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Preface

Structural design sensitivity analysis concerns the relationship between
design variables available to the engineer and structural response or state
variables that are determined by the laws of mechanics. The dependence of
structural response measures such as displacement, stress, natural fre-
quency, and buckling load on design variables such as truss member cross-
sectional area, plate thickness, and component shape is implicitly defined
through the state equations ofstructural mechanics. Attention is restricted in
this text to linear structural mechanics; i.e., to structures whose governing
equations (matrix, ordinary differential, or partial differential) are linear in
the state variables, once the design variable is fixed. Since design variables
appear in the coefficients of linear operators, however, the state equations
are nonlinear as functions of state and design. The mathematical challenge is
to treat the nonlinear problem of design sensitivity analysis with methods
that take advantage of mathematical properties of the linear (for fixed de-
sign) state operators.

A substantial literature on the technical aspects ofstructural design sensi-
tivity analysis exists. Some is devoted directly to the subject, but most is
imbedded in papers devoted to structural optimization. The premise ofthis
text is that a comprehensive theory ofstructural design sensitivity analysis
for linear elastic structures can be treated in a unified way. The objective of
the text is to provide a complete treatment of the theory and numerical
methods of structural design sensitivity analysis. The theory supports opti-
mality criteria methods ofstructural optimization and serves as the founda-
tion for iterative methods ofstructural optimization. One ofthe most com-
mon methods of structural design involves decisions made by the designer,
based on experience and intuition. This conventional mode of structural

xiii
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design can be substantially enhanced if the designer is provided with design
sensitivity information that explains what the influence of design changes
will be, without requiring trial and error.

The advanced state ofthe art offinite element structural analysis provides
a reliable tool for evaluation ofstructural designs. In its present form, how-
ever, it is used to identify technical problems, but it gives the designer little
help in identifying ways to modify the design to avoid problems or improve
desired qualities. Using design-sensitivity information that can be generated
by methods that exploit the finite-element formulation, the designer can
carry out systematic trade-offanalysis and improve the design. The numeri-
cal efficiency of finite-element-based design sensitivity analysis and the
emergence of interactive graphics technology and CAD systems are factors
that suggest the time is right for interactive computer-aided design of struc-
tures, using design sensitivity information and any of a variety of modem
optimization methods. It is encouraging to note that as of September 1983,
the MacNeal-Schwendler Corporation introduced one of the design sensi-
tivity analysis methods presented in Chapter 1 in NASTRAN finite element
code. It is hoped that this represents a trend that will be followed by other
codes.

In addition to developing design sensitivity formulas and numerical
methods, the authors have attempted to present a unified and relatively
complete mathematical theory of structural design sensitivity analysis. Re-
cent developments in functional analysis and linear operator theory provide
a foundation for rigorous mathematical analysis of the problem. Inaddition
to fulfilling one's instincts to be accurate, complete, and pure of heart, the
mathematical theory provides valuable insights and some surprisingly prac-
tical results. The mathematical theory shows that positive definiteness (actu-
ally strong ellipticity) of the operators of structural mechanics for stable
elastic structures is the property that provides most ofthe theoretical results
and makes numerical methods work. In the case of repeated eigenvalues,
which are now known to arise systematically in optimized designs, the theory
shows that repeated eigenvalues are not generally differentiable with respect
to design, but are only directionally differentiable. Erroneous results that
have appeared in the literature under the assumption ofdifferentiability can
now be corrected. Since such pathological problems and dangers lurk in
broad classes ofoptimum structures, it is hoped that the mathematical tools
presented in this text will help in constructing truly optimum structures that
do not have mathematically induced flaws.

The authors have attempted to write this text to meet the needs ofboth the
engineer who is interested in applications and the mathematician and theo-
retically inclined engineer who are interested in the mathematical subtleties
ofthe subject. To accomplish this objective, each chapter has been written to
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first present formulation, examples, method development, and illustrations,
with theoretical foundations contained in the last section of each chapter.
The intent is that the first sections ofeach chapter will meet the needs ofthe
applications-oriented engineer and will clearly define the structure ofprob-
lems for the mathematician. The theoretically oriented sections presented at
the end of each chapter provide proofs of results that are cited and used in
earlier sections.

The book is organized into four chapters. The first three treat distinct types
ofdesign variables, and the fourth presents a built-up structure formulation
that combines the other three. The first chapter treats finite-dimensional
problems, in which the state variable is a finite-dimensional vector ofstruc-
tural displacements and the design variable is a finite-dimensional vector of
design parameters. The structural state equations are matrix equations for
static response, vibration, and buckling ofstructures and matrix differential
equations for transient dynamic response ofstructures, with design variables
appearing in the coefficient matrices. Examples treated include trusses,
frames, and finite-element models of more complex structures. Both direct
design differentiation and adjoint variable methods of design sensitivity
analysis are presented. Computational aspects ofimplementing the methods
in conjunction with finite-element analysis codes are treated in some detail.
The mathematical complexity ofthis class of finite-dimensional problems is
minimal, with the exception ofthe repeated eigenvalue case, in which some
technically sophisticated issues arise.

The second chapter treats infinite-dimensional problems, in which the
state and design variables are functions (displacement field and material
distribution) and the structural state equations are boundary-value problems
of ordinary or partial differential equations. Examples treated include
beams, plates, and plane-elastic-solid structural elements. The adjoint vari-
able method of design sensitivity analysis is developed, and design deriva-
tives ofeigenvalues are derived. Computational aspects ofdesign sensitivity
analysis, using the finite-element method for solution of both state and
adjoint equations, are considered. Analytical solutions of simple examples
and numerical solutions ofmore complex examples are presented. Proofs of
differentiability of displacement and eigenvalues with respect to design are
given, using methods offunctional analysis and operator theory.

Structural components, in which shape of the elastic body is the design, are
treated in Chapter 3. The material derivative idea of continuum mechanics
is used to predict the effect of a change in shape on functionals that define
structural response. The adjoint variable method is used to derive expres-
sions for differentials of structural response as boundary integrals that in-
volve normal perturbation of the boundary. A similar treatment of shape
design sensitivity of eigenvalues is presented. Examples that involve the
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length of a beam and the shapes of membranes, plane and spatial elastic
solids, and plates are studied. Numerical methods that are based on parame-
terization of shape and the finite-element method of structural analysis are
presented. Finally, proofs ofstructural response differentiability with respect
to shape are presented.

The fourth amd final chapter treats built-up structures that are composed
of the coupled finite-dimensional components treated in Chapter 1, the
distributed components with design functions treated in Chapter 2, and the
components with variable shape treated in Chapter 3. Hamilton's principle
is used as the underlying basis ofmechanics, directly yielding the variational
formulation of structural state equations. Design sensitivity analysis
methods of the first three chapters are employed to predict the effect of
design variations in the three respective design variable types. The adjoint
variable method is used to develop a unified formulation for representing
response variations in terms ofvariations in design. Numerical methods for
calculating design sensitivities, using the finite element ofstructural analysis,
are presented. Examples that involve coupled plate - beam- trusses, variable
shape and thickness components, and a spatial structure that is composed of
plane elastic sheets are studied.

A final comment on notation used in this text is in order here. The
structural engineer may be frustrated to find that conventional notation of
structural mechanics has not always been adhered to. The field of design
sensitivity analysis presents a dilemma regarding notation since it draws
from fields such as structural mechanics, differential calculus, calculus of
variations, control theory, differential operator theory, and functional anal-
ysis. Unfortunately, the literature in each of these fields assigns the same
symbol for a different meaning. For example, the symbol t5 is used to desig-
nate virtual displacement, total differential, variation, Dirac measure, and
other unrelated qualities. Since two or more of these uses will often be
required in the same equation, some notational compromise is required.
The authors have adhered to standard notation except where ambiguity
would arise, in which case the notation employed is defined. Principal nota-
tion is defined in Appendix AA.

The authors wish to express their gratitude to the National Science Foun-
dation and NASA Langley Research Center for continuing support of the
research that made this text possible. The authors appreciate their former
students, especially J. W. Hou, H. L. Lam, H. G. Lee, H. G. Seong, R. J.
Yang, and Y. M. Yoo, and colleagues R. L. Benedict, J. Cea, B. Rousselet,
and J. P. Zolesio for their contributions. Finally, special thanks to Mrs. R. L.
Huff, C. M. Mills, S. D. Lustig, and M. T. Arganbright for patience in
drafting and refining the manuscript.



1
Finite-Dimensional Structural
Systems

Development of finite element methods for structural analysis during the
19605 was preceded by a more physically based theory of matrix structural
analysis pioneered by Pipes [1], Langhaar [2], and a group of engineers
concerned with applications. A formal distinction that can be drawn between
finite element theory [3-6] and the theory of matrix structural analysis is the
viewpoint taken in modeling the structure. In the case of matrix structural
analysis, the structure is imagined to be dissected into bite-size pieces, each of
which is characterized by a set of nodal displacements and an associated
force-displacement relationship. In contrast, if a continuum viewpoint is
adopted, the displacement field associated with the structure is charac-
terized by a set of differential equations of equilibrium and applied loads. The
finite element technique is based then on piecewise polynomial approxi-
mation of the displacement field and application of variational methods for
approximating solutions of the governing boundary-value problems. The
finite element approach is employed throughout this monograph.

This chapter concentrates on a class of structures that can be described
readily by finite element matrix equations. Basic ideas of the finite element
structural analysis method are presented in Section 1.1, which includes a
discussion of variational principles upon which derivation of structural
equations is based. These basic ideas are used in the following sections to
carry out design sensitivity analysis of static response, eigenvalues, and
dynamic response of structures. Both first- and second-order design sensi-
tivity analysis techniques are developed, and examples are presented. An
important problem associated with repeated eigenvalues that arise in design
optimization is analyzed. It is shown that for this class of problems the
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(1.1.1)

eigenvalue is not a differentiable function of the design, but is only
directionally differentiable. Finally, first-order information derived from
design sensitivity analysis is employed to obtain projected gradients that
allow the designer to do trade-off analysis.

1.1 FINITE-ELEMENT STRUCTURAL
EQUATIONS

The finite-element structural analysis approach is introduced in this
section, using beam, truss, and plate elements as models. Apart from more
intricate algebra associated with more complex elements, the basic approach
in deriving element equations is identical to that illustrated in this section.

1.1.1 Element Analysis

Finite-element methods of structural analysis require a knowledge of the
behavior of each element in the structure. Once each element is described, the
governing equations of the entire structure may be derived. Energy methods
are used to obtain the governing equations. In order to apply energy
theorems for analysis of a structure, the strain energy, kinetic energy, and
change in external dimensions due to bending must be described. The basic
idea is to select element displacement functions that are of the form expected
in structural deformation and that are uniquely specified when displacements
at the nodes of the element are known.

BEAM-ELEMENT STIFFNESS MATRIX

A typical planar beam element, with its displacement sign convention, is
shown in Fig. 1.1.1. This displacement coordinates qj' q2' q4, and qs are
components of endpoint displacement, and q3 and q6 are endpoint rotations.
The longitudinal displacement of a point x on the beam (0 ~ x ~ 1) due to
longitudinal strain is approximated by

(x - 1) x
s(x) = -qj-t- + q4T

q2 qs

Q
1

_ )..-t-::- ~J tJ-q4

Q3 x q6

Fig. 1.1.1 Planar beam element.
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which is exact for a beam element with constant cross section and no axial
distributed load. It should be emphasized that the longitudinal displacement
s(x) is due to only longitudinal strain in the beam and not to the change in
length caused by the lateral displacement w(x).

Lateral displacement of the beam at a point x is approximated by

w(x) = ~; (2x3
- 3/x2 + (3) - ~i (2x3

- 3/x2
)

+ ~; (x3
- 21x2 + 12x) + ~~ (x 3

- Ix 2
) (1.1.2)

which is exact for beam elements with constant cross section and no lateral
distributed load. The strain energy SE due to deformation of the beam is
[1-6]

SE = t {hE(:;Y dx + t {EIG::Y dx

=! EhE(q/ - qtYdX + t f~E{~;(12X - 6/) - ~:(12X - 61)

+ ~; (6x - 4/) + i; (6x - 2/)T dx (1.1.3)

where h is the cross-sectional area of the beam, 1 the second moment of the
cross-sectional area about its centroidal axis, and E Young's modulus of the
material. Carrying out the integrations in Eq. (1.1.3), the following quadratic
form in q= [ql q2 ... q6]T is obtained:

SE = tqTkBq (1.1.4)

where kB is the beam element stiffness matrix,

E
kB = 13

hF o 0 h[2

121 611 0
4/21 0

h[2

symmetric

o
-121
-611

o
121

o
611
2[21
o

-61I
4[21

(1.1.5)

TRUSS-ELEMENT STIFFNESS MATRIX

If bending effects are neglected, a truss element is obtained for which only
coordinates q1 and q4 of Fig. 1.1.1 influence the strain energy. In this case,
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the strain energy is as given in Eq. (1.1.4), but with the truss-element stiffness
matrix

1 0 0 -1 0 0
0 0 0 0 0

k _ Eh 0 0 0 0
T - I 1 0 0

(1.1.6)

symmetric 0 0
0

Note that only ql and q4 have any effect on truss-element strain energy.
While q2 and qs need to be retained in the analysis, since the truss element
does not bend, q3 = q6 = (qs - Q2)/I, and these rotation variables may be
suppressed. Note also that kT is only of rank 1.

PROPERTIES OF BEAM-AND TRUSS-ELEMENT
STIFFNESS MATRICES

It is important to note that the beam-element stiffnessmatrix of Eq. (1.1.5)
depends on the length I of the beam element, the cross-sectional area h, and
the moment of inertia I of the cross-sectional area. If cross-sectional
dimensions of the beam element are taken as design variables, as is the case
when structural-element sizes are regarded as design variables, the element
stiffnessmatrix depends on the design variables. If geometry of the structure
is varied, then the length I of the element depends on the design variables and
is also involved in a nonlinear way in the element stiffness matrix.

Somewhat more tedious computations will show that the element stiffness
matrix of Eq. (1.1.5) is positive semidefinite and of rank 3. The rank of the
matrix is associated with the physical observation that there are three rigid-
body degrees of freedom of the element shown in Fig. 1.1.1. That is, it is
possible to move the element in the plane with three kinematic degrees of
freedom, yielding no deformation and hence no strain energy. On the other
hand, if the left end of the beam element shown in Fig. 1.1.1 were fixed (i.e.,
ql = q2 = q3 = 0), then the strain energy calculated by Eq. (1.1.4) would be
positive definite in the variables q4' qs, and q6' This simple observation has a
nontrivial analog in analysis of more complex structures. As will be shown
throughout this text, positive definiteness of the system strain energy when
no rigid-body degrees of freedom exist plays a crucial role in the mathemat
ical theory of design sensitivity analysis.
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BEAM- AND TRUSS-ELEMENT MASS MATRICES

The kinetic energy of the beam element, neglecting rotatory inertia of the
beam cross section, is [1-6]

KE = t f~ Ph[(~;r + (~~rJdX

= t f~ Ph{[ -ql(~) + 44TJ
+ [~; (2x 3

- 3lx 2 + '[3) + ~; (2x3
- 31x2

)

+ ;; (x 3
- 2lx 2 + Ix) + ;; (x3

- IX2)J}dx (1.1.7)

where P is mass density of beam material and the dot over the variable (.)
denotes time derivative. Carrying out the integration,

KE = t4TmB4 (1.1.8)

where mB is the beam-element mass matrix,

140 o 0 70 0
156 22/ 0 54

4[2 0 131
140 0

symmetric 156

o
-13/
-3[2

o
-22/
4[2

(1.1.9)

Since kinetic energy of the beam element is positive if any qi =F 0, it is
expected that mB is positive definite, hence nonsingular. These properties can
be verified analytically.

To obtain a truss element, bending is neglected and w(x) =
q2 + (qs - Q2)X/1. Integration of Eq. (1.1.7) yields a quadratic form, as in
Eq. (1.1.8), but with the truss-element mass matrix

2 0 0 1 0 0
2 0 0 1 0

phi 0 0 0 0
(1.1.10)mT = -

2 0 06
symmetric 2 0

0
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Note that (lJ and q6 are suppressed in the kinetic energy expression and are
not needed in truss analysis. The velocities q2 and Q5' however, play an
important role. Since the third and sixth columns of mT are zero, the matrix is
singular. In fact, mT is only of rank 4. Note also, as in the case of strain
energy, the area h and length I may depend on design variables.

BEAM-ELEMENT GEOMETRIC STIFFNESS MATRIX

Shortening ill of the beam element due to lateral bending is [1-6]

II [ (dW)2J1
/2

ill = I - 0 1 - dx dx

~ J:!(~:r dx

= ! s: [~i (6x2
- 61x) - ~~ (6x2 - 61x}

+ ~;(3X2 - 41x+ 12) + ~;(3X2 - 21x)JdX

Carrying out the integration,

ill = qTdBq

where dB is the beam-elementgeometric stiffness matrix,

0 0 0 0 0 0

3 1 3 1
- 0 -- -
51 20 51 20

I 1 I
- 0
50 20 60

dB =
0 0 0

3 1
symmetric -

51 20

I
-
15

PLATE-ELEMENT STIFFNESS AND MASS MATRICES

(1.1.11)

(1.1.12)

(1.1.13)

Similar arguments can be applied to plate bending elements to obtain
element stiffnessand mass matrices. One of the displacement functions that is
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(1.1.14)

commonly used to calculate stiffness properties of rectangular plates in
bending is of the form

w(x, y) = N(x, y)q

where the sign convention of the nodal displacement coordinates

q = [qt q2 ... q12]T (1.1.15)

is illustrated in Fig. 1.1.2 and the vector shape function N(x, y) is given by

where

1 - ~11 - (3 - 2~)e(1 - 11) - (1 - ~)(3 - 21])1]2

(1 - ~)I](1 - 1])2P

- ~(1 - ~)2(1 - I])IX

(1 - ~)(3 - 21])1]2 + ~(1 - ~)(1 - 2~)I]

-(1 - ~)(1 - I])I]2p

- ~(1 _,)21]IX

(3 - 2~)~21] - ~I](1 - 1])(1 - 21])

-e(1 - I])I]2p

(1 - ~)el]IX

(3 - 2e)e2(1 - 1]) + el](1 - 1])(1 - 21])

~I](1 - I])2P

(1 - ~)e 2(1 - I])IX

~ = X/IX, I] = yiP

(1.1.16)

(1.1.17)

The displacement coordinates qt, q4' Q7' and ql0 are components of
corner-node displacements, while q2' q3' qs, q6' and qa, q9' qw and q12 are
corner-node rotations. The displacement function represented by
Eqs. (1.1.14) and (1.1.16) ensures that the boundary displacements of ad-
jacent plate elements are compatible. However, rotations of the element

Fig.1.I.2 Rectangular plate element.
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edges on a common boundary are not compatible. Consequently, discon-
tinuities in first derivatives of displacement exist across element boundaries.

Integration of specific strain energy over the plate element results in the
following plate-element stiffness matrix [7]:

k _ Eh
3 ~rkl'l symmetriC]

p - 2 (1.1.18)
12(1 - V )a.P kll,l k ll. 1I 12 x 12

where E is Young's modulus, v Poisson's ratio, and the 6 x 6 submatrices kl •l ,

kll .r- and kll .1I are presented in Tables 1.1.1-1.1.3. Similarly, the element mass
matrix of the plate bending element is given by Eq. (1.1.19) (see page 10),
where p is mass density of plate material. Note that both stiffness and mass
matrices depend on material properties and plate thickness, which may be
taken as design parameters.

STRESS IN ELEMENTS

Once element-generalized coordinates are determined, the displacement
shape functions employed in derivation of the element matrices yield
deformation throughout the element. Knowing deformation, strain can be
calculated, and stress can be computed. This is important, since one of the
principal constraints in structural design involves bounds on stress in the
structure. Following elementary beam theory, at the neutral axis of a beam
element no bending strain occurs, and axial strain is simply

(1.1.20)

where the definition of axial deformation s is given in Eq. (1.1.1). Using the
linear stress-strain law for simple axial deformation,

a = Ee (1.1.21)

(1.1.23)

where E is Young's modulus. Direct stress on the neutral axis of the beam,
from Eqs. (1.1.20) and (1.1.21), is

ad = E(q4 - ql)/l (1.1.22)

Note that direct stress depends only on material properties, dimensions, and
displacements. It does not depend explicitly on cross-sectional properties.

From elementary beam bending theory, bending stress at the extreme fiber
of the beam element [2] is

d2w(x )
ab(x) = Ed~

where w is lateral deflection of the element and d the half-depth of the beam.



Table i.r.i.

Subrnatrix k." for Rectangular Plates in Bending, Based on Noncompatible Deflections

4(1'2 + 1'-2) + to4 - 4v)

[21'-2 + to + 4v)]P

_[21'2 + to + 4v)]tX

2(1'2 - 21'-2) - to4 - 4v)

[21'-2 + to - v)]P

[ -1'2 + W+ 4v)]tX

[~-2 + nO - v)]P 2

-VtXp

_[21'-2 + to - v)]P

[ty-2 _ 150 _ v)]P 2

o

symmetric

[~2 + nO - v)]tX2

[-1'2 + W + 4v)]tX 4(1'2 + 1'-2) + !(14 - 4v)

o _[21'-2 + to + 4v)]P

[ty2 _ n(l - v)]tX2 -[2l + to + 4v)]1X

[~-2 + n(l - v)]P 2

va.p [~2 + nO - v)]tX2

Table l.t.2

Submatrix kll , . for Rectangular Plates in Bending, Based on Noncompatible Deflection

_2()'2 + )'-2) + to4 - 4v) [-1'-2 + to - v)]P [)'2 - W- v)]tX -2(21'2 -1'-2) - !(14 - 4v) [-1'-2 + W+ 4v)]P [2)'2 + W - v)]tX

[1'-2 - W - v)]P 01'-2 + 15(1 - v)]P 2 0 [-1'-2 + W + 4v)]P [ty-2 _ nO - v)]P 2 0

[ -1'2 + to - v)]P 0 [11'2 + rsll - V)]1X2 _[21'2 + W - v)]tX 0 [h2 - 150 - v)]tX2

-2(2)'2 - )'-2) - W4 - 4v) [1'-2 - to + 4v)]P [21'2 + to - V)]IX _2()'2 + 1'-2) + to4 - 4v) [)'-2 _ W - v)]P [1'2 - W - v)]a.
.......
[1'-2 - W+ 4v)]P [ty-2 _ nO - v)]P 2 0 [ -1'-2 + W - v)]P [11'-2 + 150 - v)]P 2 0

_[2),2 + to - V)]IX 0 [iY 2
- 150 - v)] tX2 [ _),2 + W - v)]tX 0 [112 + 150 - v)]tX2



Table 1.1.3

Submatrix kll , lI for Rectangular Plates in Bending. Based on Noncompatible Deflections

4(yl + 1'-2) + !<I4 - 41')

_[21'-2 + W + 41')]{1

[21'2 + to + 4")]tI

2(yl - 21'-2) - !<I4 - 41')

_[21'-2 + !<I - 1')]{1

[1'2 - W + 41')]tI

[~-2 + 15(1 _ 1')]{12

-l'tI{1

[21'-2 + !<I - 1')]{1

[ty-2 _ n(1 - 1')]{12

o

[~2 + 15(1 - v)]tI2

[1'2 - W + 41')]0(

o
[ty2 _ 15(1 - 1')]tI2

symmetric

4(1'2 + 1'-2) + W4 - 41')

[21'-2 + !<I + 41')]{1

[21'2 + !<I + 41')]0(

[~-2 + 15(1 _ 1')]{12

I'tI{1 [~2 + 15(1 - 1')]0(2

symmetric

p~Ph

mp = 176,400

24,178

3227P

-3227~

8582

-1918P

-1393~

2758

-812P

812~

8582

1393P

1918~

560p2

-441~P 560~2

1918P -1393~ 24,178

-420p2 294~P -3227P

- 294~P 280~2 - 3227rx.

812P -812~ 8582

-21Op2 196rx.p -1393P

196cxp -210rx.2 1918~

1393P -1918~ 2758

280p2 - 294~P 8l2P

294cxp -420cx2 812~

560p2

441~P

-1393P
280p2

-294~P

-812P
-210p2

-196~P

560cx2

-1918cx 24,178

294~P - 3227P 560p2

-420cx2 32270( -441cxp

-8120( 8582 -1918P

-1960(P 1918P -420p2

-210rx.2 13930( -2940(P

5600(2

13930(

2940(p

280cx2

(1.1.19)

24,178

3227P
3227cx
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Using Eq. (1.1.2), the bending stress may be written explicitly as

O'b(X) = Ed[q2(12x - 6/)/P - qs(l2x - 6/)/13

+ q3(6x - 4/)/12 + q6(6x - 2/)/[2]

11

(1.1.24)

Note that bending stress depends on displacements and on the half-depth of
the beam, which generally will be explicitly dependent on design variables.
Thus, bending stress depends both on displacements and on design variables.

Presuming that the half-depth of the beam is the same on both the positive
and negative sides of the neutral axes, stresses at the extreme fibers may be
written, using superposition, from Eqs. (1.1.22)and (1.1.24) as

(1.1.25)

where the sign depends on whether the extreme fiber is at the top or the
bottom of the beam. Using Eq. (1.1.25), the maximum stress arising in a
beam element may be calculated and a constraint placed on its magnitude for
design. Note also that in the absence of bending (i.e., in a truss element), only
the direct stress given by Eq. (1.1.22) arises.

1.1.2 Global Stiffness and Mass Matrices

The total strain and kinetic energies of a structure may be obtained by
summing the strain and kinetic energies of all elements that make up the
structure. Before a meaningful expression for total system strain and kinetic
energy may be written, it is first necessary to define a system of global
displacements of all nodes in the structure, relative to a global coordinate
system. Let Zg E R" denote this global displacement vector. (Use of the symbol
Z for structural displacement is selected here and throughout the text, rather
than the more conventional symbol u. This is due to the use of u as a design
variable function later in the text, a convention that is adopted from control
and optimization theory.)

TRANSFORMATION FROM LOCAL
TO GLOBAL COORDINATES

Since the individual elements of the structure have their own inherent
displacement coordinates relative to a body-fixed coordinate system, as in
Figs. 1.1.1 and 1.1.2, displacements must first be transformed from the
element's body-fixed coordinate system to a coordinate system parallel to the
global coordinates. Let qi denote the vector of nodal displacement co-
ordinates of the ith element in its body-fixed system. A rotation matrix Si may
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be defined to define these local displacement coordinates in terms of global
coordinates, denoted ll; that is,

(1.1.26)

The transformed element displacements now coincide with components of
the global displacement vector Zg. Therefore, a Boolean transformation matrix
f3i may be defined, consisting of only zeros and ones, that gives the relation

qi = f3iZg (1.1.27)

Note that if qi is an r-vector and Zg is an n-vector (n > r), then f3i is an r x n
matrix that consists only of r unit components, with zeros as the remaining
entries.

GENERALIZED GLOBAL STIFFNESS MATRIX

Denoting the ith element stiffness matrix as k', strain energy in the ith
element may be written as

SEi = tqiTkiqi

Substituting from Eqs, (1.1.26) and (1.1.27), this is

SEi = tqiTSiTkiSiqi = tz~f3iTSiTkiSif3iZg

(1.1.28)

(1.1.29)

The strain energy of the entire structure is now obtained by summing the
strain energy over all NE elements in the structure, to obtain

SE = tz~[.I f3iTSiTkiSif3iJZg
.=0

== tZ~Kgzg

where Kg is the generalized global stiffness matrix,

NEKg = L f3iTSiTkiSif3i
i= 1

(1.1.30)

(1.1.31)

REDUCED GLOBAL STIFFNESS MATRIX

Ifall boundary conditions associated with the structure have been imposed
so that no rigid-body degrees-of-freedom exist, then the generalized global
stiffness matrix Kg is positive definite, denoted simply by K, and is called the
reduced global stiffness matrix. However, if the generalized global stiffness
matrix is assembled without consideration of boundary conditions, it will
generally not be positive definite. It is important to make this distinction, as
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will be seen later, since many formulations and computer codes use matrix
methods that employ the generalized global stiffness matrix and impose
constraint conditions during the solution process. They do not explicitly
eliminate dependent displacement coordinates, so the positive definite re-
duced global stiffness matrix K is not constructed and thus is not available
for design sensitivity calculations.

GENERALIZED GLOBAL MASS MATRIX

As in the case of strain energy, the kinetic energy of the ith element may be
written in terms of generalized velocities. Since the matrices S' and fJi do not
depend on generalized coordinates,

q = Sill (1.1.32)

q= fJiZg (1.1.33)

Using these relationships, the kinetic energy of the ith element may be
written as

(1.1.34)

Summing the kinetic energy over all elements, the total kinetic energy for
the system is

- l'TM •= 2Zg gZg

where Mg is the generalized global mass matrix,

NE
u, = L fJiTSiTmiSifJi

i= 1

(1.1.35)

(1.1.36)

Presuming that all structural elements have mass, it is impossible to obtain a
nonzero velocity without investing a finite amount of kinetic energy.
Therefore, a global system mass matrix will always be positive definite.

REDUCED GLOBAL MASS MATRIX

If boundary conditions have been taken into account before the global
displacement vector is defined, the reduced global mass matrix will be denoted
M, as in the case of the corresponding reduced global stiffness matrix K.

Note that the global stiffness and mass matrices depend on design
variables that appear in the element stiffnessand mass matrices, in the case of
member size design variables, and on geometrical design variables that
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appear in the rotation matrices s, It is clear that the dependence of global
stiffness and mass matrices on geometric variables is much more complex
than the dependence on member size design variables.

ELEMENTARY EXAMPLE

As a simple example to illustrate use of the foregoing transformations,
consider the two-bar truss of Fig. 1.1.3. Since rotations at the ends of the
truss elements do not arise in either the strain or kinetic energy expressions,
they are simply suppressed. The transformations between body-fixed and
globally oriented element displacement coordinates are

['i06 cos (} 0

o Jql = -cos (} sin (} 0 o '1
- 0 0 sin (} cos (} q

0 0 - cos (} sin (}

== Slql

[00,6 -sin e 0

o J2 -sin (} -cos (} 0 o '2q =
0 cos (} -sin (} q0

0 0 -sin (} -cos (}

== S2q2

Two-bar truss.
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The transformations between globally oriented element coordinates and
global coordinates are

'1 _ ~O ~ ~ ~ ~
q-Ol000

1 0 0 0 0

o 0 0 ~o 0 0 0
o 0 1 0 Zg

000 1

== p1 Z g

[

1 0

'2 _ 0 1
q - 0 0

o 0

==p2Zg

Using these transformations and the expressions of Eqs, (1.1.31) and
(1.1.36) for the generalized global stiffness and mass matrices [see page 16 for
Eg. (1.1.37)],

2(P1 h1 + P2h2) 0
2(P1 h1 + P2 h2)

1
M =-

g 6

symmetric

(1.1.38)

If the pin joints at the top of the truss are fixed, then boundary conditions
for this structure are Z3 = Z4 = Zs = Z6 = O. Imposing these boundary
conditions, the strain and kinetic energies are obtained in terms of only two
displacement coordinates, Z1 and Z2' This amounts to deleting rows and
columns corresponding to specified displacement coordinates in the genera-
lized global stiffness and mass matrices of Eqs.(1.l.37) and (1.1.38). As a
result, the reduced stiffness and mass matrices are obtained as

(E1h 1 - E2h2 ) sin 0 cos OJ
(E1h 1 + E2h 2) sin20

(1.1.39)

(1.1.40)



1
K =-

g I

(E1h1 + E2h2)cOS
2 e (E1h1 - E2h2 ) sin ecose

(E1h1 + E2h2 ) sin? e

symmetric

-t:», cos?e
-E1h1sin ecos e

E1h1cos? e

-E1h1sin ecos e
-E1h1sin2 (J

E 1h1 sin ecos e
E1hl sin? (J

- E2h 2 cos? (J

- E2h2 sin (Jcos (J

o
o

E2h 2 cos? o

E2h2 sin ecos e
-E2h2 sin2 e

o
o

- E2h 2 sin (Jcos (J

E2h 2 sin2 e
(1.1.37)
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Note that while the generalized global stiffness matrix Kg of Eq. (1.1.37) is
singular (in fact it has rank deficiency 4), the reduced stiffness matrix K of
Eq. (1.1.39) is positive definite.

While this two-bar truss is a trivial example, it illustrates a systematic
procedure for assembling global stiffness and mass matrices. Since this
assembly process is systematic, numerous computer codes have been de-
veloped to automate the process of constructing Kg and Mg. Depending on
the nature of the boundary conditions in the problem, it is possible to
systematically collapse the generalized global stiffness and mass matrices to
reduced global stiffness and mass matrices K and M, as was done in this
example. In many applications, however, more complicated constraints
among generalized coordinates arise (e.g., multipoint constraints), making
the reduction process nontrivial. Numerical techniques, including systematic
reduction and application of Lagrange multipliers, are used in such problems
[4,5,7].

1.1.3 Variational Principles of Mechanics

POTENTIAL ENERGY

Structural systems considered in this chapter are conservative in nature;
that is, the work done by a system of applied forces in traversing any closed
path in displacement space must be equal to zero. Denoting by Fg a vector of
force components that are consistent with the global displacement vector Zg'
this condition is

f FT dz = 0g g
c

(1.1.41)

where C is any closed path in the space of displacement-generalized
coordinates. As is well known [2], an analytical condition for a force field
Fg(zg) = [Fg1 ... Fgn]T to be conservative is that

i,j=l, ... ,n (1.1.42)

Presuming that the force field Fg{zg) is conservative, there exists a potential
energy function PE(zg) such that

Fgi(zg) = -aPE/aZgi' i = 1, ... , n (1.1.43)

For a constant applied force Fg , the condition of Eq. (1.1.42) is trivially
satisfied, and the potential energy may be written as

PE = -FiZg (1.1.44)

It may be verified that Eq. (1.1.43) holds in this case.
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Consider next a situation that arises in the case of buckling of structures, in
which displacement at the point of application of a constant applied load Pis
given as a quadratic form in displacement Zg. This is indicated in Eq. (1.1.12)
for a beam element, where

d = tZ;Dgzg (1.1.45)

It is presumed that the global geometric stiffness matrix Dg has been
transformed to symmetric form, which is always possible for a quadratic
form. The potential energy of the load P is thus

P TPE = -Pd = --z D Z (1.1.46)2 g g g

where the sign convention has P and d measured positive in the same
direction.

For conservative mechanical systems, it is possible to obtain a potential
energy function associated with all applied loads. The total potential energy
of a structural system is defined as the sum of the strain energy of the
structure and the potential energy of the applied loads; that is,

TPE = SE + PE (1.1.47)

For linear structural systems, the strain energy is given by the quadratic form
of Eq. (1.1.30), and the potential energy of the applied loads is the sum of
terms arising in Eqs. (1.1.44) and (1.1.46). The total potential energy can thus
be written as

(1.1.48)

THEOREM OF MINIMUM TOTAL POTENTIAL
ENERGY

Denoting by Z the vector space (see Appendix A.2) of kinematically
admissible displacements for the structural system (presuming homogeneous
boundary and interface conditions), the following theorem of minimum total
potential energy [2, 7] is true.

THEOREM 1.1.1 (minimum total potential energy) The displacement Zg E Z
that occurs due to an externally applied conservative load acting on an
elastic structure minimizes the total potential energy of the structural system,
over all kinematically admissible displacements.

It is important to note that this statement of the theorem of minimum total
potential energy does not require that the displacement coordinates Zgi
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(i = 1, ... , n) be independent. However, it is presumed that they are related
by homogeneous linear equations. While this limitation is not essential in the
theory of structural mechanics, it is adequate for the purposes of this text.

LAGRANGE'S EQUATIONS OF MOTION

The second major variational principle of structural mechanics employed
here provides a variational form of the equations of motion of a dynamic
system. Presuming that the applied forces Fg depend only on time [i.e.,
Fg = Fit)], the Lagrangian of a dynamic system may be defined as

L = T(zg, Zg) - TPE(zg) (1.1.49)

where T(zg, Zg) is the kinetic energy of the system, which is a quadratic form in
Zg. The Lagrangian for a linear structural system, neglecting the effect of the
last term in Eq. (1.1.48), is

(1.1.50)

(1.1.51)

In terms of the Lagrangian, the motion of a conservative structural system
with a subspace Z of kinematically admissible displacements may be
characterized by the following theorem [8].

THEOREM 1.1.2 (variational form of Lagrange's equations) The equations of
motion of a conservative structural system, for Zg(t) in the space Z of
kinematically admissible displacements, may be written in the form

f [~(O~) - ~JZglt) = 0
i= 1 dt OZgi OZgi

which is valid for all virtual displacements zit) that are consistent with
constraints [i.e., zit) E Z].

The notation Zg as a virtual displacement is used here in place of the more
conventional Jz g. This and related departures from conventional structural
mechanics notation are selected to avoid ambiguity and excessive use of the
symbol J, which appears later as a total differential, the Dirac-a operator,
and in other mathematical contexts.

This variational form of Lagrange's equations of motion is valid even for
dependent state variables. In case kinematic admissibility conditions have
been employed to algebraically reduce the global displacement vector Zg to
independent form (of dimension m), so that Mg = M and Kg = K are the
reduced global mass and stiffness matrices for the system, Eq. (1.1.51) may be
written in the reduced form

i = 1,.. . ,m (1.1.52)
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It is critical to verify that the displacement coordinates z, are independent
before Eq. (1.1.52) is employed. This form of Lagrange's equations of motion
is invalid if the displacement coordinates are dependent.

1.1.4 Reduced Matrix Equations
of Structural Mechanics

DISPLACEMENT DUE TO STATIC LOAD

Consider the case of a linear structural system described by reduced global
stiffness and mass matrices K and M and externally applied loads F. For
such a system, kinematic constraints have been used to eliminate dependent
displacement coordinates, thus yielding an independent reduced displacement
vector z: In this case, the theorem of minimum total potential energy requires
that at the position of equilibrium, the gradient of the total potential energy
must be equal to zero. Using Eq. (1.1.48), with P = 0,

Kz = F (1.1.53)

Further, with boundary conditions and interface conditions explicitly elim-
inated, the reduced global stiffnessmatrix K for a structure is positive definite
and Eq. (1.1.53) is both necessary and sufficient for stable equilibrium.

BUCKLING

In buckling of structures, a potential energy term of the form given in
Eq. (1.1.46) arises, and no other externally applied forces are considered. In
such a case, the theorem of minimum total potential energy for stable
equilibrium yields the condition

Kz - PDz = 0 (1.1.54)

For a positive definite reduced global stiffness matrix K, if P = 0, then the
only solution of Eq. (1.1.54) is the trivial solution z = 0; that is, the only
stable equilibrium state of the system with no externally applied load is zero
displacement. As P increases, particularly since D is generally positive
semidefinite, a point will be reached at which the matrix K - PD ceases to be
positive definite, hence it becomes singular. The smallest load P for which
this occurs is called the fundamental buckling load of the structure.

Since the coefficient matrix of z in Eq. (1.1.54) becomes singular, a
nontrivial solution exists, but it is not unique. The solution is, therefore, an
eigenvector corresponding to the eigenvalue P. In order to distinguish the
eigenvector associated with buckling from the static displacement state, the
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eigenvector is denoted as y (called a buckling mode), rather than z, yielding the
generalized eigenvalueproblem

Ky = PDy (1.1.55)

The matrix K is taken to be positive definite, and D is positive semidefinite.
Thus, all eigenvalues of Eq. (1.1.55) are strictly positive.

DYNAMIC RESPONSE

Consider next the case of dynamic response of a structure with no
boundary or interface conditions; that is, with independent generalized
coordinates. Lagrange's equations [Eq. (1.1.52)] apply in this case and may
be written in matrix form, using Eq. (1.1.50) with F = Fg , M = Mg and
K = Kg, as

ME + Kz - F = ° (1.1.56)

(1.1.57)

Initial conditions of motion for such a system consist of specifying the
position and velocity of the system at some initial time, say t = 0; that is,

z(o) = ZO

z(o) = ZO

NATURAL VIBRATION

Natural vibration of a structure is defined as harmonic motion of the
structural system, with no applied load. A naturalfrequency w is sought such
that the solution z(t) ofEq. (1.1.56), with F = 0, is harmonic; that is,

z(t) = y sin (wt + ex) (1.1.58)

where y is a constant vector defining a mode shape of vibration. Substituting
z(t) of Eq. (1.1.58) into Eq. (1.1.56), with F = 0,

[-w 2 My + Ky] sin (rut + ex) = 0 (1.1.59)

which must hold for all time t. Therefore, the generalized eigenvalue problem
is

Ky = (My (1.1.60)

where (= w 2 • Equation (1.1.60) is an eigenvalue problem for natural
frequency wand associated mode shape y, just as Eq. (1.1.55) was an
eigenvalue problem for buckling load P and mode shape y. In both cases, the
reduced global stiffness matrix K is positive definite, and both D and M are at
least positive semidefinite. These mathematical properties of the matrices
arising in structural equations playa key role in both theoretical properties
of solutions and computational methods for constructing solutions.
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1.1.5 Variational Equations
of Structural Mechanics

VARIATIONAL EQUILIBRIUM EQUATION

It is not necessary to eliminate explicitly the dependent displacement
coordinates in order to obtain the governing equations of a structural
system. Let Z be the vector space of kinematically admissible displacements.
Consider first a structure with externally applied load Fg and potential
energy given by Eq. (1.1.44). The theorem of minimum total potential energy
is still valid for displacement in the vector space Z. Let Zg be the equilibrium
position that minimizes TPE of Eq. (1.1.47) over the vector space Z.
Consider an arbitrary virtual displacement Zg E Z, and evaluate the total
potential energy at an arbitrary point neighboring Zg; that is, for e small and
Zg fixed,

TPE(zg + eZg) =H(e) (1.1.61)

Since the total potential energy has a minimum at Zg' the function H(e)
defined by Eq. (1.1.61) has a minimum at e = 0 for any Zg E Z. It is therefore
required that the derivative of H with respect to G be zero at s = O. Using the
expression of Eq. (1.1.48) for the total potential energy, with the last term
deleted,

z~KgZg - zTFg = 0 for all Zg E Z (1.1.62)

This is called the variational equation ofequilibrium of the structure.
In order to take advantage of the mathematical form of this problem,

define the energy bilinear form

a(zg,Zg) = z~Kgzg (1.1.63)

and the load linear form defined by the load Fg as

l(zg) = z~Fg (1.1.64)

Using this notation, the variational equation ofEq. (1.1.62) can be written as

a(zg, Zg) = l(zg) for all Zg E Z (1.1.65)

Under the hypothesis that the strain energy quadratic form is positive
definite on the vector space Z of kinematically admissible displacements, the
following theorem is true.

THEOREM 1.1.3 (theorem of virtual work) Assume that

a(Zg, Zg) > 0 for all Zg E Z, Zg'" 0

Then Eq. (1.1.65) has a unique solution Zg E Z.

(1.1.66)
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PROOF This theorem follows directly from the Lax-Milgram theorem of
functional analysis [9] and the positive definite property of a(zg, Zg)' An
alternative proof uses the fact that a(zg,Zg) is convex on Z and the result from
optimization theory [10] that Eq. (1.1.65) is necessary and sufficient for Zg to
be the minimum point. •

The unique solution ofEq. (1.1.65), which is guaranteed by Theorem 1.1.3,
is exactly the solution that would be obtained by first eliminating dependent
displacement coordinates, constructing the reduced global stiffness matrix,
and solving Eq. (1.1.53). The latter procedure is executed numerically in
finite element computer codes. The variational form of the structural
equations of Eq. (1.1.65) will be shown to have substantial theoretical
advantage in design sensitivity analysis.

REDUCTION OF VARIATIONAL EQUILIBRIUM
EQUATION TO MATRIX FORM

Equation (1.1.65) can be used to generate a matrix equation for construct-
ing a numerical solution. Let <pi E Z c R" (i = 1, ... , m; m < n) be a basis of
the vector space Z of kinematically admissible displacements (i.e., a linearly
independent set of vectors that span Z). Then the solution of Eq. (1.1.65) may
be written as

m

Zg = I Ci<p i = <l>c
i= 1

(1.1.67)

where <1> = [<PI .. , <Pm] and the coefficients c, are uniquely determined.
Substituting this representation for Z into Eq. (1.1.65) and evaluating
Eq. (1.1.65) at Zg = <pi (j = 1, ... , m) gives the equations

Defining

m

I a(<pi
, <Pi)Ci = l(t/Y),

i= 1

j = 1, ... ,m (1.1.68)

(1.1.69)

K == [a(¢i, ¢i)]mxm = [<piTKg¢iJmxm = <l>TKg<l>

F == [1(¢i)]mxI = [¢iTF]mxl = <l>TFg

C == [C;]mx 1

Eq. (1.1.68) may be written in matrix form as

Kc = F (1.1.70)

This equation has a unique solution C since K is positive definite (due to the
assumption of positive definiteness of the energy bilinear form on Z). It is
also clear that the matrices K and F depend on the choice of basis of the
space Z of kinematically admissible displacements. Different choices of bases
yield different matrices, but the resulting solution is unique.
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It is an interesting exercise to show that the foregoing argument can be
reversed to construct a proof of Theorem 1.1.3.

VARIATIONAL EQUATION OF BUCKLING

Consider now the problem of buckling of a structure, in which the
potential energy is given by Eq. (1.1.46). Just as in the preceding discussion,
the total potential energy must be minimized over the space Z of kinemat-
ically admissible displacements. Using the total potential energy expression
of Eq. (1.1.48) with Fg = 0 and Eq. (1.1.61), the derivative with respect to 6

must be equal to zero, yielding the variational equation ofbuckling

ji~KgYg = p'y:DgYg for all jig E Z (1.1.71)

where the solution is denoted by the vector Yg • Defining the bilinear form d as

d(y g , jig) = gDgYg (1.1.72)

Eq. (1.1.71) may be written in the more compact form

a(yg , jig) = Pd(yg , jig) for all jig E Z (1.1.73)

This is the variational form of the eigenvalue problem for buckling of the
structure.

REDUCTION OF THE VARIATIONAL EQUATION

OF BUCKLING TO MATRIX FORM

Just as in the case of equilibrium of the structure, the variational equation
of Eq. (1.1.73) can be reduced to a matrix equation, using a basis for the
space Z of kinematically admissible displacements. This yields a generalized
eigenvalue problem

Kc = PDc (1.1.74)

where components of the vector c are coefficients of Eq. (1.1.67). Expanding
the eigenvector Yg in terms of the basis eji and the matrix Dg gives

D == [d(¢i, cj>.i)]mxm = [¢iTDg¢i]mxm = cIlTDgcIl (1.1.75)

As will normally be the case, the matrix Dg is positive definite on the vector
space Z of kinematically admissible displacements, so the matrices Dand K
are positive definite, yielding important theoretical and computational
properties.

VARIATIONAL EQUATION OF VIBRATION

Consider now the variational form of the Lagrange equations of motion in
Eq. (1.1.51), with the Lagrangian defined by Eq. (1.1.50). In vector form,
Eq. (1.1.51) is

z~(t)[Mgzg(t) + KgZlt) - Fg(t)] = 0 for all zlt) E Z (1.1.76)
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(1.2.1)

This equation must hold for all values of time t.
If harmonic motion with Fg = 0 is of interest, a solution of Eq. (1.1.76) of

the form given in Eq. (1.1.58) is sought. Substituting into Eq. (1.1.76) (with jig
in place of ig) gives

[-co2.v:MgYg + .v:Kgyg] sin (cot+ IX) = 0 for all .vg E Z
(1.1.77)

which must hold for all time t. Thus, it is required that

a(yg, jig) = (d(yg, Yg) for all jig E Z (1.1.78)

where' = co2
• The bilinear form a(·, .) is as given in Eq.(1.1.63), and the

bilinear form d(" .) is defined as

d(yg , jig) = .v:MgYg (1.1.79)

Since the generalized mass matrix Mg is positive definite and the strain
energy bilinear form a(·, .) is normally positive definite on Z, attractive
mathematical properties are associated with the variational equation given
by Eq. (1.1.78).

REDUCTION OF THE VARIATIONAL EQUATION

OF VIBRATION TO MATRIX FORM

Just as in the foregoing analysis of the buckling eigenvalue problem, a
matrix equation of the form of Eq. (1.1.74) may be obtained for the vibration
problem. Thus, vibration and buckling problems have very similar form and
similar mathematical properties.

While it is clear that one can always reduce the finite-dimensional
structural analysis problem to matrix equation form, it will be shown in
Section 1.2.4 that the variational form given here is better suited for
structural design sensitivity analysis.

1.2 STATIC RESPONSE DESIGN SENSITIVITY

1.2.1 Statement of the Problem

As explained in Section 1.1, when member size and geometric variables are
taken as design variables, the generalized global stiffness matrix and load
vector are functions of the design variables; that is,

Kg = Kg(b)

Fg = Fg(l?)

where the vector b = [b i , ... , bkY is the vector of member-size design
variables and variables that locate selected nodes in the structure. It is
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(1.2.2)

presumed here that kinematic admissibility conditions (boundary conditions
and interface conditions) are not explicit functions of design. The case in
which kinematic admissibility conditions are functions of design is included
in the shape design sensitivity formulation of Chapter 3.

Since the generalized global stiffness matrix and load vector are design
dependent, the bilinear and linear forms of Eqs. (1.1.63) and (1.1.64) are also
design dependent. They are denoted here as

ab(Zg, Zg) = z~Kib)zg

lb(zg) = z~Fib)

Recall that there exists a unique solution Zg of Eq. (1.1.65), or equivalently of
Eq. (1.1.70). Since these equations depend explicitly on design, it is clear that
the solution Zg is design dependent; that is,

Zg = zg(b) (1.2.3)

In most structural design problems, some cost function is to be minimized
(or an objective function is to be maximized), subject to constraints on stress,
displacement, and design variables. Consider now a general function that
may represent any of these performance measures for a structure, written in
the form

(1.2.4)

The dependence of this function on design arises in two ways: (1) explicit
design dependence; and (2)implicit dependence through the solution Zg of the
state equations. The objective of design sensitivity analysis is to determine the
total dependence of such functions on design (i.e., to find dljJjdb). In this
connection, two questions should be asked: (1) Given that the function ljJ is
differentiable in its arguments, is the total dependence of ljJ on design
differentiable? (2) If the solution Zg of the state equations is differentiable with
respect to design, how can the derivative of ljJ with respect to design be
calculated?

1.2.2 Design Sensitivity Analysis
with Reduced Global Stiffness Matrix

Consider first the structural formulation in which dependent state vari-
ables have been removed through direct elimination with boundary con-
ditions and a set of structural equations of the form of Eq. (1.1.53) arise, in
the form

K(b)z = F(b) (1.2.5)

where K(b) is the reduced global stiffness matrix and F(b) the reduced load.
Recall that the reduced global stiffness matrix K(b) is positive definite, hence
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(1.2.6)

nonsingular. Assume that all entries in K(b) and F(b)are s times continuously
differentiable with respect to design. The implicit function theorem [11] thus
guarantees that the solution z = z(b) of Eq. (1.2.5) is also s times con-
tinuously differentiable. Thus, the foregoing question concerning differentia-
bility of z with respect to design is answered. The problem of computing total
derivatives of the function t/! of Eq. (1.2.4) with respect to design remains to
be solved.

DIRECT DIFFERENTIATION METHOD

Using the chain rule of differentiation and the matrix calculus notation of
Appendix A.3, the total derivative of t/! with respect to b may be calculated as

dt/! at/! at/! dz
db = ab + a;- db

Differentiating both sides of Eq. (1.2.5) with respect to b,

dz a _ aF(b)
K(b)db = - ab(K(b)z) + ab (1.2.7)

(1.2.8)

where the tilde n indicates a variable that is to be held constant for the
process of partial differentiation. Since the matrix K(b) is nonsingular,
Eq. (1.2.7) may be solved for dzklb as

dz = K-1(b)[aF(b) - ~(K(bn]
db ab ab z

This result may now be substituted into Eq. (1.2.6) to obtain

dt/! at/! at/! -1 a _
db = ab + a;- K .(b)ab [F(b) - (K(b)z)] (1.2.9)

The usefulness of Eq. (1.2.9) is dubious, since in realistic applications direct
computation of K-'(b) is impractical. Two alternatives may be used to
overcome this difficulty. First, Eq. (1.2.7) may be numerically solved for dzldb
and substituted into Eq. (1.2.6) to obtain the desired result. This is known as
the direct differentiation method, which has been used extensively in structural
optimization. Computational aspects of this approach are discussed in
Section 1.2.4.

ADJOINT VARIABLE METHOD

An alternative approach is to define as adjoint variable Aas

A == [at/! K-1(b)]T = K- 1(b)at/!T
az az

(1.2.10)



28 1. FINITE-DIMENSIONAL STRUCTURAL SYSTEMS

where symmetry of the matrix K has been used. Rather than evaluating A.
directly from Eq. (1.2.10), which involves K-1(b), both sides of Eq. (1.2.10)
may bemultiplied by the matrix K(b) to obtain the following adjoint equation
in A.:

(1.2.11)

(1.2.12)

Equation (1.2.11) may be solved for A. and the result substituted, using
Eq. (1.2.10), into Eq. (1.2.9) to obtain

dr/J = ar/J A.T[aF(b) - ~( (b)~)J
db ab + ab ab K Z

A somewhat more convenient form for derivative calculation is

dr/J ar/J a ~T ~T ~
db = ab + ab[A. F(b) - A. K(b)z] (1.2.13)

This approach is called the adjoint variable method of design sensitivity
analysis. Computational aspects of this approach are discussed in Section
1.2.4

1.2.3 Design Sensitivity Analysis
with Generalized Global Stiffness Matrix

If the reduced global stiffness matrix K(b) and reduced applied force vector
F(b) are readily available, either one of the foregoing methods yields a
complete solution of the design sensitivity analysis problem. However, for
nontrivial kinematic admissibility conditions (boundary conditions), parti-
cularly multipoint constraints involving linear combinations of several state
variables, the matrices K(b) and F(b) are not explicitly generated. Thus,
computation of the partial derivatives with respect to design on the right-
hand side of Eq. (1.2.7) or in Eq. (1.2.13) is nontrivial. It is therefore desirable
to develop a formulation for design sensitivity analysis that works directly
with the singular generalized global stiffness matrix.

DIFFERENTIABILITY OF GLOBAL DISPLACEMENT

Consider an explicit form for the vector space Z of kinematically
admissible displacements given by

Z = {Zg E R": GZg = O} (1.2.14)

where G is an (n - m) x n matrix that defines boundary conditions and does
not depend on design. With a basis <pi (i = 1, ... , m) of Z, which is
independent of design, the solution Zg ofthe structural variational equation of
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Eq. (1.1.62) may be represented in the form ofEq. (1.1.67), where the vector c
of coefficients is determined by Eq. (1.1.70), written in the form

K(b)c = F(b) (1.2.15)

Note that the dependence of K and F on design b is explicitly defined in terms
of Kib) and Fib) in Eq. (1.1.69). Therefore, K(b) and F(b) are differentiable
with respect to design, and K(b) is nonsingular in a neighbourhood of the
nominal design. The derivative of c with respect to design can thus be
obtained by either of the foregoing methods. Once dcjdb is determined,
Eq. (1.1.67) may be used to obtain

dzJdb = <I> dcjdb (1.2.16)

since <I> does not depend on b. Thus, the question of differentiability is
resolved. Computation of the required derivatives may be carried out using
the variational formulation of Eq. (1.1.62), written here using the notation of
Eq. (1.2.2) as

for all Zg E Z (1.2.17)

DIRECTIONAL DERIVATIVES

In order to take advantage of the variational equation of Eq. (1.2.17), it is
helpful to introduce directional derivative notation that will be used
throughout the remainder of the text. Consider a nominal design band
neighboring designs described by arbitrary design variations ob and a small
parameter r > 0 as

b. = b +"[" ob (1.2.18)

Similar to the first variation of the calculus of variations, the following
directional derivative notation is employed (see Appendix A.3):

I I _ d b I dZg ~b
Zg = zib,ob) = dr zg(b + r fJ ) .=0 = db U

a~b(Zg, Zg) == dd ab+ulb(Zg(b),Zg)1
"[" .=0

= :b(zJKib)Zg) fJb (1.2.19)

l~b(zg) == dd lb+t<lb(Zg)1
r .=0

o -T
= ob(zgFib»Ob
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where the prime (') denotes differential (or variation) of a function of b in the
direction c5b. If the result is linear in c5b, then the function whose differential
has been taken is differentiable. Otherwise, it is only directionally differenti-
able (in the sense of Gateaux, Appendix A.3). With this notation, the prime
may be employed with explicit inclusion of the argument c5b to emphasize
dependence on design variation.

Note that since the matrix Gin Eq. (1.2.14), which defines the vector space
Z of kinematically admissible displacements, does not depend on design, the
arbitrary vector Zg E Z in Eq. (1.2.17) need not depend on design. Taking the
total variation of both sides of Eq. (1.2.17) and using the chain rule of
differentiation,

ab(Z~' Zg) = -a~b(Zg, Zg) + 16b(zg) for all Zg E Z (1.2.20)

where the arguments of all variations are band c5b.
Note that for zg(b) E Z, Gzg(b) = O. Taking the variation of both sides of

this equation,

Gz~(b, c5b) = Gz~ = 0 (1.2.21)

i = 1, ... , k

Thus, z~ is in the space Z of kinematically admissible displacements for any
design variation c5b. Equation (1.2.20) thus has a unique solution for z~.

DIRECT DIFFERENTIATION METHOD

By taking c5b as a unit vector in the ith design coordinate direction, Eq.
(1.2.20) may be solved for azJabi • Repeating this process with i = 1, 2, ... , k
yields all the partial derivatives of Zg with respect to b. Specifically,
Eq. (1.2.20) may be written in terms of the ith component of b,

-T b aZg a -T b ~ a_T
zgKl )abo = - ab.(zgKg( )Zg) + ab.(zgFg(b»),

I I I

(1.2.22)

This may be interpreted as solving the original structural equation with an
artificial applied load that is the coefficient of z; on the right side of
Eq. (1.2.22).

ADJOINT VARIABLE METHOD

Consider the last term (al/J/azg)(dz.)db) ofEq. (1.2.6), which is to be written
without evaluation of the matrix dzJdb. The "recipe" for the adjoint
variable method is to regard the coefficient al/J/azgof dz.)db as the transpose
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of a load vector, called the adjoint load oljJT/OZg' The adjoint variable A.g E Z
associated with this load is ·to be found; that is,

for all )g E Z (1.2.23)

(1.2.24)

Note that this is just the structural equation for a displacement A.g due to an
applied load vector (oljJ/iJzg)T. Therefore, it may be readily solved.

Evaluating Eq. (1.2.23) at Ag = z~ (recall that z~ E Z) and using the
notation introduced in the first line of Eq. (1.2.19),

iJljJ, iJljJ dZg .,
iJz

g
Zg = iJz

g
db ob = ab(lg, Zg)

Similarly, evaluating Eq. (1.2.20) at Zg = ).g,

ab(z~,)g) = -a~b(Zg,)g) + l~b(lg) (1.2.25)

Noting that the energy bilinear form (lb(', .) is symmetric, Eqs. (1.2.24) and
(1.2.25) yield

oljJ dZg , ,
OZg db ob = -abb(Zg, )g) + lbb().g)

Writing the total differential of the function ljJ of Eq. (1.2.4),

dljJ ob = [iJljJ + oljJ dzgJ ob
db iJb OZg db

(1.2.26)

(1.2.27)

(1.2.28)

Substituting for the second term on the right of Eq. (1.2.27), using the
expression from Eq. (1.2.26) and employing the second and third lines of
Eq. (1.2.19), gives

dljJ [oljJ iJ:;'T ~ e ~T J
db ob = iJb - ob(/gKib)Zg) + ob().gFg(b» ob

for any design variation ob. Since Eq, (1.2.28) holds for all design variations
ob,

(1.2.29)

It is interesting to note that even though the generalized global stiffness
matrix Kg is singular, the load vectors that are used in the direct differen-
tiation approach of Eq. (1.2.22) are of the same form that arise in com-
putation with the reduced global stiffness matrix in Eq. (1.2.7). Similarly, in
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the adjoint variable method, the single load vector that is employed in
adjoint computation in Eq. (1.2.23) is of exactly the same form as in the
matrix adjoint equation of Eq. (1.2.11), using the reduced global stiffness
matrix. Computational considerations associated with this observation will
be discussed in Section 1.2.4.

1.2.4 Computational Considerations

In most problems of structural design, numerous loading conditions must
be accounted for in the design process. Therefore, instead of the single load
discussed in the preceding sections, a family of loads arises that is denoted
as F! U= 1,... ,NL). The same structural stiffness matrix is applicable for
all load conditions, but the structural equations yield different displacement
vectors z~ U= 1, ... , NL) associated with different applied force vectors.

Further, in realistic design problems there are numerous performance
constraints that must be accounted for in the design process. Even though
there may be a multitude of constraints under consideration, the designer
normally evaluates constraints at a trial design and wishes to obtain design
sensitivity information for only those constraints that are violated or are
nearly active. For the discussion here, designate the active constraints under
consideration by the designer as ljIi (i = 1,... , NC). It is further presumed
that some contraint is active for each load condition. Otherwise, load
conditions having no influence on any active constraint may be suppressed
for purposes of design sensitivity analysis. Computations required for design
sensitivity analysis by the direct differentiation approach and the adjoint
variable approach may now be summarized, for both the matrix and
variational analysis methods of Sections 1.2.2 and 1.2.3.

(1.2.30)j = 1, ... , NL

DIRECT DIFFERENTIATION METHOD

Consider first the direct analysis method of Section 1.2.2. To calculate the
total derivative of each constraint ljIi using the direct differentiation ap-
proach, Eq. (1.2.7) must be solved for each load condition, yielding the
following system of equations:

dz' iJ _. iJFi(b)
K(b) db = - iJb (K(b)zJ) + -----ab'

Since each of the equations in Eq. (1.2.30) represents k equations for dz'[db,
(i = 1, ... , k), there are k x NL equations to be solved. Their solution is
quite efficient since the reduced global stiffness matrix K has been factored
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previously in structural analysis. With all state derivatives with respect to
design calculated in Eq. (1.2.30), design sensitivities may now be directly
calculated from Eq. (1.2.6).

ADJOINT VARIABLE METHOD

Consider next the adjoint variable method in which Eq. (1.2.11) must be
solved for each constraint under consideration; that is,

K(b»).i = oIjJJ/iY, i = 1, ... , NC (1.2.31)

where it is presumed that each constraint ljJi(Zi) involves only the displace-
ment Zi corresponding to the ith load. Thus, there are exactly NC equations
to be solved for the vectors ).i (i = 1, ... , NC). Once this computation is
complete, design sensitivities of each of the constraints are calculated directly
from Eq. (1.2.13), requiring only a moderate amount of computation. Note
that the coefficient matrix in Eq. (1.2.31) is the reduced global stiffness matrix,
which was factored during structural analysis. Therefore, the amount of
computational effort required to solve Eq. (1.2.31) is also moderate.

COMPARISON OF THE DIRECT DIFFERENTIATION
AND ADJOINT VARIABLE METHODS

In determining which of the two approaches discussed above is to be
employed, only the number of equations to be solved by the two approaches
and the number of vectors to be stored and operated on in design sensitivity
analysis need be compared. If k x NL < NC, then the direct differentiation
method of Eq. (1.2.30) is preferred. On the other hand, if k x NL > NC,
then the adjoint variable method of Eq. (1.2.31) is preferred. Since in
structural optimization the number of active constraints NC must be no
greater than the number of design variables k, the adjoint variable approach
will be most efficient, even for a single loading condition. With multiple
loading conditions, NC is normally much smaller than k x NL, leading to
the conclusion that in most structural optimization applications the adjoint
variable method will be more efficient. However, there may be applications in
preliminary design in which the designer is considering a small number of
design variables and trade-offs involve a large number of constraints. In such
cases, the direct design differentiation approach of Eq. (1.2.30) is preferred.

Precisely the same counting process is applicable to the variational
analysis approach of Eq. (1.2.17). In this approach, exactly k x NL equations
are solved in Eq. (1.2.22) for derivatives of the state variables with respect to
design, for each loading condition. Similarly, using the adjoint variable
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(1.2.32)

technique exactly NC adjoint equations of Eq. (1.2.23) are solved for adjoint
variables associated with each of the active constraints. Thus, precisely the
same criteria are involved in determining which of the two approaches is best
suited for the design problem under consideration.

COMPUTATION OF DESIGN DERIVATIVES

A comparison of the practicality of the reduced matrix equation and
variational equation design sensitivity analysis approaches of Sections 1.2.2
and 1.2.3, respectively, is also possible. Since most structural analysis
computer codes numerically construct or completely avoid the reduced
global stiffness matrix K(b), an explicit form of K(b) is not generally available.
Therefore, computations of the derivatives of K(b) with respect to design
required in Eq. (1.2.9) for the direct differentiation approach and in
Eq. (1.2.13) for the adjoint variable approach lead to some difficulty. While
transformations may be written that reduce the generalized global stiffness
matrix Kg to a reduced global stiffness matrix K and inserted in the
appropriate equations, the transformations differ from one computer code to
another. Therefore, implementation of design sensitivity analysis using the
reduced global stiffness matrix becomes code dependent and may be numeri-
cally inefficient.

If the variational equation formulation is employed, then the derivatives of
the generaliz~d global stiffness matrix Kg(b) with respect to design that are
required in Eq. (1.2.22) for the direct differentiation approach and in
Eq. (1.2.29) for the adjoint variable approach can be calculated without
difficulty. In fact, using Eq. (1.1.31) the derivative required in Eq. (1.2.29) may
be written as the sum of derivatives of element matrices as

:b(2~Kg(b)Zg) = :bL~ ~~PiTSiT(b)ki(b)Si(b)PiZgJ

= ~[I VSiT(b)ki(b)Si(b)Zi]
ob i=1

where Ai and Zi are components of the global adjoint and generalized
coordinate vectors associated with the ith element. The practicality of this
computation follows from two observations. First, for each element, the
element stiffness matrix ki(b) and geometric matrix Si(b) will depend on only a
small number of design variables that are associated with the given element
and its nodes. Thus, only a few terms in the sum of Eq. (1.2.32) will be
different from zero. Second, evaluation of design derivatives of the element
bilinear forms in Eq. (1.2.32) require calculation of only a moderate number
of terms.
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A similar argument may be associated with computation of design
derivatives in Eq. (1.2.22) for the direct differentiation approach, with the
following exception: The entire set of k vectors ozJobi is now required for
complete design sensitivity analysis. However, the summation form of the
generalized global stiffness matrix of Eq. (1.2.32), with J replaced by Z, can
be employed to somewhat reduce the computational burden in evaluating
the right-hand side of Eq. (1.2.22). These are important practical con-
siderations in adapting large-scale matrix structural analysis codes for
computation of derivatives that are required in design sensitivity analysis.
The directness with which these computations are performed with the
variational analysis approach favors it for both generality and numerical
effectiveness.

Another practical consideration that should not be overlooked involves
calculating design derivatives of element matrices that are implicitly gener-
ated [3, 4]. Many modern finite element formulations carry out numerical
integration to evaluate element stiffnessand mass matrices, rather than using
closed form expressions in terms of design variables, such as those presented
in Section 1.1.1. For implicitly generated element matrices, the design
differentiation can be carried through the sequence of calculations used to
generate the element matrices, thus leading to implicit design derivative
routines.

An alternative approach is simply to perturb one design variable at a time
and use finite differences to approximate element matrix derivatives. For
example,

oki ki(b + rei) - ki(b)
ob

j
~ t

where ei has a one in the jth position and zeros elsewhere and r is a small
perturbation in bj •

Computational methods of design sensitivity analysis with implicitly
generated elements have not yet been fully investigated and justifiably
require future work owing to increasing use of implicit elements.

1.2.5 Second-Order Design Sensitivity Analysis

As shown in Sections 1.2.2 and 1.2.3, if the applied load vector and system
stiffness matrix has s continuous derivatives with respect to design, then the
state z has s continuous derivatives with respect to design. Presuming that a
function t/J also has s continuous derivatives, calculation of up to s partial
derivatives of t/J with respect to the design variables can be considered.
Consider the specific case s = 2, that is, second-order design sensitivity.
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(1.2.36)

(1.2.35)

DIRECT DIFFERENTIATION METHOD
WITH REDUCED GLOBAL STIFFNESS MATRIX

Consider first the case of the structural formulation with a reduced global
stiffness matrix (i.e., kinematic constraints have been explicitly eliminated
and all components of the displacement vector z are independent). The chain
rule of differentiation may then be used to obtain two derivatives of t/J with
respect to components of the design variable,

d
2t/J

d [ot/J ot/J dzJ
db;dbj = dbj Obi + a; dbi

iJ2t/J iJ2t/J dz 02t/J dz
=--+----+---
. Obi obj Obi ozdbj OZ obj db,

dzT iJ2t/J dz ot/J d2z
+ ---2 - +--- (1.2.33)

dbj iJz db, OZ dbi dbj

The notation used here needs some explanation. The derivative of t/J with
respect to b, on the left side of Eq. (1.2.33) is in reality a partial derivative of t/J
with respect to bi, accounting for dependence of t/J on b directly and on z(b).
Terms on the right side of Eq. (1.2.33) include partial derivatives of t/J with
respect to its explicit dependence on bi •

Since both first- and second-order derivatives of z with respect to design
arise in Eq. (1.2.33), consider calculating them by using the structural
equation

K(b)z = F(b) (1.2.34)

Using the direct design differentiation approach, differentiate Eq. (1.2.34)
with respect to bi to obtain

dz of 0
K(b) - = - - -(K(b)z)

db, Obi Obi

Since the reduced global stiffness matrix K(b) is nonsingular, Eq. (1.2.35)may
be solved numerically to obtain the first derivative of z with respect to design.
Differentiating Eq. (1.2.35) with respect to bj ,

d2z a2F a2
K(b)db. db. = ob. ob. - abo ob.(K(b)z)

I J I J I J

e [ rJ 0 [ rJ- - K(b)~ - - K(b)~
Obi db, abj db,

Again, note that the coefficient matrix of the second derivatives of state with
respect to design is nonsingular, so the second derivatives may be computed
numerically.
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(1.2.37)

(1.2.38)

(1.2.40)

Consider next solving Eqs. (1.2.35) and (1.2.36) for both the first and
second derivatives of the state vector z and substituting them into Eq. (1.2.33)
to obtain second derivatives of tjI. While this approach is conceptually
simple, it leads to a massive amount of computation. If k is the dimension of
the design variable, then 1 + 3k/2 + P/2 equations' must be solved, all
having the same coefficient matrix. As will be seen in the following paragraph,
considerably better results are achieved with the adjoint variable approach
for second-order design sensitivity analysis.

ADJOINT VARIABLE METHOD
WITH REDUCED GLOBAL STIFFNESS MATRIX

From Eq. (1.2.13), the derivative of tjI with respect to b, may be written as

dtjl = otjl _ AT oK(b) z + AToF
db, obi Obi obi

It is important to note that in order for Eq. (1.2.37) to be valid, Z must be the
solution of Eq. (1.2.34) and A the solution of

K(b)A = otjlT
OZ

This follows from Eq. (1.2.11). Thus, both z and A in Eq. (1.2.37) depend on
design. Therefore, in calculation of second derivatives of tjI with respect to
design, dependence of both z and Aon design must be accounted for. By chain
rule calculation, the second derivative of tjI with respect to design is

d
2tj1

_ o2tj1 0 [~T oK(b) ~] 0 [~T OF]
dbidb - obiob - ob }. ~z + ob l obi

[
o2tj1 _ pOK(b)] dz [opT _ TOK(b)] dl (1 2 39)

+ ob.OZ ob. db + ob. Z ob. db ..
I I • I

In order to evaluate the second derivatives in Eq. (1.2.39),dzfdband dA/db
must be accounted for. Differentiating both sides of Eq. (1.2.38) with respect
to design and premultiplying by K -l(b),

dl _1 [0
2'"

0 ~ 0
2",

dZ]
db = K (b) oz ob - ob(K(b)).) + OZ2 db

This result may be inserted into Eq. (1.2.39) and an adjoint variable yi can be
defined as the solution of

(1.2.41)
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Substituting the result of Eq. (1.2.41) into Eq. (1.2.39)and using Eq. (1.2.40)
[the same procedure used in obtaining Eq. (1.2.12)],

The preceding sequence of computations may now be repeated, defining a
new adjoint variable IJi as the solution of

(1.2.43)

Using Eqs. (1.2.35) and (1.2.43) to replace the last term in Eq. (1.2.42) by
directly computable expressions gives the desired result

where only thejth component of the second derivative of 1/1 is included.
Equation (1.2.44)provides an explicit formula for all second derivatives of

1/1 with respect to design, requiring solution of a total of only 2k + 2
equations, which normally is considerably less than the I + 3k/2 + k2/2

equation solutions required in the direct differentiation approach of
Eq. (1.2.33).

A HYBRID DIRECT
DIFFERENTIATION-ADJOINT VARIABLE METHOD

Haftka [12] introduced a refinement that combines the direct differen-
tiation and adjoint methods to realize a computational advantage of a factor
of two. From Eq. (1.2.36),

d
2
z [ (}2F (}2 e ( dZ) () ( dz)J

db.db. = K -1 (}b. (}b. - (}b. (}b. (K(b)z) - (}b. K(b) db. - (}b. K(b) db.
I) I) I) I ) ) 1

(1.2.45)
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Recall from Eq. (1.2.38) that

or

39

(1.2.46)AT = iJtjJ K-1
oz

Now substitute the second derivatives of z from Eqs. (1.2.45)and (1.2.46) into
Eq. (1.2.33) to obtain

d2ljJ 02t/J 02ljJ dz iPljJ dz dzT02ljJ dz
-- = -- +---- +--- +---
db,db, Obi obj objOZ db, OZ objdbi db, OZ2 db,

+ A.T[O~~:b. - Ob~:b.(k(b)Z) - o~.(K(b) ::.) - o~.(K(b) ::.)]
I J I J I J J I

(1.2.47)

If the direct differentiation method is employed to solve Eq. (1.2.35) for
dz/db j (i = 1,... , k), all terms on the right side ofEq. (1.2.47)can beevaluated.
Note that z, k vectors dz/db/l and A. are now needed, for a total of k + 3
solutions, or about half the 2k + 2 solutions in the pure adjoint variable
method.

COMPUTATIONAL CONSIDERATION

The practicality of computations involved in Eqs. (1.2.44) and (1.2.47)
should be evaluated. Consider here only the case of member size design
variables (fixed geometry). The last four terms on the right side ofEq. (1.2.44)
are identical in form to terms arising in Eq. (1.2.13) for the first-order design
sensitivity result. Of course, the first term on the right side of Eq. (1.2.44)
must be calculated directly. The second term may be calculated, using the
summation form for the reduced global stiffness matrix of Eq. (1.2.5), as

02 ~T ~ ~ T IT ,T02k'(b) I I
ob.obo. K(b)z) = L.. }. P S ob.ob.S Pz (1.2.48)

I J 1= 1 I J

Note that most terms in the sum of derivatives of element stiffness matrices
in Eq. (1.2.48) will be equal to zero. The third term on the right side of
Eq. (1.2.44) involves second derivatives of the load vector with respect to
design. If the load vector is constant, all these derivatives are zero. If the load
vector depends on design, then expressions for second derivatives of com-
ponents of the load vector must be calculated. Similar observations follow
for evaluation of terms in Eq. (1.2.47).
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(1.2.51)

ANALYSIS WITH GENERALIZED
GLOBAL STIFFNESS MATRIX

The foregoing analysis requires explicit computation of the reduced global
stiffness matrix and its first and second derivatives with respect to design. In
applications involving nontrivial kinematic admissibility conditions, difficul-
ties may arise in such computations.

The second derivatives of ljJ with respect to design may be written, as in
Eq. (1.2.33), as

d2ljJ _ oljJ d2zg o2ljJ dZg dz~ o2ljJ dZg o2ljJ dZg o2ljJ-- - --- +--- +--2- +---+--
db, db) OZg db;db) OZg ob) db, db) OZg db, obj OZg db) obi ob)

(1.2.49)

where total derivative notation on the left is used to emphasize the inclusion
of design dependence of Zg that appears in the performance measure. In order
to treat the first term on the right side of Eq. (1.2.49), consider the ith
component of Eq. (1.2.22) and differentiate both sides with respect to b) to
obtain the identity

-T d
2zg _ fP -T ~ 0 (-T dig)

zgKib)db. db. - - ob.ob)(Zg Kib)Zg) - ob. zgKg(b) db.
I J I I J

a (-TK (b)dig) -T o2Fg for all - Z
- obi Zg g db

i
+, Zg obj obi Zg E

(1.2.50)

Observe that Eq. (1.2.23) may be evaluated at AI = d2zJdb; db) and Eq.
(1.2.50) at Zg = Ag to obtain an expression for the first term on the right side of
Eq. (1.2.49). Making substitutions into Eq. (1.2.49) gives

~ __ ~ ~T ~ ~(-T 5)
db,db) - Obi ob)(Ag Kg(b)Zg) - obi A.g Kg(b)db)

8 (iT dil ) T 8
2
Fg 8

2
ljJ dZg

- obi g Kg(b)dbi + As obi obi + 8zgobi db;

dzT 82ljJ dz 02ljJ dz 02",+_g__g+ g+ __
db) dz; db; obi OZg db) obi ob)

Note that the forms of the second derivatives calculated in Eqs, (1.2.51) and
(1.2.47) are identical. It is important to note, however, that Eq. (1.2.51) is
valid for even a singular global stiffness matrix Kg(b), whereas the derivation
of Eq. (1.2.47) relied heavily on the existence of an inverse of the reduced
global stiffness matrix K(b). Computational considerations associated with
constructing terms in Eq. (1.2.51) are identical to those associated with
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constructing terms in Eq. (1.2.47). However, Eq. (1.2.51) has the desirable
property that design derivatives of only the generalized global stiffness matrix
must be computed, and not those of the reduced global stiffness matrix.

1.2.6 Examples

BEAM

Consider a clamped-clamped beam of unit length that is subjected to
externally applied loadj{x) and self-weight yh(x), where y is weight density of
the beam material. Assume that all dimensions of the cross section vary with
the same ratio (i.e., all are geometrically similar). Thus, the moment of inertia
of the cross-sectional area is I(x) = ah2(x), where a is a positive constant that
depends on the shape of the cross section. Ifa stepped beam, is considered, as
shown in Fig. 1.2.1,

h(x) = b., (i - 1)/n < x < i/n (1.2.52)

(1.2.53)

where the beam has been subdivided into n sections, each with a constant
cross-sectional area bi . The areas b, (i = 1,2, ... , n) and Young's modulus
E = bn + 1 may be viewed as design variables.

~ i [:::J---- ~
b

l
b
2

b
3

bn_1 bn

Fig. 1.2.1 Stepped beam.

Consider compliance as a response functional, given as

'" = f (f + yh)w(x)dx

J1 l~n1/n (f + ybj)w(x) dx

Using the shape function of Eq. (1.1.2) for each element, for the ith element,

w(x) = Nqi = NSi{Jizg (1.2.54)

where N, Si, and pi are the shape function, rotation matrix, and Boolean
matrix, respectively. For the beam problem, Si can be identity matrix and
from Eq. (1.2.53)

(

n iii. )
'" = i~l i-lin (f + ybj)Npi dx Zg

= Fg(b)TZg (1.2.55)
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For the structural equation

z;Kgzg = z;Fg for all Zg E Z (1.2.56)

where elements of Z satisfy clamped boundary conditions. Using the adjoint
variable method of Section 1.2.3, Eq. (1.2.23) gives

A;KgAg= A;Fg forall AgEZ (1.2.57)

Note that the generalized load on the right side of Eq. (1.2.57) is precisely the
same as the generalized load for the original beam problem of Eq. (1.2.56). In
this special case, A is the displacement of an adjoint beam, which is identical
to the original beam, and Ag = Zg.

The sensitivity formula is, from Eq. (1.2.29),

dljJ oljJ a [~T (b) ~T K (b)~ J
db. = Ob. + ob. zgFg - Zg s Zg

I I I

f

iln a [ n 'T" ]
= 2yw dx - - L Z;f31 k'f3IZg

i-lin Obi i= 1

f

iln
= [2yw - 2Ectbi(wxYJ dx

i-lin

for i = 1,2, ... , n, where, from Eq. (1.1.3),

Also,

n filn
= - L ctb?(wxY dx

i= 1 i-lin

Hence,

n (tin )ljJ' = i~l J
i
-

l /n
[2yw - 2Ectbi(wxYJ dx bbi

(

n tin )
- i~l J

i
-

l /n
ctbi(wxY dx st:

(1.2.58)

(1.2.59)

(1.2.60)

(1.2.61)
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THREE-BAR TRUSS

43

Consider next a simple three-bar truss with multipoint boundary con-
ditions, as shown in Fig. 1.2.2. Design variables for the structure are the
cross-sectional areas b,of the truss members. The generalized global stiffness
matrix is

b3c
2

S b3c S
2 0 0 -b3c 2S -b3c S

2

b3c S
2 b1 + b3s

2 0 -b1 - b3c S
2 -b3s 3

0 0
b2s

0
b2s

0
E c c

Kg(b) = T
0 -b1 0 b1 0 0

-b3c 2S -b3c S2 b2s b S
0 _2_ + b c 2s b3c S

2

C C 3

-b3c S2 -b3s 3 0 0 b3c S
2 b3s

3

(1.2.62)

where c = cos eand s = sin e. In this problem, the space Z of kinematically
admissible displacements is

Z = {Zg'E R 6
; z3 = Z4 = 0, zscosa + Z6 sin a = O} (1.2.63)

and Kib) is positive definite on Z, even though it is not positive definite on
all of R6

•

Z2, f2
Fig. 1.2.2 Three-bar truss.
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(1.2.65)

(1.2.66)

If () = 45° and it. = 300, then with Z = [ZI Z2 ZS]T the reduced stiffness
matrix in this elementary example is

l b3 b3 (J3 - l)b3 J
K(b) = EM b3 2.flb 1 + b3 (J3 - l)b32-.;21

(J3 - l)b3 (J3 - 1)b3 2.flb2 + (4 - 2J3)b3

(1.2.64)

If11 = 12 = 1 and I = 1, then the solution of the reduced stiffness matrix
formulation of Eq. (1.2.5) is

Z = [4 - 2}3 + 2.fl 01-}3JT
Eb2 Eb3 Eb2

Ift/t = ZI' then the adjoint equation of(Eq.1.2.l1) is

K(b)A = 8t/tT/8z = [1 0 OJT

with solution

_[_1 4 - 2J3 2.fl
A - Eb + Eb + Eb

1 2 3

1- J3JT
Eb2

(1.2.67)

The reduced stiffness matrix design sensitivity formula of Eq. (1.2.B) gives,
using z and Afrom Eqs. (1.2.65) and (1.2.67),

dt/t = _~(iTK{b)-) = [0 2}3 - 4 _2.flJ 2 8)
db vb 1'. z Eb~ Eb~ (1. .6

This can be verified by taking the derivative of ZI in Eq. (1.2.65) with respect
to design parameter b.

If the generalized global formulation is employed, the solution Zg of Eq.
(1.2.17) must be found, which is

Z = [4 - 2J3 + 2.fl 0 0 0 1- J3 3- J3JT (1.2.69)
g Eb2 Eb3 Eb2 Eb2

For t/t = ZI' the adjoint equation of Eq. (1.2.23) is

A~Kg{b)Ag = [1 0 0 0 0 OJTAg for all AgE Z (1.2.70)

with solution

[
1 4- 2J3 2.fl

Ag = Eb + Eb + Eb
1 2 3

00 I-J3
Eb2

3- }3JT
Eb2

(1.2.71)
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Then the design sensitivity formula of Eq. (1.2.29) gives

dt/t = _ ~(~T K (b)Z) =:[0 2J3 - 4
db 8b g g g Eb~

_2 J2]
Eb~

(1.2.72)

(1.2.73)J3 - 3JT
Eb~

J3 -1
Eb~

o 0 0 oJ

which is identical to the result obtained in Eq. (1.2.68).
For second-order design sensitivity, solving Eq. (1.2.22)

(i = 1, 2,3) gives

dZg = [0 0 0 0 0 oy
db l

dZg _ [2J3 - 4
db - Eb2 0 0 0

2 2

dZg _ [ 2Ji 0
db

3
- - Eb~

(1.2.74)

and

(1.2.75)

The remaining second derivatives are zero. Hence, the Hessian of t/t is a
diagonal matrix. These results can be verified by taking the derivative of
dt/t/db of Eq. (1.2.72) with respect to the design parameter b.

TEN-MEMBER CANTILEVER TRUSS

In order to illustrate the foregoing method, a ten-member cantilever truss
shown in Fig. 1.2.3 is considered. Young's modulus of elasticity of the truss is
E = 1.0 X 107 psi and weight density is I' = Od Ib/in. 3 •

This problem has been used in the literature [9] to compare various
techniques of optimal design. The problem is to choose the cross-sectional
area of each member of the truss to minimize its weight, subject to stress,
displacement, and member-size constraints. The cost function in the present
case is a linear function of the design variables,

m

t/to = L Yi1ibi
i=1

(1.2.76)
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100 Kip 100 Kip

Fig. 1.2.3 Ten-member cantilever truss.

where Vi> Ii> and b, are the weight density, length, and cross-sectional area of
the ith member, respectively. Stress and displacement constraints for the
problem are expressed as

ljIi = 100il/0'{ - 1.0 ::;; 0, i = 1,2, , m (1.2.77)

ljIj+m = IzNzj - 1.0 ::;; 0, j = 1,2, , n (1.2.78)

where O'i and 0';" are the calculated and allowable stresses for the ith member
and Zj and zj the calculated and allowable jth nodal displacements.
Allowable stresses and displacements are given as at = 2.5 x 104 psi and
zj = 2.0 in., respectively.

For the cost function, direct calculation of design derivatives yield

dl/Jo
db

i
= Vi Ii (1.2.79)

and no adjoint problem needs to be defined. For stress constraints,
Eq. (1.1.22) gives

es:
«. = "T>

I

i = 1,2, ... , m (1.2.80)

(1.2.82)

where Ali is the change in Ii' which must be expressed in terms of the nodal
displacements z. The adjoint equation of Eq. (1.2.11) is then

KA = oljlJ = -IE ol~/dT, i = 1,2, ... , m (1.2.81)
oz iO'f oz

which is just the structural equation for a displacement Adue to a general-
ized load vector oljlJ/oz. Therefore, the solution A(i) may be found, where
superscript (i) denotes association of A with the constraint ljIi' The reduced
stiffness matrix design sensitivity formula of Eq. (1.2.13) gives

d·I, . 0 ~. T_'1'_, = __ [All) K(b)z]
db ob
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1
(1.2.83)o ... OJT

zj

For displacement constraints r/Jj+m' the adjoint equation is

KJ.. = or/JJ+m = sgn (Zj)[0 ... 0oz
where

{
+ 1,

sgn (z.) =
J -1,

if Zj> 0

if Zj < 0

Note that the adjoint load of Eq. (1.2.83) is a point load of magnitude ± l/zj
in the jth nodal displacement direction. As before, the solution J..U+m) of
Eq. (1.2.83) may be found. Then the sensitivity formula of Eq. (1.2.13) gives

dr/Jj+m = _~[i(j+m)TK(b):;l (1284)
db vb 11. ZJ ..

Using these sensitivity formulas, design derivatives of some constraints are
calculated and given in Table 1.2.1 for the initial design given in the second
column of Table 1.2.1. The vectors dr/JI/db and dr/Jl/db are design derivatives
of the normalized stresses in members 5 and 7, respectively, and dr/Jl/db is the
derivative of the normalized displacement in the y direction at node 2.

