be an instance of the slot:

slot-def bigger-than
properties transitive

For example, if company A is bigger-than company B and company
B is bigger-than company C, then company A is bigger-than com-
pany C.

• Symmetric: If (x,y) is an instance of the slot, then (y,x) must also be an
instance of the slot:

slot-def business-partner
properties symmetric

Chapter 4 Meaning182

For example, if company A is a business-partner to company B, then
company B is also a business-partner to company A.

• Functional: If (x,y) is an instance of the slot, then there is no z unequal
to y such that (x,z) is an instance of the slot. Note that the properties
functional and transitive are mutually exclusive.

slot-def has-sole-owner
properties functional

For example, if company A is the sole owner of company B, then com-
pany B cannot be owned by another company (including the owner of
company A).

In addition to the OIL definitions, OIL files contain a container ele-
ment with metadata describing the file. The container element follows
the Dublin Core Metadata Element Set (DCMI 2000) and contains ele-
ments such as title, creator, subject, description, publisher, type, format,
identifier, source, language, and so on.

The current version of OIL suffers from a few limitations:

• No support for constraints across slots: Each slot constraint affects only a
single slot. Multivalued constraints such as width*height*depth < 100
cannot be specified.

• No default reasoning (only monotonic logic): In OIL, subclasses can in-
herit values from superclasses but cannot overwrite inherited slot val-
ues. If we have, for example, a class bird with the slot main-method-of-
movement and a filler value of “flying,” we would have trouble when
declaring the class emu as a subclass of bird. This could lead to major
restructuring activities when an existing ontology is extended.

• No support for second-order logic: A reification mechanism (such as in
RDF) does not exist in OIL.

4.2.3 Best Practices

We recommend the following practices:

• If a vocabulary is already used by the users in the targeted domain, use
this vocabulary.

• If different vocabularies are commonly used in the targeted domain,
use these vocabularies and provide a mapping between them. For ex-
ample, in an ornithology ontology you would provide a vocabulary of
bird names in common English and one in scientific Latin names.

4.2 Ontologies

Limitations

183

Users should be able to extend these mappings (i.e., specify more
synonyms).

• Provide a semantic definition for each term. This should be accessible
by users who require an explanation of a term.

• Use a classification that is familiar to the user.
• Use namespaces to allow the later merging of ontologies.

4.3 PHILOSOPHICAL EXCURSUS

In the Western world, the Greek philosopher Aristotle (384–322 B.C.) has
been the reference point for ontology questions for more than 2,000
years. For Aristotle, the formal model of logic consists of a single subject
(the Me) making statements about the world of objects (the Not-Me).
Within such a dualistic construction, statements are either true or false.
In fact, “tertium non datur” (i.e., the rejection of logical values other than
“True” and “False”) is a fundamental axiom of Aristotelian logic.

The philosophical system of Aristotle was adopted for the Catholic
Church by Thomas Aquinas (1225–1274) and thus has deeply influenced
thinking in the Western world. During the whole medieval age the teach-
ings of the Catholic Church served as the only possible view for inter-
preting the world. The majority of people lived in an ideologically consis-
tent and coherent environment. Communities that favored a (slightly)
different view of the world were prosecuted as heretics.

During the 16th century, this “one and only ontology” world would be
severely shattered by the developing natural sciences. Nicolaus Coperni-
cus (1473–1543) and Galileo Galilei (1564–1642) challenged the geocen-
tric view of the universe and replaced it with a heliocentric view of our
solar system. The reaction of the Catholic Church is well recorded. Ear-
lier, the German reformer Martin Luther (1483–1546) had challenged the
ideological basis of the Catholic Church, and for the first time in me-
dieval Europe people had a choice between two belief systems. The dom-
inant and monolithic ideology of medieval Europe had received its first
crack. There were more to follow.

Philosophers, however, needed a bit longer to get used to the idea that
there was more than one possible worldview. The possibility of multiple
ontologies was first mentioned by the German philosopher Georg Wil-
helm Friedrich Hegel (1770–1831).

In the 20th century it was the philosopher Gotthard Günther who
combined a system of multiple ontologies (polycontexturality) with a

Chapter 4 Meaning

Aristotle

Thomas Aquinas

Copernicus and
Galileo

Hegel

Günther

184

multileveled logic calculus (Günther 1979). Günther replaced the Aris-
totelian one-observer view of the world with a society of multiple ob-
servers. Each of these observers may live in a different contexture (i.e., so-
cial, cultural, ethical systems) and may arrive at different models of the
same world. If these observers do not communicate with each other, each
of them has its own Aristotelian view of the world. The “tertium non
datur” still holds for each of them. However, if the observers communi-
cate and gather intelligence about each other’s worldviews, they will have
to drop the “tertium non datur” axiom. Besides their own world model,
they have to recognize the world models of others. Günther formalized
this model by using different levels of logical values. The immediate
worldviews of an observer can be expressed in the first level of logical val-
ues, such as True1 and False1. A world model acquired from another ob-
server is expressed with second-level logical values, such as True2 and
False2. A world model acquired from another observer via a third ob-
server is expressed with third-level values, and so on.

It is obvious that, although within the primary worldview the old Aris-
totelian values of “True” and “False” are still intact, they now do not have
the same rigidity as before because we acknowledge the possibility that
alternate worldviews might be correct as well.

Also obvious is that by default the communication between observers
can only be of an informal nature. Consistent logical systems are only de-
fined within a given context and, in general, cannot be used for knowl-
edge transfer between different ontologies. The consequence for daily life
is that some means of informal communication, such as natural language
or heuristic mediation systems, is inevitable.

4.4 CONTEXT

The development of common, shared ontologies can formalize the previ-
ously mentioned communication process, but the development of a
shared ontology (such as the negotiation of a shared XML vocabulary)
must rely on informal means.

At present this task is left to humans and requires not only technical
but also social and political skills. Although it is possible to “lift” knowl-
edge from a limited context into a more general context and to “tran-
scend” knowledge (McCarthy 1998) from one context into another, the
rules for “lifting” and “translating” must be defined by humans. Humans
can traverse multiple contexts with relative ease because they do not rely

4.4 Context

Consequences

Human skills

185

on formalized logic models. (On the other hand, they are also prone to
misinterpretation and errors.) When two individuals or groups establish
communication, they can rely on several things:

• Humans are usually familiar with several contexts. For example, a
lawyer is not only a lawyer, but also a car driver, a husband or wife, a
citizen, a cat lover, and so on. Communication with a partner becomes
possible when both partners share at least one context.

• Humans share one common context: the experience of the real world.
This includes the experience of one’s own body. Bodily functions (e.g.,
eating, sleeping) are universal.

• Even foreign contexts are often very similar in structure. If you learn,
for example, a foreign language or a computer language, learning a sec-
ond foreign language or a second computer language will be much eas-
ier because some concepts and patterns are very similar.

• Humans can use metaphors; that is, they can transcend experience
from one context to another context. In concurrent computing, for ex-
ample, we say that a thread goes to sleep, thus using a term that origi-
nally describes one of our bodily functions. Or, even if I am not a me-
chanic, I can have a clear idea about what a T-bar is because I can
associate the shape of the bar with the shape of the letter T.

As John McCarthy (1998) observed, the human ability to transcend
between contexts is a precondition for making scientific discoveries and
also for understanding somebody else’s scientific discoveries.

4.4.1 Ontologies and Contexts

What now is the relationship between ontology and context? An ontol-
ogy defines the vocabulary, the axioms, and the constraints of a certain
problem domain. The context, in contrast, defines the set of assumptions
that must hold to make the vocabulary, the axioms, and the constraints
valid. The context determines which terms belong to the vocabulary and
which axioms and which constraints are formulated. Depending on the
context, this can even lead to contradictory statements: “Vampires do not
exist” and “Vampires always hop” cannot both be true in the same ontol-
ogy. Vampires that do not exist can obviously not hop. However, the first
statement is valid in the context of the European Enlightenment, and the
second statement is true in the context of Chinese horror movies.

Or consider a rule that might be used to control a robot: “Item A is
above item B if item A is on top of item B.” This sentence is obviously

Chapter 4 Meaning186

only true in the context of gravity. Under zero gravity the expression “on
top of” makes no sense at all and should not be in our vocabulary.

Even structural relationships can depend on context. As we already
mentioned in Section 3.2.5, the entity StreetAddress can be modeled as a
property of the business object customer within the context of procure-
ment but would be modeled as a business object in its own right within
the context of direct mail or utilities.

Some contexts are fairly simple and include only a few assumptions.
ebXML, for example, lists possible context drivers that determine the spe-
cific contextual assumptions for ebXML artifacts (see Section 10.3). But in
general contexts are rich—they contain so many assumptions that they
cannot be completely listed (Guha 1995):

Contexts are objects in the domain, i.e., we can make statements about con-
texts. They are rich objects in that a context cannot be completely described.
The contextual effects on an expression are often so rich that they cannot be
captured completely in the logic. This is what leads us to incorporate contexts
as objects in our ontology.

R. V. Guha and John McCarthy collaborated in the formulation of an
algebra of contexts. Practical application of this theory was the introduc-
tion of contexts into the Cyc knowledge base, a “common sense” knowl-
edge base filled over 12 years with facts about this world and now con-
taining over 1 million rules (Lenat 2001):

The third, and perhaps most important lesson we learned along the way was
that it was foolhardy to try to maintain consistency in one huge flat CYC
knowledge base. We eventually carved it up into hundreds of contexts or
microtheories. Each one of those is consistent with itself, but there can be
contradictions among them. Thus, in the context of working in an office it’s
socially unacceptable to jump up screaming whenever good things happen,
while in the context of a football game it’s socially unacceptable not to.

Guha and McCarthy developed an algebra for operations between con-
texts. This algebra is based on the operator ist(c,p), which stands for p is
true in context c. Note that this statement is valid in some outer context c’
(we cannot make statements without being in a context). Therefore the
complete expression would be written as c’ : ist(c,p), but usually the ab-
breviated version ist(c,p) is used.

The goal of this algebra is to enable AI systems to navigate between dif-
ferent contexts. To solve a particular problem we can move from an outer
context into a particular context (enter context p), solve the problem
there, and move back to the outer context (exit context p). Statements
valid in a particular context can be lifted into a more general context. For

4.4 Context

Lessons from Cyc

187

example, the statement “Item A is above item B if item A is on top of item
B” is true in a context where gravity is greater than zero. This statement
can be lifted into a gravity-independent context by adding a clause: “Item
A is above item B if item A is on top of item B and gravity is greater than
zero.” The operations of entering a context, exiting a context, and lifting
statements can be fully formalized. This allows the modularization of
large knowledge bases (as in the case of Cyc).

In many cases specialized contexts can establish an exception from the
more general context. Here is an example:

• A regatta is a race between boats.
• Boats travel on water.

From these two statements it should follow that a regatta takes place on
water. But not so in Alice Springs, Central Australia. The annual Todd
River Regatta does not take place on water for the simple reason that the
river is dry. (The boats have holes in the bottom for the crew to put their
feet through.) In this special context, regattas do not take place on water.

This example also explains the difference between monotonic and
nonmonotonic reasoning. In monotonic reasoning, when a statement P
follows from a set of statements A and additional statements are added to
A, then P remains true. This is not the case with nonmonotonic reason-
ing. Adding new statements to A can cause P to become false. This is ex-
actly what happens when we move from a wider context (all regattas) to
a narrower context (the Todd River Regatta). Because the context now
contains an additional assumption (dry riverbed), our theory about re-
gattas comes to a different conclusion. (Prospective regatta participants
should be aware that in years when the Todd River carries water the re-
gatta is canceled.)

The question, of course, is, Couldn’t we design a correct model from
the start so that we do not need nonmonotonic reasoning? The answer is
that this is not always possible. When we formulate our model, we might
not know all possible exceptions that could violate our knowledge base.
Especially in an open environment such as the World Wide Web, it is al-
most certain that at some stage we will discover exceptions to the rule.
Nonmonotonic reasoning allows us to add these new cases as explicit ex-
ceptions to the knowledge base, instead of completely remodeling the
whole knowledge base.

But back to contexts. Although we have a formal model for the re-
lationship between outer, more general contexts and inner, more special-
ized contexts, we have no model for the relationships between arbitrary

Chapter 4 Meaning

Exceptions

Nonmonotonic
reasoning

188

T
E
A
M
F
L
Y

Team-Fly®

contexts. We cannot formalize a general theory to transcend context
(McCarthy 1998):

Human intelligence involves an ability that no-one has yet undertaken to put
into computer programs—namely the ability to transcend the context of one’s
beliefs.

Consequently, AI systems that must translate between different con-
texts have to be told how. A human knowledge engineer has to define the
rules for the mediation between different contexts.

4.4.2 Binding to Contexts: Schema Adjunct

And now back to XML. Earlier we mentioned that each database schema
forms an ontology. If this is so, what is the context of such an ontology?
Clearly, the context of a database schema is represented by the applica-
tions (and possible future applications) that access this database schema.
The definition and layout of the database schema are founded on certain
assumptions about how this schema will be used. These assumptions
were analyzed during the design phase of the database applications. The
final applications incarnate those assumptions. The binding between
applications and database schemata is usually hardwired.

A similar logic applies to XML. Although XML documents contain
some of their metadata in the form of tags and attributes, they do not
contain information about implicit assumptions that should be known
when the document is processed. Consequently the context for XML
schemata is set by the applications and services that process the XML
instances.

A specific feature of XML is the hierarchical structure of document ele-
ments. This can be translated into a hierarchy of contexts, starting with
the widest context on the root level and continuing with narrower con-
texts on the child level, and so on.

We can therefore describe a binding between document and context
for each document element separately. For example, if we want to bind
the document to an object-oriented application, the most natural way is
to replicate the document structure by an isomorphic class structure. In
other cases—especially if we want to bind an XML document to already
existing applications or services—the binding may not be so straight-
forward. Traditionally, those bindings take the form of hardwired pro-
gram code that in some way interprets the output of SAX or DOM parsers
and takes appropriate action.

4.4 Context

Context in XML

Binding to a
context

189

A more flexible approach is possible by means of the Schema Adjunct
Framework (SAF). SAF describes the binding between XML document
nodes and application functions in a declarative way (Buck 2000):

To process XML instances for a given schema, many environments need addi-
tional information which is typically not available in the schema itself. Such
information includes mappings to relational databases, indexing parameters
for native XML databases, business rules for additional validation, interna-
tionalization and localization parameters, or parameters used for presentation
and input forms. Some of this information is used for domain-specific valida-
tion, some to provide information for domain-specific processing.

The Schema Adjunct Framework has a two-layer architecture:

• The adjunct: The adjunct introduces additional information not con-
tained in the document schema. The adjunct specifies additional se-
mantic information such as constraints and operations in an abstract
way. The adjunct itself is formulated in XML syntax, too. The concept
used to attach additional information to document elements is similar
to the concept used in Schematron (see Section 2.9).

• The adjunct processor: The processor is implemented in a suitable imple-
mentation language (XSLT, Java, C++, and so on). It interprets the doc-
ument instance, schema, and adjunct. Based on the abstract opera-
tions defined in the adjunct, the adjunct processor mediates between
the document and a target application.

Let’s look at an example (see Figure 4.1). We have defined an XML doc-
ument type representing customer records. We want to map these in-
stance documents to database tables in a relational database, and we
want to generate HTML forms for updating customer entries from the
XML documents. We define one adjunct that associates SQL tables and
columns with the elements of our customer document. A generic adjunct
processor for SQL reads the adjunct information and mediates between
the XML datastreams and the SQL database. Because this processor is
generic, we can use it for other document types, too.

To translate the XML documents into HTML forms, we define another
adjunct that associates the document elements with abstract form ele-
ments. Here we use two different adjunct processors. One translates doc-
ument instances—based on the adjunct information—into HTML. The
second processor accepts the input data from the HTML form and trans-
lates it back—again based on the adjunct information—into an XML doc-
ument. Although the first processor could be written as an XSLT style
sheet, the second processor would probably be implemented in the form
of a Java servlet. Here is the code:

Chapter 4 Meaning

SAF

190

<schema-adjunct
target = “http://www.softcorp.com/product.xsd”
xmlns:xfg = “http://www.softcorp.com/xml-form-gen.xsd”

...>

<element which = ‘Product’>
<xfg:form/>

</element>

<element which = ‘Product/Name’>
<xfg:label>Product name</xfg:label>
<xfg:type>text</xfg:type>
<xfg:tag>prdnm</xfg:tag>

</element>

<element which = ‘Product/Price[Currency=”USD”]/Amount’>
<xfg:label>Price(USD)</xfg:label>
<xfg:type>decimal</xfg:type>

4.4 Context 191

Figure 4.1 Using the Schema Adjunct Framework to build a simple XML-based application.

SQL

Adjunct
for RDBMS

Browser RDBMS

A
dj

un
ct

 P
ro

ce
ss

or
fo

r
H

TM
L

A
dj

un
ct

 P
ro

ce
ss

or
fo

r
Fo

rm
s

In
p

ut

HTML

Forms
Input

Database
Context

User Interface
Context

XML
Document

Adjunct
for HTML

Forms

A
dj

un
ct

 P
ro

ce
ss

or

fo
r

SQ
L

<xfg:tag>prdprc</xfg:tag>
</element>

</schema-adjunct>

The adjunct refers to an XML Schema definition (target). Each element
clause selects an element for processing (which). The child elements con-
tained in each element clause define abstract operations that are to be in-
terpreted by the adjunct processor.

By separating the semantics into an abstract layer and an implementa-
tion layer, the Schema Adjunct Framework is well suited to implementing
the constraints and operations defined in a conceptual model in a flexible
and portable way. The fact that adjunct definitions are XML documents
themselves is an additional advantage: adjunct definitions can be created,
maintained, and parsed with the usual XML tools and, if necessary, can
be structurally transformed with the help of XSLT style sheets.

Chapter 4 Meaning192

193

5Modeling Processes

Why bother dealing with business processes in this

book at all? Since XML could be looked at as being

a technological basis for integration within the IT domain, we

definitely have to take processes into account. We have seen

at least two phases in IT: data integration and application

integration. Giving the process paradigm appropriate weight,

we can observe the phase of integrating processes of mani-

fold kinds in different environments and with arbitrary scope

in their business domains.

That is why in this chapter we will give an overview of pro-

cess modeling, starting with some terminological aspects. We

then present workflows as a special perception of processes.

From that we will show some problems in the field of process

analysis and modeling and present a somewhat uncommon

perspective of business processes. These considerations are

5.1 Concepts of Business
Process Modeling

5.2 Business Process
Modeling and
Systems Development

5.3 Communication and
Cooperation: Toward
Agent-Based Systems

5.4 Process Concepts
and XML

5.5 Concluding Remarks

based on mechanisms that are known from research on cooperative software
agents, specifically communication-based interaction, cooperation, and coor-
dination. Finally we give some hints on applying XML technology to process
modeling and implementation.

5.1 CONCEPTS OF BUSINESS PROCESS MODELING

Business processes have proved to be an adequate paradigm in describing
value-creating activities within and between enterprises—in both the old
economy and the new (or Internet) economy. In turn, processes may
serve to describe interactions between any participants in Internet plat-
forms (e.g., portals, marketplaces, etc.).

Such “interactions” refer to business transactions, which encompass
the collection and exchange of information, the negotiation of contracts,
and the exchange of goods. This is part of what is called the “primary
market transaction.” The secondary transaction takes place in payment,
logistics, and so forth.

Since we face interaction relationships (i.e., communication, synchro-
nization, data manipulation, etc.) between entities, we have to consider
process interfaces. XML-based formats in that context may be used to
specify process contents and interfaces and thus support the interprocess
understanding.

Section 11.3 will give an overview of business formats possibly able to
meet this demand. For now, we present some conceptual considerations
in approaching the problem of describing or specifying process-oriented
contents from a model perspective.

5.1.1 Overview of Process Paradigms

Since we present XML-based modeling approaches for business processes
in this section, we first have to differentiate several views of the issue. We
will not discuss the pros and cons of process paradigms. Instead we will
cover the modeling and exchange of process information with respect to
exploiting XML and its related developments.

Most often processes are regarded as a sequence of intra- or inter-
organizational activities, tasks, or functions that represent some value
creation. The activities may be performed by people or technical devices
(e.g., computer-based systems). This perception of a process leads us to
the workflow paradigm, discussed in Section 5.1.2.

Chapter 5 Modeling Processes

Value creation
and interaction

194

Alternatively it may be helpful to consider the interaction rather than
the operation. By doing so, we have to deal with communication between
people and/or systems involved in the execution of a process implemen-
tation and the agreements made to perform the necessary process steps.
Therefore Section 5.4 deals with contract-based, communication-based,
and actor-based approaches to process modeling.

An important aspect in process analysis, modeling, and implementa-
tion is the ability to handle any changes to the process design over time.
In that sense we may have to deal with process life cycles rather than
with static objects. Therefore it may be important for processes to encom-
pass the property of self-modification. This may in the first place refer to
adopting changes due to external effects being relevant for the outcome
of the process, and therefore the owner of the process, without any need
for manual manipulation. Such an approach is closely related to the
actor- or agent-based perspective. An overview is given in Section 5.4.4.

5.1.2 Notion of Workflows and Modeling

The concept of a “workflow” reflects the traditional view of the imple-
mentation of processes in organizational environments. Broken down to
bare techniques, the workflow view implies the modeling of business pro-
cesses as sequences of complex activities that may be split into parallel
sequences and/or partitioned into subsequences or elementary activities
(actions). Agents, singly or in a group, are then assigned to execute these
activities.

The prevailing workflow metaphor depicts a business process as a
stream or flow of documents and/or (intermediate or finished) products,
processed stepwise by each agent in turn, that is, when the particular
work piece comes flowing past them, and then passed on toward the next
processing station. This, of course, very much resembles assembly line
production. Common examples for such workflows are the assembly of a
tax declaration or the processing of travel expenses.

A basic control element is given by task lists. For each agent or pro-
cessing station a task list holds the tasks to be processed next at that sta-
tion. An entry in the list encompasses the documents or other objects to
be processed as well as the corresponding processing tools.

A workflow then is used to describe a well-structured and/or standard-
ized process, as it can be identified in public and company administra-
tions. It is not a useful instrument for ill-structured processes. We will
defer discussion of that until later in this section.

5.1 Concepts of Business Process Modeling

Process life
cycles

Workflow

195

Such implementations of workflows are workflow instances controlled
by workflow management systems (WFMSs). In contrast the definition of
workflows is part of conceptual modeling on the metalevel, that is, the
workflow schema. Thus a WFMS supports the metamodeling of work-
flows and allows the creation of instances that it keeps track of. The
Workflow Management Coalition (WFMC) has specified several com-
ponents of an overall architecture, including interfaces for workflow
definition and cooperation on the workflow engine level. For further
information, have a look at www.wfmc.org.

Regarding common approaches to process specification, we select
an example well known from the enterprise resource planning system
SAP/R3: event-driven process chains (EPCs). We are not going to discuss
the pros and cons of EPCs here. Instead we will present EPCs as a semi-
formal modeling approach within this section, a viable solution to mod-
eling workflows. Nonetheless we will sketch some of the drawbacks to
adequate modeling.

The basic idea of EPCs is to model process behavior as a sequence of
events and functions. Events represent temporal or logical conditions to
be fulfilled before executing a function. A function then may be thought
of as a work step to be performed within the context of a business process.

Figure 5.1 shows an example of a workflow given as an EPC in ARIS
(www.ids-scheer.com). While this is a coarse-grained top-level view, func-
tions 1, 2A, and 2B are usually decomposed into detailed representations.

Chapter 5 Modeling Processes

Workflow
management
systems

Event-driven
process chains

196

Figure 5.1 Example of an ARIS EPC.

Function
1

Start
Event

Function
1 done

Function
2B

Function
2A

End
Event

V V

The problems with using EPC-like modeling approaches are many.
Some of them are inherent to the methodology; others arise from the
inadequacy of the tools available for modeling. Here is a summary of the
drawbacks that we consider important:

• The set of constructional elements, mainly events and functions, stems
from the industrial production domain, which is characterized by deal-
ing with standardized processes. Process steps are triggered mainly by
temporal conditions. The process is deterministically given by a se-
quence of actions. This concept is definitely valid for exactly that class
of processes.

• The strict alternation of event and action in EPCs does not represent
the real world adequately. Events should represent temporal and logi-
cal conditions to be fulfilled rather than functioning as syntactic sepa-
rators within the sequence of functions.

• Decomposition for refinement is done on a modular basis. Once the
boundaries of a component to be refined have been modeled (via so-
called process interfaces), they will not change in the refined versions.
So new connections with other components cannot be established
without explicitly changing the complete model on higher levels of
abstraction. In addition, process model graphics are more likely to be
decomposed due to the limited place of output media than due to log-
ical considerations.

• The decomposition problem gives proof that reverse engineering is not
supported—or, if so, just to a very limited extent—by the correspond-
ing tools.

Section 5.2 includes a further discussion of this topic and the demands
of today’s business environment.

5.1.3 Metamodeling Aspects

Metamodels describe the elements and their relationships within a spe-
cific model type. This means that syntax as well as semantics is defined.
Concrete models therefore are built on the concepts that the metamodels
describe. Figure 5.2 shows a simplified metamodel of EPCs, given as an
entity relationship model. The connectors, also represented in the meta-
model, allow the process analyst and modeler to express parallel and
alternative paths within an EPC, using logical AND, OR, and XOR opera-
tors. Additionally a function may be associated with an organizational

5.1 Concepts of Business Process Modeling

EPC and process
modeling

Metamodel
for EPCs

197

unit that performs the function and an information object needed to per-
form the function. From the IT or implementational view, an informa-
tion object then may be mapped to a data element stored in a database.

The metamodel developed here clearly does not meet the modeling
semantics of EPCs. The construction procedure would require order-
ing rules such as “events and functions are strictly alternating when
hiding the connectors” or “let an EPC start with either an event or a pro-
cess interface,” where a process interface may represent either an event
or a function.

Metamodels are important components in business process manage-
ment, and we will make use of them in the following section. From the
conceptual perspective they semiformally explain the modeling elements
in the particular context. From the perspective of frameworks that sup-
port modeling they build the basis for checking mechanisms as well as for
model generation (e.g., via appropriate rule-based engines).

Chapter 5 Modeling Processes198

Figure 5.2 Simplified metamodel of EPCs.

is_performed_by

performs

1 1

1

1

1

1 1

11

1

1

may_need

may_be_needed_by

11 1 1

1

Organizational
Unit

Logical_ORLogical_AND

Connector

Process
Interface

Event

Information
Object

Function

T
E
A
M
F
L
Y

Team-Fly®

Metamodels, roughly speaking, function as information models, as do
ontologies (see Section 4.2). In the process management context they
hold process-related knowledge or metainformation to be worked with or
to be communicated between software entities.

XML may be employed to specify workflows from the perspective of
metamodeling as well as from the perspective of the concrete instance of
a workflow. DTDs may be used for the exchange of such specifications as
well as for the storage of the specification in appropriate repositories. The
exchange of workflow information between two interacting software
components could be realized using advanced schema definition mecha-
nisms, such as the Resource Description Framework (RDF), discussed in
Section 3.3.

A concrete application area for the exchange of process information
would be the migration of workflows in distributed workflow manage-
ment environments (e.g., for the purpose of load balancing). Since a
workflow system can control only the workflows that it has some under-
standing of, passing control of a workflow instance from engine to engine
would imply sending the metadata (i.e., the workflow schema) as well.

An example more complex than what we have presented here can
be found at www.ebxml.org/project_teams/business_process/wip/metamodel/
version2.0.pdf. Section 10.3 presents ebXML as a process-related XML
technology.

5.2 BUSINESS PROCESS MODELING
AND SYSTEMS DEVELOPMENT

In this section we first sketch the current situation in business process
(re-)engineering (BPE) and point out shortcomings in practice, especially
for a certain class of business processes that can be structurally character-
ized as being highly dynamic. These are likely to be found in service busi-
nesses. We present an approach to business processes that in general
promises more adequate engineering of such conventionally rather
intractable processes.

5.2.1 Background

These days there is a growing dissatisfaction with the established way of
analyzing and describing business requirements and deriving IT solutions
for the processes thus defined. This is true even though the concrete
understanding of the modeling of, and IT support for, business processes
differs from case to case.

5.2 Business Process Modeling and Systems Development

Information
models

Workflow
migration

199

We consider business process engineering as a paradigm for investigat-
ing business information for use in appropriate IT development. We will
focus on currently observable practice, in which processes are mostly
considered as plain workflows, as has been sketched earlier. As a result,
and to simplify matters, we generally call these conventional approaches
the “workflow view” of business activities.

The main technique for describing this kind of workflow view is a
chart, a graphical network, the nodes of which are either events or ac-
tions (often called “functions”). In this chart, a starting event precedes
an action and a result event follows the action—or more than one result
event if there are alternative outcomes of an action. The result event
of one action usually serves as the starting event for the next one, or
result events of several actions are somehow connected to start an action.
Alternative paths (i.e., mutually exclusive paths) and parallel paths
through this kind of event-action-chaining net are distinguishable only
by the kind of “connectors” (with propositional logic semantics) at path
branches or junctions. Well-known examples are event-driven process
chains in ARIS (Scheer and Nüttgens 2000), as seen earlier, and the
activity diagrams in UML (Fowler and Scott 1997).

Workflows can be executed using a workflow management system
(WFMS). In a WFMS configuration, people or systems (applications,
machines) are assigned to perform the actions by processing documents
or work pieces that are usually supplied by WFMS service components.
Often workflows are classified into (ill-structured) ad hoc, semistructured,
and (well-structured) standard workflows. Standard workflows are com-
pletely supportable by WFMS; semistructured, partly; and ad hoc work-
flows, not at all (Back and Seufert 2000).

Unfortunately, the structure class of a workflow is often recognized
only after implementing it and then observing its mismatch with reality.
The result of the analysis and conception phase may be a nice workflow
graphic that is commonly agreed upon to exactly describe what happens
in the departments under investigation. But the WFMS solution set up
accordingly may turn out not to be workable because the workflow had
almost completely “evaporated” in the course of its implementation and
trial. This may be due to the fact that the initially analyzed process is
ad hoc and highly dynamic rather than well structured.

For greater flexibility, newer WFMSs have been equipped with
exception-handling mechanisms or some means for explicitly allowing
deviation in practice. Watering down the workflow principles this way
demands, naturally, a kind of metacontrol. This may be based on a means
of process monitoring to detect diverging behavior of the actors.

Chapter 5 Modeling Processes

Business
process
engineering

Workflow
classification

Workflow
classification

Divergent
design and
implementation

200

The fact that such divergence happens (and that workflow designers
have provided for “emergency exits”) is evidence of the inadequacy
not just of a particular workflow but rather of the whole traditional
workflow concept when applied to business processes that are not really
well structured.

The established workflow view (the activity- and work-piece-centered
view of business processes) is probably inadequate for a whole class of
business processes for the following reasons (among others):

• It requires a rigid, fixed process structure.
• It presupposes that all choices are decidable.
• It views agents as being event-triggered. That is, they are called, by the

workflow, to work on a certain object in a precisely defined way and
then sit idle until the next work piece comes flowing by.

The class of processes for which the workflow view is inappropriate can
be identified as being complementary to the class of processes for which
the workflow view initially was conceived (namely, the industrial produc-
tion processes). For these, the conditions listed in the preceding para-
graph hold. But for administrative or service processes, or for highly
dynamic business processes generally (those that deal interactively with
people), another view is needed. This especially applies to businesses act-
ing in changing market conditions and therefore being subject to perma-
nent organizational changes.

The degree to which a business process is dynamic affects its potential
for automation, which in turn corresponds to the degree of the possible
shift or delegation of responsibility from units involved in the perfor-
mance of a business process to units designing (the automation of) a busi-
ness process. Instead of narrowing the responsibility of actors to single
work steps within a workflow, designers need a much wider scope. In
other words, as far as any actor (human or machine) is intended to be a
logical part of some transaction (in the IT sense), decentralized responsi-
bility is not possible. And, since responsibility and flexibility are the flip
sides of the same coin, hopes for introducing flexible reaction into a
workflow will always be dashed.

5.2.2 What Is a Business Process?

Capturing the dynamics of business processes certainly necessitates addi-
tional concepts in modeling: communication, parallelism, nondetermin-
ism, and mobility. These concepts have a sound basis in formal process
calculi, especially Milner’s π-calculus (Milner 1999).

5.2 Business Process Modeling and Systems Development

Workflow
appropriateness

Dynamic
business
processes

201

Let’s first look at the definition of a “business process.” We regard a
business process as

• a network of interacting abstract agents, each of them playing certain
business-related roles,

• working concurrently, organizing their cooperation using preestab-
lished or ad hoc–created communication channels,

• implicitly or explicitly using or negotiating contracts with clients or
other agents, realizing a cascade of contracts specifying the value cre-
ation, where a distinct contract is to achieve given and explicitly stated
goals or subgoals, and

• where real world agents are assigned to work for the roles they play
(i.e., because of their competence), with such assignments spanning
organizational structures.

The benefits we expect from this view are many. The degree to which
these benefits really become visible, however, depends on the kind of
business and, to a lesser degree, on the kind of enterprise organization:
the more service oriented the business and, therefore, the higher the pro-
cess dynamics, the greater the benefits of this approach! Let’s look at the
benefits from three different perspectives.

Benefits in Process Design
The design of a new business process can profit substantially from the
following method: We start by (1) stating and decomposing the goals
that the business process is to meet, then we proceed to (2) derive initial
contracts to serve the business goals and to identify “contractors” and
the roles they play in a cooperation net. This forward business process
engineering may be continued by (3) defining the internal nature of the
roles and their external communication behavior, eventually arriving
at a model in which (4) resources are allocated to roles and tasks and
where we, finally, can (5) use this model configuration to derive require-
ments for IT systems to support tasks, roles, and even whole interaction
structures.

Benefits in Process Reengineering
Optimization of an existing business process is also greatly facilitated by
the changed view of the circumstances. Reengineering a business process
first requires an “as is” model of the process. This means in particular the
modeling of what it has actually grown into, not what it once was con-

Chapter 5 Modeling Processes

Definition
of a “business
process”

Process
construction

Process
reconstruction

202

ceived to be and therefore is believed by some managers to still be (but
perhaps never was). In such a model, we must determine the degree of
support for newly defined or persisting business goals by the existing
business process. Degrees of support can never really be measured if, from
the findings, all aspects that do not fit into an idealized notion of the
business must be cut away, as is often the case with the Procrustean bed
of the workflow view. When an adequate business process model has
been reached, we can reconstruct the roles and, further on, the (implicit!)
contracts according to which the roles are observed to act. By examining
the reconstructed contracts, the gap between the actual and the desired
goal support will become visible, and we can see how contracts and/or
roles will have to be changed, or what changes have to be made to the
inventory of contracts, roles, and tasks, in order to close the gap.

Figure 5.3 summarizes the elements of the reverse and forward engi-
neering approaches to process design and their relationship as it is com-
monly found in real world projects. “Reverse engineering” denotes the
reconstruction of real contracts from given physical situations. “Forward
engineering” is constructing ideal contracts from the goals of an enter-
prise. A gap analysis on the contract level may also contribute to the eval-
uation of process implementations.

5.2 Business Process Modeling and Systems Development 203

Figure 5.3 Integrating construction and reconstruction in business process analysis.

Stakeholder

Goals

Subgoals

Objectives

Contracts

Objectives

Activities

Roles/Objects

Construction Reconstruction

Benefits in Process Optimization
Not surprisingly, one way to optimize an existing business process is to
optimize its IT support. This is the usual motivation for business process
modeling and BPE. The real problem in improving IT support is deter-
mining its purpose and its scope; that is, the problem is identifying the
“real” requirements for better IT systems. Directly asking the actual hu-
man agent will yield a much too narrow view. But asking a manager will
yield a view that is usually more and more idealized and removed from
reality the higher up the management hierarchy you go. So, instead of
directly asking for requirements, we have to inductively build a model of
the whole business environment of an IT system. This procedure might
start by asking agents to whom they are talking; what information they
are exchanging this way; how they would categorize what they are doing
today and what they did yesterday and the day before that; which re-
sources they use; how they see their work supported by IT systems; to
whom they turn for advice; and so on. That is, we gather information
pieces that allow us to build a model of what is really going on (e.g., what
interdepartmental shortcuts exist, often with undocumented data flow;
what undocumented resources are used and in what undocumented
ways; what undocumented procedures have come into existence; how
people have tried to optimize their tasks, often only locally and thus
sometimes degrading global performance; and much more).

From what has been said so far, it appears that a WFMS is normally not
the proper software choice to support business processes in business areas
where BPE really shows its benefits. In these cases, a collaborative support
system (CSS) may be more appropriate. But, usually, software is needed
that is specially geared to the service tasks of the business in question.
And there it is important to know the requirements as exactly as possible.
So “off-the-shelf” products might not be the answer.

Although such knowledge of real requirements might also be gained in
other ways, business process reverse engineering is a viable solution in
order to get the basis for optimal IT support of whole business processes
or the appropriate parts. Even if only partial support is needed, it is
important to reverse engineer the whole business process—or at least as
much as can be done within the limits of a project—in order to get a
complete enough picture.

To sum up, we see the benefits of our approach

• for forward engineering of business processes, in which design of
much more flexible processes is facilitated, but also

Chapter 5 Modeling Processes

Identification
of real
requirements

Benefits
in forward
and reverse
engineering

204

• for business process reverse and reengineering, in which much more
adequate modeling allows for more complete and more correct repre-
sentation of established processes.

There is another area where the new view promises substantial benefits,
although we have not yet explored it sufficiently and we do not know
exactly, at the present time, how to handle it technically. It is the area
of continuous change management, a hot topic in the age of e-business.
We expect the mobility concept to be very useful for integrating changes
to business processes directly, on the same level, into the business process
model. Traditionally, workflow changes must be managed in a metalevel
model, whose objects are the different versions of a workflow model.
That means changes are done to the workflow model, not within it. Work-
flows share this fate with program sources, of course: that is how the
ordinary source management system works. And as with changes to pro-
grams, adapting a workflow means a whole run through an editing–
recompiling–retesting–reinstalling cycle.

In a collection dealing with business process management (van der
Anlst, Desel, and Oberweis 2000), where all contributors work strictly
within the workflow view, an essay (Ellis and Keddarn 2000) asserts that
“a workflow change is a workflow,” thus underscoring the metalevel
problem. Although the modalities of change as listed in the article, as
well as the techniques for change description presented there, are also
important for a π-calculus-based change management, the mobility fea-
ture of π-calculus seems to allow changes to be an integral part of the
business process model. Alas, even if we knew how to handle such
dynamism within business process engineering, there still remains the
nontrivial task of reflecting such changes within the IT systems support-
ing dynamically changing business processes. Component-based soft-
ware, however, seems to facilitate the needed flexibility. Actually, adding
and exchanging components in a running IT system is a research field
presently addressed on the basis of π-calculus (Henderson 1997). So, the
hope is to demonstrate in the not-too-distant future that business process
change is not a business process but an integral feature of a differently,
more adequately, engineered business process. We will pick up this aspect
again in Section 5.4.4.

5.2.3 Employing Formal Modeling

Imposing an inappropriate “grid” for process description results in the
distortion or complete loss of important information. The degree to

5.2 Business Process Modeling and Systems Development

Continuous
change
management

Workflow change

205

which this inadequacy becomes obvious depends very much on the busi-
ness sector. Workflow-oriented business process modeling may indeed be
appropriate for industrial manufacturing, where we usually find well-
structured processes, but it is definitely inadequate for service branches,
especially in the financial sector, such as insurance companies and banks
(although the term “production process” is used in such organizations as
well). The latter business sectors do not have the rigid structure of indus-
trial production. Instead, there is much more dynamism and change,
quite often imposed by the rapidly changing social and legal environ-
ment of these businesses. That is, we find mainly ad hoc or semistruc-
tured processes. This is certainly true in the current wave of mergers and
acquisitions in the financial sector, with all its organizational implica-
tions, which leads us back to the problem of change management.

Although we have been dealing with rather descriptive aspects so far,
this chapter will present a formal modeling approach, based on the con-
cepts of Milner’s π-calculus (Milner 1999). Although this is not the place
to fully introduce π-calculus, we will briefly sketch its main features, as far
as they are relevant to BPE.

A calculus is a collection of elements and rules that specify how to
combine these elements. A process calculus then is a collection of formal
elements that represent physical, social, or formal processes and rules to
construct and combine process elements.

Such calculi have been developed to describe and understand the be-
havior of complex systems by abstracting from specific attributes. In par-
ticular, this may refer to state transitions and concurrency in such
systems. Examples are petri nets, Hoare’s Communicating Sequential Pro-
cesses (CSP), and the Calculus of Communicating Systems (CCS). Com-
plex “real world” systems to be investigated may be found as technical,
social, or natural processes in machines, electronic devices, communica-
tion systems, organizations, enterprises, societies, and other dynamic
systems.

CCS, also developed by Milner around 1980, is meant to describe the
observable behavior of parallel processes in process systems. The behavior
is given by the interaction, that is, the communication between single
processes. Furthermore behavioral equivalence between process systems
can be determined, which allows the analysis of systems with regard to
building process classes. Process calculi may also allow the description of
nondeterminism. So the π-calculus basically adds the concept of mobility.

Let’s first have a closer look at communication in the π-calculus. Com-
munication in that context is a formal act of synchronization or hand-

Chapter 5 Modeling Processes

π-calculus

CCS

Communication
channels

206

shaking between two interacting processes rather than a mechanism to
exchange structured messages. Technically communication is performed
via channels, referred to by channel names. Channel names can be used
only for bilateral communication—but by more than two processes, lead-
ing us to one type of nondeterminism.

Process systems are processes existing in parallel, each of which is for-
mulated by a so-called process term. These terms basically are sequences
of possible communications. Since communications are directed, terms
normally encompass sending (outgoing) as well as receiving (incoming)
communications.

In Figure 5.4 a process system is given by two parallel processes Travel-
Agency and Traveler. The two processes communicate via a channel
named by the pair confirm (for an outgoing communication) and confirm
(for an incoming communication). They may be thought of as ports of a
virtual connection. Note that communications are always directed.

Consider this short example:

TravelBusiness := TravelAgency | Traveler

TravelAgency := request . offer . book . confirm . 0

Traveler := request . offer . book . confirm . 0

The process system named TravelBusiness includes the two parallel pro-
cesses TravelAgency and Traveler from Figure 5.4. Each of these processes
is described by a process term. The dot indicates the sequence (i.e., the
flow of communicational steps of single processes). The sequence of
performing communications leads to what is understood as process
evolvement. Roughly speaking, when a process comes to a receiving
communication in its process term, it blocks until the communication is
performed; that is, it is triggered by receiving the handshake communi-
cation via the channel in question. It then evolves to the next state. So,
having performed a handshake communication, both process terms
evolve to the next step. This is close to state transitions in automata, but

5.2 Business Process Modeling and Systems Development

Process terms

Process
evolvement

207

Figure 5.4 Communication channel between processes.

confirm

confirm

Travel
Agency

Traveler

not necessarily finite or deterministic. By the way, the “.0” indicates the
evolvement toward the termination of the process. It may be left off for
abbreviation.

Since more than two processes can use the same channel, with pre-
cisely the same name, nondeterminism can be expressed. Consider again
the following simplified example for our travel business (see also Figure
5.5):

TravelBusiness := TravelAgency1 | TravelAgency2 |
Traveler

TravelAgency1 := request . offer . book . confirm

TravelAgency2 := request . offer . book . confirm

Traveler := request . request . offer . book . confirm

Here we do not know how the process system evolves (i.e., which of
the travel agencies wins the race with its offer). In this simple example
both travel agencies are identical, and both receive the traveler’s request
(probably sent to both by request.request) and make an offer. The trav-
eler will book at only one agency. The “losing” agency will block at the

Chapter 5 Modeling Processes

Nondeterminism

208

Figure 5.5 Nondeterminism in process systems.

Traveler

confirm

offer

confirm

request

request

request

offer

offer

book

book

book

confirm

offerTravel
Agency1

Travel
Agency2

T
E
A
M
F
L
Y

Team-Fly®

book step. By the way, we also do not know which agency receives the
request first. Although this example is rather simple, it shows that the π-
calculus provides us with mechanisms to model real world situations that
cannot be clearly expressed at modeling time. Our example leaves totally
open which travel agency the traveler will get a ticket from after all.

Mobility is one mode of evolvement given by means of communi-
cation links (or channels) that die or are dynamically created during the
lifetime of the process system. So we can describe the fact that a commu-
nication channel is moved from one component of a process system (or
“agent” in our terminology) to another. The set of communication links
of an agent describes its neighborhood and, as a consequence, its loca-
tion. Then we can also move the agent itself by moving its communica-
tion links and thereby creating a new location.

In our previous example we can think of the situation where the travel
agency cannot handle a request in time and therefore delegates the task
of preparing an offer to its subagency (see Figure 5.6). For that purpose a
new channel reply is established that is moved via names offer1 and
offer2 from TravelAgency1 to TravelAgency2 (indicated by the block
arrow). The reply channel functions as a process handle that is passed
along to TravelAgency2. By that mechanism, TravelAgency2 is able to
send its offer to Traveler although it does not even directly know the

5.2 Business Process Modeling and Systems Development

Mobility

209

Figure 5.6 Mobility in process systems.

Travel
Agency2

Traveler
offer1

Travel
Agency1

request

request

offer2

book

confirm

confirm

delegate

delegate

book

reply

reply channel. TravelAgency2 just works out the offer; booking and con-
firmation in our example are dealt with by TravelAgency1 and Traveler.

The π-calculus notation of this example is as follows:

TravelBusiness := TravelAgency1 | TravelAgency2 |
Traveler

TravelAgency1 := request(offer1) . delegate<offer1> .
book . confirm

TravelAgency2 := delegate(offer2) . offer2

Traveler := (new reply)request<reply> . reply .

book . confirm

We will now incorporate the features sketched so far into a model-
ing approach. Modeling based on π-calculus means viewing a business
process as a system of what we will call “π-processes,” processing concur-
rently, in parallel. A b-process is performed (1) by the interaction of such
π-processes (this interaction is externally observable) and (2) by activities
internal to these π-processes.

So, a business process is actually represented on two layers: (1) the
interaction layer and (2) the elementary task layer. At first sight, this does
not seem to differ so much from the workflow model, but in fact it does
so significantly: In the π-processes system, there is no globally imposed
scheduler, and no predefined network of interaction flow. The inter-
action structure of a “π-system” emerges as its π-processes evolve, that is,
as single π-processes proceed (advance their state) by communicating
with other π-processes. This means a decentralized control structure,
organized by cooperation. As long as mobility is neglected, a structure of
possible communication channels can be determined a priori for a π-sys-
tem by examining the individual structures of the π-processes, that is, by
looking up which “front ends” or “back ends” of channels appear within
a term (expression) defining a π-process. An instance of π-calculus
communication, as stated earlier, is directed and a singular event, mean-
ing, loosely speaking, a channel is one-way and used at most once. But
since concurrent π-processes can compete simultaneously for the same
channel, it is often impossible to predetermine who will win and which
communication will take place. Similarly, within a π-process, the evolu-
tion path can branch, and it is often not possible to decide locally in
advance which path will be taken. We will come back later to these kinds
of nondeterminism.

Chapter 5 Modeling Processes

π-calculus-
based business
processes

Business
process
representation

210

Mobility now adds the creation of new channels “on the fly,” estab-
lishing new front or back ends, or both. This way “process handles” can
be passed along, which is logically equivalent to moving processes. This
feature, which we explained earlier, is quite useful and is applicable to
diverse cases of real world modeling. Milner gives the technical example
of a mobile phone in a car that must disconnect from, and reconnect to,
transmitters as it is moved over cell boundaries. Here “mobility” is the
movement of the cellular phone’s link to another transmitter rather than
the movement of the phone as the car is moving. Typical business pro-
cess examples could include the following:

• Servicing moving clients, such as travelers or customers in big shop-
ping centers, with special information (e.g., pertaining to places, pos-
sible activities, possible contacts, etc.)

• Maintaining or offering service relations when customers (people as
well as companies) move their site of operation (e.g., by shifting ser-
vices for relocated customers to another branch of a bank)

• Introducing people or entire units into organizations and business net-
works and helping them within such environments (e.g., initiating
new employees in the processes of their departments and of the whole
company, or guiding and supporting students at universities, or pro-
viding citizens with communal and other public services)

• Accompanying a product life cycle, for material products as well as for
service products (e.g., as offered by banks), especially when different
phases of a product life cycle necessitate different services

Rather than just treating the symptoms, inadequacies in the workflow
view are remedied to a large extent only if a business process model is
built around the concepts of communication, parallelism, nondetermin-
ism, and mobility, derived from π-calculus. With these concepts, the real-
ity of an enterprise or organization can be modeled much more ade-
quately. Such a model prominently features agents:

1. Agents cooperate actively to reach the goals set for a business
process.

2. Agents work concurrently and interactively.
3. Agents know who is the expert for a particular job step, or who rou-

tinely performs particular tasks.
4. Agents communicate with each other about orders or completion

reports of orders, information, and availability of material or (inter-
mediate) products.

5.2 Business Process Modeling and Systems Development

Agent-oriented
aspects

211

5. In certain situations, agents decide for themselves what to do next
or whom to ask for help with a task.

6. In special problem situations, agents try to find somebody who can
help or who knows whom to consult for help.

7. In the case of new goals, agents may accept new duties and establish
new communication links in order to react flexibly to a changing
world.

The concept of communication accounts substantially for items 1, 2, 3,
and 4; parallelism, for items 1 and 2; nondeterminism, for item 5; and
mobility for items 6 and 7, in this very incomplete list of cooperation
aspects.

Nondeterminism is certainly not a desirable feature for an IT system
specification, but it is a requisite for modeling business processes—cer-
tainly in service-oriented business sectors and probably also generally.
Nondeterminism can be understood as modeling the fact that the mod-
eler either does not have (or does not want to spend the effort to supply)
enough information to always exactly determine a process evolvement
(i.e., to exactly differentiate between the conditions for each individual
path of a branch) has no way to determine beforehand which one of
equally possible communications within a system of parallel processes
may succeed. Such situations are more likely to occur the more concur-
rency exists in the system realizing a business process. Thus, to model
(some) business processes really precisely and in detail requires the delib-
erate introduction of nondeterminism into the model.

Moreover, nondeterminism in a business process model reflects a high
degree of decentralized control in the performance of this business pro-
cess. To describe the organization of this kind of decentralized control
(i.e., cooperation), an additional concept is needed—contracts. A contract
specifies how a provider services a client, where both service consumer
and service supplier are peers. This distinguishes contracts from orders or
commands in a traditionally viewed organization and identifies them as a
means of modeling cooperation and delegation, rather than hierarchical
function decomposition. Obviously, this distinction also corresponds to
the view of a business process as “stretching horizontally” through an
enterprise as opposed to “climbing up and down” a Tayloristically struc-
tured organization hierarchy.

So the previous enumeration of features to be modeled for agents ac-
cording to the new view has to be complemented with the feature of
contracting. The contracting ability of an agent means that the agent is
authorized to negotiate the way he or she produces and delivers a result,

Chapter 5 Modeling Processes

Nondeterminism

Contracts

Contracting
agents

212

or to decide to responsibly employ the help of other agents for a partial
process. In such a way, a cascade of contracts may be found in an ade-
quate business process model.

An additional notion has proved helpful: we denote what agents con-
tribute to a certain business process as the role they play in that business
process. This abstraction allows us to make clear that the same agent may,
probably at different times, be part of different business processes, play-
ing different roles. The notion of roles also allows us to describe a busi-
ness process without naming concrete people or IT systems.

The main reason for obtaining more adequate business processing
models is to make a shift in the perception of business—the shift from a
view of structured activities to a view of communicating agents, actively
cooperating to achieve common goals, and with a contracting ability of
their own. This is roughly expressed by the slogan that calls for a transi-
tion from “process-driven people” toward “people-driven processes,” or
more generally toward “agent-driven processes.”

This “shifted view” is actually a view dual with the traditional way of
viewing business processes: instead of focusing on activities and their
sequence, the dualistic view entails focusing on roles that agents play,
and on their interaction, structuring, and organizing of the b-process
“from the inside” (i.e., by cooperation) instead of being fixed into a rigid
structure controlled from the outside.

Some interesting points can be made with regard to this dualism: The
basic elements of the workflow concept, events and (complex) activi-
ties—corresponding respectively to states and transitions (e.g., as known
from Petri Nets)—are purely abstract entities. The new basic elements,
agents (as players of roles) and communications, however, can be directly
observed.

In a workflow, agents do not initially appear, although they may ap-
pear in a workflow configuration as actors assigned to activities. So, com-
paring workflow configurations with our b-processes, we might assert the
following correspondence:

• Agent (in a role, π-process) ↔ actor (assigned to activity)
• Communication ↔ event
• Internal task ↔ elementary activity

The sore point of this correspondence is the comparison of “commu-
nication” and “event.” There is an additional convention needed, some-
thing like “An event as a result of an activity performed by actor X shall
be understood as a sending communication by an agent in role X; an
event starting an activity performed by actor Y shall correspond to a

5.2 Business Process Modeling and Systems Development

Shift toward
agent-driven
processes

Dualistic view
of processes

Mapping dualistic
concepts

213

receiving communication by role Y.” Whether this actually works gener-
ally is not yet clear.

This “dualistic transformation” is trivialized if we first apply a
dimension-reducing projection from the new onto the old view’s “space”:
if nondeterminism and mobility are completely removed, and parallel-
ism partly, from the new view, what is left over can easily be transformed
into a workflow (configuration).

The last point, the conditionally possible “projection” from the
“space” of the new view onto that of the old one, is another way of say-
ing that the new view encompasses the old. In other words, the conven-
tional workflow view is just a special case of the new view of business
process engineering.

5.2.4 A Business-Centered Modeling Approach

Enterprise modeling may have several goals. So far we have focused on
business process modeling. Its basic goal from the IT perspective is to ana-
lyze the behavior of an organization and get a summary of the informa-
tion demands. Data modeling is much more technology centered and

Chapter 5 Modeling Processes214

Figure 5.7 Elements of the model-building procedure for process design.

Transformation and
Refinement Rules

Rule Base

Model and Business Databases

Model Schemas

Modeling, Administration, and Manipulation Tools Presentation

Representation

Data Management

deals with the identification of structural elements and relationships to
be mapped into the IT world.

Basic elements of a business-centered view of process modeling can be
divided into three tiers, as shown in Figure 5.7.

The main layer is the representation of model information on the
metalevel. Here the model schemas are given for several methodological
views:

• The business domain model, representing the business structure
• The contract model, defining the parameters of collaborative value

creation
• The process model, defining the behavioral aspects in process systems
• The valuation model, representing all task-oriented information
• The allocation model, linking physical to virtual entities in the overall

model.

Figure 5.8 shows an ERM of a sample metamodel representing the busi-
ness domain information.

5.2 Business Process Modeling and Systems Development

Business-
centered method

215

Figure 5.8 Sample metamodel view of the business domain model.

Model View Business Domain
Model

Communication
Model

Pi Process

Goal Model

Goal

Objective

Contract

specifies

communicates
with

refines

concretizes

Role

Business
Object

Information
 Object

is_a

is_a

hasis_a

has
has

has has

realizes

has

has

is_a

Contract
Model

Additionally the modeling procedure and seamless integration of model
views are supported by a mechanism for transformation in the horizontal
direction and refinement in the vertical direction, both forward and back-
ward in the ideal case. This approach heads in a rule-based direction.

5.2.5 Process Design and Object Orientation

After all, why not use OO modeling for adequate BPE? You could employ
UML diagrams to visualize facts contained in a model according to the
new view. For example, UML collaboration diagrams (Fowler and Scott
1997) are handy for presenting the interaction structure of roles, display-
ing the roles as object symbols and the channels (i.e., the possible com-
munications) as message arrows. That is, we are using UML constructs in
a very special way. When showing such a diagram to someone familiar
with UML, we have to point out this reinterpretation in order to avoid
misunderstanding.

The trouble is that the OO approach is a solution only on the technical
level, on the software level, not on the BPE level. This is a significant dif-
ference: a business process is not just another view of an IT systems land-
scape; a business process encompasses IT support but comprises much
more than the IT side. Especially in the service businesses, we may see
business processes only very sparingly supported by IT. An OO model is,
in the first place, a model of some software system or, in other words, a
technical specification of some software. A business process model de-
scribes the business domain ideally without any IT aspects in mind,
which is certainly not the case in workflow modeling.

Nonetheless, business process modeling and OO modeling are related:

• In forward business process engineering, one of the results of building
a business process model and of its evaluation can be a specification of
an OO model—a specification of a specification of some software.

• In business process reengineering and reverse engineering, an OO
model is an important input for (re-)constructing the business process
model.

5.3 COMMUNICATION AND COOPERATION:
TOWARD AGENT-BASED SYSTEMS

In the previous section we argued for a paradigm shift in regarding and
dealing with business processes in today’s organizations, by replacing the
management of structures with a management of communication. Com-

Chapter 5 Modeling Processes

Reinterpretation
of UML diagrams

Inadequacy
of OO

Relation
between OO
and process
modeling

Management of
communication

216

plex business transactions take place in highly dynamic cooperative net-
works rather than rigid sequences of production steps vertically or hori-
zontally placed along the so-called value chain (Porter 1998).

Agent-oriented technologies have become of increasing interest for the
design and development of software systems. There are high expecta-
tions: “the next significant breakthrough in software development” and
“the new revolution in software” (Jennings and Woolridge 1998). In turn,
huge market opportunities with billions of dollars of revenues are fore-
seen (Guilfoyle 1998). Since agent technologies are discussed in various
contexts, we first give a short overview.

5.3.1 The Notion of Agent-Based Systems

Agents, or software agents, were originally part of artificial intelligence
(AI) research work. Thus many concepts in the field of multiagents sys-
tems are closely related to AI concepts. Instead of contributing to the dis-
cussion about what an agent really is (for a discussion of that topic, see
Müller and Jennings 1997), we will summarize several aspects as being
basic attributes of agents.

Figure 5.9 gives an overview of agent attributes. Reactivity is the ability
of an agent to perceive information from its environment and perform
an action accordingly. It may have either sensors for that purpose or an
internal model of its environmental system (deliberative agent). Depend-
ing on its goals, an agent may also be self-induced and perform actions
that may influence its environment (goal orientation and proactivity).
The ability to learn implies the ability to deduce from its observations
and adapt accordingly. Here we find AI concepts such as knowledge or
rule bases.

Autonomy is one of the most important aspects that makes agent tech-
nology interesting for software development. Agents perform their tasks
autonomously in the sense that interaction with a controlling entity such
as a human user is not needed—or, if so, only to a small degree. To
achieve its goals an agent may move among nodes within a communica-
tion network (mobility) to reduce the communication overhead. Such
migration approaches are known from distributed computing.

Another essential attribute is communication—interaction both with
human users and with other agents. The latter case requires the existence
of agent languages with appropriate protocols (a subject of later discus-
sion). Communication also serves to coordinate agents performing com-
plex tasks cooperatively. Thus cooperation is only possible if agents can
communicate with each other.

5.3 Communication and Cooperation: Toward Agent-Based Systems

Software agents

Agent attributes

217

Attributes such as autonomy, communication, reactivity, and proactiv-
ity are commonly considered essential for agents. From the perspective of
AI, mental attributes may be added, such as knowledge; belief, desire, and
intention; emotion; and creativity. Mobility is usually considered to be
optional.

5.3.2 Typology and Applications of Agents

The attributes discussed in the previous subsection may serve as classifi-
cation factors for agents, leading to the typology shown in Figure 5.10.
This is just a sampling of the approaches observable in the field of agent-
based research and applications. This classification allows for combina-
tion; for example, we may find applications of smart, collaborative,
mobile agents (Franklin and Graesser 1997).

Chapter 5 Modeling Processes218

Figure 5.9 Overview of essential attributes of intelligent agents.

Autonomy

Character

Mobility

Communication

Coordination

Cooperation

Goal Orientation

Reactivity

Proactivity

Learning/
Adaptability

Intelligent
Agents

T
E
A
M
F
L
Y

Team-Fly®

The concept of agents has been given a great push by the Internet. The
shift toward information processing in changing networked environ-
ments has led to the problem of efficiency in dealing with increasing
amounts of information. So the class of interface and information agents
has become of particular interest—for example, robots that preselect
information from mailboxes, lists, and similar resources, or personal
assistants that help to find resources on the Web.

Much of the research in the field of interface agents has been done
at the Massachusetts Institute of Technology (MIT). We will mention just
some of the applications developed there. Prominent examples are Cal-
endar Agent, for the management of appointments (Kozierok and Maes
1993); NewT, to train agents for news selection (Maes 1994); and Kasbah,
an agent-based marketplace for music titles (Chavez and Maes 1996).
Currently we face a new wave in personal assistance in Web-based
applications. Constructed with 3D modeling techniques, these agents
have a human appearance and interact with users through natural speech
interfaces.

Another class is given by the more general concept of collaborative
agents—autonomous software units that perform tasks on behalf of a sin-
gle user or a group of users. Autonomy, as stated earlier, means that an
agent decides on the basis of its own (e.g., rule-based) knowledge. Agents

5.3 Communication and Cooperation: Toward Agent-Based Systems

Internet agents

Collaborative
agents

219

Figure 5.10 A typology of agent concepts.

Typology of
Agents

Interface
Agents

Information
Agents

Hybrid
Agents

Smart
Agents

Mobile
Agents

Collaborative
Agents

Reactive
Agents

Heterogeneous
Agent Systems

may be mobile—they may move within a computer network to get their
jobs done and return with the result.

Since tasks may be diversified, agents may also be grouped into agent
systems to perform complex tasks. If agents of several types are grouped,
we may consider the result a heterogeneous (multi-)agent system.

There are further categories and applications of agents that we will not
discuss here but that are documented in a variety of publications: docu-
ment retrieval, air traffic control, management of telecommunication
networks, computer integrated manufacturing, medical care systems, and
many more.

The large number of agent-based approaches demonstrates that agent-
oriented computing is a viable technical solution for mapping certain
classes of complex systems to the IT world. In particular, to come back to
our original problem, this is true for the support of business processes,
from conceptual modeling to implementation, via computer-based tech-
niques and systems.

5.3.3 Agent-Oriented Concepts

An essential concept of agents is communication, which builds the basis
for the “social” capabilities of agents. This implies that agents interact on
the basis of an agent communication language. ACL is an example of
such a language. ACL has three components: a vocabulary, the outer lan-
guage KIF (Knowledge Interchange Format), and the inner language
KQML (Knowledge Query and Manipulation Language).

Agent communication is performed by message passing. ACL messages
are expressions that are defined using the KQML. These expressions con-
sist of terms and sentences in accordance with the vocabulary, which is
context specific and defined in an extensible dictionary.

A KQML message is abstract; that is, it is independent from its content,
which is just one component of the KQML message itself. The vocabulary
is often referred to as the “information model” or the “ontology.” A
receiver has to understand the ontology to be able to process the message
on the semantic level. Ontologies were discussed in Section 4.2 (see also
Uschold and Gruninger 1996). On the message-passing level, speech acts
are defined. Since speech acts will be discussed later in Section 6.4, we
will just outline the idea here.

