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Abstract

In complex and automated technological processes the effects of a fault can
quickly propagate and lead to degradation of process performance or even
worse to a catastrophic failure. This means that faults have to be found as
quickly as possible and decisions have to be made to stop the propagation of
their effects and to minimize process performance degradation. The behavior
of the process is affected in different ways by different faults and the fault can
be found by ruling out faults for which the expected behavior of the process is
not consistent with the observed behavior. In model-based diagnosis, a model
describes the expected behavior of the process for the different faults.

A device for finding faults is called a diagnosis system. In the diagnosis
systems considered here, a number of tests check the consistency of different
parts of the model, by using observations of the process. To be able to identify
which fault that has occurred, the set of tests that is used must be carefully
selected. Furthermore, to reduce the on-line computational cost of running the
diagnosis system and to minimize the in general difficult and time-consuming
work of tests construction, it is also desirable to use few tests.

A two step design procedure for construction of a diagnosis systems is
proposed and it provides the means for selecting which tests to use implicitly
by selecting which parts of the model that should be tested with each test.
Then, the test design for each part can be done with any existing technique for
model-based diagnosis.

Two different types of design goals concerning the capability of distinguish-
ing faults is proposed. The first goal is to design a sound and complete diagnosis
system, i.e., a diagnosis system with the following property. For any observa-
tion, the diagnosis system computes exactly the faults that together with the
observation are consistent with the model. The second goal is specified by
which faults that should be distinguished from other faults, and this is called
the desired isolability.

Given any of these two design goals, theory and algorithms for selecting a
minimum cardinality set of parts of the model are presented. Only parts with
redundancy can be used for test construction and a key result is that there exists
a sound and complete diagnosis system based on the set of all minimal parts
with redundancy in the model. In differential-algebraic models, it is in general
difficult to analytically identify parts with redundancy, because it corresponds
to variable elimination or projection. It is formally shown that redundant parts
can be found by using a structural approach, i.e., to use only which variables
that are included in each equation. In the structural approach, parts with
more equations than unknowns are identified with efficient graph-theoretical
tools. A key contribution is a new algorithm for finding all minimal parts with
redundancy of the model. The efficiency of the algorithm is demonstrated on a
truck engine model and compared to the computational complexity of previous
algorithms.

In conclusion, tools for test selection have been developed. The selection is
based on intuitive requirements such as soundness or isolability requirements
specified by the diagnosis system designer. This leads to a more straightforward
design of diagnosis systems, valuable engineering time can be saved, and the
resulting diagnosis systems use minimum number of tests, i.e., the on-line
computational complexity of the resulting diagnosis systems become low.
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NoOTATION

Diagnosis Model Notation

sys

A diagnosis model.

The set of all system behavioral modes in a diagnosis model.
The set of all components in a diagnosis model.

The set of all equations in a diagnosis model.

The set of all unknown variables in a diagnosis model.

The set of all known variables in a diagnosis model.

The domain of the unknown variables X.

The domain of the known variables Z.

A vector of the unknown variables in X.

A vector of the known variables in Z.

A vector of fault variables.

A set of system behavioral modes that infer all equations in a
set M.

The set of diagnoses when observing z.

The set of component behavioral modes defined for a compo-
nent c.

The behavioral model for a system behavioral mode b.

The model that describes the behavior of a component c.

A behavioral model for a component behavioral mode b.
The external behavior for a component behavioral mode b.
The system behavioral mode that the process is in.
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Model Notation

Eq
X4

X

o)
0
E®
X
M
Mo
Muso

W

wm(2zo)

M!('
G(E, X)

vary(E)
1(G)

s (M)
® (M)
Ps (M)
oM)

A differentiated MSO set.

The unknowns in a differentiated MSO set.

The set of all time-derivatives of all unknown variables.

The k:th time-derivative of an equation e.

The k:th time-derivative of a variable x.

The set {e®|e € E} of equations.

The set {x®|x € X} of equations.

A family of equation sets.

A family of MO sets.

A family of MSO sets.

The set of all feasible minimal rejectable models in a diagnosis
model.

The set of all feasible minimal rejectable models in a diagnosis
model and at zj.

A checking model of a behavioral mode b.

The proper overdetermined (PO) part of a set M of linear equa-
tions.

The bipartite graph with an equation set E and a variable set X as
node sets representing the structure of E.

The variables in X contained in some equation in E.

The size of a maximal matching in a bipartite graph G.

The proper structurally overdetermined (PSO) part of a set M of
equations.

The surplus of a model M.

The redundancy of a linear model M.

The structural redundancy of a model M.

The observation set of a model M.

Linear Space and Matrix Notation

rank (A)
s-rank (A)
All]
AlLJI

Al ]
Ny

Nam
dim(A)
AL
sp(A)
Im(A)

The normal-rank of a polynomial matrix A.

The structural rank of a matrix A.

The sub-matrix of a matrix A containing the rows I.

The sub-matrix of a matrix A defined the rows I and the columns
J.

The sub-matrix of a matrix A containing the columns J.

A matrix such that the rows of N4 is an irreducible basis for the
left null-space of a polynomial matrix A.

A zero-padded matrix such that NajA = 0.

The dimension of a space A.

The orthogonal complement to a linear space A.

The row-span of a matrix A.

The column-span of a matrix A.



Diagnosis System Notation

A A diagnosis system represented as a set of tests.

C(z) Thesetofcandidates computed by a diagnosis system with z as input.

0 A diagnosis test.

R A subset of R that defines the rejection region of a diagnosis test.

O(6) The acceptance set of a test 0.

T(z) A test quantity of a diagnosis test.

D A set of system behavioral modes such that sys € @ is the null hy-
pothesis of a test.

Isolability Relation Notation

I

I(A)
1(M)
L,({Cp,))
L;(A)
Ii(w)
P(A)
Py(A)

A desired isolability.

The analytical isolability of a diagnosis system A.

The analytical isolability of a diagnosis model IM.

An isolability prediction based on a list of checking models Cy,.
The structural isolability of a diagnosis system A.

The structural isolability of a set of models w.

The analytical candidate implication partial order of A.

The structural candidate implication partial order of A.

Miscellaneous Notation

P(M)
deg(b(p))
sgn 7

D/

R,C

z

Z,

N

The power set of a set M.

The degree of a polynomial b(p).
The signature of the permutation 7.
The set of distributions.

The field of real/complex numbers.
The set of integer numbers.

The set of positive integer numbers.
The set of natural numbers.






INTRODUCTION

Our modern society depends strongly on reliable complex technological pro-
cesses. Human safety, environmental, and process protection requirements are
some examples of demands that must be fulfilled apart from fulfilling process
performance requirements. To meet all these demands, it is important that all
parts of a process are functioning correctly according to their design purposes.
A fault is something that changes the behavior of some part of the process such
that this part does no longer fulfill its purpose (Blanke et al., 2003). In complex
and automated processes the effects of a fault can quickly propagate and lead
to degradation of process performance or even worse to a catastrophic failure.
Therefore faults have to be found as quickly as possible and decisions have to
be made to avoid process failure by stopping the propagation of their effects
and to minimize process performance degradation. To make correct decisions,
it is not sufficient to know that a fault has occurred, it is also necessary to know
which type of fault that has occurred. To decide whether or not a fault has
occurred is called fault detection and to determine the type and location of the
fault is called fault isolation.

The field of diagnosis includes methods for detecting and isolating faults
and a device for this purpose is called a diagnosis system. A general setup
of a diagnosis application is shown in Figure 1.1 with a diagnosis system
diagnosing a process. The process, i.e., the system to be diagnosed, is assumed
to be working in exactly one of a set of pre-defined modes, here called system
behavioral modes. The set of pre-defined system behavioral modes includes
typically a no-fault mode and some fault modes. The input to the diagnosis
system is all available knowledge about the present behavior of the process
and this is called an observation. An observation consists typically of sensor
measurements and controller outputs. The purpose of a diagnosis system is,
given observations, to detect and isolate faults in the process.

5
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Known variables

observations
Diagnosis . .
Process & Possible explanations
System
(measurements,
controller outputs,...)

Figure 1.1: A general setup of a diagnosis application with a diagnosis system
diagnosing a process.

1.1 Basic Principles of Fault Detection and Isolation

The basic idea of detecting faults is to conclude that an observed behavior is
different from the expected behavior of the process when working in the fault-
free mode. If this can be concluded, it means that a fault must have occurred.
The basic idea of isolating a fault is to conclude that other faults can not pro-
duce the observed behavior. By excluding faults as possible explanations, the
number of possible faults can be reduced and fault isolation is obtained. By
using these principles, the expected behavior of the process when working in
different behavioral modes need to be known in order to achieve fault detection
and isolation.

The expected behavior of the process can be described in many different
ways, but in this thesis we will assume that a mathematical model of the
process is used to describe the expected behavior. This is usually refered to as
model-based diagnosis. We will consider the models to be deterministic in this
thesis and typically differential-algebraic systems. To be able to distinguish
the behaviors of the process when being in different behavioral modes, it is
important to describe both the behavior of fault free operation and how the
different faults influence the behavior. A model used to describe the behavior of
the process when being in a specific behavioral mode will be called a behavioral
model. These models are collected in a model called the diagnosis model that
describes the behaviors of the process for all different behavioral modes.

Since the expected behaviors are described by models, it follows that a fault
is detected if the observed behavior is inconsistent with the behavioral model
describing the fault free behavior. Isolation is obtained by concluding that
that the observed behavior and behavioral models describing different fault
modes are inconsistent. In conclusion, both fault detection and fault isolation
are obtained by testing if different models are consistent with an observation
and this is the principle of consistency-based diagnosis.

1.2 Basic Principles for Consistency Checking

To test if a model and an observation are consistent, is to decide if the model can
be satisfied given the observation. To be more precise, if zj is the observation,
x is a vector of unknown trajectories, and f(z,x) = 0 is the differential-algebraic
model, a mathematical formulation of this decision problem is to determine if
there exists an x such that

f(z0,%) =0 (1.1)
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This problem is in general difficult to solve. Furthermore, to detect and isolate
faults as fast as possible, the time elapsed between getting an observation and
determining the consistency of (1.1) must be short. Therefore, it is crucial for
fast detection and isolation that the computational complexity of testing the
consistency of each model is small.

One way to reduce the computational complexity of testing consistency is to
use residual generators together with thresholds (Patton et al., 1989; Gertler, 1998).
More generally and in accordance with statistical hypothesis testing (Casella
and L.Berger, 1990), we use the notion tests. A test contains a test quantity T(zo)
that is an explicit function that maps observations zj into real numbers and a
rejection region R C R that is a proper subset of all real numbers (Casella and
L.Berger, 1990). The idea is to select these such that

T(zo(t)) € R (1.2)

implies that (1.1) and z( are inconsistent. Since the test quantity is an explicit
function, it does not include any unknowns, and it follows that the problem
of determining if (1.1) and z is inconsistent is reduced to the procedure of
inserting the observed values in the test quantity, compute the value of the test
quantity, and compare the computed value with the rejection region. A test
makes a binary decision, if the test quantity belongs to the rejection region,
then it is concluded that the tested model is inconsistent with the observation
and otherwise no conclusion is drawn.

1.3 Architecture of a Diagnosis System

By testing different models describing the behavior of different behavioral
modes, fault isolation can be achieved. One naive approach is to use one
pre-compiled test for each behavioral model. The architecture of a diagnosis
system using this approach is shown in Figure 1.2. In this case, each test decides
if the behavioral mode corresponding to the test is a possible explanation or not.
The decision from all tests are inputs to the unit “Fault Isolation” in Figure 1.2
that computes the set of possible explanations, i.e., all behavioral modes that
can explain the test results.

There are two main disadvantages with testing each behavioral model sep-
arately. The first disadvantage is that the number of behavioral modes can be
large, especially when considering multiple faults, and then the number of tests
will be large. The second disadvantage is that each system behavioral mode
specifies the behavior of all parts of the process and this means that each test
has to consider a model of the complete system including all sensor and con-
troller signals. Therefore, it can be expected that the computational complexity
of running these tests are high.

Both these disadvantages can be handled by testing models that are subsets
of equations in behavioral models. In this way, each test uses only the observed
behavior of a part of the process, i.e., only some sensor and controller signals are
needed as inputs to each test. Furthermore by testing a small part of a process,
all system behavioral modes that specify the same expected behavior for this
part is tested using this single test. Hence, both the computational complexity
for each test and the number of test might be reduced by testing small subsets
of equations.
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Diagnosis System

™ Diagnosis Test 1 ™
3]
E

Observations ;»—r« Possible

™ Diagnosis Test 2 ™ <
o
o) .
5 Explanations

1 Diagnosis Test n ™

Figure 1.2: Architecture of a diagnosis system.

1.3.1 Good Fault Isolation Capability

When designing a diagnosis system, there is a trade-off between low on-line
computational complexity and good fault isolation capability. Here, we will
assume that a diagnosis system designer specifies a fault isolability goal and
given this goal, the on-line computational complexity is then minimized. In
this thesis the designer can express the fault isolation goal by using one of the
following two alternative types of fault isolation goals.

A diagnosis model describes all knowledge about the expected behaviors
of the process and the first goal is to construct a diagnosis system that uses all
this information. By using all knowledge about the expected behaviors of the
process, the best possible diagnosis system is obtained. Such diagnosis system
will be called a sound and complete diagnosis system.

The second goal is to find a diagnosis system with maximum isolability, which
is a diagnosis system that, for some observation, can distinguish one behavioral
mode from another behavioral mode if the diagnosis model supports this.

The first goal is more ambitious than the second goal. For complex systems,
the first goal can be too ambitious and then it is possible to reduce the first goal
such that all knowledge about the expected behaviors are used only for a subset
of behavioral modes. Furthermore, a reduced version of the second goal is to
specify exactly which modes that we wish to distinguish from other modes.

1.4 Diagnosis System Construction

The construction of a diagnosis system with the proposed architecture can be
divided into the following three main steps:

a) Select models to test such that a chosen fault isolation goal might be
fulfilled.

b) Construct a test quantity and a rejection region for each selected model.
c) Design a fault isolation unit.

Step (c) is not the focus of this thesis. For more details about this step see
e.g. (Nyberg, 2006; Cordier et al., 2004). In contrast to many previous works
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within the field on fault diagnosis, the focus of this thesis is on the first of
these three steps (Blanke et al., 2003; Chen and Patton, 1999; Patton et al., 2000;
Korbicz et al., 2004). However, to understand the basic principles of how to
select models in step (a), we first need to go into some details of step (b).

1.4.1 Successful Test Construction

Assume that a model has been selected in step (a) and that a test based on
this model is to be constructed according to step (b). The purpose of the test
is, as said before, to detect inconsistencies between the model and different
observations. This is only possible if redundancy is contained in the model,
i.e., basically that, there exists a test quantity T(zp) and a non-empty rejection
region R such that (1.2) is false if the model is consistent with the observation z.
A model with redundancy typically contains more equations than unknowns
such that all unknowns can be eliminated.

It is not sufficient to know the existence of a test quantity for successful com-
pletion of step (b), it must also be possible to derive a test quantity with any
available method, for example by using analytical redundancy relation based
methods (Chow and Willsky, 1984; Frisk and Nyberg, 1999; Staroswiecki and
Comtet-Varga, 2001) or observer based methods (Frank, 1994; Kinneart, 1999;
Yu and Shields, 1997; Nikoukhah, 1998). For non-linear dynamic models, the
construction of a test quantity involves, i) to chose for the considered model
a method that is suitable for test construction, ii) to apply the method and
construct a test quantity, and iii) to validate the test against simulated and mea-
sured signals. These parts often involve both manual work and experiments
using data from the real processes. Thus by selecting few models properly in
step (a), it is not only possible to reduce the on-line computational complexity
of the resulting diagnosis system, it is also possible to save valuable engineering
time focusing only on the needed tests.

1.4.2 Objectives of Model Selection

The selection of models in step (a) will be based on the assumption that the
tests for the selected models can be designed. If this assumption turns out
to be false for some model, the selection step might need to be reconsidered,
i.e,, we need to iterate between the two steps (a) and (b). It is important to
reduce the number of iterations between these step, since this corresponds to
time spent on constructing tests that could not be completed. Furthermore, the
models selected in each iteration can be different from the models selected in the
previous iteration and if the objective is to minimize the number of tests, then
it might turn out that tests designed for models selected in previous iterations
are not needed. Thus, it is important to reduce the number iterations.

In conclusion, the models should be selected in step (a) such that the fol-
lowing objectives are met:

I) The selected models should contain redundancy such that tests can be
derived.

II) The models should be selected such that the resulting tests fulfill the
chosen fault isolability goal.
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III) The models should be selected such that the on-line computational com-
plexity of the diagnosis system is minimized.

A heuristic for the third objective is to divide this objective into two parts.
First, the number of selected models should be minimized. Second, the models
should be selected such that each test have low on-line computational com-
plexity. In Section 1.3, it was argued that both the number of tests and the com-
putational complexity for each test might be reduced by testing small models.
This and objective (I) implies that the minimal sets of equations that contain re-
dundancy should be especially attractive to select in order to fulfill (I) and (III).
These models will be called minimal rejectable models.

1.4.3 Finding Model Redundancy Using Structural Methods

When considering nonlinear diagnosis models, it can be a major task to identify
models with redundancy and especially the minimal rejectable models. This
task is closely related to the problem of variable elimination of the unknowns.
For differential-algebraic models, differential grobner basis (Mansfield, 1991)
and characteristic sets (Ritt, 1950) techniques provide automatic elimination
methods (Wittkopf, 2004; Mishra, 1993). These algorithms will theoretically
terminate with the desired output, but often for individual problems the com-
putations either take an unreasonable time to complete, or require more mem-
ory than is available (Wittkopf and Reid, 2001). Furthermore, not all non-linear
models that we consider in this thesis are differential polynomials, e.g. the
models can also contain for example look-up tables.

To handle non-polynomial differential algebraic models and to cope with the
computational complexity of identifying model redundancy in polynomial dif-
ferential algebraic models, structural analysis will be used to investigate model
redundancy by means efficient graph-based tools.

The structure of a model contains the information about which variables that
are included in each equation, and numerical values and analytical expressions
are ignored. Systematic structural approaches to find models with redundancy
have been suggested in e.g. (Blanke et al., 2003), (Cassar and Staroswiecki,
1997), (Pulido and Alonso, 2002) (Travé-Massuyes et al., 2001), and (Krysander
and Nyberg, 2002a). All these approaches have in common that models with
redundancy are found among the models with more equations than unknowns.
Furthermore, of all these models, it is the minimal ones that have been used to
derive test quantities.

1.5 Main Objective

The main objective of this thesis is to investigate how to systematically and auto-
matically select models that fulfills the three objectives (I)-(III) using structural
methods. By solving this problem, a diagnosis system designer can specify
a fault isolability capability goal and follow the procedure in Section 1.4 to
obtain a diagnosis system with the minimum number of tests needed to fulfill
the goal. By selecting models such that objective (I) is fulfilled, no iterations
between step (a) and step (b) are needed. This saves valuable engineering
time and focuses the test construction work on important parts of the diagnosis
model.
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1.6 Summary and Contribution of the Thesis

This section summarizes the scope and the organization of the thesis. In Chap-
ter 2, a framework for diagnosis is introduced. The Chapter 3 to 9 are devoted
to different aspects of finding models such that a sound and complete diagnosis
system can be constructed based on these models. In Chapter 3 to 5, basic ideas
are described considering linear static models. In Chapter 6, we also consider
linear dynamic systems. The linear investigations are used to establish a formal
link between structural methods and linear methods in Chapter 8 and 9. Chap-
ter 7 and 8 shows that structural methods can be applied also for non-linear
models. Chapter 10 investigates how to prioritize the selection of dynamic
models using structural analysis of dynamic model properties. Finally, the
purpose of Chapter 11-12 is to describe how a diagnosis system with maximum
isolability can be constructed.

Chapter 2: A Framework for Model Based Diagnosis

A novel framework for model-based diagnosis is proposed using ideas from
artificial intelligence (Al) (Hamscher et al., 1992), fault detection and isolation
(FDI) (Patton et al., 1989, 2000; Blanke et al., 2003), and statistical hypothesis
testing (Casella and L.Berger, 1990). A diagnosis model contains all behavioral
models and an equation can be included in several different behavioral models.
To avoid multiple copies of this equation in the diagnosis model, we include
the information of which behavioral models that the equation is included in,
i.e.,, how the validity of the model equation depends on the behavioral modes.

The tests are, as said before, assumed to be computed off-line as in FDI (Pat-
ton et al., 1989; Gertler, 1998). It is shown how standard FDI methods, such as
residuals based on parity relations (Chow and Willsky, 1984; Frisk and Nyberg,
1999; Staroswiecki and Comtet-Varga, 2001) or observer based approach (Frank,
1994; Kinneart, 1999; Yu and Shields, 1997; Nikoukhah, 1998), can be used within
the framework for test construction. The type of tests that are used are stan-
dard hypothesis tests from statistical hypothesis testing theory and it is possible
to treat noise in a sound way. That is, even in a noisy system, faults can be
correctly isolated.

In Section 1.4, diagnosis system construction using tests based on different
small models was outlined and in Chapter 2 further details are discussed. We
introduce, the two important properties of a diagnosis system related to the
first goal to obtain good fault isolation capability of a diagnosis system, i.e.,
complete and sound. A diagnosis system is complete if all possible explanations
are contained in the output from the diagnosis system. Contrary, the diagnosis
system is sound if only possible explanations are contained in the output.

We present guidelines of how to construct each individual test in a diag-
nosis system such that the resulting diagnosis system becomes complete. A
sound and complete diagnosis system exactly computes the set of all possible
explanations and this implies that any inconsistency in any part of the diagnosis
model must be detected. For such diagnosis system, it is required that there are
tests that check the consistency of every redundant part of the diagnosis model.
A key result is a sufficient and necessary condition for which set of models
that tests can be based on, such that a sound and complete diagnosis system
exists. This condition will later be referred to as the soundness-criteria. This
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soundness-criteria can be used to compute the minimum number of tests in a
sound and complete diagnosis system, and also to find which models to test. It
is shown that the number of tests in general can be decreased by checking the
consistency of small models, and then especially the minimal sets of equations
that contain redundancy. These models will be called minimal rejectable mod-
els. In Chapter 3, 6, and 7 the solutions including minimal rejectable models
to the soundness-condition for linear static, for linear dynamic, and for general
dynamic models are investigated respectively.

Chapter 3: Soundness when Diagnosing Linear Static Systems

This chapter presents a new theory and algorithms for finding the minimum set
of models that is needed to be tested in order to obtain a sound and complete
diagnosis system when considering linear static diagnosis models. This is done
by investigating which sub-models that can be tested to obtain soundness. A
key contribution is that there exists a sound and complete diagnosis system
based on the set of all minimal rejectable models in a diagnosis model. In
general, not all minimal rejectable models need to be tested to obtain soundness,
and an algorithm for finding all minimal sufficient subsets of minimal rejectable
models is proposed.

Chapter 4: An Efficient Algorithm for Finding all MO Sets

This chapter presents an new efficient algorithm for computing all minimal
rejectable models in a linear static or dynamic model. The input to this algo-
rithm is a set of equations that contain redundancy. The algorithm is based
on a top-down approach in the sense that we start with all equations and then
remove equations step by step until a minimal rejectable model is found. The
algorithm is constructed such that the combination of equations that are re-
moved are exactly those combinations that need to be removed to find each
minimal rejectable model once and only once.

Chapter 5: An Algorithm for Finding all Feasible MO Sets

In a general diagnosis model there can be set of equations with inconsistent
validity. For example, some equation is valid only in the no-fault mode and
another only in some fault mode. A model with inconsistent validity, do not
describe the behavior in any behavioral mode and is not useful for diagnosis.
Thus, models with consistent validity will be considered and these models will
here be called feasible models.

The algorithm presented in Chapter 4, does not consider the validity of
equations. This means that if this algorithm is applied to a general diagnosis
model, minimal rejectable models with inconsistent validity are found if such
models exist.

This chapter presents a novel algorithm that handles the validity of the
equations such that only models with consistent validity are found. This is
done by restricting which equations that are allowed to be removed when
applying the algorithm presented in Chapter 4. In this way, the property that
all minimal rejectable models are found once and only once is transfered to the
extended algorithm. The algorithm presented in this chapter is not limited to
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linear models if an algorithm handling also non-linear models is used instead
of the algorithm in Chapter 4.

Chapter 6: Soundness when Diagnosing Linear Dynamic Systems

This chapter presents new theory and algorithms for linear dynamic models
corresponding to the presentation given in Chapter 3 for linear static models.
A key result is that there exists a sound and complete diagnosis system where
the tests are based on the set of all minimal rejectable models with consistent
validity. All these minimal rejectable models can be found by the algorithm
presented in Chapter 5. It will also be shown that it is in general not necessary to
test all minimal rejectable models with consistent validity. Theory for selecting
and an algorithm for finding a smallest subset of minimal rejectable models are
therefore developed.

It is also shown under a mild rank condition on the diagnosis model that
given a minimal rejectable model, the behavioral modes that influence any test
quantity derived from the model are given by the validity of the equations.
Hence no further fault influence analysis of each test quantity is needed.

Chapter 7: Soundness when Diagnosing General Systems

This chapter presents solutions to the soundness-criteria when considering a
diagnosis model with general non-linear equations. Contrary to the linear
chapters, methods for finding rejectable models are not proposed. Here, it
is assumed that it is possible to find all feasible minimal rejectable models
in the non-linear model by using some existing technique. Even though it
might be difficult to compute all minimal rejectable models, we show that there
exists a sound and complete diagnosis system with tests based on the set of
all minimal rejectable models with consistent validity. Furthermore a sufficient
and necessary condition for which set of models that is sufficient to test is
given. An example shows how this result can be used to minimize and select
models such that a sound diagnosis system can be obtained with the minimum
number of tests. Furthermore, an algorithm is proposed that given all minimal
rejectable models finds all minimal solutions to the soundness-criteria.

Chapter 8: Finding Rejectable Models Using Structural Methods

Systematic structural approaches to find models with redundancy have been
suggested in e.g. (Blanke et al., 2003), (Cassar and Staroswiecki, 1997), (Pulido
and Alonso, 2002) (Travé-Massuyeés et al., 2001), and (Krysander and Nyberg,
2002a). All these approaches have in common that models with redundancy are
found among the models with more equations than unknowns. Furthermore,
of all these models, it is the minimal ones that have been used to derive test
quantities. Such models that also contains known variables will here be called
minimal structurally overdetermined (MSQO) sets of equations.

In this chapter, we will formally show for linear systems that a model is an
MSO sets if and only if the model is a minimal rejectable model in the generic
case. Three different structural representations of dynamic models are recalled
from the literature. It is exemplified that MSO sets correspond to minimal
rejectable models for all three representations. The difference between the
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two main representations is whether different order of derivatives of the same
signal should be considered to be different independent signals or not. The
structural model properties are applicable also to non-linear dynamic models,
and interpreted in a similar way as for linear systems. We give examples where
the MSO sets are the minimal models that analytical redundancy relations can
be derived from by using elimination tools, i.e., the idea of testing MSO sets
can be extended to the non-linear dynamic case.

Chapter 9: An Efficient Algorithm for Finding all MSO Sets

A main contribution in this thesis is a new efficient algorithm for computing
all MSO sets in a model. The proposed algorithm is similar to the algorithm
for finding all minimal rejectable models described in Chapter 4. The only
difference is that rank operations are replaced by corresponding graph theoret-
ical operations. This algorithm can be used in combination with the algorithm
presented in Chapter 5, and then all MSO sets with consistent validity are
found.

The proposed algorithm can use any structural representation of dynamic
systems that are recalled in Chapter 8 for finding models with redundancy.
For complexity comparison, previous algorithms are recalled. Contrary to all
previous algorithms, this algorithm uses a top-down approach and it is shown
that the time complexity under certain conditions is much better for the new
algorithm. This is illustrated using a Scania truck engine model.

Chapter 10: Structural Analysis of MSO Sets of Differential-Algebraic Equa-
tions

When finding MSO sets in differential-algebraic systems the structural rep-
resentations that do not distinguish between different order of derivatives is
the most compact representation. To find all MSO sets in this representation
is therefore computationally less demanding than using the other expanded
structural representation where different order of derivatives are considered
to be separate independent variables. However, the expanded representation
provides more information about the differential algebraic system.

In this chapter, we consider an MSO set in the original representation and
shows how an MSO set in the expanded structural representation can be ob-
tained. The main reason for doing this is that the corresponding differential-
algebraic model is transformed into an algebraic model. Then test quantities
of the differential algebraic model can be obtained also be using static methods
applied to the corresponding algebraic model.

The extended MSO set is obtained by differentiating the equations included
in the original MSO set. It is desirable to differentiate the equations as few times
as possible, to avoid higher derivatives of measured signals and look-up tables.
A key result is that there exists a unique expanded MSO set where all equations
are differentiated less number of times than in any other expanded MSO set.
An algorithm is presented that given an MSO set in the original representation
returns this unique expanded MSO set. This algorithm is purely structural and
is based on the new concept of structural differentiation.
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Chapter 11: Fault Isolability Analysis of Diagnosis Systems

In this and the following chapter the focus will be on the second goal to achieve
good fault isolation capability, i.e., to find a diagnosis system with maximum
isolability. A design procedure for test selection based on isolability properties
is proposed. Two type of isolability goals can be specified. Either the maximum
isolability is the goal or a desired isolability specified by the diagnosis system
designer is the goal. The designer has to provide a set of potential test and
by following the procedure a minimum subset the potential tests is selected
with the desired isolability or the best possible isolability. It is shown that the
test quantities and the rejection regions of the potential tests do not need to be
constructed in order to decide that the tests are not needed. This means that test
quantities and rejection regions have to be derived only for the selected tests.
By computing which faults that influence each selected test, the procedure
determines if the desired or the best possible isolability has been obtained.

Chapter 12: Fault Isolability Prediction of Diagnosis Models and its Appli-
cations

In the development of processes including diagnosis, design decisions are
taken, e.g. sensor configuration selection, which affects the fault isolability
possibilities. In this chapter an algorithm for predicting fault isolability possi-
bilities using a structural model describing the process is proposed. Since only
a structural model is needed as input, the algorithm can easily predict fault
isolability possibilities of different design concepts. In contrast to previous
algorithms using structural models no assumption is imposed on the model.
The algorithm computes faults that cannot be distinguished from other faults,
which can be used to exclude design alternatives with insufficient isolability
possibility.

Furthermore, a design procedure for constructing a diagnosis system with
the maximum possible fault isolation capability is given. This design procedure
is based on isolability predictions in combination with the theory for selecting
tests in Chapter 11. The fault isolability of a diagnosis system with maximum
possible fault isolation capability and the diagnosis model is exactly the same.
Hence the fault isolation possibilities of a diagnosis model can be computed in
this way.

1.7 The Results from a User Perspective

In this section, we will give an overall picture of how the design of diagnosis
systems can be done and also point out where results from this thesis can be
applied. To encourage the use of the results, it is highly desirable to have
software support in the design procedure. The ongoing work for determining
the architecture for such a toolbox is described in (Frisk et al., 2006).

The procedure for designing a diagnosis systems contains several steps.
Important steps are the following:

a) Deriving fault isolability requirements.

b) Constructing a diagnosis model of the process.



16 Chapter 1. Introduction

¢) Performing detectability and isolability analysis on the diagnosis model.
d) Selecting models for test construction.

— Compute minimal rejectable models.

— Specify if soundness or maximum isolability should be the design
goal.

— Selecta minimum cardinality set of models that may fulfill the chosen
goal.

e) Designing tests for each selected model.

- Design a test quantity with an appropriate method.

— Compute a proper rejection region by using simulations and/or mea-
surements.

— Evaluate the fault influence of the test and if needed go back to
step (d).

f) Selecting fault isolation algorithm.

Next the different steps will be described. The focus of this thesis is on
steps (c) and (d) and the descriptions of these steps are therefore more detailed
than the other steps.

1.7.1 Deriving Fault Isolability Requirements

In step (a), different faults of the process are identified. This can be done by
using fault tree analysis that is a systematic way to investigate credible causes
for an undesired event in a process (Stamatelatos and Vesley, 2002; Vesley
et al.,, 1981) or by using failure mode and effect analysis (Stamatis, 1995). By
evaluating how the different faults effects the process behavior, intolerable
consequences is found and fault isolability requirements can then be specified.
The positive effects of including diagnosis can then be evaluated by an extended
fault tree analysis according to (Aslund et al., 2006).

1.7.2 Constructing a Diagnosis Model of the Process

In step (b) a diagnosis models is constructed according to the modeling frame-
work that is proposed in Chapter 2. The modeling guidelines proposed in
Section 12.5 can also be consider to improve model selection using structural
analysis.

1.7.3 Performing Detectability and Isolability Analysis

The purpose of step (c) is to investigate if there can exist some diagnosis system
with the required fault isolability. This analysis can be done with the methods
proposed in Chapter 12. If the answer is no, additional fault modeling or
additional sensors must be used and this is exemplified in Chapter 12. If the
fault isolability requirements can be met, then diagnosis system construction
can begin.
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1.7.4 Selecting Models for Test Construction

The first part in step (d) is to compute all minimal rejectable models. If the
diagnosis model is linear, then linear methods described in Chapter 3-6 can be
used. If the diagnosis model is non-linear, we need to decide if we want to use
a linearization of the model and apply the linear methods or if we want to use
the structural methods presented in Chapter 8 and 9.

The second part of step (d) is to chose which goals for obtaining good
isolability that we will used, i.e., to aim for completeness and soundness or to
aim for obtaining maximum isolability.

The third part of step (d) is to selecta minimum cardinality subset of minimal
rejectable models that may fulfills the chosen goal. If soundness is the goal, then
methods in chapters 3, 6, and 7, can be used for linear static, linear dynamic,
and non-linear models respectively. If maximum isolability is the goal, the
methods in chapters 11, and 12 can be used.

There might exist several possible minimum cardinality sets of minimal
rejectable models and this rises the question which set of models to use. In
Section 1.4.1, we argued that the models should be selected such that a test
can be derived from each model with some existing tool. By using the graph-
theoretical algorithm presented in Chapter 10, it is possible to prioritize between
dynamic models by predicting dynamical properties and this prioritization can
be used for model selection.

1.7.5 Designing Tests for the Selected Models

In step (e), a test quantity and a rejection region are designed for each selected
model. Each model needs to be considered separately to use an appropriate
tool for test construction. For example, if the model is linear, then linear resid-
ual generation can be used to obtain a test quantity (Chow and Willsky, 1984;
Nyberg and Frisk, 2006). If the model is polynomial, grébner basis elimination
techniques can be used (Frisk, 2001; Staroswiecki and Comtet-Varga, 2001). If
high order of derivatives are included in an analytical redundancy relation,
then an observer based method can be tried (Frank, 1994; Kinneart, 1999; Yu
and Shields, 1997; Nikoukhah, 1998). Test quantities are derived from the deter-
ministic diagnosis model that might contain model uncertainties, for example
that noise has been neglected. Simulations and measurements from a real pro-
cess can be used to verify the test quantity is applicable to real process data and
also be used to select a proper rejection region. When a rejection region has
been determined, the set of faults that influence the test can be investigated by
implementing different faults in models and simulate the test response. This
can also be done by implementing faults on a running process and use the
measurement data in the same way. If the fault influence is different from
the expected fault influence used in step (c) for model selection, it might be
necessary to return to step (c) and make a new selection.

1.7.6 Selecting Fault Isolation Algorithm

Finally, in step (f) a suitable fault isolation algorithm should be selected, i.e., to
design the unit “Fault Isolation” in Figure 1.2. If only single faults or few be-
havioral modes are considered, structured hypothesis tests can be used (Nyberg,
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1999). If multiple faults with only two modes per component are considered,
then the algorithm in (Kleer and Williams, 1987) can be used. If multiple faults
and fault modes are considered the isolation algorithm in (Nyberg, 2006) can
be used.

By combining the designed tests and the selected isolation algorithm as seen
in Figure 1.2, a diagnosis system is obtained.

1.8

Main Contributions

The main contributions are summarized in the following list.

The framework combining methods from Al and FDI for diagnosis pre-
sented in Chapter 2.

Theorem 7.3 that gives a necessary and sufficient condition expressed in
terms of minimal rejectable models for which sets of models that a sound
and complete diagnosis system can be based on.

Corollary 7.1 that states that there exists a sound and complete diagnosis
system based on all feasible minimal rejectable models in a diagnosis
model.

Algorithm 4 for finding all minimal rejectable models in a linear static or
dynamic diagnosis model.

Algorithm 7 for finding all feasible minimal rejectable models or all fea-
sible MSO sets.

Theorem 8.6 that establish a formal link between structural and analytical
methods.

Algorithm 11 for finding all MSO sets in model.

Algorithms for finding all minimal set of models the fulfills the soundness-
criteria. For linear static models Algorithm 2 in combination with Al-
gorithm 1 can be used, for linear dynamic models and Algorithm 2 in
combination with Algorithm 8 are applicable, and for general dynamic
models Algorithm 9 should be used.

Algorithm 12 that transforms an MSO set of differential-algebraic equa-
tions into an MSO set of algebraic equations.

The isolability analysis of a diagnosis model using the two structural
methods proposed in Section 12.2 and in Section 12.3.

The procedure in Section 12.7.4 for designing a diagnosis system with
maximum isolability and with the minimum number of tests.
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A FRAMEWORK FOR MODEL BASED
DiAagNOSIS

Fault diagnosis has in the literature been studied from mainly two different
perspectives. The first is control theory (here denoted FDI), e.g. see (Gertler
and Singer, 1990; Gertler, 1998) and the second is Al, e.g. see (Kleer et al., 1992;
Reiter, 1987; Kleer and Williams, 1987; Hamscher et al., 1992). In the field of
control theory, the literature on fault diagnosis has mostly been focused on the
problem of residual generation. That is, given a model of the system, how to off-
line construct residual signals that are zero in the fault-free case but sensitive
to faults. In the field of Al, the focus has been on fault isolation and how to
on-line compute what is here called residuals. In this chapter we show how
methods from FDI and Al (or more exactly consistency-based diagnosis) can
be combined into a common framework for fault diagnosis that will be used in
this thesis. The framework proposed is also based upon ideas from statistical
hypothesis testing in accordance with the method structured hypothesis tests
from (Nyberg, 2002a, 1999).

The modeling of the system to be diagnosed, and the isolation of faults,
follows mainly ideas from AI (Dressler et al.,, 1993). The key point here is
to add information in the model of how the validity of each model equation
depends on which faults that are present in different components. Isolation is
then performed by propagating this information through the diagnosis system.
However, one difference is that residuals are assumed to be computed off-line
as in FDI. Therefore the on-line machinery can be made more simple, e.g. there
is no need to use a so called ATMS (Assumption based Truth Maintenance
System) which is common in Al (Kleer and Williams, 1987). All decisions taken
in the diagnosis system are based on the theory of statistical hypothesis testing.
This means for example that noise and uncertainties can be handled in a sound
way.

By combining these ideas from FDI, Al, and hypothesis testing, we will
obtain a framework that is able to efficiently handle: fault models, several
different fault types (e.g. parameter- and additive faults), more than two be-
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Figure 2.1: The system to be diagnosed. The location of possible faults are
denoted with a red flash.

havioral modes per component, general differential-algebraic models, noise,
uncertainties, decoupling of disturbances, static and dynamic systems, and
isolation of multiple faults.

The modeling framework and how information about different faults is
incorporated in the model are described in Section 2.1. The design of a diagnosis
system is then presented in Sections 2.2 and 2.3. The connection to FDI methods
are more explicitly elaborated in Section 2.4. Finally, Section 2.5 discusses the
output from the diagnosis system.

2.1 Modeling Framework

This section describes the modeling framework that is later used in the construc-
tion of the diagnosis system. Using this modeling framework, all information
about the faults are included in the model. This fault information is then the
basis for the reasoning about faults.

Throughout the chapter, we will exemplify some concepts and techniques
on the following example.

Example 2.1

The example chosen is shown in Figure 2.1 and represents a water-tank system.
This system has a pump that is pumping water into the top of a tank. The pump
is controlled by a control signal u. The water flows out of the tank through a
pipe connected to the bottom of the tank. The flows into and out of the tank
are denoted g;, and the water-level in the tank is denoted w. The water-level in
the tank and the outflow of the tank are measured by sensors. The water-level
sensor signal is y,,, and the outflow sensor signal is y,,.