Define r/Jl and r/J; as the constraint function values for the initial design b
and modified design b + ob, respectively. Let Ar/Ji be the difference between
r/Jjl and r/Jr, and let r/J; = (dr/Jidb) bbj be the difference predicted by design
sensitivity calculations. The ratio of r/J; and Ar/Ji times 100 is used as a
measure of accuracy of the derivative (i.e., 100% means that the predicted
change is exactly the same as the actual change). Notice that this accuracy
measure will not give correct information when Ar/Ji is very small compared

Table 1.2.1

Design Derivatives of Constraints for Ten-Member
Cantilever Truss

Number Design dt/Ji/db dt/JI/db dt/JI/db

I 28.6 0.D082 -0.0009 -0.0093
2 0.2 -0.0696 -0.0284 0.0109
3 23.6 -0.0104 0.D012 -0.0062
4 15.4 -0.0006 -0.0003 -0.0076
5 0.2 -2.3520 -0.9601 0.1402
6 0.2 -0.0696 -0.0284 0.0109
7 3.0 -0.8369 -0.4398 -0.0177
8 21.0 0.0231 -0.0026 -0.0128
9 21.8 -0.0009 -0.0004 -Om08

10 0.2 -0.1968 -0.0803 0.0308
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Table 1.2.2

Comparison of Sensitivity Calculation

Constraint "'l ",;2 tJ.""=",,z "': ("'i/tJ."'1 x 1(0)%

"'1 1.6038 1.4798 -0.1240 -0.1302 105.0

"'2 0.6094 0.5325 -0.7688 x 10- 1 -0.8072 X 10- 1 105.0

"'3 0.4722 x 10- 1 -0.265 X 10- 2 -0.4987 X 10- 1 -0.5236 X 10- 1 105.0

to t/Jt and t/J~, because the difference At/Ji may not have meaning in this case.
Numerical results with a 5% design change, Db = 0.05b, are given in Table
1.2.2.

As a second numerical example, consider the same ten-member cantilever
truss, but with the multipoint boundary conditions shown in Fig. 1.2.4. In
this problem, the space Z of kinematically admissible displacements is

Z = {z, E R 12
: Zg =Z10 = 0, Zl1 cos oc + Z12 sin oc = O} (1.2.85)

where oc = 300, The same constraints given Eqs. (1.2.77) and (1.2.78) are
considered in this problem. For stress constraints of Eq. (1.2.77), the adjoint
equation of Eq. (1.2.23) is

for all J.g E Z (1.2.86)

with solution ).~) (i = 1,2, ... , m). The design sensitivity formula of Eq.
(1.2.29) becomes

dt/Ji = _~[)~/i)TK (b)~ ]
db ob 'g g Zg

(1.2.87)

Fig. 1.2.4 Ten-member cantilever truss with multipoint boundary condition.



for all Jg E Z
(1.2.88)
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For displacement constraints t/!j+m' the adjoint equation is

T - (}t/!j+m -
).gKg).g = --:1-).g

uZg

= sgn (Zj)[O •.. 0 1/zj 0 ... O]Jg

49

with solution A.~+m) U = 1, 2, ... , n). The design sensitivity formula of
Eq. (1.2.29) becomes

d·',.+ ()" T

~b m = - (}b[).~+m) Kg(b)zg] (1.2.89)

Comparison of design sensitivities between the actual changes and the
predictions by the sensitivity formulas of constraint values, with 5% overall
changes of design variables, is presented in Table 1.2.3.

Table 1.2.3

Comparison of Sensitivity Calculation (Multipoint Boundary Condition)

Constraint t/J/ t/J/ ~t/Ji = t/J12- t/J/ t/J: (t/J:/~t/Ji x 1(0)%

t/Jl 11.1476 10.6936 -0.5848 -0.6140 105.0

t/J2 -0.4176 -0.4488 -0.3124 x 10- 1 -0.3296 X 10- 1 105.6

t/J3 1.1134 2.0127 -0.1006 -0.1057 105.0

1.3 EIGENVALUE DESIGN SENSITIVITY

As shown in Section 1.1, the natural frequency of vibration and buckling
load of a structure are eigenvalues of a generalized eigenvalue problem, hence
they depend on design. It is the purpose of this section to obtain design
derivatives of such eigenvalues and to explore an important exceptional case
in which repeated eigenvalues occur as solutions of optimal design problems.
Due to singularity of the characteristic matrix associated with an eigenvalue,
some technical complexities arise in eigenvalue and eigenvector design
sensitivity analysis that do not appear in design sensitivity of response of a
structure to static load presented in Section 1.2.

1.3.1 First-Order Eigenvalue Design Sensitivity
with Reduced Global Stiffness
and Mass Matrices

Consider first the eigenvalue formulation for natural frequency or buckling
[for buckling problems, M(b) is the geometric stiffness matrix] described by
the eigenvalue problem

K(b)y = ,M(b)y (1.3.1)
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where the eigenvector y is normalized by the condition

yTM(b)y = 1 (1.3.2)

It is presumed here that the reduced global stiffness and mass (geometric
stiffness) matrices are positive definite and differentiable with respect to
design. Under these hypotheses, the following theorem is true.

THEOREM 1.3.1 If the symmetric, positive definite matrices K(b) and M(b)
in Eq. (1.3.1) are continuously differentiable with respect to design and if an
eigenvalue ( is simple (not repeated), then the eigenvalue and associated
eigenvector of Eqs. (1.3.1) and (1.3.2) are continuously differentiable with
respect to design.

PROOF For a direct proof, see section 11.6 of Kato [13]. A more general
theorem, which specializes to the results stated here, is proved in Section
1.3.6 of this text. •

Premultiplying Eq. (1.3.1) by the transpose of an arbitrary vector y, one
obtains the identity .

for all y E B" (1.3.3)

Consider now a perturbation Db of the nominal design b of the form

(1.3.4)

Substituting b. into Eq. (1.3.3) and differentiating both sides with respect to r,
one obtains the identity

:b[jiTK(b)y] Db + yTK(b)y'

= ('yTM(b)y + (:b[jiTM(b)y] Db + (yTM(b)y' for all y E Rm

(1.3.5)

where, as in Eq. (1.2.19),

d I dyy' = y'(b,Db) == d'ty(b + 't Db) <=0 = db Db

(1.3.6)
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Since Eq. (1.3.5) must hold for an arbitrary vector Y, substitute Y = Y in
Eq. (1.3.5), using Eq. (1.3.2), to obtain

(' = {:b[yTK(b)y] - ( :b[yTM(b)y]} Jb + y'T[K(b)y - (M(b)y]

(1.3.7)

Note that the last term of Eq. (1.3.7) is zero since y is an eigenvector of Eq.
(1.3.1). Thus, Eq. (1.3.7) reduces to the desired result,

~i = :b [yTK(b)y] - ( :b [YTM(b)y] (1.3.8)

It is interesting to note that this vector of derivatives of the eigenvalue with
respect to design may be calculated without the solution of an adjoint
equation or a derivative of the eigenvector. Thus, once the eigenvalue
problem has been solved for a simple (nonrepeated) eigenvalue, the eigen-
value derivatives are directly calculated using Eq. (1.3.8). In this sense,
differentiation of eigenvalues is simpler than differentiation of structural
performance functions that involve response to a static load. This statement
is false if multiple (repeated) eigenvalues are encountered.

(1.3.10)for all Yg E Z, Yg:F 0

1.3.2 First-Order Eigenvalue Design Sensitivity
with Generalized Global Stiffness
and Mass Matrices

Consider the variational form of the eigenvalue problem of Eqs. (1.1.73)
and (1.1.78), written in the form

abg,Yg) == y~Kib)Yg = U~Mib)Yg == (db(yg,Yg) for all Yg E Z (1.3.9)

Recall that the energy bilinear forms ab( · , .) and db( ., .) are positive definite
on the space Z c R" of kinematically admissible displacements; that is,

ab(Yg, Yg) > 0,

db(yg,Yg) > 0,

In order to obtain the simplest possible derivation of eigenvalue design
sensitivity in this setting, a basis lfJi (i = 1, ... , m) of Z may be introduced. It
is presumed here that kinematic constraints do not depend explicitly on
design, so the vectors lfJi are independent of design. Recall that the dimension
of the space Z c R" of kinematically admissible displacements is m < n. Any
vector Yg E Z may be written as a linear combination of the lfJi, that is,

m

Yg = L cilfJi = cIlc
i= 1

(1.3.11)
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where «D = [.pI .p2 ... .pm] and the coefficients ci are to be determined.
Substituting this expression for y into Eq. (1.3.9) and evaluating Eq. (1.3.9)
with jig = .pi U= 1, ... , m) gives the following system of equations for the
coefficients Ci:

m m

L ab(.pi, .pi)ci = ( L db(.pi, .pi)ci,
i= 1 i= 1

In matrix form, these equations may be written as

K(b)c = (M(b)c

cTM(b)c = 1

where

j = 1, .. . ,m (1.3.12)

(1.3.13)

(1.3.14)
K(b) = «DTKib)«D

M(b) = «DTMg(b)«D

Note that since the matrix «D does not depend on design, the matrices K(b)
and M(b) are differentiable with respect to design if Kg(b) and Mg(b) are.

Using the conditions of Eq. (1.3.10), the matrices K(b) and M(b) may be
shown to be positive definite. Thus, the result of Section 1.3.1 applies [Eq.
(1.3.8)] to obtain the derivative of the eigenvalue with respect to design as

(1.3.15)

In order to use this result, first note that the second equation ofEq. (1.3.13)
and Eq. (1.3.11) yield

1 = cTM(b)c = cT«DTMib)«Dc = y~Mg(b)Yg = db(Yg, Yg) (1.3.16)

Furthermore, substituting for the matrices K(b) and M(b) from Eq. (1.3.14)
into Eq. (1.3.15) gives

d( e [-T «DT (b) -] r V [-T T b)db = vb c Kg «Dc - .. vb c «D Mg( «DC]

With Eq. (1.3.11), the desired result is obtained as

~~ = :b[gKg(b)yg] - ( :b[gMg(b)yg] (1.3.17)

Note that the form of Eq. (1.3.17) is identical to that obtained with the
reduced global stiffness matrix in Eq. (1.3.8). Computational advantages
associated with Eq. (1.3.17), however, are considerable. The generalized
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ab(Y~,Yg) - (d(Y~,Yg) = -a~bg,Yg) + ('d(yg,yg)

= -a~b(Yg,Yg) + a~b(Yg,Yg)d(Yg,Yg)

global stiffness and mass matrices can be used for calculating design
sensitivity of a simple eigenvalue, without resorting to matrix manipulations
that transform the generalized global matrices to reduced form.

1.3.3 First-Order Design Sensitivity
of Eigenvectors Corresponding
to Simple Eigenvalues

As in the static response case, since <I> in Eq. (1.3.11) does not depend on b,
Y~ = (dyg/db) lib = <I>(dc/db) lib. Thus, eigenvectors Yg corresponding to
simple eigenvalues are differentiable with respect to design. In this section,
only the case that the bilinear form di-; .) is independent of design will be
considered. In order to obtain the directional derivative Y~ of the eigenvector
Yg corresponding to the smallest simple eigenvalue of Eq. (1.3.9), take the
total variation of both sides of Eq. (1.3.9) and use the chain rule of
differentiation to obtain

for all Yg E Z
(1.3.18)

where Eq. (1.3.17),written in terms of energy bilinear forms, has been used to
evaluate the directional derivative of the eigenvalue.

The bilinear form on the left side of Eq. (1.3.18) need no longer be positive
definite on Z, since it is a difference of positive definite forms. Therefore, it is
not clear that a unique solution of Eq. (1.3.18) exists. However, note that Eq.
(1.3.18) is trivially satisfied for Yg = Yg• A subspace W of Z that is
d-orthogonal to Yg may be defined and Z may be written as the direct sum
of Wand Yg ; that is,

Z = W E9 {Yg }

where {Yg} is the one-dimensional subspace of Z spanned by Yg and

W = {v E Z:d(v,yg) = O} (1.3.19)

The notation E9 means that since d( " .) is positive definite on Z, every vector
W E Z can be written uniquely in the form

W = v + ocYg ,

Since Eq. (1.3.18) is valid for all Yg E Z, every element of Z can be written
uniquely as the sum of elements from Wand {yg } , and Eq. (1.3.18) is trivially
satisfied for Yg = Yg , Eq. (1.3.18) reduces to

ab(Y~,Yg) - (d(y~,jig) = -a~b(Yg,jig) for all jig E W (1.3.20)
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It now remains to show that the bilinear form on the left side of Eq. (1.3.20) is
positive definite on W.

Using the Rayleigh quotient representation of eigenvalues of Eq. (1.3.9), it
is well known [14] that the second eigenvalue of the problem minimizes the
Rayleigh quotient over all vectors v E W. Since the second eigenvalue is
strictly larger than the smallest simple eigenvalue (,

or

r a,,(v, v)
.,<--

d(v,v)

a,,(v, v) - (d(v, v) > 0

for all vEl¥, v:j. 0

for all vEl¥, v:j. 0 (1.3.21)

(1.3.23)

This shows that the bilinear form on the left side of Eq. (1.3.20) is positive
definite on W. Thus, Eq. (1.3.20) has a unique solution Y~ E W for the
directional derivative of the eigenvector Yg corresponding to the smallest
simple eigenvalue. This argument can be extended to any simple eigenvalue,
replacing W by the subspace of Z that is d-orthogonal to all eigenvectors
corresponding to eigenvalues smaller than (.

Letting Jb be a vector with a one in the jth position and zeros elsewhere, y~

becomes dyg/dbj , and Eq. (1.3.20) becomes

Yi[Kg(b) - (Mg] ~~~ = - o~, [ji;Kg(b)jig] for all jig E W
J J

(1.3.22)

Several numerical techniques exist for solving Eq. (1.3.20) for y~ or Eq.
(1.3.22) for dyg/dbj . Nelson [15] presented a direct computational technique
that uses the reduced global stiffness matrix and is effective for computations
in which the reduced system matrices are known. Potential exists for direct
application of numerical techniques such as subspace iteration [16] to
construct a solution of Eq. (1.3.20), in conjunction with solution of the basic
eigenvalue problem.

1.3.4 Second-Order Design Sensitivity
of a Simple Eigenvalue

The ith component of the gradient of the smallest eigenvalue' with respect
to design may be written from Eq. (1.3.17) as

:~. = o~. U:Kg(b)jig] - ( o~. U:Mg(b)yg]
I I I
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Differentiating with respect to bj gives

d2
( 82 ~T ~ 82 ~T ~

db.db. = 8b.8b
j

[ygKg(b)yJ - (8b.iJbjLYgMg(b)yJ
I) I I

-{iJ~. [YiKib)yg] - , 8~. [Y;Mg(b)Yg]} iJ~. [Y;Mg(b)yg]
J J I

+ 2 8~. [Y;Kg(b)] ~~ - 2( 8~. ['y;Mib)J ~~~ (1.3.24)
I J I J

In order to evaluate the second derivative of r in Eq. (1.3.24), dyJdb i and
dyJdb j must be calculated. This may be done by solving Eq. (1.3.22). Once
Eq. (1.3.22) is solved, the result may be substituted into Eq. (1.3.24) to obtain
the second design derivative of ( with respect to design components b,and bj •

Note that computation of all second design derivatives of ( requires
solution of Eq. (1.3.23) for j = 1, ... , k. These results may be substituted into
Eq. (1.3.24) and the partial derivatives with respect to b,(i = 1, ... , k) may be
calculated. Thus, all k2/2 + k/2 distinct derivatives of ( are obtained with
respect to design. In doing so, k sets of equations in Eq. (1.3.22) must be dealt
with and numerical computation performed to evaluate the right side of Eq.
(1.3.24). While this is a substantial amount of computation, availability of
second design derivative of eigenvalues with respect to design can be of value
in iterative design optimization.

1.3.5 Systematic Occurrence
of Repeated Eigenvalues
in Structural Optimization

In carrying out vibration and buckling analysis of structures, it is well
known that computational difficulties can arise if repeated eigenvalues
(natural frequencies or buckling loads) arise. Occurrence of repeated eigen-
values has often been dismissed on practical grounds, since it is felt that a
precisely repeated eigenvalue is an extremely unlikely accident.

While repeated eigenvalues may indeed be unlikely in randomly specified
structures, they become far more likely in optimized structures. Thompson
and Hunt [17] have devoted considerable attention to designs that are
constructed with simultaneous buckling failure modes (i.e., repeated eigen-
values). More recently, Olhoff and Rasmussen [18] showed that a repeated
buckling load may occur in an optimized clamped-clamped column. Their
result corrected an erroneous solution published much earlier [19].
Subsequent to the Olhoff-Rasmussen finding, Masur and Mroz [20J gave an
elegant treatment of optimality criteria for structures in which repeated
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eigenvalues occur. They showed that a singular (nondifferentiable) optimi-
zation problem arises. Prager and Prager [21] demonstrated that singular
behavior associated with repeated eigenvalues may arise for even a very
simple finite-dimensional column model of the distributed parameter column
of Olhoff and Rasmussen [18]. Simple vibration and buckling problems are
introduced here to show how repeated eigenvalues arise in structural
optimization.

VIBRATION EXAMPLE

Consider first the spring-mass system shown in Fig. 1.3.1. The eigenvalue
equation for small-amplitude vibration of the rigid body is derived simply as

l" + b2 b2
] [2 1]K(b)y = b

2
4b

I
+ b

2
Y =, 1 2 Y =,My (1.3.25)

where' = 2w2m/3, m is mass of the bar, and I = m12/12 is moment of inertia
of the bar. Horizontal motion of the bar is ignored and the spring constants
are regarded as design variables. Note that they do not appear in the mass
matrix M.

Fig. 1.3.1 Spring-mass system with two degrees of freedom.

The optimal design objective is to find design parameters bi and b2 to
minimize weight of the spring supports, which is presumed to be of the form

t/Jo = cI b l + c2 b2 (1.3.26)

where C1 and C2 are known constants. The minimization is to be carried out,
subject to constraints that the eigenvalues are not lower than '0 > 0 and the
spring constants are nonnegative. These constraints are given in inequality
constraint form as

t/JI = '0 - '1 s 0

t/J2 = '0 - '2 s 0

t/J3 = -b1 ~ 0

t/J4 = -b2 s 0
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(1.3.27)

Since the eigenvalues of Eq. (1.3.25) are '1 = (4b1 + 2b2)/3 and '2 = 4b1 ,

these constraints become

t/Jl = '0 - (4b1 + 2b2)/3 :::;; 0

t/J2 = '0 - 4b1 :::;; 0

t/J3 = -b2 :::;; 0

t/J4 = -b4 :::;; 0

Equations (1.3.26) and (1.3.27) define a linear programming problem. The
feasible set is shown graphically in Fig. 1.3.2. Note that the slope of the line
connecting points A and B in Fig. 1.3.2 is -2. The level lines of the cost
function of Eq. (1.3.26) are straight, with slope equal to -cdc2 • The cost
function decreases as level lines of cost move to the lower left. Thus, it is clear
that point A (repeated eigenvalue) is optimum if cdc2 > 2 and point B
(simple eigenvalue) is optimum if C 1/C2 < 2.

~o

cost function if c r/c2 > 2

feasible designs

L...-....l.-_--:~--------- b I

~ 3~O" cost function if c1/ c2< 2
4 ~ ....

Fig. 1.3.2 Feasible region in design space for systems with two degrees of freedom.

COLUMN BUCKLING EXAMPLE

Next consider the column shown in Fig. 1.3.3, with elastically clamped
ends. The column has five rigid segments of length 1and six elastic hinges, the
hinges at the ends of the column having bending stiffness b~. That is, the
rotation of the end sections of the column by an angle eo is opposed by a
clamping moment Mo = b~eo, where bo is a given constant. The cases bo = 0
and bo = 00 correspond to pin-supported or rigidly clamped ends, re-
spectively. Because boundary conditions at the ends are identical, the
bending stiffnesses of the optimum design will be symmetric with respect to
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R
Fig.1.3.3 Elastically supported column.

(1.3.31)i = 0, 1,2

the center of the column, and the buckling modes are either symmetric or
antisymmetric with respect to the center. A column design is specified by the
bending stiffness bi of hinges 1 and 4 and b~ of hinges 2 and 3 in Fig. 1.3.3. A
buckling mode that is known to be symmetric or antisymmetric is specified
by the deflection Yl of nodes 1 and 4 and Yz of nodes 2 and 3. Upward
deflections are regarded as positive.

At the left end, the column is subject to an axial load P, a reaction force R,
and a clamping moment Mo. The bending moment at the ith hinge is

M, = Mo - ilR - Py., i = 0, ... ,4 (1.3.28)

where Yo = 0. If (}j denotes the relative rotation of the segments meeting at
the ith hinge, considered positive if counterclockwise rotation of the segment
to the right of the ith hinge exceeds that of the segment to the left,

M, = b;(}j = b;(Yi+l - 2Yi + Yi-l)/l, i = 0, ... ,4 (1.3.29)

where Y-l = Yo = 0. It is convenient to introduce a reference stiffness b*z
and define the dimensionless variables

P = Pl/b*z R = Rl/b*z M. = M/b*z, '1 I , bi = bfb"
(1.3.30)

Note that with these dimensionless variables, Eqs. (1.3.28) and (1.3.29) yield
(after deleting - for notational simplicity),

M o - iR - Py, = b;(Yi+ 1 - 2Yi + Yi-l)'

For a symmetric buckling mode, Y3 = Yz and R = 0. For i = 0,1,2, Eq.
(1.3.31) yields

Mo = b~Yl

Mo - PsYl = bi(Yz - 2Yl) (1.3.32)

M o - psYz = b~( -Yz + Yl)

where P, is the buckling load of the symmetric mode. When the value of Mo
from the first of these equations is substituted into the other two, linear
homogeneous equations are obtained for Yl and Yz that admit a nontrivial
solution only if

Ps
z - (b~ + 2bi + b~)Ps + bMbi + b~) + bib~ = ° (1.3.33)



1.3. EIGENVALUE DESIGN SENSITIVITY 59

The smaller root of this equation is the symmetric buckling load.
Let the cost of the design [b., b2JT be fixed by the relation

b l + b2 = 1 (1.3.34)

and find a design that has the greatest buckling load. In view of Eq. (1.3.34),
Eq. (1.3.33) reduces to

Ps
2

- (1 + b~ + 3bi - 2bl)Ps

+ bM2bi - Zb; + 1) + bi(bi - Zb , + 1) = 0 (1.3.35)

For an antisymmetric buckling mode, Y3 = -Y2 and R = 2Mo/(51) because
both the bending moment and the deflection vanish at the center of the
column. Proceeding as above, a quadratic equation is obtained for the
buckling load Pa of the antisymmetric mode, in the form

pa
2

- (3 + 0.6b~ + 5bi - 6b l )Pa

+ b~(2bi - 3.6b l + 1.8) + 5bi(bi - 2b l + 1) = 0 (1.3.36)

The smaller root of this equation is the antisymmetric buckling load.
In Fig. 1.3.4, the smaller of the buckling loads p. and Pa is shown as a

function of b, for fixed values of boo To indicate important features of this
relation, consider the case bo = 0.3, for which the variation of the buckling

p
0.4

0.2 0.6 0.8
bl

Fig. 1.3.4 Buckling loads for optimum columns.
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load is shown by the line ABCD. The arcs AB and CD correspond to
antisymmetric buckling, while the arc BC corresponds to symmetric buckl-
ing. At point B in Fig. 1.3.4, both symmetric and antisymmetric buckling are
possible, and the buckling load is given by a repeated eigenvalue. A similar
observation applies to point C. The arc BC, however, has its greatest
ordinate at point H, so the optimum design for bo = 0.3 corresponds to
b1 = 0.39, which causes buckling in a symmetric mode, the buckling load
being a simple eigenvalue. However, the buckling load is a repeated
eigenvalue if bo is larger than the value bo = 0.57 that corresponds to point
E, and the optimum design may buckle in a symmetric or an antisymmetric
mode, or in any linear combination of the two.

Note that a second local maximum occurs as a repeated eigenvalue for
bo ~ 1.31, corresponding to point F. Another local maximum occurs as a
simple eigenvalue for bo ~ 0.94, corresponding to point G. Also, note that
the curve of Fig. 1.3.4 is not concave; indeed several relative maxima occur,
and when a repeated eigenvalue occurs at an optimum, the eigenvalue is not
differentiable with respect to design. Thus, if dP/db1 = 0 were to be used as an
optimality criteria, serious errors would result from the outcome of such
computations.

1.3.6 Directional Derivatives of Repeated
Eigenvalues

ANALYSIS WITH REDUCED GLOBAL STIFFNESS
AND MASS MATRICES

Consider first the eigenvalue problems that arise in vibration or buckling
of structures, using the reduced global stiffness and mass (or geometrical
stiffness) matrices,

K(b)y = (M(b)y (1.3.37)

where y E B". In the problems considered here, K(b) and M(b) are symmetric,
positive definite matrices.

The derivation of design derivatives in Section 1.3.1 is valid only under the
assumption that the eigenvalues and eigenvectors are differentiable with
respect to design, which is true if the eigenvalue is simple. However, even a
repeated eigenvalue is directionally differentiable (see Appendix A.3), which is
to be shown in the theorem that follows. .

Let the eigenvalue {(b) of Eq. (1.3.37) have multiplicity s ~ 1 at band
define an s x s matrix vii with elements

i,j = 1,... , s

(1.3.38)



1.3. EIGENVALUE DESIGN SENSITIVITY 61

where {yi} (i = 1,2, ... , s) is any M(b)-orthonormal basis of the eigenspace
associated with (b). Note that .A depends on the direction c5b of design
change (i.e., .A = .A(b, c5b». The following theorem characterizes the direc-
tional derivatives of repeated eigenvalues.

THEOREM 1.3.2 If the matrices K(b) and M(b) are symmetric, positive
definite, and differentiable, then the directional derivatives (~b, c5b)
(i = 1,2, ... ,s) of a repeated eigenvalue (b) in the direction c5b exist and are
equal to the eigenvalues of the matrix .A.

PROOF Since matrices K(b) and M(b) are positive definite, hence non-
singular, Eq. (1.3.37) may be rewritten as

i = 1, ... ,s (1.3.39)

(1.3.42)

where (yi,Ml) = c5ij and c5ij is the Kronecker delta, which is one if i = j and
zero otherwise. Since K(b) and M(b) are differentiable with respect to b, so is
C(b). In particular,

C(b + r c5b) = C(b) + -(~ ~~ c5blJ+ o(r) (1.3.40)

where o(r) denotes a quantity such that

lim o(r)/r = o.
......0

By theorem 5.11, chapter 2, of Kato [13],

(tb + r c5b) = ( + r(~b, c5b) + o(r), i = 1,... , s (1.3.41)

where (;(b, c5b) = _[(b)]2Q(~b, c5b) and Q(~b, c5b) are eigenvalues of the oper-
ator (suppressing argument b for notational simplification)

N = p[~ ~~ c5b,JP I'

where P is the M-orthogonal projection matrix that maps R" onto the
eigenspace

y == {y E Rm: y = .± aiyi, a, real}
,=1

That is, for any y E R",
s

Py = L (My, yi)yi
i=1

and the scalar product (., .) is defined as (v, y) == vTy = D= 1 ViYi'

(1.3.43)
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The eigenvalues of the operator N must now be found. Each eigenvector of
N can be expressed as

s

Y = L ajyi
j= 1

where not all values of aj are zero. Hence,

p[~ ~~ i5bIJPY = o'ib, i5b)y

or

s [OC J' S •j~1 ajP ~ obi i5b, PyJ = ex' j~1 ajy'

Taking the scalar product of Eq. (1.3.45) with Myi gives

~ ([" ec J . .) ~ . ..~ aj P c: ~b i5bl PyJ, My' = ex' .~ aiyJ, My)
)=1 Illi )=1

(1.3.44)

(1.3.45)

i = 1,2, ... , s (1.3.46)

To have a nontrivial solution aj' ex' must be an eigenvalue of the matrix

Nij = [(Nyi, Myi)]s x s

By definition of C = K- 1Min Eq. (1.3.39),

OC = K- 1 aM _ K- 1 oK K- 1M
obi obi obi

Thus,

- [( I -1 ,,(OM OK) ')JN = MY,PK -7 obi - obi C i5bl PyJ s x s

Since Pyi = yi and Cyi = (l!')yi,

- [( I -1 ,,(OM. 10K.) )J
N = My, PK -7 obi yJ -, obi yJ si, s x s

Note that for any vector v E R'",
S

(Myi, Pv) = L (My', (Mv, yi)yi)
j= 1

. . 1 .
= (Mv, y') = (v, My') = ,(v, Ky)

(1.3.47)

(1.3.48)

(1.3.49)

(1.3.50)

(1.3.51)
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Applying this result to Eq. (1.3.50)gives

63

A [(1 i -1 ,,(OM. 10K.) )J
N = ,Ky, K. 7 obi yJ - , ob, yJ bbl

[
1 O. . 1 o. . J

= 'ob (Y', M(b)Y1) bb - ,2 ob(Y', K(b)y) e5b s x s (1.3.52)

Noting that a;(b, e5b) are the eigenvalues of Nand ';(b, e5b) = _('(b))2 a;(b, e5b),
it is concluded that ';(b,e5b) are the eigenvalues of A = _G(b»2f1, which
gives

A = [:b (yi, K(b)Y) e5b - ( :bW, M(b)Y) e5bJ
sxs

(1.3.53)

Since this is the matrix defined in Eq. 1.3.38, the proof of the theorem is
complete.•

The notation (;(b, e5b) is selected in Theorem 1.3.2 to emphasize de-
pendence of the directional derivative on bb. It is not surprising that in the
neighborhood of a design for which the eigenvalue is repeated s times that
there may be s distinct eigenvalues. The remarkable fact implied by the
preceding result is that the eigenvalues of the matrix A ofEq. (1.3.38)do not
depend on the M(b)-orthonormal basis that is selected for the eigenspace.
Moreover, if the eigenvalues ((b + e5b) are ordered by increasing magnitude,
their directional derivatives are the eigenvalues of A, in the order of
increasing magnitude.

To see that the directional derivatives of the eigenvalue are not generally
linear in e5b, consider the case of a double eigenvalue (i.e., s = 2). The
characteristic equation for determining the eigenvalues of A may be written,
for the case s = 2, as

where the fact that An = A 2 1 has been used. Solving this characteristic
equation for (' gives a pair of roots that provide the directional derivatives of
the eigenvalue as

(~b, e5b) = t{(All + A 22) ± [(All + A 22)2

i = 1,2 (1.3.55)

where i = 1 corresponds to the - sign and i = 2 corresponds to the + sign.
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This equation orders the directional derivatives of the repeated eigenvalue
according to magnitude. It is clear that with this ordering, even though the
vltij are linear in bb, the resulting formula for ('(b, bb) is not linear in Sb, hence
it is not a Frechet derivative (Appendix A.3). This situation may arise
because the eigenvalues have been ordered by magnitude. As indicated by the

(1.3.56)

L----..-L-------I..b

Fig. 1.3.5 Schematic of eigenvalue crossing.

schematic diagram in Fig. 1.3.5, even if a smooth ordering of the eigenvalue
versus design curves exists, ordering by magnitude leads to a derivative
discontinuity at the point of a repeated eigenvalue.

COMPUTATION OF DIRECTIONAL DERIVATIVES
OF A REPEATED EIGENVALUE

There exists an ordering of (~b + r bb) such that the mapping
r -. (~b + r bb) is differentiable at r = O. In general, however, this ordering
depends on bb. To see this, let s = 2. A method for determining the
directional derivatives was introduced by Masur and Mroz [22J. They used
an orthogonal transformation of eigenvectors, beginning with a given
vIt(b)-orthonormal set yl and y2 and defined a "rotated" set

yl = yl cos 4J + y2 sin 4J

y2 = _ yl sin 4J + y2 cos 4J

where 4J is a rotation parameter. An easy calculation shows that if yl and y2
are M(b)-orthonormal, then so are pI and p2. The transformed eigenvectors
may thus be used in evaluating the matrix vIt of Eq. (1.3.38), denoted as.ii.
Since the eigenvalues of.ii are the same as those for vIt, a rotation parameter
4J may be chosen to cause the matrix vIt to be diagonal. If such a 4J can be
found, then the diagonal elements of.ii will be the eigenvalues of the original
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matrix, hence the directional derivatives of the repeated eigenvalue. Thus, it is
required that

0= Jll2 = :b[J!TK(b)y2] sb - '(b) :b[J!TvIt(b)y2] l5b

= -cos ¢ sin ¢ vltll + (cos?¢ - sin? ¢)vltl2 + sin ¢ cos ¢ vltn

= t cos 2¢ (vltn - vltll ) + cos 2¢ vltl2 (1.3.57)

Equation (1.3.57) may be solved for

1 [ 2v1tdYl, y2, l5b) ]
¢ = ¢(l5b) = "2 Arctan vIt (1 1 l5b) _ vIt (2 2 l5b) (1.3.58)

11 Y ,Y , 22 Y ,Y ,

where the notation is chosen to emphasize that ¢ depends on the direction of
design change l5b. Even though the vltij depend linearly on l5b, their ratio on
the right side of Eq. (1.3.58) is not linear in l5b. Furthermore, the Arctan
function is nonlinear.

This angle ¢ may be used in evaluating Jt 11 and Jt 22 to obtain the
directional derivatives of the repeated eigenvalue; that is,

C1(b, l5b) = Jill = cos" ¢ (l5b)vltll(l5b)

+ sin 2¢ (l5b)vltdl5b) + sin? ¢ (l5b)vltdl5b)
(1.3.59)

'~(b, l5b) = Jl22 = sin? ¢ (l5b)vltll(l5b)

- sin 2¢ (l5b)vlt12(l5b) + cos? ¢ (l5b)vltdl5b)
(1.3.60)

where the notation vltiil5b) is used to emphasize dependence on design
change. Note that even though vltiJ{l5b) is linear in l5b since the trigonometric
multipliers depend on Sb, the directional derivatives appearing in Eqs.
(1.3.59) and (1.3.60) are in general nonlinear in l5b. Thus, the directional
derivatives of a repeated eigenvalue are indeed not linear in l5b. Hence, , is
nondifferentiable. Only if vltdl5b) is identically equal to zero for all l5b, with
some pair of Af(b)-orthonormal eigenvectors, can the repeated eigenvalues be
ordered in such a way that they are Frechet differentiable.

It may be noted in Eq. (1.3.58) that for T :F 0, ¢(b, T l5b) = ¢(b, l5b); that is,
¢(b, l5b) is homogeneous of degree zero in l5b. Thus, since vltiil5b)are linear in
l5b,

(1.3.61)

That is, the directional derivatives of a repeated eigenvalue are homogeneous
of degree one in l5b. This implies that once lJb is fixed, the eigenvalues can be
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ordered such that the repeated eigenvalue is differentiable with respect to r.
While the foregoing approach could be used to treat a triple eigenvalue,

the analysis would be much more delicate. In this case, the matrix is 3 x 3,
and a cubic characteristic equation would have to be solved. The alternative
is to use a three-parameter family of M(b)-orthonormal eigenfunctions and to
choose the three rotation parameters to cause the offdiagonal terms of Jt to
be zero. This will be a complicated task, since three trigonometric equations
in three unknowns must be solved. While analytical solution of directional
derivatives for eigenvalues of multiplicity greater than 2 may be difficult, the
same basic ideas may be employed for numerical calculation.

ANALYSIS WITH GENERALIZED GLOBAL STIFFNESS
AND MASS MATRICES

Consider the reduced formulation of the generalized eigenvalue problem of
Eq. (1.3.9), given by Eq. (1.3.13), for the repeated eigenvalue problem with
nonsingular reduced stiffness and mass matrices K(b) and M(b) in Eq.
(1.3.14). Let ci (i = 1, ... ,s) be M(b)-orthonormal eigenvectors, with

K(b)ci = ,M(b)ci
, i = 1, ... ,s (1.3 .62)

Thus, vectors Y~ = <l>ci satisfy the relation

Dij = CiTM(b)cJ = ciT<I>TMg(b)<I>cJ = y~TMg(b)y~ (1.3.63)

where Dij is the Kronecker delta, so Y~ are Mg(b)-orthonormaI.
For the reduced eigenvalue equation of Eq. (1.3.62), use Eq. (1.3.38) to

define

(1.3.64)

i.] = 1, ... , s

By Theorem 1.3.2, the directional derivatives ';~b,t5b) (i = 1, ... ,s) of the
repeated eigenvalue' of Eq. (1.3.9), or equivalently Eq. (1.3.62), are the
eigenvalues of .it. Using Y~ = <l>ci and Eq. (1.3.14),

..iii) = :b[CiT<I>TKg(b)<I>cJ] Db - nb) :b[CiT<I>TMg(b)<I>cJ] t5b

= :b [y~T Kg(b)y~] t5b - '(b) :b [y~T Mg(b)~] Db,

(1.3.65)

Thus, Eqs. (1.3.58)-(1.3.60) are valid for the directional derivatives of a
repeated eigenvalue, with vltij replaced by .A;J [i.e., written in terms of the
generalized global stiffness and mass matrices in Eq. (1.3.65)].
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1.3.7 Examples

THREE-BAR TRUSS

67

To illustrate results of previous sections, consider the three bar truss
considered in Section 1.2.6. To simplify the calculation, consider the
generalized global lumped mass matrix give as

b, + .jibJ

pi
M(b)=-

• 2 o

o

(1.3.66)

where p is mass density. The space of kinematically admissible displacements
is

Z = {Yg E R6: Y3 = Y4 = 0, Yscosa + Y6sin a = O} (1.3.67)

and Kg(b) ofEq. (1.2.63)is positive definite on Z. If (} = 45° and a = 300, then
with Y = [Yl Y2 Y3F, the reduced mass matrix in this example is

[

b1 + J2b 3 0 0 J
M(b) = ~l 0 b, + J2b 3 0 (1.3.68)

o 0 4(b2 + J2b 3 )

For the eigenvalue problem, assume E = 1, p = 1, b, = b2 = 1, and

b3 =2J2. Then the fundamental eigenvalue is ,= 0.08038 and the
M(b)-normalized eigenvector is

Y = [Yl Y2 YsJT = [-0.3496 0.08451 0.2601F (1.3.69)

The reduced eigenvalue design sensitivity may now be evaluated from Eq.
(1.3.8) as

:i = :b(yTK(b)y) -, :b(yTM(b)y)

= [0.001944 0.05678 -0.02076J
(1.3.70)

In case the generalized global formulation is employed, the same eigen-
value as in the reduced formulation is computed. The Mg(b)-normalized
eigenvector is

Yg = [-0.3496 0.08451 0 0 0.2601 -0,45051JT (1.3.71)
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The eigenvalue design sensitivity formula of Eq. (1.3.17), with the variational
formulation, gives

(1.3.72)

:i = :b(YJKib)yg) -, :b(gMg(b)Yg)

= [0.001944 0.05678 -0.02076]

which is the same as in Eq. (1.3.70).
Since there is no evidence of designs leading to repeated eigenvalues in this

example, repeated eigenvalue sensitivity formulas are not written.

PORTAL FRAME

As an example in which repeated eigenvalues occur at a given design,
consider the portal frame shown in Fig. 1.3.6. The structure is modeled using
beam elements of lengths Ii and uniform cross-sectional areas bi' as shown in
Fig. 1.3.6. No axial deformation is considered in this example. The design
problem is to find b E W that minimizes the weight

n

1Mb) = Y L u, (1.3.73)
j= 1

·1
YII YII

Yg
Y10 Y24

Y7 Ya Y26

Y5 Y6 Y
28 lOin.

Y3 Y4
Y30

YI
Y2 Y32

Fig. 1.3.6 Eighteen-element model of portal frame.
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subject to natural frequency constraints

t/JI = (0 - (I ::; 0,

and constraints on cross-sectional area

t/Jj+2 = cj - hj ::; 0, j = 1,2, ... , n

where y is weight density of the material and (i = w/.
The numerical results presented are based on the following data:

69

(1.3.74)

1. Length of each member of portal frame is lOin.
2. Moment of inertia of cross-sectional area is I, = ob],
3. Geometry of a cross section is circular (ex = 0.08).
4. Young's modulus of elasticity is E = 10.3 X 106 psi.
5. Mass density of the material is y = 0.26163 x 10- 3 Ib-sec2/in.4 •

The eighteen-finite-element model of Fig. 1.3.6 is used in computation, and
the current design, which gives repeated eigenvalues (1 = 3.360591 X 107

and (2 = 3.364971 X 107
, is given in Table 1.3.1 (column a).

The perturbation direction (jb to be used in the calculation of directional
derivatives (;(b, (jb) in Eqs. (1.3.59) and (1.3.60) is given in Table 1.3.1
(column b). A comparison of design sensitivity between the actual changes

Table 1.3.1

Current Design and Perturbation

(a) Current Design (b) Perturbation
~--------~-~~.

bi bb(i)

I 0.6614E + 01 I 0.6960E - 01
2 0.4626E + 01 2 0.4933E - 01
3 0.2747E + 01 3 0.2921E - 01
4 0.1602E + 01 4 0.7251E - 02
5 0.9134E + 00 5 0.4467E - 02
6 0.3709E + 00 6 0.1841E - 02
7 0.35OOE + 00 7 O.OOOOE + 00
8 0.35OOE + 00 8 O.OOOOE + 00
9 0.35OOE + 00 9 O.OOOOE + 00

10 0.35OOE + 00 10 O.OOOOE + 00
11 0.35OOE + 00 II O.OOOOE + 00
12 0.35OOE + 00 12 O.OOOOE + 00
13 0.3709E + 00 13 -0.2025E - 02
14 0.9134E + 00 14 -0.5360E - 02
15 0.1602E + 01 15 -0.9426E - 01
16 0.2747E + 01 16 -0.4090E - 01
17 0.4626E + 01 17 -0.7400E - 01
18 0.6614E + 01 18 -0.1114E + 00



70

Constraint

1. FINITE·DIMENSIONAL STRUCTURAL SYSTEMS

Table 1.3.2
Comparison of Sensitivity

(l/Jf/tll/Ji x 1(0)%

-0.1875 X 106

0.8397 x lOs
-0.2016 X 106

0.9968 x lOs
107.5
118.7

and predictions by the sensitivity formulas of Eqs. (1.3.59) and (1.3.60) is
presented in Table 1.3.2. Since t/J[(b, <5b) (i = 1,2) are nonlinear in <5b for the
current design, dt/JJdb can not be found to calculate t/J; = (dt/JJdb)(jb.

1.4 DYNAMIC RESPONSE DESIGN
SENSITIVITY

Thus far in this chapter, only static response and eigenvalues that represent
steady-state motion and buckling of structures have been treated. Under
time-varying loads or nonzero initial conditions, transient dynamic response
of the structure must be considered. Design sensitivity analysis of structural
response measures in a transient dynamic environment is treated in this
section, first including the effect of damping and then specializing the results
to undamped structures, yielding substantial computational simplification.

1.4.1 Design Sensitivity Analysis
of Damped Elastic Structures

Consider first the case of a structure in which the generalized global
stiffness and mass matrices have been reduced by accounting for boundary
conditions. Further, let the damping force in the structure be represented in
the form -C(b)z. Under these conditions, the Lagrange equations of motion
become

M(b)z + C(b)z + K(b)z = F(t, b)

with initial conditions

(1.4.1)

z(O) = ZO (1.4.2)

Consider a structural response functional of the general form

t/J = g(z(T), b) + iT G(z, b) dt

where the final time T is determined by a condition of the form

n(z(T), z(T), b) = 0

(1.4.3)

(1.4.4)
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That is, given a design b, the equations of motion of Eqs. (1.4.1) and (1.4.2)
can be integrated to monitor the value of O(z(t), i(t), b). The time at which
this quantity goes to zero is·defined as the time T. The functional in Eq. (1.4.3)
can then be evaluated. It is presumed that Eq. (1.4.4) determines T uniquely,
at least locally. This requires that

00 00 ..n == ~ i(T) + 8i z(T) -:f. 0 (1.4.5)

It is clear from Eq. (1.4.1) that the solution z = z(t; b) of the initial-value
problem of Eqs. (1.4.1) and (1.4.2) depends on the design variable b. The
nature of this dependence is characterized by a well-known theorem from
ordinary differential equations [23].

THEOREM 1.4.1 If the matrices M(b), C(b), and K(b) and vector F(t, b) are s
times continuously differentiable with respect to b and if the matrix M(b) is
nonsingular, then the solution z = z(t; b) is s times continuously differen-
tiable with respect to b.

Theorem 1.4.1 guarantees that the dynamic response of a structural system
is essentially as smooth as the dependence on b in the equations of motion.

Consider now a variation in design of the form

(1.4.6)

Substituting b, into Eq. (1.4.3), the derivative of both sides of Eq. (1.4.3) can
be evaluated with respect to r at r = O. Leibnitz's rule of differentiation of an
integral [24] may be used to obtain

Ij;' = ~: (jb + ~~ [z'(T) + i(T)T'] + G(z(T), b)T' + LT~~ z' + ~~ (jb] ~t
(1.4.7)

where

didz' = z'(b, (jb) == dr z(t, b + r (jb) t=O = db [z(t, b)] (jb

T' = T'(b,(jb) == .!!..-T(b + r(jb)1 = ddb
T

(jb
do t=O

Note that since the expression in Eq. (1.4.4) that determines T depends on
design, T itself will depend on design. Thus, terms arise in Eq. (1.4.7) that
involve the derivative of T with respect to design. In order to eliminate these
terms, take the derivative of Eq. (1.4.4) with respect to r and evaluate at r = 0
to obtain

~~ [z'(T) + i(T)T'] + ~~ [i'(T) + z(T)T'] + ~~ (jb = 0 (1.4.8)
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(1.4.12)

This equation may be rewritten as

cr == [~~ i(T) + ~~ Z(T)JT' = -(~~ z'(T) + ~~ i'(T) + ~~ c5b)"

(1.4.9)

Since it is presumed that a =1= 0 [see Eq. (1.4.5)],

T' = -{(~ Ia)Z'(T) + (~~ Ia)il(T) + (~~ Ia) c5b} (1.4.10)

Substituting the result of Eq. (1.4.10) into Eq. (1.4.7),

.p' = [~~ - ~~ i(T) + G(z(T), b)(~~ Ia)}/(T)

- [~~ i(T) + G(z(T), b)J (~~ Ia)i'(T) + iT [~~ Z' + ~~ c5bJ dt

+ ~: c5b - [~~ i(T) + G(z(T), b)J (~~ Ia) c5b

(1.4.11)

Note that the differential of.p in Eq. (1.4.11)depends on the differential of the
state z and velocity i at T, as well as on the differential of z in the integral.

In order to write the variation of.p in Eq. (1.4.11) explicitly in terms of a
variation in design, the adjoint variable technique employed in Sections 1.2.2
and 1.2.3 may be used. In the case of a dynamic system, one may multiply all
terms in Eq. (1.4.1) by the transpose of Je = Je(t) and integrate over the interval
[0, T] to obtain the following identity in Je:

iT JeT [M(b)z + C(b)z + K(b)z - F(t, b)] dt = 0

Since this equation must hold for arbitrary Je, which is taken at this point to
be independent of design, substitute b. of Eq. (1.4.6) and take the differential
of Eq.(1.4.12) to obtain the relationship, using Leibnitz's rule and noting that
the integrand is zero at T,

where

(1.4.14)

with denoting variables that are to be held constant for the purposes of
taking partial derivatives with respect to design in Eq. (1.4.13).
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Integrating the first two terms under the integral in Eq. (1.4.13) by parts
yields

AT(T)M(B)z'(T) - IT(T)M(b)z'(T) + AT(T)C(b)z'(T)

+ iT {OTM(b) - C(b)lT(b) + ATK(b)]z' - ~~ <5b} dt = °
(1.4.15)

Since Eq. (1.4.15) must hold for arbitrary functions A.(t), A. may be chosen
so that the coefficients of terms involving z'(T), z'(T), and z' in Eqs. (1.4.11)
and (1.4.15)are equal. If such a function A(t)can be found, then the unwanted
terms in Eq. (1.4.11) involving z'(T), z'(T), and z' can be replaced by terms
that depend explicitly on <5b in Eq. (1.4.15). To be more specific, require that

M(b)A(T) = -[~: z(T) + G(z(t),b)J 8~T 10. (1.4.16)

M(b)l(T) = CT(b)A(T) - O~T + [~~ z(T) + G(z(T), b)] O~T 10.
(1.4.17)

°s t < T (1.4.18)

Note that once the state equations of Eqs. (1.4.1)and (1.4.2) are solved and
Eq. (1.4.4) is used to determine T, then z(T), z(T), oo./oz,oo./oz,and 0.may be
evaluated. Equation (1.4.16) may then be solved for A(T) since the mass
matrix M(b) is nonsingular. Having determined A(T),all terms on the right of
Eq. (1.4.17) may be evaluated, and this equation may be solved for l(T).
Thus, a set of terminal conditions on A has been determined. Since M(b) is
nonsingular, Eq. (1.4.18) may then be integrated from T to 0, yielding a
unique solution A(t). The system of Eqs. (1.4.16)-(1.4.18) may be thought of
as a terminal-value problem.

Since terms involving variation of the state variable in Eqs. (1.4.11) and
(1.4.15) are identical, substitute from Eq. (1.4.15) into Eq. (1.4.11) to obtain

~' = {~~ + iT[~~ + ~~Jdt

- [~: z(T) + G(Z(T),b)J(~~/o.)} <5b == ~t <5b (1.4.19)

All terms in this equation can now be calculated. The first term outside the
integral represents an explicit partial derivative with respect to design, as
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does the first term inside the integral. The second term inside the integral,
however, must be evaluated from Eq. (1.4.14), hence requiring A(t). Note also
that since the design variation ob does not depend on time, it is taken outside
the integral in Eq. (1.4.19).

Since Eq. (1.4.19) must hold for all ob, the vector of design derivatives of IjJ
with respect to b is

dljJ og ( [OG oR ... ]
db = ob(z(T), b) + J

o
ob (z, b) + ob (A(t), z(t), z(t), z(t), b) dt

- [~~Z(T) + G(Z(T),b)J(~~/n) (1.4.20)

The computational algorithm leading to determination of dljJldb requires
that the state initial-value problem of Eqs. (1.4.1) and (1.4.2) be integrated
forward in time from 0 to T. Then the adjoint terminal-value problem ofEqs.
(1.4.18), (1.4.16), and (1.4.17) must be integrated backward in timefrom T to
O. Both sets of calculations can be done with well-known numerical
integration algorithms [25]. Once these initial- and terminal-value problems
have been solved, the design derivatives of IjJ in Eq. (1.4.20)can be calculated
using a numerical integration formula [25]. Thus, while substantial numeri-
cal computation is required, it is clear that design derivatives of dynamic
response can be computed.

1.4.2 Design Sensitivity Analysis
of Undamped Structures

Consider now the case in which damping in the structure can be neglected.
In this case, the state initial-value problem is reduced to

M(b)z + K(b)z = F(t, b)

z(O) = 0, z(O) = 0
(1.4.21)

While theoretical considerations in this caseare identical to those in Section
1.4.1, an essential computational advantage arises.

Consider the generalized eigenvalue problem associated with the differen-
tial equation in Eq. (1.4.21), written as

i = 1,... , r ::::; m (1.4.22)

where the number r of eigenvectors calculated is generally substantially less
than the number of independent degrees of freedom of the system. Further, it
is presumed that the eigenvectors ¢i are normalized by the condition

i,j = 1, ... , r (1.4.23)
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Using these eigenvectors, approximate the solution z(t) of Eq. (1.4.21) by
the eigenvector expansion

r

z(t) ~ L c;(t)qi = <l>c(t)
;= 1

(1.4.24)

where <I> = [¢!, ... , ¢r]. Note that if r = m, the solution z(t) can be precisely
represented by Eq. (1.4.24). On the other hand, it is conventional in
structural dynamics to select a number r of eigenvectors strictly less than m in
order to carry out an approximate solution efficiently. For a discussion of the
number of eigenvectors to retain, the reader is referred to Bathe [16].

Substituting from Eq. (1.4.24) into the differential equation of Eq. (1.4.21)
and premultiplying by ¢T, the following system of differential equations for
c(t) is obtained:

<l>TM(b)<I>c + <l>TK(b)<I>c = <l>TF(t, b) == F(t, b) (1.4.25)

where it is required that

c(O) = 0, c(O) = 0 (1.4.26)

Using the normalizing condition of Eq. (1.4.23) and the eigenvalue equation
of Eq. (1.4.22), Eq. (1.4.25) reduces to

c+ Ac = r«; b) (1.4.27)

where

(1.4.28)

(1.4.29)i = 1,... , r
c;(O) = 0,

Since A is diagonal, Eqs. (1.4.27) are decoupled and may be written in scalar
form with the initial conditions of Eq. (1.4.26). This system is given by

cj + (jC; = F;(t, b),

An explicit solution of each of these decoupled initial-value problems may be
written as

i = 1, ... ,r (1.4.30)

This may be verified by differentiation and substitution in Eq. (1.4.29). Thus,
in the case of a structure without damping and with homogeneous initial
conditions, an explicit solution of the equations of motion may be obtained
by evaluating cm from Eq. (1.4.30) and substituting their values into Eq.
(1.4.24).



76 1. FINITE-DIMENSIONAL STRUCTURAL SYSTEMS

The homogeneous initial condition of Eq. (1.4.21) is not restrictive, since
nonhomogeneous initial conditions z(o) = ZO and ti(O) = iOcan be treated by
defining a particular solution zp = ZO + tiD of Eqs. (1.4.1) and (1.4.2) and
substituting it into the initial-value problem to obtain a problem of the form
ofEq. (1.4.21), with only an additional term -K(b)zp appearing on the right
side of the differential equation.

Consider now the special case of a functional of a form of the Eq. (1.4.3),
with g = °and an explicitly given terminal time T. In this special case, the
right sides of Eqs. (1.4.16) and (1.4.17) are zero and the terminal-value
problem becomes

.. 8GT

M(b)Je + K(b)Je = a;-(t, z(t), b)

Je(T) = 0, l(T) = °
(1.4.31)

These limiting assumptions are not restrictive, since in the general case
nonhomogeneous terminal conditions Je(T) = Je0 and A(T) = AO can be found
from Eqs. (1.4.16) and 1.4.17) and variables changed, using a particular
solution Je = Je0 + (t - T)AO, to obtain homogeneous terminal conditions of
Eq. (1.4.31) with an additional term -K(b)Ap on the right side of the
differential equation. The special case is treated here to avoid the algebra
associated with this transformation.

Note that the left side ofthe differential equation in Eq. (1.4.30) is identical
to the left side of the differential equation in Eq. (1.4.21). Thus, the
eigenvector expansion technique, using precisely the same set of eigenvectors
determined from Eqs. (1.4.22) and (1.4.23), may be employed. Thus, the
adjoint variable is approximated as

r

A(t) ~ L e;(t)cf>; = «1>e(t)
i= 1

(1.4.32)

Substituting this formula into Eq. (1.4.31) and premultiplying by «1>T, the
uncoupled terminal-value problems are

i = 1,... , r (1.4.33)

e;(T) = 0,

These equations may be solved in closed form to obtain

1 IT 8Gem = IY sin[.jf;(t - r)]T('r,z(r),b)cf>idr,
VCi t oz

i=1, ... ,r

(1.4.34)
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The adjoint variable A(t) may now be constructed from Eq. (1.4.32), and
design derivatives may be evaluated from Eq. (1.4.20). These results are of
substantial practical importance, since structural damping may be neglected
in many important elastic structures, yielding a practical and compu-
tationally efficient design sensitivity analysis algorithm. To further generalize
this result, structural damping effects are often approximated so that the
damping matrix C(b) is proportional to either the stiffness or the mass matrix
[3,4]. Using such an approximation, the foregoing design sensitivity analysis
method can be extended to treat structures with this special form of damping.

1.4.3 Functionals Arising
in Structural Dynamic Design

The general form of the cost or constraint functional of Eq. (1.4.3) can be
used to represent or approximate most quantities that measure structural
response in practice. Consider first the case of a constraint on response and
design that must hold for all time; that is,

f/(z(t), b) :s; 0, (1.4.35)

Such constraints may be approximated in several ways.

1/1i = iT [c/J(z, b) + Ic/J(z, b)l] dt = 0 (1.4.36)

Equivalence of Eqs. (1.4.35) and (1.4.36) for continuous functions is easily
demonstrated. Use of the functional of Eq. (1.4.36) has provided a capability
for reducing constraint errors in Eq. (1.4.35) to near zero [10]. However, as
the error approaches zero, the domain over which the integrand in Eq.
(1.4.36) is defined reduces to zero length, and a singular functional occurs.
This behavior limits the precision with which convergence can be obtained in
structural optimization calculations.

An alternative treatment of the constraint of Eq. (1.4.34) is to define the
time t 1 at which the maximum value of the left side of Eq. (1.4.35) occurs. It
must satisfy the condition

(1.4.37)

The constraint of Eq. (1.4.35) may now be replaced by the equivalent
constraint

1/12 = f/(z(t1)'b) :s; 0 (1.4.38)

This functional is of the form of Eq. (1.4.3), with the terminal time t 1

determined by Eq. (1.4.36). Thus, the algorithm of the preceding section can
be directly applied.
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(1.4.40)

Finally, an averaging multiplier technique may be used in which a
characteristic function m(t, t 1 ) is defined to be symmetric about the point
t 1 < T and to have a unit integral. The function m is defined on a small
subdomain of the interval from 0 to T in such a way that as the length of the
subdomain approaches 0, m approaches the Dirac b-function (more properly
the Dirac measure). The value of '1(z(t1) , b) may thus be approximated as

"'3 = iTm(t, t l)'1(Z(t), b) dt s 0 (1.4.39)

where

iTm(t, t 1) dt = 1

While some error is involved in the approximation of Eq. (1.4.39), quite good
numerical results can be obtained using a function m that is defined on a
finite subdomain about the time t 1 at which the actual maximum displace-
ment occurs for the nominal design. This formulation has the advantage that
sensitivity of the time t 1 with respect to design need not be considered in the
approximate computations. Thus, only an integral constraint is involved in
actual iterative calculation.

1.5 PROJECTED GRADIENT
FOR TRADE-OFF DETERMINATION

1.5.1 Constrained Design Sensitivity Analysis

While it is necessary to know the cost and each constraint function J/Ji
(i = 0, 1, ... ,q) depends on each design variable, this is not sufficient for
large-scale system design. More valuable information for the designer would
be derivatives of one of these functions, say the cost J/Jo, subject to the
conditions that

~' = d~ bb = 0
db

(1.5.1)

where ~ is a vector of the constraint functions that are at their critical values
and for which the designer decides no change is desired. For example, if
stresses are large in several elements of a machine or structure and
displacements of a few points are near their allowable limits, then the
designer may wish to consider design changes that leave these quantities
unchanged-hence Eq. (1.5.1).
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Geometrically, the goal is to project the design gradient of l/Jo onto the
surface in design space defined by Eq. (1.5.1). Since the design space may be
rather complicated, this operation must be accomplished analytically.
Noting that the gradient of a functional is simply the direction of steepest
ascent in design space, a vector c5b may be sought in design space such that

-l/J~ is as large as possible (hence a direction of steepest descent for l/Jo),
consistent with the constraint of Eq. (1.5.1) and with a quadratic step-size
limitation,

(1.5.2)

which retains the validity of linear approximations. Here ~ is a positive
definite design-weighting matrix and ~ is small.

This problem is solved [10] using necessary conditions of optimality. The
result is a scalar multiple of the projected gradient, or constrained derivative,
of -l/Jo,

(1.5.3)

where

(1.5.4)

(1.5.5)

Once the sensitivity vectors dl/JT[db are known, it is a simple and
numerically efficient matter to calculate the constrained steepest descent
vector c5b in Eq. (1.5.3). As noted in the foregoing, this information can be
generated with minor additional computer time compared to that required
for analysis of response of a trial design. The value of this constrained design
sensitivity information to the designer is perhaps even greater than response
data (structural analysis output) with no trend information. Further, the
designer can redefine the vector ~ of active constraints and get a new set of
constrained design derivatives from Eq. (1.5.3), rapidly and with trivial
computer cost.

1.5.2 Example

In order to illustrate the foregoing method, consider the ten-member
cantilever truss of Section 1.2.6. To illustrate the idea of design sensitivity
analysis and constrained derivatives, consider the design given in the first
column of Table 1.5.1. For this design, three design sensitivity vectors were
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Table 1.5.1

Design Derivatives and Constrained Gradients for lo-Member Cantilever Truss

Number Design dt/llidb dt/lI!db dt/lrtdb ~b111 ~b(2) ~bl3l ~bI4)

1 28.6 0.0082 -0.0009 -0.0093 -36.19 -31.27 -31.91 -32.85
2 0.2 -0.0696 -0.0284 0.0109 -34.44 -38.50 -37.68 -36.53
3 23.6 -0.0104 0.0012 -0.0062 -35.77 -32.03 -33.46 -35.44
4 15.4 -0.0006 -0.0003 -0.0076 -35.99 -31.73 -32.69 -34.03
5 0.2 -2.3520 -0.9601 0.1402 16.90 6.17 5.48 4.38
6 0.2 -0.0696 -0.0284 0.0109 -34.44 -38.50 -37.68 -36.53
7 3.0 -0.8369 -0.4398 -0.0177 -32.09 1.62 3.37 5.03
8 21.0 0.0231 -0.0026 -0.0128 -51.43 -45.00 -45.14 -45.41
9 21.8 -0.0009 -0.0004 -0.0108 -50.89 -44.89 -46.24 -48.12

10 0.2 -0.1968 -0.0803 0.0308 -46.49 -57.97 -55.66 -52.38

calculated in Section 1.2.6. The vectors dr/JUdb and dr/JI!db are design
derivatives of the normalized stresses in members 5 and 7, respectively, and
dr/JI!db is the derivative of the normalized displacement in the y direction at
node 2. The vector dr/JUdb indicates that in order to decrease the stress level
in member 5, the areas of members 2-7, 9, and 10 should be increased,
whereas areas of members 1 and 8 should be decreased. The vector dr/JI!db
indicates that for reduction of stress level in member 7, areas of all members
except the third should be increased. This indicates that there is some conflict
between the constraints r/Jl and r/J2' Similar trends may be observed for the
vector dr/JI!db.

The constrained derivative of Eq. (1.5.3) resolves this conflict. The
constrained derivative is the direction of most rapid decrease of the cost
function, subject to the condition that constraints in ~ = [r/Jl r/J2 r/J3]T
remain at their current values. From the designer's point of view, this
information is useful because it tells which of the variables can be adjusted to
obtain a desired reduction in cost, consistent with the constraints. Three such
constrained derivatives are given in Table 1.5.1. The vector ~b is computed
from Eq. (1.5.3) by imposing the condition that r/Ji must be equal to zero.
Similarly,ss» and ~b(3) are computed from the conditions that r/Ji = r/Ji = 0
and r/J~ = r/Ji = 0, respectively. Finally, ~b(4) is calculated from conditions
that r/Ji = r/J~ = r/Ji = O. It is observed that different ~b vectors result,
depending on the constraints that are included in the analysis.

1.5.3 Interactive Computer-Aided Design

For approximately two decades, substantial effort has been devoted to
development of structural optimization techniques, using iterative methods
of nonlinear programming and optimality criteria [26, 27]. More recently,
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attempts to document this theory have appeared in book form [10, 28]. In
spite of substantial progress in structural optimization, there is a feeling of
despair among workers in the field that fruits of their labor have not seen
extensive application. The purpose of this subsection is to offer possible
reasons for this dilemma and to suggest an avenue of pursuit that may
encourage greater use of structural optimization theory and techniques.

Design sensitivity analysis techniques, leading to the theory and numerical
methods presented in this chapter, have heretofore been embedded in
iterative optimization algorithms and have not normally been given primary
emphasis. In particular, most structural optimization work has tended
toward iterative algorithms that contains design sensitivity analysis, with the
objective of automated structural optimization (i.e., turning iterative control
over to the computer rather than keeping the design engineer in the loop).
This approach can sufferfrom two pitfalls. First, it requires that the designer
identify all important constraints, the levels of constraint limits, and the cost
function precisely and enter this information into the structural optimization
algorithm. Very often in applications, numerous trade-offs exist, and in fact
constraints may become important that the designer did not foresee during
initial attempts at formulation of the optimal design problem. Recent
literature on multicriteria optimization [29] suggests that this dilemma is the
rule rather than the exception. If this is indeed the case, it is important to
provide the structural engineer with an interactive tool that can be used to
refine the formulation of the problem, while proceeding toward an optimum
design.

Even if the structural optimization problem is precisely defined, most
iterative optimization methods require considerable judgment on the part of
the user in selecting parameters that influence convergence of the algorithm.
Since structural optimization problems are highly nonlinear, there is always
the threat of divergence or convergence to a poor relative optimum. In many
cases, the initial design formulation may be so optimistic in its demands that
no feasible design satisfying the initially specified constraints exists, so that
convergence of an optimization algorithm is impossible. Even when an
optimum design exists, the more robust modern optimization methods tend
to require a large number of iterations, each of which requires numerous
reanalyses and hence a massive amount of computing time. Even the most
experienced design engineer who tries to use an automated iterative optimi-
zation algorithm and has it fail to converge or has it expend a large amount
of computing time, only to find a poor local relative minimum will soon
become frustrated and conclude that "tried-and-true conventional methods"
are superior to these "new-fangled" optimization methods.

A promising approach to alleviate the foregoing dilemmas may be to
resort to interactive trade-off analysis of the kind outlined in Section 1.5.2.
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Initial redesign computations can be carried out under the control of the
experienced design engineer. In fact, extension of the preceding gradient
projection computation, using a sequential quadratic programming ap-
proach [30], may yield even better results than the simple algorithm
presented here. Using such a technique with an interactive computer-aided
design system, the design engineer can explore alternatives and playa role in
refining the formulation of the design problem during the early stages of
iterative design improvement. In this way, the engineer will more readily
identify a situation in which no feasible solution to the originally formulated
problem exists and take action to modify the formulation to achieve
acceptable trade-offs. Furthermore, the engineer will be more likely to gain
confidence in the iterative algorithm as it progresses toward steadily
improved designs. The engineer may then be willing to turn iterative control
of the optimization algorithm over to the computer for a limited number of
redesign iterations and may in fact speed adoption of modern nonlinear
programming methods in structural optimization.

In addition to speeding adoption of structural optimization techniques, the
interactive computer-aided design technique suggested here need not interfere
with global convergence properties of iterative optimization algorithms.
Since the designer will be involved in only a finite number of initial redesign
iterations, any globally convergent algorithm will still converge when it is
begun from the design invented by the engineer at the design station. In fact,
intermediate output of sequential quadratic programming algorithms [30]
provides information needed by the engineer to override the automated
algorithm, if desired. If it is chosen not to override the algorithm, then the
desired global convergence properties are retained, and no theoretical harm
is done. In fact, if such designer intervention in the progress of the algorithm
improves confidence in the algorithm, there is every reason to believe that
progress will be made in accelerating the adoption of such techniques and in
improving understanding and facility in their use.



2
Distributed- Parameter
Structural Components

In contrast to the matrix equation development of design sensitivity theory
in Chapter 1, a distributed-parameter (continuum) approach is presented in
this chapter. The principal distinction between the two approaches lies in the
use of displacement fields that satisfy boundary-value problems of elasticity
to characterize structural deformation, rather than nodal displacements that
are determined by matrix equations.

While the finite-dimensional and distributed-parameter approaches are
related (the former is an approximation of the latter), advantages and
disadvantages accrue to the two approaches. The principal disadvantage of
the distributed-parameter approach, from an engineering viewpoint, is the
higher level of mathematical sophistication associated with the infinite-
dimensional function spaces of displacements and designs. As will be seen in
this and the following two chapters, however, symmetry and positive
definiteness of energy forms associated with elastic structures yield a
complete theory that parallels the matrix theory of Chapter 1. The only real
penalty associated with the distributed-parameter formulation is the level of
complexity of technical proofs that are required. In order to minimize
frustration of the reader who is interested primarily in applications, the
authors have organized material in this and the following chapters to begin
with a treatment of techniques and examples, stating results as they are
needed and citing proofs that are given later in the chapter.

Two principal advantages of the distributed-parameter approach to
structural design sensitivity analysis are

1. a rigorous mathematical theory is obtained, without the uncertainty
associated with finite-dimensional approximation error, and

83
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2. explicit relations for design sensitivity are obtained in terms of physical
quantities, rather than in terms of sums of derivatives of element matrices.

The former feature is of importance in development of the theory of
structural optimization, which has provided the principal motivation for
development of the theory. The latter feature has not yet been fulIyexploited.
Use of the results of this chapter in numerical calculations is discussed in
Sections 2.2.4 and 2.3.3.

A final note on the variational (virtual work) viewpoint adopted in this and
the folIowing chapters is in order, prior to launching into the details. Both
the matrix and variational approaches were seen to be viable in treating
finite-dimensional systems in Chapter 1. In this distributed-parameter
setting, only the variational approach is acceptable. Use of linear operator
theory may be considered to paralIel matrix theory, but even the operator
theory needed is based on a reduction of each problem to variational form
[6,9, 13, 14,31-35]. In fact, the elegance and practicality of the variational
approach become apparent as design sensitivity theory is developed.

2.1 VARIATIONAL FORMULATION OF STATIC
AND EIGENVALUE PROBLEMS

The mathematical theory of boundary-value problems that describe
deformation, buckling, and harmonic vibration of elastic structures has
recently turned to a powerful variational approach [9, 31]. This theory
begins with a statement of the classical boundary-value problem and
proceeds to reduce it to a variational, or energy-related, formulation. The
result is a rigorous existence and uniqueness theory and a formulation that
provides the foundation for a rigorous and practical theory of finite element
analysis [5, 6]. In retrospect, the variational formulation obtained may be
viewed as the principle of virtual work or the Galerkin method for
solution of boundary-value problems [14, 32].

Much as with the generalized global stiffness matrix formulation in
Chapter 1, in order to take advantage of the power of the variational
formulation for design sensitivity analysis it is essential to work with
"kinematically admissible displacement fields". Readers who are interested
primarily in applications can restrict their attention to classes of smooth
functions and need not be concerned with the more general function spaces
presented. Extensions to more general spaces offunctions that are needed in
later sections to prove the validity of the design sensitivity analysis method
are introduced here, however. In order to be concrete, specific examples that
are treated later in the text are presented and analyzed in this section.
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2.1 .1 Static Elastic Systems

BENDING OF A BEAM

Consider the beam of Fig. 2".1.1, with a normalized axial coordinate x,
clamped supports, and variable cross-sectional area h(x). The area distri-
bution h(x) may be taken as a smooth function that is bounded above and
below, 0 < ho :::;; h(x) :::;; h1, or it may be taken in the larger space of
essentially bounded functions, L00(0, 1). Here, Loo(a, b) is the space of
Lebesgue measurable functions h(x) on the interval a :::;; x :::;; b, such that
Ilhll oo == inf {M > 0: Ih(x)l:::;; M a.e. in [a,b]} (where "almost everywhere" is
abbreviated a.e.). For an introductory treatment of such function spaces, the
reader is referred to Appendix A.2. Readers who are interested primarily in
applications and who are willing to restrict their attention to continuous
designs may use the space of continuous designs; CO(a, b) = {h(x): h(x) is
continuous on [a, b]}, with the norm Ilhll o == maxa:s;x:S;b Ih(x)l. The larger
space Loo(a, b) of designs is included here for mathematical completeness.

f (x)

A~ r""
~r :trx X=I

z

Fig.2.1.1 Clamped beam of variable cross-sectional area h(x).

It is presumed that all dimensions of the cross section vary with the same
ratio (i.e., all are geometrically similar) so the moment of inertia of the cross-
sectional area is I(x) = (Xh 2(x ), where (X is a positive constant that depends on
the shape of the cross section. The boundary-value problem for displacement
z(x) is written formally as

(E(Xh2(x)zxJxx = f(x)

z(o) = zx(o) = z(1) = zx(l) = °
where E is Young's modulus,f(x) distributed load, and subscript notation is
used to indicate derivatives with respect to x.

The material constant E and material distribution function h(x) may be
viewed as design variables since they serve to specify the structure and may
be selected by the designer. To simplify notation, they are denoted as a design
vector u = [E, h(X)]T E U == R x Loo(O, 1), or R x CO(O, 1). This notation
simply means that E is real (in R) and h(x) is in Loo(O, 1) or CO(O, 1), as the
engineer wishes. Presuming a solution z(x) of Eq. (2.1.1) exists, it is clear that
it will depend on the design vector u. This dependence may be denoted by
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(2.1.3)

(2.1.5)

z(x; u), that is, a displacement function defined on °~ x ~ 1 that depends on
the design u. The form of dependence of z on x and u is very different. Ifdesign
u is changed, the displacement will generally change at all x.

In linear operator notation, the boundary-value problem of Eq. (2.1.1) is

Auz == (Erxh2(x)zxx)xx = f (2.1.2)

where the subscript u denotes dependence of the differential operator on the
design vector u and z must satisfy the boundary conditions of Eq. (2.1.1). For
h e L'x'(O, 1), or even CO(O, 1), the boundary-value problem of Eq. (2.1.1) is
only formal. Ifh is twice continuously differentiable [i.e., hE C2(O, 1)] and if z
is four times continuously differentiable [i.e., z E C4(O, 1)], then the problem
of Eq. (2.1.1) has a classical meaning. Considering the classical case, in which
all functions are sufficiently smooth, both sides of Eq. (2.1.2) can be
multiplied by an arbitrary function z(x) and integrated to obtain

f [(Eah2(x)zxx)xx - fJz dx = °
which must hold for any integrable function i, Conversely, if Eq. (2.1.3) holds
for all twice continuously differentiable functions zthat satisfy the boundary
conditions of Eq. (2.1.1) and if z E C4(O, 1), then the differential equation of
Eq. (2.1.1) is satisfied. This is true since the space of kinematically admissible
displacements

z = {z E C2(O, 1): z(O) = zx(O) = z(l) = zx(l) = OJ,

which may be viewed in classical mechanics as virtual displacements, is dense
in L2(O, 1) [9,31].

Two integrations by parts can now be carried out in the first term in Eq.
(2.1.3) to obtain

o= f Erxh2zxxzxx dx - ffZdx + [(EIXh2z
xAxz - ElXh2zxxzxx] I~

= f EIXh2zxxzxx dx - f fz dx (2.1.4)

where the boundary terms vanish because zE Z is required to satisfy the
boundary conditions of Eq. (2.1.1). Defining the energy bilinear form

au(z, z) = 11 EIXh2zxxZxx dx

Eq. (2.1.4) is just

for all z E t (2.1.6)
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where (., .) denotes the L2(O, 1)scalar product, defined as

(w, v) == f w(x)v(x) dx

and l.(z) is the load linear form, or virtual work of force j and virtual
displacement z. Note that Eq. (2.1.6) could have been written directly from
variational principles of elasticity [33, 34]; the principle of virtual work in
this case. This approach is used in Chapter 4 for more complicated
structures. The boundary-value formulation is used here for structural
elements since it is more commonly encountered in the engineering literature.

It is important to note that the restriction of h to C2(O, 1)and z to C4(O, 1) is
not only unnatural, but also unnecessary. The bilinear form a.(z, z) of Eq.
(2.1.5)is well defined for h e LOO(O, 1) or Co(O, 1) and for any z(x) and z(x) that
have second derivatives that are in L2(O, 1), that is, for which .f~(zxY dx and
.f~(zxY dx are finite (seeAppendix A.2).Thus, the variational equation ofEq.
(2.1.6) may be satisfied by a function z that has only one continuous
derivative, with a possibly irregular second derivative that is only required to
be in L2(O, 1) and satisfying the boundary conditions of Eq. (2.1.1). Such a
function is called the variational or generalized solution of the boundary-
value problem of Eq. (2.1.6).

An alternative view of the variational formulation of the beam equation
may be obtained from the minimum total potential energy characterization
of beam bending. That is, the displacement z(x) E 2, is to minimize

PE = f GElXh2(ZxY - jZ] dx

It is clear that the potential energy is welldefined as long as zxx E L2(O, 1)and
that it does not require z to be C4(O, 1). Equating the first variation of PE to
zero, with the variation z(x) having two derivatives, zxx E L2(O, 1), and z
satisfying the boundary conditions of Eq. (2.1.1),

JPE == ~ f [~E(Xh2(ZxX + 'tZxxf - f(z + 'tZ)]dxLo

=f [ElXh2zxxzxx - jz] dx = °
But this is just Eq. (2.1.6).

Recovery of the differential equation of Eq. (2.1.1) is only possible if
integration by parts can be justified, hence requiring either restrictive and
physically unjustifiable assumptions on differentiability of z and h or
introduction of the idea of distributional derivatives [9,31,35], which in
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reality make the boundary-value problem ofEq. (2.1.1) the equivalent of the
variational equation of Eq. (2.1.6). Thus, the variational formulation is more
natural from the point of view of mechanics than the fourth-order differential
equation of Eq. (2.1.1).

The variational formulation of the problem yields a greater degree of
generality if solutions are defined in Sobolev spaces (Appendix A.2) of
functions. For functions of one variable x, the Sobolev space Hm(o, 1) is the
collection of all functions that may be obtained as limits of functions in
{z E Cm(O, 1): IlzllHm < oo}, where

_[m II (d iZ(X))2 JI /2 _ (m Iidiz 11
2 )1/2

IIZllHm - L -di dx - L -di
i=O 0 X i=O X L2

(2.1.7)

Define a function of compact support on the open interval [0, 1] as a
function z(x) that is zero outside an interval [e, 1 - eJ for some e > 0. The
space of functions that are Hm(o, 1) limits of COO(O, 1) functions with compact
support (Appendix A.2) is denoted HO'(O, 1). It is known [8,36] that the set of
all functions in H 2(0, 1) that satisfy the boundary conditions of Eq. (2.1.1) is
precisely the space Hg(O, 1) = Z, which is an extension of the space t of
smooth functions that satisfy the boundary conditions defined earlier.

Of particular importance in mathematical analysis of beams by the
variational method is the Sobolev imbedding theorem (Appendix A.2).
Existence theory for variational equations of the form of Eq. (2.1.6) [9,35]
guarantees that there will be a solution z E H2(O, 1). The natural question
now is, How smooth is z E H 2(0, I)? For functions of one variable, the
Sobolev imbedding theorem asserts that z E CI[O, IJ and that there is a
constant C > °such that

I
diz(x)!

max max -di s CII zIIH2/0.1)
i=O.IO~x~1 x

This result explains why kinematic boundary conditions are preserved when
H2 limits are taken of smooth functions that satisfy kinematic boundary
conditions. For a compact introduction to Sobolev spaces and their appli-
cation to structural mechanics, the reader is referred to the outstanding
article of Fichera [35]. For a comprehensive treatment of the subject, see the
book by Adams [36]. The engineering reader who is interested primarily in
applications need not be concerned with these functional analysis general-
izations of the problem. They are included here to show that extensions of
the formulation are possible and as preparation for mathematical proofs of
differentiability of displacement with respect to design that are presented in
Section 2.4.

In a Sobolev space setting, the variational formulation of the boundary-
value problem of Eq. (2.1.1) is to find a function z E Z such that Eq. (2.1.6)
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[with hE LOO(O, 1)] is satisfied for all z E Z. This problem may be refor-
mulated with an operator Au, called the Friedrichs extension of Au' such that

(Auz, z) = au(z, z) for all ZE Z (2.1.8)

The domain of the extended operator Au is the subspace D(Au) of Z such that
Auz E L2(0, 1). It was shown by Aubin [9] that D(Au) is dense in L2(0, 1), and
due to the Sobolev imbedding theorem, the identity map from D(AJ c Z to
L2(0, 1) is compact [36]. Further, it was shown by Aubin [9] and Fichera
[35] that the operator equation

Auz = f (2.1.9)

has a unique solution in D(Au) for each f E L2(0, 1). Thus, the operator Au
defined by Eq. (2.1.8)is an extension of the operator Au in Eq. (2.1.2), and the
operator equation ofEq. (2.1.9) is a generalization ofEq. (2.1.1) in the sense
that any classical solution of Eq. (2.1.1) is a solution of Eq. (2.1.9).
Furthermore, even when Eq. (2.1.2) fails to have a classical solution, Eq.
(2.1.9)will have a generalized solution, which is in fact the "natural solution"
of the structural mechanics problem. For a proof of existence and unique-
ness, the reader is referred to the article of Fichera [35] or to Aubin [9].

In addition to the existence properties of Eq. (2.1.9), it was shown by
Fichera [35] that the energy bilinear form aiz, z) satisfies the following
inequalities:

au(z, z) ~ KllzIIH211zllH2 for all z, Z E Z (2.1.10)

au(z) == au(z, z) ~ ,llzll12 for all z E Z (2.1.11)

where K < 00 and I > 0, provided E ~ Eo > 0 and hex) ~ ho > 0 a.e.
Equation (2.1.10) states a form of upper bound on the bilinear form, while
Eq. (2.1.11) is a lower bound on strain energy, which may also be written as

(Auz, z) ~ IIIzl112 for all zE Z (2.1.12)

This is the strong ellipticity or Z-ellipticity property of the operator Au'
Since Eq. (2.1.9) has a unique solution in HMO, 1), write

z(x; u) = A;;lf (2.1.13)

to emphasize dependence on u. From Eq. (2.1.12),

(Auz, z) = (f, A;; If) ~ IliA;;If11~2 (2.1.14)

By the Schwartz inequality [9,31],

IlfIIL21IA;; IfllL2 ~ I(f, A;; If)1
Since IIvll H2 ~ IlvllLl for all v E H 2(0, 1), from Eq. (2.1.14),

IIA;; IfllH2 :5; ! IlfliLl for all f E L2(O, 1) (2.1.15)
I
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Thus, the operator A; 1 is bounded and hence continuous. It remains only to
determine the regularity of dependence of A; 1 on u.

While the foregoing analysis has been carried out with the clamped-
clamped beam of Fig. 2.1.1 with boundary conditions of Eq. (2.1.1), the same
results are valid for many other boundary conditions, to include the
following support conditions and associated boundary conditions [9, 35]:

1. simply supported

z(O) = zxx(O) = z(l) = zxx(l) = 0

2. cantilevered

z(O) = zAO) = zxx(l) = [ECth 2(I)zxx(l)]x = 0

3. clamped-simply supported

z(O) = zx(O) = z(l) = zxx(l) = 0

(2.1.16)

(2.1.17)

(2.1.18)

The reader may note that since boundary terms in Eq. (2.1.4) vanish if z
and z satisfy these boundary conditions, the bilinear form au(z, z) of Eq.
(2.1.5) is applicable for all boundary conditions of Eqs. (2.1.16)-(2.1.18). It
was shown by Aubin [9] and Fichera [35] that the variational character-
ization of the solution in Eq, (2.1.6) is valid if z and z satisfy only kinematic
boundary conditions of Eqs. (2.1.16), (2.1.17), or (2.1.18) that involve de-
rivatives of order one or less. That is, boundary conditions involving
derivatives of order two or three are natural boundary conditions and need
not be satisfied by z and zin Eq. (2.1.6). It was further shown by Fichera [35]
that Eqs. (2.1.10) and (2.1.11) are valid for this class of functions. Hence,
bounded invertibility of Au is retained for the boundary conditions of Eqs.
(2.1.16)-(2.1.18).

BENDING OF A PLATE

Consider now the clamped plate of variable thickness h(x):2: ho > 0
(h E L00(0) or CO(O» shown in Fig. 2.1.2. The formal boundary-value
problem for displacement z is written in operator form as

z = 0, ozjon = 0,

in 0

on r
(2.1.19)

where the operator Au is defined as

Auz = [L)(U)(Zll + VZd]ll + [D(U)(Z22 + VZll)]22 + 2(1 - v)[D(u)z12]12
(2.1.20)

with a subscript i denoting the operation ojox;,

L)(u) = Eh3 j[12(1 - v2
)]
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z

Fig. 2.1.2 Clamped plate of variable thickness h(x).

E > Eo > 0 is Young's modulus, v Poisson's ratio, and u = [E, h(X)]T. The
variational formulation is obtained by multiplying both sides of the differen-
tial equation of Eq. (2.1.19) by an arbitrary function ZE C4(0, 1) that satisfies
the boundary conditions and integrating by parts

0= ft (A.z - f)idn

= ft D(U)[Zl1 ill + VZ22i ll + Z22 i22 + vzllz22 + 2(1 - V)Z12 i12] dn

- ftfi dn + L{[D(U)(Zl1 + VZ22)]1 zn1 - D(U)(Zl1 + vzdi1n1

+ [D(U)(Z22 + VZ ll)]2 i n2 - D(U)(Z22 + vz ll)i2n2

+ (1 - V)[D(u)z12] 1 in2 + (1 - V)[D(u)z12]2 in 1 - (1 - v)D(u)z12 Z1n2

- (1 - V)D(U)Z12i2nl} dr

= ft D(u)[Zl1ill + vz22i ll + Z22 i22 + vzlli22

+ 2(1 - V)Z12i12] dn - ftfi dn

== a.(z, i) - l.(i) (2.1.21)

for all kinematically admissible "virtual displacements" i, where n1 and n2

are components of the outward unit normal vector to the boundary rand
the boundary terms vanish because z and zsatisfy the boundary conditions of
Eq. (2.1.19). For a smooth boundary, oi/os = 0, where s is arc length on r.
Since i = 0 on I', i 1 = Z2 = 0 on r. The bilinear form a.(z, i) for the plate is
the energy bilinear form

a.(z, i) = ft D(U)[Zllill + vZ22ill + Z22 i22 + vzll i 22

+ 2(1 - V)ZI2Z12] dn
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and the load linear form or virtual work of the applied load is

lu(i) =It fi dQ

(2.1.22)

The variational equation of Eq. (2.1.21) is valid for the plate with
hE L OO(Q). Just as in the case of the beam, it is unnatural and unnecessary
to restrict consideration of solutions of the variational equation to C4(Q).
Admissible solutions may be defined in H 2(Q), which is the completion of
{z E C2(Q) : liz 11HZ < co], with the Sobolev norm

IIzIIH2 = [It [lzl2 + IZ 11
2 + IZ21

2 + IZll l2 + IZ 121
2 + IZ221

2
] dQJ/2

[
II

Oi+jz 11
2 J1 /2

= i+t2 ox~ ox~ L2(Q)
t.ss»

(2.1.23)on I'

Further, functions in H 2(Q) that satisfy the clamped boundary conditions of
Eq. (2.1.19) are limits in the norm of Eq. (2.1.22) offunctions in COO(Q) that
are zero outside compact subsets of the interior of Q. This space Z of
kinematically admissible displacements is denoted as the Sobolev space
H~(Q) = Z [9,35, 36].

Just as in the case of the beam, the Friedrichs extension Au of the Au, for all
z E D(Au) c Z, may now be defined such that Auz E L 2(Q). It was
shown by Fichera [35] that this operator satisfies the bounds of Eqs.
(2.1.10)-(2.1.12). Thus, Eq. (2.1.13) is valid and A;1 is bounded, as in Eq.
(2.1.15). The problem of determining the dependence of the inverse plate
operator on u is of the same form as that for the beam. While the calculation
is not as trivial as in the case of the beam, it was shown by Fichera [35] that
the foregoing results are also valid for a simply supported plate, that is, for
the boundary conditions

02Z (1 OZ 02Z)
z = 0, on2 + v -;: on + OS2 = 0,

where r is the radius of curvature of the boundary r.

LINEAR ELASTICITY

Consider the three-dimensional linear elasticity problem for a body of
arbitrary shape shown in Fig. 2.1.3. Three components of displacement
z = [ZI Z2 z3]T characterize the displacement at each point in the elastic
body.