Messages are of a certain speech act type. A concrete instance of a
speech act type is called a performative. Several types are defined, such as
tell to transmit a message, ask-one to check for a fact, or broker-one to

Chapter 5 Modeling Processes

Agent systems

Agent
communication

220

delegate the execution of a speech act (Finin et al. 1993). Here is an exam-
ple that asks for a stock rate (Mayfield, Labrou, and Finin 1996):

(<ask-one>

:content (PRICE IBM ?price)

:receiver stock-server

:language LPPROLOG

:ontology NYSE-TICKS

)

The speech act or statement defined in the content field is based on
what has been defined within the language field. The general structure of
a performative thus is fixed by the given fields. Finally, to give an impres-
sion of the relevant aspects and complexity, Figure 5.11 shows the overall
structure of language concepts in the field of agent technology.

Many types of agents in a variety of applications rely on cooperation
to perform their tasks. So far we have said nothing about how the neces-
sary exchange of services is coordinated. At least two types of communi-
cation can be identified: deliberative and negotiation.

An example of negotiation-based agent coordination is the contract
net approach (Dauts and Smith 1983). Services are exchanged according
to service level agreements (SLAs) that have been negotiated among the
participants. These SLAs may be considered as contracts in the sense of
our notion of business processes discussed earlier.

A contract net specifies a network of nodes given by agents that act
according to market mechanisms. In multiagent systems, special man-
agers are usually implemented and provided with the necessary knowl-
edge to tender services. Processors then supervise the contract building.

Alternatively, auction-based mechanisms have been proposed for the
coordination of service exchange. We will not discuss the economic im-
plications of negotiation and auctions in detail, but we will just state
that auctions give much more transparency to the market and therefore
promise more efficiency in resource allocation.

Additionally the conditions are commonly known in advance. This
reduces the complexity for modeling the realization of appropriate mech-
anisms in agent systems. The appropriate strategies differ from type to
type since we may deal with the English, the Dutch, or Vickrey auction,
to mention just a few. Some parameters are still up to the single partici-
pant to define.

5.3 Communication and Cooperation: Toward Agent-Based Systems

Negotiation

221

The question of how to communicate and coordinate in agent systems
is answered by architectures. Architectures support the organization of
the cooperation within multiagent systems (Genesereth and Ketchpel
1994). From the perspective of communication, there are two cases:
(1) directly (i.e., bi- or multilaterally by broadcast mechanisms or specific
channels) and (2) supported (i.e., via special components that pass the
messages from a sender forward to the receiver).

Chapter 5 Modeling Processes

Agent
architectures

222

Figure 5.11 Agent communication languages in the context of agent technologies.

Agent
Languages

Technologies for
Software Agents

Languages for
Software

Agents such
as KQML

Models of Human
Communication

Coordination
Protocols,
such as

CORBA, ILU,
OpenDoc, and

OLE

Scripting
Languages
such as Tcl/

Tk, Telescript,
Java

Agent
Communication

Languages

Theoretical
Frameworks

In the first case, either service requests or service profiles (specification
sharing) are sent. On that basis receivers can act according to their goals
and answer (react) appropriately. In the second case, services are nor-
mally registered in central directories or knowledge containers of the
coordinating entities, and the sender does not need to know the receiver.

Such entities are called facilitators in federated systems that specifically
support agent coordination. Agents delegate some of their autonomy to
the facilitator, which acts on their behalf by sending messages on the
basis of general information and requirements about its clients.

Agent architectures aim at abstracting from proprietary approaches
and providing a conceptual framework for the design and development
of agent systems. Examples of architectures are InteRRaP, GRATE, and
ADEPT. ADEPT is the topic of the following subsection.

5.3.4 ADEPT

An architecture of particular interest is the Advanced Decision Environ-
ment for Process Tasks (ADEPT). It aims to support business processes
with agent-based IT solutions. ADEPT has been a research project under
the participation of British Telecom. Its basic results and concepts will be
outlined here (for more details, see Norman et al. 1996 and Jennings et al.
1996).

ADEPT allows the mapping of simple or complex organizational units
to an agency. Agencies deliberately provide services to and/or request ser-
vices from other agencies. An agency can be thought of as executing part
of a business process that may have been modeled conceptually as a
result of a business process reengineering project.

An agency may encompass other agencies or agents. The responsible
agent controls its agency, coordinates its services, and represents them to
the rest of the system world. From an organizational perspective, it could
be considered the head of a department, with the agency being the
department. According to our earlier arguments, we will not consider the
allocation of real world objects to conceptual elements in detail.

Figure 5.12 shows the logical structure defined by ADEPT. Agency Y
consists of agencies E, F, and G and the responsible agent. TD1, TD2, TE1,
and TE2 are atomic tasks to be performed by agents, that is, by the re-
sponsible agent and in turn by so-called subsidiary agents within the
agency.

In agency E we have zoomed into the responsible agent, which
encompasses five logical and functional components. Services provided

5.3 Communication and Cooperation: Toward Agent-Based Systems

Business process
support

Agencies

Atomic tasks

ADEPT models

223

by the agency are mapped to the self model (SM), which additionally
holds the execution schedules of agents. The acquaintance model (AM)
encapsulates knowledge about other agents, including their capabilities
and a history of service requests. The execution schedule is maintained
by the situation assessment module (SAM). For that purpose it needs sev-
eral types of information, such as requests by other agents, services that
it has already agreed upon, and service- as well as negotiation-oriented
information.

The service execution module (SEM) initializes and manages the
services that the agent has committed to provide. It also requests ser-
vices required from other agents. The interaction management module

Chapter 5 Modeling Processes224

Figure 5.12 Components and structure of agent-based process management in ADEPT.

Agency Y

Responsible
Agent

Agency E

Responsible
Agent

Communication/
Negotiation

Agency
A

Communication/
Negotiation

TD1

TD2

TE1

TE2

SM/
AM

SEM

SAM

CM

IMM

Agency
B

Agency
C

Agency
F

Agency
G

(IMM) represents the interests of an agent in the negotiation procedures.
It is triggered by the SAM.

The exchange of information and services is based on communication
performed among the communication modules. They pack messages and
pass them toward the receiving agent. On the implementation level,
CORBA services (i.e., the object request broker) may be employed for that
purpose.

The communication protocol in ADEPT is based on speech acts that
express the intent of an agent. The content may be coded in KIF syntax;
the semantics are given by the ontology, as we outlined in the previous
subsection. So the structure of a message follows the KQML approach.
Some examples of negotiation-oriented actions are propose, counter-
propose, accept, reject, confirm, and deny. The basic structure is the
following:

(message

(action: <communicative-act>)

(sender: <agent-id>)

(recipient: <agent-id>)

(conversation: <conversation-id>)

(service: <service-name>)

(info-model: <model-id>)

(content: <expression>)

)

The CM not only manages the logical distribution of messages, but it
also encodes and decodes the content according to the language. This
allows agents that “speak” different languages to communicate with each
other, as long as the CM has access to the necessary information in the
AM.

We will not discuss the outcome of the project in detail, but we should
mention that ADEPT has been applied to some business processes at
British Telecom (BT), for example, the Provide Customer Quote Service
(see www.mmrg.ecs.soton.ac.uk/nrj/projects/paam96/paam2.html). Research
on collaborative agents at BT laboratories has resulted in the devel-
opment of the agent-building tool kit ZEUS (www.labs.bt.com/projects/
agents.htm).

5.3 Communication and Cooperation: Toward Agent-Based Systems

CORBA-based
communication

ADEPT speech
acts

225

5.4 PROCESS CONCEPTS AND XML

So far we have put a lot of effort into describing our notion of business
processes, the necessary paradigm shift for adequate process modeling,
and agent-oriented techniques to support business process modeling and
execution. Now we will finally give some hints as to what the contribu-
tion of XML to these topics might be. Since this is a field of ongoing
research and practical work, the purpose of some of the statements made
in this section is more to give an idea than to present the solution.

5.4.1 Actor-Driven Processes

The heading of this subsection generalizes to a certain extent what we
stated earlier: a paradigm shift from process-driven people to people-
driven processes. We have to overcome conceptual and implementa-
tional patterns that have been well elaborated in assembly line industrial
production.

Instead we have to consider active and collaborative entities, whether
we call them “agents,” “actors,” or whatever. These entities contribute
to value creation, which is the goal of a business process, assuming they
have a common understanding of the process or business domain or at
least compatible targets.

Since collaboration requires interaction, communication is a main
attribute of such considerations. We first discuss a special aspect of com-
munication in the next subsection. This is followed by a discussion of
contracts, another important feature, that aims at specifying the condi-
tions of value creation steps between collaborating entities.

5.4.2 Open Communication Processes

The design and implementation of IT systems will lead to much better
results if designers and system architects understand the business domain
that is supposed to be supported by IT solutions. Business process analy-
sis and modeling may be a helpful approach to gaining the necessary
information.

In larger business contexts, processes do not perform without interact-
ing with their environment. In particular, they exchange information
and work pieces with other processes. So, instead of dealing with single
isolated processes, we deal with systems of interacting processes, inter-
action performed by communication.

Communication in the real world as well as in computer systems is the
common means of exchanging information and/or services among sev-

Chapter 5 Modeling Processes

Interaction

226

eral entities. In informatics the concept is used in a variety of approaches,
for example, client-server architectures in general, or CORBA to mention
just one in particular. Agent-based systems seem especially promising at
this point.

But there are still some unanswered questions. In the context of com-
munication, the feature of dynamics encompasses the possibility of
changing communication channels between interacting entities or—
what is even worse—entities may migrate, disappear, or appear arbitrarily.
In a real world business, think of a service unit or a whole department
that moves to another location, has been closed, or is newly established.
These events lead to changes in the communication structure of the pro-
cess system.

Although migration or closing down could be handled by communi-
cating the new contact information to the known partners in advance,
the problem of communicating with unknown entities still has to be
solved. There are two possible situations: (1) a process seeks another pro-
cess (e.g., for the reason of collaborating or exchanging services), or (2) a
new process has been established and it needs to integrate with a process
system “at runtime.”

These two situations share a common problem: how can a process find
other processes to get its job done? First, the processes must be a proper
fit for one another in terms of offering the required services. Second, they
must have compatible interfaces. And third, a mechanism must exist to
publish this information.

The first two requirements are answered by mechanisms that may be
implemented using XML-based technologies and incorporating concepts
from other fields such as agent communication languages. The third
requirement, however, is a lot more difficult without central mechanisms
such as directories or broker services. The third requirement is, at the
same time, the most interesting since in real world systems we often find
many chaotic aspects that do not rely on fixed structures or predefined
knowledge of “how to do something.” On the other hand, we often find
lots of business cases where centralized mechanisms make sense.

Bi- or multilateral communication between agents usually is session
oriented. Sessions can only be established if agents are able to identify
each other. Centralized (i.e., broker-based) communication is commonly
realized via message passing. Message passing is the mechanism of choice
in many communication-oriented services and protocols, such as CORBA
in object-oriented systems and KQML/KIF in the context of agent
technologies.

5.4 Process Concepts and XML

Dynamic
adaptation

Anonymous
communication

Message passing

227

For “anonymous” publishing mechanisms (i.e., the sender does not
know the receiver(s)), our first thought would be a broadcast service that
provides an infrastructure that messages can be pushed at. A potential
receiver would have to actively and deliberatively poll over such a public
message queue.

5.4.3 Contract-Based Interaction with tpaML

tpaML (Trading Partners Agreement Modeling Language) is a markup lan-
guage specification proposed by IBM. It has been integrated with IBM’s
B2B e-commerce products, particularly the WebSphere B2B Integrator,
which has been built on top of the WebSphere Commerce Suite.

The basic idea is to set up an electronic contract (TPA) on the basis of
XML. A TPA defines how trading partners interact on several layers. In
particular, it defines contract terms and conditions, participant roles,
identification, communication properties, security properties, actions,
sequencing rules, and error handling or recovery procedures (Sachs et al.
2000; Ennser et al. 2000).

The language to stipulate all this information is tpaML. The resulting
contracts are enforced by the integration software that controls the busi-
ness transactions of two partners over the Internet.

There are three concrete layers for TPAs. First, the business protocol
layer is the interface between the business application functions and the
TPA-defined actions. It provides rules for sequencing the messages
between servicing parties. Second, the document exchange layer provides
abstracting services for document handling between the business proto-
col and transport layers, including time-stamping, logging, auditing, and
nonrepudiation. Finally, the transport layer delivers messages according
to the selected communication protocol, including security aspects.

A TPA is an XML document described by a DTD or schema. From this
description the document code is generated on the computer systems of
the trading partners that agreed on the TPA. The following is the basic
structure of a TPA as a snippet of XML, enriched by some additional tags
in the transport section:

<TPA>

<TPAInfo> <!-- Preamble: TPAname, role, definitions,
participants, etc. -->

</TPAInfo>

<Transport> <!-- communication and transport security -->

Chapter 5 Modeling Processes

Broadcasting

TPA contract

TPA layers

228

T
E
A
M
F
L
Y

Team-Fly®

<HTTP>

<Version>version</Version>

<HTTPNode> <!-- one for each party -->

<OrgName Partyname=name/>

<HTTPAddress> <URL> … </URL> </HTTPAddress>

</HTTPNode> …

<HTTP>

<!-- communication and transport security
information -->

</Transport>

<DocExchange> <!--exchange and security --> </DocExchange>

<BusinessProtocol>

<ServiceInterface>

<!--Action definition etc. for each provider -->

</ServiceInterface>

</BusinessProtocol>

</TPA>

Such a TPA has to be set up and then agreed upon by the partners.
Then code is generated on either side, including the local registration
information and the code necessary to enforce the corresponding rules of
interaction.

5.4.4 Self-Modifying Processes

The attribute of self-modification comes into play for adaptations of busi-
ness entities due to environmental changes. Change management is a
structured procedure for performing all necessary organizational transfor-
mations that keep an enterprise competitive. Usually short-term changes
are considered that are supposed to meet current client demands, techno-
logical innovations, political or economic circumstances, and so on.

Additionally we may also consider long-term changes that influence
“long transactions,” using an IT-related term. As an example, we can
think of a process that manages all activities related to the financial de-
mands of a customer. The process then covers the “life cycle” of the

5.4 Process Concepts and XML

Short-term
changes

Long-term
changes

229

customer. At some point a bank account is needed, then some life insur-
ance, followed by some investments, a mortgage, asset management, and
so on.

Changing processes on the conceptual level leads to changing process
implementations on the fly or at runtime. This is done by replacing some
implementations by other implementations. Therefore mechanisms are
needed that allow the generation of process instances. This is what we
consider a metalevel problem.

Minor changes in processes may be dealt with by parameterization. For
example, an audit mechanism could control processes by tuning them
with appropriate parameter values. The behavior of processes may be
dealt with on the implementation level as well, for instance, through arti-
ficial intelligence such as rule-based mechanisms. Structural changes in
processes, however, must be considered on the metalevel.

A metamodel describes a process or a class of processes (i.e., its struc-
ture, the relationship of its components, and its behavior). From that
description an instance of a process may be derived, including appropri-
ate real world allocations for process objects. The π-calculus (see Section
5.2.2) provides the modeler with an advanced means to anticipate certain
types of changes, mainly through the mobility feature.

A solution on the conceptual level implies having formal transforma-
tion mechanisms for forward and reverse engineering that allow the
incorporation of changes at the implementation site backward into the
corresponding model views and, in turn, the generation of appropriate
process instances from changed metamodels.

Since the support for such a task through formal means is still an open
research field, automated adaptation and self-modification are a future
result. Nonetheless the BPMI, presented next, claims to enable process
implementations to change across systems, over time, and dynamically
in response to changing conditions.

5.4.5 The Business Process Management
Initiative (BPMI)

The Business Process Management Initiative (www.bpmi.org) aims at pro-
moting and developing standards for the design, deployment, execution,
maintenance, and optimization of business processes, particularly collab-
orative processes in electronic business. Two open specifications have
been defined, the Business Process Modeling Language (BPML) and the
Business Process Query Language (BPQL).

Chapter 5 Modeling Processes

Metamodels

BPML and BPQL

230

A business process describes some transaction, based on a finite-state
machine, between two business partners. Interaction takes place through
a common (i.e., public) interface, supporting the exchange of informa-
tion among the private process implementations. The private implemen-
tations are considered to be participants in the process. The public
interface may be supported by common protocols such as ebXML, to be
discussed in Section 10.3.

Although the private implementations could be specified using the
BPML, the execution of business processes is supported using the BPQL.
Figure 5.13 presents an architectural overview of the scope of BPMI.

Similarly to XML, which describes data on the metalevel, the BPML al-
lows the modeling of business processes on the metalevel and indepen-
dently of any existing back-office system or protocol. The schema for
BPML can be thought of as building the basis for the specification of pro-
cesses in a specific business process modeling language. BPML representa-
tions encompass control, data, and event flows as well as support for
defining business rules, security roles, and transaction contexts.

5.4 Process Concepts and XML 231

Figure 5.13 Scope of the BPMI specifications.

PIP

PIP
PIP

Directories LDAP
DSML

Process & Service
Deployment:

UDDI
tpaML

Databases

XML Schema
SOAP
J2EE

Service-level
Collaboration:

WSDL
XAML

Applications

Process-level
Collaboration:

ebXML
RosettaNet

BizTalk

BPQL
Process Repository

BPML
Process Server

Sp
ec

.

Sp
ec

.

Sp
ec

.

Specific
PML

Specific
PML

Specific
PML

Specific
PML PI

P

PI
P

PI
P

Process
Execution
Facilities

Process
Deployment

Facilities

Legacy
Infrastructure

System
Convergence

Business Process
Management

B2B
Collaboration

Business
Layer

Technical
Layer

BPMI.org

A draft of the BPML specification is available from www.bpmi.org. Here
is a short excerpt from the BPML XML Schema, defining the process
element:

<xsd:element name=”process”>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>

Process definition

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base=”processDefinition”>

<xsd:sequence>

<xsd:group ref=”extension”/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

The complex type process definition encompasses metadata for ad-
vertising, searching and categorizing, rule sets to express conditions and
dependencies, complex activities representing flows of control, and sim-
ple activities to perform data processing, communication, and system
operations or actions. These entities again are defined in further detail by
the schema definition.

As stated earlier, the BPMI specifications deal with processes in elec-
tronic businesses. They aim at process integration in intra- and inter-
enterprise computing. Therefore distributed transactions (synchronous as
well as asynchronous) are supported that allow the embedding of appli-
cations within business processes. Process integration with BPML refers to
the following targets:

• Integrating applications as process components
• Interleaving processes and transactions

Chapter 5 Modeling Processes

Process
integration

232

• Process model exchange between business process management
systems

The BPQL is an interface to the execution-oriented components of
process management infrastructures. Such infrastructures typically en-
compass a component that controls the execution of processes (i.e., a
process server), which may be compared to a workflow engine. Addition-
ally a component is available to hold data such as process descriptions
and related information (i.e., a process repository).

The execution of process instances can be controlled through an inter-
face based on SOAP (see Section 6.5.2). The repository can be queried
through an interface based on WebDAV, a set of HTTP extensions to col-
laboratively edit and manage files on remote Web servers (www.webdav
.org). Process models managed by the process repository through the
BPQL interface can be exposed as UDDI (Section 7.3) services for process
registration, advertising, and discovery purposes.

5.4.6 Business Rules

Business rules contain business knowledge that describes the parameters
(i.e., policies and procedures) of transactions and work processes in a
“what to do if something happens under certain conditions” manner. A
common example of such a business rule would be the specification of
when and how a buyer can make changes to his or her order (see the fol-
lowing subsection). For example, this would encompass temporal condi-
tions followed by corresponding reactions.

Business-rule-related topics encompass their formulation or specifica-
tion, how to mine them from existing data, possibly the building of rule-
driven business systems, and their management in evolving business
environments. In this subsection we focus on the formulation and speci-
fication of business rules. Traditionally business rules, like other business
logic, have been hard-coded in business application code or buried in
other IT components, such as stored procedures in DBMSs, and could not
be easily accessed or even managed by nontechnical staff. XML-based
specification is a solution to this problem.

That type of formulation might rely on more general principles, such
as ontologies and knowledge representation, with background from arti-
ficial intelligence, such as inference and deduction. We will not discuss
this in detail. Instead we present some general approaches to XML-based
business rule definition. A more extended overview of the topic is given
by Thorpe (2001).

5.4 Process Concepts and XML

Formulation and
specification

233

Business Rules in Contracts—The BRML
Agent communication was the starting point for business rule research
at IBM (www.research.ibm.com/rules/home.html). In the Business Rules for
E-Commerce (BREC) project, rule-based business processes for e-commerce
were investigated.

ACL messages (see Section 5.3.3) can be regarded as containers that
hold the business rules described in an appropriate language. ACL’s outer
language, KIF, was not designed to be the proper choice for this. Instead
Courteous Logic Programs (CLP) are used, which are an extension of as
well as a complement to KIF.

Aiming for the integration of such a language with the Web would
require coding CLP in XML. Such an XML DTD is given as the Business
Rules Markup Language (BRML). The BREC research aimed at supporting
the translation of rules to and from heterogeneous rule systems or lan-
guages, as well as to and from KIF (logic.stanford.edu/kif), along with pro-
viding an XML-based interchange language, such as BRML, to perform
such translation.

Consider the following rule: “A customer may modify an order 14 days
or more prior to delivery if he or she is a preferred customer.” Given as a
logic program expression, this rule would result in

<leadTimeRule>orderModificationNotice(?Order, days 14)

preferredCustomerOf(?Buyer,?Seller)

^ purchaseOrder(?Order,?Buyer,?Seller)

The “?” indicates a logical variable. Let’s translate this into BRML
notation:

<?xml version=”1.0”>

<!DOCTYPE brml SYSTEM “brml.dtd”>

<clp>

<erule rulelabel=”leadTimeRule”>

<head>

<cliteral predicate=”orderModificationNotice”>

<variable name=”Order”/>

<function name=”days 14”/>

</cliteral>

Chapter 5 Modeling Processes

BRML

234

</head>

<body>

<and>

<fcliteral predicate=”preferredCustomerOf”>

<variable name=”Buyer”/>

<variable name=”Seller”/>

</fcliteral>

<fcliteral predicate=”purchaseOrder”>

<variable name=”Order”/>

<variable name=”Buyer”/>

<variable name=”Seller”/>

</fcliteral>

</and>

</body>

</erule>

</clp>

As stated before, IBM aimed at having a language that supports a com-
mon understanding of business rules in contracts among agents and the
modification, communication, and execution of rules by agents. An
implementation of BRML is IBM’s Common Rules Java Library (www
.research.ibm.com/rules/commonrules-overview.html), which is a follow-up to
the ABE agent framework.

The Rule Markup Initiative
The Rule Markup Language (RuleML) is based on an initiative that several
parties (including the BRML group) participate in. The design of RuleML
(www.dfki.uni-kl.de/ruleml/) is grounded on a hierarchy of rules (see Figure
5.14). The hierarchy represents specialization relations, starting from the
top-level reaction rules.

Reaction rules are known in active database research as event-condition-
action constructs. Such rules are triggered if the defined event occurs,
which requires some observation mechanism. Then the condition,

5.4 Process Concepts and XML

BRML
implementation

RuleML

Reaction rules

235

simple or complex, is checked. Finally, if the condition evaluates to true,
the action is fired; that is, the procedure it contains is executed. This is a
straightforward application of rules of that type.

Integrity constraints are also forward oriented. They check for inconsis-
tency and signal if the conditions are fulfilled. Events are given by manip-
ulation operations on databases.

Here is the structure of a reaction rule, including an action to signal an
inconsistency, which would be based on the definition of a correspond-
ing integrity constraint that it implements.

<rule>

<_body>

<and> premises </and>

</_body>

<_head>

<signal> inconsistency </signal>

</_head>

</rule>

A derivation rule is a specialization of reaction rules where the action is
to draw a conclusion if the condition is fulfilled. These rules can be ap-
plied in either direction: forward assertion of conclusions from condi-
tions as well as backward assertion of conditions from conclusions. Facts

Chapter 5 Modeling Processes

Integrity
constraints

Derivation rules

236

Figure 5.14 Rule hierarchy in RuleML.

Integrity Constraints Derivation Rules

Reaction Rules

Facts

are a further specialization having an empty list of premises so that the
conclusion is always drawn.

So far the main effort of the initiative has been toward derivation
rules and facts. RuleML has been hierarchically modularized into a
directed acyclic graph of DTDs for these rules, which is open for further
sublanguages.

Exchange via Rule Engines—The SRML
The Simple Rules Markup Language (SRML) is a proposal for a general-
purpose interlingua that allows the definition of rules on the basis of
XML for their exchange between rule engines (xml.coverpages.org/srml
.html). A major goal is to abstract the process rules from concrete rule
engines, and thereby be vendor independent.

This idea is based on providing a DTD to the rules community that
specifies a subset of common rule engine language constructs. Rules
defined according to that schema can be translated and executed appro-
priately on the target system.

An example in traditional syntax is

rule Discount {

when { ?s:ShoppingCart (purchaseAmount > 100) ; }

then { update ?s { discount = 0.1 }; } }

which rule marked up becomes

<rule name=”Discount”>

<conditionPart>

<simpleCondition className=”ShoppingCart”
objectVariable=”s”>

<binaryExp operator=”gt”>

<field name=”purchaseAmount”/>

<constant type=”float” value=”100”/>

</binaryExp>

</simpleCondition>

</conditionPart>

<modify>

5.4 Process Concepts and XML

SRML

237

<variable name=”s”>

<assignment>

<field name=”discount”>

<constant type=”float” value=”0.1”/>

</assignment>

</modify>

<actionPart>

</actionPart>

</rule>

So, not very surprisingly, SRML rules have a condition part and an
action part. Actions provided by the schema are modify, assert, and
retract. The condition is built from one or more test expressions.

5.5 CONCLUDING REMARKS

Since we have been working on several different concepts in this chapter,
let’s summarize the main results and relations. So, what was this chapter
all about? Recall our initial and still overall argument that process engi-
neering is needed in today’s business-oriented information management.
The process paradigm is powerful and is adequate for the analysis and
description of business knowledge. The resulting models may be used in
either (re-)organization projects or IT development. In both cases, we
expect to gain a sound basis for higher-quality solutions.

We also introduced a process-oriented approach based on the concepts
of the π-calculus. It included the features of mobility and nondetermin-
ism for the following two reasons:

• First, since business organizations and environments are subject to in-
creasing dynamism, change management should be supported. There-
fore formal mechanisms are needed to provide a basis for realizing
integrated process engineering methodologies. Such an approach in-
cludes information analysis, modeling, seamless forward and reverse
engineering, and finally simulation of process designs. The π-calculus
provides concepts and an algebraic notation that may contribute to an
appropriate solution at this point.

Chapter 5 Modeling Processes238

T
E
A
M
F
L
Y

Team-Fly®

• Second, we argued for business concepts given in terms of a manage-
ment of communication rather than of structures, as well as people-
driven processes rather than process-driven people. This results from
the observation that business activities are interactions, and inter-
action is either communication or the exchange of goods. The prevail-
ing workflow-oriented view of business processes may be appropriate
for industrial processes, but it is not appropriate for service processes.
So we need a modeling approach that is communication based. The
π-calculus promises to help at this point, too, by describing systems of
communicating processes.

On the technical level the approach that we outlined in the first
two sections of this chapter is very similar to what is known from agent-
oriented technologies, where we find many concepts and research results
that may be applied to the process context. These range from the under-
standing of communication protocols to the formulation of business
knowledge in terms of rules, for instance. We then gave an overview of
software agents and systems, leading us to the ADEPT system to support
service processes in telecommunication.

Finally, the role of XML in the field of business-process-oriented ap-
proaches had to be made clear. To do this, we summarized the initiatives
taken and results gained so far in this area. We focused on the formula-
tion of process features in XML that have been identified before, all for
the purposes of representation and exchange. This chapter outlined the
BPMI architecture, and other efforts such as ebXML will be dealt with in
Chapters 10 and 11.

5.5 Concluding Remarks 239

241

6Communication

For early transactional systems, data storage was one of

the most challenging aspects of computing. Today, with

ubiquitous networks, the focus of software engineering has

moved to communication. In this chapter we first introduce

the conceptual aspects of communication. After describing a

layered communication model, we look at the transportation

environment for messages: channels and ports. Then we dis-

cuss the theory of speech acts that helps us to structure the

exchange of messages and leads to protocol patterns.

In Section 6.5, we look closer into the anatomy of message

implementation, and we discuss SOAP and XML Protocol as

practical examples. In Section 6.6, we discuss both the classi-

cal ACID transactions and the newer, process-oriented, long-

living transactions and how those transactions concepts can

be applied to Web services. Security issues are covered in Sec-

tion 6.8. This includes a discussion of two security-related

standards: XML Signature and XML Encryption.

6.1 History

6.2 Layers of
Communication

6.3 Channels and Ports

6.4 Speech Acts

6.5 Messages

6.6 Transactions and
Protocols

6.7 Semantics of
Communication

6.8 Security

6.1 HISTORY

As early as 1975 John McCarthy proposed a Common Business Commu-
nication Language (CBCL) (McCarthy 1999). As McCarthy observed,
“Developing an expressive Common Business Communication Language
has proved unexpectedly difficult.” The problem is not so much the syn-
tax but that the problem is open-ended. You cannot stop at some stage
and claim that all aspects are covered. For each business rule that is cov-
ered by the model, it is easy to find a more complicated business rule that
is not yet covered. Just take the following rules describing shipment
orders as an example:

1. Ship by express mail.
2. Ship by standard mail, but insure the parcel up to a value of $1,000.
3. Ship by truck, provided the truck is air-conditioned.
4. Ship by integrated rail/truck door-to-door service, provided the

refrigeration chain is not interrupted for longer than 90 minutes.
Request printed temperature protocol from pickup to delivery.

5. And so on.

We can see the problem. What would be required to cover all possible
cases is a language with the expressive power of natural language. Natural
language, however, is awkward to process with computers.

McCarthy solved the problem by devising an extensible business lan-
guage based on a language popular for building artificial intelligence
applications: LISP. In CBCL the shipment orders could look like this:

(shipment (carrier mail) (method express))

(shipment (carrier mail) (method standard) (insurance
(insured sum 1000)))

and so on.
We can easily translate these rules into XML. Each list head makes a

tag, and nested lists make child elements:

<shipment>
<carrier> mail </carrier>
<method> express </method>

</shipment>

<shipment>
<carrier> mail </carrier>
<method> standard </method>

Chapter 6 Communication

McCarthy’s CBCL

LISP vs. XML

242

<insurance>
<insured_sum> 1000 </insured_sum>
</insurance>

</shipment>

and so on.
People trained in LISP will like the CBCL format better because it is

more compact. However, we find that XML makes it easier to determine
the end of each structure: there is no need to count parentheses. A docu-
ment standard such as XML was needed to bring John McCarthy’s idea
of an extensible business communication language to widespread adop-
tion. No wonder: exchanging documents is at the core of all business
communication.

6.2 LAYERS OF COMMUNICATION

The classical process model as it is used in enterprise application integra-
tion (EAI) and workflow applications is not really applicable in an open
electronic business scenario. These process models are described in terms
of state transition diagrams, Petri nets, and message sequence charts (such as
activity diagrams in UML). These techniques are well suited to the closed
world of enterprise business processes and workflows and for “closed
world” long-term business relationships as we find them in typical EDI
partnerships.

The situation in electronic business, however, is different. Electronic
business processes typically cross the boundaries of companies and long-
term partnerships. Especially with smaller businesses (and for larger cor-
porations that use the concept of autonomous work groups), there is a
high degree of autonomy between the business partners. Collaborations
frequently change and often are mediated through a market mechanism.
For example, a manufacturer who wants to ship certain items to a cus-
tomer will not use a single shipper but will dynamically select a shipper
according to price, availability, quality, and so on. In some cases it may be
necessary to use alternative services, for example, when the pilots are on
strike or the rivers are flooded. In these cases, the manufacturer must be
able to quickly align his or her own business processes with those of a
temporarily selected shipper.

Traditional modeling techniques such as state transition tables or Petri
nets have problems with this kind of required flexibility. Early experi-
ences with the application of these techniques to electronic business

6.2 Layers of Communication

Temporary
partnerships

243

scenarios have led to the conclusion that the models become too com-
plex when we want to cover each possible exception and contingency.

Researchers have therefore looked into ways to make the traditional
process model more flexible or to use alternative methods to describe
open processes. In the previous chapter, we looked at Milner’s π-calculus
as one possibility. In this chapter we will take a close look at the speech act
theory (SAT) and communication patterns, so-called protocols, which are
a basis for modeling transactions and access to Web services in electronic
business. In later chapters we will see that some recent technologies such
as ebXML and RosettaNet are based on similar principles.

These concepts follow a layered metamodel, as in Figure 6.1 (Weigand,
van den Heuvel, and Dignum 1998):

• Messages are the most elementary part of such an architecture. A mes-
sage can be a simple signal, such as an acknowledgment, or it can
be quite complex, containing one or several business documents. A
message may relate to its operational context (i.e., the transaction that
it is a part of).

• Transactions are composed of messages (or other transactions). That
means that transactions can be nested, allowing the construction of
complex transactions from simple transactions. A transaction is con-
sidered as a logical unit of work that transforms the states of the par-
ticipating systems from one valid state to another valid state. In the
simplest case a transaction consists of two messages, a request and a re-

Chapter 6 Communication

New methods
required

Layered
metamodel

244

Business Process

Message

Transaction

Business Service

Contract

Scenario

Figure 6.1 Layered communication architecture in electronic business.

sponse. Transactions can be classical ACID transactions or long-
running transactions (see Section 6.6.2). Transactions occur in the con-
text of a business process or a business service.

• Business services implement generic business processes such as services
for funds transfer, credit card validation, invoicing, or remittance.

• Business processes orchestrate transactions into an organic process. In
their simplest form, business processes involve just two partners, but
business processes involving more than two partners can be con-
structed by composing several simple business processes. Business pro-
cesses occur in the context of a business contract.

• A business contract is negotiated between the partners involved in a
prospective business process. The contract determines the concrete
form of the business process and defines the rights and responsibilities
of each partner within the business process. The partners also agree on
shared vocabularies (or ontologies), or on how to mediate between dif-
ferent ontologies.

Business contracts are usually legally binding. A business contract is
negotiated in the context of a business scenario.

• Business scenarios describe the context in which contracts are negoti-
ated and business processes take place. These descriptions include part-
ner profiles, describing the capabilities of each partner (technical capa-
bilities, supported message protocols, and so on). They also describe
common context information, such as the national and cultural envi-
ronment. Additionally business scenarios describe the interrelationship
among several business contracts that are in effect simultaneously.

6.3 CHANNELS AND PORTS

Channels organize the communication between end points, so-called
ports. Messages are interchanged between these end points through the
channels. A partner within a business process must own at least one port;
otherwise it will not be able to communicate and take part in the pro-
cess. Channels that organize the communication between exactly two
end points are 1:1; channels that organize the communication from a
single end point to multiple end points (multicast) are 1:m. Often 1:m
channels are implemented using a fire-and-forget strategy; that is, the
sender does not expect an acknowledgment from the receiver (typical
broadcast situation).

6.3 Channels and Ports 245

The type of channel is defined by the protocol—the valid sequences of
messages between the partners. There are additional parameters that can
characterize a channel:

• Binding: The transport method used. Popular choices to transport mes-
sages are HTTP, SMTP, and FTP.

• Reliability: A channel can be implemented as a persistent channel; that
is, it guarantees the delivery of a message once the message has been
accepted. This requires more overhead since the channel must imple-
ment a persistent message store, where messages can survive a system
crash.

An alternative solution is to use a nonpersistent channel. In this
case it is preferable that the sender receives an acknowledgment when
the message has been delivered. This may happen immediately or
lazily (i.e., the acknowledgment is returned in a bundle with some
other traffic that travels in the opposite direction). In this case it might
happen that a message is sent twice (when the system is restarted after
a crash). Either the channel or the receiver should therefore display
idempotent behavior (i.e., discard duplicate messages).

• Synchronicity: A channel may act synchronously or asynchronously. To
receive a message synchronously, the client has to request a message. It
then has to wait for the message (or to poll for it). A client who wants
to receive messages asynchronously has to register with the channel
and is notified when a message arrives.

• Security: A channel may encrypt messages to transport them safely and
enforce digital signature technology to ensure that no unsolicited mes-
sages are sent.

• Scalability: Channels may open alternative routes in case of heavy traf-
fic. Some channels may have a higher priority than other channels or
may give certain messages a higher priority than other messages.

6.4 SPEECH ACTS

Speech act theory (SAT) goes back to John L. Austin’s How to Do Things
with Words (Austin 1975). Austin postulated that language statements
not only transport a meaning but also accomplish something; that is, an
issued statement has a practical purpose. It is that purpose that defines
the illocutionary force1 of a message. Messages can thus be categorized

Chapter 6 Communication

Channel
parameters

246

1The illocutionary force of an utterance is the speaker’s intention in producing that
utterance.

according to their illocutionary force (Moore 1996). The following cate-
gories are defined: advise, ascribe, assent, assert, concede, confirm, deny,
describe, dispute, dissent, inform, offer, permit, predict, prohibit, prom-
ise, question, report, request, require, retract.

Scott A. Moore and Steven O. Kimbrough have defined a set of formal
languages for business communication (FLBCs) on the basis of these mes-
sage categories. Examples of the application of these FLBCs in message
management systems are found in Kimbrough and Moore (1994). (The
paper also contains a lovely example of supply chain management in a
bicycle shop.) Only recently an XML DTD has been published for the for-
mal definition of these FLBCs through XML. Here is a short example of a
question expressed in FLBC:

<flbcMsg>
<simpleAct id=”ask-if” speaker=”me” hearer=”you”>
<illocAct force=”question”>
<!— content of question goes here —>

</illocAct>
</simpleAct>
<context>
<resources>
<actors>
<person id=”me”/>
<person id=”you”/>

</actors>
</resources>

</context>
</flbcMsg>

For our requirements the following five basic categories (Dignum 2000)
seem to be sufficient:

• ASSERT: Messages of this type inform the receiver about a given fact.
They do not require immediate action from the receiver. The receiver is
free to believe the message or to ignore it. For example: “The authors
of The XML-Handbook are Charles F. Goldfarb and Paul Prescod.”
ASSERT messages also include simple acknowledgments like “Your mes-
sage has arrived.”

• OFFER: Offers (or proposals) invite the receiver to request something or
to commit to something (see DIRECT and COMMIT). For example:
“Buy this book before next Saturday and get 15% off.”

• DIRECT: This message type is used to transmit orders or requests to the
receiver. This usually results in an obligation for the receiver that the

6.4 Speech Acts

FLBCs

Basic categories

247

receiver may choose to follow or not. For example: “Show me all books
about XML.”

• COMMIT: The COMMIT message type is used to create obligations for
the sender itself; that is, the sender commits itself to do something.
COMMIT messages often follow the reception of a DIRECT request. For
example: “We will deliver within three days.”

• DECLARE: This message type is used to create new facts. For example,
it may be used to equip the receiver with certain access rights. This
message type is mostly used during the negotiation phase and is hardly
used in later stages of the communication. For example: “You have full
access to all of my accounts.”

By categorizing messages into such classes, we are able to construct
metapatterns of possible transactions. An example of such a metapattern
could be:

1. Party A sends a request to Party B.
2. Party B sends an acknowledgment to Party A, to acknowledge the re-

ception of the message.
3. Party B sends a commitment to Party A, to indicate that it is willing

to process the request.
4. Party A sends an acknowledgment to Party B to indicate that it has

received the commitment.

Such a transaction could be described as a DIRECT-ASSERT-COMMIT-
ASSERT pattern. The pattern also defines an abstract protocol for both
partners. Software instances could be created that are able to handle these
abstract protocols. These software instances can then be reused whenever
such a communication pattern occurs—the abstract message categories
are simply instantiated with concrete message types.

6.5 MESSAGES

In this section, we further investigate the anatomy of messages and how
this anatomy is covered by messaging specifications such as SOAP.

6.5.1 Simple and Complex Messages

A message typically wraps a business document or a set of business docu-
ments plus attachments into an envelope. The envelope is responsible for
security; it can provide encryption and digital signatures (see Section 6.8).

Chapter 6 Communication248

Message
patterns

T
E
A
M
F
L
Y

Team-Fly®

A special class of messages is signals—messages that do not carry a pay-
load of documents but are simply used to trigger an event in the receiving
process. Such signals are typically used to acknowledge the reception of a
message or to inform about an exception.

A message can contain additional metainformation in the message
header describing the documents, their current state, and processing in-
structions for the documents.

The message header may contain the following information:

• The encoding used for the message
• Supported XML namespaces
• Source and destination of the message
• An identity pointer to identify the message uniquely, for example, a

UUID or a URI
• Date and time when the message was sent
• Date and time when the message expires
• A pointer to the context where the message is valid, such as a business

process instance, a contract, or a scenario
• Pointers to vocabularies used in documents and attachments
• A description element, describing the topic of the message
• A manifest, listing the documents and attachments contained in the

message
• A flag indicating if it is required to acknowledge the reception of the

message
• A flag indicating if it is required to acknowledge the positive commit-

ment to process the message

Concrete specifications of messaging architectures are described in Sec-
tions 6.5.2 (SOAP), 10.3 (ebXML), and 11.3.3 (BizTalk).

6.5.2 SOAP

SOAP (Simple Object Access Protocol) started as a Microsoft initiative (in
collaboration with UserLand Software and DevelopMentor) to use XML
for remote method calls as a serialized transport format between distrib-
uted objects.

SOAP has its roots in XML-RPC (XML-RPC 1999). RPC stands for
“remote procedure call.” XML-RPC addressed a problem existing in het-
erogeneous environments. Distributed component systems use remote
procedure calls to invoke a method in a remote object. The calling object
has to transmit parameters to the called method. And, vice versa, results
must be returned to the caller. Since both parameters and results can be

6.5 Messages

Signals

Message header

XML-RPC

249

arbitrarily complex objects, it is necessary to convert them into a byte-
stream in order to transmit them over the wire. This process is called seri-
alization in Java and marshalling in DCOM and CORBA. As you can guess
from the different names, the different component systems use different
serialization formats, too. To call a CORBA method from DCOM, for
example, extra “bridge” software is necessary. This software translates
between the two serialization formats. XML-RPC solves this problem by
providing a single serialization format: XML. Thus XML-RPC makes it
possible for CORBA objects to directly interoperate with DCOM or Java,
and so on.

SOAP evolved directly from XML-RPC. UserLand, which signed for
XML-RPC, was also involved in the development of SOAP. One key differ-
ence from XML-RPC is how method parameters are identified. XML-RPC
represents parameters without parameter names—parameters are identi-
fied by position. SOAP represents parameters with their names, so
sequence does not matter. This is the better choice because it is easier to
identify parameters. It is also more XML-like.

In addition to the serialization issue, SOAP also addresses the issue of
message composition. A typical SOAP message consists of an envelope,
optional headers, and the message body.

The envelope defines the namespaces and encoding used in the mes-
sage. Here is an example from the SOAP 1.1 specification. It starts with
the usual HTTP header, indicating a POST operation and declaring the
content as “text/xml”:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset=”utf-8”
Content-Length: nnnn
SOAPAction: “Some-URI”
<SOAP-ENV:Envelope xmlns:SOAP-ENV=

“http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”>
…
</SOAP-ENV:Envelope>

Multiple headers are allowed in SOAP messages. Each header describes
a certain aspect of the message such as quality of service, security, or
transactional behavior. Here is a hypothetical header to define transac-
tional behavior (currently not supported in SOAP):

Chapter 6 Communication

SOAP vs.
XML-RPC

Message
composition

250

<SOAP-ENV:Header>
<t:Transaction xmlns:t=”some-namespace-for-transactions”

SOAP-ENV:mustUnderstand=”1”>
5

</t:Transaction>
</SOAP-ENV:Header>

The body carries the payload of the message—the serialized parameters
of the action (or method) invoked (a complete example will come later).

SOAP is not a high-speed communication method: the use of both
HTTP and XML takes its toll in terms of performance. Instead, SOAP
addresses the need for a loosely coupled transport protocol that can work
across company boundaries and between different component models.
In the beginning, SOAP was somewhat COM centric; however, with ver-
sion 1.1, SOAP is now neutral to component models and transfer proto-
cols. Many other manufacturers (Ariba, CommerceOne, Compaq, HP,
Iona, IBM, Lotus, SAP, Sun Microsystems) have joined the SOAP opera,
and in the meantime SOAP has become a de facto standard. The Apache
organization, for example, has adopted the IBM SOAP4J implementation
as the basis of an open source reference implementation. Using SOAP,
component-oriented platforms such as DCOM, CORBA, and Enterprise
Java Beans can interoperate with each other through HTTP, SMTP, POP3,
or FTP. Because of the use of HTTP, SOAP gets around firewall problems.
(However, administrators can configure firewalls not to accept SOAP mes-
sages.) The purpose of SOAP is described in Box et al. (2000) as the
following:

SOAP is a lightweight protocol for exchange of information in a decentral-
ized, distributed environment. It is an XML based protocol that consists of
three parts: an envelope that defines a framework for describing what is in a
message and how to process it, a set of encoding rules for expressing in-
stances of application-defined datatypes, and a convention for representing
remote procedure calls and responses.

SOAP is used as a transport protocol in XML-based standards for elec-
tronic business such as BizTalk and ebXML.

The following example shows a typical SOAP request/response data-
stream using HTTP as the transfer protocol (SOAP can use other proto-
cols, too):

POST /Validation HTTP/1.1 Host: www.cardservice.com
Content-Type: text/xml; charset=”utf-8”
Content-Length: nnnn

6.5 Messages

SOAP adoption

251

SOAPAction: “CardValidation-URI”
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>

<m:ValidateCard xmlns:m=”CardValidation-URI”>
<RetailerID>393837</RetailerID>
<TransactionNo>907</TransactionNo>
<CreditcardNo>4578987898990</CreditcardNo>
<ValidUntil>06/04</ValidUntil>
<Currency>USD</Currency>
<Amount>99.95</Amount>

</m:ValidateCard>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP body indicates that method ValidateCard in namespace
CardValidation-URI within www.cardservice.com/validation should be
invoked. The application at www.cardservice.com/validation can be any
type of Web service, such as a CGI script or a servlet. After execution
of the invoked method, the results are returned via a SOAP response
message:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=”utf-8”
Content-Length: nnnn
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”/>
<SOAP-ENV:Body>
<m:ValidateCardResponse xmlns:m=”CardValidation-URI”>
<TransactionNo>907</TransactionNo>

</m:ValidateCardResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP supports all the built-in datatypes defined in XML Schema plus a
number of complex datatypes such as variants and unions, structures
(“struct”), records, and arrays including multiple and nested arrays. All
data is passed by value, not by reference. Apart from defining standards

Chapter 6 Communication

Features

252

for message envelopes, message encoding, and remote procedure calls,
SOAP does not cover other transport aspects, such as schema-based mes-
sage validation, object creation and destruction, bidirectional synchro-
nous communication, distributed transactions, persistent messaging, or
recovery from exceptions. These tasks are left to higher-level standards
such as BizTalk or ebXML.

6.5.3 XML Protocol (SOAP 1.2)

SOAP is a de facto industry standard. It is not a W3C recommendation
yet, but it has been submitted to the W3C for consideration. This has
resulted in a new W3C activity called XML Protocol (XMLP) (Williams
and Jones 2001). The XMLP activity was inspired by SOAP but includes
more advanced features and will eventually be the successor of SOAP. It
now has been named SOAP 1.2.

Most important, XMLP is not an end-to-end protocol. Inspired by the
definition of SOAP-RP (Nielsen and Thatte 2001), it allows one or several
intermediaries to forward a message. Intermediaries can remove blocks
from a message and add new blocks to it (i.e., a modified block is a new
block). This allows a kind of pipelined communication structure where a
message can pass through several processing stages—an interesting
approach to establishing collaboration between various Web services.

6.6 TRANSACTIONS AND PROTOCOLS

The classical notion of a transaction is connected to the OLTP world. First
restricted to single database management systems, the classical ACID
transaction concept has subsequently been extended to distributed data-
bases and to other transactional services such as transactional message-
oriented middleware (MoM). Applications access these resources by means
of interfaces as defined by the XA (Transaction Authority) standard (e.g.,
the Java Transaction API, JTA). XA is a popular standard protocol to
orchestrate ACID transactions over distributed databases.

6.6.1 ACID Transactions

ACID is an acronym for the four primary attributes ensured to any OLTP
database transaction:

• Atomicity: A transaction cannot be divided into smaller parts. Either all
or none of the data elements involved in a transaction are committed
to a transaction.

6.6 Transactions and Protocols

Pipelined
messages

Definition of ACID

253

• Consistency: A transaction leads to a new and valid state. In case of a
failure, the transaction is reset to the previous valid state.

• Isolation: A pending transaction must remain isolated from any other
transaction.

• Durability: Once data has been committed it must stay—regardless of
system failures or restart—in its committed state.

A COMMIT is the last step in a successful database transaction. ROLL-
BACK is used to abandon the current transaction and return the resources
involved in the transaction to their original state.

In distributed OLTP database systems, the ACID characteristics are
achieved by means of the two-phase commit. In the first phase all part-
ners involved in a transaction receive a signal “Prepare to commit.” Each
partner responds with a “Ready to commit.” Only when all partners have
signaled a “Ready to commit” is the final “Commit” issued.

XA supports the two-phase commit by introducing the concept of
resource managers and transaction managers. The transaction manager is
responsible for controlling the distributed transaction and coordinating
the resource managers involved in the transaction. Resource managers are
usually databases but can also be other transactional services, for exam-
ple, a MoM server. Resource managers can be heterogeneous—systems
from several manufacturers can engage in one distributed transaction.

6.6.2 Transactional Web Services

However, for orchestrating Web services, the classical two-phase commit
is too strict. The classical two-phase commit requires resource managers
to lock the resources involved in a transaction during its whole duration,
from the beginning of the transaction until the final commit. With Web
services this could take a long time. Remember that a Web service may
encapsulate other business processes and even human activity. Locking
resources for such a long time would lead to Web services that perform
badly when traffic increases.

On the other hand, when resources are not locked, they cannot be
rolled back if the transaction fails. Another—competing—transaction
may have changed a resource in the meantime. When the resource is
reset to its original status, the changes made by the second transaction
are lost.

Take for example a credit card validation service. In transaction A, the
credit card service is asked to charge $400 against the customer’s credit
card account. Now, while transaction A is still pending, another transac-

Chapter 6 Communication

Two-phase
commit

XA

New
requirements

254

tion B charges $300 against the same account and commits. Then trans-
action A fails. Because it fails, everything must be set back to the original
state (rollback). The consequence is that the charge of $300 from transac-
tion B is lost. This is clearly unacceptable, and this is why OLTP databases
lock their resources during a transaction.

The solution for non-OLTP environments such as electronic business
or Web services lies in the introduction of compensating actions. When
transaction A fails, it will not physically roll back all resources involved in
a transaction but will trigger compensating actions. In our case it will
credit $400 to the account, thus compensating the previous $400 debit.

Because these compensating actions work on a semantic level, they
require additional development effort. The programmer cannot just rely
on the rollback mechanisms of the resource managers but has to imple-
ment compensating actions.

Typically, long-running transactions are integrated into orchestration
services (see, for example, the BizTalk orchestration services discussed in
Section 11.3.3). To support long-running transactions, providers of trans-
actional Web services are therefore required to offer for each transactional
Web request type a corresponding request type for a compensation
action.

6.6.3 The Web Services Description Language (WSDL)

The interface to a service (transactional or not) is described by a certain
sequence of messages (for example, following a pattern as discussed in
Section 6.3) and the format of these messages (i.e., a protocol). Usually
such a protocol is defined for a given port, and each Web service can pos-
sess several ports; that is, it is able to support several protocols. Such pro-
tocols can be defined with the Web Services Description Language
(WSDL).

The Web Services Description Language, a proposal to the W3C (Chris-
tensen et al. 2001), is a joint initiative of Ariba, IBM, and Microsoft. The
same collaborators also started an initiative for the definition of UDDI
(see Section 7.3), which complements WSDL in that it specifies the regis-
tration and discovery of Web services. Other companies joined the ini-
tiative, including Hewlett-Packard, which—after some political quarrels—
opted to integrate its own development, e-speak, with WSDL and UDDI.

WSDL describes “Web services” in an abstract way. A Web service is
defined as a collection of end points (or ports) capable of performing
operations and exchanging messages. WSDL covers only synchronous
operations.

6.6 Transactions and Protocols

Long-running
transactions

Politics

255

The abstract definition of each end point can then be bound to a con-
crete communication protocol. The necessary binding mechanism is de-
fined in WSDL, too. Special predefined bindings currently exist in SOAP,
HTTP GET/POST, and MIME.

A port thus establishes a binding between a sequence of operations
and a concrete message protocol and format. Because a Web service can
incorporate several ports, it can accept several message sequences (and
perform operations on them) and can communicate using several mes-
sage protocols.

A WSDL description consists of five major elements:

1. <wsdl:types>
2. <wsdl:message name=...>
3. <wsdl:portType name=...>
4. <wsdl:binding name=... type=...>
5. <wsdl:service name=...>

<wsdl:types> contains the datatype definitions that are used to de-
scribe the messages exchanged between the ports. WSDL does not intro-
duce its own type system but uses the XML Schema type system (see also
Chapter 2). XML Schema expressions are directly embedded between
<schema> ... </schema> tags in the form of <element name=...> elements.
Each element occurrence defines one type.

<wsdl:message name=...> represents an abstract definition of the data
being transmitted. Each message consists of one or multiple parts, and
each part definition refers to a type definition (see above). This allows
us to compose a message from several type definitions (i.e., one mes-
sage can transport several business documents). There may be several
<wsdl:message> definitions.

Each portType contains one or several <wsdl:operation name=...> ele-
ments. These define abstract operations. Each operation element may
contain <wsdl:input name=... message=...> and <wsdl:output name=...
message=...> elements that refer to input and output messages.

Additionally, an operation element also may contain a <wsdl:fault
name=... message=.../> element for error messages.

There are four different operation types:

• One-way: The end point receives a message. portType contains only an
input element.

• Request-response: The end point receives a message and sends a corre-
lated message. portType contains a sequence of input, output, and
fault message elements.

Chapter 6 Communication

Elements
of a WSDL
description

Operation types

256

• Solicit-response: The end point sends a message and receives a correlated
message. portType contains a sequence of output, input, and fault
message elements.

• Notification: The end point sends a message. portType contains only an
output element.

<wsdl:binding name=... type=...> describes to which concrete proto-
col and data formats the operations and messages of a particular portType
are bound. (The attribute type refers to a specific portType.) Child ele-
ments map each abstract operation and its input and output messages to
concrete operations and data formats.

The mapping of abstract input and output messages to concrete mes-
sages involves the transformation of messages if both message formats
differ. Thus, clients are not required to use the concrete message format of
the Web service.

<wsdl:service name=...> describes a complete service. Each service
element can contain one or several <wsdl:port name=... binding=...>
elements. Each of these port elements represents a communication end
point and refers to a specific binding element. Additionally, it specifies
the network address of the end point.

Here is an example of a WSDL Web service description, based on Chris-
tensen et al. (2001):

<?xml version=”1.0”?>
<definitions name=”StockQuote”

targetNamespace=”http://example.com/stockquote.wsdl”
xmlns:sqw=”http://example.com/stockquote.wsdl”
xmlns:sqt=”http://example.com/stockquote.xsd”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>
<schema

targetNamespace=”http://example.com/stockquote.xsd”
xmlns=”http://www.w3.org/2000/10/XMLSchema”>
<element name=”TradePriceRequest”>
<complexType>
<sequence>
<element name=”tickerSymbol” type=”string”/>

</sequence>
</complexType>

6.6 Transactions and Protocols 257

</element>
<element name=”TradePrice”>
<complexType>
<sequence>

<element name=”price” type=”float”/>
</sequence>

</complexType>
</element>

</schema>
</types>

<message name=”GetLastTradePriceInput”>
<part name=”body” element=”sqt:TradePriceRequest”/>

</message>

<message name=”GetLastTradePriceOutput”>
<part name=”body” element=”sqt:TradePrice”/>

</message>

<portType name=”StockQuotePortType”>
<operation name=”GetLastTradePrice”>
<input message=”sqw:GetLastTradePriceInput”/>
<output message=”sqw:GetLastTradePriceOutput”/>

</operation>
</portType>

<binding name=”StockQuoteSoapBinding”
type=”sqw:StockQuotePortType”>

<soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”GetLastTradePrice”>
<soap:operation

soapAction=”http://example.com/GetLastTradePrice”/>
<input>
<soap:body use=”literal”/>

</input>
<output>
<soap:body use=”literal”/>

</output>
</operation>

</binding>

Chapter 6 Communication258

T
E
A
M
F
L
Y

Team-Fly®

<service name=”StockQuoteService”>
<documentation>My fiirst service</documentation>
<port name=”StockQuotePort”

binding=”sqw:StockQuoteBinding”>
<soap:address location=”http://example.com/stockquote”/>

</port>
</service>

</definitions>

This WSDL example first defines two complex XML datatypes, Trade-
PriceRequest and TradePrice, using XML Schema as the specification lan-
guage. It then defines two message types, GetLastTradePriceInput and
GetLastTradePriceOutput, that use these datatypes for the definition of
their respective message bodies. Next it defines a port type named Stock-
QuotePortType. This port supports one operation, GetLastTradePrice,
which takes GetLastTradePriceInput as the input message and GetLast-
TradePriceOutput as the output message. The next section then describes
SOAP as the transport service for the operation GetLastTradePrice. The
last section describes the whole service, StockQuoteService, by listing its
operations with their bindings.

At present, WSDL can describe Web services only in a static way. There
is no way to describe how the operations can be orchestrated into a busi-
ness process or workflow. This is left to future versions of WSDL.

6.7 SEMANTICS OF COMMUNICATION

The semantics of a message not only matters to the source and the target
of a message, that is, the sender and the receiver. In many cases it will
also be necessary that the content of a message be interpreted by the
channel, too, in order to provide services such as ontology mapping and
content-based routing.

6.7.1 Content-Based Routing

In many cases it is necessary to change the route and even the destina-
tion of a message based on content. For example, a customer might send
an order to a company but not know which department handles the spe-
cific order. An intelligent router can look at the message, apply business
rules to determine the receiving department, and change the destination
address accordingly.

6.7 Semantics of Communication

Limitations

259

6.7.2 Ontology Mapping

When the two partners do not share an ontology, they have to use a medi-
ation process to translate the message from one ontology into another. In
the simplest case this is a translation of vocabularies or taxonomies, but it
can amount to more complex transformations in document structure.
This is a typical job for an XSLT style sheet (see Chapter 9). Carlson (2001)
has an example of an XSLT style sheet that translates from a RosettaNet
ITTD taxonomy to the CatML taxonomy.

However, the naive approach of direct translation from one ontology
into another usually causes havoc—the number of transformations sim-
ply explodes with an increasing number of ontologies. A more sophisti-
cated approach lies in the definition of a generic pivot ontology that can
cover a wide range of existing ontologies. Messages that must be trans-
lated from ontology A into ontology B are translated in two steps: first
from ontology A into the pivot ontology, then from the pivot ontology
into ontology B.

6.8 SECURITY

Security is an important aspect of communication. On the Internet a
whole arsenal of security techniques has been developed over the years.

On the physical level, Secure Socket Layers (SLL) allows safe communi-
cation between communication end points. However, it solves only part
of the problem: what happens before or after the end points is not pro-
tected by SSL.

Seamless security can only be achieved by applying security tech-
niques on the application level. Popular methods for achieving security
on the application level are Pretty Good Privacy (PGP) and Secure MIME
(S/MIME). However, both methods require that applications support
these methods. Also, both methods can only encrypt either a whole doc-
ument or nothing. This is not always required and not always wanted: a
document may contain parts that must be readable to the public, and
other parts that must be kept confidential.

In early 1999 the W3C began with the definition for a security archi-
tecture for XML. We will see that this architecture can provide flexible
security not only to XML documents but also to all objects that can be
addressed through a URI.

Chapter 6 Communication

Physical level

Application level

260

6.8.1 Basics

A security architecture is based on the following security services:

• Confidentiality: A confidential document should not be read by un-
authorized persons. This can be ensured by encrypting the data.

• Integrity: Integrity means that the unauthorized modification of data
can be detected. Integrity can be ensured by computing message di-
gests (see below).

• Authentication: Authentication ensures the origin of data or the iden-
tity of communication partners. Data origin authentication is achieved
by computing digital signatures and message authentication codes
(MACs). These are message digests that can only be computed and
checked with a secret key.

• Nonrepudiation: Nonrepudiation combines data integrity with data ori-
gin authentication, so that the sender of the data cannot repudiate
modifications that he or she applied to the data, for example, digitally
signing the data. This makes legally binding digital contracts possible.

The technologies to implement these services are well known:

• Symmetric encryption keys: This encryption method uses the same key
for encryption and decryption. This encryption method is fast, but, be-
cause sender and receiver must possess the same key, the transmission
of the key poses a security risk. Keys with a length of at least 128 bits
are considered safe. Examples are AES (128–256 bits), Blowfish (64–448
bits), and Twofish (128–256 bits).

• Asymmetric keys: These keys always come in pairs: a public key is used
by the sender to encrypt the message, and a private key (which must
be kept secret) is used by the receiver to decrypt the message. Examples
of such keys are RSA (Rivest-Shamir-Adleman) and ECC. The advan-
tage of asymmetric keys is that they do not involve an insecure step
(exchange of keys) and don’t require much management. However,
the algorithms used are very slow.

• Hybrid keys: This technique involves a pair of asymmetric keys and a
symmetric key. As a first step, sender and receiver exchange the sym-
metric key but encrypt this exchange with the asymmetric key. The
following communication can then be safely encrypted with the sym-
metric key.

• Message digests: Message digest algorithms are used to compute a
hash value from data that must be protected against tampering. The

6.8 Security

Security services

Implementations

261

algorithms used are fast and guarantee that any change in the message
content will cause a significant change in the hash value. To be safe the
minimum length of hash values is 160 bits. Popular algorithms to
compute hash values are MD5 (but already classified as unsafe), SHA-1
(Secure Hash Algorithm, Revision 1), and RIPEMD160 (RACE Integrity
Primitives Evaluation Message Digest).

• Digital signatures: Digital signatures use an asymmetric technique to
generate a signature from the content of the signed document. The
signer uses a private key to generate the signature value, while the
reader uses a public key to check the validity of the signature. Again,
because asymmetric algorithms are slow, hybrid techniques are used.
First, a message digest is computed from the document content; then
the digest value is protected by the asymmetric key. Popular methods
for digital signatures are DSA (Digital Signature Algorithm) and RSA.

• Certificates: The problem with public keys is that a third party may in-
tercept the publication of a public key and replace it with its own pub-
lic key. Thereafter it could read any messages encrypted with that
public key. This problem is solved by certifying public keys. A certifi-
cation authority (CA) certifies public keys by embedding them into a
certificate. A sender that wants to use the public key of the message
receiver can ask for a certificate containing this public key. To check
the authenticity of the certificate, the sender can validate it against the
public key of the CA. Public keys of CAs are hard-coded into client
software such as Web browsers or signature programs.

6.8.2 XML Security

The XML security architecture is based on cryptography methods such as
DSA and RSA. In the next two subsections we will discuss the two stan-
dards, XML Signature and XML Encryption, that deal with cryptography.
Based on these two standards are security architecture components such
as the following:

• The Security Assertion Markup Language (SAML) is used for the safe
exchange of user privileges.