2.1.1 Components

We assume that the system consists of a set C of components. The behavior
of each component, and the relation to its outer world, are described by a
number of relations. A variable in the relations for a component is either an
internal variable or an external variable. External variables are variables that
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Table 2.1: Possible behavioral modes for each component of the water-tank
system.

Component Possible Behavioral Modes
Pipe P € {NF, UF}

Tank T € {NF, C, UF}
Water-level sensor W € {NF, UF}

Flow sensor Q € {NF, B, UF}

are shared with connected adjacent components or can be observed. Internal
variables are only known within the component itself. Another alternative,
not exploited here, is to consider all variables to be internal variables and then
describe interconnections between components explicitly by using equations,
e.g. the object-oriented modeling-language Modelica.

Example 2.2

The water-tank system introduced in Example 2.1 and shown in Figure 2.1
consists of four components, i.e. a pump, a tank, a water-level sensor, and a
flow sensor. These components will be denoted P, T, W, and Q respectively
and are illustrated in Figure 2.1 by the four dashed boxes. This means that the
set C of components is C = {P, T, W, Q} in this case.

2.1.2 Component Behavioral Modes

The behavior of a component can vary depending on which behavioral mode the
component is in. Different type of faults are typically considered to be different
behavioral modes. Examples of behavioral modes for a sensor are no-fault,
short-cut, bias, and unknown fault. Abbreviations like NF for no-fault, C for
clogging, B for bias, and UF for unknown fault will be used. Furthermore, if
for example ¢ is a component then ¢ will also with a little abuse of notation be a
variable describing which behavioral mode the component is in. For example
¢ = NF will denote that c is in behavioral mode NF. The set of all possible
behavioral modes for component c is denoted by B.. It is assumed that a
component is in exactly one of its possible behavioral modes, i.e. ¢ € B,.

Example 2.3
For the water-tank system, the four components are assumed to have the pos-
sible behavioral modes shown in Table 2.1.

2.1.3 Component Behavior

The behavior of each component is as said before described using relations.
That is, for each component c there is a set of relations M. = {e; , €; +1,€i.+2, ...}
describing the behavior of that component. The validity of each relation can
in some cases depend on which behavioral mode the component is in. For
the water-tank example, we can have the case that a relation y,; = g> holds if
component Q is in behavioral mode NF, i.e. Q = NF, but not necessarily if
Q = B. This means that together with each relation ¢;, , there is an assumption
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of the type ¢ = F1 (or a disjunction ¢ = F1 V ¢ = F2 V ...) that must be fulfilled
before the relation ¢;, can be assumed to hold.

Example 2.4

The assumptions and the relations for all components of the water-tank system
are shown in Table 2.2. The equations describe the pump, the conservation of
volume in the tank, the outflow from the tank caused by the gravity derived
from Bernoulli’s equation, the outflow from the tank caused by the gravity when
a clogging fault is present, a fault model for a constant clogging fault f,, the
water-level measurement, the outflow measurement, the outflow measurement
when the sensor has a bias fault and a fault model for the outflow-measurement
fault f,,. The first equation describing the behavior of the tank has no assump-
tion, i.e. that equation is always true.

Table 2.2: An analytical model for the water-tank system shown in Figure 2.1.

Assumption Equation Expression

Pump
P =NF e1 u=q
Tank
e wW=q1—qo
T =NF e3 w=q3
T=C es w=(1-f)qp
T=C es fi=0
Water-level sensor
W = NF €6 Yo =W
Flow sensor
Q=NF ¢ vy =2
Q=B cs Yo =02+ fyg
Q=B €9 fy=0

2.1.4 System and System Behavioral Modes

The set of all available equations for the system is supposed to describe all
information about the behavior of the system. The set of all equations is denoted
M and is equal to the union of all equations describing the components, i.e.

M:UMC

ceC

Further on it needs to be defined which variables in M that are possible
to observe, i.e. which variables that are known and which variables that are
unknown. The set of known variables is denoted Z and the set of unknown
variables is denoted X. For the model in Table 2.2, Z = {u, y4, y,;} and X =
191,92, w, fo, fyg)-

The models can be static, dynamic time-discrete, or dynamic time-continuous.
For each type of model all variables are assumed to have equal domains. For
the static case, the domain of each variable is assumed to be all real numbers R.
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For the dynamic time-discrete case, the domain of each variable is assumed to
be all time-discrete signals for some finite or infinite time-interval where each
time-sample is in the range of IR. Finally, for the dynamic time-continuous case,
the variables are assumed to be time-continuous signals with range R and for
some finite or infinite time-interval.

For any of the three cases, let x and z be the vectors of the variables in X and
Z respectively. The domains of x and z are then denoted X and Z respectively.
For the model in Table 2.2, x and z are time-continuous signals.

As well as defining behavioral modes for components, it is possible to de-
fine behavioral modes called system behavioral-modes for systems. A system
behavioral-mode completely determines the behavioral mode of all compo-
nents in the system, i.e. Acc(c = b.) where b, € B, for each c € C. This is also
called a complete mode assignment (Dressler and Struss, 1994).

An example of a system behavioral-mode for the water-tank system is P =
NFAT =CAW = NF A Q = B meaning that P is in behavioral mode NF, T
in C, Win NF, and Q in B. If an ordering of the components is assumed, an
alternative representation is to write a system behavioral-mode using a tuple,
e.g. (B T,W,Q) = (NF,C,NF,B). The notation sys = (NF,C,NF, B) will be
used to denote that the system is in system behavioral-mode (NF, C,NF, B).
If there is a components with only one component behavioral mode, then the
behavioral mode that this component is in, can for notational convenience be
omitted in the tuple.

A system behavioral mode is said to be a single fault mode if exactly one
component is in a faulty mode and all other modes are in the no-fault mode. Ina
similar way double faults and multiple faults refer to the number of components
that are in a faulty mode. For the example (NF, C, NF, NF) is a single fault mode
and (NF, C,NF, B) is a double and a multiple fault mode.

Like component behavioral-modes, we can use abbreviations to denote
system behavioral-modes. This is especially practical when only single-faults
are considered. For example for the water-tank system, the system behavioral
modes (P, T, W,Q) = (NF, NF,NF, NF) and (P, T, W,Q) = (UF,NF, NF,NF) can
be written NF and UFp.

Another case when it is practical to use abbreviations for system behav-
ioral modes is when each behavioral mode only have one no-fault mode and
one faulty mode and multiple faults are considered. Then the faulty compo-
nents denote the corresponding behavioral mode. For example (P, T, W,F) =
(UF,NF,NF,NF) and (P, T, W, F) = (UF, UF, NF, NF) can be written as P and PT
respectively.

The set of all possible system behavioral modes will be denoted by B. For
the water-tank example, the set of all system behavioral modes B is defined
to be all 2232 = 36 system behavioral-modes B = {NF, UF} x {NF, C, UF} x
{NF, UF} x {NF, B, UF}. For the first equation in Table 2.2 the corresponding
assumption is P = NF. This assumption defines a set {NF} x {NF, C, UF} x
{NF, UF} x {NF, B, UF} C B which is the set of system behavioral-modes where
P = NF. This set will be denoted ¢(P = NF). To each equation ¢ € M there
will be a corresponding set of system behavioral-modes denoted assump(e) for
which equation e can be assumed to be valid, i.e.

assump : M — P(B)

where P denotes the power set. A relation and its corresponding assumption
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can then be written
sys € assump(e) — e (2.1)

For the first equation ¢; in Table 2.2, assump(e;) = ¢p(P = NF).

Finally, all introduced sets and the mapping assump are collected into a
tuple (M, X, X, Z, Z,B,assump). This tuple is said to be a diagnosis model and
will be denoted M.

2.1.5 Diagnosis

To be able to diagnose a system, values of the known variables from the system
and a diagnosis model of the system are needed. The known variables are
typically measured sensor signals and actuator signals. The information about
the known signals will in this thesis be of one of the following three different
types:

e asnap-shot
e several sampled values in a time-window
e a continues function in a time-window

All these types will be exploit in later chapters. A snap-shot, some sampled
values, or a continuous functions recorded for the diagnosis task will be called
an observation, i.e. a value zg of z.

A set M € M of equations is called a model. A model M C M is said to be
consistent with an observation z € Z if

dx € Xt Aeepme(x, z) (2.2)

For notational convenience, A.cpme(x,z) will be abbreviated M(x, z). Given an
observation, a model is said to be inconsistent if the observation is not consistent
with the model. The set of consistent observations for a model M is defined as

OM) = {z € Z|FAx € X : M(x, z)} (2.3)

and is called the observation set of M. To determine if z € O(M) for a given
observation z will be called to check the consistency of a model M.

Example 2.5

If the equations in Table 2.2 are considered and M = {e3, ¢, €7}, then z € O(M) if
and only if y,, = yg, i.e. an equation obtained when eliminating all unknown
variables in M.

It is assumed that the system behaves in accordance with the diagnosis
model. This implies that an especially important type of model is the type that
describes the behavior of the system when it is working in a behavioral mode.
Given a behavioral mode b € B, a model

My, = {e € M|b € assump(e)} (2.4)

is a behavioral model for b.

Example 2.6
For the water-tank example in Table 2.2, the behavioral model for NF is Mg =
{e1, ez, 3, €6, 7} and the behavioral model for UFp is Myg, = {ey, e3, s, €7}).
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Behavioral models will next be used to define which behavioral modes that
are consistent with an observation.

Definition 2.1 (Diagnosis). Given an observation z € Z, a behavioral mode b € B is
a diagnosis if its behavioral model M, is consistent with z.

Note that this definition of diagnosis is equivalent to the one used in con-
sistency based diagnosis (Hamscher et al., 1992). The set of behavioral modes
that are diagnoses given an observation z is denoted

D(z) = {b € Blz € O(M,)} (2.5

The set of observations consistent with the diagnosis model, i.e. consistent with
at least one of the behavioral models, can be expressed as

UbeBO(Mb)

and is a subset of Z. If it is a proper subset, important behavioral modes can
have been neglected. From now on we will assume that equality holds, i.e.

Z. = UpegO(My) (2.6)

This is no restriction since behavioral modes describing unknown faults can be
added to obtain (2.6).

2.2 Diagnosis Tests

A diagnosis system is assumed to consist of a set of diagnosis tests which is a
special case of a general statistical hypothesis test (Casella and L.Berger, 1990)
and a procedure to compute consistent behavioral modes by using the outcome
of the tests. This idea has been described as structured hypothesis tests (Nyberg,
2002a). We will in this section discuss diagnosis tests and later, in Section 2.3,
describe how several diagnosis tests are combined to form a diagnosis system.

To define a diagnosis test we need the notion of a test quantity T;(z) which is
a function from the observations z to a scalar value. A diagnosis test for a noise
free model can then be defined as follows:

Definition 2.2 (Diagnosis Test, 0;). Let ®; C B and let sys denote the system
behavioral mode that the system to be diagnosed is in. A diagnosis test 6; for the null
hypothesis HY : sys € ®; is a hypothesis test consisting of a test quantity T; : Z. +— R
and a rejection region R; C R such that

sys € ®; - Ti(z) € Ri (2.7)

The complement of the null hypothesis is called the alternative hypothesis
and is denoted by H11 : sys ¢ @;. Definition 2.2 means that if T;(z) € Rl.c, sys € O;
can not hold. This is the same thing as saying that the null hypothesis HY is
rejected and the alternative hypothesis H} is accepted. The statement sys € ®;
becomes in this case a so called conflict (Kleer and Williams, 1987), i.e. an
expression in behavioral modes that is in conflict with the observations.

Example 2.7
For the water-tank example, consider a diagnosis test 6; for the null hypothesis

HY: (T = NF) A (W = NF) A (Q = NF) (2.8)
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ie. ®; = (T = NFA W = NF A Q = NF). According to the model in Table 2.2
we have that sys € @; implies that the equations in {e, €3, €6, €7} are true. From
these equations, it is possible to derive that

Yo—Y5 =0 (2.9)
This means that a test quantity can be defined at time ¢ as
Ti(t) = Yult) = yo(t)? (2.10)
and a rejection region R; = {x|x ¢ [-0.10.1]} implies that
sys € @1 — Ti(t) = yu(t) — yq(t)2 =0¢ R (2.11)

That is, these choices of T1 and R; fulfill the criterion (2.7) for being a diagnosis
test for the null hypothesis in (2.8). When |T;| > 0.1 we reject the null hypothesis
sys € @1 and draw the conclusion sys ¢ @, or as expressed in logic (Nyberg
and Krysander, 2003)

~(T=NFAW=NFAQ=NF)~Te{C,UFjvW=UFvVQe (B, UF} (2.12)

Note that to evaluate ~, the assumption that each component is in exactly one
of its component behavioral modes, i.e. the assumptions for W, Q, and T shown
in Table 2.1 must be used.

No conclusion is drawn from a test in which the null hypothesis has not
been rejected. That is, to reject null hypotheses is the only way the diagnosis
system can draw conclusions. Note that it is usually not true that sys € ®; holds
when HY : sys € @; is not rejected. It would sometimes be possible to assume
something else. However, it is in general difficult (or impossible) to construct
Ti(z) and R; so that such a conclusion can be drawn when the null hypothesis
is not rejected.

Another reason why no conclusion is drawn when the null hypothesis is
not rejected is that it is not needed. If there is a conclusion that really can be
drawn from T; (z) € Rg, it is always possible to add another diagnosis test
0;, to the diagnosis system such that this conclusion can be drawn anyway.
The suggested framework does not allow us to draw a conclusion when a null
hypothesis is not rejected, but this desired conclusion can be obtained if we
instead add another test §;, with ®;, = @g, T, =T;,and R;, = Rg.

2.21 Diagnosis Tests and the Model

The idea of model-based diagnosis is to utilize the diagnosis model M in the
construction of the diagnosis tests. For each diagnosis test 6;, not necessarily
all equations in M are utilized as seen in Example 2.7. Instead only a subset
M; € M might be considered. This means that, in addition to ®;, Ti(z), and
Ri, also a model M,; is considered when constructing a diagnosis test. Next
we will discussed how Tj(z), R;, ®;, and M; can be related to fulfill the basic
requirement (2.7). To do this the operator assump is first generalized.

In Section 2.1.4, the notion assump(e) was used to pick out the system
behavioral modes that implies the relation e. Here we will use assump to pick
out the assumption also for a set of model relations as follows

assump(M) = m assump(e) (2.13)
eeM
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With the extended assump operator, we are now able to formulate two
guidelines for ensuring that the requirement (2.7) is fulfilled.

a) The set M; and the null hypothesis ®; should satisfy
@; C assump(M;) (2.14)
or even better,

@; = assump(M;) (2.15)

b) The set M;, the test quantity Ti(z), and the rejection region R; should
satisfy
z € O(M;) - Ti(z) € R (2.16)

If M; is the model that corresponds to a diagnosis test 6;, then we will motivated
by the guidelines say that the model M; is tested. Note that by definition of
assump(M;), it holds that

sys € assump(M;) — z € O(M,) (2.17)
This means that if the guidelines (a) and (b) are followed, then it holds that
Ti(z) € Ri = z ¢ O(M;) — sys ¢ assump(M;) — sys ¢ ; (2.18)

That is, when the test quantity is within the rejection region, we can draw the
conclusion that sys € @; can not hold. This expression is equivalent to the
requirement (2.7) so the design goal has been achieved. Note that if (2.15) holds
instead of only (2.14), a stronger conclusion can in general be drawn in (2.18).
As said above, (2.15) is therefore a better choice than (2.14).

Given a model M;, there exists many methods to compute a test quantity T;
and a rejection region R; that satisfy (2.10). One alternative is to eliminate all
unknown variables in M; to derive equations containing only known variables.
An equation a(z) = 0 derived from M; satisfies

ze OM;) — a(z) = 0 (2.19)

and is said to be a consistency relation, also called analytical redundancy relation or
parity relation. The consistency relation a(z) = 0 can then used in the construction
of a test quantity. Some works on the consistency relation based approach
are (Staroswiecki and Comtet-Varga, 2001; Frisk and Aslund, 2005; Yu and
Shields, 1997; Basseville and Nikiforov, 1993). Other alternatives that may
be used are to make an observer based design (Frank, 1994; Kinneart, 1999;
Nikoukhah, 1998; Persis and Isidori, 2001; Massoumnia et al., 1989) or to make
an identification based design (Isermann, 1993). Test quantity construction is
not the subject of this thesis, but some design methods will be exemplified in
examples.

Example 2.8

For the water-tank example consider the diagnosis test 0; constructed in Ex-
ample 2.7. The test quantity in (2.10) was derived from the equations M; =
le2, e3,66,€7), i.e. My, T1, and @ satisfy (2.16), i.e. guideline (b). Furthermore,
it holds that assump(M;) = @y, i.e. guideline (a) is also fulfilled. Note that
with the same T;, R;, and @1, the model M; could also have been chosen as
M; = {e3, €6, €7} to fulfill both guidelines. This is the minimal equation set from
which T; can be derived. Later in this chapter, minimal sets from which test
quantities can be derived will be of special interest.
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2.3 Diagnosis System

A diagnosis system using the principle of consistency-based diagnosis takes the
observations and tries to conclude which behavioral modes that are consistent
with the observations. The output of the diagnosis system is therefore a set of
system behavioral modes that the diagnosis system claims to be consistent with
the observations. This set will be denoted by C and the behavioral modes in C
are said to be candidates. Formally a diagnosis system based on the principle of
structured hypothesis tests can be defined as follows:

Definition 2.3 (Diagnosis System, A). A diagnosis system is a set A of diagnosis
tests, i.e. A = {01, 0a, .. .} of diagnosis tests together with the procedure to form the set
of candidates as

C(z) = ﬂ ®F (2.20)

H? rejected

According to the definition, a diagnosis system A defines a function from
the set of all possible observations z to P(B), i.e.

A:Z — P(B)

The candidates are ideally equal to the diagnoses. In practice, it is not efficient to
compute the candidates in accordance with (2.20). An efficient way to compute
the candidates can be found in (Nyberg, 2006).

2.3.1 Strategies for Designing Diagnosis Systems

To design a diagnosis system consists of finding the set of diagnosis tests to
be included, and also for each diagnosis test, a test quantity T;(z), a rejection
region R;, and a null hypothesis H?. We will here study two different strategies
for finding these items. The first starts from a given set of null hypotheses HY,
and the second from the diagnosis model M of the system to be diagnosed.

2.3.2 Starting From Null Hypotheses

One way of starting the design of a diagnosis system is simply to decide which
null hypotheses to test, and then construct a suitable test quantity and rejection
region for each hypothesis test. One straightforward strategy is for example
to have one diagnosis test for each of the system behavioral-modes. This is
especially attractive when only single faults are considered. For example, if the
possible system behavioral-modes are NF, F1, F2, and F3, then the four null
hypotheses become

H? :sys € @p = {NF}
Hg :sys € O, ={F1}
Hg :sys € @3 =({F2}
HY:sys € @, ={F3}

To fulfill (2.7), it is suggested to follow the guidelines (a) and (b) above. The
guidelines will then tell us how to choose M;, namely any set such that (2.14) is
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fulfilled. The test quantity T; and the rejection region R; should then be selected
to fulfill (b).

Example 2.9

Consider again the water-tank example and assume that we want to design a
diagnosis test for the null hypothesis HJ : sys = NF. The requirement (2.14)
is fulfilled for M, = M. By eliminating the unknown variables using the
diffalg package in Maple, we obtain

Yo — yﬁ =0
2YqYq —Yg tu=0
The first consistency relation is the one used in test quantity T; in Example 2.7

and therefore we will now use the second consistency relation. In the second
consistency relation, there is an differentiated signal y, that either can be ap-

proximated or eliminated introducing dynamics (Frisk and Aslund, 2005). If
the latter alternative is chosen a so called residual r can be defined as

) d
7+ pr= E(yé) —Ygtu (2.21)

where > 0 to ensure stability. A residual is a signal should be zero in the
fault-free case. The above expression can then be written in a state-space form

: 2
X ~ _B(x;yq)_yq+” (222)
ro= x+y,

without the derivative 7, as input. For a time ¢, a test is defined by selecting
T>(t) = r(t) where r is defined in (2.22) and R, = {x|x ¢ [-0.10.1]}. An unknown
initial value of x in (2.22) leads in general to a non-zero  in the fault free case.
However r converge, by construction, exponentially to zero if sys = NF. Hence,
if the influence on r(¢) of an incorrect initial condition is less than 0.1 at time ¢,
then Mz, Tz(t), Rz fulfill (216)

2.3.3 Starting From the Model

The idea of this strategy is to start out from the model relations and investigate
which relations that can be grouped together to form models possible to test in
diagnosis tests (Blanke et al., 2003), (Cassar and Staroswiecki, 1997), (Pulido and
Alonso, 2002) (Travé-Massuyes et al., 2001). The null hypothesis HY : sys € ®;
will then be chosen as ®@; = assump(M;). In this way the relation (14) will of
course be fulfilled. Then the selection of the test quantity T; and the rejection
region R; should follow (b).

One requirement is that assump(M;) # @. If this requirement would not be
fulfilled, it would hold that ®¢ = B. This means that the result of rejecting a
null hypothesis would be that we can draw the conclusion sys € B, i.e. the test
can never provide any information.

Definition 2.4 (Feasible). A set M of equations is feasible if assump(M) # @.

Another requirement on the subset M; is that there must be some z such
that the relations M; cannot all be fulfilled and this motivates the following
definition.
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Table 2.3: Rejectable models contained in (2.4).

i Model M; Assumption ®@; = assump(M;)
1 es es €7} ¢(T=NFAW =NFAQ =NF)
2 e, ex,03,67) $(P=NFA T =NFAQ =NF)
3 lei, ez 0667} (P =NF AW =NF A Q = NF)
4 ey e e3 66} ¢(P=NFAT=NFAW =NF)
5 e es,e6, 7} $(T=CAW=NFAQ=NF)
6 {es, 6 €5 €0} O(T=NFAW=NFAQ=B)
7 e e5,e6, 68,9} HT=CAW=NFAQ=B)

8 {ei,ex605,698  P(P=NFAW=NFAQ =B)
9 leiexeses,esd  P(P=NFAT=CAQ=NF)
10 {eq, e, e3, 68,69} ¢(P=NFAT=NFAQ=B)
11 {eq,er,e4,65,¢6) ¢(P=NFAT=CAW=NF)
12 {61,82,84,85,63,69} ¢(P:NFAT=CAQ:B)

Definition 2.5 (Rejectable). A set M of equations is rejectable if
dz e ZVx € X : =M(x, z) (2.23)

Note that a feasible model M is rejectable if and only if

(Jowm)\om) # o (2.24)

beB

This means that there are possible observations that makes the model M in-
consistent. If the model M; is not a rejectable model, the test quantity would
always be zero, or close to zero, and the test would make no sense.

The next definition is related to the notion of a rejectable model.

Definition 2.6 (Analytical Redundancy). There exists analytical redundancy in
a model M if it is rejectable.

This definition is in accordance with the definition of analytical redundancy
in (Isermann and Balle, 1997). The question that remains is how to find subsets
M; that are feasible and rejectable. Given some natural assumptions about the
model, the problem of finding suitable subsets M; can often be solved by only
studying the structural properties of the model. This is not the topic of this
chapter but will be discussed later in Chapter 8.

Example 2.10

Now consider the water-tank system and assume that the subsets M; with their
corresponding assumptions assump(M;) shown in Table 2.3 have been found to
be rejectable models by studying the structural properties of the model. Exactly
how these sets are computed are described in Example 8.11. As said above, ®;
is then chosen as @; = assump(M;). By eliminating unknown variables with for
example the diffalg-package in Maple, one consistency relation can be derived
from each model M;. These consistency relations are shown in Table 2.4. With
these consistency relations, test quantities T;(z) and rejection regions R; can be
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Table 2.4: Consistency relations for the rejectable models in Table 2.3.

Consistency Relation

L v =y

2y, = (my,+uw)/y,)

3 Yu = “Ygtu

4 P2 =yt 2yu—u?

5 Yo = 2yqyw/yq

6 yzzu = 4y§yw

7 Yo = yw(]]qu + quyw)/(quyw)

8 i = —Yytu

9 Wy = Ygyqit — yqu)/(Ye(=Yyq + 1))

10 3y = (4y;—4y; + 20y, — yg +1)/Qu)
11 yw = (]/5; - yzvu + Zu]/w)/(zyw)

12 ¥ = —(y3 175 + Builijy + 4yziiy; — Buijy — 61y, + Y3iit iy — Suy,ii;—

Zuyqu_f/'q + 4yq”y'qyc2; —uitY g4 — 3”3/07”%2; - ﬂy‘ﬁﬁ%ﬂr

37/"2% Yai) [(qu(=yq + 1))

constructed to fulfill (b). The complexity of the consistency relation derived
from the set Mj, indicates that an observer based approach might be a better
alternative for this model.

2.4 Connection to FDI Methods

FDI methods presented in the literature, have focused mostly on residual gen-
eration and how disturbances and faults are to be decoupled. To use residuals
is the most common way to construct test quantities within the field of FDL
The reason to decouple disturbances is to avoid false alarms, and the reason to
decouple faults is to obtain residuals that are sensitive to different subsets of
faults, so that isolation can be performed. From a residual 7;, a test quantity can
for example be formed as T; = |ri| or

t=tg+N

T, = Z 0 (2.25)

t=to

Consider a linear system, typically found in FDI literature:

X = [} (1)] X+ [g] U; + H d+ m fi+ [(1)] 2 (2.26a)
1 0 0

y=10 1|x+ [O] d (2.26b)
1 1 1

where x is the dynamic state, u, the actuator signal, y the sensor signals, and
d an unknown disturbance signal. The signals f; and f, are used to model
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two different faults of the system and are non-zero only if the corresponding
fault is present. The system itself is considered to be one component with
three possible behavior modes: NF, F1, and F2. As seen, no actuator or sensor
faults have been considered. A model M for this system, rewritten using the
modeling framework suggested here is shown in Table 2.5.

Table 2.5: The model (2.26) rewritten using the modeling framework suggested
here.

Assumption Equation Expression

(4] X1=X1+X2+d+2f1+f2
() XZZX1+2Mg+d+f1
€3 ni=x
€4 =X
es5 y3=x1+x2+d
sys € {NF,F2} ¢ fi=0
sys € {NF,F1} e, f2=0

The goal now is to find some residual for the system (2.26). In all residuals,
the unknown disturbance d must be decoupled. To facilitate isolation, the goal
is also to decouple different faults in different residuals. By linear-algebra ma-
nipulations of the system (2.26) (e.g. see (Nyberg and Frisk, 2006)), a number of
residual generators can be found (here in the form of so called parity relations),
for example:

o= -1ty
r, = 4du, + ]]1 - 2]/2 - 2]/2 + Y3
3 = 2Us—Yr— Y2t Y3

By carefully studying the formula of each residual, it can be realized that the
sensitivity to the faults is according to the second column of Table 2.6.

A “0” means that when the behavioral mode of the column is present the
residual of that row will be zero. An “X” means that the residual will be zero
or non-zero. That is, in residual r,, the fault signal f; has been decoupled, and
in r3, f, has been decoupled.

To see the relationship with the framework presented here, we have to
investigate exactly which equations that have been used to form each residual.
It turns out that to form residual rq, i.e. to derive the equation —1; + y3 = 0,
from the equations in the model M, exactly the equations e, €3, es, e, and ey
have to be used. The equations M; used to derive rq, 72, and r3 can be seen in

Table 2.6: A decision structure.

INF F1 F2 | M | assump(M,)
rn| 0 X X |f{ey,eses¢e667) {NF}
ra 0 0 X {61,62,63,64,65,67} {NF, Fl}
r3 0 X 0 {62, €4, €5, 66} {NF, FZ}
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the third column of the table. The assumptions for each equation set M;, i.e.
assump(M;), can be seen in the fourth column of the table.

In conclusion, the FDI methods for residual generation, which can be based
on e.g. parity relations or observers, can be utilized in the framework presented
here. By keeping track of exactly which set M; of equations that are used in
the construction of each residual, the expression assump(M;) can be obtained.
This is then the only thing that is needed to facilitate fault isolation in the way
proposed in this thesis.

2.5 Completeness and Soundness Properties of Di-
agnosis Systems

Ideally the output of the diagnosis system should specify exactly which the
diagnoses are, i.e. the set of candidates C(z) produced by the diagnosis system
according to (2.20), should be equal to the set of diagnoses 9(z) given any obser-
vation z. However depending on how the diagnosis system is constructed, it is
not sure that this exact relationship between the candidates and the diagnoses
holds.

Example 2.11

Consider a diagnosis model IM with the system behavioral modes B = {NF,
F1, F2} and with the model equations shown in Table 2.7 where y; and u are
known signals, x is an unknown signal, and f; are unknown fault signals. By
following the decoupling strategy presented in (Gertler, 1991) and (Mattone
and Luca, 2006) in the construction of a diagnosis system,we would do the
following diagonal design:

| NF F1 F2 | assump(M))
0 X 0 | {NFF2}
0 0 X | {NF, F1}

T
T>

If p denotes the differential operator then the corresponding test quantities are

Ti = Gi(p)(pyi — u) = Gi(p)pfi (2.27)

where G;(p) for i = {1, 2} are some filters chosen such that the transfer functions
from y; and u to T; for i = {1,2} are proper and stable. Assume that both the
rejection regions are R; = R, = R\ {0}.

Assume that there is a fault F1 with f; = sin(t) and consider the observation
u =0, y1 = sin(t), and y», = 0. By substitution of the observed values for the
known variables in {e;, 5, e3}, we get that fi = sin(t) and f, = 0. The equation
e cannot be true and this implies that the set of diagnosis is O = {F1}. If
the initial conditions are assumed to be known, the test quantities become
Ti(t) = —=Gi(p)sin(t) € Ry and T, = 0 ¢ R according to (2.27). The candidate
set is then C = {F1} according to (2.20). Hence for this observation the set of
diagnoses is equal to the set of candidates, i.e. O = C.

Now, assume instead that there is a fault F1 with fi = 1 and that the
observations are u = 0, y; = 1, and y, = 0. The set of diagnosis is again
D = {F1}. However, the set of candidates are not the same. By substitution of
the observed values for the known variables in (2.27), we get that T; = T, = 0.
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This implies that the candidates are C = {NF,F1,F2} > D. Hence for this
observation, the set of diagnoses is a subset of the set of candidates. This means
that the diagnosis system with the two test quantities in (2.27) does not use all
available information in the diagnosis model in Table 2.7.

Table 2.7: The model (2.26) rewritten using the modeling framework suggested
here.

Assumption Equation Expression

e1 X=u
€ yi=x+fi
e3 YVo=x+fr
sys € {NF,F2} ey fi=0
sys € {NF,F1} es f=0

Next two definition concerning the relation between the diagnosis and the
candidates are presented.

Definition 2.7 (Complete). Given a diagnosis model M, a diagnosis system A is
complete with respect to M if
D(z) € C(z) (2.28)

forallz € Z.

Definition 2.8 (Sound). Given a diagnosis model M, a diagnosis system A is sound
with respect to M if
C(z) € D(z) (2.29)

forallz € Z.

The candidates are the diagnoses if and only if the diagnosis system is
sound and complete according to these definitions. The diagnosis system in
Example 2.11 is not sound, because it was shown that there exists an observation
that leads to © C C.

2,51 Designing a Complete Diagnosis System

By computing the set of candidates as in (2.20) and following the two guidelines
for designing tests, i.e. (2.15) and (2.16), the diagnosis system becomes complete
as the next theorem shows.

Theorem 2.1. Given a diagnosis model M, a diagnosis system A is complete with
respect to M if each test 0; € A fulfills (2.15) and (2.16).

Proof. By using (2.5), the equivalent expression
b¢C(z) = z ¢ OM,) (2.30)

to (2.28) can be derived. From b ¢ C(z) and (2.20), it follows that there exists an
0; € A such that b € ®; and H? is rejected, i.e. T;(z) € R. This and (2.16) imply
that

z ¢ O(M,) (2.31)
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From b € ®; and (2.15), it follows that b € assump(M;). From b € assump(M;),
(2.13), and (2.4) it follows that M; € M,,. This and (2.31), imply that z ¢ O(M,)
which according to (2.30) completes the proof. ]

This theorem tells that the completeness is easily obtained by following the
two guidelines for designing tests. For Example 2.11 the two tests fulfill (2.15)
and (2.16), i.e. the diagnosis system defined in the example is complete accord-
ing to Theorem 2.1.

2.5.2 Designing a Sound Diagnosis System

A diagnosis system is sound if and only if for each behavioral mode b € B and
for each observation
zeZ\ OMy) (2.32)

there exists a test 0; such that the following expression holds
(Ti(z) € Ri) A (b € D)) (2.33)

This can normally not be obtained for noisy systems and a discussion about
this is given in Section 2.7. However to start with, we will assume the ideal
case with no noise. In Section 2.3.1 two strategies to design diagnosis systems
were studied, one when starting from null hypotheses and one starting from
the model. By using the first strategy there is only one possible choice that
generally guarantees that a sound diagnosis system can be constructed and
this choice is to have one test for each behavioral mode. Of course, there can
be other sets of null hypotheses leading to a sound diagnosis system but this
is dependent on the particular diagnosis model that is used. Therefore, we
will study the second strategy, i.e. to start with the model to design a sound
diagnosis system.

By using the strategy presented in Section 2.3.3, i.e. starting from a set
models w = {M;,M,, ...}, it is natural to wonder if it is possible to construct
a sound diagnosis system testing the consistency of the models in w. This is
answered in the next theorem.

Theorem 2.2. Let M be a diagnosis model and w = {M;} a set of models. There exist
tests O; testing the models w = {M;} and designed according to the quidelines (a) and (b)
such that A = {6;} is a sound diagnosis system with respect to a diagnosis model IM if
and only if

omy= () ow (2:34)

Micw:M;CM,
forall b € B.

Before we prove the theorem, note that a diagnosis system with tests de-
signed according to the guidelines (a) and (b) is also complete according to
Theorem 2.1. Hence a diagnosis system designed according to the require-
ments given in Theorem 2.2 is a sound and complete diagnosis system with
respect to IM.

Proof. First, we show existence of a sound diagnosis system under condi-
tion (2.34). Let the tests 6; € A be ideal tests in the sense that T;(z) € ch if
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and only if z € O(M;), i.e. equivalence holds in (2.16) and ®; is chosen according
to (2.15). These tests clearly fulfill the guidelines (a) and (b). According to
the construction of the tests A, the null hypothesis HY for a test 6; € A and the
observation sets O(M;) are related as

H? rejected & z ¢ O(M,) (2.35)

We show (2.29) by proving that for any z € Z and for any b ¢ D(z) it follows
thatb ¢ C(z). Let z € Z be an arbitrary observation and let the behavioral mode
b be arbitrarily chosen such that b ¢ D(z). From (2.5) it follows that

z ¢ O(M,) (2.36)
Then, (2.34) implies that there exists a test 0; € A such that
z ¢ O(M;) (2.37)

and
M, C M, (2.38)

The formulas (2.35) and (2.37) imply that H? isrejected. Furthermore, from (2.20)
it follows that
C(z) € OF (2.39)

The formulas (2.15) and (2.38) imply that b € ®;, which together with (2.39)
implies that b ¢ C(z), i.e. the diagnosis system is sound.

Now, we prove the opposite direction, i.e. if (2.34) does not hold for all
behavioral modes, then no sound diagnosis system A exists.

Assume that (2.34) is not true for a behavioral mode b € B. The set O(M,)
cannot be a superset of the set defined in the right hand side of (2.34) and
therefore the assumption implies that

OM,) C ﬂ OM) (2.40)

Miew:M;CM,

Since (2.34) is not true for b it follows that there exists an observation z such
that
z ¢ O(My) (2.41)

and
zeOM;,)CZ (2.42)

for all M; € w such that M; € M. The subset-relation in (2.42) follows from (2.3).
The behavioral mode b is not a diagnosis according to (2.41), i.e. b ¢ D(z).
However, next we will prove that the behavioral mode b € C(z), which implies
that A is not sound. The behavioral mode b is a candidate if and only if H? is
not rejected for all ¢ where b € ¢ according to (2.20). From (2.15), it follows
that b € ¢ if and only if M; € M,. For any model M; € w where M; € M,, (2.42)
is true. This and (2.16) give that

Ti(z) € Ri (2.43)

i.e. HY is not rejected. Since this is true for all tests 6; where b € ¢ it follows
from (2.20) that b € C(z) and the theorem follows. O
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Condition (2.34) means that without making a diagnosis test based on M,,
tests for the models M; and with equivalence in (2.16) can always be used
to determine the consistency of M. This can also be formulated as that it is
possible to determine the consistency of M; by checking the consistency of
the models M;. In general there exist many solutions w to (2.34), and we are
particularly interested in sets with small cardinality, because the number of
models in w is equal to the number of tests in the diagnosis system based on
w. It is desirable to use few tests to reduce the online computational cost of
running the diagnosis system.

Example 2.12
Continuation of Example 2.11. It has been concluded that the diagnosis system
presented in Example 2.11 is not sound. However, if we add a test 63 such that
M3 = ey, e3,64,e5), D3 = assump(M3) ={NF}, T3 = Y1—Y2, and Rz = R\ {0}, then
a sound and complete diagnosis system is obtained. The resulting decision
structure is then:
| NF F1 F2 | assump(M;)

T:| 0 X 0 |{NFF2)

T,| 0 0 X |{NFFi}

T3 | 0 X X | {NF}

By carefully studying the diagnosis model in Table 2.7, it follows from Theo-
rem 2.2 that the minimum number of models that must be tested to obtain a
sound diagnosis system is three. Hence the diagnosis system with Ty, T>, and
T3 contains the least number of tests that any sound diagnosis system contains.

An upper bound for the number of models M; needed to fulfill (2.34)
for all b € B is the number of system behavioral modes which corresponds
to the straightforward solution of (2.34) to test all behavioral models, i.e.
@ = {Mylb € B}. This corresponds to the strategy presented in Section 2.3.2.
This strategy can handle models with a large number of faults when consid-
ering only single faults. However, when considering also multiple faults the
number of behavioral modes grows exponentially with the number of compo-
nents. Therefore this method runs into complexity problems when considering
systems with a large number of components that can fail.

In the next section, it is shown that the number of tested models M; need
not be equal to the number of behavioral modes, because each model M; can
contribute to determining the consistency of a large number of behavioral
models.

2.6 Testing Small Models

In this section an example illustrates how the number of tests can be decreased
by testing models with few equations.

Consider the electrical circuit shown in Figure 2.3 consisting of a battery
B, two resistors R1 and R2, one ideal voltage sensor S1, and two ideal current
sensors S2 and S3. All six component have two behavioral modes, the no-fault
mode NF and the unknown fault mode UF. The set consisting of the no-fault
behavioral mode, all single faults, and all multiple faults is B. The fault-free
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{1,2,3,4,5,6,7}
NF

T

{1,2,3,4,56} {1,2,3,4,6,7} {1,2,3,5,6,7} {1,2,4,5,6,7} {3,4,5,7}
S3 S1 B R2 R1, S2,R1&S2

A = AN

{1,2,3,4,6} {1,2,3,5,6}{1,2,3,6,7}{1,2,4,6,7} {1,2,5,6,7} {3,4,7} {3,5,7} {4,5}
S1&S3 B&S3 B&S1 R2&S1 R2&B R1&S1 R1&B R1&R2
S1&S2 B&S2 R1&S3

R1&S1&S2 R1&B&S2 RZ&SZ

R2&S3
$2&S3
R1&R2&S2
Figure 2.2: Subsets of (2.44). Ezlsfzzz
R2&8S2&S3
R1&R2&S2&S3
behavior of the components are described by the model M:
Assumption Equation Expression
1 I-L-L =0
R1=NF 2 V-LR =0
R2 =NF (©)] V-LR, =0
B = NF @) VU =0 (244)
S1=NF ®) V-yy =0
52 =NF (6) I-y; =0
53 =NF (7) L-y, =0

where I, I;, I, are currents; V the voltage across the battery; R; and R, are
resistances which are assumed to be known constants; U is the expected volt-
age across the battery; and yv, y;, and y;, are measurements of V, I, and I,
respectively. This means that

X = {LL LV}
V4 {Uyv, v}

and the corresponding domains are X = R* and Z = R®.

A straightforward way to fulfill (2.34) for all b € B is as said before to test
all behavioral models. For the electrical circuit, where all multiple faults are
considered, there are 2° = 64 behavioral modes. Next it will be discussed how
to reduce the number of tests from the number of behavioral modes.