The strain tensor is defined here as [34]

eii(z) = t(zj + z{), i = 1,2,3 (2.1.24)
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~----------- X2

Fig.2.I.3 Three-dimensional elastic solid.

where a subscript i denotes derivative with respect to Xi' The stress-strain
relation is given as [34]

uij(z) = i(t /:kk(Z»)c5 ij + 2peij(Z) (2.1.25)

where i and J.I. are positive Lame's constants of the homogeneous material and
c5ij is one when i = j and is zero otherwise (the Kronecker delta).

With this notation, equations of equilibrium for the elastic body are [34]

(2.1.26)i = 1,2,3
3

- L uJi(z) = I',
j= 1

where P is the external force per unit volume exerted on the solid in the Xi

direction. Boundary conditions for the body may be given in several different
forms. First, displacement may beprescribed on a subset ro of the boundary
in the form

zi = 0, i = 1,2, 3, X E r- (2.1.27)

A second subset r- of the boundary is traction free, and on a third subset r 2

of the boundary, surface tractions may bespecified in the form

(2.1.28)i = 1,2, 3, X E r-
3

Tlfi(z);: L uii(z)nj = r;
j=l

where nj is the jth component of the outward unit normal to the surface r-
and T If

, is the Xi component of surface traction specified on r 2
.
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The foregoing boundary-value problem may be reduced to variational
form by multiplying both sides of Eq. (2.1.26) by an arbitrary displacement
vector z = [ZI Z2 Z3JT in the space Z of kinematically admissible displace-
ments satisfying the boundary condition of Eq. (2.1.27) and then integrating
by parts to obtain the variational equation

aiz, Z) == Iff. t (Jij(Z)8ij(Z) dO
1,)= 1

Q

for all s«z
(2.1.29)

(2.1.30)

Equation (2.1.29) is a generalization of the boundary-value problem of Eqs.
(2.1.26)-(2.1.28), in the sense that if a solution of the boundary-value
problem exists, it satisfies Eq. (2.1.29) for all displacement fields zsatisfying
Eq. (2.1.27). Conversely, the solution z of Eq. (2.1.29) for all displacement
fields z satisfying Eq. (2.1.27), solves the boundary-value problem, if a
solution of the boundary-value problem exists. Otherwise, it is a generalized
solution in the Sobolev space [H1(n )J3 == H 1(n ) x H 1(n ) x H 1(n ).

The three-dimensional elasticity problem specializes to a lower-
dimensional problem in certain situations. For example, in thin elastic solids,
stress components normal to the plane in which the solid lies are often
essentially zero (plane stress).In other problems, all components of strain in a
given direction are constrained to be zero (plane strain). In still other
problems, axisymmetry of bodies leads to a special form of the governing
equations of elasticity that involve only two independent variables.

Consider the plane stress problem, in which all components of stress in the
X3 direction are zero. From Eq. (2.1.24), this yields

(J13 = 2J1.1'.13 = 0

(J23 = 2J1.823 = 0

(J33 = X(8 11 + 822 + 833) + 2J1.833·= 0

(2.1.31)

i = 1,2

so
A

833 = _ (8 11 + 822)
1 + 2J1.

Substituting these formulas into the general stress-strain relation of Eq.
(2.1.25)yields the plane stress-strain relations

.. 2AJ1. 11 22 ..
(Jll(Z) = 1+ 2J1. (8 (z) + 8 (z)) + 2J1.8"(Z),

(J12(Z) = 2J1.812(Z)
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(2.1.32)

for all Z E Z

Employing this notation, Eq. (2.1.29) remains valid as the variational
equation of elasticity, with limits of summation running only from 1 to 2.
Note that even though no dependence on X 3 arises in the problem, the stress-
strain relation of Eq. (2.1.31) is not obtained by simply suppressing the third
index in Eq. (2.1.25).

Consider the variable thickness, thin elastic slab with in-plane loading and
fixed edges shown in Fig. 2.1.4, where n is a subset of R2 and r is its
boundary. Defining j" (i = 1,2) as the body force per unit volume, one can
integrate over the X 3 coordinate in Eq. (2.1.29), using Eq. (2.1.30), to obtain
the variational equation

au(z, z) = Ith(x) i.~ 1 (Tii(Z)fY(Z) dO.

= If. h(x) ±Pi dn == lu(z)
() i=l

where Z is the space [C 2(n )] 2 of kinematically admissible displacements (i.e.,
with z= 0 on I') and the design variable u = h(x) is the variable thickness of
the slab.

Using Eqs. (2.1.24) and (2.1.31), Eq. (2.1.32) can be written explicitly in
terms of displacements as

au(z, z) == It h(x)[(2~~/(~ + 2~)Hz~ + z~Hz~ + zn
+ 2~(z~ zt + z~z~) + ~(zi + ziHzi + zm dn

for all zE Z
(2.1.33)

Note from Eq. (2.1.33) that the energy bilinear form aJz, z) is symmetric;
that is,

for all z, Z E Z (2.1.34)

rl"L::::zl

Fig. 2.1.4 Clamped elastic solid of variable thickness hex).
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This result is actually valid for even broader classes of boundary conditions
[34]. For future reference, the following relations hold between the Lame's
constants and the more conventional Young's modulus E and Poisson's ratio
v [34]:

v = 2(i + Jl)'

1 = Ev
(1 + v)(l - 2v)'

E _ Jl(31 + 2Jl)
- i + Jl

E
Jl=---

2(1 + v)

(2.1.35)

(2.1.36)

and in order that 1 > 0, it is clear that 0 < v < t is required.
The variational equation of Eq. (2.1.33) gives a generalized solution,

provided only that z E H 1(Q) x H 1(O), h E L"'(Q), and f E L2(Q). Here, the
Sobolev norm on H 1(Q) x H 1(Q) is

IIzIIH1xHI = [fI (Iz1
1
2 + Iz2

1
2 + IzW + IzW + IzW + IzW)dQJ/2

[
2 II i)i+kZi 11

2

J1
/2

= i~1 j+~51 ox{ o~ L2(rl)

j.k:i?O

The subspace Z of kinematically admissible displacements in H 1(Q) x H 1(Q)
that satisfy the boundary conditions Zl = Z2 = 0 on r is HMQ) x HMQ),
which is the completion, in the norm of Eq. (2.1.36), of C"'(Q) x C"'(Q)
functions that vanish outside compact subsets of the open set Q.

Friedrichs extension Au of the plane elasticity operator can now be defined
by

au(z, z) = (Auz, z) for all z,z E Z

All of the bounds and hence the bounded invertibility of Au follow just as for
the beam and plate, where h(x) ~ ho > O.This result is proved for a variety
of boundary conditions by Fichera [35]. It is noted that for even this class of
complex elastic systems, symmetry and strong ellipticity properties of the
operator hold. As in the preceding examples, the design variable u appears in
the energy bilinear form. Again it is desirable to determine the regularity of
dependence of the state variable vector z(x; u) on the design variable u.

The example problems of this section have been selected to illustrate
classes of distributed-parameter structural components in which design
dependence arises in a consistent way. In each case, Dirichlet boundary
conditions are treated in detail. Selection of these boundary conditions is a
convenience rather than a requirement. If the trace boundary operator theory
were to be used in its full generality [9, 36], Neumann and mixed boundary
conditions that arise naturally in applications could also be treated with only
a penalty in analytic and algebraic messiness.
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GENERAL FORM
OF STATIC VARIATIONAL EQUATIONS

In each of the foregoing examples, the boundary-value problem for
deformation due to applied load was written as it appears in the mechanics
literature. For classical solutions to make sense, a high degree of smoothness
of design and state (displacement) functions must be assumed. In each
example, however, both sides of the differential equation could be multiplied
by an arbitrary virtual displacement z that satisfies kinematic boundary
conditions, integrate over the domain of the component, and integrate by
parts to decrease the order of derivatives of z that appear, so that z and zare
differentiated to the same order. The result is a variational equation of the
form

(2.1.37)

which must hold for all kinematically admissible smooth virtual displace-
ments z E 2. As noted in each example, Eq. (2.1.37) can be viewed as the
principle of virtual work and could have been derived directly from
variational principles of mechanics (as is done in Chapter 4 for more complex
systems).

Specific forms ofEq. (2.1.37) are given for a beam in Eq. (2.1.4), for a plate
in Eq. (2.1.21), and for a linear elastic solid in Eq. (2.1.29). While the specific
formulas differ in detail, they are all of the form of Eq. (2.1.37). For direct
engineering design sensitivity analysis by the adjoint variable method,
presented in Section 2.2, this form is adequate. From a mathematical point of
view,however, it is noted in each case that the state z need not be restricted to
a smooth space 2 of displacements, but can extend this space to a subspace Z
of an appropriate Sobolev space of functions that satisfy only kinematic
boundary conditions. Likewise, the design space can be extended to a
nonsmooth design space U. This is important if one wishes to admit
nonsmooth designs and is also valuable from a theoretical point of view.

In each of the examples studied, it is observed that there exist positive
constants K and y such that

and

for all z, Z E Z

for all z E Z

(2.1.38)

(2.1.39)

where u E U is restricted to be uniformly nonzero. Here, /I-liz denotes the
appropriate Sobolev norm. To see the physical significance of these in-
equalities, put Z = z in Eq, (2.1.38), and using Eq. (2.1.39), note that

Yllzll~ ~ au(z, z) ~ K/lzll~ for all z E Z (2.1.40)
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Since au(z, z) is twice the strain energy in each example, Eq. (2.1.40) shows
that the strain energy defines an energynormthat is equivalent to the Sobolev
norm. This important fact has been used to advantage by Mikhlin [14, 32]
and other authors to develop powerful variational methods in mechanics.
Any stronger or weaker norm would destroy the bounds of either Eq. (2.1.38)
or Eq. (2.1.39), hence spoiling the equivalence between the energy and
function space norms.

Furthermore, the inequalities of Eqs. (2.1.38) and (2.1.39) and the Lax-
Milgram Theorem [9] of functional analysis guarantee existence of a unique
solution z(x; u) of Eq. (2.1.37). Again, a stronger or weaker norm on Z would
spoil either the existence or uniqueness result. Thus, one sees that the
Sobolev space setting is "just right," from both physical and mathematical
points of view.

For design sensitivity analysis, the variational formulation of Eq. (2.1.37)
and the inequalities of Eqs. (2.1.38) and (2.1.39) form the foundation for a
proof in Section 2.4 that the solution z(x; u) is differentiable with respect to
design. More important for applications, knowing that z(x; u) is differen-
tiable with respect to design, the variational equation of Eq. (2.1.37) can be
differentiated with respect to design and the result used to write variations of
cost and constraint functionals explicitly. An adjoint variable method for
implementing this technique is presented and illustrated in Section 2.2. While
its theoretical foundations require use of the Sobolev space setting, the
method is implemented and calculations are carried out without the
formalism of functional analysis. Proofs required for theoretical complete-
ness are given in Section 2.4.

2.1.2 Vibration and Buckling of Elastic
Systems

The conventional differential operator formulation of prototype eigen-
value problems is now presented and extended to a more flexible and
rigorous variational formulation. Technical justification of the variational
formulation follows in a similar way as for the static problems treated in
Section 2.1.1.

In each problem formulated here, the formal operator eigenvalue problem
is of the form

(2.1.41)

where Au is the formal differential operator encountered in the static response
problem and B; is a much simpler continuous operator, except for buckling
problems. The symbol y denotes an eigenfunction, to distinguish it from the
static response z, and , is the associated eigenvalue. If a high degree of
differentiability of the eigenfunction y and the design variable u is assumed,
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the L 2 scalar product of both sides of Eq. (2.1.41) with a smooth function ji
that satisfies the same boundary conditions as y may be formed to obtain the
variational equation

(2.1.42)

Conversely, if Eq. (2.1.42) holds for all y in a smooth class of functions and if
y and u are sufficiently regular, then y and ( constitute the solution of the
eigenvalue problem of Eq. (2.1.41) [9, 35, 37].

As in Section 2.1.1,a subspace Z of an appropriate Sobolev space Hm(Q) is
now defined as generalized candidate solutions of Eq. (2.1.41). The general-
ized solution y E Z (y '" 0) is then characterized by the variational equation

for all y E Z (2.1.43)

where the design variable u is now required only to be in L00(0.). As in Section
2.1.1,Friedrichs extensions Au and B; are defined for the formal operators Au
and n; such that for y E D(Au) c Z,

(2.1.44)for all y E Z
(AuY, y) = au(Y, y),

(Buy, y) = d..(y, y),
The domain of B; is such that D(A u) c D(B u) ' Thus, yielding the generalized
operator eigenvalue problem

AuY = (Buy, Y E D(Au), y ~ 0 (2.1.45)

which is valid for physically meaningful designs u E L"'(0.). The regularity
conditions associated with functions in D(Au) are as in Section 2.1.1, which
are more physically meaningful than the extreme smoothness conditions
associated with the formal operators of Eq. (2.1.41).

Since the extension of candidate solutions to the space D(A u) is dictated
completely by the operator Au, technical definition of generalized solutions is
exactly as in Section 2.1.1. In this section, the operator eigenvalue equation is
stated for each problem studied, the bilinear forms au(Y, y) and du(Y, y) are
defined, and the space Z is identified.

VIBRATION OF A STRING

A perfectly flexible string of variable mass density per unit length,
hE L""(O, 1) or CO(O, 1) (h(x) ~ ho > 0) and tension T ~ To > 0, is shown in
Fig. 2.1.5. The operator eigenvalue equation is

(2.1.46)

where ( = w2
, w being the natural frequency. The boundary conditions are

y(O) = y(l) = 0 (2.1.47)
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x= I

Fig.2.1.5 Vibrating string with linear mass density hex).

Here, the design vector is u = [h(x) I']T, and the bilinear forms of Eq.
(2.1.42) are obtained by integration by parts as

(A.y, y) = a.(y, y) = t f YxYx dx

J
1 (2.1.48)

(B.y, y) = d.(y, y) = ° hyydx

where y and y satisfy boundary conditions of Eq. (2.1.47). Since only first-
order derivatives appear in the formula for aiY, Y), it is logical to select
Z c H 1(0, 1). The boundary conditions of Eq. (2.1.47) are satisfied in a
generalized sense [9, 36] if the space Z of kinematically admissible displace-
ments is restricted to Z = HJ(O, 1). It is readily verified [9,35] that the form
a.(y, y) is Z-elliptic, so all the theory of Section 2.1.1 concerning A. holds for
this problem.

VIBRATION OF A BEAM

For a beam of variable cross-sectional area h(x), let hE L00(0,1) or CO(O, 1)
(h(x) ~ ho > 0) [such that the second moment of the cross-sectional area is
I(x) = ah2(x)]. Young's modulus E ~ Eo > °and mass density P ~ Po > 0
also play the role of design variables. A beam with clamped-clamped
supports is as shown in Fig. 2.1.6. The formal operator eigenvalue equation
is

A.y == (Eah2yxx)xx = (phy == (B.y (2.1.49)

where ( = w2 , t» being the natural frequency. Boundary conditions for the
clamped-clamped beam are

y(0) = yx(O) = y(l) = yx(1) = ° (2.1.50)

Fig.2.1.6 Clamped-clamped vibrating beam with variable cross-sectional area hex).
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Here, the design vector is u = [h(x) E p]T and the bilinear forms of Eqs.
(2.1.42) are obtained, through integration by parts, as

(AuY,Y) = au(Y,Y) = E« {h2YxxYxxdX

f
1 (2.1.51)

(BuY, Y) = du(Y, y) = P 0 hyy dx

where y and y satisfy boundary conditions ofEq. (2.1.50). Since only second
derivatives arise in au(Y, y), it is logical to select Z c H 2(0, 1). The boundary
conditions of Eq. (2.1.50) are satisfied in it generalized sense [9,35] if the
space Z of kinematically admissible displacements is selected to be
Z = H5(0, 1). All properties of aJy, y) that are of interest here are dem-
onstrated in Section 2.1.1. As noted in Section 2.1.1, the bilinear forms of Eq.
(2.1.51) are valid for other boundary conditions given in Eqs. (2.1.16)-
(2.1.18).

BUCKLING OF A COLUMN

If a column is subjected to an axial load P, as shown in Fig. 2.1.7, then
buckling can occur if P is larger than a critical load C. With the same design
variables as in beam vibration, the formal operator eigenvalue equation is

AuY == (Erxh 2yxx)xx = -CYxx == CBuY (2.1.52)

with boundary conditions as in Eq. (2.1.50). Since mass density does not arise
in column buckling, the design vector is u = [h(x) E]T. Integration by parts
with these operators in Eq. (2.1.42) yields the bilinear forms

(AuY, y) = au(Y, y) = {Erxh2yxxyxx dx

(Buy, y) = du(Y, y) = f YxYx dx

p

h(x)

Fig.2.1.7 Clamped-clamped column with variable cross-sectional area hex).
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where Y and y satisfy the boundary conditions of Eq. (2.1.50). Since a.(y, y)
and d.(y, y) involve derivatives of y and y no higher than second order and
the boundary conditions are the same as in the case of the vibrating beam,
the space Z of kinematically admissible displacements may again be selected
as Z = H6(0, 1).

VIBRATION OF A MEMBRANE

Consider a vibrating membrane with variable mass density hex) per unit
area h E L00(0) or COCO) (h(x) 2 ho > 0) and membrane tension t (force per
unit length), as shown in Fig. 2.1.8. The formal operator eigenvalue problem
is

(2.1.54)

(2.1.56)

4,X1 ~h(x)
, x2 l'
y

Fig.2.1.8 Membrane of variable mass density h(x).

where ( = w2
, w being natural frequency, and the boundary condition is

y = 0, on r (2.1.55)

Here, u = [hex) ty is the design variable and the bilinear forms of Eq.
(2.1.42) are '

(A.y, y) = a.(y, y) = t ft (YtYt + Y2Y2) dO

(B.y, y) = d.(y, y) = ft hyy dO

where a subscript j denotes Oj8x; (i = 1,2) and y and y satisfy the boundary
condition of Eq. (2.1.55). As in the case of the vibrating string, Z = HMO),
and the bilinear form a.(y, y) is Z-elliptic [9, 35].

VIBRATION OF A PLATE

Consider a clamped vibrating plate of variable thickness h E L00(0) or
COCO) (h(x) 2 ho > 0), Young's modulus E 2 Eo > 0, and mass density
P 2 Po > 0, as shown in Fig. 2.1.9. The formal operator eigenvalue equation
is

A.y == [D(U)(Yll + VY22)]11 + [D(U)(Y22 + VYll)]22 + 2(1 - v)[D(U)Y12]12

= (phy == (B.y (2.1.57)
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y

Fig.2.1.9 Clamped plate of variable thickness h(x).

where

w is natural frequency, °< v < 0.5 is Poisson's ratio, and the boundary
conditions for a clamped plate are

y = Dylan = 0, on r (2.1.58)

(2.1.59)

where Dylan is the normal derivative of y on r. Here the design vector is
u = [h(x) E p]T.

Multiplying Eq. (2.1.54) by Y, integrating over n, and integrating by parts
yields the bilinear forms of Eq. (2.1.42) as

(AuY,y) = a.(y, y) = fIn D(U)[YllYll + V(Y22Yll + YllYZ)

+ Y22Y22 + 2(1 - V)Y12Y12] dn

(BuY, y) =du(y, y) = , fIn phyy dn

where y and Ysatisfy the boundary conditions of Eq. (2.1.58). As in the case
of the vibrating beam, the natural domain of the energy bilinear form au(y, y)
is Z = H~(n).

With these bilinear forms, the variational formulation presented at the
beginning of this section characterizes the eigenvalue behavior of each of
the five problems discussed. They all have the same basic variational
structure, and all the bilinear forms share the same degree of regularity of
design dependence. In each of the problems studied in this section, the
eigenvalue , depends on the design u since the differential equations and
variational equations depend on u [i.e., (= ((u)]. The objective is to
determine how ( depends on u. Analysis of sensitivity of ( to changes in u is
somewhat more complicated than in the case of the static displacement
problem of Section 2.1.1 since the eigenvector y also depends on u [i.e.,
y = y(x; u)] and its sensitivity must also be considered.
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GENERAL FORM
OF EIGENVALUE VARIATIONAL EQUATIONS

Much as in the case of static response in Section 2.1.1, a unified variational
form of each eigenvalue problem is obtained in the form of Eq. (2.1.43).
While detailed expressions for the bilinear forms are different in each
example, the same general properties of the forms hold in each case. The
most general function space setting is given in each example, but the engineer
interested primarily in applications may presume the design and state
variables are as smooth as desired. The more detailed Sobolev space settings
are used in Section 2.5 to prove differentiability of eigenvalues and to derive
formulas that are used in Section 2.3 to calculate derivatives of eigenvalues
with respect to design.

2.2 ADJOINT VARIABLE METHOD
FOR STATIC DESIGN
SENSITIVITY ANALYSIS

As noted in Section 2.1.1, the solution of static structural equations
depends on design. Differentiability of the state with respect to design,
proved in Section 2.4, is employed in this section to derive an adjoint variable
method for design sensitivity analysis of quite general functionals. An adjoint
problem that is closely related to the original structural problem is obtained,
and explicit formulas for structural response design sensitivity are obtained.
Numerical methods for efficiently calculating design sensitivity coefficients,
using the finite element method, are obtained and illustrated. The
applications-oriented reader will note (happily) that virtually no Sobolev
space theory is required in implementing the method.

2.2.1 Differentiability of Energy Bilinear Forms
and Static Response

Basic design differentiability results for energy bilinear forms and the
solution of the static structural equations are proved in Section 2.4 for each
of the examples treated in Section 2.1.1. These differentiability results are
cited here for use in developing useful design sensitivity formulas. This order
of presentation was selected because technical aspects of existence of design
derivatives of the structural state do not contribute insight into the adjoint
variable technique that yields computable design sensitivity expressions. It is
important to realize, however, that the delicate question of existence of
design derivatives should not be ignored. Formal calculations with direc-
tional derivatives that may not exist are sure to lead to erroneous results. The
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(2.2.2)

occurrence of repeated eigenvalues and their lack of differentiability, dis-
cussed in the finite-dimensional case in Chapter 1 and in Sections 2.3 and 2.5,
provide a graphic illustration of a very real structural problem in which
structural response is indeed not differentiable. Thus, the reader is cautioned
to be careful in verifying regularity properties of solutions to structural
equations before using results of formal calculations.

As shown technically by Theorem 2.4.1 (Section 2.4), each of the energy
bilinear forms encountered in Section 2.1.1 is differentiable with respect to
design. That is,

a~u(z, z) == dd au+T<lu(z, Z)1 (2.2.1)
'! <=0

exists, where Zdenotes the state z with dependence on '! suppressed and z is
independent of r. The prime notation here plays precisely the same role as in
Chapter 1 and is, in fact, the first variation of the calculus of variations [38]
with respect to explicit dependence of the energy bilinear form au on design u.
As shown in Theorem 2.4.1, this first variation is continuous and linear in Su,
hence it is the Frechet derivative (Appendix A.3) of au with respect to design,
evaluated in the direction bu. For proof of this result, the reader is referred to
Section 2.4.1.

The load linear form for the problems of Section 2.1.1 is also differentiable
with respect to design. More specifically,

l~Jz) == dd [lu+<bu(i)] I
'! <=0

exists. As in the case of the energy bilinear form, the variation of the load
linear form is linear in bu. For proof of validity of this result for the problems
of Section 2.1.1, the reader is referred to Section 2.4. As in Chapter 1, the
prime will be employed to denote variation of the energy bilinear and load
linear forms of Eqs. (2.2.1) and (2.2.2), with explicit inclusion of the argument
bU to emphasize dependence on design variation.

A substantially more powerful result, from Theorem 2.4.3 (Section 2.4.3), is
that the solution of the state equations of Section 2.1, given here in the form

for all z E Z (2.2.3)

where Z is the space of kinematically admissible displacements, is differenti-
able with respect to design. That is

z' = z'(x; u, bU) == dd z(x; U + t bU)I (2.2.4)
'! <=0

exists and is the first variation of the solution of Eq. (2.2.3) at design U and in
the direction bu of design change. Note that z' is a function of the
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(2.2.5)

independent variable x that depends on the design u at which the variation is
evaluated and on the direction bu of variation in design. As shown in
Theorem 2.4.3, z' is linear in bu and in fact is the Frechet derivative of the
state z with respect to design, evaluated in the direction bu. Proof of validity
of this result is not trivial, although it might be expected intuitively that the
state of a system should be smoothly dependent upon design. For details of
the proof, the reader is referred to Section 2.4.

An important property of the variation of state defined in Eq. (2.2.4) is the
fact that the order of taking variation and partial differentiation with respect
to the independent variable can be interchanged. For displacement states in
H 1(Q) and H 2{Q) or in spaces of smoother functions, this means that

(zJ = (Z')i' Z E H 1(Q)

(zij)' = «Zi)')j = (Z')ij, z E H2(Q)

This property is a direct extension of the well-known property in the calculus
of variations that the order of variation and partial differentiation can be
interchanged .

It is presumed throughout this chapter that boundary conditions are
homogeneous and do not depend on design; that is, boundary conditions are
of the form Gz = 0, where G is a differential operator that does not depend
on design. Using Eq. (2.2.5), one obtains (Gz)' = Gz' = 0. Thus, for the
solution z(x; u) E Z of Eq. (2.2.3), z' E Z. This important fact will be used
often in the following development.

Note that the energy bilinear form au(z, z) is linear in z and involves one or
two derivatives of z, depending on whether the Sobolev space of generalized
solutions is H 1(Q) or H2(Q), respectively. Using these properties, one may use
the chain rule of differentiation and the definitions of Eqs. (2.2.1) and (2.2.4)
to obtain

d
d [au+tdu(z(x; u + T bu), z)] I = a~u(z, z) + au(z', z) (2.2.6)
T <=0

As a first application of the foregoing definitions, for any fixed virtual
displacement zE Z, one may take the variation of both sides of Eq. (2.2.3)
and use Eq. (2.2.6) to obtain

au(z', z) = l~u(z) - a~u(z, z) for all z E Z (2.2.7)

Presuming that the state z is known as the solution of Eq. (2.2.3), Eq. (2.2.7)
is a variational equation with the same energy bilinear form for the first
variation z'. Noting that the right side ofEq. (2.2.7) is a linear form in zand
that the energy bilinear form on the left is Z-elliptic, Eq. (2.2.7) has a unique
solution for z'. The fact that there is a unique solution of Eq. (2.2.7) agrees
with the previously stated result that the design derivative of the solution of
the state equation exists. Furthermore, if one selects a direction bu of design
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change, Eq. (2.2.7) may be numerically solved using the finite element
method, just as the basic state equation of Eq. (2.2.3) would be solved with
the finite element method, to numerically construct z'. Construction of such a
solution depends on the direction of design change (ju, however, since (ju
appears on the right side of Eq. (2.2.7). This calculation is therefore not of
interest if one seeks explicit forms of design derivatives as a function of (ju.

2.2.2 Adjoint Variable Design
Sensitivity Analysis

Consider now a measure of structural performance that may be written in
integral form as

t/J = t g(z, Vz,u) dO. (2.2.8)

where for the present z E H 1(o.), Vz = [z 1 Z2 Z3]T, and the function g is
continuously differentiable with respect to its arguments. This functional can
be extended to functions z E H 2(o.), in which case second derivatives of z may
appear in the integrand. This case will be treated as specific applications
arise. Functionals of the form of Eq. (2.2.8) represent a wide variety of
structural performance measures. For example, the volume of a structural
element can be written with g depending only on u, average stress over a
subset of a plane elastic solid can be written in terms of u and the gradient of
z (defining stress), and displacement at a point in a beam or plate can be
written formally using the Dirac (j function times the displacement function
in the integrand. These and other examples will be treated in more detail in
Section 2.2.3.

Taking the variation of the functional of Eq. (2.2.8) gives

t/J' == :T[t g(z(x;u + T(jU), Vz(x;u + ,(ju), u + ,(ju)do.JI<=o

= t [gzz' + gyzVz' + e. (ju] dO. (2.2.9)

where the matrix calculus notation of Appendix A.I is used, specifically

[
Og og og J

gyz == OZl OZ2 Og3

Leibnitz's rule allows the derivative with respect to r to be taken inside the
integral, and the chain rule of differentiation and Eq. (2.2.5) have been used in
calculating the integrand of Eq. (2.2.9). Recall that z' and Vz' depend on the
direction (ju of change in design. The objective here is to obtain an explicit
expression for t/J' in terms of Su, which requires rewriting the first two terms
under the integral on the right of Eq. (2.2.9) explicitly in terms of (ju.
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Much as in the case of finite-dimensional structures in Section 1.2.3, an
adjoint equation is introduced by replacing z' in Eq. (2.2.9) by a virtual
displacement Aand equating terms involving I in Eq. (2.2.9) to the energy
bilinear form a.(A, ,{), yielding the adjoint equation for the adjoint variableA

au(A, J.) = In [gz,{ + a-, VA] sa for all ,{ E Z (2.2.10)

where a solution ;. E Z is desired. A simple application of the Schwartz
inequality to the right side of Eq. (2.2.10) shows that it is a bounded linear
functional of;: in the H 1(O) norm. Thus, by the Lax -Milgram theorem [9],
there exists a unique solution for ;. of Eq. (2.2.10), called the adjoint variable
associated with the constraint of Eq. (2.2.8).

To take advantage of the adjoint equation, Eq. (2.2.10) may be evaluated
at J. = z', since z' E Z, to obtain

au(A, z') = In [gzz' + e-, Vz'] dO (2.2.11)

which is just the terms in Eq. (2.2.9) that it is desired to write explicitly in
terms of liu. Similarly, the identity of Eq. (2.2.7) may be evaluated at z= ).,
since both are in Z, to obtain

au(z', A) = l~uP.) - a~u(z, A) (2.2.12)

Recalling that the energy bilinear form au( ' , ' ) is symmetric in its arguments,
the left sides of Eqs. (2.2.11) and (2.2.12) are equal, thus yielding the desired
result

(2.2.13)

(2.2.14)

where the right side is linear in liu and can be evaluated once the state z and
adjoint variable A are determined as solutions of Eqs. (2.2.3) and (2.2.10),
respectively. Substituting this result into Eq. (2.2.9), the explicit design
sensitivity of t/J is

t/J' = In e,liu dO + l~P) - a~u(z, A)

where the form of the last two terms on the right depend on the problem
under investigation. This formula is applicable to any of the examples of
Section 2.1.

Equation (2.2.14) will serve as the principal tool throughout the remainder
of this section and in later applications for analysis of design sensitivity of
functionals that represent response of elastic structures under static load.
This powerful result forms the basis for both analytical expressions of
functional derivatives and numerical methods for calculating design sensi-
tivity coefficients, using the finite element method.
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2.2.3 Analytical Examples
of Static Design Sensitivity

The beam, plate, and plane elasticity problems of Section 2.1.1 are used
here as examples with which to calculate design sensitivity formulas, using
the adjoint variable method. Computational considerations will be discussed
in subsequent sections.

BENDING OF A BEAM

Consider the clamped beam of Fig. 2.1.1, with design vector
u = [E h(X)]T, lex) = IYN(x) as the moment of inertia of the cross-sectional
area about its neutral axis, and (J( a positive constant. In this formulation, hex)
is the cross-sectional area of the beam, and the load appearing in the beam
equation of Eq. (2.1.1) is taken to reflect both externally applied load F(x)
and self-weight yh(x), where y is weight density of the beam material. For
these components of loading, the applied load is

f(x) = F(x) + yh(x) (2.2.15)

From Eqs. (2.1.5) and (2.1.6), the energy bilinear form and load linear form
is defined as

(2.2.16)

lu(z) = f [F + yh]z dx (2.2.17)

Calculating the variations of the energy bilinear form and load linear form
from Eqs. (2.2.1) and (2.2.2),

a~u(z,z) = :r[f (E + rc5E)(J(h + rc5h)2zxxzxxdxJlt=o

= f [c5E (J(h 2 + 2E(J(h c5h]zxx zxxdx (2.2.18)

l~u(z) = :r[f [F + y(h + rc5h)]ZdXJlr=o

= f y c5h Zdx (2.2.19)

Several alternative forms may now be considered for structural response
functionals. Consider first the weight of the beam, given as

t/Jl = f yhdx (2.2.20)
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A direct calculation of the variation yields

I/J~ = f v Sh dx (2.2.21)

Note that the direct variation calculation gives the explicit form of variation
of structural weight in terms of variation of design. Thus, for this functional,
no adjoint problem needs to be defined.

Consider a second functional that represents compliance of the structure,
defined as

1/J2 = ffZdX = f [F + yh]zdx

Taking the variation, using the definition of Eq. (2.2.9),

I/J'z = f [(F + yh)z' + yz bh] dx

(2.2.22)

(2.2.23)

The adjoint equation of Eq. (2.2.10) may be defined, which in this case is

ap..,A:) = f (F + yh)A: dx for all A: E Z (2.2.24)

Note that the load functional on the right side of Eq. (2.2.24) is precisely the
same as the load functional for the original beam problem of Eq. (2.2.17).
Since the original bilinear form au( · ' .) is Z-elliptic, Eq. (2.2.24) and the basic
beam equation of Eq. (2.1.6) have identical solutions. In this special case, A. is
the displacement of an adjoint beam that is identical to the original beam and
is in fact subjected to the identical load, so A. = z. Thus, the beam and load
are self-adjoint and there is no need to solve an additional adjoint
problem. The explicit design sensitivity result of Eq. (2.2.14), using Eqs.
(2.2.18) and (2.2.19) with z = A., is thus

I/J~ = f [2yz - 2ElXh(zxx)2] bh dx - [f IXh2(zxx)2 dxJ se
(2.2.25)

The effect of variations can thus be accounted for in cross-sectional area and
Young's modulus of the system. It is interesting to note that the variation bE
in Young's modulus may be taken outside the integral in Eq. (2.2.25).

As an example that can be calculated analytically, consider a uniform
clamped-clamped beam with h = ho = 0.005 m2

, E = Eo = 2 X 105 MPa,
IX = i, F = 49.61 kNjm, and y = 77,126N/m3 • Displacement under the given
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load is z(x) = 2.5 x 1O-3[x2(1 - X)2]. Compliance sensitivity in Eq. (2.2.25)
may thus be evaluated as

t/J; = f [385.6x 2(1 - xf - 25~OO(6x2 - 6x + 1)2] (jh dx - 2.08 X 10- 11 (jE

The graph of the coefficient of (jh in the integral (Fig. 2.2.1) shows how
addition or deletion of material affects compliance. In order to decrease
compliance most effectively, material should be removed from the vicinity of
points x = 0.2 and 0.8 and added to the ends of the beam.

The general result of Eq. (2.2.25) is applicable for arbitrary variations (jh(x)
of cross-sectional area along the beam. If, however, a parameterized distribu-
tion of material is considered along the beam, such as a stepped beam shown
in Fig. 1.2.1, then as in Section 1.2.6 the cross-sectional area function may be
written in the form

h(x} = bi' (i - 1}/n < x < i/n (2.2.26)

where the beam has subdivided into n sections, each with a constant cross-
sectional area. The variation of the design function may thus be written
directly in terms of variations in the design parameters b, as

(jh(x) = (jbi, (i - 1}/n < x < iln (2.2.27)

This result may now be substituted directly into Eq. (2.2.25) to obtain explicit
design sensitivities associated with the individual design parameters,

(2.2.28)

Compliance sensitivity N = 2yz - 2Eah(zx)2.
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Design sensitivity coefficients are thus obtained associated with the design
parameters, evaluated by numerically calculating integrals that depend only
on the solution of the displacement equation.

Note that the sensitivity result of Eq. (2.2.28) is the same as the result of
Eq. (1.2.61), which was obtained using a finite-dimensional structural design
sensitivity method. That is, the sensitivity result of Eq. (1.2.61) is an
approximation of the sensitivity result of Eq. (2.2.25).

Another important functional arising in design of beams is associated with
strength constraints, normally stated in terms of allowable stresses in the
beam. Since with an arbitrary load distribution there may not be continuous
second derivatives of displacement in the beam, pointwise constraints on
stress may not be meaningful. Therefore, constraints on average stress over
small subintervals of the beam often are imposed. From elementary beam
theory [39], the formula for bending stress is given as

(2.2.29)

where Phl /2 is the half-depth of the beam. Defining a characteristic function
mp(x) as an averaging multiplier that is nonzero only on a small open
subinterval (x a , xb) C (0, 1)and whose integral is 1, the average value of stress
over this small subinterval (x a , x b) is

(2.2.30)

(2.2.32)for all AE Z

Note that if the stress is smooth and if the interval over which mp is
different from zero approaches zero length, mp plays the role of the Dirac
measure (Dirac fJ function) and, in the limit, t/J3 is the stress evaluated at a
point. Note also that in the stress constraint formulation, the integrand
involves a second derivative of state, which was not covered in the general
derivation of Section 2.2.2. To illustrate the ease of extending the adjoint
method to the case in which second derivatives arise in the integrand, first
repeat the calculation leading to Eq. (2.2.9) to obtain

t/J; = f [Phl/2Ez~xmp + Phl/2zxxmp fJE + !(Ph-1/2Ezxxmp) fJh] dx

(2.2.31)

Using the same argument that led to definition of the adjoint equation of Eq.
(2.2.10), replace the state variation term z' on the right of Eq. (2.2.31) by a
virtual displacement Ato obtain the adjoint problem

a.p., X) = f Phl /2EAxxmpdx
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In the Sobolev space H 2(O, 1),the functional on the right side ofEq. (2.2.32) is
a bounded linear functional. By the Lax-Milgram theorem [9], Eq. (2.2.32)
has a unique solution, denoted here as A.(3), where superscript (i) denotes
association of A. with functional t/Ji. A direct repetition of the argument
associated with Eqs. (2.2.11)-(2.2.14) yields

.1,' = 5. 1

[1.f3h -1/2Ez m + yAP) - 2Ea.hz A./3)] Jh dx'1'3 2 xx p xx xx
o

+ (f [f3h1/2zxxmp - a.h2ZxxA.~~] dX) JE (2.2.33)

It may be helpful to rewrite the adjoint equation of Eq. (2.2.32) more
explicitly, using Eq. (2.2.16) for auCo, 0), as

f Ea.h2{A.
xx - [f3/a.(h(x))3/2]mp}Axxdx = 0 for all ;: E Z

This is just the equation of virtual work for deflection .A. of an adjoint beam
with initial curvature [f3/a.(h(x»3/2]mp and no externally applied load. This
interpretation of the adjoint equation of Eq. (2.2.32)as an adjoint structure
may be helpful in understanding the significance of A. from a physical point of
view. As will be seen in Section 2.2.4, efficient solution of Eq. (2.2.32)can be
carried out using the finite element method of structural analysis, without
using the idea of an adjoint structure. The concept of adjoint structure was
recently introduced by Dems and Mroz [40] in a variety of structural
optimization problems.

Note that Eq. (2.2.33) provides a linear first variation of the locally
averaged stress functional in terms of variations of the cross-sectional area
distribution function h and Young's modulus. A parameterization of the
cross-sectional area variation h(x), such as the one shown in Fig. 1.2.1,could
now be introduced in the sensitivity formula of Eq. (2.2.33), which would
then be reduced to parameter variations only.

Consider next a special functional that defines the value of the displace-
ment at an isolated point x, that is,

t/J4 == z(x) = fJ(x - x) z(x) dx (2.2.34)

where J(x) is the Dirac measure at zero. By the Sobolev imbedding theorem
[36], this functional is continuous, and the preceding analysis may be directly
applied interpreting $ as a function (called the Dirac J function in me-
chanics). The variation of this functional is thus written as

t/J~ = f $(x - x) z'(x) dx (2.2.35)
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(2.2.36)

The adjoint equation of Eq. (2.2.10) in this case is

au()" I) =f $(x - x) I dx for all ;: E Z

Since the right side of this equation defines a bounded linear functional on
H 2(0, 1), there exists a unique solution of Eq. (2.2.36), denoted here as ,1(4).

Interpreting the Dirac J function as a unit load applied at point ~, physical
interpretation of ,1(4) is immediately obtained as the displacement of the beam
due to a positive unit load at ~. Thus, the adjoint beamin this case is just the
original beam with a different load.

Direct evaluation of design sensitivity, using Eqs. (2.2.14), (2.2.18), and
(2.2.19), yields

ljJ~ =f [yA I4
) - 2Ell(hzxxA~~] Jh dx - [f Il(h2zxxA~~ dxJ JE

(2.2.37)

To illustrate the use of this result, consider the clamped-clamped beam
studied earlier in this section. The solution of the state equation is
Z = 2.5 x 1O-3[x2(1 - X)2]. If design sensitivity of the displacement at the
center of the beam is desired, x= 1. Thus, the adjoint load from Eq. (2.2.36)
is just a unit point load at the center of the beam. The adjoint variable is thus
obtained by solving the beam equation with this load to obtain

A,14) = 2.5 x 1O-S[8(x -1>3 - 4x3 + 3x2]

where

(x -1> =1° 1
X-"2

for 0:::; x :::; 1

for !:::; x :::; 1

These expressions may be substituted into Eq. (2.2.37) to obtain the displace-
ment sensitivity as

ljJ~ = f [1.93 x 1O-3(8(x - !>3 - 4x 3 + 3x2
)

- 2.5 X 1O-1(6x2
- 6x + 1)(8(x -1> - 4x + 1)] Jh dx

- 7.81 x 1O-16<5E

To see how material added to or deleted from the beam influences
displacement at the center, the coefficient of Jh may be graphed (Fig. 2.2.2).
To decrease z(1) most effectively, for example, material should be removed
near x = 0.22 and 0.78 and added near x = °and 1.
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Fig.2.2.2 Displacement sensitivity N = y..l(4) - 2ElXhzxx..l~4j.

As a final beam example, consider the slope of the beam at an isolated
point xdefined as the functional

1/15 == zix) = f 3(x - x) zx(x) dx

= - f 3x(x - x) z(x)dx (2.2.38)

Due to the Sobolev imbedding theorem [36], this is a continuous linear
functional on H 2(0, 1), so the preceding theory may be applied. The last
equality in Eq. (2.2.38) represents an integration by parts that defines the'
derivative of the Dirac measure. In beam theory it is well known that the
derivative of the Dirac measure is a point moment applied at the point x.
The preceding analysis may now be directly repeated with 8replaced by - t;
defining the adjoint equation

au(A, X) = - f 3x(x - x) Xdx for all X E Z (2.2.39)

where the unique solution is denoted as ),15). Physically, ),15) is the displace-
ment in an adjoint beam that is the original beam with a negative unit
moment applied at the point x. As in the preceding, next evaluate Eq. (2.2.14)
to obtain

1/1; =f [y),15) - 2E(Xhzxx),~5j] bh dx - [f (Xh2zxxA~5j dxJ st:

(2.2.40)

It is interesting to note that for other boundary conditions in Eqs. (2.1.16)-
(2.1.18), the sensitivity formulas for 1/11-1/15 are valid because, as mentioned in
Section 2.1.1, the variational equation of Eq. (2.2.3) is valid for all other
boundary conditions.
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0.80.60.40.2

To illustrate the use of Eq. (2.2.40), consider the clamped-clamped beam
studied earlier in this section. Ifdesign sensitivity of the slope at the center of
the beam is desired, the adjoint load from Eq. (2.2.39) is just a negative unit
moment at the center of the beam. Thus, the adjoint variable is obtained as

A,l5) = 1.5 x 1O-7[-4(x _ !)2 + 2x 3 - x 2 ]

Equation (2.2.40) may now be evaluated to obtain

1/1; = f [1.16 x 1O-2(-4(x - t)2 + 2x 3 - x 2
)

- 0.5(6x2
- 6x + 1)(-4(x - t)O + 6x - 1)] bh dx

where (x - t)O = 0 if x < t and (x - t)O = 1 if x > t. One interesting
aspect of the above sensitivity result is that the slope at the center of the
beam, with the present uniform design h = 0.005 m2, is independent of the
variation bE of Young's modulus. To see how material added to or deleted
from the beam influences the slope at the center, the coefficient of bh may be
graphed (Fig. 2.2.3). Figure 2.2.3 indicates that if material is added or
removed symmetrically with respect to x= t, then the slope remains at zero
value, which is physically clear. Adding material to the left of x= t increases
the slope, while adding to the right decreases the slope.
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Fig.2.2.3 Slope sensitivity N = y)r" - 2E(J.hzxx)~';'

BENDING OF A PLATE

Consider now the clamped plate of Fig. 2.1.2, with variable thickness hex)
and variable Young's modulus E. Consider a distributed load that consists of
externally applied pressure F(x) and self-weight, given by

f(x) = F(x) + yh(x) (2.2.41)
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where y is weight density of the plate. For this design-dependent loading, the
energy bilinear form for the plate and the load linear form, given in Eq.
(2.1.12) and following, are

au(z, z) =ItD(u)[zuZu + Z22 Z22 + V(Z22 ZU + ZU Z22)

+ 2(1 - v)z12Z12] dO

IJz) =It [F + yh]z dO

where u = [E h(X)]T and

(2.2.42)

(2.2.43)

(2.2.44)

Consider first the functional defining weight of the plate,

t/Jl = ItYhdO (2.2.45)

Taking a direct variation yields

(2.2.46)

Since no variation of state arises in this expression, no adjoint problem needs
to be defined, and the explicit design derivative of weight is obtained.

Consider next the compliance functional for the plate,

t/J2 =It [F + yh]zdO (2.2.47)

Taking the first variation yields

t/J; =It [(F + yh)z' + yz <5h] dO (2.2.48)

Following Eq. 2.2.10, one defines the adjoint equation as

(2.2.49)for all ;: E Zau(A, X) = It(F + yh)XdO

Note that Eq. (2.2.49) is identical to the plate equation of Eq. (2.1.21) for
displacement. Therefore, the adjoint plate and load are identical to the
original, A = z, and Eq. (2.2.49) need not be solved separately.

In preparation for evaluating design sensitivity, the definitions of Eqs.



118 2. DISTRIBUTED-PARAMETER STRUCTURAL COMPONENTS

(2.2.1) and (2.2.2) are followed for the plate problem to obtain

a~U<z, z) = ft {Eh2[Zl1 Z11 + Z22 Z22 + V(Z22 Z11 + ZI1 Z22)

+ 2(1 - v)z12z12]j[4(1 - v2)]} t5h dn

+ {ft h3[ZI1ZI1 + Z22 Z22 + V(Z22 Z11 + zllzn)

+ 2(1 - v)zI2z12]j[12(1 - v2)] dn} t5E

(2.2.50)

l~u(z) = ft yz t5h dn (2.2.51)

Direct application of Eq. (2.2.14)for sensitivity of t/J2' with A = z, yields

t/J' = f'r {2 YZ - Eh2Zi i + Z~2 + 2VZllZ22 + 2(1 - V)Zi2} t5h dn
2 Ja 4(1 - v2 )

_{f'r h3Zi i + Z~2 +,2VZllZ22 + 2(1 - V)Zi2 dn} t5E
Ja 12(1 - v2)

(2.2.52)

As in the case of the beam, note that this sensitivity result consists of a first
term, which accounts for the effect of a variation t5h(x) of the plate shape
function h(x), and a second term, which is a scalar times the variation t5E.

Consider application of Eq. (2.2.52) to the case of a plate of piecewise
constant thickness (Fig. 2.2.4) where b, is the constant thickness of the ith
rectangular element. The thickness function is thus parameterized as

h(x) = b., (2.2.53)

where nj is the ith rectangular element in Fig. 2.2.4. The variation t5h in
thickness is thus t5h(x) = t5b j (x E nil, and Eq. (2.2.52) becomes

./,' = ~ [fI {2 - 3Eb?zil + Z~2 + 2VZllZ22 + 2(1 - V)Zi2} dn] t5b.
'l'2.~ yz I 12(1 _ v2) I

.-1 0;

_[± f'r {bt zi 1 + Z~2 + 2VZllZ22 2+ 2(1 - V)Zi2} dn] t5E
j= 1 Ja; 12(1 - v )

(2.2.54)

Consider the plate response functional defined as displacement at a
discrete point X,

t/J3 == z(x) = ft b(x - x) z(x) dn (2.2.55)
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Fig.2.2.4 Piecewiseuniform plate.
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where b(x) is the Dirac measure in the plane acting at the origin. By the
Sobolev imbedding theorem [36], this functional is continuous, and the
foregoing theory applies. Taking the first variation of Eq. (2.2.55) yields

1/;; = fL b(x - x) z' dQ (2.2.56)

Following the general adjoint formulation of Eq. (2.2.10), the adjoint
equation is defined as

aJ}., J.) = fL b(x - x) J. dO. for all AE Z (2.2.57)

This equation has a unique solution, denoted }.(3). Since the load functional
on the right side of Eq. (2.2.57) is physically interpreted as a unit point load
acting at the point x, the solution }.(3) of the adjoint plate problem is simply
the displacement of the original plate due to this load.

With ,1.(3) determined, the general result of Eq. (2.2.14)may now be applied,
with the variations in bilinear and linear forms defined in Eqs. (2.2.50) and
(2.2.51), to obtain

1/;; = fL {y).(3) - Eh2
[ Zll YW + z22Wl

+ V(Z22).lt
3i + ztt.A.~3D + 2(1 - V)Z12}.(/1]/[4(1 - vm bhdO.

{II h3[ '(3) + '(3) + ( 1(3) + 0
( 3 ))- n Zl1.A.33 Z22.A. 22 v Z221'·tt Ztt/'22

(2.2.58)
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The maximum stress for a thin plate occurs on the surface of the plate and
is given in the form [33]

11 Eh
(J = -2(1 _ V2){Z11 + VZd

22 Eh
(J = - 2(1 _ V2) (Z22 + vz11)

12 Eh
(J = -2(1 + V)Z12

The von Mises stress is [33]

(2.2.59)

(2.2.60)

For simplicity, assume the stress (Jll in Eq. (2.2.59) is taken as a strength
constraint instead of the von Mises stress. With this done, the idea can be ex-
tended to the von Mises stress. As in the beam problem, define a characteristic
function mp(x) as an averaging multiplier, which is nonzero only on an open
small region np of n and whose integral is 1. Then, the average value of (Jl1

over this small region is

ljJ4 =It (J11 mpdn

= - 2(1 ~ v2)ItEh(Z11 + vz22)mpdn (2.2.61)

for all ;: E Z

As in the beam stress functional case, take the variation of the functional
ljJ4 to obtain

ljJ~ = - 2( 1 2 II [Eh(z'11 + VZ;2)mp + h(Z11 + vzdmp st:
1-v) fl

+ E(Z11 + vzdmp bh] dn (2.2.62)

Replace the state variation term z' on the right side of Eq. (2.2.62) by a virtual
displacement Ato obtain

au(A., A) = - 2(1 ~ v2)ItEh(A. 11 + vAdmpdn

(2.2.63)

Using the norm in H 2(n ) of Eq. (2.1.22), it is shown that the functional on
the right side of Eq. (2.2.63) is a bounded linear functional. Hence, by the



2.2. METHOD FOR STATIC DESIGN SENSITIVITY ANALYSIS 121

(2.2.64)

(2.2.66)

(2.2.65)

Lax-Milgram Theorem [9], Eq. (2.2.63) has a unique solution A(4l. Using the
same procedure as in Eqs. (2.2.11)-(2.2.14) gives

./,' -II { E ( + ) + ' '(4) Eh2 [ 1(4) + 1(4)
'1'4 - Q - 2(1 _ v2) Zll VZ22 mp yJl. - Zll"ll Z22"22

+ V(Z22A1,4i + ZllA~4D + 2(1- v)Z12Ai,4n/[4(1 - V2)]}bhdn

-It {~(l ~ v2) (Zll + vz22)mp

+ h3 [Zll AW + z22A~4d + V(Z22Af,4i + Zl1A~~)

+ 2(1 - V)Z'2},i,4n/[12(1 - V2)]} dn bE

PLANE ELASTICITY

Consider now the plane elastic slab treated in Section 2.1.1. The energy
bilinear form and load linear form for this problem are given in Eq. (2.1.32)
as

au(z, z) = II h [. t aij(z)eij(Z)J dn
Q I,j='

liz) = IL h[f'z' + j2z2] dn

where h(x) is the thickness of the plane 'elastic slab, the displacement vector is
Z = [z' z2F, and aij(z) and ,/J(z) are the stress and strain fields associated
with displacement z and virtual displacement Z, respectively, given in terms of
displacements as

ij(-) lJ-i -J) .. 1 2e z = 2\Zj + Zi , I,J = ,
.. 2AJl, 2 .

a"(z) = [z + z ] + 2HZ'
(A + 2Jl)' 2 r- .'

i = 1,2

(2.2.67)

(2.2.68)

a'2(z) = Jl(z~ + zi)

where Aand Jl are Lame's constants. The design variable is taken here only as
the variable thickness h(x) of the elastic slab.

Consider first the functional defining weight of the slab,

l/Jl = ILYhdn (2.2.69)
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Since this functional does not involve z, its variation is calculated simply as

(2.2.70)

for all AE Z

which requires no adjoint solution.
Consider next a locally averaged stress functional, which might involve

principal stresses, von Mises stress, or some other material failure criteria.
Defining a characteristic averaging function mp(x) that is nonzero and
constant over a small open subset np c n, zero outside of np , and whose
integral is 1, the average stress functional is written in the general form

t/J2 = ft g(u(z»mpdn (2.2.71)

where a denotes the stress tensor. While this expression could be written
explicitly in terms of the gradient of z, it will be seen in the following that it is
more effective to continue with the present notation. Since components of the
stress tensor given by Eq. (2.2.68) are linear in z and the order of taking
variation and partial derivative can be changed, as shown in Eq. (2.2.5), the
variation of the functional of Eq. (2.2.71) may be written in the form

t/J; = If [. ±g,,;iz)uij(z')]mpdn (2.2.72)
Q I,J= 1

As in the general derivation of the adjoint equation of Eq. (2.2.10), the
variation in state z' may be replaced by a virtual displacement X on the
right side of Eq. (2.2,72) to define a load functional for the adjoint equation to
obtain, as in Eq. (2.2.10),

aiA, A) = If [. ±g"ilZ)uij(A)]mp dn for all A E Z (2.2.73)
Q I.J= 1

It may be shown directly that the linear form in J. on the right side of Eq.
(2.2.73) is bounded in H 1(n ) so Eq. (2.2.73) has a unique solution for a
displacement field A.(2), with the right side of Eq. (2.2.73) defining the load
functional. Integrating by parts could be considered on the right side of Eq.
(2.2.73) to derive a formula for a distributed load that could be interpreted as
acting on the elastic solid. This calculation, however, causes considerable
practical and theoretical difficulty, since g",Az) depends on stress and
derivatives of stress will not generally exist in L2(n). Thus, the linear form on
the right side of Eq. (2.2.73) is left as defined.

Using symmetry of the energy bilinear form ak, -), Eq. (2.2.73) may be
written in the form

f h {. ±[1:U(A.) - (g"ii(Z)mp)/h]uij(A)}dn = 0
(} I,J=1
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This is just the equation of elasticity for displacement AP> of a slab with an
initial strain field (g,,;iz)mp)/h and no externally applied load. Thus, this is a
physical interpretation of the adjoint plate problem, which may assist in
interpreting the significance and properties of the adjoint displacement A(2).

In order to eliminate z' in Eq. (2.2.72), define variations of the energy
bilinear form and load linear form of Eqs. (2.2.65) and (2.2.66), using the
definitions of Eqs. (2.2.1) and (2.2.3), to obtain

a~u(z, z) = II [. ±aij(z)s/j(Z)] (jh dO. (2.2.74)
Q 1,J= 1

l~u(Z) = ft [f1 z1 +P Z2] (jhdO. (2.2.75)

Using these results, symmetry of the energy bilinear form au( ' , ' ) , and
repeating the sequence of calculations in Eqs. (2.2.11)-(2.2.14) gives

t/!; = II [11A(2)1 +PA(2)' - ±aij(z)s/jp,12»)] (jh dO. (2.2.76)
Q ~j=l

This gives the desired explicit sensitivity of the stress functional of Eq. (2.2.71)
in terms of the solution z of the structural problem and A( 2

) of the adjoint
problem in Eq. (2.2.73).

The analytical examples considered in this section show that for each of
the static elastic problems studied in Section 2.1.1, direct calculation leads to
explicit formulas for design sensitivity of functionals treated, requiring in
most cases the solution of an adjoint problem that can be interpreted as the
original elasticity problem with an artificially defined applied load or initial
strain field. This interpretation can be valuable in taking advantage of
existing finite element structural analysis codes, as will be discussed III

Section 2.2.4, and for visualizing properties of the adjoint displacement.

2.2.4 Numerical Considerations

Before proceeding from analytical derivations to numerical examples, it is
helpful to consider numerical aspects of computing design sensitivity ex-
pressions. Since functions must be approximated in finite-dimensional
subspaces of the associated function space for digital computation, it is
important first to define the parameterization that is to be used in design
sensitivity analysis. Second, in carrying out actual computations, the finite
element method of structural analysis is the most commonly employed
computational tool. Therefore, relationships between design sensitivity
calculations and the finite element method for solving boundary-value
problems should be established.
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(2.2.77)

PARAMETERIZATION OF DESIGN

The piecewise uniform beam and plate shown in Figs. 1.2.1 and 2.2.4,
respectively, represent the simplest examples of parameterizing the design of
a structure. More generally, consider a beam with appropriate boundary
conditions, in which the family of designs being considered is characterized
by a finite-dimensional parameter vector b = [bi' ... bm]T. The moment of
inertia of the cross section and its area as functions of these parameters may
be written in the form

1= I(x;b)

h = h(x; b)

The energy bilinear form and load linear form for the beam are then
expressed as

ab(z, z) = f EI(x; b)zxxzxx dx

lb(z) = f [F(x) + yh(x; b)]z dx

(2.2.78)

(2.2.79)

(2.2.80)

(2.2.81)

The notation used here illustrates that the energy forms are functions of the
design parameter b rather than a design function u. Using the definition of
variation of these forms in Eqs. (2.2.1) and (2.2.2),

a~b(z, z) == ~ ab+ r<5b(Z, z)Lo = [fElbzxxzxx dx}5b

l~b(z) == ~ lb+r<5b(Z)lr=o = [f yhbzJOb

where the variation ob can be taken outside the integrals since it is constant.
Consider now a general response functional of the form

r/J = fg(Z,Zx,Zxx,b)dX

The variation of this functional may be taken to obtain

r/J' = f [gzz' + gzJ~ + gzxxz~xJ dx + [fgb dxJOb

Now define an adjoint variable as the solution of the adjoint variational
equation

for all AE Z (2.2.82)
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Since the right side of Eq. (2.2.82) is continuous in H 2(n ), this equation has a
unique solution for A. Repeating the sequence of calculations of Eqs.
(2.2.11)-(2.2.14), the final result is

tV = {f [gb + yhbA - EIbzxx,{xx] dX} c5b (2.2.83)

This expression gives sensitivity coefficients of tf; associated with variations in
design. It is interesting to note that evaluation of this design sensitivity result
requires only numerical calculation of the integral in Eq. (2.2.83) once the
state and adjoint variables have been determined. Furthermore, the form of
dependence of beam cross-sectional area and moment of inertia on design
can be selected by the designer, and only partial derivatives hb of the cross-
sectional area and I b of the moment of inertia need to be calculated.

Consider, for example, the stepped beam of Fig. 1.2.1, where each uniform
segment of the beam is made up of an I beam with section properties shown
in Fig. 2.2.5. Here, the superscript i (i = 1, ... ,n) denotes the numbering of
uniform segments of the beam, and the subscript denotes the four design
parameters of each segment, for a total of 4n design parameters. For the ith
segment,

t(bi
) = -h[b~(8b~ + 6b~2b~ + 12b~b~) + b~3bn

hiW) = 2b~ b~ + b~ b~
(2.2.84)

(2.2.85)

Fig. 2.2.5 I-section beam element.

The integral of Eq. (2.2.83) may also be written as a sum of integrals over
each of the segments, yielding

n {fi/n }tf;' = I [gbi + yh~iA - EI~izxx,{xx] dx c5b i

i=l (i-l)/n

where c5bi = [c5b i
l c5b~ c5b~ c5b~]T. This simple formula, evaluated with the

aid of numerical integration, yields the design sensitivity of a general
functional with respect to all section properties associated with the beam.

Equations (2.2.83) and (2.2.85) show potential for automating design
sensitivity computations in terms of design shape functions. Equation
(2.2.26) illustrates the simplest possible form of a design shape function,
namely piecewise-constant design shape. Piecewise-linear or piecewise-poly-
nomial design shape functions could be considered, describing distribution of
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material in the structure in terms of the design parameters. Using the general
design sensitivity results of Section 2.2.3 and parameterizations of the type
introduced here, results of the form of Eq. (2.2.85) are expected. Given this
expression, an algorithm can be written for evaluating the integrals appearing
in Eq. (2.2.85) over a typical segment, yielding a form for total design
sensitivity. This systematic approach to design sensitivity analysis, using
distributed parameter sensitivity results and design shape functions, appears
to be very promising, particularly as regards its coupling with the finite
element method of structural analysis. Ifdesign sensitivity is calculated using
this approach, the need for calculating and storing the design derivative of
the system stiffness matrix that appeared in Chapter 1 is eliminated.

COUPLING DESIGN SENSITIVITY
AND FINITE ELEMENT STRUCTURAL ANALYSIS

From a mathematical point of view, the finite element method of structural
analysis may be viewed as an application of the Galerkin method [5, 6] for
solution of boundary-value problems, with coordinate functions defined as
piecewise polynomials over segments (elements) of the domain. That is, let
qi(x) E Z be linearly independent coordinate functions. For finite element
analysis, the domain of the structure is partitioned into subdomains called
elements. Functions defined as polynomials on elements, associated with
nodal values of the structural state variable and vanishing off elements not
adjacent to a given node, are defined for a variety of element shapes,
polynomial orders, and smoothness characteristics. For penetrating expo-
sitions of this approach to the finite element method, the reader is referred to
the texts by Strang and Fix [5] and Ciarlet [6]. For a more engineering-
oriented introduction to these ideas, see the text by Mitchell and Wait [41].

Letting </>i(X) (i = 1,... , n) denote the coordinate functions, it is desired to
approximate a solution for the structural state in the form

n

z(x) = L Ci</>i(X)
i=1

(2.2.86)

Recall that the structural state z must satisfy a variational equation of the
form

for all Z E Z (2.2.87)

Substituting the approximation of Eq. (2.2.86) into this variational equation,
n

I ab(</>j, Z)Cj = lb(z)
j= 1

(2.2.88)

Since the actual solution of Eq. (2.2.87)cannot be written exactly in the form
of Eq. (2.2.86), with a finite number of coordinate functions, Eq. (2.2.88)
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cannot be satisfied for all Z E Z. Therefore, it is desired to find the coefficients
ci in the approximate solution ofEq. (2.2.86) such that Eq. (2.2.88) holds for Z
equal to each of the coordinate functions. That is, it is required that

n

L aMi, 4>j)cj = Ib(4)i),
j=l

i = 1,... , n (2.2.89)

If a matrix associated with the left side of Eq. (2.2.89) is defined as

A = [a b( 4>i, 4>j)]n x n

and a column vector associated with the right side of Eq. (2.2.89) as

B = [lb( 4>i)]n x I

(2.2.90)

(2.2.91)

then with C = [c i ... Cn]T, Eq. (2.2.89) may be written in matrix form as

Ac = B (2.2.92)

The matrix A is precisely the stiffness matrix from Chapter 1, and the column
vector B represents a load vector applied to the structural system. Without
going into detail, it should be recalled that the entries in the stiffness matrix of
Eq. (2.2.90) require integration over only elements adjacent to nodes in
which both 4>i and 4>j are nonzero. This fact immediately eliminates
integration over all but a small subset of the domain of the structure for
evaluation of terms contributing to the system stiffness matrix. Furthermore,
because the energy bilinear form is Z-elliptic, if the coordinate functions are
linearly independent, the matrix A is positive definite, hence nonsingular.

The idea of using design shape functions in evaluating Eq. (2.2.85) now
begins to materialize. Let each of the uniform segments of the beam play the
role of a finite element. Coordinate functions 4>i are used to represent both
the state z, as in Eq. (2.2.86), and the adjoint variable A. as

n

A(X) = L dj 4>j(x)
j=l

(2.2.93)

Substituting Eqs. (2.2.86) and (2.2.93) for the state and adjoint variables into
Eq. (2.2.85),

n [Ii/n
n Ii/nljJ' = L g~i dx + Y L dj h~i 4>j dx

i= I (i-l)/n j= I (i-I)/n

(2.2.94)

While many integrals appear in evaluating coefficients in Eq. (2.2.94), the
reader who is familiar with finite element methods will note that these
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calculations are of precisely the kind done routinely in finite element analysis.
Incorporating a standard design shape function, represented by the functions
hi and Ii for the beam, and a set of piecewise-polynomial shape functions qi
for displacement approximation, the integrations required in Eq. (2.2.94)may
be efficiently carried out. In many cases, piecewise-linear polynomials will be
adequate, and the order of polynomials appearing in the integration over
elements will be very low, allowing closed-form evaluation of the integrals
and tabulation of terms in Eq. (2.2.94) as design sensitivity finite elements. In
the case of the beam, Hermite bicubics are commonly used as displacement
shape functions, as discussed in Section 1.1.1. In this case, if linear variation
cross-sectional area and quadratic variation of moment of inertia are
incorporated in the beam design shape function, the degree of polynomials
arising in the Eq. (2.2.94) is no higher than four. Closed-form integration to
obtain and tabulate design sensitivity finite elements appears to be a practical
objective. In more complex structures, such as plates and plane elastic solids,
higher-order polynomials in more than one variable may be required, hence
leading to the need for numerical generation of the design sensitivity finite
elements. These calculations, however, are not essentially more tedious than
calculations that are now carried out in any finite element code. There thus
appears to exist potential for a systematic finite element design sensitivity
analysis formulation, employing both design shape functions and displace-
ment shape functions.

An essential advantage that may accrue in an integrated design finite
element formulation is associated with the ability to identify the effect of
numerical error associated with finite element gridding. It has been observed
in calculations that use of distributed-parameter design sensitivity formulas
and the finite element method for analysis leads to numerical errors in
sensitivity coefficients that may be identified during the process of iterative
redesign and reanalysis. The effect of a design change that is to be
implemented with the design sensitivity analysis method can be predicted.
When reanalysis is carried out, the predicted change in structural response
can be compared with the change realized. If disagreement arises, then error
has crept into the finite element approximation. While this might appear to
be a problem, in fact it can be a blessing in disguise. If the approach of
Chapter 1 is followed, in which the structure is discretized and the design
variables are imbedded into the global stiffness matrix, then any error
inherent in the finite element model is consistently parameterized and will
never be reported to the user. Therefore, precise design sensitivity coefficients
of the matrix model of the structure are obtained without realizing that there
may be substantial inherent error in the original model. In fact, as optimi-
zation is carried out, the optimization algorithm may systematically exploit
this error and lead to erroneous designs. In the current formulation, the
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design sensitivity formulas derived from the distributed-parameter theory
and the finite element model can be used to obtain a warning that approxi-
mation error is creeping into the calculation.

2.2.5 Numerical Examples

BEAM

Consider a simply supported beam with rectangular cross section and a
point load of f(x) = 100 J(x - x) Ib (Fig. 2.2.6). Material properties are
given as E = 30 X 106 psi and v = 0.25. Weight density}' of the material is
ignored. The rectangular beam has unit width, and the depth bi of element i is
taken as a design variable, i = 1,... , n.

I in.
D2in.

Fig.2.2.6 Simply supported beam.

Consider a stress constraint of the form

(2.2.95)

where b;/2 is the half-depth of element i and m, is the characteristic function
applied to finite element i. Referring to Eq. (2.2.82), the adjoint equation can
be defined as

for all AE Z (2.2.96)

and denote the solution as Ali). Then, from Eq. (2.2.83) the first variation of
the functional ljJi is

Note that constant thickness over a single element is assumed in the above
equations.
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Table 2.2.1

Comparison of Sensitivity for Beam

Element
Number 1/1/ I/I,l l1l/1j I/Ii (l/Iill1l/1j x 1(0)%

1 6.3000E + 01 5.7143E + 01 -5.8571E + 00 -6.3000E + 00 107.6
2 1.8900E + 02 1.7143E + 02 -1.7571E + 01 -1.8900E + 01 107.6
3 3.l500E + 02 2.8571E + 02 -2.9286E + 01 -3.l500E + 01 107.6
4 2.9008E + 02 2.6311E + 02 -2.6969E + 01 -2.9008E + 01 107.6
5 2.4545E + 02 2.2263E + 02 -2.2820E + 01 -2.4545E + 01 107.6
6 2.0083E + 02 1.8216E + 02 -1.8671E + 01 -2.0083E + 01 107.6
7 1.5620E + 02 1.4168E + 02 -1.4522E + 01 -1.5620E + 01 107.6
8 1.3500E + 02 1.2245E + 02 -1.2551E + 01 -1.3500E + 01 107.6
9 8.l000E + 01 7.3469E + 01 -7.5306E + 01 -8.l000E + 00 107.6

10 2.7000E + 01 2.4490E + 01 -2.5102E + 00 -2.7000E + 00 107.6

A 10-element finite element model of the beam shown in Fig. 2.2.6, with a
cubic shape function, is employed for design sensitivity calculation. Uniform
and good design sensitivity estimates are obtained, as shown in Table 2.2.1,
for the average stress on each element with 5% overall changes of design
variables.

PLATE

Consider application of Eqs. (2.2.52) and (2.2.58) to account for the effect
of variations in plate thickness on the compliance and displacement,
at a discrete point x respectively. As an example, a clamped square plate of
dimension 1 m and uniform thickness h = 0.05 m, with E = 200 GPa,
v = 0.3, F = 2.22 MPa, and')' = 7.71 X 104 N/m3 is considered. If piecewise-
constant thickness is assumed, with b, the constant thickness of the ith
element, instead of Eq. (2.2.52), Eq. (2.2.54) can be used for the compliance
functional.

For numerical calculations, a nonconforming rectangular plate element
.with 12 degrees of freedom [7J is used. The graph of the coefficient of Jbi in
Fig. 2.2.7 shows how addition or deletion of material affectscompliance. The
maximum value of the coefficient of Jbi is A~ax = -1.305 at the corner
elements. The minimum value occurs at the middle of edge elements, with the
value A;'in = -5.625 x 102

• Thus, in order to decrease compliance most
effectively, material should be removed from the vicinity of the four corners
and added near the middle of the four edges.

If design sensitivity of displacement at the center of the plate is desired,
x= [t tJ, and the adjoint load from Eq. (2.2.57) is just a unit load at the
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~----------------------:-!.--
10 XI

Fig.2.2.7 Compliance sensitivity N for plate.

center of the plate. To see how material added to or deleted from the plate
influences displacement at the center, the coefficient of (jb j may be graphed, as
in the compliance case, using Eq. (2.2.58) to obtain the result shown in Fig.
2.2.8. The maximum value of the coefficient of (jb j is A~ax = -3.678 X 10- 8

at the corner elements, while the minimum value occurs at the center
elements with the value A~in = -1.167 X 103• To decrease z(x) most effec-
tively, material should be removed near the four corners and added to the
center of the plate.

LO

LO---XI

Fig. 2.2.8 Displacement sensitivity N for plate.
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For sensitivity of stress in the plate, consider the simply supported square
plate shown in Fig. 2.2.9, with E = 30 X 106 psi and v = 0.25. Let plate
thickness h(x) be a design variable and assume y is ignorable, so that the load
linear form is independent of design.

4

8

6

5

7

9

3

-----;~12 in.I..

.-7 14 21 28 \5 4;> 4

6 12 18 24 30 36

6 13 20 27 34 41 4

5 II 17 23 29 35

5 112 19 26 33 40 4

4 10 16 22 28 34

4 II 18 25 I.",;> 39 4
12in.

3 9 15 21 27 33

13 10 17 124 131 13A 4

2 8 14 20 26 32

2 9 16 23 30 137 4

I 7 13 19 25 31

I R 15 22 2q 1:>.1'> 4

Fig. 2.2.9 Finite element of simply supported plate.

Consider a stress functional of the form

(2.2.98)t/Ji = fin Ezllmi dO

where mi is the characteristic function applied on finite element i. Referring to
Eq. (2.2.63), the adjoint equation is defined as

aJA., J.) = fin ei,,« dO for all J. E Z (2.2.99)

with solution ~m. From Eq. (2.2.64), the first variation of Eq. (2.2.98) is
obtained as

I II Eh
2

(i) (i) (i) (i)t/Ji = - n 4(1 _ V2)[Zll,111 + Z22,122 + V(Z22,111 + Zll,122)

(2.2.100)
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If piecewise-constant thickness is assumed for each finite element, Eq.
(2.2.100) can be rewritten as

,J,! ~ { Ebf _Ii [1(i) (i) (i) (i)
'I'i = - 1... 4(1 2) Zl1l1.11 + Z22,J,,22 + V(Z22,J"l1 + Zl1,J,,22)

k=l -v Ok

+ 2(1 - V)Zl).(/iJ dO} bbk (2.2.101)

As before, a nonconforming rectangular plate element with 12 degrees of
freedom [7] is employed for numerical calculation. The geometrical con-
figuration and finite element grid used are shown in Fig. 2.2.9. The length of
each side of the square plate is 12 in., and its thickness is 0.1 in., uniformly.
The model has 36 elements, 49 nodal points, and 95 degrees of freedom.
Applied loads consist of a point load of 100 lb at the center and a uniformly
distributed load of 100 psi. Results given in Table 2.2.2 show that the design
sensitivity for each element is excellent, with 0.1% overall change of design
variables. Note that due to symmetry, only sensitivity results for one quarter
of the plate are given in Table 2.2.2.

Table 2.2.2

Comparison of Sensitivity for Plate

Element
Number 1/1/ I/I? ~I/Ii 1/1: (I/I:/~I/Ii x 100)%

I -7.7010E + 05 -7.6779E + 05 2.3057E + 03 2.3030E + 03 99.9
2 -1.7690E + 06 -1.7637E + 06 5.2965E + 03 5.3094E + 03 100.2
3 -2.2571E + 06 -2.2503E + 06 6.7576E + 03 6.7702E + 03 100.2
7 -1.3671E + 06 -1.3630E + 06 4.0930E + 03 4.0869E + 03 99.9
8 -3.6338E + 06 -3.6229E + 06 1.0880E + 04 1.0906E + 04 100.2
9 -4.8362E + 06 -4.8217E + 06 1.4480E + 04 1.4508E + 04 100.2

13 -1.5622E + 06 -1.5575E + 06 4.6772E + 03 4.6859E + 03 100.2
14 -4.2347E + 06 -4.2220E + 04 1.2679E + 04 1.2706E + 04 100.2
15 -5.7639E + 06 -5.7466E + 06 1.7257E + 04 1.7293E + 04 100.2

TORQUE ARM

As an example involving a plane elastic component, consider the auto-
motive rear suspension torque arm shown in Fig. 2.2.10. For simplicity, a
single, nonsymmetric, static traction load is considered. Zero-displacement
constraints are applied around the larger hole on the right in order to
simulate attachment to a solid rear axle. Thickness of the torque arm is
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Fig.2.2.10 Geometry and finite element of torque arm.
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chosen as a design variable. The variational equation of the torque arm is

au(z, z) == fL h(x) i.t 1 aij(z)"ii(z) dO

= [2 JI Tiz i dr == lu(z) for all zEZ (2.2.102)

where

Z = {z = [Zl Z2]T E [H1(O)] 2: z = 0 on rO}

Consider a von Mises stress functional of the form

(2.2.103)

(2.2.104)

for all AE Z

v. = fL (a
y ~ 0"") m, dO = fL gmk dO

where g = (ay - ( 8)/a8
, a" is the allowable stress, m, is the characteristic

function defined on finite element k, and a}. is the von Mises yield stress
defined as

ay = [(allf + (a2 2 )2 + 3(a 12f - a 11a2 2] 1/2 (2.2.105)

For this stress functional, the adjoint equation from Eq. (2.2.73) is

ap" A) = iI [.±gtrilz)aij(A)]mk dO
n 1.J~ 1

(2.2.106)

with solution A1k ). The first variation of the functional t/Jk' from Eq. (2.2.76), is

t/J~ = iI [. t aij(z)eij().lk1)] Jh dO (2.2.107)
n I.J~ 1

If piecewise-constant thickness b, is assumed for finite element 1, then Eq.
(2.2.107) can be rewritten as

(2.2.108)

The finite element model shown in Fig. 2.2.10, including 204 elements, 707
nodal points, 1332 degrees of freedom, and an 8-noded isoparametric
element, is used for numerical calculation. Applied loads and dimensions are
also shown in Fig. 2.2.10. Young's modulus, Poisson's ratio, and allowable
stress are 207.4 GPa, 0.25, and 81 MPa, respectively. A uniform thickness of
1 cm is used as the initial design. Numerical results for stress in selected
boundary elements are shown in Table 2.2.3. With a 0.1% uniform change of
design variables, excellent sensitivity results are obtained.
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Table 2.2.3

Comparison of Sensitivity for Torque Arm

Element
Number "'k

1 "'; fI,,"'k "'~ ("'~/fI,,"'K x 1(0)%

54 -9.7690E - 01 -9.7693E - 01 -2.3075E - 05 -2.3098E - 05 100.1
66 -9.6734E - 01 -9.6737E - 01 -3.2632E - 05 -3.2665E - 05 100.1
75 -9.5025E - 01 -9.5030E - 01 -4.9699E - 05 -4.9748E - 05 100.1
87 -9.3080E - 01 -9.3087E - 01 -6.9130E - 05 -6.9199E - 05 100.1
96 -9.1860E - 01 -9.1868E - 01 -8.1317E - 05 -8.1398E - 05 100.1

105 -9.0812E - 01 -9.0821E - 01 -9.1786E - 05 -9.1878E - 05 100.1
115 -9.7021E - 01 -9.7024E - 01 -2.9756E - 05 -2.9786E - 05 100.1
127 -9.5415E - 01 -9.5420E - 01 -4.5805E - 05 -4.5850E - 05 100.1
145 -9.2374E - 01 -9.2382E - 01 -7.6183E - 05 -7.6259E - 05 100.1
160 -9.0483E - 01 -9.0493E - 01 -9.5073E - 05 -9.5169E - 05 100.1
171 -9.0491E - 01 -9.05OOE - 01 -9.4997E - 05 -9.4997E - 05 100.1
180 -9.2579E - 01 -9.2587E - 01 -7.4134£ - 05 - 7.4208E - 05 100.1
187 -8.9958E - 01 -8.9968E - 01 -1.oo32E - 04 -1.0042£ - 04 100.1
193 -9.1117£ - 01 -9.1126E - 01 -8.8743E - 05 -8.8831£ - 05 100.1

2.3 EIGENVALUE DESIGN SENSITIVITY

Examples presented in Section 2.2.2 show clearly that eigenvalues that
represent natural frequencies and buckling loads of structures depend on the
design of the structure. The objective in this section is to obtain design
sensitivity of eigenvalues. For conservative systems, it happens that no
adjoint equations are necessary, and eigenvalue sensitivities are obtained
directly in terms of the eigenvectors of the eigenvalue problem and variations
in the eigenvalue bilinear forms. Theorems that establish differentiability of
simple eigenvalues and directional differentiability of repeated eigenvalues
are first stated, and their significance is discussed. Using these differen-
tiability results, explicit formulas for design variations of eigenvalues, both
simple and repeated, are obtained. Analytical calculations with the examples
of Section 2.1.2 are carried out to illustrate use of the method. Numerical
considerations associated with computation of eigenvalue design sensitivity
are discussed, and numerical examples are presented.

2.3.1 Differentiability of Energy Bilinear Forms
and Eigenvalues

Basic results concerning differentiability of eigenvalues are developed in
detail in Section 2.5. The purpose of this section is to summarize key results
that are needed for eigenvalue design sensitivity. In particular, treatment of
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(2.3.4)

the repeated eigenvalue case illustrates the need for care in establishing and
utilizing properties of functionals involved since it is shown that repeated
eigenvalues are in fact not differentiable.

As shown in Section 2.1.2, eigenvalue problems for vibration and buckling
of elastic systems are best described by variational equations of the form

au(Y, y) = (du(Y, y) for all y E Z (2.3.1)

where Z is the space of kinematically admissible displacements. Since Eq.
(2.3.1) is homogeneous in y, a normalizing condition must be added to define
uniquely the eigenfunction. The normalizing condition employed is

du(Y, y) = 1 (2.3.2)

The energy bilinear form on the left side of Eq. (2.3.1) is the same as that
occurring in static problems treated in Section 2.2. Therefore, it has the same
properties discussed there. The bilinear form du( · ' .) on the right side of Eq.
(2.3.1) represents mass effects in vibration problems and geometric effects in
buckling. In most cases, it is even more regular in its dependence on design u
and eigenfunction y than is the energy bilinear form au( · ' · ) ' In the
exceptional case of buckling of a column, it involves derivatives of the
eigenfunction and must be treated somewhat more carefully. As shown in
Section 2.5.1, in all cases of interest here, the design derivative of du( · , .) is
given by

d~Jy, y) == dd [du+<6uCy, y)] I (2.3.3)
r <;0

where y denotes holding y constant for purposes of the differentiation with
respect to r.

SIMPLE EIGENVALUES

In the case of a simple eigenvalue (i.e., an eigenvalue with only one
independent eigenfunction) it is shown in Section 2.5 that the eigenvalue ( is
differentiable. Kato [13] showed that the corresponding eigenfunction y is
also differentiable. Thus, the following variations are well defined:

(' = ('(u, Ju) == dd mu + r Ju)] I
r <;0

y' = y'(x; u, Ju) == dd [y(x; u + r Ju)] I
r <;0

In fact, both eigenvalue and eigenfunction variations are linear in Ju, hence
they are Frechet derivatives (Appendix A.3) of the eigenvalue and eigen-
function. Proof of these results is far from trivial; details are given in Section
2.5.
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Given this differentiability result, the variation of both sides of Eq. (2.3.1)
can be taken to obtain

for all y E Z
(2.3.5)

Since Eq. (2.3.5) holds for all yE Z, this equation may be evaluated with
y = y, using symmetry of the bilinear forms ai·, .) and du( · , -), to obtain

(' du(Y, y) = a~u(Y, y) - (d~u(Y, y) - [au(Y, y') - (du(Y, y')] (2.3.6)

Noting that y' E Z, it can be seen that the term in brackets on the right side of
Eq. (2.3.6) is zero. Furthermore, due to the normalizing condition of Eq.
(2.3.2), a simplified equation is obtained

(' = a~Jy, y) - (d~Jy, y) (2.3.7)

For precise proof of this result, see Corollary 2.5.1 (Section 2.5).
This result, obtained with little effort, forms the foundation of a large body

of work on structural optimization with constraints on eigenvalues. It is a
remarkably simple result, showing clearly that the directional derivative of
the eigenvalue is indeed linear in bu since the variations of the bilinear forms
on the right side of Eq. (2.3.7) are linear in bu. It should be emphasized,
however, that validity of this result rests on the existence of variations of the
eigenvalue and eigenfunction defined in Eq. (2.3.4). As will be seen in the
following, formal extension of this analysis to repeated eigenvalues would
lead to an erroneous result.

REPEATED EIGENVALUES

Consider now a situation in which an eigenvalue ( has associated with it s
linearly independent eigenfunctions, that is,

aJl, y) = (du(yi, y)

du(yl, l) = 1,

for all y E Z,
i = 1,... , s (2.3.8)

It is an easy exercise to show that any linear combination of eigenfunctions of
yi of Eq. (2.3.8) is also an eigenfunction. Therefore, an infinite variety exists
of choices for the basis of the eigenspace associate with the repeated
eigenvalue (. One practical limitation on the family of eigenfunctions
employed is to require that they be orthonormal with respect to the bilinear
form dJ ., .), that is,

i.j = 1, ... , s (2.3.9)
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It is presumed throughout this text that such an orthonormalization of
eigenfunctions corresponding to a repeated eigenvalue has been carried out.
Nonetheless, there still remains an infinite choice of such families.

It is shown by Theorem 2.5.1 (Section 2.5) that the repeated eigenvalue' is
a continuous function of design, but that the eigenfunctions are not. While
the eigenvalue is continuous, it is shown not to be Frechet differentiable, but
only directionally differentiable (Appendix A.3). It is shown by Theorem
2.5.2 and Corollary 2.5.2 (Section 2.5) that at a design U for which the
eigenvalue' is repeated s times, for a perturbation of design to U + r bU, the
eigenvalue may branch into s eigenvalues given by

i = 1, ... , s (2.3.10)

where the directional derivatives ';(u, bU) are the eigenvalues of the matrix

A = [a~u(yi, yi) - 'd~u(yi, yi)]s x s (2.3.11)

The notation ';(u, bU) is selected here to emphasize dependence of the
directional derivative on bu. The term o(r) in Eq. (2.3.10) is defined as a
quantity that approaches zero more rapidly than r [i.e., lim,-+o o(r)/r = 0].
All the characteristics of repeated eigenvalues discussed in Section 1.3.6 hold
true in the distributed-parameter case. Moreover, the directional derivatives
of twice-repeated eigenvalues are given in Eqs. (1.3.59) and (1.3.60), which is
rewritten here as

I ~ 2'1 (U, bU) = JIll = cos ¢(bU) .,Hll (bU)

+ sin 2¢(bu) Adbu) + sin? ¢(bU) A 22(bu)

';(u, bU) = A22 = sin? ¢(bU) All(bU)

- sin 2¢(bU) A 12(bu) + cos! ¢(bU) AdbU)

where ¢ is the rotation parameter, given as

,I. ,1.( ~) 1 t [ 2AdY!' y2, bU) ]
'f' = 'f' uU = - arc an 1 1 2 2

2 All (y ,y ,bU) - A 22(y ,y , bU)

and AiibU) is the component of the matrix A given in Eq. (2.3.11).

(2.3.12)

(2.3.13)

(2.3.14)

2.3.2 Analytical Examples
of Eigenvalue Design Sensitivity

To illustrate the preceding results, design sensmvity analysis of the
eigenvalue problems presented in Section 2.1.2 are now studied. Numerical
considerations in the use of the resulting formulas will be discussed in Section
2.3.3.
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(2.3.15)

(2.3.16)

VIBRATION OF A STRING

Consider the string of Fig. 2.1.5, with variable mass density h(x) and
tension f. The energy and mass bilinear forms of Eq. (2.1.48) are

aJy, y) = f f YxYx dx

du(Y, y) = f hyy dx

Variations of these bilinear forms yield

a~u(Y, y) = stf YxYx dx

d~u(Y, y) = f t5h yy dx

Since for Sturm-Liouville problems only simple eigenvalues can occur
[23J, only the variation of a simple eigenvalue is of interest. Direct
application of Eq. (2.3.7), with Eq. (2.3.16), yields

c = [f (yY dxJ st - (f y2 t5h dx (2.3.17)

It is interesting to note that since the coefficient of the variation in string
tension is positive, it is clear that the frequency increases with increasing
tension. Similarly, since the coefficient of the variation t5h in mass density of
the string is positive, any increase in density decreases the frequency of
vibration. While both of these results are obvious on an intuitive basis, a plot
of (y(x)f for a uniform string ho = 2.0- and t; = 1.0 (Fig. 2.3.1) shows that a
unit increase in h(x) near the center of the string has substantially more effect
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Fig. 2.3.1 Firsttwo eigenfunctions of vibrating string.
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on the smallest eigenvalue than unit increases elsewhere in the string. Thus,
an indication is obtained of the most profitable areas for changing design.