• The XML Access Control Language (XACML) allows the definition of
access rights to XML data.

• XML Key Management Services (XKMS) provides an XML interface to
public key infrastructures.

Chapter 6 Communication262

6.8.3 XML Signature

XML Signature describes the syntax and processing model of XML-based
signatures and has the status of a W3C proposed recommendation (East-
lake, Reagle, and Solo 2001). XML Signature allows the digital signature
of any kind of Web objects including XML objects. In contrast to existing
systems like S/MIME, XML Signature can sign not only a single object but
also multiple objects. Also new is the possibility of embedding a signature
into objects. XML Signature uses a distributed concept by allowing the
reference of signed objects, signature algorithms, and transformation
algorithms through URIs.

When signing XML documents or elements, signature algorithms use
the character representation of the document or element to compute the
signature. This creates a problem: since the same XML information set
may have different character representations, this would result in differ-
ent signatures for the same content. XML Signature therefore allows the
transformation of an XML document or element into a canonical form
before computing the signature.

There are three signature flavors in XML Signature:

• Enveloping signature: An enveloping signature wraps the signed con-
tent. The signature element contains the signed content element as a
child element.

• Detached signature: The signature refers to a remote content element
(within the same document or in another document).

• Enveloped signature: The content element contains the signature ele-
ment as a child element.

The following example shows a simple detached signature:

<Signature Id=”MyFirstSignature”
xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<SignedInfo>
<CanonicalizationMethod Algorithm=

“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>
<SignatureMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#dsa-sha1”/>
<Reference

URI=”http://www.w3.org/TR/2000/REC-xhtml1-20000126/”>
<Transforms>
<Transform Algorithm=

6.8 Security

Signature flavors

263

“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>
</Transforms>
<DigestMethod Algorithm=

“http://www.w3.org/2000/09/xmldsig#sha1”/>
<DigestValue>j6lwx3rvEPOOvKtMup4NbeVu8nk=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>...</P><Q>...</Q><G>...</G><Y>...</Y>

</DSAKeyValue>
</KeyValue>

</KeyInfo>
</Signature>

The signature elements explained the following:

• The element Signature acts as a container element for the whole
signature.

• The element SignedInfo acts as a container for the references to all
signed objects.

• The element CanonicalizationMethod points to the algorithm used to
transform the SignedInfo element into canonical form before it is di-
gested as part of the signature operation.

• The element SignatureMethod points to the algorithm that is used to
convert the canonicalized SignedInfo into the signature value. This
algorithm consists of a combination of the digest algorithm, a key-
dependent algorithm, and other algorithms.

• The Reference elements point to the single signed objects. For each ob-
ject, it is possible to define a transformation algorithm that is applied
before the digest value is computed, the digest algorithm, and the di-
gest value that signs the object.

• SignatureValue contains the computed signature for the SignedInfo el-
ement and thus secures the SignedInfo element against manipulation.

• The optional element KeyInfo contains information about certificates,
public keys, or key identifiers.

Chapter 6 Communication264

6.8.4 XML Encryption

XML Encryption, currently a W3C working draft, defines how arbitrary
data can be represented in encrypted form in XML (Eastlake and Reagle
2001). The standard addresses the following encryption targets:

• Arbitrary binary data
• Complete XML documents
• XML elements including start and end tags
• Element content

Here is an example of the encryption of XML element content:

<?xml version=’1.0’?>
<PaymentInfo xmlns=’http://example.org/paymentv2’>
<Name>John Smith</Name>
<CreditCard Limit=’5,000’ Currency=’USD’>
<EncryptedData xmlns=’http://www.w3.org/2001/04/xmlenc#’
Type=’http://www.w3.org/2001/04/xmlenc#Content’>
<CipherData>
<CipherValue>A23B45C56</CipherValue>

</CipherData>
</EncryptedData>

</CreditCard>
</PaymentInfo>

The element EncryptedData is the result of an encryption process. The
attribute Type shows that EncryptedData contains element content, not a
whole element. Similarly, the element EncryptedKey (not shown here) is
used to transport encryption keys to a communication partner as re-
quired with hybrid encryption methods.

The CipherValue element contains the encrypted content. If this value
is not supplied directly, a CipherReference element may instead point
(through a URI) to a resource containing the encrypted content.

Optionally, the EncryptedData element may contain an Encryption-
Method element to specify the encryption algorithm.

In addition to the definition of its own syntactical elements, XML
Encryption utilizes the concepts and syntax of XML Signature to specify
things such as transformations or key information.

6.8 Security 265

267

7Navigation and
Discovery

The most characteristic navigation method for the

World Wide Web is the hyperlink as supported by

HTML. The XML specification, in contrast, does not define a

navigation method. In Section 7.1 we first discuss XLink, a

W3C recommendation that introduces powerful hyperlink

techniques into the world of XML. A discussion of WebML

completes this section. WebML is a modeling method that

integrates a structural model, a navigational model, and a

presentational model.

Concepts such as RDF and topic maps extend the hyper-

text metaphor to semantic navigation. RDF (see Section 3.3)

was developed in order to describe Web resources, while

topic maps had their first application in the area of knowl-

edge bases and interactive encyclopedias. We will discuss

topic maps in detail in Section 7.2.

7.1 Hypermedia

7.2 Topic Maps

7.3 Directory Services
(UDDI)

7.4 Peer-to-Peer
Architectures

Hypertext techniques are based on the signpost metaphor—the end user
is led through the Web, link by link. This is not always sufficient, as the exis-
tence of search engines proves. Services that lie beyond the horizon cannot
be seen by the surfer. In Section 7.3 we discuss UDDI, an XML-based lan-
guage that supports the registration and discovery of Web services through
public repositories.

Peer-to-peer technology relies on a different concept. Systems such as
Gnutella or Freenet do not rely on signposts or central repositories but work
by “word-of-mouth propaganda.” To find certain information items, you sim-
ply ask your neighbors. They in turn ask their neighbors, and so on. We will
discuss peer-to-peer technology in Section 7.4.

7.1 HYPERMEDIA

Originally, the World Wide Web was designed as a huge library. The pro-
tocol for the Web, http:, was designed for the collaborative authoring of
documents. We have to remember that the Internet has its roots in the
scientific sphere. The Internet was used directly by the end users (i.e.,
humans) for the authoring, exchange, and retrieval of documents and
files. The main metaphor for the Web, the hyperlink, has its roots in sci-
entific texts and encyclopedias; highly hyperlinked texts look very scien-
tific indeed but can drive nonacademic users nuts. Hypertexts existed
long before the Web, and even then the expression “lost in hyperspace”
was popular.

Therefore, it is not wrong to look at the experience of the multimedia
and hypermedia camp. XML applications—despite the origins of XML as
a puritan document standard—can possess rich multimedia layers. There
are already a couple of XML-based standards that make this possible: SVG
and SMIL. Also, in terms of navigation, a lot can be learned from the so-
phisticated models developed in the hypermedia camp.

7.1.1 A Short History of Hypermedia

The history of hypertext dates back to 1945. In that year Vannevar Bush
published an article, “As We May Think” (Bush 1945), that pushed the
idea of associative indexing:

It affords an immediate step, however, to associative indexing, the basic idea
of which is a provision whereby any item may be caused at will to select
immediately and automatically another.

The actual terms “hypertext” and “hypermedia” were coined by Ted
Nelson in 1965, in an article published in Literary Machines (Nelson 1982):

Chapter 7 Navigation and Discovery268

T
E
A
M
F
L
Y

Team-Fly®

By “hypertext” [we] mean nonsequential writing—text that branches and
allows choice to the reader, best read at an interactive screen.

The first hypertext system was originally developed by van Dam for
IBM in 1967. It was later used for project documentation in the Apollo
space program. Other hypertext milestones include the following (Niel-
son 1997):

• 1968: NLS by Doug Engelbart (who also invented the mouse) at Stan-
ford Research Institute

• 1978: The Aspen Movie Map by Andrew Lippman of MIT Architecture
Machine Group

• 1981: The never-implemented Xanadu by Ted Nelson
• 1985: Xerox’s NoteCards
• 1987: HyperCard by Bill Atkinson of Apple Computer

7.1.2 Hypermedia Navigation

Often, the logical relations that exist between information items in a con-
ceptual model or a presentation-neutral XML implementation are mis-
understood as navigation structures. Although these logic relations form
the basis for navigation structures, they are not identical with them. The
design of navigation structures must not only take logic into account, but
also has to focus on themes such as user friendliness, perception, psy-
chology, different usage patterns, and so on.

The following guidelines apply to almost any hypermedia system:

• Pages must be self-sufficient. They must explain a topic without requir-
ing the user to jump between different pages. This can require a certain
amount of repetition and redundancy between pages, a “no-no” in the
conceptual model.

• Pages must allow the discovery of related pages and navigation to them. This
often requires adding additional information to a page. Take for exam-
ple the relationship between a purchase order and a customer docu-
ment (see also Figure 3.15 in Section 3.2.3). Because the conceptual
model requires only an arrow leading from the purchase order to the
customer document, the reader of the customer page would not notice
the existence of orders made by this customer. So, the customer page
should inform the reader about purchase order pages pointing to this
customer page. It should include hyperlinks that allow the reader to
jump to these pages.

This requires a transformation from a presentation-neutral, struc-
tural content model to a navigational model and finally into a

7.1 Hypermedia

Guidelines

269

presentation format. Later in this section, we will discuss as an exam-
ple WebML, an integrated system that does exactly that. But before we
do this, let’s take a close look at XLink, a W3C recommendation that
allows the specification of hyperlinks in XML presentation formats.

Linking between Documents (XLink)
XLink specifies the syntax and semantics of links between and within
XML documents. Links in XML can be compared to links in HTML that
are specified using the HREF attribute. However, the functionality of
XLink goes far beyond that of HTML (DeRose, Maler, and Orchard 2001).

A typical HTML link could look like the following:

The comic book

XLink had to find another syntax for representing links. There is no
<A> tag in XML—there aren’t any predefined tags. Instead we want to be
able to equip any XML element with link information. This is only pos-
sible if all link information is added in the form of attributes. A simple
link in XLink—which has more or less the functionality of a link in
HTML—looks like this:

<bs:catalogItem
xmlns:bs=”http:www.bookshop.com/books”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=
“http:www.bookshop.com/books/isbn0-8833-9898-4”

>
The comic book

</bs:catalogItem>

After specifying a user domain namespace prefix bs and an XLink name-
space prefix xlink, the actual link information is given: the link type
(always required) is set to “simple”, and with href the location of the
remote resource is specified.

That doesn’t look too different from HTML, and it does the same
thing. Let’s now take a closer look at the ingredients of a link:

• Each link establishes a working relationship between several resources.
In the previous example, we have exactly two resources: the element
that contains the link forms the local resource, and the target URI lo-

Chapter 7 Navigation and Discovery

Simple links

Link ingredients

270

cates a remote resource. Remote resources can be any Web object, in-
cluding non-XML objects such as images, sound files, video clips, and
so on.

If we generalize this concept to n:m relationships, we get links that
lead from n resources to m resources.

• The relation between any two resources can be represented by an arc.
Within a relation each participating resource can take a specific role.
An arc can also be associated with an arcrole, which is useful when
there are several arcs pointing from or to a resource.

• When a link is actuated—usually when the user requests it—the current
focus traverses from a “from” resource to a “to” resource. In a browser,
for example, the new resource usually replaces the current resource in
the browser window. However, it is also possible that the new resource
is shown in a separate window or in another frame.

Let’s look at another HTML example:

Although not a hyperlink, this element represents a link between two
resources: the element as a local resource and the JPEG file as a
remote resource (see Figure 7.1). But there are a few things different from
the previous example. First, the link is actuated not by a user request but
when the containing Web page is loaded. The remote resource (the
image) neither replaces the current window content nor is shown in a
separate window. Instead, it is embedded into the current window con-
tent. Finally, this link is equipped with a title (the ALT attribute), which is
shown as long as the remote resource is not loaded, or when the mouse
hovers over an image.

Using XLink we could express such a behavior as

<bs:coverImage
xmlns:bs=”http:www.bookshop.com/books”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=”cover0-8833-9898-4.JPG”
xlink:actuate=”onLoad”
xlink:show=”embed”
xlink:title=”The comic book”

/>

As we can see, XLink can cover the full linking functionality in HTML
with simple links. Extended links go far beyond this functionality. In par-
ticular, they allow many-to-many links.

7.1 Hypermedia 271

Let’s first give an overview of possible link properties:

type simple, extended, locator, arc, resource, title, none

href Specifies the location of a remote resource via a URL

role The specific role of a resource

arcrole The specific role of an arc

title The link title

show new, replace, embed, other, none

actuate onLoad, onRequest, other, none

label Identifies a resource for link purposes

from Specifies “from” resource via a label

to Specifies “to” resource via a label

The link types locator, arc, resource, title, and none are used for the
further specification of extended links. But how can we apply them?
xlink:type is an attribute, and in XML we aren’t able to define properties
for attributes. The problem is solved with a trick: An element with the
xlink:type=”extended” attribute is said to be an extended link element.
This element is equipped with child elements, which in turn have at-
tributes like xlink:type=”locator” and so on.

<bs:bookAuthorLink
xmlns:bs=”http:www.bookshop.com/books”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>
<bs:bookres
xlink:type=”resource”
xlink:label=”book”
xlink:role=

Chapter 7 Navigation and Discovery

Link properties

Extended links

272

Figure 7.1 A simple link is a unidirectional connection between two
resources.

The comic book

<bs:coverImage>

cover0-8833-9898-4.JPG

“http://www.bookdomain.com/linkprops/books”>
The comic book

</bs:bookres>
<bs:authorloc
xlink:type=”locator”
xlink:href=”http:www.freelist.com/ggoose”
xlink:label=”aut”
xlink:role=

“http://www.bookdomain.com/linkprops/authors”
xlink:title=”Gustave Goose” />

<bs:authorloc
xlink:type=”locator”
xlink:href=”http:www.cartoonworld.com/mpiggy”
xlink:label=”aut”
xlink:role=”http://www.bookdomain.com/authors”
xlink:title=”Miriam Piggy” />

<visitAuthors
xlink:type=”arc”
xlink:from=”book”
xlink:to=”aut”
xlink:title=”Visit the authors’ homepages”
xlink:actuate=”onRequest”
xlink:show=”new” />

</bs:bookAuthorLink>

An extended link is constructed from resource elements, locator ele-
ments, and arc elements. Each arc element constructs a link from a group
of resource elements to a group of locator elements. Groups are identified
by the label attribute of each element: Elements with the same label value
belong to the same group.

Here we have specified one resource type element <bookres>. This ele-
ment acts as a local resource. It belongs to a one-element group named
“book”. Then we have two locator type elements specifying the respec-
tive home page URLs for each author. Both elements belong to the same
group named “auth”. Finally we have one arc type element (see Figure
7.2). This element establishes a link from all elements with label “book”
to all elements with label “aut”. In our case this would result in a 1:2 link
because we have one element with label “book” (the local resource) and
two elements with label “aut”. We could, of course, have modeled these
relationships with two simple links. However, the behavior would be dif-
ferent. In an XLink-aware browser, two simple links would show up as

7.1 Hypermedia

Local resources

273

two separate items. This extended link would show up as a single item in-
stead. If it is actuated, the browser can immediately open two new win-
dows displaying the home pages of each author. Or it could show a con-
text menu containing the menu items “Gustave Goose” and “Miriam
Piggy” and allow the user to select one.

Extended links can contain more than one arc. For example, we could
have added additional locator elements pointing to book reviews and an
additional arc element titled “Read book reviews”:

<bs:reviewloc
xlink:type=”locator”
xlink:href=”http:www.toons.com/reviews/july2000_5”
xlink:label=”rev”
xlink:role=

“http://www.bookdomain.com/linkprops/reviews”
xlink:title=”cartoons.com” />

<bs:reviewloc
xlink:type=”locator”
xlink:href=”http:www.review.org/2000/the_comic_book”
xlink:label=”rev”
xlink:role=

“http://www.bookdomain.com/linkprops/reviews”
xlink:title=”review.org” />

Chapter 7 Navigation and Discovery

Multiple arcs

274

Figure 7.2 The arc element connects the local resource contained in group
book with the two external resources specified in group auth.

Gustave Goose

"http:www.freelist.com/ggoose"

"http:www.cartoonworld.com/mpiggy"

Miriam Piggy

book

auth

arc

local resource

locator

locator

<readReviews
xlink:type=”arc”
xlink:from=”Book”
xlink:to=”rev”
xlink:title=”Read reviews”
xlink:actuate=”onRequest”
xlink:show=”embed” />

This is another 1:2 arc, leading from the <bookres> resource to both
reviews. In this case, we embed the review into the current page but only
when the user requests it.

As a special service to the authors, we could make the reviews available
to the authors’ home pages, too:

<reviewsForAuthors
xlink:type=”arc”
xlink:from=”aut”
xlink:to=”rev”
xlink:title=”Reviews for ‘The Comic Book’”
xlink:actuate=”onRequest”
xlink:show=”new” />

This 2:2 arc, however, creates a problem because now we have defined an
outgoing arc from remote resources (the authors’ home pages). How
should the authors’ home pages know that this link exists? The solution
is to modify the authors’ home pages and to include a pointer to the
document that contains these link definitions. Such a document is called
a link database, or linkbase. A pointer to a linkbase can be expressed
with XLink just as well and is identified by a special xlink:arcrole
specification:

<comicBookLinks>
<res1
xlink:type=”locator”
xlink:label=”r1”
xlink:href=”index.xml”/>

<linkbase
xlink:type=”locator”
xlink:label=”linkbase”
xlink:href=

“http:www.bookshop.com/books/the_comic_book”
/>

7.1 Hypermedia

Linkbases

275

<loadLinks
xlink:type=”arc”
xlink:arcrole=

“http://www.w3.org/1999/xlink/properties/linkbase”
xlink:from=”r1”
xlink:to=”linkbase”
actuate=”onLoad” />

</comicBookLinks>

Such a definition can be enclosed in each author’s home page (which
we have assumed to be named “index.xml”). When the page is loaded,
the link is actuated. In this case the actuation of the link causes the link
definitions defined in the linkbase to be loaded. They can then be evalu-
ated by the browser and presented to the user (see Figure 7.3).

Using linkbases can drastically reduce maintenance efforts for a Web
site, especially when the same link definitions are used in many docu-
ments. To subsequently modify the link structure of a site, it is only nec-

Chapter 7 Navigation and Discovery

Loading
linkbases

276

Figure 7.3 Using a linkbase. The authors’ pages point to the linkbase, which
contains all the necessary link information. This makes this information
available to the authors’ pages.

Gustave Goose

"http:www.review.org/2000/the_comic_book"

Miriam Piggy

rev

auth

arc

review.org

cartoons.com

"http:www.toons.com/reviews/july2000_5"

"http:www.freelist.com/ggoose"

"http:www.cartoonworld.com/mpiggy"

locator

locator

locator

locator

essary to modify the linkbases. The content pages can remain untouched.
The linkbase can be made known to the client by embedding a link
pointing to the linkbase into each document or, even better, by register-
ing the browser with the linkbase.

WebML
Although it is possible to embed hyperlinks into XML documents using
XLink, there are currently very few browsers that can handle this type of
link (Mozilla and Amaya can handle simple links). Instead, the typical
solution is to transform XML documents on the Web server into HTML
(XHTML) or WML, which can contain links that the browser can under-
stand. As an example let’s consider an integrated XML-based architecture
that supports the construction of hypermedia-based Web sites from con-
ceptual design to representation layer.

WebML (Web Modeling Language) was the result of a research effort
under the W3I3 project, funded by the European Community. The proj-
ect was driven by the requirements of two major European Web develop-
ers, the German Otto-Versand, specializing in e-commerce, and the Dutch
PPT (KPN), specializing in Web hosting services.

WebML addresses the high-level, platform-independent specification
of data-intensive Web applications and targets Web sites that require such
advanced features as the one-to-one personalization of content and the
delivery of information on multiple devices, like PCs, PDAs, digital televi-
sions, and WAP phones (Ceri, Fraternali, and Bongio 2000).

The project has also produced a supporting CASE environment called
WebRatio (www.webratio.com), which covers the entire life cycle of Web
applications and follows a model-driven approach to Web design, cen-
tered on the use of WebML. WebML is clearly positioned for the develop-
ment of hypermedia-based Web sites; it is not an appropriate tool to
model collaborative Web applications such as supply chains and other
peer-to-peer applications. It has its roots in classic hypermedia modeling
methods such as HDM (Garzotto, Paolini, and Schwabe 1993) and
OOHDM (Rossi, Schwabe, and Lyardot 1999). What interests us here is
the consistent use of XML from the conceptual model to the finished
Web site, and how the navigational model can be derived from the con-
ceptual model (Ceri, Fraternali, and Bongio 2000):

WebML enables the high-level description of a Web site under distinct or-
thogonal dimensions: its data content (structural model), the pages that com-
pose it (composition model), the topology of links between pages (navigation
model), the layout and graphic requirements for page rendering (presentation
model), and the customization features for one-to-one content delivery (per-
sonalization model).

7.1 Hypermedia

History of WebML

Integrated
environment

277

Structural Model The structural model describes the information items
of the site in terms of entities and relationships. WebML does not intro-
duce new modeling methods, but it can collaborate with existing model-
ing methods such as the classical ERM or UML class diagrams.

The structural model consists of several ENTITY elements.

<ENTITY id=”Product”>
...
</ENTITY>

<ENTITY id=”ServiceProvider”>
...
</ENTITY>

ENTITY elements, in turn, contain ATTRIBUTE elements, COMPONENT ele-
ments, and RELATIONSHIP elements as child elements.

ATTRIBUTE elements describe the name and type of entity attributes.
Types are restricted to String, Text, Number, Integer, Float, Date, Boolean,
Image, URL, and WebMLURL. (When WebML was created, XML Schema
was still far away. WebML therefore uses its own type system.) User-de-
fined enumeration types are also possible by declaring them in separate
DOMAIN elements.

<ATTRIBUTE id=”weight” type=”Float”/>

COMPONENT elements are used to describe complex multivalued types.
They can contain several ATTRIBUTE elements and can specify minimum
and maximum cardinality:

<COMPONENT id=”Price” minCard=”1” maxCard=”N”>
<ATTRIBUTE id=”currency” type=”String”/>
<ATTRIBUTE id=”amount” type=”Float”/>

</COMPONENT>

RELATIONSHIP elements are used to describe the relationships to other
entities. They can specify the target and role of the relationship, mini-
mum and maximum cardinality, and an inverse relationship:

<RELATIONSHIP id=”ProductToServiceProvider”
to=”ServiceProvider”
inverse=”ServiceProviderToProduct”
minCard=”1” maxCard=”1”/>

In addition, WebML introduces an OQL-like query language that al-
lows the specification of derived attributes. Here is an example that com-
putes a derived attribute “shippingCost” from attribute “weight”:

Chapter 7 Navigation and Discovery

Simple
properties

Complex
properties

Query language

278

T
E
A
M
F
L
Y

Team-Fly®

<ATTRIBUTE id=”shippingCost” type=”Float”
value=”Self.weight * 3.50”/>

A special case of deriving an attribute is to import an attribute from an-
other entity:

<ATTRIBUTE id=”ServicePhoneNo” type=”String”
value=”Self.ServiceProviderToProduct.PhoneNo”/>

“Self” identifies the entity to which the <ATTRIBUTE> element belongs.
Here we imported the attribute PhoneNo from a related ServiceProvider.

With a similar syntax is it also possible to derive new relationships
from existing relationships. Derived relationships can be important in
the navigation model for the definition of shortcuts.

Hypertext Model The hypertext model defines one or more hypertexts
that can be published in the site. Each different hypertext defines a site
view, which in turn consists of two submodels. The root element of the
hypertext model is the SITEVIEW element.

Composition Model The composition model specifies which Web pages
belong to a hypertext and which content units belong to a Web page. The
content units are defined on top of the structural model—the designer
specifies how content units relate to the entities defined in the structural
model.

A composition model is represented by the PAGE element, which is a
child of the SITEVIEW element and which identifies a certain region within
a hypertext. For example, a PAGE can be implemented by an HTML frame
or a WML card. PAGE elements can in turn contain other page definitions
or UNIT elements that refer to one of the following unit definitions.

<SITEVIEW ...>
...
<PAGE id=”outerFrame”>
<PAGE id=”leftFrame”>
<UNIT id=”ProductIndex”/>

</PAGE>
<PAGE id=”rightFrame”>
<UNIT id=”shipping”/>

</PAGE>
</PAGE>
...

</SITEVIEW>

7.1 Hypermedia

Derived attributes
and relationships

Content units

279

There are six types of content units: data units, multidata units, index
units, filter units, scroller units, and direct units.

Data units publish the information of a single information item (e.g.,
an instance of an entity or of a component). They can select specific
attributes of the displayed information item:

<DATAUNIT id=”shipping” entity=”Product”>
<INCLUDE attribute=”weight”/>
<INCLUDE attribute=”shippingCost”/>

</DATAUNIT>

Multidata units publish information about a set of information items
(e.g., all the instances of an entity). They can contain several data units:

<MULTIDATAUNIT id=”allProducts” entity=”Product”>
<DATAUNIT id=”productData” entity=”Product”>
<INCLUDEALL/>

</DATAUNIT>
</MULTIDATAUNIT>

Index units show a list of information items. The INDEXUNIT element
contains a DESCRIPTION element that specifies the attribute from which
the index list is composed:

<INDEXUNIT id=”ProductIndex” entity=”Product”>
<DESCRIPTION Key=”name”/>

</INDEXUNIT>

Filter units allow a search value to be entered in order to display only
the matching items. Inside a FILTERUNIT element one or several SEARCH-
ATTRIBUTE elements can be specified. Each defines the name of an
attribute and a predicate such as eq, neq, gt, gteq, lt, lteq, like:

<FILTERUNIT id=”ProductFilter” entity=”Product”/>
</SEARCHATTRIBUTE name=”name” predicate=”like”>

</FILTERUNIT>

Scroller units present commands that allow navigation in a set of infor-
mation items:

<SCROLLERUNIT id=”ProductScroll” entity=”Product”
first=”yes” last=”yes”
previous=”yes” next=”yes”/>

Chapter 7 Navigation and Discovery280

Direct units do not display information but are used to denote a one-to-
one relationship between semantically related information items:

<DIRECTUNIT id=”ToServiceProvider”
relation=”ProductToServiceProvider”/>

Navigation Model The navigation model describes the navigational
structure of a hypertext, that is, how pages and units are linked together.
This is defined by links. Links lead from a source unit to a target unit. This
can happen across pages. All of the previous unit elements may contain
one or both of the following link elements: INFOLINK and HYPERLINK.

When used in a DATAUNIT, the link type INFOLINK carries instance infor-
mation from the source to the target. The information in the target unit
therefore depends on the instance in the source unit. For example:

<DATAUNIT id=”ServiceProviderData”
entity=”ServiceProvider”>

<INCLUDEALL/>
<INFOLINK id=”indexLink” to=”ProductIndex”/>

</DATAUNIT>

<INDEXUNIT id=”ProductIndex” entity=”Product”>
<DESCRIPTION Key=”name”/>

</INDEXUNIT>

This definition would create a link within the ServiceProviderData unit
that leads to the unit ProductIndex. This unit would display only those
products that are related to the ServiceProvider instance shown in the
first unit.

We see that the INFOLINK element exploits the knowledge contained
in the RELATIONSHIP elements in the structural model. But what if we use
INFOLINK in other units?

• For multidata units the context information associated with the data
units nested within the multidata unit determines the content in the
target unit.

• For index units the key value selected from the index list determines the
content in the target unit.

• For filter units the attribute values entered by the user determine the
content in the target unit.

• For scroller units the identifier of the object selected by using the
scrolling commands determines the content in the target unit.

• Direct units are treated similarly to data units.

7.1 Hypermedia 281

HYPERLINK does not carry instance information from the source to the
target. The information in the target unit is therefore independent of the
instance in the source unit.

If we modify the previous example to

<DATAUNIT id=”ServiceProviderData”
entity=”ServiceProvider”>

<INCLUDEALL/>
<HYPERLINK id=”indexLink” to=”ProductIndex”/>

</DATAUNIT>

<INDEXUNIT id=”ProductIndex” entity=”Product”>
<DESCRIPTION Key=”name”/>

</INDEXUNIT>

the difference is that the unit ProductIndex shows all product instances.

Presentation Model The presentation model describes the layout and
graphic appearance (look and feel) of pages by means of an abstract XML
syntax. This description is device independent. WebML pages are ren-
dered according to a style sheet.

Personalization Model The personalization model describes users and
user groups. These are modeled explicitly as predefined entities in the
structural schema. The properties of these entities can be used to store
user or user group preferences and other personalization data. This data
can be used to construct derived attributes of other entities, in the com-
position of content units, and in the definition of the presentation model.

For example, a user entity contains an attribute discountRate. The en-
tity product contains an attribute listPrice. With the help of an OQL-
like expression we could compute a derived attribute effectivePrice for
the entity product from listPrice and discountRate.

In addition to these declarative definitions, the personalization model
allows procedural specifications, too, in the form of business rules that
describe the reaction of the system to user interaction (clicks or text en-
try) and other events.

A business rule is specified as a triple event-condition-action. When
a specified event occurs, the specified condition is tested, and if the con-
dition is found true, the action is performed. Typical actions triggered
by a business rule are the assignment of users to specific user groups
(good customers, bad customers), the notification of users (for example,
in case of price changes), the logging of user actions (for data warehous-
ing), and so on.

Chapter 7 Navigation and Discovery

Look and feel

Users and user
groups

Business rules

282

7.2 TOPIC MAPS

Using hyperlinks that are embedded into documents is not really a good
idea. Everybody who has surfed the Web for more than half an hour has
probably come across the infamous 404 response code: a URL pointed to
a resource that no longer exists in the specified location—probably
because the Web master had the brilliant idea of reorganizing the direc-
tory structure of his Web site. Moving resources to another location
requires that all URLs in all of the Web pages that point to this particular
location must be updated—and by all, we mean worldwide! This usually
doesn’t happen.

One solution to this problem is offered by XLink with linkbases, as dis-
cussed in Section 7.1.2. Linkbases can contain all the links of a set of Web
pages and thus reduce the maintenance efforts to the linkbase. When the
location of a Web page changes, it is only necessary to make modifica-
tions to the linkbase instead of modifying each page individually. With
linkbases it becomes much more likely that hyperlinks are kept in good
shape.

Hyperlinks (and also hyperlinks contained in a linkbase) are links be-
tween physical Web resources. Navigation through such a structure is al-
most always like walking through a town without a roadmap. You can
follow signposts, but only the signposts that are in your viewing range. It
is easy to get lost.

Hypermedia and encyclopedia editors have known this for a long
time. Therefore they supply their users with a variety of navigational ac-
cess structures: table of contents, index, guided tour, history, and so on.
One of these access structures is the semantic map. Semantic maps allow
users to navigate on an abstract level and then to drill down to the actual
resources.

A prominent form of this is the topic map, probably one of the most
important developments in the area of knowledge representation and
navigation in a long time.

7.2.1 A GPS for the Web

Topic maps are an ISO standard (Biezunski, Bryan, and Newcomb 1999).
Charles Goldfarb, the father of SGML, has described topic maps as “GPS
for the Web.” In fact, navigation was one of the prime design issues for
topic maps. Topic maps originated in the SGML community and have
their roots in HyTime. The standard, however, does not rely on a specific

7.2 Topic Maps

Dangling pointers

Separate link
layer

The virtues of
a map

283

implementation language. One implementation of the topic map stan-
dard is XTM 1.0 (XML Topic Maps) (Biezunski and Newcomb 2000, 2001).

Like entity relationship diagrams (see Chapter 3), topic maps consist of
nodes and arcs. The difference, however, is that the nodes are “topics,”
not “entities,” and the arcs are called “associations,” not “relationships.”

There are some similarities. Compare Peter Chen’s statement:

An entity is a “thing”’ which can be distinctly identified.

to Steve Pepper’s statement (Pepper 1999):

A topic, in its most generic sense, can be any “thing” whatsoever—a person,
an entity, a concept, really anything—regardless of whether it exists or has
any other specific characteristics, about which anything whatsoever may be
asserted by any means whatsoever.

You cannot get much better than that. However, the similarity of these
descriptions could be misleading. A topic is not equivalent to an entity.
Despite the claim that topics are “things,” they actually are not. They are
rather themes around which “things” are grouped. ISO specification
13250 defines the structure of a topic map as

• groupings of addressable information resources around topics (occur-
rences), and

• relationships between topics (associations).

In this sense, a topic can be better compared to an entity set in Chen’s
model, but in a less typed way. Topics are abstract notions such as “20th
century history,” “Marilyn Monroe movies,” “Otto Preminger movies,”
and so on.

Associations can relate topics to each other; for example, “20th cen-
tury history” includes “Marilyn Monroe movies.” Unlike the relation-
ships in ERM, associations are always bidirectional; that is, our “includes”
association can be read backward as “is included by.”

What is important here is that associations are established not between
the information resources but between the abstract topics. The semantic
network consists only of topics and associations and can be formulated
independently from the underlying base of information resources. In
fact, it is possible to project a topic map onto different sets of information
resources.

Let us look at an example (see Figures 7.4 and 7.5). The same topic
map is applied onto two different sets of information resources. In Figure
7.4, the map imposes a structure onto a pool of AVI files, while in Figure
7.5, the information resources consist of HTML files. A topic map can be

Chapter 7 Navigation and Discovery

Nodes and arcs

Topic map
defined

One map, two
resource pools

284

imposed on such an information pool without even touching the infor-
mation resources. The links between topics and information resources are
all defined in the topic map.

This also allows us to impose different topic maps onto the same infor-
mation pool (see Figure 7.6).

These links can, as we see in Figures 7.4 and 7.5, establish a connec-
tion between two topics. Although there is no direct association between

7.2 Topic Maps

Two maps, one
resource pool

285

Figure 7.4 Topic map for an online video library.

20th Century History

Monkey Business.avi

River of No Return.avi

includesinc
lud

es

Otto Preminger Movies

Exodus.avi

Niagara.avi

Laura.avi Some Like It Hot.avi

Marilyn Monroe Movies

“Marilyn Monroe movies” and “Otto Preminger movies,” a connection
exists because both topics share the same information resource (River of
No Return.avi in Figure 7.4, and River of No Return.html in Figure 7.5).

Specification 13250 states:

Two topics may be connected through an association, and they can also be
connected by virtue of sharing an occurrence.

Chapter 7 Navigation and Discovery286

Figure 7.5 The topic map of Figure 7.4 applied to an encyclopedia.

20th Century History

Monkey Business.html

River of No Return.html

includesinc
lud

es

Otto Preminger Movies

Exodus.html

Niagara.html

Laura.html Some Like It Hot.html

Marilyn Monroe Movies

However, a topic map should not rely on occurrence sharing. Concepts
should be “spelled out” by means of associations, not by occurrence shar-
ing. Otherwise, important aspects of a concept could get lost when a
topic map is applied to a different information pool.

In our example, the connection between Otto Preminger and Marilyn
Monroe obviously relies on the presence of an information resource
about River of No Return. This anomaly is due to a poor design of the se-
mantic Web. A better approach would be to model each movie as a sepa-
rate topic, independent of information resources. This would result in a
proper topic map describing the movie world (see Figure 7.7). This topic
map is completely independent of the underlying information resources.

7.2 Topic Maps

Occurrence
sharing

287

Figure 7.6 Alternative topic map for the encyclopedia.

Comedy

Suspense

Western

Exodus.html

Laura.html

Monkey Business.html

River of No Return.html

Some Like It Hot.html

Niagara.html

It describes the concepts completely, but it can be easily mapped onto dif-
ferent information pools.

Topics in Detail
The concept of topics is closely related to the concept of a subject. XTM
1.0 defines the term subject as

. . . the organizing principle of a topic.

Chapter 7 Navigation and Discovery

Subject defined

288

Figure 7.7 The complete semantic network.

di
re

ct
ed

di
re

ct
ed

di
re

ct
ed

directed

pl
ay

ed
_in

played_in

played_in played_in

20th Century History

includesinc
lud

es

Otto Preminger Movies Marilyn Monroe Movies

River of No Return

Monkey Business

Some Like It HotLaura

Niagara

ExodusT
E
A
M
F
L
Y

Team-Fly®

It also makes the following distinction between a subject and a topic:

A topic aggregates information which shares the characteristic of being about
a given subject. In other words, the subject is the ineffable thing which is at
the heart of a topic.

Steve Pepper (2000) puts it a bit more philosophically:

We might think of a “subject” as corresponding to what Plato called an idea.
A topic, on the other hand, is like the shadow that the idea casts on the wall
of Plato’s cave: It is an object within a topic map that represents a subject.

Any topic represents a subject, and a subject is represented by exactly
one topic. Nevertheless, there is a possibility that more than one topic
definition represents the same subject, for example, when the same sub-
ject is represented in different topic maps or in different sections of the
same topic map. Let us return to Plato’s cave: an idea can have multiple
shadows if there are multiple light sources.

Therefore there must be a way to establish the identity of topic defini-
tions that represent the same subject. There are two ways to do this:

• Topics are identical if they have the same baseName (see below) and the
same scope.

• Topics are identical if they refer to the same published subject indicator
(PSI). This allows us to establish the identity of subjects across topic
maps, and even across Web sites. A published subject indicator repre-
sents each published subject with a unique URI. (A similar technique
to obtain globally unique identifiers is used for XML namespaces.)

Let’s now look at XTM topics in detail. Within the XTM 1.0 DTD, a
topic is defined by

<!ELEMENT topic
(instanceOf*,subjectIdentity?,(baseName|occurrence)*)>

The first element instanceOf classifies the topic. A topic can belong to
one or multiple topic classes. Topic classes define a type for each topic. A
topic class itself can be defined as another topic (so it is possible to link
information resources to it and to include it in associations). Also pub-
lished subject indicators can act as topic classes. This is especially true
when no instanceOf definition is supplied. In this case the topic type
defaults to a predefined top-level published subject indicator “topic”:

(http://www.topicmaps.org/xtm/1.0/#psi-topic)

In our example, all movie topics such as “River of No Return”, “Some
Like It Hot”, and so on could be instances of a parent topic “movie”.

7.2 Topic Maps

Topic identity

Topic element

289

The second (optional) element subjectIdentity defines a unique sub-
ject identity point for the topic and thus establishes the topic’s subject
identity. subjectIdentity is either (1) a reference to an information
resource, (2) a reference to a published subject indicator (see above), or
(3) a reference to another topic. In the first case, the specified resource is
the subject of the topic. In the second case, the specified PSI identifies the
subject. In the third case, the identity is inherited from the topic pointed
at, and both topics will merge.

This last technique allows the introduction of short names for the
lengthy PSIs:

<topic id=”ronr”>
<subjectIdentity>

<subjectIndicatorRef xlink:href=
“http://www.cine.org/
preminger/river_of_no_return”/>

</subjectIdentity>
</topic>

With this definition in place it is now sufficient to refer to topic “ronr”
whenever we want to refer to the subject with identity “http://www.cine
.org/preminger/river_of_no_return”.

The element baseName defines a name for the topic in natural language.
A topic may have none, one, or several baseNames. Base names can be
constrained by a scope element that declares the base name valid only
within a specified context such as a specific language, geographical area,
or historical period. (Topics with the same base name and the same scope
will merge.)

For each baseName it is possible to define an arbitrary number of variant
elements (e.g., for display or for sort purposes). The definition of variants
is recursive, so you can have variants of variants, and so on.

Finally the occurrence elements define all the occurrences to informa-
tion resources. Occurrences can also have a scope defining the context in
which they are valid. Occurrences can have a type (only one) that is
defined through their instanceOf child element. This type definition de-
fines the role of the occurrence. (If no instanceOf type definition is sup-
plied, the type of the occurrence defaults to a predefined top-level PSI
“occurrence”.)

Occurrences can also possess (only one) baseName. Processors can use
this base name to display a label for a link to a resource. The linked infor-
mation resource is usually given in the form of an xlink: reference, but it
can also be supplied in the form of literal data.

Chapter 7 Navigation and Discovery290

Let’s now look at an example of a topic definition:

<topic id=”River_of_no_Return”>
<instanceOf><topicRef link:href=”#movie”/></instanceOf>
<subjectIdentity>
<topicRef xlink:href=”ronr”/>

</subjectIdentity>
<baseName>
<baseNameString>

River of No Return
</baseNameString>

</baseName>
<occurrence>
<instanceOf>

<topicRef xlink:href=”#video-avi-format”/>
</instanceOf>
<resourceRef xlink:href=

“ftp://www.movielib.com/western/preminger/no_return.avi”/>
</occurrence>
<occurrence>
<instanceOf>

<topicRef xlink:href=”#html-online-description”/>
</instanceOf>
<resourceRef xlink:href=

“ftp://www.clops.com/preminger-no_return.html”/>
</occurrence>

</topic>

In this example we have defined two occurrences for the topic “River of
No Return” with different roles “video-avi-format” and “html-online-
description”, mapping the topic into both information pools. Both roles
“video-avi-format” and “html-online-description” would be defined as
topics, too. This would allow us to link information resources to each
role, for example, describing how to use these particular data formats.

Associations
Associations are defined as

<!ELEMENT association (instanceOf?, scope?, member+)>

The first element instanceOf again specifies a class (or type) to which the
associations belong. This means that associations can also be typed. Asso-
ciation classes are either topics themselves or published subject indicators.

7.2 Topic Maps

Association
elements

291

Associations can be constrained by a scope element that declares the
association valid only within a specified context such as a specific do-
main, version language, geographical area, or historical period. Scopes are
defined as references to another topic, to an information resource, or to a
published subject indicator.

Finally, member elements define the items that participate in the associ-
ation. That can be topics, information resources, or published subject in-
dicators. Each member definition can comprise a role specification, that is,
a reference to another topic or published subject indicator representing
the role. Also possible are n-ary associations, with n > 2.

Merging Maps
The concept of topic identity allows the merging of topic maps. This is an
important aspect because it allows separate work groups to develop sepa-
rate topic maps and then to merge them. Also, in the case of company
mergers or when establishing a virtual company, it will be necessary to
merge semantic networks, for example, to merge thesauri for product
descriptions and so on.

Also possible is the modular development of topic maps and the reuse
of such modules. In Figure 7.8 we have modularized our example topic
map by slicing it into two layers. The top layer defines the semantic net-
work, while the lower layers do only the mapping of the topics to their
respective information resources.

The merging of topic maps is accomplished through the mergeMap
element:

<!ELEMENT mergeMap
(topicRef|resourceRef|subjectIndicatorRef)* >

<!ATTLIST mergeMap
id ID #IMPLIED
xlink:type NMTOKEN #FIXED ‘simple’
xlink:href CDATA #REQUIRED >

The xlink:href attribute of mergeMap points to the topic map to be
merged into the current map. The mergeMap element can be used recur-
sively; that is, a map that is merged in via a mergeMap element can contain
mergeMap elements itself.

The mergeMap element can contain a child element defining one or
more scopes for the map merged in. These scopes are defined as refer-
ences either to another topic, to an information resource, or to a pub-
lished subject indicator.

Chapter 7 Navigation and Discovery

Modular maps

292

7.2 Topic Maps 293

Figure 7.8 Using the merge facility of topic maps to abstract the semantic network from
concrete resources. (a) This topic map defines only a semantic network. It can be applied to
an information pool by merging it with one of the other topic maps. (b) This topic map maps
only the topics from the semantic network to our video library. (c) This one does the same for
the encyclopedia.

di
re

ct
ed

di
re

ct
ed

di
re

ct
ed

directed

pl
ay

ed
_in

played_in

played_in played_in

20th Century History

includesinc
lud

es

Otto Preminger Movies Marilyn Monroe Movies

River of No Return

Monkey Business

Some Like It HotLaura

Niagara

Exodus

Exodus.avi

Laura.avi Some Like It Hot.avi

Monkey Business.avi

Niagara.avi

River of No Return.avi

Laura

Exodus

River of No Return

Niagara

Monkey Business

Some Like It Hot

Exodus.html

Laura.html Some Like It Hot.html

Monkey Business.html

Niagara.html

River of No Return.html

Laura

Exodus

River of No Return

Niagara

Monkey Business

Some Like It Hot

(a)

(b) (c)

Attaching Properties to Resources
ISO specification 13250 defines for topic maps the concept of facets. A
facet is a property that can be attached to an information resource from
the outside, without modifying the information resource itself. This is
similar to RDF’s capability to make statements about resources without
modifying the resource. However, facets have been dropped from the
XTM specification. In XTM an information resource is also a topic by
default. It is relatively easy to attach a property to a resource, so there is
no need for an extra mechanism.

In the next example we do exactly this. We define a topic that has as
subject the resource

“ftp://www.movielib.com/western/preminger/no_return.avi”.

Using an occurrence element, we attach a name/value (baseName/
resourceData) pair saying that the movie will be screened soon:

<topic
id=”ftp://www.movielib.com/western/preminger/no_return.avi”>
<subjectIdentity>
<resourceRef xlink:href=
“ftp://www.movielib.com/western/preminger/no_return.avi”/>

</subjectIdentity>
<occurrence>

<baseName>
<baseNameString>Availability</baseNameString>

</baseName>
<resourceData>

To be screened soon
</resourceData>

</occurrence>
</topic>

Applications
Topic maps are ideally suited for structuring complex knowledge bases
and thesauri. They enable semantically driven navigation between infor-
mation items, semantically driven automatic layout of Web and help
pages, and so on.

7.2.2 Another Philosophical Excursus

As we have seen, topic maps make a clear distinction between informa-
tion resources and topics. While the information resources represent the

Chapter 7 Navigation and Discovery

Annotating
resources

294

entities in an information system, the topics refer to subjects that exist
independently of a particular information system. The concept of sub-
jects has its foundation in the theory of substance, formulated over 2,000
years ago by Aristotle.

Substances exist on their own, they keep their identity throughout
their life span and their life span is continuous through time, they are
“one” (i.e., they do not consist of other substances and cannot belong to
another substance), they have a complete and determinate boundary,
and they take up space and are spatially connected (Smith 1998).

Substances can be classified. Classification introduces higher-level sub-
stances—second-order substances—such as apple, computer, desk, and so
on. These are abstract notions referring to real instances: a particular ap-
ple, computer, desk, and so on (Partridge 2000).

Substances have attributes, but attributes are never substances. A cat
may have a smile, but (if we forget Lewis Carroll for a moment) there
isn’t a smile without a cat. For a first-order substance, attributes are con-
crete. For example, my computer screen has a screen size of 17 inches, no
more, no less. For a second-order substance such as “computer screen,”
the value “screen size” may be undefined; it may, however, be con-
strained to a certain value domain, say 15 to 22 inches. For other second-
order substances, such as “17-inch computer screen,” the value may be
well defined.

Attributes such as “screen size” can apply to various substances, for ex-
ample, to computer screens, television screens, projector screens, and so
on. This encourages us to classify attributes independently from the sub-
stances hierarchy. Thus we arrive at second-order attributes, such as “color,”
“size,” “weight,” “complexity,” “price,” and so on. These second-order
attributes are not concrete (although their values may be constrained to a
certain domain), nor do they belong to a particular first- or second-order
substance.

Substances can be related. In the substance-attribute model, relation-
ships can be assigned to substances as attributes. However, this poses a
problem. Most relationships are bidirectional; for instance, the relation-
ship “Lewis Carroll wrote Alice in Wonderland” implies the reverse rela-
tionship “Alice in Wonderland was written by Lewis Carroll.” Aristotle was
well aware of this problem:

All relatives have their correlatives. “Slave” means the slave of a master, and
“master” in turn implies slave. “Double” means double of its half, just as
“half” means half of its double. By “greater,” again, we mean greater than this
or that thing which is less, by “less” less than that which is greater. So it is
with all relative terms.

7.2 Topic Maps

Aristotle again

Classification

Attributes

Relationships

295

This concept of correlatives, however, introduces redundancies be-
cause a relation between two substances is here described twice—once for
each substance. For many-to-many relationships, things get completely
out of hand.

As we saw earlier, topic maps take a different approach. Relations (or
“associations” as relations are called in the context of topic maps) are de-
fined as separate items, not as properties. Associations are always bidirec-
tional, so topic maps do not introduce the previously mentioned redun-
dancy. This is quite in contrast to RDF.

7.2.3 Topic Maps versus RDF

Both topic maps and RDF are designed to model semantic networks. Both
use the same paradigm to do this: graphs consisting of nodes and arcs. In
the definition of ontologies, both fall short by not offering language ele-
ments for the definition of constraints.

What now are the differences between topic maps and RDF? As the
name says, the main organizing principle for topic maps is topics. It is
possible to define complete topic maps without even talking about re-
sources. If resources are present, topic maps construct links from known
semantics to resources. In contrast, for RDF the main organizing principle
is resources. RDF constructs pointers from existing resources to known se-
mantics. Semantic networks are constructed on the basis of existing re-
sources. We could say that topic maps work top down, while RDF works
bottom up.

Also, a topic map intentionally defines a whole semantic network. In
practice, a semantic network, however, could be defined by several topic
maps and the resulting semantic network obtained by merging them. In
contrast, an RDF description intentionally makes statements about a sin-
gle resource. The semantic network is formed by the RDF statements de-
fined in a given domain. Ultimately the whole Internet becomes one se-
mantic web.

Topic maps therefore lend themselves better to a client-server environ-
ment. Typically topic maps are found in knowledge servers and content
management systems, and they are used to structure a clearly bounded
information base. RDF is designed to support open environments. It can
support navigational systems (e.g., search engines, agents, etc.) and is
posed to convert the Web into a huge knowledge base.

The “closed system” approach of topic maps has advantages and dis-
advantages. It can be expected that the definition of a topic map is more
consistent than a collection of RDF statements that are possibly made by

Chapter 7 Navigation and Discovery

Similarities

Differences

296

different people, at different times, in different places. On the other
hand, a topic map can quickly become outdated and needs constant
maintenance by its author. This is beautifully shown by an example topic
map published on the Internet: the map lists all free XML tools on the
Web. By the time this topic map was published, it was probably already
out-of-date. With RDF the definition of a semantic network would be in-
cremental. Every time a new XML tool is published, corresponding RDF
statements can be published as well.

RDF is a low-level language. Modeling a knowledge base in RDF can re-
sult in a huge and unwieldy collection of RDF statements. In contrast,
topic maps provide a much more structured approach to the task of
knowledge modeling: topic maps are more problem oriented.

RDF allows second-order constructs by reifying RDF statements into
RDF resources. Topic maps do not provide such a possibility; associa-
tions cannot be treated as topics (i.e., it is not possible to define associa-
tions about associations). This restricts the expressiveness of topic maps
somewhat.

7.3 DIRECTORY SERVICES (UDDI)

Directory services are to computers what the Yellow or White Pages are to
humans. They contain the addresses of people, organizations, and other
resources. Service providers that have a service to offer can publish their
service in a directory. Clients that require a certain service can search a
directory for that service.

The Universal Description, Discovery, and Integration (UDDI) specifi-
cations define a way to publish and discover information about Web ser-
vices (UDDI 2000). UDDI is a joint initiative of Ariba, IBM, and Microsoft.
The companies involved in the definition of the standard are committed
to providing free directory services based on UDDI to the public.

The information stored in a UDDI registry consists of three
components:

• White Pages contain the addresses, contact information, and identifiers
of businesses and services.

• Yellow Pages categorize services along industrial categorizations based
on standard taxonomies.

• Green Pages contain technical information about the advertised ser-
vices, including references to further documentation and discovery
mechanisms.

7.3 Directory Services (UDDI) 297

UDDI is designed for the discovery of technical features of a service or
of a business. It is not designed for discovery queries such as “Give me the
supplier of toothbrushes with the lowest price,” or “Find the brass factory
closest to New Orleans.” Such queries can be answered by services such as
marketplaces or business portals; these services rely on UDDI to locate
only the Web services that are technically fit to satisfy the request.

Here is a simple UDDI request searching for a business name:

<?xml version=”1.0” encoding=”UTF-8”?>
<Envelope xmlns=”http://schemas.xmlsoap.org/soap/envelope/”>
<Body>
<find_business generic=”1.0” xmlns=”urn:uddi-org:api”>
<name>Microsoft</name>

</find_business>
</Body>

</Envelope>

UDDI requests (in bold) must be wrapped into a SOAP envelope; the pre-
scribed encoding is UTF-8.

A UDDI query like this one would be answered with a list of businesses
and services that match the specified business name (Lovett 2000):

<businessList generic=”1.0” operator=”Microsoft Corporation”
truncated=”false” xmlns=”urn:uddi-org:api”>

<businessInfos>
<businessInfo

businessKey=”0076B468-EB27-42E5-AC09-9955CFF462A3”>
<name>Microsoft Corporation</name>
<description xml:lang=”en”>
...
</description>
<serviceInfos>
<serviceInfo

businessKey=”0076B468-EB27-42E5-AC09-9955CFF462A3”
serviceKey=”1FFE1F71-2AF3-45FB-B788-09AF7FF151A4”>
<name>Web services for smart searching</name>

</serviceInfo>
...

</serviceInfos>
</businessInfo>
...

</businessInfos>
</businessList>

Chapter 7 Navigation and Discovery298

T
E
A
M
F
L
Y

Team-Fly®

As you can see businesses and services are identified via businessKey
and serviceKey attributes whose values are given as UUIDs (universally
unique identifiers). Further queries may use these identifiers to drill down
in the information structure and get details about the services, for exam-
ple. This type of identification used in UDDI should be well known to
COM and DCE programmers. The initiators of UDDI probably chose this
form of identification because this way it is easier to leverage existing
naming service and registry implementations for UDDI. UUIDs are glob-
ally unique and have some advantages over domain-name-based identi-
fiers. They can be easily computed without the help of a central registry
instance, and they don’t depend on a physical location. However, to the
human eye, they appear inscrutable.

Information in a UDDI registry is stored in XML format. It contains
much more information than businessInfos and ServiceInfos (Boubez et
al. 2000).

There are four main groups:

• Business information: The top-level element to store information about
a business is the BusinessEntity element. It contains details such as
the business name, business identifier, address, contact information,
and optional elements for categorization.

• Service information: The business information for services is contained
in the BusinessService elements, which are child elements of the
BusinessEntity element. These elements contain the service name,
identifier, and optional elements for categorization.

• Binding information: Technical data such as the address of the service
(e.g., a URL) or routing options is contained in the bindingTemplate el-
ement, a child element of the BusinessService element. This element
also contains pointers to technical specifications.

• Interface information: A client process that wants to use a service not
only needs the address of the service, but also has to know how to in-
terface with the service. This interface is described in a tModel element.
A bindingTemplate (see above) can reference a tModel. A tModel de-
scribes a specification. It contains the name, the publishing organiza-
tion, identifiers and optional elements for categorization, and a URL
pointer to the actual specification. Such a specification would describe
the wire protocol, the interchange format, and interchange sequencing
rules. Examples for such specifications are found in standards such as
RosettaNet, ebXML, or the various EDI standards.

A tModel thus acts as a kind of fingerprint for an interface speci-
fication. Companies that agree on a tModel can be sure that their

7.3 Directory Services (UDDI)

UUIDs

UDDI registry

299

exchange formats are compatible without having to look deeper into
the interface specification.

Both BusinessEntity and tModel elements can contain additional
identifiers. Typical identifiers for businesses include Dun & Bradstreet
D-U-N-S numbers, tax identifiers, or any other kind of organizational
identifiers. The purpose of these identifiers is to allow others to find pub-
lished information through these more formal identifiers.

As we have seen, BusinessEntity elements, BusinessService elements,
and tModel elements may contain information for categorization. Cate-
gorization associates these elements with industry codes, product or ser-
vice categories, or regional classification. Categories can be chosen from
defined taxonomies. This category information can be used for searches
in the Yellow or Green Pages.

Three taxonomies are predefined in UDDI operator registry sites: the
North American Industry Classification System (NAICS), the Universal
Standard Products and Services Classification (UNSPSC), and a geo-
graphic taxonomy.

Both category taxonomies and identification systems can be repre-
sented by tModels, too. tModel references can therefore be used for cate-
gorization and identification purposes. Operator registry sites provide a
number of useful tModels, including U.S. tax codes, NAICS, UNSPSC, and
a geographic taxonomy.

7.4 PEER-TO-PEER ARCHITECTURES

Peer-to-peer (P2P) architectures have recently received a lot of publicity,
especially in the Napster controversy. Napster offered its users a directory
service for MP3 song titles. Users interested in a song would source it with
the help of this directory. The directory would point them to another
user who owns a copy (but not the copyright) of the song. He or she
could then download the song directly from the computer of this user,
provided this user was online. Although the exchange of the MP3 files
worked on a P2P basis—from user to user—finding the location of a file
relied on the central Napster directory. This was where Napster was vul-
nerable, and the music industry won a court case against Napster forcing
them to remove millions of titles from the directory.

While this technology is not really new in electronic business—finding
a service in a directory and then using it is a well-known technique in
component-based architectures such as CORBA—things become more in-
teresting when we look at Napster’s competitors. Gnutella and others are

Chapter 7 Navigation and Discovery

Business
identifiers

Business
categories

Taxonomies

Napster

Gnutella

300

not as vulnerable as Napster was: they don’t use a central directory. Here’s
how they do it.

After installing the software, you must find a Gnutella site that is al-
ready operating. That may be a friend or some advertised site. In the fu-
ture you will only communicate with this partner site (or, if you selected
several sites, with these sites). If you are searching for a file, your Gnutella
client will issue a request to your direct partners. Either they will be able
to satisfy your request, or they will forward the request to all the sites
they are connected with. And so on. Once a file is found, its address is
passed back from site to site—like the famous bucket—until you get it.
You can then download it from its original location. To avoid a request
circling around, each request has a unique identifier, and each node on
the way keeps a log of the requests it has already forwarded. This enables
these nodes to prune out circling requests.

This all works well in a small community. But if the population of the
network goes into the millions, your request is replicated a million times.
It will even be replicated in some areas of the network after you have al-
ready received the file you wanted! And this is the effect of a single query.
If a million users issue queries at the same time, the consequences are ob-
vious: the network goes down. Gnutella solves this by introducing an ag-
ing process for queries. A query dies after it has been replicated a specified
number of times. This restricts network traffic to tolerable amounts but
limits the horizon of a query, so a file might not be found even if it exists
somewhere in the network.

Some of these performance issues are addressed by a new develop-
ment, Freenet. The objectives of Freenet are, however, different. Its goals
are to guarantee freedom of speech, not freedom of copyright infringe-
ment. It does so by anonymizing and replicating files, making it impos-
sible to destroy a file or to track its origin.

Freenet answers the request for a file not with the address of the re-
quested file but with the file itself. This means that the file travels all the
way down from the place where it was found until it reaches the re-
quester. A copy of the file is kept resident on each node it passes. (Nodes
may, however, decide not to store a copy.) After some time it will expire if
it was not requested again. Each node acts as a cache. The effect is that
popular files are kept almost anywhere, so requests don’t have to travel
far to find such a file. A side effect is that sites that produce popular ma-
terial don’t have to buy into expensive server equipment. The delivery
process is “outsourced.”

In addition, Freenet uses another search strategy. When a client re-
ceives a request it cannot satisfy, it will not forward the request to all

7.4 Peer-to-Peer Architectures

Freenet

301

connected clients but will forward it to a single peer only. If the response
of that peer is negative, it will continue with the next peer. (It will start
with the peer that had the most hits in the past.) This depth-first strategy
avoids the unnecessary query replication of Gnutella. Freenet, therefore,
scales much better, but it has some problems of its own. Currently,
Freenet does not support free text searches. Even if it would, users
couldn’t be sure that the version they have found is the most recent ver-
sion. It may be an outdated copy residing somewhere between requester
and submitter. Document authors are therefore well advised to include a
pointer to the most recent version of the document in the document it-
self (a standard practice, for example, in W3C documents). But then—
wouldn’t one goal of Freenet get lost: anonymity?

Apart from those teething problems, these early P2P implementations
may perhaps indicate the future direction of the Web. More recent imple-
mentations are file-sharing programs such as Morpheus. Microsoft is ac-
tively researching a serverless symbiotic distributed file system under the
code name FarSite based on peer-to-peer technology.

So, central directories could become almost extinct, as did the
operator-controlled telephone exchange. White and Yellow Pages? Well,
some of the largest cities in the world have done without them for
decades. P2P fits well into the nonplanned settlement of the Internet.

Chapter 7 Navigation and Discovery302

303

8Presentation Formats

Up to this point, we have discussed XML as a represen-

tation format for managing and interchanging struc-

tured data. We have said nothing so far about how we are

able to view XML-based data on typical front-end devices.

In this chapter we will give an overview of several formats

for presenting XML data, with a focus on Web and multi-

media applications. First, we will discuss the attributes of data

formats that serve representational and presentational pur-

poses. We will base our discussion on results from multimedia

research.

Dealing with several formats is of interest to multipurpose

Web publishing—providing Web publishers with a means

to present content on a range of client systems, such as

browsers, mobile devices like PDAs, and even phones. The

8.1 Presentation and
Representation

8.2 Viewing XML Data
on the Web

8.3 User Interaction
with XForms

8.4 Exchanging
Information through
WAP Devices

8.5 Graphical and
Multimedia
Presentation with
XML

8.6 Document-Based
Type Setting

current standardization effort will help to provide this ability. Challenges to be
solved include device independence, reusability of content, and encodings
that meet the limitations presented by network transfer capabilities. The W3C
has made important recommendations—and more are expected—about sev-
eral formats, including HTML, XML, and CSS. All of them will be considered
in this chapter.

8.1 PRESENTATION AND REPRESENTATION

When dealing with arbitrary data in today’s information systems, there
are five tasks that must be supported by computer systems:

• The creation or definition of data

• The processing or manipulation of data

• The storage of that data

• The exchange of data

• The presentation of data to end users

Although each of these tasks may need a particular data format, we may
reduce our discussion to exactly two classes of data formats: presentation
and representation formats.

Data formats encompass both content and descriptive data. Content is
the information that a user wants to have processed by a computer sys-
tem; descriptive data defines the context that is necessary for the com-
puter system to deal with that data appropriately. Since we have identi-
fied five tasks to be supported by computer systems, we may find that
descriptive data or metadata differs from task to task. Therefore several
formats are necessary to hold that particular metadata.

8.1.1 Results from Multimedia Research

That this book deals with multimedia is not very surprising. First, there is
a requirement to enrich Web applications with more sophisticated media
than just text. Later in this chapter, we will present XML-related solutions
to multimedia (re)presentation techniques. Second, some fundamental
considerations for multimedia also apply in the XML field. Although our
discussion may appear somewhat academic, the properties to be identi-
fied may be helpful in evaluating XML developments. So we decided to
give a little room to this topic.

Chapter 8 Presentation Formats

Information
system tasks

Data formats

XML and
multimedia

304

What Is Multimedia?
In the early 1990s, multimedia was the buzzword for application systems
and user interface design. Multimedia is the computer-based combination
of different media elements (e.g., text, graphics, video, and music). Text
and graphics are visual. Music is auditory. Video is a combination of both
visual and auditory elements.

Another way to categorize different media is their appearance over
time. Text and graphics don’t change; video and music do. The former are
static or time independent; the latter are dynamic or time dependent. A multi-
media show can encompass both static and dynamic media elements.