First, there are behavioral models that are not rejectable models. In the
electrical circuit only 29 out of the 64 behavioral models are rejectable models.
The 29 behavioral modes with rejectable behavioral models are those seen in
Figure 2.2. This figure will below be explained more in detail.

There can be several rejectable behavioral models with equal observation
sets, i.e. O(M;) = O(M;) where M; and M, are two different behavioral models.
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Figure 2.3: An electrical circuit

For the electrical circuit example the behavioral model {1,4,5,6,7} of R1&R2
and behavioral model {1,2, 3, 4, 5} of S2&S3 have equal observation sets, i.e.

0({1,4,5,6,7}) = 0({1,2,3,4,5})) = {[U yv y1 y, 11U — yv = 0} (2.45)

A minimal set of equations with the same observation set is {4, 5} which is a
subset of both the two behavioral models. It holds that

0({1,4,5,6,7}) = 0({1,2,3,4,5}) = O({4,5})

Since the equation sets {4,5}, {1,4,5,6,7}, and {1,2,3,4,5} have equal obser-
vation sets, it is sufficient to check the consistency of for example only {4, 5}
to determine the consistency of both behavioral models. For each behavioral
model in the example, it can be realized that there exists a unique minimal set
with the same observation set. These equation sets and there corresponding
behavioral modes are shown as a Hasse diagram in Figure 2.2 partial ordered
by the subset relation. Instead of checking the consistency of all 29 rejectable
behavioral models, it is sufficient to check the consistency of all the 14 models
in the figure.

In the linear case it is also possible to determine the consistency of all
models in the figure by checking the consistency of only the sets on the lowest
levels. These 8 sets are the minimal sets that represents rejectable models. The
constraint (2.34) for the behavioral modes on the lowest level imply that it is
necessary to check all sets on the lowest level, except for {3,4,7}, {3,5,7}, and
{4, 5} which can be replaced by {1, 3,4, 7}, {1, 3,5, 7}, and {1, 4, 5} correspondingly.
Hence the minimum number of models that must be checked to obtain a sound
and complete diagnosis system is 8. Hence this example shows that by testing
small models the number of tests can be decreased.

2.7 Systems with Noise

The relation (2.7) can sometimes not hold strictly when the diagnosis test is
used together with a noisy system. If noise is present, (2.7) can then be replaced
by specifying the probability that (2.7) holds. In statistical hypothesis-testing
theory, this requirement is usually written as

P(Ti(z) € Rilsys € ©;) < a (2.46)
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That is, the probability of rejecting the null hypothesis H? : sys € ®; given that
sys € @; holds must be less or equal to a significance level « called the false
alarm probability. The idea behind hypothesis testing is to have a false alarm
probability that is very small, in fact so small that it is realistic to assume that
the formula (2.7) holds.

The noise is the reason for why not equivalence is used in (2.7) and it can be
realized as follows. Assume thata test o, fulfills (2.46), i.e. itis realistic to assume
that the formula (2.7) holds. To get equivalence the following implication must
hold

Ti ¢ R — sys € &; (2.47)

i.e. in a statistical framework that
P(sys € ©;|Ti(z) ¢ Ri) = 1 (2.48)

However this is not likely to hold because R is chosen small to fulfill (2.46) and
the probability in (2.48) increases with increasing R. Hence in general it is only
reasonable to assume that (2.46) can be fulfilled which motivates tests in the
form (2.7).

In noisy (stochastic) systems, the model M is only approximate, or alterna-
tively, is exact but includes stochastic terms. In this thesis only the first view
is studied. A discussion of the second alternative is found in (Nyberg and
Krysander, 2003).

The strategy to design a diagnosis test, that given an « fulfills (2.46), consists
of two steps. The noise is neglected in the first step where a preliminary test
is constructed by following the guidelines (a) and (b). In the second step
the rejection region R’ of the preliminary test is reduced such that (2.46) holds.
Verification of (2.46) can be based on simulations of the test quantity Ti(z) where
the input is either obtained from Monte-Carlo simulations of the diagnosis
model or directly obtained from measured data. The second step is also known
as threshold selection.

Example 2.13

For the diagnosis model in Table 2.7, assume that the equation for sensor y;
contains a noise term # representing white Gaussian distributed noise with zero
mean and standard deviation ¢ according to

yi=x+fi+n (2.49)

By neglecting the noise term, the test quantity T3 = y1 — y» has been derived in
Example 2.12 from the model M3. The test quantity is according to (2.49) equal
to T3 = n when f; = f, = 0. A rejection region R; = R\ [-], J] described by a
threshold ] can now be selected such that the probabilistic correspondence (2.46)
to (2.7) is fulfilled given a small false alarm probability «, i.e.

P(T5; € Rilsys € @3) = P(In| > ]) < «

The definition of soundness of a diagnosis system is mainly constructed for
noise-free case. However if the noise distributions are bounded the definition
of soundness can be useful also for models containing noise terms.

Example 2.14
Consider a diagnosis model with two behavioral modes NF and UF and a
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behavior of NF mode defined by the equation y = n where y is a known
variable and 7 is noise or uncertainty bounded to the interval n € [-1, 1]. The
diagnosis are

{NF,UF} foryel[-1,1]

D) = {{UF} otherwise (2:50)

A sound and complete diagnosis system for this model is obviously defined by
A = {61} where T; = y, ®; = {NF}, and R; = R\ [-1, 1].

If the support of the density function of the noise distribution is unbounded,
we will take advantage of the two step approach for designing diagnosis sys-
tems. Since the noise is neglected in the first construction step, it is possible
to require that the preliminary diagnosis system consisting of the preliminary
tests should be sound. This requirement is relevant for the resulting diagnosis
system for the noisy system and this can be motivated as follows.

In the limit when the noise level tends to zero, the preliminary rejection
regions need not be reduced and soundness property of the preliminary diag-
nosis system is carried over to the resulting diagnosis system. Moreover, if the
diagnosis system is not even sound in the ideal case, i.e. in the no-noise case,
we can suspect that the diagnosis system in a noisy situation would be even
worse, in the sense of (2.29).

In conclusion, noise is not explicitly included in the framework used here,
nevertheless this section shows that the framework and the results presented
here and in later chapters are also applicable to noisy systems. In particular
completeness for diagnosis system designed for noisy systems can be obtained.
Furthermore in the limit when the noise level tends to zero, soundness can be
achieved and this is an upper bound of the diagnosis performance in terms
of (2.29).

2.8 Conclusions

A new framework for model-based diagnosis has been presented. The isolation
mechanism follows ideas from Al, namely to include in the model, how the
validity of model equations depend on the presence of faults in each compo-
nent. Isolation is then performed by propagating this information through the
diagnosis system.

In contrast to Al, the diagnosis tests are computed off-line as in FDI. It has
been shown in Section 2.4 how standard FDI methods, such as residuals based
on parity relations or observers, can be used within the framework. In that
case, the powerful isolation mechanism can be fully utilized.

Since the diagnosis tests used are really standard hypothesis tests from
statistical hypothesis testing theory, it is possible to treat noise in a sound way.
That is, even in a noisy system, faults can be correctly isolated.

In summary, the framework presented can efficiently handle: fault models,
several different fault types (e.g. parameter- and additive faults), more than
two behavioral modes per component, general differential-algebraic models,
noise, uncertainties, decoupling of disturbances, static and dynamic systems,
and isolation of multiple faults.
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SOUNDNESS WHEN DIAGNOSING LINEAR
STATIC SYSTEMS

Following the strategy described in Section 2.3.3, the construction of a diagnosis
system starts with finding a set w = {Mj, ..., M,} of rejectable models to test. If
the diagnosis system should be sound, these models M; € w must fulfill

oMy = (] o) (3.1)

M;CM,

for all b € B according to Theorem 2.2.

In this chapter, the model equations are assumed to be linear static equations.
The theory that will be developed for linear static equations will be reused for
the linear

dynamic case in Chapter 6 and for structural methods handling the non-
linear dynamic case in Chapter 8. In general there exist many solutions w
to (3.1), and we are particularly interested in rejectable sets with small cardi-
nality according to the discussion in Section 2.6. Rank-conditions to check if a
set w fulfills (3.1) are developed. By using these conditions it is shown that it is
sufficient to check the consistency of all minimal sets M; C M, that are rejectable
models. In the linear case such sets will also be called minimal overdetermined
(MO) set of equations.

It is shown that the number of MO sets is dependent on the degree of redun-
dancy, i.e. the number of linearly independent consistency relations. For a fixed
order of redundancy, the number of MO sets is shown to be at most polynomial
in the number of equations. Furthermore, it is shown that the degree of redun-
dancy is limited by the number of sensors. In many applications, sensors are
expensive and thus the redundancy degree is low even if the models contains
a large number of components.

The main problem to solve in this chapter is how to find a set w of models
to test such that (3.1) is fulfilled for all behavioral modes b € B. This problem
can be divided into a number of sub-problems, one for each behavioral mode
in B. Sections 3.1-3.7 only consider the sub-problem of finding an w given a

45
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behavioral model M,;. Having solved these sub-problems, the solutions can be
combined to solve the full problem for all behavioral modes in B and this is
done in Section 3.8 and 3.9.

In Sections 3.1 we will study definitions presented in Chapter 2 such as,
analytical redundancy, observation set, and rejectable models in the linear static
case. The condition (3.1) is then analyzed in Sections 3.2 and 3.3. Section 3.4
states some important results, i.e. two rank conditions that can be used to
determine if a given w fulfills (3.1), and that it is sufficient to test all minimal
sets of equations that are rejectable models, i.e. all MO sets. It is in general not
necessary to test all MO sets and Section 3.5 gives some results of how to select
a subset of all MO sets that fulfills (3.1). Section 3.6 extends the model-class
considered to general linear static equations. In Section 3.7 the dependencies
between the number of sensors, the redundancy, and the number of MO sets
are studied.

Section 3.8 extends the result that it is sufficient to include all MO sets
in w to fulfill (3.1) for one behavioral mode to the case when considering all
behavioral modes b € B. As in the case when considering only one behavioral
mode, it is not necessary in general to include all MO sets in w. In Section 3.9
algorithms are given that finds the minimum cardinality sets of w containing
MO sets that satisfy (3.1) for all behavioral modes b € B. The size of a minimum
cardinality solution w is equal to the minimum number of test that must be
used to construct a sound diagnosis system. Several examples illustrate how
a minimal number of MO sets, i.e. a minimal number of tests in the resulting
diagnosis system, is computed. Finally fault sensitivity of residual generators
based on MO models is discussed in Section 3.10 before the conclusions are
drawn.

3.1 Linear Static Models

Consider a linear static model M;, for a specific behavioral mode:
Hyx+Lyz=0 (3.2)

where H, and L, are constant matrices, x is a vector of unknowns and z is a
vector of known variables.

Example 3.1
Throughout this chapter we will use the electrical circuit example presented in
Section 2.6 to illustrate concepts and theoretical results. Two behavioral modes
NF and R1&R2 and there corresponding behavioral models will be studied. By
using the model (2.44), the behavioral model Mnr can be written in the matrix
form (3.2) as

H L

01 -1 -17 0 0 0 0]

10 —R, 0 0 0 0 0

10 0 -R ‘1/ o o o olflY

10 0 0ff f+|-1 0 0 0 YviZo (3.3)
1o 0o o[} |o -1 0 o0 yi

01 o o™ Jo o -1 o|W¥n

00 0 1] o0 0 0 -1
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The behavioral model for behavioral mode R1&R2 is equal to the set Mrigr2 =
{1,4,5,6,7} of equations in (2.44).

To write for example the equations in Mgigr2 in the form (3.2) by using the
matrices H and L in (3.3), some matrix notation is needed. For a matrix A, an
ordered row index set R and an ordered column index set C are defined such that
A = (Ajjli € R,j € C), where Aj; is the (i, j)-entry of A. ForI C Rand | C C,
A[lL]] = (Ajjli € I,j € ]) denotes the sub-matrix of A with row index set I and
column index set J. Shorthand notations for the matrices A[I, C] and A[R, J]
will be A[I] and A[:, J] respectively. Now, the set Mrigr2 0of equations can be
written in the form (3.2) as

H[MRgigr2]x + L[MRg1igr2]z = 0 (3.4)

where the matrices H and L are defined in (3.3).

We will find sets w of models M; such that (3.1) is fulfilled for a behavioral
mode b. That is the consistency of the models in w will determine the consis-
tency of the behavioral models M,;. In (3.1) observation sets are used and in
the next section we will discuss consistency and observation sets in the linear
static case.

3.1.1 Observation Sets

For linear static models an observation z is assumed to be a snap-shot of the
vector z, i.e. a value of the vector z = zg € R" where n, is the dimension of z.
Let n, be the dimension of x. A linear model

Hx+1Lz=0 (3.5)

consisting of the equations M is consistent with an observation z = zy, if
dx e R™;Hx+Lzy =0 (3.6)
is true. The observation set O(M) for the equations M is then formally defined as
OM) = {z € R*|dx € R™; Hx + Lz = 0} (3.7)

The observation set O(M) can in the linear case be expressed without x as
follows. Let Ny be any matrix such that the rows of Ny is a basis for the left
null-space of the matrix H. This means that Ny has the maximum independent
rows which solves

NpH =0 (3.8)
By multiplying (3.5) from left with N, we get
NplLz =0 (3.9)

The expression (3.6) is equivalent to (3.9), i.e.
OM) = {z € R*|NyLz = 0} (3.10)

This result will be shown analogously for linear differential equations in The-
orem 6.2. Each row of NyL defines a consistency relation, i.e. an equation
containing only known variables. We will say that consistency relations are
linearly independent if their corresponding rows in NyL are linearly indepen-
dent.
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3.1.2 Redundancy and Rejectable Models

Existence of redundancy was defined in the previous chapter, and for linear
systems, it is also possible to quantify redundancy as follows.

Definition 3.1 (Redundancy of a Model). Let ¢ : 2M — IN be a function, from the
family of subsets M in a set M of linear equations (3.5) to the natural numbers, defined
by

@ (M) = rank ([H[M] L[M]]) — rank (H[M]) (3.11)

This number @ (M) is the redundancy of M.

Before redundancy is further discussed, a convenient matrix notation will
be defined . Let A be a matrix with a row index set R and let B be a matrix with
a row index set I C R such that B = A[I]. Assume that the matrix N = Np has
a row index set R’ and column index set I. Then, let N4j;; be a matrix with the
row index set R’ and the column index set R such that the entries are defined
by
Ni]‘ ifiGR/,jEI

(Nam)ij := {0 (3.12)

otherwise

where Nj; is the (i, j)-entry of N. From the definition Ny, it follows that
NA[I][:/ I] = N/ NA[I][:/R \ I] = Or and

NapA =0 (3.13)

That is, the matrix Ny is a basis for the left null-space of the matrix A[I] and
zero-padded such that multiplication of the matrix A according to (3.13) is well
defined.

Now, we will discuss Definition 3.1. Note that ¢ (M) > 0 for any set M and
@ (@) = 0. The redundancy of a set M is equal to the maximum number of
linearly independent consistency relations that can be derived from M, i.e.

¢ (M) = rank (NipL) (3.14)

where the number of columns in Nyjp, according to the introduced notation,
is equal to the number of rows in L. For a linear static model M, existence of
redundancy according to Definition 2.6 is equivalent to ¢ (M) > 0. A linear
static model M is a rejectable model if and only if M has redundancy, i.e.
@ (M) > 0. Linear static models with redundancy are said to be overdetermined
according to the next definition.

Definition 3.2 (Overdetermined Set). A set M of equations (3.5) is an overdeter-
mined set if its redundancy is positive, i.e ¢ (M) > 0.

A linear set of equations is a rejectable model if and only if it is an overde-
termined set. The overdetermined models M C Mg for the electrical circuit
example are all the supersets to any of the models on the lowest level in Fig-
ure 2.2.

To conclude this section, behavioral modes b € B with not overdetermined
behavioral models fulfill (3.1) trivially. Next we will discuss which subsets w
of models that fulfill (3.1) for overdetermined behavioral models.
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3.2 A Proper Overdetermined Set is Sufficient for
Soundness

There can be equations in an overdetermined model that does not contribute
to define the observation set of the model as the next example shows.

Example 3.2
Consider for the electrical circuit example the behavioral model {1,4, 5, 6,7} of
R1&R2 and its observation set

O({1/4/5/6/ 7}) = {[UVV Yi ylz“u —Yv = 0} (315)

defined by the consistency relation U — yy = 0. A minimal set of equations that
can be used to derived this consistency relation is {4, 5} which is a subset of the
behavioral model. It holds that

0({1,4,5,6,7}) = O({4,5})

Since the equation sets {4,5} and (1,4, 5,6,7} have equal observation sets, it is
sufficient to check the consistency of for example only {4, 5} to determine the
consistency of the behavioral model.

A set of equations, like the set {4,5}, that has an observation set that no
proper subsets have, will be called a proper overdetermined set and is defined by
using the redundancy function as follows.

Definition 3.3 (Proper Overdetermined Set). An overdetermined set M of equa-
tions (3.5) is a proper overdetermined (PO) set if

¢ (E) <p M) (3.16)
forall EC M.

Note that a PO set M is a minimal set with redundancy ¢ (M). For the
example, the set {4, 5} is, as said before, a PO set because

¢(14,5) =1>0=p({4}) = ¢ ({5)

The difference between PO models and all other overdetermined models is that
the removal of any equation in a proper overdetermined model will decrease
the redundancy and therefore increase the dimension of the set of consistent
observations defined by the remaining equations. The next theorem shows the
relation between observation sets and PO sets.

Theorem 3.1. An overdetermined set M of equations (3.5) is a PO set if and only if
O(M) c O(E) (3.17)

forall EC M.

Proof. Let E’ be any set such that E’ C M. It holds that

O(M) C O(E") (3.18)
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Proper inclusion in (3.18) as in (3.17) is obtained if and only if
dimOM) < dimO(E") (3.19)
Let the number of known variables in M be denoted n. Then it holds that
dimO(E) + ¢ (E) =n
for any set E C M. This implies that (3.19) holds if and only if
o (M) > ¢ (E) (3.20)

From the equivalence between proper inclusion in (3.18) and (3.20) and since
E’ ¢ M was arbitrarily chosen the theorem follows. o

For the behavioral model {1,4,5, 6,7} we have shown that there exists a PO
set {4, 5} with exactly the same observation set and the next theorem states that
for any model, and therefore also for any behavioral model, there exists a PO
set with the same observation set.

Theorem 3.2. If M is an overdetermined set of equations (3.5), then there exists at
least one PO set E C M such that

O(E) = O(M) (3.21)

Proof. If M is not minimal with O(M), then there exists at least one subset E that
is minimal and fulfills (3.21). From Theorem 3.1, it then follows that E is a PO
set. O

A consequence of this theorem is that it is sufficient to test PO sets to
determine the consistency of any behavioral model.

Example 3.3

The PO sets in (2.44) are the sets shown in Figure 2.2. Note that R1&R2 is
written below {4,5} to denote that {4,5} has the same observation set as the
behavioral model for R1&R2. Considering another behavioral model, i.e. the
no-fault behavioral model, it turns out that this model is a PO set.

3.3 Properties of PO sets

We have shown that there exists a PO set M in any behavioral model M, with
equal observation set as the behavioral model. In the next section we will
show that it is sufficient to check the consistency of the PO sets M; € M with
redundancy one to determine the consistency of the PO set M and therefore also
to determine the consistency of the behavioral model M;. However to show
this, some preliminary results about PO sets, presented in this section, need to
be developed. This section will be more technical than the other sections in this
chapter. One possible option can be to omit this section for now and read parts
of it when results in this section are referenced in the following sections.

The first two theorems show properties of the redundancy-function.

Theorem 3.3. If M is a set of equations (3.5) and M’ an arbitrary subset M’ C M,
then it follows that
P (M) < p (M) (3.22)
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The next lemma will be used to prove this theorem. Let A be a matrix and
let R be the row sets of its rows and C the row sets of its columns. Then the
following functions are defined:

p)= rank(A[l]) ICR (3.23)
Al J)= rank(A[L]J]) ISR, JcC (3.24)

The next lemma is given and proved in (Murota, 2000).
Lemma 3.1. If Aisamatrixand I,I, € Rand J1, ], € C then
p(h) + p(l2)
A(Ill ]1) + A(IZI ]2)

Inequality (3.25) means that the rank-function is a sub-modular function
(Murota, 2000) on the family of subsets of R. Inequality (3.26) will now be
used to prove Theorem 3.3.

p(li N L) + p(li U I2) (3.25)

>
> MLUL, in)+ AN, J1U]J») (3.26)

Proof. Let [H L] be Ain Lemma 3.1 and let I; = M, I, = M/, |; be equal to the
column set of [H L], and ], be equal to the column set of H in (3.26). Then we
obtain

rank ([H L]) + rank (H[M']) > rank (H) + rank ([H[M’] L[M’]])
By reordering the terms and by using (3.11) the inequality (3.22) follows. O

The next theorem reveals a redundancy pattern for the PO sets in a graph
of the type shown in Figure 2.2 and also particularly identifies those with
redundancy one.

Theorem 3.4. If M is a PO set of equations (3.5) and e € M, then
M\ fel) = M) ~1 (3.27)

Before we prove the theorem, the result is exemplified. A consequence of
the theorem is that the PO sets can be organized in levels corresponding to their
redundancy.

Example 3.4

In Figure 2.2 the PO sets on the lowest level have redundancy one and PO on
the next level have redundancy two and so on. The no-fault behavioral model
{1,2,3,4,5,6,7} has therefore redundancy three because it is on the third level.

Now, we prove Theorem 3.4.
Proof. From Definition 3.3, it follows that
P M\ {e}) < ¢ (M)
Hence it remains to prove that
PM)=T< @M\ {e})
The left-hand side is equal to
@ (M) -1 =rank ([HL]) — rank (H) -1



52 Chapter 3. Soundness when Diagnosing Linear Static Systems

which can be estimated by using that
rank ([HL]) — 1 < rank ([H[M \ {e}] LM \ {e}]])

and that
—rank (H) < —rank (H[M \ {e}])

as
¢ (M) =1 < rank ((HIM\ {e}] LM \ {e}]]) — rank (HIM \ {e}]) = ¢ (M \ {e})
This completes the proof. O

The following theorem is used to characterize PO sets.

Theorem 3.5. A set M of equations (3.5) is a PO set if and only if the matrix [H L]
has full row-rank and
rank (H[M \ {e}]) = rank (H) (3.28)

foralle € M.

Proof. Let M be a PO set and assume that [H L] has not full row-rank. Let
H; = HIM\ {i}], L; = LIM\ {i}], and M; = M\ {i} for any i € M. Then there exists
an i € M such that

rank ([H L]) = rank ([H; L;])

This and that rank (H) > rank (H;) imply that
¢ (M;) = rank ([H; L;]) — rank (H;) > rank ([H L]) - rank (H) = ¢ (M)  (3.29)
i.e. Mis not a PO set. Hence the matrix [H L] has full row-rank and
rank (H) = rank (([HL]) — o (M) = M| — ¢ (M) (3.30)
Since M is a PO set, it holds according to Theorem 3.4 that
¢M) =12 ¢ M)
This implies that the right-hand side of (3.30) can be limited from above as
(M= 1) = (¢ (M) — 1) < rank ([H; Li]) — ¢ (M;) = rank (H)) (3.31)

and (3.28) follows.
The converse direction is shown by using that [HL] has full row-rank
and (3.28) as

@ (M;) = rank ([H; L;]) — rank (H;) < rank ([HL]) —rank (H) = ¢ (M) (3.32)

This and Theorem 3.3 imply that ¢ (E) < ¢ (M) for each E C M, i.e. M is a PO
set and this completes the proof. O

The condition (3.28) means that any row e € M can be written as a linear
combination of the other rows in H. Let M be a PO set of equations defined by
the matrices H and L. Then [H L] has full row-rank and the redundancy of any
subset M’ € M can therefore be simplified as

@ (M') = rank ([[HIM']L[M']]) — rank (H[M']) = IM'| — rank (H[M']) (3.33)
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Note that the simplified redundancy expression does not depend on the matrix
L.

An important consequence of this theorem is that if M is a PO set then the
non-zero columns in any basis Ny are equal to M, and this will be shown in
the next example and corollary.

Example 3.5
Consider for the electrical circuit example the PO set M; = {4,5} and the set
M, = {1,4,5,6,7} which is not a PO set. For both these sets a corresponding
basis N, is

[o 001 -1 0 0] (3.34)

The non-zero columns are in this case {4, 5} and this is a subset of both M; and
M, and this holds also generally. Note that for the PO set M;, the non-zero
columns are equal to M; but this is not the case for the set Mp.

The next corollary shows that the non-zero columns of any basis for the left
null space of H[M] are exactly the columns M if M is a PO set.

Corollary 3.1. If M is a PO set of equations (3.5) and Ny is a basis for the left null
space of H, then it follows that no column in Ny is zero.

Proof. From Theorem 3.5, it follows that any row in H can be written as a linear
combination of the other rows, i.e. there exists a row-vector y such that

yH =0 (3.35)

and
vl =1 (3.36)

The equation (3.35) implies that y belongs to the left null space of H, i.e. there
exists a row-vector )’ such that

y=7'Nu

This and (3.36) imply that the i:th column of Ny cannot be zero. Since i € M
was arbitrarily chosen, the corollary follows. O

To explain a related result of Theorem 3.5 and this corollary, consider a set
of equations (3.5) where [H L] has full row rank and let the non-zero columns
in any basis Ny for the left null space of H be denoted by M’. Any row in H[M’]
can be written according to Ny as a linear combination of the other rows in
H[M’]. Theorem 3.5 then implies that M’ is a PO set. This result is formally
proved in Theorem 4.2 and will in Chapter 4 be used to compute PO sets.

3.4 Minimal Overdetermined Sets are Sufficient for
Soundness

In Section 3.2, we have shown that there exists a PO set M in M, with equal
observation set, i.e. it is sufficient to check the consistency of one of these PO
sets in M to determine the consistency of M. In this section a rank conditions
will be developed to test if a given set {M;|M; € M} of PO models can be used to
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determine the consistency of M. In particular, it is shown that it is sufficient to
check the consistency of the PO sets M; € M with redundancy one to determine
the consistency of the PO set M and therefore also to determine the consistency
of the behavioral model M.

3.4.1 Defining and characterizing MO sets

The next definition and lemma introduces and characterizes the PO sets with
redundancy one.

Definition 3.4 (Minimal Overdetermined Set). An overdetermined set M of equa-
tions (3.5) is a minimal overdetermined (MO) set if no proper subset is an overde-
termined set.

The next lemma relates MO sets and PO sets.

Lemma 3.2. A set M of equations (3.5) is an MO set if and only if M is a PO set with
M) =1

Proof. Assume that M is an MO set, i.e. ¢ (M) > 0and ¢ (E) =0 forall E c M.
This implies that M is a minimal set with redundancy ¢ (M), i.e. M is a PO set.
From Theorem 3.4, it follows that ¢ (M) = ¢ (M \ {¢}) + 1 =1 for any e € M.
Assume that M is a PO set with ¢ (M) = 1. This means according to
Definition 3.3 that ¢ (E) = 0 for all E ¢ M, i.e. M is an MO set. O

Note also that a set is an MO set if and only if the set is minimal and a PO
set. According to the characterization of MO sets described in Lemma 3.2 it
follows that the PO sets on the lowest level in Figure 2.2 are the MO sets.

3.4.2 Motivating Example for Using MO Sets

Next an example will be used to show that the consistency of PO sets can be
determined by checking the consistency of MO sets.

Example 3.6

Consider the PO set {3,4,5,7} with redundancy 2. The MO sets contained in
{3,4,5,7} are the three subsets {3,4,7}, {3,5,7}, and {4,5}. The matrices NupL
corresponding the PO sets are:

POsetM NupL redundancy ¢ (M)
-1 0 0 Ry
B457 |y 1 RZJ 2
{3,4,7) -1 0 0 Ry 1 (3.37)
{3,5,7} 0 -1 0 Ry 1
{4,5) 1 -1 0 o] 1

First, note that all rows corresponding to the MO sets are pairwise linearly
independent, i.e. pairwise their consistency relations are linearly independent.
Second, all rows corresponding to all MO sets belong to the space spanned
by the rows corresponding to the set {3,4,5,7} with 2 linearly independent
consistency relations. These two facts imply that any two rows corresponding
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to MO sets span both rows corresponding to {3,4,5,7}. Hence by checking
the consistency of any two MO models the consistency of {3,4,5,7} can be
determined.

The concept of linearly independent consistency relations is central in the
discussion here. The redundancy of a set M was in Section 3.1.2 seen to be
equal to the maximum number of linearly independent consistency relations
that can be derived from M. From any pair of MO sets in (3.37), two linearly
independent consistency relations can be obtained. This motivates that the
notion of redundancy and the closely related concept of observation set is
possible to generalize to a family of equation set and this will be done next.

3.4.3 Observation Set for a Family of Equation Sets

By introducing redundancy of family of equation sets, it will be shown later in
Theorem 3.6 that sets w that satisfy (3.1) can be characterized by the generalized
redundancy. This result is approached in this section by analyzing the right-
hand side of (3.1) which defines the observation set for a set of models.

Given a set of linear equations M, consider a family of subsets w = {M;,
M,, ..., M,} where M; € M for all M; € w. The task of checking the consistency
of the set of models M; € w is to evaluate, given an observation z, if

Hxl-H[M,-]xi + L[Mi]Z =0 (3.38)

for all M; € w. In terms of observation sets this could be expressed as to check
if z belongs to the set

() o) = [z € R™[3x; € R™; HIM;lx; + LMz = 0} (3.39)

Miew Mew

Note that checking the consistency of the models in w is not equivalent with
checking the consistency of UpewM;. This follows from the fact that the set
O(UpewM) is equal to the set of z € R™ consistent with (3.38) when requiring
in addition that x; = x; for all pairs of M;, M; € w. In general, it holds that

O(UM,'E(L)MI') c mM,-Ew()(]\/[i) (340)

The set of n linear matrix equations in (3.38) can be written in the standard
form (3.5) as

H, Xe Le
— —/—
H[M] 0 e 0 X1 L[M;]
0 H[M>] 0 L) L[M:]
) . ) A+ . z=0 (3.41)
0 0 —o H[M,1] Lx, L[M,]

where the notation H,, L,, and x, has been introduced. This implies that the
intersection in (3.39) can be expressed as

NMewOM;) = {z € R™|Ix, € R"; Hox, + Loz = 0} (3.42)
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which according to (3.10) is equivalent to

NueOM;) = {z € R™|Ng,L.z = 0} (3.43)
The matrix expression Ny, L, in (3.43) can be simplified as follows
Numygy 00 - 0 J[L] [N
0 Numy 0 [|L| |Num
Np.L, = . ) . = . L (3.44)

Note that Ny, is zero-padded and therefore multiplied with L instead of
L[M;]. From (3.43) and (3.44) we obtain an alternative expression

Nrpmy)

NHm,]
NuMeOM;) = {z € R™| . Lz =0} (3.45)

NHim,]

for the intersection. Note that this is the representation that is used in the
discussion concerning (3.37). By using the representation (3.45), it will be
natural to extend the redundancy concept to family of equation sets next.

3.4.4 Redundancy of a Family of Equation Sets

As said before, the redundancy of a set M is equal to the maximum number of
linearly independent consistency relations that can be derived from M. For any
family w of equations sets, it can be seen in (3.45) that a number of consistency
relations can be related to w. This motivates that the notion of redundancy
can be generalized to a family of equation set and this will be done next. To
make the definition of redundancy of a family w as similar as possible to the
redundancy definition of a set of equations, the representation (3.41) will be
used in the definition instead of (3.45).

Definition 3.5 (Redundancy of a Family of Models). Given a set M of linear
equations (3.5) and a family of subsets w = {My, My, ... M,} where M; € M for all
M; € w, the redundancy of w is

¢ (w) = rank ([H, L.]) — rank (H,) (3.46)
where H, and L, are defined as in (3.41).

Note that @ ({M}) = ¢ (M), i.e. the definition of redundancy of a set of models
is a generalization of redundancy of a model. The redundancy of a family of
sets can be expressed in many different ways. For example, by using (3.14) we
get

@ (w) = rank (Ng,L,) (3.47)
or by using (3.45) a simplified redundancy expression is
N
N,
¢ (w)=rank (| . L) (3.48)

NHim, ]
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Compare this redundancy expression with the matrices in (3.37). It is then
clear that, e.g. any pair of MO sets in (3.37) has redundancy 2. Furthermore,
the redundancy expressed as in (3.48) shows that the generalized redundancy
can, like the redundancy for models, be interpreted as the maximum number
of linearly independent consistency relations that can be obtained.

3.4.5 Determine Consistency of Models by Testing MO Sub-
sets

The conclusion of the example in (3.37) can in terms of the generalized redun-
dancy be stated as follows. If a family of subsets of M has the same redundancy
as M, then the consistency of M can be determined by checking the consistency
of the subsets.

The next theorem shows that this principle is generally valid.

Theorem 3.6. Given a set M of linear equations (3.5) and a family of subsets w =
My, M,, ... M,} where M; € M for all M; € w, it holds that

OM) = Ni,ewO(M)) (3.49)

if and only if
¢ (@) = ¢ M) (3.50)

To prove the theorem we introduce a notation for row-span as follows. If M
is the rows of H then let the row-span of H be denoted by

sp(H) = {)_ yiHIlilllyi € R} (351)

ieM
Proof. Equation (3.49) holds if and only if

NHpm,
NHim,

]
sp(| . |L) =sp(Nul) (3.52)
Nrim,)

according to (3.45). By definition of null-space, it follows that sp(Nu,) €
sp(Ng) and then also that

NHmy)
NHm,)

sp( : L) € sp(NgL) (3.53)
NHim, ]

This implies that we get equality if and only if (3.50) is true and the theorem
follows. m|

The next corollary shows that the L matrix need not be considered when
determining the redundancy of a family of a PO sets.
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Corollary 3.2. Let M bea PO setand let M; € Mbe PO setsforallie I ={1,2,...,n}.
Let the equations M be expressed by the matrices H and L. Then it holds that

OM) = N O(M;) (3.54)
if and only if
N
Nha,]
rank (| . [) =rank (Np) (3.55)
Nrim,]

Proof. Equality (3.54) holds according to Theorem 3.6 if and only if (3.50) holds.
Since M is a PO set, it follows from Theorem 3.5 that [H L] has full row-rank.
This implies that

N N N
NHiam,) NHim,) NHim,)
rank (| . | =rank( . |[H Lp=rank( . |L)=g¢(@) (356
N, Nim,) Nrim,)
and
rank (Ny) = rank (Ny[H L]) = rank (NyL) = ¢ (M) (3.57)

If these two rank equalities are used in (3.55), the corollary follows from Theo-
rem 3.6. O

Note that the corollary basically shows that under the assumption that [H L]
has full row rank the redundancies in (3.50) can be simplified to be

N
Nin)
@w)=rank( . ) (3.58)
N,
and
@ (M) = rank (Ng) (3.59)

Now, an example will illustrate how this theorem and corollary can be used.

Example 3.7

Consider the PO sets in (3.37). We first note that all sets in (3.37) are PO sets
and that the MO sets are subsets of the PO set {3, 4, 5,7} with redundancy 2. By
combining the rows of two MO sets for example M; = {3,5,7} and M, = {4, 5}
we get the corresponding matrix

@ ({My, M,}) = rank ([%H[M”]L)zrank ([(1’ j 8 %2])=2=(p({3,4,5,7})

H[M,]
(3.60)
Theorem 3.6 then implies that

0({3,4,5,7}) = 0O({3,5,7}) N O({4, 5}) (3.61)
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Hence the consistency of {3,4, 5,7} can be determined by the consistency of MO
sets. Since all these sets are PO sets it is also possible to use Corollary 3.2. The
corresponding rank test becomes

N, 001 0 -1 0R
rank([Ngiﬁli])zrank([o 001 -1 0 02])=2=(p({3,4,5,7}) (3.62)

An advantage with this rank condition is that by only using that the sets {3, 5,7}
and {4, 5} are PO sets, Corollary 3.1 implies that

(3.63)

NH[Ml] _ 0 0 ni 0 ny 0 ns
NH[MZ] 00 0 ng ns 0 0

where all n; # 0. Without using H or L and from (3.63) it then follows that

NH[Ml] _ 0 0 ny 0 ny 0 nz|y _
rank([Z\IHWIZ])—1"anl<(0 0 0 ng ns 0 0 =2

This means that without knowing the exact matrices H and L, it is sufficient
to know that the sets {3,5,7} and {4,5} are MO sets and subsets of the PO set
{3,4,5,7} with redundancy 2 to conclude that (3.61) holds.

In the next theorem this result will be shown to hold generally and the idea of
proof is to use Corollary 3.1 in combination with Corollary 3.2 as in the example.
Before we state the theorem we consider another example, investigating if the
consistency of the no-fault model {1,2,...,7} can be determined by checking
the consistency of MO sets. If this is possible, the number of needed MO sets
must according to Corollary 3.2 be 3, because the redundancy of the no-fault
model is 3. One way to do this is to chose three MO sets and test if (3.55) is true
for these sets. One example is {4, 5}, {1, 2, 3,4, 6}, and (3,4, 7}. The next theorem
shows that any PO set can be checked by MO subsets.

Theorem 3.7. If M is a PO set with redundancy ¢, then it follows that there exists a
number of ¢ MO sets M; € M such that

O(M) = N;O(M;) (3.64)

The proof is constructive in the sense that it proposes a method to compute
a family of ¢ MO sets that can be used to determine the consistency of the PO
set.

Example 3.8

To give an example of the construction consider the no-fault model of the
electrical circuit. It holds that E = {1,2,3,4} are linearly independent and
rank (H[M’]) = rank (H). The remaining equations are {5,6,7}. By adding
one equation to E the redundancy will be one and an MO set must therefore
be included in the obtained set. The MO sets in E U {5}, E U {6}, and E U {7}
are M; = {4,5}, Mb = {1,2,3,4,6}, and M3 = {3,4,7} respectively. By using
Corollary 3.1, it follows that

NH[Ml] 0 0 0 ny np 0 0
Nupmyj| =3 ns ns ng 0 ny; 0 (3.65)
NHiwms] 0 0 ng nmy 0 0 1y
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where n; # 0. Note that by construction, the last three columns constitute a
diagonal matrix, i.e. the matrix (3.65) has full row-rank. Then Corollary 3.2
implies that these three MO sets can be used to determine the consistency of the
no-fault model. By starting with three other linearly independent rows other
triples of MO sets will be found.

Now, the proof of Theorem 3.7 follows.

Proof. The redundancy for all M’ C M is equal to
@ (M) = |M’| = rank (H[M']) (3.66)

Let E € M be rank (H) independent rows of H. No subset of E is a PO set,
because H[E] has full row-rank. If M’ is set to M in (3.66) and it is used that
@ (M) = ¢ and rank (H[M]) = |E|, we get

¢ = M| - |E|

This implies that the set M\ E contains ¢ equations and we will show that to each
of these equations an MO set can be constructed. Let e; € M \ E be arbitrarily
chosen. Since H[E] is a row basis of H, it follows that rank (H[E U {e;}]) =
rank (H[E]) and also that ¢ (EU {e;}) = 1. Then there exists a PO set M; C E U {e;}
according to Theorem 3.2. This PO set has redundancy 1 and is therefore an
MO set according to Lemma 3.2. Since H[E] has full row rank, it follows that
e; € M. If this and Corollary 3.1 is used for all ¢; € M \ E, then it follows that

Ny
D= [A D] (3.67)
Nhim, |

where A € R?*M=?) and D is a diagonal matrix of dimension ¢ with non-zero
diagonal elements. This matrix has obviously rank ¢ and the theorem follows
from Corollary 3.2. m|

Finally, we show that the consistency of any behavioral model can be deter-
mine by checking the consistency of all MO set.

Corollary 3.3. Given any linear static behavioral model My, it follows that
O(Mp) = Nitemuo OM) (3.68)
where Mo is the family of all MO sets M € M,
Proof. According to Theorem 3.2 there exists a PO set E C M, such that
O(M,) = O(E)
Theorem 3.7 then implies that
OMy) = O(E) = Nprepm;, O(E")

where M}, are all MO sets that is a subset of E. Hence M}, € Mo and the
corollary follows. ]
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3.5 Selecting MO Sets

In the previous section, it was shown that it is sufficient to check the consistency
of all MO sets in a behavioral model M,, but according to Theorem 3.6 this is
not necessary. The question is then how to find a family w of MO sets such
that (3.50) in Theorem 3.6 is fulfilled.