VIBRATION OF A BEAM

For the beam with variable cross section, Young's modulus, and mass
density (shown in Fig. 2.1.6), the strain and kinetic energy bilinear forms of
Eq. (2.1.51) are

au(y, y) = f Eah2yxxYxx dx

du(y, y) = pf hyy dx

The design variations of these bilinear forms are

a~u(Y, y) = st:f ah2Y;r;;r;Y;r;;r; dx +f 2Eah bh Y;r;;r;Yxx dx

d~U<y, y) = bpf hyy dx + pf bh YY dx

For a simple eigenvalue, Eq.(2.3.7), with (Eq. 2.3.19), yields

c= [f ah2(Y;r;;r;f dxJ st: - [(f hy2 dxJ bp

+f [2Eah(yxY - ( py2Jbh dx

(2.3.18)

(2.3.19)

(2.3.20)

As in the static response case, the sensitivity formula of Eq. (2.3.20) is valid
for other boundary conditions in Eqs. (2.1.16)-(2.1.18). This result clearly
shows that increasing Young's modulus increases natural frequency, and
increasing the density of material decreases the natural frequency, both of
which are clear physically. However, since the coefficient of bh in the integral
may have either sign, it is not clear how a change in cross-sectional area will
influence natural frequency of vibration. Consider, for example, a uniform
cantilever beam (Fig. 2.3.2) and nominal properties E = 2 X 105 MPa,

Fig.2.3.2 Uniform cantilever beam.
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oc = i, p = 7.87 Mg/m ', and h = 0.005 m2
• For this case, the smallest

eigenvalue is , = 0.00157, and the eigenfunction is

[ h
cos kn + cosh k; . . ]

y(x) = 0.159 cos k,»: - cos k;» - . k . h k (sinh knx - sm knx)
sm n + sm n

where k1 = 1.875, k2 = 4.694, .... Evaluating the coefficient of c5h in the
integral of Eq. (2.3.20), a curve is obtained of the form shown in Fig. 2.3.3.
The design sensitivity coefficient of Fig. 2.3.3 shows that a unit change in
cross-sectional area at the clamped end of the beam has substantially more
effecton the smallest eigenvalue than a unit change at the free end.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X

Fig. 2.3.3 Design sensitivity coefficient of oh for cantilever beam.

BUCKLING OF A COLUMN

Consider now the problem of buckling of a column, with design variables
being the distribution of cross-sectional area along the column and Young's
modulus of the material. The energy and geometric bilinear forms of Eq.
(2.1.53) are

a.(y, y) = f Eoch2yxxYxx dx

d.(y, y) =fYxYx dx

The variations of these bilinear forms are

a~.(y, y) = c5Ef och2yxxYxx dx +f 2Eoch c5h YxxYxx dx

d~u(Y, y) = 0

(2.3.21)

(2.3.22)
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The variation of the buckling load for a simple eigenvalue is given by Eq.
(2.3.7), with Eq. (2.3.22), as

(' = [f CLh 2(Yxx)2 dxJ se +f [2ElXh(Yxx)2] c5h dx (2.3.23)

Clearly, increasing Young's modulus increases the buckling load, and any
increase in cross-sectional area similarly increases the buckling load. Both of
these results are to be expected.

Consider, for example, the clamped-clamped column of Fig. 2.1.7, with
uniform cross section, ho = 0.005 m', a = !" and E = 2 X 105 MPa. A plot
of the first and second mode shapes and their second derivatives is shown in
Fig. 2.3.4a. Using these functions, the coefficient of c5h may be evaluated in
the integral of Eq. (2.3.23), obtaining the curve shown in Fig. 2.3.4b. Note
that to redistribute material in the column to increase the buckling load in
the first mode, material in the vicinity of points a and c, where the sensitivity
coefficient of i5h for (1 is zero, may be removed and the material added at
point b, or at the ends, where the sensitivity coefficient is a maximum. This
process, however, may decrease the buckling load in the second mode since
its sensitivity coefficient IS positive at points a and c and zero at point b. In
fact, it has been shown by Olhoff and Rasmussen [18] and others that when
attempting to maximize the fundamental buckling load for a clamped-
clamped column, systematic occurrence of a repeated eigenvalue may be
forced, much as shown in the examples presented in Section 1.3.5. It is
therefore of interest to obtain expressions for the directional derivatives of
this column for a repeated eigenvalue.

If yl and y2 are eigenfunctions corresponding to a repeated eigenvalue,
then from Eq. (2.3.11),

"'Iij = f 2ElXhY~xy1x i5h dx (2.3.24)

where the effect of variation of Young's modulus has been suppressed. Note
that if attention is limited to designs h(x) that are symmetric about the center
of the column and if bh(x) is symmetric about the center, then as indicated in
Fig. 2.3.4a, the second derivatives of the first and second eigenfunctions will
be symmetric and anti symmetric, respectively, about the center of the
column. Thus, the product h e5h Y~x is an even function about the center and
Y;x is an odd function about the center. Therefore, .fl12 = O. Since this is true
for all design variations in the class of designs that are symmetric about the
center, the directional derivatives of the repeated eigenvalue for symmetric
columns are given by Eq. (2.3.28), with symmetric and antisymmetric modes
yl and y2. Since the resulting expression is linear in the design variation, this
shows that the repeated eigenvalues, ordered by symmetric and anti-
symmetric modes, for symmetric columns are differentiable and that the
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(2.3.25)

derivatives may be obtained by using symmetric and antisymmetric modes in
the simple formula of Eq. (2.3.23).

On the other hand, if asymmetric designs are allowed, A l2 in general will
not be zero, and indeed the eigenvalue is only directionally differentiable and
not Frechet differentiable. In this case, the angle of rotation required is
obtained from Eq. (2.3.14) as

1 [2 J~ hy;xY;x (jh dx ]
¢((jh) = 2arctan J~ h[(y;Y - (Y;x)2] (jh dx
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(2.3.27)

(2.3.28)

i.] = 1,2 (2.3.29)

The directional derivatives of the repeated eigenvalue are then given by Eqs.
(2.3.12) and (2.3.13) as

"l(h, c5h) = 2Eaf h[cos.2 cjJ(c5h)(y~X>2 + sin 2cjJ(c5h) y~xY;x

+ sin? cjJ(c5h)(Y;x)2] c5h dx .
(2.3.26)

'~(h, c5h) = 2Eaf h[sin 2 cjJ(c5h) (Y~x)2 - sin 2cjJ(c5h) y~xY;x

+ cos" cjJ(c5h) (Y;x)2J c5h dx

It is clear from this equation that the directional derivatives of the repeated
eigenvalues in general are not linear in c5h, hence they are not differentiable.

VIBRATION OF A MEMBRANE

Consider a vibrating membrane with variable mass density h(x) and f as
design variables. Without repeating the definition of the energy and mass
bilinear forms of Eq. (2.1.56), write the first variations of these bilinear forms,
evaluated at y = y, as

, ~f.I 2 2abu(y, y) = c5T n(Yl + Yl) dO.

d~u(Y, y) = ft i c5h dO.

For a simple eigenvalue, Eqs. (2.3.7) and (2.3.27) yield

" = stfI (yi + yD dO. - , fI y2 c5h dO.

As in the vibrating string problem, it is clear that the frequency increases with
increasing tension and decreases with increasing density.

For the repeated eigenvalue case [42], if yl and y2 are eigenfunctions
corresponding to a repeated eigenvalue', then from Eq. (2.3.11)

.Aij = sifIVyi
T

vyi dO. - , fI yiyi c5h dO.,

The angle of rotation required is obtained from Eqs. (2.3.14) and (2.3.29) as

c5h 1 [ 2[c5fHnVylT Vy2 dO. - 'fSnyly2 c5h dO.] ]
cjJ( ) = 2arctan srH[(Vyl)2 - (Vy2)2] dO. - 'fSn[(yl)2 - (y2)2] c5h dO.

(2.3.30)
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The directional derivatives of the repeated eigenvalue are then given by Eqs.
(2.3.12) and (2.3.13) as

"I (u,bu) = stf1 [(Vyl)2 COS
2¢(bu) + (Vyl TVy2) sin 2¢(bu)

+ (Vy2)2 sin 2 ¢(bu)] dO.

-,f1 [(yl)2 cos'' ¢(bu) + (yly2)sin 2¢(bu)

+ (y2)2 sin2<t>(bu)] bh dO.

f
'r (2.3.31)

C2(U, bu) = 151' In[(Vyl)2 sirr' ¢(bu) - (VylTVy2) sin 2¢(bu)

+ (Vy2)2 cos? ¢(bu)] dO.

- Cf1 [(yl)2 sin? ¢(bu) - (yly2) sin 2¢(bu)

+ (y2)2 cos'' ¢(bu)] bh dO.

VIBRATION OF A PLATE

Consider, as a final example, the variable thickness vibrating plate of Fig.
2.1.8, with thickness variation h(x), Young's modulus E, and mass density p
as design variables. Without repeating the definition of the energy and mass
bilinear forms of Eq. (2.1.59), the first variations of these bilinear forms,
evaluated at y = y, may be written as

adu(y, y) = 12(115: v2) f1 h
3[Y;1 + 2VYl1Y22 + y~2 + 2(1 - V)Y;2] dO.

+ 4(1 : v2) f1 h
2[Y;1 + 2VYl1Y22 + Y~2 + 2(1 - V)Y;2] bh dO.

d~u(Y, y) = bpf1 hy2 dO. + pf1 y2 bh dO. (2.3.32)

The derivative of a simple eigenvalue is therefore given by Eq. (2.3.7) as

" = {12(1 ~ v2) f1 h
3[Y;1 + 2VYl1Y22 + Y~2 + 2(1. V)Y;2] dO.} se

- [C f1 hy? dO.] bp

II { Eh2 2 2 2 2} d+ n 4(1 _ V2)[Yl1 + 2VYl1Y22 + Y22 + 2(1 - V)YI2] - 'PY bh 0.

(2.3.33)
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It is clear that increasing Young's modulus increases natural frequency,
and increasing density decreases natural frequency, as is expected intuitive-
ly. The effect of a thickness variation, however, is not obvious, since
the coefficient of (jh in the integral may be either positive or negative. Nu-
merical examples of the effectof thickness variation are considered in Section
2.3.4.

For the repeated eigenvalue case [43], if yl and y2 are eigenfunc-
tions corresponding to a repeated eigenvalue (, then as in the membrane
problem, Eqs. (2.3.12) and (2.3.13) give the directional derivatives of the
repeated eigenvalues, where the rotation parameter <p is given by Eq.
(2.3.14) and

i,j = 1,2

(jE II 3' .. . ..
ultjj = 12(1 _ v2) n h [(Y~l + VY~2)Yfl + (Y~2 + VY~1)Y~2

+ 2(1 - V)yi2Y{2] dO.

+ 4(1 : v2) fL h
2
[M l + VY~2)Y{1 + (Y~2 + Vyil)y42

+ 2(1 - V)yi2yL] (jh dO.

- ([(jp fL hyii dO. + p fLyiyl (jh dO.J,
(2.3.34)

2.3.3 Numerical Considerations

Numerical aspects of evaluating design sensitivity formulas in Eq. (2.3.7)
for the simple eigenvalue, or Eqs. (2.3.12) and (2.3.13) for the repeated
eigenvalue case, follow the same pattern as considerations presented in
Section 2.2.4 on computational aspects of static design sensitivity. In the case
of conservative eigenvalue problems, however, the attractive feature arises
that an adjoint variable need not be calculated as the solution of a separate
problem. This feature of the eigenvalue problem allows direct computation of
design sensitivity once the analysis problem has been solved. It may be noted
that for nonconservative problems this is not the case [43, 44].

Much as in the case of static response presented in Section 2.2.4, the design
can be parameterized and explicit design derivatives of eigenvalues obtained
with respect to design parameters. Since the functionals arising in the present
formulation are identical to those appearing in Section 2.2, the reader is
referred to Section 2.2.4 for details on numerical aspects of evaluating
parameterized design sensitivity.
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2.3.4 Numerical Examples

PLATE

Consider application of Eq. (2.3.33) to account for the effect of variations
in plate thickness on natural frequency of the plate. As an example, a
clamped square plate of dimension 1 m and uniform thickness h = 0.05 m,
with E = 200 GPa, v = 0.3, and p = 7870 kg/rrr', is considered. For the
given design, the eigenvalue is , = 0.3687 X 106 (rad/secj'. If thickness of the
plate is considered as a design variable and piecewise-constant thickness is
assumed, as in the plate example in Section 2.2.5, then Eq. (2.3.33) can be
rewritten as

"= jtJft{4(1E~fV2)[Yil + 2VYllYU + Y;2 + 2(1- V)yi2]

- 'Py2
} dO] Jb j (2.3.35)

As in the plate example in Section 2.2.5, a nonconforming rectangular
plate element with 12 degrees offreedom is used. The graph of the coefficient
of Jb; presented in Fig. 2.3.5 shows how addition or deletion of material
effects the eigenvalue. The maximum value of the coefficient of Jb j is
Amax = 7.949 X 106 at the middle of edge elements, while its minimum value
occurs at the corner elements, with the value Amin = 3.365 X 103

• Thus, in
order to increase the eigenvalue most effectively, material should be removed
from the vicinity of the four corners and added to the middle of the four
edges.

Fig. 2.3.5 Eigenvalue sensitivity A for plate.
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2.4 FRECHET DIFFERENTIABILITY
OF THE INVERSE STATE OPERATOR
WITH RESPECT TO DESIGN

The purpose of this section is to prove that the inverse state operator,
hence the solution of the equations of structural mechanics, is differentiable
with respect to design. This section and Section 2.5 are more mathematically
technical than others in the text. They are intended for the mathematician or
mathematically oriented engineer who loses sleep worrying about technical
matters such as differentiability. The engineer interested only in using the
methods and results of Sections 2.2 and 2.3 need not go through the details of
this section.

2.4.1 Differentiability of Energy Bilinear Forms

In each of the problems of Section 2.1.1, a displacement state variable
z(x; u) is determined as the solution of an operator equation of the form

Z E D(Au) (2.4.1)

where D(Au) is a subspace of an' appropriate Sobolev space Z that is defined
by boundary conditions of the problem: H~(o') for the beam and plate with
Dirichlet boundary conditions and H~(o') x H~(o') for the fixed boundary,
plane elasticity problem. More generally [35], the subspace Z of the
appropriate Sobolev space consists of 'those displacement fields that satisfy
kinematic boundary conditions and not necessarily natural boundary conditions
[32]. The subspace D(AJ, called the domain of the operator Au' is just the
restriction to z E Z such that Auz E L2(0,). The forcing functionJ is in L2(0,).
In each problem of Section 2.1.1, the following properties hold:

1. The domain D(Au) is a subspace of a Sobolev space Z, inheriting its
scalar product and norm.

2. The domain D(Au) is a subspace of L2(0,), and by the Sobolev imbedding
theorem [36, Theorem 5.4], the identity operator from D(AJ into I3(0,) is
compact.

3. The operator Au: D(Au) -> L2(0,) is self-adjoint and strongly elliptic; that
is, there is a constant y > 0 such that

(Auz, z) ~ y liz Iii for all z E D(Au)

This property holds for all values of design variables and domains under
consideration.
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Under these hypotheses, it was proved by Aubin [9J that the solution of
Eq. (2.4.1) is the unique solution of the variational (or virtual work) equation

for all Z E Z (2.4.2)

where au(', .) is the symmetric energy bilinear form that defines the Friedrichs
extension Au of the formal operator Au of Section 2.1.1. It is also the virtual
work of the internal forces associated with the displacement field Z E Z due
to a virtual displacement Z E Z.

THEOREM 2.4." (Differentiability Theorem for Bilinear Forms) Let au(z, z) ==
aJz) be the energy quadratic form associated with au(', .) (twice the strain
energy due to z E Z). Each bilinear form au( ' , .) of Section 2.1.1 is Frechet
differentiable with respect to u, in the sense of relatively bounded per-
turbations; that is, the Frechet differential of au( " .) is a linear form a~u( " .) in
c5u such that with a~u(z) == a~u(z, z),

for all small II c5u II (2.4.3)

where eI(U) is a constant that depends on u,and with the remainder defined as

the bound

la~u(z)1 ;5; e2(u, c5u) Ilc5ull au(z)

is valid, with e2(u, c5u) ~ 0 as Ilc5ull ~ o.

(2.4.4)

(2.4.5)

PROOF To prove the theorem, each structural component is considered
individually.

Beam. Consider the beam with admissible design space

U = {u = [E hJT E R x LOO(Q): E ~ Eo > 1, h(x) ~ ho > 0 a.e. in (0, I)}

A formal first variation calculation, as in Eq. (2.2.18), yields

a~u(z, z) = (c5E)etf h2zxxzxxdx + e«f 2h c5h zxxzxx dx (2.4.6)

With IIc5ull = Ic5EI + Ilc5hllv", one has

la~u(z)1 ;5;L[Eetf h2(zxx)2 dxJ Ic5EI

+ :Jz«fh
2(zxxf

dx}c5h llv>c ;5; max(L' :J Ilc5ull au(z)
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Writing the remainder term of Eq. (2.4.4),

la~u(z)1 = IIXf [E(oh)2 + 2st: h oh + se(<5h)2](zxJ2dXI

[
11(Oh)21ILOO 21oEIllohilLoo IOEIII(bh)21IL"'] Ii E h2( )2 d

~ h2 + E h + E h2 IX Zxx X
o 00 00 0

~ IIjhllL"C[21Ibh~IILOO + i<5:
'
]a

U
(Z)

o 0 0

if Ilbull < 1 and Eo > 1. Finally,

la~u(z)1 s 211bhliLoo max(:~, E:hJ Iioull au(z)

This establishes Eqs. (2.4.3) and (2.4.5), since

2/lohl/u -<o max(:~, E
0

1hJ ~ 0 as Iioull ~ 0

Plate. Consider the plate with admissible design space

U = {u = [E h]T E R x LOO(Q): E ~ Eo > 0, hex) ~ ho > 0 a.e. in Q}

A formal variational calculation, as in Eq. (2.2.50), leads to

X [Zl1Zl1 + V(Z22Z11 + Z22Z11) + Z22Z22 + 2(1 - V)Z12Z12] dQ
(2.4.7)

with Iioull = 10EI + IlohllLoc, and since au is linear in E,

la~u(z)1 ~ max(L' :Jau(z) Iioull

and

la~u(z)1 = III 12(1 ~ v2) [3Eh(oh)2 + E(Oh)3 + 3h2oh se

+ 3h [)E (bh)2 + se(Oh)3]

x [(Zl1)2 + 2VZ22Z 11 + (Z22)2 + 2(1 - v)(z12 f ] dQI

~ (C Ilohlll",)au(z)

~ C IlbhllLoo IIbull au(z)
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for sufficiently small II15ull. Since II15hII L oO -. Oas II15ull -.0, Eqs. (2.4.3) and
(2.4.5) are verified.

Plane Elasticity. Consider a plane elastic slab with admissible design
space V = {u = hE L"'(Q): h(x) ~ ho > 0 a.e. in Q}. A formal variational
calculation, as in Eq. (2.2.74), leads to

a~u(z, z) = II [. t aii(z)eii(z)] 15h dQ
Q 1.)=1

, 1
ladu(z)1 ~ h II15h II LoO au(z)

o

(2.4.8)

so Eq. (2.4.3) holds. Also, since au(z) is linear in u, a~u(z) = 0, and Eq. (2.4.5)
holds trivially. This completes the proof. •

In Section 2.1.1 and above, the consistency of operator and bilinear
functional properties for a class of structural systems governed by linear
elliptic boundary-value problems is apparent. In the next section, these
properties are used to prove that the inverse operator associated with Eq.
(2.4.1) is Frechet differentiable (Appendix A.3) with respect to the design
vector u.

2.4.2 Differentiability of Inverse State Operator

THEOREM 2.4.2 (Frechet Differentiability of the Inverse State Operator) Let
the operator Au and bilinear form au( ' , .) correspond through the identity

(2.4.9)

for all z E D(A u) and all Z E Z, where the space Z is dense in e(Q). Further,
let

(2.4.10)

for')' > 0 and for all z E Z. Let a~u(z) be the Frechet differential of au(z) with
respect to u, with the property

(2.4.11)

where e1(u) is a constant that depends on u, and let a~u(z) be the remainder
term with the property

la~u(z)1 = lauH.(z) - au(z) - a~u(z)1

~ e2(u, 15u) II15ull a.(z) (2.4.12)
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where e2(u, <5u) - 0 as II<5ull - O. Then the Frechet derivative of Au-
1 with

respect to u exists and is given as

(2.4.13)

where the self-adjoint and invertible operator G; and continuous operator
C1(u, Ciu) are defined as part of the proof that follows.

PROOF As a result of Eq. (2.4.10) (Kato, [13], Thm. V.3.35), there is a
nonnegative, self-adjoint invertible operator G; (the square root of Au) such
that G;G; = Au and

(2.4.14)

The domain of Gu is exactly the domain of the bilinear form au( · ' .), which
contains D(A u) ' Further, as a result of Eqs. (2.4.11) and (2.4.12) and Lemma
VI.3.1 of Kato [13], there are continuous operators C1(u, Ciu) and C2(u, Ciu)
from L2(Q) into L2(Q) such that

a~u(z, z) = (C1(u, <5u)Guz, Guz)

a~.(z, z) = (C2(u, <5u)Guz, Guz)

(2.4.15)

(2.4.16)

(2.4.17)

where C1(u, <5u) is linear in bU, since a~u(z, z) is linear in bU, and the norms of
C1(u, bU) and C2(u, bu) are bounded by

IIC1(u,ou)11 s e1(u)IICiull

IIC2(u, bu)11 s e2(u, Ciu) Ilbull

Note that for every z in the domain of AuH u'

= ((Gu + C1Gu + C2Gu)z, Guz)

= (GuU + C1 + C2)GuZ, z) (2.4.18)

for all Z E Z, where the arguments of the operators C1(u, bU) and C2(u, Ciu)
have been suppressed for notational convenience. Since Z is dense in I!(Q)
and from the definition of Z, t

(2.4.19)

Since

t From Eq. (2.4.18), D(A. H . ) c D(G.u + C1 + C2)G.), but Ao+~. is defined to be the
maximal operator such that the first equality in Eq. (2.4.18) holds. Thus, the domains are in fact
equal.
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for sufficiently small IIJull, I + C1 + C2 has an inverse. Thus,

A;;bu = Gu-
1(1 + C1 + C2)-lGu-

1 (2.4.20)

Note that

Au-+
1
bu - Au-

1 + Gu-1Cl1Gu-1 = G;l[(I + C1 + C2)-1 -1]Gu-
1

+ G;lC1G;1 (2.4.21)

Thus

IIA;;bu - A;l + Gu-1C1Gu-111 ~ IIGu-
111 211(1 + C1 + C2)- 1 - 1+ C111

(2.4.22)

Manipulating and applying the triangle inequality,

11(1 + C1 + C2)- 1 - I + C11I = 11(1 + C1+ C2)- 1 - I + C1+ C2 - C2 11

~ 11(1 + C1+ C2)- 1 - 1 + C1 + C211 + IIC211

(2.4.23)

For IIJull sufficiently small, IIC1+ c2 11< t, and the theory of Neumann
series [13] can be applied to obtain the bound

11(1 + C + C )-1 - 1 + C + C II < IIC1+ C211
2

1 2 1 2 - 1 - IIC1+ C2 11

~ 211C1+ C2 11
2

The triangle inequality now yields

11(1 + C1 + C2)- 1 - 1 + C1 + C211 s 211Cl 11
2 + 411C11111C2 11 + 211C211

2

(2.4.24)

Thus, Eqs. (2.4.11), (2.4.12), (2.4.16), (2.4.21), and (2.4.23) yield

II A;+lbu - A;l + Gu-
1C

1(U,JU)G;111

~ IIGu-
1112{2[ei(u) + 2e1(u)e2(u,Ju) + e~(u,Ju)JIIJuIl2 + e2(u,Ju)IIJull}

(2.4.25)

= IIGu-1112{2[ei(u) + 2e1(u)e2(u,Ju) + e~(u,(ju)] IIJuli + e2(u,Ju)} IIJuli

== e3(u, Ju) IIJul1 (2.4.26)

and e3(u, Ju) ~ 0 as IIJul1 ~ O. Thus, A; 1 is Frechet differentiable, with the
differential -Gu-

1C
1(U, Ju)G;; 1, and the proof is complete.•

2.4.3 Differentiability of Static Response

As shown in Section 2.1.1, the solution of the structural equation is

z(x; u) = A; 1f(u) (2.4.27)
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where f E L2(n ). Theorem 2.4.2 establishes differentiability of A; 1. If f
depends on u in a differentiable way, then the product rule of differentiation
establishes differentiability of z. Since f(u) is a mapping from the space of
designs,f(u) is Frechet differentiable if there exists a mapping jj, that is linear
in c5u and

IIf(u + c5u) - f(u) - f;uIIu :s; e4(u, c5u) Ilc5ull (2.4.28)

where e4(u, c5u) ~ 0 as Ilc5ull ~ o.
To see that load dependence can be Frechet differentiable, consider the

self-weight loads on the beam in Eq. (2.2.15) and on the plate in Eq. (2.2.41),
both of the form

f(u) = F(x) + yh(x) (2.4.29)

(2.4.30)

where u = h. Formally, one obtains the first variation as

f;h = :r [F + y(h + r c5h)] 1,=0 = y c5h

To see that Eq. (2.4.28) is satisfied, note that

Ilf(h + c5h) - f(h) - f;hll = IIF + y(h + c5h) - F - yh - y c5hll = 0

The chain rule of differentiation establishes the following result.

THEOREM 2.4.3 (Frechet Differentiability of Static Response) Let the oper-
ator Au and associated energy bilinear form au(', .) satisfy the hypotheses of
Theorem 2.4.2, and let f(u) be Frechet differentiable. Then z(x; u) is Frechet
differentiable, with differential

, A-1'f+A-11"z = ou u }ou

= -Gu-lCl(U,c5u)Gu-lf + A;lf;u (2.4.31-)

where operators G; and C1 are defined in the proof of Theorem 2.4.2.

The importance of this result is theoretical at this point, since the explicit
forms of Gu' G;; 1, and C1(u, c5u) are not known and in fact may not be readily
computable. Computation of explicit design derivatives of functionals in-
volved in a variety of structural problems is carried out using the adjoint
variable method in Section 2.2.2. An alternative derivation is given in Section
2.4.4.

An extension of the results presented here to forcing functionsf(x) that are
not in L2(n ) is presented by Haug and Rousselet [46]. This is of value for
problems in which applied loads are modeled as concentrated loads and
moments. These forcing functions must be viewed as distributions, or
bounded linear functionals, acting on displacement fields in HMn) or H5(n).
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These spaces of distributions are denoted H-i(Q) and H- 2(Q), so the
operators Au must be viewed as mappings from Hi(Q) to H-i(Q) (i = 1 or 2).
While the analysis presented by Haug and Rousselet [46] for this extension is
technically more complex, the same results proved here for j E L2(Q) are
shown to be valid. For illustrations, see Section 2.2.3.

2.4.4 An Alternative Derivation
of Design Sensitivity

Consider a typical functional

t/J = t/J(u, z) (2.4.32)

that is a differentiable mapping from U x Z into the reals, where the L2

Hilbert space structure is employed on U and Z. The differential of t/J is

t/J' = (t/Ju,tiu) + (t/Jz'z')

Using the result of Eq. (2.4.31),

t/J' = (t/Ju' tiu) - (t/Jz, Gu-iCi(U, tiu)G; if) + (t/Jz' A; ij;u)

(2.4.33)

Using self-adjointness of Gu and the fact that GuGu = Au, manipulation yields

tit/J = (t/Ju' tiu) - (Gu-it/Jz' Ci(u, tiu)Gu-if) + (Gu-it/Jz' Gu-ij;u)

= (t/Ju' tiu) - (GuA; 1t/Jz , Ci(u, tiu)GuA; if) + (Gu-1Gu-it/Jz,f;u)

= (t/Ju' <5u) - (GuA; 1t/Jz , Ci(u, tiu)Guz) + (A;; it/Jz,f;u) (2.4.34)

Defining A; it/Jz =), or equivalently, A as the solution of the adjoint
equation

Au) = t/Jz

and using Eq. (2.4.15), Eq. (2.4.34) may be rewritten as

t/J' = (t/Ju' tiu) - a~u(z, ).) + V,f;u)

(2.4.35)

(2.4.36)

which is written explicitly in terms of tiu. Since the load functional in Section
2.1.1 is lu(z) = (f(u), z), then I~J)) = (f;u' A), and Eq. (2.4.36) is exactly the
same as the result obtained in Eq. (2.2.14) by a different approach.

2.5 DIFFERENTIABILITY OF EIGENVALUES

Consider now the variational eigenvalue problem with an eigenvalue' that
is repeated m times; that is, there exist yi E Z (i = 1, ... , m) such that

for all y E Z, j = 1, ... , m (2.5.1)
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and
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du(yi, yj) = bij' i, j = 1, ... , m (2.5.2)

where bij = 1 if i = j and bij = 0 if i #- j.
It is clear that changing u changes' = ((u). The question addressed here is

twofold: How regular is 'as a function of u? And how can derivatives of' be
calculated, presuming they exist?

2.5.1 Differentiability of Energy Bilinear Forms

Differentiability of the bilinear form au(Y, y) for the beam, plate, and plane
elasticity operators is demonstrated in Section 2.4, where formulas for the
differential a~u(Y, y) are given. These derivations may be easily repeated for
au( ., .) associated with the string and membrane and for du( ., .) in each of the
examples discussed in Section 2.1.2. Formulas for a~b, y) and d~u(Y, y) are as
follows:

Vibrating string, u = [h(x) t:F:

a~u(Y, y) = stfYxYx dx (2.5.3)

d~u(Y, y) = f (bh) yy dx (2.5.4)

Vibrating beam, u = [h(x) E p]T:

a~u(Y, y) = (bE) afh2yxxyxx dx + e«f 2h (bh) YxxYxx dx (2.5.5)

d;'u(y, y) = bpf hyy dx + pf (bh) yy dx (2.5.6)

Buckling column, u = [h(x) E]T:

a~b, y) = (bE) o:f h2yxxyxx dx + s«f 2h (bh)YxxYxx dx (2.5.7)

d~u(Y, y) = 0 (2.5.8)

Vibrating membrane, u = [h(x) f]T:

a~u(Y, y) = stfI (YtYl + Y2Y2) dO

d~u(Y, y) = fI (bh) yyO

(2.5.9)

(2.5.10)



158 2. DISTRIBUTED-PARAMETER STRUCTURAL COMPONENTS

Vibrating plate, U = [h(x) E p]T:

f.I [ h3 ~E Eh2 ~h ]
a~u(Y, Y) = n 12(1 - v2) + 4(1 - v2)

X [YllYll + V(Y22Yll + YllYn) + Y22Y22

+ 2(1 - v)Y12Y12] dO

d~u(Y, Y) = ~p Ifhyy su + pII (~h) YYdO

(2.5.11)

(2.5.12)

Apart from the algebraic structure of the bilinear forms and their
differentials, the mathematical properties of each of the examples is the same.
Eigenvalue differentiability is proved using only a common set of operator
theoretic properties. The result is applicable to each of the examples
discussed here and to any other problem that can be put in the same
variational form. As shown by Fichera [35], virtually all problems of linear
elasticity fall into this category, as do many other partial differential
equations arising in mathematical physics.

The eigenvalue problem is stated in variational form in Eqs. (2.5.1) and
(2.5.2). In order to bring to bear powerful results on perturbation of linear
operators [13], it is helpful to state the eigenvalue problem in an equivalent
operator form. Let Au and B; be Friedrichs extensions of the formal
operators Au and Buintroduced in Section 2.1.2, defined by

(AuY, y) = au(Y, y)

(Buy, y) = du(Y, y)

for all Y E Z

for all Y E Z
(2.5.13)

(2.5.14)

where D(A u) c D(Bu) is the domain of the operators. With these operators,
the eigenvalue problem of Eqs. (2.5.1) and (2.5.2) can be equivalently written
as

i = 1, .. . ,m

(Buyi
, yl) = ~ij' i,j = 1, j = 1,... , m

Using the foregoing formulas, it was shown in Section 2.4 that the inverse
A; 1 of operator Au, as a mapping from u to an element of gj(L 2),t is Frechet
differentiable with respect to design. In all examples except the buckling
column, the operator B; is in gj(L2)and is trivially Frechet differentiable with
respect to design, so that A;1B; is Frechet differentiable. The operator B;
associated with the column requires a separate analysis, which was presented
by Haug and Rousselet [46].

t ~(L 2) denotes the space of bounded operators from U into U.
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2.5.2 Regularity of the Operator
versus Regularity of the Eigenvalues

The repeated eigenvalues occurring in Chapter 1 and the following matrix
example (borrowed from Kato [13J), show that analysis of regularity of
eigenvalues needs some care and precaution. Consider the symmetric matrix

A(X I,X 2 ) = [Xl X2
]

X 2 -Xl

where [Xl X2JT
E R 2

• The matrix A is analytic with respect to [Xl X 2Y
However, the eigenvalues (± = ±Jxi+ X~ are not Frechet differentiable at
[0 OJT, even though A is symmetric. The difficulty arises because A depends
on two real parameters. Putting X 2 = 0, the eigenvalues of A(x I , 0) are found
to be (1 = X 1 and (2 = -Xl' which are analytic functions of X r- The partial
derivatives with respect to Xl of these eigenvalues are 1 and -1. Note,
however, that by selecting (1 = Ixil and (2 = -lXII, «(1' (2) are still equal to
the eigenvalues of A(x I , ofbut they are no longer differentiable at [0 oy

This example shows that more than directional differentiability of repeated
eigenvalues can not be expected, which means that differentiable functions of
a real parameter can be selected that are equal to the eigenvalues of a self-
adjoint operator but which are not differentiable if they are ordered accord-
ing to increasing magnitude. Setting

(as introduced by Kato [13J) this is the weighted mean of a clustered group of
eigenvalues, which is differentiable at zero (the result is general). This latter
property may be considered, together with the fact that eis an approximation
of the two eigenvalues (for small values of the parameter), to be of numerical
interest.

The foregoing considerations suggest first showing the continuity and then
the directional differentiability of the eigenvalues.

2.5.3 Continuity of Eigenvalues

THEOREM 2.5.1 (Continuity of eigenvalues) Let {(I"'" (k} be n eigen-
values (counted with multiplicity such that n ~ k) of the generalized eigen-
value problem of Eq. (2.5.14) [equivalently, Eqs. (2.5.1) and (2.5.2)], with
operators Au and Bu. For every neighborhood W of {(I"'" (k} in the real
line that contains no other eigenvalue, there exists a neighborhood S of u (in
the space U of the design variables) such that for every u + bu E S there are
exactly n eigenvalues of (Au H u ' Bu H u) (counted with their multiplicity) in W.
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PROOF Since the mapping of u ~ A; 1B" is Frechet differentiable, it is also
continuous, in the sense of bounded operators and thus in the sense of
generalized convergence of closed operators (Theorem IV.2.23 of Kato [13J).
Continuity of eigenvalues of A; 1B", as stated in the theorem, then follows
from Section IV.3.5 of Kato [13J. The continuity of the eigenvalues of (A", B,,)
is proved by noting that they are reciprocals of the eigenvalues of A; 1B",
which are never zero. •

2.5.4 Differentiability of Eigenvalues

THEOREM 2.5.2 (Differentiability of Eigenvalues) Let the operator A" have a
bounded inverse that is Frechet differentiable with respect to u E U and let
the operator B"either be bounded and Frechet differentiable with respect to u
or be unbounded with B = B" independent of u and A; 1B bounded. Let «u)
be an eigenvalue of Eq. (2.5.14) [equivalently, of Eqs. (2.5.1) and (2.5.2)J of
multiplicity m. Then the group of m eigenvalues of Eq. (2.5.14) associated
with operators A"u" and B"u" , for lIe5ull small enough, is directionally
differentiable at u in the direction e5u (for any e5u) and there exist repre-
sentations of the eigenvalues 'iu + r e5u) U= 1, ... , m) such that

(J{U + t e5u) = (u) + rqu, bu) + o(r), j = 1, ... , m (2.5.15)

where qu, e5u) = -«((u)frx~{u, e5u) and (x~{U, <5u) are the eigenvalues of

restricted to the subspace of Z that is spanned by the eigenfunctions of eu ;

where c, = A; 1B; and Pu is its spectral projector! associated with
rx(u) = 1/((u). If (iu + t e5u) (j = 1, ... ,m) are the eigenvalues written in
increasing order of magnitude, then Eq. (2.5.15) is valid only for r ~ O.
Moreover, the directional derivative of the smallest eigenvalue is the smallest
of all the directional derivatives of the group of m eigenvalues.

The proof of this theorem is rather technical, involving use of the resolvent
R«(. eu) = (eu - ()-1, for ( in the complex plane, and the Dunford integral
representation. It is given in Section 2.5.5.

COROLLARY 2.5.1 (Frechet Derivative of Simple Eigenvalue) Under the
hypothesis of Theorem 2.5.2, if (u) is a simple eigenvalue, it remains simple
for r small enough (by Theorem 2.5.1) and its derivative at r = 0 is given by

(' = Q~u(Y, Y) - (u)d~u(Y, y) (2.5.16)

t The spectral projector is the operator projecting Z onto the subspace of Z spanned by
eigenfunctions of C. associated with the eigenvalue a(u). Since C. is self-adjoint for the scalar
product d., this projection is orthogonal with respect to d•.
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where y satisfies

AuY = ((u)BuY

(BuY, y) = 1

PROOF Note first that

Au+t~uYu+t~U = ((u + r 15u)Bu+t~uYu+t~U

if and only if
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(2.5.17)

Since Au and B; are self-adjoint, A';- 1B; is self-adjoint for the scalar product
(BuY, y). Thus, for a simple eigenvalue, Pu is the orthogonal projector for the
scalar product (BuY, y) on the line spanned by y; that is, for any y E Z,

Since the range of P; is a scalar multiple of y, it is clear that y is an eigenvector
of PuE(dCu+s~u/ds)s=o]Pu; that is,

Pu[ (1~ Cu+s~u)s=JpuY = )y

Thus, since (BuY, y) = 1, the eigenvalue of PuE(dCu+s oulds)s = 0] Pu, which by
Theorem 2.5.2 is a'(u,15u), is equal to

(X'(u,15u) = (BuPu[(:s Cu+sou)s=JpuY, y)

Now, Eq. (2.4.13) for the derivative of A';-l (i.e., Ai./' = -Gu-1C1Gu-l),
noting that A';- -c, = G';- 1 and that

(d
d Cu+sou) = (Ai./')Bu + (A';-lB~u)
s s=o

leads to the conclusion that, t

a'(u,15u) = (PuC -A';- lGuC1(U,15u)GuA';- 1B; + A';- lB~.Jy, Buy)
(2.5.18)

Now, for all y E Z,

(Pu* BuY, y) == (BuY, Puy) = (BuY, y)(BuY, y) = (BuY, y) = (BuY, y)

t For the buckling problem, a generalization presented by Haug and Rousselet [46] is
employed, but the same result holds.
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and since Z is dense in L2
,

Pu*BuY = BuY

Thus, Eq. (2.5.18) may be written in the form

a'(u, t5u) = ([ - A; IGuC1(U, t5u)GuA; 1B; + A -1 B~uJy, Buy)

= (-GuCl(u,t5u)GuA;IBuy,A;IBuY) + (B~uy,A;IBuY)

Using A; 1Buy = (1/((u»y yields

1 1
a'(u, t5u) = (((U))2 (-GuC1(u, t5u)GuY,y) + ((u) (B~uY, y)

or in terms of design derivatives of the bilinear forms,

a'(u, t5u) = - (((~))2 a~u(Y, y) + ((~) d~u(Y, y)

and Eq. (2.5.16) follows from this last formula, noting that

(' = ('(u, t5u) = _(((U))2a'(U, t5u) •

COROLLARY 2.5.2 (Directional Derivatives of Repeated Eigenvalue) Under
the hypothesis of Theorem 2.5.2, if ((u) is an m-fold eigenvalue of Eq. (2.5.14)
[equivalently, Eqs. (2.5.1) and (2.5.2)], its directional derivatives are the m
eigenvalues of the matrix .H with general term

.Hi} = a~u(yi, yi) - ((u)d~u(yi, yi),

where yi satisfies

i,j = 1,.. . ,m (2.5.19)

A.uy.i = ((U)BUyi,}
i,j = 1,... , m (2.5.20)

(BuY', yJ) = t5u,

PROOF As for simple eigenvalues, Pu is the orthogonal projector for the
scalar product (BuY, y) on the eigenspace associated with ((u) of multiplicity
m, where yi (i = 1, ... , m)denotes a basis of this eigenspace that is orthonor-
mal with respect to the (BuY, y) scalar product. Thus, for any y E Z,

m

Fuy = I (BuY,yi)yi
i= 1

The eigenvalues of the operator Pu[(dCu+s~jds)s=o]Pu must be found to
use Theorem 2.5.2. Note that the range of the operator has dimension m.
Hence, the eigenvector y corresponding to the eigenvalue a'(u, t5u) of the
operator can be expressed as

m

y = I aiyi
j= 1
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where not all of ai are zero. Hence,

~ . [( d ~ ) J' s .:.L- aJPu -d Cu+s~u puyJ = ()('(u, t5u) .L- aJyJ
J=1 8 s=O J=1

Taking the scalar product of Eq. (2.5.21) with Buyi (i = 1,2, ...) gives
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i = 1,2, ... , m

i,j = 1,.. . ,m

(2.5.22)

For the above system of equations to have a nontrivial solution
a = [a1 a2 ••• am]T, ()('(u, t5u) must be an eigenvalue of the matrix N with
components

Nij = (BuPu[(:8 tu+s~u)s=Jpuyi, y}

As for the simple eigenvalue case,

(dd tu+s~u) = -Gu-1Cl(U,t5U)Gu-1Bu + A;; IB:Su
8 s=o

so that

Nij = (BuPu[-Gu-1Cl(U,t5U)Gu-1Bu + A;;IB:SJPuyi,yi)

For all y E Z,

(pu*Buyi,y) = (Buyi,puY)

m

= L (Bui, yi)(BuY, yi) = (BuY, /) = (Y, Buyi)
i=1

so that Pu*Buyi = Buyi, which is clear since Pu is self-adjoint with respect to
the (BuY,y) scalar product. Thus,

Nij = ([-Gu-1Cl(U,t5U)Gu-1Bu + A;;IB:SJy~Buyi)

= (-A;;IGuCl(U,t5u)GuA;;IBuy~Buyi) + (A;;IB:Suyi,Buyi)

Using the self-adjointness of A;; 1 and

A-1B i __1_ i
u uY - (u) Y

yields
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By recalling" = C(u, bu) = _(U)2(X'(U,bu), it is concluded that C(u,ou)
are the eigenvalues of the matrix with elements v1tij = -«u)2Njj , which gives
Eq. (2.5.19).•

2.5.5 Proof of Theorem 2.5.2

The purpose of this section is to state and prove a proposition that is used
to prove Theorem 2.5.2. In the rather technical proof, pjJ(X) is the set of
bounded operators from a Hilbert space X into itself, C(u) is an element of
pjJ(X) that depends on an element u of a Banach space U, and M(u) is the
invariant subspace associated with C(u) and (u), that is, the subspace of X
spanned by the eigenvectors of C(u) that are associated with (u).

PROPOSITION Let W be a zero t neighborhood in a Banach space U and X
be a Hilbert space. Consider a Frechet differentiable mapping from W to
&6'(X): u -+ C(u). Let (xo be an eigenvalue of C(O) of multiplicity m and M(O) be
the associated invariant subspace. Then there exists a neighborhood W' c W
and a mapping from W' to ~(X): u -+ C(u) that is Frechet differentiable at
u = 0, such that the following hold:

1. M(O) is an invariant subspace associated with C(u) for all u E W';
2. the eigenvalues of the restriction of the operator C(u) to M(O) are equal

to the m eigenvalues of C(u) neighboring (Xo; and C'(O)u = C'(O)u, where a
prime denotes Frechet derivative.

PROOF The first step is to show that the spectral projector associated with
the eigenvalues neighboring (xo is continuous and is Frechet differentiable at
zero. Rs(C) denotes the resolvent set of the operator C, and R(~, u) is the
resolvent of C(u).· Here, R(~) = R(~, 0) and R(~, u) = (C(u) - ~I)-l for
~ E Rs(C(u)), which is a subset of the complex plane.

It is first to be shown that

IIR(~, u) - R(~) + R(~, u)(C'(O), u)R(~)11 = o(llullu) (2.5.23)

where limllullu_oo(llullu)/lIullu = 0, uniformly in ~ in a compact set of
Rs(C(O)).

To show this, note that

or

(2.5.24)

t For convenience and without loss of generality, the design perturbation is taken about zero
and is denoted as u 1I1uli small), rather than bu.
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so

R(~) = R(~, u)[I + (C(u) - C(O))R(~)]

and if
_ _ 1

IIc(u) - C(O)II < IIR(~)II

the inverse of the operator [I + (C(u) - C(O))R(~)] exists, so

R(~, u) = R(~)[I + (C(u) - C(0»R(m- 1
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The operator R(~) is uniformly bounded on every compact subset of Rs(C(O».
Recalling the formula (Eq. 4.23, Section 1.4.4.4 of Kato [13])

11(1 + tv:: - III < IITII
- 1 - IITII

where T is any bounded operator with IITII < 1,

IIR(~, u) - R(~)II ~ IIR(~)IIII [I + (C(u) - C(O»R(~)r 1 - III

IIC(u) - C(O)IIIIR(~)11
s IIR(~)111 - IIC(u) - C(O)IIIIR(m

which approaches zero uniformly for ~ in a compact subset of Rs(C(O» as
Ilullu ~ O.

The use of C(u) = C(O) + C'(O)u + C2(u), with C2(u) = o(llullu), leads to
the conclusion from Eq. (2.5.24) that

R(~, u) - R(~) = -R(~, u)(C'(O)u)R(~) - R(~, u)C2(u)R(~)

so Eq. (2.5.23) follows.
The continuity and Frechet differentiability of the spectral projector is now

to be shown. Let')' be a simple closed (smooth) curve enclosing tXo (and no
other eigenvalue), which is included in Rs(C(O)) and positively oriented. The
spectral projector (for Ilullu small enough) associated with the m eigenvalues
of C(u) neighboring tXo is given by (see the proof of Theorem III.6.17 of Kato
[13])

P(u) = --2
1

. i R(~, u) d~
7l:l Jy

Since R(~, u) approaches R(~) uniformly for ~ in a compact subset of
Rs(C(O)), P(u) is continuous at zero (a similar argument could show the
continuity at every point of JoY, but this will not be needed). Tne Frechet
differentiability at zero follows, in the same manner, from Eq. (2.5.23).
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(2.5.25)

The final step is to construct C(u) with the required properties, mapping
W' -. .18(X): u -. C(u), where W' is included in W The key is to construct a
bijective mapping H(u) that sends M(O) onto M(u).

Set Q(u) = (P(u) - p(0»2. For Ilullu small enough, the following operator
is well defined:

H(u) = [P(u)P(O) + (I - P(u»)(I - P(O»](I - Q(U»-1/2

and it can be verified that (see Section 1.4.6of Kato [13])

H(U)-l = [P(O)P(u) + (I - P(O»)(I - P(u))](I - Q(U»-1/2

and

P(u) = H(u)P(O)H(u)-l

Define

C(u) = H(U)-lC(u)H(u)

Since P(u) commutes with C(u) (because so does the resolvent),

C(u)P(O) = H(U)-lC(u)H(u)P(O)

= H(U)-lC(U)P(u)H(u)

= H(u) -1P(u)C(u)H(u)

= P(O)H(U)-lC(u)H(u)

= P(O)C(u)

Thus, C(u) commutes with P(O), and the two subspaces M(O) = P(O)X and
M'(O) = (I - P(O»X are C(u)-invariant. Thus, eigenvalues of C(u), restricted
to M(u), are equivalent to those of C(u), restricted to M(O). Moreover, the
eigenvalues of C(U)IMIU) and C(U)IMIOl are the same, and the spectral projectors
and the spectral nilpotent are connected through the formulas (Section
VII.l.3 of Kato [13]

~(u) = H(u) -1 P;(u)H(u)

Dj(u) = H(U)-lDj(u)H(u)

To complete the proof, regularity of the mapping u _ C(u) is to be shown.
Continuity follows from continuity of u - P(u) (shown above) and from
continuity of u - (I - Q(U»-1/2. The argument used is similar to that used
to show differentiability. The formulas (2P(0) - I)(P'(O)u) = 0 and
2P(0)P'(0)u = P'(O)u are derived from P2(u) = P(u). IfF(u) = (I - Q(U»-1/2,
then F'(O)u = !(I - Q(u»Q'(O)u, but Q'(O)u = 0, so that

H'(O)u = 0
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Similarly,

and
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C'(O)u = (:'(O)u

This completes the proof of the proposition.•

To complete the proof of Theorem 2.5.2 now requires a proof that the
eigenvalues of the restriction of C(u) to M(O) are directionally differentiable.
Since M(O) is finite-dimensional and invariant with C(u), Theorem 11.5.4 of
Kato [13] need only be applied to get the desired result.

2.6 TRANSIENT DYNAMIC RESPONSE
DESIGN SENSITIVITY

Design sensitivity of transient dynamic response of distributed parameter
systems has had little attention on the literature [47], in contrast to the
massive literature in design sensitivity analysis and optimization of dynamic
control systems. A development by Rousselet [42] provided the beginning
foundation for design sensitivity analysis of this class of problems, but work
remains to be done. Since the theory of dynamic, distributed-parameter
structural design sensitivity analysis is not as well developed as that for static
response and eigenvalues, a more formal treatment of the subject is presented
in this section. A variational formulation of structural dynamics problems is
initially outlined, and examples are given. Under assumptions of design
differentiability of the state, the adjoint variable method presented in Section
2.2 is extended to the transient dynamic response problem and analytical
examples are presented.

2.6.1 Variational Formulation
of Structural Dynamics Problems

Equations of structural dynamics can be written in the form

m(u)ztt + c(u)zr + A.z = f(x, t, u) (2.6.1)

where m(u) and c(u) represent mass and damping effects in the structure, both
taken to be design dependent, and f(x, t, u) is the dynamic applied load. The
operator A. is a spatial differential operator of the form encountered in static
and eigenvalue behavior of elastic systems. The design u(x) is independent of
time, but may be a function of the spatial variable x. The state variable
z = z(x, t; u) is a function of both space and time, and since the differential
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equation of Eq. (2.6.1) depends on design, so does the solution z. Boundary
conditions for the problem are left unspecified at the present time, since they
depend on the nature of the specific structural system. Initial conditions are
of the form

(2.6.2)XEO
ztx, 0; u) = ZO(x),

Zt(x, 0; u) = iO(x),

While more general settings can be considered, attention here is limited to
structural components that involve a scalar displacement variable z, such as
strings, beams, membranes, and plates. A variational equation can be derived
associated with Eq. (2.6.1) by multiplying through by an arbitrary virtual
displacement zand integrating over both space and time to obtain

iT f1 [zm(u)Ztt + zc(u)zr] dO dt + iT f1 zAuz dO dt = iT f1 zf/O dt

(2.6.3)

Since the integral involving the operator Au on the left side of Eq. (2.6.3) is
defined as the bilinear form of the structure, Eq. (2.6.3) may be written in the
form

iT{f1 [zm(u)Ztt + zc(u)Zt] dO + au(z, i)} dt = iT f1 if dO dt

(2.6.4)

which must hold for all Z E Z, the space of kinemtically admissible
displacements for the structure. A rigorous mathematical theory of such
variational equations may be found in the pioneering text by Lions and
Magenes [48]. Roughly speaking, the variational form of Eq. (2.6.4), with the
initial conditions of Eq. (2.6.2), is equivalent to the initial-boundary-value
problem originally posed. To be more concrete, it is helpful to consider
specific examples.

STRING

The equation of motion of a vibrating string in a viscous medium is given
in the form

m(u)Ztt + c(u)zr - fzx x = [ix, t, u),

z(x, t; u) = 0,

O<t<T, XEO

O~t~T, XEr
(2.6.5)

where m(u) is the mass per unit length along the string, c(u) the damping
coefficient per unit length, and f tension in the string. Initial conditions are
as in Eq. (2.6.2), and the space Z of kinematically admissible displacements is



2.6. TRANSIENT DYNAMIC RESPONSE DESIGN SENSITIVITY 169

H~(O, 1), that is, the set of all functions in Sobolev space H'(O, 1) that vanish
at the endpoints of the interval. The energy bilinear form for this problem is
given in Eq. (2.1.48) as

(2.6.6)

BEAM

The equation of motion of a beam in a viscous fluid is

m(u)zll + c(u)z, + (EI(u)zxx)xx = [ix, t, u) (2.6.7)

where m(u) is the mass per unit length of the beam and c(u) the damping
coefficient per unit length. Initial conditions are as in Eq. (2.6.2), and
boundary conditions may be any reasonable set of boundary conditions
in Eqs. (2.1.16)-(2.1.18). For the clamped-clamped beam, Z = H~(O, 1).
The energy bilinear form for the beam is given in Eq. (2.1.51) as

a.(z, z) = f EI(u)zxxzxx dx (2.6.8)

MEMBRANE

The equation of motion of a membrane in a viscous fluid is

m(u)zll + c(u)zr - t'r;,J2z = [ix, t, u),

z(x, t; u) = 0,

O<t<T, xeO

O:5,t:5,T, xer
(2.6.9)

(2.6.10)

where m(u) is the mass per unit area of the membrane and c(u) the damping
coefficient per unit area. Initial conditions are as in Eq. (2.6.2), and the space
Z of kinematically admissible displacements is HMO). The energy bilinear
form for this problem is given in Eq. (2.1.56) as

a.(z, z) = T ft(ZlZl + zzzz) dO

PLATE

The equation of motion of a plate in a viscous fluid is

m(u)ztt + c(u)z, + [D(u)(zl1 + vZ n)]l1 + [D(U)(Z22 + vZ l1)]n

+2(1- v)[D(U)ZI2]12 =!(x,t,u) (2.6.11)

where m(u) is the mass per unit area of the plate and c(u) the damping
coefficient per unit area. Initial conditions are as in Eq. (2.6.2), and boundary
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conditions are as in either Eq. (2.1.19) or Eq. (2.1.23). For a clamped plate,
Z = HJ(O). The energy bilinear form for the plate is given in Eq. (2.1.59) as

a.(z,2) = f{D(u) [Z11211 + VZ22211 + z22222 + VZ 1122 2

+ 2(1 - V)Z12212] dO (2.6.12)

(2.6.13)

Equations for other structural systems can be written in the same general
form, with the energy bilinear form arising in static response and eigenvalue
problems also appearing in the variational dynamic formulation. For each
instant in time, the energy bilinear form a.(·,·) is positive definite.
Considering the complete bilinear form in z and 2 on the left side of Eq.
(2.6.4), however, it is not positive definite.

2.6.2 Adjoint Variable
Design Sensitivity Analysis

Consider a general integral functional of the form

t/J = iTf{g(z, Vz, u) dO dt

Since the solution z of the structural equations is design dependent,
dependence on design in such a functional appears both explicitly and
through the argument z. As in the static response and eigenvalue problems,
something must be known about the nature of the dependence of state on
design [i.e., z = z(x, t; u)]. Under slightly more restrictive hypotheses than
employed in Section 2.4 for the static response problem, it has been shown by
Rousselet [42] that z is Frechet differentiable with respect to u. This fact will
be used in this section to develop explicit expressions for sensitivity of a
functional t/J of Eq. (2.6.13) with respect to design u, much as was the case in
development of similar sensitivity results for static problems in Section 2.2.

To begin, take the variation of Eq. (2.6.13) to obtain

t/J' = : [iT II g(z(x, t; u + r bu),Vz(x, t; u + r bu),u + r bu) dO dtJ I
ron r=O

= LT f{ [gzz' + e.. Vz' + g. bu] dO. dt (2.6.14)

The objective is to rewrite the first two terms on the right side of Eq. (2.6.14)
explicitly in terms of variation in design.

Presuming that m(u),c(u),f(u), and a.(·, .) are differentiable with respect to
design and that the solution z of the dynamics problem is differentiable with
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respect to design, take the variation of both sides of Eq. (2.6.4) to obtain

IT{ft UmuZtt + zCuZt - zf.] (ju dO. + a~u(z, Z)} dt

+ IT{ft [zmZ;t + zcz;] dO. dt + a.(z', Z)} dt = 0
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(2.6.15)

To take advantage of this equation, terms in the second integral may be
integrated by parts to move time derivatives from z' over to z. To carry out this
calculation, interchange the order of integration, carry out the integration by
parts with respect to time, and again change the order of integration to
obtain

LT{ft [z'mztt - z'czt] dO. + au(z,z')} dt +ft [zmz; - Zt mz' - zcz'] [ dO.

= IT{ft [zfu - zmuZtt - zcuzt] (ju dO. - a~u(z, Z)} dt for all z E Z

(2.6.16)

Note that as a result of the initial conditions of Eq. (2.6.2), for which the right
side does not depend on u, the variation yields

z'(x, 0; u) = 0,

z;(x, 0; u) = 0,
XEo. (2.6.17)

which eliminates initial terms in Eq. (2.6.16) that arose due to integration by
parts.

To take advantage of the identity of Eq. (2.6.16), which must hold for all
Z E Z, define an adjoint variational equation by replacing z' by an arbitrary
virtual displacement AE Z in Eqs. (2.6.16) and (2.6.14), defining the vari-
ational adjoint equation for A. E Z as

f: {fin [XmAtt - XcAt] dO. + a.(..1., X)} dt

= IT ft [gzA + o-, VA] dO. dt for all A E Z (2.6.18)

where the additional terminal condition on A. is defined as

),(X, T; u) = 0,

)'t(x, T; u) = 0,
XEo. (2.6.19)
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The terminal conditions of Eq. (2.6.19) are introduced to eliminate terms that
due to integration by parts had arisen at t = Tin Eq. (2.6.16).

Since Eq. (2.6.16) must hold for all ZE Z, this equation may be evaluated at
Z = A, using Eq. (2.6.19), to obtain

iT{fL [z'mA lI - Z'cAr] dO. + a.O., Z')} dt

= iT{fL [;f. - l.m.ZlI - ).c.Zr] s« dO. - a~.V, Z)} dt

(2.6.20)

Similarly, Eq. (2.6.18) must hold for all XE Z, so evaluate this equation at
X= z' to obtain

Note that the right side of Eq. (2.6.21) consists of exactly the terms in Eq.
(2.6.14) that are to be rewritten in terms of bu. Furthermore, the left sides of
Eqs. (2.6.20) and (2.6.21) are identical, so

iT fL [gzz' + o-, Vz']do.dt

= iT{fL [Ai. + Arm.Zr - AC.Zr] bu dO. - a~.(A, Z)} dt

+ fL A(X, 0; u)m.zO(x) bU dO. (2.6.22)

where an integration by parts has been carried out and the initial conditions
of Eq. (2.6.2) have been used to reduce the order of differentiation of Z with
respect to t that is required in the evaluation. Substituting this result into Eq.
(2.6.14) yields

1jJ' = iT{fL [g. + Ai. + Arm.Zr - I,C.Zr] bU dO. - a~U<A, Z)} dt

+fI I.(X, 0; u)m.zO(x) s« dO. (2.6.23)

Note that the variational adjoint equation of Eqs. (2.6.18) and (2.6.19) is
not the same as the variational equation for the state in Eqs. (2.6.3) and
(2.6.2). Two fundamental differences arise. First, while the state equations
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(2.6.24)

include initial conditions of Eq. (2.6.2), the adjoint equation has terminal
conditions of Eq. (2.6.19). Second, the sign of the damping term in Eq. (2.6.3)
is different from that of the damping term in Eq. (2.6.18). These facts
somewhat complicate calculations associated with dynamic design sensitivity
analysis. That is, the adjoint dynamic problem is different from the original
dynamics problem. As will be seen in examples of the following section,
however, there exists more similarity of form than meets the eye.

2.6.3 Analytical Examples

STRING

Consider first the elementary example of a vibrating string with mean
square displacement as the functional; that is,

1 rT rl

l/!I = T J
o

J
o

Z2 dx dt

The adjoint equations for this problem, from Eqs. (2.6.18) and (2.6.19), are

and

(2.6.25)

A(X, T) = At(x, T) = 0,

,1.(0, t) = ,1.(1, t) = 0,

o s x s 1

o s t s T
(2.6.26)

where the mass density m is taken as h and the damping coefficient is
proportional to the square root of h. The energy bilinear form for the string
of Eq. (2.6.6) has been employed. An integration by parts in Eq. (2.6.25),
using the boundary condition of Eq. (2.6.26) and the fact that 1 satisfies the
same boundary conditions, yields

rTr l{
~ 2}-Jo Jo hAlt - pjhAt - rx.; - T Z .,1. dx dt = 0 for all 1 E Z

(2.6.27)

Since 1 is arbitrary, except for boundary conditions, its coefficient in Eq.
(2.6.25) must be zero, yielding the differential equation

(2.6.28)
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Note that this differential equation differs in form from Eq. (2.6.5) only by the
algebraic sign of the damping term and the load.

To see that the adjoint problem of Eqs. (2.6.26) and (2.6.28) can be
rewritten in a form closer to that of the physical structure [Eqs. (2.6.2) and
(2.6.5)], a backward time r =T - t may be defined. With this variable,
dldt = -dldt, and the terminal conditions of Eq. (2.6.26) for the t variable
become initial conditions in the. variable. Thus, the backward time initial-
boundary-value problem for the ~(x, r) = A(X, T - t) is

~(O,.) = ~(l,.) = 0,

~(x, 0) = -~ix, 0) = 0,

O<t<T, O<x<1

(2.6.29)

O<x<1

Thus, the adjoint structure is physically the same as the original structure, but
with a backward clock and an applied load 2z(x, T - .)IT.

If the load fin Eq. (2.6.5) is self-weight of the string plus an excitation
F(t, x), then f = gh + F(t, x), where g is the acceleration of gravity, and Eq.
(2.6.23) yields the sensitivity of the functional i/Jl of Eq. (2.6.24) as

tP~ = iT{{[Ag + AtZt - %~J (jh dx - st{Axzx dX} dt

+ {A(X, O)ZO(x) (jh dx (2.6.30)

Since (jh depends on x and not on t, the order of integration in the first term
of Eq. (2.6.27) may be reversed, yielding the explicit relation

tP~ = {{(iTgA + At Zt - %~J dt + A(X, O)ZO(X))} (jh dx

_[SoT {AxZx dx dtJ st (2.6.31)

Note that the sensitivity coefficient of (jh is explicitly a function of x since the
time variable has been integrated in calculating the coefficient of (jh. This
fortunate circumstance now permits collapsing time from the design sensi-
tivity formula, which is natural since the design vector u = [h(x) T]T is
dependent only on x.
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BEAM
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Consider next dynamics of a clamped-clamped beam, with the functional
l/J2being the mean over time of the square of displacement at a given point X,

l/J2 = ~ LT

Z2(X, t) dt = ~ LTf$(x - x) Z2(X, t) dx dt (2.6.32)

with cross-sectional area h as design, m = ph, c = P)h, I = rl.N, and
f = yh + Fit, x). In this case, the adjoint equation of Eq. (2.6.18) is

LT{f [pXhAtt - P )hXAt] dx +fEIXh2AxxXxx dX} dt

= ( rl

~ $(x _ x) zX dx dt for all X E Z (2.6.33)Jo Jo T

with terminal and boundary conditions for a clamped-clamped beam,

A(X, T) = At(X, T) = 0, 0 < x < 1
(2.6.34)

;,(0, r) = ;'x(O, t) = ),(1, t) = )'x(1, t) = 0, 0 ~ t ~ T

To reduce the variational equation of Eq. (2.6.33) to a differential
equation, carry out integration by parts, using the boundary conditions of
Eq. (2.6.34), to obtain

( e-{!L. 2 A •• }J
o

J
o

A phAtt - Pv hAt + (ElXh2Axx)xx - T (j(x - x) z dx dt = 0

for all 1 E Z (2.6.35)

Since this equation must hold for all X satisfying boundary conditions, its
coefficient must be zero, leading to the differential equation

phAtt - P)h;.! + (ElXh 2Axx)xx = : Z $(x - x) (2.6.36)

which, except for the sign of the damping term, is just the beam equation with
a point load 2z(x, t)/T applied at the point x. As in the case of the string, a
backward time r could be defined and the equations rewriten as in Eq. (2.6.29),
to obtain the equations for the adjoint structure with a backward time
variable, in exactly the same form as the basic structural equations.

The design sensitivity result from Eq. (2.6.23) may thus be directly written
as

l/J~ = LT

{[YA + pAtZt - ~ fiJ (jh dx - f 2ElXh.(jh AxxZxx dX} dt

+f A(X, O)pZo(x) (jh dx (2.6.37)



176 2. DISTRIBUTED-PARAMETER STRUCTURAL COMPONENTS

Interchanging the order of integration in the first integral of Eq. (2.6.37)
yields

1jJ~ = f {IT')'A + pA,Z, - %~ - 2EIXhAx xZx xJdt + A(X, O)p,iO(X)} Jh dx

(2.6.38)

which again provides the design sensitivity coefficient of Jh as a function of x
only.

MEMBRANE

As a third example, consider the vibrating membrane with mean square
displacement as the functional

1jJ3 = ~ IT fin Z2 dn dt (2.6.39)

In this case, the adjoint variational equation of Eq. (2.6.18) is

IT{fin OhAtt - ~f3 JhAt] dn + f fin (Al~l + A2~2) dn} dt

= ~ SoT fin 2z~ dn dt for all ~ E Z (2.6.40)

with terminal and boundary conditions

(2.6.41)

for all ~ E Z

XEnA(X, T) = At(X, T) = 0,

A(X, t) = 0,

where m = h, C = f3 Jh, and u = h(x).
To reduce the variational equation of Eq. (2.6.40) to a differential

equation, carry out integration by parts, using the boundary conditions of
Eq. 2.6.41, to obtain

IT fin ~{hAtt - f3JhAt - fV
2A. - ~z}dndt = 0

(2.6.42)

Since ~ is arbitrary, except for boundary conditions, its coefficient must be
zero, yielding

(2.6.43)

This is the membrane equation, except for the sign of the damping term and a
different load. As in the case of a string, a backward time r could be defined
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to get a backward time initial-boundary-value problem, which is exactly the
same membrane equation but with a different load.

For a given load [ix, t), one may obtain design sensitivity for t/J3 from Eq.
(2.6.23) as

t/J~ = LT
f1[A t Zt - ~ ~J c5h dO dt + ffg A(X, O)ZO(x) c5h dO

(2.6.44)

Since c5h is independent of t, interchanging the order of integration in the first
term of Eq. (2.6.44) yields

t/J~ = f1 {LTAtZt- ~ ~J dt + A(X, O)ZO(X)} bh dx (2.6.45)

PLATE

As a last example, consider the dynamics of a clamped plate with damping
coefficient zero, a given load [tx, t), variable thickness h, and m = ph. The
functional t/J4 considered is the work done by the applied loads during
motion of the plate; that is,

(2.6.46)

Presuming that the load function! is differentiable with respect to time
and that !(x,O) = !(x, T) = 0, integrate the term on the right side of Eq.
(2.6.46) by parts with respect to time to get

(2.6.47)

The adjoint variational problem of Eq. (2.6.18) becomes, in this case,

iT{f1 ~phAtt dO + f1 b(U)[All~l1 + A22~22 + l'(A22~l1 + All~22)

+ 2(1 - l')A12~12] dO} dt

for all ~ E Z (2.6.48)

with boundary conditions for the clamped plate and terminal conditions

aA
A(X, t) = an (x, t) = 0,

A(X, T) = At(X, T) = 0,

O~t~T, XEr

(2.6.49).
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Using the definition of the plate operator and spatial integration by parts on
the left of Eq. (2.6.48) yields

iTfl X{ph)./t + Au), + J;} dO dt = 0 (2.6.50)

which must hold for arbitrary virtual displacements X that satisfy the
boundary conditions. Therefore, the differential equation for). is

(2.6.51)

which is of essentiaIly the same form as the basic plate equation without a
damping term.

Using the solution). of the adjoint equations, write the design sensitivity
for rf;4 directly from Eq. (2.6.23) as

rf;~ = fl[lT

{P).tZt - Eh2
[ z lI ). 1I + Z22).22 + V(Z22).l1 + ZlI).22)

+ 2(1 - v)z12).12]/[4(1 - v2
)] } dt + ).(x, O)PZO(X)] bh dO

(2.6.52)



3
Structural Components
with Shape as the Design

Chapter 2 treats design sensitivity analysis of structural components
whose shapes are defined by cross-sectional area and thickness variables. In
such systems, a function that specifies the shape of a structural component is
defined on a fixed physical domain. This design function, or design variable
U, then appears explicitly in the variational equation of the problem and may
appear explicitly in a performance functional of the form given in Eq. (2.2.8),
where integration is taken over a fixed domain Q.

There is an important class of structural design problems in which the
shape of a two- or three-dimensional structural component (the domain it
occupies) is to be determined, subject to constraints on natural frequencies,
displacements, and stresses in the structure. Such problems cannot always be
reduced to a formulation that characterizes shape with a design function
appearing explicitly in the formulation. For such problems, it is the shape of
the physical domain Q of the structural component that must be treated as
the design variable. The material derivative idea of continuum mechanics
and the adjoint variable method of design sensitivity analysis (similar to that
presented in Chapter 2) are applied in this chapter to obtain a comput-
able expression for the effect of shape variation on functionals that arise in
the design problem. In order to alleviate technical complexities and to
give a clear idea of shape design sensitivity, variation of the conventional
design variable u treated in Chapter 2 is suppressed. The effects of simul-
taneous shape and conventional design variable variation are treated in
Chapter 4.

179
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3.1 PROBLEMS OF SHAPE DESIGN

In order to be specific about the properties of shape design sensitivity
analysis, it is helpful to formulate the variational equations for typical
problems, as in Section 2.1. However, in shape design sensitivity analysis,
expressions for the effect of shape variation on functionals are given as
boundary integrals, using integration by parts and boundary and/or interface
conditions. Hence, instead of variational equations that hold for all kin-
ematically admissible displacements, variational identities without regard to
boundary conditions will be formulated. These variational identities will
then be used to transform a domain integral to a boundary integral and
obtain shape design sensitivity expressions in terms of a shape perturbation
of the boundary.

Numerical calculation of shape design sensitivity expressions in terms of
the resulting boundary integrals requires stresses, strains, and/or normal
derivatives of state and adjoint variables on the boundary. Hence, accurate
evaluation of this information on the boundary is crucial. For systems with
non-smooth loads and interface problems, results of finite element analysis
on the boundary may not be satisfactory. To overcome this difficulty, a
domain method is developed in which design sensitivity information is
expressed as domain integrals instead of boundary integrals. Results ob-
tained with the domain method are analytically equivalent to the boundary
expressions. However, when numerically evaluated, these expressions may
give quite different results.

BEAM

Bending and vibration of a beam were considered in Section 2.1. The
formal operator equation for bending is given as

Az == (Erxh 2(x)zxx)xx = I, x E n = (0,1) (3.1.1)

where E is Young's modulus, h e C1[O, 1), hex) ~ ho > 0, and f E C1[0, 1) is
distributed load. Results obtained in this chapter require that coefficientsand
right sides of differential equations for static response be smooth.

For vibration, the formal operator eigenvalue equation is

Ay == (Erxh 2(x)yxx)xx = 'ph(x)y == UJy, x E n = (0,1) (3.12)

where' = w2
, co is natural frequency, and p is mass density.

As in Section 2.1, both sides ofEq. (3.1.1)can be multiplied by an arbitrary
function z(x) that is twice continuously differentiable and integrated by parts
to obtain

LErxh2zxxzxx dx - LIZ dx = [Erxh2z
xxzx - (Erxh2z

xx)x Z] I~ (3.1.3)
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Note that in Eq. (3.1.3), z and Z are not required to satisfy kinematic
boundary conditions. As in Section 2.1, Eq. (3.1.3) can be extended to a
variational formulation in which Eq. (3.1.3) holds for all ZE H 2(O, i). In a
variational formulation, derivatives that appear in Eq. (3.1.3) must be
interpreted as distributional derivatives [35,36]. For the mathematically
oriented reader, the variational formulation follows from Green's formula for
bilinear forms [9]. If a boundary-value problem that contains the kinematic
boundary conditions given in Eqs. (2.1.1), (2.1.16), (2.1.17), or (2.1.18) (note
that beam length 1is not normalized in this chapter) is treated, the variational
equation is

for all Z E Z

(3.1.4)

where the elements of Z satisfy the kinematic boundary conditions.
For the eigenvalue problem, the variational identity is

LErxh2yxxYxx dx - (Lphyy dx = [Erxh 2yxxyx - (Erxh 2yxX>xY] I~
for all y E H 2(0, 1) (3.1.5)

If kinematic boundary conditions are given as in Eqs. (2.1.1), (2.1.16),
(2.1.17), or (2.1.18), the variational eigenvalue equation is

a,iY, y) == f~Erxh2yxxyxx dx = ( f>hYY dx == (dn(y, y) for all yEZ

(3.1.6)

where elements of Z satisfy the kinematic boundary conditions.

BUCKLING OF A COLUMN

Buckling of a column was considered in Section 2.1.2. The formal operator
eigenvalue equation is

X E n = (0,1) (3.1.7)

where E and h are the same as in the beam problem. As in beam vibration,
both sides of Eq. (3.1.7) may be multiplied by an arbitrary element
y E H 2(0, 1) and integrated by parts to obtain the variational identity

LErxh2yxxyxx dx - ( f>xyx dx = [Erxh2yxxyx - (Erxh 2yxX>xY - (YxY] I~
for all y E H 2(0, 1) (3.1.8)
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If kinematic boundary conditions such as in Eqs. (2.1.1), (2.1.16), (2.1.17), or
(2.1.18) are given, Eq. (3.1.8) becomes the variational eigenvalue equation

an(Y, Y) == f: ErLh 2yxxYxxdx = ( f>xyx dx == (dn(y, y) for all y E Z

(3.1.9)

where elements of Z satisfy the kinematic boundary conditions.

MEMBRANE

Consider the membrane shown in Fig. 3.1.1, with uniform tension 1; mass
density h(x) E C1(Q) per unit area, and applied lateral load I E C1(Q), where
Q is the closure of Q. The formal operator equation for membrane deflection
IS

XEQ (3.1.10)

For harmonic vibration of the membrane, the formal operator eigenvalue
equation is

XEQ (3.1.11)

where ( = 0)2,0) being the natural frequency.
The variational identities for these formal operator equations are

t fL VzT Vi dQ - fL Ii dQ = tL~~ zdr

z

for all Z E H 1(Q)

(3.1.12)

}-------------Xz

Fig.3.1.1 Membrane of variable mass density h(x).
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for the static response problem, where n is the outward unit normal to 0, and

r fIn VyT Vy dO - ( fIn hyy dO = f L~~ y dr for all y E H1(o.)

(3.1.13)

for the eigenvalue problem. As in Section 2.1, if the kinematic boundary
conditions z = °on rand y = °on r are given, Eqs. (3.1.12) and (3.1.13)
become the variational equations

an(Z, i) == t fIn VzT Vi dO = fIn Ji dO == In(z) for all Z E Z = HMO,)

(3.1.14)

for static response and

an(Y,y) == t fIn VyT Vy dO = ( fIn hyji dO. == (dn(y,ji)

for all ji E Z = HMO) (3.1.15)

for eigenvalue response.

TORSION OF AN ELASTIC SHAFT

(3.1.16)

(3.1.17)XErz = 0,

Consider the problem of torsion of the elastic shaft shown in Fig. 3.1.2.
A torque T is applied to the shaft at its free end, resulting in a unit angle of
twist e. From the St. Venant theory of torsion [34], elastic deformation of the
system is governed by the formal boundary-value problem

Az == - V2z = 2, x E 0

where z is the Prandtl stress function. The torque-angular deflection relation
is given by T = GJe, where G is the shear modulus of the shaft material and J

\ \,,

Fig.3.1.2 Torsion of elastic shaft.
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is torsional rigidity of the shaft, given by [34]

(3.1.18)

fin VzT Zdn - 2fin zdn = fir ~: zdr

Comparing Eqs. (3.1.10) and (3.1.16), note that they are exactly the same if
fiT = 2, which is the basis for the membrane analogy [34]. Hence, the
variational identity for the shaft is

for all z E Hl(n)

(3.1.19)

If the kinematic boundary condition given in Eq. (3.1.17) is imposed, the
variational equation is

adz, z) == fin VzT VZ su = 2fin zdn == lJ..z)

PLATE

for all z E Z = HMn)

(3.1.20)

Bending and vibration of a plate were considered in Section 2.1. With
thickness hex) ;;::: ho > 0, the operator form ofthe boundary-value problem is
given in Eq. (2.1.19) as

Az == [D(Zl1 + VZ22)]11 + [D(Z22 + vzll )J 22
+ 2(1 - v)[DZ12]12 =f, XEn (3.1.21)

where D = Eh3/[12(1 - v2)J is the flexural rigidity of the plate, E is Young's
modulus, v is Poisson's ratio, and f E Cl(Q). For vibration, the formal
operator form of the eigenvalue problem is given in Eq. (2.1.57) as

Ay == [D(Yll + VY22)]11 + [D(Y22 + VYl1)]22 + 2(1 - V)[DY12]12

= (phy == (By, XEn (3.1.22)

(3.1.23)

where ( = ro2
, ro is natural frequency, and p is mass density.

As in Section 2.1, both sides of Eq. (3.1.21) may be multiplied by an
arbitrary z E H 2(n ) and integrated by parts to obtain the variational identity
[35,49J

fin D[(Zl1 + VZ22)Zl1 + (Z22 + VZll)Z22 + 2(1 - V)Z12 Z12J dn - fin fz dn

f f vi
= j, iNz dr + Jron Mz .u:
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where

185

(3.1.24)

(3.1.25)

~[02Z (10Z 02Z)JMz = D -+ v --+-
on2 ron OS2

r is the radius of curvature of the boundary rand

Nz = -{[D(Zll + vZ2Z)Jln1 + [D(Z22 + vZll)JZn2 + (1 - v)(Dzd2nl

~ 0 (~ 02Z )+ (l - v)(Dzd1nz} - (1 - v)-;- D--
uS . on os

Given the boundary conditions

z = 0,

for a clamped plate, or

z = 0,

ozjon = 0,

Mz = 0,

on r

on r

(3.1.26)

(3.1.27)

for a simply supported plate, or

Mz 7" 0, Nz = 0, on r (3.1.28)

for a free edge, the variational equation is

ao,(z, z) == f{ D[(Zll + VZ2Z)Zll + (Z22 + VZ ll)Z22 + 2(1 - V)ZlZ Z12J dO.

for all Z E Z (3.1.29)

where elements of Z satisfy the kinematic boundary conditions.
For vibration of a plate, the variational identity is

f{ D[(Yll + VYu)Yll + (Y22 + VYll)Yll + 2(1 - V)Y12Y12J dO.

- (f{Phyydo.

= [YNY dr + [:~ My dr for all YE HZ(o.) (3.1.30)

If Y and Y satisfy any pair of boundary conditions given in Eqs. (3.1.26)-
(3.1.28), the variational eigenvalue equation is

aQ(Y, y) == f{ D[(Yll + VY22)Yll + (Y22 + vYu)jiZ2 + 2(1 - V)Y12Y12J dO.

= ( f{ phyy == (dQ(y, y) for all YE Z (3.1.31)

where elements of Z satisfy the kinematic boundary conditions.
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LINEAR ELASTICITY

The three-dimensional linear elasticity problem for a body of arbitrary
shape, shown in Fig. 3.1.3, was discussed in Section 2.1.1. The strain tensor
was defined as

eii(z) = !(zj + Z{), i,j = 1,2,3, x E n (3.1.32)

where z = [z ' Z2 z3F is displacement. The stress-strain relation (general-
ized Hooke's law) is given as [34]

3

crii(z) = L Ciiklekl(z),
k,l=1

i,j, k,1= 1,2, 3, x E n

·----rO
tZ3 I II'

~Z2

Zl

(3.1.33)

.J-------------·)(2

Fig. 3.1.3 Three-dimensional elastic solid.

where C is the elastic modulus tensor, satisfying symmetry relations
Ciikl = Cjikl and Ciikl = Cii1k (i,j, k, 1= 1,2,3). The equilibrium equations are
[34]

3

- L cr1(z) = I'.
j=l

with boundary conditions

Zi = 0,

3

Tnj(z) == L crii(z)nj = r;
j= 1

i = 1,2, 3, x E n

i = 1,2, 3, x E rO

i = 1,2, 3, x E r-

(3.1.34)

(3.1.35)

(3.1.36)
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and boundary segment r- is traction free, where ni is the jth component
of the outward unit normal, J = [Jl j2 J3]T E [Cl(Q)]3, and T =

[T l T 2 T 3]T E [Cl(r)Y
The foregoing formal operator equation (3.1.34) may be reduced to a

variational identity by multiplying both sides of Eq. (3.1.34) by an arbitrary
displacement vector z = [Zl Z2 z3F E [Hl(n)? and integrating by parts to
obtain

ffL L.t1aij(z)eij(z)] dn - ffL [tl PZi
] dn

= 5.1 [. t aij(z)njzi
] dr for all zE [H l (n )] 3 (3.1.37)

r ',}=l

If the boundary conditions given in Eqs. (3.1.35) and (3.1.36) are imposed
and r l is traction free, the variational equation is

for all zE Z
(3.1.38)

where Z is the space of kinematically admissible displacements; that is,

(3.1.39)

As shown in Section 2.1.1, for plane elasticity problems in which either all
components of stress in the X3 direction are zero or all components of strain
in the X3 direction are zero, Eqs. (3.1.37) and (3.1.38) remain valid with limits
of summation running from 1 to 2 and an appropriate modification of the
generalized Hooke's law of Eq. (3.1.33), as given in Eqs. (2.1.30) and (2.1.31).

INTERFACE PROBLEM OF LINEAR ELASTICITY

Consider two elastic bodies with different elastic modulii in three-
dimensional space, as shown in Fig. 3.1.4, where body 1 occupies domain nl

and body 2 occupies n 2. Here, n = n l u y u n 2, y is the boundary of n l,

and r is the boundary of n. Therefore, the boundary of n2 is y u r.
Denote displacement as z = [z! Z2 Z3]T for x E n and let the restriction

of z to nl be z* and the restriction to n2 be z**; that is, z* = Z 101 and
z** = z 102. The strain tensors are then defined to be

eij(z*) = t(zt + zri),

eij(z**) = t(Z!*i + zr*i),

i,j = 1,2,3, x E n l

i,j = 1,2, 3, x E n2

(3.1.40)

(3.1.41)
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~------- ... X2

Fig. 3.1.4 Interface problem.

and the stress-strain relations (generalized Hooke's law) are

3

aij(z*) = I C*ijk1if'(z*),
k,I=1

3

aij(z**) = I C**ijklekl(Z**),
k,l= 1

i,j, k,1= 1,2,3, x E a l

i,j, k,1= 1,2, 3, x E 0 2

(3.1.42)

(3.1.43)

where C* and C** are elastic modulus tensors in 0 1 and 0 2, respectively.
The equilibrium equations are

3

- I ay(z*) = r:
j=1

3

- I ay(z**) = /**',
j= 1

i = 1, 2, 3, x E 0 1

i = 1,2, 3, x E 0 2

(3.1.44)

(3.1.45)

where f = [fl P f3JT E [C1(Q)] 3 is the body force, with f* = f In' and
f** = f In2 • Boundary conditions are

Z**i = 0, i = 1,2,3, X E rO (3.1.46)

3

Tn·(z**) == I aij(z**)nj = T ',
j= 1

(3.1.47)

and r- is traction free, where nj is the jth component of the outward unit
normal to a2, as shown in Fig. 3.1.4, and T = [T 1 T 2 T 3JT E [C1(r)]3. The
interface condition on y is that displacement and traction are continuous;
that is,

3 3

I a'j(z*)nj = I aij(z**)nj,
j= 1 j= 1

i = 1,2, 3, x E Y

i = 1,2, 3, x E Y

(3.1.48)

(3.1.49)
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As in the linear elasticity problem, the foregoing formal operator equations
(3.1.44) and (3.1.45) may be reduced to variational identities by multiplying
both sides of Eqs. (3.1.44) and (3.1.45) by arbitrary displacement vectors
z* E [H1(0 1)] 3and z** E [H1(0 2)] 3, respectively, and integrating by parts to
obtain

for all z* E [H1(0 1)] 3
(3.1.50)

and

ill [.t UiJ(z**)t:ij(z**)] su - ill [.t f**iZ**i] dO
QZ ',J=1 QZ .=1

for all z** E [H1(0 2)] 3
(3.1.51)

If the boundary conditions given in Eqs. (3.1.46) and (3.1.47) are imposed,
with r- traction free and the interface conditions given in Eqs. (3.1.48) and
(3.1.49), adding Eqs. (3.1.50) and (3.1.51) yields the variational equation

iII [.t uij(z*)t:ij(z*)] dO + ill [.t uij(z**)t:ij(z**)] dO
QI ',)=1 QZ ',)=1

which can be rewritten as

for all zE Z.
(3.1.52)

where

Z = {z = {z*, z**} E [H1(0 1)] 3 x [H1(0 2)] 3: Z*i = Z**i,

i = 1, 2, 3, x E y and Z**i = 0, i = 1,2, 3, x E rO}

(3.1.53)

is the space of kinematically admissible displacements.
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(3.2.1)

The interface problem in plane elasticity can be defined by limiting the
summation in Eqs. (3.1.50)-(3.1.52) on i andj from 1 to 2 and an appropriate
modification of generalized Hooke's law of Eqs. (3.1.42) and (3.1.43).

As in Section 2.1, the Freidrichs extension A of the elasticity operators of
Eqs. (3.1.44) and (3.1.45) can be defined by

an(z, Z) = (Az, z) for all zE Z

The symmetry, strong ellipticity, and bounded invertibility of A follow, as in
Section 2.1.

It is important to note that even though a variety of physical problems
have been discussed in this section, they all have the same basic variational
form. The importance of the variational formulation of problems of linear
mechanics will be seen in the shape design sensitivity analysis carried out in
subsequent sections. The variational formulation of prototype problems
discussed in this section serves as the principal tool in developing a broadly
applicable and rigorous shape design sensitivity analysis method.

3.2 MATERIAL DERIVATIVE
FOR SHAPE DESIGN
SENSITIVITY ANALYSIS

The first step in shape design sensitivity analysis is the development of
relationships between a variation in shape and the resulting variations in
functionals that arise in the shape design problems of Section 3.1. Since the
shape of the domain a structural component occupies is treated as the design
variable, it is convenient to think of 0 as a continuous medium and utilize the
material derivative idea of continuum mechanics. In this section, the basic
definition of material derivative is introduced, and several material derivative
formulas that will be used in later sections are derived.

3.2.1 Material Derivative

Consider a domain 0 in one, two, or three dimensions, shown schemati-
cally in Fig. 3.2.1. Suppose that only one parameter r defines the transfor-
mation T, as shown in Fig. 3.2.1. The mapping T: x -+ xt(x), X E 0, is given
by

x, = T(x, r)

n, == T(O,r)

The process of deforming 0 to 0t by the mapping of Eq. (3.2.1) may be
viewed as a dynamic process of deforming a continuum, with r playing the
role of time. At the initial time r = 0, the domain is O. The trajectories of
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Fig. 3.2.1 One-parameter family ofmappings.

points x E n, beginning at 't' = 0 can now be followed. The initial point
moves to x, = T(x, r), Thinking of r as time, a design velocity can be defined
as [50J

V( )
= dx, = dT(x, 't') = aT(x, r)

x,; r - dt dt or (3.2.2)

(3.2.3)

since the initial point x does not depend on t. This velocity can also be
expressed in terms of position of the particle at time r, If it is assumed that
T- 1 exists, that is, x = T- 1(x" r), then the design velocity at x, = T(x, r) is

dx; aT -1
V(x" r) = dt = ~(T (x,; r), r)

The design trajectory of the particle that was at x at r = 0 is now defined by
the initial-value problem

x, = V(x" r]

Xo = x
(3.2.4)

where X, = dx.fdi: Thus, if T is given, the design velocity V can be
constructed. Conversely, if the design velocity field V(x" r) is given, T can be
defined by

T(x, r) = xix)

where x, is the solution of the initial-value problem of Eq. (3.2.4).
In a neighborhood of r = 0, under certain regularity hypothesis,

aT
T(x,'t) = T(x,O) + 't'~(x,O) + ... = x + 't'V(x,O) + ...