Another aspect of multimedia is that some means are required to de-
scribe the presentation and to specify the representation of media and ap-
plications. Presentation deals with the problem of how to present a show
to the viewer (eventually independent of the client platform). Represen-
tation deals with management and storage problems (on the server side,
if we are speaking about distributed multimedia services realized through
a client-server architecture). A lot of research has attempted to answer
these different questions.

From Multimedia to the Web
Two areas may be identified in multimedia research: stand-alone ap-
plications (e.g., on terminal systems or on CD-ROMs) and applications in
distributed environments (usually on two- or three-tier client-server
architectures).

A multimedia show must be defined in an appropriate format (i.e., a
scripting language format or an output format produced by an authoring
tool). This format will describe the spatial and temporal relationships be-
tween the media objects incorporated into the multimedia show. For the
purpose of reuse, we can store the media objects separately from the de-
scription of the show, and eventually on different nodes in the distrib-
uted environment (for example, each node could be dedicated to store
one type of media object). Video servers and image databases are exam-
ples of such nodes as part of a computer network.

As stated earlier, multimedia, in a narrow sense, is the combination of
several media types in a computer-based application, which usually is or-
ganized into documents. Hypertext is characterized by the ability to nav-
igate inside and between documents, as long as the application just deals
with text. Gopher, a predecessor of the Web, is a hypertext-based system.
Integrating both hypertext and multimedia gives us hypermedia.

Hypermedia systems or applications encompass media elements of sev-
eral different types and provide the end user with navigational function-

8.1 Presentation and Representation

Definition of
multimedia

Media types

Multimedia
shows

Hypertext

Hypermedia

305

ality. Navigation is typically realized by adding links to be followed from
one informational chunk to the next, often located in different docu-
ments (see Figure 8.1). In what follows, we will not differentiate between
multimedia and hypermedia.

Web-based applications are characterized by the features that we just
outlined (i.e., media integration and navigation as one form of user inter-
action). Although early applications were based on HTML, and therefore
limited to text and graphics, authors today have access to more advanced
technologies and features. These may have been developed to fulfill the
requirements of specific applications, such as mobile business, or they
may rely on general-purpose specifications.

In Web-based applications, we face three problem layers:

• Appropriate representation of arbitrary elementary and aggregated
content

• Its presentation to end users on a variety of devices (user agents)
• A model of how to flexibly access Web resources, implemented through

a navigational layer

As we stated earlier, we will focus on presentational and representational
aspects in this chapter.

Chapter 8 Presentation Formats

Web-based
applications

Problem layers

306

Figure 8.1 Media integration and navigation in hypermedia presentations.

Text

Image
Sound

Video

Text

Anchor

Node Link

8.1.2 Dimensions of Multimedia Composition

Multimedia applications are composed of media elements that consume
either space or time or both when presented to the user. Therefore a
multimedia programmer has to deal with both spatial and temporal com-
position. For example, media elements must be positioned on the screen,
in a window, or on a stage, when using the Macromedia Director author-
ing tool. The programmer must also deal with interaction elements and
the actions associated with them.

Spatial Composition
The spatial composition of visual media objects is essential to the appear-
ance of the multimedia show. Positioning occurs in three spatial di-
mensions. Although a computer screen is two-dimensional, the third
dimension becomes obvious when one media object overlays another.
That way the screen is given virtual depth.

Take Figure 8.2 as a simple example. Two visual objects may each be
positioned relative to the origin, which is the upper-left corner of the
screen. This is called absolute positioning. Alternatively we may set objects
into a spatial relation, just as the rectangle has been positioned relative
to the center point of the circle in Figure 8.2(b). This procedure is called
relative positioning.

The positions of the objects in absolute positioning are given by the
coordinates (x, y). In relative positioning, we use the difference of the co-
ordinates, for example, (x – 3, y + 1).

8.1 Presentation and Representation

Virtual depth

307

Figure 8.2 Positioning of spatial data objects in multimedia shows:
(a) absolute positioning; (b) relative positioning.

(0,0) (0,0)

(1,3) (1,3)

(4,2) (4,2)

(a) (b)

Interaction
The presentational flow may be influenced by user interaction. For that
purpose visual interaction elements are defined and integrated into the
multimedia presentation. Using an interaction object will result in the
performance of an action associated with that interaction object. In
multimedia research, interaction falls into one of the following categories:

• Scaling actions change the appearance of a presentation (e.g., the size of
the windows that the presentation is performed in).

• Film actions change the direction or speed of the presentation (e.g.,
start, stop, forward, backward, and so on). These features are familiar
from VCRs or similar electronic devices.

• Choices influence the flow of the presentation: the user may choose a
certain information branch and thus take an individual path through
the informational landscape defined within the authored frame.

Since interaction objects are visual, they consume space and are sub-
ject to the mechanisms outlined in the context of spatial composition.

Temporal Composition
What we have said about spatial composition also holds for the temporal
positioning of dynamic or time-dependent media objects, as shown in
Figure 8.3. Temporal composition can be either absolute (usually mea-
sured against the starting point of a presentation) or relative.

A number of common relationships in temporal composition have
been formulated. For example, in Allen’s time calculus (Allen 1983), there
are seven temporal relationships: before, meets, overlaps, finishes, during,
starts, and equals. Each, except for equals, has an inverse relationship.

Chapter 8 Presentation Formats308

Figure 8.3 Absolute and relative temporal composition.

tt1 t2 t3 t4

Text

Text

Image

Video

T
E
A
M
F
L
Y

Team-Fly®

The representation used in Figure 8.3 is called a timeline model. It has the
same expressiveness as Allen’s time calculus: both can be transformed
into the other without any loss.

This equivalence between the interval-based and point-based represen-
tations of time can easily be seen when mapping the starting and end
points of intervals to time axes and giving time stamps to the points.
Then the temporal aspects can be expressed using Allen’s calculus. Wahl
and Rothermehl (1994) and Little (1994) give overviews of the represen-
tation of time.

Synchronization
When incorporating time-dependent media (e.g., sound and video se-
quences) into a multimedia presentation, the temporal requirements
have to be met at presentation time.

Synchronization mechanisms can affect single media objects (intra-
media synchronization) or the relationship between two or more media ob-
jects (intermedia synchronization).

Another dimension in synchronization is coarse- versus fine-grained.
Coarse-grained synchronization handles the starting and ending points
of one or more presentation intervals. Fine-grained synchronization han-
dles the temporal relationship within presentation intervals.

Consider a video sequence and its corresponding soundtrack. First, the
start of both objects has to be controlled. Second, the difference between
the two timelines must stay within certain acceptable bounds.

Of course, in distributed environments the control of temporal defini-
tions at presentation time is closely related to Quality of Service (QoS)
parameters, which may also be incorporated into representations of
multimedia applications. But we will not consider this aspect in further
detail here.

8.1.3 The Advantage of Audiovisual Information

Web-based applications have been driven from the business perspective
by sales and marketing goals (commerce) and also by learning/training
goals, so we will say a few words regarding the psychological aspects of
the processing of information. In this section we will focus on the effi-
ciency of conveying information through presentations based on a tech-
nical environment such as the Internet.

One area of multimedia research is determining to what extent multi-
media techniques influence the ability of the user to recall information.
This includes the combination of media types as well as the power of

8.1 Presentation and Representation

Interval-based
and point-based
representation

Intramedia and
intermedia
representation

309

interaction. The underlying mechanisms are the same for both Web-
based applications and stand-alone multimedia applications.

Jeffcoate and Templeton (1992) measured the efficiency of the recep-
tion of information. They found that a person receives 10% of visual in-
formation, 20% of audio information, and 50% of audiovisual informa-
tion. Other studies have slightly different results, but they support the
hypothesis that the combination of both visual information (such as text
and graphics) and audio information (such as spoken text and sound)
will increase the efficiency of information transmission. An even better
effect can be obtained by involving the user, as is the case with interac-
tive elements.

These results may be an additional motivation for integrating multi-
media information into Web-based environments, at least for a set of ap-
plications. One approach in that direction is outlined in the following
section.

8.1.4 Multimedia Data Models

All functions of multimedia/hypermedia systems, as they have been char-
acterized before, rely on the availability of appropriate data models
implemented with corresponding formats. Data formats may be differen-
tiated into several hierarchical interchange categories: general containers
such as ASN.1 or Bento; monomedia for graphics, video, and others (e.g.,
JPEG or MPEG); metalanguages; and special-purpose object containers for
data interchange on an object-oriented basis. We will shortly introduce
HyTime and MHEG as representatives of metalanguages and object con-
tainers, respectively.

Data interchange is normally performed through APIs in multimedia
systems for application interchange, for storing and archiving in file sys-
tems or database systems, and for presentation in networked environ-
ments. The last aspect, of course, is of special interest in our context.

MHEG
While monomedia formats just specify single media elements for the
purpose of interchange, the definition of structural information is the
objective of the Multimedia Hypermedia Information Encoding Group
(MHEG). Structural information describes the interrelationships between
the different pieces of multimedia presentations.

The MHEG format defines an object-oriented model for composing
multimedia presentations. MH-Object is considered the root of the
MHEG class hierarchy (see Figure 8.4). MHEG is intended for the inter-

Chapter 8 Presentation Formats

Increased
information
reception

Data models and
formats

OO multimedia
composition

310

change of final-form presentations; that is, it supports delivery rather
than authoring.

The MHEG classes provide abstractions and inheritance rules. The
standard does not specify methods that would define actions on the ob-
jects. The first part of the MHEG standard gives a formal specification of
the data structures using the ISO notation ASN.1. MHEG objects are then
instances of the classes created to compose a multimedia presentation.

To perform a presentation on a target platform, MHEG objects and me-
dia elements have to be transmitted from their origin. Therefore an addi-
tional transfer syntax is needed. The presentation is shown to a user via
an MHEG engine that interprets the MHEG object and reconstructs the
structure of the multimedia composition.

Further elements of the MHEG model are the content data (i.e., the
pieces of information given by text, graphics, and so on), the behavior
(i.e., the actions that reflect the appearance of the presentation regarding
the temporal and spatial relationships), and user interaction (i.e., choos-
ing from alternatives or modifying data through entry fields).

HyTime
Another format is the Hypermedia/Time-Based Structuring Language
(HyTime), an SGML-based approach to multimedia interchange. SGML/

8.1 Presentation and Representation

Abstraction and
inheritance

Transfer syntax

311

Figure 8.4 Example of an MHEG class hierarchy (Koegel 1992).

MH-Object

ComponentScriptNULL Link Macro Descriptor

ContentComposite Interaction

Text Graphics Still Video Audio

Audiovisual

TemporalVisual Audible Numerical

HyTime supports the coexistence of disparate multimedia information
objects by a uniform object identification representation. It further pro-
vides a uniform representation of metainformation about notation data
objects and a uniform multimedia information structure.

HyTime consists of the following six modules:

• The base module is similar to SGML and encompasses several utility
architectural forms.

• The location address module creates pointers to information of any form
and at any location.

• The hyperlinks module deals with the navigational relationships be-
tween information pieces. It therefore relies on the location address
module that identifies these pieces.

• The measurement module handles the numerical dimensions such as
time, space, and digital datastreams.

• The scheduling module represents the compositional relationships by
describing coordinate spaces whose axes correspond to domains of
measurement and events. Information objects are “located” in that
space accordingly.

• The rendition module provides constructs for projecting events within
the coordinate spaces and modifying the objects of events.

The scheduling and rendition modules together define the schedul-
ing facilities of HyTime. Figure 8.5 shows the structuring facilities that
enhance SGML.

The hyperlinked structure allows arbitrary relationships between nodes
(i.e., information pieces), providing high flexibility by allowing links to
have any number of link ends. A basic feature of HyTime is the Finite Co-
ordinate Spaces (FCS). This is given by the scheduled structure, which is
application-neutral. Different associative lists may be created from an FCS
that all refer to information objects maintained once. This means that an
FCS provides ordered views of the same content elements. The interpreta-
tion of the ordering within the lists (i.e., the semantics) is left to the ap-
plication, although an FCS can provide instructions for spatiotemporal
rendering or formatting of data. Newcomb, Kipp, and Newcomb (1991)
and Kretz and Colaitis (1992) provide early overviews of HyTime.

8.2 VIEWING XML DATA ON THE WEB

In the previous section, we dealt with some groundwork and formal as-
pects of presentation and representation of (multimedia) information.

Chapter 8 Presentation Formats

HyTime modules

312

Now we come to more concrete aspects of the presentation of XML-based
information. The main application in that context, of course, is the Web.

8.2.1 Overview of Viewing XML Data

The basic idea of markup languages is the separation of the content of a
document from its form (i.e., how it is presented to a user). Therefore ex-
tra processing is needed before viewing marked-up information on a Web
front end. For us, two mechanisms are of particular interest: formatting

8.2 Viewing XML Data on the Web

Markup
languages

313

Figure 8.5 From SGML structuring to HyTime scheduling (Newcomb 1995).

HyTime
Scheduled
Structure

HyTime
Hyperlinked

Structure

7

1

2

3 6

8

9

4 5

10

11 12

12

7

SGML
Hierarchical
Structure

1

2

3 6

8

9

4 5

10

11 12

31 2 4 5 6

and transformation. From the latter perspective, XML may have to be
transformed into another format, an HTML document, for instance.
Transformation aspects will be covered later.

The formatting of XML documents may be achieved by using style
sheets. They may be regarded as collections of rules to transform abstract
XML information into formatted information to be passed on toward an
output device. The transformation is done by a style sheet processor that
will read the XML input along with the style sheet given. From that the
processor generates the output accordingly, as long as the style sheet fol-
lows a notation the processor understands. This process may be per-
formed on the server as well as on the client side of an Internet-based
information system. The basic idea is illustrated in Figure 8.6 from the
general perspective of SGML.

The decision on whether to process an XML document on the server or
to pass it to the client depends on the application. As long as we only
wish to view XML-based information, we may perform the processing on

Chapter 8 Presentation Formats

Formatting and
style sheets

Client- vs.
server-side
generation

314

Figure 8.6 Overview of creating final form documents in SGML (Steinmetz
and Nahrstedt 1995).

Source
Document

Target
Document

Parser

Formatter

SGML
Rules

User Group
Specific Definitions

Generic Markup
Definition (DTD)

Semantics of
Attributes

the server. If an application requires XML data for decentralized process-
ing on the client side, we have to send the XML document along with the
style sheet. This may be the case in e-commerce applications, for exam-
ple, when exchanging product information or ordering data.

8.2.2 HTML

The Hypertext Markup Language (HTML) is the well-known tagged lan-
guage for setting up Web sites for Internet applications (i.e., Web publish-
ing). It may be regarded as an application of SGML; that is, the HTML tag
set is defined using SGML notation.

The HTML specification is currently available from the W3C as version
4.01, which is a revised version of HTML 4 (HTML 1999). Here “revision”
means changes to the HTML DTD. We will not be discussing HTML in
principle here; we will assume you are familiar with the concepts of
HTML. Nor will we elaborate the elements of the revision here. Rather
we will give an overview of the basic features of HTML and its future
direction.

While earlier versions of HTML, namely, 2.0 of 1995 and 3.2 of 1997,
focused on supporting textual and multimedia content as well as hyper-
link features, HTML 4 goes much further. The major goal in the develop-
ment of the HTML versions was to achieve a broad consensus on the lan-
guage-supporting interoperability between manifold platforms and
presentations on client devices. The additional features incorporated into
HTML 4 include the following:

• More multimedia options (e.g., support for embedding external
objects).

• Scripting languages to support dynamic Web applications (e.g., forms
that react to user input).

• Style sheets to give authors more control of the rendering of HTML
content. Style information may be specified internally in the docu-
ment as well as in external documents associated with the HTML doc-
ument. We will come back to style sheets in the next subsection.

• Better printing facilities for larger source documents that are divided
into several HTML documents. These parts may be interconnected by
the “link” element or by RDF, described in Section 3.3.

• Better accessibility for users with disabilities, through the support of
more clearly distinct documents with regard to structure and presenta-
tion. Style sheets contain new features for nonvisual rendering, access
keys, semantic grouping of controls, and so forth.

8.2 Viewing XML Data on the Web

HTML 4 features

315

• Internationalization of documents, including the representation of in-
ternational characters, text direction, punctuation, and other world
language issues, to support the publishing of documents written in any
language as well as the indexing for search engines.

Adding Style to HTML Documents
When considering formatting information in the context of Web design
in HTML, the Web designer has two options: (1) formatting single ele-
ments in single documents using specific attributes or (2) employing
internal or external styles.

Formatting is supported by the inclusion in the HTML specification of
tags and attributes, for example, the bold element or the “font size”
attribute. This way of creating a Web page layout may be viable for very
small Web sites but is certainly not for large Web sites with dozens, hun-
dreds, or even thousands of Web pages.

A solution to this problem is style sheets. Style sheets allow the central
definition of formatting information for elements of tagged documents.
Cascading style sheets (CSS) are a well-known method of formatting
HTML documents. Take a corporate Web site as an example. Since a style
sheet document may be assigned to an arbitrary number of HTML docu-
ments, a consistent look and feel for the site can be guaranteed just by de-
veloping a CSS document that follows the corporate design requirements.
An additional benefit of using CSS is that maintenance of Web sites is
much easier for layout.

The use of a CSS with HTML is de facto optional: standard browsers
such as Netscape Communicator and Microsoft Internet Explorer have
internalized the HTML document type definition. The browsers know the
elements of HTML and have a predefined formatting for them.

Using Style Sheets with XML
The presentation of HTML through standard browsers for end user pre-
sentation does not require an extra style sheet. XML has in any case to be
associated with style sheets. The use of CSS is not very common with
XML, although the Mozilla browser (www.mozilla.org), for instance, pro-
vides the feature of directly viewing XML content on the basis of the
internalized conversion to HTML.

Principal elements of CSS are assignments of the kind

Selector(s) { declaration }

with the declaration given as

property : value.

Chapter 8 Presentation Formats

Formatting

CSS

CSS and XML

316

An example taken from HTML would accordingly be

H2, H3 { font-family: roman; font-size: 14pt }.

Additionally, properties may be assigned in a context-sensitive way.
Let’s have a look at the following example:

H1 EM { color: red }

The effect is that the content of element EM to be emphasized in H1 will be
displayed in red. This feature is helpful for a variety of definitions, such as
numbering lists, to mention just one.

Style sheets will be associated with XML documents following the cor-
responding W3C recommendation, available from www.w3.org/TR/xml-
stylesheet/. The recommendation provides the xml-stylesheet instruction
to process the style sheet document specified within the XML document
in question. Here is an example, first as an instruction in an HTML docu-
ment, then the corresponding XML version.

<LINK href=”mystyle.css” rel=”stylesheet” type=”text/css”>

<?xml-stylesheet href=”mystyle.css” type=”text/css”?>

8.2.3 XHTML

The Extensible Hypertext Markup Language (XHTML) is a collection of
document types and modules specified by the W3C “that reproduce, sub-
set, and extend HTML 4” (XHTML 2000a). The document types are XML
based; that is, XHTML is an HTML version that uses XML syntax. The ele-
ment types are the same as for HTML. Documents written in XHTML
always have to be well formed and valid. XHTML has been designed to
work with XML-based user agents. A user agent denotes a system that
provides functionality and services to retrieve and process documents
containing, for example, XML or XHTML content.

The basic idea behind XHTML is to provide Web developers with a
standard that allows for richer Web pages on a wider variety of client de-
vices and yet still be in accordance with the rigorousness of XML. The in-
creasing range of browser platforms and applications is being met by the
modular design of XHTML, to be discussed later in this subsection.

The main benefit to be gained from using XHTML is the flexibility for
Web application developers. This refers to the future interoperability
within and among various XHTML environments as well as to the poten-
tial of enhancing the language with new elements that will be needed for
future applications.

8.2 Viewing XML Data on the Web

User agents

Richer Web
pages

Flexibility

317

XHTML 1.0 (XHTML 2000a) was recommended in January 2000. It is
the first document type in the XHTML family and is based on HTML
4.01. It is thus a reformulation of the three HTML 4 document types (fla-
vors) using XML 1.0, resulting in the following:

• XHTML 1.0 Strict is for documents that do not contain any tags asso-
ciated with layout. Layout effects are then defined together with
W3C’s CSS language.

• XHTML 1.0 Transitional supports users whose browser versions do not
understand style sheets. It allows the adjustment of markups with
layout-oriented attributes.

• XHTML 1.0 Frameset supports the partitioning of the browser window
into HTML frames.

XHTML 1.0 may be used to specify content that is XML conforming. It
also works with client applications that conform to HTML 4. Therefore
XHTML documents may be viewed, edited, and validated with standard
XML tools. HTML may be checked using a tool provided by the W3C, the
“HTML Tidy” (www.w3.org/People/Raggett/tidy). It also allows HTML con-
tent to be rolled over into XML to be delivered in XHTML.

The following is a small example of an XHTML document. The
DOCTYPE declaration prior to the root element <html> has to reference
one of the three DTDs mentioned earlier. Along with the root element,
the XHTML namespace is specified accordingly. Additionally the name-
space is used along with another namespace defining MathML, which is
used to semantically specify mathematical formulas to be presented on
Web clients.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE html

PUBLIC “~//W3C//DTD XHTML 1.0 Strict //EN”

“DTD/xhtml1-strict.dtd”>

<html xmlns=http://www.w3.org/1999/xhtml

xml:lang=”en” lang=”en”>

<head>

<title>A Math Example</title>

</head>

<body>

Chapter 8 Presentation Formats

Reformulation of
HTML 4

318

T
E
A
M
F
L
Y

Team-Fly®

<p>The following is MathML markup:</p>

<math xmlns=http://www.w3.org/1998/Math/MathML”>

<apply> </log>

<logbase>

<cn> 3 </cn>

</logbase>

<ci> x </ci>

</apply>

</math>

<p>MathML reference available from

W3C Website

</p>

</body>

</html>

In order to be compatible with HTML, some guidelines have to be fol-
lowed. There are also some differences with HTML that have to be taken
into consideration. (See section 4 and appendix C of XHTML 2000a for a
corresponding overview.)

In the next step of the W3C’s XHTML roadmap, the elements and at-
tributes have been modularized into convenient collections for use in
documents that combine HTML with other tag sets (XHTML 2001a).
“Modularization” in this context means to break up XHTML into smaller
sets of elements since not all client platforms will need the complete
definition.

An example of such a set of modules is XHTML Basic (XHTML 2000b),
which is targeted at mobile applications. XHTML content can be ex-
changed among PDAs, mobile phones, desktop computers, and TV sets.
Numerous companies in the fields of communication and content have
announced that they will support XHTML for mobile business applica-
tions. XHTML Basic subsets HTML such that a document can be shared
among a maximum number of user agents. Of course, it may be extended
to meet particular requirements of a community and still support the
presentation of XHTML Basic content.

A reduced set of HTML features has been the starting point for the de-
sign of XHTML Basic, including basic text (headings, paragraphs, and

8.2 Viewing XML Data on the Web

XHTML
modularization

Mobile
applications

319

lists), hyperlinks and links to related documents, basic forms, basic tables,
images, and metainformation. All of these are part of the corresponding
XHTML modules, which are listed later in this subsection, given as cur-
rent version XHTML 1.1.

These features may also be found in document types representing
subsets and variants of HTML for the type of user agents outlined earlier.
Examples include Compact HTML (Kamada 1998), the Wireless Markup
Language (WML), and the “HTML 4.0 Guidelines for Mobile Access”
(Kamada et al. 1999). WML will be considered in Section 8.4.

XHTML 1.1 (XHTML 2001b) defines a new XHTML document type
based upon the modularization work of W3C. Unlike XHTML 1.0, it pro-
vides a consistent basis for future document types being cleanly separated
from the deprecated, legacy functionality of HTML 4. In turn it is a refor-
mulation of XHTML 1.0 Strict.

Thus the goal of XHTML to move Web content from malformed, non-
standard into well-formed markup, given by XML, has been approached
a lot more closely by XHTML 1.1. The motivation of XHTML 1.0 was to
migrate HTML-based content to XHTML and XML. With the modulariza-
tion of XHTML, support for deprecated elements and attributes has been
removed from the XHTML family.

The basic idea is to support the provision of markup content from a se-
mantic perspective rather than with presentation-oriented functionality,
as is given with XHTML Transitional and Frameset document types.
Many of the presentation features of XHTML 1.0 are avoided.

The XHTML 1.1 document type is based upon a set of XHTML mod-
ules defined in XHTML (2001a). Here are the features associated with
each XHTML module.

• Structure module: body, head, html, title
• Text module: abbr, acronym, address, blockquote, br, cite, code,

dfn, div, em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span,
strong, var

• Hypertext module: a
• List module: dl, dt, dd, ol, ul, li
• Object module: object, param
• Presentation module: b, big, hr, i, small, sub, sup, tt
• Edit module: del, ins
• Bidirectional text module: bdo
• Forms module: button, fieldset, form, input, label, legend,

select, optgroup, option, textarea
• Table module: caption, col, colgroup, table, tbody, td, tfoot, th,

thead, tr

Chapter 8 Presentation Formats

Well-formed
markup

320

• Image module: img
• Client-side image map module: area, map
• Server-side image map module: attribute ismap on img
• Intrinsic events module: event attributes
• Metainformation module: meta
• Scripting module: noscript, script
• Style sheet module: style element
• Style attribute module: style attribute (deprecated)
• Link module: link
• Base module: base
• Ruby annotation module: ruby, rbc, rtc, rb, rt, rp

XHTML 1.0 and XHTML 1.1 are recommendations of the W3C, the
latter as of May 31, 2001. XHTML 1.0 Second Edition is currently a work-
ing draft as of October 4, 2001. The first draft of XHTML 2.0 is scheduled
for early 2002. XHTML Modularization is a proposed recommendation
as of February 22, 2001. Further steps on the W3C roadmap are to be
determined.

XHTML may be viewed and processed using standard XML tools. Ad-
ditionally, Web browsers can read XHTML. The first editor for XHTML
has recently been presented by Mozquito. “Mozquito Factory” supports
the authoring of Web content in XHTML as well as the import of HTML
documents and their translation into XHTML. The Mozquito approach
will be discussed in Section 8.3.2.

8.2.4 Formatting Objects with XSL

In this section, we will discuss an approach to formatting documents that
goes beyond the options of CSS. The focus of our discussion will be on
formatting objects that represent structural units in documents.

XSL and XSLT
The Extensible Style Language (XSL) is a language to define style sheets,
as was discussed in Section 2.7. It is similar to CSS in that it separates for-
matting information from content. It also supports printing options and
the transmission of XML documents across various platforms. The XSL
specification contains three parts: the XSLT language for transformation
(see Chapter 9), the XPath language to access parts of or whole XML doc-
uments (see Section 2.5.1), and finally XSL formatting objects, which will
be discussed later in this section.

8.2 Viewing XML Data on the Web 321

The Extensible Style Language Transformation (XSLT) is the language
that is used within XSL documents to transform XML documents into
other documents, either XML again or HTML. This allows content to be
represented in several XML documents for particular applications.

The relationship between XSL and XSLT can be shown with Document
Style Semantics and Specification Language (DSSSL), which although per-
haps outdated still serves to visualize the key procedure here. It was de-
veloped to process SGML documents, and many of its concepts have
been incorporated into XSL and XSLT. The transformation and format-
ting process is shown in Figure 8.7, where the gray elements are specified
by DSSSL.

As previously stated, XSLT provides transformation and XSL provides
formatting. XSL then may be considered as a specific document type. Its
elements are formatting objects (FOs). These FOs define formatting seman-
tics and are generated by a preceding transformation step, performed, not
so surprisingly, by XSLT. The XSL-FO then may be converted into arbi-
trary final formats such as HTML for online presentation, RTF for text
processing, or PostScript or PDF for printing. An example of printing
XML via PDF is given at www.dpawson.co.uk/xsl/print.html. We may also
use XSLT to generate other documents such as XHTML or WML (see Sec-
tion 8.4.2).

Chapter 8 Presentation Formats

DSSSL

Formatting
objects

322

Figure 8.7 Overview of the DSSSL processing of SGML documents (Behme and Mintert 2000).

...

Transformation
Specification

External
Entities

XML
Document
Instance

RTF

PDF

PS

Formatting

Process
Transformation

Process

Parsing

XSLT XSL

XML
Document

Style
Specification

XSL Formatting Objects
XSL Formatting Objects (XSL-FO) makes up almost two-thirds of the XSL
specification (www.w3.org/TR/xsl/slice6.html#fo-section). It describes how
to present page-oriented output. Although XSL-FO code can be produced
manually, the more usual way would be to transform an XML document
into another XML document using XSL-FO vocabulary. This transforma-
tion from a semantic to a presentational representation is done with
XSLT. Since browsers cannot display XSL-FO documents directly, apart
from X-Smiles (see Section 8.3.2), a further transformation to final output
has to be done, most likely to PDF (see later in this subsection).

The content of XSL-FO documents is organized into areas, which can
be thought of as rectangular boxes containing the formatting objects that
represent the content. The areas form a kind of hierarchy. The spatial po-
sitioning of the areas is done by an XSL formatter. When being processed,
the formatting objects document is broken up into pages, normally one
for Web presentation and individual pages for printed output. Each page
then contains a number of areas.

While CSS is mainly used for Web presentation, XSL-FO goes further
and provides a more sophisticated layout model that also supports multi-
purpose publishing. We will not reproduce the definition of all the for-
matting objects here. Instead we will summarize them in a condensed
list, giving some hints where the FO names are not self-explanatory. The
recommendation documents encompass the following FOs:

• Pagination and layout formatting objects: definition of master pages and
page sequences, particularly of interest for printed output

• Block formatting objects: formatting of text-based information such as
paragraphs, titles, and captions given as block objects

• Inline formatting objects: portions of text inside block formatting
objects; for example, adding the word “Page” to a running foot for
pagination

• List formatting objects
• Table formatting objects
• Out-of-line formatting objects: floating objects and footnotes to be placed

at the next possible position in the output document
• Other formatting objects: for example, wrappers for property heritage

and markers for running heads and feet

The order of the FOs listed here, roughly speaking, corresponds to the
order in which content is placed. Further formatting details, however,
are specified by attributes assigned to the individual FO. Many of these

8.2 Viewing XML Data on the Web

XSL-FO

Areas

323

formatting properties have CSS equivalents (e.g., font-family); others
do not.

The set of standard XSL-FO properties includes the following:

• Common absolute position properties: absolute positioning including size
• Common aural properties: rendition of FO content for output via voice

processors
• Common border, padding, and background properties
• Common font properties
• Common hyphenation properties: line breaking including language-

dependent hyphenation
• Common keeps and breaks properties: column and page breaks
• Common margin properties: spacing and indents
• Other properties: specific to certain FOs, such as character- and color-

related properties, conversions, pagination and layout, dynamic ef-
fects, and many more

The two preceding lists give a first glimpse of what XSL-FO is about,
particularly for publishing purposes. A tutorial on using XSL-FO with XEP
to produce final-form PDF documents, just to mention one application,
can be found at www.renderx.com/Tests/doc/html/tutorial.html. We will
come back to this topic in Section 8.6.1.

Here is a short example of the use of formatting objects, taken from
Harold (2001), available online at www.ibiblio.org/xml/books/bible2/.

<?xml version=”1.0”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”only”>

<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”only”>

<fo:flow flow-name=”xsl-region-body”>

<fo:block font-size=”20pt”

font-family=”serif” line-height=”30pt”>

Hydrogen

</fo:block>

Chapter 8 Presentation Formats

Final-form PDF

324

<fo:block font-size=”20pt”

font-family=”serif” line-height=”30pt” >

Helium

</fo:block>

</fo:flow>

</fo:page-sequence>

</fo:root>

Here we can see the hierarchy mentioned earlier, starting with the root
element including the other nested FOs. The content itself is specified in
the two elements given by fo:block, including the corresponding text
formatting properties.

Generating Final-Form Documents for Presentation
Obviously we have a lot of choices of which technique to use for presen-
tation. Figure 8.8 summarizes some of the available alternatives.

Which do we choose? CSS, for example, has proven to be very useful
for presenting HTML content. But XSL is XML technology. There is no
one right answer along the lines of “CSS if you can, XSL if you must.”
Table 8.1 compares the major aspects of CSS and XSL.

8.2 Viewing XML Data on the Web

CSS vs. XSL

325

Figure 8.8 Presentation techniques using CSS and XSL (W3C 2000a).

PresentationHTML

XML
XML
or

HTML

CSS

CSS

CSS
XSLT

XSLT

XSL-
FO

Finally a word about practical application. So far we have been dealing
with only conceptual considerations, and reality may bring us back to
earth. The specifications are in different states of completion, and there-
fore accepted standardization and wide market penetration may be some
years away, for example, for XSL-FO.

So, unless the different components of Web-based environments—
ranging from authoring to data management and business middleware,
to the variety of standard and exotic output devices—fully implement
and support these specifications, we will have to make pragmatic com-
promises.

We expect the support for XSL by client devices, such as browsers,
handhelds, and so on, to be on the server side rather than the client side.
The server will handle the presentation of XML content by transforming
it into HTML, probably enhanced with CSS. In mixed environments, dif-
ferent style sheets could be set up for the output devices that are XSL en-
abled and for those that are not.

8.3 USER INTERACTION WITH XFORMS

Forms to capture user input have become commonplace in Web-based
applications, particularly with the more advanced requirements of e-
commerce. So we will give a short overview of XForms as the XML-based
proposal for adequately handling user interaction through forms, fol-
lowed by sample implementations.

8.3.1 Concepts of XForms

Traditional Web forms as known from HTML and XHTML have become
an important feature in interactive Web applications that collect data
from users. As stated earlier, the current W3C efforts aim at separating the

Chapter 8 Presentation Formats

User input

326

Table 8.1 Comparison of CSS and XSL.

CSS XSL

Can be used with HTML yes no

Can be used with XML yes yes

Transformation language no yes

Syntax CSS XML

structural information defining elements in Web documents from their
appearance in the Web browser or other user agents.

In accordance with that goal, XForms (www.w3.org/Markup/forms) in-
troduces abstract concepts to decouple data, logic, and presentation of
Web forms, making XForms a successor to XHTML forms. The main com-
ponents of XForms are the following:

• The XForms model describes the forms independently from device-
specific rendering. The presentation options are attached separately.

• The XForms user interface provides the necessary visual form controls
(i.e., widgets for user interaction) that can be used inside different
XML documents (e.g., XHTML and SVG).

• The XForms submit protocol defines the method by which a form sends
and receives data.

• The XForms processor is an implementation of the XForms model. Its
components, behavior, and mechanisms are described by a corre-
sponding reference model.

Figure 8.9 summarizes the major components of XForms.
The different components—particularly XForms model, instance data,

and form controls—are connected with bindings. The binding expres-
sions of XForms are based on XPath (see Section 2.5.1); that is, they use
XPath datatypes.

If we consider forms to consist of a purpose, a presentation, and data,
we could argue that earlier implementations of Web technologies did not

8.3 User Interaction with XForms

Main components

Appearance vs.
purpose

327

Figure 8.9 Overview of the major components of XForms.

XForms
Model

XForms
Submit Protocol

Form Logic and Controls

Use for
presentation

W
M

L

X
H

TM
L

SV
G

XForms
User

Interface

<XML>
Instance

Data

separate the presentation of a form (i.e., its appearance) from its purpose.
This separation would definitely be helpful in adding conditional or in-
put-dependent dynamics. That is, forms should be able to differentiate
several user input cases and adapt accordingly. Let’s look at an example.
First the XHTML code:

<form action=”http://example.com/submit” method=”post”>

Select Payment Method:

<input type=”radio” name=”paytype”

value=”cash”>Cash</input>

<input type=”radio” name=”paytype”

value=”credit”>Credit</input>

<label>Credit Card Number: <input type=”text”

name=”cc”/></label>

<label>Expiration Date: <input type=”text”

name=”exp”/></label>

<input type=”submit”/>

</form>

This sample code produces two radio buttons to select the payment
method, input fields for credit card number and expiration date, and a
submit button.

Now have a look at the corresponding XForms code:

<selectOne xmlns=http://www.w3.org/2001/06/xforms

ref=”paytype”>

<caption>Select Payment Method</caption>

<choices>

<item value=”cash”>Cash</item>

<item value=”credit”>Credit</item>

</choices>

</selectOne>

<textbox xmlns=”http://www.w3.org/2001/06/xforms” ref=”cc”>

<caption>Credit Card Number</caption>

</textbox>

Chapter 8 Presentation Formats328

T
E
A
M
F
L
Y

Team-Fly®

<textbox xmlns=”http://www.w3.org/2001/06/xforms” ref=”exp”>

<caption>Expiration Date</caption>

</textbox>

<submit xmlns=”http://www.w3.org/2001/06/xforms”/>

Here we have basically the same interaction elements. But in contrast to
XHTML, the radio buttons are not hard-coded, the input elements such
as textbox are predefined, and the input is submitted as XML data.

Most important from a presentational perspective, the rendering
of specific elements can be done by different devices. This refers to the
selectOne element that replaced the radio buttons in the XHTML sample
code.

This decoupling allows Web authors to create richer Web applications
with advanced forms logic, multiple forms per page, or multiple pages per
form. In turn, as in other XML initiatives, the international aspects are
improved and a variety of devices are supported.

8.3.2 Implementations

In the previous sections, we discussed the concepts of XHTML. XHTML
technology has already been implemented in the Mozquito and X-Smiles
tools that we present next.

Mozquito
Mozquito is an example of XHTML technology that has been enhanced
with additional features. Since the support for forms has been a focus, the
XHTML-FML (Form Markup Language) has been defined for advanced
form functionality. Further efforts will lead in the direction of fully inte-
grating FML with XForms.

The basic idea of Mozquito is to transform its documents into HTML
documents with JavaScript code that can be processed by any Web
browser. This is done on the server side, thus taking some of the load off
the Web client. JavaScript was chosen so as to be independent from in-
stalling new browser versions or plug-ins.

Since most Web site code is produced by authoring tools on the client
side, Mozquito provides a corresponding authoring environment that in-
cludes an XML parser to check on well-formedness and validity. An over-
view of the Mozquito Factory can be found at www.mozquito.org/html/
lang-english/beginning.html. There you will also find FML references and
specifications.

8.3 User Interaction with XForms

XHTML-FML

329

X-Smiles
X-Smiles (www.x-smiles.org) is a nonprofit Java-based XML browser that
supports several XML technologies. Although XForms and SMIL are fea-
tures of X-Smiles, SVG, XSLT Transforms, and XSL-FO are supported
through third-party components. A detailed overview of what is currently
supported can be found at www.x-smiles.org/xsmiles_features.html.

The main objective of X-Smiles is the support for desktop solutions
and for embedded solutions. Both of these may be mixed in a single doc-
ument. An additional goal is the processing and streaming of multimedia
content.

X-Smiles is still in the prototype stage (version 0.45 was released on
October 26, 2001). The next steps, among others, are compliance with
SMIL 2.0, full support of XForms models, and reimplementation of the
formatting objects renderer.

8.4 EXCHANGING INFORMATION THROUGH
WAP DEVICES

Mobile information access seems to be the current wave in information
management and processing. An increasing importance has been at-
tached to m-commerce, to mention just one buzzword, in business-to-
business as well as business-to-consumer relationships. This raises the
need for appropriate techniques and formats as well as for applications
and technical devices. For our discussion, since we are only interested in
XML-related presentation formats for mobile devices, we will give a short
introduction to the WAP technology followed by a description of the cor-
responding markup language, WML.

8.4.1 What Is WAP?

The Wireless Application Protocol (WAP) is an open specification that
allows mobile access to, and exchange of, information and services. It
embraces handheld devices such as mobile phones and palmtops/PDAs,
as well as pagers and, to a lesser extent, car radios.

Since WAP is not based on a particular transmission standard (e.g.,
UMTS or GSM), interoperability is guaranteed for such applications. Most
of the manufacturers of mobile devices have committed to supporting
the specification, which therefore can be regarded as a de facto standard.

While WAP specifies only the transmission of data to and from com-
pliant devices, a language is needed to define the contents for WAP

Chapter 8 Presentation Formats

Interoperability

330

applications. This language is WML, which is covered in the following
subsection.

Devices need an appropriate WAP-enabled microbrowser to display in-
formation. Most mobile phones now come with such a browser. For other
applications and devices, browsers are available for a variety of operating
system platforms: Microsoft Windows, PalmOS, and JavaOS, to mention
just a few.

The WAP standard is based on an OSI architecture, the WAP stack,
which consists of five major layers. They specify the front-end interface
to the devices, the session handling, transmission, security, and transport
at the back-end interface to the network.

Typical applications for WAP are communication (e.g., mailing and
chatting) and unidirectional information (e.g., the weather forecast or
the movie schedule of your local theater). Bidirectional information ex-
change (i.e., user action and response) is required for financial applica-
tions (e.g., online banking or brokerage services), shopping, electronic or-
ganizing, navigation and tour guiding, and home automation (i.e., the
remote control of devices in your house). The last is expected to be an im-
portant feature in the near future.

Part of the WAP effort is the Wireless Application Environment (WAE),
specified in WAE (2000). It aims at building a general-purpose and inter-
operable application environment using Web technologies to provide
applications and services for wireless platforms. Several techniques con-
tribute to the WAE specification, including the specifications of Wire-
less Markup Language (WML), WMLScript, WAP Binary XML Format
(WBXML), and Wireless Telephony Application (WTA).

The WAE architecture is based on a client-server model, as are tradi-
tional Web services. Content and services are hosted on standard Web
servers using standard URLs. In addition to the basic client-server model,
a gateway provides encoding and decoding mechanisms as well as
WMLScript compilation for content exchange between server and mobile
client and the handling of user action. Thus, on the server side, standard
Web content is produced at a client’s request. The encoding enables a
user agent to navigate through Web content on the basis of the WML and
WMLScript. The WTA in this context specifies extensions for call and fea-
ture control mechanisms in telephony applications. Figure 8.10 gives a
very basic architectural overview.

For more information about the standard, technical equipment, and
development aspects, you may start your investigation at the WAP Forum
(www.wapforum.org), the Web site of the industry association that devel-
oped the standard. You may also find helpful information at www.wap

8.4 Exchanging Information through WAP Devices

Microbrowser
presentation

WAP stack

WAE

WAE architecture

331

.net. An overall overview of WAP is given in the WAP Forum white paper
(WAP 2000). A basic goal of the WAP Forum is to work together with the
Web Coalition (W3C) and the Internet Engineering Task Force (IETF) to
integrate WML with next-generation HTML and HTTP.

8.4.2 WML

Wireless Markup Language (WML) is used to provide static information
for WAP applications in an appropriate way. It has to meet the limitations
of current wireless communication. Therefore reduced information has to
be provided according to the presentational capabilities of the devices
and the low transmission bandwidth.

Both WML and HTML are markup languages, based on tags. But, by
looking closer at WML’s structure, you will find that it is formed of well-
defined units of user actions, called cards. The basic concept of accessing
information in WAP applications is navigating between cards that may be
dispersed in several WML documents. Cards may be grouped into sets,
called decks, each describing an interaction with the user. This design
meets the limitations of even the small-size displays of handheld devices.
The concept of organizing information in cardlike units is similar to Hy-
perCard, an early authoring approach for the development of multimedia
applications, which is still available and in use (hypercard.apple.com). Here
is a small WML example (WML 2000a):

Chapter 8 Presentation Formats

Cards

Decks

332

WAP Protocol Stack and Services

Device OS/Services

WAE

Services/
Formats

WML WMLScriptURLs WTA
Services

Others
Other
Applications
and
Services

WML
User
Agent

WTA
User
Agent

Other
Agents

User
Agents

Figure 8.10 Architectural model of WAP efforts (WAE 2000).

<wml>

<card>

<p>

<do type=”accept”>

<go href=”#card2”/>

</do>

Hello world. This is the first card …

</p>

</card>

<card id=”card2”>

<p>This is the second card. Goodbye.</p>

</card>

</wml>

The main features of WML are the following:

• Support for text and images, providing the author with elements for
specifying such content and laying it out to a certain extent.

• Support for user input such as controls for text entry, selection from
several options, and task invocation. These controls may be presented
by the user agents as being bound to physical keys, voice commands,
or sections of the screen presentation.

• Navigation and history stack. The former keeps track of user actions on
the basis of WML’s several URL-based navigation mechanisms.

• Abstract specification of layout and presentation for independence
from particular interfaces and devices.

• Optimization for narrow-band devices, mainly through the minimiza-
tion of server requests and the amount of data to be exchanged.

• State and context management (i.e., the provision of variable states).
These may be used to modify the content of parameterized cards and
can be shared among decks without server communication.

8.4.3 WMLScript

WMLScript enhances JavaScript in order to program user agents (i.e.,
mobile devices). It allows the design of more advanced user interfaces for
mobile applications by enriching browsing and presentation on the basis
of WML by behavioral capabilities. It allows the performance of client-
based processing to be fully integrated with the WML browser.

8.4 Exchanging Information through WAP Devices

WML features

Client-based
processing

333

Examples of client-based action include any interaction with the
user in general, checking user input before passing a request to the
server, or accessing device facilities and peripherals. The invocation of
WMLScript may be triggered by events caused by user interaction or by
the environment.

WMLScript supports several operations (e.g., assignment, arithmetical,
logical), script functions (defined internally or externally), and library
functions (e.g., for floating point and string handling) defined in the
WML Standard Libraries Specification (WML 2000b).

8.4.4 WBXML

The WAP Binary XML Content Format (WBXML) has been designed as a
means to reduce the transmission size of XML documents on channels
with low bandwidth (WBXML 2000). The element structure of XML is
preserved without losing any functionality or semantic information.

Reduction of document size is based on tokenization of the XML syn-
tax. This means that any entity, tag, attribute, and so forth is mapped to
a token. The following example specifies a tokenized WML deck and
demonstrates variable and attribute encoding and the use of the string
table (WML 2000a). Let’s look at the source deck first:

<wml>

<card id=”abc” ordered=”true”>

<p>

<do type=”accept”>

<go href=”http://xyz.org/s”/>

</do>

X: $(X)

Y: $(Y)

Enter name : <input type=“text“ name=”N”/>

</p>

</card>

</wml>

We will not give a complete overview of the tokenized form here. To
give an impression we have listed a subset of annotated token streams in
Table 8.2, representing the first two lines of the source deck code.

Chapter 8 Presentation Formats334

8.4.5 Links to WAP Tools

WAP-related tools include browsers, emulators, and simulators that can
be used to experiment with WAP applications, since WAP is not sup-
ported by standard browsers. Table 8.3 provides a list of Web sites that
such tools may be obtained from.

8.4 Exchanging Information through WAP Devices 335

Table 8.2 Example of Tokenized Source Deck Code.

Token Stream Description

7F wml, with content

E7 card, with content and attributes

55 id=

03 Inline string follows

‘a’, ‘b’, ‘c’, 00 String

33 ordered=”true”

01 END (of card attribute list)

Table 8.3 Overview of WAP-Related Tools.

Tool Platform Link

WAPUniverse 0.3.0 PalmOS http://download.sourceforge.net/wapuniverse/
Build 5 WAPUniverse_0_3_0_Build5.zip

AU Systems Browser PalmOS http://www.ericsson.com/developerszone/
uploadedfiles/wapbrowser161.zip

EzWAP Windows CE http://www.ezos.com/Main.asp

Ericsson R380s Windows 95/98/NT http://www.ericsson.com/developerszone/
WAP Emulator 3.0

WinWAP 2.3 Light Windows 95/98/NT http://www.slobtrot.com/winwap/

ccWAP Browser Windows 95/98/NT http://www.checkcom.de/download.htm

iobox Surfer Browser window http://www.iobox.de/static?&PAGE=core/
WAP simulator mainpage&ITEM_ID=11000#

waptiger-Emulator Browser window http://www.waptiger.de/waptiger/
WAP Simulator

8.5 GRAPHICAL AND MULTIMEDIA PRESENTATION
WITH XML

With the increasing penetration of the Internet into business and private
life, efforts are being made to integrate multimedia with Web applica-
tions. Specifically, script languages seem to be the target of many re-
searchers and developers since the normal markup structure of HTML is
not very promising for further enhancements. An example of such an
initiative is the Virtual Reality Markup Language (VRML). Although
there are some interesting applications for simulation (Luttermann and
Grauer 1999) and scientific visualization, VRML has not become a mar-
ket success.

In this section we will focus on current efforts to combine several me-
dia or multimedia features with the Web, starting with SMIL and pro-
ceeding toward speech integration.

8.5.1 SMIL

The Synchronized Multimedia Integration Language (SMIL) is an XML
document type for the description of multimedia presentations. It allows
the positioning of media objects as well as spatial and temporal synchro-
nization (i.e., along the third and fourth dimension, respectively).

Let’s consider to what extent SMIL meets the requirements composing
multimedia presentation, as they have been rolled out in Section 8.1.2.

First, SMIL allows the integration of several media elements since there
are text, graphics, audio, and video formats. When working with SMIL,
however, we have to take into consideration the capabilities of the differ-
ent SMIL players that are available. Table 8.4 gives an overview of media
types, the corresponding tags used in SMIL, and whether or not the me-
dia are supported by the players (Helio 1999).

We will start with a short introduction to the features of SMIL. The
following code is a skeleton for SMIL documents. The head section is pri-
marily for layout definitions, and the body section is primarily for speci-
fication of media and synchronization parameters:

<smil>

<head>

<meta name=”Author” content=”B. Daum and U. Merten” />

<layout>

<!-- layout tags -->

</layout>

Chapter 8 Presentation Formats

VRML

Media
integration

SMIL skeleton

336

<head>

<body>

<!-- media and synchronization tags -->

</body>

</smil>

Positioning of Media
SMIL provides absolute as well as relative positioning. Everything about
the layout of the SMIL application goes into the layout section of the
SMIL document. For instance, have a look at the following code fragment:

<layout>

<root-layout width=”300” height=”200”

background-color=”white”/>

<region id=”picture-region” left=”25” top=”25”

width=”150” height=”100” z-index=”2” fit=”fill”/>

<region id=”text-region” left=”125” top=”100”

width=”100” height=”50” z-index=”1”/>

</layout>

8.5 Graphical and Multimedia Presentation with XML

Spatial
composition

337

Table 8.4 Overview of SMIL Attributes and Player Support.

Media Tag G2 GRiNS Soja

GIF img OK OK OK

JPEG img OK OK OK

Microsoft Wav audio OK OK —

Sun Audio audio OK OK OK

Sun Audio Zipped audio — — OK

MP3 audio OK — —

Plain text text OK OK OK

Real text textstream OK — —

Real movie video OK — —

AVI video OK OK —

MPEG video OK OK —

MOV video OK — —

The attributes of the root-layout tag define the layout of the overall
presentation window. Two regions for an image and a text object are
specified by their absolute coordinates. The z-index gives priority along
the z-axis and thereby governs overlapping. In our example the text will
overlay the image. The fit attribute can have different values: fill makes
the picture fit into the region, slice and meet make the picture grow
without distortion, and scroll is used if the region is too small and the
picture is to be scrolled over. Relative positioning is achieved by assigning
percentages to the top and left attributes.

Now we have to specify the objects that must be placed in the regions
defined so far. This is done in the body section of the document:

<body>

<text src=”some.txt” region=”text-region”/>

<img src=”some.gif” alt=”Here is a picture”

region=”picture-region”/>

</body>

Synchronization
SMIL allows the definition of the duration of the presentation of a media
element (e.g., the time period that a picture will be shown to a user). This
is intramedia synchronization; intermedia synchronization refers to at
least two elements (e.g., sequential playing of two video objects). Further-
more we may define that an element becomes apparent only after some
period of time (i.e., it is delayed).

This may be done absolutely by setting the presentation time relative
to the starting point of the SMIL application. The word “relative” is not
really appropriate since relative synchronization refers to the temporal
positioning of a media element with regard to another element within
the SMIL show. Here is an example of sequential presentation with de-
layed start and duration attributes:

<body>

<seq>

<img src=”some.gif” alt=”Here is a picture”

region=”some_picture” dur=”10s”/>

<img src=”another.jpg” alt=”And another one”

region=”another_picture” dur=”5s” begin=”1s”/>

</seq>

</body>

Chapter 8 Presentation Formats

Temporal
synchronization

338

T
E
A
M
F
L
Y

Team-Fly®

Finally, we may also want to define the presentation of some media el-
ements in parallel, which SMIL provides for with a corresponding tag
<par>. More advanced features include the event-based relative synchro-
nization of media objects.

Switching
SMIL also supports user preferences including some types of service
parameters. This is done by defining options using the switch tag. An
example is switching between several language versions of text elements
according to the user settings. Another would be the evaluation of the
transfer rate of a user’s Internet connection and changing the image res-
olution accordingly. We could have a high-resolution image for high
bandwidth and a low-resolution image for low bandwidth. This aspect in
turn also affects the appearance of the presentation, as does a possible
adaptation to the screen resolution given by a front-end system. The fol-
lowing listing gives an impression of how to use these features within
SMIL:

<body>

<switch>

<par system-language=”en”> <!-- English only -->

<text src=”you_are_english.txt” region=”main_message”/>

<switch> <!-- testing the screen size -->

<text src=”800_600.en.txt” region=”size”

system-screen-size=”800X600”/>

<text src=”1024_768.en.txt” region=”size”

system-screen-size=”1024X768”/>

</switch>

</par>

<par system-language=”fr”> <!-- French only -->

<text src=”vous_etes_francais.txt”

region=”main_message”/>

<switch> <!-- testing the screen size -->

<text src=”800_600.fr.txt” region=”size”

system-screen-size=”800X600”/>

8.5 Graphical and Multimedia Presentation with XML

Service
parameters

339

<text src=”1024_768.fr.txt” region=”size”

system-screen-size=”1024X768”/>

</switch>

</par>

<text src=”unknown_language.txt” region=”main_message”/>

</switch>

</body>

Here we have a nested switch: the outer one for the language choice
and the inner ones for the screen resolution in either language followed
by a “default” case (i.e., an unknown language).

Finally Integrating Multimedia with the Web?
The dynamics currently observable in XML-related developments not
only affect the traditional (re)presentation and transformation of text
content. Quite a lot of effort goes into providing developers with stan-
dards that allow for richer applications, for example, by adding more
advanced interaction and multimedia elements.

SMIL has been presented as an XML document type that provides au-
thors with the fundamental mechanisms identified in Section 8.1.1, in
particular, the spatiotemporal composition of content being coded in dif-
ferent media types. The current version, SMIL 2.0 (www.w3.org/TR/smil20),
is at the status of a W3C recommendation as of August 7, 2001, while
SMIL 1.0 is the version supported, for example, by X-Smiles.

What we expect from the SMIL initiative is that the Web will become
more multimedia aware. But, even to a larger extent than with other
XML-related standards, market penetration will take a while and there
will need to be a more general shift from HTML-oriented toward XML-
oriented applications. So we may have to wait for next-generation client-
side tools that are not only SMIL enabled, but that also allow integration
with other XML technologies that go beyond today’s Flash-like presenta-
tions.

8.5.2 SVG

Scalable Vector Graphics (SVG) is an XML application that provides a lan-
guage to describe two-dimensional graphics (SVG 2001). These graphics
are built from three types of objects: vector graphics, images, and text.

Chapter 8 Presentation Formats

Multimedia
awareness

340

Images, or raster graphics, denote graphical objects that are pixel
based, that is, built from dots. The visual information is coded by de-
scribing each single pixel of the image, usually by a set of values for color,
intensity, and so forth. The data size for such images may be determined
directly by calculating the number of pixels times the number of bits or
bytes needed for coding each pixel. Examples of corresponding image for-
mats are TIFF, GIF, JPEG, and bitmap.

In contrast, vector graphics are much more efficient in the description
of content and operations including transmission, presentation on out-
put devices, and necessary recalculations due to scaling, zooming, and so
forth. Vector graphics are more flexible in their appearance and usually
consume less space than images do because the visual information is rep-
resented directly by polygons. An object therefore is not a subset of pixels
but is described as a path of lines and curves as geometric elements. An
example is Corel Draw.

SVG has several benefits. Because it is a vector format, it leads to
smaller file sizes than regular bitmapped graphics, and it is resolution in-
dependent, so that images can scale down or up to fit proportionally into
any size display. Because it is based on XML technology, it provides text
labels and descriptions for searchability, and it has the ability to link to
parts of an image.

Furthermore it provides the feature of complex animation either by
embedding corresponding SVG elements or by scripting. SVG objects can
be assigned event handlers, which give the Web designer using SVG ani-
mations similar opportunities as, for example, with Macromedia Flash
(www.macromedia.com/software/flash/) presentations.

Following the principles of XML, SVG works by assigning attributes to
elements. For instance, the <svg> element may have positioning at-
tributes such as x, y, height, and width. It is the outermost element that
defines the image. The allowZoomAndPan attribute gives the author control
over zooming in and panning over the image. Other elements define
shapes and lines, others define opacity, and others define ways to embed
JPEGs and PNGs (W3C’s successor to GIF) into the SVG image. Still, these
are only a few SVG elements; there are many more.

The following example describes a rectangle (see the <desc> element in
the listing for further detail) with a shadow. One specialty here is the or-
dering of the visual elements. The rectangle specified second will be
shown as the frontmost. This builds a virtual third dimension, as has al-
ready been outlined in Section 8.1.2 and with the z-index of our SMIL
sample. (To proceed further with this example, leading to a product pre-
sentation for a fictitious shop, see Eisenberg 1991.)

8.5 Graphical and Multimedia Presentation with XML

Raster graphics

Vector graphics

SVG benefits

341

<svg id=”body” width=”21cm” height=”13.5cm”

viewBox=”0 0 210 135”>

<title>Part of a shop example</title>

<desc>

Rectangle with red border and light blue interior,

with gray shadow rectangle.

</desc>

<rect x=”10” y=”20” width=”150” height=”70”

transform=”translate(3, 3)”

fill=”#999999” stroke=”#999999” stroke-width=”1”/>

<rect x=”10” y=”20” width=”150” height=”70”

fill=”#eeeeff” stroke=”red” stroke-width=”1”/>

</svg>

Currently, SVG images are not supported by standard Web browsers;
therefore, either a user must download an SVG viewer, or a plug-in is
needed to view SVG within the browser window.

Among other efforts the W3C seeks compatibility with SMIL by incor-
porating features from SMIL (e.g., the <switch> element) and extending
the general-purpose animation capabilities given by SMIL. In turn, future
versions of SMIL will use SVG content as media components.

To anticipate the section on type setting, we will mention an approach
to generating PDF files from SVG here (www.digapp.com/ newpages/svg2pdf
.html). This approach aims at giving an example of how to convert Web
content into printable form on the basis of XML technology rather than
using PostScript as an intermediate format, as is usually done for PDF.

8.5.3 VoiceXML

The Voice eXtended Markup Language (VoiceXML) is a proposal that has
been made to the W3C and is part of its “Voice Browser” activity (W3C
2001b). The goal is to integrate speech-based services with Web applica-
tions. In particular, the use of the telephone to access Web resources is
investigated. The Web author thus does not have to deal with low-level
services and resource management on the level of voice services.

VoiceXML is an XML schema specified by the dialog markup language
of W3C. Originally it was an initiative of the VoiceXML Forum (www
.voicexml.org), a program of IEEE-ISTO. The VoiceXML 1.0 specification is

Chapter 8 Presentation Formats

Compatibility
with SMIL

PDF generation

Speech and
the Web

342

available as a W3C note (VoiceXML 2001). The W3C has worked out a set
of requirements and working draft language specifications that the dialog
markup language is part of. The working draft of VoiceXML 2.0 is out as
of October 23, 2001.

VoiceXML describes the human-machine interaction provided by
voice response systems, which includes output of synthesized speech
(text to speech), output of audio files, recognition of spoken input, recog-
nition of DTMF (touchtone) input, recording of spoken input, and tele-
phony features such as call transfer and disconnect.

Conceptually, a voice service is a sequence of interaction dialogs be-
tween a user and an implementation platform. The dialogs are units of
interaction provided by document servers that also maintain the overall
service logic and system operations. The dialogs are conducted by a
VoiceXML interpreter. User input within a dialog results in further re-
quests submitted to a document server. The reply then may be another
VoiceXML document containing dialogs to continue the session.

This section will give an overview of these conceptual aspects as well
as of the architectural model. Refer to www.w3.org/Voice for a list of ven-
dors that have implemented VoiceXML 1.0 in conformance with the
markup languages in the W3C Speech Interface Framework. Additional
resources that may be of interest include the VoiceXML DTD (www
.voicexml.org/voicexml1-0.dtd) and a series of tutorials for developers (www
.voicexml.org/tutorials/index.html).

Architecture
The design of VoiceXML may be explained along a high-level architecture
(see Figure 8.11). It encompasses several components that interact by fol-
lowing client-server principles.

A document server is a Web resource (node) that produces VoiceXML
documents on request from a client application. This application is the
VoiceXML interpreter, which operates within the VoiceXML interpreter
context. The documents returned by the server are processed by the
VoiceXML interpreter. The VoiceXML interpreter context acts as an
“event listener,” monitoring user inputs in parallel with the VoiceXML
interpreter. Examples are special user interactions (escape phrases) that
need particular attendance and reactions such as taking the user to a
high-level personal assistant or changing user preferences.

A third tier in this client-server model is given by the implementation
platform. It is controlled by the VoiceXML interpreter context and by the
VoiceXML interpreter. This is necessary since we have events produced by
the implementation platform due to user interactions or the system itself.

8.5 Graphical and Multimedia Presentation with XML

Voice response
system

Interaction dialog

Client-server
architecture

343

Some have to be processed by the interpreter (e.g., user response) as far as
it is part of the specific dialog. Others have to be acted upon by the inter-
preter context (e.g., incoming phone call and initialization of the dialog).

Concepts
A VoiceXML application is a set of documents. Each document forms a
conversational finite-state machine. The states of the machine are the
dialogs. A user is always in only one state at a time. Each dialog deter-
mines the next dialog (and possibly document) to transition to, specified
by URIs. If a dialog does not specify a successor, the conversation ends.

As stated earlier, dialogs are either forms or menus. A field-gathering in-
put may specify a grammar of valid values. A menu offers the user a
choice of options leading to the corresponding dialog. Subdialogs may be
defined that can be considered like function calls.

The sequence of interactions is called a session. A session may be termi-
nated by either the user, a document, or the interpreter context.

Documents of an application share the same application root document,
which is always loaded with the application. That way “global” variables

Chapter 8 Presentation Formats

Forms and
menus

Sessions

344

Figure 8.11 Client-server architectural model of VoiceXML (VoiceXML
2001).

Document Server

VoiceXML
Interpreter
Context

Request Document

VoiceXML Interpreter

Implementation Platform

and grammars can be defined and set to be valid for the duration of the
application. Grammars for speech and/or DTMF are associated with di-
alogs and active when the user is in the dialog. In mixed initiative applica-
tions, the execution flow may transition from one active grammar to an-
other as if a statement had been made in that other grammar.

Besides the gathering of normal user input by forms, VoiceXML sup-
ports the handling of events thrown by the platform due to special user
reactions or semantic errors detected by the interpreter. In accordance
with well-known event-handling mechanisms, behavior event catching
elements can be specified at any level and apply to all lower levels.

Simple Conversation Example
The following example formulates a dialog between a user and a machine
concerning the selection of a drink. The root element is <vxml>, which is
a container for dialogs given as either forms or menus. Forms present
information and require input; menus offer choices of what to do next.