The consistency of a set with redundancy ¢ can always be determined by
checking ¢ number of MO sets according to Theorem 3.7. This is possible if and
only if the family of ¢ MO sets has redundancy ¢ according to Theorem 3.6.
Not all families of @ MO subsets of the PO set have redundancy ¢ and this
will be shown by the next example.

Example 3.9

The no-fault model Mg for the electrical circuit example in (2.44) has redun-
dancy ¢ (Mnr) = 3, but for example the family w = {{4, 5}, {3, 5,7}, {3,4, 7}} of MO
sets has redundancy 2 according to the discussion in Section (3.4.2). This means
according to Theorem 3.6 that w cannot be used to determine the consistency
of MNF-

One alternative to find a possible triple of MO sets is of course to chose
triplets and test them using (3.55) until one is found that satisfies this condition.
However, the next theorems will provide guidelines to find a family @ of MO
sets with the desired redundancy.

Theorem 3.8. For any set of models w it holds that
¢ (@) < ¢ (UnmeoMi) (3.69)
Proof. Starting with (3.40) and substitute (3.10) and (3.45), we get

NHiwy]

NH[M,]
{z € R™|Ngjuy, miLz =0} C{z e R™|| .

z =0}
N,

This means that

I
rank (| . ’ L) < rank (Nujuy, ., m1L)
Nhpm, )

By replacing the rank expressions by redundancy expressions according to (3.14)
and (3.48), the inequality (3.69) is obtained. O

Theorem 3.9. If w is a set of PO sets and M is a PO set such that
UMeoMi C UpmeoMi UM (3.70)

then it follows that
ewU{M})>ep(w)+1 (3.71)
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Proof. Let M’ = M\ Up,eM;. Since M is a PO set it follows that
Nupnl:, M'T#0 (3.72)
according to Corollary 3.1. Moreover M; N M’ = @ and this means that
Nup [ M'T=0 3.73)

for all M; € w. From (3.72) and (3.73), it follows that Npp is not a linear
combination of Ny, for all M; € w. This and (3.58) imply

N
N H[M;]
N N,
H[M]
@ (w) = rank ( : )<rank (] : [)=¢(wU{M})
) Nuim,
N n
which was to be proven. o

Example 3.10

To illustrate result Theorem 3.8 consider the previous example. There we found
that w = {{4,5},{3,5,7},{3,4,7}} could not be used to determine the consistency
of Mnr. If w =1{{4,5},13,5,7},{3,4,7}} in (3.69), we get

¢ (W) <9({3,4,57) =2 (3.74)

which also confirms that w cannot be used. From the definition of PO set
and (3.69), it follows that a necessary condition for ¢ (w) = 3 is that the union
of the sets in w must contain all equations in Mng. Hence to find three MO
sets with redundancy 3, it is necessary that all equations in Myr are included
in some of these MO sets.

Generally, assume that we want to find a family @ of MO subsets to de-
termine the consistency of the PO set M. A necessary condition of w is then
according to (3.69) that

UM,-EmMi =M

The result of Theorem 3.9 implies that a sufficient condition for finding a
family w = {M1, My, ..., M,} of MO sets with redundancy equal to the cardinal-
ity is that there exists a ordering (a1, ...,4;,...,a,) of {1,2,...,n} such that

UL, M, c UM, (3.75)

forallje€{1,2,...,n -1}

Example 3.11

To give an example consider again the no-fault model for the electrical circuit
example with the PO sets given in Figure 2.2. A family with 3 MO sets and
with redundancy 3 is to be found. A sequence of three MO sets can be chosen
as {4,5}, {3,5,7}, and finally {1,2,5,6,7}. These defines a sequence of strictly
increasing sets, i.e.

4,5} c{4,5}U({3,5,7} c {4,5} U {3,5,7} U {1,2,5,6,7} = MnrF (3.76)
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and it follows that these three MO sets can be used the determine the consistency
of the no-fault model. This shows how to find which MO sets to include in w
without using numerical computations once the MO sets are computed. Note
that there are many other possible MO sets that can be used.

Another example is to use v’ = {{1,2,3,4,6},{3,5,7},{4,5}}. To verify that
@ (w") = 3, by using Theorem 3.9 an order of the MO sets is needed. The order
they are presented in @’ can not be used since

{1,2,3,4,6} U {3,5,7} = Mnr (3.77)

However if the reversed order is used the condition in Theorem 3.9 is satisfied.

3.6 Linear Models with Constants

In this section, the theory given in this chapter is extended to behavioral models
My, of the type

Hyx+Lyz+c=0 (378)
where c is a constant vector. This type of models will naturally appear as the
result of linearizations of non-linear models. It is assumed that there exists a
value of x and z that satisfies (3.78), i.e.

rank ([Hb L, c]):rank ([Hb Lb]) (3.79)

[’ZC] = [’z‘] +a (3.80)

define a variable translation where « is a constant vector to be determined. If
this translation is applied to (3.78), then we get

x x’
[Hb Lb] [z] +c= [Hb Lb] H + [Hh Lh] a+c=0 (3.81)
From (3.79), it follows that there exists an @ = a such that

[Hy Ly]ao = (3.82)

By using a = ap in the variable translation the behavioral model in (3.78) is
written

[Hy L [’Z‘] =0 (3.83)

i.e. in the same form as (3.2). Note that the matrices H, and L; are unchanged
by the translation. Hence all theory developed for models of the type (3.2) is
also valid for models of the type (3.78) as long as (3.79) holds true.

3.7 Redundancy and the Number of MO Sets

We have suggested to check the consistency of MO sets and then the number
of MO sets will characterize the number of potential tests. In this section, it
is shown that for a fixed order of redundancy ¢, the number of MO sets is
polynomial in the number of equations. Furthermore, it is shown that the
redundancy is limited by the number of available sensors, which are often
expensive, and therefore the redundancy is low in many applications.
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3.7.1 Redundancy Dependence of the Number of Sensors

The redundancy depends on the number of available sensors 7, as follows.
Let M, be a set of equations partitioned into sensor equations M; and other
equations M,. Furthermore, let the vector of known variables be divided into
two parts zI = [y’ u] where y is the measured signals corresponding to the
sensors and u is the control signals. The equations M}, partitioned into M; and
M, can then be written as:

H L
—_—— —_—
[g;] X+ [é LOZ] [ﬂ] =0 (3.84)

Note that the cardinality of M; is equal to the number of sensors #;. A model
does normally not specify any algebraic dependence between control signals,
i.e. rank (Np,Ly) = 0 or equivalently ¢ (M) = 0. Using this type of model, the
redundancy is less or equal to the number of sensors, i.e.

¢ (Mp) < g (3.85)
and it can be shown as follows. By using that
rank ([HL]) = [Mi| + rank ((H[M] L[M]])

and
rank (H) > rank (H[M>]) (3.86)

an upper limit of the redundancy can be found as

@ (Mp)

rank ([H L]) — rank (H)
|Mi| + rank ([H[M:] L[M,]]) — rank (H[M])
ns + @ (MZ) =Ns

IA

Furthermore equality in (3.85) holds if and only if equality in (3.86) holds. This
is especially true for example when H[M] is invertible, i.e. has full column
rank. In summary, the number of sensors limits the redundancy of the model.
To give an example, the electrical circuit has 3 sensors and the no-fault model
has redundancy 3. Next we will study the how the number of MO sets depends
on the redundancy.

3.7.2 The Number of MO Sets

For a fixed order of redundancy ¢, the number of MO sets in M, is polynomial
in the number 7, of equations. This follows from the fact that in the worst case
every subset of M, with one more equation than the number of unknowns is an
MO set. This means that the number of MO sets is less or equal to the number
of ways to choose 1, — ¢ + 1 equations from the original #, equations, i.e.

Ne _ 1! PN R
( ne—¢ +1 )= =g + Diip =11 = "elte=D (=@ +2) ~ e (3.87)

The number of such sets grows polynomially in the number of equations.
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3.8 Diagnosing all Behavioral Models

So far in this chapter, we have only been concerned to fulfill (2.34) for one single
behavioral mode. In this section, we extend the discussion to the case when all
behavioral modes in B are considered.

3.8.1 Sufficient to Test All MO Sets

In the next theorem it is stated that given a diagnosis model, it is sufficient to
check the consistency of all feasible MO sets to determine the consistency of all
behavioral models.

Theorem 3.10. If M is a diagnosis model with a set M = UpegM,, of linear static
equations such that My, is on the form (3.78) and satisfies (3.79) for all b € B, then the
set w of all feasible MO sets in M satisfies (2.34) for all b € B.

Proof. Let b be an arbitrary behavioral mode b € B. First, since M, fulfills (3.79)
the model can be rewritten as (3.83). Second, any MO sets M C M, is a feasible
MO set, i.e. M € w. These two facts imply that (2.34) is satisfied for b according
to Corollary 3.3. Since b was arbitrarily chosen the theorem follows. m|

A feasible MO set M normally satisfy assump(M) C B. However if assump(M)
=Bit means that M cannot be inconsistent and need not be included in w. Let
w = {Mjli € I} be the set of all feasible MO sets in a diagnosis model IM. For
each feasible MO sets in w, i.e. for each i € I, a test O; is constructed such that
®; = assump(M;), Ti(z) = NupmLz, and ﬂic = {0}. Then Theorem 2.1, Theo-
rem 2.2, and Theorem 3.10 imply that the diagnosis system A = {6;|i € I} is
sound and complete with respect to the diagnosis model IM.

Example 3.12

Consider the electrical circuit example and the Hasse diagram in Figure 2.2
showing all PO sets contained in its diagnosis model. All MO sets are in this
example feasible models because M = Mnr. A consequence of Theorem 3.10 is
that there exists a sound diagnosis system based on the 8 MO sets. The matrices
Num; L for all MO sets M; € M are

MO u Yv yr yn

{1,2, 3,4, 6} [ —(Rl + Rz) 0 RiRy 0 ]
{1,2,3,5,6} [ 0 —(R1 +R2) Ri R, 0 ]
{1,2,3,6,7} [ 0 0 Ri —(R1+Rp) ]
{1,2,4,6,7} [ -1 0 Ry -R; ] (3.88)
{1,2,5,6,7} [ 0 -1 Rq -R; ]

{3,4,7} [ -1 0 0 Ry ]

{3,5,7} [ 0 -1 0 Ry ]

{4, 5} [ 1 -1 0 0 ]

and these are used to form the test quantities T;(z) = Nupm,Lz. At this point,
it might be interesting to reread Section 2.6 in the light of the new theory
developed in this chapter and note especially that by checking the consistency
of the 8 MO sets the consistency of all 26 = 64 behavioral models can be
determined.
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3.9 Minimizing The Number of Tests

In the previous section, it was shown that it is sufficient to check all feasible MO
sets in a diagnosis model. However, it has been shown that it is not necessary
to check all MO sets in general, i.e. some MO sets do not need to be tested.
This raises the question of how to find a smallest family @ of MO sets such
that (2.34) is fulfilled for all b € B. In this section an algorithm for finding not
only one but all minimal solutions w will be presented and some examples will
be discussed.

3.9.1 Algorithm

In this section an algorithm, Algorithm 2, will be presented that can be used to
find all minimum cardinality solutions w to (2.34) given a diagnosis model. The
main purpose of the algorithm is to explain how minimal cardinality solutions
can be computed in a straightforward way. The focus is not to optimize the
computational complexity.

The solutions have the following property that will be used in the algorithm.
If w satisfies (2.34) for all behavioral modes b € B, then any superset @ >
w will also satisfy (2.34) for all behavioral modes b € B. This means that
there exist minimal families w of MO sets that satisfy (2.34). A minimum
cardinality solution w to (2.34) must therefore be among the minimal families
that solves (2.34).

Instead of using that (2.34) holds for all b € B an equivalent condition
according to Theorem 3.2 is that

oM') = ﬂ OM) (3.89)

Mew

for all PO sets M’ such that O(M’) = O(M,) for some b € B will be used. If B is
the set of all single-fault behavioral modes and the no-fault mode, then the PO
sets M’ in Figure 2.2 are the PO sets with some behavioral mode in B.

The algorithm takes as inputs the set Mo of all MO sets, all PO sets with
a behavioral mode in B, and the model equations M and finds the set Q of all
minimal solutions w.

Let P = (Pq,...P,) be an ordered set of all PO sets with a behavioral mode
in B. Let Q; be the set of all minimal solutions w such that (P, ... P;) are tested.
The basic idea is to start with Oy = @ and then extend the solutions in (;_; to
form the set Q; until we obtain the set (2, which is equal to the output set Q.

The set Q; is computed using Q;_; and the i:th PO set P;. This computation
consists of two steps. First, the set (! of all minimal families of MO sets @’ that
test P; is computed in Algorithm 1. Second, (2! and Q;_; are merged to form
the set Q;. These steps will now be explained.

GivenaPOset P; and a family of subsets o’ = {M, My, ... M, } where M; C P;
for all M; € «’, it holds that

o(P;) = ﬂ oM) (3.90)
Mew’

if and only if
P (@) =@ (P) (3.91)
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according to Theorem 3.6. Hence o’ € Q! if and only if " = {M1, M, ... M,} is
a minimal set that satisfies (3.91) and where M; C P; for all M; € o’.

Since redundancy of a set can be expressed as (3.48), i.e. the rank of a matrix
where each row corresponds to an MO set, it follows that any minimal set '’
that satisfies (3.91) must contain exactly ¢ (P;) MO sets. This is an important
property that can be used when generating all such sets and the computation
can be done as follows.

Algorithm 1. Q) = MinimalTestSets(P;, Muo)
Q=g

a:={M e MyolM C Pi};

Q=o' Callo] = p (P

for each o’ € Q) do

if p (') =@ (P;) do
Insert " in Q;
end if

end for
return Q;

Given a PO set P; and the set Myjo of all MO models, the output set Q} in
Algorithm 1 contains all minimal solutions w’ € Mo of (3.90). As said before,
we will consider P; to be a PO set and Mo to be a set of all MO sets. However,
the algorithm is not restricted to these inputs. In general, P; can be any set of
linear static equations and Mo can be any set of linear static models.

Example 3.13

To illustrate how MinimalTestSets works consider the electrical circuit model
(2.44) with PO sets given in Figure 2.2. Assume that P; = {1,2,3,4,5, 6} and that
the MO sets are enumerated from left to right in Figure 2.2 and let the i:th MO
set be denoted by M;. The set a defined in Algorithm 1 is for this example

a = {M1, M, Ms}
Since ¢ ({1,2,3,4,5,6}) = 2 the set Q is
Q = {{My, My}, {M1, Ms}, {M,, Ms}}

Each set ’ € Q satisfies (3.91) and the output set (2 is O} = Q.

If the set of all minimal solutions )} of the i:th PO set in P; is computed
using Algorithm 1 and if the set of all minimal solutions for all the i — 1 first PO
sets in P is Q;_1, we will next explain how to compute the extended solution €J;.
This will first be illustrated by continuing Example 3.13.

Example 3.14

Assume that B is the set of all single-faults and the no-fault mode. Assume
that the PO sets corresponding to behavioral modes in B are enumerated from
left to right and then by increasing redundancy. This order defines the list P.
The first PO set P; in P is Py = {1,2,3,4,5, 6} for behavioral mode S3 and the
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set of all minimal families w of MO sets that satisfy (2.34) for S3 is according to
Example 3.13 equal to

Oy = {{My, M}, {My, Mg}, {M>, Ms}}

The next PO set in P is P, = {1,2,3,4,6,7}, and the set () obtained using
Algorithm 1 of all minimal families of MO sets that satisfy (2.34) for S1 is

Q) = {{My, Mz}, My, M3}, (M1, Mg}, {Ma, M3}, {M>, Me}, {M3, Me}}

Next, the solutions in {); and in ) are combined to form a solution when
considering both PO set P; and P,. Since w € () is a solution for Py and o’ € Q]
is a solution for P,, it follows that @ U @” will be a solution, not necessarily
minimal, to the problem of testing both P; and P,. By taking the union of all
pairs in the sets {3; and €2, and then remove non-minimal solutions, we obtain

Qy = {{M1, M, M3}, {M1, M, Ma}, {M1, My, M}, (M1, M3, Ms}, (M1, M4, Ms},
{M1, Mg, Mg}, (M2, M3, M4, Mg}, (M2, M3, Me, Mg}, {M>, M4, Ms, Mg}}

An example of a non-minimal solution that has been removed to obtain this set
is {M1, My, M3, M} which is produced by taking the union of {M;, M,} € (); and
{M3, Mg} € Qy. By construction, (), contains all minimal sets w that satisfy (3.49)
for both P; and P».

In the example we saw that (; can be obtained from ;1 and Q! by first
computing

Qi ={w' Vowlw € Q1,0 € Q]} (3.92)

and then pruning all non-minimal sets in Q;. Let these operations be denoted
by Extend such that {); can be expressed as

Q; = Extend(Qi,l,Q;) (393)

Remember that P = (Py,...P,) is an ordered set of all PO sets with a be-
havioral mode in B. The output is invariant under permutations, but the
computational complexity is not. The computational complexity is closely re-
lated to the size of (); in all steps. A large redundancy of a PO set P; leads in
general to a large set Q. To reduce the size of the initial sets (; a heuristic is
then to order the PO sets in increasing redundancy.

Now, the main algorithm can now be summarized as follows.

Algorithm 2. ) = A11MinimalTestSets(P, Muo)
Q=9;
fori=1tondo

() := MinimalTestSets(P;, Mmo);
Q := Extend(Q, (Y);

end for
return Q)
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Given a list P of PO sets and the set Mo of all MO models, the output set
Q of Algorithm 2 contains all minimal solutions w € Mo of (3.89).

The minimum number of tests can now be obtained by testing the MO sets
in any minimum cardinality set @ € Q. Sometimes the set () is large and
therefore computationally expensive to compute. Since the objective is to com-
pute only one minimum cardinality solution it is not necessary to compute all
minimal solutions. By the following small modification of the above described
algorithm, it is possible to define an algorithm where the output set Q) will be
the set of all minimum cardinality sets w. If the minimum cardinality sets w
have cardinality m, then only the minimum cardinality sets w is obtained in the
output of Algorithm 2 if (3.92) is replaced by

Qi ={0' Vowlw € Q1,0 € Q,|o" U w| < mj (3.94)

The number m can be found as the minimum number that gives a non-empty
output set Q of the modified Algorithm 2 and this set is then the desired set.

Since all minimum cardinality sets can be computed additional objectives,
such as computational aspects of the residuals, can be added to chose the best
minimum cardinality set.

3.9.2 Examples

Now, both Theorem 3.10 and Algorithm 2 will be used to obtain MO sets w for
some variants of the electrical circuit example.

Example 3.15

First, consider again the electrical circuit when the set B contains all multi-
ple fault behavioral modes and the no-fault mode. This means according to
Figure 2.2 that the input list P in Algorithm 2 contains all PO sets and Mo con-
tains all MO sets in Figure 2.2. The output set Q contains in this case only one
minimal set = Mo including all MO sets in Figure 2. Therefore Mo is the
unique minimum cardinality solution. This means that the minimal number of
tests required to obtain soundness is 8.

To explain the result, take for instance behavioral mode R1&R2 with its
corresponding behavioral model {1,4, 5, 6,7}. The MO set {4, 5} is the only PO
set with the same observation set as {1,4,5,6,7}. Hence to fulfill (2.34) for
behavioral mode R1&R2, the MO set {4, 5} has to be included in w. This can be
seen in Figure 2.2 where R1&R2 is among the behavioral models listed below
{4,5}. In the figure, it can be seen that each MO set has an observation set equal
to an observation set to some behavioral model. Therefore, all MO sets must in
this case be included in w.

Example 3.16
Assume this time that only single faults are to be considered, i.e. B = {NF,
R1, R2, B, S1, S2, S3}. For soundness, it is required that the consistency of all
behavioral models M, such that b € B can be determined. By looking at the
Hasse diagram in Figure 2.2, it can be seen that this is equivalent to determine
that consistency of all PO sets with redundancy 2 and 3.

Since the model equations are the same as when considering all multiple
faults, Theorem 3.10 again implies that all 8 MO sets are sufficient. Another
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possibility to satisfy (2.34) for all b € B is to include the 5 PO sets with redun-
dancy 2 in w. However the redundancy is 2 for each PO set and this choice can
therefore be seen as testing the consistency of 5 X 2 = 10 consistency relations
compared to test the 8 MO sets.

Not all MO sets need to be tested in order to fulfill (2.34) for all behavioral
modes in B = {NF, R1, R2, B, S1, S2, S3}. To compute the minimum number
of MO sets needed Algorithm 2 is applied to the inputs P equal to the set of
all PO sets with redundancy 2 and 3 and Mo equal to the set of all MO sets
in Figure 2.2. The output set Q) contains 13 minimal sets of which 12 are of
minimum cardinality 5. One of these minimum cardinality sets is

w=1{{1,2,346}1{1,2,3,6,7},{1,2,5,6,7},{3,4,7},{4,5}}

Hence the minimum number of tests is 5.

In the following two examples, an extension to the electrical circuit model
is considered.

Example 3.17

Next all multiple faults are again considered. In addition to the model given
in (2.44), the battery is modeled to two behavioral modes B € {NF, F} where F
stands for “faulty”. A faulty battery is assumed to have no voltage across the
battery, i.e. V = 0 if B = F. The extended model becomes

Assumption Equation Expression

) I-L-L =0
R1=NF @) V-LR =0
R2 = NF &) V-LR, =0
B =NF @) V-U =0 (3.95)
S1=NF (5) V-yy =0
S2 = NF (6) I-y =0
S3 = NF @) L-vy, =0
B=F (8) V =0

The equations 4 and 8 are mutually exclusive. The set {4,8} is therefore an
example of an MO set that is not a feasible model. This MO set need not be
considered according to Theorem 3.10. Since a subset of a feasible model is
feasible, the set of all feasible models can be represented as all subsets of the
maximal feasible models. The maximal feasible models in the example are
M\(8} = Mnr and M\{4} = M. The Hasse diagram for (3.95) is shown in
Figure 3.1. This shows the subset relation of all feasible PO sets for the model.
The two maximal feasible models are the ones on redundancy level 3.

The additional feasible MO sets found in the extended model (3.95) are
{1,2,3,6,8},{1,2,6,7,8},{3,7,8}, {5, 8}. If the input list P in Algorithm 2 contains
all PO sets with behavioral modes in Figure 3.1 and Mo contains all MO sets
in Figure 3.1, then the output set () consists of one minimal set w including
the 8 MO sets in Figure 3.1 with behavioral modes. Hence it is necessary
and sufficient to check the consistency of all 8 MO sets which includes either
equation 4 or 8. The matrices Ny, L for the MO sets M; € M are the ones
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shown in (3.88) and
MO U yv yi yn
{1,2,3,6,84 [ 0 0 1 0 ]
{1,2,6,7,84 [ 0 0 1 -1 ] (3.96)
{3,7,8} [ 0 0 0 1 ]
{5,8} [ 0 1 0 0]

Example 3.18

The last example is to consider the model in (3.95) but now with B = {NF, R1,
R2, B, S1, S2, S3}. Let the input list P in Algorithm 2 contain all PO sets in
Figure 3.1 with behavioral modes in B = {NF,R1, R2, B, S1, S2, S3} and let
Mo contain all MO sets in Figure 3.1. The output set Q contains 73 minimal
sets of which 63 are of minimum cardinality 6. If the MO sets M; are enumerated
from left to right in Figure 3.1 one such set is

w = {My, Ma, My, M5, Mg, Mo}

The number of minimal solutions w is large if P includes few PO sets with
low redundancy, as in the single fault examples, compared to the case when
many MO sets are included in P, as in the multiple fault examples. Since the
computational complexity of finding all minimum cardinality sets w depends
on the number of solutions w, the same can be said about the computational
complexity of computing €.

3.10 Fault Influence on Residuals

In the diagnosis system design approach used here, i.e. starting from the model
as described in Section 2.3.3, the idea is to construct residuals for MO sets. Any
test quantity based on the MO set M of equations Hx + Lz + ¢ = 0 can be written
with some basis Ny of the left null space of H as

r = Ngy(Lz +¢) (3.97)

A scaling factor is the only design freedom for a residual based on the MO set
M. Since scaling does not affect which faults that the residual r is influenced by,
any residual based on the same MO set will be influenced by the same faults.

Fault influence on residuals is typically analyzed when faults are modeled
with fault variables. In this case a residual r is said to be influenced by a fault
F, if the residual r is sensitive to a change in the corresponding fault variable
f,ie.if f # 0 implies that r # 0 in the linear case. In the framework used here,
faults need not be explicitly modeled with fault variables and the meaning of
fault influence on a residual can not be defined in this way. A formulation of
fault influence that generalizes to the situation without fault variables is the
following. In the linear case, it is equivalent that a residual r is sensitive to a
fault variable f corresponding to fault F and that r # 0 is consistent with the
assumption that the system to be diagnosed is in fault mode sys = F. To make
the next definition generally valid, we will use behavioral mode instead of fault
mode.
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Definition 3.6 (Influenced by a Behavioral Mode). A residual r is influenced by
a behavioral mode b if
Az e OMy) :r(z) #0 (3.98)

This means that a residual r is influenced by a fault mode F if » # 0 is
consistent with the behavioral model Mr. This formulation of fault influence
does not require that the fault F is explicitly modeled with a fault variable f.
Hence this is what we mean with fault influence on a residual r in the general
case.

In this section the fault influence on a residual r based on an MO set M
is investigated and the main result is, under some general assumptions given
later, that the r is influenced by the faults, or more general the behavioral
modes, b € (assump(M))C. Before a general linear static model is discussed, we
will consider a special case where all faults are explicitly modeled with fault
variables.

3.10.1 Fault Influence in Models with Fault Variables

Assume that the no-fault behavior of a process can be described by the linear
static model
Hx+L'z=0 (3.99)

Furthermore, assume that there are m single faults modeled by a vector f. For
the variable f; it holds that f; = 0 if fault i is not present. The static linear
model (2.26) would then be

Hx+L'z+Ff=0 (3.100)

This model can be written in the framework used here as follows. Each fault i
can be related to a component ¢; which can either be in the no-fault mode NF
or the faulty mode F. The model then becomes

C1=NF f1=O

: : (3.101)
cn=NF  f,=0
Hx+L'z+Ff=0

The variablesin f are considered to be unknown variables. Assume that we pick
out an MO set of equations in (3.101). These equations can, after a renumeration
of the faults, be written as

C1=NF f1=0

: : (3.102)
¢, =NF fn=0
Hx+Lz+Ff=0

where n < m. Let the fault vector f be partitioned such that the n first fault
variables fi,..., f, form a vector f, and the rest of the faults are included in f,,
i.e.

— fﬂ
f= [ fb] (3.103)
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Furthermore, let F, = F[;,{1,...,n}] and F, = F[;,{n +1,...,m}]. The model
equations (3.102) can now be written in the form (3.5) as

X

H L
—_— —
I 0 O fa 0
R N A I (3.104)
! x

Any residual for this MO set can be written as
r=Nglz (3.105)

where the scaling « in (3.97) can be included in Ng. To find out the fault
influence on the residual r, we want to express r only in the fault vector f.

To do this, we will first express the residual with the sub-matrices given
in (3.104). Let the row-vector Ny be partitioned into [N; N>]. Since NyH = 0
we get that

I 0 0
N1 N [Fﬂ E, H} =[Ni+NoF, NoF, NoH| =0 (3.106)
This implies that
N> = Nir, 1 (3.107)
and then also that
N1+ Nipg,mFa. =0 (3.108)

From that N = [Ny Nig, 1] and the definition of L in (3.104), it follows that the
residual in (3.105) can be expressed as

r= NHiZ = [N1 N[FbH]] [0

L] z= N[ph H]LZ (3.109)

Now, by multiplying the lower part of (3.104) with Nir, i}, we get
N[Fb H]Fafg + N[Fb H]beb + N[Fb H]Hx + N[Fz; H]LZ =0 (3.110)

On the left-hand side the second and third term is zero and the last term is
according to (3.109) equal to r. This means that the residual is equal to

r= —N[pr]Fafﬂ (3.111)

Finally, by using (3.108) and that N1 = Ng[:,{1,...,n}], the fault influence on
the residual r is given by

r=Ngl, {1,...,n)f, (3.112)

The residual is influenced by all faults in f, where the corresponding column
in the row-vector Ng[:,{1,...,n}] is non-zero. Since (3.102) is an MO set of
equations, it follows from Corollary 3.1 that all columns in N are non-zero and
a consequence of this is that all columns in Ng[:, {1, ..., n}] are non-zero. Hence
the residual r in (3.105) is influenced by all faults in f, and not influenced by
any faults in f,. An interpretation of (3.107) is that the faults f, are decoupled
and it will be shown that the resulting residual will not be influenced by any
fault in f,. Hence the partition of the faults in (3.103) can be interpreted as not
decoupled faults f, and decoupled faults f,. The result of this discussion is
summarized in the following theorem.
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Theorem 3.11. Given a linear static model where all faults are modeled explicitly as
in (3.101) and an MO subset of equations (3.102), any residual r = NpLz using the
notation in (3.104) will have the fault influence

= [NH[:,{l,...,n}] o] [f] (3.113)

where Ng[:, {i}] #0 foralli e {1,...,n}.

Proof. The theorem follows directly from the formal discussion starting with (3.101)
and ending with Theorem 3.11. O

Usually, we will start with a diagnosis model with the set M of equa-
tions (3.101) and form a residual based on an MO set M C M. If the set M of
equations (3.101) is written on matrix form with matrices H” and L/, then the
result of Theorem 3.11 can then be reformulated in terms of matrices H’ and
L’ as follows. Given any MO set M C M, any residual based on M can the be
written

r= NH’[M]i‘,Z (3114:)

and its fault influence is given by

r=Ngpyl AL ..., m}f (3.115)
according to Theorem 3.11.
Example 3.19
To exemplify the result of Theorem 3.11 consider the model
1 10 1 01
Herft Seefs 2 r=o st

which written in the form (3.101) is

¢ = NF 100 0 0 0
¢, = NF 01 0 ollf] fo o
c3 = NF 00 1 of[2[+]0 o|z=0 (3.117)
1011J;3 10
011 1 0 1

where the matrices are called H’ and L’ respectively. This model includes one
MO set, i.e. the set {1,2,4,5}. By computing the vector

Naazasn =[-1 1 0 1 -]

a residual and its fault influence is then given by
r=[1 -1]z=[-1 1 0|f (3.118)

according to (3.114) and (3.115) respectively.
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3.10.2 Fault Influence in General Linear Static Models

In the previous discussion all faults were explicitly included in the model as
fault variables and then it was possible to quantify the influence of a fault on
a residual. The next theorem generalizes the result in Theorem 3.11 to general
linear static models described in Section 3.6.

Theorem 3.12. Let M be an MO set of linear equations
Hx+Lz+c=0 (3.119)

where rank ([H L c]) = rank ([H L]) and let model deviation be described by a vector €
such that
Hx+Lz+c=¢€ (3.120)

Any residual derived from M can be written
r = Ny(Lz + ) (3.121)
and the residual response of the model deviation is given by
r = Nye (3.122)
where Nyl:, {i}] # 0 for all i € M.

Proof. Since (3.119) is an MO sets, it has redundancy one. This means that N is
a vector determined up to a non-zero constant. By multiplying (3.120) with Ny
from the left, we get both the residual computational form (3.121) and the fault
response (3.122). Since M is an MO set Corollary 3.1 states that all columns in
Ny are non-zero, i.e. Ny[:,{i}] # 0 for all i € M. |

According to (3.122) almost any model deviation € # 0, i.e. for all ¢ € RM
except for a line, will be detected with the residual r. To see how Theorem 3.12
is a generalization of Theorem 3.11 apply the result of Theorem 3.12 to the
model (3.102) which expressed on matrix form is given in (3.104). By adding
the model deviation €, we get

Ai+lz=e¢ (3.123)

From the n first equations, it follows that f; = €; for 1 < i < n. The remaining
equations are true in any behavioral mode, i.e. ¢, = 0 foralli > n + 1. By
elimination of € in (3.122) we get an expression equivalent to (3.113).

Example 3.20
To give an example of the result of Theorem 3.12 consider the electrical circuit
model in (3.3). The faults in this model are not described with fault variables
f and it is therefore not possible to use Theorem 3.11. As suggested in The-
orem 3.12 a model deviation vector € is added to the model. Since the first
equation in (2.44) is true for all behavioral modes, it follows that e; = 0. With
the matrices H and L defined as in (3.3) the fault influence for the MO sets M;
in (3.88) are given by

i = Nupm Lz = Nupm, € (3.124)
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The fault sensitivity is directly given by the coefficients in the matrix Nys,;. To
give an example assume that the resistor 1 is broken and the fault appears such
that Vi — 1Ry = e, where €; # 0. Then the residuals ; will be equal to

ti = Numg[:, {2}]e2 (3.125)

according to (3.124). This means that the residuals that are based on an MO
sets that include equation 2 are the residuals that will be non-zero.

3.10.3 Fault Influence and Null Hypothesis

In the framework used in this thesis, conclusions are drawn only when r € R
according to (2.7), i.e. if r € R then the null hypothesis sys € ® of the test is
rejected. To draw the strongest conclusion when r € R, the set ®C should be
chosen to be exactly the set of behavioral modes that influence the residual r.

By using the fault influence given in Theorem 3.12 the next theorem shows
that the fault influence is given by the model assumptions, i.e. the fault influence
is assump(M)C. In the theorem, we will denote the column-span of a matrix A
by Im(A).

Theorem 3.13. Let M be a diagnosis model with the set M of equations
Hx+Lz+c=0 (3.126)

where
rank ([H[M]L[M]c[M]]) = rank ([H[M] L[M]) (3.127)

for all maximal feasible models M C M. Let the model deviation be modeled as
Hx+Lz+c=Fe (3.128)

where F is a |M| X |M| matrix defined by

;= 1 ifi= jfznd assump(e;) # B (3.129)
0 otherwise
If
Im(F) € Im([HL]) (3.130)
then for any MO set M C M of equations and for any residual
r = NupmjLz (3.131)

not identically zero and based on M, r is influenced by all behavioral modes in
(assump(M))C and no others.

From Theorem 3.12 we do know that a residual r based an MO set M will
be sensitive to all model deviation variables €; included in the equations M.
Condition (3.130) guarantees that there exists a non-zero € such that v # 0, i.e.
the model deviation variables €; can be seen as independent input signals.
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Proof. An MO set M and a residual r are given. We start to prove that  is not
influenced by any behavioral mode b € assump(M). By the definition of the
operator assump, it follows that

sys € assump(M) — z € O(M) (3.132)
The observation set O(M) can according to (3.10) and (3.131) be expressed as
OM) = {zINypLz = 0} = {z|r(z) = 0} (3.133)
The formulas (3.132) and (3.133) imply that
sys € assump(M) = r =0 (3.134)

i.e. r is not influenced by any behavioral mode b € assump(M).

Now, we continue to prove that r is influenced by all behavioral modes b ¢
assump(M). The idea is to take an arbitrary behavioral mode b € (assump(M))©
and show that the equations M, and r # 0 are consistent. From the definition
of the operator assump, it follows for any set M that

M C M, — b € assump(M)

Then, since b ¢ assump(M), it follows that M € M, or equivalently that M\ M, #
@. Let M\ M; be denoted by M’. By construction of M’, it follows that
b ¢ assump(e) for any e € M’. This implies that assump(e) # B for all e € M’,
i.e.,, F[M’, M'] is the identity matrix. From (3.128), (3.131), and (3.122), we get
the fault influence

r= NH[M]FG (3135)

The only equations e € M that might be inconsistent, i.e. €[{e}] # 0, are the
equations e € M’. Hence (3.135) can be rewritten as

7 = Nupal:, M'JFIM’, M']e[M'] = Nupyl:, M'le[M'] (3.136)
From (3.130) it follows that
Im(F[M U M,]) € Im([H[M U M] LIM U M,]]) (3.137)

i.e. for any e[M U M,;] there exist some x and z such that the subset M U M, of
the equations in (3.128) is satisfied. Since M’ N M, = @, we can choose €[M’]
such that r # 0 in (3.136) and €[M,] = 0. This implies that we have found an €
such that M}, is consistent in (3.128) according to (3.126), and r # 0. Since b was
an arbitrarily chosen behavioral modes such that b ¢ assump(M), it follows
that  is influenced by all behavioral modes in (assump(M))* and the theorem
follows. O

Next two remarks of this theorem will be discussed. First, note that a
sufficient condition for (3.130) is that [H L] has full row-rank. This means that
Theorem 3.13 is not restrictive for diagnosis models where all equations are
valid in the no-fault mode. However Theorem 3.13 becomes restrictive in the
case with several maximal feasible models.

Second, the fault influence on a residual derived from an MO set M is
(assump(M))® for the class of models consider in Theorem 3.13. This means
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that the set ® in (2.7) should according to the fault influence be chosen as
® = assump(M). This is in agreement with the guideline (2.15) presented in
Section 2.2.1.

The next corollary restates Theorem 3.13 for an important special case of the
class of models handled in Theorem 3.13, i.e. the type (3.101).

Corollary 3.4. Let M be a diagnosis model with the set M of equations

C1=NF f1=0

: : (3.138)
cu=NF  f,=0
Hx+Lz+Ff=0
If
F cIm([HL]) (3.139)

then for any MO set M C M of equations and for any residual r not identically zero
and based on M, r is influenced by all faults in (assump(M))© and no others.

Proof. The proof is immediate from Theorem 3.13. m|

Now, we will illustrate the result of Theorem 3.13 by three examples. The
firstand second example show when the condition (3.130) is met and the conclu-
sion of theorem follows. The third example illustrates the case when (3.130) is
not fulfilled and it shows why the fault influence (assump(M)) is not obtained
in this case.

Example 3.21
The continuation of Example 3.19. It can be verified that (3.130) is true either
by using the matrices H” and L’ in (3.117) and

| I3z O3x2
02x3 022

or with the matrices H, L, and F in (3.116), i.e.

ST

The assumption of the MO set (1,2, 4, 5} is assump({1,2,4,5}) = ¢p(c1 = NFAcy =
NF), i.e. the residual (3.118) is according to Theorem 3.13 or Corollary 3.4
influenced by all faults in

(assump({1,2, 4,5)¢ = (p(c1 =NF Ay = NF))¢ = ¢(cit =FVcy =F)

This can also be directly seen in (3.118) and it means that it is possible to detect
all faults modes in the complement set of assump({1, 2,4, 5}).

Example 3.22

For the electrical circuit example with the model (3.95) it holds that [H L] has
full row rank. This is a sufficient condition for (3.130) and it follows that for
any residual r based on an MO set M, (assump(M))* are the behavioral modes
that r is influenced by.
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Next an example shows what can happen when (3.139) is not fulfilled.

Example 3.23
Consider the model

C1=NF f1=0
CZZNF f2=O
H

F
—

L
—_— /7 (3.140)
1 -1 0 1 0
1] x+|-1 0]z+|1 1|f=0
1 0 -1 01
The set {1, 2, 3,5} is an MO set and a residual is

r=1Y1—Y»2 = f1 - fz (3141)

From this expression we would expect that r is influenced by ¢; = NF A ¢, =
F which is contained in (assump(M))“. We will show that this is not true
and (3.139) is not fulfilled for this example.

It can be verified that F € Im([H L]). It is the column corresponding to f,
that does not satisfy (3.139) and f, cannot be chosen arbitrarily. In fact, the
last three equations in (3.140) implies that f, = 0 in any behavioral mode. By
substitution of f, in (3.141) the fault influence is given by

r=y1—yz=f1

Hence behavioral modes that influences r are ¢(c; = F) C (assump(M))C.

Note that even if the fault influence on a residual based on M is equal to
B C (assump(M))S, it is possible to use ® = assump(M) as null hypotheses.
The effect is that when the r # 0 then it is concluded that sys € (assump(M))©
but according to the model » # 0 means that sys € B. However if there is one
residual #; for each model M; in a set w that satisfies (2.34) then exactly the same
candidates will be obtained if ®; = assump(M;) or if ®; is equal to the true fault
influence of r;. Hence when designing a sound diagnosis system the exact fault
influences on each residual 7; is not important.

3.11 Conclusions

In Chapter 2 we showed that one strategy to construct a diagnosis system was to
start with a diagnosis model M and choose a set w = {Mj, ..., M,} of rejectable
models to test. There, it was also shown that a diagnosis system based on w
can be sound and complete if and only if the set w fulfills (3.1) for all behavioral
modes b € B.