Ignoring higher-order terms,

T(x, r) = X + rV(x) (3.2.5)

where V(x) == V(x, 0). In this text, the transformation T of Eq. (3.2.5) will be
considered, the geometry of which is shown in Fig. 3.2.2. Variations of the
domain n by the design velocity field V(x) are denoted as Or = T(n, r), and
the boundary of Or is denoted as r.. Henceforth, the term "design velocity"
will be referred to simply as "velocity."
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Fig.3.2.2 Variation of domain.

(3.2.6)

Let Q be a Ck-regular open set; that is, its boundary r is a compact
manifold of Ck in R" (n = 2 or 3), so that the boundary r is closed and
bounded in R" and can be locally represented by a Ck function [51]. Let
V(x) E R" in Eq. (3.2.5) be a vector defined on a neighborhood U of the
closure n of Q and V(x) and let its derivatives up to order k ~ 1 be
continuous. With these hypotheses, it has been shown [52] that for small 1:,

T(x, 1:) is a homeomorphism (a one-to-one, continuous map with a con-
tinuous inverse) from U to U, == T(U, r) and that T(x,1:) and its inverse
mapping mapping T- 1(x" 1:) are Ck regular and n. is Ck regular.

Suppose Zt(xt) is a smooth classical solution of the following formal
operator equation on the deformed domain n.:

AZt =f, x E n.
z, = 0, Z E r.

Then the mapping z.(xt) == Zt(x + rV(x)) is defined on n, and Zt(xt) in n.
depends on 1: in two ways. First, it is the solution of the boundary-value
problem on at. Second, it is evaluated at a point x, that moves with 1:. The
pointwise material derivative (if it exists) at x E a is defined as

. = .( . r\ V) = ~ ( U( ))1 = I' [Zt(X + 1:V(x)) - Z(X)]
Z Z X, ~", - d Zt x + 1: ~ , x 1m

r t=O t-+O r
(3.2.7)

If z; has a regular extension to a neighborhood U, of n., denoted again as
z" then

z(X) = z'(x) + VzT V(x)

where

Z' = z'(X; n V) == lim[Zt(X) - Z(X)]
t-+O 1:

is the partial derivative of Z and Vz = [Zl Zz z3F.

(3.2.8)

(3.2.9)
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If Zt(xt) is the solution of the variational equation on the deformed domain
!l.,

an.(zo Zt) = In.(Zt) for all Zt E Z, (3.2.10)

where Z, c Hm(O,) is the space of kinematically admissible displacements,
then z, E Z, c Hm(o,). For z, E Hm(o,), the material derivativez(ifit exists) at
o is defined as

l~mIIZt(X + -rV(x)) - z(x) _ Z(X)II = 0 (3.2.11)
r ° -r Hm(m

Note that for z; E Hm(O,), the pointwise derivative of Eq. (3.2.7) is mean-
ingless. It was shown by Zolesio [52] that since T(x, r) is a Ck homeomor-
phism, the Sobolev space Hm(O), for m ::;; k, is preserved by T(x, r); that is,

(3.2.12)

(3.2.13)i = 1,2,3

This fact is used in Section 3.5 to prove the existence of the material
derivative zin the problems treated in Section ~.1.

If m > nfl; then by the Sobolev imbedding theorem (Appendix A.2), the
vector space Hm(!l.) is a topological subspace of CO(U,), and the pointwise
material derivative can be defined. However if m ::;; n12, then Z, is only
defined almost everywhere on 0 0 and the pointwise derivative makes no
sense.

For z, E Hm(!l.), Adams [36] showed that for a Ck-regular open set !l. and
for k large enough, there exists an extension of Z, in a neighborhood U, of no
and hence the partial derivative z' is defined as in Eq. (3.2.9). In this case, the
equality in Eq. (3.2.9) must be interpreted in the Hm(o) norm, as in Eq.
(3.2.11). The reader who is interested in the exact condition on k to have an
extension of Z, in a neighborhood U, of U, is referred to Adams [36].

One attractive feature of the partial derivative is that, with smoothness
assumptions, it commutes with the derivative with respect to x because they
are derivatives with respect to independent variables; that is,

( ~ ) ' = ~(z'),
ox; ox;

3.2.2 Basic Material Derivative Formulas

A number of technical material derivative formulas that are used through-
out the remainder of the text are derived in this section. The reader who is
interested primarily in applications may wish to concentrate on the results
rather than the derivations. The most important results obtained are stated
as lemmas.
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Let J be the Jacobian matrix of the mapping T(x, r): that is,

[OT;] [OVi]J== - =1+r-
oXj OXj

= 1 + rDV(x) (3.2.14)

(3.2.15)

where 1 is the identity matrix and DV(x) is the Jacobian of V(x). Then,
JI<=o = rll<=o = 1. From Eq. (3.2.14),

dJI-d = DV(x)
r <=0

dJTI-d = DV(X)T
r <=0

where superscript T denotes transpose of a matrix. By taking the derivative
of JJ- I = 1,

d I dJ [ drll0= -(JJ- I
) = -rl + J--

dt <=0 dt <=0 dr <=0
Since JI<=o = rll<=o = I, Eq. (3.2.15) and the above equation give

drll-- = -DV(x)
dt <=0

Similarly,

(3.2.16)

(3.2.17)dJ-TI-- = -DV(X)T
dt <=0

where J - T = (J -I)T = (JT)- I. Denoting IJI as the determinant of J, it can be
verified by direct calculation that

:r IJII<=o = div V(x) (3.2.18)

where div V == Lf= I oVi/oxj . Taking the derivative of IJr II = 1,

o= ~IJrlll = Irll~IJII + IJI~lrlll
di <=0 dt <=0 dt <=0

Since IJII<=o = Ir 111<=0 = 1, Eq. (3.2.18) and the above equation give

:r l1 - I'Lo = -divV(x) (3.2.19)

Let n be the unit normal to the infinitesimal area dr of the parallelogram
shown in Fig. 3.2.3, with two edges dx and bX in the undeformed surface r:
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n 8x

x tdl~~~
dx

Fig. 3.2.3 Transformation of area.

Let n, be the unit normal in the deformed surface r. to the infinitesimal area
dr. of the parallelogram, with edges dx, and Jx. (Fig. 3.2.3). Since nand n.
are Ck regular, nand n, are c:- I regular.

Here, dx, and JXt are given as

so

dx; = J dx

JXt = J Jx

dx = J- 1 dx,

Jx = J- 1 ox,

(3.2.20)

(3.2.21)

(3.2.23)

(3.2.22)

Then, using the vector product,

n dr = dx x Jx

nt dr. = dx; x JXt

or, in cartesian rectangular components,

n, dr = eijk dXj bXk

nt, dr. = erst dx t s Jxt,

where summation is taken over all repeated indices and ejjk is a permutation
symbol, defined as

eijk = l+~
-1

when any two indices are equal

when i,j, k are 1,2, 3 or an even
permutation of 1,2, 3

when i.j, k are an odd permutation of 1,2, 3

(3.2.24)

From the first equation of Eq. (3.2.23), using Eq. (3.2.21),

OXj OXk
n, dr = eijk ~ ~ dxt s bXt ,

uXt s uX.,
(3.2.25)
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Multiplying both sides of Eq. (3.2.25) by oxdox<r and summing on i,

(3.2.26)

For any 3 x 3 matrix with elements amn,

(3.2.27)

Hence, for the Jacobian J,

(3.2.28)

Using the second equation of Eq. (3.2.28) in Eq. (3.2.26) and the fact that
Ir11 = IJrt,

which can be rewritten, using (Eq. 3.2.23), as

n< dr" = IJlrTn dr

Normalizing no

(3.2.29)

(3.2.30)

where [a] = (aTa)1/2 is the Euclidean norm. Applying Eq. (3.2.30) to Eq.
(3.2.29),

(3.2.31)

Using Eq. (3.2.17),

d
d IlrT(x<)n(x)111 == dd (J-Tn, r Tn)1/21 = -(DVn, n)
, <=0' <=0

(3.2.32)

where (a, b) == a'b. Equations (3.2.17), (3.2.30), and (3.2.32) and J-TI<=o = I
now give

it == dn< I = (dJ-Tld,)n IlrTnl1 ~ J~Tn (did,) IlrTnll1
dt <=0 IjJ- nil <=0

= (DVn, n)n - DVTn = (n, DVTn)n - DVTn (3.2.33)
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Also, using Eqs. (3.2.18) and (3.2.32),

:r (IJlllF T nll)Lo= div V - (DVn, n) (3.2.34)

LEMMA 3.2.1
Q.,

Let t/Jl be a domain functional, defined as an integral over

(3.2.35)

where f, is a regular function defined on Q.. If 0 is Ck regular, then the
material derivative of t/Jl at 0 is

(3.2.36)

PROOF By transforming variables of integration in Eq. (3.2.35) [53],

t/Jl = ff
ao

h(x t ) dQ. = fL h(x + rV(x»IJI dO

The material derivative of t/Jl at 0 is, using Eqs. (3.2.8) and (3.2.18),

t/J; == ~ fL h(x + rV(x»IJI dOlt=o

= fL [J(x) + f(x) div V(x)] dO

=fL [f'(x) + Vf(X)TV(X) + f(x) div V(x)] dO

= fL [f'(x) + div (f(x)V(x))] dO

If 0 is Ck regular, the divergence theorem [53] yields Eq. (3.2.36).•

(3.2.37)

It is interesting and important to note that it is only the normal component
(VTn) of the boundary velocity appearing in Eq. (3.2.36) that is of importance
in accounting for the effect of domain variation. In fact, it is shown by
Theorem 3.5.3 (Section 3.5.7) that if a general domain functional t/J has a
gradient at 0 and ifO'is Ck+ 1 regular, then only the normal component (VTn)
of the velocity field on the boundary needs to be considered for derivative
calculations. The basic idea behind this result is that QV.) = r for all r,
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where Ys is the component of the velocity field V of Eq. (3.2.3) that is tangent
to the boundary r. That is, the tangential component Ys of the velocity field
does not deform the domain n.

Next, consider a functional defined as an integration over r.,

(3.2.38)

where gt is a regular function defined on r.. Using Eq. (3.2.31),

and the material derivative of "'2 at n is, using Eq. (3.2.34),

"'2 == dd f g.(x + 'tV(x»IJIIIJ-Tnll drl
't Jr t=O

=L[g(x) + g(x)(div V(x) - (DVn, n»] dr

(3.2.39)

(3.2.40)

Suppose the mapping V --. g is linear and continuous. Then Eq. (3.2.40)
implies that "'2 has a gradient at n and by Theorem 3.5.3 (Section 3.5.7), ifn
is Ck + 1 regular, only V = vn needs to be considered, where v is a scalar
Ck-regular function. If n is Ck+1 regular, then n is Ck regular and V = vn is
Ck regular. For V = vn, on r

DV = n VvT + vDn

Since n is the unit normal,

Hence, from Eq. (3.2.41),

DVTn = VvnTn + vDnTn = Vv

From Eqs. (3.2.33) and (3.2.43), with normal velocity V = vn,

n= ddntI = (n, DVTn)n - DVTn = (VvTn)n - Vv
't t=O

and

divV - (DVn,n) = VvTn + vdivn - VvTn = vdivn

It is now to be shown that

divn = H

(3.2.41)

(3.2.42)

(3.2.43)

(3.2.44)

(3.2.45)

(3.2.46)
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where H is the curvature of r in RZ and twice the mean curvature of r
in R 3•

For the proof, consider first R Z
, where I' is locally the graph of a regular

functionf, say Xz = f(x 1). Suppose 0 lies below the graph off. The normal is
given by

n(xl,f(xl)) = (1 + I'Z)-l/Z[ -I' IF
A direct calculation gives

div n(xl,f(x1)) = -(1 + I'Z)- 3/Zf" (3.2.47)

which is the curvature of r. This verifies Eq. (3.2.46)for RZ
•

In R 3
, T is a regular surface. For a point x E r; consider the

R3-orthonormal basis {eh ez, n} shown in Fig. 3.2.4, where el and ez are
vectors tangent to I' at x, such that [54]

i = 1,2 (3.2.48)

The parameters k 1 and kz are principal normal curvatures of r at x, and the
vectors el and e2 are unit vectors in principal directions. In a neighborhood
of x, with x taken as the origin, r may be represented by the graph of
w = f(Yl' Yz) in the (Yb Yz, w) coordinate system, as shown in Fig. 3.2.4.

Fig. 3.2.4 Local representation of the boundary r.

Since the divergence operator is invariant under translation and rotation
[55], div n can be written in (Yb Yz, w) coordinates; that is,

2

div n = L tDne., e;) + (Dnn, n)
i= 1

Thus, using Eqs. (3.2.42) and (3.2.48),

div n = -(k1 + k z) (3.2.49)

which is twice the mean curvature of r [54]. This completes the proof of Eq.
(3.2.46).
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If the velocity is normal to r; Y = vn. Then, from Eq. (3.2.45),

div Y - (DYn,n) = vH (3.2.50)

(3.2.52)

The choice of n, as directed outward from the domain n, defines the
orientation of the boundary r. If the orientation of r is changed, then n is
changed to -nand H must be changed to -H.

From Eq. (3.2.40), using Eq. (3.2.50),

l/J2 = f [g(x) + Hg(X)(VTn)] dr

= f [g'(x) + VgTy + Hg(x)(yTn)] dr

= f[g'(X) + (VgTn + Hg(X))(VTn)] dr

This proves the following lemma:

LEMMA 3.2.2 Suppose gt in Eq. (3.2.38) is a regular function defined on r.,
and the mapping V -> 9 is linear and continuous. If n is Ck + 1 regular, the
material derivative of l/J2 in Eq. (3.2.38) at n is

l/J2 = fr [g'(x) + (VgTn + Hg(x))(VTn)] ar (3.2.51)

Equating the right sides of Eqs. (3.2.40) and (3.2.51) and using
g(x) = g'(x) + VgTv, the following useful relationship for any regular vector
field V and regular function g on R" is obtained:

fVgTV dr = - fg(x) [div V(x) - (DVn, n)] dr

+f (VgTn + Hg(X))(VTn) dr

Finally, consider a special functional that is defined as an integration over
r. as

(3.2.53)

where h, is a regular field defined on r., hence hint is a regular function on r..
From Eq. (3.2.40), using hint instead of gIl

(3.2.54)
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(3.2.56)

where n is given by Eq. (3.2.33). If the mapping V --. h is linear and
continuous, then Eq. (3.2.54) implies that t/J3 has a gradient at n and, by
Theorem 3.5.3 (Section 3.5.7), if n is Ck + 1 regular, only V = vn needs to be
considered, with a Ck-regular scalar function v. Then, using Eqs. (3.2.44) and
(3.2.50), Eg. (3.2.54) becomes

t/J3 =L[h(X)Tn + h(x)T((VvTn)n - Vv) + (h(X)Tn)Hv] dr (3.2.55)

Using Eq. (3.2.52) and substituting h for V and v for s.

LhT Vv dr = - Lv[div h - (Dhn, n)] dr +L(VvTn + Hv)(hTn) dr

Hence, Eg. 3.2.55 becomes

t/J3 =L[h(X)Tn + (div h - (Dhn,n))v] dr

= L[(h'(x) + DhV)Tn + (div h - (Dhn, n))v] dr

= L[h'(X)Tn + v(Dhn,n) + (div h - (Dhn, n))v] dr

=L[h'(X)Tn + div h(VTn)] dr

Thus, the following lemma has been proved:

LEMMA 3.2.3 Suppose h; in Eq, (3.2.53) is a regular field defined on r;, and
the mapping V --. h is linear and continuous. If n is Ck + 1 regular, the
material derivative oft/J3 in Eq. (3.2.53) at n is

t/J3 = L[h'(X)Tn + div h(VTn)] dr

3.3 STATIC-RESPONSE SHAPE DESIGN
SENSITIVITY ANALYSIS

As seen in Section 3.2, the static response of a structure depends on the
shape of the domain. Existence of the material derivative i, which is proved
in Section 3.5, and material derivative formulas derived in Section 3.2 are
used in this section to derive an adjoint variable method for design sensitivity
analysis of general functionals. As in Chapter 2, an adjoint problem that is
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closely related to the original structural problem is obtained and explicit
formulas for shape design sensitivity analysis are obtained. Numerical
methods for parameterizing boundary shape and calculating shape design
sensitivity coefficients are obtained and illustrated.

3.3.1 Differentiability of Bilinear Forms
and Static Response

Basic design differentiability results for energy bilinear forms and static
response, for the problems treated in Section 3.1, are proved in Section 3.5.
These differentiability results are used here to develop shape design sensi-
tivity formulas. This order of presentation was selected, as in Chapter 2,
because technical aspects of existence of design derivatives of the structural
state do not contribute insight into the adjoint variable technique. However,
as noted in Chapter 2, the delicate question of existence of design derivatives
should not be ignored.

The variational equations of the problems of Section 3.1, on a deformed
domain, are of the form

for all i; E Z,

(3.3.1)

where Z, c Hm(o't) is the space of kinematically admissible displacements
and c(·, .) is a bilinear mapping that is defined by the integrand of the
variational equation. It is shown in Section 3.5.4 that the load linear forms
lo"(Zt) for the problems of Section 3.1 are also differentiable with respect to
design.

A powerful result from Section 3.5.4 is that the solution of Eq. (3.3.1) is
differentiable with respect to design. That is, the material derivative zdefined
in Eq. (3.2.11) exists. Note that the material derivative z depends on the
direction V (velocity field). As shown in Eq. (3.5.36), zis linear in V and in
fact is the Frechet derivative with respect to design, evaluated in the direction
V. This linearity and continuity of the mapping V --+ zjustify, by Theorem
3.5.3 (Section 3.5.7), use of only the normal component (VT n) of the velocity
field V in the derivation of the material derivative, as in Eqs. (3.2.51) and
(3.2.56).

Taking the material derivative of both sides of Eq. (3.3.1), using Eq.
(3.2.36), and noting that the partial derivatives with respect to T and x
commute with each other,

for all Z E Z, (3.3.2)
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(3.3.4)

(3.3.7)

where, using Eq. (3.2.8),

[aQ(z, i)]' = fin [c(z, i ') + c(z', i)] dO + Lc(z, i)(VTn) dr

= fin [c(z, z - ViTV) + c(i - VZ Tv, i)] dO +Lc(z, i)(VTn) dr

(3.3.3)
and

l~(i) = fin fi' dO +Lfi(VTn) dr

= fin f(z - ViTV) dO +Lfi(VTn) dr

The fact that the partial derivatives of the coefficients, which depend on
cross-sectional area and thickness, in the bilinear mapping c(·, .) are zero has
been used in Eq. (3.3.3), and!, = 0 has been used in Eq. (3.3.4). For it' let
i.(x + rV(x)) = i(x), that is, choose i as constant on the line x, = x + rV(x).
Then, since Hm(o) is preserved by T(x, r) [Eq. (3.2.12)], if i is an arbitrary
element of Hm(o) that satisfies kinematic boundary conditions on r, it is an
arbitrary element of Hm(Ot) that satisfies kinematic boundary conditions on
r;,. In this case, using Eq. (3.2.8),

z = i' + ViTV = 0 (3.3.5)

From Eqs. (3.3.2), (3.3.3), and (3.3.4), Eq. (3.3.5) may be used to obtain

a~(z, Z) = - ft [c(z, ViTV) + c(VzTV, z)] dO + f/(Z, i)(VTn) dr

(3.3.6)
and

l~(i) = - fin f(ViTV) dO +Lfi(VTn) dr

Then, Eq. (3.3.2) can be rewritten to provide the result

aQ(z, z) = l~(z) - a0z, z)

= fin [c(z, ViTV) + c(VzTv, i) - f(VzTV)] dO

+ L[fz - c(z, i)] (VTn) dr for all i E Z (3.3.8)

Note the similarity of Eqs. (3.3.8) and (2.2.7). As noted in Chapter 2, if the
state z is known as the solution of Eq. (3.3.1) at 0 and if the velocity field Vis
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(3.3.10)

known, Eq. (3.3.8) is a variational equation with the same energy bilinear
form for i E HPn(O), which satisfies kinematic boundary conditions. Indeed,
for second-order problems (membrane, shaft, elasticity), kinematic boundary
conditions are imposed only on z, so if z, = 0 on r.:, then i = 0 on r; and i
satisfies kinematic boundary conditions. For higher-order problems, such as
clamped plates, i can be shown to satisfy kinematic boundary conditions.
Indeed, for the clamped-plate problem, the boundary condition Z = 0
on r implies i = 0 on r. Also, z = oz/on = 0 on r implies V'z =
(oz/on)n + (oz/os)s = 0 on r, which in turn implies (Vz)' = 0 on r. By Eqs.
(3.2.8) and (3.2.13),

( ~ ) ' =~(z')+ ±~Vj
OX; OX; j= 1 OXj OX;

o ( 2 OZ .) 2 e2
z .

=- i- 2:-VJ + L--VJ
OX; j= 1 OXj j= 1 OXj ex;

= ~(i) - V'ZT(OV), i = 1,2 (3.3.9)
OX; ox;

Hence, (oz/ox;)' = 0 (i = 1,2) on r implies that V'i = 0 on r. Thus,
ei/on = 0 on rand i satisfies kinematic boundary conditions.

Note that the right side of Eq. (3.3.8) is linear in Z, and the energy bilinear
form on the left is Z elliptic. Thus, Eq. (3.3.8)has a unique solution i E Z [9].
The fact that there is a unique solution of Eq. (3.3.8) agrees with the
previously stated result that the design derivative of the solution of the state
equation exists. As in Chapter 2, Eq. (3.3.8) can be used in the adjoint
variable method of design sensitivity analysis.

3.3.2 Adjoint Variable Design
Sensitivity Analysis

Consider a general functional that may be written in integral form as

t/t = IIn. g(z" V'Zt) dO.

where z E H 1(0), V'z = [Zl Z2 z3F, and the function g is continuously
differentiable with respect to its arguments. In the case z E H 2(0), second
derivatives of z may appear in the integrand of Eq. (3.3.10). This case will be
treated as specific applications arise. Note that t/t depends on 0 in two ways.
First, there is the obvious dependence of the integral on its domain of
integration. Second, the state z, depends on the domain 0t> through the
variational equation of Eq. (3.3.1).
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Taking the variation of the functional of Eq. (3.3.10), using the material
derivative formula of Eq. (3.2.13) and Eq. (3.2.36),

if!' = fin [gzz' + gvzVz'] dO. +Lg(VTn) dr (3.3.11)

where 9vz = [OgjOZl OgjOZ2 OgjOZ3]' Using Eq. (3.2.8), Eq. (3.3.11) can be
rewritten as

if!' = fin [gzz + gvz Vz - gz(VzTV) - 9vz V(VzTV)] dO. +Lg(VTn) dr

(3.3.12)

Note that z and Vz depend on the velocity field V. The objective here is to
obtain an explicit expression for if!' in terms of the velocity field V, which
requires rewriting the first two terms of the first integral on the right side of
Eq. (3.3.12) explicitly in terms of V, that is, eliminating Z.

Much as in Chapter 2, an adjoint equation is introduced by replacing
zE Z in Eq. (3.3.12) by a virtual displacement I E Z and equating the sum of
terms involving A to the energy bilinear form, yielding the adjoint equation for
the adjoint variable A.,

(3.3.13)for all AE Zan(A., A) = fin [gzA + gvz VA] dO.

Note that the adjoint equation of Eq. (3.3.13) is the same as the one inEq.
(2.2.10). This fact is advantageous when both conventional design and shape
design variation are considered simultaneously, as will be done in Chapter 4.
As noted in Section 2.2., the Lax-Milgram theorem [9] guarantees that Eq.
(3.3.13) has a unique solution A., which is called the adjoint variable
associated with the constraint of Eq. (3.3.10).

To take advantage of the adjoint equation, evaluate Eq. (3.3.13) at
1 = zE Z to obtain the expression

(3.3.14)an(,1, z) = fin [gzz + gvz VZ] dO.

Similarly, the identity of Eq. (3.3.8) may be evaluated at z = A., since both are
in Z, to obtain

an(z, Ie) = l~(}.) - a~(z, J.) (3.3.15)

(3.3.16)

Recalling that the energy bilinear form an(" •) is symmetric in its arguments,
the left sides of Eqs. (3.3.14) and (3.3.15) are equal, thus yielding

fin [gzz + gvz VZ] dO. = tW·) - a~(z, ).)
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Using Eqs. (3.3.8) and (3.3.16), Eq. (3.3.12) yields

ifl' = IMA) - a~(z, ;.) - fL [giVzTV) + gvzV(VzTV)] dO +Lg(VTn)dr

= fL [c(z, VATV) - !(VA TV) + c(VzTv, A) - gz(VzTV) - gvz V(VzTV)] dO

+ L[g +!A - c(z,A)J(VTn)dr (3.3.17)

where the integral over 0 can be transformed to a boundary integral by using
the variational identities given in Section 3.1 for each structural component
and boundary and/or interface conditions. This will be done for each
structural component type encountered. The fact that the design sensitivity
ifl' can be expressed as a boundary integral gives significant advantages in
numerical calculations, if accurate boundary information can be calculated.

Note that evaluation of the design sensitivity formula of Eq. (3.3.17)
requires solution of the variational equation ofEq. (3.3.1) for z. Similarly, the
variational adjoint equation of Eq. (3.3.13) must be solved for the adjoint
variable A. This is an efficient calculation, using finite element analysis, if the
boundary-value problem for z has already been solved, in which case it
requires only evaluation of the solution of the same set of finite element
equations with a different right side (adjoint load).

3.3.3 Analytical Examples
of Static Design Sensitivity

The beam, membrane, torsion, and plate problems of Section 3.1 are used
here as examples with which to calculate design sensitivity formulas, using
the adjoint variable method. Linear elasticity problems will be considered in
Section 3.3.4, and computational considerations will be discussed in sub-
sequent sections. The variation of a conventional design variable u (cross-
sectional area or thickness, considered in Chapter 2) is suppressed in the
discussions of this chapter, and even though there is self-weight in addition to
externally applied load, the total applied load will be expressed as j(x).

BENDING OF A BEAM

Consider the beam of Section 3.1, with 0 = (0,1) C R 1 and [(x) = I1N(x).
Several structural response functionals are of concern. Consider first the
weight of the beam, given as

(3.3.18)
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(3.3.24)

Taking the variation, using Eq. (3.2.36) with (yh)' = 0,

l/J~ = YhVI~ = yh(1)V(1) - yh(O)V(O) (3.3.19)

where V(O) and v(1) are perturbations of endpoint locations for the beam,
positive if V(O) and v(1) cause the endpoints to move in the positive x
direction. Note that this direct variation gives the explicit form of variation
of structural weight in terms of variation of shape. Thus, no adjoint problem
needs to be defined.

Consider as a second functional the compliance of the structure, defined as

l/J2 = f~fZ dx (3.3.20)

Note that the integrand of Eq. (3.3.20) depends on the loadf. However, since
f' = 0, Eq. (3.3.20) can be treated as the functional form of Eq. (3.3.10).
Hence the adjoint equation of Eq. (3.3.13) is

ag(A.,X) = f>XdX forall XeZ (3.3.21)

Since the load functional on the right side of Eq. (3.2.21) is precisely the same
as the load functional for the original beam problem of Eq. (3.1.5), in this
special case A = z, and from Eq. (3.3.17) with g = fz,

l/J;' = f: [2Eah2(zxV)xxzxx - 2f(zxV)] dx + [2fz - Eah2(zxx)2]VI~
(3.3.22)

The variational identity of Eq. (3.1.3) may be used, identifying (z, V) in the
integral of Eq. (3.3.22) with zin Eq. (3.1.3), to obtain

l/J;' = 2Eah2Z
xx(ZxV)x[ - 2(Eah2zxxMZxV)I~ + [2fz - Eah2(zxx)2]VI~

(3.3.23)

For a clamped-clamped beam, using boundary conditions of Eq. (2.1.1)
(note that beam length 1 is not normalized in this chapter), Eq. (3.3.23)
becomes

l/J;' = Eah2(zxYVI~
As noted in Section 3.3.2, the design sensitivity in Eq. (3.3.24) is expressed as
a boundary evaluation and is given explicitly in terms of design velocity
(perturbation) of the boundary.
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(3.3.25)

As an example that can be calculated analytically, consider a uniform
clamped-clamped beam with h = ho and uniform loadfo. The displacement
under this load is

z(x) = 24~oCXh~ [x10 - X)l]

The compliance of the beam may be calculated from Eq. (3.3.20) as

fcf1 5

l/J1 = 720Ecxh~

Consider beam length 1as a design variable. Since the beam has uniform
cross-sectional area ho and uniform loadfo, varying either endpoint x = 0 or
x = 1 will have the same effect on compliance. Hence, the variation of
compliance with respect to 1is

, fol14
•

l/J1 = 144Ecxh~ c51

Using Eq. (3.3.24), vO) = c51/2, and V(O) = -c51/2,

l/J2 = Ecxh~ [ 12i:h~ (]2 - 61x + 6x
1)JV I~

f0
2
1

4
c51

144E(Xh~

which is the correct result.
For other boundary conditions in Eqs. (2.1.16)-(2.1.18), the shape design

sensitivity formula in Eq. (3.3.23) for compliance is valid because (as
mentioned in Section 2.1.1) the variational equation of Eq. (3.1.4) is valid for
all z satisfying corresponding kinematic boundary conditions. To obtain a
sensitivity formula forthe simply supported case, boundary conditions ofEq.
(2.1.16) in Eq. (3.3.23) can be used to obtain

l/J2 = -2ECXh2ZxxxZxvl~

For a cantilevered beam, applying boundary conditions ofEq. (2.1.17)to Eq.
(3.2.23),

(3.3.26)
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(3.3.28)

For a clamped-simply supported beam, applying boundary conditions of
Eq. (2.1.18) to Eq. (3.2.23),

l/J~ = -Eah
2(Zxx)2Vlx=o - 2Eah2zxxxZxVlx=i (3.3.27)

Consider next a functional that defines the value of displacement at an
isolated fixed point x e (0,1); that is,

l/J3 == z(x) =L$(x - x)z dx

For the purpose of evaluating the functional ej, the point xdoes not move,
and l/J3 on the deformed domain 0t is the value of displacement at the same
point X. Since m = 2 and n = 1, m > n/2 and by the Sobolev imbedding
theorem [36J, z, e CO(!l.). The functional of Eq. (3.3.28) is thus continuous,
and the foregoing theory applies.

Since $(x - x) is defined on a neighborhood of [0, 1J by zero extension and
x is a fixed point, $'(x - x) = 0. Thus, Eq. (3.3.28) can be treated as the
functional form of Eq. (3.3.10) and the adjoint equation is, from Eq. (3.3.13),

(3.3.29)for all 1eZan(A, 1)= LS(X - x)l dx

As noted in Section 2.2.3, since the right side of this equation defines a
bounded linear functional on H 2(0, i), Eq. (3.3.28) has a unique solution A(3),
where superscript (i) associates A with the constraint l/Jj. Note that A(3) is the
displacement due to a unit load at X. That is, with smoothness assumptions,
the variational equation of Eq. (3.3.28) is equivalent to the formal operator
equation

X e (0,1) (3.3.30)

with A satisfying the same boundary conditions as the original structural
response z. From Eq. (3.3.17) with g = $(x - x)z,

l/J~ = L[Eah2zxx(A~3)V)xx - f(A~3)V) + Eah2(zxV)xxA~l - $(x - x)(zxV)] dx

+ [fA(3) - Eah2zxxA~nvl~ (3.3.31)

The variational identity of Eq. (3.1.3) may be used twice to transform the
integral in Eq. (3.3.31) to a boundary integral (boundary evaluation in the
one-dimensional case). To do so, first identify (A~3)V) in the first two terms of
the integral in Eq. (3.3.31) with zin Eq. (3.1.3). Next, identify A(3), (zxV), and
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b(x - X) in the second two terms of the integral in Eq. (3.3.31) with z, i, andf
in Eq. (3.1.3), respectively. Then, from Eq. (3.3.31),

t/J~ = [EiXh2zxx(A.~)V)x - (EiXh2zxJx(A~3)V)J I~

+ [Ecxh2A~3j(ZxV)x - (EiXh2A~3jMzxV)JI~

+ [p(3) - EiXh2zxxA~3j]VI~ (3.3.32)

For a clamped beam, using the boundary conditions of Eq. (2.1.1), Eq.
(3.3.32) becomes

t/J~ = EiXh2zxxA~3jvl~ (3.3.33)

To illustrate the use of this result, consider the clamped-clamped beam
studied earlier in this section. If design sensitivity of displacement at the
center of the beam is desired, X = 1/2. From Eq. (3.3.2S)and

z(x) = 24~:h~ [x
2(1 - X)2]

the functional t/J3is

f 014

t/J3 = 3S4EiXh~

and the shape design sensitivity is

, foP •
t/J3 = 96EiXh~ 61

The adjoint load from Eq. (3.3.29) is just a unit point load at the center of
the beam. The adjoint variable is thus obtained as

A(3) = 1 [s/x _ i)3 - 4x3 + 31x2J
4SEiXh~ \ 2

where

(x-D~!:_~
for

1
O<x<-- 2

for
1 •
- < x < I2- -
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(3.3.34)

Using this information, the shape design sensitivity of t/J3 is obtained, using
Eq. (3.3.33), as

t/J3 = [0 h2[(F - 6ix + 6x2)(24x - 61)VI
57 ElY. 0 x=o

+ (P - 61x + 6x
2)(24x

- 181)V Ix=J
!<p

96~lY.h~ <51

since V(O) = -<51/2 and VO) = (jI/2. Note that this is the same result as before.
For simply supported, cantilevered, or clamped-simply supported beams,

the sensitivity formula in Eq. (3.3.32) is valid, where z and ;P> are solutions of
Eqs. (3.1.4) and (3.3.29), respectively, and Z is the appropriate space of
kinematically admissible displacements. Appropriate boundary conditions
for z and 2(3) can then be applied to Eq. (3.3.32) to obtain useful sensitivity
formulas. For a simply supported beam, boundary conditions in Eq. (2.1.16)
can be used for both z and 2(3) in Eq. (3.3.32), to obtain

t/J3 = - [ElY.h2(2~~xzx + zxxx2~3>)]V I~

For a cantilevered beam, applying boundary conditions in Eq. (2.1.17) for
both z and 2(3) to Eq. (3.3.32),

t/J3 = -ElY.h2Zxx2~~vlx=0 +!2(3)Vlx=i (3.3.35)

For a clamped-simply supported beam, applying boundary conditions of
Eq. (2.1.18) to Eq. (3.2.32),

t/J3 = ElY.h2Zxx2~~vlx=0 - [ElY.h2(2~~xzx + Zxxx2~3»]Vlx=i (3.3.36)

The shape design sensitivity results in Eq. (3.3.32) or Eqs. (3.3.33)-(3.3.36)
for each boundary condition are valid for the functional t/J3 that defines the
value of displacement at a fixed point X. The case in which t/J3 on a deformed
domain at is the displacement at point xt = x+ rV(x) will be considered in
Section 3.3.6.

Consider another functional that is associated with strength constraints,

(3.3.37)



212 3. STRUCTURAL COMPONENTS WITH SHAPE AS THE DESIGN

where /3h 1/2 is the half-depth of the beam and mp is a characteristic function
defined on a small open subinterval (xa, Xb), such that [xa, XbJ c (0,1). The
characteristic function mp is positive and constant on (x,, Xb), zero outside of
(x a , Xb), and its integral is 1. Consider the average stress on the fixed interval
(x,, Xb); that is, mp in Eq. (3.3.37) does not change with T. It is possible to
extend mp on R1 by extending it to zero value outside (0,1). Then, m~ = O.

Taking the variation of Eq. (3.3.37), using Eqs. (3.2.13) and (3.2.36) and
h' = 0,

,I,' = II/3h112EZ' m dx + /3h 1/2Ez m vii'1'4 xx p xx p
o 0

(3.3.38)= L/3h 1/2E[(Z)xx - (zxV)xxJmpdx

since mp(O) = mp(1 ) = O. As in the general derivation of the adjoint equation
of Eq. (3.3.13), the adjoint equation may be defined by replacing zin the first
term on the right side of Eq. (3.3.38) by A, to define a load functional of the
adjoint equation, obtaining

(3.3.39)for all 1 E Zao(A,A) = L/3hl/2EAxxmpdX

As in the adjoint equation of Eq. (3.3.13), the adjoint equation of Eq. (3.3.39)
is the same as Eq. (2.2.32). As noted in Section 2.2.3, since the right side of
this equation is a bounded linear functional on H 2(0,1), Eq. (3.3.39) has a
unique solution A(4). With smoothness assumptions, the variational equation
of Eq. (3.3.39) is equivalent to the formal operator equation

X E (0,1) (3.3.40)

with A satisfying the same boundary conditions as the original structural
response z. As in Eq. (3.3.30), the derivative on the right side of Eq. (3.3.40) is
a derivative in the sense of the theory of distributions [35, 36, 56]. Expanding
the derivative,

(/3h 1/2Emp)xx = /3E{(h1/2)xxmp + mp[(h1/2)x(x
a) b(x - xa)

- (h1
/
2)x(Xb) b(x - xb) + h1

/
2(X

a) bx(X - xa)

- h1/2(Xb) bx(x - Xb)J}

Thus, the adjoint load consists of a distributed load on the interval (x,, Xb),
point loads at Xa and Xb' and point moments at Xa and Xb. By the same
method used in Section 3.1, a variational identity is obtained for the adjoint
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system from Eq. (3.3.40) as

I ii Eah2}·xJ·xx dx - i f3hl/2EJ.xxmp dx

I
I II= [Eah2A,xx Ax - (Eah2A,xJx AJ 0 + [(f3hl/2EmptA - f3h 1/2EmpAxJ 0

for all ;: E H 2(0,1) (3.3.41)

Since Z E Z, Eq. (3.3.39) may be evaluated at A= Z to obtain

an(A(4), z) = f~f3hl/2 E(z)xxmp dx (3.3.42)

Similarly, the identity of Eq. (3.3.8) may be evaluated at z = A,(4), since both
are in Z, to obtain

an(z, A,(4») = ly(A,(4») - ay(z, A,(4») (3.3.43)

Since the energy bilinear form an(·, .) is symmetric, Eqs. (3.3.38), (3.3.42), and
(3.3.43) yield

t/J~ = ly(A,(4») - ay(z, A,(4») - f:f3h1/2E(Zx V)xxmp dx

which can be rewritten, using Eq. (3.3.8), as

t/J4 = f: [Eah2zxx(A,~4)vtx - f(;'~4)V) + Erxh2(zxV)xx;'~~

- f3hl/2E(zxV)xxmpJ dx

+ [j;'(4) _ Erxh2Zxx;'~~JVI~ (3.3.44)

The variational identities of Eq. (3.1.3) and (3.3.41), identifying (;'~4)V) in the
first two terms of the integral in Eq, (3.3.44) with zin Eq. (3.1.3) and ;.(4) and
(z, V) in the second two terms of the integral in Eq. (3.3.44) with ;. and Ain
Eq. (3.3.41), respectively, may be used to obtain

t/J4 = [E(Xh2zxx(A,~4)V)x - (Ecth2zxxt(;'~4)V)] I~

+ [Eah2;'~~(zx V)x - (Erxh 2;'~~)x(zx V)] I~

+ [(f3hl/2Emp)x(zxV) - f3hl/2Emp(ZxV)xJI~ + [j}.(4) - Eah2zxx;.~~JVI~
(3.3.45)
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Since [x a , Xb] C (0,1) and mp = 0 in neighborhoods of x = 0 and x = 1, Eq.
(3.3.45) becomes

t/J~ = [Ec,(h2zxx(A.~4)V)x - (EoNzxJx(2~4)V)] I~

+ [Erxh 2;.~:l(zx V)x - (Erxh 2;.~:l)Azx V)] I~

+ [12(4) - Erxh2Zxx).~:l]V[ (3.3.46)

For a clamped beam, using the boundary conditions of Eq. (2.1.1) and the
fact that ).(4) satisfies the same boundary conditions, Eq. (3.3.46) becomes

t/J~ = Erxh2zxx;.~:lVI~ (3.3.47)

As before, for simply supported, cantilevered, or clamped-simply supported
beams, the shape design sensitivity formula of Eq. (3.3.46) is valid, where z
and X4 ) are solutions of Eqs. (3.1.4) and (3.3.39), respectively, and Z is the
appropriate space of kinematicaIly admissible displacements. Appropriate
boundary conditions for z and ;.(4) can be applied in Eq. (3.3.46) to obtain
useful shape design sensitivity formulas.

For a simply supported beam, the boundary conditions in Eq. (2.1.16) can
be used for both z and ).(4) in Eq. (3.3.46) to obtain

t/J~ = -[Erxh2(2~:lxzx + Zxxx2~4»)]VI~ (3.3.48)

For a cantilevered beam, applying the boundary conditions in Eq. (2.1.17)
for both z and 2(4) to Eq. (3.3.46) yields

t/J~ = Erxh2zxx2~:lVlx=o + !).(4)Vlx=1 (3.3.49)

For a clamped-simply supported beam, applying boundary conditions of
Eq. (2.1.18) for both z and ",(4) in Eq. (3.3.46) yields

t/J~ = - Erxh2zxx).~:lV Lo - [Erxh2().~:lxzx + zxxx).~4»)]V IX=l

(3.3.50)

As in the displacement functional t/J3' the shape design sensitivity results in
Eq. (3.3.46) or Eqs. (3.3.47)-(3.3.50) for each boundary condition are valid
for the functional t/J4 that defines the average stress on a fixed interval (xa , Xb)'
The case in which t/J4 is averaged stress on the moving interval (Xa, , XbJ in a
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deformed domain 0t will be considered in Section 3.3.6. Another assumption
that is used for the average stress functional is that the interval (x a , Xb), on
which stress is averaged, is taken such that [xa , XbJ c (0,1). Hence, X a #- 0
and Xb #- 1. The case in which either X a = 0 or Xb = 1will be considered in
Section 3.3.6.

DEFLECTION OF A MEMBRANE

Consider the membrane of Fig. 3.1.1, with mass density h. The area of the
membrane is

(3.3.51)

(3.3.52)

Taking the variation and using Eq. (3.2.36),

t/J; = {(VTn) dr

Note that this direct variation calculation gives the explicit form of variation
of area in terms of the normal velocity (VTn) of the boundary. Thus, for this
functional, no adjoint problem needs to be defined.

Consider a second functional that respresents strain energy of the
membrane,

(3.3.53)t/J2 = ffL VzTVz dO

From Eq. (3.1.14), the strain energy t/J2 is equal to half of the compliance, so
that

(3.3.54)t/J2 = ~ fL fz dO

Note that the integrand ofEq. (3.3.54) depends on the loadf. However, since
f' = 0, Eq. (3.3.54) can be treated as the functional form of Eq. (3.3.10).
Hence, the adjoint equation of Eq. (3.3.13) is

(3.3.55)for all J: E Z" 1II "ariA, A) ="2 n t: dO

The load functional on the right side of Eq. (3.3.55) is precisely half the load
functional for the original membrane problem of Eq. (3.1.14). Hence, in this
special case, ;. = z/2, and from Eq. (3.3.17) with z = 0 on r;

t/J2 = fL [T(VzTV(VzTV)) - f(VzTV)] dO - fL(VzTVZ)(VTn) dr

(3.3.56)
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The variational identity of Eq. (3.1.12), identifying (VaTV) in the integral of
Eq. (3.3.56) with zin Eq. (3.1.12), may be used to obtain

(3.3.57)

Since z = 0 on r, Vz = (ozjon)n on r, which yields the simplified result

~ ( )2, T oz T
t/J2 = 2"Lon (V n) dr (3.3.58)

As noted in Section 3.3.2, the shape design sensitivity in Eq. (3.3.58) is
expressed as a boundary integral, and only normal movements (VTn) of the
boundary appear.

TORSION OF AN ELASTIC SHAFT

Consider torsion of the elastic shaft of Fig. 3.1.2. The torsional rigidity in
Eq. (3.1.18) can be considered as a response functional; that is,

for all X E Z

The adjoint equation is, from Eq. (3.3.13),

an(A, X) = 2 fIn AdO

(3.3.59)

(3.3.60)

(3.3.61)

Thus, in this special case A = z. Comparing this with the membrane problem,

t/J' =L(:~y (VTn) dr

As an example that can be calculated analytically, consider the elastic shaft
with circular cross section (Fig. 3.3.1) and radius a as a design parameter.
The Prandtl stress function z for a circular cross section is [57]

z = t(a2 - xi - x~) = t(a2 - r2)

Using polar coordinates, the torsional rigidity of Eq. (3.3.59) is

r2
" r na

4

t/J = J
o

J
o

(a2
- r2)r dr dO = """""2

Considering the radius a as a design parameter, the variation of torsional
rigidity with respect to a is

t/J' = 2na 3 {)a
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---+------t":.....l-!"--+---_ xI

Fig. 3.3.1 Circular cross section of an
elastic shaft.

Using polar coordinates, on the boundary r,

n = [cos e sin e]T
and

Also,

Hence, from Eq. (3.3.61),

if!' = f" (_r)2 Dr r delr=a = 2na
3

Da

which is the correct result.

BENDING OF A PLATE
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Consider the plate of Section 3.1 with thickness h(x);::: ho > °and
constant Young's modulus E. The functional defining weight of the plate is

l/Jt = f{ yh dO (3.3.62)

where y is weight density of the material. Taking variation, using Eq. (3.2.36)
with (yh)' = 0,

(3.3.63)

Thus, no adjoint variable is necessary and the explicit design derivative of
weight is obtained.
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Consider next the compliance functional for the plate,

t/J2 = Jl f Z dO (3.3.64)

As in Eq. (3.3.52), since j" = 0, Eq. (3.3.64) can be treated as the functional
form of Eq. (3.3.10), so from Eq. (3.3.13), the adjoint equation is

an(}·, ;J:) = fIn fA. dO for all A. E Z (3.3.65)

In this special case, t. = z, and from Eq. (3.3.17) with 9 = fz,

, II ~ T Tt/J2 = n {2D[(Zl1 + vzn)(Vz V)ll + (Z22 + vz11)(Vz Vh2

+ 2(1 - v)zu(VZTV)12] - 2f(VzTV)} dO

+ f {2fz - 15[(zl1 + VZ22)Zll + (Z22 + VZll)Z22

+ 2(1 - V)Zf2]}(V Tn) dr (3.3.66)

The variational identity of Eq. (3.1.23) may be used, identifying (VzTV) in the
domain integral of Eq. (3.3.66) with zin Eq. (3.1.23), to obtain

t/J2 = 2L(VzTV)Nz dr + 2L:n(VzTV)Mz dr

+f {2fz - D[(Zll + VZ22)Zll + (Z22 + VZll)Z22

+ 2(1 - V)Zf2]}(V Tn) dr (3.3.67)

For the clamped part re c r of the boundary, using boundary conditions of
Eq. (3.1.26), Vz = 0 on re . Also,

a T ~. .
-a(Vz V) = L., (V'zijnj + Jj'Zi n)

n i,j= 1

Since Vz = 0 on re , this becomes

a T 2 i a2 z T ti2z
T-a(Vz V) = L V zijnj = -a2 (V n) + -tia (V s) (3.3.68)

n i.j=l nn s

where the second equality ofEq. (3.3.68)can be verified by expanding the last
term of Eq. (3.3.68). Since az/8n = 0 on re, (a/as)(tiz/tin) = 0 on re , and Eq.
(3.3.68) becomes

8 T 82z
T-a (Vz V) = ~(V n),

n on
(3.3.69)
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Also, since ozjos = 0 on rc , oZzjos2 = 0 on rc , so
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X E rc (3.3.70)

(3.3.71)

for all zE Z

where r is the radius of curvature of the boundary rc . Using boundary
conditions of Eqs. (3.1.26) and (3.3.67), the sensitivity formula due to a
variation of the clamped boundary rc is

t/J2 = Ire 15{2G:~Y - [(Z11 + VZ22)Z11 + (Z22 + VZ11)Z22

+ 2(1 - V)Zr2J }(VTn)dr

which is valid for variable thickness h(x). As before, the design sensitivity in
Eq. (3.3.71) is expressed as a boundary integral, and only the normal
movement (VTn) of the boundary rc appears.

It was shown by Mikhlin [32J that if the boundary conditions of Eq.
(3.1.26) are satisfied, then

ffn(Zi2 - Zl1 Z22) dO. = 0

Hence, if the thickness h(x) of the plate is constant, then the variational
equation of Eq. (3.1.29) is simplified to

an(z, z) == 15 ffu(V 2Z)(V2Z) dO. = ffufz dO. == In(z)

Proceeding exactly as before, instead of Eq. (3.3.71), a simplified ex-
pression is obtained:

t/J2 = Ire D[2(~:~Y - (V
2
Z)2] (VTn) dr

= Dire G:~Y(VTn) dr (3.3.72)

As an analytical example, consider a clamped circular plate with constant
thickness h, radius a, and concentrated load f = p <>(x) at the center of the
plate, as shown in Fig. 3.3.2. The displacement of the plate is given as [58J

Z = I~D[a2 - r2(1 + 21n~)]
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Fig. 3.3.2 Circular plate with concentrated load.

where r2 = x~ + x~. From Eq. 3.3.64 the compliance functional of the plate
is

II p2J(X) [ ( a)J p2a2
l/J2 = n 16nD a

2
- r

2
1 + 21n~ dO. = 16nD

Considering the radius a of the plate as a design parameter, the variation of
compliance with respect to a is

f p2a
l/J2= -------or Ja

8nD

Expressing Eq. (3.3.72) in polar coordinates, with (VTn) = Jr and
82z/?m2 = 82z/8r2 on the boundary of the circle, gives

l/J2 = Dr
2Jt

(~2~)2 Jr r dOIJo or r=a

= D[--L.,.(-41n~ + 4)J2 2nr Jrl
16nD r r=a

p2a
=~Ja

8nD

which is the same result.
For other boundary conditions in Eqs. (3.1.27) and (3.1.28), the sensitivity

formula in Eq. (3.3.67) for compliance is valid because the variational
equation of Eq. (3.1.29) is valid for all zthat satisfy corresponding kinematic
boundary conditions. To obtain a sensitivity formula for variation of the
simply supported part rs c r of the boundary, from boundary conditions of
Eq. (3.1.27), z = 0 on rs implies 8z/8s = 0 on rs, so Vz = (8z/8n)n. Thus,
from Eq. (3.3.67),

l/J2 = Irs {2(:~)NZ - D[(Zll + VZ22)Zll

+ (Z22 + VZll)Z2.2 + 2(1 - V)Z~2] }(VTn) dr (3.3.73)
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(3.3.78)

For the free edge rF c r of the boundary, applying boundary conditions of
Eq. (3.1.28) to Eq. (3.3.67),

1jJ~ = r {2fz - D[(zl1 + VZ22)Zl1 + (Z22 + VZ11)Z22JrF

+ 2(1 - V)Zr2]}(yTn) dr (3.3.74)

If r = rc u rs u rF , the complete shape design sensitivity formula is
obtained by adding terms from Eqs. (3.3.71), (3.3.73), and (3.3.74).

Consider next displacement at a discrete point X, written as

1jJ3 = fL $(x - x) z dO. (3.3.75)

where x E 0. is a fixed point and $(x) is the Dirac measure in the plane, acting
at the origin. Since m = 2 and n = 2, m > n12. By the Sobolev imbedding
theorem [36], z; E CO(!4). The functional of Eq. (3.3.75) is thus continuous,
and the foregoing theory applies.

Since $(x - x) is defined on a neighborhood of fi by zero extension and x
is fixed, $'(x - x) = O. Thus, Eq. (3.3.75) can be treated as the functional
form ofEq. (3.3.10), and from Eq. (3.3.13) the adjoint equation is

an(A,A) = ftD(X-X)~do. for all AEZ (3.3.76)

Equation (3.3.76) has a unique solution A(3), which is the displacement due
to a unit load at X. With smoothness assumptions, the variational equation
of Eq. (3.3.76) is equivalent to the formal operator equation

[D(A11 + VA22)]11 + [D(A22 + VA11)]22

+ 2(1 - V)[DA12]12 = $(x - x), X E 0. (3.3.77)

with A satisfying the same boundary conditions as the original structural
response z. From Eq. (3.3.17), with 9 = $(x - x) z,

1jJ~ = fIn {D[(zl1 + VZ22)(VA(3)TY)11 + (Z22 + VZ11)(VA(3)Tyhz

+ 2(1 - V)ZdVA(3)Ty)12] - f(VA(3)Ty)

+ D[(AB) + VAW)(VZTY)l1 + (Wi + v)W)(VzTyhz

+ 2(1 - V) APd(VzTY)12] - $(x - x)(VzTy)} dO.

+L{fA(3) - D[(zl1 + VZ22)ABl + (Z22 + vZ11)Wd

+ 2(1 - V)Z12AW]}(yTn) dr
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As in the beam problem [Eq. (3.3.32)], the variational identity of Eq. (3.1.23)
may be used twice to transform the domain integral of Eq. (3.3.78) to a
boundary integral, obtaining

"'3 = L [(VA(3)TV)NZ + :n (VA(3)TV) MZJ dr

+ L[(VZTV)NA(3) + :n(VZTV)MA(3'] dr

+ L {fA(3) - 15[(zl1 + VZ22)AW + (Z22 + VZ11)AW

+ 2(1 - V)Zl 2).pn HVTn) dr (3.3.79)

(3.3.80)

Using boundary conditions of Eq. (3.1.26) and the fact that Eqs. (3.3.69) and
(3.3.70) hold for A(3) as well as z, the sensitivity formula due to a variation of
the clamped boundary rc is

"'3 = Le 15{2G:~)C;~~3) - [(Zl1 + VZ22)AW + (Z22 + vZ11)Wd

+ 2(1 - v)Z12AWJ} (VTn) dr

which is valid for variable thickness h(x). As in the compliance functional, if
the thickness h(x) of the plate is constant, a simplified expression is obtained:

(3.3.81)

As an analytical example, consider a clamped circular plate of constant
thickness h, radius a, and linearly increasing axi-symmetric load! = (q/ao)r,
as shown in Fig. 3.3.3, where ao is the present design.

Fig. 3.3.3 Circular plate with axisymmetric load.
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The displacement of the plate with radius a is given as [58]

Z = q~ (3a 4 _ 5a2r2 + 2r
5

)
a 450Dao a

Taking xas the center of the plate, t/J3 in Eq. (3.3.75) is
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Considering the radius a of the plate as a design parameter, the variation of
t/J3 with respect to a, evaluated at the present design ao, is

1 8t/J3 I qa~
t/J3 = a;; Ja a=ao = 30b Jao

To use Eq. (3.3.81), the adjoint response of Eq. (3.3.71) must be found,
where the adjoint load is a unit point load at the center of the plate. The
adjoint displacement is for a plate with radius a [58]

A(3) = ~[a2 - r 2(1+ 2In~)J
16nD r

Expressing Eq. (3.3.81) in polar coordinates,

t/J~ = bi2"(82~)(82A~3)) Jr r del
o 8r 8r r=ao.a=ao

= b[ qa,.. (-lOa2 + 40
r 3)J[---"-61 (-4In~ + 4)J2nr -

(450)Dao a 1 nl) r r=ao.a=ao

qa~
= 30b Jao

which is the correct result.
For other boundary conditions in Eqs. (3.3.27) and (3.1.28), proceeding as

in the compliance functional yields

t/J3 = fs {C~:)NZ + G~)NA(3) - b[(Zll + VZzz)AW

+ (Z22 + VZu)AW + 2(1 - V)Z12A~3n}(VTn) dr (3.3.82)

for the variation of a simply supported part rs c r of the boundary. For the
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(3.3.84)

(3.3.86)

variation of a free edge rF c r of the boundary, from Eq. (3.3.79),

t/J; = r {f)..(3) - D[(zll + VZ22))..gJ + (Z22 + vZldWlJrF

+ 2(1 - V)ZI2)..W]}(VTn) dr (3.3.83)

If r = rc u rs u r F, the complete shape design sensitivity formula can be
obtained by adding terms in Eqs. (3.3.80), (3.3.82), and (3.3.83).

As in a beam displacement functional, the sensitivity results in Eq. (3.3.79)
or Eqs. (3.3.80)-(3.3.83) for each boundary condition are valid for displace-
ment at a fixed point x. The case in which t/J3 is the displacement at a moving
point X, = x + -rV(x) in a deformed domain n. will be considered in Section
3.3.6.

The maximum stress in a thin plate occurs on the surface of the plate and is
given in the form [33]

11 Eh
(1 = - 2(1 _ v2 ) (ZIl + VZZZ)

22 Eh
(1 = - 2(1 _ v2)(Z22 + vZld

12 Eh
(1 = - 2(1 + V)Z12

The von Mises failure criterion is [33]

g«(1) = [«(111 + (122)2 + 3«(111 - (122)2 + 12«(112)2r /2 - 4(1p ~ 0
(3.3.85)

where (1p is a given yield stress. Instead of the von Mises failure criterion, for
simplicity assume that the stress (11l in Eq. (3.3.84) is taken as a strength
constraint. With this done, the idea can be extended to the von Mises failure
criterion.

As in the case of the beam, since a pointwise stress constraint is not
meaningful, the characteristic function approach of Eq. (3.3.36) may be used.
That is, define a function mp(x) that is positive and constant on a small open
subset Opsuch that np c 0, zero outside of Op, and its integral is 1. Then, the
average value of (111 over this small region is

t/J4 = fIn (1U mpdO

= - fIn 2(1e.: v2)(zu + vZ22)mp dO
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If the average stress on the fixed region Q p is of concern, mp in Eq. (3.3.86)
does not change with r. It is possible to extend mp to R2 by defining it to be
zero outside Q. Then, m~ = O.

Taking the variation of Eq. (3.3.86), using Eqs. (3.2.13) and (3.2.36) and
hi = 0, yields

t/J~ = - f{ 2(1 ~ v2) [(Z/)ll + V(z/)22]mp dQ

- 5.1 Eh. . T T- - 112(1 _ v2) ((zb + v(z)n - (Vz V)ll - v(Vz V)n)m p dQ

(3.3.87)

since mp = 0 on r. As in the general derivation of the adjoint equation of Eq.
(3.3.13), the adjoint equation may be defined by replacing zin the first two
terms on the right side of Eq. (3.3.87) by Xto define a load functional for .the
adjoint equation, obtaining

for all X E Z

(3.3.88)

Note that the adjoint equation of Eq. (3.3.88) is the same as Eq. (2.2.63).
Recalling the norm in H 2(Q) of Eq. (2.1.22), it can be shown that the linear
form in Xon the right side of Eq. (3.3.88)is bounded in H 2(Q). Hence, by the
Lax-Milgram theorem [9], Eq. (3.3.88) has a unique solution A(4).

With smoothness assumptions, the variational equation of Eq. (3.3.88) is
equivalent to the formal operator equation

[D(All + V)·22)]ll + [D()'22 + VAll)]22 + 2(1 - V)[DA12]12

[
Eh ] [Eh ]= - 2 mp - v 2 mp

2(1 - v ) II 2(1 - v ) 22
(3.3.89)

with A. satisfying the same boundary conditions as the original structural
response z. As in the adjoint equation of Eq. (3.3.40) for the beam problem,
the derivatives on the right side of Eq. (3.3.89) are in the sense of
distributions. Moreover, the distributional derivatives mp i and mPiJ (i,j = 1,2)
depend on the equation that represents the boundary Qp. (The reader is
referred to Kecs and Teodorescu [56] for a detailed treatment of the
distributional derivative.) By the same method as in Section 3.1, a variational
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(3.3.93)

identity for the adjoint system can be obtained from Eq. (3.3.89) as

f{D[(A,ll + VA,dAll + (A,22 + VA,ll)A22 + 2(1 - V)A,12 A12] dO

II Eh " "+ n 2(1 _ v2)(/.11 + vAdmp dO

= f ANA, dr + f ~A MA, .u:Jr Jr on

f {Eh J [Eh ] " Eh ,.-+ Jr 2(1 - v2)mp '1
nl

- 2(1 _ v2)mp l m l + 2(1 _ v2)mpvl'2 n
2

- [2(1 ~ v2)mp1vAn2} dr for all ;: E H
2(O)

(3.3.90)

Since Z E Z, Eq. (3.3.88) may be evaluated at A= Z to obtain

an(A,(4), z) = - f{ 2(1E~ v2)[(i)l1 + v(ib]mp dO (3.3.91)

Similarly, evaluating the identity of Eq. (3.3.8) at z = A,(4), since both are in Z,
yields

an(z,A,(4») = [~(A,(4») - a~(z, A,(4») (3.3.92)

Since the energy bilinear form an(·, .) is symmetric, Eqs. (3.3.87), (3.3.91), and
(3.3.92) yield

,I.' = [' (A,(4») - a' (z A,(4») + II Eh [(VzTy) + v(VzTy) ]m dO
'1'4 V V , n 2(1 _ v2) 11 22 p

which can be rewritten, using Eq, (3.3.8), as

t/J4 = f{{D[(Zl1 + vZd(VA,(4)TY)11 + (Z22 + VZll)(VA,(4)TYb

+ 2(1 - v)ZdVA,(4)TY)12]

- !(VA,(4)Ty) + D[(A,\"i) + VA,W)(VZTY)11 + (A,~41 + VA,W)(VzTYb

+ 2(1 - v)A,)~(VzTY)12]

Eh T T }+ 2(1 _ v2) [(Vz y)l1 + v(Vz YJ22]mp dO

+L{f).(4) - D[(Zll + VZ22)A,\"i) + (Z22 + VZll)';'W

+ 2(1 - V)Z12A,\~]}(yT n) dr
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(3.3.95)

As in the beam problem [Eq. (3.3.45)], the variational identities of Eqs.
(3.1.23) and (3.3.90) may be used to transform the domain integral of Eq.
(3.3.93) to a boundary integral, obtaining

t/J~ = L [(V),,(4)TV)NZ + :n (V),,(4)TV)MZ] dr

+ L[(VZTV)N).c4) + :n(VZ TV)M),,(4l] dr

i { Eh T [Eh ] T+ r 2(1 - v2) mp(Vz V)ln1 - 2(1 _ v2)mp 1(Vz V)n 1

Eh T [Eh ] T } d+ 2(1 _ v2)mpv(Vz V}zn2 - 2(1 _ v2) mp 2 v(Vz V)n2 r

+ L {f),,(4l - 15[(zl1 + VZ22)A.W + (Z22 + VZ11»),,~4d

+ 2(1 - V)Z12)"i~]}(VTn) dr (3.3.94)

Since np c n, mp = 0 in a neighborhood of r; and Eq. (3.3.94) becomes

t/J~ = L [(V),,(4lTV)NZ + :n (V),,(4)TV)MZ] dr

+ L [(VZTV)N),,(4) + :n (VZTV)M),,(4)] dr

+ L {f),,(4) - 15[(zl1 + vzZZ})"iil + (Z22 + VZ11»),,~4d

+ 2(1 - V)Z12)"i~]}(VTn) dr

As in the displacement functional case, the sensitivity formulas due to
variation of clamped, simply supported, and free edges of the boundary are

t/J~ == Lc 15{2G:~)(0~~~4») - [(Zl1 + VZ22»)"W + (Z22 + VZ11»),,~4d

+ 2(1 - v)z12)"i~] }(VTn)dr (3.3.96)

I i {(0),,(4l) (oz) (4) A (4) 1(4)t/J4 = rs a;;- Nz + on N). - D[(Zll + VZZ2»),,11 + (Z22 + VZll)"'·22

+ 2(1 - V)Z12)"i~J }(VTn) dr (3.3.97)
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1jJ~ = f. {f}.(4) - 15[(zl1 + VZdA~~) + (Z22 + VZ11)A~4d
fF

+ 2(1 - V)Z12A~i>]}(VTn) dr (3.3.98)

respectively. For r = rc u rs u r
F

, the complete shape design sensitivity
formula is obtained by adding terms in Eqs. (3.3.96)-(3.3.98).

As in the beam problem, the shape design sensitivity results of Eqs.
(3.3.95)-(3.3.98) for average stress are valid for the fixed region Qp. The case
in which 1jJ4 is average stress on the moving region Qp< = T(Qp , r) will be
considered in Section 3.3.6. It has been assumed that fip C n, so that the
boundary rp of Q p does not meet the boundary r of Q. The case in which rp

intersects r will be considered in Section 3.3.6.

3.3.4 Elasticity Problems

Shape design sensitivity analysis of the linear elasticity and interface
problems of Section 3.1 is carried out in this section using the adjoint
variable method. For plane stress or plane strain problems, the formulas
derived in Section 3.1 remain valid, with limits of summation running from 1
to 2 and an appropriate modification of generalized Hooke's Law.

LINEAR ELASTICITY

Consider the three-dimensional elasticity problem of Section 3.1, with a
mean stress constraint over a fixed test volume Qp, such that n, C Q,

IjJ = fffn g(a(z))mp dQ (3.3.99)

where a denotes the stress tensor, Qp is an open set, and mp is a characteristic
function that is constant on Qp, zero outside of Qp, and whose integral is 1.
The function g is assumed to be continuously differentiable with respect to its
arguments. Note that g(a(z)) might involve principal stresses, von Mises
failure criterion, or some other material failure criteria. While the integrand
in Eq. (3.3.99) could be written explicitly in terms of the gradient of z, as in
the plate problem of Section 3.3.3, it will be seen that it is more effective to
continue with the present notation.

For boundary perturbation in the elasticity problem, it is supposed that
the boundary r = T? u r- u r 2 is varied, except that the curve iJr2 that
bounds the loaded surface r- is fixed, so the velocity field Vat iJr2 is zero.
For the case in which iJr2 is not fixed, variation of the traction term in Eq.
(3.1.38) (given as an integral over r 2) gives an additional term that was not
discussed in Section 3.2.2. For this case, the interested reader is referred to
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Zolesio [59]. Two kinds of boundary loads may be considered. One is a
conservative load that depends on position but not the shape of the
boundary. The other is a more general nonconservative load that depends
not only on position but also on the shape of the boundary.

Consider first the conservative loading case in which the traction T i in Eq.
(3.1.36) depends on position only. Taking the variation of Eq. (3.1.38), using
Eqs. (3.2.13), (3.2.36), and (3.2.51) and the fact that j'" = T i = 0,

floC.t [aij(z')eij(z) + aij(z)eij(z') dO. + fI [.t aij(z)eij(z)](VTn) dr
In 1,)= 1 r 1,)= 1

= floc [.f PZ
i'] dO. + ff [.f PZi](VTn)drIn 1=1 P u r 2 1~ 1

+ ff2 [Jl Tizi] st: + ff, Jl [V(Tizi)Tn + H(Tizi)](VTn) dr

for all z E Z (3.3.100)

Using Eqs. (3.2.8) and (3.3.5), Eq. (3.3.100) can be rewritten as

an(z, z) == flOC [.t aij(z)eij(z)] dO.In 1,)=1

= flOC .t [aij(z)sij(VzTV) + aij(VzTV)sij(Z)] dO.
In 1,)=1

-ffL [tl P(VziTV)] dO. - ff [Jl aij(z)sij(Z)](VTn) dr

+ ff, u r> [Jl pzJvTn) dr

+ ff'it l {_Ti(VZiTV) + [V(Tizi)Tn + H(Tii)](VTn)} dr

for all z E Z (3.3.101)

As in Eq. (3.3.8), Eq. (3.3.101) is a variational equation for zE Z. That is,
zE [H1(o.)] 3, and zsatisfies kinematic boundary conditions.

Taking the variation of the functional of Eq. (3.3.99), using material
derivative formulas of Eqs. (3.2.8) and (3.2.36) and m~ = 0,

11/ = fII [ t g"ij(z)aij(z')]mp dO. + ff g(a(z))mp(VTn)ar
n ~=1 r

= floC. t g,,;lz)[aij(z) - aij(VzTV)]mp dO. (3.3.102)
J(I I,) = 1

because mp = 0 on r.
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As in the general derivation of Eq. (3.3.13), the material derivative of state
i E Z may be replaced by a virtual displacement A in the first term on the
right side of Eq. (3.3.102), to define a load functional for the adjoint equation,
as in Eq. (3.3.13), obtaining

for all AEZ

(3.3.103)

The linear form in ;: on the right side of Eq. (3.3.103) is bounded in [H1(Q)Y
By the Lax-Milgram theorem [9], Eq. (3.3.103) has a unique solution for a
displacement field A, with the right side of Eq. (3.3.103) defining the load
functional.

With smoothness assumptions, Eq. (3.3.103) is equivalent to the formal
operator equation

i = 1,2, 3, x E Q

(3.3.104)

with boundary conditions

Ai = 0, i = 1,2, 3, x E rO

3

L (j'ij(j,)nj = 0, i = 1,2, 3, x E r- u r-
j= 1

(3.3.105)

(3.3.1 06)

As in the adjoint equation of Eq. (3.3.89) for the-plate problem, the derivative
on the right side of Eq. (3.3.104) is in the sense of distributions. The
distributional derivatives mpi (j = 1,2, 3) depend on the equation that
represents the boundary ofQp [56]. By the same method used in Section 3.1,
a variational identity can be obtained for the adjoint system from Eq.
(3.3.104). That is, by multiplying Eq. (3.3.104) by AE [H1(QW and integrat-
ing by parts,

= fffn i.~ 1 L.t 1 gak,(z)Ck1ijmpJXJ dQ

-fir i.~ 1 [.t 1 gak,(z)Ck1ijmpJn)i dr
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Since O'ii(A.) = O'ii(A.) and Cklii = C"!', the above equation becomes, using Eqs.
(3.1.32) and (3.1.33) for A., a variational identity,

= f.I [. ~ O'ii(A.)n)i] dr - f.I .t [ t gak/(Z)Ckliimp]J.ini dr
r 1,)-1 r '.)= 1 k,/= 1

for all J. E [H1(n )]3 (3.3.107)

Note that by imposing the boundary conditions of Eqs. (3.3.105) and
(3.3.106) and using the fact that mp = 0 on r; the variational equation ofEq.
(3.3.103) is obtained.

Since Z E Z, Eq. (3.3.103) may be evaluated at A= Z to obtain

(3.3.108)

Similarly, since Z E Z and A. E Z, Eq. (3.3.101) may be evaluated at Z = A. to
obtain

- IIt[tl !'(VA.iTV)] dn - IIrL.tl O'ii(Z)f.ii(A.)}VTn) dr

+It v r> [tl fiA.iJ(VTn)dr

+ IL, itl {- Ti(V).iTV) + [V(Ti';'i)Tn + H(TiA.i)J(VTn)} dr

(3.3.109)

By the Betti's reciprocal theorem [34J,

(3.3.110)
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Thus, arM, A) = anP.,z), and Eqs, (3.3.102), (3.3.108), and (3.3.109) yield

t/J' = f.II .t [crij(z)eij(VATy) + crij(A)eij(VzTy)] dO.
n',J=1

- IIfo. [Jl P(VAiTy)] dO. - fffo.i.~1 [gai}(z)crij(VzTY)]mpdO.

-f.I [.±cr
ij(Z)eij(2)](VTn) dr + f.I [.f PAi](VTn) .n:

r ',J=1 r'ur2,=1

+ IL2 itl {- TW2
iTy) + [V(TiAi)Tn + H(T i2i)](VTn)} dr

(3.3.111)

As before, the variational identities of Eqs. (3.1.37) and (3.3.107) may be
used to transform the domain integrals of Eq, (3.3.111) to boundary integrals
by identifying z in Eg. (3.1.37) and Xin Eg. (3.3.107) with (V2Ty) and (VzTy)
in Eq. (3.3.111), respectively, obtaining

t/J' = f.I [. t crij(Z)nj(VAiTy)] dr
r ',J= 1

+ IL L~ 1crij(2)nj(Vz
iTy)

- i.~ 1 L,~ 1gakl(Z)Cklijmp}j(VZiTy)} dr

-f.I [. ±crij(Z)eij(A)] (VTn) dr - f.I [.f P2i] (VTn) dr
r ',J =1 r' u r 2 ,= 1

+ IL2 itl {_Ti(VAiTy) + [V(TiAi)Tn + H(Ti2i)](VTn)} dr
(3.3.112)

Since Up C 0., mp = 0 on r. Using boundary conditions of Eqs, (3.1.36) and
(3.3.106), Eg. (3.3.112) becomes

t/J' = ffLo i'~ 1 [crij(z)nj(VAiTy) + crij(2)nj(VziTy)]
dr

-f.I [.±cr
ij(Z)eij(2)](VTn) ar + f.I [.± PAi] (yTn)dr

r ',J = 1 r' u r 2 • = 1

+ IL2 Jl [V(T i2i)Tn + H(Ti2i)] (VTn) dr (3.3.113)

On ro, z = A= 0 implies Vzi = (VziTn)n and VAi = (V2iTn)n. Hence, Eq.
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(3.3.113) becomes

t/J' = ffo i,tl [aij(z)nj(V.l.iTn) + aij(.l.)nj(VziTn)] (VTn) dr

-fI [. t aij(z)eij(.l.)] (VTn) dr + f.I [.± t.l.i](VTn) .u:
r l,j=l r1vrl,=1

+ffl itl [V(Ti.l.i)Tn + H(Ti.l. i)] (VTn) dr (3.3.114)

which is the desired result.
As in the plate problem, the stress sensitivity result of Eq. (3.3.114) for

average stress is valid for a fixed region Qp, with Qp e Q. The case in which t/J
is average stress on the moving region QPT = T(Q p , r) will be considered in
Section 3.3.6. The case in which a part of rp intersects r will also be
considered there.

Next, consider the more general nonconservative loading case. For
example, in pressure loading traction is given as

Ti(x) = -p(x)ni(x), x E r- (3.3.115)

Substituting T i into Eq. (3.1.38) and taking the variation of both sides, using
Eqs. (3.2.13), (3.2.36), and (3.2.56) and the fact p' = 0 and j'" = 0,

III .~ [aij(z')eij(z) + aij(z)eij(z')] dQ + f.I [.±aij(z)eij(Z)](VTn) dr
n I,j-I r i.s> 1

= f.II [.± tzi'JdQ + f.I [.± tziJ(VTn) dr
n 1= 1 r' v r l 1 = 1

-ffl [JI pnizi'J dr - ffl [div(pz)](VTn) dr (3.3.116)

Comparing Eq. (3.3.116) with Eq. (3.3.100), with the same adjoint equation
of Eq. (3.3.103), Eq. (3.3.114) yields

t/J' = ffo i,tl [aij(z)nj(V.l.iTn) + aij(.l.)nj(VziTn)] (VTn) dr

-II [.±aij(Z)eij(A)J(VTn) as: + f.I [.± tAiJ(VTn) .n:
r '.J = 1 r' v r l 1=1

-ffl [div(p.l.)] (VTn) dr (3.3.117)

which is the desired result. As in the conservative loading case, the stress
sensitivity result of Eq. (3.3.117) is valid for a fixed region Qp such that
Qp eQ.
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INTERFACE PROBLEM OF LINEAR ELASTICITY

(3.3.120)

for all z E Z

Consider the interface problem of linear elasticity of Section 3.1. Let
r = rO u r- u r2 be fixed and the interface boundary y be varied.
Extension to the case in which r is varying can be done easily. The mean
stress over a fixed test volume Qp, such that Qp C Q1, is

t/J = IILI g(a(z*))mp dQ (3.3.118)

where mix) is a characteristic function that is positive on Qp, zero outside
Qp, and has integral equal to 1. Similarly, for the case Q p C Q2, since the idea
is exactly the same, derivation will be carried out only for Eq. (3.3.118).

Taking the variation of Eq. (3.1.52), using Eqs. (3.2.13), (3.2.36), and
(3.2.51) and the fact that Y = 0 on r and j" = t" = 0,

IILI iJ 1 [aii(z*')eij(z*) + aii(z*)eii(z*')J dQ

-Ii[J1 aij(z*)eii(z*)](VTn) dr

+ IIL2 i.~ 1 [ai}(z**')eii(z**) + aii(z**)f;U(Z**')J dQ

+ f.I [.±aij(z**)eij(z**)](VTn) a:
y '.)= 1

= IIL [tl PZi'J dQ + IL2 [tl Tizi'J dr
(3.3.119)

where Z is given in Eq. (3.1.53). From Eq. (3.3.5), Z = z' + VzTy = O. Hence,
Z = z' = 0 on r, since Y = 0 on r.Thus, Eq. (3.3.119) can be rewritten, using
Eq. (3.2.8), as

ao(i, Z) == ff'r [. t aij(i*)eij(z*)] dQ + ff'r [. i aij(i**)eii(z**)] dQJOI 1,)=1 J02 1,)=1
= IILI i.~ 1 [aij(z*)eii(Vz*Ty) + aii(Vz*TY)eij(z*)J dQ

+ IIL2 i.~ 1 [aij(z**)eij(Vz**Ty) + aij(Vz**TY)ei}(z**)J dQ

-f.II [.f fWziTy)] dQ + f.I .±[aii(z*)ei}(z*)
o ,=1 y 1,)= 1

- (Jij(z**)eij(z**)J(VTn) dr for all z E Z

As in Eq. (3.3.8), Eq. (3.3.120) is a variational equation for Z E Z.
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Taking the variation of the functional of Eq. (3.3.118), using material
derivative formulas of Eqs. (3.2.8) and (3.2.36) and m~ = 0,

ljl' = f.II [. t gailz*)Uij(z*')]mpdO. - f.I g(u(z*))mp(VTn) dr
0

'
1,)=1 Y

=fILl I,t 1 gaij(z*)[uij(z*) - uij(VzdV)]mpdO. (3.3.121)

since mp(x) = °on y.
As in the general derivation of Eq. (3.3.13), by replacing the material

derivative zof state in the first term on the right side of Eq. (3,3.121) by a
virtual displacement A, to define a load functional for the adjoint equation,

for all lEZ

(3.3.122)

As in the linear elasticity case, it may be shown that the linear form in Aon
the right side ofEq. (3.3.122) is bounded in [H 1(o.1)] 3 x [H 1(o.2)Y Hence, by
the Lax-Milgram theorem [9], Eq. (3.3.122) has a unique solution A.

With smoothness assumptions, as in the linear elasticity problem, it can be
shown that Eq. (3.3.122) is equivalent to the formal operator equation

3 3 ( 3 )- I u)i(}.*) = - I I gak1(Z*)C*k/ijmp ,
j=l j=l k,l=l i

i = 1, 2, 3, x E 0.1

(3.3.123)

3

- I u)ip.**) = 0,
j= 1

with boundary conditions

i = 1, 2, 3, x E 0.2 (3.3.124)

A*# = 0, i = 1,2,3, x E ro

3

L Uij(A**)nj = 0, i = 1,2,3, x E r- u r-
j=l

and interface conditions

(3.3.125)

(3.3.126)

i = 1,2,3, xEy (3.3.127)

3 3

I uij(..1.*)nj = L uij(Je**)nj,
j= 1 j= 1

where A* = ..1.lo! and .Ie** = A i02 .

i = 1,2,3, X E Y (3.3.128)
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The derivative on the right side of Eq. (3.3.123) is, as in the linear elasticity
case, in the sense of distributions. As before, variational identities can be
obtained by multiplying both sides of Eqs. (3.3.123) and (3.3.124) by
arbitrary displacement vectors A* E [H 1(OI)]3 and A** E [H 1(02)]3, re-
spectively, and integrating by parts, to obtain

(3.3.131)

ill [.t aij(A*)Bij(A*)] dO - ill [. t gaiJ(z*)aij(;:*)]mp dO
0' ',J=1 0' ',J=1

= - iI [. t aij(A*)njX*i] dr
y ',J= 1

+ fi i,t 1 L.t 1 gakl(Z*)C*klijmp}jAY dr

for all ;:* E [H 1(OI )] 3 (3.3.129)

ill [.t aij(A**)Bij(A**)] dO = iI [. t aij(A**)nj;:**i] dr
0 2 I,J=1 yvr I,J=1

for all A** E [H 1(0 2)] 3 (3.3.130)

Imposing boundary and interface conditions of Eqs. (3.3.125)-(3.3.128),
using the fact that mp = 0 on y, and adding Eqs. (3.3.129) and (3.3.130), yields
the variational equation ofEq. (3.3.122).

Since i E Z, Eq. (3.3.122) may be evaluated at ;: = i to obtain

ao(A, i) = ill [. t g,,4z*)aij(i*)]mp dO
0 1 I,J=1

Similarly, since zand A are in Z, Eq. (3.3.120) may be evaluated at z= A, to
obtain an expression for an(z, A), which is equal to adA, i) in Eq. (3.3.131),
due to symmetry of the bilinear form an(·, .). Hence, from Eqs. (3.3.120),
(3.3.121), and (3.3.131),

ljJ' = ffll i,tl [aij(z*)Bij(VA*TV) + aij(A*)Bij(VzHV)] dO

+ ff12 iJI [aij(z**)eii(VA,**TV) + aij(l.**)Bij(Vz**TV)] dO

-ffl Ltl P(VAiTV)] dO - ffl1 i.tl [ga,iz*)aij(Vz*TV)]mp dO

+iI .t [aij(z*)Bij(A*) - aij(z**)Bij(A**)](VTn) dr (3.3.132)
y I,J= 1

The variational identities of Eqs. (3.1.50), (3.1.51), (3.3.129), and (3.3.130)
can be used to transform the domain integrals in Eq. (3.3.132) to boundary
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integrals by identifying i* and J** of Eqs. (3.1.50) and (3.1.51) with (VA*Ty)
and (VA**Ty), respectively, and A* and A:** of Eqs. (3.3.129) and (3.3.130)
with (VZ*Ty) and (VZ**Ty), respectively, obtaining

t/J' = -II .t [(jij(z*)ni(VA*iTy) + (jij(A*)nj(Vz*iTy)] dr
y I.J= I

+Ii u r i.~ I [(jij(z**)niVA**iTy) + (jij(A**)nj(Vz**iTy)] dr

+Ii i.~1 L.tl g.,.kl(Z*)c*klijmp}ivz*iTy) dr

+ fl i.~1 [(jii(z*)/;ii(A*) - (jii(z**)/;ij(A**)](yTn) dr (3.3.133)

On y, interface conditions of Eqs. (3.1.48) and (3.3.127) imply

(VZ**i - VZ*i)Ty = (VZ**i - VZ*i)Tn(VTn),}
i = 1,2,3

(VA**i - VA*i)Ty = (VA**i - VA*i)Tn(VTn),

because the directional derivatives of Z**i and z*' along the tangent to yare
the same for i = 1,2,3. The same is true for A**iand A*i. Hence, Eq. (3.3.133)
becomes, using Y = 0 on rand mp = 0 on y,

t/J' = iI .t [(jij(z*)nj(VA**i - VA*i)Tn + (jii(A,*)niVz**i - VZ*i)Tn
y I.J= I

+ (jij(z*)eij(A*) - (jij(z**),y().**)](VTn) dr (3.3.134)

which is the desired sensitivity formula due to the variation of interface
boundary y. If the boundary r is varied, then the results of Eqs. (3.3.114) or
(3.3.117), can be added to Eq. (3.3.134), depending on the loading case, by
replacing z and A with z** and A**.

As before, the stress sensitivity result of Eq. (3.3.134) is valid for a fixed
region Qp, such that np c Q. The case in which t/J is defined on a deformed
domain Q t as the average stress on the moving region Qp< = T(Qp , r) will be
considered in Section 3.3.6. The case in which a part of rp intersects y will
also be considered there.

3.3.5 Parameterization of Boundaries

As in Chapter 2, before proceeding from analytical design sensitivity
formulas to numerical implementation, it is helpful to consider numerical
aspects of computations. It is important to define an effective para-
meterization of the boundary for use in shape design sensitivity analysis.
Presume that points on the boundary r are specified by a position vector
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(3.3.136)

x(a; b) E R" (n = 2,3) from the origin of the coordinate system to point x on
the boundary, as shown in Fig. 3.3.4. Here, a E R" (n = 2,3) is a parameter
vector that defines points on r.

When the vector b = [b i b2 ••• bmF of design parameters has been
defined, shape design sensitivity formulas can be expressed in terms of a
variation Jb. To do this, first denote

b, = b + , Jb (3.3.135)

where b defines the boundary r of nand b, defines the boundary r. of the
deformed domain n,. The velocity field at the boundary is defined as [Eq.
(3.2.2)]

V(x) = :, [x(a; b,)] 1,=0 = ~~ (a; b) Jb

Then the shape design sensitivity formula can be·expressed as

ljJ' =IiG(z,A)(VTn) dr

= [IL G(z,A)nT ~~ (a; b) drJ Jb (3.3.137)

where the variation Jb can be taken outside the integral since it is constant.
This expression gives design sensitivity coefficients of ljJ associated with
variations in design parameters. Hence, only numerical calculation of the
integral in Eq. (3.3.137) is required, once the state and adjoint variables have
been determined.

A piecewise-linear boundary represents the simplest example of boundary
parameterization. There are two principle disadvantages to this boundary

xto ; b)

o l"'-----------x 2

Fig. 3.3.4 Parametric definition of r.
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representation. One is that for manufacturing, piecewise-linear segments are
not practical. Instead, parameterized curves may be desired. The second
problem is inaccuracy of finite element analysis, as predicted by the so called
Babuska paradox [5, 60-64].

The Babuska paradox states that when a straight-line element is used to
approximate a curved boundary, the solution for displacements, strains, and
stresses normal to the boundary may not be accurate. Strang and Fix [5]
clearly showed that a "boundary layer effect" exists in such cases and that
solutions in the direction normal to the boundary will almost always
converge to the wrong answer. On the other hand, to numerically calculate
shape design sensitivity results of Eq. (3.3.137), stresses, strains, and/or
normal derivatives of state variables and adjoint variables must be used on
the boundary. Accurate evaluation of this information on the boundary is
crucial for calculation of accurate shape design sensitivity information.
Krauthammer [64] showed that when isoparametric elements are used, even
a simple element configuration will yield results that may be of acceptable
accuracy. Boundary stresses and strains can be calculated by linearly
extrapolating values at optimal Gauss points to the boundary, to obtain
accurate values on the boundary [65, 66].

3.3.6 Shape Design Sensitivity Analysis
of Displacement and Stress

In Section 3.3.3, analytical shape design sensitrvity formulas for the
functional that defines displacement at an isolated fixed point xE n was
derived for beams and plates. For the purpose of shape design sensitivity
analysis of this displacement functional, it was assumed that the point does
not move, that is, the displacement functional on the deformed domain n. is
the value of the displacement at the same point X.

For numerical implementation of shape design sensitivity analysis, the
finite element method can be employed as a computational tool. Nodal
points are the natural choice for evaluation of displacement. If the shape
(geometry) of domain n is perturbed, then the finite element grid will be
perturbed and nodal points will move. For this case, a new design sensitivity
formula must be derived.

Shape design sensitivity of the mean stress functional over a fixed small test
region np , where Op c n, was considered in Sections 3.3.3 and 3.3.4 for
beam, plate, and elasticity problems. To define the mean stress functional, it
was assumed that the functional value on the deformed domain n.. is the
mean stress value at the same region np and the boundary rp of np does not
intersect the boundary I' of the domain n. As in the displacement case, when
the finite element method is used for analysis, finite elements are a natural
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(3.3.138)

choice for np ' Then np will move as the finite element grid moves, due to
domain perturbation, and the boundary rp of np may meet the boundary r
of n. For this case, new design sensitivity formulas must be derived.