<?xml version=”1.0”?>

<vxml version=”1.0”>

<form>

<field name=”drink”>

<prompt>Would you like coffee,

tea, milk, or nothing?</prompt>

<grammar src=”drink.gram”

type=”application/x-jsgf”/>

</field>

<block>

<submit next=

“http://www.drink.example/drink2.asp”/>

</block>

</form>

</vxml>

Our example has a single form, which contains a field and a block.
A field is an input field that a user has to provide a value for before

8.5 Graphical and Multimedia Presentation with XML

Grammars

Fields

345

proceeding to the next element in the form. This may be regarded as the
machine asking for a choice (“Would you like . . .”) and the user answer-
ing. The block contains a submit element that passes the user’s valid
choice forward to another document given by URI specified. Since the
form does not specify a successor dialog, the conversation ends.

8.6 DOCUMENT-BASED TYPE SETTING

So far we have focused on how to present XML-based data on the screens
of personal computers, PDAs, and other mobile devices. The root of Web-
based publication goes back to SGML, and SGML was driven by the pub-
lishing industry. So we will also devote some space to notes on how to
transform XML content into printable forms.

8.6.1 PDF

The Portable Document Format (PDF) is an open de facto standard from
Adobe for electronic publishing. PDF is platform independent and pre-
serves formatting information from any source document. The common
procedure relies on PostScript: First, a PostScript document is created from
the source document. Then it is read by the Adobe Acrobat Distiller tool
and transformed into a target PDF document. Alternatively, applications
may generate PDF directly through API calls to specific printer drivers.

A PDF document is a collection of objects that together make up one
or more pages. Associated with the objects is structural information. The
appearance of a page is represented by a content stream that contains all
layout and formatting information specified by the application that cre-
ated the document. PDF is regarded as a page description language.
Therefore the page representation in PDF may be considered as holding
graphical objects to be painted on the page.

The cross-platform functionality of PDF is based on a two-stage pro-
cess. First, a device-independent description of the output is generated.
Second, this description is interpreted and rendered on a specific output
device.

Regarding the syntax of PDF, four components can be identified: ob-
jects, file structure, document structure, and content stream. Objects are
composed within a data structure building the PDF document. PDF sup-
ports basic types such as Boolean, integer and real values, strings, and ar-

Chapter 8 Presentation Formats

PDF generation

PDF documents

PDF syntax

346

rays. The file structure specifies structural object handling within the PDF
file. The document structure specifies the use of objects to represent com-
ponents like pages, fonts, and so forth. The content stream, as stated ear-
lier, describes the appearance of entities by sequences of instructions. All
PDF information is given as a stream of 8-bit bytes within a character set
or as binary data (e.g., for included images). (For further information on
PDF, see PDF 2000.)

Transforming XML content into PDF documents may be performed us-
ing XSL Formatting Objects (XSL-FO), as we saw in Section 8.2.4. Here we
would also like to mention an Apache project called FOP (xml.apache
.org/fop). FOP is a Java application based on XSL-FO that allows the con-
version of formatting objects into a PDF document for printing. FOP also
serves as a transcoder in the Batik toolkit (www.apache.org/batik) to pro-
duce PDF output from SVG.

Since transformation using XSL will be elaborated on in Chapter 9,
we will not discuss the single steps here in detail. Instead we refer
you to a tutorial available on IBM developers’ site (www-106.ibm.com
/developerworks/education/transforming-xml/index.html).

8.6.2 (La)TeX

LaTeX and TeX—which we will refer to together as (La)TeX—are com-
monly used in the community of natural sciences as a markup environ-
ment for text editing. It therefore has most of the advantages that we
have already discussed in earlier chapters.

Since (La)TeX is widely used for editing and publishing purposes, the
question arises, How do we generate XML content from (La)TeX docu-
ments, or vice versa? The latter direction is of primary interest in the con-
text of this chapter.

A number of proposals, papers, projects, and similar research have
been aimed at solving this particular problem. An overview as well as
a list of resources is given at the XML Coverpages Web site (xml
.coverpages.org/ sgml-tex.html), where there is a focus on SGML. Here we
will pick up one example to convert XML to (La)TeX content, TeXML
(www.alphaworks.ibm.com/tech/texml).

TeXML encompasses a DTD (TeXML.dtd) and a corresponding Java
program (TeXMLatte.java) that parses the input conforming to the DTD
and outputs TeX. XSLT is employed to transform an arbitrary XML docu-
ment into one that conforms to the DTD.

8.6 Document-Based Type Setting

XML to (La)TeX

347

The following listing shows the original XML documents for a small
MathML example, which includes the term (a+b)2:

<?xml version=”1.0” ?>

<msup>

<mfenced>

<mrow>

<mi>a</mi>

<mo>+</mo>

<mi>b</mi>

</mrow>

</mfenced>

<mn>2</mn>

</msup>

The XML document first has to be transformed into TeXML. The gen-
erated TeXML document is given below. It already contains some content
specific to (La)TeX. For instance, documentclass will be needed to link
the appropriate document template. The corresponding value would be
article in this case.

<?xml version=”1.0” encoding=”UTF-8”?>

<TeXML>

<cmd name=”documentclass”>

<parm>article</parm>

</cmd>

<cmd name=”title”>

<parm>Some Math</parm>

</cmd>

<env name=”document”>

<cmd name=”maketitle”/>

Chapter 8 Presentation Formats348

T
E
A
M
F
L
Y

Team-Fly®

<cmd name=”[“/>

<group>(<group>a+b</group>)</group>

<spec cat=”sup”/>

<group>2</group>

<cmd name=”]”/>

</env>

</TeXML>

The outcome of TeXMLatte should be something like the following
TeX listing, but with a few more linefeeds. Without explaining the
TeX syntax, we find that the mathematical term has been finally set to
\[{({a+b})}^{2} \], which is the TeX representation of our sample:

\def\TeXMLmath#1{\ifmmode#1{}\else$#1{}$\fi}\def\TeXMLnomath#1{\i
fmmode\hbox{#1{}}\else#1{}\fi}

\documentclass {article}

\title {Some Math}

\begin{document}

\maketitle

\[{({a+b})}^{2} \]

\end{document}

8.6 Document-Based Type Setting 349

351

9Transformation

Document transformation is an important issue for

XML. Because XML allows the storage of information

in a presentation-neutral format, it becomes necessary to

transform this content into a presentation format such as

HTML, WML, or PDF when clients ask for that information.

In this chapter we will give a short overview of XSLT, an

XML-based transformation language. We introduce two

opposing programming styles and discuss the virtues and

deficiencies of XSLT. Because XSLT draws heavily on XPath,

please refer to the discussion of XPath in Section 2.5.1.

XSLT has a reputation of not scaling very well. Although

this doesn’t matter for the purposes of prototyping and ad

hoc solutions, it is an issue when it comes to enterprise com-

puting. We will discuss performance problems and look for

alternatives.

9.1 Procedural
Transformation

9.2 Rule-Based
Transformation

9.3 What XSLT Can Do

9.4 What XSLT Can’t Do

9.5 Extensions

9.6 Authoring and
Testing of XSL
Style Sheets

9.7 Performance Aspects

9.8 Other Languages

9.9 Generating
Web Pages

Historically XSLT was a part of the XSL (Extensible Stylesheet Lan-
guage) specification, but then XSL was split into three parts: XPath, XSLT,
and Formatting Objects (XFO). XSLT is now a recommendation in its
own right (Clark 1999a). The purpose of XSLT is to enable style-sheet-
controlled transformations from one XML document format into another
document format (XML or non-XML, but mostly HTML).

When you think about it, XSLT can unleash substantial power:

• XSLT can be used to transform presentation-neutral XML data into
presentational formats such as XHTML, XForms, WML, SMIL, SVG,
and so on.

• It can be used to convert document instances when a new version of a
schema is introduced. It can be used to harvest RDF statements from
the XLink elements in a document, or to generate XML Schema defini-
tions from XMI.

• As we saw in Section 2.9, it can even be used to check the validity of
data against a set of constraints (Schematron and APEX).

Although XSLT is quite powerful, we have to say that not everybody
likes it. One commentator even described it as an “ugly, difficult lan-
guage” (Leventhal 1999). One reason for such dislike is that XSLT is a
rule-based, declarative language. Programmers who are used to impera-
tive languages such as Java or C sometimes find it hard to think in these
terms. But also the inconsistent use of (source) document node sets and
(result) tree fragments can be disturbing.

Another reason for this dislike is the syntax. The XSLT syntax itself is
XML. This makes sense when you want to indulge in metaprogramming
(i.e., apply XSLT transformations onto XSLT style sheets), but it can be
difficult for the human eye to read. For this problem, at least there is
help: Paul Tchistopolskii’s (www.pault.com) XSL Script has a much more
legible syntax yet can be translated into 100% XSLT.

Usually, the XSLT control elements are prefixed with an identifier for
the XSLT namespace. Here, we use the prefix xsl:.

9.1 PROCEDURAL TRANSFORMATION

There are two programming styles that can be used with XSLT. In the pro-
cedural programming style, also known as the “pull” model, the program-
mer describes to the XSLT processor exactly what to do and in which
sequence. This programming style is easier to understand for program-
mers educated in imperative languages such as C or Pascal. The XSLT

Chapter 9 Transformation

Applications of
XSLT

Dislikes

Programming
styles

352

style sheet will look very much like the target document, with inter-
spersed XSLT instructions to fill in the blanks. This technique has similar-
ities to the programming approach used in Java Server Pages (JSP).

The rule-based programming style, also known as the “push” model, is
a more declarative approach. Rules describe how the elements of the in-
put document should be transformed. Rules are applied recursively based
on a pattern-matching mechanism. Nonprogrammers and programmers
educated in declarative languages such as PROLOG, expert systems, and
so on should find it easier to work in this way.

Of course, it is also possible to mix both programming styles.
Procedural XSLT instructions include operations such as the following:

• Control structures: XSLT instructions such as xsl:for-each, xsl:if, and
xsl:choose provide procedural control structures like conditional exe-
cution or loops. It is possible to sort the result of an xsl:for-each in-
struction with an xsl:sort instruction. Additionally, the results can be
numbered with the xsl:number instruction.

• Accessing content: The xsl:value-of instruction writes the content
of the current node (or of an explicitly specified node) to the target
document.

• Call by name: Named templates can be invoked via the xsl:call-
template instruction, similarly to how a subroutine is invoked in a
mainstream programming language. It is possible to pass parameters to
these templates, but it is not possible to return result values.

Here is an XSLT example that converts the book order example from
Chapter 2 into some HTML using the procedural programming style.
Figure 9.1 shows what we want to obtain.

Figure 9.2 shows how the resulting HTML document is compiled from
the original XML file with the help of an XSLT style sheet.

9.1 Procedural Transformation

Procedural
operations

353

Figure 9.1 Screen representation of a book order.

Chapter 9 Transformation354

Figure 9.2 Generating output the procedural way. The XSLT style sheet determines the layout
of the output document. Data is pulled out of the source document and placed into the
appropriate slots in the output document.

9.2 RULE-BASED TRANSFORMATION

With rule-based transformation, the main XSLT control elements are
templates (<xsl:template>). Each template consists of a head and a body.
The head of a template decides on the context in which the template
shall become active. This is done by using the attribute match= and spe-
cifying an XPath expression to select the context nodes. The template
body describes what to do. This is specified with the help of XSLT
instructions.

The instruction xsl:apply-templates applies all templates defined in
the style sheet recursively but only to the nodes within the context se-
lected by the select= attribute—template processing is applied recursively.

xsl:apply-templates can additionally be equipped with an optional
mode attribute. This allows the application of different sets of templates
depending on context, since templates can also be equipped with a mode=
attribute that must be matched.

It is possible to sort the result of an xsl:apply-templates instruction
with an xsl:sort instruction. Additionally, the results can be numbered
with the xsl:number instruction.

Procedural XSLT instructions (see earlier) can be used for conditional
processing or to write content to the target document.

In cases when the heads of several templates match a certain context,
the template with the best match is selected for execution:

• Templates in the current style sheet win over templates from imported
style sheets.

• The more specific a matching expression in the template head is, the
better is the match.

Figure 9.3 shows a rule-based example style sheet that produces the
same output as the previous procedural style sheet.

A rule-based style sheet usually contains a template rule that matches
the root node (“/”). In the root node rule we set up the global layout of
the target document, including global styles. The rule then applies all
rules recursively to the children of the root node.

The next rule applies to the <bookOrder> element. It outputs a header
for the order and applies all the rules again to its children. The value of
the <note> element is extracted with the xsl:value-of instruction.

The next rule applies to the <orderlist> element. It sets up a table,
outputs a table header, and applies all the rules again to its children. It
then closes the table element.

9.2 Rule-Based Transformation

Rule-based
operations

355

Chapter 9 Transformation356

Figure 9.3 In a rule-based style sheet the execution of templates is triggered by the elements of
the source document as this document is processed. The sequence of elements in the output
document thus depends on the sequence of elements in the original document. Note that the
rule for element “item” still uses procedural techniques in order to change the order of elements.

The next rule applies to <item> elements. For each item element it out-
puts a table row.

The last rule is used to disable XSLT’s built-in default rules. The effect
of those rules is that the XSLT processor outputs text and attributes of
all attributes that are not caught by a specific rule. In our case this is un-
fortunate because we do not want to output the content of the <shipTo>
and <billTo> elements. Therefore, we add a “catch-all” rule that does
nothing:

<xsl:template match=”*”></xsl:template>

This template applies when no other template applies to an element
(because its matching expression is the least specific one), so the default
rules are never called.

Although both style sheets produce the same output, they actually de-
fine different transformations. We can see a difference when we rearrange
the elements in the input document. If we placed the <note> element be-
hind the <orderlist> element, there would be no effect on the output
document in the case of the procedural style sheet. In the case of the rule-
based style sheet, however, the output Please note: . . . would appear af-
ter the table. This is because in the rule-based style sheet the transforma-
tion is defined in a declarative manner. So, the input document drives the
sequence of processing, and consequently the layout of the input docu-
ment determines the layout of the output document. In the procedural
style sheet, in contrast, the layout of the output document is determined
by the layout of the style sheet.

9.3 WHAT XSLT CAN DO

In this section, we discuss some of the outstanding features of XSLT.
Later, in Section 9.4, we look into its weaknesses.

9.3.1 Variables

XSLT has variables; however, these variables are read-only variables. The
value is assigned at the time the variable is defined and cannot be modi-
fied afterward. Templates can specify variables as formal parameters, too,
so that it is possible to pass parameters to templates.

9.3 What XSLT Can Do

Procedural vs.
rule based

357

9.3.2 Keys

Some XML documents make extensive use of cross-referencing. XSLT pro-
vides an extra construct to make the navigation across such structures
easier:

<xsl:key
name=”mykey”
match=”//author”
use=”@aid”/>

This construct imposes a new key structure onto the document. We
can then use this key in other XPath expressions: key(“mykey”,”1”)/name
would result in the name of the author with @aid=”1”.

9.3.3 Multiple Input Files

The document() function allows access to additional documents by speci-
fying their URI as a parameter.

9.3.4 Various Output Methods

XSLT can transform an XML document tree structure into another XML
document tree structure. This means that the input document must be
a well-formed XML document, and, by default, the output document is a
well-formed XML document, too.

However, a special XSLT instruction allows the modification of that
behavior:

• <xsl:output method=”xml”/> is the default output method. The output
document is a well-formed output document. Tags contained in the
style sheet must obey the XML rules for well-formedness. An HTML tag

 without a closing tag </br> would not be allowed. In contrast, the
corresponding XHTML tag
 would be allowed.

• <xsl:output method=”html”/> allows the specification of HTML 4.0 tags
in the style sheet, even if they violate the well-formedness of the style
sheet. So it is possible to specify tags of empty elements such as
 or
<p> without a closing tag. This output method also keeps the strings in
scripts intact, supports minimized attributes (attributes without a
value), recognizes HTML tags regardless of case, and more. The input
document, however, must always be well-formed XML.

• <xsl:output method=”text”/> strips all tags from the output, so that
only the text contained in the elements of the output tree appears in

Chapter 9 Transformation

Cross-
references

IO

358

T
E
A
M
F
L
Y

Team-Fly®

the output document. This allows the creation of almost any output
format, as long as it is text output. The media-type attribute can be
used to set the MIME type of the output file.

9.3.5 Metatransformations

XSLT is an XML-based language itself. This makes any XSLT style sheet a
possible subject to a transformation by another XSLT style sheet.
This technique can be used to extend the XSLT language. Here are two
examples:

• We have already described Schematron earlier in this book (Section
2.9). Schematron scripts are used to check XML instances for compli-
ance to certain constraints. These constraints are described in a
Schematron script. After authoring the script it is compiled into a vali-
dation style sheet. This is done with the Schematron compiler, which
is nothing more than a predefined XSLT style sheet. The resulting vali-
dation style sheet, also an XSLT style sheet, is then applied to the XML
document instances. The result of this transformation is a document
containing a list of errors and warnings.

• The loop compiler. Implemented by Oliver Becker (www.informatik.hu-
berlin.de/~obecker/XSLT/#loop-compiler), this XSLT preprocessor converts
non-XSLT statements such as

<loop:for
from=”expression” to=”expression” step=”expression”>

...
</loop:for>

into standard XSLT expressions. Needless to say, the preprocessor is im-
plemented as an XSLT style sheet.

More examples of the unorthodox use of XSLT are found at the
“Gallery of Stupid XSL and XSLT Tricks” at www.incrementaldevelopment
.com /xsltrick/.

9.3.6 Modules

XSLT style sheets can be developed in modules. Two instructions—
include and import—allow the combination of several style sheets into
one. While include adds the included style sheet to the current style
sheet, import allows the imported style sheet to override existing defini-
tions in the current style sheet.

9.3 What XSLT Can Do

Schematron

359

Since all names in XSLT (such as template names, mode names, or key
names) are qualified names (i.e., they can be specified with a namespace
prefix), it is possible to avoid name clashes when style sheets are im-
ported or included.

9.4 WHAT XSLT CAN’T DO

While in many cases XSLT allows sophisticated document transforma-
tions, there are other cases where the required transformations are met by
restrictions:

• There is no destructive assignment for variables in XSLT. This can
make certain tasks (like counting) difficult, especially for programmers
with a background in procedural programming. (The destructive as-
signment can be simulated via recursive calls to templates, passing the
updated value as a parameter with each call.)

• XSLT does not have a complete set of mathematical operators. For ex-
ample, there are no built-in trigonometric functions and no random
number generator. This can make some tasks tedious and error prone.

• Because an XSLT style sheet is always a single document tree, we can-
not split output into several files—a feature that is desperately needed
when we want to convert a complex XML file into a set of interrelated
XHTML, SVG, and SMIL files.

However, this issue is addressed in XSLT 1.1 (Clark 2001), which is
currently in draft status. An xsl:document instruction will allow the
redirection of the output stream.

• XSLT converts an input document into an output document, but
it does not produce a binding between both. This is fine for mere
representation purposes, but it does not really support user interactiv-
ity. For example, we can easily write a style sheet that converts a
representation-neutral XML file into an XForms file, but we have no
way to map the user input back to the original XML file. (Section 4.4.2
discussed how this is still possible.)

9.5 EXTENSIONS

These limitations are asking for an extension technique, which XSLT for-
tunately provides. Several XSLT processors exist that allow extensions,
most notably Michael Kay’s Saxon (Kay 2001) and Xalan from the Apache
Group.

Chapter 9 Transformation

No “real”
variables

XSLT 1.1

360

However, although the extension technique is standardized, the exten-
sion implementation is not standardized, so you have to decide on a spe-
cific processor and stay with that processor. The good news is that there
are community efforts to create a standard set of extensions: have a look
at www.exslt.org.

XSLT extensions come in three flavors:

• Extension attributes. Extension attributes can be used to influence the
behavior of the XSLT processor. For example, an extension attribute
may be used to switch on the processor’s trace function.

• Extension elements. Extension elements perform actions by calling an
extension routine. For example, an extension element can redirect the
output stream, so that it becomes possible to create several output files
from one style sheet. Extension elements may contain attributes, text
nodes, and child elements. This content is passed to the associated ex-
tension routine. Values that are returned to the extension element are
inserted into the result tree.

• Extension functions. Extension functions are called in the same way as
XSLT core library functions are called. Function arguments are passed
to the associated extension routine, and the value returned by the rou-
tine is passed back as the function result.

Several XSLT processors support extensions, most notably Saxon and
Xalan. The Saxon XSLT processor is well renowned for its robustness,
speed, and extensibility. It is also one of the few processors that supports
the XSLT key construct. It is freely available at users.iclway.co.uk/mhkay/
saxon/. Saxon allows the implementation of extension elements, exten-
sion attributes, and extension functions in the form of Java classes. The
Saxon package comes with a rich collection of built-in extensions.

Xalan uses the Bean Scripting Framework (BDF) to incorporate ex-
tension routines. This allows independence from particular scripting
languages. Thus, Xalan supports a wide range of scripting languages
such as Mozilla Rhino, NetRexx, BML, JPython, Jacl, JScript, VBScript, or
PerlScript. In addition, it is possible to call methods of Java objects, too.

Here is a simple example of a Xalan extension function:

<?xml version=”1.0”?>
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”
xmlns:lxslt=”http://xml.apache.org/xslt”
xmlns:my-ext=”ext1”
extension-element-prefixes=”my-ext”>

9.5 Extensions

Extension flavors

Saxon

Xalan

361

<!—lxslt:component defines the JavaScript
extension function —>

<lxslt:component prefix=”my-ext”
functions=”logscale”>

<lxslt:script lang=”javascript”>
function logscale(x)
{ return Math.ln(parseInt(x))*Math.LOG10E*20; }

</lxslt:script>
</lxslt:component>

...

<xsl:template match=”sales-figure”>
<rect style=”stroke:green;fill:lightgreen”

x=”100” y=”400” width=”50”>
<xsl:attribute name=”height”>
<xsl:value-of select=”my-ext:logscale(.)”/>

</xsl:attribute>
</rect>

</xsl:template>

...

</xsl:stylesheet>

The lxslt:component element defines all extension components, in this
case only one function (log). This must be declared in the functions
attribute. This function accepts one argument and adjusts it to a logarith-
mic scale. The function is then used in the template that matches sales-
figure. Here we generate an SVG element to draw a rectangle. We see
how we can use the XSLT instruction xsl:attribute to dynamically cre-
ate an attribute for element <rect>.

Here is a simple example of file redirection:

<xsl:template match=”shipTo”>
<redirect:write select=”envelope.xml”>
<envelope>
<xsl:apply-templates/>

</envelope>
</redirect:write>

</xsl:template>

This template matches the <shipTo> element in our bookOrder example.
For the whole processing of this element it redirects the output stream to

Chapter 9 Transformation362

a file called envelope.xml. After the element has been processed, the out-
put stream is switched back to its previous destination. (The redirect
extension is a predefined extension shipped with the Xalan package.)

9.6 AUTHORING AND TESTING OF XSL STYLE SHEETS

There are quite a few XSLT authoring tools. The W3C XSLT Web site
lists a comprehensive set of them. We can classify these tools into three
categories:

• Generic XSLT editors: These editors allow the writing of XSLT style
sheets. The XSLT code is checked for correctness, and the style sheet
can be tested against existing XML documents. These editors require a
good knowledge of XSLT.

One prominent example is IBM’s XSL editor, which is available
under the usual 90-day license from the alphaworks Web site. Im-
plemented in Java, this tool allows the display of the source docu-
ment, the style sheet, and the resulting output side by side. All three
documents can be viewed in text mode and tree mode. A debugger al-
lows the tracing of the execution of the style sheet and the setting of
breakpoints.

• Visual XSLT editors: These editors are targeted toward the creation of
style sheets that transform XML into HTML. The target HTML docu-
ment is composed by visual means (similarly to how it is done in a vi-
sual HTML editor). The author associates these display elements with
the elements of the source XML document. The tool generates XML
templates appropriately. In most cases authors will not have to write
XSLT. Typical examples of such tools are eXcelon’s Stylus, Whitehill’s
<xsl>Composer, and XML Spy (all commercial products).

• Generic XSLT generators: These tools allow the association of the ele-
ments of source documents and target documents with the help of a
mapping function. Users can select from a variety of available map-
ping functions. The tool will then create appropriate XSLT style sheets.
An example of such a tool is XSLerator, again from alphaworks.

9.7 PERFORMANCE ASPECTS

The first XSLT processors, such as James Clark’s XT, were implemented in
Java using the DOM API (see Section 2.8.2). These processors are quite
resource hungry because any node in the input document and in the

9.7 Performance Aspects

XT

363

style sheet is represented by a first-class object. However, XT is still one of
the fastest XSLT processors around, especially when large documents are
to be transformed.

But Saxon also seems to have kept pace. By using caching techniques
for transformed pages, performance levels better than obtained with Java
Server Pages (JSP) technology have been reported.

The Xalan processor (also implemented in Java) reduces the object-
oriented overhead by representing XML nodes with integer array ele-
ments instead of full objects, thus requiring far fewer resources.

C++ implementations such as Sablotron and Informiix generally
achieve a better performance than Java implementations when small
documents are processed, with Sablotron slightly outperforming XT for
large documents, too.

Sun Microsystems, in the meantime, has developed an XSLT compiler.
The compiler takes an XSLT style sheet as input and generates a hierarchy
of Java classes, packed into a “translet.” This translet will then accept
XML documents as input, apply the specified transformations, and de-
liver output documents. The compiler covers virtually all of the XSLT 1.0
specification, but it has only limited support for extension and cannot
split the output into several files.

Performance improvements by a factor of 2–3 can be expected. In one
case reported, the time to transform a large document was reduced from
8 minutes (obtained with an interpreting XSLT processor) to 25 seconds
(i.e., a factor of 19).

Sun has donated the XSLT compiler to the Apache organization, where
it has become part of the Xalan distribution. The compiler, however, can-
not handle extensions in the way Xalan does.

Another development is the XSLT compiler by Olivier Gerardin. This
compiler translates XSLT style sheets into C++ classes with similar perfor-
mance gains. This compiler is available under the GNU license from
www3.cybercities.com/x/xsltc/.

Although performance gains can be achieved by the selection of the
right XSLT processor, the best performance gains in heavy traffic situa-
tions are achieved via caching. XML documents are transformed into the
target format such as HTML when requested, but the result of the trans-
formation is stored in a cache. Subsequent requests that access the same
document are served directly from the cache. However, update operations
to the original XML document must be carried forward to the cached
transformations.

Chapter 9 Transformation

Saxon

Xalan

Sablotron

Sun’s XSLT
compiler

Compiling to C++

Caching

364

9.8 OTHER LANGUAGES

XSLT is not the only way to transform an XML document. Transforma-
tion is also possible with general-purpose languages such as Java, C, C++,
Pascal, SmallTalk, Eiffel, Visual Basic, JavaScript, and so on—even with
assembler, if you really want. Some of these languages have access to SAX
or DOM APIs that reduce the effort to parse the XML document. In par-
ticular, Java has the most complete XML support, as virtually all new
implementations of XML processors are done in Java first.

Then there are the languages that feature strong pattern-matching fa-
cilities. In particular, languages with good support for regular expressions
are well suited to process XML. Here are a few examples.

9.8.1 Omnimark

Omnimark is a commercial product by stilo that is designed for docu-
ment transformation. It has strong support for XML and can transform
non-XML to XML and vice versa. Several packages exist to support bulk
document translation, client-server situations, SOAP, and BizTalk.

9.8.2 Perl

There is a rich ensemble of XML-related modules (including SAX and
DOM APIs) in the public Perl libraries (CPAN). Several modules deal with
document transformation. Some are for specific transformations; others
provide generic transformations similar to XSLT:

• GXML (Generic XML Transformation Tool) is one. According to the
author, Josh Carter, “GXML is a perl module for transforming XML. It
may be put to a variety of tasks; in scope it is similar to XSL, but less
ambitious.” The good thing is that this processor provides an exten-
sion mechanism via a callback mechanism, allowing the execution of
Perl expressions at the start and end of each XML tag.

• An XSLT processor (XML::XSLT) has been implemented in Perl by
Geert Josten, Egon Willighagen, and Mark A. Hershberger.

• Other options (with a better performance) are Perl wrappers for C++
transformation engines such as XML::Sablotron and XML::Informix.

• XML::Pyx is a simple event-oriented parser (i.e., similar to SAX). The
client is informed about tags and the content of elements and can re-
act accordingly.

9.8 Other Languages

General-purpose
languages

Languages with
pattern matching

365

• XML::Simple works in a similar way as DOM. It parses the entire XML
file and loads it into a tree structure in memory. It does not work well
for complex document-centric XML, but it works well for simple data-
centric XML.

• XML::XPath is a Perl module for parsing and evaluating XPath expres-
sions that conform to the W3C’s XPath recommendation.

9.8.3 XDuce

Some functional languages such as Clean, Haskell (HaXML), ML, O’Caml,
and XMLambda support XML. As one example from this group, we will
briefly discuss XDuce (pronounced “transduce”), a research project at the
University of Pennsylvania (Hosoya and Pierce 2000). It is a functional
language based on the principles of ML but extended with the ability to
utilize regular expressions for pattern matching and to recognize XML
elements as datatypes. As regular expressions closely resemble structures
that can be defined with a DTD, it is quite easy to formulate complex
document transformations in XDuce.

Given the DTD

<!ELEMENT addrbook (name,addr,tel?)*>

<!ELEMENT name #PCDATA>

<!ELEMENT addr #PCDATA>

<!ELEMENT tel #PCDATA>

the following XDuce program converts an address book document into a
phone list document:

fun mkTelList : (Name,Addr,Tel?)* –> (Name,Tel)* =
name[n:String], addr[a:String], tel[t:String],

rest:(Name,Addr,Tel?)*
–> name[n], tel[t], mkTelList(rest)

| name[n:String], addr[a:String], rest:(Name,Addr,Tel?)*
–> mkTelList(rest)

| ()
–> ()

Functional languages are usually strongly typed, and so is XDuce. Any
document node establishes its own datatype (this is in fact very close to
the concept of complex types in XML Schema). Types are carried across

Chapter 9 Transformation

Strongly typed
languages

366

function definitions, and consequently the function mkTelList has the
type of “Function mapping address book to phone list,” which is declared
in the first line of the program.

The processing is recursive: the whole address book is matched against
a regular expression. While the left arguments of that expression match
the constituents of one address book entry, the rest of the address book is
matched against the rest:(Name,Addr,Tel?)* expression and is processed
subsequently. There are three alternatives: one for address book entries
with a phone number, one for entries without a phone number, and one
for the empty list. The respective results are assembled on the right side of
the arrow operator.

There are three advantages to this approach:

• The functional paradigm seems to be better suited for document trans-
formation than the rule-based (and sometimes surprising) mechanism
in XSLT.

• Functional languages are strongly typed and use static type checking at
compile time. This prevents many nasty surprises at runtime.

• The integration of XML transformations into a computationally com-
plete language makes an extra extension mechanism obsolete.

Statically typed languages such as XDuce and others with type systems
that can support the XML information set seem to be a very promising
approach. However, this area is still very much a research topic.

9.9 GENERATING WEB PAGES

XSLT is not the only way to present XML data as HTML. There are several
other techniques that are based on HTML and that can pull XML content
into Web pages.

Sun Microsystem’s Java Server Pages (java.sun.com/products/jsp) allows
the embedding of Java directives into HTML pages. These directives are
executed when a page is requested. XML data can be accessed from these
directives using a Java API such as DOM or SAX.

Anakia is a similar technology in the context of Apache’s Jakarta proj-
ect (jakarta.apache.org). Anakia uses JDOM and Velocity to embed XML
content into Web pages.

XSP (eXtensible Server Pages) combines dynamic generation and
transformation with XSLT style sheets. XSP is Cocoon’s (also an Apache

9.9 Generating Web Pages

Advantages

Java Server
Pages

Anakia

XSP

367

project; see Section 11.5.1) technology for dynamically generated XML.
Similar to Java Server Pages, XSP includes directives that are executed
when an XSP page is requested. This results in a rendered XML docu-
ment. This document can then be processed further with an XSLT style
sheet.

Chapter 9 Transformation368

T
E
A
M
F
L
Y

Team-Fly®

10

369

Infrastructure

10.1 Business
Requirements

10.2 Web Services

10.3 ebXML

10.4 Industry Vocabularies

“Web services” has been the latest catch phrase out

of the marketing departments of the IT industry.

Despite the hype, Web services are important building blocks

for Internet applications. Architectures such as Hewlett-

Packard’s e-speak, Sun Microsystem’s ONE, Microsoft’s .NET,

or ebXML all rely on Web services. In Section 10.2, we take a

closer look at this technology.

In Section 10.3, we move the discussion to ebXML. This

standard, authored by UN/CEFACT and OASIS and adopted

by major industry associations such as OTA or Covisint, com-

bines the experience of the EDI community with the flexibil-

ity of XML. This leads to new and innovative solutions, such

as the negotiation of shared business processes or the treat-

ment of context, from which we can learn a lot. It will be

interesting comparing ebXML with BizTalk, which is dis-

cussed in Chapter 11.

Finally, we list some of the most important XML industry vocabularies,
such as SyncML, DocBook, FpML, HL7, and many more.

10.1 BUSINESS REQUIREMENTS

Business-to-business communication requires infrastructure and interme-
diaries. Intermediaries like marketplaces, exchanges, auctions, and so on
provide transparency in an otherwise chaotic world. Just as in the real
world, where markets, real estate agents, and other intermediaries pro-
vide transparency, Internet B2B intermediaries provide transparency
regarding price, product features, availability, and supplier characteristics
(Anant and Pandya 2001).

In the current stage of the Internet such intermediaries take the form
of online exchanges, markets, portals, auctions, reverse auctions, and so
on. They simply bring buyer and supplier together and assist in the pro-
cess of matching request and offer. They support the search for products
or product requests and help in the configuration of products. For buyers,
such intermediaries offer the chance to find a supplier with a better price
or product. Suppliers benefit from a larger group of potential buyers.
Typical examples of intermediaries are companies such as VerticalNet,
Chemdex (now Ventro), Commerce One, and Ariba. Some marketplaces
were founded by interested industry sectors such as the automotive in-
dustry and retail sectors. Both of these sectors have a long-standing expe-
rience with one-to-one data exchange via EDI but have moved into
many-to-many Internet-based marketplaces. For example, the Global Net
Exchange is an initiative by Sears, Carrefour, Sainsbury, and others; the
competing Worldwide Retail Exchange is an initiative by Kmart, Target,
Walgreens, Tesco, Auchan, Casino, and others; and the Grocery Manufac-
turers’ Association’s eCPG is an initiative by P&G, Unilever, Kraft Foods,
and others.

Traditionally, online interchange between trading partners has been a
bilateral affair. EDI (Electronic Data Interchange) requires each trade part-
nership to be negotiated separately. Within the next few years B2B trade
will move quickly from a one-to-one model to a many-to-many relation-
ship. According to Forrester Research:

Online, bilateral trade—between two companies—will more than triple by
2004 to nearly $1.3 trillion, but the volume of trade through the market-
places will surge from a tiny fraction of that number today to over half of
online trade by 2004.

Chapter 10 Infrastructure

Intermediaries

EDI

370

Many of the current online exchanges are the result of interested in-
dustry groups. The result is that several similar exchanges operate within
the same market sector as competitors. In the next few years we will see
these exchanges grow together. Marketplaces will acquire the ability to
link with other marketplaces. These metamarkets will provide even better
transparency.

10.2 WEB SERVICES

An online exchange or marketplace is, however, just a special form of
Web service. Other intermediaries specialize in services such as credit card
checks, financing, and fulfillment. Nearly every day, we see additional
Web services come into existence—Web services that not only support
the buying/selling process but that support other business processes, too.
Even manufacturing could be offered as a Web service (and this is almost
the case in virtual enterprises).

In the end, shrink-wrapped software packages could become an endan-
gered species (at least in the standard office environment)—or rather an
augmented species.

Standard software will increasingly integrate Web services. Web ser-
vices can range from very simple services to rather complex ones. Here
are a few examples of basic Web services: stock quotes, currency conver-
sion, fetching articles from an archive, email sender, language transla-
tion, generating a UUID, real-time flight information, storage system for
XML documents, conversion between XML vocabularies, checking HTML
pages for accessibility, shared address book, FedEx tracker, eBay price
watcher, and registering and finding a Web service in a directory. (A list of
such services and their descriptions is found at www.xmethods.com.) It
seems that such Web services can add substantial value to existing stan-
dard software packages.

All of the big players in the industry have announced their own Web
service strategy. The merit of being the first goes to Hewlett-Packard,
which formulated a quite complete, albeit proprietary, solution with
e-speak. They were followed by IBM with its Web service strategy. Sun
Microsystems followed suit with Sun ONE. Then Microsoft added a sub-
stantial push to Web services with its .NET initiative, and recently with its
project Hailstorm.

With SOAP (see Section 6.5.2), WSDL (Section 6.6.3), and UDDI (Sec-
tion 7.3), there is now a framework for message transport, protocol defi-
nition, and service registration and recovery in place. This allows the

10.2 Web Services

Marketplaces

An extinct
species?

The big players

SOAP, WSDL,
UDDI

371

wide-scale application of Web services, just as TCP/IP, HTTP, and HTML
were the prerequisites for the expansion of the World Wide Web. The in-
tegration of SOAP into Microsoft’s Windows operating systems, the sup-
port of SOAP by Apache.org, and the support of XML, SOAP, WSDL, and
UDDI by Sun Microsystem’s Java programming language will facilitate
this.

10.2.1 Orchestration

The inclusion of Web services into a business process can be achieved
with varying degrees of automation:

• Manual invocation of Web services via a generic Web service client
(similar to a Web browser).

• Invocation of Web services in the context of a traditional application.
For example, a spreadsheet package could fetch stock quotes via a Web
service and could then invoke another Web service to convert the
quote into another currency.

• Invocation in the context of a custom-designed business process.
Microsoft’s BizTalk Orchestration is an example of this (see Section
11.3.3).

• (Semi-)automatic localization of Web services and (semi-)automatic
negotiation of business processes. ebXML is an example (see Section
10.3).

In the first two cases business processes are driven by the human operator.
In the last two cases, business processes run autonomously in a workflow-
like fashion, with human assistance becoming just another service.

10.2.2 Availability

As Web services are accessed via the Web, they are subject to intermittent
availability. A service may not be available for a period of time due to
downtime of the server or system overload.

Business processes that use Web services have to decide what to do in
such cases: wait until the service becomes available again, try to locate
another equivalent service, or report a failure of service. This requires
business rules that are able to describe alternatives and that are able to
compromise on less-than-optimal solutions.

10.2.3 Collaboration Instead of Integration

Web services can be business processes, too. In some cases (especially in
most of the services mentioned earlier), these processes are just simple

Chapter 10 Infrastructure

BizTalk

ebXML

Finding
alternatives

372

stateless request/response type services. In other cases a Web service can
offer a more complex interface involving several requests and responses
depending on the current state of the service process. Therefore we speak
of “business process collaboration.”

Conceptually, these processes are communicating sequential processes
(Hoare 1985). They require not only the definition of the format for re-
quests and responses but also the definition of the process behavior. This
is usually done in the form of a state transition table or a Petri net (but
see Chapters 5 and 6 for a discussion).

10.2.4 Transactions

For business processes that consist of several services, process integrity be-
comes an issue. When one service fails, what should we do with the other
services?

To run such a process properly, a transactional concept (see also Sec-
tion 6.6) is required. This transaction concept differs from the classical
database transaction concept (ACID). A suitable transaction concept for
Web services is the concept of long-running (or long-lived) transactions.
Transactional Web services are required to offer compensating actions
(that can semantically undo a previous action) in order to support this
transaction concept.

A business process that includes several Web services can be offered as
a Web service itself and can thus be embedded into a larger business pro-
cess. This technique allows for a high degree of modularity and special-
ization, and at the same time for arbitrarily large and complex processes.
ebXML (see Section 10.3), for example, explicitly uses nested business
processes to construct processes that involve more than two partners. For
example, a process to make a reservation for a trip to Venice involves sev-
eral subprocesses: one subprocess to book the flight, one to arrange for a
hotel, and one to charter a gondola. If one of these processes fails, addi-
tional processes are needed to roll back (or compensate) the others.

10.2.5 Software Engineering

Especially for supply chain integration, Web services can be combined
into processes that span the complete life cycle process of a product and
its parts. The resulting network from interrelated and collaborating busi-
ness processes will exceed the complexity of traditional enterprise IT
infrastructures. This requires software engineering techniques for the
management, scalability, security, and auditing of business process col-
laborations—techniques that are, today, still in their infancy.

10.2 Web Services

Communicating
sequential
processes

Long-running
transactions

Nested Web
services

Complexity

373

10.2.6 Service Localization

When we look at the different parties involved in Web services, we can
identify three roles:

• Web service provider: The service provider has to decide what to offer as
a Web service, how to describe these services, and where to publish
these descriptions. In Section 6.6.3 we discussed WSDL, a standard to
describe Web services.

• Web service consumer: Service consumers first have to formulate their re-
quirements, then have to try to discover a service that satisfies these re-
quirements. In order to do so, they must understand the description of
the service and negotiate a communication protocol with the service.

• Web service broker: Service brokers help the providers and the con-
sumers get together. They provide repositories that contain the service
descriptions. These repositories contain white and yellow pages that
list services by name and by service type. In Section 7.3, we discussed
UDDI, a standard that defines the registration of Web services in
repositories.

However, just a list of addresses and descriptions will only be of lim-
ited help. Crucial for service brokers is to provide sound taxonomies
for Web services. A good taxonomy will help service consumers to un-
derstand the semantics of a service. Semantic navigation in the form of
a semantic map (for instance, a topic map; see Section 7.2) will help to
locate the right service.

In addition, Web brokers can offer auxiliary services, too. For exam-
ple, they can gather statistics (which services are wanted most, and by
whom). They can arrange for payment of services. They can even for-
ward requests to other brokers. Thus Web service brokers provide Web
services themselves.

Web services thus dissolve the classical client-server architecture into
individual services that are scattered across the Web. They will rely
heavily on peer-to-peer communication and on sophisticated semantic
navigation techniques that allow consumers to find the right service. Or
will the services begin to hunt the Web for possible consumers?

10.3 ebXML

ebXML may well be the most important development for electronic busi-
ness in a long time. Started as an initiative of UN/CEFACT and OASIS,
ebXML combines the industry’s rich experience with EDI, the flexibility

Chapter 10 Infrastructure

Semantic maps

Added value

374

of XML, the reusability of component-oriented systems, and ground-
breaking work in the treatment of context. According to Carol Geyer of
Oasis:

Members of the Global Commerce Initiative (GCI) announced plans to use
ebXML as the backbone of their new data exchange standard for business-to-
business trade in the consumer goods industry. . . . GCI members include 40
major manufacturers and retailers as well as eight trade associations, which in
total represent 850,000 companies around the world. Exchanges such as
Transora, the WorldWide Retail Exchange, GlobalNetXchange, and CPGmar-
ket.com are taking active roles in the GCI development.

In early 2002, other industry alliances, such as the Open Travel Al-
liance (OTA) and Covisint, joined the ebXML initiative. For the business
world, ebXML is probably the most important standard since XML.
ebXML not only defines a global nonproprietary standard to exchange
data between businesses, but it also introduces an infrastructure that sup-
ports collaborative business processes. This infrastructure enables ebXML
to automate much of the process of locating and establishing business
partnerships, in particular, where companies previously have not done
business with each other.

In the first phase, ebXML will not replace existing EDI/EDIFACT solu-
tions. Large corporations already have EDI/EDIFACT solutions in place,
and according to the rule “if it ain’t broke, don’t fix it,” these solutions
will hardly be replaced at first sight. Thus, ebXML will initially exist in ar-
eas where EDI/EDIFACT is not in place (such as small businesses), but also
where EDI/EDIFACT solutions must be integrated with other solutions.

10.3.1 Basic Concepts

From Oasis (2002):

ebXML . . . is built on three basic concepts: provide an infrastructure that
ensures data communication interoperability; provide a semantics framework
that ensures commercial interoperability; and provide a mechanism that
allows enterprises to find each other, agree to become trading partners and
conduct business with each other.

The infrastructure is provided through a standard message transport
mechanism, a well-defined interface, packaging rules, and a predictable
delivery and security model. The specification allows any application-
level protocol to be used for message transport, including common pro-
tocols such as SMTP, HTTP, FTP, and SOAP. An interface for business ser-
vices handles messages at either end of the transport.

10.3 ebXML

EDI will stay

Message
transport

375

The semantic framework includes a metamodel for defining business
process and information models, reusable core components that reflect
common business processes and XML vocabularies, and a process for
defining actual message structures and definitions as they relate to the ac-
tivities in the business process model.

The mechanism for discovery, agreement, and collaboration is pro-
vided through shared repositories (OASIS 2001f) where enterprises can
register and discover each other’s business services via collaborative partner
profiles (CPP), a process for defining and agreeing to a formal collaboration
protocol agreement (CPA), and a shared repository for company profiles,
business process models, and related message structures. ebXML can
make use of UDDI to locate registries and repositories (OASIS 2001e).

10.3.2 Shared Repositories

The shared repositories (ebXML registry) for company profiles, business
process models, and related message structures are the pivot points within
the ebXML architecture.

When a company—let’s call it Nuts & Bolts—plans to build its own
ebXML-compliant application, it first reviews existing ebXML repositories
(step 1 in Figure 10.1). (However, the use of repositories is optional.
ebXML relationships can also be negotiated between two parties directly.)
Utilizing the reusable components stored in the repositories, Nuts & Bolts
will set up its own ebXML-compliant application (step 2). The company
will then register the implementation details and its own company busi-
ness profile in an ebXML registry (step 3). This profile describes Nuts &
Bolts’ ebXML capabilities and constraints, and the supported business
scenarios. The registry then checks if format and usage of the business sce-
narios are correct and sends an acknowledgment to Nuts & Bolts.

Now a company called Doors & Windows is looking for a supplier of
hardware. Doors & Windows discovers Nuts & Bolts in the ebXML reg-
istry (step 4). They find that the business scenarios supported by Nuts &
Bolts satisfy their requirements. Doors & Windows decides not to imple-
ment its own ebXML application but to buy an ebXML-compliant shrink-
wrapped application. After installation of that package, they download
the CPP of Nuts & Bolts (step 5) and construct a CPA by computing an in-
tersection of the downloaded CPP and their own CPP (step 6). This can be
done manually or automatically.

The resulting CPA is then proposed directly to Nuts & Bolts’ ebXML-
compliant software interface for further negotiation (step 7). The CPA
outlines which business scenarios both companies agree on plus some

Chapter 10 Infrastructure

Semantic
framework

Shared
repositories

The heart of
ebXML

Registration

Discovery

Negotiation

376

specific agreement. It is then used to configure the runtime systems of
both companies. In particular, the CPA contains information about mes-
saging requirements for transactions, the conversations that take place in a
collaborative business process, contingency plans, and security-related
requirements. After Nuts & Bolts accepts the business agreement, both
companies are ready to engage in e-business using ebXML (step 8).

The ebXML architecture is in part influenced by the Open-edi Refer-
ence Model, ISO/IEC 14662. The Open-edi reference model (ISO/IEC
1997) was released by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC) in 1997.
The Open-edi model is generic—it does not define an operational stan-
dard but serves as the basis for the work between the different agencies
involved in EDI standardization.

Open-edi makes a clear distinction between the business operational
view (business rules) and the functional service view (interoperability

10.3 ebXML

Open-edi

377

Figure 10.1 Registration, discovery, and negotiation in ebXML.

Nuts and Bolts

Doors and
 Windows

ebXML
Repository

1. Review contents.

4. Discover
 profiles.

7. Negotiate and
 agree over CPA.

8. Conduct
 business.

5. Download CPP.2. Implement
 local system.

6. Construct
 CPA.

3. Register CPP.

rules). Business scenarios can be defined and registered by business com-
munities. Users can thus reuse existing scenarios instead of negotiating
all the details from scratch. Each scenario consists of the following:

• Roles: A role defines a partner involved in a business scenario.
• Information bundles: Information bundles describe formally the seman-

tics of the information exchanged between the parties involved in a
business scenario.

• Semantic components: Information bundles are constructed using se-
mantic components. A semantic component is a unit of unambigu-
ously defined information in the context of the business goal of the
business transaction.

• Scenario attributes: Scenario attributes describe information indepen-
dent of roles or information bundles.

The dynamic aspects of scenarios are defined using existing formal meth-
ods such as state transition diagrams or Petri nets.

The CPP is part of the trading partners profile (TPP) (OASIS 2001a). It de-
fines the capabilities of a single partner in terms of becoming engaged in
business with other partners. The specifications of the CPP form a layered
architecture:

• Process specification: This is the top layer of the specifications and de-
fines the services (business transactions) offered to other partners, as
well as the transition rules that determine the valid sequence of service
requests. These definitions are made in the separate process specifica-
tion document (see below). This document is referenced by both CPP
and CPA.

• Delivery channels: This layer describes the message-receiving character-
istics of a party. One CPP can contain several delivery channels. Each
channel consists of one document exchange definition and one trans-
port definition.

• Document exchange layer: This layer processes business documents ac-
cepted from the process specification layer at one party. If specified,
the documents are encrypted and digital signatures are added (see Sec-
tion 6.8). The document is then passed to the transport layer for trans-
mission to the other party. When documents are received from the
other party, the inverse steps are performed. The document exchange
layer complements the services offered by the transport layer. If, for ex-
ample, the selected transport protocol does not provide encryption,
but message security is required, then encryption must be specified at
the document exchange layer.

Chapter 10 Infrastructure

CPP in detail

378

T
E
A
M
F
L
Y

Team-Fly®

The protocol for exchanging messages is defined by the ebXML mes-
saging service specification or other similar messaging services.

• Transport layer: This layer is responsible for message delivery. The trans-
port protocol can be specified—the choice may affect the choices se-
lected for the document exchange layer. For example, some protocols
may provide authentication and encryption, while others don’t.

Here is a CPP example:

<CollaborationProtocolProfile
xmlns=”http://www.ebxml.org/namespaces/tradePartner”
xmlns:bpm=”http://www.ebxml.org/namespaces/businessProcess”
xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<PartyInfo>
<PartyId> … </PartyId>
<PartyRef> … </PartyRef>
<CollaborationRole>
<CertificateRef certId = “…”/>
<ProcessSpecification name=”…” … />
<Role name=”…” … />
<ServiceBinding name=”…” channelId=”…”>
<Override action=”…” channelId=”…” … />

</ServiceBinding>
</CollaborationRole>

<Certificate> … </Certificate>

<DeliveryChannel channelId=”…” transportId=”…”
docExchangeId=”…”>

<Characteristics
nonrepudiationOfOrigin = “true”
nonrepudiationOfReceipt = “true”
secureTransport = “true”
confidentiality = “true”
authenticated = “true”
authorized = “true”/>

</DeliveryChannel>

<Transport transportId = “…”>
<Protocol>…</Protocol>
<Endpoint uri=”…” type = “…”/>
<TransportSecurity>

10.3 ebXML 379

<Protocol>…</Protocol>
<CertificateRef certId = “…”/>

</TransportSecurity>
</Transport>

<DocExchange docExchangeId = “…”>
<ebXMLBinding>
<MessageEncoding> … </MessageEncoding>
<ReliableMessaging deliverySemantics=”…”

idempotency=”false”
persistDuration=”…”>

<Retries> … </Retries>
<RetryInterval> … </RetryInterval>

</ReliableMessaging>
<NonRepudiation>

<Protocol> … </Protocol>
<HashFunction> … </HashFunction>
<SignatureAlgorithm> … </SignatureAlgorithm>
<CertificateRef certId = “…”/>

</NonRepudiation>
<DigitalEnvelope>

<Protocol> … </Protocol>
<EncryptionAlgorithm> … </EncryptionAlgorithm>
<CertificateRef certId = “…”/>

</DigitalEnvelope>
<NamespaceSupported> … </NamespaceSupported>

</ebXMLBinding>
</DocExchange>

</PartyInfo>

<ds:Signature>

...

</ds:Signature>

<Comment>text</Comment>

</CollaborationProtocolProfile>

Besides the namespace definitions for trade partners, business pro-
cesses, signatures, and XLink, and optional elements for signature specifi-
cation and comments, a CPP document contains at least one PartyInfo
element. Each of these contains the following:

Chapter 10 Infrastructure

CPP elements

380

• At least one PartyId element defining a logical identifier for the party,
for example, a URI.

• At least one PartyRef element specifying a link (URI) to additional in-
formation about the party, for example, a URL pointing to the party’s
Web site, a UDDI or ebXML repository, or an LDAP directory.

• At least one CollaborationRole element defining the role of the party
within a business process. Child elements identify the certificate to be
used for this role, the business process to which the role belongs, and
the role the party plays within this process (for example, buyer or
seller). Each CollaborationRole contains ServiceBinding elements to
bind the role to main and alternative delivery channels. Override ele-
ments can specify different channels for specific actions, for example,
for acknowledgments or express messages.

• At least one Certificate element identifying the certificate to be used
in this CPP.

• At least one DeliveryChannel element. Each delivery channel identifies
one Transport element and one DocExchange element and contains a
Characteristics element that specifies several channel attributes.

• At least one Transport element. Each of these contains child elements
to specify the protocol used (HTTP, SMTP, FTP, SOAP), the channel end
points, and security settings (protocol, certificate). There are different
types of channel end points: login, request, response, error, allPurpose.

In addition, each PartyInfo element also contains at least one Doc-
Exchange element. Each of these defines the properties of a messaging ser-
vice to be used. Each DocExchange element contains an ebXMLBinding ele-
ment that describes properties specific to the ebXML Message Service:

• MessageEncoding specifies the encoding standard used for the transmis-
sion, such as BASE64.

• ReliableMessaging describes the properties for reliable ebXML message
exchange. The deliverySemantics attribute can take the values “Once-
AndOnlyOnce” or “BestEffort” (no reliable messaging). The idempo-
tency attribute can take the values “true” and “false”. If set to “true”,
all messages are subject to an idempotency test ensuring that message
duplicates are discarded. (Messages could be duplicated when message
transmission is retried or restarted after an exception has happened.)
The value of the persistDuration attribute is the minimum length of
time a message should be kept in persistent storage. The Retries and
RetryInterval child elements specify how often and in which intervals
message transmissions should be repeated after a timeout.

10.3 ebXML 381

• The NonRepudiation element allows the proof of who sent a message
and prevents later repudiation. Nonrepudiation is based on the XML
digital signature (see Section 6.8). The Protocol child element identi-
fies the technology used to digitally sign a message, such as XMLDSIG.
The HashFunction child element identifies the algorithm used for mes-
sage digest. The SignatureAlgorithm child element identifies the digital
signature algorithm. The CertificateRef child element refers to one of
the Certificate elements elsewhere within the CPP.

• The DigitalEnvelope element specifies a symmetric encryption proce-
dure. (The shared secret key is sent to the message recipient encrypted
with the recipient’s public key.) The Protocol child element identifies
the security protocol to be used, for example, S/MIME. The Encryp-
tionAlgorithm child element identifies the encryption algorithm to be
used. The CertificateRef child element refers to one of the Certifi-
cate elements elsewhere within the CPP or CPA.

• The NamespaceSupported element lists any namespace extensions sup-
ported by the implementation, such as Security Services Markup Lan-
guage or Transaction Authority Markup Language.

10.3.3 Contracts in ebXML

The CPA is part of the trading partners agreement (TPA) (OASIS 2001a). A
CPA describes on which capabilities two parties have agreed to conduct
business. This includes technical capabilities such as communication and
messaging protocols but also business capabilities (i.e., which business
processes are shared in the context of a CPA).

Here is a CPA example:

<CollaborationProtocolAgreement id = “…”
xmlns=”http://www.ebxml.org/namespaces/tradePartner”
xmlns:bpm=”http://www.ebxml.org/namespaces/businessProcess”
xmlns:ds = “http://www.w3.org/2000/09/xmldsig#”
xmlns:xlink = “http://www.w3.org/1999/xlink”>

<CPAType>
<Protocol> … </Protocol>
<Type> … </Type>

</CPAType>
<Status value = “…”/>
<Start> … </Start>
<End> … </End>
<ConversationConstraints invocationLimit = “…”

Chapter 10 Infrastructure

CPA in detail

382

concurrentConversations = “…”/>
<PartyInfo> … </PartyInfo>
<PartyInfo> … </PartyInfo>
<ds:Signature> … </ds:Signature>
<Comment> … </Comment>

</CollaborationProtocolAgreement>

Because a CPA is constructed from an intersection of the CPPs of the two
parties, most elements of a CPA are the same in a CPP. We explain here
only the additional elements.

• The optional CPAType element contains information about the general
nature of the CPA. A Protocol child element identifies the business-
level protocol, for example, PIP3A4, a RosettaNet Partner Interface Pro-
cess. A Type child element specifies additional information regarding
the business protocol. The specific values depend on the particular pro-
tocol. An example is RNIF (RosettaNet Implementation Framework).

• The required Status element identifies the state of the process that cre-
ates the CPA. Two values are possible in its value attribute: “proposed”
when the agreement is still negotiated and “signed” if the agreement is
closed.

• The required Start and End elements specify the date and time when
the CPA takes effect and when the CPA must be renegotiated by the
parties (i.e., the lifetime of the CPA).

• The optional ConversationConstraints element documents certain
agreements about conversation processing. The invocationLimit attri-
bute defines the maximum number of conversations that can be per-
formed under this CPA. The concurrentConversations attribute defines
the maximum number of conversations that can be processed under
this CPA simultaneously.

• Two required PartyInfo elements, one for each party. These elements
describe the terms under which each party has agreed to this CPA. For
a detailed description of the PartyInfo element, see the earlier CPP
section.

• At least one ds:Signature element that provides signing of the CPA us-
ing the XML Digital Signature standard.

• Optional Comment elements.

10.3.4 The ebXML Process Model

The ebXML Business Process Specification Schema (OASIS 2001b) defines
the orchestration of business transactions into collaborative business

10.3 ebXML 383

processes. The specification is based on a subset of prior UN/CEFACT
work, namely, the metamodel behind the UN/CEFACT Unified Modeling
Methodology (UMM), which is based on UML. Thus ebXML process
models can be represented in both XML and UML.

The current specifications support only binary collaborations—busi-
ness processes with more than two participating partners are not yet
covered. However, in most cases, multiparty business processes can be
synthesized from several binary business processes.

Typically, an ebXML specification schema starts with the definition of
a UML specification schema. The UML specification schema used in
ebXML is a subset of the UMM.

An ebXML schema (DTD) can be generated from the UML specification
with the help of production rules. This is possible without information
loss, because the UML specification schema and the XML specification
schema are isomorphic.

ebXML Web services collaborate with other services via ebXML busi-
ness service interfaces. These interfaces execute the business processes as
configured with the specification schema. They do so by exchanging
ebXML messages and business signals. (Business signals are application-
level documents that signal the current state of a business transaction.
Business signals, however, do not transport application data; they merely
indicate the current state of a process.)

An ebXML business process collaboration is constituted from a num-
ber of elements. Let’s take each in turn.

Partners
Two or more partners take part in a business process. Each partner plays
one or several roles within a business process.

Business Document Flow
Document flows carry business documents between participating roles of
a business transaction. Each document flow can carry one primary busi-
ness document. There is always one requesting document flow, but there
can be none, one, or many responding document flows, depending on
the type of transaction.

<DocumentFlow
isSuccess=”true”
documentType=”Card validation acknowledgment”/>

</DocumentFlow>

Chapter 10 Infrastructure

Binary
collaborations

UML

Web service
collaboration

Business
process
collaboration

384

<DocumentFlow
isSuccess=”false”
documentType=”Card validation rejection”/>

</DocumentFlow>

This example shows two responding document flows, one when the
transaction was successful, the other when the transaction failed.

Business Transactions
A business transaction is an atomic unit of work in a business relationship
between two roles, with one role in the position of a service requester, the
other role in the position of a responder. Because in ebXML business
transactions are atomic, they cannot be subdivided. A business transac-
tion either succeeds or fails. If it succeeds, its outcome may be legally
binding for both partners; if it fails, it must be treated as if it has never
happened (rollback). Each business transaction contains one requesting
document flow and zero, one, or many responding document flows.

<BusinessTransaction name=”Card validation”>
<RequestingBusinessActivity

name=””
isNonRepudiationRequired=”true”
timeToAcknowledgeReceipt=”P1M”
timeToAcknowledgeAcceptance=”P2M”>

<DocumentFlow
isSuccess=”true”
documentType=”Credit card slip”/>

</RequestingBusinessActivity>
<RespondingBusinessActivity

name=””
isNonRepudiationRequired=”true”
timeToAcknowledgeReceipt=”P4M”>

<DocumentFlow
isSuccess=”true”
documentType=”Card validation acknowledgment”/>

</DocumentFlow>
<DocumentFlow

isSuccess=”false”
documentType=”Card validation rejection”/>

</DocumentFlow>
</RespondingBusinessActivity>

</BusinessTransaction>

10.3 ebXML

Atomic
transactions

385

In this business transaction two documents are exchanged: the request
message contains a business card slip that needs to be validated. The re-
spective response document contains the positive or negative answer.
There are three additional business signals: the first acknowledges that
the request has been received; the second acknowledges that the request
has been accepted for processing; and the third is given by the requesting
party to acknowledge that the response document has been received. The
time periods specified are given in the format used in XML Schema
(“P4M” means “period of 4 minutes”) and are counted from the initial re-
quest on.

Collaborations
Two or more roles collaborate in a business process. Collaborations be-
tween more than two roles are always synthesized from binary collabora-
tions (i.e., with two participating roles). A binary collaboration can be
seen as a protocol between two roles.

Each collaboration consists of a set of business activities. A business
activity might be atomic (a business transaction), or it may be complex
(another binary collaboration). This allows the definition of nested and
multiparty collaborations.

<BinaryCollaboration
name=”Credit Card Validation”
timeToPerform=”P5M”>

<AuthorizedRole name=”merchant”/>
<AuthorizedRole name=”card-service”/>
<BusinessTransactionActivity

name=”Card validation activity”
businessTransaction=”Card validation”
fromAuthorizedRole=”merchant”
toAuthorizedRole=”card-service”/>

</BinaryCollaboration>

This example shows a simple binary collaboration constituted from
the business transaction defined earlier. The following example shows
a multiparty collaboration for a typical credit card purchase over the
Internet:

<MultiPartyCollaboration name=”Credit card purchase”>
<BusinessPartnerRole name=”Customer”>

<Performs
binaryCollaboration=”e-Order”

Chapter 10 Infrastructure

Business
activities

Multiparty
collaboration

386

authorizedRole=”buyer”/>
</BusinessPartnerRole>
<BusinessPartnerRole name=”Retailer”>

<Performs
binaryCollaboration=”e-Order”
authorizedRole=”seller”/>

<Performs
binaryCollaboration=”Credit Card Validation”
authorizedRole=”merchant”/>

</BusinessPartnerRole>
<BusinessPartnerRole name=”Card Agency”>

<Performs
binaryCollaboration=”Credit Card Validation”
authorizedRole=”card-service”/>

</BusinessPartnerRole>
</MultiPartyCollaboration>

This collaboration takes place between three parties (customer, retailer,
and card agency) and involves two binary collaborations (e-order and
credit card validation from the previous example).