This chapter has presented theory and algorithms for finding a minimum
cardinality solution @ of (3.1) given a diagnosis model IM with linear static
equations. A key result is that if w is chosen to be the set of all feasible MO
sets in the diagnosis model M, then w fulfills (3.1) for all behavioral modes
b € B according to Theorem 3.10. It has also been shown that it is not in
general necessary to include all MO sets in w to satisfy (3.1) for all behavioral
modes b € B. Theory for selecting MO sets has been developed and a key
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result for this is the rank condition given in Theorem 3.6. The rank condition
is then used in Algorithm 2 for selecting MO sets. The output of the algorithm
contains all minimal subsets w that fulfill (3.1) for all behavioral modes b € B.
A minimal cardinality set of MO sets is then picked out from the set of all
minimal sets. Note that this is important because, a minimum cardinality set w
that satisfies (3.1) for all behavioral modes b € B, corresponds to a sound and
complete diagnosis system with the minimum number tests. Several examples
of the minimization of the number of tests in the design of a sound and complete
diagnosis systems have been given in Section 3.9.

Finally, Theorem 3.13 showed that under a mild rank condition on the
diagnosis model and given an MO set M, the behavioral modes that influence
any residual derived from M are given by the equation assumptions according
to (assump(M)). Hence if the rank condition of the model can be verified, then
any further fault influence analysis of each residual is not needed.
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4

AN EFFICIENT ALGORITHM FOR FINDING
ALL MO SkTs

In the previous chapter we have shown in Theorem 3.10 that a sound diagnosis
system can be based on all feasible MO sets in a diagnosis model M, i.e., all
MO sets M in M such that assump(M) # @. In this chapter an algorithm
for computing all MO sets in a linear static or dynamic model is proposed.
How to apply the algorithm to dynamic models will be discussed later in
Chapter 6. The algorithm developed here will also be the basis for constructing
a structural algorithm that can be applied to models containing non-linear
differential equations in Chapter 9.

All MO sets in a diagnosis model are in general not feasible MO sets. The
algorithm presented in this chapter finds all MO sets in a model, both feasible
and non-feasible ones. It is not computationally efficient to find all MO sets
and then remove the non-feasible ones to get only the feasible MO sets. In
Chapter 5 an algorithm is constructed for finding only feasible MO sets. The
algorithm presented here will be the key component in the construction of the
algorithm for finding only feasible MO sets.

Section 4.1 and 4.2 introduce key concepts that will be used in the construc-
tion of the algorithm. In Section 4.3 a basic algorithm for finding all MO sets
will be presented. This algorithm illustrates the basic ideas and then in Sec-
tion 4.4 further improvements are described. The computational complexity of
the algorithm is discussed in Section 4.5. Section 4.6 describes step by step the
progress of the algorithm when applied to an illustrative example. Finally the
conclusions are drawn in Section 4.7.

4.1 Introduction
We will, as said before, present an algorithm for computing all MO sets in a
linear model

Hx+Lz=0 4.1)
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The matrices H and L are scalar matrices in the static case and polynomial
matrices in the dynamic case. In the continuation of this chapter the examples
will be static. Dynamic examples will later be presented in Chapter 6.

The main idea of the algorithm can be explained by looking at the Hasse
diagram in Figure 2.2. The algorithm is based on a top-down approach in
the sense that we start with the entire model and then reduces the size and
the redundancy of the model step by step until an MO set remains. For the
Hasse diagram in Figure 2.2 we start with {1,2,3,4,5,6,7} and, by for example
following the rightmost branch in the graph, {3,4, 5, 7} and then the MO set {4, 5}
is obtained. How to obtain PO sets with decreasing redundancy is described
in the next section.

4.2 The Proper Overdetermined Part

As said in the introduction, the idea is to find MO sets in a PO set by computing
a sequence of PO subsets with decreasing redundancy until an MO set is found.

Example 4.1

For the electrical circuit example with PO sets shown in Figure 2.2, the MO
set {4,5} can be obtained by starting with the PO set {1,2,3,4,5,6,7} with re-
dundancy 3 and then compute the PO subset {3,4, 5,7} with redundancy 2 and
finally compute the MO set {4, 5}.

This motivates studying how to compute a PO sets E ¢ M’ with redundancy
@ —1, given a PO set M’ with redundancy ¢ > 2. Such computation can be
divided into the following two steps:

a) Remove an arbitrary equation e € M’ from M’ and let M = M’ \ {e}.
b) Find a PO set E € M C M’ with redundancy ¢ — 1.

The rest of this section is organized as follows. First, the existence and unique-
ness of the PO set E, specified in step (b), are shown. Then, a method to compute
the PO set E given a model M is proposed.

4.2.1 Existence and Uniqueness

The existence and uniqueness of the PO set E, specified in step (b), are shown
in the following theorem.

Theorem 4.1. Given a PO set M’ with redundancy ¢ (M’) > 2 and an arbitrary
equation e € M’, there exists a unique PO set E C M’ \{e} such that ¢ (E) = ¢ (M')-1.

The uniqueness part of the proof of this theorem will be based on the two
following lemmas. In these lemmas we will use the notation of supermodu-
larity, i.e., the redundancy function ¢ is a super-modular function on P(M)
if

@ (My UM) + @ (M N M) > ¢ (M) + ¢ (Mo) (4.2)
for any sets M; € M and M, € M.

Lemma 4.1. If M is a set of equations defined by (3.5) where [H L] has full row-rank,
then the redundancy function ¢ is a super-modular function on P(M).
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Proof. A function is super-modular if (4.2) holds for all subsets M; € M and
M, C M. Since [H L] has full row-rank, it follows that

¢ (M') = IM'| - rank (H[M']) (4.3)
for all M’ € M. By using this, (4.2) is true if
|My U M| — rank (H[M; U Mz]) + IM1 N My| — rank (H[M; N M;])
> |My| - rank (H[Mi]) + |M2| — rank (H[M])
is true. Simplification of this inequality by using that
IMy U Mo| + My N M| = |M;| + |My]
gives
rank (H[M; U M>]) + rank (H[M; N M;]) < rank (H[M1]) + rank (H[M,])

which is the definition of the rank-function being sub-modular. The sub-
modularity of the rank-function follows from Lemma 3.1 and this completes
the proof. m]

Lemma 4.2. Let M be a set of equation such that @ (M) > 1 and such that the
redundancy function @ is a supermodular function on P(M). Then there exists
a unique PO set E C M with maximal redundancy among all subsets of M, i.e.,

@ (E) = ¢ (M).

A more general formulation of this lemma is stated and proved in (Ore,
1956).

Proof. Theorem 3.3 states that ¢ (E) < ¢ (M) for all subsets E € M. From this
and that My U M, € M and M; N M, C M, it follows that

@ (M1 UMy) + @ (M N M) <2¢ (M) (4.4)

Assume that M; and M, are two PO sets with redundancy ¢ (M) > 1. Since
@ is a supermodular function on P(M), it follows that (4.2) holds for any sets
M; € M and M, € M. This, (4.2), and (4.4) imply equality in (4.2). From this
and the fact that M; and M, have maximal redundancy among the subsets of
M, it follows that

@ (M1 N M) = ¢ (M) = ¢ (M)

From this, My N M, € My, My N M, € M,, and M; and M, are PO sets, i.e.,
¢ (E) <o (M;) (4.5)
for all proper subsets E C M;, we get
My =MiNM; =M,

ie., M; = M,. Since M; and M, was chosen to be two arbitrary PO sets in M
with maximal redundancy, it follows that there exists a unique PO set in M with
maximal redundancy. O

Now, we are ready to prove Theorem 4.1.
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Proof. We start to prove the existence of a PO set E € M’ \ {e} with redundancy
@ (M) = 1. Since M’ is a PO set with ¢ (M’) > 2, it follows that the resulting set
M = M’ \ {e} has redundancy ¢ (M) = ¢ (M’) — 1 > 1 according to Theorem 3.4.
The existence of a minimal set E C M with redundancy ¢ (M) is trivial. Then
since E is a minimal set with redundancy ¢ (M) > 1, Theorem 3.3 implies that
Eis a PO set.

Next the uniqueness is shown. Since M’ is a PO set, it follows that the
corresponding matrix [H L] has full row-rank according to Theorem 3.5. This
implies that the matrix [H[M] L[M]] corresponding to the set M also has full
row rank, i.e., M fulfills the rank condition in Lemma 4.1. This means that the
redundancy function ¢ is a supermodular function on P(M). From Lemma 4.2
we then get that there exists a unique PO set E € M with redundancy ¢ (E) =
@ (M). O

The PO set E specified in step (b), is according to Theorem 4.1 the unique
PO set E € M with maximal redundancy. If we relax the requirement on M
such that M is any set of equations such that [H L] has full row rank, the super-
modularity implies that among the subsets E C M there exists a unique PO set
with maximal redundancy ¢ (M). This PO set will be denoted by M* and will
be called the proper overdetermined (PO) part of M. The set M is in (Ore, 1956)
suggested to be partitioned into M* U (M \ M*) such that

P (M) =@ (M) (4.6)
and
pM\M) =0 (4.7)

This equations follows from (4.2) when M; = M \ M* and M, = M" and the
equation (4.6). This means that M* contains all redundancy of M and O(M") =
O(M) according to Theorem 3.6.

Looking back on the two computation steps formulated in the beginning of
this section, step (b) can be reformulated using the PO part as follows:

b) Find the PO part M* of M.

Next a method to compute the PO part M* of M will be developed.

4.2.2 Computing the PO Part

The PO part M* of M can for example be computed as the set of non-zero
columns in an arbitrary basis for the left null-space of H as the next theorem
shows.

Theorem 4.2. If M is a set of equations in the form (3.5) where [H L] has full row-rank,
then

M = {e € MINy[:, le}] # 0} (4.8)

Before we prove the theorem, let us again consider Example 4.1.

Example 4.2
The PO set {3,4,5,7} can be computed from {1,2,3,4,5,6,7} as follows. Since
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{1,2,3,4,5,6,7} is a PO set, it follows from Theorem 3.5 that the correspond-
ing matrix [H L] has full row-rank. Hence the redundancy function is super-
modular on the family of subsets of {1,2,3,4,5, 6,7}. By removing an equation,
lets say the first one, we obtain

¢ ({21 3,4,5,6, 7}) =2 (49)

From the uniqueness of a PO set with redundancy 2 and that ¢ ({3,4,5,7}) = 2,
it follows that

12,3,4,5,6,7)" = {3,4,5,7) (4.10)

From Theorem 4.2 the computation of {2, 3,4, 5, 6,7}* can be done by finding the
non-zero columns of

0 01 0 -1 0 R
Nuiesas6m=|0 0 0 1 -1 0 02 (4.11)

/////

In this way;, it is possible to compute PO sets with decreasing redundancy.

Next, we prove Theorem 4.2.

Proof. Let M’ be the set defined by the right-hand side of (4.8). First, we show
that ¢ (M") = ¢ (M). From the definition of null-space, it follows that the rows
M\ M’ in H corresponding to zero columns in Ny are linearly independent, i.e.,

rank (H) = rank (H[M']) + |M \ M| (4.12)
This and that [H L] has full row-rank give

(M)

(rank ([H[M']L[M']]) + IM \ M'])
—(rank (H[M']) + IM \ M'))
= rank ([HL]) —rank (H) = ¢ (M)

Next, we prove that ¢ (E) < ¢ (M’) for all E ¢ M’. Since all columns in Ny
corresponding to rows in M’ are non-zero, it means that any row in H[M'] is
linearly dependent with the other rows, i.e.,

rank (H[M']) < rank (H[E]) + M’ \ E| (4.13)
From this and the fact that [H L] has full row-rank, it follows that

@ (E) = (rank ([H[E]L[E]]) + IM"\ E)
—(rank (H[E]) + IM" \ E)
< rank ([HM']L[M']]) — rank (H[M']) = ¢ (M)

This implies that M’ is a PO set and since ¢ (M’) = ¢ (M) it also follows that M’
has maximum redundancy. Since [H L] has full row-rank, there exist a unique
PO set with maximum redundancy and this is defined to be the PO part M* of
M. Hence, it follows that M’ = M, i.e., (4.8) is true. O
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4.3 Algorithm

In this section we will present an algorithm for finding all MO sets. To illus-
trate the ideas, a basic version is presented here and then in the next section,
improvements are discussed.

4.3.1 Input to the Algorithm

In the algorithm that will be presented next, we start with a set M that will
be assume to be a PO set. A typical input is a behavioral model M, and an
example of a behavioral model that is a PO set is the no-fault behavioral model
in (3.3) for electrical circuit.

Next we discuss how to obtain a legal input, that is a PO set M, if M is not
a PO set. If M, is not a PO set but the corresponding matrix [Hy L] has full
row-rank, then it is easy to obtain M; and use this as input.

In the case when [Hj L;] has not full row-rank, the situation gets more
complicated. First, check that the rank deficiency is not caused by a modeling
error. If not, there exist two options.

The first option is to compute one PO set M’ C M, as follows. A set of
linearly independent rows M C M, in [Hy L] are identified and then the PO
part is computed as M’ = M*. This set contains all redundancy of M, and can
therefore be used to check the consistency of Mj.

The second option is to compute all PO sets M € M, with maximal redun-
dancy and then apply the following algorithm to each of these PO sets. A
disadvantage with this is that the number of MO sets will be greater compared
to the number of MO sets obtained in the first way.

4.3.2 Basic Algorithm

The algorithm will be based on Lemma 3.2, Theorem 3.4, and the following
lemma.

Lemma 4.3. If M is a set of equations in the form (3.5) where [H L] has full row-rank,
EC Misa PO set,and e € M \ E, then

EC M\ {e}) (4.14)

Proof. The left null space of E is according to E C M \ {e} a subspace of the left
null space of M\ {e}. From the subspace relation, it follows that

Niey = YNHM\{e)] (4.15)

where v is a full row-rank matrix. Since [H L] has full row-rank, it follows from
Theorem 4.2 that (M \ {e})* are the non-zero columns in an arbitrary basis for
the left null-space of H[M \ {e}]. This implies that

Naeil;, M\ (M \ {e})'] = yNuenl:, M\ (M \ {e})"] = 0 (4.16)

Since E is a PO set, Corollary 3.1 implies that Npyg)[:, {e}] # O for all e € E. This
and (4.16), imply that EN (M \ (M \ {e})*) = @ which is equivalent to (4.14). O
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Theorem 3.4 reveals how the redundancy decreases when one equation is
removed. It follows from thislemma that if we start with any PO set of equations
we can alternately remove equations and computing the overdetermined part
until the redundancy becomes one. We have then found a MO set, according to
Lemma 3.2. Finally, Lemma 4.3 implies that an arbitrary PO set, and therefore
also any MO set, can be obtained recursively this way. By using this principle
in combination with a complete search the algorithm becomes as follows. The
input set M is assumed to be a PO set.

Algorithm 3. FindMO(M)
if o (M) = 1 then

Mo = {M};
else
Mo = @;
for each equation e in M do

M= (M fe])'
Muo := Muyo U FindMO(M');

end for

end if
return Mo

From the discussion above, it follows that the sets found in M0 are MO
sets and that all MO sets are found.

Example 4.3
To illustrate the steps in the algorithm, consider a PO set M = {e1, e, €3, e4} with
the following H-matrix:

0
1

H=ly (4.17)

2

1
1
0
0

Remember that the L-matrix is irrelevant when computing the redundancy of
PO sets, because the matrix [H L] has full row-rank. The redundancy of the
set M in (4.17) is 2. When entering the algorithm, e; is removed and the set
M’ becomes (M\{e1})* = {e3,e4}. In this case ¢ (M’) = 1 and the equation set is
saved as an MO set in Myio. Then e; is removed and M’ = (M\{2})* = {3, 4}.
This means that the same MO set is found once again. Next e3 is removed and
the MO set {1, e, 4} is found. Finally e, is removed and the MO set {ey, 5, €3} is
found.

Since the same MO set {e3, 4} is found twice in the example, we can suspect
that the algorithm is not optimal in terms of efficiency. The next section will
therefore present improvements in order to increase the efficiency.
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X1 Xp - Xu X

[777777777)

Figure 4.1: A decomposition of the H-matrix of a PO set.

4.4 Improvements

A straightforward improvement is of course to prohibit that any of the MO sets
are found more than once. Another and more sophisticated improvement is
that sets of equations can be lumped together in order to reduce the size and
the complexity of the H-matrix. This reduction preserves redundancy and it is
therefore possible to use the reduced matrix to find all MO sets in the original
matrix. However, the reduction can also introduce numerical problems and it
will therefore be considered as optional.

4.4.1 A Canonical Partition of PO Sets

The reduction is based on a unique partition of a PO set. The partition is based
on the matrix H corresponding to a set of equations M and an illustration of the
partition is shown in Figure 4.1. The partition can be defined as follows. Let R
be a relation on the set M of equations defined by (e, ¢’) € R if

eg (M\{e}) (4.18)

Lemma 4.4. The relation R is an equivalence relation on a PO set M.

Proof. Now we show that R is an equivalence relation on M, i.e., that R is
reflexive, symmetric, and transitive. It follows directly from the definition that
R is reflexive. If (e,¢’) € R, then it follows from (4.18) that (M \ {¢’})* € M\ {e}.
Lemma 4.3, with E replaced by (M \ {¢'})*, implies that

M\ {e'})" € (M\ {e)’ (4.19)

Since M is a PO set, Theorem 3.4 implies that ¢ (M \ {¢'}) = @ (M \ {¢}). From
this and (4.6), we get that

P (M\{'])) = @ (M \ {e})") (4.20)

Assume that we have inequality in (4.19). Then, leté € (M\ {e})*\ (M \{¢’})". The
set (M \ {e})*\ {é})" is according to Lemma 4.3 a superset to (M \ {¢’})*, but have
lower redundancy than (M \ {¢’})* according to (4.20) and Theorem 3.4. This is a
contradiction according to Theorem 3.3 and it follows that (M \ {¢'})* = (M \ {e})".
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Hence (¢,¢’) € R and R is therefore symmetric. Furthermore if (¢1,¢e;) € R and
(e2,€3) € R, then it holds that (M \ {e1})* = (M \ {e2})* = (M \ {e3})*, which implies
that R is transitive. The relation R is therefore an equivalence relationon M. O

For a linear space A, the orthogonal complement will be denoted by A*.
The set M can then be partitioned into disjoint equivalence classes M; where
i€1{1,2,...,m}. For each equation set M;, a matrix X; is defined as a row-basis
for the space

sp(H) N (sp(HIM \ M;]))* (4.21)

and X is a row-basis for
X3
X
sp(H) N (sp(| . )"

X m

By this construction, any row in X;, where i # 0, is linearly independent with
the rows M \ M; in H. No filling in the intersection between M; and X; for
i # j # 0is used to indicate this in the figure. Furthermore M; and X; is related
as follows.

Corollary 4.1. If Misa PO set, then for all its equivalence classes M; defined by (4.18),
it holds that
|M;| = rank (X;) + 1 (4.22)

foralll <i<m.

Corollary 4.1 states that there is one more equation in M; than the dimension
of the space defined by X; in each block. Furthermore for n + 1 < i < m in the
figure, M; has cardinality 1 and X; is the zero-space, i.e., X; = {0}.

Proof. Let M; be an arbitrary equivalence class which according to the decom-
position implies that for any e € M;, (M \ {e})* = M \ M;. Since M is a PO set,
[H L] has full row-rank and we get that
P M) - ((M\{e})’) = (IM| - rank (H)) — (IM \ Mj| — rank (H[M \ M;]))
This can be written as
(M) — o (M \ {e})") = IMi| - (dim(sp(H)) — dim(sp(H[M \ M;])))

The last terms can be written

dim(sp(H)) — dim(sp(HIM \ M) = dim(sp(H) N (sp(HIM \ Mi]))*) ~ (4.23)
and then we obtain

@ (M) — @ (M \ {e})") = IMil = (dim(sp(H) N (sp(H[M \ Mi]))*)
This and (4.21) imply that
P M) — o ((M\ {e})’) = IMi| — dim(sp(X7)) = IMi| — rank (X;)

Then Theorem 3.4 and (4.6) imply (4.22) and this proves the corollary. O
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By using this partition into equivalence classes M;, all PO sets can be repre-
sented as follows.

Theorem 4.3. If E C M is a PO set, then E is a union of equivalence classes defined

by (4.18), i.e.,
E=| )M
i€l

whereI € {1,2,...,m}.

Proof. The theorem holds if and only if E € M and E N M; # @ implies that
M; C E. Assume that E C M, EN M, # @, and that there exists ane € M; \ E C
M\ E. From Lemma 4.3, it follows that E € (M \ {e})*. This and the definition
of M; imply that E € M \ M;, which contradicts the assumption and the lemma
follows. O

4.4.2 Analytical Reduction

A new linear static system can be formed with each equivalence class M; of M
corresponding to a new equation. The equation corresponding to equivalence
class M; is

N; (H[Mi]x + L[M;]z) =0 (4.24)
where N; is a row vector that fulfill
N;H[M;]X] =0 (4.25)
and
N; 0 (4.26)

If (4.25) is used to compute N;, then X; must be known. However, it is not
necessary to compute X; to compute N;. The following lemma describes a better
way to compute N; directly from the matrix H, i.e., without first computing the
matrix X;.

Lemma 4.5. If j isany row such that Ny [j, M;] # 0, then N; = N[ j, M;] fulfills (4.25)
and (4.26).

Proof. From
NyH =0 (4.27)
it follows that
NyHX! =0 (4.28)
This can be expanded to
Npl:;, M\ M1 HIM \ M{] X! + N[, Mi{JHIM;] X! =0 (4.29)

From (4.21), it follows that H[M \ M;] XIT = 0, i.e., the first term in (4.29) is zero.
Hence the second term in (4.29) must also be zero, i.e.,

Nyl MilHIM;1 X =0 (4.30)

Since j is an arbitrary row in Ng[:, M;] such that Ny[j, M;] # 0, then N; =
Nplj, M;] fulfills both (4.25) and (4.26). O
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An equation of the type (4.24) will be called a lumped equation. The set of
all lumped equations becomes

N
N, 0 - 0
0 N
. (Hx+Lz)=0 (4.31)
0 0 - N,

and is called the lumped system. The rows in the lumped system will simply
be denoted by {M;li € {1,2,...,n}}. The matrix N has full row-rank. Since M
is assumed to be a PO set, [H L] has full row rank and this implies that for the
lumped system, the matrix [N H N L] has full row-rank. The redundancy is
therefore only dependent of NH.

Example 4.4
For example, the lumping of (4.17) is
equivalence class | unknown
Ml‘ X2
{61 ’ ez} 01
{63} 0 1}
{64} 0 2

and Xy = [01], X; =[10], and X, = X3 = []. The first row in the lumped matrix
NH is obtained by multiplying H[{e;, e;}] from the left with Ny = [-11]. Note
that it is only equivalence classes of cardinality greater than one that give a
reduction. An interpretation of this reduction is that the two first equations are
used to eliminate the space spanned by X, in this case the unknown x;.

In the lumped matrix NH, each equivalence class of M corresponds to
one row, and the definitions of PO set, MO set, and redundancy are thereby
extended to lumped matrices. In the example above we have ¢ ({{e1, e}, {e3},
{e4}}) = 2. The redundancy for the lumped and the original system are always
the same.

The reduction is justified by the following theorem, which shows that there
is a one-to-one correspondence between the PO sets in the original and in the
lumped system and that the reduced matrix NH can be used to find all PO sets
in the original matrix H.

Theorem 4.4. The set {M;}ics is a PO set in the lumped system if and only if UjetM;
is a PO set in the original equation system. Further, it holds that

O(IMilier) = O(VietM;) (4.32)
To prove this theorem the following lemma will be used.
Lemma 4.6. If M is a PO set and {Mj}; its equivalence classes, then
¢ (VierM;) = @ ({Milier) (4.33)
forall I’ C L
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Proof. The redundancy of UjerM; is

@ (UierM;) = | Ujer My| — rank (H[Ujerr M;])
| Uier M| = dim(sp(H[Uier M;]))

By using the notation of the decomposition described in Section 4.4.1 we know
that the rows in X; fori = 0,1, ...,m forms a row basis for H and we get that

@ (VierM;) = | Uier M| - Z dim(sp(X;)) — dim(sp(Xo) N sp(H[Vier Mi])) (4.34)
el
which can be rewritten as

@ (UierMy) = ) (M| - rank (X)) - dim(sp(Xo) N sp(H[Uier M) (4.35)
iel’
Corollary 4.1 states that |[M;| = rank (X;) + 1 for all i € I, and consequently that
@ (VierM;) = [I'| = dim(sp(Xo) N sp(H[Ujer M])) (4.36)
which is equal to ¢ ({Mi}ier). O

For a model M’ where [H’ L’] has full row-rank we will later also use the
following alternative characterization of PO sets, based on the definition of PO
part. We know that if M* # @ then M" is a PO set and contrary, for a PO set M
it follows that

M=M (4.37)
according to (4.8) and Corollary 3.1. Hence M # @ is a PO set if and only if (4.37)
holds.

Next, the proof of Theorem 4.4 follows.

Proof. We start to prove that {M;};cs is a PO set if and only if UjefM; is a PO set.
Assume that UjefM; is a PO set. Then it follows from Definition 3.3 that

Y (Uie]’Mi) <@ (Uie]Mi) (4-38)
for all |’ C J. From Lemma 4.6, it then follows that

@ ((Mitiey) < @ ({Mitiey) (4.39)

for all J' ¢ J. Hence {M}ij is a minimal set with redundancy ¢ ({M}ic)), i.e.,
{M}ie is a PO set according to Definition 3.3.
Now, we will show the reverse implication. Assume that {M;}] is a PO set.
IfM C UiE]Mi/ then
M2 M) = Uiep M; (4.40)

for some |’ C J according to Theorem 4.3. Since {M;}iej is a PO set, it follows
from Lemma 4.6 that

¢ (UigtMi) = ¢ ((Mitiey) > ¢ ((Miliey) = @ (Viey M) (4.41)
From (4.37) and (4.40), it follows that

@ (ViepMi) = @ (M)") = ¢ (M) (4.42)



4.4. Improvements 95

The inequality (4.41) and the equality (4.42) imply that U;c;M; is a minimal set
with redundancy ¢ (Uie;M,), i.e., UiefM; is a PO set according to Definition 3.3.

Now, we prove (4.32). Let H and L be the matrices corresponding to the
equation set U;e;M; and let

NHx+Lz)=0
be the lumped equations {M,}ic;. The equality (4.32) holds if and only if
sp(NuL) = sp(Ny,NL) (4.43)
where H; = N H. Since
Ny, NH =0 (4.44)
it follows that
sp(NgL) 2 sp(Nu,NL) (4.45)
From Lemma 4.6, we get that
dim(sp(NyL)) = @ (VietMi) = @ ({Mi}ier) = dim(sp(Ng,NL)) (4.46)
which together with (4.45) imply (4.43) which in turn implies (4.32). O

4.4.3 Improved Algorithm

A drawback with Algorithm 3, presented in Section 4.3, is that some of the MO
sets are found more than once. There are two reasons why this happens and
these can be illustrated using the following example.

Example 4.5
Consider
10
11
H=10 1 (4.47)
01
0 2

where the rows correspond to the equations {ey, ..., es5}. First, the same PO set
{es, e4, €5} is obtained if e; is removed. Second, the same MO set is obtained if
the order of equation removal is permuted. For example, the MO set {e4, e5} is
obtained if first e; or e, and then e3 is removed but also if the order of removal
is reversed.

To illustrate how these two problems are handled in an improved algorithm
to be presented later, we use Example 4.5.

To avoid the first problem, the lumping described in previous section is
used. Initially we start with the set M = {e;,e;,e3,e4,65} and e; and e, are
lumped together and the resulting set is S” = {{e1, 2}, {e3}, {es}, {es}}. Similar to
the basic algorithm we remove one equivalence class at a time from S’ and
make a recursive call which returns all MO sets in the input set.

To avoid the problem with permuted removal order an additional input
set & is used which contains the equivalence classes that are allowed to be
removed in the recursive calls.

Example 4.6
In Example 4.5, we start initially with the set & = &', meaning that all equiva-
lence classes are allowed to be removed. In the first step the equivalence class
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{e1, 2} is removed and a recursive call is made with the input sets

S\ {{er, e2}} and {{es}, {ea}, {es}}

To prevent that the order of removal is permuted we remove the equivalence
class {e1, e} permanently from &’. In the following step the equivalence class
{e3} is removed and the inputs are

S\ {{es}} and {{ea}, {es}}
Following the same principles, the final calls are made with the input sets

S\ {{ea}} and {{es}},
S\ {{es}} and @

To apply these ideas in all steps in the recursive algorithm, the lumping
strategy has to be extended to subsets of previously lumped systems. Equiv-
alence classes are then lumped together into new sets of equations by taking
the union of the sets in the equivalence class. We illustrate this with a new
example.

Example 4.7
Assume that we start with six equations and that e; and e; are lumped together
and the following H-matrix has been obtained:

equivalence classes | H-matrix
{er) 10
{e2, €3} 10
ol 11 (4.48)
{es} 01
{es} 0 2

In the first recursive call, {e;} is removed and the matrix corresponding to the
remaining part has the same matrix as in (4.17). Now, it holds that

[{e2, es}] = [ea}] = {{ez, 3}, {eal)

where [E] denotes the equivalence class containing E. The sets {e;, e3} and {es}
are therefore lumped together into the set {e;, €3, e4}.

Given a model S and corresponding set &, the lumped system S’ is con-
structed as described above, and a problem is then how to form the new set
&' of equivalence classes that are allowed to be removed in the new system &’.
The following principle will be used. An equivalence class in &’ is allowed to
be removed, i.e., the equivalence class belongs to &', if and only if it is a union
of classes that are all allowed to be removed in S, i.e., it belongs to &. It will be
shown that, in this way, all MO sets are found once and only once.

It is sufficient to only lump equivalence classes with an non-empty inter-
section with & and this is used in the algorithm. To do this partial lumping we
will use the notation

S’ = Lump(E, S)

in the algorithm to denote that only the equivalence classes [E] in the input S
are lumped forming a new set of equivalence classes S’ and the corresponding
lumped system. The improved algorithm take S := {{e}le € M} where M is PO
setand & = § as input sets, and can formally be written as follows.
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Algorithm 4. FindM0(S, &)
if o (S) =1 then

Mo = {UgesE};
else
& =98 :=8;
% Lump the system S’ and create &
while & #+ @ do

Select an E € &;
S’ = Lump(E, §');
if [E] € & then
& = & U UperE');
end if
&:=&\[E];

end while

Mo = @;

% Make the recursive calls
while & + @ do

Selectan E € &
& =&\ (E}
Mo := My U FindMO(S’ \ {E}, &);

end while

end if
return Myio

The algorithm is justified by the following result.

Theorem 4.5. If Algorithm 4 is applied to a PO set M of equations, then each MO set
contained in M is found once and only once.

Proof. First, it is shown that each MO set is found at least once. Let E C M be
an arbitrary MO set. A branch, of the recursive tree, that results in this MO
set can be obtained in the following way: In each recursive step, chose the first
branch where an equivalence class not included in E is removed. It follows
from Lemma 4.3 and Theorem 4.4 that by following this branch, a sequence of
decreasing PO sets all containing E is obtained. Hence the MO set E is found
this way.

Finally, it is shown that the same MO set E can not be found if we deviate
from the branch described above, i.e., that the MO set E is found only once. In
each recursive step, in all branches that precede this branch, only equivalence
classes contained in E have been removed. Therefore, these branches do not
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result in the set E. On the other hand all succeeding branches contain the first
equivalence class E not contained in E, i.e., the class removed in the branch
that gives the set E. This follows from the fact that £ has been removed from &
and is not allowed to be removed. Furthermore in all lumped systems in these
branches, &' is constructed such that E is an equivalence class not contained in
&'. Hence, the branch described above is the only branch that results in the MO
set E. This completes the proof. o

444 Algorithm without Lumping

As mentioned in the beginning of this section the lumping can introduce nu-
merical problems. To avoid these, it is possible to omit the lumping of H but
still use the idea of equivalence classes. In Algorithm 4, the only two algebraic
computations are the initial PO set computation and the lumping. Of these two
computations, it is only the lumping that uses previously lumped equations.
Therefore the modification corresponds to replace Lump(E, S") with a function

&’ = EquivalenceClasses(E,S) (4.49)

that computes the equivalence classes but does not lump equations. The output
&’ is computed as follows. First

M; = (UpesE’) \ (Upes\eE') (4.50)

is computed. Then the equivalence classes E’ € S where E’ C M] are replaced
with the single set M;. The resulting S is equal to the output S’. Note that the
PO part computation in (4.50) is applied to a subset of the original equations M,
i.e., a subset of rows of the original matrix H. Hence all algebraic computations
are done using the matrix H.

Example 4.8
As an example consider

OO =oO O

O OO Rk O
l»—\H»—\OOO‘

SEEEEEE

where the rows correspond to the equations M = {ey,...,e¢}. Let S' = {{e1, e2},
les, es}, {es}, {es}) and E = {e;, 2} be the input sets to EquivalenceClasses. The
computation (4.50) is for this example

M; =M\ ez, es, 65,66} = M\ {es, 6} = {e1, e, 3,64}

Note that the PO set in the example was computed by using the matrix
Hlles, e4, €5, e5}] which is a subset of rows in H. By omitting the lumping, null
space computations of matrices obtained by previous null-space computations
are avoided and this avoids potential numerical problems.
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4.5 Computational Complexity

For a fixed order of redundancy, the computational complexity is polynomial
in the number of equations. This follows from the fact that, in the algorithm,
the number of recursive calls is equal to the number of PO sets. The worst case
is when no equations are lumped. In this case the PO sets are all subsets with
cardinality strictly greater than the number of unknowns in the original model.
By similar computations as done in Section 3.7, it follows that the number of
such sets grows polynomially in the number of equations. Furthermore the
computational complexity to obtain the set M*, has the same computational
complexity as making a QR-factorization of the matrix H. The QR-factorization
is polynomial in the number of equations. For a fixed number of unknowns,
the complexity of the improved algorithms are exponential in the number of
equations. However, this situation is, as mention in Section 3.7, not common
in application areas such as the automotive industry.

4.6 Example: The Electrical Circuit

In this section we briefly describe some of the steps when Algorithm 4 is applied
to the electrical circuit presented in Chapter 3.

Consider the Hasse diagram in Figure 2.2 and let the nodes be enumerated
from left to right and then from the top to the bottom. In the first subroutine
call we have the inputs:

S=8&={{1},{2}, {3}, {4}, {5}, {6}, {7}}
i.e., we enter node 1. Then the lumping of & results in
S =& ={{1,2,6},{3}, {4}, {5}, {7}}
Assume then that E = {1,2,6} € & is selected. This means that
& ={{3}, {4}, {5}, {7}}
and the inputs to the next subroutine call become
S=8&={{3}, 14}, (51, {7}}
i.e., we enter node 6. Reduction of this is
§ =& ={{3,7), 4}, {5}}
Assume next that E = {3,7} € & is selected, This implies
& = {{4}, {51}
and the inputs to the recursive call become
S=8={{4},{5})
i.e.,, node 14 is entered. The model S is identified to be a MO sets. Hence

Mo = {UgesE} = {4, 5}
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Now, backtracking to node 6 and the situation is

S = {{38,7},4), {51
& = {{4,{58

Then we select a new equivalence class say {4} € & and get

S = {{38,7}, {4}, {51
& = {{5)

The input arguments to the recursive call are

S = {{8,7, {5}
& = ({58

This is identified as an MO set, i.e., {3,5,7} is found. Returning to node 6 we
have that

S = {{3,7),{4), {5}
& {{51}

and
Mo = {{4,5}} U {{3,5,7}}

In the final recursive call we select {5} € & and

S = {37, 14}
&E = o

{3,4,7} is identified to be an MO set. Returning to node 6, we get
MMO = {{4/ 5}/ {3! 5! 7}} U {{3/ 4/ 7}}
Since

S = {{38,7}, {4, {51
& = 0o

i.e., &is empty, we backtrack to the node 1 and we have

S = {{1,2,6},{3},{4}, {5} {7}}
& = {31 {4} {5}, {7}

Continuing in the same way, we select {3} € & and enter node 5 with

S = {{1121 6}/ {4}1 {5}/ {7}}
& {14}, {5}, {7}}

When the lumping is performed, it turns out that

{71 = {1,2,6},{7}}
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ie.,
S = {{1,2,6,7),{4}, {5
It follows that [{7}] ¢ & and this implies that
& = {4,151

In this way the set {1, 2, 6,7} is not removed. If this equivalence class would be
removed the resulting set would be {{4}, {5}}, i.e., we would enter node 14 again.
By selecting the equivalence class including the lowest equation first, the nodes
will be traversed in the following order: 1, 6, 14, 13, 12, 5 as we already have
explained and then 11, 10, 4, 9, 8, 3, 7, and finally 2.

4.7 Conclusions

An algorithm for computing all MO sets of equations has been developed.
There are three main ideas that are used in the algorithm. First, it is based
on a top-down approach as described in Section 4.3. Second, an analytical
reduction is used where subsets of equations can be lumped together in order
to reduce the size of the model. Third and last, it is prohibited that any MO set
is found more than once. For a fixed order of redundancy, the computational
complexity, of the algorithm, is polynomial in the number of equations.
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AN ALGORITHM FOR FINDING ALL
FeasiBLE MO SEeTs

If a sound diagnosis system for a diagnosis model M is to be designed based on
asetw = {Mj,...,M,} of models, it has been shown in Chapter 2 that v must
fulfill (2.34) for all behavioral modes in b € B. To fulfill this and to minimize
the cardinality of w, it was shown for linear static models in Chapter 3 that w
should be a subset of all feasible MO sets in the diagnosis model M.

In a general diagnosis model not all MO subsets M of M are feasible models.
For example in the model (3.95), the equation assumptions of 4 and 8 are
mutually exclusive, i.e.,

assump(4) N assump(8) # @

Hence any subset that include both 4 and 8 will not be a feasible set, for example
the MO set {4, 8}.

If we want to find all feasible MO sets in the set M of equations (3.95),
one straightforward approach is to use {{e}le € M} as inputs to Algorithm 4.
Since the algorithm does not consider the equation assumptions, non feasible
MO sets will also be included in the output. All non feasible MO sets must
therefore be removed from the output set. As said in Section 4.5, Algorithm 4 is
efficient when the redundancy is low. To find all feasible MO sets in this way is
inefficient because the redundancy of M can be much greater than the maximum
redundancy of the maximal feasible models in M. For the model (3.95), the
redundancy of both maximal feasible models is 3 and the redundancy of M is
4. The redundancy difference will be greater for diagnosis models including
more fault models.

To keep the redundancy of the models processed by Algorithm 4 low, an-
other approach, that will be described here, is to call Algorithm 4 several times
with different parts of the model as inputs. This approach is implemented in,
Algorithm 7, for finding all feasible MO sets in a diagnosis model. Algorithm 7
computes MO sets by calling Algorithm 4 several times with different inputs.
The set of all MO sets found by Algorithm 7 is the union of all output sets

103
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obtained for the different calls of Algorithm 4. Algorithm 7 uses the equation
assumptions to compute inputs sets to Algorithm 4 such that only feasible MO
sets are contained in the outputs of Algorithm 4. The algorithm presented
here is not limited to linear models if Algorithm 4 is replaced by an algorithm
handling also non-linear models. This will later be done in Chapter 9.

In Section 5.1 the relation between the inputs and the output of Algorithm 4
is investigated. This is then used in Section 5.2 to derive requirements on the
inputs such that each feasible MO sets are found in exactly one of the calls of
Algorithm 4. Many sets of inputs fulfill these requirements, but we are also
interested to minimize the number of calls to Algorithm 4, and this is done
in Section 5.3. The final algorithm is presented in Section 5.4 and Section 5.5.
Finally the computational complexity of the algorithm is discussed in Section 5.6
before the conclusions are drawn in Section 5.7.

5.1 Relation between Inputs and Outputs of Algo-
rithm 4

To keep the redundancy of the models processed by Algorithm 4 low, one
approach is to call Algorithm 4 with all maximal feasible sets and then take
the union of the output sets. All MO sets found using this approach will be
feasible sets, but the drawback is that a node in the search tree corresponding
to PO set M and its subtree will be traversed in each call to Algorithm 4 with
a maximal feasible set M’ if M € M’. For (3.95) this would mean that nodes in
the subtree defined by {1,2,3,5, 6,7}, i.e., the intersection of the two maximal
feasible models, would be searched twice.