DISPLACEMENT FUNCTIONAL

Consider the displacement functional

l/J == z(x) = ft J(x - x)z dn

where point x is moving to x, = x + rV(x). By taking the material derivative
of Eq. (3.3.138),

l/J' = z'(x) + VZ(X)TV(X) = ft J(x - x)z' dn +. VZ(X)TV(X)

(3.3.139)

Note that the first term on the right side of Eq. (3.3.139) is the one used in
Section 3.3.3 to derive Eq. (3.3.32) for the beam and Eq. (3.3.79) for the plate.
Thus, if point xis considered to be moving, the second term on the right side
of Eq. (3.3.139) can be added to Eqs. (3.3.32) and (3.3.79). This additional
term represents the contribution from movement of X. Thus, even though the
shape of the physical domain is not changing, if point x is moved, a
contribution from the new additional term appears.

To illustrate the use ofEq. (3.3.139), consider the clamped beam studied in
Section 3.3.3, with a displacement functional. Considering beam length 1as a
design variable, V(O) = 0 and v(1) = e51. In the domain, it is possible to select
V(x) = x e5i/l (0 $; x $; 1); that is, points on the beam move to the right
proportionally. If design sensitivity of the displacement of point x = 1/4 is
desired, since x moves to x, = x + rV(x) = (1 + r (51)/4, from Eq. (3.3.138)
and z(x) ~ Uo/24Eah5)[x2(1 - X)2],

A fo A2 • A A 2
l/J(r) = z,(x,) = 24Ea

h5
[X,(/ + r e5[ - x,) ] (3.3.140)

Taking the variation of the displacement functional of Eq. (3.3.140) with
respect to r and evaluating the result at r = 0,

l/J' = 3fo13 e51
512Eah5

The adjoint load, from Eq. (3.3.29), is a unit point load at x = 1/4. The
adjoint variable is thus obtained as

Jc(x) = 384~ah5 [64 \ x _1)3 -54x
3 + 27h

2
]
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Using these results, from Eq. (3.3.33) for a clamped beam and Eq. (3.3.139),

.f,' E h2 , Ii ~ ~ 310]3 ~1
'I' = IX oZxxll.xxV 0 + zx(x)V(x) = 512EIXh2 u

which is the same result obtained before.
From this example it is clear that if different velocity fields are used in the

domain, each with V(O) = 0 and VO) = 151, different sensitivity results will be
obtained, since the second term on the right side of Eq. (3.3.139) depends on
the velocity V(x). This is different from compliance and eigenvalue functionals
that depend only on V(O) = 0 and VO) = 151.

This additional fictitious perturbation of design (velocity field in the
domain) can be eliminated if a local maximum displacement functional is
considered. If a local maximum of displacement occurs at the interior point
X, then Vz(x) = 0 in Eq. (3.3.139), and the sensitivity result of Eq. (3.3.139)
does not depend on the velocity V(x). On the other hand, if a local maximum
occurs at the boundary point X, then Vz(x) may not be equal to zero.
However, in this case, the velocity V(x) of point xis included in the velocity of
the boundary.

STRESS FUNCTIONAL

The mean stress functional over a small test region Op is

l/J = ffL g(a(z))mpdO (3.3.141)

where mp is a characteristic function that has the constant value
m, = (SHop dO)-l on n, and is zero outside Op.

Consider first the case in which Op moves. From Eq. (3.3.141),

l/J = SHop g(a(z)) dO
J.f.fup dO

Taking the material derivative of Eq. (3.3.142), using Eq. (3.2.36),

l/J' = [(ffLpg'(a(z)) dO + fi pg(a(z))(VTn) dr) ffLpdO

- ffLpg(a(z)) dO fip (VTn) dr]!(ffLpdOY

(3.3.142)

(3.3.143)
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Note that the first term on the right side of Eq. (3.3.143) is the one used in
Eqs. (3.3.38), (3.3.87), (3.3.102), and (3.3.121) for beam, plate, linear elasticity,
and interface problems, respectively. If the region Qp is considered to be
moving, the second term on the right side of Eq. (3.3.143) may be added to
the results of Eqs. (3.3.45), (3.3.94), (3.3.112), and (3.3.133) for each problem.
This additional term is the contribution due to movement of Qp. Thus,
movement of Op, even without a change in the shape of the domain, will give
a nonzero sensitivity term. The effectof the additional term due to a fictitious
perturbation of design can be eliminated if Op is a sufficiently small region
that contains an interior point xwhere the stress function g(<T(z» has a local
maximum. That is, if xE Op and rip C 0, then the second term on the right
side of Eq. (3.3.143) can be ignored since the value of g(a(z» is very close to ljJ
on rp • On the other hand, if a local maximum of g(<T(z» occurs at a point on
the boundary r; rp will intersect I, as shown schematically in Fig. 3.3.4, and
the design sensitivity result of Eq. (3.3.143) will be expressed in terms of
normal velocity (VTn) of boundaries rp and r.

Fig.3.3.5 Intersection of rp and r.

For the case in which a part of rp intersects r (Fig. 3.3.5), mp = 0 cannot be
permitted on r p; specifically, on r p == r n r p in Eqs. (3.3.45), (3.3.94),
(3.3.112), and (3.3.133). Instead, mp = rnp must be used on f p , and distri-
butional derivatives mpi (i = 1,2) arise on f p C r. Moreover, even though
kinematic boundary conditions for the adjoint response Ain this case are the
same as in the case rip C 0, traction boundary conditions will be different on
f p , since mp = rnp and distributional derivatives mp , (i = 1,2) must be used on
f p in the variational identities for the adjoint system given in Eqs. (3.3.41),
(3.3.90), (3.3.107), (3.3.129), and (3.3.130). A procedure for deriving shape
design sensitivity formulas in this case will be considered for each problem.

BEAM

Consider the stress functional of Eq. (3.3.37), where Xa = a1 and Xb = 1
(0 < a < 1). That is, average stress is taken on the interval (a1,1) shown in
Fig. (3.3.6). The variation of ljJ4 can be obtained by adding the second term
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gIT:gJ1l_x
°1 1/\ 1/\
+ xa=a9 Xb=R

Z

Fig.3.3.6 Beam with x, = 1.
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on the right side of Eq. (3.3.143) to the result of Eq. (3.3.45), dropping the
superscript notation for A, to obtain

t/J4 = [Ecxh2z
xx(AxV)x - (Ecxh2z

xx)AAxV)] I~

+ [Ecxh 2Axx(ZxV)x - (Ecxh2AxJAzxV)] I~

+ [([3hl/2Emp)AzxV) - [3h1/2Emp(zxV)xJ I~ + [fA - ECXh2ZxxAxxJVI~

+ mp[[3hl/2Ezxx - t/J4JVl
i

. (3.3.144)
al

where A is the solution of Eq. (3.3.39), with mp being the characteristic
function on (ai, I).

From the variational identity of the adjoint system of Eq. (3.3.41), with
smoothness assumptions, a boundary-value problem equivalent to the
variational equation of Eq. (3.3.39) may be obtained as

(Ecxh2A
xJxx = ([3h t /2Emp)w x E (0,I) (3.3.145)

with boundary conditions

(3.3.146)

(3.3.147)

for a clamped beam,

A(O) = Axx(O) = A(1) = 0

(Ecxh 2Axx)(l) = mp([3h t /2E)(1)

for a simply supported beam, and

A(O) = Ax(O) = 0

(Ecxh 2A
xx)(l) = mi[3h1/2E)(1) (3.3.148)

(Ecxh2AxxMI) = ([3h 1/2EmpMI)

for a cantilevered beam. Note that with these boundary conditions, the
variational identity of Eq. (3.3.41) becomes the variational equation of Eq.
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(3.3.39) for each beam problem. Also note that the traction boundary
conditions of Eqs. (3.3.147) and (3.3.148) are different from the case
[xa , Xb] C (0,1).

For a clamped beam, using boundary conditions of Eq. (2.1.1) for Z and
Eq. (3.3.146) for A, Eq. (3.3.144) becomes

t/J~ = Etxh2ZxxAxxvli - Phl/2EiiipZxxvl - iiipt/J4Vli. (3.3.149)
o x=~ ~

For a simply supported beam, applying boundary conditions of Eq. (2.1.16)
for Z and Eq. (3.3.147) for A, Eq. (3.3.144) becomes

t/J~ = [(ph
1
/
2Emp)x - (Etxh

2A
xX>x]ZxV!X=i + Etxh2AxxxZxvlx=o

- Etxh2ZxxxAxV/i - Phl/2EiiipZxxV/ . - iiipt/J4Vli. (3.3.150)
o x=~ ~

For a cantilevered beam, using boundary conditions of Eq. (2.1.17) for Z and
Eq. (3.3.148) for A, Eq. (3.3.144) becomes

t/J~ = -Etxh2ZxxAxxvl + iAvl _- Phl/2EiiipZxxvi _- iiipt/J4Vli
x=o x=1 x=al ai

(3.3.151)

Comparing Eqs. (3.3.47)-(3.3.49) with Eqs. (3.3.149)-(3.3.151), respectively,
additional terms arising in Eqs. (3.3.149)-(3.3.151) can be identified.

To illustrate the use of these results, consider the clamped beam studied
earlier in this section. As in the displacement case, consider beam length 1as a
design variable, with V(O) = 0 and v(1) = (jl. In the domain, it is possible to
select V(x) = x (jl/l (0 :s; x :s; 1). Since 1and al move to 1+ r (jl and a(1 + r bl)
respectively, mp = 1/[(1 - a)(1 + r (jl)], and from Eq. (3.3.37) and
z(x) = (io/24Etxh~)[X2(1 - X)2],

i
i + t M

./, (r) = Rh 1/2Ez m dx'1'4 II 0 t'xx P-c
o

Pio
= 12txh~/2(l - a)(1 + r (jl)

i
i+ t tli

x [(1 + t (jl - x)(1 + r(jl - 5x) + x 2] dx
a(i+t tli)

(3.3.152)

Taking the variation of the functional t/J4 with respect to t and evaluating at
r = 0,

./,' = Pioa(2a - 1)1 (jl
'1'4 6txh~/2
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For a uniform load fo and uniform cross section ho, from Eq. (3.3.145)
the adjoint load is a point moment at x = al with magnitude
Mo = PhAI2E/ [ (1 - a)l] (Fig. 3.3.7). Hence, the adjoint response is [58]

P [1 . 2 a 3 (1 - 3a) 2J
J.(x) = IYNPl (1 _ a)l <x - al) - TX - 2 x

Using these results, from Eq. (3.3.149),

1// = pfoa(2a - 1)1 c51
4 6ah~12

which is the same result obtained before. As in the displacement case, it is
clear that if different velocity fields are used in the domain, each with V(O) = 0
and VO) = c51, different sensitivity results will be obtained, since the second
and third terms on the right side ofEq. (3.3.149)depend on the velocity V(al).

Mo

;,1~==========~II ~~---.x
O~.A I1\ I 1\

Xa=at xb=P

Fig.3.3.7 Adjoint load for beam.

LINEAR ELASTICITY

Consider the stress functional of Eq. (3.3.99), where rp intersects r; as
shown in Fig. 3.3.5, and Q p moves as the domain Q is perturbed. In this
section, only the conservative loading case will be considered. Once the
conservative loading case is done, it can easily be extended to the noncon-
servative loading case. The variation of t/J in Eq. (3.3.99) can be obtained by
adding the second term on the right side of Eq. (3.3.143) to the result of Eq.
(3.3.112) to obtain

1// = f.I" [. f aiJ(Z)ni V2
iTV)J

dr
r 1,)= I

+ ff t~1 ai}V)niVziTV) - i'~1 L,t, gqk,(Z)Ckliirnp}ivziTV)} dr

- f.I [.t aiJ(Z)l:iJ().)J(VTn) dr - f.I [.f P}.iJ(VTn) dr
r ',)=1 r1vrz .=1

+ ffzit, {-TWAiTV) + [V(TiAifn + H(TiAi)](VTn)} dr

+ mpffr
p

[y(a(z)) - t/J](VTn) st: (3.3.153)

where Ais the solution of Eq. (3.3.103).



246 3. STRUCTURAL COMPONENTS WITH SHAPE AS THE DESIGN

Two cases may now be considered. In the first case, the boundary rp

intersects I" u r-, as shown in Fig. 3.3.5. In the second case, rp intersects
rOo

Consider the first case in which ~ intersects I" u r-. From the var-
iational identity of the adjoint system of Eq. (3.3.107), with smoothness
assumptions, it can be shown that the variational adjoint equation of Eq.
(3.3.103) is equivalent to the formal operator equation

i = 1,2, 3, x E n

(3.3.154)

with boundary conditions

Ai = 0,

3

L aij(A)nj = 0,
i> I

i = 1,2, 3, x E rO

. I 2 -
I = 1,2, 3, x E (F u r ), x ¢ rp

i = 1,2,3,

(3.3.1'55)

(3.3.156)

Note that the traction boundary conditions of Eq. (3.3.155) are different from
those of Eq. (3.3.106) on the boundary f'p. Using boundary conditions of Eq.
(3.1.35) and (3.1.36) for z and Eq. (3.3.155) for Ain Eq. (3.3.153) yields

t/J' = fLo i.~ I [aij(z)niVAiTn) + aij(A)niVziTn)J(VTn) dr.

-II [. t aij(Z)eij(A)](VTn) dr +II [.± ji)..i](VTn) dr
r I.J~1 r- o r> 1~1

+ fIrl itl [V(Ti)..i)Tn + H(Ti)..i)J(VTn) ar

+ mp fL
p

[g(a(z)) - t/JJ(VTn) dr

which is the desired result.
Next, consider the case in which rp intersects r-. From Eq. (3.3.107), it can

be shown that the variational adjoint equation of Eq. (3.3.103) is equivalent
to the formal operator equation of Eq. (3.3.154), but with following boundary
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conditions:

i = 1,2,3, x E T"

247

3

L (jii().)nj = 0,
j=1

i = 1,2,3, x E I" u r-
(3.3.157)

Using boundary conditions of Eqs. (3.1.35) and (3.1.36) for z and Eq.
(3.3.157) for A. in Eq. (3.3.153),

ljJ' = f.'I ±[(jii(z)niV).iTn) + (jii().)n)VziTn)](VTn) dr
Jro i,j= I

- f.'I [.±(jii(Z)Sii(A)](VTn) dr + f.'I [.± PAi](VTn) drJr ',J = I Jp Ur>, = I

+ fL, itl [V(TiAi)Tn + H(TiAi)](VTn) dr

- f.'I .±(±gak'(Z)Ckliimp)nj(VziTn)(VTn) dr
Jrp ',J=I k,l=1

(3.3.158)

which is the desired result.

INTERFACE PROBLEM OF LINEAR ELASTICITY

Consider the stress functional of Eq. (3.3.118), where rp intersects y(Fig.
3.3.8) and Opmoves as the domain 0 1 is perturbed. The variation of ljJ in Eq.

n

~=Ynrp
Fig. 3.3.8 Intersection of f p and )'_
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(3.3.118) can be obtained by adding the second term on the right side of Eq.
(3.3.143) to the result of Eq. (3.3.133):

ljl' = -II .±[aij(z*)nj(VA,*iTV) + aij(A,*)niVz*iTV)] dr
y I,J= 1

+Ii u r i'~ 1 [aij(z**)niVA,**iTV) + aij(A,**)nj(Vz**iTV)] dr

+iI [ t g"kl(Z*)C*klijmp]nj(Vz*iTV) dr
y k,l= 1

+iI .±[aij(z*)eij().*) - aij(z**)eij()"**)](VTn) dr
y I,J= 1

(3.3.159)

From the variational identities of the adjoint system of Eqs. (3.3.129) and
(3.3.130), with smoothness assumptions, the variational adjoint equation of
Eq. (3.3.122) is equivalent to the formal operator equation

3 3 ( 3 )- L: aJi(),,*) = - L L: g"kl(Z*)C*klijmp ,
j=1 j=1 k,l=1 j

3

- L: aJi()"**) = 0,
j=1

with boundary conditions

i = 1,2,3, x E Ql

(3.3.160)

i = 1,2, 3, x E Q2

(3.3.161)

3

L: aij()"**)nJ = 0,
j= 1

and interface conditions

i = 1,2, 3, x E F?

i = 1, 2,3, x E r 1 u r-

i = 1.2, 3, x E Y

(3.3.162)

t [aij(A,*)nj - aij(A,**)nj] = t ( t g"kl(Z*)C*klijmp)nj,
j=1 j=1 k,l=1

i = 1,2, 3, x E f p

(3.3.163)

3

L: [aij(),,*)nj - aij(A,**)nj] = 0,
j= 1

i = 1,2, 3, x E y, X ¢ f p
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(3.3.164)

Using boundary and interface conditions of Eqs. (3.1.46)-(3.1.49) for z and
Eqs. (3.3.162) and (3.3.163) for A in Eq. (3.3.159), with V = 0 on r;

Ij/ = f.I .t [aij(z*)nj(VA**i - VA*i)Tn + aij(A*)niVz**i - VZ*i)Tn](VTn) dr
1 ',J= 1

+ f.I .t [aij(z*)c;ij(A*) - aij(z**)C;ij(A**)](VTn) dr
1, ',J= 1

+ f.'r .t (t g"kl C*klijmp)nj(Vz*i - Vz**i)n(VTn) dr
Jrp l,J=1 k,I=1

+ nipfL
p

[g(a(z*)) - l/J](VTn) dr

which is the desired result.
Comparing Eq. (3.3.164) with Eq. (3.3.134), note that the third integral on

the right side of Eq. (3.3.164) is due to intersection of rp and y and the last
integral is due to the movement of Qp.

INTERPRETATION OF RESULTS

From shape design sensitivity results derived in this section, it is clear that
unlike functionals that define global measures such as compliance and
eigenvalues, shape design sensitivity of local functionals may involve fic-
titious perturbations of design (velocity field in the domain). That is, once a
perturbed shape of the domain is given, there is only one way to evaluate
global functionals, in terms of an integration over the entire perturbed
domain. On the other hand, perturbations of local functionals mayor may
not involve fictitious perturbations of design, depending on the cases
considered.

To predict perturbations of local functionals on fixed interior points or
regions, results of Sections 3.3.3 and 3.3.4 can be used. That is, the second
terms on the right side of Eqs. (3.3.139) and (3.3.143) can be ignored. If the
predictions of perturbations of local functionals on moving interior points or
regions are desired, the domain velocity field must be considered, as in Eqs.
(3.3.139) and (3.3.143). In this case, the perturbation prediction accounts for
movement of the point or region on which the functional is defined.

For a local maximum displacement at an interior point and a local
maximum mean stress on a sufficiently small interior region, even in the cases
of moving points and regions, perturbations of the functionals will not
depend on the domain velocity field, since the second terms on the right sides
of Eqs. (3.3.139) and (3.3.143) are either zero or ignorable. Finally, consider
functionals that define displacement at a point on the boundary and mean
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stress over a small region that intersects the boundary. This is a very
important case in shape design problems since, unlike conventional design
problems in which component shapes are defined by cross-section and
thickness variables, maximum displacement and stress are very likely to
occur on the boundary. In this case the point and small region must be
considered to be moving, and the second terms on the right sides of Eqs.
(3.3.139)and (3.3.143)must be used. For a displacement functional at a point
xon the boundary, the velocity V(x) in the second term on the right side of
Eq. (3.3.139) is included, and there is no need to introduce a fictitious design
velocity. For a stress functional, consideration cannot be limited to the
velocity of the boundary, because the second term on the right side of
Eq. (3.3.143) depends on the velocity (VTn) of r;" even though a part of
rp coincides with a part of r. However, it is necessary to either hold rp - f p

fixed or, if Qp is sufficiently small, express the velocity of rp - f p in terms of
the velocity of f p , without introducing a fictitious design velocity.

3.3.7 Domain Shape
Design Sensitivity Method

To calculate design sensitivity information of Eq. (3.3.137) numerically,
stresses, strains, and/or normal derivatives of state and adjoint variables on
the boundary must be used. Hence, accurate evaluation of this information
on the boundary is crucial. Thus, when a numerical method such as the finite
element method is used for analysis, the accuracy of finite element results
must be checked for state and adjoint variables on the boundary. It is well
known [67] that results of finite element analysis on the boundary may not
be satisfactory for a system with nonsmooth load and for interface problems.
Note that the adjoint load for an average stress constraint is a concentrated
load on an element Qp, over which stress is averaged.

There are several methods that might be considered to overcome this
difficulty. The first choice is to use a finite element method that gives accurate
results on the boundary. A second choice is to use a different numerical
method, such as the boundary element method [68, 69]. In the finite element
method, the unknown function, (e.g., displacement) is approximated by trial
functions that do not satisfy the governing equations but usually satisfy
kinematic boundary conditions. Nodal parameters Zi (e.g., nodal displace-
ments) are then determined by approximate satisfaction of both differential
equations and nonkinematic boundary conditions, in a domain integral
mean sense. On the other hand, in the boundary element method, approx-
imating functions satisfy the governing equations in the domain, but not the
boundary conditions. Nodal parameters are determined by approximate
satisfaction of boundary conditions in a weighted boundary integral sense.



3.3 STATIC-RESPONSE SHAPE DESIGN SENSITIVITY ANALYSIS 251

(3.3.165)

for all Z E Z

An important advantage of the boundary element method in shape design
sensitivity analysis is that it better represents boundary conditions and is
usually more accurate in determining stress at the boundary.

Another method to be investigated is the use of domain information to
best utilize the basic character of finite element analysis. To develop a
domain method, consider the basic material derivative formula of Lemma
3.2.1. Instead of using Eq. (3:2.36), the result given in Eq. (3.2.37), which
requires information on the domain rather than on the boundary may be
used. The detailed procedure of the domain method will be explained using
the linear elasticity problem. The reader is invited to carry out similar
calculations for other problems.

Consider the linear elasticity problem of Section 3.3.4. Suppose the curve
ar2 that bounds the loaded surface r- is fixed and T = [T 1 T 2 T 3F is a
conservative loading. Taking the variation ofEq. (3.1.38),using Eqs. (3.2.13),
(3.2.37), and (3.2.51) and the fact that j" = T i

' = 0,

fII f [aij(z')f:U(Z) + aij(z)Bii(z')] dO
n i.i= 1

+'fII v[. f aij(z)eij(z)]TV dO + fII [. t aij(Z)Bij(Z)] div V dO
n I,i =1 n 1,) =1

= fIfo [J1 PZ
i
'] dO + fffo V[J1 pziTV dO

+fII [f Pzi] div V dO + fI [.f Tizi'] dr
n i=1 r 2 .=1

+ fL2 {v[t1 TiziTn + H[t1 TiZi]}(VTn) dr

Using Eqs. (3.2.8) and (3.3.5), Eq. (3.3.165) can be rewritten as

fII .t [aij(z)Bij(Z) - aij(z)Bij(VZTV) - aij(Z)Bij(VZTV)] dO
n ")=1

+ fII v[. t aij(Z)Bij(Z)]TV dO +fII [. t aij(Z)Bij(Z)] div V dO
n I,) =1 n 1,) =1

= fffo it1 Zi(VPTV) dO + fIfo [t1 iiZ] div V dO

+ fL2 {-it1 Ti(VziTV) + (V[J1 TiziTn + H[t1 TiZi])(VT n)} dr

for all Z E Z (3.3.166)
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It can be verified that
3 3

L aij(z)eij(VzTV) = L aij(z)(VzfV + VziTJ.j)
i,j=1 i,j=1

and

(3,3.167)

V[ ±aij(z)eij(z)JTV = ±[aij(z)(VzrV) + aij(z)(VzfV)]
i,j=1 i,j=1 (3.3.168)

where J.j = [J.j1 WJ.j3F.Using these results, Eq. (3.3.166) becomes

ariz, i) == ff'r [. t aij(z)eij(i)J dO.
Jll 1,)=1

= ill .t [aij(z)(VziTJ.j) + aij(z)(VziTJ.j)] dO.
ll',j= 1

-ill [.±aij(z)eij(z)J div V dO. + ill ±ZWpTV) dO.
II ~=1 lli=1

+fft [t1 Pzi] div V dO.

+' fL, {- it1 Ti(VziTV) + (V[t1 TiZiJn + H[t1 TiZJ)(VTn)} dr

for all zE Z (3.3.169)

As in Eq. (3.3.101), Eq. (3.3.169) is a variational equation for Z E Z.
Consider the mean stress functional of Eq. (3.3.99),

tfr = ffL g(a(z»m p dO. = JHllfJJ~~~~ dO. (3.3.170)

Taking the material derivative of Eq. (3.3.170) and using Eq. (3.2.37).

tfr' = [HLp (g' + VgTV + g divV) dO.fftpdO.

-fftpg dO.HLp div V dO.JI(ffLpdO.Y
= ill.±g.,.iJ(z)[aij(z) - aij(VzTV)]mp dO.

lll,j=1

+ill ±[. t g.,.u(z)aP(z)VkJmp dO. + ill g div Vmp dO.
llk=1 ',j=1 II

-ffL gmp dO.ffL mp div V dO. (3.3.171)
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It can be shown that
3

aii(VzTV) = I Ciikl(Vzfv + VzkTv,)
k.l= I

and

253

(3.3.172)

(3,3.173)
3 3

I ap(z)Vk = I Ciikl(Vzfv)
k=l k.I=1

Using the above results, Eq. (3.3.171) becomes

1/1' = ill [. t gaii(z)aii(z)]mpdO.
n ',J=l

-II{ i'~ 1 L,~ I gaii(Z)Ciikl(VzkTv,)]mp dO.

+ ill g div Vmp dO. - ill gmpdo.iII mpdiv V dO.
n n n (3.3.174)

As in the linear elasticity problem of Section 3.3.3, the adjoint equation of
Eq. (3.3.103) can be defined. By the same method used in Section 3.3.4, the
sensitivity formula is obtained as

1/1' = ill. t [aii(z)(VAiTJ.j) + aii(A)(VziTJ.j)] dO.
11 ',J=l

-II{LtI aii(z)sii(A)] div V dO. + ff{ itl Ai(VfiTV) dO.

+ff{ [tl PAi] div V dO.

+Ii,{-it
l

Ti(VAiTV) + (V[tl TiAiTn + H[tl TiAJ)(VTn)} dr

- ill .t [t gaiJ{Z)Ciikl(VzkTv,)]mp dO. + ill g div Vm pdO.
n',J=l k,l=1 n

-II{ gmp dO.II{ ». div V dO. (3.3.175)

There are several comments to be made about advantages and disadvan-
tages of this domain method. A disadvantage is that a velocity field must be
defined in the domain that satisfies regularity properties. There is no unique
way of defining domain velocity fields for a given normal velocity field (VTn)
on the boundary, Also, numerical evaluation of the sensitivity result of Eq.
(3.3.175) is more complicated than evaluation of Eqs. (3.3.156) and (3.3.158)
since Eq. (3.3.175) requires domain integration over the entire domain,
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whereas Eqs. (3.3.156) and (3.3.158) require integration over only the
variable boundary. However, this problem can be overcome by introducing a
boundarylayer. of finite elements that vary during perturbation of the shape of
structural components. This approach is illustrated schematically in Fig.
3.3.9. The domain ° is divided into subdomains 0 1 and 02' with 0 1 held
fixed and only boundary layer O2 modified. In this way, the velocity field
may be defined only on °2 , The thickness of the boundary layer O2 will
depend on tradeoffs between numerical accuracy and numerical efficiency.

There are several advantages associated with the domain method, in
addition to numerical accuracy. Note that, as in the conventional design case
of Chapter 2, variational identities are not required to transform domain
integrals to boundary integrals. Thus, for a mean stress functional, there is no
need to treat the special case in which rp intersects r; as in Section 3.3.6. The
result of Eq. (3.3.175) is valid for both cases. The biggest advantage of the
domain method is obtained in built-up structures, which are treated in
Chapter 4. Built-up structures are made up of combinations of a variety of
structural components, with interface conditions that are generalizations of
the interface problem of linear elasticity in Section 3.3.4. In applying the
domain method, interface conditions are not required to obtain shape design
sensitivity formulas. This greatly simplifies the derivation since contributions
from each component are simply added. As for numerical accuracy, results of
finite element analysis on interface boundaries are often unsatisfactory for
built-up structures due to abrupt changes of boundary conditions. Using the
domain method and careful finite element analysis, stress evaluation at
interfaces may be avoided and accurate sensitivity results obtained.
Moreover, as will be seen in Chapter 4, often interface boundaries for built-
up structures are straight lines and/or plane sections. Thus, a domain
velocity field can easily be defined for a given normal velocity field (VTn) on
the boundary.

r

Fig.3.3.9 Boundary layer.

3.3.8 Numerical Examples

To illustrate numerical implementation of shape design sensitivity for-
mulas derived in the previous sections, several example problems are
considered in this section.
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FILLET

255

Selection of the best shape of a fillet in a tension bar so that no yielding
occurs has long attracted the attention of engineers. Dimensions and
notations of the bar and fillet are shown in Fig. 3.3.10. With symmetry, only
the upper half of the bar is considered. Boundary segment r 1 is to be varied,
with fixed points at A and B. The segment r- is the central line of the bar,
and r- and r 2 are uniformly loaded edges.

r l

Fig. 3.3.10 Geometric configuration of fillet.

The variational equation of elasticity is

where

for all Z E Z (3.3.176)

and Z2 = 0, X E r 3 }

(3.3.177)

with no body force acting on the fillet.
Consider now the von Mises yield stress functional, averaged over a small

region Ok' as

(3.3.178)

where g = (O'y - 0'8)/0'8, O'y is the von Mises yield stress, defined as

O'y = [(0'11)2 + (0'22)2 + 3(0'12)2 _ 0'110'22]1/2 (3.3.179)

and 0'8 is the given allowable stress. In Eq. (3.3.178), mk is a characteristic
function on a small region Ok' From Eq. (3.3.103) an adjoint equation is
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obtained as

a{l(A, X) = I{[J 1 o.ilz)uiJ(X)]mk dO for all X E Z

(3.3.180)

------"78

PSf

-dx2
nl::~

dX 1
n2="dS

and the variation of t/Jk is [Eq. (3.3.156)]

«= - f.. [J1 UiJ(Z)tiJ(A(kl)](VTn) dr + mkf.k [g(z) - t/JJ(VTn) dr

(3.3.181)

where A(k) is the solution of the adjoint equation of Eq. (3.3.180), mk is the
value of the characteristic function on Ok' and rk is the boundary of the finite
element Ok'

Consider the variable boundary r- of the fillet shown in Fig. 3.3.10, which
can be characterized as a curve X2 = f(Xi), with a small vertical variation
bf(Xi) (Fig. 3.3.11). From the geometry of the curve, if only a small vertical
change bf(Xi) is allowed, the normal movement of the boundary can be
written as

(VTn) = 1>f n2 = 1>f ( d~i ) (3.3.182)

where s is arc length on r-. Thus, the sensitivity formula ofEq. (3.3.181) can
be rewritten as

t/J~ = - f.. L.t 1 UiJ(Z)tii(A(kl)](VTn) ds + mkf.k [g(z) - t/Jk](VTn) dr

= _fB [ t UiJ(Z)tii(A(kl)] bf dX1+ mk f [g(z) - t/Jk](VTn) zr
A i.i= 1 Jr k (3.3.183)

In Eq. (3.3.183), bf can be related easily to <5b once the curve r- defined by
X2 = f(xl> b) is parameterized by a design variable vector b. If heights of
selected boundary points are chosen as design variables and if the boundary

A

Fig. 3.3.11 Geometry of boundary curve.
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Xii ~XI ~Xil+l, i= 1,2, ... ,N
(3.3.186)

is piecewise-linear, the boundary can be expressed as

f(x l ) = (X~+lh~ XI )bi + (XI ~ Xii )bi+ I' X~ ~ XI s Xil+l,

i = 1,2, ... , N (3.3.184)

where hi = Xil+ I - xL f(x~) = bi' and N denotes the number of partitions.
Then, {)f can be obtained by direct differentiation as

(
i+ I ) ( i)XI - XI XI - XI . I

{)f(xd = hi Sb, + hi {)bi+ b Xii ~ XI ~ Xl+ ,

i = 1,2, ... , N (3.3.185)

When a cubic spline function is employed to parameterize r, with
f(xD = b., the boundary can be expressed as [25]

f Mi+1 i 3 M i i+1 3 (b i+ 1 Mi+lhi)( i)(XI) = ~(XI - XI) + 6h.(XI - XI) + T - -6- XI - XI
I I I

(
bi Mihi).+ I+ hi - -6- (Xii - x.),

where M, = f"(x~) is obtained by solving a system of equations in M,
(i = 1,2, ... , N + 1) [25]. Then the variation off is

~if( ) - N;'I{[(X I - xD3
hi( i)JOMi+ 1

U XI - L, - - XI - XI --
j=1 Sh, 6 obj

[

i+ I 3 J0+ (XI - xd _!!.!.( i+1 _ ) M i
Sh, 6 XI XI ob.

I J

+ ()i+l,jel ~ Xii) + {)i,j(Xil+lh~ XI)} {)bj,

(3.3.187)

where ()i,j is one if i = j and otherwise is zero. The cubic spline function has
two continuous derivatives everywhere and a minimum mean curvature
property [25]. It also possesses globally controlled properties. Unlike Eq.
(3.3.185) for a piecewise-linear function, with a cubic spline function [from
Eq. (3.3.187)] perturbation of any design variable b will perturb f(xI)
globally.

Using the result in Eqs. (3.3.185) or (3.3.187) and expressing the boundary
of the finite element Ok in terms of b by the same method, Eq. (3.3.183)can be
expressed as

!/tic = l[ {)b (3.3.188)

where lk is the desired design sensitivity coefficient for the constraint !/tk'
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For numerical calculation of shape design sensitivity, several different
finite elements are used for comparison. Constant stress triangular (CST),
linear stress triangular (LST), and eight-noded isoparametric (ISP) elements
are used to calculate design sensitivity. For the ISP element, stresses and
strains are evaluated at the Gauss points, and boundary stresses and strains
are calculated by linearly extrapolating from optimal Gauss points [65, 66].

Configurations of triangular and quadrilateral finite elements are shown in
Fig. 3.3.12. Height of the varied boundary r- is chosen as the design
variable, and a piecewise-linear boundary parameterization is used for all
cases. A cubic spline function is used for the ISP model. For the CST model,
190 elements, 117 nodal points, and 214 degrees of freedom are used. The
LST model contains 190 elements, 423 nodal points, and 808 degrees of
freedom, while the ISP model contains 111 elements, 384 nodal points, and
716 degrees of freedom. Young's modulus, Poisson's ratio, and allowable
stress are E = 30.0 X 106 psi, v = 0.293, and (Ja = 120 psi, respectively. The
nominal design is

b = [5.55 5.1 4.65 4.2 3.75 3.3 2.85 2.4 1.95F

which gives a straight boundary for r-, as shown in Fig. 3.3.12.
In order to compare the accuracy of results obtained with different finite

r-,
I 2 <,

r-,
t-, 3 4 "-

»>
r---5~..... "-7):

/'
..... -- ~_ --r-- ---l....

-r-r--T

V I
/

I r-,
I

Fig.3.3.12 Finite element model of fillet. (a) Triangular element model; numbers denote
node height as design parameters. (b) Isoparametric element model; numbers denote the region
where sensitivities are checked.
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elements, the same small region should be used for stress functional
evaluation. The small regions selected, shown in Fig. 3.3.12(b), are located
next to the variable boundary r- where high stress occurs. The characteristic
function is applied to each quadrilateral element for the ISP model and to
four triangular elements for other models.

Numerical results with a 0.1% design change (i.e., Db = b x 10- 3) are
shown in Table 3.3.1. The abbreviation ISPS stands for isoparametric
elements with cubic spline function representation for the variable boundary
r l

. In Table 3.3.1, the LST model gives good sensitivity results, except at
region 10,whereas ISP and ISPS models give good results except at region 1.
Regions 1 and 10 correspond to low- and high-stress regions, respectively.
Results of ISP or ISPS models are preferable to results of the LST model
when using these results for optimization. As expected, the CST model yields
the worst accuracy, since it cannot give accurate stress and strain on the
boundary r-.

Table 3.3.1

Comparison of Design Sensitivity (if/,,./I:1t/Jk x 1(0)%

Region CST LST ISP ISPS

1 1402.9 108.9 43.3 65.9
2 45.3 99.6 104.6 105.9
3 57.9 99.2 103.2 101.9
4 64.2 99.2 103.4 103.6
5 67.5 99.2 102.8 102.6
6 68.6 99.2 101.8 101.7
7 68.3 99.1 100.0 100.4
8 70.1 99.1 98.4 97.4
9 79.3 98.3 105.2 104.9

10 183.6 87.0 102.8 104.1

TORQUE ARM

The automotive rear suspension torque arm, discussed in Section 2.2.5 as a
conventional design example, is employed in this section for shape design
sensitivity analysis. The finite element grid, geometry, loading conditions,
and dimensions are shown in Fig. 2.2.10. Thickness, which is treated as the
design variable in Chapter 2, is kept constant at 0.3 em. The shapes of r-,
both upper and lower portions, are varied. The other boundary segments are
kept fixed.

Consider the von Mises yield stress functional, averaged over a finite
element ilk>

k = 1,2, ... ,NE (3.3.189)
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Table 3.3.2

Design Sensitivity of Torque Arm

Element
number i/tl r/Jt /l,r/Jk r/J~ (r/J~//I,r/Jk x 1(0)%

51 -9.5708E - 01 -9.570IE - 01 7.0455E - 05 8.0886E - 05 ll4.8
54 -9.2402E - 01 -9.2420E - 01 -1.8128E - 04 - 2.2258E - 04 122.8
57 -9.2972E - 01 -9.2999E - 01 -2.7086E - 04 -4.1ooIE - 04 151.4
60 -9.2627E - 01 -9.2648E - 01 -2.1854E - 04 -2.7725E - 04 126.9
63 -9.ll86E - 01 -9.1206E - 01 -2.oo94E - 04 -2.3872E - 04 ll8.8
66 - 8.9297E - 01 -8.9322E - 01 - 2.5072E - 04 -2.9208E - 04 ll6.5
69 -8.7337E - 01 -8.7369E - 01 -3.2049E - 04 -3.7399E - 04 ll6.7
72 -8.5399E - 01 -8.5437E - 01 -3.7765E - 04 -4.4074E - 04 116.7
75 -8.3518E - 01 -8.3560E - 01 -4.208IE - 04 -4.9135E - 04 116.8
78 -8.1703E - 01 -8.1749E - 01 -4.5704E - 04 -5.3355E - 04 ll6.7
81 -7.9959E - 01 -8.OOO9E - 01 -4.9640E - 04 -5.7962E - 04 116.8
84 -7.8288E - 01 - 7.8342E - 01 - 5.4279E - 04 -6.3434E - 04 116.9
87 - 7.6689E - 01 - 7.6748E - 01 -5.8987E - 04 -6.898IE - 04 ll6.9
90 -7.5163E - 01 -7.5226E - 01 -6.2698E - 04 -7.3382E - 04 117.0
93 -7.3713E - 01 -7.3777E - 01 -6.4126E - 04 -7.5014E - 04 ll7.0
96 - 7.2330E - 01 - 7.2394E - 01 -6.3673E - 04 - 7.4326E - 04 ll6.7
99 -7.0995E - 01 - 7.1059E - 01 -6.3961E - 04 -7.4548E - 04 116.5

102 -6.9685E - 01 -6.9754E - 01 -6.8766E - 04 -8.0oo8E - 04 116.3
105 -6.8397E - 01 -6.8479E - 01 -8.2378E - 04 -9.6213E - 04 ll6.8
108 -6.7274E - 01 -6.7375E - 01 -1.0156E - 03 -1.l987E - 03 118.0
171 -6.6857E - 01 -6.6968E - 01 -l.lll6E - 03 -1.3095E - 03 117.8
174 -6.8065E - 01 -6.8155E - 01 -9.oo37E - 04 -1.0709E - 03 ll8.9
177 -7.0737E - 01 -7.0786E - 01 -4.8863E - 04 -3.9665E - 04 81.2
180 - 7.5279E - 01 -7.5278E - 01 7.6247E - 06 1.4928E - 04
183 -8.1493E - 01 -8.1461£ - 01 3.2090E - 04 3.7072E - 04 ll5.5
186 -8.8122E - 01 -8.8092E - 01 3.01l1E - 04 3.4105E - 04 ll3.3
109 -9.1133E - 01 -9.1123E - 01 1.0189E - 04 1.2514E - 04 122.8
112 -8.8768E - 01 -8.8799E - 01 -3.1006E - 04 -3.7596E - 04 121.3
115 -9.04I1E - 01 -9.0447E - 01 -3.5887E - 04 -4.9377E - 04 137.6
118 -9.0615E - 01 -9.064IE - 01 -2.5739E - 04 -3.0335E - 04 117.9
121 -8.903IE - 01 -8.9054E - 01 -2.2516E - 04 - 2.5650E - 04 113.9
124 -8.6974E - 01 -8.7oo2E - 01 -2.7628E - 04 -3.1554E - 04 114.2
127 -8.492IE - 01 -8.4956E - 01 -3.5956E - 04 -4.0299E - 04 115.3
130 -8.2950E - 01 -8.299IE - 01 -4.0647E - 04 -4.7017E - 04 115.7
133 -8.1069E - 01 -8.1114E - 01 -4.476IE - 04 -5.1876E - 04 115.9
136 - 7.9270E - 01 - 7.9318E - 01 -4.8184E - 04 -5.5878E - 04 116.0
139 -7.7547E - 01 -7.7599E - 01 -5.2042E - 04 -6.0397E - 04 116.1
142 -7.5898E - 01 - 7.5955E - 01 -5.6726E - 04 -6.5914E - 04 116.2
145 -7.4322E - 01 - 7.4383E - 01 - 6.1502E - 04 -7.153IE - 04 116.3
148 -7.2819E - 01 - 7.2884E - 01 -6.5203E - 04 -7.5925E - 04 116.4
151 -7.1392E - 01 -7.1458E - 01 -6.6442E - 04 -7.7358E - 04 ll6.4
154 -7.oo35E - 01 -7.0101£ - 01 -6.5677E - 04 -7.6338E - 04 116.2
157 -6.8732E - 01 -6.8798E - 01 -6.5744E - 04 -7.6315E - 04 116.1
160 -6.7466E - 01 -6.7537E - 01 -7.0674E - 04 -8.1905E - 04 115.9
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Table 3.3.2 (cont.)

Element
number 1/4 t/lf f>!{J. « (t/I~/!1t/1. x 100)%

163 -6.6250E - 01 -6.6335E - 01 -8.4965E - 04 -9.8803E - 04 116.3
166 -6.5250E - 01 -6.5355E - 01 -1.0497E - 03 -1.2324E - 03 117.4
187 -6.5021E - 01 -6.5136E - 01 -1.1460E - 03 -1.3410E - 03 117.0
190 -6.6461E - 01 -6.6553E - 01 -9.2317E - 04 -1.0905E - 03 118.1
193 -6.9341E - 01 -6.9391E - 01 -4.9726E - 04 -3.9789E - 04 80.0
196 -7.4070E - 01 -7.4068E - 01 1.5295E - 05 1.6390E - 04
199 -8.0535E - 01 -8.0501E - 01 3.4298E - 04 3.9514E - 04 115.2
202 -8.7489E - 01 -8.7457E - 01 3.2183E - 04 3.6356E - 04 113.0

1413II r' 128 9

I
~ IV" ]~
~

./
J'-"

10

where 9 = (uy - a")/ua
, uy is the von Mises yield stress defined in Eq.

(3.3.179), mk a characteristic function on finite element k, and NE the total
number of elements. The formulation for shape design sensitivity analysis is
the same as in the fillet problem. The only difference is that instead of one
boundary changing, two boundaries are varied. Because the moving boun-
daries are traction free for both problems, Eq. (3.3.181)can be used for design
sensitivity coefficient calculation.

Design variables are shown in Fig. 3.3.13, where upper and lower portions
of the boundary each have heights specified at seven selected boundary
points as design variables. The finite element model includes 204 elements,
707 nodal points, and 1342 degrees of freedom. Design sensitivity analysis
results for average stresses on elements next to the variable boundary, with
0.1% uniform design change, are shown in Table 3.3.2. It is observed that
most elements have good accuracy. For elements 180 and 196, poor accuracy
may result from small differences in functional values.

2 3 4 r' 5 6 7

Fig.3.3.13 Shape design parameters of torque arm; numbers denote node heights as design
parameters.

TWO-DIMENSIONAL ELASTIC CONCRETE DAM

Consider a concrete dam shown in Fig. 3.3.14, modeled as a two-
dimensional plane strain problem. It is assumed that the length of the dam is
infinite and that the height of the water level, which is equal to the height of
the dam, is given. The boundary of the dam is composed of four parts; r t is
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o
Fig.3.3.14 Cross section of dam.

the boundary along which hydrostatic pressure acts, r- and r- are the top
and side, which are load-free boundaries, and r- is the boundary that is in
contact with earth, where homogeneous kinematic boundary conditions are
imposed. The shapes of r: and r- are to be varied. Since the height of the
dam is not changed, every point in the domain is allowed to move only in the
Xl direction (i.e., V2 = 0). Therefore, r 2 and r 4 are horizontal straight lines.

Consider the principal stress functional, averaged over a finite element Ok>
as

t/Jk = fin glmk dO,}

t/Jk+NE = fin g2mk dO,
k = 1,2, ... , NE (3.3.190)
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(3.3.191)

2

where gl = (sal - au)/au, g2 = (aL - sa2)/aL, and aL, au, and s denote lower
and upper bounds on stress in concrete and safety factor, respectively. In Eq.
(3.3.190), al and a2 are the two principal stresses, given as

a 1 = all ; a
22

+ (all; a
22Y+ (a12)2

(all; any + (a12)2

The variational equation is

an(z, Z} == II [. t aii(z)eii(z)] dO
n I,J=l

for all Z E Z
I (3.3.192)

where

Z = {z E [H 1(OW : Zl = Z2 = 0, X E r 4 } (3.3.193)

with the weight of the dam applied as body force J. In this example, the
traction T = [T 1 T 2F is due to hydrostatic pressure normal to the
boundary, given as

T i = -Yw(l - x2)ni , i = 1,2, x E I" (3.3.194)

where Yw is specific weight of water. Note that Tis nonconservative loading,
as in Eq. (3.3.115). Using the method of Section 3.3.4, the adjoint equations
are obtained as

for all A: E Z

(3.3.195)

and

an(A, A) = ftLJ1 g;ilZ)aii(A)]mkdO for all A E Z (3.3.196)

The variation of l/Jk is, from Eqs. (3.3.117) and (3.3.143),

l/J~ = - r [ t aii(z)eii(A(kl)](VTn) dr + r [.t JiA(kli](VTn) dr
Jr t,J = 1 Jr 1= 1

- Yw r [(l - x 2) div A(k) - A(kl2](VTn) dr
Jp

+ mk r [gl(Z) - l/Jk](VTn) dr, k = 1,2, ... , NE (3.3.197)
Jr.
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and

t/Jk+NE = - f['~1 O'ij(Z)Bij(A,(HNEl)](VTn)dr + f[JI P),(k+NEl](VTn)dr

- Yw r [(l - X2) div A,(k+NEl - A,(k+NE)2](VTn) dr
Jp

+ mk r [g2(Z) - t/JHNE](VTn) dr,
Jr.

k = 1,2, ... ,NE

(3.3.198)

r
6

16

15

14 Note: xI Coordinates of Dots

5 13 Denote Design Variables

12

II
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4
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2
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2

7 ..
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Fig. 3.3.15 Finite element model of dam; Xl coordinates of dots denote design variables.
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where ;.(k) and ;.(k+NE) are solutions of Eqs. (3.3.195) and (3.3.196), re-
spectively, and rk is the boundary of finite element Ok'

The finite element model of the dam, with optimal eight-node ISP elements
[65, 66J, is shown in Fig. 3.3.15. It contains 64 elements, 233 nodal points,
and 448 degrees offreedom. The XI coordinates of 13 points on r l and r3 (see
Fig. 3.1.15) are chosen as design parameters (hi to b13 ) . Numerical results are
based on the following data: 1= 100 ft, E = 3.64 X 106 psi, v = 0.2,
aL = -4000 psi, au = 255 psi, s = 3, Yw = 62.4 lb/ft", and hL = 150 in.
Specific weight of concrete is chosen as 150 Ib/ft3

•

The initial design is chosen as

[1.0 1.0 1.0 1.0 1.0 1.0 601.0 534.33 467.67 401.0 334.33 267.67 201.0F

for design sensitivity analysis. The reason for choosing b l to b6 equal to 1,
instead of 0, is convenience for design sensitivity analysis purposes (i.e., in
considering percentage change of design variables). Design sensitivity results
for stress in elements adjacent to r-, for upper and lower bound stress
constraints, are shown in Tables 3.3.3 and 3.3.4, respectively. A 0.1% uniform
design change is selected, and the percentage of accuracy is close to 100% (see
Tables 3.3.3 and 3.3.4). Only element 16 appears to have a poor accuracy
percentage. However, the difference between perturbed and unperturbed
constraint values is small, so accuracy of the difference is questionable.

Table 3.3.3

Sensitivity of Upper Principal Stress Constraints

Element
number i/lk' i/lf lii/lk i/I~ (i/I~!lii/!k x 100)%

1 -7.9053E - 01 - 7.9128E - 01 - 7.5253E - 04 -7.4310E - 04 98.7
2 -9.0381E - 01 -9.0452E - 01 -7.1246E - 04 -7.1183E - 04 99.9
3 -9.8040E - 01 -9.8101E - 01 -6.1205E - 04 -6.1903E - 04 lOLl
4 -1.0179E + 00 -1.0185E + 00 -5.1437E - 04 -5.2495E - 04 102.1
5 -1.0433E + 00 -1.0438E + 00 -4.0794E - 04 -4.1971E - 04 102.9
6 -1.0586E + 00 -1.0589E + 00 -2.8703E - 04 -2.9766E - 04 103.7
7 -1.0633E + 00 -1.0634E + 00 -1.3293E - 04 -1.3872E - 04 104.3
8 -1.0575E + 00 -1.0575E + 00 -4.9233E - 05 - 5.1360E - 05 104.3
9 -1.0500E + 00 -1.0500E + 00 -2.5452E - 05 -2.6611E - 05 104.6

10 -1.0442E + 00 -1.0442E + 00 -1.6348E - 05 -1.7121E - 05 104.7
11 -1.0380E + 00 -1.0380E + 00 -1.0088E - 05 -1.0579E - 05 104.9
12 -1.0315E + 00 -1.0315E + 00 -5.9007E - 06 -6.1863E - 06 104.8
13 -1.0248E + 00 -1.0247E + 00 -3.2191E - 06 -3.3446E - 06 103.9
14 -1.0178E + 00 -1.0178E + 00 -1.6441E - 06 -1.6693E - 06 101.5
15 -1.0108E + 00 -1.0108E + 00 -8.7791E - 07 -9.1872E - 07 104.6
16 -1.0039E + 00 -1.0039E + 00 - 2.4626E - 07 -3.8964E - 07 158.2
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Table 3.3.4

Sensitivity of Lower Principal Stress Constraints

Element
number t/4+NE t/J;+NE ~t/Jk+NE ljJ~+NE (t/J;+NE/~t/Jk+NE x 100)%

1 -9.8986E - 01 -9.8985E - 01 9.2975E - 06 9.6684E - 06 104.0
2 -9.8847E - 01 -9.8847E - 01 1.1408E - 06 l.3977E - 06 122.5
3 -9.8993E - 01 -9.8993E - 01 6.3124E - 07 7.8423E - 07 124.2
4 -9.9078E - 01 -9.9078E - 01 5.3598E - 07 6.3913E - 07 119.2
5 -9.9171E - 01 -9.917IE - 01 1.0747E - 06 1.1831E - 06 110.1
6 -9.925IE - 01 -9.925IE - 01 2.6957E - 06 2.8459E - 06 105.6
7 -9.9308E - 01 -9.9307E - 01 6.8458E - 06 7.2127E - 06 105.4
8 -9.9344E - 01 -9.9343E - 01 7.1735E - 06 7.6427E - 06 106.5
9 -9.9385E - 01 -9.9384E - 01 5.4365E - 06 5.8612E - 06 107.8

10 -9.9426E - 01 -9.9426E - 01 4.1916E - 06 4.5704E - 06 109.0
11 -9.9480E - 01 -9.9480E - 01 3.0283E - 06 3.3564E - 06 110.8
12 -9.9548E - 01 -9.9548E - 01 2.0107E - 06 2.2845E - 06 113.6
13 -9.9630E - 01 -9.9629E - 01 1.1840E - 06 l.3998E - 06 118.2
14 -9.9725E - 01 -9.9725E - 01 5.7540E - 07 7.2897E - 07 126.7
15 -9.983IE - 01 -9.9831E - 01 1.9254E - 07 2.7604E - 07 143.4
16 -9.9943E - 01 -9.9943E - 01 2.1519E - 08 4.5401E - 08 211.0

PLANE STRESS INTERFACE PROBLEM

A thin elastic solid that is composed of two different materials and
subjected to simple tension is now considered. The finite element con-
figuration, dimensions, material properties of each body, and loading
conditions are shown in Fig. 3.3.16. Body i occupies domain Oi (i = 1,2), and
AB is the interface boundary y. Design variable b controls the position of the
interface boundary y, while the overall dimensions of the structure are fixed.

Consider the von Mises yield stress functional, averaged over finite
element Op,

t/Jp = Ii y(a(z))mpdO (3.3.199)

where g = ay is the von Mises yield stress, defined in Eq. (3.3.179). For
numerical comparison, two methods are used for shape design sensitivity
analysis: the boundary method of Section 3.3.6 and the domain method of
Section 3.3.7.

For the boundary method, ifOp C 0 1 and rp intersects y, Eq. (3.3.164) can
be used, with limits of summation running from 1 to 2 and an appropriate
modification of the generalized Hookes law of Eqs. (3.1.42) and (3.1.43). For
the adjoint equation, Eq. (3.3.122) can be used. On the other hand, if
Qp C 01, then the third integral on the right side of Eq. (3.3.164) becomes
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Fig.3.3.16 Plane stress interface problem.

zero. In Eq. (3.3.164), n is the outward unit normal to 0 2
• Similar results may

be obtained for the case Op c02
•

For the domain method, the results of Section 3.3.7 can be used. Suppose
again that Op C 0 1

. Since there is no body force applied and the externally
loaded boundary is not moving, adding contributions from each component
yields

l/!; = It fft i.t1[(Jij(Z)(VAiTlj) + (Jij(A)(VZiTlj)] dO

-J1 fft c.~ 1(Jij(Z)Sij(A)] div V dO

-ffLI i.~ 1 L.~ 1 gailZ)Ciikl(VzkTv,)]mp dO

+ffLI g(z) div Vmp dO - ffLI g(z)mp dO ffLI mpdiv V dO

(3.3.200)

where A is the solution of the adjoint equation of Eq. (3.3.122). In Eq.
(3.3.200), the asterisk notations for z and A are dropped. For the integrand,
the domain 0 ' (I = 1,2) of integration will indicate which variables are to be
used.

The finite element model shown in Fig. 3.3.16 contains 32 elements, 121
nodal points, and 233 degrees of freedom. The optimal eight-noded ISP
element [65, 66] is employed for design sensitivity analysis. For the
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boundary method, stresses and strains are obtained at Gauss points and
extrapolated to the boundary.

Numerical results with a 3% design change (i.e., bb = O.03b) are shown in
Table 3.3.5 for the boundary method and in Table 3.3.6 for the domain
method. These results show that the domain method gives excellent results,
whereas accuracy of the boundary method is not acceptable. For elements
22, 23, 29, and 32, the predicted values are less accurate than others.
However, the magnitude of actual differences JiljJp for those elements are
smaller than others, so JiljJp may lose precision.

Table 3.3.5

Boundary Method for Interface Problem

Element
number 1/4 tit; tJ.tIt. tit; (tIt;/tJ.t/t. x 100)%

1 393.01304 393.17922 0.16618 0.20403 122.8
2 364.37867 364.76664 0.38796 0.67218 173.3
3 364.37867 364.76664 0.38796 0.67218 173.3
4 393.01304 393.17922 0.16618 0.20403 122.8
5 388.07514 388.36215 0.28701 0.56684 197.5
6 402.26903 402.83406 0.56503 0.42080 74.5
7 402.26903 402.83406 0.56503 0.42080 74.5
8 388.07514 388.36215 0.28701 0.56684 197.5
9 386.43461 386.84976 0.41515 -0.08520 -20.5

10 407.14612 407.48249 0.33637 0.14159 42.1
11 407.14612 407.48249 0.33637 0.14159 42.1
12 386.43461 386.84976 0.41515 -0.08520 -20.5
13 388.59634 388.95414 0.35780 -0.53089 - 148.4
14 379.04276 379.25247 0.20971 -1.90134 -906.6
15 379.04276 379.25247 0.20971 - 1.90134 -906.6
16 388.59634 388.95414 0.35780 -0.53089 -148.4
IT 441.68524 442.25032 0.56507 - 13.85905 -2452.6
18 424.05820 425.22910 1.17089 -13.63066 -1164.1
19 424.05820 425.22910 1.17089 -13.63066 -1164.1
20 441.68524 442.25032 0.56507 -13.85905 -2452.6
21 424.19015 424.70840 0.51825 -0.21408 -41.3
22 378.85433 378.97497 0.12064 0.76770 636.4
23 378.85433 378.97497 0.12064 0.76770 636.4
24 424.19015 424.70840 0.51825 -0.21408 -41.3
25 407.71528 408.23368 0.51840 0.49878 96.2
26 387.87304 387.32342 -0.54962 -0.48837 88.9
27 387.87304 387.32342 -0.54962 -0.48837 88.9
28 407.71528 408.23368 0.51840 0.49878 96.2
29 400.61014 400.60112 -0.00903 0.01423 -157.7
30 394.61705 394.00702 -0.61003 -0.57794 94.7
31 394.61705 394.00702 -0.61003 -0.57794 94.7
32 400.61014 400.60112 -0.00903 0.01423 -157.7
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Table 3.3.6

Domain Method For Interface Problem

Element
number I/ti 1/1; lil/tp « (I/t~!lil/tp x 100)%

1 393.01304 393.17922 0.16618 0.17954 108.0
2 364.37867 364.76664 0.38796 0.37840 97.5
3 364.37867 364.76664 0.38796 0.37840 97.5
4 393.01304 393.17922 0.16618 0.17954 108.0
5 388.07514 388.36215 0.28701 0.28671 99.9
6 402.26903 402.83406 0.56503 0.59634 105.5
7 402.26903 402.83406 0.56503 0.59634 105.5
8 388.07514 388.36215 0.28701 0.28671 99.9
9 386.43461 386.84976 0.41515 0.41748 100.6

10 407.14612 407.48249 0.33637 0.36857 109.6
11 407.14612 407.48249 0.33637 0.36857 109.6
12 386.43461 386.84976 0.41515 0.41748 100.6
13 388.59634 388.95414 0.35780 0.37548 104.9
14 379.04276 379.25247 0.20971 0.20159 96.1
15 379.04276 379.25247 0.20971 0.20159 96.1
16 388.59634 388.95414 0.35780 0.37548 104.9
17 441.68524 442.25032 0.56507 0.57069 101.0
18 424.05820 425.22910 1.17089 1.12871 96.4
19 424.05820 425.22910 1.17089 1.12871 96.4
20 441.68524 442.25032 0.56507 0.57069 101.0
21 424.19015 424.70840 0~51825 0.53919 104.0
22 378.85433 378.97497 0.12064 0.06396 53.0
23 378.85433 378.97497 0.12064 0.06396 53.0
24 424.19015 424.70840 0.51825 0.53919 104.0
25 407.71528 408.23368 0.51840 0.51710 99.7
26 387.87304 387.32342 -0.54962 -0.56083 102.0
27 387.87304 387.32342 -0.54962 -0.56083 102.0
28 407.71528 408.23368 0.51840 0.51710 99.7
29 400.61014 400.60112 -0.00903 -0.00298 33.0
30 394.61705 394.00702 -0.61003 -0.58529 95.9
31 394.61705 394.00702 -0.61003 -0.58529 95.9
32 400.61014 400.60112 -0.00903 -0.00298 33.0

3.4 EIGENVALUE SHAPE DESIGN
SENSITIVITY ANALYSIS

Examples presented in Section 3.1 show that eigenvalues such as natural
frequencies of vibration depend on the shape of the structure. As in Section
2.3, the objective in this section is to obtain sensitivity of eigenvalues with
respect to shape variation. As in Chapter 2, for conservative systems, no
adjoint equations are necessary, and eigenvalue shape design sensitivity can
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(3.4.1)

for all )it E Z,

be expressed directly in terms of eigenvectors associated with the eigenvalues
and the eigenvalue bilinear forms. Differentiability of simple eigenvalues and
directional differentiability of repeated eigenvalues are used to obtain explicit
formulas, utilizing the material derivative formulas of Section 3.2, for both
simple and repeated eigenvalue design sensitivity analysis. Numerical ex-
amples of computation of eigenvalue sensitivity are presented.

3.4.1 Differentiability of Bilinear Forms
and Eigenvalues

Basic results concerning differentiability of eigenvalues for problems
treated in Section 3.1 are proved in Section 3.5. The purpose of this section is
to summarize key results that are needed for eigenvalue design sensitivity.
The case of repeated eigenvalues is more subtle. It is shown that repeated
eigenvalues are only directionally differentiable.

As shown in Section 3.1, eigenvalues for vibration of elastic systems on a
deformed domain are determined by variational equations of the form

an.(Yo )it) == Ii c(Yo )it) dOt
n,

= 't fIn. e(yo Yt) dO. == 't dn,(Yo Yt)

where Z, c Hm(o.) is the space of kinematically admissible displacements
and c(., .) and e(., .) are symmetric bilinear mappings. Since Eq. (3.4.1) is
homogeneous in Yo a normalizing condition must be used to define unique
eigenfunctions. The normalizing condition is

ddyo Yt) = 1 (3.4.2)

The energy bilinear form on the left side of Eq. (3.4.1) is the same as the
bilinear form in static problems treated in Section 3.3. Therefore, it has the
same differentiability properties as discussed there. The bilinear form dn.( " .)
on the right side of Eq. (3.4.1) represents mass effects in vibration problems
and geometric effects in buckling problems. In most cases, except for
buckling of a column, it is even more regular than the energy bilinear form in
its dependence on design and eigenfunction.

SIMPLE EIGENVALUES

It is shown in Section 3.5.5 that a simple eigenvalue' is differentiable. It
was shown by Kato [13J that the corresponding eigenfunction Y is also
differentiable. In fact, material derivatives of both the eigenvalue and
eigenfunction are linear in V, hence they are Frechet derivatives of the
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eigenvalue and eigenfunction. As in the static response case, linearity and
continuity of the mapping Y -+ Y allows, by Theorem 3.5.3 of Section 3.5.7,
use of only the normal component (VTn) of the velocity field Y in derivation of
the material derivative, as in Eq. (3.2.36).

Taking the material derivative of both sides of Eq. (3.4.1), using Eq.
(3.2.36) and noting that partial derivatives with respect to r and x commute
with each other,

[arb, y)]' =a~(y, y) + aQ(jI, y)

= CdQ(y, y) + nd~(y, y) + dQ(y, y)]

=CdQ(y, y) + '[dQ(y, y)]' for all y E Z (3.4.3)

where, using Eq. (3.2.8),

[aQ(Y, y)]' = It [c(y', y) + c(y,rn dO +Ld(y, y)(VTn)dr

= It [c(y - VyTv,ji) + c(y, y - VyTy)] dO +Lc(y, y)(yTn) dr

(3.4.4.)
and

[dQ(y, y)]' =It [e(y', y) + e(y,rn dO +Le(y,y)(VTn)dr

= It [e(y - VyTv,y) + e(y,y - VyTy)] dO +Le(y,y)(yTn) dr

(3.4.5)

As in Eq. (3.3.3), the fact that the partial derivatives of the coefficients in the
bilinear mappings c(', .) and e(·, .) are zero has been used in Eqs. (3.4.4) and
(3.4.5). As in the static response case, for Yt select y.(x + 'tY(x)) = y(x). Since
Hm(o) is preserved by T(x, r) [Eq. (3.2.12)], if Y E Z is arbitrary, then Yt is
an arbitrary element of Zt' Also, from Eq. (3.2.8),

Y = Y' + VyTy = 0 (3.4.6)

and from Eqs. (3.4.3), (3.4.4), and (3.4.5), using Eq. (3.4.6),

a~(y, y) = - It [c(VyTv, y) + c(y,VyTy)] su +Lc(y, y)(VTn) dr

(3.4.7)

and

d~(y, y) = - II [e(VyTv,y) + e(y,VyTy)] dO + r e(y,y)(yTn) dr
Q Jr (3.4.8)
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Since ji E Z, Eq. (3.4.3) may be evaluated with ji = y, using symmetry of the
bilinear forms, to obtain

(3.4.9)

Since y E Z [see the paragraph following Eq. (3.3.8)], the term in brackets on
the right side of Eq. (3.4.9) is zero. Furthermore, due to the normalizing
condition of Eq. (3.4.2) a simplified equation may be used,

" = a~(y, y) - 'd~(y, y)

= 2 fin [-c(y, VyTV) + (e(y, Vy TV)] dO +L[c(y, y) - (e(y, y)](VTn) dr

(3.4.10)

where, as in the static response case, the integral over 0 can be transformed
to boundary integrals by using the variational identities given in Section 3.1
for each structural component and boundary and/or interface conditions.
This will be done for each class of problem encountered.

Note that the directional derivative of the eigenvalue is linear in V, since the
variations of the bilinear forms on the right side of Eq. (3.4.10) are linear in V.
As noted in Section 2.3, validity of this result rests on the existence of
derivatives of eigenvalues and eigenfunctions.

REPEATED EIGENVALUES

Consider now the situation in which an eigenvalue' has multiplicity s > 1
at 0; that is,

a,bi, ji) = , do.<yi, ji) for all y E Z }
i.] = 1,2, ... , s

debi, yi) = bii (3.4.11)

It is shown in Section 3.5 that the repeated eigenvalue, is a continuous
function of design but that the corresponding eigenfunctions are not.
Moreover, as in Section 2.3, it is shown in Section 3.5 that at 0, where the
eigenvalue' is repeated s times, it is only directionally differentiable and the
directional derivatives 'i(v) in the direction V are the eigenvalues of the s x s
matrix .A with elements

.Aij = a~(yi, yi) - Cd~V, yi)

= fin [-C(VyiTv, yi) - cV, VyiTV) + (e(VyiTv, yi) + (e(yi, VyiTV)] dO

+L[cV, yi) - (e(yi, yi)](VTn) dr; i,j = 1,2, ... , s (3.4.12)

The notation C;W) is used here to emphasize dependence of the directional
derivative on V. As in the simple eigenvalue case, the integral over 0 in Eq.
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(3.4.12) can be transformed to boundary integrals by using the variational
identities given in Section 3.1 for each structural component and boundary
and/or interface conditions. This will be done for each class of problem
encountered.

If the do-orthonormal basis {ih= I •...• s of the eigenspace is changed, then
the matrix A changes, but the eigenvalues of A remain the same. As
mentioned in Section 2.3.1, the directional derivatives (;(V) are not generally
linear in V, even though each Aij is linear in V. Other results in Section 2.3.1
on directional derivatives of repeated eigenvalues remain valid in this section.
For s = 2, directional derivatives of a double eigenvalue are

(;(V) = {(Au + A 2 2 ) ± [(All + An)2- 4(AuA22 - At2)]1/2}/2,

i = 1,2 (3.4.13)

where i = 1 corresponds to the minus sign, i = 2 corresponds to the plus
sign, and "'Iij is given in Eq. (3.4.12) (i,j = 1,2). Another expression for
directional derivatives is

('I(V) = cos2cf>(V) Au + sin 2cf>(V) Au + sin? cf>(V) A 22

(~(V) = sin2 cf>(V) All - sin 2cf>(V) A 12 + cos2 cf>(V) A 2 2

where the eigenvector rotation angle cf> is given as

1 [2A12 ]cf>(V) = -2 arctan II
Au - .4't22

(3.4.14)

(3.4.15)

(3.4.16)

3.4.2 Analytical Examples
of Eigenvalue Design Sensitivity

The beam, column, membrane, and plate problems of Section 3.1 are used
here as examples for eigenvalue design sensitivity analysis.

VIBRATION OF A BEAM

Consider the vibrating beam of Section 3.1, with cross-sectional area
h(x) ~ ho ~ 0, I(x) = cxN(x), and Young's modulus E. Using Eq. (3.4.10),

(' = 2s: [-Eo:h2YxAYxV)xx + (phy(yx V)] dx + [Eo:h2(Yxx)2 - (Phi]VI~
(3.4.17)

The variational identity of Eq. (3.1.5) may be used, identifying (YxV) in the
domain integral of Eq. (3.4.17) with y in Eq. (3.1.5), to obtain

(' = -2[Eo:h2yxx(yxV)x - (EO:h2Yxx)x(yxV)]I~ + [Eo:h2(Yxx)2 - (Phy2]VI~

(3.4.18)
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Using boundary conditions of Eq. (2.1.1) (note beam length 1 is not
normalized in this chapter) for the clamped-clamped beam, Eq. (3.4.18)
becomes

(3.4.19)

It is interesting to note that since the coefficient of the velocity V is negative,
frequency decreases as the boundary moves outward, which is clear physi-
cally. Moreover, by moving the end of the beam with larger Er:xh 2(yxY

outward, the fundamental frequency can be decreased most effectively.
For other boundary conditions in Eqs. (2.1.16)-(2.1.18), as in the static

case, the design sensitivity formula of Eq. (3.4.18) is valid. To obtain a design
sensitivity formula for the simply supported case, use of boundary conditions
of Eq. (2.1.16) in Eq. (3.4.18) yields

C = 2Er:xh2YxxxyxVI~ (3.4.20)

For a cantilevered beam; applying boundary conditions of Eq. (2.1.17) to
Eq. (3.4.18) yields

C = Er:xh
2(Yxx)2Vlx=o - (Phy2Vlx=1 (3.4.21)

For a clamped-simply supported beam, applying boundary conditions of
Eg. (2.1.18) to Eg. (3.4.18) yields

(' = Er:xh2(Zxx)2Vlx=o + 2Er:xh2YxxxyxVlx=i (3.4.22)

BUCKLING OF A COLUMN

Consider buckling of the column of Section 3.1, with cross-sectional area h,
I(x) = r:xh2(x), and Young's modulus E. Using Eq. (3.4.10),

i I'c = 2So [-Er:xh2yxx(YxV)xx + (Yx(YxV)x] dx + [Er:xh 2(Yxx)2 - (Yx)2]V 0

(3.4.23)

Using the variational identity of Eq. (3.1.8), and identifying (YxV) in the
domain integral of Eq. (3.4.23) with y in Eq. (3.1.8),

C = -2[Er:xh2yxx(YxV)x - (Er:xh 2Yxx)AyxV) - (Yx(Yx V)] I~

+ [Er:xh2(YxJ2 - ((Yx)2]VI~ (3.4.24)
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For a clamped-clamped column, using boundary conditions of Eq. (2.1.1),
Eq. (3.4.24) becomes

(3.4.25)

As in the case of vibration of a beam, the coefficient of the variation V is
negative. Hence, the buckling load decreases as the boundary moves
outward.

For a simply supported column, using boundary conditions ofEq. (2.1.16),
Eq. (3.4.24) becomes

(3.4.26)

For a cantilevered column, using boundary conditions of Eq. (2.1.17), Eq.
(3.4.24) becomes

(3.4.27)

For a clamped-simply supported column, using boundary conditions of
Eq. (2.1.18), Eq. (3.4.24) becomes

(' = E(Xh
2(Yxx?Vlx=o + [2E(Xh

2yxxxYx + ((yJ2]VIX=i (3.4.28)

For an s-times repeated eigenvalue, using Eq. (3.4.12),

'~ij = s: [-Eah2yUy~V)xx - Eah2y~x(Y~V)xx + ,y~(y~V)x + 'Y~(Y~V)xJ dx

+ [Eah2y~xY~x - ,y~ynvl~, i,j = 1,2, ... , s (3.4.29)

Using the variational identity of Eq. (3.1.8) twice in Eq. (3.4.29),

Aij = - [Eah2y~x(Y~ V)x - (Eah2Y~x)AY~ V) - ,y~(y~ V)] I~

- [Eah2Y~iY~V)x - (Eah2Y~xMY~V) - ,y~(y~V)] I~

+ [Eah2y~xY~x - ,y~ynvl~, i,j = 1,2, ... , s

(3.4.30)
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(3.4.32)

(3.4.33)

As in the simple eigenvalue case, the result of Eq. (3.4.30) is valid for the
boundary conditions given in Eqs. (2.1.1)and (2.1.16)-(2.1.18). To obtain.,/lij
for each case, these boundary conditions may be applied in Eq. (3.4.30). For
the case of a double eigenvalue (s = 2), the directional derivatives of the
repeated eigenvalue can be obtained from Eqs. (3.4.14) and (3.4.15), where
rotation angle </> is given in Eq. (3.4.16).

VIBRATION OFA MEMBRANE

Consider the membrane of Fig. 3.1.1, with mass density h. For a simple
eigenvalue, using Eq. (3.4.10) and the fact that y = 0 on r;

" = 2fIn [-TVyTV(Vy Ty) + 'hy(VyTy)] dO. + T L(VyTVy)(yTn) dr

(3.4.31)

Applying the variational identity of Eq. (3.1.13) to Eq. (3.4.31) and identify-
ing (VyTy) in the domain integral of Eq. (3.4.31) with y in Eq. (3.1.13),

" = -2TL~~ (VyTy) dr + TL(VyTVy)(yTn) dr

Since y = 0 on r; Vy = (iJy/iJn)n on r; and

c = -TL(~~y (yTn) dr

As noted in Section 3.4.1, the eigenvalue design sensitivity in Eq. (3.4.33) is
expressed as a boundary integral, and only the normal movement (VTn)of the
boundary appears.

It is interesting to note that since the coefficient of (yTn) is negative, the
frequency decreases as the boundary moves outward, which is clear physi-
cally. Moreover, moving the boundary outward in the vicinity of a high
normal derivative decreases the fundamental frequency most effectively.

For an s-times repeated eigenvalue, using Eq. (3.4.12) and the fact that
yi = 0 on r (i = 1, 2, ... , s),

vlt ii = fIn [-TVyiTV(VyiTy) - TVyiTV(VyiT y) + 'hyi(VyiTy)

+ 'hyi(VyiTY)J dO. + T L(VyiTVyi)(yTn) zr; i,j = 1,2, ... , s

(3.4.34)
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Applying the variational identity ofEq. (3.1.13) twice to Eq. (3.4.34)

.Ai} = -tL[i; (VyiTV) + ~ (VyjTV)] dO + t L(vyiTVyj)(VTn) .n:
(3.4.35)

Since yi = 0 on r; vyi = (oyi/on)n on r; and

i.] = 1,2, ... ,s (3.4.36)

(3.4.38)

Consider now the case of a double eigenvalue at 0 (i.e., S = 2). The
directional derivatives of the repeated eigenvalue are given by Eqs. (3.4.14)
and (3.4.15) as

('1(V) = - t L[cos
2 ¢(V) (i~ Y+ sin 24>(v) (i~ )(i:)

+ sin2 ¢ (V) (i:Y](VTn) dr
(3.4.37)

'2(V) = - tL[sin2 ¢(V) (O;n
1

)

2

- sin 2¢(V) (O;n
1
)(i: )

+ cos 2 ¢ (V) (O;:)2](VTn) dr

where the rotation angle ¢ is obtained from Eq. (3.4.17) as

1 [2Jr (oi/on)(oy2/on)(VTn) dr ]
¢(V) = 2arctan Jr [(ol/on)2 - (oi/on)2](VTn) dr

It is clear from Eq. (3.4.37) that the directional derivatives of the repeated
eigenvalues are not linear in V, hence they are not Frechet differentiable.

VIBRATION OF A PLATE

Consider the vibrating plate of Section 3.1, with thickness h, Young's
modulus E, and mass density p. Using Eq. (3.4.10),

" = 2fIn {-D[(Yll + VY22)(VyTV)l1 + (Y22 + VYll)(VyTV)22

+ 2(1 - v)YdVyTV)12] + 'phy(VyTV)} dO

+L{D[(Yll + VydYll + (Y22 + VYll)Y22

(3.4.39)
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(3.4.40)

Using the variational identity of Eq. (3.1.30), and identifying (VyTV) in the
domain integral of Eq. (3.4.39) with y in Eq. (3.1.30),

C' = -2 L (VyTV)Ny dr - 2L:n(VyTV) My dr

+ L {D[(Yll + VY22)Yll + (Y22 + VYll)Y22

+ 2(1 - V)yr2] - Cphy2}(VTn)dr

As in the static response case, sensitivity formulas due to the variation of
clamped, simply supported, and free-edge parts of the boundary are

, f ~{ (02y)2
C = J

rc
D -2 on2 + [(Yll + VydYll + (Y22 + VYll)Y22

+ 2(1 - V)yr2]} (VTn) .u: (3.4.41)

C = Ls {-2G~)NY + D[(Yll + VydYll + (Y22 + VYl1)Y22

+ 2(1 - V)yr2] }(VT n) dr (3.4.42)

and

C' = f {D[(Yll + VY22)Yl1 + (Y22 + VYll)Y22 + 2(1 - V)yr2]JrF
- 'phy2}(VTn) dr (3.4.43)

respectively. For r = rc u rs u rF , the complete design sensitivity formula
can be obtained by adding terms in Eqs. (3.4.41)-(3.4.43).

For an s-times repeated eigenvalue Cat 0 [43], the directional derivatives
C;(V) in the direction V are the eigenvalues of the s x s matrix .A with
elements

.4tij = fL {-D[(Y{l + VY~2)(VyiTV)11 + (Y~2 + vY{d(Vy
iTVh2

+ 2(1 - V)Y{2(VyiTV)12] + CphYWyTV)
~. . JT . • 'T

- D[(Yil + VYi2)(Vy V)ll + (Yi2 + VYil)(Vy) Vb

+ 2(1 - V)yi2(VyJTV)12] + Cphyi(VyJTV)} dO

+ L {D[(Y~l + VY~2)Y{1 + M2 + VyL)Y~2 + 2(1 - V)Y~2Y{2]

- CphyiyJ}(VTn) dr (3.4.44)
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Using the variational identity of Eq. (3.1.30) twice in Eq. (3.4.44),

r['T . a IT 'JuHij = - J
r

(Vy' V)NyJ + an(Vy V)MyJ dr

-L[(VyjTV)Nyi + :n(vyiTV)MlJ dr

+L{D[MI + VY~2)Y{1 + M2 + VY~I)Y~2 + 2(1 - V)Y~2Y{2]

- (phylyi}(VTn) dr (3.4.45)

As in the simple eigenvalue case, the result of Eq. (3.4.45) is valid for
boundary conditions given in Eqs. (3.1.26)-(3.1.28). To obtain A/j for each
case, these boundary conditions can be applied in Eq. (3.4.45).

3.5 DIFFERENTIABILITY
OF STATIC RESPONSE
AND EIGENVALUES WITH RESPECT
TO SHAPE

The purpose of this section is to characterize dependence of static response
and eigenvalues of the structures of Section 3.1 on their shapes. A transfor-
mation function is defined that uniquely determines the shape of a body.
Differential operator properties and transformation techniques of integral
calculus of Section 3.2 are employed to show that static response and
eigenvalues of the system depend in a continuous and differentiable way on
shape of the body. This section is more mathematically technical than others
in the text. The reader who is interested only in using the methods and results
of Sections 3.3 and 3.4 need not go through the details of this section. In
order to be mathematically complete, differentiability of the membrane
problem will be considered in detail. For differentiability in other problems
of Section 3.1, the reader is referred to Rousselet and Haug [70].

Another important result given in this section considers the variation of a
domain functional. If the gradient of the domain functional exists, only the
normal component (VTn) of the velocity field V is of importance. This result
was used in Section 3.2.2 to find the derivatives of several domain functionals.

3.5.1 Characterization of Shape

It is essential to first state precisely how structural operators are related to
the domain n, which amounts to defining the dependence of the coefficients
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of the differential operators on the geometric domain Q. The following
hypotheses are made:

HYPOTHESIS HI:
1. The physical domain Q is a bounded open set of R".
2. For every X E r, there exists a system of local coordinates

(Xl> Xz, ... , xn) and a cube Q = (-a, a)n == (-a, a) x ... x (-a, a) (open
neighborhood of x), as shown in Fig. 3.5.1 for n = 2, such that points in
Q n Q satisfy x, ::; <IJ(XI' ... , Xn- d for (Xl>"" Xn- d E (-a, a)n- \ where
<IJ E Cl[(_a,a)n-l] for second-order problems and <IJ E CZ[(_a,a)n-l] for
fourth-order problems.

HYPOTHESIS Hz All coefficients involved in the operators defined in
Section 3.1 are assumed to be CI(Q). Moreover, it is assumed that there exists
hmin > 0 such that h(x) ~ hmin > 0 in Q.

A difficulty in defining shape as a design variable is that shapes of
geometrical domains are not usually considered as a vector space, so that the
question arises, How can differentiability with respect to the shape of Q be
defined? Courant and Hilbert [71] proved that the eigenvalues of the
Laplace operator are continuous when two open sets Q and QF of R"
are considered as neighbors, if and only if there exists a C l function F
such that Q F = (1 + F)(Q). This point of view has been systemized by
Micheletti [72] for regular domains under the so-called Courant topology.
In fact, it turns out that this is sufficient to define derivatives relative to F
[42] (see also Murat and Simon [73] for a detailed treatment of the subject).

A domain is considered in Section 3.5.2 that satisfies hypothesis HI for
every F E CI(Q) or CZ(Q), as appropriate, such that IIFII ::; C < 1 and 1 + F
is a homeomorphism of a neighborhood of QF = (I + FHQ). Let aF and bF
(respectively, AF and BF) be the bilinear forms (respectively, the Friedrichs
extension of the differential operators) associated with QF' Then aF and bF
satisfy Hz. It will be proved that the forms aF and bF are Frechet

a

Fig. 3.5.1 Boundary regularity.
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differentiable in the sense of relatively bounded perturbations. The differen-
tiability of static response and eigenvalues will then be derived through the
use of results proved in Sections 2.4 and 2.5. Once Frechet differentiability is
shown, it is easier to use Gateaux derivatives (material derivatives) of Section
3.2 to find derivative formulas.

3.5.2 Reduction of Variational Equations
to Fixed Domains

In order to bring the perturbation methods and results of Sections 2.4 and
2.5 to bear on the problem of domain variation, it is most convenient to
transform variational equations for the problem on the perturbed domain OF
to variational equations on the domain O. The linear and bilinear forms that
result will depend on the transformation function F that defines the
perturbed domain OF' It will then be possible in the following section to
apply results of Sections 2.4 and 2.5 to demonstrate existence of Frechet
derivatives of the forms with respect to domain and to calculate the
derivative.

The modified domain OF is prescribed by the transformation °-+ OF,
given by x -+ x + F(x); or x -+ 4>(x), where 4>(x) = x + F(x). A function f
defined on OFcan thus be written as a function on O,J(x) = f(x + F(x)); or,
J = f 0 4> and f = J 0 4> -1,since 4> is a homeomorphism from °to OF' Since
static response and eigenvalues of a system defined on the perturbed domain
OFare solutions of variational equations, it is first necessary to transform the
variational equation to the fixed domain O. In general, linear and bilinear
forms IF(Z), aF(z, z), and dF(y, ji) that are defined on ZF must be transformed.
These transformations will be carried out here for the membrane problem
only (for other problems, the reader is referred to Rousselet and Haug [70]).

Static and eigenvalue behavior of a membrane OF are governed by the
variational equations (3.1.14) and (3.1.15), defined on OF' The following
lemma provides a redefinition of these linear and bilinear forms and the
variational equations on O.

LEMMA 3.5.1 Consider the bilinear and linear forms with domains
Z = HMO), given by

aF(z, z) = f J{ (D4> - TVZ, D4> - TVZ) ID4>1 dO

JF(y, ji) = J{ hyjilD4>1 su

IF(z) = J{ Jz ID4>1 dO

(3.5.2)

(3.5.3)
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where 4>(x) = x + F(x) and its inverse are assumed to be C1(Q), D4> is the
Jacobian matrix of 4>, ID4>1 = Idet(D4»I, and D4>-T = (D4>T)-l = (D4>-l)T
Then the solution zE Z of

for all i E Z, (3.5.4)

is such that z = Z 0 4> -1 is the static solution of the membrane equation on
OF' Furthermore, the real numbers ( = (OF) such that there exists ji # 0
satisfying

for all y E Z (3.5.5)

are the eigenvalues of the membrane over the domain OF, and Y = ji 0 4>-1
are the associated eigenfunctions.

PROOF Solutions of the static and eigenvalue problems on OF are given by
the variational equations

and

aF(y, y) = (dF(y,y),

Z E ZF for all i E ZF

forall y E ZF

(3.5.6)

(3.5.7)

(3.5.8)

Transforming from OF to ° and noting that Dxz = Dxz(Dx4> -1) and
Vxz = (Dx4»-TVxZ where x = 4>(x),

aF(z, i) = t f1F (Vz,Vi) dOF

= t f1 (D4> - TVZ, D4> - TVZ) ID4>1 dO = iiF(z, z)

IF(i) = f1F f i dOF = f1 ]zID4>1 dO = IF(z)

dF(y, y) = f1F hyy dOF = f1 hjiy!D4>1 dO = JF(ji, y)

(3.5.9)

(3.5.10)

Since 4> is a C1(Q) homeomorphism, there is a one-to-one correspondence
between functions in H 1(OF) and H 1(O), as in Section 3.2. Thus, by Eqs.
(3.5.6), (3.5.8), and (3.5.9),

for all Z E ZF

is the same as for all z E Z. Since Z E Z is arbitrary, it may be denoted as Z
and the first result of the lemma follows. The second result follows in the
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same way, using Eqs. (3.5.7), (3.5.8), and (3.5.10). Thus, the lemma is
proved.•

It should be noted that the change of variable holds not only if the
homeomorphism ¢ and its inverse are C1(n ); it is also valid providing ¢ and
its inverse are Lipschitzian (see lemma 3.2, chapter 2, of Necas [74J).

3.5.3 Differentiability of Bilinear Forms

In this section, differentiability (in the sense of bounded perturbations) of
the bilinear forms of Section 3.1 with respect to the shape variation function
F is proved. The development uses expressions for the bilinear forms on fixed
domains derived in Section 3.5.2, which explicitly involve the function F.
The development also uses expressions for the bilinear forms a~ " .)on fixed
domains n, considered as mappings from Z x Z and depending on F. The
bilinear form aF( · , .) and its derivatives depend on F, much as the bilinear
forms au( ' , .) of Chapter 2 depend on the design variable u. The objective
here is to analytically characterize dependence of aF( · , .) on F, as the
dependence of a.( " .) on u was characterized in Chapter 2.

In this section, z and z denote arbitrary functions in Z. There is no
connection between this z and the solution of the static problems of Section
3.1.

For the problem considered, a formal calculation is used to obtain the
desired derivative, much as was done for the static problem in Section 2.4
and for the eigenvalue problem in Section 2.5. Rigorous proofs ofthe validity
of these formulas are then given.

From Eq. (3.5.1), the bilinear form GF(z, z) of the membrane problem is
obtained explicitly in terms of ¢, where x = ¢(x) = x + F(x). The derivative
of GF(Z, Z}may be formally calculated, for some fixed z and i E Z, with respect
to F by expanding it, and the validity of the formula may then be proved.
The formal calculation is illustrated here in detail, to serve as a guide to a
procedure that can be used in other problems.