Choreography
The ebXML business transaction choreography describes how the busi-
ness activities (collaboration activities and business transaction activities)
within a collaboration are ordered and sequenced. When using UML, this
can be specified using a UML activity diagram.

The business activities define the business states within a choreogra-
phy. In addition, there are auxiliary states such as Start state, Terminal
state (which comes in a Success or Failure flavor), Fork state, and Join
state. Fork splits a sequence of business activities into several concurrent
sequences, while Join reunites several concurrent sequences.

The choreography defines the transitions between the business states.
Each transition can be gated by guards—criteria such as the status of the
document flow that caused the transition, the type of document sent, the
content of the document, or postconditions on the prior state.

Transitions are defined as child elements of a BinaryCollaboration ele-
ment, or in the case of a MultiPartyCollaboration as child elements of
BusinessPartnerRole elements.

<BusinessPartnerRole name=”Retailer”>
...

10.3 ebXML

Business states

Transitions

387

<Transition
fromBinaryCollaboration=”e-Order”
fromBusinessState=”Accept Order”
toBinaryCollaboration=”Credit Card Validation”
toBusinessState=”Accept Order”/>

</BusinessPartnerRole>

This is a simple transition definition for the MultiPartyCollaboration
example shown earlier, arranging the sequential execution of both binary
collaborations defined for the role “Retailer”. There is only a single busi-
ness state (Accept Order).

Patterns
The ebXML specification schema provides a set of predefined patterns
that can be used to construct transactions and collaborations. This reuse
mechanism leads to faster and more standardized work products.

The ebXML Catalog of Common Business Processes (OASIS 2001c)
specifies an initial list of various common business process names. This
includes business processes defined by other common industry standards
such as RosettaNet, X12, EDIFACT, JiPDEC/CII, OAG BOD, or xCBL. It is
planned to create ebXML collaboration patterns on the basis of each of
these business processes. These patterns can be stored in public or shared
ebXML repositories. ebXML design tools will link into these repositories,
support the discovery of predefined collaboration patterns, and help in
the construction of customized business processes.

10.3.5 How Context Is Handled

Imagine the following situation: A printing house based in the United
States wants to order spare parts for their printing press from a manufac-
turer based in Germany. Both partners in this transaction operate in dif-
ferent contexts. First, they are in different locations, one in the United
States, one in Germany. Second, they belong to different industries, one
to the printing industry, the other to the manufacturing industry. It is
very likely that the formats of business documents (such as purchase
orders or invoices) used by these partners are different. For example, the
address element of such a business document would show differences: in
the United States, the address contains a “state” element; in Germany it
does not. The ZIP in a U.S. address is positioned after the state element;
the German “Postleitzahl” is positioned before the town element.

Chapter 10 Infrastructure

Catalog

388

T
E
A
M
F
L
Y

Team-Fly®

Such differences are usually not a problem when transactions are han-
dled by humans. But when a transaction is handled by a computer, it be-
comes a problem. Let’s see how ebXML solves that problem.

First, ebXML subdivides contexts into context categories. In particular,
for the purpose of doing business over the Internet, it identifies the fol-
lowing context categories (or context drivers):

• Region: The geopolitical region, such as country or state.
• Industry: The industry domain to which a partner belongs.
• Process: The current business process. Different business processes may

require specific formats in business documents.
• Product: Product categories may also influence the format of business

documents.
• Legislative: The legislative context used for this document.
• Role: The current role of a partner. In our previous example, we had

two roles: buyer and seller. Buyer and seller operated in different re-
gional and industry contexts.

• And so on.

The value of each context category is a simple string, for instance, “US”
or “Germany” for the region. It is possible to constrain the possible values
for context categories by defining a reference to an established taxonomy
such as ISO3166 for regional contexts.

Second, ebXML does not define specialized business documents for
each purpose and each context. This would make it practically impossible
for partners to agree on a document format. Instead, ebXML defines a set
of generic core components. Business documents are assembled from these
core components with the help of assembly rules and are further cus-
tomized with the help of context rules. This sounds difficult, but it solves
a problem that lingered in the EDI world for about 25 years: the inability
of business partners to refer to a common business terminology. This is
no easy task: different industries use different names for the same con-
cepts, and the same concepts can look very different in different con-
texts. OASIS (2001d) defines how business documents are composed from
a library of core components.

The initial catalogue of core components lists nearly 100 core compo-
nents, including postal address, street building identifier, post office box
identifier, party type, language, language usage, date, time, birth date and
time, organization incorporation date and time, account identifier, and
many more.

10.3 ebXML

Context
categories

Core components

389

Core components are complemented by user-defined domain com-
ponents. Domain components should be specified in the same detail as
core components, complete with the relevant contexts. Domain com-
ponents and additional context categories should be registered with an
ebXML repository, too, to allow reuse of these components and context
categories.

Assembly rules compose a document schema from core components.
This is done with the following operations:

• CreateGroup creates a model group consisting of several elements or
other model groups.

• CreateElement creates a new simple type or complex type element.
• UseElement imports a core component.
• Rename can change the name (and even the path) of previously com-

posed elements.
• Condition can specify context criteria under which the above opera-

tions are executed.

Here is an example of document assembly:

<?xml version=”1.0”?>
<!DOCTYPE Assembly SYSTEM “assembly.dtd”>
<Assembly version=”1.0”>
<Assemble name=”PurchaseOrder”>
<CreateGroup>
<CreateElement

type=”PartyType” location=”GUID” id=”Buyer”>
<Name>Buyer</Name>
<CreateGroup>
<UseElement name=”Name”/>
<UseElement name=”Address”>
<CreateGroup id=”adr”>
<Condition test=”Region=’United States’”>
<UseElement name=”BuildingNumber”/>
<UseElement name=”StreetName”/>

</Condition>
<Condition test=”Region=’Germany’”>
<UseElement name=”StreetName”/>
<UseElement name=”BuildingNumber”/>
<UseElement name=”ZIP”/>

</Condition>
<UseElement name=”City”/>
<Condition test=”Region=’United States’”>

Chapter 10 Infrastructure

Domain
components

Document
assembly

390

<UseElement name=”State”/>
<UseElement name=”ZIP”/>

</Condition>
<UseElement name=”Country”/>

</CreateGroup>
</UseElement>

</CreateGroup>
<Condition test=”Region=’Germany’”>
<Rename from=”address” to=”addressDE”/>

</Condition>
</CreateElement>
<CreateElement

type=”PartyType” id=”Seller” location=”GUID”>
<Name>Seller</Name>

</CreateElement>
</CreateGroup>
<CreateElement

minOccurs=”1” maxOccurs=”unbounded”
type=”ItemType” location=”GUID” id=”Item”>

<Name>Item</Name>
</CreateElement>

</Assemble>
</Assembly>

Context rules can further modify a document. Each rule specifies a
matching algorithm. Rules can match exactly; that is, the specified value
in the Condition element must match the value of the context category
exactly.

Alternatively, rules can match hierarchically, according to the defini-
tions given in the referenced taxonomy. For example, the regional con-
text would have a taxonomy that is structured according to the following
hierarchy:

• Global
• Continent
• Economic region
• Country (ISO 3166.1)
• Region (ISO 3166.2)

If, for example, we would specify “North America” as regional context in
a Condition, it would match concrete context values such as “United
States”, “Canada”, “Mississippi”, “Ontario”, and so on, because these val-
ues are members of the “North America” hierarchy.

10.3 ebXML 391

If the test specified in Condition succeeds, several actions can be
performed:

• Add: This action includes new elements in a document.
• Occurs: This action specifies the number of occurrences in terms

of minOccurs and maxOccurs. If nothing is specified, minOccurs and
maxOccurs default to 1 (i.e., a single required element).

• Subtract: This action removes elements from a document.
• Condition: Apply another condition. Conditions can be nested.
• Comment: A comment block.
• Rename: Elements can be renamed (see above).

However, there is one problem: Context rules may conflict. For exam-
ple, a context rule for the context “Region” could conflict with a context
rule for the context “Industry”. These conflicts must be resolved:

• Context rules are executed in the order they are specified in the con-
text rule document.

• Context rules may be equipped with an explicit order attribute that
can be used to force a given order on a set of rules.

Here is an example of context rules:

<?xml version=”1.0”?>
<!DOCTYPE ContextRules SYSTEM “contextrules.dtd”>
<ContextRules>
<Rule apply=”hierarchical” order=”1”>
<Taxonomy context=”Region”

ref=”http://ebxml.org/classification/ISO3166”/>
<Condition test=”Region=’United States’”>
<Action applyTo=”Buyer/Address”>
<Occurs>
<Field name=”State”>
</Field>

</Occurs>
<Add after=”@id=’adr’”>
<CreateGroup type=”choice”>
<Field name=”Floor” type=”string”>
</Field>
<Field name=”Suite” type=”string”>
</Field>

</CreateGroup>
</Add>

</Action>

Chapter 10 Infrastructure

Actions

392

</Condition>
</Rule>

</ContextRules>

Third, ebXML defines a semantic interoperability document format, that
is, a syntax-neutral format for the exchange of documents between part-
ners who use different formats for business documents. An ebXML
processor would translate a business document into the syntax-neutral
format before transmitting it to the receiver. At the receiver side the doc-
ument is translated from the syntax-neutral format into the specific syn-
tax used by the receiver. Using such a “pivot” format reduces the number
of required conversion procedures. UUIDs and globally unique URIs are
used to identify document elements in a syntax-neutral way.

10.3.6 Future

The ebXML specifications were released in May 2001. At the same time,
UN/CEFACT and OASIS demonstrated the first “proof of concept” ap-
plications. By mid-2001 the very first tools for ebXML appeared on the
market (see Chapter 11). However, it will still be a while before the first
all-in-one shrink-wrapped packages are available and the first ebXML re-
positories are in operation. Work continues in the OASIS Universal Busi-
ness Language (UBL) Technical Committee to develop a standard XML
business library.

Also, we should not expect a fully automated negotiation process be-
tween business partners with the first products. The first products will
support manual or semiautomatic negotiation.

10.4 INDUSTRY VOCABULARIES

In this section we give a short overview of some relevant horizontal and
vertical XML-based industry vocabularies. The list is by no means repre-
sentative or comprehensive. The Web sites www.xml.org and www.oasis-
open.org/cover/ should offer a much wider panorama.

10.4.1 Technical Vocabularies

• Bean Markup Language (BML): An XML-based component configura-
tion or wiring language customized for the JavaBean component
model (www.alphaworks.ibm.com).

10.4 Industry Vocabularies

Pivot format

393

10.4.2 Scientific Vocabularies

• Chemical Markup Language (CMLTM): An XML vocabulary for the
management of chemical information (www.xml-cml.org).

• Mathematical Markup Language (MathML): An XML application for
describing mathematical notation and capturing both its structure and
its content (www.w3.org).

10.4.3 Horizontal Industry Vocabularies

• Call Processing Language (CPL): A language that can be used to de-
scribe and control Internet telephony services (www.ietf.org).

• Internet Open Trading Protocol (IOTP): An interoperable framework
for Internet commerce (www.ietf.org).

• Information and Content Exchange (ICE): Facilitates the controlled ex-
change and management of electronic assets between networked part-
ners and affiliates (www.icestandard.org).

• MatML: Addresses the problems of interpretation and interoperabil-
ity for materials data that will permit the storage, transmission, and
processing of materials property data (www.ceramics.nist.gov/matml/
matml.htm).

• Product Definition Exchange (PDX): Standard for the e-supply chain.
It is focused on the problem of communicating product content
information between OEMs, EMS providers, and component suppliers
(www.pdxstandard.org).

• Product Data Markup Language (PDML): An XML vocabulary designed
to support the interchange of product information among commercial
systems or government systems (www.pdml.org).

• SyncML: Synchronizes the exchange of data with and between mobile
devices (www.syncml.org).

• Tutorial Markup Language (TML): An interchange format designed to
separate the semantic content of a question from its screen layout or
formatting (www.ilrt.bris.ac.uk/mru/netquest/tml/).

10.4.4 Vertical Industry Vocabularies

• aecXML: An XML-based language used to represent information in
the architecture, engineering, and construction (AEC) industry
(www.iai-na.org).

Chapter 10 Infrastructure394

• DocBook: A DTD for computer documentation. It is suitable to be used
for both books and papers, and for both computer software and hard-
ware. This DTD was certified as an OASIS Standard on February 2, 2001,
after a vote of the OASIS membership (www.oasis-open.org).

• Extensible Financial Reporting Markup Language (XFRML): An XML
vocabulary for the preparation and exchange of business reports and
data (www.xbrl.org).

• eXtensible Media Commerce Language (XMCL): An open XML-based
language designed to establish industrywide standards for Internet me-
dia commerce (www.xmcl.org).

• Financial Product Markup Language (FpML): A business information
exchange standard for electronic dealing and processing of financial
derivatives instruments (www.fpml.org).

• HL7 (Health Level Seven): An XML-based framework for the health in-
dustry (www.hl7.org).

• Marine Trading Markup Language (MTML): A standard to help a broad
base of small, medium, and large buyers and suppliers in the marine
trading industry conduct their fundamental trading transactions elec-
tronically via the Internet (www.mtml.org).

• News Industry Text Format (NITF): A format that allows publishers to
adapt the look, feel, and interactivity of their documents to the band-
width, devices, and personalized needs of their subscribers. These doc-
uments can be translated into HTML, WML (for wireless devices), RTF
(for printing), or any other format the publisher wishes (www.nitf.org).

• ONIX International: The international standard for representing and
communicating book industry product information in electronic form
(www.editeur.org/onix.html).

• swiftML: Aims at the interoperability issue of different financial XML
implementations through the use of SWIFT Standards Modeling
(www.swift.com).

• Translation Memory Exchange (TMX): Allows easier exchange of trans-
lation memory data between tools and/or translation vendors with lit-
tle or no loss of critical data during the process (www.lisa.org).

10.4 Industry Vocabularies 395

11

397

Solutions

In this chapter we discuss selected XML technologies from

the areas of design, data storage, middleware, authoring,

and content management where practical solutions are al-

ready in place.

In Section 11.1, we present tools that support XML

authors and architects in the design process. This includes

tools for conceptual design such as UML tools, and also tools

for the design of workflows such as Microsoft’s BizTalk or the

various RosettaNet-related design tools. Designing XML

schemata has become easier as good visual editors for DTDs

and XML Schema such as Tibco’s XML Authority and Altova’s

XML Spy have gone on the market.

In Section 11.2, we browse the market for XML-enabled

database management systems. We first discuss the require-

ments for such systems, and then we investigate some of the

11.1 Design Tools

11.2 Database Systems

11.3 Middleware

11.4 Application Servers

11.5 Authoring

11.6 Content
Management

DBMSs, such as Oracle and IBM’s DB2, that provide XML support via an addi-
tional XML layer (mapped systems). Then we take a close look at native XML
database management systems such as Software AG’s Tamino. Finally, we
recommend best practices on how to select an appropriate database man-
agement system.

In Section 11.3, we go into the details of three sample Web-enabled mid-
dleware systems: Hewlett-Packard’s e-speak, RosettaNet, and Microsoft’s
BizTalk. Especially BizTalk is of interest here, as it is the first major application
relying on the SOAP communications protocol.

In Section 11.4, we briefly list XML-enabled application servers. Basically all
manufacturers of application servers provide support for XML and Web ser-
vices related standards such as SOAP, WSDL, and UDDI.

In Section 11.5, we discuss tools for the authoring of presentation objects.
This includes tools for the authoring of HTML, WML, SVG, SMIL, and Voice-
XML, but also tools for the definition of transformation scripts such as XSLT
scripts.

Finally, in Section 11.6, we briefly discuss the architecture of content man-
agement systems as an example of an architecture integrating various tech-
niques presented throughout this book.

11.1 DESIGN TOOLS

Although sometimes paper and pencil are the best design tools, there are
cases where the help of computer-based tools is appreciated. In this sec-
tion, we discuss tools for conceptual design, process design, and schema
design.

11.1.1 Conceptual Design

Good design tools for XML-centric conceptual design are still as rare as
hen’s teeth. Among general design methods and design tools, UML is the
obvious choice, since UML has been proposed to become an ISO standard
and other electronic business standards such as ebXML or UDDI rely on
the UML design method.

Commercial systems such as Rational Rose (www.rational.com) and
TogetherSoft (www.togethersoft.com) also support the design of XML
schemata. This integration covers only the possibility of modeling XML
implementation structures within UML. You can, for example, model a
particular document class in terms of specific UML stereotypes (see Sec-

Chapter 11 Solutions

UML tools

398

T
E
A
M
F
L
Y

Team-Fly®

tion 3.4.1) and then export these definitions as a DTD or schema. You
can also import DTDs and schemata. However, UML and XML Schema
have only a common subset of features. Advanced XML Schema features
require proprietary extensions to the UML model that can make round-
trip engineering difficult.

Directly generating XML from a conceptual model defined in UML is
still an open problem. Starting with a conceptual model such as an entity
relationship model and then arriving by automatic means at some XML
Schema definitions is not covered by these systems. The user is required
either to write explicit production rules (to generate XML schemata as
code) or to export the definitions into the XMI format (see Section 3.4.1)
and then transform this XMI serialization into an XML Schema defini-
tion with the help of XSLT style sheets, or into DTDs with software such
as the XMI toolkit from IBM’s alphaworks. If you want to play around a
bit with UML and XMI, ArgoUML and Poseidon for UML are nice (and
free) UML tools that can generate XMI. They can even export the graph-
ics into SVG format. A design tool for AOM (see Section 3.2.2) is available
at www.aomodeling.org.

11.1.2 Process Design

Processes can be defined with UML in the form of activity diagrams as
well. Once again, to translate these diagrams into an XML process de-
scription language such as BPML or Microsoft’s XLANG, you must trans-
form the XMI output with the help of an XSLT style sheet.

Modeling processes for electronic business is usually not an isolated ac-
tivity, so the modeling tools are usually integrated into the middleware
product that supports a specific electronic business standard.

BizTalk, for example (see Section 11.3.3), uses a graphical design pro-
cess based on Visio2000. A few VBA plug-ins then serialize the visual de-
sign into XLANG definitions.

For architectures such as RosettaNet or ebXML, design tools are re-
quired that are repository aware. Such design tools must allow you to
browse directories, to discover existing partner profiles and building
blocks for processes, to import and customize these building blocks, and
to publish new building blocks within the repository.

At www.rosettanet.org you will find an impressive list of solution pro-
viders who offer appropriate tools to support that standard.

Since the ebXML specifications were only released in May 2001, the
list of available tools is—at the time of writing—not very long. But the
ink on the release documents was still wet when the first integrated solu-
tions supporting ebXML appeared.

11.1 Design Tools

BizTalk

RosettaNet

ebXML

399

Sun Microsystems has released the Java API for XML Registries 1.0
(JAXR).

JAXR provides an API for a set of distributed Registry Services that en-
ables business-to-business integration between business enterprises, using
the protocols being defined by ebXML.org, Oasis, ISO 11179 (java.sun.com
/aboutJava/communityprocess/jsr/jsr_093_jaxr.html).

An open source development is on the way at openebxml.sourceforge
.net/. This includes the definition of a binary markup language, an (op-
tional) replacement for XML in the context of ebXML allowing a more
compact message format and supporting binary attachments; a GUI
workbench for editing process definitions; a business process server; an
open implementation of an ebXML registry; and a high-performance
message handler for ebXML messages.

Data Access Technologies (DAT) (www.enterprise-component.com) has re-
leased a “first-look” beta release of their Component-X for ebXML:

Component-X provides visual and intuitive drag-and-drop assembly and con-
figuration of Enterprise Business Components and Web Services. . . . Compo-
nent-X provides a visual environment. . . . Components are “wired” together
in the visual environment and configured for the local requirements.

BindSystems (www.bindsys.com) has released an early version of their
BindPartner platform, which

. . . provides a process-oriented approach to business collaboration. . . . These
process models comply with the ebXML Business Process Specification
Schema (or BPSS). . . . The process model can be imported as an ebXML com-
pliant XML process schema document from an external location and possibly
changed, or it can be created in the designer.

11.1.3 Schema Design

For XML schema, the use of visual design tools is highly recommended
because they considerably shorten the learning curve for this complex
standard.

There are quite a few editors to define XML schemata and DTDs:

• XML authority (www.tibco.com)
• XML Spy (www.altova.com)
• Envision XML (www.popkin.com)
• A number of free XML Schema validators available from Apache, IBM,

Oracle, the University of Edinburgh, and topologi (see below)

Chapter 11 Solutions400

The XML Schema section of the W3C Web site (www.w3.org) contains
pointers to several XML Schema–related tools.

A Windows-based validator for Schematron (see Section 2.9.1) is avail-
able from www.topologi.com. The validator comes with popular XML
schemata and Schematron scripts for languages such as RSS, RDF, SOAP,
SMIL, WSDL, QAML, XTM, XLink, WAI, XHTML, RDDL XHTML, and
CALS, but it also allows user-defined schemata (DTD and XML Schema)
and Schematron scripts. In addition to producing validation reports, it can
also harvest RDF descriptions and topic maps (XTM) from documents; in
fact, it can be used as a front end for performing any XSLT translations.

11.2 DATABASE SYSTEMS

The simplest way to store an XML file is in a native file system. This ap-
proach is, however, only feasible when the performance requirements are
moderate, when the number of stored documents is small, when there
are no stringent requirements for the integrity and safety of data, and
when it can be excluded that several users want to update the same docu-
ments at the same time.

Database systems provide features that meet these requirements:

• Caching reduces the number of disk accesses and thus increases the
performance.

• Indexing allows for fast searches against a large document base, instead
of scanning documents in a linear fashion.

• A transaction concept makes sure that either all or none of the data in-
volved in a logical transaction is written to the database.

• Backup and recovery procedures, logging, and auditing allow for high
safety and traceability of the data.

• Locking mechanisms support the simultaneous updates from multiple
users.

• In addition, modern database systems scale better. They support
multiple hardware platforms and operating systems and multiproces-
sor architectures and allow several servers to cooperate in a distributed
database.

In short, for enterprise solutions there is no other option than to store
XML documents in a database management system. The problem, how-
ever, is that the current de facto standard, relational technology, is any-
thing but adequate for storing and retrieving XML documents. SQL, for
example, does not provide the means to drill down to a particular child
element in a deeply nested hierarchical document. The relational world is

11.2 Database Systems

Schema
validation

General
requirements

401

flat, but XML is not. (This restriction has been mellowed with the defini-
tion of SQL:1999, which allows queries on object aggregations. However,
the SQL:1999 object model differs from the XML information model.)

Let’s briefly discuss the requirements for an XML-enabled database
management system. Apart from the usual database features like perfor-
mance, support for large document bases, transaction concept, data
safety, concurrency control, and scalability, XML-enabled database man-
agement systems should provide

• a query language suitable for XML, such as XPath or XQuery
• a DOM API, allowing applications to navigate within documents and

update parts of them
• the ability to check for the validity of documents against a supplied

schema definition (DTD or XML Schema)
• the ability to store XML documents that do not have a schema defini-

tion (required behavior for all XML processors)

They could also provide, as additional features,

• the ability to update document parts
• the ability to access legacy data (i.e., relational data)
• the ability to store non-XML data (arbitrary text files and binary files

such as images, audio clips, or executables)
• an integrated XSLT processor that allows document transformations

when storing or retrieving documents
• communication methods, for instance, HTTP for the Web or COM+ for

the back end

We did not mention semantic integrity (including referential integrity
between documents) because there is currently no standard for defining
semantic integrity constraints. In this area, XML technology still falls
short of relational technology. Also, we think that, due to the possibly dis-
tributed character of XML document sets, the validation of referential in-
tegrity constraints is more a task for XML middleware than for a database.

There are basically two strategies for implementing an XML database
management system (XDBMS). We will discuss these strategies in the fol-
lowing two subsections and discuss some commercial implementations,
too.

11.2.1 Mapped Systems

One solution is to equip an existing DBMS such as a relational database
management system with an XML layer that converts incoming docu-

Chapter 11 Solutions

XML
requirements

Integrity

402

ments into the datatypes of the host DBMS, and converts outgoing docu-
ments back into the XML format. In addition, XML query expressions
must be translated into the query language of the host system.

There are two ways to map an XML document onto a relational data
structure. The first is the brute-force approach: store the whole document
in a BLOB (binary large object). The second is to break the document into
single elements and to construct a relational table for each nonterminal
element. Both methods have their advantages and drawbacks:

• Reading and writing an XML document from and to a BLOB is rela-
tively fast as long as documents are of a moderate size. However, up-
dating document parts in large documents can cause severe perfor-
mance penalties, since it requires physically rewriting the whole BLOB.
Another problem with BLOBs is qualified searches. A search may re-
quire parsing the stored documents, which is especially slow when
documents are large. Most systems offer text retrieval facilities (i.e., in-
dexing of all relevant words within the document) to avoid the costly
scanning of the document base.

• Breaking documents apart into single elements and storing them in
different relational tables improves the indexing capabilities. However,
because documents must be reconstructed (via relational joins) when
they are retrieved, retrieval operations can be slow. This approach
works well for documents with a simple structure, but it can be slow
for documents with a complex structure. Apart from the performance
issues, the main disadvantage of this approach is that schema exten-
sions require a redesign of the relational tables. It is not possible to use
this approach to store XML documents that come without a schema
definition.

Oracle
Oracle 8i (www.oracle.com) supports both ways of storing an XML
document:

• The document is broken down into an object tree and stored in rela-
tional tables. Mapping definitions define how this tree is mapped onto
the relational tables. On retrieval the XML document is reassembled by
applying the mapping inversely.

Oracle 8i allows applications to retrieve the data in object form, too,
and can thus avoid the reassembly process in many cases. Since Oracle
8i supports the SQL:1999 object view, it can maintain the hierarchical
structure of the document in the object representation.

11.2 Database Systems

BLOBs

Breaking
documents apart

403

• The document is stored in a BLOB that can be searched using the Ora-
cle Intermedia XML Search. The Oracle Intermedia XML Search is
based on text retrieval technology and can analyze incoming docu-
ments and index the relevant words. This allows for efficient docu-
ment searches based on the proximity of words, but it does not really
recognize the element structure of an XML document.

Oracle 9i introduces a new datatype (XML Type) allowing the storage
of an XML document within a column of a relational table. This datatype
is basically a BLOB but “provides XPATH navigation capabilities.”

IBM DB2 XML Extender
IBM’s DB2 XML Extender (www.ibm.com) equips IBM’s well-known DB2
database system with an XML layer. This layer translates XML documents
into relational structures and vice versa. XML DTDs are mapped onto
relational schemata using the proprietary Data Access Definition (DAD)
language. A visual tool is supplied to define these mappings.

DTDs and DAD documents are stored in their own relational tables in
the database, too. Applications invoke the XML Extender via SQL Stored
Procedures.

The XML Extender is complemented by the DB2 Text Extender, allow-
ing text retrieval searches on larger text blocks—for example, when a
whole XML document is stored in a single column (i.e., a BLOB).

Birdstep
Birdstep (www.birdstep.com) is the new kid on the block in terms of data-
base technology. Their database engine features a novel design that goes
even beyond the relational approach in atomizing complex data struc-
tures. Birdstep considers the content (and also the name) of each elemen-
tary data field as an atom. Each atom is only stored once in the whole
database schema. Data structures are represented as pointers to these
atoms (and to other data structures). If, for example, a database contains
a manufacturer record containing the manufacturer name “Tulloch” and
also contains a record describing a whiskey labeled “Tulloch,” then both
records point to the same physical storage location where the atom “Tul-
loch” is stored. This allows very small database sizes, since there is
absolutely no redundancy within the database. Also, the database system
itself is very small, and consequently Birdstep targets the market for
mobile and embedded devices.

Because data structures are formed as a separate layer on top of the
data atoms, the Birdstep database is able to allow hierarchical, relational,
and object-oriented views on the same set of data. In particular, a layer

Chapter 11 Solutions

SQL Stored
Procedures

404

for XML is available for the database that predefines the necessary access
structures for storing and retrieving XML documents. This layer includes
implementations of SAX, DOM, and XPath (which is used as a query
language).

eXcelon
eXcelon’s Portal Server features a Dynamic XML Engine (DXE) that ac-
cepts XML documents, breaks them apart into individual objects, and
stores them in object form. The technology is probably based on
eXcelon’s ObjectStore, an object-oriented DBMS. The advantage when
compared with a relational solution is that object-oriented databases dis-
play more flexibility when it comes to object aggregations. The DXE is
flexible enough to allow for on-the-fly schema extensions. In addition to
XML documents, the DXE can also store non-XML objects, including
binary data such as images and executables.

The DXE has a DOM API (Level 1 and Level 2 Core), uses XPath for
queries, and has a built-in XSLT processor for document transforma-
tions. Both index-based searching and text-retrieval-based searching are
supported.

Microsoft SQL Server 2000
Mighty Microsoft (www.microsoft.com) has also equipped its SQL Server
product with an XML layer. In particular, SQL Server 2000 has an XML
Rowset provider, which takes an XML document and returns the data in
a relational fashion. Results are generated with the help of XQuery.

Ozone
Ozone (www.ozone-db.org) is an open-source, object-oriented database sys-
tem written in Java. In regard to XML, it acts as a persistent DOM imple-
mentation. An XML file is stored in the DOM format, that is, in the form
of Java objects.

11.2.2 Native Systems

In native systems the core of the database system relies on the XML
information model. Usually an incoming document is parsed, and the
structural information is stored with the document content in order to
allow efficient queries. These systems usually support some sort of XML
query language and a DOM API. Examples of native XML database sys-
tems are Software AG’s Tamino, Ipedo’s XML Database (www.ipedo.com),
IXIASOFT’s TEXTML Server (www.ixiasoft.com), NeoCore’s XMS (www
.neocore.com), and the Open Source Development’s dbXML (www.dbxml

11.2 Database Systems

Dynamic XML
Engine

XML Rowset
provider

Persistent DOM

405

.org) and eXist (exist.sourceforge.net). We will restrict our discussion to Ta-
mino, which has the largest market share.

Tamino
Software AG (www.softwareag.com) has a long tradition as a maker of data-
base systems. Their Adabas DBMS introduced table-based data structures
long before relational technology became a topic. Adabas had always
allowed a limited nesting of data structures within table fields, and con-
sequently Adabas aficionados had always viewed relational technology
with some suspicion when it came to performance. It was not a surprise
that Software AG became active when XML—with its hierarchical data
structures—appeared on the horizon. The result was Tamino, a database
system that stores XML documents natively without conversion.

Tamino supports a SAX and a DOM2 API. It also can hook up with
popular Web servers, so that it is possible to store and retrieve documents
through an HTTP client. There is also a WebDAV access layer allowing
WebDAV-enabled applications (such as Microsoft Office products) to
transparently access XML documents stored in Tamino. Incoming docu-
ments are analyzed and are indexed according to the definitions in the
corresponding schema definition. Document schemata are defined with a
subset of XML Schema, but Tamino is also able to store documents that
do not have a schema definition, including non-XML documents such as
word documents, images, or binaries.

Currently, subsets of XPath and XQuery are supported as query lan-
guages. It is possible to combine text retrieval and tag-related queries
(based on indices) into a single query expression.

DTDs and a subset of XML Schema are supported for schema defini-
tion. Tamino uses the appinfo section of XML Schema to store additional
metainformation about the physical layout of the data. This includes in-
formation about indexing, but also information about mapping to other
resource managers. Thus, documents that are written to and retrieved
from Tamino are not necessarily stored in Tamino but can be stored in a
remote relational database, a file system, a message service, and so on.
This allows companies to leave existing enterprise data at the point of ori-
gin but still be able to integrate this data into XML scenarios.

11.2.3 Best Practices

We recommend the following practices:

• Select technology that stays close to the standards. Extensions are al-
ways nice to have, but they also lock you into a proprietary platform.

Chapter 11 Solutions

Access

Queries

Schema support

406

XML database technology is still young, so you will find that imple-
mentations differ vastly. The XML standard does define the document
layout, but it does not define an interface and protocol for database
access.

• Select technology that can scale well. What runs today on a PC or a
Unix box may require a mainframe tomorrow.

• Do not use “exotic” XML features. In terms of databases, XML enti-
ties—and in particular external entities—are exotic features and are
not supported by most database systems. Other database systems may
support entities but “flatten” the document (i.e., resolving the entities)
when it is stored. When you retrieve the document, it will definitely
look different than when you stored it!

• A good test for portability is the “schema test”: Can you take the DTDs
or schemata of your XML application, load them into the database,
and run the application without further work? Or is it necessary to set
up SQL create commands, that is, repetitive work that you might have
to do every time the schema changes?

• Some DBMSs generate internal object identifiers. Do not even consider
storing these identifiers within your data structures! It is fine to use
these identifiers in your programs and to store them in transient vari-
ables, but they should not be stored in persistent data structures. This
type of identifier will almost certainly change when you rearrange
your data or when you migrate to a different vendor. If you need to
identify objects such as documents, create your own identifiers, either
based on a unique domain name or by computing a UUID.

11.3 MIDDLEWARE

XML middleware is responsible for organizing message transport, orches-
trating business processes, and much more. We will discuss a few impor-
tant architectures.

11.3.1 e-speak

Hewlett-Packard’s e-speak is the odd man out in this list of XML middle-
ware for electronic business. e-speak is not really an XML technology, but
it uses proprietary communication and storage formats. The reason why
we discuss it here is that e-speak was the first fairly complete middleware
architecture for enabling electronic business. It was probably the first
architecture to introduce peer-to-peer communication.

11.3 Middleware 407

In the meantime, e-speak has been opened up to the XML world.
Hewlett-Packard has, for example, joined the UDDI bandwagon. e-speak
Web services can thus be discovered via UDDI, and e-speak clients will be
able to discover non–e-speak Web services.

e-speak has been designed with the goal of making enterprise legacy IT
infrastructures available as Web services. It does so by introducing an ab-
stract layer of resources. A resource represents active and passive elements
within the e-speak infrastructure, such as a service, a file, or a hardware
device. All e-speak functionality is based on this abstract layer. The un-
derlying physical entities are not accessed by e-speak directly. Instead,
resource-specific handlers provide this access (Hewlett-Packard 2001):

Every access to a resource through e-speak involves two different sets of
manipulations:
• The e-speak platform uses its resource descriptions to dynamically discover

the most appropriate resource, transparent access to remote resources, and
sending events to management tools.

• The resource-specific handler directly accesses the resource such as reading
the disk blocks for a file.

This technique allows e-speak to access existing and new infrastructures,
while keeping the logical-level device and technology neutral. In particu-
lar, e-speak allows interoperation with component models such as Enter-
prise Java Beans, CORBA, and COM+.

Each e-speak platform constitutes a logical machine. Each logical ma-
chine has a repository that stores the resource descriptions. Service pro-
viders can register a service (i.e., store the resource metadata of the service)
in such a repository. Clients in turn can look up a service in the repository
and bind to it. Clients may then invoke an entry point on a service.

This looks very much like an enterprise architecture. But what is differ-
ent here is that multiple distributed e-speak machines can interoperate
over the Internet. When, for example, a client issues a search for a specific
service, he or she will ask the look-up service of the local e-speak machine.
This machine will look in its local repository, but it will also propagate the
request to other e-speak machines known to it. When an appropriate ser-
vice description is found, the client is informed about its location and can
then communicate with the foreign machine on a peer-to-peer basis.

This ability to interoperate with other machines requires some extra
consideration when describing resources:

• Resources must be identified with a globally unique ID (URL).
• Resources must publish a public key, thus allowing secured communi-

cation with them.
• Resources must define a vocabulary.

Chapter 11 Solutions

Abstract
resource layer

Repository

Peer-to-peer

Requirements for
resources

408

T
E
A
M
F
L
Y

Team-Fly®

In addition, resources possess all properties that are required in an enter-
prise environment as well, such as access control lists, descriptions, and
so on. Descriptions consist of a set of attributes, each attribute consisting
of a name/value pair. When a service provider registers a service, it pro-
vides an attribute-based description of the service. The attributes are later
used to look up the service.

All attributes follow an agreed-upon vocabulary. Vocabularies define
the name and type of attributes. They are implemented as first-class
e-speak core services, thus enabling the registration of custom vocabular-
ies and the discovery of vocabularies.

e-speak’s communication model follows a simple mailbox model. A
client that wishes to send a message to a resource constructs a message
consisting of a message header and payload and places the message into
the client’s outbox. The e-speak core reads the message header and for-
wards the message to the inbox of the receiver. The receiver’s resource
handler may then read the header information and the payload. e-speak
supports pluggable transport protocols including TCP/IP, IrDA, WAP, and
HTTP. Currently, there is no direct support for SOAP (Hewlett-Packard
2001).

To allow the collaboration of applications the e-speak core implements
an event service. Apart from core-generated events, resources can publish
events and can subscribe to event distributors. However, e-speak does not
directly support higher-level modeling of collaborating business pro-
cesses. In particular, e-speak does not feature a process model.

11.3.2 RosettaNet

RosettaNet is named after the Rosetta Stone. This ancient document
contained the same message in three languages and was the key to the
modern deciphering of hieroglyphics. RosettaNet aims to break language
barriers as well.

RosettaNet is a nonprofit consortium of more than 400 leading compa-
nies from the areas of information technologies, electronic components,
and semiconductor manufacturing, representing more than $1 trillion in
revenue. RosettaNet therefore does not address the requirements of the
whole electronic business community but of only a certain sector of that
community. However, because of its nonproprietary and international
character and its foundation on XML, the influence of RosettaNet on elec-
tronic business as a whole cannot be underrated. RosettaNet is, for exam-
ple, supported by Microsoft’s BizTalk Server (see Section 11.3.3). Rosetta-
Net also supports horizontal standards such as ebXML (in particular, the

11.3 Middleware

Vocabularies

Mailbox model

Event service

409

ebXML Messaging Service Specification for the secure transfer, routing,
and packaging of electronic information—see Section 10.3) and UDDI (to
simplify the registration and discovery of e-business processes across the
supply chain—see Section 7.3).

The principal foundation of the RosettaNet architecture (RosettaNet
2001) consists of dictionaries, implementation frameworks, and partner
interface processes.

Dictionaries define a common vocabulary for trading partners, thus
reducing the confusion due to each company’s own terminology. Rosetta-
Net business dictionaries contain the vocabulary for defining business
transactions between trading partners, while RosettaNet technical dictio-
naries provide the vocabulary for defining products and services. Among
the business dictionaries we find

• a dictionary with twelve quantitative fundamental business data entities
ranging from

<QuantitativeFundamentalBusinessDataEntities>
<NAME>Height Dimension</NAME>
<DEFINITION>
Vertical dimension of an object when object
in the upright position.

</DEFINITION>
<Type>Real</Type>
<Min>1</Min>
<Max>15</Max>
<Repr>9(13)V99</Repr>

</QuantitativeFundamentalBusinessDataEntities>

to

<QuantitativeFundamentalBusinessDataEntities>
<NAME>Width Dimension</NAME>
<DEFINITION>
Shorter measurement of the two horizontal
dimensions measured with object in the upright
position.

</DEFINITION>
<Type>Real</Type>
<Min>1</Min>
<Max>15</Max>
<Repr>9(13)V99</Repr>

</QuantitativeFundamentalBusinessDataEntities>

Chapter 11 Solutions

Architecture

410

• a dictionary with 424 predefined fundamental business data entities,
ranging from

<FundamentalBusinessDataEntities>
<NAME>AccountNumber</NAME>
<DEFINITION>
Identification number of an account.

</DEFINITION>
<Type>String</Type>
<Min>1</Min>
<Max>35</Max>
<Repr>X(35)</Repr>

</FundamentalBusinessDataEntities>

to

<FundamentalBusinessDataEntities>
<NAME>WireTransferIdentifier</NAME>
<DEFINITION>
A unique identity of a wire transfer used for
reference.

</DEFINITION>
<Type>String</Type>
<Min>1</Min>
<Max/>
<Repr/>

</FundamentalBusinessDataEntities>

• a dictionary with 239 further business data entities ranging from

<BusinessDataEntity>
<NAME>AcceptanceAcknowledgment</NAME>
<DEFINITION>
Business information returned to a
requesting party to acknowledge the business
acceptance of a request.

</DEFINITION>
</BusinessDataEntity>

to

<BusinessDataEntity>
<NAME>WorkInstructionsReadiness</NAME>
<DEFINITION />

</BusinessDataEntity>

11.3 Middleware 411

This all looks very much like a schema definition. Entities are defined
with their name and several constraints such as datatype, minimum and
maximum occurrences, and a representation. The description element
defines further semantics in an informal way.

The RosettaNet implementation framework (RNIF) specification defines
exchange protocols for the implementation of RosettaNet standards for
the information exchange between trading partners. The RNIF covers the
areas of transport, routing, and packaging; security; signals; and trading
partner agreements.

Partner interface processes (PIPs) are XML-based dialogs that define the
business processes between trading partners. A PIP specification consists
of a business document (with its vocabulary) and a business process (with
the message dialog choreography). PIP specifications are not yet available
in machine-readable format; however, it is expected that this will happen
soon, so that the construction of business actions and signal messages
can be automated.

A PIP specification comprises the following three views:

• Business operational view (BOV): This view describes the semantics of
the business data entities (business documents) and how they are ex-
changed between the actors (roles) engaged in a business process.

• Functional service view (FSV): This view is derived from the BOV and de-
scribes the services within the network and the interactions between
them that are necessary to execute a partner interface process. The de-
scription includes all transaction dialogs (i.e., requests, signals, and re-
sponses) within a PIP protocol.

• Implementation framework view (IFV): This view describes the network
protocol formats and the communication requirements supported by
the network services. The IFV allows multiple transport protocols for
messages. Version 2.0 of RosettaNet implementation framework ex-
plicitly specifies SMTP and HTTP as transport protocols. S/MIME is
used for message envelopes, and this might have been one reason why
MIME was added as a message envelope format in version 2.0 of the
BizTalk platform.

PIPs are specialized to the following core process areas: administration;
partner, product, and service review; product information; order manage-
ment; inventory management; marketing information management; ser-
vice and support; and manufacturing. These areas are called clusters and
are further subdivided into segments (Figure 11.1).

Chapter 11 Solutions

PIPs

412

11.3 Middleware 413

Figure 11.1 Hierarchy of predefined PIPs in RosettaNet (Version 2.0). Each PIP describes a
specific collaborative process between partners. Here, we have drilled down into the business
object view of the PIP QueryOrderStatus. We have also listed the beginnings of the DTDs for
the two business documents exchanged in this process: PurchaseOrderStatusQuery and
PurchaseOrderStatusResponse.

RosettaNet
Support

Partner, Product, and
Service Review

Product
Information

Order Management

Inventory
Management

PIP

Marketing
Information
Management

Service and
Support
Manufacturing

Quote and
Order Entry Product

Configuration

Request
Quote

Request Price
and Availability

Transfer
Shopping
Cart

Manage
Purchase
Order

Query
Order
Status

Distribute
Order Status

Notify
of Purchase
Order
Acceptance

Change
Purchase
Order

Request Purchase
Order Cancellation

Notify of Quote
Acknowledgment

START
:Buyer :Seller

Clusters

Segments

<!ELEMENT Pip3A5PurchaseOrderStatusQuery (
 fromRole ,
 GlobalDocumentFunctionCode ,
 PurchaseOrderStatusQuery ,
 thisDocumentGenerationDateTime ,
 thisDocumentIdentifier ,
 toRole) >

<!ELEMENT fromRole
 (PartnerRoleDescription) >

<!ELEMENT PartnerRoleDescription (
 ContactInformation? ,
 GlobalPartnerRoleClassificationCode? ,
 PartnerDescription?) >
...
...

<!ELEMENT Pip3A5PurchaseOrderStatusResponse (
 fromRole ,
 GlobalDocumentFunctionCode ,
 OrderStatus ,
 requestingDocumentDateTime ,
 requestingDocumentIdentifier ,
 thisDocumentGenerationDateTime ,
 thisDocumentIdentifier ,
 toRole) >

<!ELEMENT fromRole
 (PartnerRoleDescription) >

<!ELEMENT PartnerRoleDescription (
 ContactInformation? ,
 GlobalPartnerRoleClassificationCode? ,
 PartnerDescription?) >
...
...

 <<QueryResponseActivity>>
Query Purchase Order Status

<<Secure Flow>>
Purchase Order Status
Query

FAILED

[Fail]

END

[Success]

Process
Purchase Order
Status Query

Transportation
and Distribution

Returns and
Finance

 <<Secure Flow>>
Purchase Order Status
Response

Chapter 11 Solutions414

BizTalk body
element

11.3.3 BizTalk

BizTalk is Microsoft’s long-anticipated answer to ebXML. Just as the com-
pany had already done with COM in response to CORBA, it managed to
provide a workable, XML-based solution for electronic business before
the ebXML standard became finalized. But, in contrast to COM, which
remained—in spite of some notable ports to other platforms by third par-
ties—more or less a proprietary technology, Microsoft has vowed to keep
BizTalk an open platform. Times have changed, and in the days of global
business the market would not tolerate a narrow proprietary solution like
COM. In fact, Microsoft’s implementations of XML-related standards are
very close to the specifications. By the time the ebXML specification
was rolled out, Microsoft was able to present its functional and well-
acclaimed BizTalk server.

But Microsoft’s competitors have also learned from the past. Following
the motto “If you can’t beat them, join them,” they have rallied to join
the SOAP bandwagon (see Section 6.5.2). ebXML, for example, included
SOAP as a transport method in its specifications.

The BizTalk Messaging Services
BizTalk’s messaging services are an additional logical layer on top of the
SOAP message layer. Both layers are implemented by a BizTalk framework
2.0 compliant server (or BFC server) such as—of course—the Microsoft
BizTalk server (see Figure 11.2). The underlying transport layer can be
HTTP or SMTP. From Microsoft (2000):

The BizTalk Framework does not prescribe the content or structure (schema)
of individual business documents. The details of the business document con-
tent and structure, or Schema, are defined and agreed upon by the business
entities involved.

The business partners are free to publish their schemata of their busi-
ness documents in the BizTalk Schemas Library, or somewhere else. The
schema language of choice is XML Schema.

The Message Format
For packaging business documents into messages, BizTalk makes use of
SOAP header and body elements.

The SOAP body element can carry several business documents. XSL
Schema is used to define the schemata of business documents. Each busi-
ness document is a child element of the body element. Because there can
also be elements that are shared between several business documents,
and these elements must be stored on the root level, too, it is necessary to

distinguish them from the business document elements. This is done
through the SOAP-ENC:root attribute. This technique of wrapping several
business documents and nondocument entities into a single message al-
lows us to stay close to the conceptional model of our business case.

Here is an example of the BizTalk body element:

<SOAP-ENV:Body>
<po:PurchaseOrder

xmlns:po=”http://hardware.org/purchase_order/”>
<po:item href=”#productList”/>

...
</po:PurchaseOrder>
<ship:shippingInfo

xmlns:ship=”http://hardware.org/shippingInfo/”>
<ship:content href=”#productList”/>

...
</ship:shippingInfo>
<productList xmlns=”http://hardware.org/productList/”

id=”productList” SOAP-ENC:root=”0”>
<Product>

11.3 Middleware 415

Figure 11.2 With the BizTalk compliant server, applications exchange
business documents via the underlying transport service.

Application

BFC Server

Transport

Application

BFC Server

Transport

<Name>Nuts</Name>
...

</Product>
<Product>

<Name>Bolts</Name>
...

</Product>
...

</productList>
</SOAP-ENV:Body>

This message body contains two business documents: PurchaseOrder and
ShippingInfo. Both refer to the same productList element, thus reduc-
ing redundancy. The productList element is also a child element of
SOAP-ENV:Body but is marked with SOAP-ENC:root=”0” as a nondocument.

A BizTalk message contains several SOAP header elements:

• The <endpoints> tag identifies the source and destination of a message.
This tag is required.

• The <properties> tag defines additional properties of the message. It
contains child elements specifying the identity of the message, send-
ing date, expiration date, and a topic. The identity must be globally
unique (for example, a UUID). The <properties> tag is always required.

• The <services> tag allows the specification of further options for the
processing of the service request. It can ask the receiver to acknowl-
edge the reception of the message or to signal the positive commit-
ment to process the request. This tag is optional.

• The <manifest> tag specifies a document catalogue that lists all the
documents and attachments belonging to a message. That may be
business documents contained in the BizTalk messages itself, or non-
XML attachments like binary data or images. These attachments may
be carried within the same MIME envelope or be external resources.
The <manifest> tag is optional.

• The <process> tag includes information about the business process that
provides the processing context for the BizTalk Document. This infor-
mation includes the type of business process, for example, Query Pur-
chase Order Status or Request Purchase Order Cancellation. It also includes
the identification (URI) of an individual instance of that particular
business process type. Further included is implementation-dependent
detail information such as a particular step or an entry point within the
business process instance. The <process> tag is also optional.

Chapter 11 Solutions

Header elements

416

The BizTalk Orchestration Services
BizTalk orchestration (i.e., the planning and running of business pro-
cesses) is the proprietary part of the BizTalk architecture. The definition
and execution of business processes is based on XLANG, an XML-based
language developed by Microsoft. At present, Microsoft seems to have no
intention of submitting this language to a standards body.

For the end user, anyway, this language is not visible. A business pro-
cess is defined by visual means, using flowchartlike graphs. (Actually,
Microsoft uses its Visio product for the visual interface and generates
XLANG scripts from the drawings. Currently, there is no way to integrate
this design step with UML design tools.) There seems to be no provision
to construct a business process automatically by negotiation between
partners. BizTalk supplies business process designers with a nice visual in-
terface—but it still needs a business process designer. This may be a valid
approach for the requirements of small businesses (and BizTalk is targeted
at smaller businesses), but it is hardly feasible when hundreds or thou-
sands of different business processes are involved.

Business processes are defined in terms of abstract tasks that can be ex-
ecuted in sequence and/or in parallel. At this stage, the designer need not
be concerned with a particular implementation.

In a second step these abstract tasks are mapped to concrete imple-
mentations (called ports in BizTalk), COM+-based business object compo-
nents that do the actual work. This mapping is dynamic—it can be
changed at runtime, depending on the result of a previous task in the
process. For example, if a customer makes a selection for a specific pay-
ment or shipment option, the mapping to the appropriate port can be
changed on the fly as shown in Figure 11.3.

These ports implement the specific business logic for each task. Based
on COM+ they can access data sources via the BizTalk Messaging services,
SQL database access modules, or Web services access modules.

BizTalk orchestration allows modular business processes; that is, it is
possible to construct complex processes from simple ones.

In addition, business processes can be transactional:

• BizTalk supports short-lived transactions like the classical ACID data-
base transaction. This includes distributed transactions running under
a transaction manager such as the Microsoft Transaction Server.

• BizTalk supports long-lived transactions. These transactions do not lock
up resources but require programmers to define compensating actions
in case a transaction must be rolled back. This ability to run long-lived

11.3 Middleware

XLANG

Dynamic task
mapping

417

Chapter 11 Solutions418

Figure 11.3 The layered architecture of BizTalk. Orchestration is defined on
an abstract level. The abstract tasks are dynamically mapped onto concrete
implementations—business logic components. These make use of data access
components to access Web services, databases, and messaging services.

BizTalk Messaging
ServiceSQL Data Access

ComponentWeb Service Access
Component

BizTalk Orchestration

Business Logic Components

Data Access Components

Business Logic Components

Dynamic Mapping

Local DatabaseWeb Services Message Queue, Mailbox

COM+
COM+

COM+
COM+

COM+

SOAP
HTML

SQL EDIFACT, X12,
HTTP, SMPT..., LoL

T
E
A
M
F
L
Y

Team-Fly®

transactions is essential in an electronic business world where transac-
tions can span across hours, days, or even weeks.

• BizTalk supports nested transactions.

11.4 APPLICATION SERVERS

BizTalk is currently supported by Microsoft’s BizTalk Server. Practically all
other application servers from manufacturers such as BEA, Cape Clear,
IBM, IONA, Fujitsu, Inprise, SilverStream, Webmethods, and others pro-
vide support for Web services with SOAP, WSDL, and UDDI. (Those that
won’t will probably not survive.) Some of these application servers have
their own workflow engines to orchestrate Web services and business pro-
cesses, but most manufacturers have opted to support ebXML, too.

11.5 AUTHORING

In the previous sections we gave an overview of tools that help
the designer of software systems to define XML models and compo-
nents on several architectural layers such as business middleware or data
management.

In this section we will take the perspective of the designer building
XML front-end applications as they are needed in Internet-based envi-
ronments. He or she may need or prefer, for example, WYSIWYG editors
that abstract from native XML code and allow the rapid composition of
user interface applications. Of course, this intersects particularly with Sec-
tion 11.1 on design tools because single tool components may be part of
larger development environments (e.g., an XML editor in XML Spy). So
we will focus on examples that have not been mentioned before.

11.5.1 Creating and Publishing
Text-Based Content

We start our overview by considering “normal” Web publishing on the
basis of XML, that is, bringing text-based information to the Internet. In
doing so, we give just a limited number of examples. Further examples
and additional information can be obtained from the following sites:
• www.xmlsoftware.com/
• wdvl.com/Software/XML/editors.html

11.5 Authoring

WYSIWYG

419

• www2.software.ibm.com/developer/tools.nsf/dw/xml-editing-byname
• xmlpitstop.com/xmlTools.htm

XMetaL
XMetaL (www.softquad.com) is the follow-up to the HTML editor Hot-
Metal Pro. It is an XML/SGML word-processor-like editing tool that pro-
vides a source view as well as a tag view. It works with SGML or XML
DTDs, offers context-sensitive lists of allowed elements and attributes,
and supports CALS tables, DOM, CSS, and HTML. XMetaL has an inte-
grated browser preview for XML documents.

The authoring environment can be customized to any DTD without
programming. It may be integrated into publishing infrastructures due to
its COM architecture/Windows scripting features. So the created content
files can be integrated with the Web-based applications to be built.

In addition to the editing views a customizable structure view is pro-
vided to navigate documents. External data resources are connected via
ODBC using the database import wizard. More advanced features include
support for inline table editing (CALS, HTML) and XML constructs, that
is, both valid and well-formed XML documents. They also include inter-
nal subsets, parsable and scriptable entities, the DOM, OASIS catalogues,
and UTF-16 (Unicode) encoding.

UltraXML
UltraXML (www.webxsystems.com/UltraXML.htm) is a WYSIWYG XML
solution that allows document creation, workflow, and publishing. The
necessary complementary tool is the WebXSystems PowerPublisher. Its
features include the following:

• Native XML and XSL support
• Easy and quick XML text markup and creation methods
• Visual XML tree for easy document navigation and XML editing
• Visual XML attributes editor
• Export XML utilizing the integrated parser to indent and pretty-print

the XML data

UltraXML contains two main components: the integrated Visual DTD
editor and integrated ActiveXSL.

The integrated VisualDTD editor allows the designing of a DTD and
visual editing of its attributes and entities. DTDs may be presented as a
tree view starting from any XML element. The design of DTDs is sup-
ported on the import of XML. Checking and validation mechanisms are

Chapter 11 Solutions

Customization
and integration

Creation,
workflow, and
publishing

420

provided for XML data. XML is context sensitive, as in XMetaL, based on
the DTD grammar. Visual XML Schema support is promised for future
versions.

Integrated ActiveXSL allows the use of XSL code snippets as real-time
style definitions. A document may encompass different XSL scripts for
several views on XML data, that is, layouts for different presentation pur-
poses such as Web or WAP. On export, XSL text is combined with filters
available for conversion to HTML, CSS2, and XSL:FO. XSL scripts suitable
for Internet publishing are created visually. Selective XSL scripts can be
created for a style using the hierarchy from a branch of the XML tree. In
turn the tool properties can be customized according to an active style to
always create the correct XSL code.

Cocoon
Cocoon is part of the Apache XML Project (www.apache.org). It is a Java-
written framework for XML Web publishing (i.e., Web site creation and
management based on the XML paradigm and related technologies).

In Cocoon, the content, style, and logic of Web information are sepa-
rately regarded. Thus Cocoon allows the independent design, creation,
and management of information on the Web. This is done by holding
content, style, and logic in separate XML files to be merged via XSL trans-
formation. Furthermore Cocoon supports client-dependent presentation
by transformation or rendering to PDF via XSL:FO or WML.

Web content in Cocoon is developed in three steps:

1. An XML file is created on the basis of a particular set of tags, nor-
mally given by a DTD.

2. The file is processed employing its logic given in the separated logic
sheet.

3. The content is rendered for presentation by applying an XSL style
sheet. Cocoon does not provide its own dedicated text or XML-
aware editor for content creation.

11.5.2 WML Tools for Mobile Applications

WML, as we saw in Section 8.4, is the XML-based language for defining
WAP applications for wireless devices such as palmtops and mobile
phones. Although presenting information on such devices is subject to
some limitations, the underlying mechanisms are similar to rendering
into other output formats. Therefore appropriate tools to define wireless
applications would be helpful. We will outline two examples here.

11.5 Authoring

Content, style,
and logic

421

WAPPage 2.1 (www.zyglobe.com/products.html) allows a developer to
edit, compile and integrate WML pages including the conversion of
HTML to WML. Since WAPPage is a visual design tool, the creation and
maintenance of files in WYSIWYG manner does not require any knowl-
edge about WML tags. So users work with GUI components and drag-
and-drop techniques. This type of design includes cards and decks, allow-
ing the collection of multiple WMF files and managing them in a single
project file. Of course you can work on the source code directly. A second
type of WYSIWYG editor using an XML tree view supports navigation
through WAP sites. Additionally, WBMP is supported.

Dynamic business applications for WAP-enabled devices can be devel-
oped using the WAPobjects framework. Dynamic content is normally cre-
ated from databases. This is realized by integrating the framework with
Apple’s WebObjects IDE. Applications are developed on prebuilt WML
components and are based on the WebObjects application server. So ex-
isting application logic and database resources built with WebObjects can
be reused unmodified, while WAPobjects enables the user to develop the
appropriate user interfaces. External information resources, such as rela-
tional databases or enterprise resource planning systems, are included, us-
ing WAPobjects’ corresponding object-oriented interface. As with WAP-
Page the tools are visual ones.

A freeware tool, DotWap 2.0, is available from Inetis (www.inetis.com/
freeware.asp). A collection of further links is given at www.wmlscript.com/
devtool/devtools.asp?type=Software+Development+Kit+%28SDK%29.

11.5.3 Multimedia

In Section 8.5, we discussed XML-based multimedia formats. Here is a
short overview of tools that support SVG, SMIL, and VoiceXML.

SVG
When considering editing tools for SVG, the first approach is adding
appropriate import/export capabilities to existing graphic tools. Examples
of such tools are Adobe Illustrator 9.0 (www.adobe.com) and CorelDraw
10.0 (www.corel.com). This approach is very comfortable because users are
normally familiar with the tool of their choice and do not have to learn
anything about SVG.

Dealing with native SVG code from scratch is another viable solution.
You can use any text editor if you are familiar with the SVG tag set and
features, so this is a choice for sophisticated developers rather than for
Web designers rapidly creating Web graphics for their applications.

Chapter 11 Solutions

WAPPage

DotWap

422

An overview of viewers, editors, and converters for SVG can be found
at www.w3.org/Graphics/SVG/SVG-Implementations.htm8. A Java-written
open-source toolkit for SVG can be obtained from sis.cmis.csiro.au/svg/.

SMIL
What has been outlined for SVG is basically also true for SMIL. You can
either create source code via a traditional editor or find an appropriate
tool to compose SMIL applications.

RealNetworks offers an additional product bundle for streaming ser-
vices, Meta Creation Pro (www.realnetworks.com/products/mediacreation/
index.html). It includes the GRiNS Editor Pro for RealSystem G2. The
GRiNS SMIL editor and player started as a public domain tool developed
at the National Research Institute for Mathematics and Computer Science
in the Netherlands (www.cwi.nl) and has a spin-off at Oratrix. The current
version of GRiNS for SMIL2.0 can be obtained from www.oratrix.com/
Products/G2R.

It has now become a SMIL creation tool that allows the developer to
orchestrate a presentation of images, text, video, and audio. It also sup-
ports merging presentation from fragments by cut/copy/paste from pre-
sentation building blocks. Projects then can be published to a RealSystem
Server for playback over the Internet. Alternatively a variety of SMIL play-
ers are available elsewhere. For a current development, see a nice Japanese
site of DoCoMo (www.docomo-sys.co.jp/prod/soft/smil2.html).

VoiceXML
Here the difference from other XML technologies is that the information
is not visual. So one element of voice-based application environments is
a text-to-voice converter. This is comparable to the rendering step in
visual applications.

An example of development tools for Web-based VoiceXML applica-
tions is Tellme Studio (studio.tellme.com). It enables you to build, test, and
publish the applications on the Tellme Network. Tellme supports the de-
veloper community with several libraries of code and more—newsgroups
and newsletters, as well as direct building and testing of applications via
the Tellme site if you have registered for a developer ID and PIN.

Several studio resources support development and testing and do not
require special software installations. Scratchpad supports editing simple
applications that are made available via mouse clicks. You may also de-
velop a more complex site, place it on a Web server, and point Studio to
that URL. Again you may preview the site via the available phone num-
ber and your ID and PIN. Any change leads to syntax checking against

11.5 Authoring 423

the VoiceXML DTD. Studio also provides debugging and trace functional-
ity. Instead of testing via phone, the execution of the application can be
simulated with the MyStudio Terminal.

VoiceXML technology is also included, for example, in the Voice
Server for IBM’s Websphere environment (www-4.ibm.com/software/speech/
enterprise/ep_11.html), to mention just one other industry product.

11.5.4 Converters

For the sake of completeness, we do not want to leave unmentioned a
class of tools that allow converting several document types into XML
and/or exporting XML code into other document types.

These tools may be of interest in some specific contexts and encom-
pass the following options:

• From SGML to XML or vice versa
• From XML to HTML, RTF (or vice versa), and plain text
• From XML to PDF or PostScript
• From publishing formats such as QuarkXPress to XML
• From XML to Flash
• From relational database content to XML
• And many more

We will not discuss these tools in further detail. Instead, an overview of
such converters can be found at www.xmlsoftware.com/convert/.

11.6 CONTENT MANAGEMENT

Content management systems (CMSs) integrate various technologies
such as authoring, database systems, workflow control, and format con-
version to provide a holistic approach to content production (see Figure
11.4). Content management systems support the phases of text and
media acquisition (often also text and media authoring), editing, trans-
formation into a generic format (often XML or SGML), administration of
cross references (often with topic maps), postprocessing, customization
and personalization, and multitarget publishing to targets such as Web,
WAP, SMS, or print. During the publishing process the CMS is responsible
for processing, checkin/checkout, versioning, rollback to earlier versions,
access control, workflow control, logging, and more.

In recent years, new content management systems have appeared like
mushrooms after a warm rain. The necessary technologies are in place,

Chapter 11 Solutions424

11.6 Content Management 425

Figure 11.4 Workflow in a context management system.

Postprocessing

Customization and Personalization

Internal Layout

submit correct

Rule-driven
Conversion

Media Acquisition Media AuthoringText AuthoringText Acquisition

Editing

Mapping

First Release

SMS PDFWAPWeb

External Sources

Second Release

Multitarget Publishing

and a viable market exists, not only in the traditional publishing industry
but also in the field of corporate publishing. CMSs come in all flavors and
price ranges, from open source systems to million- dollar proprietary sys-
tems. Popular systems include Allaire Spectra, Arbortext Epic, Broad-
vision, Interwoven TeamSite, UserLand Frontier, and Vignette Story-
Server. Content management solutions are also found in portal servers
such as the server from DataChannel.