One way to prohibit this is to check if a node has been visited before entering
it. This can be done by checking if the computed PO set is among the previously
considered PO sets. Since the redundancy is known only PO sets with the same
redundancy must be compared. Although comparisons to only PO sets of the
same redundancy is sufficient, the number of comparisons will be large.

Another way to prohibit that nodes are visited twice or more without ex-
plicitly checking if they have been visited before is to make a clever choice of
the input sets to Algorithm 4 such that different sets of nodes are visited in each
call. In particular, disjoint families of MO sets will be found in each call.

The disjoint families of MO sets can be specified by changing the inputs to
Algorithm 4. In general, it is possible to specify the k:th inputs of Algorithm 4
according to a partition

M =M UM UM (5.1)

such that the output set Myip only contains all MO sets M C M with the
following properties:

a) no equations in M C M are included in M,
b) all equations in M¥ C M are included in M, and
c) itis ambiguous if the equations in Mk C M are included in M or not.

Given such partition, the corresponding MO sets are obtained in the output set
of Algorithm 4 by choosing the input sets according to the next theorem.
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Theorem 5.1. Let M be a set of equations partitioned as
M =M UM uME (5.2)

If
Mk < (MU MFy: (5.3)

then by choosing the input sets to Algorithm 4 as
S = {lelle € (M7 U MyY) (5.4)

and
& = {felle € (M} U M{)" N M) (5.5)

the output set Mpio will include exactly those MO sets in M that fulfill all the
properties (a)-(c). Otherwise, i.e., if (5.3) is not true, no MO sets in M fulfill all the
properties (a)-(c).

Proof. First we start to prove that if (5.3) is not true, then no MO sets in M
fulfill all the properties (a)-(c). For an MO set M satisfying property (a), it holds
that M € Mk U ME. Since all MO sets are contained in the overdetermined part
according to Lemma 4.3, it follows that

M c (Mku Mby* (5.6)

Now the MO set M satisfies (b), if and only if all equations in M are included in
the overdetermined part (M* U MF), i.e., if and only if (5.3) is satisfied. Hence
if (5.3) is not true, then no MO sets in M fulfill all properties (a)-(c).

From now on it is assumed that (5.3) is fulfilled. We start to describe the
output set Myip of Algorithm 4 formally. According to the description of
Algorithm 4, the input set S contains the equations considered and & contains
the equations that are allowed to be removed . Then from (5.4), (5.5), and
Theorem 4.5, the set Mo is the set of all MO sets that are subsets of (Mf U M¥)*
and can be obtained by only removing equations in M¥. This means that the set
Mo contains all MO sets M such that

M c Mk u Mby (5.7)
and by also using (5.3) it follows that
MfcM (5.8)

Next, we show thatan arbitrary MO set M € Mo fulfills (a)-(c). Property (a)
is implied by (5.7) and (b) is implied by (5.8). Property (c) is always fulfilled.
Hence any MO set M € Myo fulfills (a)-(c).

Finally, we show that any MO set with properties (a)-(c) will be included in
Mo. Let M be an arbitrary MO set with properties (a)-(c). From property (b),
condition (5.8) follows. Property (a) implies that M C (M¥ U M¥) and by using
Lemma 4.3 that M € (M¥ U M¥)*. Hence also the first condition (5.7) of the
characterization is fulfilled. In conclusion any MO set that fulfills (a)-(c) belongs
to Muo. O
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5.2 Constructing Partitions by Using the Model

The MO sets specified by a partition (5.2) and the conditions (a)-(c) can be found
by applying Algorithm 4 to the input sets described in Theorem 5.1. Now, a
natural question is how to define the partitions M U Mk U M¥ such that the
following two requirements are met:

I) For each partition only feasible MO sets should satisfy the conditions (a)-
(c), i.e., only feasible MO sets shall be found by Algorithm 4.

II) All feasible MO sets in M should satisfy the conditions (a)-(c) for exactly
one of the chosen partitions, i.e., all feasible MO sets will be found and
all feasible MO sets are found only once.

The assumption of the equations determine if a set is feasible or not. Therefore,
the set of partitions will be computed by using the equation assumptions.

There are many sets of partitions that satisfy these two requirements. For
example, these two requirements are satisfied by the set of all partitions M =
MK U MK where M C M is a feasible set. However, this is a computationally
inefficient choice, because each feasible set will then be separately checked if
it is an MO set. For an efficient use of Algorithm 4, the sets M¥ in the chosen
partitions should, in contrast to the example where all MX were empty, be
chosen large. In this way the number of partitions needed to specify all feasible
MO sets becomes smaller.

To do this, the partitions are constructed as follows. Let the equations M be
divided into two sets M = M,, U M, such that it is sufficient to consider only
the equations in M, to determine if any set is a feasible model or not. The set
M, is chosen as a minimal set such that any set M € M is a feasible set if and
only if the part in M, is a feasible set, i.e., M, is a minimal set such that

VM C M : (M feasible & M N M, feasible) (5.9)

The set M,, is obviously the complement set of M, in M. Then it is possible
to chose the sets M¥ equal to all feasible subsets of M, and Mt equal to the set
M, in all partitions to guarantee that all MO sets specified by (a)-(c) for each
partition k are feasible MO sets. As said before, M§ = My, should be large, i.e.,
M, should be small. That is the reason for defining M, to be a minimal set that
satisfies (5.9). In fact there exists a unique minimal set M, that satisfies (5.9)
according to the next lemma.

Lemma 5.1. There exists a unique minimal set M, that satisfies (5.9).

Proof. Assume that M,; and M,; are two minimal sets that fulfill (5.9). We
will show that M, = M, N M,; also fulfills (5.9) and then it follows from the
minimality of M,; and M, that M = M, = M,;.

To show that M, = M, N M, fulfills (5.9), let M C M be an arbitrary set
and consider the set M N (M, N M,;). Since My, fulfills (5.9), it follows that
(M N M) N M, is feasible if and only if M N M, is a feasible set. From the fact
that M, fulfills (5.9), we get that M N M, is a feasible set if and only if M is a
feasible set. Hence we have proven that M, = M, N M, fulfills (5.9). From the
minimality of M,; and M, it follows that M = M,; = M,; which completes the
proof. O
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Next an example of the partition M = M, U M,, is shown.

Example 5.1

Consider the electrical circuit in Example 3.17 with the set M of equations
in (3.95) . A set in (3.95) is not a feasible model if and only if the set contains
both equation 4 and 8. Hence the minimal set that satisfies (5.9) is

M, = {4,8} (5.10)
The complement set of M, in M ={1,...,8} is

Mne = {1/2/3/5/ 6/ 7} (511)

In the example, M, is the minimal set of equations with conflicting assump-
tions. In general M, is the union of all minimal sets of equations with conflicting
assumptions. Section 5.3 describes how M, and M, can be computed. In the
continuation here, we will assume that M, and M,,, are known sets.

Given the sets M, and M, the idea is to apply Algorithm 4 one time for each
feasible set M C M.. How to generate all feasible subsets M of M, is discussed in
Section 5.4. Given a feasible set M, we conclude that by choosing Mﬁ =M, \M,
M’; =M, and M’; = M, in Theorem 5.1 we get the desired MO sets. In the next
theorem we show that these partitions fulfill both requirement (I) and (II).

Theorem 5.2. Let M be a diagnosis model with a set M of equations divided into the
sets M, and M,,, where M, is defined as the minimal set that satisfies (5.9). Given all
partitions M = MK UMK UMK fork = 1,... such that

MEc M, (5.12)
is a feasible set,
M =M, \ MF (5.13)
and
ME = M,, (5.14)

the requirements (1) and (I1) are fulfilled.

Proof. We start to show that requirement (I) is fulfilled. Assume that M is an
MO set, not necessarily a feasible set, that satisfies (a)-(c) for some partition k
of the type (5.2). Since M satisfies (a)-(c) it follows that

M c M c MU MK (5.15)

By substitution of M,,, in M,, "M, = @ for M’; using (5.14) we get that M§ NM, =
@. This implies that
(M UMY N M, = M N M, (5.16)
By taking the intersecting each of the three sets in (5.15) with M, and by us-
ing (5.16), it follows that
MNM, =MnM,

This and (5.12) imply
MNM, =M~
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Since M = M N M, is a feasible set, (5.9) implies that M is a feasible set. Since
M was an arbitrarily chosen MO set, it follows that only feasible MO sets
satisfy (a)-(c) for some partition k.

Now, we show that requirement (II) is satisfied. Let M C M be an arbitrary
feasible MO set. This implies according to (5.9) that the subset M N M, is
a feasible set. For each partition k, the sets M and M¥ divide the set M,
according to (5.12) and (5.13). From this, (a), and (b), it follows that any MO
set that fulfills (a)-(c) for partition k contains exactly the equations M¥ among
the equations in M,. This implies that M satisfies (a)-(c) only if ML = M, \ M,
ME = M N M,, and Mk = M,,.. Since M¥ = M N M, is a feasible subset of M, it
follows that M’,‘, =M.\ M, M’r‘ =MnNM,, and M’; = M, is one of the partitions
defined in (5.12)-(5.14). Hence all feasible MO sets satisfy (a)-(c) for exactly one
partition. m|

We conclude this section with an example that shows the partitions obtained
given the sets M, and M,,.. Furthermore the example shows how these partitions
are used to define inputs to Algorithm 4 such that all feasible MO sets are found.

Example 5.2
Continuation of Example 5.1. The set M, and M, were given in (5.10) and (5.11)
respectively. The feasible subsets of M, are

Mfeas = {2, {4}, {8}}
The three corresponding partitions M = MF U M~ U ME for k € {1, 2,3} are

M=o M.={4,8 M! =M,
M% = {4} M%, = {8} Mg = My
M;s' = {8} M?, = {4} Mg = My
These three partitions satisfy requirement (I) and (II) according to Theorem 5.2.
From Theorem 5.1 we get that the first partition corresponds to the inputs
S1o= {142}, {3}, {5}, {6}, {7}
& = {{1},{2},{3}, {5, {6}, {7}}

to Algorithm 4, the second to

S, = {{1},{2}, {3}, {4}, {5}, {6}, {7}}
82 = {{1}/ {2}/ {3}/ {5}/{

and the third to

83 = {{1}/ {2}/ {3}/ {5}/{
& = {{1},{2}, {3}, {5}, {6}, {7}}

If Algorithm 4 is applied to these inputs, all feasible MO sets can be computed
as
Muio = U FindMO(Sy, &) (5.17)

kef{1,2,3}
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according to Theorem 5.1. In Figure 3.1 these three calls find the four MO
sets in the middle, the four leftmost MO sets, and the four rightmost MO sets,
respectively.

This example illustrates that all MO sets are found and each MO set is found
only ones if the input sets Sy and & of the different calls of Algorithm 4 are
chosen in accordance with the result of Theorem 5.1.

5.3 Computing the set M,

In this section we show how to compute the sets M, and M,, given a diagnosis
model M. The next lemma characterize the set M, given the set M, of all
maximal feasible subsets in M and the characterization will then be used to
compute the set M.

Lemma 5.2. It holds that
Mue = O, M (5.18)

Proof. Let the set defined on the right hand side of (5.18) be denoted M. Instead
of proving that M = M,,, we will prove the equivalent statement that

M\ M) = M, (5.19)
We start to show that
(M\ M) 2 M, (5.20)

Since M, is defined to be the minimal set that satisfies (5.9), it follows that (5.20)
is equivalent with (5.9) where M, is substituted by M \ M. Take an arbitrary
M C M. The right implication of (5.9) is trivially true. To prove the left
implication of (5.9), assume that M N (M \ M) is a feasible set. Since M N (M \ M)
is feasible there exist a M € M, such that

MnM\M)CM (5.21)

From the construction of M, it follows that

McCM
and therefore also that
MNMCM (5.22)
Since M can be written as
M=MNM)UMNM\M)) (5.23)
(5.21) and (5.22) imply that
McM (5.24)
By using this and that M is a feasible set, it follows that M is a feasible set.
Hence (5.20) is proved.
Next, we show that
M\ M) € M, (5.25)

ie, M, = (M \ M) is the minimal set that satisfies (5.9). Let ¢ € M be an
arbitrary equation such that e ¢ M. To show that (M \ M) is a minimal set
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that satisfies (5.9), it is sufficient to show that (5.9) with M, substituted for
M \ (M U {e}) does not satisfy (5.9). Since e ¢ M, it follows that there exists an
M € M, such that

e¢M (5.26)

By choosing M = MU {e} in (5.9), we get that
(M U {e}) feasible & (MU {e}) N (M \ (M U {e})) feasible

On the left hand side we have M U {e} which is a not feasible set according to
the fact that M is a maximal feasible set. On the right hand side, we have the
set

(MU fe}) N (M \ (M U fe})) (5.27)

Since e ¢ (M \ (M U e})) it follows that (5.27) is a subset of the feasible set M.
Hence the set in (5.27) is feasible. This concludes that (5.9) is not satisfied when
M, is substituted for M \ (M U {e}). Since e € M was arbitrarily chosen such that
e ¢ M, (5.25) follows. Finally, (5.20) and (5.25) imply (5.18) which concludes the
proof. m]

The component based modeling described in Section 2.1 will be used in
the computation of M,,. Let ¢ € C be all components described in a diagnosis
model M. Let M, € M be the equations describing the behavior of component
¢, e.g. Mp = {4,8} in Example 3.17. Furthermore let My = M \ (UcecM,) be all
other equations. Note that the equations in M, can without loss of generality
be assumed to be always true. Furthermore assume that M is the set
containing all maximal feasible subsets of M. Any maximal feasible set M in
M,.ax can then be written as

M = UgecM, U M, (5.28)

where M, € Migxc. Since M. are disjoint sets, the intersection in (5.18) of all
maximal feasible sets of the type (5.28) can be expressed as

Mo = Ucee(Nrepm,,,, M) U Mo (5.29)

Hence the set of all maximal feasible sets M,y for each model M, describing
component ¢ must be determined to compute the set M,, when using (5.29).
Since the number of component behavioral modes in general is small, compu-
tation of all maximal feasible models can easily be done as follows.

Remember that B, denotes that set of all component behavioral modes for
component c. Given a component ¢ € C and a component behavioral mode
b € B, let M, be a component behavioral model defined by

M. = {e € Mc|p(c = b) C assump(e)} (5.30)

Then the set My of all maximal feasible models in M, can be computed as
the maximal sets among
{M,plb € M.} (5.31)

Next an example shows the computation of the set M5y of maximal feasible
sets of a component c.

Example 5.3
Consider for example a sensor component c with the possible behavioral modes:
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no-fault NF, constant bias fault B, and unknown fault UF. If the measurement
is denoted by y, the measured signal is denoted by x, and the sensor fault is
modeled by a fault signal f, then a model for the sensor is

x+f
0 (5.32)
0

y
c=NF f
ce{NF,B} f

The sets of valid equations for each component behavioral mode, i.e., the sets
in (5.31), are {1,2, 3} for NF, {1, 3} for B, and {1} for UF. The only maximal sets
for this component is therefore (1,2, 3}, i.e., My = {{1,2,3}}.

The computations of the partition M = M,, U M, is summarized in the fol-
lowing algorithm. The intersection in (5.29) for component c is in the algorithm
denoted by M..

Algorithm 5. GetPartition(M)
% Computes the partition M = M,, U M.,.
for each component ¢ do

Mmax,c =0,

for each component behavioral mode b € B, do

if M., not subset of any M € My then
Remove all subsets M of M., it Mipax,c;
Minax,e := Minax,e U {Mcpl;

end if

end for
M. = Nptem,...M; % See (5.29)

end for

My =M\ (Uc_eCMc)/'
My := (UeecMc) U My,
M, =M \ Mie;

return M,,, and M,;

Note that the sets M, for ¢ € C could all be replaced by a single set
reducing the memory usage.

Example 5.4
Consider the electrical circuit in Example 3.17. Assume that the components are
enumerated in the order R1, R2, B, 51, 52, and S3. Considering the model (3.95),
the sets M,, are
_ i+ 1} foralli€{0,1,2,4,5,6}
“ |48 fori=3

All components except for the battery have the possible component behavioral
modes NF and UF. These component models have one maximal feasible model
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and this is the no-fault model, i.e., My, = {M,} for alli € {1,2,4,5,6}. This
implies that M., = M,, for alli € {1,2,4,5, 6} according to the algorithm.

The battery model Mp = M,, consists of the equations 4 and 8 in (3.95). The
battery has two possible component behavioral modes: NF with model {4}, and
F with model {8}. Therefore, the maximal feasible models for component B is
anax,03 = {{4}/ {8}} and MC3 = 0.

By substitution of the sets M,, and M) in the assignment of the set M, in
Algorithm 5, the result becomes

Ml’le = {1/ 2/ 3/ 5/ 6/ 7} (533)

The set M, becomes
M, = {4,8}

which also is in agreement with the computations in Example 5.2.

5.4 Generating Feasible Subsets

In this section we present an algorithm that finds all feasible models M C M,.
A property that will be used to find these is that if a model is not feasible
then no supersets will be a feasible model. Here the feasible models will be
generated by starting with the empty set and then generate supersets following
a depth first traversal. If a set turns out to be a non-feasible model then the
corresponding branch is cut off.

Another feature that will be used is the component based modeling ap-
proach. Remember that M, denotes the set of equations describing the behavior
of component c. All feasible subsets of M, N M, are first computed for each
component ¢ € C. Assume that the set of all feasible subsets of M. N M, is
denoted M. Then it follows that any feasible subsets of M, can be written
as

UCECMC‘ (534)

for some M € Mjggsec.

The algorithm is a recursive algorithm for generating all feasible models
contained in a general set U of equations. Later in the algorithm for finding
all feasible MO sets U will be the sets M, N M, where ¢ € C. In each recursive
call the algorithm returns given two input sets M C U and E C U, the set M
containing all feasible sets that can be written as M U E” where E’ C E. This
means especially that if M = @ and E = U, then the algorithm will return the
set M5 containing all feasible models in U.

Algorithm 6. GetAllFeasibleSubsets(M, E)
if M not feasible then

Meas = @;

else
Meas == {M}; Mg == M;
while E + @ do
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Select an e € E;

E:=E\{e)
M = Mya U fe};
Meas := Myess U GetAllFeasibleSubsets(M, E);
end while
end if

return Mg,

Example 5.5
Continuing Example 5.4. From (5.33) we get that the complement set of M is
M, = {4,8}. If Algorithm 6 is applied to the input M, N Mp = M. N M., = {4, 8},
the output set becomes

Mfeas = {2, {4}, (8}}

5.5 Algorithm for Finding All Feasible MO Sets

Now, we are ready to include all parts in a final algorithm for finding all feasible
MO sets in a diagnosis model IM with an equation set M.

The main steps in the algorithm is as follows. First the set M is divided
into the sets M = M,,, U M, with Algorithm 5 presented in Section 5.3. Then all
teasible subsets M ;. of each component model M. N M, are computed using
Algorithm 6 described in Section 5.4. Given all feasible subsets M, of all
components ¢ € C, all feasible subsets M’f of M, can be generated as

MK = UM, (5.35)

for all combinations of M. € My for all ¢ € C. Then for each feasible
set MF, all MO sets specified by (a)-(c) for the partition M’r‘, M’; = M,,, and
MK = M\ (MF U MF) are found by Algorithm 4.

The number of partitions M, Mt, MK can be large. To avoid storing all
partitions M¥, MK, Mk, the algorithm recursively construct each partition M,
M, MK, apply Algorithm 4 to the constructed partition, and store the found
MO sets before computing the next partition. The recursions are performed
using a subroutine called FindFeasibleMOSets.

In the FindFeasibleMOSets the sets M is obtained as follows. Starting with
M, = @ the subroutine chose one feasible set of a component not previously
considered in each call. In each call the union of the chosen feasible sets are
stored as the set M,. The final set M,, which corresponds to one M’,‘, is obtained
with |C| recursive calls. Then all feasible MO sets containing M, and contained
in M, U M, are found by using Algorithm 4.

Assume that a model M, € M ess,c for all components in C \ C’ is selected
and that

M; = Ueec\cMe (5.36)
The inputs to the subroutine are the union M, of previously selected feasible
sets for components C\ C’, a set M s = {Messclc € C € C} of selection choices
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of the remaining components C’, and the set M,,. The output is the set of all
MO sets that can be written as

Mr U (UceC’Ec) UE

where E; € Mgysc and E € M,,. All feasible MO sets in M is therefore obtained
in the output set for the input sets M = @, M s = { Mes clc € C}, and M. The
algorithm is summarized next.

Algorithm 7. FindAl1FeasibleMOSets(M)
% Computes the partition M = M,, U M.,.
[My,e, M,] := GetPartition(M);

% Computes the feasible sets for each component.
for each component c € C do

M eas,c == GetAllFeasibleSubset(@, M. N M,),
end for

% Computes all feasible MO sets.

Mfeas = {Mfeus,clc €Cl;

Mo := FindFeasibleMOSets(@, M s, Mie);
return Mo

FindFeasibleMOSets(M, M5, Mye)

if Mfess = @ then

% A feasible set M C M, has been found.
% Check the partition of M defined by M.

if M C (MU M,.) then % See (5.3)

S = {{e}le € (MU M,)*};
& = {{elle € (M U M,,,M)* N M,.};
MMO = FlndMO(S, 8)/

else
Mo = @;
end if

else
% Extend Mwith feasible sets in Myg;.

MMO =Q;
Moy = M;

Select an Miejeer € Mfeas;
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Mfeas = Mfeus \ M setect;
while Mgojeer # @ do

Select an E € Meject;

Meetect := Meteet \{E};

M := My U{E};

Mo := Muo U FindFeasibleMOSets(M, M fess, Mie);

end while

end if
return Myo;

The algorithm is justified by the following result.

Theorem 5.3. If Algorithm 7 is applied to a diagnosis model M with equations M,
then only feasible MO sets are found and any feasible MO set contained in M is found
once and only once.

Proof. Algorithm 5 computes a partition M = M, UM,,, where M, is the minimal
set that satisfies (5.9) according to Lemma 5.2. Given M, and M,,, Algorithm 7
computes all feasible sets M C M, defining the partitions M = M¥ U MK U MK
where M’r‘ =M, Mﬁ =M, \ M, and M’; = M,,. According to Theorem 5.2 these
partitions specify only feasible MO sets and each feasible MO sets is specified
only for one partition. For each such partition, exactly the specified MO sets
are then found by Algorithm 4 according to Theorem 5.1 and this concludes the
proof. O

5.6 Computational Complexity

Besides the computational complexity of Algorithm 4, the number of feasible
subsets M C M, in the for-loop in Algorithm 7 is important for the compu-
tational complexity of Algorithm 7. Consider an example model M with n
components, i.e., |C| = n. Assume that each component ¢ € C is specified by
two equations M, = {e.,, e.,} with conflicting assumptions. The minimal con-
flicting set is {e.,, e.,} and this set is equal to M, N M.. This implies that there
are 3 feasible subsets of M, N M,, i.e., [Mes| = 3. This means that there are 3"
feasible subsets M C M,. Even if each of these 3" search problems are small only
enumerating all cases will be time-consuming for large numbers n. However
the next example shows that given a component c the number feasible subsets
of M. N M, might not increase with the number of component behavioral modes
of c.

Example 5.6

In Example 5.3 there were 3 component behavioral modes. The set of all
equation assumptions are consistent, i.e., M, "M, = @. The only feasible subset
of Mo N M. is @, i.e., Myes,. = {@}. Hence, this component will not increase the
number of cases in the while-loop in Algorithm 7.
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5.7 Conclusions

An algorithm for computing all feasible MO sets of equations has been devel-
oped. There are three main ideas that are used in the algorithm. First, the
algorithm uses Algorithm 4 several times and collects all MO sets found. Sec-
ond, the inputs to Algorithm 4 are computed such that only feasible MO sets are
contained in the outputs of Algorithm 4. Third and last, it is prohibited that any
feasible MO set is found in more than one call of Algorithm 4. The algorithm
presented here is not limited to linear models if Algorithm 4 is replaced by an
algorithm handling also non-linear models.



SOUNDNESS WHEN DIAGNOSING LINEAR
DyNAMIC SYSTEMS

Following the strategy described in Section 2.3.3, the construction of a diagnosis
system starts with finding a set w = {Mj, ..., M,} of rejectable models to test. If
the diagnosis system should be sound, these models M; € w must fulfill

oMy = (] 0w (6.1)

MM,

for all b € B according to Theorem 2.2. In Chapter 3, we studied linear static
models and showed that the set w of all feasible MO sets is a solution to (6.1)
for all behavioral modes b € B. An algorithm for finding all feasible MO sets
was then developed in Chapter 4 and Chapter 5. In this chapter, we will extend
results presented in Chapter 3 to systems of linear differential equations. This is
done by representing linear differential equations using polynomial matrices.

Basic properties of polynomial matrices are, for the sake of convenience,
collected in Appendix 6.A. In Section 6.1 the type of differential equation con-
sidered in this chapter is specified along with some basic notions. Furthermore,
the so called behavior of differential equations is defined and a polynomial
matrix characterization of equivalent differential equations is described. By us-
ing the polynomial matrix characterization, observation set, redundancy, and
overdetermined sets are extended to the dynamic case. Section 6.2 and Sec-
tion 6.3 investigate solutions to (6.1) for one behavioral mode b € B. Section 6.2
extends the definition of PO set to the dynamic case and it is shown that all PO
sets are sufficient for soundness. Section 6.3 introduces MO sets for dynamic
models and shows that all MO sets are sufficient for soundness. In Section 6.4,
it is shown that the set of all feasible MO sets satisfies (6.1) for all behavioral
mode b € B. In Section 6.5, it is shown that Algorithm 7, presented in Chapter 5,
can be used to find all feasible MO sets in a linear dynamic diagnosis model.
Section 6.6 discusses how to find a minimum cardinality solution @ of MO sets.
Finally, the fault influences on residual generators based on an MO sets are
discussed in 6.7 before the conclusions are drawn in Section 6.8.

117
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6.1 Linear Differential Equations

Let the set of all distributions be denoted by ©’. The type of model considered
in this chapter is then a linear dynamic model for a specific behavioral mode

Hp)x+L{p)z=0 (6.2)

where x € 9 is an unknown distribution, z € 9’ is a known distribution, H(p) €
R™"[p] and L(p) € R™"*[p] are known matrices with polynomial entries of the
differential operator p. In this chapter x and z are assumed to be distributions,
butall results hold also analogously if x and z instead are infinitely differentiable
functions.

Throughout this chapter we will use the following example to illustrate
concepts and theoretical results. Consider the linear dynamic model M,:

H(p) L(p)
- 1 1 0 0
x+[0 1 0|z= (6.3)
0 0 1

describing a fault free behavior.

6.1.1 Behavior

A key property that will be used for analyzing the solutions of linear differential
equations is how the polynomial matrices are related for equivalent differential
equations. This relationship is given in (Polderman and Willems, 1998) and
here a part of this work is briefly recapitulated and exemplified.

The behavior of a linear differential equation R(p)w = 0 is defined as the set
of all distributions w € 9’ that are a solution to R(p)w = 0, i.e.,

{w e D'|R(p)w = 0} (6.4)
The linear differential equations
Riplw =0 Ry(p)w =0 (6.5)

are said to be equivalent if they define the same behavior. The next theorem
characterize how the polynomial matrices R;(s) and Rx(s) must be related to
represent equivalent differential equations. The following theorem is given and
proved in (Polderman and Willems, 1998).

Theorem 6.1 ((Polderman and Willems, 1998)). Two polynomial matrices Ry(s) €
RP*4[s] and Ro(s) € RPI[s] where p1 > p2 define equivalent differential equations if
and only if there exists a unimodular matrix U(s) such that

[Ry(5)]

Ri(s) = UG) |

(6.6)

Note that (6.6) is equivalent to that there exists a unimodular matrix W(s)
such that i .
Ry(s)

WERE) = |

6.7)
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Multiplying the matrices of a differential equation from the left by any unimod-
ular matrix will produce a differential equation equivalent to the original one
according to Theorem 6.1. Unimodular matrices can be obtained by elementary
row operations (see Appendix 6.A).

Example 6.1

To exemplify Theorem 6.1 and how elementary row operations can be used to
obtain unimodular matrices consider the model (6.3). The rank of H(s) is one
and it is possible by elementary row operations to obtain only one non-zero

TOw as
s—1 1 1 1
1 [~[s—-1 0]~ |0 (6.8)
S S S 0

by first interchange row 1 and 2, then multiply row 1 with —(s — 1) and add it to
row 2, and finally multiply row 1 with —s and add it to row 3. The elementary
matrices corresponding to the elementary operations in (6.8) and the resulting
unimodular matrix are

1 0 0]] 1 010
[—s 1 0{(5—1) 1 0”1 0 o] [ —(s—
00 1

0 0 1
Since the elementary matrices are unimodular and the product of unimodular
matrices is unimodular, it follows that U(s) is a unimodular matrix. From the
fact that U(s) is unimodular, we get that

~

=U@) (69

1 0 1 0
Up)Hp)x + Lp)z) =|0(x+|1 -(p-1) 0|z=0 (6.10)
0 0 -p 1

and (6.3) are equivalent differential equations according to Theorem 6.1.

6.1.2 Observation Sets

A dynamic model of the type (6.2) is said to be consistent with an observation,
i.e., a distribution z = zp € 9’ on any open time-interval I C IR, if

Ix e D;H(p)x + L(p)zo = 0 (6.11)

For the model (6.11), the observation [z;(f), zo(t), z3(t)] = [0(t) — h(t), h(t), 6(¢)]
where 0(t) is Dirac’s delta function and h(t) is Heaviside’s step function is
consistent with (6.2) because x = h(t) € 2’ is then a solution to (6.3).

Let the equations in (6.2) be indexed by the set M. The set of all observations
that can be observed when (6.11) holds is called the observation set of M and can
formally be defined as

OM) = {z € D'|Ax € D'; H(p)x + L(p)z = 0} (6.12)

This means that a differential equation (6.2) is consistent with an observation,
i.e, a distribution z, if the observation z belongs to the observation set O(M),
ie., if

z € O(M) (6.13)
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6.1.3 Kernel Representation

The observation set O(M) can compactly be expressed as the solution to a linear
differential equation in z only, and this type of representation is called kernel
representation (Polderman and Willems, 1998). In this section, it is shown that
for any model there exists a kernel representation of the consistent observa-
tions. Furthermore a method to compute kernel representations is given. The
existence of a kernel representation is first motivated by an example and then
a general theorem is given.

Example 6.2

The last two equations in (6.10) is a kernel representation of the observation set
of (6.3) and this can be understood as follows. Note that the two last equations,
are equations only in the variable z. Furthermore the non-zero rows in U(s)H(s)
has full row rank and therefore will not impose any additional constraints of
the solutions z. The set of consistent observations is therefore equal to the
solutions of the two last equations only, i.e., to

[é nd ; b (1)]Z=0 (6.14)

This is therefore a kernel representation of the observation set of (6.10) and
therefore also of the equivalent differential equation (6.3).

This example showed how a kernel representation could be constructed.
In the next theorem, the existence of a kernel representation for any model is
shown by using the same construction as in the example. This theorem is given
in (Polderman and Willems, 1998), but there for sufficiently smooth functions.

Theorem 6.2. The observation set (6.12) can be expressed as the solution to a differ-
ential equation in only the variables z in the following way:

OM) = {z € D'INu(p)L(p)z = 0} (6.15)
where Ny is any irreducible basis for the left null space of H(s).
Proof. Let zp € O(M), i.e., there exists an xy € D’ such that
H(p)xo + L(p)zo = 0 (6.16)

There exists a unimodular matrix U(s) such that

UE)H(ES) = [Il\]l;((?)] H(s) = [Hlo(s)] (6.17)

where Ng(s) can be any irreducible basis for the left null space of H(s) and Hi(s)
has full row rank. From Theorem 6.1 it follows that

U(p)(H(pxo + L{p)zo) = [Hlo(’”)] X0+ [ﬁ;‘(’;))ﬁ((’;))] =0 (618)

and (6.16) are equivalent differential equations, i.e., the observation sets are
equal. This implies that
Nh(p)L(p)zo =0 (6.19)
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ie.,
2o € {z € D'|Nu(p)L(p)z = 0} (6.20)
Since z( was arbitrarily chosen, it follows that
OM) C {z € D'INu(p)L(p)z = 0} (6.21)

Now, let Ny(s) be any irreducible basis of the left null space of H(s) and take
any solution zg € {z € O'|INu(p)L(p)z = 0}, i.e.,

NH(p)L(p)Z() =0 (6.22)

For any irreducible basis N(s) of the left null space of H(s), we can extend the
matrix to a unimodular matrix U(s) that satisfies (6.17). Then zg belongs to the
set O(M) in (6.12) if and only if

. [Hi(p) Ui(p)Lp) | _
xeD [ 10 }x + [N;(p)L(p)] z0=0

according to Theorem 6.1. Since (6.22) holds this is equivalent to that there
exists an x € 9’ such that

Hi(p)x + Uqr(p)L(p)z0 = 0 (6.23)

From the fact that H;(p) has full row rank, it follows that for any distribution
U (p)L(p)zo that there exists a distribution xy € 9’ that satisfies (6.23). Hence
zp € O(M). Since z was arbitrarily chosen, it follows that

OM) 2 [z € D' INu(p)L(p)z = 0} (6.24)
The theorem follows by combining the subset relations in (6.21) and (6.24). O

The kernel representation (6.14) of the observation set of (6.3) was obtained
by computing a unimodular matrix. However it is not necessary to compute a
unimodular matrix to obtain an irreducible basis for the left null space of H(s).
A left minimal basis in echelon form can be directly be computed in an efficient and
numerically stable way and there is an implementation in Matlab polynomial
toolbox.

Example 6.3
The kernel representation of H in (6.3) can be computed as follows:

>> H=[s-1;1;s]

>> Nh = null(H’)’
Nh =

0.58 0.58 - 0.58s 0
-0.58 -0.58 0.58
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The matrix in (6.14) is one example of an irreducible basis for the left null space
of H(s) and the matrix Nh is another such example.

6.1.4 Redundancy and Overdetermined Sets

To generalize redundancy defined for static systems to dynamic systems, we
consider polynomial matrices instead of real matrices. By using the normal
rank (see Appendix 6.A) for polynomial matrices the redundancy concept is
generalized to a set of linear differential equations as follows. The notation
H[M] will be extended to polynomial matrices and the dependence on s will
for notational convenience only be explicit when needed.

Definition 6.1 (Redundancy of a Model). Let ¢ : 2M — Z be a function from the
family of subsets M in a set M of linear differential equations (6.2) defined by

@ (M) = rank ([H[M] L[M]]) — rank (H[M]) (6.25)
This number ¢ (M) will be called the redundancy of M.

If the notation of the zero-padded matrix Ny given in Section 3.1.2 is
extended to polynomial matrices, then the redundancy can also be written as

¢ (M) = rank (NupyL) (6.26)

which can be interpreted as the maximum number of linearly independent
consistency relations that can be derived from the set M of differential equations.
For a linear dynamic model M, existence of analytical redundancy according
to Definition 2.6 is equivalent to that ¢ (M) > 0. As for linear static models,
dynamic linear models with redundancy is said to be overdetermined according
to the next definition.

Definition 6.2 (Overdetermined Set). A set M of linear differential equations (6.2)
is an overdetermined set if its redundancy is positive, i.e., ¢ (M) > 0.

Equation (6.26) and Theorem 6.2 imply that a linear dynamic model is an
overdetermined set if and only if it is a rejectable model. Therefore, only
overdetermined models need to be consider when choosing models w in (6.1).

6.2 PO Sets are Sufficient for Soundness

In Section 3.2, it was shown for a linear static model M, that it was sufficient
to include any PO set M € M, with maximal redundancy in w to fulfill (6.1).
Surprisingly this is not true in general for the dynamic case. Here, we point out
the differences and also show that if [H(p) L(p)] has full row-rank then results
analogous to the static case follow.

First we extend the definition of PO sets from linear static equations to linear
differential equations.

Definition 6.3 (Proper Overdetermined Set). An overdetermined set M of linear
differential equations (6.2) is a proper overdetermined (PO) set if

¢ (E) <p M) (6.27)
forall EC M.
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The proper overdetermined sets in (6.3) are all subsets with two or three
equations. If M is a proper overdetermined model, it follows that O(M) c O(E)
forall E C M. For the static case the converse implication is also true and shown
in Theorem 3.1, but in the dynamic case it is not true as the next example shows.

Example 6.4

Let L be

s+2 s+1 0

s+3 0 s+1
0 s+3 —(s+2)

L= (6.28)

and let H be the empty matrix. We will now show that {1,2,3} is not a PO set
even if O({1,2,3}) c O(E) for any E c {1,2,3}. The redundancy for (6.28), when
H e R is

@ (M) = rank (L[M]) (6.29)

The rank of L is 2 and the rank of two arbitrary rows L[E] in L is also 2. Hence,
{1,2,3}is according to Definition 6.3 not a proper overdetermined set. However,
all proper subsets E of {1,2, 3} fulfills

0({1,2,3}) c O(E) (6.30)

and it can be explained as follows. Sets with cardinality 1 has redundancy 1
and can obviously not have the same observation set as {1, 2, 3}. Therefore it is
sufficient to study sets with cardinality 2, for example E = {1,2}. The matrix
L[E] spans the same rational space as L, but L has no roots and L[E] has a root.
This implies that there exists no unimodular matrix U that satisfies

L:UFEW (6.31)

Then Theorem (6.6) implies that the observation sets for E and {1,2,3} are
different. The difference between the observation sets can be written as follows.
An arbitrary trajectory of O({1,2}) can be written as

z+a[010]7e!

where z is a trajectory in O({1,2,3}) and « is a real constant. For any pair of
rows in L, a similar argumentation holds.

In this example [H(s) L(s)] had not full row-rank. Next it is shown that
if [H(s) L(s)] has full row-rank, then results analogous to results presented in
Section 3.3 for the static case follow.

Theorem 6.3. An overdetermined set M of linear differential equations in the form (6.2)
where [H L] has full row rank has a unique subset M* that is a proper overdetermined
set and fulfills

O(M) = O(M") (6.32)

Proof. The non-zero columns in Ny is uniquely determined and Theorem 4.2
states that these columns correspond to the equations in the set M*. This means
that NyLz is a kernel representation of both O(M) and O(M*), which directly
implies (6.32). O
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This result implies that M is a proper overdetermined set if O(M) c O(E)
for all E ¢ M and it can be realized as follows. Assume that O(M) c O(E) for
all E € M. From this and that there exists a unique proper overdetermined set
M* € M such that O(M*) = O(M), it follows that M* = M, i.e., M is a proper
overdetermined set. In the continuation we will always assume that [H L] has
full row-rank. It is always possible to find an equivalent differential equation
described by [H’ L] such that [H” L] has full row rank (Polderman and Willems,
1998). Therefore, we can without loss of generality assume that [H L] has full
row rank.

6.3 MO Sets are Sufficient for Soundness

A rank-condition given in Corollary 3.2 could be used to determine if a set of
PO sets w satisfies (6.1) for a linear static model. In this section a corresponding
condition for linear dynamic models is developed. As in the static case, see
Corollary 3.3, it is also shown that it is sufficient to include all MO sets in w to
satisfy (6.1).

6.3.1 Defining and Characterizing MO sets

The definition of MO sets for differential equations is analogous to the definition
for static equations.

Definition 6.4 (Minimal Overdetermined Set). An overdetermined set M of differ-
ential equations (6.2) is a minimal overdetermined (MO) set if no proper subset is
an overdetermined set.

The relation between MO sets and PO sets given in Lemma 3.2 for static
equations holds also for the dynamic case.

Lemma 6.1. A set M of equations (6.2) is an MO set if and only if M is a PO set with
M) =1

Proof. The proof is analogous to the proof of Lemma 3.2. m|

6.3.2 Rank Condition

In the linear static case we have given in Theorem 3.6 and Corollary 3.2 condi-
tions for a set w of models to fulfill (6.1). These conditions are not sufficient in
the dynamic case and the complication is the irreducibility as the next example
will show.