Since ¢(x) = x + F(x), D¢ = I + DF. The formula (1 + e)-1 =
1 - e + o(e) for small e is also valid in the algebra of matrices [see Eq.
(3.5.53)], so

(D¢)-1 = (I + DF)-1 = I - DF + o(IDFb)

where o(IDFb) means o(IDFb}/IDFb ---+ 0 as IDFb -+ 0 and

IDFI2 = L~l (Fj)2J
/2

(3.5.11)

(3.5.12)
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is the Euclidean norm of matrix DF. On RZ,

1

1 + F
l n Idet(l+DF)= Fi
l

I/Ff =1+divF+FlFf-FiFI

so

det(l + DF) = 1 + div F + o(IDFIz)

and for DF small enough,

ldet(l + DF)j = 1 + div F + o(!DFlz)

(3.5.13)

(3.5.14)

Applying these computations to Eq. (3.5.1) for aF(z, i) and expanding yields

aF(z, i) = f fl ([1 - DF + o(IDFIz)F Vz, [1 - DF + o(IDFlz)F Vi)

x (1 + div F + o(IDFIz)) dO

= f fl(Vz, Vi) dO + f fl (Vz, Vi) div F dO

- t fl ([DFT + DF]Vz, Vi) dO + fl o(IDFIz)dO

(3.5.15)

This formula can be written to first order as

(3.5.16)

where ao(', .) is aF(·, .) at F = 0 and

anAz, i) = f fl (Vz, Vi) div F dO - f fl ([DFT + DF]Vz, Vi) dO

(3.5.17)

Note that Eq. (3.5.17) can also be obtained by taking the material derivative
of the bilinear form in Eq. (3.1.14) and using Eqs. (3.2.37), (3.3.2), and (3.3.9),

[a(z, i)]n,F = anAz, i) + ao(i, i)

= f fl [(Vz)", Vi) + (Vz, (Vi))) dO + f fl (Vz, Vi) div F dO

= f fl [(Vi - DFVz, Vi) + (Vz, Vi - DFVi)] dO

+ t fl (Vz, Vi) div F dO (3.5.18)
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which gives the same result for an,~z, i) as in Eq. (3.5.17) because z= 0 by
Eq. (3.3.5). As noted in Section 3.5.1, it is easier to use the material derivative
formula than the expansion method, as in Eq. (3.5.15). Thus, an,F(Z, i) is the
derivative of a~z, i) with respect to F, if the above calculations are accurate.

These computations are formal, so it must be shown that the foregoing
pointwise developments are valid in the appropriate function space norms.
This is a technical task that is outlined in the following, with detailed proofs
given in Section 3.5.6.

Let IIFII be the norm in C1(n),

IIFII = sup(IF(X)12 + IDF(x)b) (3.5.19)
xen

where IF(x)b denotes the Euclidean norm of F(x) and IDF(x)12 is the matrix
norm given in Eq. (3.5.12).

LEMMA 3.5.2 For the membrane, let

an,F(Z, i) = t fL (Vz,Vi) div F dO. - t fL ([DFT + DF]Vz, Vi) dO.

(3.5.20)

Then, an,F is linear in F, and for IIFII small enough, the form

a~,~z, z) = aF(z, z) - ao(z, z) - an,~z, z)

satisfies the inequality

(3.5.21)

where C2(F) 2': 0 and c2(F) = o(IIFII). Thus, an,F(Z, z) is the Frechet derivative
of aF with respect to F at F = O. Moreover,

Ian ~z, z)1 ~ Cl IIzll~ IIFII

where C1 2': O.

PROOF By definition and after some manipulation,

a~,~z, z) == aF(z, z) - ao(z, z) - an,F(Z, z)

(3.5.22)

= t fL ((Dqy-TVz, Dqy-T Vz) - (Vz, Vz) + 2(DFTVz,Vz» dO.

+ t fL (Vz,Vz)[IDqyl - 1 - div F] dO.

+ t fL ((Dqy-TVz,Dqy-TVz) - (Vz,Vz»[IDqyl- 1] dO.
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which may also be written as

an.r-<z, z) = f fin ((D¢-T - I + DP) Vz, D¢-T Vz) dO

+ f fin (Vz, (D¢-T - I + DFT
) Vz) dO

+ f fin (DFT Vz, (l - D¢-T) Vz) dO

+ f fin (Vz, Vz)[ID¢1 - 1 - div F] dO

+ f fin ((D¢ - T - l) Vz, D¢ - TVz)[ID¢1 - 1] dO

+ f fin (Vz, (D¢ - T - l) Vz)[ID¢1 - 1] dO

Taking absolute values and bounds yields

lan.F(Z, z)1 ~ f sUr>ID¢ -T(¢(X)) - I + DP(x)lzID¢-T(¢(x))lz II IVzl~ dO
xen n

+ f sUr>ID¢ -1 T(¢(X)) - I + DFT(x)lz II IVzl~ dO
xen n

+ f sUr> IDFT(x)1z II - D¢-T(¢(x))lz II IVzl~ dO
xen n

+ f sUr>IID¢(x)1 - 1 - div F(x)1 II IVzl~ dO
xen n

+ fsupID¢-T(¢(X)) -llzID¢-T(¢(x))jzIID¢(x)l- 11
xen

x fL'VZ'~ dO

+ fsur>ID¢-T(¢(X)) - 1IzIID¢(x)1 - 11 II IVzl~ dO
xen n

(3.5.23)

Equation (3.5.23)yields Eq. (3.5.21) if it is shown that every term involving a
supremum over x E n is of order o(llFll). These results are shown in Section
3.5.6, hence completing the proof.•
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For other problems of Section 3.1, differentiability of the bilinear forms
with respect to the shape variation function (F E C1(Q) for second-order
problems, and F E C2(Q) for fourth-order problems) was proved by
Rousselet and Haug [70]. With the result of Lemma 3.5.2 and similar results
of Rousselet and Haug [70], the following result can be stated:

THEOREM 3.5.1 All the forms of the examples studied in Section 3.1 are
Frechet differentiable in the sense of relatively bounded perturbations. That
is,

lan.~z, z)1 ::;; c111FIlao(z, z) (3.5.24)

lan.F(Z, z)1 ::;; c2(F)ao(z, z) (3.5.25)

where Cl ~ 0, ciF) ~ 0, and c2(F) = o(llFll), with IIFII denoting norm either
in C1(Q) or in C2(Q).

For proof, it is necessary only to note that these inequalities follow from
the inequalities obtained for each example and then to use the strong
ellipticity of the form ao(z, z). •

For the eigenvalue problem, applying the same expansion as in Eq. (3.5.15)
to the bilinear form of the membrane, the formal derivative of JF(y, y) may be
calculated. The derivative may be found by taking the material derivative
of the bilinear form. The next lemma proves differentiability of the bilinear
form di" '),

LEMMA3.5.3 For the membrane, let

d~,F(Y' y) = fin (Vh(x),F(x))yy dO. + fin hyydiv F dO.

Then, d~.F(Y' y) is linear in F, and for IIFII small enough, the form

dn,F(Y' y) = dF(y, y) - do(Y, y) - d~.F(Y' y)

satisfies the inequality

(3.5.26)

(3.5.27)

where c4(F) = o(11F11) and c4(F) ~ 0. Moreover, there is a C3 ~ °such that

Id~.F(Y' y)1 s c31IYII12(Q) IIFII (3.5.28)

PROOF Details of the proof are omitted, since it is much simpler than the
proof of Lemma 3.5.2, since only bounded operators are involved. Note,
however, that the regularity assumptions on h are used in this lemma, as was
pointed out at the beginning of Section 3.5.1.
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The bound on dn,F is straightforward, since

dn,F(Y' y) = f{ h(x)y2ID4>1 dO. - f{h(x)y2 dO.

-f{(Vh(x), F(x))y2 dO. - f{hy2div F dO.

may be written

dn,F(y, y) = f{(h(x) - h(x) - (Vh(x), F(x)))y2ID4>1 dO.

+ f{ h(X)y2(ID4>1 - 1 - div F) dO.

+f{(Vh(x), F(x))/(ID4>1 - 1)dO.

The second term on the right is of the same kind as one of the terms
encountered in the proof of Lemma 3.5.2. With this observation, the detailed
proof is written in Section 3.5.6 (Eqs. 3.5.59 and 3.5.60).•

Note that the bilinear forms a~., .) for the beam and plate are similar to
the bilinear form for the membrane, so Lemma 3.5.3 may be utilized for
proofs of their differentiability.

3.5.4 Differentiability of Static Response

In this section, the shape derivatives of bilinear forms found in Section
3.5.3 are used to extend the operator derivative formulas found in Section 2.4
to derivatives with respect to shape.

As in Chapter 2, define the operator AF by

(3.5.29)

for all Z E Z and for all Z E D(AF), where the domain D(AF) of the operator AF
is the subspace of L2(o.) such that Z -+ ii~z, z) is continuous for Z E Z, with z
considered as an element of L2(o.) [75]. Then, differentiability of Ai 1 with
respect to F, as a continuous operator on L2(o.), follows from Theorem 2.4.2
of Section 2.4.2.

For the membrane problem, as noted from Eq. (3.5.3), the right side is of
the formlID4>I. In fact for the problems treated in Section 3.1, the right side is
of the formlID4>I. Thus, the static response is ZF = Ai IlID4>I, and differenti-
ability of static response follows from differentiability oflID4>I, as an element
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of L2(n), with respect to F E C1(O) for second-order problems and F E C2(O)
for fourth-order problems. Showing Frechet differentiability of F -+ JID4>1
amounts to proving that

[ff(} (JID4>I- I - (VI, F) - I div F)2 dnT/2
= o(IIFII) (3.5.30)

with IIFII denoting norm either in C1(O) or in C2(O). Equation (3.5.30) is
implied by

sup IJID4>1 - I - (VI, F) - I div FI = o(IIFII)
xeQ

which in turn is implied by

sup IU - I - (VI, F» ID4>11 + sup II(ID4>1 - 1 - div F)I
xeO xefl

+ sup I(VI, F)(ID4>1 - 1)1 = o(llFll) (3.5.31)
xe{}

The first term in Eq. (3.5.31) has the proper estimate by using Eq. (3.5.59) of
Section 3.5.6 and the second term by using Eq. (3.5.58) of Section 3.5.6.
Equation (3.5.58) also implies that .

sup IID4>1 - 11 = C IIFII
XECl

(3.5.32)

which yields the required estimate of the third term of Eq. (3.5.31).
The derivative of static response can now be written as in Theorem 2.4.3

for the distributed design case. Denote by C1(n , F) and C2(n , F) L2(n )-
bounded operators such that

and

arv(Z, z) = (C2(n, F)G(}z,G(}z)

As in the proof of Theorem 2.4.2, the Frechet derivative of Ail is

F -+ -Gil. lC1(n , F)Gil. 1

The derivative of static response is then given by

Z(},F = -Gil. lC1(n,no; 11 + Ail 1[(VI, F) + I div F]

(3.5.33)

(3.5.34)

(3.5.35)

(3.5.36)

As in the distributed design case, the importance of this result is theoretical
at this point, since the explicit forms of G(}, Gil. 1, and C1(n , F) are
not known and in fact may not be readily computable. Computation of
explicit design derivatives of functionals involved in a variety of structural
problems is carried out using the adjoint variable method in Section 3.3.2.
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An alternative derivation of the design sensitivity equations of Section
3.3.2 may also be given. Consider a typical integral functional

l/t = f1 g(z) dO (3.5.37)

The total differential of l/t is

bFl/t = fI gzzn,FdO + f1 g div F dO (3.5.38)

Using the L2(O) scalar product and Eq. (3.5.36), Eq. (3.5.38) becomes

bFl/t = -(~~,GnlCl(Q,F)GnlI)L2

+ (~~' An 1[(VI. F) + I div FJ) t» + (g,div F)u

Using self-adjointness of Go and the fact that AnI = Gn1Gn1
, direct

manipulation yields

(
_log -1 )

bFl/t = - GnAn oz' C1(O, F)GnAn 'f t»

+ (An 1 ~~' [(VI, F) + I div F])L2 + (g, div F)L2

(
_log )

= - GnAn oz,C1(O,F)Gnz L2

+ (An 1 ~~' [(VI. F) + I div FJ) t» + (g, div F)u (3.5.39)

Defining An 1(ogjoz) = A, or equivalently A, as the solution of the operator
equation

og
AnA =-

oz

and using Eq. (3.5.33), Eq. (3.5.39) may be rewritten as

bFl/t = -a~.F(z, A) + (A, [(VI. F) + I div FJ)u + (g, div F)u

From Eqs. (3.5.3) and (3.5.30),

In,~z) = fI [(VI, F) + I div FJz dO

(3.5.40)

(3.5.41)

(3.5.42)
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Integrating the equality

[(Vj, F) + f div F]z = div(jzF) - j(Vz, F)

Eq. (3.5.42) becomes, using the divergence theorem [53],

In,F(z) = 1jz(F, n) dr - f1 j(VZ, F) dO. (3.5.44)

which is the same as Eq. (3.3.7) if F = V. Using Eq. (3.5.42), Eq. (3.5.41)
becomes

c5F t/! = In.F(2) - a~.F(z, 2) + f1 g div F dO.

Integrating the equality

(3.5.45)

(3.5.46)div(gF) = gz(Vz, F) + g div F

Eq. (3.5.45) becomes, using the divergence theorem [53],

15Ft/! = In.F(2) - a~.F(z, 2) - J.I g.(Vz,F) dO. + f g(F, n) dr
n j, (3.5.47)

Equation (3.5.47) is the same as the result obtained in Eq. (3.3.17) if F = V
and g depend on z only.

3.5.5 Differentiability of Eigenvalues

In this section the derivative formulas of Section 2.5 are extended to
derivatives of eigenvalues with respect to shape, using the shape derivatives
of bilinear forms found in Section 3.5.3.

Define, as in Section 3.5.4, the operator BF by

JF(y,y) = (BFY' Y)L2(rl) (3.5.48)

for all y E Z and all YE D(AF) . As in Section 2.5, F -+ Ai 1BF is an L2(0.)-

bounded operator that is Frechet differentiable with respect to F. Further,
the eigenvalues of Ai 1BF are the inverse of ((o.F) of Eq. (3.5.5). Thus, the
continuity and differentiability follow from Section 2.5, as follows:

THEOREM 3.5.2 Let ((0.) be an m-fold eigenvalue of Eq. (3.5.5) at F = 0.
Then, in any neighborhood W of ((0.) that contains no other eigenvalue and
for IIFII small enough, there are exactly m eigenvalues (l(o.F),"·' (m(o.F)
(counted with their multiplicity) in W. If m = 1, then ((o.F) is Frechet
differentiable at F = 0, and

(3.5.49)
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where y and ((0) are the eigenfunction and associated eigenvalue with
do(Y, y) = 1. If m > 1, then (i(OF) are directionally differentiable at F = 0,
and the directional derivatives are the m eigenvalues of the matrix vi{ with
general term

i,j = 1,2, ... ,m (3.5.50)

where {yi}i= 1.2•...• m is a basis of the eigenspace associated with the eigenvalue
((0) and dO(yi, i)·= Jij (i,j = 1,2, ... , m) where Jij is one if i = j and
otherwise is zero.

3.5.6 Proof of Lemma 3.5.2

It is shown in this section that the pointwise developments carried out in
Lemma 3.5.2 are in fact uniform.

The expression

(3.5.51)

is first considered. Recall that

(3.5.52)

It is a standard result of the algebra of linear operators or matrices (section
1.4.4 of Kato [13]) that if w E X, where X is a normed algebra of linear
operators, then

11(1 + W)-l - I + wllx s 211wliL Ilwll x < t (3.5.53)

Setting w = DFT(x), then Eq. (3.5.53) yields a bound for Eq. (3.5.51) using
Eq. (3.5.52),

(3.5.54)

(3.5.55)

where 1-12 denotes the matrix norm associated with the usual Euclidean norm
for vectors. Taking supremum over x E n of both sides yields the required
bound for this term.

The same kind of bound is now to be shown for

jD4>(x)1 - 1 - div F(x)

The following result is first established: If w is a linear mapping from B" into
R", then

Idet(I + w) - 1 - tr w] s kt2 (~}wl~
where tr w is the trace of wand mis the binomial coefficient. After choice of a
basis, denoting by w the matrix formed from the column vectors Wi in this
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basis, and e, = (0 ... 1 ... O)T, the 1 being in the ith position,

det(I + w) = dette, + WI e2 + W2 '" e, + Wi ... en + wn)

Using the multilinear property of the determinant, this may be expanded as

det(I + w) = dette, ... en) + det(wl e2 ..• en) + ...
+ det(el wn) + dettw, W2 e3 ... en) + ...
+ dettw, wn) (3.5.56)

To get the bound of Eq. (3.5.55), note that there are (k) terms in Eq. (3.5.56),
involving k factors Wi (and n - k factors e). Since IWib :5 Iwb this yields Eq.
(3.5.55).

Equation (3.5.55) yields also

Idet(I + w) - 1 - tr wi :5 Iwl~ kt (~ }WI~
and for IwI2 :5 1,

Idet(I + w) - 1 - tr w] :5 Iwl~ ±(n) = Iwl~(2n - n- 1)
k=2 k

(3.5.57)

Now set w = DF(x) and note that tr DF(x) = div F(x), so Eq. (3.5.57)
yields

Ildet(I + DF(x))l - 1 - div F(x)1 :5 C1DF(x)l~ (3.5.58)

For DF small enough, Idet(I + DF(x))1 = det(I + DF(x»). Taking the sup-
remum of both sides of Eqs. (3.5.51), (3.5.54), and (3.5.58), for x E n, yields
the desired bounds in Eq. (3.5.23). Equations (3.5.54) and (3.5.58) are the two
uniform bounds needed to complete the proof of Lemma 3.5.2.

Two results needed for the proof of Lemma 3.5.3 are now to be shown.
First, if h E C1(Rn),

In fact,

so that

sup Ih(x + F(x» - h(x) - (Vh(x),F(x»1 = o(llFll)
XErl

h(x + F(x» - h(x) = f (Vh(x + tF(x»), F(x» dt

sup Ih(x + F(x» - h(x) - (Vh(x), F(x»1
XEO

:5 sup sup IVh(x + tF(x» - Vh(x)IIIFIl
IE[O.l]XEO

(3.5.59)
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(3.5.60)

If IIFII ~ 1, x + tF(x) belongs, for almost all x E n and every t E [0, 1], to a
compact neighborhood of n. On this compact neighborhood, Vh, which is
continuous, is uniformly continuous. Therefore for every s > 0, there exists
a E [0,1] such that if IIFII ~ a. Then,

sup sup IVh(x + tf(x)) - Vh(x)1 ~ s
Ie [0, 1) x e 0

which verifies Eq. (3.5.59). The second estimate needed in the proof of
Lemma 3.5.3 is more straightforward,

IIf (Vh(x), F(X))y2(ID</>1 - 1) - = o(IIFID

Since Vh is continuous,

sup I(Vh(x), F(x))1 s sup IVh(x)111F11
xeO xeO

From Eq. (3.5.58), it follows that SUPXEO IID</>(x)1 - 11 ~ CIIFII. Equation
(3.5.60) is easily deduced from these two estimates.

3.5.7 Derivatives of Domain Functionals

An important result to be given in this section, without proof, is that when
the variation of a domain functional is considered, if the gradient of the
domain functional exists, only the normal component (yTn) of the velocity
field Y has any influence. (The reader who is interested in a detailed proof is
referred to Zolesio [52].)

Let t/J be a functional defined for any regular domain n. The material
upper semiderivative of t/J at n, in the direction of the velocity field V, is the
real number (finite or infinite) given by

d- .t, I' t/J(r) - t/J(O)
v v = rm sup.-0 r

(3.5.61)

If the limit exists and is finite in Eq. (3.5.61), it defines the material
semiderivative of t/J(r) at n, in the direction of V, and writes it as dv t/J.

Consider now the case in which the mapping Y -+ dv t/J is linear and
continuous. Then this mapping defines a vector distribution G which is the
gradient of t/J at n. That is,

(3.5.62)

where fifik(U, R") is the vector space of k-times continuously differentiable
functions with compact support, qk(U, R"Y is the dual space of qk(U, R"),and
<" .>denotes the duality pairing.
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For any test function V belonging !Jfik(U, R"), V can be decomposed on the
boundary r as

V = v,. + V. (3.5.63)

where v,. = (VTn)n is the normal component of the velocity field V and
V. = V - v,. is tangent to the boundary. Hence, r is the integral surface [54]
(or curve) for that field v., and r.(V.) = r for all r. Thus, nt(v.) has the same
boundary for all r and <G,v.> = 0 and

dvt/J = <G,V) = <G,(VTn)n) (3.5.64)

for any V. Using these results, the following theorem was proved by
?:olesio [52].

THEOREM 3.5.3 Suppose t/J has a gradient at any domain n of regularity
Ck and let n be a cr: l-regular domain. Then there exists a scalar distribution
gn on the manifold T, of order less than k, such that

dvt/J = Lgn(VTn) dr (3.5.65)

holds for any field belonging to Ck(U,R"), where the integral on r in Eq.
(3.6.65) is, by extension, the bilinear duality form on r.



4
Design Sensitivity Analysis
of Built-Up Structures

The treatment of design sensitivity analysis of distributed-parameter
structures in Chapters 2 and 3 is limited to single structural components.
This restriction is common in the distributed-parameter structural optimi-
zation literature [76] but needs to be relaxed when modern complex
structures are considered. Virtually all aircraft, vehicles, machines, and other
mechanical structures are in fact made up of combinations of a variety of
interacting structural components. Combinations of truss, beam, plate, and
solid elastic structural components make up most real engineering struc-
tures. Such built-up structures may be considered to be composed of a
complex of structural components, each of which has mathematical proper-
ties considered in Chapters 2 and 3. The purpose of this chapter is to provide
a summary of the current state of the art of design sensitivity analysis and
optimization of built-up structures, a field that is still developing.

It is shown in Chapter 2, that in comparison with the differential equation
characterization of structural deformation, a variational formulation is more
practical for design sensitivity analysis. Furthermore, the variational form-
ulation obtained mathematically in Chapter 2 can be rigorously related to
a virtual work or energy principle in mechanics. This result allows direct
extension of the energy ideas employed in Chapter 1 for structures described
by finite element methods to a distributed-parameter formulation of built-up
structures.

The approach taken in this chapter begins with an energy characterization
of structural performance, namely Hamilton's principle. Hamilton's principle
results in a unified variational formulation of the governing structural

296
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equations that is employed for design sensitivity analysis. Strong ellipticity
properties of energy bilinear forms have been proved for individual structural
components [35], yielding existence and uniqueness results for the associated
variational equations and forming the foundation for a rigorous proof of
differentiability of structural response with respect to design variables and
shape. Proofs of strong ellipticity for built-up structures are not generally
available in the literature, however. The approach taken in this chapter is
somewhat more formal than the treatments given in Chapters 2 and 3. Here,
it is presumed that strong ellipticity hypotheses are satisfied, and direct
variational analysis techniques are used for design sensitivity analysis of
built-up structures.

4.1 VARIATIONAL EQUATIONS
OF BUILT-UP STRUCTURES

To make the foregoing discussion more concrete, Hamilton's principle is
first employed to obtain a general variational formulation of structural
equations. Prototype problems involving truss, beam, plate, and plane elastic
structural components are then formulated to illustrate the use of the
variational method and to provide a foundation for subsequent design
sensitivity analysis.

4.1.1 Hamilton's Principle Formulation
for Built-Up Structures

Consider a general structure that is made up of a collection of structural
components. Each component, except trusses, occupues a domain ni with
boundary r i (i = 1,2, ... , r). These domains are interconnected by kine-
matic constraints at their boundaries; that is, structural components are
interfaced by joints that connect them to adjacent components and constrain
admissible displacement fields at the interfaces. Displacement fields in
structural components are said to be kinematically admissible if they satisfy
kinematic constraints at the joints. The definition of kinematic constraints at
an interface depends on the nature of the components that are connected by
the joint. The axial displacement of the end of a truss component, for
example, must be equal to the projection of the displacement of the point of
attachment in an adjacent component onto the axis of the truss component.
In the case of a beam component, kinematic boundary conditions at each end
may involve displacement, slope, and twist. In the case of plate components,
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kinematic interface conditions may likewise involve both displacement and
slope. In the case of an elastic component of general shape, kinematic
interface conditions involve displacement on the interface surface.

In a general setting, let z denote a composite vector of displacement
fields in the components making up the built-up structure; that is,
z == [Wi w2 ... wr q]T, where Wi E [Hrni(Qi)]l; represent displacements of
beam, plate, and elastic components and q E Rk represents displacements of
trusses. The space of kinematically admissible displacement fields is defined as
the set of displacement fields that satisfy homogeneous boundary and
interface conditions between components and the ground reference frame
and kinematic interface conditions between components. Symbolically, this
is

Z = {z E W: yz = 0 on r D and yiz = ylz on r iJ} (4.1.1)

where the product space W = Ili= 1 [Hrni(Qi)Ji x Rk is the space of displace-
ment fields that satisfy the required degree of smoothness, y is a boundary
operator (the trace operator [Appendix A.I]) that gives the projection of
structural displacements and perhaps their derivatives onto the exterior
boundary r-, and yi and yl are interface operators (also trace operators) that
project displacement fields and perhaps their derivatives from within com-
ponents i and j onto their common boundary r-.

In order to state Hamilton's principle [33, 77, 78] for built-up structures, it
is first necessary to define energy quantities that are associated with the
structure. First, let the strain energy of the built-up structure be denoted

1
U(z) == - au n(z, z)2 .

I[~ .. ]= 2: i~i aui.ni(W', Wi) + ab(q,q) (4.1.2)

where !aui.Oi is the strain energy of component i and !abis the strain energy of
truss components. The design variable is u = [u i u2 ••• ur b]T, where ui is
the design variable of component i, which may consist of design functions
and parameters introduced in Chapter 2, and b is the design parameter vector
of the trusses.

The dependence of the strain energy quadratic form on design u and shape
Q of the built-up structure is indicated. It is presumed that the quadratic
strain energy in Eq. (4.1.2) is defined for all displacements in the space Z of
kinematically admissible displacements. The strain energy quadratic form is
defined as the sum of strain energies of components that make up the built-
up structure, each involving a matrix or integral quadratic form in its
displacement field.
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Next, define the kinetic energy of the built-up structure as
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(4.1.3)

T(~~) == ~du,nG~, ~~)

= ~[t/ui,n{dd~i, dd~i) + db(~~' ~~)J
where !dui,ni is the kinetic energy of component i and !dbis the kinetic energy
of the trusses. Here, dzjdt denotes time derivative of the displacement field z,
and the kinetic energy quadratic form depends on the design variable and
shape of the structure. As in the case of strain energy, kinetic energy is
obtained by summing energies of each of the structural components, each
involving its own matrix quadratic form or integral over the component
domain Qi. It is presumed that the kinetic energy in Eq. (4.1.3) is well defined
for all kinematically admissible displacement fields.

Finally, let the virtual work of all externally applied forces be defined as

r

L(z) == lu,dz) = L lui,ni(w i
) + fb(ij)

i= 1

(4.1.4)

(4.1.5)

(4.1.6)

where lUi,n' is the virtual work of the applied forces that act on component i
and fb is the virtual work of applied forces that act on trusses, with time held
constant, in undergoing a small virtual displacement z that satisfies the
kinematic admissibility conditions (i.e., for zE Z). The virtual work of the
externally applied forces that act on a built-up structure is obtained by
summing the virtual work of external forces applied to each of the structural
components. This virtual work functional is linear in the virtual displace-
ment i,

Since the displacement of a structural system will in general be time
dependent, each of the functionals defined in Eqs. (4.1.2)-(4.1.4) is evaluated
at a particular time t. In anticipation of employing Hamilton's principle, it is
helpful to define the first variation of the strain and kinetic-energy quadratic
forms of Eqs. (4.1.2) and (4.1.3). For any kinematically admissible virtual
displacement i, these variations or differentials (Appendix A.3) are defined as

- d IU == -d U(z + rz) = au.n(z, z)r <=0
T== :, TG~ + r~~)I<=o = du,n(~~, ~~)

where the symmetric strain and kinetic-energy bilinear forms on the right
side of Eqs. (4.1.5) and (4.1.6) are obtained by calculating the first variation of
the strain and kinetic-energy quadratic forms of Eqs. (4.1.2) and (4.1.3).
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With this notation, a general form of Hamilton's principle can be stated
that is suitable for design sensitivity analysis of built-up structures.
Following the classical literature [33, 77, 78J, the variational form of
Hamilton's principle requires that

itt ftt
(U - T)dt = Ldt

to to

(4.1.7)

for all times to and t 1 and for all kinematically admissible virtual displace-
ments zthat satisfy the additional conditions

(4.1.8)

(4.1.9)

In terms of the virtual work linear form of Eq. (4.1.4) and the strain and
kinetic-energy bilinear forms of Eqs. (4.1.5) and (4.1.6), Eq. (4.1.7) may be
written as

II {au.n(z, z) - du,n(~;, ~:)} dt = II lu,n(z) dt

for all kinematically admissible virtual displacements z that satisfy Eq.
(4.1.8).

This general formulation of Hamilton's principle provides the variational
equations of structural dynamics, which can be used to extend the theory
presented in Section 2.6 for transient dynamic design sensitivity analysis of
structures. This extension, however, will not be presented here. The foregoing
formulation directly specializes to the cases of static response and natural
vibration of the built-up structure, Using the theorem of minimum total
potential energy, it is similarly possible to extend the variational formulation
for buckling of a built-up structure. This topic, however, will not be pursued
here.

4.1.2 Principle of Virtual Work
for Built-Up Structures

Consider now the case of static response of a structure to loads that do not
depend on time. In this case, time is suppressed completely from the problem,
and Hamilton's principle of Eq. (4.1.9) reduces to

au,n(z, z) = lu,n(z) for all z E Z (4.1.10)

which may be viewed simply as a statement of the principle of virtual work.
Note that this equation generalizes the variational formulation of boundary-
value problems treated in Chapter 2 for individual structural components.
Note also that if the load linear form on the right side of Eq. (4.1.10) is
continuous on the space Z and if the energy bilinear form on the left side of
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Eq. (4.1.10)is strongly elliptic on Z, then by the Lax-Milgram theorem [9],
Eq. (4.1.10) has a unique solution Z E Z.

4.1.3 Free Vibration of Built-Up Structures

Consider next the special case in which there are no externally applied
loads and in which one wishes to consider harmonic vibration of the built-up
structure. Harmonic motion of the built-up structure is defined as a
displacement field that can be written as the product of a time-independent
mode function yE Z and a harmonic function sin(wt + 0:); that is,

z(x, t) = y(x) sin(wt + 0:), Y E Z (4.1.11)

Before substituting this harmonic displacement field into Eq. (4.1.9), it is
helpful to transform Eq. (4.1.9) using integration by parts. Since the kinetic-
energy bilinear form is linear in its individual factors,

~[du,n(~;,i)J = du,n(~::,i) + du.n(~;, ~:) (4.1.12)

Integrating both sides of this equation from to to t 1, recalling that i must
satisfy Eq. (4.1.8),

o= du,n(~; , i)[ = LI {du.n(~:: ' i) + du.n(~; , ~:)} dt
(4.1.13)

Substituting for the second term in the integrand on the right side of Eq.
(4.1.13)into Eq. (4.1.9), with the load linear form equal to zero,

L' {au.n(z, i) + du,o(~;~, i)} dt = 0 for all i E Z (4.1.14)

Substituting z from Eq. (4.1.11) and z in the form z = yf(t), where y is an
arbitrary time independent displacement field in Z and f(t) is an arbitrary
function of time that vanishes at to and t 10

for all y E Z

(4.1.15)

Since the integral in Eq. (4.1.15) is not zero for all functionsfvanishing at to
and t 10 its coefficient must be zero. Defining' = w 2

, leads to the variational
eigenvalue equation

au,o(y, y) = 'du.o(y, y) for all yE Z (4.1.16)

Note that this is the form of the variational eigenvalue problem considered at
length in Chapter 2 for individual structural components.
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4.1 .4 Prototype Problems

In order to illustrate the variational formulation of Sections 4.1.1-4.1.3,
four prototype problems are considered in this section, involving truss, beam,
plate, and elastic solid components.

BEAM-TRUSS

As a first example of a built-up structure, consider the elementary beam-
truss structure shown in Fig. 4.1.1. Applied loads and dimensions of the
structure are taken as given. The design variables are the cross-sectional area
h(x) of the beam and the constant cross-sectional areas b, (i = 1,2,3,4) of the
four truss members. The composite design variable is

u = [h(x) b1 b2 b3 b4 ] T E L00(0, [4) X R4

f(x)

~
I

b l b2

q2

Fig. 4.1.1 Beam-truss built-up structure.

The state variables for this built-up structure consist of the beam
displacement function w(x) and the four nodal displacement coordinates q1
to q4 of the trusses. In vector form, the state variable is

(4.1.17)

Kinematically admissible displacements are those for which lateral displace-
ments of the beam at its ends are equal to vertical displacements of the
trusses, and since axial deformation of the beam is presumed to be zero,
horizontal displacement of the truss nodes must be equal. The set Z of
kinematically admissible displacements is thus

Z = {z = [w, qT]T E H 2(0, [4) x R4: w(O) = q2, W(l4) = q4' q1 = q3}

(4.1.18)
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(4.1.20)

The strain energy of the system may be written as the sum of strain energy
of the beam and strain energies of the four truss members. In this case, the
total strain energy is

1 1 (4
2au, n(z, z) = 2J

o
ErxN(wxx)Z dx

1 E Z Z
+ 2(li + 1~)3/z [b t(q t1t - qz l3) + biqt1t + qz l3) ]

1 E z z+ 2(l~ + 1~)3/z[b3(q31z - q413) + biq3 1z + q413) ]

(4.1.19)

The virtual work of the externally applied loads is written simply as

(4
lu,n(z) = J

o
JW dx + pilt

The condition. of equilibrium of Eq. (4.1.10) requires that the total
variation of strain energy with respect to state must equal the virtual work of
the applied loads, for all virtual displacements that are consistent with
constraints. That is, it is required by Eq. (4.1.10) that

E
+ (li + 1~)3/z [b t(q t1t - qzI3)(ltilt - 13ilz)

+ biqt1t + qzI3)(ltilt + 13ilz)]

E
+ (l~ + lW/z [b3(q3 1z - q413)(lzil3 - 13(4)

+ b4(Q3 1z + q413)(lzil3 + 13(4)]

= f~4JW dx + pqt = 1•.n(z) for all Z E Z (4.1.21)

CONNECTING ROD

As a second example, consider the connecting rod shown in Fig. 4.1.2,
whose three-dimensional shape is to be determined to minimize weight,
subject to stress constraints. In Fig. 4.1.2, TF denotes firing load during the
combustion cycle, and T) denotes inertia load during the suction cycle of
the exhaust stroke. This three-dimensional structure is loaded in a plane, so
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Engine connecting rod.

(4.1.23)

it is reasonable to assume that out-of-plane stresses are zero (i.e.,
0"13 = 0"23 = 0"33 = 0). Thus, a three-dimensional elasticity problem that
describes displacement in the structure may be reduced to a plane problem,
under plane stress assumptions. However, the variable thickness h(x) of the
connecting rod (the out-of-plane dimension) plays the role of a design
variable, while the shape of the domain n of the plane cross section of the
connecting rod is also a design characteristic. Thus, coupled effects of
variations in shape and a conventional design variable are involved.

In the performance of an engine, the connecting rod is acted upon by a
large force at the piston pin and a corresponding reaction force at the
connecting rod bearing. The actual dynamics of the system is transient, but
for purposes of analysis a quasi-static model of structural displacement is
employed. In order to preclude rigid-body degrees of freedom of the system,
it is necessary to define kinematic boundary conditions that restrict two
components of displacement and rotation at a single point within the body,
the point at which these constraints are imposed being unimportant. Thus,
the space Z of kinematically admissible displacements is

Z = {[zt(x) Z2(X)]T E H 1(n ): Zl(X) = Z2(X) = Z2(X) = O}
(4.1.22)

where xand xare two distinct points in the domain nof the connecting rod
and the last condition is specified to preclude rotation.

The strain energy of this system is defined as

1 Ifi[~ .... ]-au.n(z, z) = "2 . 4-- O"IJ(z)e'J(z) h(x) an
2 n 1,)= 1
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Note that the strain energy depends on both the thickness design variable
h(x) and the shape Q of the connecting rod.

Using the traction acting on the loaded boundary r-, the virtual work
functional is

(4.1.24)

where T = [T 1 T 2y is the given compressive or tensile normal traction
force acting on the boundary r- u r-.

Taking the variation of strain energy in Eq. (4.1.23) the variational
equilibrium equations of Eq. (4.1.10)can be written as

for all Z E Z (4.1.25)

This example is presented as a built-up structure because it involves both
shape and design variables. As will be seen in the following, the variational
formulation of state equations allows direct extension of the methods of
Chapter 2 and 3 to this more general problem.

SIMPLE BOX

As a third example, consider the simple box shown in Fig. 4.1.3, in which
five plane elastic solids are welded together and attached to a wall. A
distributed line load is applied on top of the two side plates and on the end
plate. The design variables are the length bt , width b2, and height b3 of the

Fig.4.].3 Simple box.
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(4.1.26)

box. The five plane elastic solids remain plane and orthogonal to each other
for all design perturbations. Note that b = [bl b2 b3Y is a shape design
variable since variations of b cause domain variations for each plane elastic
solid. Only shape design variables are considered in this example.

Let Oi (i = 1, 2, 3, 4, 5) denote each plane elastic solid (as shown in Fig.
4.1.3) and rvdenote interface boundaries. The state variables for this built-
up structure consist of in-plane displacement of each plane elastic solid. For
adjacent plates, components of kinematically admissible displacements that
are tangent to the common interface boundary rv are equal at the interface.
Also, kinematically admissible displacements are equal to zero on F".

The strain energy of the built-up structure may be written as the sum of
strain energies ofthe plane elastic solids. In this case, the total strain energy is

1 1-0f.I ~ ...."2 au,n(z, z) = "2'~1 n' i,f:,.l aIJ(z)eIJ(z)dO

where the domains 0' of integration will indicate which variables are to be
used in the integrand.

The virtual work of the externally applied load on r- is written simply as

(4.1.27)

(4.1.28)

where T = [T 1 T 2] T is given traction force acting on the boundary r-.
Taking the variation of strain energy in Eq. (4.1.26) the variational

equilibrium equation of Eq. (4.1.10) can be written as

au,n(z, z) = JI ft, i,tIaij(z)eij(z) dO

= r ±Tizi ar
Jr l i= I

= lu,n(z) for all ZE Z

where Z is the space of kinematically admissible displacements. Even though
only shape design variables are considered in this example, the subscript u in
the energy bilinear form and load linear form will be kept, as in Eq. (4.1.28).

TRUSS-BEAM-PLATE

Consider next the truss-beam-plate built-up structure shown in Fig.
4.1.4. Thin flat plates are stiffened by m longitudinal and n transverse beams.
The entire structure is supported by four four-bar trusses. A distributed
vertical load is applied to the plates. The points supported by the trusses are
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Fig. 4.1.4 Truss-beam-plate built-up structure.

x

at the intersections of two crossing beams nearest to the free edges of the
structure. No external loads are applied to the truss and beam components,
and no external torques are applied to the beams. The plates and beams are
assumed to be welded together. No dissipation of energy between plate and
beam components is presumed to occur during bending and torsion.

The design variables for this built-up structure are the thickness tii(x, y) of
each plate component, the width Jii(x) and height fiij(x) of each longitudinal
beam component, the width dii(y) and the height hii(y) of each transverse
beam component, the cross-sectional areas A~ (i = 1 and n, j = 1 and m,
k = 1 to 4) of the four-bar truss members, the positions Xi (i = 1, ... , n) of
transverse beams, and the positions Yj U= 1, ... , m) of longitudinal beams.
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In vector form this is

u = [tii aii jjij aij ~lj A~ Xi yJT

E C1(Q1) x Cl(Q~) x Cl(Q~) x C1(Q1) x Cl(n~) x (R4)4 X R" x R"

The lengths of the trusses are fixed, but they may change their ground
positions, and the outside boundary of the entire structure is fixed; (i.e., only
the locations Xi and Yj of beams are shape variables).

Dimensions of the structure and the numbering and spacing of beams in
both directions are shown in Fig. 4.1.4. Coordinates of intersection points of
beams and plates are supposed to be in the midplanes of the plates and
neutral axes of the beams. The coordinates of intersection points are then

Xi=Xi-l+ai, i=I, ... ,n

Yj = Yj- 1 + bj, j = 1, ... , m

Xo = Yo = 0

X n+ 1 = Lx, Y m + l = Ly

(4.1.29)

(4.1.30)

(4.1.31)

(4.1.32)

where ai(b) is the distance from the (i - l)th to the ith transverse beam (from
the U - l)th to the jth longitudinal beam), and LALy ) is the dimension of
the entire structure in the x(y) direction.

Applied loads are

pi E C1(Q1), i = 1, ... , n + 1, j = 1, ... , m + 1 (4.1.33)

where Iii are defined as distributed loads on the plate and

i = 1, ... , n + 1, j = 1, ... , m + 1
(4.1.34)

i = 1, ... , n + 1, j = 1, ... , m
(4.1.35)

i = 1, ... , n, j = 2, ... , m + 1
(4.1.36)

are domains of plates, longitudinal beams, and transverse beams,
respectively.

The state variables for this built-up structure consist of the displacement
wii(x, y) of each plate component, the displacement vii(x) and the torsion
angle jjii(x) of each longitudinal beam component, the displacement vii(y) and
the torsion angle eii(y) of each transverse beam component, and 12 nodal
displacement coordinates q~ (i = 1 and n, j = 1 and m, and k = 1 to 3) of
truss members. In vector form, the state variable is thus

z == [wij vii jjii vii eii q~]T (4.1.37)
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To use the principle of virtual work of Eq. (4.1.10), the space Z of
kinematically admissible displacements must be defined. Hence kinematic
boundary and interface conditions must be identified.

Consider first the kinematic boundary conditions at the interfaces. At
interfaces between plate and beam components, lateral deflections of plate
and beam components are the same, That is, for longitudinal beams,

i = 1, ... , n + 1, j = 1, ... , m (4.1.38)

and for transverse beams,

i = 1, ... , n, j = 1, ... , m + 1 (4.1.39)

The normal slopes of plate components are the same as the torsion angles
of beams that are attached at the interfaces. For plates and longitudinal
beams,

(jij = wij = wi,i+ 1
Y Y , i = 1, ... , n + 1, j = 1, ... , m (4.1.40)

and for plates and transverse beams,

{jij = Wii = wi+ l,ix x , i = 1, ... , n, j = 1, ... , m + 1 (4.1.41)

The torsion angles of transverse beams and the axial slopes of longitudinal
beams must be the same at the intersections of beams; that is,

{jij = iii = fji+ 1,ix x , i = 1, ... ,n, j = 1, ... , m (4.1.42)

Similarly, the torsion angles of longitudinal beams and the axial slopes of
transverse beams must be the same at the intersections of beams; that is,

(jij = Bij = Bi,i + 1
y Y , i = 1, .... ,n, j = 1, ... , m (4.1.43)

It is assumed that each lateral displacement is evaluated at the middle
planes of the plates and at the neutral axes of the beams. Then the lateral
deflections of two crossing beams and trusses must be the same at the
intersection points; that is,

jjij = jji+ l'i}

vii == f;i,j+ 1 ,

jjij = Bij

i = 1, ... ,n, j = 1, ... , m

i = 1 and n, j = 1 and m

(4.1.44)

(4.1.45)

With the assumption that there are no in-plane (or axial) deformations in
the plates (or beams), the plate-beam structure that rests on the four four-bar
trusses must move as a rigid body in the plane of the plates. Referring to Fig.
4.1.5, relationships between horizontal displacements can be obtained.
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Fig. 4.1.5 Horizontal displacement of a truss-beam-plate built-up structure.

Defining the position of point 1 in Fig. 4.1.5 after deformation as [(x 1 + qf l),
(Yl + qi l)] and the rotation angle as OJ, the coordinates of points 2, 3, and 4
in Fig. 4.1.5 can be identified as follows:

For point 2,

Xl + qp + (x, - Xl) cos OJ = x, + q';l

Yl + qi l + (x, - Xl) sin OJ = Yl + q2l (4.1.46)

For point 3,
Xl + qp - (Ym - Yl) sin OJ = Xl + qlm

Yl + qp + (Ym - Yl) cos OJ = Ym + qi m (4.1.47)

For point 4,

Xl + qp + (x, - xt>cos OJ - (Ym - Yl) sin OJ = x, + q1m

Yl + qi l + (x, - Xl) sin OJ + (Ym - Yl) cos OJ = Ym + q2m

(4.1.48)

(4.1.49)

(4.1.50)

(4.1.51)

(4.1.52)

(4.1.53)

q2l = qi l + (x, - xl)(qfm - qP)/(Ym - Yl)

qi m = qp

q1m = 2qfl - qfm

q2m = qp + (x, - xl)(qfm - qP)/(Ym - Yl)

Assuming that the rotation angle OJ is small, sin OJ ~ OJ and cos OJ ~ 1.With
these approximations, Eqs. (4.1.46)-(4.1.48) yield the following geometric
relationships between horizontal displacements, in terms of the unknown
parameters qp, qi\ and qlm:

qll = qp
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Finally, the displacement of the bottom of each truss component is zero
since it is fastened to a rigid foundation.

The space Z of kinematically admissible displacement fields is defined as

Z = {z = [wii vii eii i/i (jii q~l q;:l q~m q;:mJT

E H 2(QY) x H 2(QY) x H 1(QY) x H2(Q~) x H1(Q~)

x R3 x R3 X R3 x R 3
: satisfying interface conditions

of Eqs. (4.1.38)-(4.1.45)} (4.1.54)

The strain energy of the entire system may be written as the sum of strain
energies of the plates, beams, and truss components. In this case, the total
strain energy is

1 n+1m+11f.I
-a n(Z z) = " ,,- fjii(t)[(wii + vwii )wii + (wii + vwii )wii
2 u." , Z: Z: 2 .. xx yy xx yy xx yy

i=l j=l flF

+ 2(1 - v)w~y W~yJ dQ1

+ nf I ! i .. [Elii(v~x)2 + GJii(e~)2J dQ2
i= 1 j= 1 2 fly

+ ±mf ! i .. [Ejii(V~y)2 + GJii({j~)2] dQ3
i=l j=l 2 flj'

+ ~q~ iTK(Al1 )q~ 1 + ~q~mT K(Alm)q~m

(4.1.55)

where fjii(t) = Etij3/12(1 - v2), E is Young's modulus, G is shear modulus, Jii
and Jii are torsion constants (different from polar moment of inertia for
circular cross sections) depending on the form and dimensions of the cross
sections of beams, Iii and tv are moments of intertia of beams, and K(AV) is
the stiffness matrix of trusses.

The virtual work of the externally applied loads for the entire system is

(4.1.56)

For the case of static response of the structure to load that does not depend
on time, the condition of equilibrium of Eq. (4.1.10) requires that the total
variation of the strain energy with respect to state must equal the virtual
work, of the applied loads for all virtual displacements that are consistent
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with constraints. That is, it is required by Eq. (4.1.10) that

n+lm+lf.I
a (z z) = "" fjlj(t)[(wij + vwij )wij + (wij + vwij )wiju.n , L. L. xx yy xx yy xx yy1:1 j:l n1

where

for all Z E Z (4.1.57)

Similarly, for the dynamics problem, the kinetic-energy bilinear form is

du.n(dZ, dZ) == nf mf f.'r t1jp(dWij) (dW
1j
) dn

1dt dt 1:1 j:l Jnl} dt dt

+ nf I i [paijiiij(diiJ)(d~ij) + rg (diJij) (dOij)] dn21:1j:1 n!j dt dt dt dt

n m+ 1 i [ A .. A. (dfjij)(dDij) ~{.(deij)(deij)]+ L L pd'Jhij - - + 1& - - dn3{:lj:1 n'j dt dt dt dt

+ (d~ilr M(Af1)(d~i1) + (d~imr M(Alm)(d~im)

+ (dq,// )TM(An1) (dij,// ) + (dq'km)T M(Anm)(dij'k
m)

dt I dt dt I dt
(4.1.58)

where p is the mass density, ~ and fg are the mass moments of inertia about
the centroidal axes of the beams, and M(AV) is the mass matrix of the trusses.

The variational eigenvalue problem may now be written, from Eq. (4.1.16),
as

for all y E Z (4:1.59)
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where
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y==[wij vij flii vij {jij qll qi: 1 qlm qi:m]T

Here y denotes the eigenfunctions, even though the notation for the
components of y is borrowed from static response z, to avoid introduction of
new variables.

4.2 STATIC DESIGN SENSITIVITY

The variational methods presented in Chapters 2 and 3 for design
sensitivity analysis with respect to conventional design variables and shape
may now be combined, using the general variational formulation presented
in Section 4.1, to obtain expressions for design sensitivity offunctionals with
respect to combined design variation. The adjoint variable method used in
Chapters 1-3 is seen to extend directly to built-up structures. As mentioned
in Section 3.3.7, the domain method of shape design sensitivity analysis is
used for built-up structures.

4.2.1 Calculation of First Variations

Consider the variational form of the built-up structure equation of Eq.
(4.1.1 0), repeated here as

au,n,(z, z) = lu,n(z) for all Z E Z (4.2.1)

The objective is to use this variational equation to obtain a relationship
between variations in conventional design variables and shape and the
resulting variation in the state of the system. To simplify notation, consider
the deformed domain due to a design velocity field V, written as

(4.2.2)

Defining the first variation in the same way as in Chapters 2 and 3, but
with variation of both shape and conventional design variables,

[au,n(z, z)]' == a~U<z, Z) + a~(z, z) + au,n(z, Z)

= [.i a~u;(wi, Wi) + a~b(q, q)J + .i a~t(wi, Wi)
t= I 1= I

r

+ L aut,nt(wi,Wi) + ab(q, q)
i= I

(4.2.3)

where Vi is the design velocity field on Oi and i is the total variation of z due
to conventional design and shape changes. Note that the first and second
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(4.2.6)

for all zeZ
(4.2.7)

terms on the right side of Eq. (4.2.3) for the trusses and distributed
components can be obtained from Chapters 1 and 2. This notation is chosen
to clearly display which variables are held fixed and which are varying in the
terms that arise. The third term on the right side ofEq. (4.2.3) is due to shape
variation. For shape design sensitivity of built-up structures, the domain
method will be used. For this method, a~i(wi, Wi), instead of Eq. (3.3.6),
must be written in terms of domain integrals. Using Eq. (3.2.37), instead of
Eq. (3.2.36), and proceeding as in the derivation ofEq. (3.3.6),

a~i(wi, wy = ffoi{ -clwi, VWiTVi) - C;(VWiTVi, Wi) + div [Ci(Wi, Wi)ViJ} dO

(4.2.4)

where c;(-,·) is the bilinear function in the integrand of the bilinear form
aui,Qi(' , .).

Similarly, the first variation of the load linear form is

[lu.n(.z)]' == l/;um + l~(z)

= Lt//;ui(W
i) + fdb(IJ)] + it/~i(Wi) (4.2.5)

where the first and second terms on the right side of Eq. (4.2.5) can be
obtained from Chapters 1 and 2. As in Eq. (4.2.3), the third term on the right
side of Eq. (4.2.5) is due to shape variation. For the domain method,

l~i(";i) = fLi [ _PT(\7WTVi) + div(fiTwiVi)] dO

where lUi.o.i(wi) = Hniji\Vi dO and j" = 0 have been used.
With this notation, and denoting the solution of Eq, (4.2.1) on the

deformed domain and varied design as z., evaluating the first variation of
both sides of Eq. (4.2.1) yields

au.o.(z, z) + a/;u(z, z) + a~(z, z) = l/;u(Z) + l~(z)

Note that this equation is valid for arbitrary virtual displacements that are
consistent with constraints, so if the energy bilinear form is indeed strongly
elliptic, Eq. (4.2.5) uniquely determines zonce bu and Vare specified. Explicit
solution of this equation for z as a function of bu and V, however, is not
generally possible

Consider a general functional that defines performance of a built-up
structure, of the form

(4.2.8)
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Taking the total variation of this functional and using Eqs. (2.2.9) and
(3.3.12) for each component of the structure,

t/J' = dd t/Ju+r~u.ur(Zr)1
't" r=O

it
1
fL, {g~,"/ + Jlg~W)VW} - g~,(VWiTVi) - J/VW)V(VWrVi)

.. ..} ah oh+ div{g'V') + g~j c5u' dQ + ob c5b + oqq (4.2.9)

where Wi = [w~ w~ ... Wi,]T. In order to take advantage of this result, the
term on the right side of Eq. (4.2.9) must be written explicitly in terms of c5u
and V. Since i cannot generally be determined explicitly from Eq. (4.2.7),
a technique such as the adjoint variable method must be used to achieve the
desired result.

4.2.2 The Adjoint Variable Method

In order to treat the term on the right side of Eq. (4.2.9), an adjoint
variational equation is defined by replacing i in the term on the right side of
Eq. (4.2.9) by a virtual displacement Aand equating the result to the energy
bilinear form evaluated at the adjoint variable A; that is,

for all AE Z

(4.2.10)

where A = [yl y2 ... y' p]T. Presuming that the energy bilinear form is
strongly elliptic and that the term on the right side is a continuous linear
form in A, this equation uniquely determines A.

Since i satisfies the kinematic admissibility conditions, Eq. (4.2.10) may be
evaluated at A= i and Eq. (4.2.7) at i = )., to obtain

(4.2.11)

Substituting this result into Eq. (4.2.9) and collecting terms associated with
variations in the conventional design variable and the design velocity field,
the total differential of the functional of Eq. (4.2.8) is written explicitly in
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terms of design function variation and shape variation as

11/ = ttl ft; g~; l5ui dQ + ~: f>b + 1auP·) - aau(z, A)}

+{t II .[_g~;(VWiTVi) - ±gLjV(VwrVi)
i~l Q' j~l

+ diV(giVi)] dQ + l~(A) - a~(z, A)} (4.2.12)

where Eqs. (4.2.3)-(4.2.6) and the results of Chapters 1 and 2 for the truss and
distributed components can be used to obtain explicit formulas.

Note that evaluation of this explicit design sensitivity formula requires a
solution of Eq. (4.2.10) for the adjoint variable A and evaluation of
functionals involving both state z and adjoint variable A. As will be seen in
examples, these calculations are direct and take full advantage of the finite
element method for solving both the state and adjoint equations of the built-
up structure.

4.2.3 Examples

BEAM-TRUSS

As a check on the foregoing calculations, consider a concentrated load f
applied at the midpoint of a beam, as shown in Fig. (4.2.1). Assume for the
moment that the cross-sectional area h is constant and can be only uniformly
varied. In this example, for simplicity, the shape (length 14 ) of the beam and
the lengths of the trusses are held fixed. Consider the displacement of the

Fig. 4.2.1 Beam-truss built-up structure with point load.
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midpoint of the beam, which can be expressed as
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(4.2.13)

where J is the Dirac-a distribution. From Eq. (4.1.21), the variational
equation of equilibrium is

E
+ (Ii + 1~)3/2[bl(qlll - q213)(llill -13(2)

+ b2(q111 + q213)(llql + 13il2)]

E
+ (l~ + 1~)3/2 [b3(q3/2 - q4/3)(/2il3 - 13(4)

+ b4(q312 + q413)(l2 ih + 13(14)]

- f~4! $(x - Ii)wdx = °

where

for all Z E Z (4.2.14)

Z = {[w qTJT E H 2(0, 14) X R4; w(O) = q2' W(l4) = q4' ql = q3}

Observe that the adjoint equation defined in Eq. (4.2.10) for the displacement
constraint of Eq. (4.2.13) has the same form as Eq. (4.2.14), where the force!
is replaced by a unit load. Therefore, only the state equation of Eq. (4.2.14)
needs to be solved.

After integrating by parts and applying the interface conditions, w(O) = qb
W(l4) = q4' and ql = q3 and the condition that the joints between the beam
and the trusses are hinged, wxx(O) = wxx(l4) = 0, ql' q2' q4' and w can be
calculated as

(4.2.15)

!x3 !l~x
12Ecxh2 + 16Ecxh2

(4.2.16)
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where (x - (14/2)3 is the singularity function, defined as

and

1= (Ii + IW/2

m = (I~ + lW/2

A = b l + b2

B = bl - b2

C = b, + b,

D = b3 - b4

(4.2.17)

In the same way, the adjoint equations can be solved to obtain
A = [y(x) Pl P2 P3 P4]T as

1
Pl = P3 = --x

2EI3

1
P2 = 2EAl~ {l + IlBX}

1
P4 = 2ECl~ {m + l2DX}

From Eq. (4.1.12) the design sensitivity can be calculated as

where

(4.2.18)

(4.2.19)

(4.2.20)



4.2. STATIC DESIGN SENSITIVITY

A = _L[ll(A + B) X + iJl
1 4Ell~ A 4

A = __f_[ll(C - D) X _ ~Jl
3 4Eml~ C C

A = __f_[ll(C - D) X _ ~Jl
4 4Eml~ C C

fll
As = - 24EryN
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(4.2.21)

(4.2.22)

The sensitivity coefficients of Eq. (4.2.21) can be verfied by differentiating
the constraint l/J directly, using Eq. (4.2.16), to obtain exact sensitivity
coefficients as

N
i

= al/J = ~(ql + q4)
cbi cbi 2

A~ = cl/J = ~(ql + q4)
abl cbl 2

A; = al/J = ~(ql + q4)
cb3 8b3 2

A~ = ~ = ~(ql + q4)
cb4 cb4 2

As = al/J = cw I = _ fll
ah 8h F/./2 24Erxh 3

In Eqs. (4.2.21) and (4.2.22), As = As. After substituting q2 and q4 from Eq.
(4.2.15) into Eq. (4.2.22) and manipulating,

A'i = Ai

A~ = A l

A; = A3

(4.2.23)

In this simple example, the sensitivity coefficients calculated from the adjoint
method are exactly the same as the true design sensitivities. Barring errors in
computation, this will be true in all applications (i.e., the adjoint variable
method gives exact design derivatives, not approximations).
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CONNECTING ROD

Consider the connecting rod of Section 4.1.4, with the variational equilib-
rium equation of Eq. (4.1.25) repeated here as

Qu,n(z, z) = II h(X)[. t uij(z)eij(z)] dO.
n I,J=l

(4.2.24)

for all z E Z

The boundary r is composed of four parts, r- through r-, as shown in Fig.
4.2.2. The boundary segments r- and r- are boundaries at which the rod
touches the crankshaft and piston pin, respectively. Their shapes are kept
unchanged, and I" is the boundary segment of the shank and neck regions of
the rod, whose shapes are to be determined through the design process. Since
the main interest in this example is on the shank and neck regions, the shape
of other boundary segments can be kept fixed, namely T". It is also assumed
that the traction T on r- u r 3 is not changed.

Fig.4.2.2 Variable domain 0' and boundary I".

In shape design of the rod, the thickness distribution, which varies
independently of the domain variation is to be determined. The thickness
distribution in the hatched segment 0.1 of the domain of Fig. 4.2.2 is to be
determined through the design process.

To satisfy the conditions that the distance between the piston pin and
crankshaft is constant, it is required that points in the rod remain fixed in the
Xl direction, hence points on r- are allowed to move only in the X 2 direction.
For design sensitivity analysis due to shape variation, the boundary method
of Chapter 3, instead of the domain method, is used here.
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Consider a stress functional of the form

!/J p = fL g(a(z))mp dO.
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(4.2.25)

where o.p is a finite element and mp is a characteristic function on D.p' In this
problem, several different forms of g(a(z)) are considered; that is,

or

for the inertia load and

or

a lg(a(z)) = - - 1
aUI

a2
g(a(z)) = 1 - -

aLI

al
g(a(z)) = - - 1

aUF

a2
g(a(z)) = 1 - -

aLF

(4.2.26)

(4.2.27)

(4.2.28)

for the firing load, where aLI and aUI denote lower and upper bounds on
principal stress for the inertia load, aLF and aUF correspond to those for the
firing load, and-rr I and a2 denote principle stresses that are given as

all + a22
(all + ( 22

) 2
al =

2 + + (a l 2f (4.2.30)
2

all + a22
(all + a

22Ya2 =
2

+ (a12)2 (4.2.31)
2

Employing the idea of calculating first variations in Section 4.2.1, the
variation of Eq. (4.2.25) can be obtained by adding contributions due to
variations of each design variable. Thus, from Eqs. (2.2.76), (3.3.114), and
(3.3.156),

!/J; = - II [. t aij(Z)eij(A)] bh dD. - f. [. ±aij(Z)sij(A)](VTn) .u:
n '.J~ I rt ,.j~ I

+ m, f. [g(a(z)) - !/Jp](VTn) dr (4.2.32)
fp

where r p is the boundary of D.p and mp is the value of the characteristic
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Table 4.2.1

Normal Boundary Force Data on r 2 (Inertia Loading)

(Jel (deg) Force (N) (Jel (deg) Force(N) (Jel (deg) Force (N)

65 1963 15 889 -35 1025
60 3034 10 370 -40 1644
55 3081 5 273 -45 1630
50 2895 0 609 -50 1220
45 2683 -5 1109 -55 2318
40 2534 -10 1472 -60 2933
35 2450 -15 1584 -65 3236
30 2302 -20 1540 -70 2963
25 1999 -25 1391 -75 689
20 1586 -30 1140

Table 4.2.2

Normal Boundary Force Data on r- (Inertia Loading)

(JPI (deg) Force (N) (Jpl (deg) Force (N) (JPI (deg) Force (N)

70 208 20 1392 -30 1157
65 2524 15 1336 -35 1942
60 3164 10 1149 -40 2301
55 2932 5 743 -45 2809
50 2607 0 522 -50 2985
45 2288 -5 877 -55 2619
40 1861 -10 1352 -60 1483
35 1798 -15 1552 -65 2987
30 1717 -20 1564 -70 158
25 1489 -25 1424

Table 4.2.3

Normal Boundary Force Data on r 2 (Firing Loading)

(Je2 (deg) Force (N) (Je2 (deg) Force (N) (Je2 (deg) Force (N)

-40 0 -10 19587 20 15741
-35 978 -5 20374 25 10335
-30 6868 0 21237 30 6103
-25 11210 5 22243 35 1402
-20 14689 10 20395 40 0
-15 17816 15 17426
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Table 4.2.4

Normal Boundary Force Data on I" (Firing Loading)

()P2 (deg) Force (N) ()P2 Force (N) 8" (deg) Force (N)

-40 2234 -to 17499 20 15056
-35 6727 -5 17245 25 12622
-30 9808 0 16488 30 9803
-25 12536 5 17365 35 6409
-20 14917 10 17711 40 1055
-15 16308 15 16502

function. In Eq. (4.2.32), A is the solution of the adjoint equation of Eq.
(2.2.73), repeated here as

au,n(A):) = f.I [.t g"ii(Z)(J"ij(X)]rnp dO.
n I,J=l

(4.2.33)

Two loading cases are considered, inertia and firing loads. The load vector
for finite element analysis was generated from boundary force data supplied
by the manufacturer of the connecting rod, as shown in Tables 4.2.1-4.2.4
and Fig. 4.2.3. Directions of the forces are normal to the boundaries.

Fig.4.2.3 Nomenclature for Tables 4.2.1-4.2.4.

In order to eliminate rigid-body translation and rotation, an arbitrary
point (x in Fig. 4.2.3) is fixed in the Xl and X2 directions, and another point (x
in Fig. 4.2.3) is fixed in the X2 direction. This is a reasonable procedure,
because the loads acting on the rod are in self-equilibrium.
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~1>l-'-.L.LJ..l-lll~~/ 239

I

Fig.4.2.4 Finite element model of engine connecting rod. The X2 coordinates of dots 1-5
denote shape parameters.

For numerical calculations, an eight-noded ISP element is used for
analysis. A finite element model that includes 422 elements, 1493 nodes, and
2983 degrees of freedom is employed, as shown in Fig. 4.2.4. Two and three
design variables are used to parameterize the upper and lower boundaries
with spline functions, respectively, as shown in Fig. 4.2.4. For thickness
distribution, 43 design parameters are used, as shown in Fig. 4.2.5. Each

35

39

Fig. 4.2.5 Thickness design parameters in 0 1 . Numbers denote conventional design
parameters.



4.2. STATIC DESIGN SENSITIVITY 325

number in Fig. 4.2.5 identifies the constant thickness of that area.
Numerical results presented are based on the following input data:
E = 2.07 X lOs MPa, v = 0.298, aUt = 136 MPa, aLI = - 80 MPa,
aUF = 37 MPa, and aLF = -279 MPa. Dimensions of the connecting rod
at the nominal design are bt = 28.1, b2 = 20.0, b3 = 63.4, b4 = 30.5,
bs = 21.2, and b6 = ... = b4 0 = 40.0, all with units in millimeters.

Table 4.2.5

Design Sensitivity of Engine Connecting Rod for Element 144

Case a (if/lt11/! x 1(0)%

(a) 0.1% change of b1 to b2 (upper boundary)
1 -1.0259E + 00 -1.0259E + 00 -1.0346E - 05 -1.1052E - 05 106.8
2 - 8.2274E - 01 - 8.2280E - 01 - 6.0366E - 05 - 6.0397E - 05 100.1
3 -1.8560E - 01 -1.8602E - 01 -4.1959E - 04 -4.1637E - 04 99.2
4 -6.6577E - 01 -6.6578E - 01 -9.1231E - 06 -9.1305E - 06 100.1

(b) 0.1% change of b3 to b, (lower boundary)
1 -1.0259E + 00 -1.0259E + 00 5.0509E - 05 4.8758E - 05 96.5
2 -8.2274E - 01 -8.2269E - 01 5.2476E - 05 4.9116E - 05 93.6
3 -1.8560E - 01 -1.8593E - 01 -3.2836E - 04 -3.2459E - 04 98.9
4 -6.6577E - 01 -6.6578E - 01 -1.I829E - 05 -1.1561E - 05 97.7

(c) 0.1% change of b6 to b4 8 (thickness change)
1 -1.0259E + 00 -1.0259E + 00 1.3192E - 05 1.3190E - 05 100.0
2 - 8.2274E - 01 - 8.2273E - 01 6.0020E - 06 6.0592E - 06 101.0
3 -1.8560E - 01 -1.8577E - 01 -1.6485E - 04 -1.6475E - 04 99.9
4 -6.6577E - 01 -6.6610E - 01 -3.3765E - 04 -3.3799E - 04 100.1

a Case 1: upper principal stress constraint due to inertia load.
Case 2: lower principal stress constraint due to inertia load.
Case 3: upper principal stress constraint due to firing load.
Case 4: lower principal stress constraint due to firing load.

In Tables 4.2.5-4.2.7, design sensrtrvity accuracy results are given for
elements 144, 239, and 352 (see Fig. 4.2.4), due to a 0.1% change in design
variables. Observe that agreement between predictions t/!' and actual changes
At/! are excellent, except that in Table 4.2.6(a) design sensitivity of the lower
principal stress for the inertia load in element 239 is not good. However, the
difference At/! is small compared to other differences. Since it is the difference
between two approximate values, numerical precision is reduced, and its
value is of suspect accuracy.
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1
2
3
4

1
2
3
4

1
2
3
4

Table4.2.6

Design Sensitivity of Engine Connecting Rod for Element 239

Ij/

(a) 0.1% change of b l to b2 (upper boundary)
-5.9578E - 01 -5.9606E - 01 -2.7667E - 04 -2.9248E - 04
-9.9779E - 01 -9.9779E - 01 2.2452E - 06 6.2944E - 05
-9.6546E - 01 -9.6557E - 01 -1.0657E - 04 -1.2251E - 04
-9.8686E - 01 -9.8683E - 01 3.0799E - 05 3.9093E - 05

(b) 0.1% change of b3 to b, (lower boundary)
-5.9578E - 01 -5.9565E - 01 l.3803E - 04 l.3588E - 04
-9.9779E - 01 -9.9780E - 01 -2.5153E - 06 -2.5001E - 06
-9.6546E - 01 -9.6553E - 01 -7.1355E - 05 -7.6392E - 05
-9.8686E - 01 -9.8685E - 01 8.1675E - 06 8.6792E - 06

(c) OJ % change of b6 to b4 8 (thickness change)
-5.9578E - 01 -5.9607E - 01 -2.8199E - 04 -2.8222E - 04
-9.9779E - 01 -9.9779E - 01 -1.5866E - 06 -1.5886E - 06
-9.6546E - 01 -9.6542E - 01 4.1725E - 05 4.1822E - 05
-9.8686E - 01 -9.8687E - 01 -1.3715E - 05 -1.3736E - 05

(lj/jliJ/t x 1(0)%

105.7
2803.5

115.0
126.9

98.4
99.4

107.1
106.3

100.1
100.1
100.2
100.2

"Case 1: upper principal stress constraint due to inertia load.
Case 2: lower principal stress constraint due to inertia load.
Case 3: upper principal stress constraint due to firing load.
Case 4: lower principal stress constraint due to firing load.

Table4.2.7

Design Sensitivity of Engine Connecting Rod for Element 352

Case"

I
2
3
4

1
2
3
4

1
2
3
4

Ij/

(a) 0.1% change of b, to b2 (upper boundary)
-7.7013E - 01 -7.7113E - 01 -9.9819E - 04 -1.0021E - 03
-1.0042E + 00 -1.0043E + 00 - 2.1690E - 05 - 2.1984E - 05
-1.0530E + 00 -1.0532E + 00 - 2.8030E - 04 - 2.7927E - 04
-3.6239E - 01 -3.6511E ~ 01 -2.7273E - 03 -2.739IE - 03

(b) 0.1% change of b3 to bs (lower boundary)
-7.7013E - 01 -7.6984E - 01 2.9207E - 04 2.9245E - 04
-1.0042E + 00 -1.0043E + 00 - 5.2670E - 06 - 5.2913E - 06
-1.0530E + 00 -1.0530E + 00 -5.8413E - 05 -5.8409E - 05
- 3.6239E - 01 - 3.6164E - 01 7.4899E - 04 7.4955E - 04

(c) 0.1% change of b6 to b4 8 (thickness change)
-7.7013E - 01 -7.7036E - 01 -2.3032E - 04 -2.3026E - 04
-1.0042E + 00 -1.0042E + 00 4.2592E - 06 4.2407E - 06
-1.0530E + 00 -1.0529E + 00 5.2783E - 05 5.2282E - 05
-3.6239E - 01 -3.6302E - 01 -6.3713E - 04 -6.3663E - 04

W/L'>.J/t x 1(0)%

100.4
101.4
99.6

100.4

100.1
100.5
100.0
100.1

100.0
99.6
99.1
99.9

"Case I: upper principal stress constraint due to inertia load.
Case 2: lower principal stress constraint due to inertia load.
Case 3: upper principal stress constraint due to firing load.
Case 4: lower principal stress constraint due to firing load.
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Consider the simple box of Section 4.1.4. Its variational equilibrium
equation of Eq. (4.1.28) is repeated here as

au,n(z, z) = Jl fL, i.~ 1 aij(z)eij(z) dO.

= f t Tizi st:
Jr 2 i= 1

for all zE Z (4.2.34)

Consider the von Mises yield stress functional, averaged over finite
element Q p C Qq, as

ljJp = fL. g(a(z))mpdO. (4.2.35)

where g = ay is the von Mises yield stress defined in Eq. (3.3.179) and mp is a
characteristic function on finite element Qp.

In this problem, a perturbation of the design variable [b l b2 b3] T will
move the externally loaded boundary. Assume that traction is constant along
r- and independent of position. By taking the variation of the right side of
Eq. (4.2.34),

[lu,n(z)]' = LJJl TiZi'J at: + LJJlV(Tizi)Tn}vTn) .u:

+ (Jl TiZiVT(Pl))ln2 + Ctl T
iziV

T(P2))ln
3

+ (Jl TiziVT(Pl)) Ins + (JlT
iziV

T(P2)) Ins (4.2.36)

The last four terms on the right side of Eq. (4.2.36) denote corner terms due
to movement of points Pl and P2 [59].

Define the adjoint equation as

for all AE Z

(4.2.37)

Employing the idea of calculating first variations in Section 4.2.1, the
variation of Eq. (4.2.35) can be obtained by adding contributions from
each component and the four corner terms from Eq. (4.2.36). For each
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component, the result of Eq. (3.3.175) can be used to obtain the design
sensitivity formula

l/J~ = ,t1 fL, I'~ 1[Uij(Z)(Vtl,iTlj) + Uij(tl,)(VZ1Tlj)] dQ

- i II [ f uij(Z)sij().)] div VdQ
1= 1 (}/ 1,1= 1

+ fL. g div Vmp dQ - fL. a», dQ fL. mp div VdQ

- L2,tlTi(Vtl,iTV) dr + L2 [,tlV(Titl,I)Tn}vTn) dr

+ (,tl Titl,IVr(Pl))ln2 + Ct
1

Titl,i~(Pz))ln3

+ (,tl Titl,i~(Pl))lns + Ctl Titl,i~(Pz))lns (4.2.38)

In Eq, (4.2.38), since shape design variables are given as [b 1 bz b3] T , the
velocity field can be assumed to be linear on each plate. Thus, div V is
constant on each plate.

For numerical calculations, an eight-noded ISP element model with 320
elements, 993 nodes, and 1886 degrees of freedom is used. For numerical
data, Young's modulus and Poisson's ratio are 1.0 x 107 psi and 0.316,
respectively. Dimensions of the structure at the nominal design are
b1 = bz = b3 = 8 in., and the thickness of each plate is 0.1 in. The uniform
external load is 4.77lb/in.

In Table 4.2.8, sensitivity accuracy results are given for typical elements
due to a 3% change in design variables. Results of Table 4.2.8(a) and (b) are
for 3% changes in b1 and b3 , respectively. Due to symmetry, results of one
side only are given in Table 4.2.8. Results given in Table 4.2.8 show excellent
agreement between predictions l/J~ and actual changes dl/Jp, except in elements
261, 266, 271, 306, 311, and 316 of Table 4.2.8(a). However, those elements
are in the low-stress region, and dl/Jp are small compared to others. Since they
are differences between approximate stresses, they are not accurate. The
boundary method that was applied to the plane stress interface problem was
tested with the same simple box problem, with unacceptable results.



Table 4.2.8

Domain Method for Simple Box Problem

Element
number l/t; l/t: lir/tp l/t~ (l/t~/lil/tp x 1(0)%

(a) 3% perturbation of length b1 a

1 100.63443 103.78530 3.15087 3.07549 97.6
6 39.87734 42.20731 2.32996 2.29028 98.3

11 38.09229 40.50634 2.41405 2.37384 98.3
16 84.75172 86.95996 2.20825 2.14499 97.1
21 29.10066 31.38476 2.28411 2.25004 98.5
26 47.77615 49.51865 1.74250 1.72446 99.0
31 47.77615 49.51865 1.74250 1.72446 99.0
36 21.28009 22.79503 1.51493 1.50010 99.0
41 52.16973 53.22842 1.05869 1.04999 99.2
46 26.27852 27.32058 1.04206 1.04612 100.4
51 23.75135 24.28852 0.53717 0.53220 99.1
56 43.70809 44.61852 0.91043 0.92291 101.4
61 31.15718 31.30541 0.14823 0.15058 101.6
66 49.20760 51.70151 2.49391 2.44280 98.0
71 49.20760 51.70151 2.49391 2.44280 98.0
76 26.96837 29.18948 2.22111 2.18423 98.3
81 65.59970 67.47185 1.87214 1.83760 98.2
86 31.42032 33.59012 2.16979 2.13633 98.5
91 29.11188 30.98445 1.87257 1.85249 98.9
96 59.01335 60.55661 1.54326 1.52421 98.8

101 17.77022 19.23274 1.46252 1.44528 98.8
106 34.66051 35.85638 1.19587 1.20787 101.0
III 34.66051 35.85638 1.19587 1.20787 101.0
116 20.66130 20.81388 0.15259 0.14922 97.8
121 21.39204 21.86005 0.46801 0.47243 100.9
126 31.19434 31.31165 0.11731 0.12479 106.4
131 127.95324 130.60632 2.65307 2.55823 96.4
136 127.43242 130.94177 3.50974 3.43456 97.9
141 115.99465 118.74030 2.74565 2.68257 97.7
146 117.30361 118.88574 1.58213 1.53328 96.9
151 99.14657 101.16379 2.01721 1.97823 98.1
156 104.97155 106.62767 1.65611 1.61890 97.8
161 84.56467 85.55652 0.99185 0.94271 95.0
166 84.06349 85.20942 1.14593 1.11992 97.7
171 81.94871 82.70473 0.75602 0.72246 95.6
176 56.29105 57.23964 0.94859 0.94555 96.7
181 67.85988 68.09515 0.23527 0.22166 94.2
186 55.58785 55.81064 0.22279 0.29350 131.7
191 45.66123 45.77325 0.11203 0.11082 98.9
261 52.27702 52.27824 0.00122 0.00657 537.8
266 45.12722 45.11601 -0.01121 -0.02510 223.8
271 29.52699 29.53403 0.00704 0.01035 147.0
276 36.62302 36.66663 0.04361 0.04665 107.0
281 45.66577 45.78814 0.12237 0.12677 103.6
286 20.18210 20.19824 0.01614 0.01924 119.2

(continues)
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Table 4.2.8 (continued)

Domain Method for Simple Box Problem

Element
number t/I) if/; tlif/p 1/1; (if/;/tly,p x 1(0)%

291 35.13625 35.16403 0.02779 0.02644 95.1
296 34.96003 35.17924 0.21920 0.23069 105.2
301 31.97706 32.01814 0.04108 0.04544 110.6
306 45.12722 45.11601 -0.01121 -0.02510 223.8
311 29.52699 29.53403 0.00704 0.01035 147.0
316 54.32027 54.31034 -0.00992 -0.00222 22.4

(b) 3 % perturbation of height b3
Q

1 100.63443 97.71343 -2.92100 -3.02560 103.6
6 39.87734 38.60680 - 1.27054 -1.31552 103.5

11 38.09229 36.88886 -1.20343 - 1.24584 103.5
16 84.75172 82.13030 -2.62142 -2.71628 103.6
21 29.10066 28.22262 -0.87803 -0.90871 103.5
26 47.77615 46.21547 -1.56068 -1.61636 103.6
31 47.77615 46.21547 -1.56068 - 1.61636 103.6
36 21.28009 20.67423 -0.60586 -0.62693 103.5
41 52.16973 50.35392 - 1.81580 - 1.87975 103.5
46 26.27852 25.44055 -0.83797 -0.86795 103.6
51 23.75135 22.92610 -0.82525 -0.85558 103.7
56 43.70809 42.24665 -1.46144 -1.51226 103.5
61 31.15718 29.77414 -1.38304 - 1.42616 103.9
66 49.20760 47.31834 -1.88926 - 1.95116 103.3
71 49.20760 47.31834 -1.88926 -1.95115 103.3
76 26.96837 25.93788 -1.03049 -1.06359 103.2
81 65.59970 63.06451 -2.53519 -2.61931 103.3
86 31.42032 30.21688 - 1.20345 - 1.24241 103.2
91 29.11188 27.99637 -1.11551 - 1.15172 103.2
96 59.01335 56.72553 -2.28782 -2.36378 103.3

101 17.77022 17.10474 -0.66548 -0.68615 103.1
106 34.66051 33.31319 -1.34731 -1.39214 103.3
111 34.66051 33.31319 -1.34741 -1.39214 103.3
116 20.66130 19.83577 -0.82552 -0.85490 103.6
121 21.39204 20.56917 -0.82287 -0.84901 103.2
126 31.19434 29.91584 -1.27850 -1.32590 103.7
131 127.95324 124.23535 -3.71789 -3.83449 103.1
136 127.43202 122.52440 -4.90762 -5.06634 103.2
141 115.99465 112.13318 -3.86147 -3.98045 103.1
146 117.30361 114.56425 -2.73937 -2.82433 103.1
151 99.14657 95.92302 -3.22355 -3.31679 102.9
156 104.97155 102.10465 -2.86690 -2.94150 102.6
161 84.56467 82.59761 -1.96706 -2.04206 103.8
166 84.06349 81.71003 -2.35346 -2.41896 102.8
171 81.94871 80.05344 -1.89527 -1.95133 103.0
176 56.29105 54.29555 -1.99550 -2.05872 103.2
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Table 4.2.8 (continued)

Domain Method for Simple Box Problem

Element
number t/Ji t/J; lit/Jp t/J; (t/J;/lit/Jp x 1(0)%

181 67.85988 66.31273 -1.54715 -1.59164 102.9
186 55.58785 54.55671 -1.03114 -1.07550 104.3
191 45.66123 44.39744 -1.26379 -1.30200 103.0
261 52.27702 50.89411 -1.38291 -1.42855 103.3
266 45.12722 44.95884 -0.16838 -0.18060 107.3
271 29.52699 28.63060 -0.89639 -0.93170 103.9
276 36.62302 36.21113 -0.41188 -0.42241 102.6
281 45.66577 45.01216 -0.65361 -0.70665 108.1
286 20.18210 19.53853 -0.64357 -0.67564 105.0
291 35.13625 35.28274 0.14750 0.14909 lOLl
296 34.96003 33.27873 -1.68131 -1.74729 103.9
301 31.97706 31.34971 -0.62736 -0.64641 103.0
306 45.12722 44.95884 -0.16838 -0.18060 107.3
311 29.52699 28.63060 -0.89639 -0.93170 103.9
316 54.32027 53.05260 -1.26766 -1.31371 103.6

a Top, element number 1-64; bottom, 65-128; sides, 129-256; end, 257-320.

TRUSS-BEAM-PLATE

Consider the truss-beam-plate of Section 4.1.4, with the variational
equilibrium equation of Eq. (4.1.57) repeated here as

(4.2.39)for all Z E Z
n+lm+lf.IL L .jijwij dn l = [.,o.(z)
i= 1 j= 1 01

To obtain a design sensitivity formula using Eq. (4.2.12) expressions for
[~u(A), a~.(z, ),), [~(A), and a~(z, A)must be obtained. Expressions for [~.(A) and
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a~u(z, 2) can be found in Chapters 1 and 2 for truss, beam, and plate
components. For 1~(2) and a~(z, 2), Eqs. (4.2.4) and (4.2.6) can be used. Using
Eqs. (1.2.19), (2.2.1), and (4.2.39),

n+lm+lf.Ia' (z z) = '\' '\' [(wij + vwij )wij + (wij + vwij )wjdu' L.. L.. .. x x yy xx yy xx yy
i= I j= I nj'

n m+ If.
+ I I [i5~xD~AElij)6iJ + e~8~(GJij)6iJJ libijsa,

i= I j= I n¥

n+1 m f.
+ I I .. [D~yv~y(E[ij)biJ + e~ O~(GJij)biJJ libijdil 3

i=1 j=1 n~

+ [qlITK(Afl)qPJA/' JAIl + [qlmTK(AIm)qlmJA/m JAIm

+ [qk l
T K(A k

l )qkl JAr' JA,I + [qkmTK(A,m)qkmJArmJA,m
(4.2.40)

where bij = [Jij hijJT and iij = [Jij hijJT. Using Eqs. (1.2.19), (2.2.2), and
(4.2.39),

l~u(z) = 0

Also, using Eqs. (4.2.3), (4.2.4), and (4.2.39),

(4.2.41)

(4.2.42)

a~(z, z) = nf mf f.I .{-bij(t)[(w~x + VW~y)(VWijTV)XX
i=1 j=1 ny

+ (wij + vwij )(VWijTV) + 2(1 - v)wij (VWijT V)yy xx yy xy xy

+ (w~x + VW~y)(VwijTV)xx + (w~y + vW~x)(VwijTV)yy

+ 2(1 - v)W~y(VwijTV)XyJ

+ div [bij(t)«w~x + VW~y)w~x

+ (wij + vwij )wij + 2(1 - v)wij Wj )VJ} dilyy xx yy xy xy I

n+1 m f.
+ I I{ -EPj[i5~AD~V)xx + v~Ai5~V)xxJ

i=1 j=1 ny
+ (Eliji5ij vij V) - GJij[8ij(8iiV)xx xx x x x x

+ 8~(8~V)xJ + (GJij8~8~V)x} sa,
n m+ If.+ I I {- E[ij[Dij (viiV) + vii (VijV)i= I j = I n¥ yy y yy yy y yy

+ (E[iiDii vij V) - GJij[Oij(OijV)yy yy y y y y

+ o~(e~V)yJ + (GJijO~O~V)y} dil3
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If the conventional design variables are constant for each component, Eq.
(4.2.42) is simplified to

+ [v(wii wj + wii wii ) - (wii wii + wii wii )xx yy yy xx xx xx yy yy

+ 2(1 - v)w~y W~y](Vxx + Vi)

+ [wii~j + wii ~j + v(wiiwii + wii ~j)]v.xx xx xx x x 1Y YY x xx

+ v(wiiwii + wii wii)]V.Y } dO.Y xx xx Y YY 1

n+l m 1
-"" {Elii[3vii ijij K + (vii~ij~ ~ xx xx x x xx

i=1 j=1 Q¥

n m+l1
"" {Elii[]iij £jii V. + (vii£jiiL, L .. YY YY Y Y YY
i=1 j=1 Qj'

+ vii £jii)v. ] + GJii{)ijeiiV} dO.
YY Y YY Y Y Y 3 (4.2.43)

where V = [V X vY]T on the plate component and Von each beam is design
velocity. Using Eqs. (4.2.5), (4.2.6), and (4.2.39),

(4.2.44)

Consider first the compliance functional for the structure,

(4.2.45)

(4.2.46)for all AE Z

Sincejv' = 0, Eq. (4.2.45) can be treated as the functional form of Eq. (4.2.8),
so the adjoint equation is, from Eq. (4.2.10),

n+lm+lfI
au,n(A, X) = L L Jiiyii dO.l

i=1 j=1 QI'

where
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In this special case, A = z, and from Eq. (4.2.12)

t/J~ = l~u(z) - a~u(z, z) + "fmf II ..[-fij(VWijT y) + div(fiiwiiy)] dOl
i=l j=l oj'

+ ly(z) - ay(z, z)

= l~u(z) - a~u(z, z) + 21y(z) - ay(z, z) (4.2.47)

where Eqs. (4.2.40), (4.2.41), (4.2.43), and (4.2.44) provide the form of terms in
Eq. (4.2.47).

Next, consider displacement at a discrete point x E oy, written as

t/Jz = II .b(x - x)wij dOl (4.2.48)
01

where point xmoves as the shape is modified. Using Eq. (4.2.10), the adjoint
equation is obtained as

for all XE Zau,O(A, 1) = II .. b(x - x)yij dOl
niJ

From Eqs. (4.2.12) and (3.3.139),

t/J'z = l~u(A(Z») - a~u(z, A(Z») + ly(A(Z») - ay(z, AlZ»)

(4.2.49)

(4.2.50)

where Eqs. (4.2.40), (4.2.41), (4.2.43), and (4.2.44) provide the form of terms in
Eq. (4.2.50) and AlZ) is the solution of Eq. (4.2.49).

Finally, consider the mean stress functional over a finite element Op C oy
of the plate component,

II .... 'j" fro g(tij, W~,) dOl
t/J3 = ijg(t 'J

, w;x' W~Y' w~y)mp dOl = .. P ff dO (4.2.51)
0 1 •• Op 1

where g might involve principal stresses, von Mises failure criterion, or some
other material failure criteria. For simplicity of notation, w~x == w¥ 1,

W~y == wi!z, and W~y == wYz are used. As before, mp is a characteristic function
defined on Op.