Chapter 11 Solutions426

427

Glossary

ACID transaction An acronym for the four
primary attributes ensured to any database
transaction: atomicity, consistency, isolation,
durability (see also Section 6.6.1). The ACID
concept is described in ISO/IEC 10026-1:1992,
Section 4.

Activity A certain task within a process.

Activity diagram A method to describe the
orchestration of activities in UML.

Actors Entities within a given scenario that
are proactive; that is, they play a role. Actors
can be end users, agents, and other systems.

Agent A software agent is an autonomous,
somehow intelligent software component that
performs tasks to achieve some goals, most
likely on behalf of a human user. The term
agent is also used in business process manage-
ment. In modeling the business domain an
agent denotes a human or machine entity
performing a process step that adds some value
to the overall business process.

Agent system The concept or implementa-
tion of agents that cooperate to perform tasks
and achieve goals.

Aggregation A complex entity that has been
composed from less complex entities.

AOM Asset-oriented modeling (see Section
3.2.2).

API Application Programming Interface.

Application server A Web server that can
run applications for clients. Most application

servers can offer application functionality in
the form of Web services.

Asset In asset-oriented modeling, an abstract
notion for any object or relationship between
objects that we want to include in a model.

Association A relationship that somehow
correlates entities with others.

Authoring Process of setting up a presenta-
tion, for example, on the Web, normally using
an appropriate tool set.

Browser A user agent that can present HTML
or XML pages on a computer screen and that
supports navigation over the World Wide Web.

Business document Represents a “real
world” document from the business problem
domain.

Business object Represents a “real world”
entity from the business problem domain.

Business process A networklike construct
of business entities to describe a complex value
creating (or servicing) business activity struc-
tured to whatever degree.

Business rule Business knowledge that de-
scribes policies and procedures for business
transactions or work processes. Commonly
based on event-condition-action triples.

Byte code A platform-independent and com-
pact representation of a compiled computer
program. The byte code needs an interpreter
(or a runtime system) to execute on a concrete
target machine.

Canonical form A preferred syntax for a
given content. The canonical form allows the
comparison of objects by their string represen-
tation: when their string representations are
equal, then their content is equal, too.

CASE Computer aided software engineering.
CASE tools support the design of software sys-
tems and can automatically generate certain
parts of the implementation. Round-trip en-
gineering allows the reflection of changes in
the implementation back into the conceptual
design.

Client-server The relationship between two
computer programs where one program—the
client—sends a request to the second pro-
gram—the server—which in turn answers the
client. In distributed computer networks the
client-server model is the usual model for dis-
tributed applications, potentially including
several distributed servers accessed by one or
many distributed clients.

COM The Component Object Model is Micro-
soft’s architecture for the development and
deployment of software components. As an
extension of OLE, COM is also responsible for
services such as interface negotiation, version
management, licensing, and event services.
DCOM is an extension of COM to distributed
environments, where distributed components
can communicate via Remote Procedure
Calls (RPC).

COMMIT The last step in a successful data-
base transaction. In distributed database
systems, a two-phase commit is necessary.
The two-phase commit is a way of handling a
transaction in a distributed environment,
ensuring that the transaction is performed
either on all participating units or on none.

Component An independent software
module designed for plug & play reuse. Com-
ponents contain an interface description, and
most components can be configured according
to the requirements of the container appli-
cation. Examples of component models are
JavaBeans, Enterprise Java Beans, CORBA,
ActiveX/COM/DCOM.

Constraint A Boolean relation between the
properties of one or more information items.

CORBA The Common Object Request Broker
Architecture is the Object Management Group
(OMG) component model. CORBA defines the
creation, deployment, and management of
distributed components in networks. CORBA
requires object request brokers (ORBs) as con-
tainer applications. An object request broker
enables objects to transparently make and re-
ceive requests and responses in a distributed
heterogeneous environment.

Design pattern A design technique that
names, abstracts, and identifies aspects of a
useful design structure for the purpose of
reuse.

DOM The Document Object Model provides
an API to describe, access, create, and modify
SGML-based documents, like XML or HTML
documents.

DTD A Document Type Definition defines the
valid content of an XML document.

ebXML A nonproprietary XML-based stan-
dard for conducting business over the Internet.
See Section 10.3.

EDI The Electronic Data Interchange standard
describes the exchange of electronic docu-
ments between trading partners. EDI standards
are ANSI X12 (United States) and EDIFACT
(United Nations).

Encoding The code system used for a given
text. Code systems define a supported charac-
ter set and the mapping of the characters onto
a range of integers (character codes).

Enterprise Application Integration
(EAI) The integration of enterprise resource
planning (ERP) systems, existing (legacy)
applications, database and data warehouse
systems, and front and back office into an
automated business process.

Entity In XML, entities are used for text sub-
stitution, for single characters, and also for
document parts. In conceptual modeling, an
entity is an abstract notion of an object that
we want to include in a model.

Glossary428

T
E
A
M
F
L
Y

Team-Fly®

Facet In XML Schema, a specific constraint
narrowing the domain of a datatype.

Formatting Process or result of defining the
appearance of information objects, for exam-
ple, font type and size, color, and many more.

HERM Higher Order Entity Relationship
Model. A conceptual modeling method that
allows structured attributes and relationships
between relationships.

HTML Hypertext Markup Language. A hyper-
text document format used on the World Wide
Web. HTML is an application of SGML. Tags
embedded into the text describe certain prop-
erties of the text elements and can include
other elements such as links to HTML pages or
to other resources such as images. HTML is a
recommendation of the W3C (World Wide
Web Consortium).

HTTP Hypertext Transfer Protocol. The Inter-
net protocol used for communication between
clients and servers. HTTP messages consist of
requests from client to server and responses
from server to client.

HTTPS HTTP layered over the SSL protocol.

Instance An individual of a certain class or
type.

Internet The largest network in the world.
The Internet features a three-level hierarchy,
consisting of backbone networks, midlevel
networks, and stub networks. It spans many
different physical networks around the world
with various protocols, including the Internet
Protocol TCP/IP.

Layer A set of components with the same
degree of application specificity. Typically a
higher layer is the client of a lower layer that
serves the higher layer’s requests (e.g., naviga-
tion layer, presentation layer).

Layout Process or result of (spatial) position-
ing of information objects according to an
output device.

Legacy system A preexisting system that
was created using other design methods and
technologies.

Linkbase A separate document that defines
the hyperlinks between a given set of Web
resources. See Section 7.1.

Locking Mechanism within database man-
agement systems (DBMSs) to give a user ex-
clusive access to a data object or a group of
objects within an ACID transaction. Locking
is an important concept to guarantee consis-
tent data in multiuser databases.

Markup Syntactical means to make text
more readable or to add metainformation to
a text. In English prose, markup consists of
punctuation, parentheses, dashes, footnotes,
and so on. In XML, markup consists of tags.

Middleware Software systems that provide
interoperability services for applications, such
as distributed object computing, and conceal
some aspects of hardware and operating sys-
tem differences in a heterogeneous, distributed
environment.

Mobility Feature of the π-calculus to describe
the possibility of moving processes within a
process system by creating new and deleting
old communication links and thereby chang-
ing the neighborhood of the process.

Multitier In a multitier application the
components of the application are distributed
among several tiers, each located in a different
computer in a network.

Namespace A concept to uniquely separate a
set of identifiers from other identifiers. Name-
spaces are used to avoid name clashes. In XML,
namespaces are identified by means of a
unique URI.

Nil value/null value An artificial value in-
dicating that a certain variable, element, and
so on does not have a value.

Nondeterminism Feature of the π-calculus
to describe the situation that the receiver of
a communication cannot be predetermined
when two or more processes “compete” for it.
The process system evolves differently depend-
ing on who wins the race.

Glossary 429

Object Constraint Language (OCL) A lan-
guage defining constraints, pre- and postcon-
ditions, and navigation within UML diagrams.

Ontology An agreement about a shared
conceptualization. Complete ontologies con-
sist of vocabularies, thesauri, constraints, and
axioms.

Parser A program that breaks a text string
into a series of tokens, labeling each token
with its grammatical role.

Pattern See Design pattern.

Persistence The property of objects to retain
their states between independent requests or
sessions.

π-calculus A set of formal elements and rules
to represent, construct, and connect processes.
Algebraic notation to describe process systems
of all kinds.

Primary key A unique key (a field or com-
bination of fields) that can be used to identify
an information item.

Process See Business process.

Protocol A valid sequence of messages ex-
changed between partners.

Reification To make into a thing.

Relational algebra Used to model the
data stored in relational databases and queries
defined on the data. The main relational func-
tions are the set functions like union, inter-
section, and Cartesian product, plus selection
(keeping only some rows) and projection
(keeping only some columns). Relational
algebra was developed by E. F. Codd.

Relational database A database based on
the relational data model. Queries in relational
databases are formulated with SQL.

Repository A data store, typically based on
a DBMS, where all development objects are
stored.

Resource manager Provides access to a
set of shared resources. A resource manager
participates in transactions that are externally
controlled and coordinated by a transaction

manager. Database management systems are
examples of resource managers.

Role Active entity in a business process
abstracting from real-world allocations. Roles
interact and perform work steps of a process.

ROLLBACK A rollback is the undoing of
a partly completed transaction. See also
COMMIT.

SAX Simple API for XML. Provides methods
for parsing XML documents and for retrieving
elements.

Scenario Describes the context in which a
set of business processes takes place. Scenarios
describe the prospective partners within these
processes and their roles, and they can define
a geographical, cultural, temporal, or technical
context for these processes. A scenario does
not describe how the partners interact nor
does it describe the business processes.

Schema A definition that defines the layout
of a certain class of information items.

Server A computer that provides some
service for other computers connected to it via
a network. See also Client-server.

SGML Standard Generalized Markup Lan-
guage. A generic language for representing
documents. SGML is defined in ISO 8879:1986.

Signature The signature of a method defines
the parameters required when the operation is
invoked. It consists of a method name and
parameter types.

SOAP Simple Object Access Protocol. Used as
a communication method in electronic busi-
ness and to establish communication between
heterogeneous component-oriented platforms
and to access Web services.

SQL Structured Query Language. Used as an
interface to relational database management
systems (RDBMSs). A series of standards by
ISO and ANSI culminated in SQL:1999 (SQL-3).
While the original implementation of SQL
in 1986 supported only flat tables, SQL:1999
strives to provide relational support for com-
plex objects. The query constructs of SQL:1999
are almost fully compatible with OQL.

Glossary430

SSL Secure Socket Layer. A security protocol
that provides privacy over the Internet.

States Used to represent a situation or condi-
tion of an object during which certain physical
laws, rules, and policies apply. The state of an
object is defined by the set of the values of
attributes and relationships associated with
that object. Associated with each state are one
or more events that cause that state to change.
Only states that are significant in determining
the behavior of the object are modeled.

State transition A change in the state of an
object caused by an event occurring to the ob-
ject while it is in a given state.

Stereotype Used to extend the semantics of
existing UML modeling elements.

Synchronization Specifying or controlling
the temporal relationships between media
elements incorporated in a presentation.

Tag A syntactical means to add metainfor-
mation to a piece of text. In XML, tags are
enclosed in brackets.

TCP/IP Transmission Control Protocol over
Internet Protocol. TCP/IP encompasses both
network layer and transport layer protocols.
telnet, FTP, UDP, RDP, and HTTP are based on
TCP/IP.

Ternary association, ternary relation-
ship A relationship where three roles take
part.

Text retrieval The ability to effectively
search across free, unformatted text.

Thesaurus A dictionary explaining a vocabu-
lary, usually by relating notions to each other.

Topic map A separate document that de-
scribes and interrelates the themes of a set of
Web resources in an abstract way and maps
these themes to the actual resources. See Sec-
tion 7.2.

Transaction A coherent unit of interaction
between partners. See also ACID transaction.

Transaction manager Provides the services
and management functions required to sup-
port transaction demarcation, transactional re-

source management, synchronization, and
transaction context propagation.

Transformation Process of reading an XML
document that is based, for example, on a
semantic vocabulary, and applying mapping
rules defined, for example, by XSL to produce
an output document that is based on another
vocabulary, for example, for presentation
purposes.

UDDI The Universal Description, Discovery,
and Integration specification describes a stan-
dard way to register and discover Web services
in shared repositories.

UML Unified Modeling Language. A set of
semantics and notation for precisely describing
system and business models.

Unicode A 16-bit character set standard.
Unicode covers all major modern written
languages.

URI Universal Resource Identifier. Identifies a
resource (typically a resource on the Internet)
uniquely with a short string. URIs are defined
at www.w3.org/hypertext/WWW/Addressing/
URL/URI_Overview.html. The most common
kind of URIs are URLs.

URL Uniform Resource Locator. Specifies the
address of an Internet resource, such as a Web
page, an image, a sound file, a script, and so
on. URLs consist of a transfer protocol specifi-
cation, such as http: or ftp:, a domain name,
such as www.w3.org, and a path specification,
such as http://www.w3.org/hypertext/WWW/
Addressing/URL/.

Web service A software application that pro-
vides a (specialized) service and can be invoked
over the Internet.

White space Any character that does not ink
the paper when printed; for example, blank,
new line, tab.

Workflow Result of business process model-
ing with regard to implementation. Com-
monly a well-structured sequence of activities
performed by processing stations (human
and/or machine actors). Encompasses techni-
cal and human allocations, document and

Glossary 431

data flows. Activities are triggered and tools are
launched via task lists for each actor.

Workflow management system A WFMS
allows the setup of workflow models and the
creation of corresponding workflow instances.
It has control over these instances as long as
they are alive.

WSDL Web Service Description Language.
Describes the protocol to access Web services.

W3C The World Wide Web Consortium is
a nonprofit organization responsible for the

development of World Wide Web standards
(recommendations).

XML Extensible Markup Language. As a
“slimmed down” version of SGML, XML be-
came a W3C recommendation in 1998.

XSL Extensible Stylesheet Language. Consists
of XPath for the selection of document nodes,
XSLT for the transformation of documents,
and XSL Formatting Objects for the descrip-
tion of document presentation.

Glossary432

433

Bibliography

Abiteboul, S., P. Buneman, and D. Suciu. 2000.
Data on the Web, From Relations to Semi-
structured Data and XML. Morgan
Kaufmann Publishers, San Francisco.

Ahmed, I. 2001. A Case Study on the Use of XML
Technologies for Automotive Standards De-
velopment. Sun Microsystems, Developer
Connection.

Allen, J. F. 1983. “Maintaining Knowledge
about Temporal Intervals.” Communica-
tions of the ACM 26(11): 832–843.

Anant, B., and D. Pandya. 2001. Why We
Need Extensible B2B Infrastructures. TIBCO
Software.

Austin, J. L. 1975. How to Do Things with
Words. Harvard University Press, 2nd
edition.

Back, A., and A. Seufert. 2000. “Computer
Supported Cooperative Work (CSCW),
State-of-the-Art und zukünftige Herausfor-
derungen.” Praxis der Wirtschaftsinformatik,
HMD Heft 213.

Bayardo, R. J., Jr., W. Bohrer, R. Brice,
A. Cichocki, J. Fowler, A. Helal,
V. Kashyap, T. Ksiezyk, G. Martin,
M. Nodine, M. Rashid, M. Rusinkiewicz,
R. Shea, C. Unnikrishnan, A. Unruh, and
D. Woelk. 1997. InfoSleuth: Agent-Based
Semantic Integration of Information in Open
and Dynamic Environments. Micro-
electronics and Computer Technology
Corporation (MCC), Austin, TX.

Bechhofer, S., et al. 2000. An Informal Descrip-
tion of Standard OIL and Instance OIL. OIL
Collaboration. November 28.

Beckett, D. (ed.). 2001. Refactoring RDF/XML
Syntax. W3C Working Draft. September 6.

Behme, H., and S. Mintert. 2000. XML in der
Praxis. Addison-Wesley.

Berners-Lee, T. 1998a. Semantic Web Road Map.
World Wide Web Consortium.

Berners-Lee, T. 1998b. Web Architecture from
50,000 Feet. W3C.

Biezunski, M., M. Bryan, and S. Newcomb
(eds.). 1999. ISO/IEC FCD 13250:1999–
Topic Maps. ISO/IEC JTC 1/SC34.

Biezunski, M., and S. R. Newcomb (eds.). 2000.
XML Topic Maps (XTM) Processing Model
1.0. TopicMaps.Org.

Biezunski, M., and S. R. Newcomb (eds.). 2001.
XML Topic Maps (XTM) 1.0. TopicMaps
.Org.

Biron, P. V., and A. Malhotra (eds.). 2001. XML
Schema Part 2: Datatypes. W3C Recommen-
dation. May 2.

Booch, G., M. Christerson, M. Fuchs, and
J. Koistinen. 1999. UML for XML Schema
Mapping Specification. Rational Software
Corp. and CommerceOne Inc.

Booch, G., I. Jacobson, and J. Rumbaugh.
1997. The Unified Modeling Language for
Object Oriented Development. Documenta-
tion set, version 1.0. Rational Software
Corporation.

Boubez, T., M. Hondo, C. Kurt, J. Rodriguez,
and D. Rogers. 2000. UDDI Data Structure
Reference. V1.0UDDI Open Draft Specifica-
tion. September 30. uddi.org.

Box, D., D. Ehnebuske, G. Kakivaya, A. Lay-
man, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer. 2000. Simple
Object Access Protocol (SOAP) 1.1. Submis-
sion to the W3C.

Boyer, J. 2001. Canonical XML, Version 1.0.
W3C Recommendation. March 15.

Bray, T., D. Hollander, and A. Layman (eds.).
1999. Namespaces in XML. World Wide
Web Consortium. January 14.

Bray, T., J. Paoli, and C. M. Sperberg-McQueen
(eds.). 1998. Extensible Markup Language
(XML) 1.0. W3C Recommendation. Febru-
ary 10.

Buck, L. 1999. Modeling Relational Data in XML.
Extensibility.

Buck, L., J. Robie, and S. Vorthmann. 2000.
The Schema Adjunct Framework. Draft.
November 30.

Buck, L., S. Vorthmann, and J. Robie. 2000.
The Schema Adjunct Framework. Draft.
November 30. TIBCO Software and Soft-
ware AG.

Bush, V. 1945. “As We May Think.” The At-
lantic Monthly. July.

Butler, K. A., C. Esposito, and R. Hebron. 1999.
“Connecting the Design of Software to the
Design of Work.” Communications of the
ACM 42(1).

Carlson, D. 2001. Modeling XML Applications
with UML: Practical e-Business Applications.
Addison-Wesley.

Ceri, S., P. Fraternali, and A. Bongio. 2000. Web
Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Diparti-
mento di Elettronica e Informazione,
Politecnico di Milano, Italy.

Chamberlin, D., J. Clark, D. Florescu, J. Robie,
J. Siméon, and M. Stefanescu. 2001.
XQuery: A Query Language for XML. W3C
Working Draft. June 7.

Chamberlin, D., P. Frankhauser, M. Marchiori,
and J. Robie. XML Query Use Cases. W3C
Working Draft. June 8.

Chang, W. W. 1998. A Discussion of the Rela-
tionship Between RDF-Schema and UML.
W3C Note. August 4.

Chavez, A., and P. Maes. 1996. “Kasbah, An
Agent Marketplace for Buying and Selling
Goods.” Proc. of the 1st International Conf.
on the Practical Application of Intelligent
Agents and Multi-Agent Technology
(PAAM’96). London, April 22–24, pp.
75–90.

Chen, P. P. 1976. “The Entity-Relationship
Model: Toward a Unified View of Data.”
ACM Transactions on Database Systems 1(1):
9–36.

Chen, P. P., B. Thalheim, and L. Y. Wong. 1999.
Future Directions of Conceptual Modeling.
Louisiana State University, Baton Rouge.

Christensen, E., F. Curbera, G. Meredith, and
S. Weerawarana. 2001. Web Services
Description Language (WSDL) 1.1. W3C
Note. March 15.

Clark, J. (ed.). 1999a. Associating Style Sheets
with XML documents, Version 1.0. W3C
Recommendation. June 29.

Clark, J. (ed.). 1999b. XSL Transformations
(XSLT), Version 1.0. W3C Recommenda-
tion. November 16.

Clark, J. (ed.). 2001. XSL Transformations
(XSLT), Version 1.1. W3C Working Draft.
August 24.

Clark, J., and S. DeRose (eds.). 1999. XML Path
Language (XPath), Version 1.0. W3C Rec-
ommendation. November 16.

Clark, J., and M. Murata. RELAX NG Tutorial.
Working Draft. June 12. OASIS.

Codd, E. F. 1970. “A Relational Model for Large
Shared Data Banks.” Comm. ACM 13(6):
377–387.

Codd, E. F. 1991. The Relational Model for Data-
base Management (Version 2). Addison-
Wesley, Reading, MA.

Conallen, J. 2000. Working with XML Docu-
ments in UML. rational.

Cowan, J., and R. Tobin (eds.). 2001. XML In-
formation Set. W3C Recommendation.
October 24.

CSS. 1996. Cascading Style Sheets, Level 1. W3C
Recommendation. December 17. Revised
January 11, 1999. www.w3.org/TR/
REC-CSS1.

CSS. 1998. Cascading Style Sheets, Level 2. W3C
Recommendation. May 12. www.w3.org/
TR/REC-CSS2.

Daum, B. 2002. The XML Schema Book. Morgan
Kaufmann Publishers, San Francisco.

Daum, B., and C. Horak. 2001. The XML Shock-
wave, What Every CEO Needs to Know about
the Key Technology for the Economy. Soft-
ware AG, Darmstadt, Germany.

Bibliography434

Daum, B., and M. Scheller. 2000. Success with
Electronic Business. Addison-Wesley, Har-
low, England.

Davis, R., and R. G. Smith. 1983. “Negotiation
as a Metaphor for Distributed Problem
Solving.” Artificial Intelligence 20: 63–109.

DCMI. 2000. Dublin Core Qualifiers. Dublin
Core Metadata Initiative. July 11.

DeRose, S., E. Maler, and R. Daniel, Jr. 2001.
XML Pointer Language (XPointer), Version
1.0. W3C Last Call Working Draft. Janu-
ary 8.

DeRose, S., E. Maler, and D. Orchard (eds.).
2001. XML Linking Language (XLink) Ver-
sion 1.0. W3C Recommendation. June 27.

Dignum, F. P. M. 2000. FLBC: From Messages to
Protocols. Dept. of Computer Science, Ein-
hoven University of Technology.

Doerr, M. 1998. Electronic Communication on
Diverse Data—The Rose of the oo CIDOC
Reference Model. ICS FORTH, Crete, Greece.

Dubinko, M., J. Dietl, R. Merrick, D. Raggett,
T. V. Raman, and L. B. Welsh. 2001.
XForms 1.0. W3C Working Draft. August
28.

Eastlake, D., and J. Reagle (eds.). 2001. XML
Encryption Syntax and Processing. W3C
Working Draft. October 18.

Eastlake, D., J. Reagle, and D. Solo (eds.). 2001.
XML-Signature Syntax and Processing. W3C
Proposed Recommendation. August 20.

Eisenberg, J. D. 1991. “An Introduction to
Scalable Vector Graphics.”
www.xml.com/pub/a/ 2001/03/21/svg.html.

Ellis, C. A., and K. Keddara. 2000. “A Workflow
Change Is a Workflow.” In W. van der
Aalst, J. Desel, and A. Oberweis (eds.),
Business Process Management. LNCS 1806.
Springer, Berlin/Heidelberg.

Ennser, L., P. Leo, T. Meszaros, and E. Valade.
2000. “The XML Files: Using XML for B2B
and B2C Applications.” IBM Redbook, Feb-
ruary. www.redbooks.ibm.com/redpieces/pdfs/
sg246104.pdf.

Fallside, D. C. (ed.). 2001. XML Schema Part 0:
Primer. W3C Recommendation. May 2.

Finin, T., et al. 1993. Specification of the KQML
Agent-Communication Language. Draft of

the DARPA Knowledge Sharing Initiative.
External Interfaces Workgroup. June 15.

Forsberg, K., and L. Dannstedt. 2000. Extensible
Use of RDF in a Business Context. Viktoria
Institute, Adera and Volvo Information
Technology, Gothenburg, Sweden.

Fowler, M., and K. Scott. 1997. UML Distilled.
Addison-Wesley.

Franklin, S., and A. Graesser. 1996. “Is It an
Agent, or Just a Program? A Taxonomy for
Autonomous Agents.” In J. P. Müller and
N. R. Jennings (eds.), Intelligent Agents III,
Proc. of the ECAI’96 Workshop ATAL.
Budapest/Hungary, August 12–13.
Springer, Berlin/Heidelberg, pp. 21–35.

Gamma, E., R. Helm, R. Johnson, and J. Vlis-
sides. 1995. Design Patterns—Elements of
Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA.

Gardner, H. 1985. The Mind’s New Science.
A History of the Cognitive Revolution. Basic
Books, New York.

Garzotto, F., P. Paolini, and D. Schwabe. 1993.
“HDM—A Model-Based Approach to Hy-
pertext Application Design.” TOIS 11(1):
1–26.

Genesereth, M. R., and S. Ketchpel. 1994.
“Software Agents.” Communications of the
ACM 37(7): 48–53.

Giga Information Group. 2001. “Giga
Survey: XML Achieving Mainstream
Usage.” April 30.

Goldfarb, C. F., and P. Prescod. 2000. The XML-
Handbook, Second Edition. Addison-Wesley,
Harlow, England.

Gotthard, G. 1979. “Life as Poly-Contextural-
ity.” In Beiträge zur Grundlegung einer opera-
tionsfähigen Dialektik. Felix Meiner Verlag,
Hamburg.

Guarino, N. 1997. Understanding, Building, and
Using Ontologies. LADSEB-CNR, National
Research Council, Padova, Italy.

Guarino, N. 1998. Formal Ontology and Informa-
tion Systems. LADSEB-CNR, Padova.

Guarino, N., and C. Welty. 1998. Conceptual
Modeling and Ontological Analysis. LADSEB-
CNR, Padova.

Guha, R. V. 1995. Contexts: A Formalization
and Some Applications. Ph.D. Thesis.

Bibliography 435

Guilfoyle, C. 1998. “Vendors of Intelligent
Agent Technologies, A Market Overview.”
In N. R. Jennings and M. J. Wooldridge
(eds.), Agent Technology: Foundations,
Applications, and Markets. Springer,
Berlin/Heidelberg, pp. 91–104.

Hailstone, R. 2000. Yellowworld-Portal—The
Hub of eBusiness in Switzerland. IDC White
Paper.

Halpin, T. 1999. “Entity Relationship Modeling
from an ORM Perspective.” Journal of Con-
ceptual Modeling, December 1999–August
2000.

Harold, E. R. 2001. The XML Bible, Second Edi-
tion. IDG Books.

Heintz, J., and W. E. Kimber. 1999. Using UML
to Define XML Document Types. Data-
Channel, Austin, TX.

Helio. 1999. “The SMIL Tutorial.” www.helio
.org/products/smil/tutorial/chapter3/list_of_
media.html.

Henderson, P. 1997. Formal Models of Process
Components. Department of Electronics
and Computer Science, University of
Southhampton. August.

Hewlett-Packard. 2001. e-speak, Architectural
Specification. Release A.0, Documentation
Release A.03.11.00. January.

Hoare, C. 1985. Communicating Sequential
Processes. Prentice-Hall International Ltd.,
Hemel Hempstead (UK).

Hosoya, H., and B. Pierce. 2000. “XDuce: A
Typed XML Processing Language (Pre-
liminary Report).” In Proceedings of Third
International Workshop on the Web and
Databases (WebDB2000).

HTML. 1999. HTML 4.01 Specification. W3C
Recommendation. December 24. www.w3
.org/TR/HTML401.

IBM. 2000a. “B-to-B e-Commerce, Offering
Suppliers New Opportunities to Connect
with Buyers.” www-4.ibm.com/software/
webservers/commerce/community/resources/
btob_white.pdf. September 13.

IBM. 2000b. “Business to Business Integra-
tion with Trading Partner Agreements.”
www.ibm.com/developers/xml/tpaml/
b2b-integration-with-tpa.pdf. September 13.

IBM. 2000c. “The XML Files, Using XML for
B2B and B2C Applications.” Red Book
Draft. www.redbooks.ibm.com/redpieces/pdfs/
sg246104.pdf. September 13.

ISO/IEC. 1997. Information Technologies—
Open-edi Reference Model. ISO/IEC14662.

JAXB. 2001. The Java Architecture for XML
Binding, User’s Guide. Early Access Draft.
Sun Microsystems.

Jeffcoate, J., and A. Templeton. 1992. Multi-
media Strategies for the Business Market.
Ovum, London.

Jelliffe, R. 2001. The Schematron, An XML Struc-
ture Validation Language Using Patterns in
Trees. Academia Sinica Computing Centre,
Taibei.

Jennings, N. R., et al. 1996. Using Intelligent
Agents to Manage Business Processes.” In
B. Crabtree and N. R. Jennings (eds.), Proc.
of the 1st International Conf. on Practical
Applications of Intelligent Agents and Multi-
Agent Technology (PAAM’96). London, April
22–24, pp. 345–360.

Jennings, N. R., and M. J. Wooldridge. 1998.
“Applications of Intelligent Agents.” In
N. R. Jennings and M. J. Wooldridge (eds.),
Agent Technology: Foundations, Applications,
and Markets. Springer, Berlin/Heidelberg,
pp. 3–28.

Kamada, T. 1998. Compact HTML for Small In-
formation Appliances. W3C Note. February
9. Available at http://www.w3.org/TR/1998/
NOTE-compactHTML-19980209.

Kamada, T., T. Asada, M. Ishikawa, and S. Mat-
sui (eds.). 1999. HTML 4.0 Guidelines for
Mobile Access. W3C Note. March 15.

Kay, M. 2001. XSLT Programmer’s Reference 2nd
Edition. wrox.

Kimber, W. E. 1998. A Tutorial Introduction to
SGML Architectures. ISOGEN International.

Kimbrough, S. O., and S. A. Moore. 1994.
“Message Management Systems at Work:
Prototypes for Business Communication.”
Journal of Organizational Computing 5(2):
83–100.

Koegel, J. F. 1992. “On the Design of Multi-
media Interchange Formats.” In P. V. Ran-
gan (ed.), Proc. of the 3rd Int’l Workshop on
Network and Operating System Support for

Bibliography436

Digital Audio and Video. November, pp.
262–271.

Kozierok, R., and P. Maes. 1993. “A Learning
Interface Agent for Scheduling Meetings.”
In Proc. of the ACM-SIGCHI International
Workshop on Intelligent User Interface.
Florida, pp. 81–93.

Kretz, F., and F. Colaitis. 1992. “Standardizing
Hypermedia Information Objects.” IEEE
Comm. Magazine (May): 60–70.

Kroenke, D. M. 1995. Database Processing:
Fundamentals, Design, and Implementation.
MacMillan.

Lee, R. 1999. “Distributed Electronic Trade
Scenarios: Representation, Design, Proto-
typing.” IJEC 3(2): 105–136.

Le Hors, A., G. Nicol, L. Wood, M. Champion,
and S. Byrne. 2001. Document Object Model
(DOM) Level 3 Core Specification, Version
1.0. W3C Working Draft. September 13.

Lenat, D. B. 2001. From 2001 to 2001: Common
Sense and the Mind of HAL. CYCORP.

Leventhal, M. 1999. “XSL Is an Ugly, Difficult
Language.” xml.com. May 20.

List, B., et al. 2000. “The Process Warehouse
Approach for Inter-Organisational
e-Business Process Improvement. In
H. Thoma et al. (eds.), Proc. of the 6th Inter-
national Conference on Re-Technologies for
Information Systems Preparing to E-Business.
Österreichische Computer Gesellschaft.

Little, T. D. C. 1994. “Time-Based Representa-
tion and Delivery.” In J. F. Koegel-Buford
(ed.), Multimedia Systems. Addison-Wesley,
pp. 175–200.

Lovett, C. 2000. “UDDI: An XML Web Ser-
vice.” XML Web Workshop, Microsoft
Corporation.

Luttermann, H., and M. Grauer. 1999. “Using
Interactive, Temporal Visualizations for
WWW-based Presentation and Explora-
tion of Spatio-Temporal Data.” In Work-
shop on Spatio-Temporal Database
Management. LNCS 1678. Springer,
Berlin/Heidelberg, pp. 100–118.

Maes, P. 1994. “Agents That Reduce Work and
Information Overload.” Communications of
the ACM 37(7): 31–40.

Malhotra, A., J. Robie, and M. Rys. 2001. XML
Syntax for XQuery 1.0 (XQueryX). W3C
Working Draft. June 7.

Marchiori, M., and J. Saarela. 2000. Towards the
Semantic Web: Metalog. The World Wide
Web Consortium.

Marsh, J. 2001. XML Base. W3C Recommenda-
tion. June 27.

Marsh, J., and D. Orchard. 2001. XML Inclu-
sions (XInclude) Version 1.0. W3C Working
Draft. May 16.

Martin, J. 1993. Principles of Object Oriented
Analysis and Design. Prentice Hall, Engle-
wood Cliffs, NJ.

Mayfield, J., Y. Labrou, and T. Finin. 1996.
“Evaluation of KQML as an Agent Com-
munication Language.” In M. Wooldridge,
J. P. Müller, and M. Tambe (eds.), Intelligent
Agents II, Proc. of the 1995 Workshop on
Agent Theories, Architectures, and Languages.
Springer, Berlin/Heidelberg.

McCarron, S., S. Pemberton, and T. V. Roman.
2000. XML Events. W3C Working Draft.
October 26.

McCarthy, J. 1998. Notes on Formalizing Con-
text. Computer Science Department, Stan-
ford University.

McCarthy, J. 1999. The Common Business Com-
munication Language. Computer Science
Department, Stanford University.

McCarthy, J. 2001. The Robot and the Baby.
Computer Science Department, Stanford
University.

Megginson, D. 1998a. Structuring XML Docu-
ments. Simon & Schuster.

Megginson, D. 1998b. Using the XAF Package
for Java. Megginson Technologies.

Melnik, S. 2000. Representing UML in RDF. Stan-
ford University.

Meyer, B. 1997. Object-oriented Software Con-
struction. Prentice Hall, Upper Saddle River,
NJ.

Meyer-Boudnik, T., and W. Effelsberg. 1995.
“MHEG Explained.” IEEE Multimedia 2(1):
26–38.

Microsoft. 2000. Microsoft BizTalk Server,
BizTalk Framework 2.0: Document and Mes-
sage Specification. December.

Bibliography 437

Milner, R. 1999. Communicating and Mobile
Systems, The π-Calculus. Cambridge Uni-
versity Press.

Moore, S. A. 1996. Categorizing Automated Mes-
sages. Computer & Information Systems
Department, University of Michigan Busi-
ness School.

Müller, J. P., and N. R. Jennings (eds.). 1996.
Intelligent Agents III, Proc. of the ECAI’96
Workshop ATAL. Budapest/Hungary, Au-
gust 12–13. Springer, Berlin/Heidelberg.

Mylopoulos, J., L. Chung, and E. Yu. 1999.
“From Object-Oriented to Goal-Oriented
Requirements Analysis.” Communications
of the ACM 42(1).

Nelson, T. H. 1982. Literary Machines. Mindful
Press.

Newcomb, S. R. 1995. “Multimedia Inter-
change Using SGML/HyTime, Part I: Struc-
tures.” IEEE Multimedia (2): 86–89.

Newcomb, S. R., N. A. Kipp, and V. T. New-
comb. 1991. “HyTime.” Communications of
the ACM 34(11): 67–83.

Nielsen, H. F., and S. Thatte. 2001. SOAP Rout-
ing Protocol. Microsoft.

Nielsen, J. 1997. Multimedia and Hypertext: The
Internet and Beyond. AP Professional,
Boston.

Norman, T. J., et al. 1996. “Designing and Im-
plementing a Multi-Agent Architecture
for Business Process Management” In J. P.
Müller and N. R. Jennings (eds.), Intelligent
Agents III, Proc. of the ECAI’96 Workshop
ATAL. Budapest/Hungary, August 12–13.
Springer, Berlin/Heidelberg, pp. 261–275.

Nwana, H. S. 1996. “Software Agents: An Over-
view.” Knowledge Engineering Review 11(3):
205–244.

OASIS. 2000. Enabling Electronic Business with
ebXML. OASIS and UN/CEFACT.

OASIS. 2001a. Collaboration-Protocol Profile and
Agreement; Specification Version 1.0. OASIS
and UN/CEFACT.

OASIS. 2001b. ebXML Business Process Specifi-
cation Schema Version 1.01. OASIS and
UN/ CEFACT.

OASIS. 2001c. ebXML Catalog of Common Busi-
ness Processes, Document Version: 0.91.
OASIS and UN/CEFACT.

OASIS. 2001d. ebXML Specification for the Appli-
cation of XML Based Assembly and Context
Rules, ebXML Core Components, Version
1.01. OASIS and UN/CEFACT.

OASIS. 2001e. Using UDDI to Find ebXML Reg/
Reps. OASIS and UN/CEFACT.

OASIS. 2001f. ebXML Registry Information Model
v1.0. OASIS and UN/CEFACT.

O’Leary, D. E., and P. Selfridge. 1999. “Knowl-
edge Management for Best Practices Intel-
ligence.” ACM New Visions of AI in Practice
10(4).

Olle, W. 1978. The CODASYL Approach to Data
Base Management. Wiley, New York.

Park, D. 2000. Minimal XML 1.0 Version: 2000-
04-11. Docuverse.

Partridge, C. 2000. Business Objects: Re-engineer-
ing for Re-use. Butterworth-Heinemann.

PDF. 2000. PDF Reference, 2nd Edition. Addison-
Wesley. Available from partners.adobe.com/
asn/developer/technotes/acrobatpdf.html.

Pepper, S. 1999. Euler, Topic Maps, and Revolu-
tion. STEP Infotek A.S, Oslo.

Pepper, S. 2000. The TAO of Topic Maps. STEP
Infotek A.S, Oslo.

Portela, M. del Carmen. 1992. Settlement Pat-
terns in Unplanned Areas, Case Study San
José de Chirica, Ciudad Guayana, Venezuela.
School of Architecture, McGill University,
Montreal.

Porter, M. E. 1998. Competitive Advantage, Cre-
ating and Sustaining Superior Performance.
Free Press, New York. Reprinted.

Raskin, J.-F., and Y.-H. Tan. 1996. How to Model
Normative Behavior in Petri Nets. euridis,
Erasmus University Rotterdam.

RDF. 1999. Resource Description Framework
Model and Syntax Specification. W3C Rec-
ommendation. February 22.

RDF. 2000. Resource Description Framework
Schema Specification 1.0. W3C Candidate
Recommendation. March 27.

RosettaNet. 2001. Several Documents and Specifi-
cations.www.rosettanet.org.

Rossi, G., D. Schwabe, and F. Lyardet. 1999.
“Web Application Models Are More Than
Conceptual Models.” In P. P. Chen, D. W.
Embley, and S. W. Liddle (eds.), Proc. Int.
Workshop on the World Wide Web and Con-

Bibliography438

T
E
A
M
F
L
Y

Team-Fly®

ceptual Modeling. Paris, October. Springer-
Verlag.

Sachs, M., A. Dan, T. Nguyen, R. Kearney,
S. Hidayatullah, and D. Dias. 2000. “Exe-
cutable Trading-Partner Agreements in
Electronic Commerce.” IBM Corporation.
www.ibm.com/developer/xml/tpaml/
tpapaper.pdf. September 13.

Schaur, E. 1991. Non-planned Settlements. IL39.
Institute for Lightweight Structures, Uni-
versity of Stuttgart, Germany.

Scheer, A. W., and M. Nüttgens. 2000. “ARIS
Architecture and Reference Models for
Business Process Management.” In W. van
der Aalst, J. Desel, and A. Oberweis (eds.),
Business Process Management. LNCS 1806.
Springer, Berlin/Heidelberg.

SMIL. 2000. Synchronized Multimedia Integration
Language (SMIL 2.0) Specification. W3C Rec-
ommendation. August 7.

Smith, B. 1998. Objects and Their Environments:
From Aristotle to Ecological Ontology. De-
partment of Philosophy, Center for Cog-
nitive Science and National Center for
Geographic Information and Analysis,
University of Buffalo.

Smith, B., and L. Zaibert. 1997. The Metaphysics
of Real Estate. University of Buffalo.

Steinmetz, R., and K. Nahrstedt. 1995. Multi-
media: Computing, Communications and
Applications. Prentice Hall.

SVG. 2000. Scalable Vector Graphics (1.0) Speci-
fication. W3C Recommendation. Septem-
ber 4.

Thalheim, B. 1999. Fundamentals of Entity-
Relationship Modeling. Springer-Verlag,
Heidelberg.

Thalheim, B. 2000. Entity-Relationship Model-
ing. Springer-Verlag, Heidelberg.

Thompson, H. S., D. Beech, M. Maloney, and
N. Mendelsohn (eds.). 2001. XML Schema
Part 1: Structures. W3C Recommendation.
May 2.

Thorpe, M. 2001. “Business Rule Exchange—
The Next XML Wave.” In Proc. of the
XMLeurope. Berlin, May 21–25.

UDDI. 2000. UDDI Technical White Paper.
uddi.org.

Uschold, M., and M. Gruninger. 1996. “On-
tologies: Principles, Methods and Applica-

tions.” The Knowledge Engineering Review
11(2): 93–136.

Uschold, M., M. King, S. Moralee, and Y. Zor-
gios. 1997. The Enterprise Ontology. AIAI,
The University of Edinburgh.

van der Aalst, W., J. Desel, and A. Oberweis
(eds.). 2000. Business Process Management.
LNCS 1806. Springer, Berlin/Heidelberg.

VXML. 2000. Voice Extensible Markup Language
(VoiceXML) Version 2.0. W3C Working
Draft. October 23.

WAE. 2000. Wireless Application Protocol.
Wireless Application Environment Overview,
Version 1.3. www1.wapforum.org/tech
/documents/ WAP-195-WAEOverview-
20000329-a.pdf. March 29.

W3C. 2000. “CSS & XSL. Which Should I
Use?” www.w3.org/Style/CSS-vs-XSL.
February 29.

W3C. 2001a. “What Are Style Sheets?” www
.w3.org/Style/#why. February 1.

W3C. 2001b. “Voice Browser Activity.” www
.w3.org/Voice. March 24.

W3C 2001c. W3C Semantic Web Activity State-
ment, Version 1.7. World Wide Web Con-
sortium. February.

Wahl, T., and K. Rothermehl. 1994. “Repre-
senting Time in Multimedia Systems.” In
IEEE 1st International Conference on Multi-
media Computing and Systems, pp. 538–543.

WAP. 2000. Wireless Application Protocol, White
Paper. WAP Forum. www.wapforum.org/
what/WAP_white_pages.pdf. February 2.

WBXML. 2000. WAP Binary XML Content For-
mat, Version 1.3. Approved May 15. www1
.wapforum.org/tech/documents/WAP-192-
WBXML-20000306-a.pdf.

Weigand, H., W.-J. van den Heuvel, and F. Dig-
num. 1998. Modeling Electronic Commerce
Transactions, A Layered Approach. Tilburg
University and Eindhoven University.

Williams, S., and M. Jones. 2001. XML Protocol
Abstract Model. W3C Working Draft.
July 9.

WML. 2000a. Wireless Application Protocol.
Wireless Markup Language Specification,
Version 1.3. www1.wapforum.org/tech/
documents/WAP-191-WML-20000219-a.pdf.
February 19.

Bibliography 439

WML. 2000b. Wireless Application Protocol.
WMLScript Standard Libraries Specification,
Version 1.3. www1.wapforum.org/tech/docu-
ments/WAP-194-WMLScriptLibs-20000324-
a.pdf. June.

XHTML. 2000a. XHTML 1.0: The Extensible
HyperText Markup Language. A Reformula-
tion of HTML 4 in XML 1.0. W3C Recom-
mendation. www.w3.org/TR/xhtml1/.
January 26.

XHTML. 2000b. XHTML Basic. W3C Recom-
mendation. www.w3.org/TR/ xhtml-basic.
December 19.

XHTML. 2001a. Modularization of XHTML.
W3C Recommendation. April 10.

XHTML. 2001b. XHTML 1.1—Module Based
XHTML. W3C Recommendation. May 31.

XMI. 1999. XML Metadata Interchange (XMI),
Version 1.1. Joint Submission. Object Man-
agement Group.

XML-RPC. 1999. XML-RPC Specification.
UserLand.

XSL. 2001. Extensible Stylesheet Language (XSL)
Version 1.0. W3C Recommendation. Octo-
ber 15.

Bibliography440

441

Index

Symbols and Numbers
& (ampersand), entity reference for, 33
‘ (apostrophe), entity reference for, 33
* (asterisk), for multiple element

occurrences, 36
> (greater than symbol), entity

reference for, 33
< (less than symbol), entity reference

for, 33
π-calculus

π-processes, 210–211
agent-oriented aspects, 211–212
as basis for business process

modeling, 201, 205, 206
business process representation,

210–211
communication channels, 206–207,

208–210, 211, 212
contracting agents, 212–213
contracts, 212
development of, 206
dualistic view of processes, 213
mobility, 209–210, 211, 238–239
nondeterminism, 208–209, 212,

238–239
process evolvement, 207–208
process systems, 207
process terms, 207
shift toward agent-driven processes,

213
π-processes, 210–211
+ (plus mark), for multiple element

occurrences, 36
? (question mark), for optional

element occurrences, 36
“ (quotation marks), entity reference

for, 33
1NF (first normal form), 89–91
2NF (second normal form), 91–93
3NF (third normal form), 93

A
aboutEach attribute (RDF), 143
aboutEachPrefix attribute (RDF), 143
abstract type definitions, 52

accessing content (XSLT), 353
ACID transactions, 253–254
ACL (agent communication language),

220–221
actor-driven processes, 226
actuate link property, 272
actuated links (XLink), 271
adaptability

as agent attribute, 217, 218
dynamic, in open communication

processes, 227
added value for Web services, 374
ADEPT (Advanced Decision

Environment for Process Tasks),
223–225

Adobe Illustrator, 422
aecXML, 394
AF. See architectural forms
agent communication language (ACL),

220–221
agent-oriented technologies, 216–225

actor-driven processes, 226
Advanced Decision Environment

for Process Tasks (ADEPT),
223–225

agent communication, 220–221,
222

agent systems, 220
applications of agents, 219–220
architectures, 222–223
attributes of agents, 217–218
in business process modeling,

211–212
collaborative agents, 219–220
facilitators, 223
information agents, 219
Internet agents, 219
negotiation-based coordination,

221
performatives, 220
shift toward agent-driven processes,

213
for software design and

development, 217
typology of agents, 218–220
ZEUS agent-building toolkit, 225

aggregations

in ERM, 106, 107
in RDF, 147–149
XQuery support for, 62

AI (artificial intelligence), 13
Alexander, Christopher, 74
algebra of contexts, 187–188
all connector for particles, 45
Allaire Spectra, 426
Allen, J. F., 308
Alt construct (RDF), 143
Amaya browser, 277
ampersand (&), entity reference for, 33
Anakia, 367
ANY element type, 35
AOM (asset-oriented modeling),

108–113
advantages, 111–113
arcs, 111
assets, 110, 111
clusters, 11
design tool, 399
ERM vs., 109
further information, 113
has relationships, 110
HERM as basis for, 108–109
is-a relationships, 110
keys, 110
properties, 110, 112
role names for arcs, 111
serialization syntax, 130–132
UML and, 160–161

Apache
Anakia, 367
Cocoon, 421
FOP project, 347
SOAP support, 372

APIs (application program interfaces).
See XML APIs

apostrophe (‘), entity reference for, 33
application level security, 260
application-related ontologies, 178
application root document

(VoiceXML), 344–345
application servers, 419
applications

collaboration vs. integration in, 13
ontologies in life cycle of, 178–180

applications (continued)
for topic maps, 294
Web-based, 306
Web services vs. stand-alone

applications, 12
XHTML Basic for mobile

applications, 319–320
Arbortext Epic, 426
architectural forms

for corporate standards, 76–77
default mapping of document

names to architecture names, 78
defined, 76
in SGML, 76
using with a document, 77–78
XML Schema vs., 78–79

architectural patterns, 14–22
camps of software engineers and,

14–15
catalogues, 15–16
community infrastructure-style

architectures, 18–22
dwelling-style architectures, 15–18
encyclopedias, 16–18
libraries, 18–19
marketplaces, 20–21
portals, 21
repositories, 21–22
Web services, 19–20
workflow systems, 18

arcrole link property, 272
arcs

AOM, 111
conceptual modeling step for, 115
RDF, 136–137
in topic maps, 284
XLink, 271, 274–275

ArgoUML, 399
Ariba, UDDI initiative, 297
ARIS EPC, 196
Aristotle, 184, 295
arity of relationships, 104
artificial intelligence (AI), 13
ASSERT messages, 247
asset-oriented modeling. See AOM

(asset-oriented modeling)
assets

arcs, 111
business assets, 116, 117
business documents, 116, 117
cardinality, 111
clusters, 11
conceptual modeling steps, 115,

116–118
hierarchy, 116
keys, 110
modeling verbs and nouns as, 115
normalization, 115
overview, 110
partitioned normal form, 115–116,

134
segmentation, 129–130

associations, 291–292
asterisk (*), for multiple element

occurrences, 36
asymmetric encryption keys, 261

Atkinson, Bill, 269
atomicity

in ACID transactions, 253
in ebXML business transactions,

384
ATTLIST, 37
ATTRIBUTE elements (WebML), 278,

279
attribute groups, 51
attributes

of agents, 217–218
in ERM, 102–103, 105
in relational databases, 89, 90, 91,

93
of substances, 295
in SVG, 341
in WebML, 278, 279

attributes (XML)
advantages, 73
CamelCase style for, 81
conceptual entity properties and, 82
for content representation, 70
default value specifications, 37
drawbacks for complex

information, 70–71
DTD definition for, 37–38
elements vs., 70–74
“flat” documents for, 71–72
meaningful names for, 81
for metadata, 74
for multilingual titles, 70–71
overview, 28
repetition within context

disallowed for, 34
types, 37
XPath abbreviated syntax for, 53

Austin, John L., 246
authentication, 261
authoring, 419–424

converters, 424
creating and publishing text-based

content, 419–421
multimedia, 422–424
WML tools for mobile applications,

421–422
WYSIWYG editors, 419

autonomy
as agent attribute, 217, 218
Internet challenges for, 11
as system design principle, 23

availability, Web services and, 372
axiomatic theory, 175, 177
axioms

OIL, 181
“tertium non datur,” 184, 185

axis specifiers (XPath), 54

B
Babelization, 7
Bag construct (RDF), 141–142, 143
bags

DTDs’ lack of support for, 40
in RDF, 141–142, 143

baseName topic element, 290

Batik toolkit, 347
Bean Markup Language (BML), 393
Becker, Oliver, 359
binary relationships, 104
binding

channel parameter, 246
to contexts, 189–192
information registry (UDDI), 299
XML APIs for, 67

bindingTemplate element (UDDI), 299
BindSystems’ BindPartner platform,

400
Birdstep, 404–405
BizTalk, 414–419

described, 414
graphical design process, 399
message format, 414–416
messaging services, 414
orchestration services, 417–419

BizTalk community
SOAP use by, 251
Web services and, 372
XDR language of, 40
XML Schema and, 40

BizTalk Server, 419
BLOBs, 403
BML (Bean Markup Language), 393
Bolero, 67
Booch, G. M., 161
bounded facet, 41
BOV (business operational view), 412
BPE (business process engineering)

business process modeling benefits
for, 202–203, 204–205

OO modeling and, 216
as paradigm for investigating

business information, 200
BPMI (Business Process Management

Initiative), 230–233
BPML in, 230, 231–233
BPML XML Schema, 232
BPQL in, 230, 231, 233
business processes, 231
process integration, 232–233
scope of specifications, 231

BPML (Business Process Modeling
Language), 230, 231–233

BPQL (Business Process Query
Language), 230, 231, 233

BREC (Business Rules for E-Commerce)
project, 234

Breeze XML Studio, 67
BRML (Business Rules Markup

Language), 234–235
Broadvision, 426
browsers

CSS support, 316
WAP-enabled microbrowsers, 331
XHTML support, 321
XLink support, 277

Bush, Vannevar, 268
business categories (UDDI), 300
business contracts in layered

metamodel, 245
business documents

conceptual modeling of, 116, 117

Index442

identifying, 133
segmentation, 129–130

business identifiers (UDDI), 300
business information registry (UDDI),

299
business objects

conceptual modeling of, 116, 117
identifying, 133–134
segmentation, 129–130

business operational view (BOV), 412
business process engineering. See BPE

(business process engineering)
Business Process Management

Initiative. See BPMI (Business
Process Management Initiative)

business process modeling, 193–239
π-calculus, 201, 205, 206–216
π-processes, 210–211
agent-oriented aspects, 211–212
business-centered approach,

214–216
“business process” definition,

201–202
business process engineering (BPE)

and, 200, 202–203, 204–205
business process representation,

210–211
Calculus of Communicating

Systems (CCS), 206
communication channels, 206–207
concepts, 194–199
continuous change management,

205
contracting agents, 212–213
contracts, 212
dualistic view of processes, 213
dynamic business processes, 201
elementary task layer of business

processes, 210
formal modeling, 205–214
identification of real requirements,

204
interaction layer of business

processes, 210
interactions, 194, 195
metamodeling aspects, 197–199
mobility, 209–210, 211
nondeterminism, 208–209, 212
OO modeling and process design,

216
process construction, 202
process design benefits, 202
process evolvement, 207–208
process life cycles, 195
process optimization benefits,

204–205
process paradigms, 194–195
process reconstruction,

202–203
process reengineering benefits,

202–203
process systems, 207
process terms, 207
systems development and, 199–216
UML diagrams and, 216
value-creating activities, 194

workflow change and, 205
workflows and, 195–197
See also workflows

Business Process Modeling Language
(BPML), 230, 231–233

Business Process Query Language
(BPQL), 230, 231, 233

Business Process Specification Schema
of ebXML, 383–384

business processes
automation for Web services, 372
in BPMI, 231
dynamic, workflows and, 201
ebXML business process

collaboration, 384
elementary task layer, 210
interaction layer, 210
in layered metamodel, 245
Web services as, 372–373
See also process model (ebXML)

business requirements, 370–371
business rules, 233–238

in contracts (BRML), 234–235
defined, 233
formulation or specification, 233
Rule Markup Initiative, 235–237
Simple Rules Markup Language

(SRML), 237–238
soft-coded, 11
in WebML personalization model,

282
Business Rules for E-Commerce (BREC)

project, 234
Business Rules Markup Language

(BRML), 234–235
business scenarios in layered

metamodel, 245
business services in layered

metamodel, 245
BusinessEntity element (UDDI), 299,

300
BusinessService element (UDDI),

299, 300

C
caching XSLT, 364
calculus

CCS, 206
defined, 206
process calculus, 206
See also π-calculus

Calculus of Communicating Systems
(CCS), 206

call by name (XSLT), 353
Call Processing Language (CPL), 394
CamelCase style, 81
candidate keys, 103
cardinality

of AOM assets, 111
of elements in DTD definition, 36
of ERM relationship roles, 104
of ERM relationship sets, 105

cardinality facet, 41–42
cards (WML), 332

Carlson, D., 260
cascading style sheets. See CSS

(cascading style sheets)
case-sensitivity

of XML, 28
of XPath, 54

CAST keyword (XQuery), 62
catalogues, 15–16
CBCL (Common Business

Communication Language), 242
CCS (Calculus of Communicating

Systems), 206
CDATA attribute type, 37
CDATA denotation for code, 32
Certificate element (CPP), 381, 382
CertificateRef element (CPP), 382
certificates, 262
Chamberlin, D., 59
change management, 229
channels

communication channels in π-
calculus, 206–207, 208–210, 211,
212

CPP delivery channels, 378
overview, 245
parameters, 246
protocols defining, 246

character, as agent attribute, 218
character entities in XML, 33
character references, 33
character sets, 29
Characteristics element (CPP), 381
Chemical Markup Language (CMLTM),

394
Chen, Peter, 101, 102, 104, 133, 284
choice connector for particles, 45
choices (user interaction category),

308
Christensen, E., 257
Church, A., 151
CipherReference element, 265
CipherValue element, 265
Clark, James, 68, 363
classes

MHEG, 310–311
OIL, 180–181

Clean, XML support by, 366
client-server technology

client- vs. server-side processing of
XML, 314–315

history, 5
paradigm shift in, 5, 87
relational technology and, 5, 87

clusters in AOM, 11
CMLTM (Chemical Markup Language),

394
CMSs (content management systems),

424–426
COBOL data records, 87
Cocoon, 421
CODASYL data structures, 87–89
Codd, E. F., 89
code, CDATA denotation for, 32
collaboration

actor-driven processes, 226
design principles, 22–23

Index 443

collaboration (continued)
ebXML binary collaborations, 384,

386
ebXML business process

collaboration, 384
ebXML multiparty collaborations,

386–387
of ebXML roles, 386–387
ebXML Web services collaboration,

384
in electronic businesses, 243
integration vs., 13
Web services as, 372–373

collaboration protocol agreement. See
CPA (collaboration protocol
agreement)

CollaborationRole element (CPP),
381

collaborative agents, 219–220
collaborative partner profiles. See CPP

(collaborative partner profiles)
columns in relational databases, 89
Comment elements (CPA), 383
comments in XML, 29
COMMIT messages, 248
COMMIT of transactions, 254
Common Business Communication

Language (CBCL), 242
Common Rules Java Library, 235
Communicating Sequential Processes

(CSP), 206
communication, 241–265

in actor-driven processes, 226
as agent attribute, 217–218
agent communication, 220–221,

222
architects of, 4
channels and ports, 245–246
computers as communication

devices, 4
history, 242–243
Internet challenges for, 9
layers of, 243–245
management of, 216–217
messages, 248–253
ontologies and, 178
open communication processes,

226–228
security, 260–265
semantics needed for, 171
semantics of, 259–260
speech acts, 220–221, 225, 246–248
transactions and protocols, 253–259

communication channels in π-calculus
mobility and, 209–210, 211
nondeterminism and, 208–209, 212
overview, 206–207

community infrastructure-style
architectures, 18–22

libraries, 18–19
marketplaces, 20–21
portals, 21
repositories, 21–22
Web services, 19–20

complex datatypes, 45–46
complexity, one language for all and, 9

COMPONENT elements (WebML), 278
Component-X for ebXML, 400
composition model of WebML,

279–281
computer learning vs. human

learning, 172–173
Conallen, J., 161
conceptual design tools, 398–399
conceptual modeling, 100–134

asset-oriented modeling (AOM),
108–113

best practices, 133–134
document-centered step-by-step

approach, 113–132
enterprise data model, 132–133
entity relationship model (ERM),

101–108
flat hierarchies, 133
RDF and, 134–158
step 1 (informal description),

114–115
step 2 (assets and arcs), 115
step 3 (normalization), 115
step 4 (partitioned normal form),

115–116, 134
step 5 (business objects), 116, 117
step 6 (business documents), 116,

117
step 7 (other assets), 116–117
step 8 (XML schemata), 118–129
step 9 (segmentation), 129–130
step 10 (overall layout), 130–132
top-down vs. bottom-up approach,

133
See also AOM (asset-oriented

modeling); ERM (entity
relationship model); RDF
(Resource Description
Framework)

conditional expressions in XQuery, 62
confidentiality, 261
conformance tests for languages, 82
consistency in ACID transactions, 254
constraining facets of datatypes, 42
constraints

context and, 176
cross-field, 173
design, 175
dynamic, 175–176
on elements, 36
of ERM relationships, 104
formal semantics and, 169, 171–173
hierarchy of, 175
ontologies and, 175–176
RDFS semantic constraints, 152–154
rdfs:domain, 155
rdfs:range, 155
representational, 175
RuleML integrity constraints, 236
semantic, 152–154, 175
on slot values (OIL), 181–182
soft, 155–156, 176
structural, 175
temporal, 175
transition, 175

XML Schema definitions, 173
XML Schema limitations for, 52,

68–69, 173
constructors, element (XQuery), 60–61
content

metadata vs., 74
separation from form, 313

content-based routing, 259
content management systems (CMSs),

424–426
content modeling

for complex datatypes, 45
elements for, 74

content units (WebML), 279–281
context, 185–192

binding to contexts, 189–192
constraints and, 176
in Cyc knowledge base, 187–188
DTD deficiencies, 40
ebXML handling of, 388–393
exceptions, 188
human skills needed for, 185–186
nonmonotonic reasoning and, 188
ontologies and, 186–189
repetition within, 34
transcendence not possible for, 189
in XML, 52, 189

context awareness
for electronic business objects, 97,

100
as system design principle, 23

context-sensitive elements, XML
Schema limitations for, 52

contract-based interaction with
tpaML, 228–229

contracting agents (π-calculus),
212–213

contracts
in π-calculus, 212
in ebXML, 382–383
in layered metamodel, 245

control structures (XSLT), 353
ConversationConstraints element

(CPA), 383
cooperation, as agent attribute, 217,

218
coordination

as agent attribute, 217, 218
negotiation-based agent

coordination, 221
Copernicus, Nicolaus, 184
CORBA, Internet and, 10
CorelDraw, 422
corporate standards, architectural

forms for, 76–77
Cover, Robin, 7, 83
covered axiom (OIL), 181
Covisint, 375
CPA (collaboration protocol

agreement), 376, 382–383
CPAType element (CPA), 383
CPL (Call Processing Language), 394
CPP (collaborative partner profiles)

delivery channels, 378
document exchange layer, 378–379
elements, 380–382

Index444

example, 379–380
layered architecture, 378–379
process specification, 378
properties, 381–382
shared repositories and, 376
transport layer, 379

cross-field constraints, 173
cross-references

DTD deficiencies, 40
XML Schema support for, 50
XSLT, 358

CSP (Communicating Sequential
Processes), 206

CSS (cascading style sheets)
browser support for, 316
with HTML, 316
with XML, 316–317
XSL vs., 325–326

custom parsing, avoiding, 82
Customer schema, 118–119, 127
Cyc knowledge base, 187–188

D
DAML (DARPA Agent Markup

Language), 180
Data Access Technologies (DAT), 400
data model evolution, 86–100

CODASYL data structures, 87–89
hierarchical databases, 89
navigational architectures, 95–100
need for understanding, 86
paradigm shift, 86–87
relational databases, 89–95

data model for XML, 33–34
issues, 86
namespace identifier, 34
repetition and, 34
tree structure, 33–34
See also conceptual modeling

data models for multimedia
hierarchy of data formats, 310
HyTime, 311–312
MHEG, 310–311

data units (WebML), 280
database schemata, ontologies and, 8,

179
database systems, 401–407

best practices, 406–407
general requirements, 401–402
mapped systems, 402–405
native systems, 405–406
semantic integrity and, 402
XML requirements, 402

database tier of catalogues, 15
databases

linkbases, 275–277, 283
relational, 5
transactional, 4

DataChannel, 426
datatypes

abstract type definitions, 52
complex, 45–46
derived, 43–45
DTD attribute types, 37

DTD deficiencies, 39–40
facets of, 41–42
hierarchy of built-in datatypes,

42–43
inclusion or importing of, 52
instance subtyping, 52
primitive, 42–43
SOAP support for, 252
user-defined, 43–45
value space vs. lexical space and, 41
XML Schema, 40–46
XQuery expressions testing or

modifying, 62
Daum, B., 113
DB2 XML Extender, 404
decks (WML), 332, 334–335
DECLARE messages, 248
default mapping of document names

to architecture names, 78
default namespace, 31–32
delivery channels (CPP), 378
DeliveryChannel element (CPP), 381
denormalization, 94
deontic logic, 176
Department schema, 121, 128
dereference operator (XQuery), 60
derivation rules (RuleML), 236–237
derived datatypes

defined, 43
list method for, 44
restriction method for, 44
union method for, 44–45

description languages for soft-coded
business rules, 11

design constraints, 175
design patterns

extending DTDs for, 75–76
generic, 75
overview, 74–75

design tools, 398–401
conceptual design, 398–399
process design, 399–400
schema design, 400–401

detached signature, 263
DevelopMentor, 249
digital signatures, 262
DigitalEnvelope element (CPP), 382
DIRECT messages, 247–248
direct units (WebML), 281
directed labeled graphs, 136–137
directory services, 297–300
disjoint axiom (OIL), 181
disjoint-covered axiom (OIL), 181
distinct() function with XQuery list

constructors, 62
distributed functionality in Web

services, 19, 20
DocBook, 395
DocExchange element (CPP), 381
DoCoMo, 423
DOCTYPE definition, 30, 35
document-based type setting, 346–349
document exchange layer (CPP),

378–379
document() function (XSLT), 358
document server (VoiceXML), 343

document structure with XML
Schema, 46–49

Document Style Semantics and
Specification Language (DSSSL),
322

Document Type Definitions. See DTDs
(Document Type Definitions)

DOM (Document Object Model)
DOM4, 67, 68
JDOM, 67, 68
levels, 67
MSXML implementation, 67
overview, 66–67
performance issues, 66
random access using, 66–67
SAX and JAXB vs., 67–68

domain names in namespace
representation, 31

domain-related ontologies, 178
DotWap, 422
ds:Signature element (CPA), 383
DSSSL (Document Style Semantics and

Specification Language), 322
DTDs (Document Type Definitions)

attribute definition, 37–38
deficiencies of, 39–40
described, 30
DOCTYPE instruction and, 30
editors, 400
element definition, 35–37
extending for design patterns,

75–76
extension by DOCTYPE definition, 35
external entities in, 38–39
as forest-regular grammars (FRG),

36
parameter entities in, 39
Schematron with, 69–70
user-defined entities in, 33, 38
XDuce and, 366
XML Schema vs., 68

dualistic view of processes, 213
mapping, 213–214

Dublin Core Metadata Element Set,
183

durability in ACID transactions, 254
dwelling-style architectures, 15–18

catalogues, 15–16
encyclopedias, 16–18
workflow systems, 18

DXE (Dynamic XML Engine), 405
dynamic adaptation in open

communication processes, 227
dynamic constraints, 175
dynamic media, static media vs., 305
Dynamic XML Engine (DXE), 405

E
e-speak, 407–409
ebXML, 374–393

actions, 392
basic concepts, 375–376
binary collaborations, 384, 386
business process collaboration, 384

Index 445

Business Process Specification
Schema, 383–384

business scenarios, 378
collaboration protocol agreement

(CPA), 376, 382–383
collaborative partner profiles (CPP),

376, 378–382
context categories, 389
context handling, 388–393
context rules, 392–393
contracts in, 382–383
core components, 389
design tools, 399–400
document assembly, 390–391
domain components, 390
EDI/EDIFACT solutions and, 375
electronic business profiles in

repositories, 22
future of, 393
message transport mechanism, 375
multiparty collaborations,

386–387
Open-edi Reference Model and,

377–378
process model, 383–388
semantic framework, 376
semantic interoperability format,

393
shared repositories, 376–382
SOAP use by, 251
UML specification schema, 384
Web services collaboration, 384
Web services orchestration and, 372
See also shared repositories

ebXMLBinding element (CPP), 381
EDI (electronic data interchange)

ebXML and EDI/EDIFACT solutions,
375

limitations of, 8, 9–10
overview, 370

electronic business applications
autonomous processes in, 11
ebXML repositories and, 22
long-running processes in, 11
navigational architecture

requirements, 96
See also business process modeling;

ebXML
electronic businesses

ebXML importance for, 374–375
temporary partnerships in, 243
See also business process modeling;

ebXML
element constructors (XQuery), 60–61
ELEMENT keyword (XQuery), 62
element types, 35
elementary task layer of business

processes, 210
elements

advantages, 73–74
of associations, 291–292
attributes vs., 70–74
CamelCase style for, 81
for conceptual entity properties, 82
constraints, 36

for content modeling, 74
CPA, 383
CPP, 380–382
DTD definition for, 35–37
empty, 28
instance subtyping, 52
meaningful names for, 81
mixed with text, 29
model groups, 36
nesting, 29
nillable, 49
overview, 27–29
recursive definitions of, 36
repetition within context allowed

for, 34
SVG, 341
of topics, 289–290
UDDI, 299–300
UUID attributes for, 81
UUIDs for, 81
variable layout of, 29
WebML, 278–279, 281–282

ELSE keyword (XQuery), 62
EMPTY element type, 35
empty elements, 28
EncryptedData element, 265
EncryptionAlgorithm element (CPP),

382
EncryptionMethod element, 265
encyclopedias, architectural pattern

for, 16–18
End element (CPA), 383
Engelbart, Doug, 269
English, as world language, 7
Enhydra DOM, 66
Enhydra’s Zeus, 67
enterprise application integration,

long-running processes in, 11
enterprise data model, limitations of,

132–133
entities

elements for conceptual entity
properties, 82

entity references, 32–33
ERM, 102
external, 38–39, 80
parameter, 39
user-defined, 33, 38–39
XML Schema and, 52

ENTITY elements (WebML), 278
entity relationship model or diagram.