Example 6.5
The matrix NyL for the four PO sets in (6.3) are
POset NgyL redundancy
1 1 -1
{1/ 2/ 3} 0 s _1J (P =2
1,20 1 —s-1 0] =1 (6.33)
{1,3} s 0 —(s=-1)| ¢=1

23 [0 s -] p=1
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The three last PO sets are MO sets, since their redundancies are one. Assume
that we want to investigate if it is sufficient to check the consistency of {1, 2, 3}
by checking the consistency of any pair of MO sets. For a set of linear static
equations with redundancy 2, two MO sets should be enough, according to
Theorem 3.6. The rank-condition (3.50) is satisfied for all pairs of MO sets and
therefore one would perhaps expect that any pair of MO sets can be used to
check the consistency of {1, 2, 3}.

Assume that we want to investigate if the MO sets {1,2} and {1,3} can be
used to check the consistency of {1,2,3}, i.e., if

0({1,2,3}) = 0({1,2}) n O({1,3}) (6.34)
Let P be
1 =(s-1) 0
el Y2 .

where the first row in P corresponds to the MO set {1, 2} and the second row in
P to {1,3}. Theorem 6.1 implies that an equivalent matrix formulation of (6.34)
is that there exists a unimodular matrix U such that

11 -] , [t =s-1 0
[O s —1]_U[s 0 —(s—1)] (6.36)

Analogously to the static case it follows that matrix P corresponding to the two
MO sets has rank 2 and spans the same the space as the matrix NyL correspond-
ing to the PO set {1, 2, 3}. Matrices spanning the same space describe equivalent
systems in the static case but in the dynamic case equivalent differential equa-
tions are characterized by the stronger condition given in Theorem 6.1. The
equations (6.36) is false, because NyL is irreducible but P has a root for s = 1.
Hence it follows that

0({1,2,3}) c O({1,2})) nO({1, 3}) (6.37)

which means that it is not sufficient to check the consistency of {1,2} and {1, 3}
to determine if {1,2, 3} is consistent.

The same type of analysis reveals that the only pair of minimal overdeter-
mined models that can be used to check the consistency of {1,2,3} is {1,3} and
{2,3}. The equation corresponding to (6.36) is then

11 -1 _,.[1 -6-1 0
[0 s —1]‘”_0 s —1] (6.38)
where U is )
1 1
u:»o 1] (6.39)

In the example, the matrix defined by the MO sets {1,3} and {2,3} has no
roots, in contrast to the pair of MO sets studied first. In the next theorem it is
shown that the dynamic result corresponding to Corollary 3.2 is obtained by

IR . . T T
the additional requirement that the matrix [N HIM] N H[M,,]] has no roots.
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Theorem 6.4. Let M be a PO set of linear differential equations (6.2) and let M; ¢ M
be PO sets foralliel={1,2,...,n} .Then it holds that

OM) = NietO(M;) (6.40)
if and only if
T
rank (Nf Niy  Nhpag] ) = rank (Na) (6.41)
d
an NT NT ve NT 6.42
[ HMy) PV HIM,] H[Mn]] (6.42)

has no roots.

The result is discussed, before the proof is presented. The conditions (6.41)
and (6.42) can be used to find out if it is possible to check the consistency of
the models M; to determine the consistency of M. Note that (6.41) is the same
condition as (3.55) derived in the static case. Hence the only difference from the
static case is to verify (6.42). This can be done efficiently by the function roots
in matlab polynomial toolbox.

Example 6.6

Consider Example 6.5. Let P be the matrix obtained by the three rows NyL
in (6.33) for each MO set. In this example, NyL = Ny because L = I. By the
following commands in matlab, it is possible to find out that the first and second
MO set do not correspond to an irreducible matrix but the first and third MO
set do that.

>> P = [1 -(s-1) 0;s 0 -(s-1);0 s -1];
>> root = roots(P([1 21,:))

root =

1.0000
>> root = roots(P([1 31,:))
root =

(]

To prove Theorem 6.4, two lemmas are introduced. In the formulation of
Theorem 6.4, Ny is analyzed instead of the kernel representation in the form
NyL. In the next lemma we show that if [H L] has full row rank then it is
equivalent to study Ny and NyL, i.e., L can be dropped in the dynamic case as
well.

Lemma 6.2. Let U, H, and L be polynomial matrices such that [HL] has full row
rank. Furthermore, if M is row-set of H and M;, ..., M,, are arbitrary subsets of M,
then it follows that

T [N,
U[Nfny Niay = Ni] =[0H] (6.43)
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if and only if

NHL] (6.44)

T
U[(NepaD)™ NepaaD)™ -+ (Napa L)' | Z[ 0

Proof. By multiplying L from the right in (6.43), we get (6.44).
To prove the if-part, assume that (6.44) is true. The matrices Ny and N,
belong to the left null space of H for any i and (6.44) can therefore be written as

u [(NH[Ml][H L])T (NH[Mz][H L])T A (NH[M,,][H L])T]T _ [NH[gi L]]

or equivalently,
T |N
U NG N Nig] —[OH])[H L]=0 (6.45)

Since [H L] has full rank, i.e., the rows are linearly independent, it follows
from (6.45) that (6.43) holds. O

To investigate if MO sets can be used to check the consistency of PO sets, we
have seen that it corresponds to check if there exist a unimodular matrix that
satisfies an equation of the type (6.36). Looking at Theorem 6.4 this condition
is split into one rank condition (6.41) and one root condition (6.42). The next
lemma states the equivalence between the existence of a unimodular matrix
in (6.36) and the rank condition together with the root condition, which both
easily can be checked.

Lemma 6.3. Let A(s) be an irreducible polynomial matrix with full row rank. A
polynomial matrix B(s) fulfills

rank ([‘;8]) = rank (A(s)) (6.46)
and
rank (A(s)) = rank (B(so)) (6.47)

for all sq € C if and only if there exists a unimodular matrix U(s) such that

U(s)B(s) = »A(()S)] (6.48)

Proof. Since B(s) has no roots, it is possible to find a unimodular matrix U’(s)
such that

U'(s)B(s) = VB’SS)]

where B’(s) is irreducible. From (6.46) and (6.47), it follows that A(s) and B’(s)
span the same space. Since both A(s) and B’(s) are irreducible, it follows from
Theorem 6.A.3 that B’(s) = W(s)A(s) and A(s) = W’(s)B(s) where W(s) and W’(s)
are square non-singular matrices. Combining these two expressions, we get

A(s) = W(s)B(s) = W(s)W(s)A(s)
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Since A(s) has full row rank, it follows that W’ (s)W(s) = I, i.e., W'(s) = W(s)
and both W(s) and W’(s) are unimodular matrices. Hence the matrix

Us) = [W(;(S) (1)] U’ (s)

is a unimodular matrix that satisfies (6.48). Contrary if there exist a unimodular
matrix U(s) that satisfies (6.48), then (6.46) and (6.47) follow directly. O

Now, we are ready to prove Theorem 6.4.

Proof. The observation sets in (6.40) can according to Theorem 6.2 be written

OM) = {z|NyLz = 0} (6.49)
and
niEIO(Mj) ={z|Viel, NH[MI,]LZ =0} (6.50)
These sets are equal if and only if there exists a unimodular matrix U such that
T _|NuL
U[(Nepaal)™ - (NepgD)™ -+ (N, )] = [ 0 ] (6.51)

according to Theorem 6.1. The matrix [H L] has full row rank, because M is a
PO set. This implies according to Lemma 6.2 that (6.51) is equivalent to

T [N,
U[Nfny Niey = Ni] =[0H] (6.52)

Since Ny is an irreducible basis, it fulfills the condition on A(s) in Lemma 6.3
and this means that there exist a unimodular matrix U such that (6.52) holds if
and only if

rank ((Nfj 500 Nippo) -+ Njjy (0)]) = rank (Ni(s)) (6.53)
for all sp € C and
rank (N, Nipsy Nig N, ]) = rank (Vi) (6.54)

Since M; C M, (6.54) is trivially true. Furthermore (6.53) is equivalent to that
both (6.41) and (6.42) are fulfilled. O

6.3.3 All MO Sets are Sufficient for Soundness

In (6.33) we saw that there existed only one pair of MO sets that could be used
to check the consistency of {1,2,3}. In the next example will show that there
are cases where all MO subsets of a PO set has to be checked to determine if
the PO set is consistent. After that, we will prove that it is sufficient to check
all MO sets if [H L] has full row rank.

Example 6.7
Consider a model defined by

H s+2

s+3

(6.55)

—(s + 1)}
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and L = I. The redundancy for this model is 2 and a basis for the null-spaces of

the three MO sets are
NH[{LQ}] s+2 s+1 0
P = {Nup13n]|=|s+3 0 s+1 (6.56)
NH[{2,3}] 0 s+3 —(S + 2)

We see that P[{1,2}] has aroots = —1, P[{1,3}] has aroots = -2, and P[{2,3}] has
a root s = —3. Hence there exists no pair of MO sets that can be used to check
the consistency of the PO set according to Theorem 6.4. However the matrix
P has no roots which implies that the consistency of {1,2, 3} can be determined
by checking the consistency of all MO sets.

Next, we will state and prove that the consistency of any PO set M can be
determined by checking the consistency of all MO subsets. This result is the
dynamical correspondence to the result in Theorem 3.7 given for static models.

Theorem 6.5. If M is a PO set of linear differential equations, and E; are all MO sets
such that E; C€ M, then it follows that

O(M) = N;O(E)) (6.57)

The proof is postponed to the end of this section. Combining the results

from Theorem 6.3 and Theorem 6.5 we get the dynamic correspondence to
Corollary 3.3.

Corollary 6.1. Given a linear dynamic behavioral model M, of the type (6.2) where
[H L] has full row-rank, it follows that

O(Mp) = Nitiemyo OMi) (6.58)
where Mo are the family of all MO sets M C M,

Proof. Since [H L] has full row-rank, it follows that there exists a PO set M* € M,
such that
O(My) = O(M)

according to Theorem 6.3. Theorem 6.5 then implies that
O(M;) = OM") = Npepy, O(E')

where M, are all MO sets that is a subset of M*. Hence M}, , € Mo and the

corollary follows. O

If [H L] has full row rank and w is the set of all MO sets in a static or dynamic
behavioral model M, then the set w satisfies (6.1).

Example 6.8

To give an example, consider the model in (6.3). The matrix [HL] has full
row-rank and there are three MO sets, {1,2}, {1,3}, and {2,3}. By checking the
consistency of these three sets the consistency of {1,2,3} can be determined
according to Theorem 6.5.

Finally, Theorem 6.5 is proved. The proof of this theorem uses the following
lemma.
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Lemma 6.4. If M is a PO set with redundancy ¢ > 1 and E; C M where i €
{1,2,...,n} = Lareall PO sets with redundancy ¢ — 1, then it holds that

OM) = NieiO(E)) (6.59)

Proof. Let N; denote an irreducible basis for the left null space of H; and let N

denote an irreducible basis for the left null space of H. The equality (6.59) holds
if and only if

rank ([N{ (s) NIGs) -+ NI (s)]) = rank (N) (6.60)

foralls € C according to Theorem 6.4. All matrices N;(s) have normal rank ¢ —1

and are irreducible, i.e., have full rank for all s € C. If M; are the equivalence
classes of M defined in Section 4.4.1, then

Ni(s) 0 Ni[;,Mz] -+ Nil:;, M,]
N(s) No[:, Mi] 0 -+ Np[:;, M,]

=l . (6.61)
No@)]  NJM] N Ma] - 0

where no column in N;[:, M;] is zero for all i # j. Let the matrix in (6.61) be
denoted by N,. The rank of N, is limited by

¢ —1 =rank (N;) < rank (N,) < rank (N) = ¢

Furthermore, the matrix N, has not rank ¢ —1, because for example not all rows
in Nj are linearly dependent of Nj. This follows from the fact that N»[:, M1] # 0
and Ni[:;, M1] = 0. This implies that rank (N,) = ¢.

Now, it remains to prove that N,(s) has rank ¢ for all s € C. Assume that
there exists an sp such that rank (N,(sg)) < ¢ . Since N;(s) are irreducible matrices
with rank (N;(s)) = ¢ —1for all s € C, it follows that rank (N,(s9)) = ¢ —1. Then
for an arbitrary i € I, Ni(so) is a basis for the space spanned by N,(sp). Hence
any row in N,(sp) can be written as a linear combination of the rows in Nj(sg)
for any i € I. Let m be an arbitrary row of N,(sg). Then

m = yiNi(so) (6.62)

where y; is a row vector with scalar coefficients. From (6.61) it follows that m
satisfies

m[M]] = ’)/]'N]'[Z,M]'] =0 (663)
forall j € I. Thisimplies that N.(so) = 0, but this contradicts the assumption that
Ni(s) was irreducible. Hence (6.60) must be true and the theorem follows. O

The proof of Theorem 6.5.

Proof. The theorem follows by recursive use of Lemma 6.4 and that all MO set
in M are found by computing all PO sets of decreasing redundancy until the
redundancy is one. ]
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6.4 Diagnosing all Behavioral Models

So far in this chapter, we have only been concerned to fulfill (6.1) for one single
behavioral mode. In the next sections, we extend the discussion to the case
when all behavioral modes in 8 are considered.

6.4.1 Sufficient to Test All MO Sets

In the next theorem it is stated that given a diagnosis model, it is sufficient to
check the consistency of all feasible MO sets to determine the consistency of all
behavioral models.

Theorem 6.6. If M is a diagnosis model with a set M = UpegM,, of linear dynamic
equations such that My, is in the form (6.2) and [H L] has full row rank for all b € B,
then the set w of all feasible MO sets satisfies (6.1) for all b € B.

Proof. Let b be an arbitrary behavioral mode b € 8. Any MO sets M C M,
is a feasible MO set, i.e., M € w. Therefore, Corollary 6.1 implies that (6.1) is
satisfied for b. Since b was arbitrarily chosen the theorem follows. m]

Before we give an example of a diagnosis model and all its MO sets we will
first describe how all MO sets can be found in the next section.

6.5 Algorithm for Finding All MO Sets in a Linear
Dynamic Model

An algorithm, i.e., Algorithm 7, for finding all feasible MO sets is a diagnosis
model with linear static equations was given in Chapter 4. This algorithm
consists of two main parts. One part, Algorithm 4, finds all MO sets in a linear
static models (4.1) and the other part described in Chapter 5 handles equation
assumptions such that only feasible MO sets are found. The part described in
Chapter 5 is not dependent on the type of equations that the diagnosis model
contains and can therefore be applied to any type of equations, also to linear
differential equations.

Algorithm 4 for finding all MO sets of equations is a linear static mod-
els (4.1) can with small modifications also handle linear dynamic models of the
form (6.2). The only difference is to interpret the matrices H and L as polyno-
mial matrices. Next an example illustrates both how Algorithm 7 is applied to
a dynamic linear model and how the output can be interpreted by considering
the result of Theorem 6.6.

Example 6.9

Consider the electrical circuit in Example 3.17. Assume that resistor R2 is
replaced with an inductor L2 with inductance L, and that the battery B is
replaced with a power supply P that in the no fault mode generates a known
time-varying voltage V(f). Furthermore, assume that a faulty power supply
implies that V(t) = 0, that is, similar to battery fault in Example 3.17. The



132 Chapter 6. Soundness when Diagnosing Linear Dynamic Systems

model equations becomes

I-L-I, =0 (1)
RI=NE V-LR, =0 ()
I2=NF V-ILh =0 (3
P=NF V-U =0 @&
SI=NF  V-yy =0 (5) (6.64)
S2=NF  I-y =0 (6
S3=NF  L-y, =0 (7
P=F vV o=0  (@®)

Note that the only difference between (3.95) and (6.64) is equation 3. The
model (6.64) can be written using polynomial matrices as

H(p) L
0 1 -1  -1]7 [0 0 0 0]
10 -R 0 0 0 0 0
10 0 —pL|[vl [0 o o olffu
10 0 o |1l |-1 0o o of{yw|_
10 0 o |ln|f]lo -1 0 oflwulT° (6.65)
01 0 0 |l |0 0o -1 ofly
00 0 1 0 0 0 -1
000 0 0 -1 0 0 0

If Algorithm 7 is applied to this model, the following MO sets and their corre-
sponding matrices Nyp L are found to be:

MO u Yv yr yn
{1,2, 3,4, 6} [ —(R1 +pL2) 0 pRl L2 0 ]
{1, 2,3,5, 6} [ 0 —(R1 + ],’)Lz) pRl Ly 0 ]
{1, 2,3,6, 7} [ 0 0 Ry —(R1 + pLz) ]
{1,2,4,6,7} [ -1 0 Rq —-R; ]
{1,2,5,6,7} | 0 -1 Rq —-R; ]
{3,4,7} [ -1 0 0 pL, 1 (6.66)
{3,5,7} [ 0 -1 0 pLly ]
{4, 5} [ 1 -1 0 0 ]
{1,2,3,6,8} [ 0 0 p 0 ]
{1,2,6,7,8} [ 0 0 1 -1 ]
{3,7,8} [ 0 0 0 p ]
{5,8 } [ 0 1 0 0 ]

These are the same MO sets as obtained in Example 3.17. From Theorem 6.6, it
follows these MO sets can be used to construct a sound and complete diagnosis
system.

6.6 Minimizing The Number of Tests

In the linear static case, we have shown that it is not in general necessary to
include all feasible MO sets in w to satisfy (6.1) for all b € 8. This holds true
also for the linear dynamic case. For the static case, Algorithm 2 computes all
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minimal sets w that solves (3.89). In this section we will modify this algorithm
such that it can be applied to linear dynamic models.

The only part in Algorithm 2 that does not work also in the linear dynamic
case is where Algorithm 1 is used. The objective of this algorithm is given a
PO set B; and the set Myio of all MO models, compute the set Q! of all minimal
solutions w’ € Mo of (3.90).

These computations are based on the result given in Theorem 3.6, i.e., given
a PO set B; and a family of subsets w” = {My, M>,...M,} where M; C B; for all
M;j € o', it holds that

O(B;) = ﬂ OM) (6.67)
Mew’
if and only if
¢ (@) = (B)) (6.68)

Let Definition 3.5 of ¢ (w’) be extended to polynomial matrices. For the
dynamic case, it then holds that (6.67) implies (6.68) but the converse implication
is not true according to Theorem 6.4. To get equivalence with (6.67), the root
criteria (6.42) must in addition to (6.68) be satisfied, i.e., that the matrix

T T . T
[NH[MI] NH [M2] NH[M”]]
has no roots.

A consequence of this is that it is not sure that a minimal solution of (3.90)
contains exactly ¢ (B;) MO sets. In the next algorithm also larger sets may be
consider if the minimal sets are not found among those with size ¢ (B;). The next

algorithm is used in the dynamic case instead of Algorithm 1 in Algorithm 2 to
obtain all minimal solutions w’ € Myo of (3.90).

Algorithm 8. Q! = MinimalTestSets(B;, Muo)
Q=g

a:={M e My olM C B},

size := @ (By); Q:={w Callw| = size);

while Q # @ do

for each o’ € Q do

if o (') = @ (B;) and (6.42) is true do
Insert ' in QZ’.;
end if

end for
size:=size+1;
Q= {w Callw’| = size, ' is no superset of any set in Q};

end while
return Qz’,

Given a PO set B; and the set My of all MO models, the output set Q! in
Algorithm 8 contains all minimal solutions @’ € Mo of (3.90).
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Next, we will discuss the result of some examples.

Example 6.10

Continuation of Example 6.9. If all multiple fault modes are considered, there
is only one minimal solution and this solution is equal to the MO sets obtained
in Example 3.17.

6.7 Fault Influence on Residuals

In this section we extend the main results concerning fault influence on residuals
given in Section 3.10 to the linear dynamic case.

Theorem 6.7. Let M be an MO set of linear differential equations
Hp)x+L(p)z=0 (6.69)
and let model deviation be described by a vector € such that
Hp)x+L(p)z=¢€ (6.70)

For a residual
r = Nu(p)L(p)z (6.71)

the residual response of the model deviation is given by
r = Nu(p)e (6.72)
where Nyl:, {i}] # 0 for all i € M.

Proof. Since (6.69) is an MO sets, it has redundancy one. This means that Ny (p)
is a vector determined up to a non-zero constant. By multiplying (6.70) with
Nu(p) from the left, we get both the residual computational form (6.71) and the
fault response (6.72). The results of Corollary 3.1 can be proven analogously for
the dynamic case with polynomial matrices. Since M is an MO set Corollary 3.1
states that all columns in Ny(p) are non-zero, i.e., Ny[:, {i}]] # Oforalli e M. O

6.7.1 Fault Influence and Null Hypothesis

In the static case, a residual r derived from M is said to be influenced by a
behavior mode b if » # 0 is consistent with the behavioral model M;. This
definition is applicable also to the dynamic case.

The next theorem gives a sufficient condition on the diagnosis model M
such that the fault influence of any residual based on an MO set M is given by
the equation assumptions, i.e., the fault influence is (assump(M))°.

Theorem 6.8. Let M be a diagnosis model with a set M of equations
H(p)x + L(p)z=0 (6.73)
Let the model deviation be modeled as

H(p)x + L(p)z = Fe (6.74)
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where F is a |M| X |M| matrix defined by

E, = 1 ifi= ]?nd assump(e;) # B 6.75)
0 otherwise
If
Im(F) € Im([HL]) (6.76)
then for any MO set M C M of equations and for any residual
r = N L(p)z (6.77)

not identically zero, r is influenced by all behavioral modes in (assump(M))* and no
others.

Proof. An MO set M and a residual r are given. We start to prove that r is not
influenced by any behavioral mode b € assump(M). By the definition of the
operator assump, it follows that

sys € assump(M) — z € O(M) (6.78)
The observation set O(M) can according to (6.15) and (6.77) be expressed as
OM) = {zINumL(p)z = 0} = {zlr(z) = 0} (6.79)
The formulas (6.78) and (6.79) imply that
sys € assump(M) = r =0 (6.80)

i.e., r is not influenced by any behavioral mode b € assump(M).

Now, we continue to prove that r is influenced by all behavioral modes b ¢
assump(M). The idea is to take an arbitrary behavioral mode b € (assump(M))©
and show that the equations M; and r # 0 are consistent. From the definition
of the operator assump, it follows for any set M that

M C M, — b € assump(M)

Then, since b ¢ assump(M), it follows that M € M, or equivalently that M\ M, #
@. Let M \ M, be denoted by M’. By construction of M’, it follows that
b ¢ assump(e) for any e € M’. This implies that assump(e) # B for all e € M’,
i.e.,, F[M’, M’] is the identity matrix.

From (6.74), (6.77), and Theorem 6.7, we get the fault influence

r= NH[M]FG (6.81)

The only equations e € M that might be inconsistent in b, i.e., F[{e}]le # O,
are the equations e € M’. By the construction of F in (6.75) and the fact that
assump(e) # B, it follow that

Flietle = el{e}] (6.82)
for all e € M’. Hence, (6.81) can be rewritten as

r= NH[M]F(-Z = NH[M][i,M']F[M',M/]e[M'] = NH[M][:,M'](-Z[M'] (6.83)
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From (6.76), it follows that
Im(F[M U M,]) € Im([H[M U M,] LIM U M,]]) (6.84)

i.e., for any e[M U M,] there exist some x and z such that the subset M U M, of
the equations in (6.74) is satisfied. Since M’ "M, = @, we can choose e[M,] = 0,
ie.,

NH[Mb]Lz =0 (685)

and e[M’] such that
r = NupLz #0 (6.86)

in (6.83). The expressions (6.86) and (6.85), imply that the equations M, and
r # 0 are consistent, i.e., r is influenced by b. Since b was an arbitrarily chosen
behavioral modes such that b ¢ assump(M), it follows that r is influenced by all
behavioral modes in (assump(M))® and the theorem follows. O

Note that a sufficient condition for (6.76) is that [H L] has full row-rank. This
is often true for models with one maximal feasible model and then Theorem 6.8
is applicable.

Example 6.11

Consider the electrical circuit in Example 6.9. For the model (6.65), it holds that
[H L] has full row rank. This is a sufficient condition for (6.76) and it follows
that for any residual r based on an MO set M, (assump(M))* are the behavioral
modes that r is influenced by.

6.8 Conclusions

In Chapter 2 we showed that one strategy to construct a diagnosis system was to
start with a diagnosis model M and choose a set w = {Mj, ..., M,} of rejectable
models to test. There, it was also shown that a diagnosis system based on w
can be sound if and only if the set w fulfills (6.1) for all behavioral modes b € B.

This chapter has presented theory and algorithms for linear dynamic models
corresponding to the presentation in Chapter 3 for linear static models. A key
result is that if w is chosen to be the set of all feasible MO sets in the diagnosis
model M, then w fulfills (6.1) for all behavioral modes b € B according to
Theorem 6.6. All these MO sets can be found by using Algorithm 7. It has
also been shown that it is not in general necessary to include all MO sets in
w to satisfy (6.1) for all behavioral modes b € B. Theory for selecting MO
sets has been developed and a key result for this is the conditions given in
Theorem 6.4. In addition to the rank-condition valid for the static case, the root
condition (6.42) must also be added. The root condition is then used to modify
Algorithm 2 such that it is applicable also to dynamic models. The output of
the modified algorithm contains all minimal subsets w that fulfill (6.1) for all
behavioral modes b € B. A minimal cardinality set of MO sets can then be
picked out from the set of all minimal sets and this set corresponds to a sound
and complete diagnosis system with the minimum number tests.

Finally, Theorem 6.8 showed that under a mild rank condition on the diag-
nosis model and given an MO set M, the behavioral modes that influence any
residual derived from M are given by the equation assumptions according to
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(assump(M))¢. Hence if the rank condition of the model can be verified, then
any further fault influence analysis of each residual is not needed.
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Appendix

Polynomial matrices have been shown to be a useful representation of lin-
ear differential equations. In this way the constant matrices representing static
models can be extended to polynomial matrices for differential equations. Prop-
erties of polynomial matrices representing dynamic systems have been exten-
sively studied, e.g. in (Kailath, 1980; Polderman and Willems, 1998). This
Appendix recalls some basic definitions and properties concerning polynomial
matrices. All these can be found in the references mentioned above.

6.A Some Properties of Polynomial Matrices

A polynomial matrix is a matrix where each individual element is a scalar poly-
nomial in s with coefficients in any field, but in this thesis we will always have
real coefficients. An example of a polynomial matrix is

1 —(s—-1) 0
M(s) = [s 0 —(s— 1)} (6.87)

0 S -1

Definition 6.A.5 (Normal Rank). The normal rank of a polynomial matrix P(s) is
the maximal rank that P(s) has for any s € C.

The matrix M[{1,2}] in (6.87) has normal rank two, i.e., it has full row rank
in the normal rank sense. When there is no risk for confusion we will drop the
word normal in front of rank and use only rank. The matrix M(s) has rank two
and the rows are linearly dependent, because there exists a linear combination
with polynomial coefficients that sums up to zero, i.e.,

[s -1 s-1]M@) =0 (6.88)

We say that the rows of M(s) are linearly dependent.

Definition 6.A.6 (Roots). The roots of a polynomial matrix M(s) € R™"[s] are
those points in the complex plane s € C where M(s) loses rank.

If M(s) is square then its roots are the roots of its determinant det M(s),
including multiplicity.

Definition 6.A.7 (Irreducible Polynomial Matrix). A polynomial matrix M(s) €
R™"[s] is an irreducible polynomial matrix if it has full rank, i.e., max(m, n), for
all (finite) values of s € C.

From Definition 6.A.6 and Definition 6.A.7, it follows that a matrix is irre-
ducible if and only if it has full normal rank and no roots. The matrix

U(s) =
0 —s 1

0 1 0
1 —(s-1) 0} (6.89)

is irreducible, because it has full row rank for all finite values of s.
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Definition 6.A.8 (Unimodular Polynomial Matrix). A square irreducible polyno-
mial matrix is a unimodular polynomial matrix.

The matrix U(s) in (6.89) is unimodular, because it is square and irreducible.
A matrix is unimodular if and only if its determinant is independent of s. For
example, the determinant of U(s) in (6.89) is det U(s) = —1.

Theorem 6.A.1. The inverse of a polynomial matrix is unimodular if and only if its
inverse is also polynomial.

The inverse of a unimodular matrix is also unimodular. There are three
elementary row operations for polynomial matrices and they are:

1. Interchange two rows.
2. Add to a row, a polynomial multiple of any other row.
3. Scale a row by a non-zero number in the coefficient field.

Each elementary row operation can be written as a left multiplication of a ma-
trix. Three examples of matrices corresponding to each type of the elementary

row operations are
010 1 0 0] [1 00

10 0] |-(s=1) 1 0 |0 3 0 (6.90)
0 01

0 01 0 01

Such matrices are called elementary matrices and these are unimodular matrices.
It holds that a matrix is unimodular if and only if it is a product of elementary
matrices.

6.A.1 Polynomial Basis

Definition 6.A.9 (Polynomial Basis). A polynomial basis for a rational vector
space N is a set of linearly independent vectors in N such that these vectors span the
space N.

A polynomial basis can be represented by a matrix M(s) where each row
corresponds to a vector in the basis. The highest degree of all polynomials in
a vector is called the degree of the vector and row degree if the vector is a row in
a polynomial matrix. The degrees of the polynomials in the first row of M(s)
in (6.87) are zero, one, and —co. This implies that the row degree is one. In fact,
all row degrees of M(s) are one. The order of a matrix is defined as the sum of
the row-degrees of all its rows.

Definition 6.A.10 (Minimal Polynomial Basis). A minimal polynomial basis
for N is a polynomial basis for N with minimum order.

Theorem 6.A.2. A minimal polynomial basis is an irreducible basis.

Theorem 6.A.3. If the rows of N(s) form an irreducible polynomial basis for a vector
space N, then any polynomial row vector n(s) € N can be written n(s) = ¢(s)N(s)
where ¢(s) is a polynomial row vector.



140 Chapter 6. Soundness when Diagnosing Linear Dynamic Systems



SOUNDNESS WHEN DIAGNOSING
(GENERAL SYSTEMS

Following the strategy described in Section 2.3.3, the construction of a diagnosis
system starts with finding a set w = {Mj, ..., M,} of rejectable models to test. If
the diagnosis system should be sound, the set w must fulfill

o= ) o (7.1)

M;ew:M;CM,

forall b € B according to Theorem 2.2. In Chapter 6 it was shown in Theorem 6.6
that it is sufficient to include all MO sets in w to fulfill (7.1) for all b € B.

In this chapter, the model equations are assumed to be non-linear static
or dynamic equations. A result similar to the result in Theorem 6.6 given for
linear models will here be developed for non-linear models. This is a signif-
icantly more difficult problem and it will be assumed that rejectable models
corresponding to MO sets can be computed. Given these models, a key result
is a necessary and sufficient condition for which sets w of models that must be
used to design a sound and complete diagnosis system. Using this result, it is
possible to calculate a set of minimum number of models that corresponds to a
sound and complete diagnosis system.

First, model definitions are presented in Section 7.1 before two different
solutions to (7.1) are given in Section 7.2 and Section 7.3 respectively. Then, a
necessary and sufficient condition for a set w to fulfill (7.1) is given in Section 7.4.
Finally the conclusions are drawn.

7.1 Model Definitions

Two model properties applicable to non-linear models have been defined earlier
in this thesis, that is feasible model defined in Definition 2.4 and rejectable model
defined in Definition 2.5. To state a result corresponding to Theorem 6.6 for
non-linear models, a non-linear version of the model property MO set needs

141



142 Chapter 7. Soundness when Diagnosing General Systems

to be defined. The last of the following three model definitions will be the
non-linear correspondence to MO set.

Definition 7.1 (Rejectable Model at zj). A set M of equations is a rejectable model
at zg if
zo ¢ O(M) (7.2)

Definition 7.2 (Minimal Rejectable Model at zy). A set M of equations is a minimal
rejectable model at z if no proper subset of M is a rejectable model at z.

Definition 7.3 (Minimal Rejectable Model). A set M of equations is a minimal
rejectable model if there exists a z such that M is a minimal rejectable model at z.

The set of all feasible minimal rejectable models in IM at zj is denoted w;,(zo)
and the set of all feasible minimal rejectable models in IM is denoted w,,.

For linear models, a model is an MO set if and only if it is a minimal rejectable
model. Furthermore, a linear model is a minimal rejectable model if and only
if the model is a minimal rejectable model at some z. However, the latter is not
true for a general non-linear model and this will be shown by the next example.

Example 7.1
Consider the following diagnosis model:

Assumption Equation Expression

Sensor 1
s1 = NF e1 Z1 = X1
Comp
— 42
() X1 = xz
Sensor 2 73)
s, = NF es Z2 = X2
Sensor 3
s3 = NF ey Z3 = X2
S3 = SG €5 Z3 = 0
with the possible component behavioral modes defined by:
Component Possible behavioral modes
Sensor 1 s1 € {NF, UF} (7.4)

Sensor 2 s, € {NF, UF}
Sensor 3 s3 € {NF, SG}

Let zp = (21,22, z3) be such that z; < 0 and z; = z3 # 0. The (feasible) rejectable
models at zg are

{65}/ {elr 82}/ {el/ 65}/ {62/ 65}/ {63/ 65}/
ler, e2,e3}, {e1, €2, €4}, {e1, €2, €5}, {e1, e3, €5}, (7.5)
leo, e3,e5),{e1, €2, €3, €4}, {e1, €2, €3, €5}

An example of a model that is not a rejectable model at zg is {3, ¢4}. The minimal
rejectable models at zj are

wm(zo) = {{e1, €2}, {es}} (7.6)
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An example of a rejectable model at z that is not a minimal rejectable model at
zq is {e1, es} because the proper subset {es} is a rejectable model at z.
The minimal rejectable models are

wm = {{es), {es, eq}, {e1, €2}, {e1, €2, €3}, {e1, €2, e4}} (7.7)

Note that both {e;, e;} and {e;, e;, 3} are minimal rejectable models even though
{e1, €2} C {eq, €2, e3}. To explain this, let z; = (z1,22,z3) be such thatz; > 0,z; # z%,
and z; = z3 # 0. The minimal rejectable models at z; are
wm(z1) = {{e1, ez, €3}, {e1, 2, e4}, {es}} (7.8)

The model {e;, e;, €3} is a minimal rejectable model at z; and one of its subset
{e1, e2} is a minimal rejectable model at zy. According to Definition 7.3 it holds
that both {ej, e;} and {e;, e, €3} are minimal rejectable models. Later, we will
show that all minimal rejectable models of are needed to obtain soundness. An
example of a model that is not a minimal rejectable model is {ey, ey, €3, e4}. This

model is for example rejectable at zy as seen in (7.5) but if it is rejectable at an
arbitrary z, then there is always a proper subset that is rejectable at z too.

In the following sections we will describe different sets w that satisfies (7.1).

7.2 All Behavioral Models Sufficient for Soundness

In this section, we show the elementary result that a sound diagnosis system
can be based on the set of all behavioral models in a diagnosis model.

Theorem 7.1. If M is a diagnosis model with a set M = UpegM), of non-linear
equations, then the set w of all system behavioral models My, satisfies (7.1) for all b € B.

Proof. Follows trivially from Theorem 2.2. O

Next an example shows how the design of a sound and complete diagnosis
system, based on the result in Theorem 7.1, can be done.

Example 7.2

The behavioral models in (7.3) are
b M,
(NE,NE,NF) | {e1, e, €3, s}
(UF,NE,NF) | {e2, e3,¢4)
(NE UF,NF) | {e1, e, €4}
<NF,NF, SC) {81,82, €3, 65} (79)
(UF, UF,NF) | {ez, e4}
(UF,NF,SC) | {ez, e3¢5}
(NE UF,SC) | {e1,e,65)
(UF,UF,SC) | {ep,es}

According to Theorem 7.1, a complete and sound diagnosis system for (7.3)
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can be derived and an example is

A | M; HY : sys € ®; = assump(M;) {z|Ti(z) Q.f R} = OM;)
01 | {e1, e, 3,64} gb(Sl = NF As; = NF As3 = NF) {z|z1 = Z ,20 = 23}

02 | {ea, €3, €4} ¢(s2 = NF As3 = NF) {zlzo = 23}

03 | {e1,en,e4} ¢(s1 = NF A s3 = NF) {z]z1 = 2%}

O4 | {e1,€2,63,65)  P(s1 = NF Asy = NF As3 =S5C) {z|21 = 25,23 = 0}

05 | {e2, ea) ¢(s, = NF)

06 | {2, 3,65} (]5(52 =NF As3 = SC) {Z|Z3 =0}

o7 | {e1, e, e5) (P(Sl = NF A s3 = SC) {z]z1 > 0,23 = 0}

0g | {e2, s} P(s3 = SG) {z|z3 = 0}

(7.10)

Note that the null hypothesis of test 65 is not rejectable since O(Ms) =
Therefore it is possible to omit 6s. If exactly the diagnosis system (7.10) was
implemented we would for example check if z3 = 0 in 4 out of the 8 tests. This
is computationally not an efficient way to diagnose the system and we will see
in the next section that a better alternative is to use minimal rejectable models.

7.3 All Minimal Rejectable Models are Sufficient for
Soundness

In this section, we show that a sound diagnosis system can be based on the set
of all minimal rejectable models in a diagnosis model. As the name indicates
they are the smallest models that can be used to obtain soundness and testing
small models have advantages according to the discussion in Section 2.6.

Theorem 7.2. Given a model M, let w be the set of all minimal rejectable models in
M. Then it follows that
oM) = ﬂ O(E) (7.11)

Ecw

Proof. The equality (7.11) holds, if both

oMm) < () O(E) (7.12)
Eecw
and
ﬂ O(E) € O(M) (7.13)
Ecw

hold. Inclusion (7.12) is always true because for any set E € w, E € M implies
that O(M) € O(E). Hence it remains to prove that (7.13) holds.

We will prove (7.13) by showing the equivalent statement that for all z such
that

z ¢ O(M) (7.14)

it follows that
z¢()O®) (7.15)

Eew
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Let zg be an arbitrary z that fulfills (7.14). From the definition of minimal
rejectable model at z, there exists a minimal rejectable model M; at zp such
that

MM (7.16)

and
zo ¢ O(M) (7.17)

Note that the existence follows from the fact that if no proper subset to M has
property (7.17), then M is a minimal rejectable model at zp. Since all minimal
rejectable models at zy are minimal rejectable models, it follows that M; € w.
This implies that

(MOE) c o) (7.18)

Eew

From (7.17) and (7.18), we get (7.15) with z = z;. Since zy was arbitrarily
chosen, it follows that (7.14) implies (7.15) and equivalently that (7.13) holds.
This completes the proof. m|

Corollary 7.1. If M is a diagnosis model with a set M = UpcgM,, of equations, then
the set w = w,, of all feasible minimal rejectable models in M satisfies (7.1) forall b € B.

Proof. Let by be an arbitrary behavioral mode in B. For this behavioral mode,
the condition (7.1) becomes

oMy = [ ow) (7.19)

M,-E(():M,QMI,O

The sets M; € w such that M; C My, specified by this intersection are the minimal
rejectable models included in M;,. Then it follows that (7.19) is true according
to Theorem 7.2. Since by € B was arbitrarily chosen, the result follows. o

Example 7.3
The minimal rejectable models in (7.3) are

wm = {le1, 2}, {e1, €2, €3}, {e1, €2, €4}, {e3, e}, {es}) (7.20)

A complete and sound diagnosis system for (7.3) is

A | HY : ®; = assump(M;) M; {zITi(2) ¢ Ri} = O(M;)

01 | ¢(s1 = NF) {e1, e} {zlz1 = 0}

02 | (51 =NF Asy=NF) fer,e,e3} {zlz1 = z%} (7.21)
03 | ¢(s1 = NF As3 =NF) ey, ez,e4} {z|z1 = 25} ’

O4 | P(s2 = NF As3 =NF) {e3, eq} {zlzo = 23}

05 | P(s3 = SG) {es} {z|z3 = 0}

A comparison between (7.10) and (7.21) reveals that the number of tests
in (7.21) is smaller, the tests in (7.21) contains less number of equations, and the
sets O(M;) in (7.21) are described with simpler expressions.
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Table7.1: All minimal sets o}, for each system behavioral mode b in the diagnosis
model defined in (7.3).

b M, b

by e ez e3,est  {{ler, 2, €3}, {e3, eal), {{er, €2, €4}, {€3, e4}}}

by {ex,e3,e4} {{{es, ea}}}

bz f{e1, ez, e4} {{{e1, e2, eq}}}

by fei,ez,e3,e5) {{le1, e, €3}, {es}}} (7.23)
bs {e, eq} {2}

bs f{e,e3,e5} {{{es}}}

by ey, ez, €5} {{{e1, e2}, {es}}}

bg {eo, es) {{{es}}}

7.4 A Sufficientand Necessary Condition for Sound-
ness

Finally, a sufficient and necessary condition of the set of models that can be
used to derive a sound diagnosis system is given.