Taking the variation of Eq. (4.2.51), using Eq. (3.2.37),

t/J3 = II .gtijmp &ij dOl + II.. t gwil,[W~, - (VWijTY)kl]mp dOl
oy oj' k..l > 1

+ II .div(g Y)mpdOl - II .gmpdOl II .. mpdiv Y dOl
~ ~ ~

(4.2.52)

As in the general derivation of the adjoint equation of Eq. (4.2.10), the
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adjoint equation may be defined by replacing wii in the integrand of Eq.
(4.2.52) by Ato define a load functional for the adjoint equation, obtaining

au,n(ll., A) = iI .[ f gwil, Y~IJmp dOl for all AE Z (4.2.53)
n1 k,l=l

Proceeding as in the derivation of Eq. (4.2.12), the design sensitivity formula
is obtained as

0/3 = lbu(A,!3») - abu(z, A(3)) + iI .grump (j(ii dOl
of'

+ 1;'(A(3») - a;'(z, A(3») - iI .. [±gWi{,(VWijTV)kl]mpdOl
ny k,/= I

+ iI .div(gV)mpdOl - iI .gmpdOl iI .mpdiv V dOl
~ ~ ~

(4.2.54)

where Eqs. (4.2.40), (4.2.41), (4.2.43), and (4.2.44) provide the form of terms in
Eq. (4.2.54) and A(3) is the solution of Eq. (4.2.53). The last two terms in Eq.
(4.2.54) are due to the movement of Op.

For numerical calculations, conventional and shape design sensitivity
calculations are carried out separately. For plate components, 12 degrees-of-
freedom nonconforming rectangular elements [7] are used. For beam
components, hermite cubic shape functions are used. The finite element
model used for conventional design sensitivity calculation is shown in Fig.
4.2.6. A total of 196 finite elements with 363 degrees of freedom are used to
model the built-up structure, including 100 rectangular plate elements, 80
beam elements, and 16 truss elements. The 196 elements are linked to six
kinds of independent conventional design variables, such as thickness of
plate components, height and width of longitudinal beam components,
height and width of transverse beam components, and cross-sectional area of
truss components.

For numerical data, Young's modulus and Poisson's ratio are
3.0 x 107 psi and 0.3, respectively. The overall dimensions are
L, x L; = 15in. x 15in. Beam components are located so that the spaces
between them are a, = hj = 3 in. (i,j = 1,2,3,4). Dimensions of the built-up
structure at the nominal design are as follows: uniform thickness t = 0.1 in.
for plate components, uniform height h = 0.5 in. and width d = 0.15 in. for
beam components, and length 1= 5.364in. and cross-sectional area
A = 0.1 in. 2 for truss components. A uniform distributed load! = 0.1Ib/in.2

is applied on the plate components, and mass density for the entire structure
is taken as p = Orl lb m/in.:' for the eigenvalue problem.
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Fig. 4.2.6 Finite element model of a truss-beam-plate built-up structure for conventional

design variation.

In Table 4.2.9, sensitivity accuracy results are given for several functionals,
with a 5% uniform change in all conventional design variables except the
cross-sectional areas of truss components. Sensitivity results of von Mises
yield stress

( ) _ ( 2 + 2 3 2 )1/2g (J - (J xx (J yy + (J xy - (J xx (J yy (4.2.55)

for plate components and normal stresses (Jxx and (Jyy for longitudinal and
transverse beam components, respectively, are given in Table 4.2.9. Due to
symmetry, sensitivity results for only one quarter of the structure is given in
Table 4.2.9. Results given in Table 4.2.9 show good agreement between
predictions l/J~ and actual changes J..l/Jp •

During numerical calculations it was found that the finite element model
of Fig. 4.2.6, which was used for conventional design sensitivity calculation,
was not adequate for shape design sensitivity calculations, because of the
coarse grid. A finer grid finite element model for shape design sensitivity
calculation is shown in Fig. 4.2.7. Only one quarter of the entire structure is
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Table 4.2.9

Conventional Design Sensitivity of Truss-Beam-Plate BUIlt-Up Structure

Element
Functional number l/J: tll/J. l/J~ (l/J~/tll/Jp x 1(0)%

Displacement C 0.4775E - 03 -0.8052E - 04 0.9071E - 04 112.7

Stress on 1 0.1484E + 02 -O.7100E + 00 -0.6750E + 00 95.1
plate 2 0.5829E + 02 -0.5980E + 01 -0.6780E + 01 113.4
element 3 0.5263E + 02 -0.5220E + 01 -0.5810E + 01 111.3

4 0.5256E + 02 -0.5760E + 01 -0.6320E + 01 109.7
5 0.8497E + 02 -0.1028E + 02 -0.1126E + 02 109.5

11 0.5829E + 02 -0.5980E + 01 -0.6780E + 01 113.4
12 0.6780E + 02 -0.7870E + 01 -0.8630E + 01 109.7
13 0.5827E + 02 -0.6720E + 01 -0.7580E + 01 112.8
14 0.5269E + 02 -0.6240E + 01 -0.6830E + 01 109.5
15 0.7658E + 02 -0.936OE + 01 -0.1034E + 02 110.5
21 0.5263E + 02 -0.5220E + 01 -0.5810E + 01 111.3
22 0.5827E + 02 -0.6720E + 01 -0.7580E + 01 112.8
23 0.5450E + 02 -0.6690E + 01 -0.7300E + 01 109.1
24 0.5850E + 02 -0.6990E + 01 -0.8060E + 01 115.3
25 0.6155E + 02 -0.774OE + 01 -0.8500E + 01 109.8
31 0.5256E + 02 -0.5760E + 01 -0.6320E + 01 109.7
32 0.5269E + 02 -0.6240E + 01 - 0.6830E + 01 109.5
33 0.5850E + 02 -0.6990E + 01 -0.8060E + 01 115.3
34 0.4697E + 02 -0.6030E + 01 -0.6340E + 01 105.1
35 0.4621E + 02 -0.5880E + 01 -0.6770E + 01 115.1
41 0.8497E + 02 -0.1028E + 02 -0.1126E + 02 109.5
42 0.7658E + 02 -0.9360E + 01 -0.1034E + 02 110.5
43 0.6155E + 02 -0.7740E + 01 -0.8500E + 01 109.8
44 0.4621E + 02 -0.5880E + 01 -0.6770E + 01 115.1
45 0.3975E + 02 -0.5250E + 01 -0.5980E + 01 113.9

Stress on 1 0.2956E + 02 -0.3640E + 01 -0.3960E + 01 108.8
beam 2 0.1850E + 03 -0.2428E + 02 - 0.2672E + 02 110.0
element 3 O.l200E + 03 -0.1608E + 02 - 0.1764E + 02 109.7

4 0.2041E + 03 -0.2552E + 02 -0.2792E + 02 109.4
5 0.3549E + 03 -O.4444E + 02 -0.4872E + 02 109.6

11 0.1656E + 02 -0.2360E + 01 -0.2520E + 01 106.8
12 0.6312E + 02 -0.7920E + 01 -0.8680E + 01 109.6
13 0.2192E + 02 -0.2400E + 01 -0.2640E + 01 110.0
14 0.7964E + 02 -0.1088E + 02 -0.1192E + 02 109.2
15 0.1454E + 03 -0.1960E + 02 -0.2140E + 03 109.2

analyzed, due to symmetry. A total of 484 elements with 1281 degrees of
freedom are used to model the built-up structure, including 400 rectangular
plate elements, 80 beam elements, and 4 truss elements. The design variables
for shape variation are the locations Xi and yi (i,j = 1,2), of transverse and
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Fig. 4.2.7 Finite element model of a truss-beam-plate built-up structure for shape
variation.

longitudinal beams, respectively, measured from center c of the built-up
structure. During the shape variation, it is presumed that the outside
boundary is fixed and the lengths of truss components are held constant.
That is, the ground supports for the trusses move according to the change of
beam positions. The same numerical data that are used in conventional
design sensitivity calculations are employed. For the nominal design, beam
components are located at Xl = YI = 1.5in., and X2 = Y2 = 4.5 in.

For shape design sensitivity calculations, a velocity field must be defined
that satisfies regularity conditions. For regularity of the velocity field,
consider the terms av(z, z), av(z, A,!2)), and av(z, A,(3)) in Eqs. (4.2.47), (4.2.50),
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and (4.2.54), respectively. To evaluate these terms, Eq. (4.2.43) is used, which
involves second derivatives of the velocity field Y = [y x vY]T with respect to
x and y. Hence, the velocity field must have C 1 regularity. If a velocity field
with CO regularity is used, second derivatives of the velocity field become
Dirac delta measures, which must be integrated to obtain sensitivity results.
Note that CO regular velocity fields can be used for elasticity problems, such
as the simple box example considered before, since the highest order of
derivative of the velocity field in the sensitivity formula is one [see Eq.
(4.2.38)].

To avoid Dirac delta measures, C1 regular velocity fields are used in this
example. The beam components are allowed to move in transverse directions
only. Hence, yx is a function of x only and YY is a function of y only. The
velocity field in each plate component is represented by hermite cubic
functions in each direction. That is, VX(x) and YY(y) are represented by
hermite cubic functions. To see the velocity field representation graphically,
consider Fig. 4.2.8, in which the shape functions for YX(x) are plotted. In Fig.
4.2.8, JXl and JX2 denote perturbations of locations of transverse beams.
From Fig. 4.2.8 note that VX(x) = ¢l(X) + ¢2(X). That is,

(4.2.56)

o II
2

x

Fig.4.2.8 Shape functions for the velocity VX(x).
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Similarily,

2y2 ( 3y )-Yf y - -f by!,

vY(y) = (4.2.57)

In Table 4.2.10, sensitivity accuracy results are given for several func-
tionals with a 0.25% uniform change in shape design parameters. Results
given in Table 4.2.10 show excellent agreement between predictions t/J; and
actual changes flt/Jp, except for von Mises yield stress in plate element 219.
However, note that flt/Jp is small compared to others. The boundary method
applied to this problem produced unacceptable results.

Table 4.2.10
Shape Design Sensitivity of Truss-Beam-Plate Built-Up Structure

Element
Functional number t/!i Aif1p if1; (t/!;/AI/tp x 100)%

Displacement C 0.4776E - 03 0.1188E - 04 0.1148E - 04 96.6

Compliance 0.9775E - 03 0.1995E - 04 0.1965E - 04 98.5

Stress on 1 0.4913E + 02 0.915 0.195 100.1
plate 3 OA043E + 02 0.860 0.861 100.1
element 5 0.3428E + 02 0.602 0.600 99.6

7 0.5033E + 02 0.858 0.858 100.0
9 0.6214E + 02 0.925 0.924 99.9

11 0.6784E + 02 0.924 0.923 99.9
13 0.7708E + 02 0.873 0.871 99.8
15 0.8361E + 02 0.994 0.994 100.0
17 0.9276E + 02 1.088 1.090 100.2
19 1.0291E + 02 1.251 1.253 100.2
22 0.4426E + 02 0.891 0.891 100.0
24 0.3303E + 02 0.776 0.775 99.9
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Table4.2.10 (continued)

Shape Design Sensitivity of Truss-Beam-Plate Built-Up Structure

Element
Functional number I/I~ f1l/1p 1/1; (1/I;/f1l/1p x 1(0)%

26 0.4266E + 02 0.778 0.776 99.8
28 0.5594E + 02 0.882 0.880 99.9
30 0.6352E + 02 0.914 0.913 99.8
32 0.6965E + 02 0.891 0.889 99.7
34 0.7793E + 02 0.961 0.960 99.9
36 0.8552E + 02 1.060 1.060 100.0
38 0.9187E + 02 1.171 1.172 100.1
40 1.0464E + 02 1.367 1.374 100.6
42 0.3954E + 02 0.859 0.858 99.9
44 0.3333E + 02 0.811 0.810 99.9
46 0.4428E + 02 0.765 0.763 99.7
48 0.5250E + 02 0.831 0.830 99.9
50 0.5853E + 02 0.862 0.861 99.8
52 0.6753E + 02 0.883 0.881 99.7
54 0.7550E + 02 0.979 0.978 99.9
56 0.7905E + 02 1.104 1.104 100.0
58 0.8127E + 02 1.169 1.170 100.1
60 0.8983E + 02 1.334 1.340 100.5
65 0.3836E + 02 0.754 0.749 99.4
67 0.4488E + 02 0.744 0.744 99.9
69 0.4606E + 02 0.743 0.742 99.9
71 0.5603E + 02 0.801 0.800 99.9
73 0.7075E + 02 0.914 0.911 99.7
75 0.6838E + 02 1.112 1.112 100.0
77 0.6713E + 02 1.207 1.209 100.1
79 0.6501E + 02 1.185 1.189 100.4
85 0.3830E + 02 0.740 0.738 99.8
87 0.4058E + 02 0.670 0.669 99.8
89 0.4786E + 02 0.665 0.663 99.7
91 0.6018E + 02 0.748 0.744 99.4
93 0.6787E + 02 0.892 0.889 99.6
95 O.6411E + 02 1.101 1.100 99.9
97 0.6272E + 02 1.293 1.294 100.1
99 0.6443E + 02 1.468 1.471 100.2

106 0.4305E + 02 0.726 0.725 99.9
108 0.5160E + 02 0.721 0.719 99.7
110 0.5914E + 02 0.749 0.745 99.6
112 0.6223E + 02 0.749 0.745 99.3
114 0.5604E + 02 0.928 0.924 99.7
116 0.572IE + 02 1.124 1.124 100.0
118 0.5927E + 02 1.283 1.284 100.1
120 0.6532E + 02 1.487 1.490 100.2
128 0.5512E + 02 0.759 0.756 99.7
130 0.5826E + 02 0.750 0.746 99.5

(continues)
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Table4.2.10 (continued)

Shape Design Sensitivity of Truss-Beam-Plate Built-Up Structure

Element
Functional number 1/1: /}.I/Ip 1/1; (I/I;//}.I/Ip x 1(0)%

132 0.5914E + 02 0.587 0.581 99.0
134 0.4801E + 02 0.834 0.830 99,4
136 0.4705E + 02 1.057 1.056 99.9
138 0,4975E + 02 1.203 1.203 100.0
140 0.5682E + 02 1,405 1,408 100.2
149 0.5550E + 02 0.747 0.744 99.5
151 0.5322E + 02 0.575 0.569 99.0
153 0.5555E + 02 0,437 0,430 98.5
155 0.3700E + 02 0.868 0.863 99,4
157 0.3514E + 02 1.078 1.077 99.9
159 0.3790E + 02 1.226 1.226 100.0
169 0.5208E + 02 0.687 0.683 99.3
171 0,4887E + 02 0.372 0.365 98.0
173 0.5629E + 02 0.215 0.208 96.7
175 0.3270E + 02 0.618 . 0.608 98,4
177 0.2338E + 02 0.915 0.907 99.1
179 0.2327E + 02 1.062 1.056 99.5
190 0.4529E + 02 0.368 0.360 97,4
192 0.6133E + 02 -0.068 -0.075 109.9
194 0,4776E + 02 0.129 0.120 93.1
196 0.3201E + 02 0.255 0.240 94.0
198 0.2704E + 02 0.283 0.263 93.0
200 0.3481E + 02 0.377 0.364 96.5
211 0.5317E + 02 -0.101 -0.109 108.0
212 0.6768E + 02 -0.220 -0.226 102.7
213 0.6722E + 02 -0.162 -0.167 103.3
214 0.6017E + 02 -0.118 -0.125 106.1
216 0.5335E + 02 -0.109 -0.118 107.7
217 0.5372E + 02 -0.099 -0.108 108.9
218 0.5529E + 02 -0.062 -0.071 114.8
219 0.5763E + 02 -0.007 -0.016 241.3
220 0.6573E + 02 0.083 0.077 93.3
229 0.5827E + 02 0.142 0.135 94.9
231 0.6768E + 02 -0.220 -0.226 102.7
233 0.8148E + 02 -0.304 -0.312 102.5
235 0.8270E + 02 -0.280 -0.285 101.6
237 0.9004E + 02 -0.187 -0.189 101,4
239 1.0098E + 02 0.077 0.Q75 97.5
249 0.5629E + 02 0.215 0.208 96.7
251 0.6726E + 02 -0.162 -0.167 103.3
253 0.8205E + 02 -0.377 -0.382 101,4
255 0.7951E + 02 -0.366 -0.369 100.9
257 0.9004E + 02 -0.350 -0.352 100,4
259 1.0166E + 02 -0.362 -0.364 100.6
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Table 4.2.10 (continued)

Shape Design Sensitivity of Truss-Beam-Plate Built-Up Structure

Element
Functional number I/Ji tll/Jp I/J~ Wp/tll/Jp x 1(0)%

269 0.4201E + 02 0.419 0.410 97.8
271 0.6017E + 02 -0.118 -0.125 106.1
273 0.7804E + 02 -0.374 -0.379 101.3
274 0.6736E + 02 -0.364 -0.368 101.2
275 0.6230E + 02 -0.338 -0.342 101.1
276 0.6130E + 02 -0.313 -0.316 100.9
277 0.6268E + 02 -0.297 -0.300 100.8
278 0.6485E + 02 -0.288 -0.290 100.7
279 0.6750E + 02 -0.279 -0.281 100.7
280 0.7533E + 02 -0.289 -0.293 101.6
286 0.5614E + 02 1.032 1.030 99.8
288 0.3700E + 02 0.868 0.863 99.4
300 0.4934E + 02 -0.201 -0.205 102.2
317 0.2977E + 02 -0.210 -0.214 102.0
319 0.2789E + 02 -0.177 -0.182 102.5
337 0.2185E + 02 -0.225 -0.230 102.2
339 0.1811E + 02 -0.243 -0.248 102.0
358 0.1456E + 02 -0.309 -0.313 101.2
360 O.l494E + 02 -0.299 -0.302 101.0
380 0.1219E + 02 -0.255 -0.255 100.1
400 0.0847E + 02 -0.156 -0.154 99.1

4.3 EIGENVALUE DESIGN SENSITIVITY

Eigenvalue sensitivity of a built-up structure can be determined, due to
variations in conventional design variables and shape. As in the case of
separate variations of conventional design variables and shape in Chapters 2
and 3, no adjoint variable is required in eigenvalue design sensitivity
calculation. The approach used in this section parallels that employed in
Section 4.2. A direct variational analysis is carried out, supported by
existence results presented in Chapters 2 and 3.

4.3.1 Calculation of First Variations

(4.3.1)
for all YE Z

Consider the variational form of the built-up structure eigenvalue equa-
tions of Eq. (4.1.16), repeated here as

au.n(Y, y) = (du.n.(Y, y)

du.n(Y, y) = 1

Since both bilinear forms in Eq. (4.3.1) depend on the conventional design
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variable u and shape 11, it is clear that the eigenvalue, also depends on these
quantities. The objective here is to use this variational formulation to obtain
sensitivity of' to variations in the design function and shape.

Using the notation of Eq. (4.2.2) for perturbation of the domain 11, the
design variation of the bilinear form on the right side of Eq. (4.3.1) can be
calculated as

[du,n(y, Y)]' == d~.(y, y) + d~(y, y) + d.,rlY, y)

= [t/~AWi, Wi) + d~b(q, q)J + itd~;(Wi, Wi)

r

+ L d.',nl(w i, Wi) + db(q, q)
i= I

(4.3.2)

where y = [Wi w2 ... w' q]T denotes an eigenfunction, even though the
notation for the component of y is borrowed from static response z, to avoid
introduction of new variables. This notation parallels that of Eq. (4.2.3),
which remains valid for design variation of the energy bilinear form on the
left side of Eq. (4.3.1).

Note that the first and second terms on the right side of Eq. (4.3.2) for the
trusses and for each distributed component can be obtained from Chapters 1
and 2. The third term on the right side ofEq. (4.3.2) is due to shape variation.
For the domain method, the expression d~'(Wi, Wi) might be evaluated,
instead of Eq. (3.4.8), in terms of domain integrals. Using Eq. (3.2.37) instead
of Eq. (3.2.36) and proceeding as in the derivation of Eq. (3.4.8),

d~;(Wi, Wi) = fL, {-ei(VwiTVi, Wi) - ei(wi, VWTVi)

+ div[ei(wi,Wi)Vi]} d11 (4.3.3)

where e;(-,') is a bilinear function in the integrand of the bilinear form
d.i.n;(·, .).

4.3.2 Eigenvalue Design Sensitivity

SIMPLE EIGENVALUE

Presuming differentiability of a simple eigenvalue , and the associated
eigenfunction y with respect to design variables and shape, supported by the
proofs presented in Sections 2.5 and 3.5, the first variation of both sides of
Eq. (4.3.1) yields the formal relationship

a.,nU, Y) + a~.(y, Y) + a~(y, Y) = Cd.,n(y, y) + 'd.,nU, y)

+ 'd~.(y, y) + 'd~(y, y) for all y E Z
(4.3.4)
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(4.3.5)

This equation may be evaluated at y = y, using the second equation in Eq.
(4.3.1); to obtain

(' = [a~u(Y, y) - (d~u(Y, y)] + [a~(y, y) - (d~(y, y)]

+ [au,flU, y) - (du,fl(Y' y)]

Using symmetry of the two bilinear forms and YE Z, Eq. (4.3.1) implies that
the third term on the right side of Eq. (4.3.5) is zero, yielding

(' = [a~u(Y, y) - (d~U<y, y)] + [a~(y, y) - (d~(y, y)] (4.3.6)

The differentials ofthe bilinear forms on the right side of of Eq. (4.3.6) may
be evaluated using the expansions of Eqs. (4.2.3), (4.2.4), (4.3.2), and (4.3.3)
and the results of Chapters 1 and 2 for the trusses and distributed
components to obtain explicit formulas.

Note that evaluation of the design sensitivity of a simple eigenvalue given
by Eq. (4.3.6) is explicit in terms of the eigenfunction y and does not require
solution of a separate adjoint problem.

REPEATED EIGENVALUE

Consider next the case of a repeated eigenvalue ( with s independent
eigenfunctions; i.e.,

for all y E Z, }

i,j = 1, ... , s

(4.3.7)

Using the directional derivative theorem for repeated eigenvalues in Sections
2.5 and 3.5, the s directional derivatives of the repeated eigenvalue ( in Eq.
(4.3.7) may be characterized as the eigenvalues of the matrix

dt = [(a~u<l, I) - (d~u<l, I» + (a~(yi, I) - (d~(yi, I))].x!
(4.3.8)

where i is row index and j is column index. As presented in detail in Sections
2.3.1 and 3.4.1, for a twice-repeated eigenvalue, an explicit expression may be
obtained for the directional derivatives of the eigenvalue in terms of a
rotation parameter derived from the set of orthonormal eigenfunctions
selected. More specifically,

('I (t5u, V) = cos? ¢(t5u, V)J/ll + sin 2¢(t5u, V)A12 + sin? ¢(t5u, V)dt22

(4.3.9)

(2(t5U, V) = sin? ¢(t5u, V)JIll - sin 2¢(t5u, V)dt12 + cos? ¢(t5u, V)A2 2

(4.3.10)
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where the rotation angle 4> is given as

1 [2j!12 ]4>(bu, V) = -2 arctan
.All - .A2 2

(4.3.11)

The notations ';(bu, V) and 4>(bu, V) are used here to emphasize dependence
of the directional derivative on bu and V.

4.3.3 Example

Consider the truss-beam-plate of Section 4.1.4 with the variational
eigenvalue equation of Eq. (4.1.59). To obtain a design sensitivity formula
using Eq. (4.3.6), expressions must be obtained for a6u(Y, y), d6u(Y, Y), a~(y, Y),
and dHy, y). For a6u(Y, y) and a~(y, y), Eqs. (4.2.40) and (4.2.43) can be used,
respectively. Using Eqs. (1.2.19), (2.2.1), and (4.1.58)

d6u(y, y) = nf mf II .. pwiP btij dQ1
i=l j=l O\'

n+l m 1
+ L L [pfjii'(diijiii)6'j + eii' (Tg)6iJ] bbii dQ2

i=lj=l o'j

n m+ 1

1+ L L .. [pvii'(diihii)i;iJ + OiP(ig)i;iJ] biij dQ3
i=l j=l OJ'

+ [q~lTM(Afl)qP]A"1 bAfl + [q~mTM(Afm)q~m]A"'" bAfm

+ [q~lTM(A71)qkl]Arl bA71 + [q~mTM(A7m)q~m]Ar'" bA7m

(4.3.12)

Also, using Eqs. (4.3.2), (4.3.3), and (4.1.58),

(4.3.13)



4.3. EIGENVALUE DESIGN SENSITIVITY 347

(4.3.14)

If the conventional design variables are assumed to be constant for each
component, the above equation is simplified to

n+1m+1f.'f

dy(y, y) = i~1 j~1 Jny [tijpWij2(V: + VI)] dOl

n+ 1 m 1+ L L(pdiji/ijjjij2 + rgeij2)Yx d0 2
i=1 j=1 n'j

n m+ 11+ L L (pdijhijDij2 + igeij2) Vy d0 3
i= 1 j= 1 nj'

where V = [VX VY]T on the plate component and Von each beam is velocity
in the axial direction. The design sensitivity expression for a simple
eigenvalue, given by Eq. (4.3.6), is rewritten as

C = [ab.(y, y) - (dbu(Y, y)] + [ay(y, y) - Cdy(y,y)] (4.3.15)

where Eqs. (4.2.40), (4.2.43), (4.3.12), and (4.3.14) can be used to obtain
explicit expressions for the terms in Eq. (4.3.15).

For numerical calculations, consider the numerical example of Section
4.2.3. The same numerical data are used for eigenvalue design sensitivity
calculation. As in Section 4.2.3, conventional and shape design sensitivity
calculations are carried out separately. The finite element model of Fig. 4.2.6
is used for conventional design variation, and the finite element model of Fig.
4.2.7 is used for shape design variation. The same nominal designs are used
here. In Table 4.3.1, sensitivity accuracy results are given for the fundamental
eigenvalue, with a uniform 5% change in conventional and shape design
variables, separately. Results given in Table 4.3.1 show excellent agreement
between predictions Cand actual changes dC.

Table 4.3.1

Design Sensitivity of Fundamental Eigenvalue of Truss-Beam-Plate Built-Up Structure

Design
Variable

Conventional
Shape

0.1242E + 04
0.1215E + 04

0.2408E + 03
- 0.2220E + 02

0.2199E + 03
-0.2119E + 02

(C'/tlC x 1(0)%

91.3
95.5
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Appendix

A.1 MATRIX cxtcutus NOTATION

In dealing with systems that are described by many variables, it is essential
that a precise matrix calculus notation be employed. To introduce the
notation used in this text, let x be a k vector of real variables, y be an m vector
of real variables, a(x, y) be a scalar differentiable function of x and y, and
g(x, y) = [gl(X, y) ... g.(x, y)JT be an n vector of differentiable functions of x
and y. Using i as row index andj as column index, define

ax == ~: == [::Jl x k:

og [Ogi]
gx == ax == OXj • x k

[ o2a ] a [oaT] a
axy == aT. = a a = a[a~J = [a~Jy

x, y] k x m Y X Y

Note that the derivative of a scalar function with respect to a vector
variable in Eq. (A.i.!) gives a row vector. This is one of the few vector
symbols in the text that is a row vector, rather than the more common
column vector. In order to take advantage of this notation, it is important
that the correct vector definition of matrix derivatives be used. Note also that
the derivative of a vector function with respect to a vector variable in Eq.
(A.1.2) gives a matrix. No attempt is made here to define the derivative of a
matrix function with respect to a vector variable. Similarly, the second
derivative of a scalar function with respect to a vector variable can be defined

348
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as in Eq. (A.I.3), but the second derivative of a vector function with respect to
a vector variable is not defined.

As an example of the use of this matrix calculus notation, let bX and by be
small perturbations in x and y. Using the total differential formula of calculus
[11] gives

k va m oa
a(x + bX,y + by) - a(x, y) :::; sa == L -;-bXj + L -;- bYj

j= 1 uXj j= 1 UYj

va oa
= -bx + -byax vy
= ax bx + ayby (A.I.4)

This is just one example of an application of matrix calculus that avoids
cumbersome summation notation. Note that both terms in Eq. (A.I.4) are
scalars, since ax is a row vector and bX is a column vector. It is clear that

ba =F bx ax + by ay

since the left side is a scalar and the two terms on the right side are k x k and
m x m matrices, respectively.

Similarly, matrix calculus extensions of ordinary calculus rules can be
derived, such as the product rule of differentiation. For example, if A is an
n x n constant matrix,

o:(Ag(x,y» = [O~j Ct
1

Ai/gl)]

[

n Ogl]
= L k l -

1=1 IOXj

og
= A iJx = Aq; (A.1.5)

A second example, which gives a result that might not be expected,
involves two n-vector functions h(x, y) and g(x, y). By careful manipulation,

(A.I.6)
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To see that Eq. (A.I.6) is reasonable, note that gTh = hTg and that in fact
interchanging g and h does not change either side of Eq. (A.I.6). Note also
that what might have intuitively appeared to be the appropriate product rule
of differentiation is not even defined, much less valid; that is,

In boundary-value problems, derivatives with respect to the independent
variable x E R 3 (or R Z) often arise. In these instances, it is convenient to use
the gradient notation

That is,

[
oa oa va]T

Va(x) == - -~- -~
OXl OXz VX3

va = a~

(A.I.?)

(A.I.8)

(A.1.9)

Very often in structural mechanics, quadratic forms xTAx (x E R") arise,
where A is an n x n constant matrix, presumed initially not to be symmetric.
Using the foregoing definitions,

:x (xT
Ax) = [O~i C~ XkakjXj)]

= [~>kaki + ~ aijXj]

= [~>kaki + ~ xjaJ]

= xT(A + AT)

In particular, if A is symmetric,

(A.UO)

If a scalar valued function a(x) (x E R") is twice continuously differentiable,
the first-order approximation of Eq. (A.IA) can be extended to second order.
Using Taylor's formula [II],

(A.1.1I)
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The purpose of this section is to summarize definitions and properties of
function spaces that are used throughout the text. The mathematical validity
of developments presented in the text rest upon fundamental results as-
sociated with these spaces, which in many cases are nontrivial to prove. Basic
ideas are discussed in this section to assist the engineer in understanding the
nature of the spaces and their properties, with references to the literature
given for proofs.

A.2.1 Rk
; k- Dimensional Euclidean Space

The simplest space encountered in multidimensional analysis is
k-dimensional Euclidean space, denoted here as Rk• This is actually a space of
column matrices, rather than a function space. The space Rk is quite
important in its own right and serves to introduce basic ideas of vector spaces
and their properties, prior to introduction of function spaces. The
k-dimensional Euclidean space is defined as

(A.2.1)

Note that Rk is simply the collection of all k x 1 matrices (column vectors)
whose components are real numbers.

In order to be useful for analyses of finite dimensional structural systems,
algebra must be defined on this space to allow for systematic manipulation.
Addition of two vectors is defined as in matrix notation as

x + Y == [Xl + Yl ... Xk + Yk]T

and multiplication of a vector X by a scalar IX is defined as

IXX == [IXX l ••• IXXk]T

These operations have the properties

X+y=y+X

(x + y) + z = x + (y + z)

There is a unique zero vector 0 = [0 ... 0] such that

O+x=x

there is also a unique negative vector -x such that

x+(-x)=O

(A.2.2)

(A.2.3)

(A.2.4)

(A.2.5)

(A.2.6)

(A.2.7)
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Additional properties of the operations are

rx(x + y) = ax + rxy

(rx + f3)x = ex + f3x

rx(f3x) = (rxf3)x

Ix = x

APPENDIX

(A.2.8)

(A.2.9)

(A.2.10)

(A.2.ll)

where x, Y, and z are arbitrary vectors in R k and rx and f3 are arbitrary real
constants.

The set of vectors Rk defined in Eq. (A.2.1),with the operations of addition
and multiplication by a scalar defined by Eqs. (A.2.2) and (A.2.3), which
satisfy Eqs. (A.2.4)-(A.2.11), constitute a vector space. As will be seen in
Sections A.2.2-A.2.6, sets of functions that have properties of addition and
multiplication by a scalar also obey the properties of Eqs. (A.2.4)-(A.2.ll)
and define a function space, which is a vector space. The value in such a
definition is that functions may be dealt with using an algebra that parallels
the arithmetic that is normally used in manipulation of column vectors.

Having defined an algebra on the vector space Rk
, it is now helpful to

define geometric properties that extend the usual ideas of scalar product and
length of a physical vector. The scalar productof two vectors in Rk is defined
as

(A.2.12)

Much as in the case of the properties of Eqs. (A.2.4)-(A.2.11) for vector
addition and multiplication by a scalar, it may be verified that the scalar
product defined by Eq. (A.2.12) satisfies

(x, y) = (y, x)

(x, y + z) = (x, y) + (x, z)

(ex, y) = rx(x, y)

(x, x) ~ 0

(x, x) = 0 implies x = 0

(A.2.l3)

(A.2.14)

(A.2.15)

(A.2.16)

(A.2.1?)

where x, y, and z are arbitrary vectors in Rk and (X is an arbitrary scalar.
Having defined a scalar product of two vectors, the norm of a vector in Rk

may be defined as

Ilxll == (x, X)1/2 (A.2.18)

It is not difficult to verify that the norm defined by Eq. (A.2.18) has the
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following properties:

[ux] = lalllxli

I(x, Y)I s Ilxllllyll

[x + yll s [x] + lIyll
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(A.2.I9)

(A.2.20)

(A.2.2I)

where x and yare arbitrary vectors and a is an arbitrary scalar. The norm of
a vector abstracts the concept of length of a physical vector and allows for
extension of the idea of two vectors x and y being close to one another if the
norm of their difference IIx - yll is small.

It is interesting to note that if the norm is defined by Eq. (A.2.I8) in terms
of a scalar product, it automatically has properties of Eqs. (A.2.I9)-(A.2.2I).
There are situations in which a norm can be defined on a vector space that
has no scalar product. In such a case, an abstract norm is defined as a
functional operating on a vector, having the properties of Eqs. (A.2.19)-
(A.2.2I) and IIxll > 0 for all x -=f O. This last property follows automatically
by the definition of Eq. (A.2.I8), using the scalar product properties of Eqs,
(A.2.I6) and (A.2.I7). In case there exists no scalar product, this latter
property must be verified in order to assure properties of the norm.

In addition to allowing definition of two vectors being close, the norm can
be used to define convergence of a sequence of vectors {Xi} (i = 1,2, ...) in Rk

as follows:

if and only if lim [x - x'] = 0
i-ex)

(A.2.22)

The concept of convergence in Rk can be shown to be equivalent to
convergence of individual components of the vector. This simple property,
however, does not carryover to infinite-dimensional vector spaces, such as
function spaces that are encountered in the study of boundary-value
problems.

A sequence of vectors that cluster near one another as their index i grows
large is called a Cauchy sequence. More precisely, a sequence {Xi} is a Cauchy
sequence if

lim IIxm
- x"11 = 0

m~n-- 00

(A.2.23)

A vector space for which every Cauchy sequence is convergent to a limit in
the space is called a complete vector space. It is not difficult to show that Rk is
a complete vector space under this definition. In fact, any vector space that is
complete in the norm defined by a scalar product is called a Hilbert space.
With this definition, Rk is a Hilbert space.

Afunctional is a mapping from a vector space to a real number. Examples
offunctionals on Rk include Ilxll and (x, y) for a given y in Rk

• A functional I is
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said to be a linear functional if

I(x + y) = I(x) + I(y)

I(rxx) = rx/(x)

APPENDIX

(A.2.24)

(A.2.25)

for all x and y in Rk and all scalars a. A linear functional is said to bebounded,
or continuous, if there exists a positive constant'}' such that

I/(x)1 s '}' Ilxll (A.2.26)

for all x in Rk
•

It is interesting to note that the functional Ilxll is not linear, as is easily
verified using the properties of Eqs. (A.2.19)-(A.2.21). The functional
I(x) = (x, y) for a fixed y in R k can be verified to be linear, using the properties
of scalar product given in Eqs. (A.2.14) and (A.2.15). Using Eq. (A.2.20), it is
also seen to be bounded.

One of the principal reasons that Hilbert spaces are valuable in structural
analysis is that any bounded linear functional on a Hilbert space has a very
special representation, defined by the Reisz representation theorem; that is,
any bounded linear functional/(x) on Rk can be represented as

I(x) = (y, x) (A.2.27)

for some vector y in Rk
• The Reisz representation theorem guarantees

existence of the vector y associated with the bounded linear functional I.
While this statement may not sound like a commonly used idea in mechanics,
in fact it is. The concept of generalized force in mechanics follows from the
Reisz representation theorem, in which the bounded linear functional I is the
virtual work associated with a virtual displacement x, and the vector y is
defined as the generalized force of the system.

The rather obvious algebra, norm, and convergence properties of the
finite-dimensional vector space R k have been formalized in this section in
some detail to prepare for the definition of similar properties in spaces of
functions that are needed in the study of boundary-value problems. The
reader who is unfamiliar with concepts of function spaces should recognize
the similarity between operations and properties of function spaces and the
more intuitively clear properties of the finite-dimensional vector space Rk

•

A.2.2 Cm(O); m- Times
Continuously Differentiable Functions
on 0

Consider an open set Q in Rk
, with closure Q in the norm of Rk

•

Considerations are limited in this section and in the text to bounded sets, that
is, sets of points whose distances from the origin are bounded by some finite
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constant. Restriction is limited to bounded sets, since most structural
applications occur on bounded sets in R 1 through R3• Furthermore,
restriction to bounded sets has the attractive property that every continuous
function on a closed and bounded set in Rk is bounded.

The set of all m-times continuously differentiable functions on a set Q is
defined as the function space

OIiIU(X)

OX{I ... oxlk

is continuous for iii = 1,2, ... ,m} (A.2.28)

where j is a vector of indices j = (jl' ... ,jk) and iii = I}=.i; For simplifi-
cation of notation in the following, the derivative olilu(x)/ox{l ... OX{k will be
denoted simply as olilu(x)/oxi. The space of m-times continuously differenti-
able functions on the closed set n is simply defined by replacing Q in Eq.
(A.2.28) by n. The space Cm(Q) is viewed at this point simply as the collection
of all possible m-times continuously differentiable functions defined on the set
Q, with no concept of algebra or geometry defined.

To make use of the space of m-times continuously differentiable functions,
it is essential to define an algebra on this space. Consider two m-times
continuously differentiable functions u and v defined on Q. The sum of these
two functions is defined as

(u + v)(x) == u(x) + v(x) (A.2.29)

which must hold for all x E Q; that is, addition of functions is carried out in
the natural way of adding their values at points in physical space. Similarly, a
scalar a times a function u is defined as

(cw)(x) == au(x)

for all x E Q.

Defining the zero function as

O(x) == 0

and the negative of a function as

(-u)(x) == -u(x)

(A.2.30)

(A.2.31)

(A.2.32)

it is easy to show that properties of Eqs. (A.2.4)-(A.2.11) follow for addition
and multiplication of functions defined in Eqs. (A.2.29) and (A.2.30). Before
concluding that Cm(Q) is a vector space, however, it must be demonstrated
that given two functions u and v in the space and a scalar a, then u + v and au
are again in the space (that is, they are m-times continuously differentiable
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functions). This conclusion follows directly from the following elementary
properties of differentiation:

alii alii alilu(x) alilv(x)
axi[(u + v)(x)] = axi[u(x) + v(x)] = fiT +~ (A.2.33)

alil(IXU)(X)

axi

aIiIIXU(x) alilu(x)
= a---

axi axi (A.2.34)

(A.2.35)

Since the sum of two continuous functions and the product of a scalar times a
continuous function are continuous, the space Cm(O) is closed under the
operations of addition and multiplication by a scalar. It is therefore a vector
space. The elements of this space may now be viewed as vectors in the same
sense that column matrices are viewed as vectors in Rk• It should not be too
surprising that this concept of a vector does not correlate completely with the
physical idea of a vector in three-dimensional space as something with
magnitude and direction, since for k different from 3, these concepts break
down even for Rk

•

It is possible to make direct definition of a norm on the space Cm(fi) as

I
alilu(x)I

lIullcm == rna]: ~
xeD uX

O:s;lil:s;m

It can be verified that this is a norm with the properties given in Eqs.
(A.2.l9)-(A.2.21) and that lIullcm > 0 if u =F O. In fact, it can be shown that
the space Cm(O) is complete in this norm but that this norm is not generated
by any scalar product. Therefore, the space Cm(fi) is a complete vector space
with a norm, but it is not a Hilbert space. Such spaces are called Banach
spaces and have a rather rich mathematical theory. The distinction between
Banach and Hilbert spaces, however, will not be required in the analysis
presented in this text, since an adequate theory can be developed using
Hilbert space properties almost exclusively.

A final space of continuously differentiable functions that is often en-
countered in applications is the space of functions having all derivatives
continuously differentiable; that is,

C"'(O) == {u(x), X E 0: u E cm(o) for all m} (A.2.36)

It is somewhat remarkable, and nontrivial to prove, that C"'(O) is dense in
most of the function spaces that are dealt with in this text, many of which are
composed of functions that have no continuous derivatives. To say that one
space is dense in another means that the first space is a subset of the second
and that every function in the second can be approximated arbitrarily closely
in its own norm by a function in the first space.
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A.2.3 [2(0); Space
of Lebesgue Square Integrable
Functions

The concept of the Lebesgue integral is a technical extension of the well-
known Riemann integral that is introduced in basic calculus and is used
throughout the theory of structural mechanics. The distinction between the
definitions of the two integrals is illustrated in Fig. A.2.1. In defining the
Riemann integral of a function, the horizontal axis is partitioned by a grid of
points and the sum of the areas of the rectangles shown in Fig. A.2.1(a)
approximates the area beneath the curve defined by the function. It is shown
mathematically that for certain classes of regular functions, as the spacing of
the grid points approaches zero, hence approaching an infinite number of
grid points on the horizontal axis, the sum of areas converges and is defined
as the value of the Riemann integral.

y Y

YI+I f-----7f"=..,----"7t'~

Yi1--~7+4-A:___;(,7t____l

Fig. A.2.t Integral of a function.

In contrast to the definition of the Riemann integral, the Lebesgue integral
is defined by placing a grid of points on the vertical axis and drawing a set of
horizontal lines that cut the graph of the function being integrated, as shown
in Fig. A.2.1(b). The collection of subintervals on the horizontal axis is
associated with a range of values of the function between Yi and Yi+ 1, and a
lower bound on the contribution of the area beneath the curve over these
subintervals is calculated as Yi times the sum of the lengths of these intervals.
Summing over all grid segments along the vertical axis yields a lower bound
to the area beneath the curve defined by the function. A limit is then taken as
the spacing of grid points on the vertical axis approaches zero. This limit, if it
converges, is called the Lebesgue integral of the function and the function is
declared to be Lebesgue integrable [31, 79].

The value of the Lebesgue integral is equal to the value of the Riemann
integral if the Riemann integral of the function under consideration exists.
There are, however, pathological functions that do not have Riemann
integrals but which do have Lebesgue integrals. Therefore, the Lebesgue
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integral is an extension of the Riemann integral, with values coinciding for
any function that has a Riemann integral. The mathematician takes great
delight and substantial pain defining functions that have a Lebesgue integral
but do not have a Riemann integral. For purposes of this text, however, such
studies in pathology are not necessary. The structural engineer should feel
quite comfortable that virtually any function he encounters will have a
Riemann integral, which therefore must agree with the value of the Lebesgue
integral.

The power of the Lebesgue integral, however, should not be dismissed,
since it provides a powerful tool for establishing mathematical properties of
the function spaces in which engineers regularly work. Of particular value
are properties of the Lebesgue integral in which sequences of functions that
are Lebesgue integrable and satisfy certain basic properties have limits that
are also Lebesgue integrable. It is shown in the mathematical literature that
many sequences of functions that have Riemann integrals either fail to
converge or converge to functions for which the Riemann integral is not
defined. Thus, if completeness of function spaces is of concern, then the
Lebesgue integral is an essential tool. In particular, using the principle of
minimum total potential energy of structural mechanics, Lebesgue in-
tegration theory can predict exactly what properties the minimizing function
should be expected to have, hence defining the mathematical properties of
solutions of mechanics problem. This is particularly important in structural
mechanics, where minimizing sequences are often defined for total potential
energy (i.e., functions that yield successively lower values of the total
potential energy). It is desired that such minimizing sequences converge and
give solutions to the structural problem. Using the theory of Lebesgue
integration and associated function spaces, the mathematician has proved
that such sequences do converge and in fact has provided a clear definition of
mathematical properties of the solutions.

Lest the engineer dismiss all this as mathematical formalities, it is wise to
reflect on the fact that limits of minimizing sequences exist in structural
analysis and have well-defined mathematical properties. However, if the
engineer is seeking to optimize design of a structure, a minimizing sequence
of designs may be obtained, each of which is regular and physically
meaningful, and it may be discovered that the limiting function falls outside
the class of designs of interest. This dilemma is of very real practical concern
if the engineer seeks to use optimality criterion for discovering optimum
designs. It is well known in the structural optimization literature that certain
problems, such as the problem of finding optimum thickness variation for a
plate, may lead to a solution that involves an infinite number of infinitesimal
ribs, which perhaps approximate a fiber composite structure. Thus, the
solution of the plate optimization problem does not exist in the class of
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smooth thickness distributions. If the engineer writes down necessary
conditions of optimality that would have to hold if there were a smooth
solution and attempts to find an optimum design based on these necessary
conditions, a rude shock is forthcoming since no solution exists.

It is interesting to ponder such questions in a pseudotheological setting;
that is, existence of solutions of structural analysis problems are "God given"
(with the help of the mathematician) in spaces of Lebesgue integrable
functions, whereas the "Deity in charge of design" has not been so kind as to
provide us with existence of smooth optimal designs.

Without going into a detailed treatment of Lebesgue integration theory, it
is still possible to provide an intuitive introduction to technical results that
are obtainable with Lebesgue integration. For example, the space of
Lebesgue square integrablefunctions may be defined as

L2(Q) == {U(X), X E Q: f{ (U(X))2 dx < 00 } (A.2.37)

where the integral over Q is the Lebesgue integral, which as noted above
coincides with the Riemann integral when it exists.

It is possible in this space to define a scalar product as the integral of the
product of two functions; that is,

(u, V)L2(O) == f{ u(x)v(x) dx (A.2.38)

(A.2.39)

where the integral is in the Lebesgue sense. Using Lebesgue integration
theory, it is possible to show that properties given by Eqs. (A.2.l3)-(A.2.17)
are valid [79]. Therefore, a natural norm is defined on this space as

l/ u llL2(o) == (u,u)No) = [f{ (u(x)f dxT/2
which automatically satisfies the properties of Eqs. (A.2.19)-(A.2.21), in
particular the important inequality known as the Schwartz inequality,

(A.2AO)

The reader who has studied Fourier series will recognize these ideas as
providing the foundation for the theory of construction of series approxi-
mations of functions and their convergence properties.

Using properties of the Lebesgue integral, it is shown that the space L2(Q)
is complete [79J; that is, Cauchy sequences in the L2 norm converge to square
integrable functions. Since the space e(Q) has a scalar product, it is a Hilbert
space and has all the desirable properties of Hilbert spaces.
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Consider the functional

l(u) = fLf(X)U(X) dQ (A.2.41)

defined by a given function f in L2(Q). For any function u in U(Q), the
product of f and u is Lebesgue integrable, and the right side of Eq. (A.2.41)
creates a real number. Therefore, l(u) is a functional. To see that this is a
linear functional, standard properties of integration yield

l(rxu) = fI afu dQ = rx fffu dQ = rxl(u) (A.2.42)

l(u + v) = II f(u + v) dQ = II fu dQ + II fv dQ = l(u) + l(v)
Q 11 Q (A.2.43)

To see that the functional is bounded, the Schwartz inequality of Eq. (A.2.40)
may be applied to obtain

(A.2.44)

Thus, the scalar product of an arbitrary function u with a fixed function fin
L2(Q) [that is, the right side of Eq. (A.2.41)] defines a bounded linear
functional on L2(Q).

Since L2(Q) is a Hilbert space, the Reisz representation theorem guarantees
that every bounded linear functional on the space can be represented as the
scalar product of u with some function in the space; that is, every linear
functionall(u) can be written in the form

for some function 9 in L2(Q).

l(u) = (0, U)L2(11) (A.2.45)

A.2.4 L00(0); Space of Essentially Bounded,
Lebesgue- Measurable Functions

In Lebesgue integration theory, the measure of a set (its length in R\ area
in R 2

, or volume in R 3
) is defined for very general sets of points. Sets whose

measure is zero (e.g., sets of discrete points, line segments in R2 or R3
, and

plane segments in R3
), play key rolls in analysis. A function that has a

property that holds everywhere in the space except on a set of measure zero is
said to have that property almost everywhere (abbreviated a.e.). Functions in
spaces such as L2(Q) are defined based on properties that are expressed in
terms of integral relations. Their values at discrete points do not influence the
integrals. Hence, such functions may have irregular properties at discrete
points or on sets of measure zero.
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As an extension of a collection of integrable functions that are bounded by
some finite constant, essentially boundedfunctions are defined as

L"'(n) = {U(X), x E n: lu(x)l::s; k < 00, a.e. in n}

A norm on L"'(n) may be defined as

IluIILOO(O) = inf{K: lu(x)l::s; K a.e. In n}

(A.2.46)

(A.2.47)

where the term inf denotes least upper bound. It is shown in Lebesgue
integration theory [79] that this defines a norm on L"'(n) and the space is
complete in this norm; that is, Cauchy sequences in this norm converge to
functions in the space. It is also shown that it is impossible to define a scalar
product on this space, hence that the space is not a Hilbert space, even
though it is a Banach space.

Note that for a bounded set n, Cm(n) is a subset of L"'(n). However,
piecewise-continuous functions are also in L"'(n). The property of L"'(n) that
makes it valuable in considering design problems is that minimizing
sequences of functions that define mechanical properties, such as cross-
sectional area of a beam or thickness of a plate, have the property that if they
converge in the space L"'(n), they remain essentially bounded, which is a
physical property that must be preserved. Once such a limiting function is
defined, it can be modified on only a set of measure zero to cause it to be
finite everywhere.

A.2.5 Hm(Q); Sobolev Space of Order m

Because strain energies in structural components are written as integrals of
quadratic expressions in first or second derivatives of displacement fields and
since strain energy must be finite for any physically meaningful displacement
field, it is natural to define spaces of functions that can be displacement fields
in such a way that strain energy is guaranteed to be finite. Since derivatives of
displacement fields define strain, and strain must be integrable, the regularity
of such functions must at least allow for evaluation of strain energy. These
considerations then make it natural to define a Sobolev space of order m as

(A.2.48)

(A.2.49)

Such a space may be considered as a space of candidate displacement fields in
elasticity for m = 1 and for displacement of a beam or plate with m = 2.

A scalar product may be defined on this Sobolev space as

5.1
alklu a1k1v

(U,V)Hm({}) == L ~~dn
Ikl:s;m n uX uX
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It is reasonably direct to show that this bilinear functional has the properties
of Eqs. (A.2.13)-(A.2.17) and is therefore a scalar product [36]. A norm on
the Sobolev space can therefore be naturally defined as

[ If (OlkIU)2 J1/2
IluIIH~(n) = IiI: dn

Ikl,;m n x
(A.2.50)

It is proved in the literature on Sobolev spaces [36] that an equivalent
definition of the Sobolev space can be given in terms of Cauchy sequences of
functions in {u E Cm(n): II u II H~(n) < IX)} as follows:

Hm(n) = {u: for some Cauchy sequences
{¢i} in {u E Cm(n): IluIIH~(n) < co},

lim IW - uIIH~(n) = O} (A.2.51)
'-00

Thus,

{u E Cm(n): IluIIH~(n) < oo}

is dense in Hm(n). It is also shown in the literature [36] that Hm(n) is
complete, hence it is a Hilbert space.

Since convergence of a sequence of functions in the Hm(n) norm involves
L2(n ) convergence of derivatives up through order m, it appears reasonable
that such convergence should preserve m derivatives of the limit function. As
will be seen later, this is indeed the case and provides a natural setting for the
study of boundary-value problems using modern variational techniques.

A.2.6 H[f'(O); Sobolev m-Space
with Compact Support

A function u(x) is said to have compact support on n if there is a compact
set Sen such that u(x) = 0 for x ¢ S. Much as in the alternative definition
of Sobolev space of Eq. (A.2.51), a new space may be defined as a similar limit
of Cauchy sequences of functions that have compact support; that is,

H1j(n) = {u E Hm(n): for some Cauchy sequence {q/} of Coo(n)

functions with compact support lim IW - uIIH~(n) = O}
,- 00 (A.2.52)

Since, as noted above, it might be expected that limits of functions in
Sobolev space preserve properties of derivatives, functions and some of their
derivatives that appear in H1j(n) should be zero on the boundary ofn. As will
be shown later, this and more is true.
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A.2.7 The Sobolev Imbedding Theorem

Although the proof is not easy, it is shown in the literature [36J that if Q is
a bounded domain in R" with a smooth boundary and if 2m > n, then

Hi+m(Q) c; Ci(Q) (A.2.53)

Furthermore, the identity mapping from Hi+m(Q) to Ci(Q) is continuous;
that is, there exist constants K, < 00 such that for all u in Hi+m(Q),

Ilullo(l1) s x, IluIIHJ+m(n) (A.2.54)

This theorem gives valuable information concerning properties of func-
tions in Sobolev spaces. In particular, it was noted earlier that functions that
are defined as limits of sequences in the L2 norm need not have finite values
at isolated points. The Sobolev imbedding theorem, however, guarantees
that in Sobolev spaces these functions are continuous and in many cases
continuously differentiable due to the introduction of L2-norm convergence
of the derivatives of such functions in the Sobolev norm.

As an example, consider the displacement of a string on the interval [0, IJ
in R I. To assure finite strain energy, it must be in HI(O, 1). By the Sobolev
imbedding theorem, Eq. (A.2.53) guarantees that

HI(O, 1) c CoCO, IJ (A.2.55)

and boundary conditions such as u(O) = UO and u(l) = u l will be preserved in
convergence of sequences of functions in HI(O, 1).

Similarly, in the case of a beam on the interval [0, IJ, finiteness of strain
energy demands that displacement functions be in H 2(0, 1). Thus, by the
Sobolev imbedding theorem,

H 2(0, 1) c Cl[O, IJ (A.2.56)

Thus, admissible beam displacements must be continuously differentiable, and
boundary conditions of the form u(O) = UO and (dujdx)(O) = UfO will be
preserved if limits of sequences of such functions are taken in the H 2 norm.

If 2m > n and if u E H6+ m(Q), it is a Ci(Q) limit of smooth functions that
are zero on the boundary r of Q. Thus,

a1k1u
~k = ° k ~j on I' (A.2.5?)ax

For example, if u E H5(0, 1), then since

(A.2.58)

u must be a Cl[O, 1J limit of functions that are zero in the boundary. Hence,

u(O) = u(l) = du(O) = du(l) = °
dx dx

(A.2.59)
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A.2.8 Trace Operator

The operation of projecting a function defined on the interior of a set 0 to
its boundary r is the process of evaluating the function on the boundary, if
the function has a regular extension to the boundary. In general, such a
projection is called the trace of the function. In particular, for U E Hm(O), the
trace is defined as

yu = [Yo(u) ... Ym-l(U)] on r (A.2.60)

That is, it contains the projection of the function and its first m - 1
derivatives to the boundary r of 0, where yiu) = iYujonj and n is the outward
normal to r.

The nature of functions projected onto the boundary is somewhat more
complicated than has been encountered in spaces of functions on the domain
O. In particular, it is shown in the literature [36] that y is a mapping from
Hm(O) to a product space (see Section A.2.9) of boundary values of the
function, which are fractional-order Sobolev spaces on the boundary; that is,

m-l
y: Hm(O) -+ fl Hm-l ~ 1/2(r)

j=l

(A.2.61)

Due 'to technical complexity associated with even defining the fractional-
ordered spaces on the boundary, no attempt to describe these spaces is given
here (see Adams [36]). This theory, however, makes precise the regularity
properties required of functions appearing in boundary conditions of
boundary-value problems [9].

Of specific interest here is the anticipated result that boundary evaluations
of functions appearing in HO'(O) are zero. Even more, it is shown that every
function in HO'(O) is of this kind; that is,

HO'(O) = {u E Hm(O): yu = O} (A.2.62)

Thus, the space HO'(O) is exactly the space of candidate solutions of Dirichlet
boundary-value problems in which homogeneous boundary conditions are
specified for a differential operator equation of order 2m to include zero
values of the function and its first m - 1 derivatives on the boundary. This
precisely defines the space of candidate solutions of such a boundary-value
problem and provides substantial information on the nature of solutions.

A.2.9 Product Spaces

As a final topic in considering function spaces, it is helpful to define a
function space whose elements are groupings of functions of quite different
character. For example, consider two function spaces denoted X and Y.



A.3. DIFFERENTIALS AND DERIVATIVES IN NORMED SPACES 365

Their product space is defined as the collection of all pairs of functions, one
from X and one from Y,

X x Y = {[u, v]: u E X, V E Y}

A norm on this product space can be defined as

lI[u,v]lIxxy == lIull x + IIvlly

(A.2.63)

(A.2.64)

As an example of a product space, consider the design of a plate of variable
thickness, in which the function h, defining the thickness in L<Xl(Q), and
Young's modulus E E R 1 are the design variables. The design space can be
defined as the product space of these two spaces of different types of design
variable as

U == L<Xl(Q) X R 1 = {[h,E]: h e LOO(Q), E E R'}

and will have the norm

II[h, E]llu = IlhIIL",(o) + lEI

(A.2.65)

(A.2.66)

Use of this product space idea is essential in establishing the regularity of
dependence of solutions of boundary-variable problems on design variables.

A.3 DIFFERENTIALS AND DERIVATIVES
IN NORMED SPACES

The purpose of this section is to summarize the definitions of properties of
differentials and derivatives of nonlinear mappings or functions, which
extend the classical idea of differential and derivative to the calculus of
variations and its generalizations. The value of these abstract differentials
and derivatives is both practical and theoretical. Practically, the theory
allows for first-order approximation or "linearization" of nonlinear func-
tionals that arise in structural design. From a theoretical point of view,
differentials and derivatives are used heavily throughout the text to prove
existence results and properties of dependence of structural response meas-
ures on design variables.

A.3.1 Mappings in Normed Spaces

Consider vector spaces X and Y, with norms 11·llx and 11·lly, respectively.
These spaces may be any of the normed spaces that are discussed in Section
A.2. A function <I>(x) that defines a vector in Y, once a vector x in X is
specified, may be viewed as a mapping from X Into Y denoted as

<1>: X --. Y (A.3.1)
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A special case is X = R 1 and Y = R 1
, in which <I> is a real-valued function of

a single real variable. If, on the other hand, X = L2(n ) is a space of designs
and Y = [H1(n )] 3 is the Sobolev space of displacements of an elastic solid,
then <I> may be defined as a mapping from the space X of designs to the space
Y of solutions of boundary-value problems of elasticity, where <I>(x) is the
solution of the boundary value problem for design x.

The concept of continuity of a mapping between normed spaces is a direct
extension of the concept of continuity of scalar functions of scalar variables.
More specifically, the mapping <I> is continuous at x if, for every e > 0, there
exists a ~ > °such that

for all 11 E X such that

11<I>(x + 11) - <I>(x)IIY ~ S

1I11/1x < s

(A.3.2)

(A.3.3)

If <I> is continuous at every x E X, then it is said to be continuous on X.
An algebraic property of the mappings that is of some importance in

design sensitivity analysis concerns linearity. A mapping <I> is said to be
homogeneous of degree n if

<I>(IXX) = IXn<l>(X) (A.3.4)

where IX is any real number. If Eq. (A.3.4) holds only for IX ~ 0, then <I> is said
to be positively homogeneous of degree n. A more important concept is
linearity of a mapping. More specifically, <I> is said to be a linear mapping if

<I>(IXX + {3z) = IX<I>(X) + {3<1>(z) (A.3.5)

(A.3.6)

for all x and z in X and for all real IX and {3. Note that a linear mapping is
homogeneous of degree one.

A.3.2 Variations and Directional Derivatives

The idea of derivative or differential of a scalar function of a scalar variable
can be profitably extended to general mappings. First, one may define the
one-sided Gateaux differential as

<I>~(x, 11) == lim ~ [<I>(x + TI1) - <I>(x)]
r ....0 T
,>0

providing the limit on the right side exists. The term <I>~(x, 11) is called the
"one-sided Gateaux differential of <I> at point x in the direction 11." This
differential exists for large classes of mappings, but it may not possess some of
the nice properties usually attributed to derivatives in ordinary calculus. A
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direct calculation shows that for all (X > 0,

<I>~(x, (X1]) = lim ~[<I>(x + t(X1]) - <I>(x)],-0 t
,>0

= (X lim ~ [<I>(x + (xt1]) - <I>(x)]
<%,-0 (Xt
,>0

367

(AJ.7)

which verifies that the one-sided Gateaux differential is positively homo-
geneous of degree one.

To relate this idea of the differential to a simple function, consider the real-
valued function of a single real variable x,

<I>(x) = Ixl (AJ.8)

A simple check will show that while this function is continuous, it does not
have an ordinary derivative at x = 0. The one-sided Gateaux differential,
however, is defined using Eq. (A.3.6) as

<I>~(O, 1]) = lim ~[1t111 - 0] = 11]1 (A.3.9),-0 t
,>0

Note that

(AJ.10)

so the one-sided Gateaux differential is not linear in 1] and in fact is not
homogeneous of degree one. Nevertheless, it predicts the change in the
function <I> due to a perturbation 1] in the independent variable x.

If the limit in Eq. (A.3.6) exists for both r > °and t < 0, then <I> is said to
have a Gateaux differential (often called the differential or variation) at x in
the direction 1], given by

<I>'(x,1]) = lim ~ [<I>(x + t1]) - <I>(x)]
' ....0 t

(AJ.ll)

(A.3.12)

where the limit may be taken with r either positive or negative. In this case,
the calculations of Eq. (A.3.7) are valid for both positive and negative (x,
hence the Gateaux differential is homogeneous of degree one.

An example of the Gateaux differential that often arises in structural design
sensitivity analysis and in the calculus of variations involves mapping <I> from
the space L2(Q) into the real numbers (a functional), defined as

<I>(x) = fIn F(x) dQ
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(A.3.13)

where the scalar-valued function F is presumed to be continuously differen-
tiable. The Gateaux differential of this functional may be calculated as

(J)'(x, '1) = lim ~ f.I [F(x + -'1) - F(x)] dO..-0 _ n

= f.I lim ~[F(x + rz) - F(x)] dO.
n .-0_

= Ii ~: '1 dO.

which may be recognized as the first variation of the functional (J) in the
calculus of variations. Note that in this special case, (J)'(x, .) is a linear
mapping from L2(n ) to the real numbers.

As will often be the case, the mapping (J)'(x, .) from X into Y may be
continuous and linear, in which case it is called the Gateaux derivative of (J)
at x.

A.3.3 Frechet Differential and Derivative

Let the mapping (J) be given as in Eq. (A.3.1).Then (J) is said to be Frechet
differentiable at x if these exists a continuous linear operator (J)'(x, .): X --+ Y
such that

lim [11(J)(x + '1) - <J)(x) - (J)'(x, '1)lly/II'1llx] = 0
1I~lIx-O

(A.3.14)

holds for any '1 E X. The operator <I>'(x, '1) in Eq. (A.3.14) is called the Frechet
differential of (J) at x. The mapping (J)'(x, .) from X into Y is called the Frechet
derivative of (J) at x and is a continuous linear mapping from X to Y.

It is obvious that if (J) is Frechet differentiable at x, then (J) is Gateaux
differentiable at x. It is interesting to note that the Gateaux and Frechet
derivatives are equivalent for functions defined on Rt, but are not equivalent
on higher-dimensional spaces. To see this, consider an example with X = R 2

and Y = R I
• Define (J): R 2 --+ R I as (J)(xl,O) = 0 and (J)(Xt>X2) =

(xt!x2)(xI + x~), if X2 "i' O. It is easy to check that the Gateaux derivative
exists at (0,0) and is the zero operator. However, a Frechet derivative does
not exist at (0,0). In fact, (J) is not even continuous at (0,0).

Dieudonne [80] showed that if the Gateau derivative (J)'(w, •) exists for all
w in a neighborhood of x and

lim 1I(J)'(w, .) - (J)'(x, ·)11 = 0,
w-x

(A.3.15)

then the Frechet derivative exists. Note that the norm in Eq. (A.3.15) is for
the space of continuous linear mappings fM.P(X, Y) [81].
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Consider again the mapping of Eq. (A.3.12) from L2(n ) to the real
numbers, with the Gateaux differential defined by Eq. (A.3.13). In order to
check whether cI> is Frechet differentiable, for evaluation of Eq. (A.3.14),

cI>(x + ,,) - cI>(x) - cI>'(x,,,) = II[F(X + ,,) - F(x) - ~~ "J dn

(A.3.16)

By the remainder form of Taylor's formula,

dF 1d2F

F(x + ,,) - F(x) = dx " + "2 dx 2 (X),,2 (A.3.17)

(A.3.18)

(A.3.19)

where x = x + rx" and 0 < rx < I. If the second derivative of F is bounded
by some finite constant K, that is, if

I~:~I < K

then from Eqs. (A.3.16)-(A.3.18),

1cI>(x +,,) - cI>(x) - cI>'(x,,,)1 ~~ fI r,2 dn = ~ 11r,lltz

Dividing both sides by 1Ir,IILz and taking the limit as 1117I1LZ goes to zero, it is
seen that Eq. (A.3.14) is satisfied and that cI> is Frechet differentiable.

A.3.4 Partial Derivatives and the Chain Rule
of Differentiation

Very often in structural design sensitivity analysis, several variables appear
in the same expression. Consider a mapping of cI> that depends on a variable
from normed space X and a variable from normed space Z, denoted as
cI>: X x Z ~ Y. As in ordinary calculus, Z E Z may be held fixed and the
Gateaux differential of cI> calculated as a function of x E X and similarly
hold x E X fixed and calculate the Gateaux differential of cI> as a function of
z E Z to obtain

cI>~(x, n; z) == lim ~ [cI>(x + tn; z) - cI>(x; z)]
<~O t

cI>;(x; z, v) == lim! [cI>(x; z + tv) - cI>(x; z)]
<~o t

(A.3.20)

which are called partial Gateaux differentials of cI>.
An important result (proved by Dieudonne [80] and Nashed [81]) relates

the Gateaux differential of cI> to its partial Gateaux differentials. More
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specifically, if <1>; and <1>; of Eq. (AJ.20) exist and are continuous and linear in
'1 and v, then <I> is Frechet differentiable on X x Z and

<I>'(x, '1; z, v) = <I>;(x, '1; z) + <I>;(x; z, v) (A.3.21)

This powerful result permits calculations with individual variables and,
providing the hypotheses are checked, yields the Gateaux differential of a
mapping as the sum of its partial Gateaux differentials.

A related concept extends the classical chain rule of differentiation.
Consider a mapping 0: X --+ Z and a mapping '1': Z --+ Y, both of which are
Frechet differentiable. Then, the composite mapping <I>(x) = 'P(0(x)) is
Frechet differentiable and

<I>'(x, '1) = if/(0(x))0'(x, '1) (AJ.22)

This result was proved by Dieudonne [80] and its properties were developed
and analyzed by Nashed [81]. The chain rule, however, is not valid for
Gateaux derivatives [81]. The concept of chain rule differentiation is used
extensively in structural design sensitivity analysis, since structural perfor-
mance measures are often stated as functionals involving the displacement
field, which is itself a function of design.

A.4 NOTATION

au(z, z)
or ariz, z)

Au
Au

b

Bu

Bu

c(z,z)
Cijkl

Cm(O)

diY, Y)
or deb, y)

D(Dg)

D(A u)

D(Bu)

[j(u)
DV

e(y, y)

Energy bilinear form; au(z, z) or arb, z) is twice the strain
energy associated with displacement z
Friedrichs extension of the operator Au
Formal linear differential operator
Design variable vector b = [b I ••• bk]T, whose com-
ponents are parameters (real constants)
Friedrichs extension of the operator Bu

Formal linear operator for eigenvalue problem
Bilinear mapping such that ao(z, z) = IHo c(z,z) dO
Modulus tensor for linear elasticity
m-times continuously differentiable functions on 0
Bilinear form associated with geometric stiffness and
mass matrices
Reduced (generalized) geometric stiffness matrix
Domain of the operator Au
Domain of the operator B;
Flexural rigidity of the plate
Jacobian matrix of the velocity field V(x)
'Bilinear mapping such that do(Y, y) = IHo e(y, y) dO
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E
F (Fg)

H
Hm(Q)

HO'(Q)
J

K (Kg)
lu(z)

or 19(z)
L2(Q)

LOO(Q)

mp

M(Mg)

n
Rk

s
T(x, r)

U
V(x)
Ilxll

(x, Y)
Y (Yg)

z
y

bij
3(x)
eij(z),

p
crij(z)

ljJ
I1ljJ = ljJ2 _ ljJl
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Young's modulus
Reduced (generalized) force vector or function
Curvature of the boundary r
Sobolev space of order m
Sobolev m space with compact support
Jacobian of the mapping T(x, r)
Reduced (generalized) global stiffnessmatrix
Virtual work due to virtual displacement z

Space of Lebesgue square integrable functions on Q
Space of essentially bounded, Lebesgue measurable func-
tions on Q

Characteristic function of the set Qp

Reduced (generalized) global mass matrix
External unit normal to the boundary I'
k-dimensional Euclidean space
Unit tangent to the boundary I'
Transformation mapping
Space of the design variables u
Design velocity field
Norm of the vector x
Scalar product of the vectors x and Y
Mode (generalized mode) vector or function for vibra-
tion and buckling
Displacement (generalized displacement) vector or
function
Kinematically admissible virtual displacement (general-
ized displacement)
Space of kinematically admissible displacements
Weight density of the material
Kronecker delta
Dirac measure at x = 0
Strain tensor due to the displacement z
Eigenvalue (the square of natural frequency or buckling
load)
Adjoint variable (generalized adjoint variable)
Lame's constants
Poisson's ratio
Mass density of the material
Stress tensor due to the displacement z
Cost or constraint functional
Finite difference of the functional e
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o
OF = (I + F)O

Op
n. = T(Q, r)

APPENDIX

Open domain in Rn (n = 1,2, 3) with boundary r
Transformation of domain by mapping F(x)
Open subset of 0 with boundary rp

Transformation of domain 0 by mapping T(x, r)
Denotes a variable that is held constant for a partial
differentiation
Differential (or variation) of a function or a functional (in
Chapters 3 and 4, this notation is used for partial
derivative with respect to r)
Material or total derivative



References

[I] Pipes, L. A., "Matrix Methods in Engineering." Prentice-Hall, Englewood Cliffs, New
Jersey, 1963.

[2] Langhaar, H. L., "Energy Methods in Applied Mechanics." Wiley, New York, 1962.
[3] Zienkiewicz,O. c., "The Finite Element Method." McGraw-Hill, New York, 1977.
[4] Gallagher, R. H., "Finite Element Analysis: Fundamentals." Prentice-Hall, Englewood

Cliffs, New Jersey, 1975.
[5] Strang, G., and Fix, G. J., "An Analysis of the Finite Element Method." Prentice-Hall,

Englewood Cliffs, New Jersey, 1973.
[6J Ciarlet, P. G., "The Finite Element Method for Elliptic Problems." North-Holland, New

York,1978.
[7J Przemieniecki, J. S., "Theory of Matrix Structural Analysis." McGraw-Hill, New York,

1968.
[8] Greenwood, D. T., "Principle of Dynamics." Prentice-Hall, Englewood Cliffs, New

Jersey, 1965.
[9J Aubin, J.-P., "Applied Functional Analysis." Wiley, New York, 1979.

[IOJ Haug, E. J., and Arora, J. S., "Applied Optimal Design." Wiley, New York, 1979.
[II] Goffrnan, c.,"Calculus of Several Variables." Harper & Row, New York. 1965.
[12J Haftka, R. T.• Second order sensitivity derivatives in structural analysis. AIAA J. 20,

1765-1766 (1982).
[13J Kato, T., "Perturbation Theory for Linear Operators." Springer-Verlag, Berlin and New

York,1976.
[14] Mikhlin, S. G., "Mathematical Physics: An Advanced Course." North-Holland Publ.,

Amsterdam, 1970.
[15J Nelson, R. B.• Simplifiedcalculation of Eigenvector derivatives. AIAA J. 14, 1201-1205

(1976).
[16] Bathe, K.-J., "Finite Element Procedures in Engineering Analysis." Prentice-Hall,

Englewood Cliffs, New Jersey, 1982.
[17] Thompson. J. M. T., and Hunt. G. W.. Dangers of structural optimization. Eng. Optim .. 2,

99-110 (1974).

373



374 REFERENCES

[18] Olhoff, N., and Rasmussen, S. H., On single and bimodal optimum buckling loads of
clamped columns. Int. J. Solids Struct., 13, 605-614 (1977).

[19] Tadjbakhsh, I., and Keller, J. B., Strongest columns and isoparametric inequalities for
Eigenvalues. J. Appl. Mech. 29, 159-164 (1962).

[2q] Masur, E. F., and Mroz, Z., Singular solutions in structural optimization problems. In
"Variational Methods in Mechanics of Solids" (S. Nernat-Nasser, ed.), pp. 337-343.
Pergamon, Oxford, 1980.

[21] Prager, S., and Prager, W., A note on optimal design of columns. Int. J. Mech, Sci. 21,
249-251 (1979).

[22] Masur, E. F., and Mroz, Z., On non-stationary optimality conditions in structural design.
Int. J. Solids Struct, 15, 503-512 (1979).

[23] Coddington, E. A., and Levinson, N., "Theory of Ordinary DilTerential Equations."
McGraw-Hili, New York, 1955.

[24] Taylor, A. E., "Advanced Calculus." Ginn, Boston, Massachusetts, 1955.
[25] Atkinson, K. E., "An Introduction to Numerical Analysis." Wiley, New York, 1978.
[26] Wasiutynski, Z., and Brandt, A., The present state of knowledge in the field of optimum

design of structures. Appl. Mech. Ret'. 16,No.5, 203-228 (1963).
[27] Venkayya, V. B., Structural optimization: A review and some recommendations. Int. J.

Numer, Methods Eng. 13, No.2, 341-350 (1978).
[28] Morris, A. J., "Foundations of Structural Optimization: A Unified Approach." Wiley,

New York, 1982.
[29] Eschenauer, H., Vector optimization in structural design and its application on antenna

structures. Optimization Methods in Structural Design." Bibliographisches Institut,
Mannkeim, 1982.

[30] Choi, K. K., Haug, E. J., Hou, J. W., and Sohoni, V. N., Pshenichny's linearization
method for mechanical system optimization. J. Mech, Transm.. Autom. Des. 105,97-103
(1983).

[31] Reed, M., and Simon, B., "Methods of Modern Mathematical Physics," Vol. I. Academic
Press, New York, 1972.

[32] Mikhlin, S. G., "Variational Methods in Mathematical Physics." Pergamon, Oxford,
1964.

[33] Fung, Y. C., "Foundations of Solid Mechanics." Prentice-Hall, Englewood Cliffs, New
Jersey, 1965.

[34] Sokolnikoff, I. S., "Mathematical Theory of Elasticity." McGraw-HilI, New York,
1956.

[35] Fichera, G., Existence theorems in elasticity. In "Handbuch der Physik" (S. Flugge, 00.),
Vol. 6a, Part 2, pp. 347-389. Springer- Verlag, Berlin and New York, 1972.

[36] Adams, R. A., "Sobolev Spaces." Academic Press, New York, 1975.
[37] Treves, F., "Topological Vector Spaces, Distributions and Kernels." Academic Press,

New York, 1967.
[38] Gelfand, I. M., and Fomin, S. V., "Calculus of Variations." Prentice-Hall, Englewood

Cliffs, New Jersey, 1963.
[39] Popov, E. P., "Mechanics of Materials," 2nd ed. Prentice-Hall, Englewood Cliffs, New

Jersey, 1978.
[40] Dems, K., and Mroz, Z., Variational approach by means of adjoint systems to structural

optimization and sensitivity analysis. 11.Structure shape variation. Int. J. Solids Struct. 20,
No.6, 527-552 (1984).

[41] Mitchell, A. R., and Wait, R., "The Finite Element Method in Partial DilTerential
Equations." Wiley, New York, 1977.

[42] Rousselet, B., "Quelques Resultats en Optimisation de Domains." These d etat, Universite
de Nice, 1982.



REFERENCES 375

[43] Myslinski, A., Bimodal optimal design of vibrating plates using theory and methods of
nondifferentiable optimization. J.O.T.A. 46, No.2, 187-203 (1985).

[44] Weisshaar, T. A., and Plaut, R. H., Structural optimization under nonconservative
loading. In "Optimization of Distributed Parameter Structures" (E. J. Haug and J. Cea,
eds.), Vol. II, pp. 843-864. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands,
1981.

[45] Lekszycki, T., and Mroz, Z., On optimal support reaction in viscoelastic vibrating
structures. J. Struct. Mech. 11, No.1, 67-80 (1983).

[46] Haug, E. J., and Rousselet, B., Design sensitivity analysis in structural mechanics. II.
Eigenvalue variation. J. Struct, Mech. 8,161-186 (1980).

[47] Haug, E. J., A review of distributed parameter structural optimization literature. In
"Optimization of Distributed Parameter Structures" (E. J. Haug and J. Cea, eds.), Vol. I,
pp. 3-74. Sijthoff & Nordhoff, Alphen aan den Rijn, The Netherlands, 1981.

[48] Lions, J. L., and Magenes, E., "Non-Homogeneous Boundary Value Problems and
Applications," Vol, 1. Springer-Verlag, Berlin and New York, 1972.

[49] Rektorys, K., "Variational Methods in Mathematics, Science and Engineering." Reidel
Publ., Boston, Massachusetts, 1980.

[50] Cea, J., Problems of shape optimal design. In "Optimization of Distributed Parameter
Structures" (E. J. Haug and 1. Cea, eds.), Vol. II, pp. 1005-1048. Sijthoff & Noordhoff,
Alphen aan den Rijn, The Netherlands, 1981.

[51] Fleming, W. H., "Functionals of Several Variables," Addison-Wesley, Reading,
Massachusetts, 1965.

[52] Zolesio, J. P., "Identification de domains par Deformations." These d Etat, Universite de
Nice, 1979.

[53] Malvern, L. E., "Introduction to the Mechanics ofa Continuous Medium." Prentice-Hall,
Englewood Cliffs, New Jersey, 1969.

[54] Do Carmo, M. P., "Differential Geometry of Curves and Surfaces." Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[55] Kreyszig, E., "Advanced Engineering Mathematics," Wiley, New York. 1979.
[56] Kecs, W., and Teodorescu, P. P., "Applications of the Theory of Distributions in

Mechanics." Abacus Press, Tunbridge Wells. Kent, England, 1974.
[57] Timoshenko, S. P., and Goodier. J. N., "Theory of Elasticity." McGraw-Hili. New York,

1951.
[58] Roark, R. J .• and Young, W. C., "Formulas For Stress and Strain," McGraw-Hili, New

York,1975.
[59] Zolesio, J. P., "Gradient des couts Governes par des problemes de Neumann poses sur des

Ouverts Anguleux en Optimisation de Domain," CRMA-Rep. 1116. University of
Montreal, Canada, 1982.

[60] Babuska, I., The rate of convergence for the finite element method. SIAM J. Numer. Anal.
8. No.2, 304-315 (1971).

[61] Zamal, M.•Curved elements in the finite element method. I. SIAM J. Numer. Anal. to, No.
1,229-240 (1973).

[62] Zamal, M., Curved elements in the finite element method. II. SIAM J. Numer. Anal. II,
No.2, 347-362 (1974).

[63] Ciarlet, P. G., and Raviart, P. A.. The combined effect of curved boundaries and numerical
integration in isoparametric finite element methods. "Symposium, Mathematical
Foundations of Finite Element Method," Univ. of Maryland, Baltimore, 1972.

[64] Krauthammer, T., Accuracy of the finite element method near a curved boundary.
Comput. Struct. to, 921-929 (1979).

[65] Cook, R. D" "Concepts and Applications of Finite Element Analysis," Wiley, New York.
1981.



376 REFERENCES

[66] Francavilla, A., Ramakrishnan, C. V., and Zienkiewicz, O. C.; Optimization of shape to
minimize stress concentration. J. Strain Anal. 10, No.2. 63-70 (1975).

[67] Babuska, I., and Aziz, A. K., Survey lectures on the mathematical foundations of the finite
element method. In "The Mathematical Foundations of the Finite Element Method with
Applications to Partial Differential Equations" (A. K. Aziz, ed.), pp. I-59. Academic
Press, New York, 1972.

[68] Brebbia, C. A., and Walker, S., "Boundary Element Techniques in Engineering." Newnes-
Butterworth, Boston, Massachusetts, 1980.

[69] Banerjee. P. K" and Butterfield, R., "Boundary Element Methods in Engineering
Science." McGraw-Hili, New York, 1981.

[70] Rousselet, 8., and Haug, E. J., Design sensitivity analysis in structural mechanics, III.
effects of shape variation. J. Struct, Mech. 10, No.3, 273-310 (1982).

[71] Courant, R. S., and Hilbert, D., "Methods of Mathematical Physics:' Vol. I. Wiley, New
York,1953.

[72] Micheletti. A. M., Perturbazione dello Spettro di un Opera tore Ellitico di Tipo
Variazionale, in Relazione ad una Variazione del Campo. Ann. Mat. Pura Applic, 97,
267-282, 1973.

[73] Murat, F., and Simon, J., "Sur Ie Controle par un Domaine Geometrique." Publications
du Laboratoire d'Analyse Numerique, Universite de Paris, VI, 1976.

[74] Necas, J., "Les Methodes Directes dans la Theorie des Equations Elliptiques." Editions de
l'Academie Tchecoslovaque des Sciences, Prague, 1967.

[75] Aubin, J.-P., "Approximation of Elliptic Boundary-Value Problems." Wiley, New York,
1972.

[76] Haug, E. J., and Cea, J., eds., "Optimization of Distributed Parameter Structures." Vols. I
and II. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1981.

[77] Washizu, K., "Variational Methods in Elasticity and Plasticity." Pergamon, Oxford, 1982.
[78] Goldstein, H., "Classical Mechanics." Addison-Wesley, Reading, Massachusetts, 1950.
[79] Rudin, W., "Real and Complex Analysis." McGraw-Hill, New York. 1974.
[80] Dieudonne, J., "A Treatise on Analysis," Vol. I. Academic Press, New York. 1969.
[81] Nashed, M. Z., Differentiability and related properties of nonlinear operators: Some

aspects of the role of differentials in nonlinear functional analysis. In "Nonlinear
Functional Analysis and Applications" (L. B. Rail, ed.), pp. 103-109. Academic Press,
New York, 1971.



Index

A
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Adjoint dynamic problem, 173
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Beam element, 2
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Bendingstress,8, 112
Bodyforce, 95
Body-fixed coordinate system, II
Booleantransformation matrix, 12
Boundaryelement method, 250
Boundary layer, 254
Boundary method, 266
Boundary operator, 298
Boundary velocity, 197

Bounded invertibility, 190
Bounded linear functional, 354
Bucklingload, 20
Bucklingmode, 21
Bucklingof a column, 101, 181
Built-up structures, 296
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C~(Q), 356
Ck-regular open set, 192
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Calculusof variations, 105
Cauchy sequence, 353
Chain rule of differentiation, 370
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Clamped beam, 85
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Compact support, 88, 362
Complete, 359
Complete vector space, 353, 356
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Constrained derivative, 79
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Continuity of eigenvalues, 159
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Continuous linear mappings, 368
Continuously differentiable functions, 355
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Cost function, 26
Courant topology, 280
Cross-sectional area, 3, 85
Cubic spline, 257
Curvature, 199

D
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of domain functional, 294
of simple eigenvalue, 160

Design sensitivity analysis, 26
Design sensitivity coefficients, 104, 202, 238
Design sensitivity finite elements, 128
Design shape functions, 127
Design trajectory, 191
Design variables, 4, 85
Designvariation.Bl
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Eigenvalue shape design sensitivity, 269
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Eigenvector expansion, 75
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Element displacement functions, 2
Element geometric stiffness matrix, 6
Element mass matrix, 5
Element stiffness matrix, 3
Energy bilinear form, 22, 86, 91
Energy norm, 98
Equilibrium equations, 93
Essentially bounded function, 85, 361
Euclidean space, 351

F

Fillet, 255
Finite difference, 35
Finite element, 2
First variation, 105, 368
Flexural rigidity, 184
Formal differential operator, 98
Formal first variation calculation, 150
Fractional order Sobolev spaces, 364
Frechet derivative, 64, 153,368

ofsimple eigenvalue, 162
Frechet differentiability of inverse state

operator, 149
Frechet differential, 150, 368
Free edge, 185
Free vibration, 301
Friedrichs extension, 89, 150, 190
Function space, 85, 351, 355
Functional, 107,353
Functional analysis, 88

G

Galerkin method, 84, 126
Gateaux derivatives, 281, 368
Gateaux differential, 367
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Generalized global mass matrix, 13
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Global geometric stiffness matrix, 18
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Hamilton's principle, 297
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Hilbert space, 353, 359
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Homogeneous of degree n, 65, 366

Implicit function theorem, 27
Implicitly generated elements, 35
Inf,361
Initial conditions, 21
Initial-value problem, 71
Initial-boundary-value problem, 168
Interactive computer aided design, 80
Interface problem of linear elasticity, 187,

234, 266, 297
Invariant subspace, 164

J

Jacobian, 194

K

Kinematic boundary conditions, 90, 97,
149, 297

Kinematic degrees of freedom, 4
Kinematic interface conditions, 298
Kinematically admissible displacements, 18,

84,97,298
Kinetic energy, 5, 299
Kronecker delta, 61

L

L"(D.),361
U(D.),357
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Lagrange equations of motion, 19,70
Lagrangian, 19
Lame's constants, 93
Lax-Milgram theorem, 23, 98
Lebesgue integral, 357
Lebesgue square integrable functions, 359
Linear elasticity, 92, 186
Linear functional, 354
Linear mapping, 366
Linear operator, 84
Linearly independent, 23
Load linear form, 22, 87, 92
Locally averaged stress functional, 113

M

M(b)-orthonormal basis, 63
Mappings in normed spaces, 365
Mass density, 99
Material derivative, 190, 193, 197,200,201
Material semiderivative, 294
Matrix calculus, 348
Matrix norm, 285
Mean curvature, 199
Mean stress constraint, 228
Measure, 360
Membrane, 102, 182
Membrane analogy, 184
Minimizing sequence, 358
Minimum total potential energy, 18,87
Mode shape, 21
Moment of inertia, 4,85
Multipoint constraint, 17

N

Natural boundary conditions, 90, 149
Natural frequency, 21, 99
Nodal displacement coordinates, 7
Nonhomogeneous initial conditions, 76
Norm,352,356,359,361,362,365
Norm of matrix, 284

o
Objective function, 26
One-sided Gateaux differential, 366
Optimal Gauss points, 239
Outward unit normal, 91
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Parameterization
of boundary, 237
of design, 124

Partiillderivative,192
Partial Gateaux differential, 369
Permutation symbol, 195
Piecewise linear boundary, 238
Plane elasticity, 187
Plane strain, 94
Plane stress, 94
Plate, 102, 184
Plate element, 7
Pointwise material derivative, 192
Poisson's ratio, 8, 91
Portal frame, 68
Positively homogeneous of degree n, 366
Potential energy, 17
Prandtl stress function, 183
Principal stresses, 122
Principle of virtuill work, 84, 97,300
Product rule of differentiation, 349
Product spaces, 364
Projected gradient, 79

R

Rk,351
Rayleigh quotient, 54
Reduced displacement vector, 20
Reduced global mass matrix, i 3
Reduced global stiffness matrix, 12
Regular open set, 192
Reisz representation theorem, 354, 360
Relatively bounded perturbations, 150, 287
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Riemann integral, 357
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Schwartz inequality, 89, 359
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Shape design, 180
Shape design sensitivity analysis, 180,202
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Shear modulus, 183
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Sobolev norm, 97
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Terminal condition, 171
Terminal-value problem, 73, 74
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Total potential energy, 18
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Traction free, 93
Trade-offdetermination, 78



INDEX

Transient dynamic response, 70, 167
Truss element, 3
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Undamped structures, 74
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Variation in design, 71
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