See ERM (entity relationship
model)

entity sets
with attributes, 103
defined, 102
strong, 103
topic maps and, 284
weak, 103–104

enumeration facet, 42
enveloped signature, 263
enveloping signature, 263
Envision XML, 400
EPCs (event-driven process chains)

ARIS EPC, 196
drawbacks, 197

metamodel, 197–198
as modeling approach, 196

equal facet, 41
ERD. See ERM (entity relationship

model)
ERM (entity relationship model),

101–108
aggregation, 106, 107
AOM vs., 109
attributes, 102–103
conversion to RDF, 139–143
described, 101
entities, 201
entity sets, 102, 103–104
existence-dependent relationships,

105–106
generalization, 106–108
keys, 103–104
RDF and, 136
relationships, 104–105
spinoffs, 101
UML and, 159–160, 164

event-based parsers, 65–66
event-driven process chains. See EPCs

(event-driven process chains)
EVERY keyword (XQuery), 62
evolution of data models. See data

model evolution
eXcelon, 405
EXCEPT operator (XQuery), 61
exceptions (specialized contexts), 188
existence-dependent relationships in

ERM, 105–106
exotic language elements, avoiding, 82
expression types in XQuery, 60–64

conditional expressions, 62
element constructors, 60–61
expressions involving operators and

functions, 61
expressions testing or modifying

datatypes, 62
FLWR expressions, 61
functions, 62–63
joins, 63–64
list constructors, 62
path expressions, 60
quantified expressions, 62
variables, 60

extended links (XLink), 272–273
Extensible Financial Reporting Markup

Language (XFRML), 395
Extensible Hypertext Markup

Language. See XHTML
(Extensible Hypertext Markup
Language)

Extensible Markup Language. See XML
(Extensible Markup Language)

eXtensible Media Commerce Language
(XMCL), 395

eXtensible Server Pages (XSP), 367–368
Extensible Stylesheet Language. See

XSL (Extensible Stylesheet
Language)

external entities, 38–39, 80
external XML documents, XInclude

for, 57–58

Index446

F
facets

of datatypes, 41–42
of topic maps, 294

facilitators, 223
facts (RuleML), 236–237
FCS (Finite Coordinate Spaces), 312
film actions, defined, 308
filter units (WebML), 280
filters, XPath, 53–54
Financial Product Markup Language

(FpML), 395
Finkelstein, Clive, 101
first normal form (1NF), 89–91
#FIXED attribute specification, 37
FLBCs (formal languages for business

communication), 247–248
flexibility

CODASYL database limitations, 87
design principles, 22–23
Internet challenges for, 10–11
in querying data, 97, 99
XHTML benefits, 317

FLWR expressions (XQuery), 61
FOP project, 347
FOR keyword (XQuery), 61
foreign keys, keyref clause for

defining, 51
forest-regular grammars (FRG), 36
formal semantics, 170–173

conceptualization and, 171
constraints and, 169, 171–173
HTML and, 170
human vs. computer learning,

172–173
XML and, 170, 171

formatting HTML, 316
formatting XML

client- vs. server-side processing,
314

style sheets for, 314, 316–317
XHTML for, 317–321
XSL for, 321–326

forms
popularity of, 326
XForms, 326–330

Forrester Research, 370
forwards schema, 125–126, 129
FpML (Financial Product Markup

Language), 395
fractionDigits facet, 42
Frankhauser, P., 59
Freenet, 301–302
FRG (forest-regular grammars), 36
from link property, 272
FSV (functional service view), 412
functions

user-defined (XQuery), 63
XPath, 56
XQuery, 62–63
XQuery expressions involving, 61

fundamental facets of datatypes,
41–42

G
Galileo Galilei, 184
“Gallery of Stupid XSL and XSLT

Tricks,” 359
Gamma, Erich, 74
GCI (Global Commerce Initiative), 375
generalization in ERM, 106–108
Generic XML Transformation Tool

(GXML), 365
generic XSLT editors, 363
generic XSLT generators, 363
Gerardin, Olivier, 364
Geyer, Carol, 375
Global Commerce Initiative (GCI), 375
GML (Generalized Markup Language),

26
Gnutella, 300–301
goal orientation, as agent attribute,

217, 218
Gödel, Kurt, 151
Goldfarb, Charles, 26, 27, 283
Gopher, 305
grammars (VoiceXML), 345
grammars, forest-regular (FRG). See

FRG (forest-regular grammars)
greater than symbol (>), entity

reference for, 33
Green Pages (UDDI), 297
GRiNS Editor Pro for RealSystem G2,

423
GRiNS for SMIL2.0, 423
group connector for particles, 45
Guarino, N., 176, 178
Guha, R. V., 187
Günther, Gotthard, 184–185
GXML (Generic XML Transformation

Tool), 365

H
Harold, E. R., 324
has relationships in AOM, 110
hash algorithms, 262
HashFunction element (CPP), 382
Haskell, XML support by, 366
HDM, 277
head element, substitution for

occurrences of, 51
Health Level Seven (HL7), 395
Hegel, George Wilhelm Friedrich, 184
Heintz, J., 161
Helm, Richard, 74
HERM (Higher Order Entity

Relationship Model), 101,
108–109

Hershberger, Mark A., 365
Hewlett-Packard

e-speak, 407–409
Web service strategy, 371

hierarchical databases, 89
hierarchies

of assets, 116
of built-in datatypes, 42–43
of constraints, 175
of MHEG classes, 310–311

of multimedia interchange
categories, 310

Higher Order Entity Relationship
Model (HERM), 101,
108–109

HL7 (Health Level Seven), 395
Hoare, C., 206
horizontal industry vocabularies, 394
horizontal ontologies, 178
horizontal standards, as unifying

forces, 8–9
How to Do Things with Words,

246
href link property, 272
HTML (Hypertext Markup Language)

anchor addressing compared to
XPointer, 54

CSS for formatting documents, 316
HTML 4.01 features, 315–316
HTML Tidy utility, 318
links, 270, 271
proprietary enhancements to, 6–7
in representation tier of catalogues,

16
semantics and, 170
tags for formatting documents, 316
translating XML documents to

HTML forms, 190–192
versions, 316
XHTML as reformulation of HTML

4.01, 318
XLink vs., 270, 271
XML as successor to, 7
XSL-FO conversion to, 322

HTML Tidy utility, 318
human learning vs. computer

learning, 172–173
human skills needed for context,

185–186
hybrid encryption keys, 261
HyperCard, 332
HYPERLINK element (WebML), 281, 282
hyperlinks

embedded, 283
HTML, 270, 271
See also hypermedia; XLink

hyperlinks module of HyTime, 312
hypermedia, 268–282

defined, 305
guidelines, 269–270
history of, 268–269
integration and navigation in

presentations, 305–306
WebML, 277–282
XLink, 270–277
See also multimedia; WebML; XLink

Hypermedia/Time-Based Structuring
Language (HyTime), 311–312,
313

hypertext integration with
multimedia, 305

Hypertext Markup Language. See
HTML (Hypertext Markup
Language)

hypertext model of WebML, 279

Index 447

HyTime (Hypermedia/Time-Based
Structuring Language), 311–312,
313

I
IBM

business rule research, 234
Common Rules Java Library, 235
DB2 XML Extender, 404
UDDI initiative, 297
Web service strategy, 371
XMI toolkit, 399

ID attribute type, 37
ID datatype (XML Schema), 50
identical topics, 289
IDREF attribute type, 37
IDREF datatype (XML Schema), 50
IDREFS attribute type, 37
IF keyword (XQuery), 62
illocutionary force of messages,

246–247
implementation framework view

(IFV), 412
#IMPLIED attribute specification, 37
importing external schemata and

types, 52
including

external documents, XInclude for,
57–58

external schemata and types, 52
incompleteness, Gödel’s proof of, 151
index units (WebML), 280
industry vocabularies, 393–395

horizontal, 394
scientific, 394
technical, 393
vertical, 394–395

INFOLINK element (WebML), 281
information agents, 219
Information engineering, 101
information recall, audiovisual

advantage for, 109–110
information resources, topics vs.,

294–295
information system tasks, 304
infrastructure

business requirements, 370–371
ebXML, 374–393
industry vocabularies, 393–395
Web services, 371–374

inheritance
in RDFS, 154
XML Schema and, 79–80, 118

inner joins (XQuery), 63
instance subtyping, 52
instanceOf

association element, 291
topic element, 289

INSTANCEOF keyword (XQuery), 62
integration, collaboration vs., 13
integrity

of documents, 97, 99–100
referential, 94–95, 97, 99–100, 236,

402
security service, 261

semantic, in database systems, 402
See also referential integrity

integrity constraints in RuleML, 236
interaction layer of business processes,

210
interactions

business process modeling and,
194, 195

in open communication processes,
226–227

user interaction, 308, 326–330
interface information registry (UDDI),

299
intermedia synchronization, 309
Internet

architects for, 3–4
challenges for software developers

and architects, 9–12
client-server landscape changed by,

5
navigation evolution on, 6
as nonplanned settlement, 2–3
open standards, 6
size of (end of 2000), 6
subcultures and ontologies,

7–8
XML’s interrelationship with, 1

Internet agents, 219
Internet Open Trading Protocol

(IOTP), 394
interoperability, WAP for, 330
INTERSECT operator (XQuery), 61
Interwoven TeamSite, 426
intramedia synchronization, 309
IOTP (Internet Open Trading

Protocol), 394
is-a relationships in AOM, 110
ISO standards

topic maps, 283–284
UML, 158

isolation in ACID transactions, 254

J
Java servlets, 16
JAXB (Java Architecture for XML

Binding), 67–68
JAXR (Java API for XML Registries),

400
JDOM, 67, 68
Jeffcoate, J., 310
Jellife, Rick, 69
Johnson, Ralph, 74
joins (XQuery), 63–64
Josten, Geert, 365
JSP (Java Server Pages), 16, 367

K
Kay, Michael, 360
key clause (XML Schema), 50–51
KeyInfo element, 264
keyref clause (XML Schema), 51
keys

in AOM, 110
candidate, 103

in ERM, 103–104
foreign, 51
pointers vs., 91
primary, 50–51, 91, 103, 110
in relational databases, 89
superkeys, 103
XSLT, 358

KIF (Knowledge Interchange Format),
220, 225, 234

Kimber, Elliot, 74, 161
Kimbrough, Steven O., 247
KMQL (Knowledge Query and

Manipulation Language), 220,
225

knowledge bases, architectural pattern
for, 16–18

knowledge retrieval, Internet
challenges for, 10

KPN (PPT), 277
Kroenke, David, 101

L
label link property, 272
languages

conformance tests for, 82
description, for soft-coded business

rules, 11
exotic elements, avoiding, 82
general-purpose, for

transformation, 365
metalanguages, 310–311
one language for all, 9
variety of XML-based languages,

7–8, 26–27
WebML query language, 278–279
xml: attribute for defining, 28
See also vocabulary; specific

languages
Lao-Tse, 101
LaTeX, 347–349
layered metamodel, 244–245
layers

of business processes, 210
of communication, 243–245
CPP, 378–379
TPA, 228

learning
as agent attribute, 217, 218
human vs. computer, 172–173

left outer joins (XQuery), 63
length facet, 42
less than symbol (<), entity reference

for, 33
LET keyword (XQuery), 61
lexical space, 41
libraries

architectural pattern for, 18–19
repositories as, 22
Web as, 12, 268

life cycle
of applications, ontologies in,

178–180
of processes, 195
self-modifying processes and,

229–230

Index448

T
E
A
M
F
L
Y

Team-Fly®

linkbases, 275–276, 283
links. See hyperlinks; hypermedia;

XLink
Lippman, Andrew, 269
LISP, XML vs., 242–243
list constructors (XQuery), 62
list method for deriving datatypes,

44–45
Literal value (RDF), 145
Literary Machines, 268–269
Little, T. D. C., 309
loading linkbases, 276–277
local resources (XLink), 270, 273–274
localization of Web services, 374
location address module of HyTime,

312
logic

deontic, 176
monotonic vs. nonmonotonic,

188
rules in RDF (METALOG), 156–157

long-running processes, 11
long-running transactions, 255
look and feel using WebML, 282
loosely coupled architectures, 10
Lorie, Raymond, 26
Lubell, Josh, 76
Luther, Martin, 184

M
Macromedia Flash, 341
mapping XML onto a relational data

structure, 402–403
Marchiori, M., 157
Marine Trading Markup Language

(MTML), 395
marketplaces, architectural pattern for,

20–21
marshalling, 250
Martin, James, 101
Massachusetts Institute of Technology

(MIT), 219
MathML (Mathematical Markup

Language), 318, 394
maxExclusive facet, 42
maxInclusive facet, 42
maxLength facet, 42
McCarthy, John, 14, 186, 187, 242
meaning

background knowledge needed for,
172

human vs. computer learning and,
172–173

shared conceptualization needed
for, 171

See also context; formal semantics;
ontologies

meaningful names, 81
measurement module of HyTime, 312
mediation services, Internet challenges

for, 10
megaprojects, collaboration and, 13
Megginson, David, 78
member association element, 292
mergeMap element (topic maps), 292

merging topic maps, 292–293
message digests, 261–262
message header, 249
message-oriented middleware (MoM),

253
message passing

in agent communication, 220–221
in open communication processes,

227
message sequence charts, 243
MessageEncoding element (CPP), 381
messages, 248–253

channels for, 245–246
FLBC categories of, 247–248
header, 249
illocutionary force of, 246–247
in layered metamodel, 244
metapatterns, 248
signals, 249
simple vs. complex, 248–249
SOAP protocol for, 249–253
XML Protocol for, 253

Meta Creation Pro, 423
Meta Object Facility (MOF), 165
metadata

attributes for, 74
content vs., 74
publishing, 96–97, 98–99
user annotation of, 97, 99

metalanguages
as data interchange category, 310
MHEG, 310–311

METALOG, 156–157
metamodels

in business process management,
198

of EPCs, 197–198
as information models, 199
layered, 244–245
self-modifying processes and, 230
WFMS support for, 196
workflow migration and, 199

metapatterns of transactions, 248
metatransformations using XSLT, 359
MH-Object class, 310–311
MHEG (Multimedia Hypermedia

Information Encoding Group)
format, 310–311

microbrowsers, WAP-enabled, 331
Microsoft

BizTalk, 399, 414–419
MSXML, 67
.NET initiative, 12, 20, 371
SOAP initiative, 249
SQL Server 2000, 405
UDDI initiative, 297
Web service strategy, 371

middleware, 407–419
BizTalk, 414–419
e-speak, 407–409
RosettaNet, 409–413

Milner, R., 201, 206, 211
minExclusive facet, 42
minInclusive facet, 42
minLength facet, 42
MinXML, 72–73

MIT (Massachusetts Institute of
Technology), 219

mixed attribute, 46
mixed content

basic XML syntax, 29
in complex datatypes, 46

ML, XML support by, 366
mobile applications, XHTML Basic for,

319–320
mobility

as agent attribute, 217, 218
in business process modeling,

209–210, 211, 238–239
See also π-calculus

model groups, 36, 45
modeling constraints, XML Schema

limitations for, 52
modeling processes. See business

process modeling
modular topic maps, 292
modules

ADEPT, 224–225
HyTime, 312
XSLT, 359–360

MOF (Meta Object Facility), 165
MoM (message-oriented middleware),

253
monotonic reasoning, nonmonotonic

reasoning vs., 188
Moore, Scott A., 247
Mosher, Edward, 26
Mozilla browser, 277, 316
Mozquito Factory XHTML editor, 321,

329
MSXML implementation of DOM, 67
MTML (Marine Trading Markup

Language), 395
multidata units (WebML), 280
multilingual titles, attributes for,

70–71
multimedia

authoring tools, 422–424
data models, 310–312
defined, 305
format for shows, 305
hypermedia presentations,

305–306
hypertext integration with, 305
information recall and, 309–310
presentation vs. representation, 305
SMIL for presentation of, 336–340
spatial composition, 307
static vs. dynamic media, 305
synchronization, 309
temporal composition, 308–319
time independent vs. time

dependent media, 305
user interaction in, 308
Web awareness of, 340
Web-based applications, 306
XML and, 304
See also hypermedia

Multimedia Hypermedia Information
Encoding Group (MHEG) format,
310–311

multinamespace documents, 49

Index 449

multipart schemata, 80
multiple targets (XPointer), 56

N
n-ary relationships in RDF, 144–147
name() function (XQuery), 62
name tokens, 37
names, meaningful, 81
namespace identifiers, 34
namespaces

best practice for, 79
declaration for XML Schema

instances, 47
default, 31–32
DTDs’ lack of support for, 39
multinamespace documents, 49
overview, 30–32
prefixes, 32
in RDF descriptions, 158
scoping, 31–32
target namespace for XML Schema,

47
XHTML and, 318
XInclude support for, 58
XML Schema support for, 49

NamespaceSupported element (CPP),
382

Napster, 300
navigation

hypermedia, 268–282
Internet challenges for, 10, 87
as key Web activity, 6
topic maps, 283–297
See also hypermedia; topic maps

navigation model of WebML, 281–282
navigation tier of encyclopedias, 17
navigational architectures, 95–100

context awareness, 97, 100
document format vs. record format,

98
electronic business requirements,

96
flexible queries, 97, 99
integrity of documents, 97, 99–100
networks, 95–96
paradigm shift in, 5–6, 10, 87, 95
publishing metadata, 96–97, 98–99
standard data formats, 98, 100
thin devices, 95
transforming documents, 97, 100
user annotation of metadata, 97, 99

negotiation-based agent coordination,
221

Nelson, Ted, 268–269
nesting

Web services, 373
XML elements, 29

.NET initiative, 12, 20, 371
networks, navigational architectures

for, 95–96
News Industry Text Format (NITF), 395
NIAM (Nijssen’s Information Analysis

Methodology), 101
nil values, in XML Schema, 49–50

NITF (News Industry Text Format),
395

NMTOKEN attribute type, 37
NMTOKENS attribute type, 37, 71
node and arc diagrams, 136–137
node sets, XPath and, 53
nodes in topic maps, 284
Non-Planned Settlements, 2
nondeterminism in business process

modeling, 208–209, 212,
238–239. See also π-calculus

nonmonotonic reasoning, contexts
and, 188

nonrepudiation, security service, 261
NonRepudiation element (CPP), 382
normalization

1NF (first normal form), 89–91
2NF (second normal form), 91–93
3NF (third normal form), 93
in conceptual modeling, 115
costs of, 94
denormalization, 94
further forms of, 94
PNF (partitioned normal form),

115–116, 134
NOTATION attribute, 37, 38
notification operation type (WSDL),

257
numeric comparisons, DTD character

data and, 39–40
numeric facet, 42

O
OASIS

RELAX NG, 68
XML resources, 83

object containers
as data interchange category, 310
HyTime, 311–312, 313

Object Management Group. See OMG
(Object Management Group)

object-oriented camp of software
engineers, 14–15

object-oriented (OO) modeling, 216
object-oriented (OO) thinking, RDF

vs., 138
Object Role Modeling (ORM), 101
O’Caml, XML support by, 366
occurrence sharing, topic maps and,

287
OFFER messages, 247
OIL (Ontology Interchange Language),

180–183
axioms, 181
classes, 180–181
limitations, 183
metadata, 183
slots, 181–183

OMG (Object Management Group)
Meta Object Facility (MOF) of, 165
UML endorsed by, 158
UML published by, 101
XMI endorsed by, 163

Omnimark, 365

one-way operation type (WSDL), 256
1NF (first normal form), 89–91
ONIX International, 395
ontologies, 174–184

in application life cycle, 178–180
axiomatic theory, 175, 177
best practices, 183–184
building communities, 178
constraints and, 175–176
contexts and, 186–189
DAML (DARPA Agent Markup

Language), 180
database schemas and XML-based

language definitions as, 8
defined, 174
deontic logic, 176
levels of, 176–177
myriad of, 177–178
OIL (Ontology Interchange

Language), 180–183
ontological depth, 174–180
operational, 180–183
philosophical excursus, 184–185
relational systems, 175, 177
taxonomy, 175, 177
types of, 178
vertical standards and, 9
vocabulary, 174–175, 177

Ontology Interchange Language. See
OIL (Ontology Interchange
Language)

ontology mapping, 260
OO camp of software engineers, 14–15
OO modeling, 216
OO thinking, RDF vs., 138
OOHDM, 277
open communication processes,

226–228
Open-edi Reference Model, 377–378
open standards, 6–7
open system design principles, 22–23
Open Travel Alliance (OTA), 375
operational ontologies

DAML, 180
OIL, 180–183

operators
XPath, 55
XQuery, 60, 61, 62

Oracle 8i, 403–404
Order schema, 122–123, 128–129
ordered facet, 41
ORM (Object Role Modeling), 101
OTA (Open Travel Alliance), 375
Otto-Versand, 277
output methods (XSLT), 358–359
Override elements (CPP), 381
Ozone, 405

P
P2P architectures. See peer-to-peer

architectures
paradigm shift, 4–6, 86–87
parameter entities, overview, 39
parseType attribute (RDF), 145

Index450

parsing
custom, avoiding, 82
event-based parsers, 65–66
push-parsers, 66

particles, 45, 46
partitioned normal form (PNF),

115–116, 134
partner interface processes (PIPs),

412–413
partnerships in electronic businesses,

temporary, 243
PartyID element (CPP), 381
PartyInfo elements (CPA), 383
PartyRef element (CPP), 381
path expressions (XQuery), 60
path names for namespaces, 31
pattern facet, 42
#PCDATA element type, 35
PDF (Portable Document Format)

Apache FOP project, 347
overview, 346–347
SVG generation of, 342
syntax, 346–347
XSL-FO conversion to, 322,

324–325, 347
PDML (Product Data Markup

Language), 394
PDX (Product Definition Exchange),

394
peer-to-peer architectures, 300–302

anonymity issues, 302
central directory issues, 300
Freenet, 301–302
Gnutella, 300–301
Napster, 300
performance issues, 301

Pepper, Steve, 289
performance issues

DOM, 66
peer-to-peer architecture, 301
XSLT, 363–364

performatives (speech act), 220–221
Perl, 365–366
personalization model of WebML,

282
Petri nets, 206, 243, 373
PGP (Pretty Good Privacy), 260
philosophical excursus

ontologies, 184–185
topic maps, 294–296

physical level security, 260
π-calculus

π-processes, 210–211
agent-oriented aspects, 211–212
as basis for business process

modeling, 201, 205, 206
business process representation,

210–211
communication channels, 206–207,

208–210, 211, 212
contracting agents, 212–213
contracts, 212
development of, 206
dualistic view of processes, 213
mobility, 209–210, 211, 238–239

nondeterminism, 208–209, 212,
238–239

process evolvement, 207–208
process systems, 207
process terms, 207
shift toward agent-driven processes,

213
π-processes, 210–211
PIPs (partner interface processes),

412–413
plus mark (+), for multiple element

occurrences, 36
PNF (partitioned normal form),

115–116, 134
pointers, 91. See also XPointer
Portable Document Format. See PDF

(Portable Document Format)
Portal Server, 405
portals, architectural pattern for, 21
ports, 245
Poseidon for UML, 399
positioning

SMIL for, 337–338
spatial, 307
temporal, 308–309

PostScript, XSL-FO conversion to, 322
PPT (KPN), 277
prefixes

namespace, 32
xml:, 28

Prescod, Paul, 27
presentation formats, 303–349

document-based type setting,
346–349

exchanging information through
WAP devices, 330–335

graphical and multimedia, with
XML, 336–346

representation and, 304–312
separating content from form, 313
user interaction with XForms,

326–330
viewing XML data on the Web,

312–326
See also multimedia

presentation model of WebML, 282
Pretty Good Privacy (PGP), 260
primary keys

in AOM, 110
defined, 91
in ERM, 103
key clause for defining, 50–51
second normal form (2NF) and, 91

primitive datatypes, 42–43
printing, XML via PDF example, 322
proactivity, as agent attribute, 217,

218
procedural programming style,

352–353
procedural transformation, 352–354,

357
process calculus, 206. See also π-

calculus
process concepts and XML, 226–238

actor-driven processes, 226

Business Process Management
Initiative (BPMI), 230–233

business rules, 233–238
contract-based interaction with

tpaML, 228–229
open communication processes,

226–228
self-modifying processes, 229–230

process design tools, 399–400
process evolvement, 207–208
process integration in BPMI, 232–233
process life cycles, 195
process model

business process modeling, 193–239
ebXML, 383–388
Internet challenges for, 11
See also business process modeling

process model (ebXML), 383–388
binary collaborations, 384, 386
business activities, 386
business document flow, 384–385
business process collaboration, 384
Business Process Specification

Schema, 383–384
business transaction choreography,

387–388
business transactions, 385–386
collaborations, 386–387
multiparty collaboration, 386–387
partners, 384
predefined patterns, 388
UML specification schema, 384
Web services collaboration, 384

process specification (CPP), 378
process systems (π-calculus), 207
process terms (π-calculus), 207
processing instruction syntax, 32
Product Data Markup Language

(PDML), 394
Product Definition Exchange (PDX),

394
Product schema, 119–120, 127
prolog of XML documents, 29–30
properties

in AOM, 110, 112
conceptual entity properties, 82
CPP, 381–382
RDF relationships as, 136
WebML, 278
XLink link properties, 272
XSL-FO, 324

Protocol element
CPA, 383
CPP, 382

publishing metadata, 96–97, 98–99
push-parsers, 66
pyXML, 66

Q
quantified expressions (XQuery), 62
query language of WebML, 278–279
query processing, ontologies and,

179
querying XML. See XQuery

Index 451

question mark (?), for optional
element occurrences, 36

Quilt, 59
quotation marks (“), entity reference

for, 33

R
range operator (XQuery), 60
ranges, XPointer addressing, 57
raster graphics (SVG), 341
Rational Rose, 398–399
RDF (Resource Description Framework)

aboutEach attribute, 143
aboutEachPrefix attribute, 143
advanced modeling techniques,

143–149
aggregations, 147–149
Alt construct, 143
application range, 134, 135
Bag construct, 141–142, 143
basics, 135–139
best practices, 157
conceptual modeling and, 134–158
decidability issues, 151
described, 85
ERM and, 136
ERM conversion to, 139–143
Literal value, 145
logic rules (METALOG), 156–157
n-ary relationships, 144–147
node and arc diagrams, 136–137
OO vs., 138
parseType attribute, 145
reification, 150–151
relationships, 136, 138–139,

144–147
Resource value, 145
Schema Specification (RDFS),

152–156
Semantic Web and, 10
Seq construct, 141–142
statements, 135, 136
syntax, 137
topic maps vs., 296–297
traceability and, 151
UML and, 163, 164
for workflow information exchange,

199
RDFS (RDF Schema Specification),

152–156
extension mechanism, 155
inheritance, 154
semantic constraints, 152–154
taxonomy of resources, 152
wish list (soft constraints), 155–156

rdfs:domain constraint, 155
rdfs:range constraint, 155
reaction rules (RuleML), 235–236
reactivity, as agent attribute, 217, 218
RealNetworks’ Meta Creation Pro, 423
recall of information, audiovisual

advantage for, 109–110
receives schema, 124–125, 129
records

defined, 87
document format vs. record format,

98
sets of, 87, 88

recursive element definitions, 36
redefinition, 52
Reference elements, 264
referential integrity

in database systems, 402
between documents, 97, 99–100
relational database problems, 94–95
in RuleML, 236
XML and, 95

reification
in RDF, 150–151
as system design principle, 23

relational systems, 175, 177
relational technology

1NF (first normal form), 89–91
2NF (second normal form), 91–93
3NF (third normal form), 93
costs of normalization, 94
denormalization, 94
foreign key definition, 51
integrity problems, 94–95
null value support, 49–50
ontologies and, 179–180
overview, 89–95
primary key definition, 50–51
tables, 89
uniqueness definition, 50
XML Schema support for, 49–51

relational topology, 5
RELATIONSHIP elements (WebML), 278
relationship sets

cardinality of, 105
CODASYL, 87, 88
ERM, 104, 105

relationships in AOM, 110
relationships in ERM

aggregation, 106, 107
arity of, 104
attributes, 105
constraints, 104
existence-dependent relationships,

105–106
generalization, 106–108
overview, 104–105
roles, 104

relationships in RDF
n-ary relationships, 144–147
as properties, 136
between two resources, 138–139

relationships of substances, 295–296
relative URIs, XML Base and, 58
RELAX, 68
RELAX NG, 68
reliability channel parameter, 246
ReliableMessaging element (CPP),

381
remote procedure calls, XML-RPC for,

249–250
remote resources (XLink), 270–271
rendition module of HyTime, 312
repetition within a context, 34
repositories

architectural pattern for, 21–22
shared, 376–382
See also shared repositories

representation tier of catalogues, 16
representational constraints, 175
request-response operation type

(WSDL), 256
required, should vs., 14
#REQUIRED attribute specification, 37
Resource Description Framework. See

RDF (Resource Description
Framework)

Resource value (RDF), 145
resources (XLink), 270–271
responsiveness

Internet challenges for, 10–11
one language for all and, 9

restriction method for deriving
datatypes, 44–45

Retries element (CPP), 381
RetryInterval element (CPP), 381
RETURN keyword (XQuery), 61
reuse mechanisms in XML Schema,

51–52
RNIF (RosettaNet implementation

framework), 412
Robie, Jonathan, 59
Robot and the Baby, The, 14
role link property, 272
role names for arcs (AOM), 111
roles of relationships, 104
ROLLBACK of transactions, 254
RosettaNet, 409–413

architecture, 410–412
business operational view (BIV),

412
design tools, 399
dictionaries, 410–412
functional service view (FSV), 412
implementation framework view

(IFV), 412
nonprofit consortium, 409–410
partner interface processes (PIPs),

412–413
RosettaNet implementation

framework (RNIF), 412
Rothermehl, K., 309
routing, content-based, 259
rows

primary keys for, 91
in relational databases, 89

RTF, XSL-FO conversion to, 322
rule-based programming style, 353
rule-based transformation, 355–357
RuleML (Rule Markup Language),

235–237
derivation rules, 236–237
facts, 236–237
integrity constraints, 236
reaction rules, 235–236

S
Saarela, J., 157
Sablotron XSLT processor, 364

Index452

SAE (Society of Automotive
Engineers), 18

SAF (Schema Adjunct Framework),
190–192

SAML (Security Assertion Markup
Language), 262

SAP/R3, 196
SAT (speech act theory), 246–247
SATISFIES keyword (XQuery), 62
SAX (Simple API for XML)

DOM and JAXB vs., 67–68
as event-based parser, 65–66
overview, 65–66
as push-parser, 66
SAX2, 66
Web site for specifications, 65

Saxon XSLT processor, 360, 361, 364
scalability

channel parameter, 246
of XSLT, 351

Scalable Vector Graphics. See SVG
(Scalable Vector Graphics)

scaling actions, 308
scheduling module of HyTime, 312
Schema Adjunct Framework (SAF),

190–192
schema definition

basic DTD, 35–38
DTD deficiencies, 39–40
external entities, 38–39
identifiers, 38
NOTATION attribute, 38
parameter entities, 39
user-defined entities, 38
XML Schema, 40–52
See also XML Schema

schemata, XML mediation with, 10
Schematron, 69–70, 359, 401
scientific vocabularies, 394
scope association element, 292
scroller units (WebML), 280
second normal form (2NF), 91–93
second-order substances, 295
Secure MIME (S/MIME), 260
Secure Sockets Layer (SSL), 260
security

application level, 260
channel parameter, 246
implementation technologies,

261–262
physical level, 260
security services, 261
XML Encryption, 265
XML security architecture, 262
XML Signature, 263–264

Security Assertion Markup Language
(SAML), 262

segmentation in conceptual modeling,
129–130

self-modifying processes, 229–230
semantic constraints

defined, 175
in RDFS, 152–154

semantic framework of ebXML, 376
semantic integrity in database systems,

402

semantic interoperability format
(ebXML), 393

semantic maps for Web services, 374
semantic networks, XML-based

formats for modeling, 10
Semantic Object Modeling (SOM), 101
Semantic Web, RDF and, 10
semantics

of communication, 259–260
formal, 169, 170–173
hardwired in open standards, 6
HTML and, 170
XML and, 170, 171

Seq construct (RDF), 141–142
sequence connector for particles, 45
sequences in RDF, 141–142
serialization, 250
serialization syntax (AOM), 130–132
service information registry (UDDI),

299
service level agreements (SLAs), 221
service-oriented architecture, Internet

challenges for, 9–10
Service schema, 120–121, 127–128
ServiceBinding elements (CPP), 381
sets of records, 87, 88
SGML (Standard Generalized Markup

Language)
architectural forms in, 76
DSSSL and, 322
HyTime and, 311–312, 313
software engineer camp, 14–15
XML roots in, 26

shared repositories, 376–382
business scenarios, 378
collaboration protocol agreement

(CPA), 376, 382–383
collaborative partner profiles (CPP),

376, 378–382
discovery, 376
as heart of ebXML, 376
negotiation, 376–377
Open-edi Reference Model and,

377–378
registration, 376

show link property, 272
shrink-wrapped software packages,

Web services vs., 371
signals, 249
Signature element, 264
SignatureAlgorithm element (CPP),

382
SignatureMethod element, 264
SignatureValue element, 264
SignedInfo element, 264
Simple API for XML. See SAX (Simple

API for XML)
Simple Object Access Protocol. See

SOAP (Simple Object Access
Protocol)

Simple Rules Markup Language
(SRML), 237–238

SITEVIEW element (WebML), 279
SLAs (service level agreements), 221
slots (OIL), 181–183

SMIL (Synchronized Multimedia
Integration Language), 336–340

described, 336
editing tools, 423
media integration using, 336, 337,

340
media types, tags, and player

support, 337
positioning of media, 337–338
service parameters, 339–340
skeleton code for documents,

336–337
SVG compatibility with, 342
switch tag, 339–340
temporal synchronization, 338–339
Web site, 340

S/MIME (Secure MIME), 260
SOAP-RP, 253
SOAP (Simple Object Access Protocol),

249–253
adoption of, 251
as BizTalk transport method, 414
BPMI and, 233
development of, 249–250
features, 252–253
message composition, 250–251
in Microsoft .NET architecture, 20
purpose of, 251
request/response datastream

example, 251–252
response message example, 252
SOAP-RP, 253
for Web services transport format,

20, 371–372
XML Protocol (XMLP or SOAP 1.2),

253
XML-RPC vs., 250

Society of Automotive Engineers
(SAE), 18

soft constraints
deontic logic and, 176
in RDFS wish list, 155–156

soft logic, Internet and need for, 13–14
Software AG

Adabas DBMS, 406
Bolero, 67
Tamino, 406

software development, ontologies and,
178–180

software engineering for Web services,
373

software engineers
camps of, 14–15
Internet challenges for, 9–12

solicit-response operation type
(WSDL), 257

solutions
application servers, 419
authoring, 419–424
content management systems

(CMSs), 424–426
database systems, 401–407
design tools, 398–401
middleware, 407–419

SOM (Semantic Object Modeling), 101
SOME keyword (XQuery), 62

Index 453

SORTBY operator (XQuery), 62
spatial composition

in multimedia, 307
SMIL for, 337–338

speech act theory (SAT), 246–247
speech acts, 246–248

in ADEPT, 225
formal languages for business

communication (FLBCs), 247
illocutionary force of messages,

246–247
metapatterns, 248
overview, 220–221

SQL camp of software engineers,
14–15

SQL Server 2000, 405
SRML (Simple Rules Markup

Language), 237–238
SSL (Secure Sockets Layer), 260
Standard Generalized Markup

Language. See SGML (Standard
Generalized Markup Language)

standards
for data formats, 98, 100
horizontal vs. vertical, 8–9
Internet open standards, 6–7
topic maps, 283–284
UML, 158
XA, 253, 254
See also W3C (World Wide Web

Consortium)
Start element (CPA), 383
state transition diagrams, 243
static media, dynamic media vs., 305
Status element (CPA), 383
strong entity sets, 103
structural constraints, 175
structural model of WebML, 278–279
style sheets

CSS with HTML, 316
CSS with XML, 316–317
overview, 314

subject, topic vs., 288–289
subjectIdentity topic element, 290
substances, 295–296
substitution groups, 51
substrings, XPointer addressing, 56–57
Sun Microsystems

Java API for XML Registries (JAXR),
400

Java retargeted by, 3
JSP (Java Server Pages), 16, 367
Web service strategy, 371
Web services support, 372
XSLT compiler, 364

superkeys, 103
SVG (Scalable Vector Graphics),

340–342
benefits, 341
described, 340
editing tools, 422–423
elements and attributes, 341
example, 341–342
images (raster graphics), 341
objects, 340–341

PDF generation from, 342
SMIL compatibility, 342
vector graphics, 341

swiftML, 395
switch tag (SMIL), 339–340
symmetric encryption keys, 261
synchronicity channel parameter, 246
synchronization

intramedia vs. intermedia, 309
SMIL for, 338–339
for time-dependent media, 309

Synchronized Multimedia Integration
Language. See SMIL
(Synchronized Multimedia
Integration Language)

SyncML, 394
syntax

AOM serialization, 130–132
PDF, 346–347
RDF, 137
XML, 27–33
XPointer, 54, 56, 57

syntax of XML, 27–33
attributes of elements, 28
case sensitivity, 28
CDATA denotation, 32
character references, 33
character set specification, 29
comments, 29
DOCTYPE instruction, 30
empty elements, 28
entity references, 32–33
extensibility features, 29–30
markup elements, 27–29
mixed elements and text, 29
namespaces, 30–32
nesting elements, 29
processing instructions, 32
prolog, 29
start and end tags, 27–28
variable layout of elements, 29
xml: attribute, 28

T
tables, in relational databases, 89
Tamino, 406
target namespace for XML Schema, 47
task lists in workflows, 195
task-related ontologies, 178
taxonomies

as ontologies, 175, 177
of RDF resources, 152
UDDI, 300

technical vocabularies, 393
Tellme Studio, 423
templates (XSLT), 355
Templeton, A., 310
temporal composition in multimedia,

308–319
temporal constraints, 175
temporal synchronization. See

synchronization
temporary partnerships in electronic

businesses, 243

ternary relationships, 104
“tertium non datur” axiom, 184, 185
TeX, 347–349
TeXML, 347
Thalheim, Bernhard, 101, 108, 133,

175
THEN keyword (XQuery), 62
thesaurus ontology level, 177
thin devices, 95
third normal form (3NF), 93
Thomas Aquinas, 184
Thorpe, M., 233
3NF (third normal form), 93
time-dependent media

synchronization of, 309
temporal composition, 308–309
time-independent media vs., 305
user interaction, 308
See also multimedia

timeline model, 308, 309
title link property, 272
titles, multilingual, attributes for,

70–71
TML (Tutorial Markup Language), 394
tModel element (UDDI), 299–300
TMX (Translation Memory Exchange),

395
to link property, 272
TogetherSoft, 398–399
top-level ontologies, 178
topic maps, 283–297

applications, 294
associations, 291–292
attaching properties to resources,

294
defined, 284
facets, 294
ISO standard, 283–284
merging, 292–293
modular, 292
need for, 283
nodes and arcs, 284
occurrence sharing and, 287
one map, two resource pools

example, 284–285
philosophical excursus, 294–296
RDF vs., 296–297
topics, 288–291
two maps, one resource pool

example, 285–287
XTM (XML Topic Maps), 10

topics, 288–291
elements, 289–290
example definition, 291
identical, 289
information resources vs., 294–295
subject vs., 288–289

topologi, 401
topologies

of Internet as nonplanned, 2
navigational, 5
relational, 5
transactional, 4–5
of unplanned settlements, 2, 3

totalDigits facet, 42
Tower of Babel, 8

Index454

TPA (trading partners agreement), 382
tpaML (Trading Partners Agreement

Modeling Language), 228–229
TPA contract, 228
TPA layers, 228
TPA structure, 228–229

TPP (trading partners profile), 378
traceability

Internet challenges for, 12
RDF and, 151

trading partners agreement (TPA), 382
trading partners profile (TPP), 378
Transaction Authority (XA) standard,

253, 254
transaction model, long-running

processes and, 11
transactional topology, 4–5, 86
transactional Web services, 254–255,

373
transactions

ACID attributes, 253–254
COMMIT, 254
defined, 4
ebXML business transaction

choreography, 387–388
ebXML business transactions,

385–386
in layered metamodel, 244–245
long-running, 255
metapatterns, 248
ROLLBACK, 254
two-phase commit, 254
XA standard, 253, 254

transformation
general-purpose languages for, 365
Omnimark for, 365
Perl for, 365–366
procedural, 352–354
requirements for documents, 97,

100
rule-based, 355–357
Web page generation, 367–368
XDuce for, 366–367
See also XSLT (XSL Transformations)

transformation tier of catalogues, 16
transition constraints, 175
transitive dependence, 93
Translation Memory Exchange (TMX),

395
Transport element (CPP), 381
transport layer (CPP), 379
TREAT keyword (XQuery), 62
tree structure

of XML, 29
XPath expressions and, 53

TREX, 68
trusted information sources, 12
Tutorial Markup Language (TML), 394
two-phase commit of transactions, 254
2NF (second normal form), 91–93
Type element (CPA), 383
type link property, 272
type setting, document-based,

346–349

U
UDDI (Universal Description,

Discovery, and Integration),
297–300

business categories, 300
business identifiers, 300
components, 297
elements, 299–300
example response to query, 298
initiative, 297
for registration and discovery of

Web services, 20, 298
registry, 299–300
simple request, 298
taxonomies, 300
UUIDs, 299
Web services and, 371

UltraXML, 420–421
UML specification schema for ebXML,

384
UML (Unified Modeling Language),

158–167
AOM and, 160–161
business process modeling and, 216
conceptual design tools, 398–399
converting to XML, 162–163
described, 85
ERM and, 159–160, 164
as ERM spinoff, 101
ISO standardization, 158
models, 158–159
OMG endorsement of, 158
RDF and, 163, 164
XMI for converting to XML,

162–163, 165–167
XML and, 161–162
See also XMI (XML Metadata

Interchange)
Unicode character set, as XML

standard, 29
union method for deriving datatypes,

44–45
UNION operator (XQuery), 61
unique clause (XML Schema), 50
Universal Description, Discovery, and

Integration. See UDDI (Universal
Description, Discovery, and
Integration)

universally unique identifiers (UUIDs),
81, 299

unplanned settlements
community infrastructure-style

architectures, 18–22
desktop PC evolution as, 4–5
dwelling-style architectures, 15–18
functionality of, 2, 3
Internet as, 2–3

URI (Uniform Resource Identifier)
for namespace representation, 31
RDF and, 135
relative URIs, 58
XML Base and, 58

URL (Uniform Resource Locator), 31
URN (Uniform Resource Name), 31
user agents, XML-based, 317

user-defined attributes, xml: prefix
forbidden in, 28

user-defined datatypes, 43, 44–45
user-defined entities, 33, 38
user-defined functions (XQuery), 63
user interaction

categories of, 308
with XForms, 326–330
See also XForms

user interfaces, ontologies and, 180
UserLand Frontier, 426
UserLand Software, 249, 250
users and user groups (WebML), 282
UUIDs (universally unique identifiers),

81, 299

V
valid XML documents, 30
value space, 41
variables

in XQuery, 60
in XSLT, 357, 360

vector graphics (SVG), 341
version-controlled schemata, 80–81
vertical industry vocabularies,

394–395
vertical ontologies, 178
vertical standards, subcultures created

by, 9
Vignette StoryServer, 426
virtual depth, 307
Virtual Reality Markup Language

(VRML), 336
visual XSLT editors, 363
Vlissides, John, 74
vocabulary

in ACL, 220
best practices, 183–184
e-speak, 409
industry vocabularies, 393–395
as ontology, 174–175, 177

Voice Server for IBM’s Websphere
environment, 424

VoiceXML (Voice eXtended Markup
Language), 342–346

application root document,
344–345

architecture, 343–344
concepts, 344–345
described, 342–343
development tools, 423–424
document server, 343
documents, 344
forms and menus, 344
goal of, 342
grammars, 345
implementation platform, 343–344
interaction dialogs, 343
interpreter, 343
sessions, 344
simple conversion example,

345–346
voice response systems, 343
voice services, 343

Index 455

VoiceXML (continued)
W3C specification, 342–343
Web sites, 342, 343

VRML (Virtual Reality Markup
Language), 336

W
W3C (World Wide Web Consortium)

conformance tests, 82
METALOG, 156–157
VoiceXML specification, 342–343
Working Drafts caveat, 59
XHTML specification, 317
XML release by, 26
XML style sheet recommendation,

317
WAE (Wireless Application

Environment), 331, 332
Wahl, T., 309
WAP (Wireless Application Protocol),

330–335
defined, 330
further information, 331–332
interoperability using, 330
microbrowsers for presentation, 331
WAP-related tools, 335
WAP stack, 331
WBXML with, 334–335
Wireless Application Environment

(WAE) for, 331, 332
WML with, 330–331, 332–333
WMLScript with, 333–334

WAPPage, 422
WBXML (WAP Binary XML Content

Format), 334–335
weak entity sets, 103–104
Web

client-server landscape changed by,
5

future of, 12–13
as a library, 12, 268
viewing XML data on, 312–326

Web-based applications, 306
Web browsers. See browsers
Web Modeling Language. See WebML

(Web Modeling Language)
Web page generation tools, 367–368
Web servers, 5
Web services, 371–374

architectural pattern for, 19–20
automation for inclusion in

business process, 372
availability issues, 372
big players, 371
brokers, 374
as business processes, 372–373
collaboration vs. integration,

372–373
consumers, 374
distributed functionality in, 19, 20
ebXML collaboration, 384
future of, 5
localization, 374
nested, 373

providers, 374
semantic maps for, 374
shrink-wrapped software packages

vs., 371
software engineering for, 373
stand-alone applications vs., 12
standards and protocols, 371–372
transactional, 254–255, 373
Web Services Description Language

(WSDL), 20, 255–259
See also repositories

Web sites
Adobe, 422
Anakia, 367
AOM design tool, 399
AOM information, 113
AOM serialization syntax, 130
Apache, 421
Apache FOP project, 347
ARIS, 196
Batik toolkit, 347
BindSystems, 400
Birdstep, 404
BPML specification draft, 232
BT Provide Customer Quote Service,

225
Corel, 422
Data Access Technologies (DAT),

400
DoCoMo, 423
DotWap, 422
DTD editors, 400
generic XML design patterns, 75
GRiNS for SMIL2.0, 423
HTML Tidy utility, 318
HyperCard, 332
IBM, 404
IBM business rule research, 234
IBM Common Rules Java Library,

235
industry vocabularies, 393–395
ISO639 specification, 28
JSP, 367
KIF, 234
loop compiler, 359
Macromedia Flash, 341
Meta Creation Pro, 423
Microsoft, 405
Mozilla browser, 316
Mozquito Factory XHTML editor,

321, 329
multipart schemata information, 80
open source development, 400
Oracle, 403
Ozone, 405
printing XML via PDF example, 322
Rational Rose, 398
Robin Cover, 7
RosettaNet, 399
SAX specifications, 65
Saxon XSLT processor, 361
SMIL, 340
SRML, 237
supporting this book, 83
SVG editing tools, 422, 423
SVG generation of PDF files, 342

Tellme Studio, 423
TeXML, 347
TogetherSoft, 398
topologi, 401
ultimate link, 12
UltraXML, 420
Voice Server for IBM’s Websphere

environment, 424
VoiceXML information, 342, 343
WAP information, 331–332
WAP-related tools, 335
WAPPage, 422
Web publishing information,

419–420
WebDAV, 233
WebRatio, 277
WFMC, 196
X-Smiles, 330
XForms, 327
XMetaL, 420
XML Coverpages, 347
XML resources, 83
XML Schema editors, 400
XML style sheet recommendation

of W3C, 317
XSL and XSLT tricks, 359
XSL-FO conversion to PDF, 324
XSL-FO specification, 323
XSL Toolbox, 76
XSL transformation tutorial, 347
XSLT compiler by Gerardin, 364
XSLT extensions, 361

WebDAV, BPMI and, 233
WebML (Web Modeling Language),

277–282
business rules, 282
complex properties, 278
composition model, 279–281
content units, 279–281
derived attributes and relationships,

279
history, 277
hypertext model, 279
integrated environment, 277
look and feel, 282
navigation model, 281–282
personalization model, 282
presentation model, 282
query language, 278–279
simple properties, 278
structural model, 278–279
users and user groups, 282

WebRatio, 277
well-formed documents, 27. See also

syntax of XML
Welty, C., 176
WFMC (Workflow Management

Coalition), 196
WFMSs (workflow management

systems), 196, 200
WHERE keyword (XQuery), 61
White Pages (UDDI), 297
whiteSpace facet, 42
wildcards, 45, 46
Willighagen, Egon, 365

Index456

Wireless Application Environment
(WAE), 331, 332

Wireless Application Protocol. See WAP
(Wireless Application Protocol)

WML (Wireless Markup Language)
authoring tools, 421–422
cards, 332
decks, 332
example, 332–333
features, 333
WAP and, 330–331
XSL-FO for generating documents,

322
WMLScript, 333–334
Wong, L. Y., 133
Workflow Management Coalition

(WFMC), 196
workflow management systems

(WFMSs), 196, 200
workflow tier of workflow systems, 18,

19
workflows

architectural pattern for, 18
change in, 205
classification of, 200
described, 195
divergent design and

implementation for, 200–201
dynamic business processes and,

201
event-driven process chains (EPCs),

196–198
inadequacy of activity- and work-

piece-centered view, 201
long-running processes in, 11
migration, 199
overview, 195–197
RDF for information exchange, 199
task lists in, 195
workflow management system

(WFMS), 196, 200
See also business process modeling

World Wide Web. See Web
World Wide Web Consortium. See

W3C (World Wide Web
Consortium)

WSDL (Web Services Description
Language), 255–259

description elements, 256–257
development of, 255
example description, 257–259
limitations of, 259
operation types, 256–257
for Web service access points and

protocols, 20
Web services defined in, 255

<wsdl:binding name=...type=...>
element, 257

<wsdl:fault name=... message=...>
element, 256

<wsdl:message name=...> element,
256

<wsdl:operation name=...> element,
256–257

<wsdl:portType name=...> element,
256

<wsdl:service name=...> element,
257

<wsdl:types> element, 256
WYSIWYG editors, 419

X
X-Smiles, 330
XA (Transaction Authority) standard,

253, 254
XACML (XML Access Control

Language), 262
Xalan XSLT processor, 360, 361–363,

364
XDuce, 366–367
XEP, 324
XForms, 326–330

appearance vs. purpose and,
327–329

components, 327
concept of, 326–329
Mozquito implementation, 329
Web site, 327
X-Smiles implementation, 330
XHTML code vs. XForms code,

328–329
XFRML (Extensible Financial

Reporting Markup Language),
395

XHTML Basic, 319–320
XHTML (Extensible Hypertext Markup

Language), 317–321
example document, 318–319
flexibility gained by, 317
as HTML’s successor, 7
modularization of, 319
Mozquito Factory editor for, 321
as reformulation of HTML 4.01, 318
in representation tier of catalogues,

16
user agents, 317
versions, 320–321
Web pages enriched by, 317
well-formed markup using, 320
XForms code vs. XHTML code,

328–329
XHTML Basic for mobile

applications, 319–320
XHTML-FML, 329
XSL-FO for generating documents,

322
XHTML-FML (XHTML Form Markup

Language), 329
XInclude, 57–58
XKMS (XML Key Management

Services), 262
XLANG, 417
XLink, 270–277

actuated links, 271
arcs, 271, 274–275
browsers supporting, 277
extended links, 272–273
HTML vs., 270, 271
link ingredients, 270–271
link properties, 272

link types, 272
linkbases, 275–277, 283
loading linkbases, 276–277
local resources, 270, 273–274
multiple arcs, 274–275
resources, 270–271
simple links, 270, 272

XMCL (eXtensible Media Commerce
Language), 395

XMetaL, 420
XMI (XML Metadata Interchange)

for converting UML to XML,
162–163, 165–167

described, 163
for exchanging model data, 165
MOF as basis for, 165
round-trip engineering using, 165
toolkit, 399

XML Access Control Language
(XACML), 262

XML APIs
deciding which to use, 67–68
DOM (Document Object Model),

66–67
JAXB (Java Architecture for XML

Binding), 67
SAX (Simple API for XML), 65–66

xml: attribute, 28
XML Authority, 400
XML Base, 58
XML Coverpages Web site, 347
XML Encryption, 265
XML (Extensible Markup Language)

best practices, 79–82
context in, 189
data model, 33–34
data modeling issues, 86
database system requirements, 402
goals for creation of, 7
history of, 26
as HTML’s successor, 7
implications on current IT

landscape, 12–14
interrelationship with the Internet,

1
LISP vs., 242–243
process concepts and, 226–238
resources, 83
security architecture, 262
semantics and, 170, 171
SGML roots of, 26
syntax, 27–33
translating documents to HTML

forms, 190–192
UML and, 161–162
as universal language, 7–8
variety of language definitions

based on, 7–8, 26–27
XML Key Management Services

(XKMS), 262
XML Metadata Interchange. See XMI

(XML Metadata Interchange)
XML Protocol (XMLP or SOAP 1.2),

253
XML Rowset provider, 405
XML-RPC, 249–250

Index 457

XML Schema, 40–52
advantages, 52
AOM serialization syntax for,

130–132
architectural forms vs., 78–79
basic elements, 46
binding to contexts, 189–192
BPML XML Schema, 232
conceptual modeling (step 8),

118–129
concise style for, 81–82
constraints and, 52, 68–69, 173
converting UML to, 162–163
datatypes, 40–46
design tools, 400–401
document structure, 46–49
DTDs vs., 68
editors, 400
elements vs. attributes and, 70–74
example definition, 47–49
ID datatype, 50
IDREF datatype, 50
inheritance mechanism, 79–80, 118
key clause, 50–51
keyref clause, 51
length of schemata, 52
limitations of, 52, 68–69, 173
multinamespace documents and, 49
multipart schemata, 80
multiple inheritance and, 118
namespace declaration, 47
namespaces, 49
nil values in, 49–50
published, refraining from

changing, 80
reuse mechanisms, 51–52
Schema Adjunct Framework (SAF),

190–192
Schematron with, 69–70
target namespace, 47
unique clause, 50
validators, 400, 401
version-controlled schemata, 80–81
VoiceXML, 342–346
XML design patterns and, 74–76

XML Signature, 263–264
XML Spy, 400
XML Topic Maps (XTM), 10. See also

topic maps
XMLambda, XML support by, 366
xml:base attribute, 58
XML::Informix, 365
XMLP (XML Protocol or SOAP 1.2),

253
XML::Pyx, 365
XML::Sablotron, 365
XPath

abbreviated syntax, 53
axis specifiers, 54
case-sensitivity, 54
filters, 53–54
functions, 56

in key clause of XML Schema,
50–51

in keyref clause of XML Schema,
51

node sets and, 53
operators, 55
overview, 53–54
recurring elements and, 53–54
in unique clause of XML Schema,

50
XSL and, 64–65

XPointer
abbreviated syntax, 57
addressing elements by counting,

57
addressing elements by identifiers,

57
addressing multiple targets, 56
addressing ranges, 57
addressing substrings, 56–57
HTML anchor addressing compared

to, 54
overview, 54, 56–57
syntax, 54, 56, 57

XQuery
expression types, 60–64
origins of, 59
overview, 59–64
as working draft, 59
See also expression types in XQuery

<xsd:complexType> element,
described, 46

<xsd:element> element, described, 46
<xsd:schema> element, described, 46
<xsd:simpleType> element, described,

46
xsi:nil attribute, 49
XSL (Extensible Stylesheet Language),

321–326
CSS vs., 325–326
DSSSL and, 322
overview, 64–65, 321–322
transformation tutorial, 347
XSLT and, 322
See also XPath; XSL-FO (XSL

Formatting Objects); XSLT (XSL
Transformations)

XSL-FO (XSL Formatting Objects),
323–326

areas, 323
conversion to final formats, 322,

325–326
conversion to PDF, 322, 324–325
overview, 65
properties, 324
specification, 323
types of FOs, 323–324
with XEP for PDF documents, 324
as XSL elements, 322

XSL Toolbox, 76
XSLT (XSL Transformations), 357–364

applications, 352

authoring tools, 363
caching, 364
cross-references, 358
described, 322
dislikes, 352
DSSSL and, 322
editors, 363
extensions, 360–363
features, 357–360
generators, 363
history, 352
keys, 358
loop compiler with, 359
metatransformations, 359
modules, 359–360
multiple input files, 358
output methods, 358–359
overview, 65
performance aspects, 363–364
procedural operations, 353
procedural transformation example,

353–354
procedural vs. rule-based

transformations, 357
processors and compilers, 360,

361–364
restrictions, 360
rule-based operations, 355
rule-based style sheet example,

355–357
Sablotron XSLT processor, 364
Saxon XSLT processor, 360, 361,

364
scalability, 351
Schematron utilization of, 69
Schematron with, 359
Sun’s XSLT compiler, 364
templates, 355, 357
in transformation tier of catalogues,

16
transformations between languages

using, 27
variables, 357, 360
version 1.1, 360
Xalan XSLT processor, 360,

361–363, 364
XSL and, 322

XSP (eXtensible Server Pages), 367–368
XTM (XML Topic Maps), 10. See also

topic maps

Y
Yellow Pages (UDDI), 297

Z
ZEUS agent-building toolkit, 225
Zeus (Enhydra), 67

Index458

T
E
A
M
F
L
Y

Team-Fly®