Let the set of all minimal rejectable models in a behavioral model M; be
denoted by wjp. In general, not all minimal rejectable models in the set M, is
needed to satisfy (7.1). Therefore, let 0, € w, be a minimal set such that

O(M,) = ﬂ oM) (7.22)
Meay,

Let the sets of all such sets be denoted by X;. The sets 05, and X, are exemplified
next.

Example 7.4
Consider the diagnosis model in (7.3). The minimal rejectable models in this
model are given in (7.7). The minimal rejectable models in each system be-
havioral mode are given by w, = {M € w,|M C M,}. The different sets L, are
shown in Table 7.1. In this example o}, = w, for all behavioral modes except for
bl, b3, and b4.

Now, we are ready to give a characterization of sets w that fulfills (7.1) for
allb € B.

Theorem 7.3 (Sound Diagnosis System). Let M be a diagnosis model with a set
M = UpegM,, of equations, and let Ty, be defined as above. Then a set w fulfills (7.1)
forall b € B if and only if w fulfills

do, e VM €M ew : M C M C M, (7.24)
forallb € B.
Next Theorem 7.3 is proved and then two examples follow.

Proof. We start to show the if-direction, that is, if w fulfills (7.24) for a behavioral
mode by € B, then w fulfills also (7.1) for by. The equality (7.1) holds, if both

oMw)c () oM (7.25)

M;Ea):M,QM;,O



7.4. A Sufficient and Necessary Condition for Soundness 147

and
() o) comy) (7.26)

MiEw:M,'QMbD

hold. Inclusion (7.25) is always true because for all M; € w such that M; C My,
it holds that O(My,) € O(M;). Hence it remains to prove that (7.26) holds for by
if (7.24) is satisfied for by.

Let z be an arbitrary z such that

20 € ﬂ oM;) (7.27)

Mi€w:MiCM,,
From this we get that for all M; € w such that M; C M,,, it holds that
zg € O(M;) (7.28)
From (7.24) it follows that there is a 65, € Xp, such that
VM €&, AM e w : M C M C M, (7.29)
holds. Expression (7.28), and (7.29) imply that
zo € O(M') (7.30)

for all M’ € 6y, or equivalently that

ze (] o) (7.31)
M’E@‘bo
This and (7.22) imply that
Zp € O(Mbg) (7.32)

Hence, (7.26) is proved. Since zo and by were arbitrarily chosen the if-direction
follows.

Now, the only-if direction remains to be proven. Assume that (7.1) holds
and let by be an arbitrary behavioral mode in B. Let y;, = {M € w|M € M;,} and
enumerate the sets such that y,, = {Mi,Ms,...,M;,...,M,}. Then it follows
from (7.1) that

OMy,) = (| OMy) (7.33)
i=1
If y; is the set of all minimal rejectable models in M;, then Theorem 7.2 implies
that
O(M,) = ﬂ O(M') (7.34)
Mey;

If (7.33) and (7.34) are combined, we get

om,)= (] om) (7.35)

MeUL, yi

Now, the set 63, will be chosen as an arbitrary minimal subset of U, y; such
that
oMy) = (] o) (7.36)

M’'es by
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Since each y; contains only minimal rejectable subsets of My, it follows that
UL,7i € wp,.- A minimal set that satisfies (7.36) and is a subset of U, y; is
therefore also a minimal set that satisfies (7.36) and is a subset of wp,. This
and that 6;,, C U y; is a minimal set that satisfies (7.36) imply that 6;, € Ly,.
Furthermore, by construction of 6y, it follows that for each M’ € &;, there exists
a set M € w such that M’ € M. Hence (7.24) holds for by. Since by was arbitrary

chosen, the theorem follows. m|

Example 7.5

Continuation of Example 7.4. According to Theorem 7.3 a sound diagnosis
system can be obtained if and only if (7.24) holds for all b € B. Two particular
sets w that we studied earlier were wg = {M,|b € B} and w,,. Both these two sets
satisfy (7.24) for all b € B trivially.

Theorem 7.3 can be used to find the minimal number of tests that have to be
used to design a sound and complete diagnosis system. The minimal number
of tests for the diagnosis model described in (7.3) is 5. This can be realized
from the following discussion. Row b3 in Table 7.1 and condition (7.24) imply
that there must be a set M € w such that {e1,e,,e4} € M C {eq,er,e4}. Row bg
implies that either {es} or {ep, es} must be included in w. Since {e, es} ¢ o}, for
any b € B, {b5} can be chosen. With w = {{es}, {e1, €2, e4}} condition (7.24) of b3,
bs, bs, and bg are fulfilled. Continuing in this way the minimum number of
5 models must be included in w to fulfill all conditions on w. The diagnosis
system using all minimal rejectable model shown in (7.21) is an example of a
sound and complete diagnosis system with only 5 tests.

Note also that Theorem 7.3 can be used to find a minimum number of models
such that there exists a sound diagnosis system for a subset of system behavioral
modes. Exchange B in (7.24) with a set B C B. If the modified condition (7.24)
is fulfilled then the diagnosis system will be sound and complete with respect
to the behavioral modes in B but only complete with respect of the behavioral
modes not included in B. This can be expressed as

Vz:BNC(z) = BN D(z) (7.37)

and
Yz : (B\B) N D(z) € (B\B) N C(z) (7.38)

Next an example will show the special case when B is the set of all single faults
and no-fault. In this example, it is also shown that not only minimal rejectable
models can be used to obtain a minimum number of models sufficient for
soundness, also larger rejectable models must be used.

Example 7.6
Assume that B = {by, by, b3, bs}. The minimal number of tests that has to be used
is 3. One example is w = {{e3, e4}, {e1, €2, €4}, {€1, €2, €3, e5}}. Note that {e1, 2, €3, €5}
is not a minimal rejectable model. If only minimal rejectable models are used, 4
tests are needed. If behavioral models are used, 4 tests are also needed. Assume
that sys = by, that is the first sensor is broken. It has been observed that z; < 0.
The only minimal rejectable model for this z is assumed to be {e;,e;}. This
implies that

D(z) = (b2, bs, be, bs) (7.39)
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and
C(Z) = {bZI b5/ b6/ b7/ bS} (740)

Expression (7.37) is clearly fulfilled in this example since

BN C(z) = {b} = BN D(z) (7.41)
Furthermore
(B\B) N D(z) = {bs, bs, bs} (7.42)
and
(B\B) N C(Z) = {b5, b6, b7, bg} (743)

imply that (7.38) is fulfilled. Note that b7 is a candidate in (7.43) but not a
diagnosis in (7.42). Hence this diagnosis system is not sound with respect to
all behavioral modes.

If the sets to design test for is restricted to the minimal rejectable models
then an algorithm similar to Algorithm 2 can be defined by using the function
Extend defined in (3.93). Let X be an ordered set enumerating all behavioral
modesin B, ie., X = {Zp,,..., X, }. Then the algorithm can be stated as follows.

Algorithm 9. (O = Al1MinimalTestSets(X)
Q=0
fori=1tondo

Q := Extend(Q, ¥p,);

end for
return ()

This algorithm finds all minimal subsets of w,, that are solutions to (7.1) for
all b € B. The output of Algorithm 9 when applied to the model in Example 7.5
is Q = {w,}, that is all 5 minimal rejectable models are in this case needed. If
L = {Ly|b € B} where B is defined as in Example 7.6, then the output set Q) =
{{{e1, €2, €3}, {e1, e2, 4}, {e3, e}, {es}}}. For further discussions about the algorithm
see Section 3.9.1.

7.5 Conclusions

In Chapter 2 we showed that one strategy to construct a diagnosis system was to
start with a diagnosis model M and choose a set w = {Mjy, ..., M,} of rejectable
models to test. There, it was also shown that a diagnosis system based on w
can be sound and complete if and only if the set w fulfills (7.1) for all behavioral
modes b € B.

This chapter has presented solutions w of (7.1) given a diagnosis model M
with general non-linear equations. It is assumed that it is possible to compute
all feasible minimal rejectable models in the non-linear model. A key result
is that if @ is chosen to be the set of all feasible minimal rejectable models in
the diagnosis model M, then w fulfills (7.1) for all behavioral modes b € B
according to Corollary 7.1. Furthermore a sufficient and necessary condition
on w to fulfill (7.1) has been given in Theorem 7.3. It has been shown how this
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result can be used to minimize and select models such that a sound diagnosis
system can be obtained. Furthermore, if the solutions to w in (7.1) are restricted
to include only minimal rejectable models, i.e., if w C wy,, then all such minimal
solution sets are obtained by Algorithm 9.



FINDING REJECTABLE MODELS USING
STRUCTURAL METHODS

In model based diagnosis, mathematical models are taken as the basis for
diagnosis system construction as described in Chapter 2. If the construction of
the diagnosis system follows the strategy “starting from the model” described
in Section 2.3.3, a major task is to identify rejectable sub-models. In this chapter
we attack the problem of identifying such sub-models in general non-linear
dynamic models.

The problem of identifying rejectable models, i.e., models with analytical
redundancy is closely related to the problem of variable elimination of the un-
knowns. For static polynomial models, variable elimination can be done by us-
ing grobner basis techniques (Buchberger, 1965; Cox et al., 1997). For differential
algebraic models, differential grobner basis (Mansfield, 1991) and characteristic
sets (Ritt, 1950) techniques provide automatic elimination methods (Wittkopf,
2004; Mishra, 1993). These algorithms will theoretically terminate with the de-
sired output, but often for individual problems the computations either take an
unreasonable time to complete, or require more memory than is available (Wit-
tkopf and Reid, 2001). Furthermore, not all non-linear models that we consider

here are differential polynomials, e.g. the models can also contain look-up ta-
bles.

To handle non-polynomial differential algebraic models and to cope with the
computational complexity of identifying model redundancy in polynomial dif-
ferential algebraic models, structural analysis will be used to investigate model
redundancy by means efficient graph-based tools (Cassar and Staroswiecki,
1997; Blanke et al., 2003).

The structure of matrices and models are conveniently represented as graphs.
Here a bipartite graph will be used to represent the information about which
variables that are included in each equation and numerical values and analyti-
cal expressions are thereby ignored. The task of finding redundancy in a model
can be reformulated as a graph-theoretical problem that can be solved with
efficient methods developed for bipartite graphs. These methods are free from

151
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numerical problems and have in general lower computational complexity than
algebraic elimination methods. On the other hand, the structural approach
has its limitations. Ignoring analytical expressions and numerical values, the
structural approach gives answers in the generic case. However, for a partic-
ular model, it is not sure that the structural approach can identify exactly all
rejectable models, if numerical cancellation occurs.

Systematic structural approaches to find rejectable sub-models have been
suggested in e.g. (Blanke et al., 2003), (Cassar and Staroswiecki, 1997), (Pulido
and Alonso, 2002) (Travé-Massuyeés et al., 2001), and (Krysander and Nyberg,
2002a). All these approaches have in common that rejectable models are found
among the sub-models with more equations than unknowns. Furthermore, of
all these models, it is the minimal ones that have been used to derive analytical
redundancy relations. In this chapter, we will formally derive these structural
model properties corresponding analytical model properties defined for linear
dynamic models.

We start to recapitulate basic graph-theoretical concepts in Section 8.1.
Graph-theoretical properties are then associated with matrices of linear dy-
namic models in Section 8.2 by following the presentation given by (Murota,
2000). A key property used for defining redundancy in linear models is the rank
of matrices, and a structural property corresponding to the rank of matrices is
also introduced. Based on this structural variant of rank, structural properties
corresponding to redundancy, overdetermined set, PO set, and MO set are then
derived in Section 8.3. In Section 8.4, the structural characterization of MO sets,
i.e., minimal structurally overdetermined (MSO) sets is used to derive the struc-
tural correspondence to Corollary 6.1. That is, in the generic case soundness
can be obtained if all MSO sets are tested.

Then, the structural approach is extended to non-linear dynamic models.
For dynamic models, there are different types of bipartite graph representations
and these are presented and discussed in Section 8.5. Section 8.6 presents some
non-linear dynamic examples which show that models with redundancy can
be identified with the proposed graph theoretical methods. Especially, the
strategy of testing the MSO sets is extended to non-linear dynamic models.
Finally, the conclusions are drawn in Section 8.7.

8.1 Some Basic Graph Theoretical Concepts

Graphs will later be shown to be suitable representations of the structure of
matrices and models. Graph-theoretical results lead to efficient algorithms for
finding rejectable models. In this section some basic graph theoretical concepts,
that can be found in e.g. (Gross and Yellen, 2003; Asratian et al., 1998; Harary,
1969), are recapitulated. Readers familiar with basic graph theory might omit
this section.

A graph G = (V, A) consists of two sets. The elements of V are vertices and the
elements of A are edges. Vertices are also called nodes and edges are sometimes
called arcs. Each edge has a set of one or two vertices associated to it, which
are called endpoints. An edge is said to join its endpoints. A vertex v is adjacent
to a vertex u if they are joined by an edge. An edge a is adjacent to an edge
b if they have a common endpoint. A graph is bipartite, if its vertices can be
partitioned into two sets in such way, that no edge joins two vertices from the
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same set. A bipartite graph with vertices partitioned into the sets U and V and
edges A is written G = (U U V, A). Let the two vertex sets be explicitly ordered,
lets say U = {uq,up,...,uy} and V = {v1,0y,...,0,}. Then a biadjacency matrix
for a bipartite graph G is the m X n matrix A defined by

;= {1 if u; and v; are adjacent 8.1)

0 otherwise

8.1.1 Matchings

A matching of G = (V,A) is a set T C A of pairwise non-adjacent edges. The
size (or cardinality) of a matching I' is the number of edges in I', written |I.
A maximum size matching of G is a matching I' of G having the largest size |I|
of any matching of G. Such matching is also called a maximum matching of G
or a maximal matching of G. Given a bipartite graph G = (U U V, A), a complete
matching I' of V into U is a matching such that all vertices in V is an endpoint
of an edge in I'. A matching of G can equally well be a complete matching of
U into V. A matching of G that is both a complete matching of U into V and
a complete matching of V into U is a perfect matching of G. A path on a graph
G=(VAisa sequence of vertices v1,7,...,v, such that (v;,vi41) € A for all
ie{l,...n=1},v; € Vforalli € {1,...,n}, and v; # v;if i # j. An alternating
path is a path in which the edges belong alternately to a matching an not to the
matching. A vertex is free, if it is not an endpoint of an edge in a matching.

8.2 Structured Matrices

In this section, we will follow the approach presented in (Murota, 2000) and
show that the rank of matrices can, in the generic case, be formulated as a
maximal matching problem in a bipartite graph. Such matching can be com-
puted efficiently in polynomial time (Asratian et al., 1998; Alt et al., 1991). In
the graph theoretical structural approach to find rejectable models in a linear
dynamic model we extract the information about which matrix entries that are
non-zero, ignoring the numerical values of the entries. Let the degree of a
polynomial b(p) be denoted by deg(b(p)).

Definition 8.1 (Structured Matrix). Given a polynomial matrix A(p) = [Ajj], the
matrix defined by

pdeg(Aij)  if A
a;p*i)f A # 0
As r)ij = ! ! 8.2
(Al {0 A (52)
where a;; are assumed to be algebraically independent parameters (Murota, 2000)

is a structured matrix associated with A(p).!

Note that two different matrices A(p) and A’(p) can be associated with the
same structured matrix Ag,(p). This means that a structured matrix is associated

1For our purpose we will not use the degree of the entries, but for consistency with (Murota,
2000) they will be included.
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Figure 8.1: The bipartite graph associated with H(p) in (6.65).

with a family of matrices that have a common structure with respect to the non-
zero entries and the degrees of the entries.

Example 8.1
Associated with for example the matrix H(p) in (6.65), we consider

0 M hy h3]
hy 0 hs O
h6 0 0 ph7
hg 0 0 O
0 mo 0 O
0 0 0 hn
(0 0 0 0]

where hj, ..., h1; are considered to be algebraically independent parameters.

8.2.1 Structured Matrix Representations

For a matrix A(p) with a row index set R and column index set C, consider the
bipartite graph G = (R U C, A) where the edge set A of A(p) is defined by

A={G))lieR, jeCA;+0) (8.4)

That is, an edge represents a non-zero entry of A(p). To present the structure
of the matrix A(p) the corresponding bipartite graph can be used, either as the
graph itself or represented with its biadjacency matrix. For easier comprehen-
sion of the biadjacency matrix, the zeros will be left out and the ones are marked
with an X.

Example 8.2
Asan example, consider the matrix H(p) in (6.65). The bipartite graph associated
with H(p) is shown in Figure 8.1. The equations are shown as bars and variables
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as circles. The biadjacency matrix of this bipartite graph is

VIL b
X X X
X

X
(8.5)

e

X

NG WD -~

Note that the structured matrix Hy,(p) in (8.3) is associated with the same
bipartite graph as H(p).

8.2.2 Rank of Structured Matrices

We refer to the rank of Ay, (p) as the structural rank? of A(p) and denote it by
s-rank (A(p)), that means

s-rank (A(p)) = rank (A (p)) (8.6)

There is no guarantee that the structural rank coincides with the true rank for
a particular and numerically specified matrix A(p). However it is true that
rank (A’(p)) = s-rank (A’(p)) for almost all A’(p) with the same structure, in the
sense that A/, (p) = As(p).

The structural rank has the advantage that it can be computed in an effi-
cient combinatorial way, free from numerical difficulties. This is based on the
close relationship, that will be explained next, between sub-determinants of a
structured matrix and matchings in the corresponding bipartite graph.

8.2.3 Graph-theoretical Characterization of Structural Rank

The structural rank can as said before be formulated as a graph theoretical
property. Next we show that the structural rank of a matrix A(p) is equal to the
maximum size of a matching in its associated bipartite graph. To do this let the
size of a maximum matching in a graph G be denoted by v(G).

Theorem 8.1 (Murota, 2000)). The structural rank of a polynomial matrix A(p) is
equal to the cardinality of a maximum matching of the associated bipartite graph G,
ie.,

s-rank (A(p)) = v(G) (8.7)

Proof. For a square n X n polynomial matrix A(p), its determinant, denoted by
det A(p), is defined by

det A(p) = Z sgn - | [ Aoy (8.8)
i=1

nES,

2The notions of term rank and generic rank in (Murota, 2000) are both equivalent to structural
rank for the models considered in this thesis.
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where S, denotes the set of all permutations of order , and sgn 7= = +1 is the
signature of the permutation 7. A matrix is nonsingular if it is square and its
determinant is non-zero.

The rank of a matrix is equal to the maximum size of a nonsingular sub-
matrix, i.e.,

rank (A(p)) = max{ || |A[I, J1is nonsingular, | CR,] C C} (8.9)

To determine the structural rank of A(p), (8.6) and (8.9) are combined and
we get

s-rank (A(p)) = rank (A (p)) =
max{ 1] )Astr[l, J1is nonsingular, | SR, ] C C} (8.10)

The matrix A, [, J]in (8.10) is nonsingular, by definition, if det Ay, [, J]] # 0. The
determinant is only defined for matrices where |I| = |J|. Consider an arbitrary
I € Rand ] € Csuch that|l| = |J| = k. Then the determinant expansion becomes

k
det Ag.[I, J] = Z sgn 7t - H(Astr)l(i)](n(i)) =
neS i=1
k k
Z Sgn TT - H a[(i)](ﬂ(i)) pzizl deg(AM)](n(f))) (811)
=1

neSk i

Note that a nonzero term in the expansion corresponds to matchings of size
k. Furthermore, there is no cancellation of among different nonzero terms in
this expansion due to the independence of the nonzero parameters in Ag,(p).
These two facts imply that the structured matrix A [l, J] is nonsingular, i.e.,
det Ay [1, J] # 0, if and only if there exists a m € S such that

k
H Al # 0 (8.12)
i=1

That s, there exists a perfect matching of the bipartite graph associated with the
matrix A[l, J] with size k. By applying this arguments to all sub-determinants,
it follows that the structural rank of A(p) equals the maximum number k such
that A;j, # 0, Ay,j, #0,..., A;j, # 0, where iy, i, ..., i are distinct rows and ji,
j2, ..., jx are distinct columns. The set of pairs (i1, j1), (i2, j2), - - ., (ik, jx) defines
a maximum size matching of the bipartite graph associated with A(p). This
completes the proof. ]

Example 8.3

To give an example of how this theorem can be used to compute the structural
rank, consider the graph in Figure 8.1 and the structured matrix (8.3) associated
with the matrix H(p) given in (6.65). An example of a maximum size matching
I' in the associated bipartite graph consists of the 4 edges (1,1), (2,11), (3,12),
and (4, V). The cardinality of the matching is 4 and the structural redundancy
is then also 4 according to Theorem 8.1. Note that the structural rank is, in this
case, equal to the rank of the H(p).
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The structural rank was equal to the rank in the example. In general, the
following is true. Non-singularity for a matrix A(p) implies non-singularity for
the matrix Ay (p). This fact, (8.9), and (8.10) imply the following theorem.

Theorem 8.2 ((Murota, 2000)). For any matrix A(p) it holds that

rank (A(p)) < s-rank (A(p)) (8.13)
Example 8.4
To give an example of a matrix where equality in (8.13) does not hold, consider
110
111
H=1y o 1 (8.14)
0 0 2

This matrix has structural rank 3, but rank 2. This follows from the fact that
HI{1,2},{1,2}] is rank deficient.

8.2.4 General Matrix Rank Assumption

We are often interested in the case when the structural rank and the rank
coincide and therefore we will sometimes refer to the following assumption.

Assumption 8.1. Given a polynomial matrix A(p) with row set R and column set C,
it is assumed that
s-rank (A[l, J]) = rank (A[L, 1)

forallI CRand forall | C C.

Under this assumption the matrix A(p) can itself be considered to be a
structured matrix, i.e., A(p) enjoys all properties structured matrices have. An
example of a model that fulfills the assumption is the H(p) matrix in (6.65) of
the electrical circuit. Note that Assumption 8.1 is an assumption of a model of
the system not an assumption on the system itself. For the system in question
there can be many different equivalent models, some of them may satisfy the
assumption and others may not. This is discussed (Murota, 2000) and here it
will be illustrated by the following example.

Example 8.5
Consider the a linear static model where H is the matrix defined in (8.14) and L
is
1 00
0 0O
L= 01 0 (8.15)
0 01

From Example 8.4, it follows that H does not fulfill Assumption 8.1. By mul-
tiplying row one with -1 and add the result to the second row the equivalent
model

1 10 1 00
0 0 1 -1 0 0
00 11*Tlo 1 0ol% 0 (8.16)
0 0 2 0 01
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is obtained. Both these matrices fulfill Assumption 8.1. Hence, for this example
there exist both models that satisfy Assumption 8.1 and others that do not.

8.3 Structural Model Properties

Structural analysis will, as said in the introduction, be used to identify rejectable
models, or for linear models overdetermined sets, for test construction. In
Chapter 6, redundancy, overdetermined set, PO set, and MO set were defined
for linear dynamic models in the form

Hp)x+L(p)z=0 (8.17)

A key property used for defining redundancy in linear models was the rank
of matrices, and in the previous section structural rank was introduced as
the structural correspondence to the rank of matrices. Based on structural
rank, structural model properties will be defined such that they correspond to
the analytical model properties in the sense that the structural and analytical
notions are equivalent for models with structured matrices. Here we refer
to models with structured matrices, but it is also possible to refer to models
where the matrix [H(p) L(p)] fulfill Assumption 8.1 instead. The definitions
will be formulated in general graph theoretical terms to be applicable also for
non-linear models later in Sections 8.5-8.6.

All model properties defined in Chapter 6 are based on redundancy. There-
fore, we start to define structural redundancy. To get the definition of structural
redundancy applicable to any model with its structure given by a bipartite
graph, some notation is needed.

For a model M with variables X U Z, consider the bipartite graph G(M, X U
Z) = (X U Z, A), where the edge set A is defined by

A ={(®,e)ve XUZeec M,v contained in e} (8.18)

That is, an edge represents that a variable is included in an equation. Further-
more, given a set M € M and a variable set V € X U Z, let G(M, V) denote the
bipartite subgraph of G(M, X U Z) induced by the vertexset MU V.

Now, we are ready to define structural redundancy.

Definition 8.2 (Structural Redundancy). Given a model M, let g5 : 2™ — Z. be a
function from the family of subsets M in the set M defined by

@s (M) = v(G(M, X U Z)) - v(G(M, X)) (8.19)
This number @5 (M) is the structural redundancy of M.

According to the definition, it is clear that ¢, (M) > 0 for any model M and
that @; (@) = 0. The next theorem motivates the definition.

Theorem 8.3. Given a linear model M with matrices H(p) and L(p), the structural
redundancy is equal to

@s (M) = s-rank ([H(p) L(p)]) — s-rank (H(p)) (8.20)
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Proof. The bipartite graph associated with the matrix [H(p) L(p)] is equal to
G(M,X U Z) and the graph associated with H(p) is equal to G(M, X). Then
Theorem 8.1 implies that

s-rank ([H(p) L(p)]) = (G(M, X U Z))
and
s-rank (H(p)) = v(G(M, X))

By substitution of the structural ranks on the right hand side of (8.20), we get
the right hand side of (8.19) which completes the proof. O

Let M be a set of equations with matrices H(p) and L(p). Let [Hs(p) Lstr(p)]
be a structured matrix associated with [H(p) L(p)]. Then, the model My, defined
by the matrices Hy(p) and Lg(p) is a structured model associated with M.

Theorem 8.4. If M is a set of equations defined by the matrices H(p) and L(p), then it
follows that
®s (M) = ¢ (Msty) (8.21)

Proof. The theorem follows from Definition 6.1, Definition 8.2, and (8.6). O

Example 8.6

To give an example of structural redundancy, consider the no-fault model
Mnr = 1{1,...,7} of (6.65). The structural redundancy is, according to Theo-
rem 8.3, equal to

¢s (Mnr) = s-rank ([H[Mnr] L[Mng]) — s-rank (H[Mnr]) =7 -4=3  (8.22)

For this example, the analytical redundancy is equal to the structural redun-
dancy.

In general, the following inequality between structural and analytical re-
dundancy holds.

Theorem 8.5. If M is a set of equations defined by the matrices H(p) and L(p) where
[H(p) L(p)] has full row-rank, then it follows that

Ps (M) < 9 (M) (8.23)

Proof. The structural redundancy ¢, (M) is given by (8.20) and the analytical
redundancy is defined in Definition 6.1. Since [H(p) L(p)] has full row-rank,
Theorem 8.2 implies that

s-rank ([H(p) L(p)]) = rank ([H(p) L(p)]) (8.24)

and
s-rank (H(p)) > rank (H(p)) (8.25)

From (8.24) and (8.25), we get that

¢s (M) = s-rank ([H(p) L(p)]) — s-rank (H(p)) <
rank ([H(p) L(p)]) — rank (H(p)) = ¢ (M)

which completes the proof. ]
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This theorem states that under the condition that [H(p) L(p)] has full row-
rank, it follows that if structural redundancy exists then analytical redundancy
exists. Generically, the structural and analytical redundancy are equal, but
inequality in (8.23) can be obtained as the next example will show.

Example 8.7
Consider the matrix H given in (8.14) and a matrix

L= (8.26)

_ o o o

1
0
0
0
For these matrices, it holds that [H L] has full-row rank. The structural rank is
@s =s-rank ([HL]) —s-rank (H)=4-3=1 (8.27)

and the analytical redundancy is
@ =rank ([HL]) —rank (H) =4-2=2 (8.28)

ie, @ > @s. The reason for the inequality is again that H[{1,2}, {1,2}] is rank
deficient.

For real systems, it may happen that some sub-matrix of H(p) is rank de-
ficient. In (Murota, 2000) an electrical circuit is considered and it is shown
that a natural model for this system includes rank deficiencies. Moreover, a
method to rewrite the model into an equivalent model without including rank
deficiencies is described.

Next, we will exemplify that (8.23) can be false if [H(p) L(p)] has not full
row-rank. Note that this situation should be considered as an exception, since
it is possible to find an equivalent model with full row-rank.

Example 8.8
Consider the matrices
11 1
H=(1 1 L=]1 (8.29)
10 0
In this case s-rank (H) = rank (H) = 2 and
rank ([HL]) =2 < 3 = s-rank ([H L]) (8.30)

This implies that ¢ = 0 < 1 = ¢, ie., (8.23) is not true. The difference
in structural and analytical redundancy is caused by the rank deficiency in
[HI[{1,2}, {2}] L[{1, 2}].

A linear dynamic model M was defined to be overdetermined if and only
if M has redundancy, i.e., ¢ (M) > 0. This is for a structured linear dynamic
model My, equivalent to @, (M) > 0 according to (8.21). By using structural
redundancy the corresponding structural property can be defined.

Definition 8.3 (Structurally Overdetermined Set). A set M of equations is a
structurally overdetermined (SO) set if its structural redundancy is positive, i.e
s (M) > 0.
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In the same way, structural properties corresponding to PO set and MO set
are defined.

Definition 8.4 (Proper Structurally Overdetermined Set). A structurally overde-
termined set M of equations is a proper structurally overdetermined (PSO) set
if

@s (E) < ¢s (M) (8.31)
forall EC M.

Definition 8.5 (Minimal Structurally Overdetermined Set). An SO set of equa-
tions is a minimal structurally overdetermined (MSO) set if no proper subset is
an SO set.

Note that an MSO set is also a PSO set. All analytical model properties are
transfered to structural properties according to the following theorem.

Theorem 8.6. A structured model Mgy, is

a) an overdetermined set if and only if M, is an SO set.
b) a PO set if and only if Mg, is a PSO set.
¢) an MO set if and only if My, is an MSO set.

Proof. We will only show (a) and the other two statements can be proved anal-
ogously. The model My, is overdetermined if and only if ¢ (M) > 0 according
to Definition 6.2. Since My, is a structured matrix, it follows from Theorem 8.4
that @; (Ms;) = @ (M) This implies that a model M, is overdetermined, i.e.,
@ (Mstr) > 0, if and only if @5 (M) > 0. The latter is according to Definition 8.3
equivalent to that M, is an SO set. Hence, My, is an overdetermined set if and
only if My, is a SO set and this completes the proof of (a). O

For a model where the corresponding matrix [H(p) L(p)] fulfills Assump-
tion 8.1, it follows from this theorem that a sub-model is an MO set if and only
if the sub-model is an MSO set. This means that all MO sets can be found by
finding all MSO sets. Even if this exact relationship does not hold in general,
this relationship is a key property that later will be used for finding rejectable
models in non-linear models by using a structural method. Before, we consider
the non-linear case, we show that a sound diagnosis system can be based on
the MSO sets under Assumption 8.1.

8.4 Structural Conditions for Soundness

In Chapter 6, it was concluded that MO sets were suitable to test to obtain
soundness. In this section, we formulate the corresponding structural result.

First of all, it was shown in Corollary 3.3 that it is sufficient to check the
consistency of all MO sets in a model M,,. Given a structured behavioral model
My, it follows that the MO sets E C M, are the MSO sets E C M,. Hence the
following result is immediate.

Theorem 8.7. Given a structured linear dynamic behavioral model My, it follows that
O(Mb) = nM,‘GMMS()O(Mi) (832)
where Mso is the family of all MSO sets M € M,
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Proof. This theorem follows directly from Theorem 8.6 (c) and Theorem 6.5. O

To give an example, the no-fault model in (6.65) fulfills Assumption 8.1,
i.e., the model can be considered to be a structured model. The result given
in Theorem 8.7 is therefore applicable. It holds that Myso = Mo for this
example. Hence, a structural method to compute all MSO sets can be used as
an alternative to use one of the algorithms presented in Chapter 4 for finding
all MO sets.

Next, we will extend the structural approach of identifying models with
redundancy to the non-linear case. Different structural representations of non-
linear dynamic models are presented in the next section. These representations
are then used in Section 8.6 where examples motivate test construction based
on MSO sets also in the non-linear dynamic case.

8.5 Structural Representations of Non-linear Mod-
els

In this and the following sections, the idea of identifying models with redun-
dancy by using structural methods will be extended to the non-linear dynamic
case. In this section, we discuss different structural representations for non-
linear models. Then Section 8.6 shows that concepts and theory will be appli-
cable to any of these representations.

As for the linear case the structure of a non-linear model M is represented
by a bipartite graph G(M, X U Z) with variables X U Z and equations M as node
sets. Analogously to the linear case, there is an edge connecting an equation
e € M and a variable x € X U Z if x is included in e.

Example 8.9
Consider for example the algebraic system

Equation | Expression

e1 et = au
e x% = bx (8.33)
€3 ]/ = X2

where u and y are known variables, x; and x; are unknown variables, and a2 and
b are known constants. The structure of the model represented as a bipartite
graph is shown in Figure 8.2. Note that the structure of the model does not
contain the known parameters. The structure of the model represented as a
biadjacency matrix is

Equation | Unknown Known
1 x |u oy
el X X (8.34)
(%] X X
€3 X X
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€1 €2 €3

p

Figure 8.2: Bipartite graph for the model shown in (8.33).

8.5.1 The Structure of Dynamic Models

When considering differential algebraic systems, different alternatives for han-
dling derivatives exist. In this section, three different structural representations
of a differential algebraic system are recalled from previous works. These three
variants will be exemplified by the following differential algebraic system

Equation | Expression

2
e X1 = —xi+u
! vt (8.35)
(%] Xy = Xl
€3 y = X2

where 1 and y are known, and x; and x, are unknown signals.
The first structural representation of (8.35) is the following biadjacency
matrix of the bipartite graph:

Equation | Unknown Known
1 xm |u oy

e X X (8.36)
(%) X X
€3 X X

In this representation all unknowns, i.e., x; and x», are considered to be signals.
There is an “X” in position (i, j) in the biadjacency matrix if x; or any of its
time-derivatives appear in equation e;. For a linear model with matrices H(p)
and L(p), this representation is equal to the bipartite graph associated with
the matrix [H(p) L(p)]. For a general dynamic model with non-zero structural
redundancy, differential algebraic elimination methods are needed to eliminate
the unknowns. This approach has been used in for example (Frisk, 2001)
and (Frisk et al., 2003).
A second structural representation of (8.35) is

Equation | Unknown Known
X1 0 x|u oy
el X X X (8.37)
(5] X X
e3 X X




164 Chapter 8. Finding Rejectable Models Using Structural Methods

Unknowns and their time-derivatives are, in contrast to previous represen-
tation, considered to be separate independent algebraic variables. Then the
equations will no longer represent the same behavior, because there is no guar-
antee that a signal & is the time derivative of x. However, new equations can be
obtained by differentiation, so called prolongation (Mansfield, 1991), such that
the correct relation between variables and their derivatives are implied with
these extra equations. For system (8.35), new equations obtained by differenti-
ation are for example

éz : J'Cz :2x15c1

é3 : yZXZ

Now, with these extra equations the structural representation can be extended

Equation Unknown Known
X1 X 1 X2 X 2| U y y
er X X X
e X X (8.38)
ér X X X
€3 X X
é3 X X

The prolongated structure is used in (Krysander and Nyberg, 2002a) and
(Krysander and Aslund, 2005). Elimination of the unknowns in models with
non-zero structural redundancy in the prolongated structure can, in contrast to
the first representation, be done with algebraic methods.

In the third and final structural representation, unknowns and their time-
derivatives are, as in the second representation, considered to be separate in-
dependent algebraic variables. Thus the equations are purely algebraic and
differential equations in the form

4.
dr'

=

are added to relate the variables to its derivatives. The structural representation
of (8.35) is

Equation | Unknown Known
X1 5(1 X2 ‘
e1 X X
e % x (8.39)
e3 X
d X X

where d is the added differential equation. This representation is used for
diagnosis in (Blanke et al., 2003).

Now, three different structural representations have been recalled and in
Section 8.6 it will be shown that models with redundancy can be found among
the SO sets independent of structural representation.
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8.6 Finding Rejectable Models by Using Structural
Methods

In this section we will exemplify that for any of the structural representation
presented in Section 8.5, the structural model properties defined in Section 8.3
are relevant also for finding redundancy in non-linear dynamic models. The
idea of testing MSO sets can therefore be extended to the non-linear case.

8.6.1 Structural vs Analytical Redundancy

Structural redundancy and analytical redundancy in a non-linear model is
compared in the next example. The structural redundancy is used to define
the notions SO set, PSO set, and MSO set and these notions are therefore also
compared to analytical redundancy.

Example 8.10
Consider the system of equations (8.35) with the structural representation
in (8.36). From Definition 8.2 of structural redundancy, we get

@s({er,e2,e3}) =3-2=1 (8.40)

Since s ({e1,e2,e3}) > 0, it follows that {e1,e;,e3} is an SO set according to
Definition 8.3. In the representation (8.36), different order of derivatives are not
distinguished. Since the structural redundancy is non-zero we could expect
that {e1, e, €3} contains analytical redundancy. By using a differential algebraic
elimination method, the consistency relation

P —4yu—-y? =0 (8.41)

can be derived. This means that (8.35) contains redundancy as indicated by its
structure.

Now, consider an arbitrary proper subset of {ej, ey, e3}. The structural re-
dundancy is zero and as indicated by the structural redundancy no consistency
relation can be derived from E by differential algebraic elimination tools. How-
ever, from the set {e;, e3} of equations, it is possible to derive that y > 0. This
relation can only be derived with algorithms that handle quantifier elimina-
tion (Jirstrand, 1998, 1997) and real algebra, e.g. the function Reduce in Mathe-
matica.

To exemplify a PSO set, consider the equations in (8.35) and add a forth
equation according to

Equation | Expression

e X1 = X +u

e X o= K (8.42)
€3 y = X

es z = X+

where z is known variable. If the structural representation of the type (8.36) is



166 Chapter 8. Finding Rejectable Models Using Structural Methods

used, we get

Equation | Unknown  Known
X1 X Xx3|u y z
e1 X X
& X X (8.43)
€3 X X
ey X X X

The structural redundancy of {e1, e, e3} and {e1, ez, €3, 4} is one and for all other
subsets E of {ej, ey, e3,e4} the structural redundancy is ¢; (E) = 0. This means
that {e1, &2, e3} and {e1, €5, €3, €4} are the only SO sets in this model. It is only from
these sets the consistency relation (8.41) can be derived. Definition 8.4 implies
that the only PSO subset in {ej, e5, €3, €4} is the set {e1, e, €3} and exactly these
equations are needed to derive the consistency relation (8.41).

The set {e1, e, e3} is the only MSO set according to Definition 8.6. Previously
in Theorem 8.7, we have shown that it is sufficient under some independent as-
sumption to test the consistency of all MSO sets to determine the consistency of
all models. Following the same strategy in the non-linear case this corresponds
to check the consistency of {e1, e, €3}, that is to check the consistency of (8.41).
From previous discussion, it follows that this is sufficient for determining the
consistency of (8.42).

8.6.2 Test based on MSO Sets

The next example is the water-tank example introduced in Chapter 2 and shows
that the tests can be based on MSO sets also in the non-linear dynamic case to
obtain a good diagnosis system.

Table 8.1: The structure of the equations of the model in Table 2.2.

Equation Unknown Known
P WD qa fe fe fyf for | U Yo Yy

€1 X X
23 X XX
€3 X X
ey X XX
(4 X
€6 X X
ey X X
e X X X
€9 X

Example 8.11

Consider the water-tank example with the model shown in Table 2.2. Assume
that we want to use differential algebraic elimination to construct consistency
relations for the MSO sets. Then we will use the structural representation of the
type (8.36) shown in Table 8.2. The structure in Table 8.2 contains 12 feasible
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MSO sets and these are shown in Table 2.3. These sets are the minimal feasi-
ble sets from which consistency relations can be derived by using differential
algebraic elimination tools.

Table 8.2: The structure of the equations of the model in Table 2.2.

Equation | Unknown Known
QW fe fyr | U Yo Yr

4] X X
e XXX
e3 XX
(3 XXX
€5 X
€6 X X
ey X X
eg X X X
€9 X

Finally, we will show that the MSO property can be used to identify minimal
rejectable models, independent of structural representation.

Example 8.12

The model (8.35) contains redundancy, because the consistency relation (8.41)
can be derived. Three different structural representations for this model have
been given in (8.36), (8.38), and (8.39). For each of these three structural rep-
resentation the sets {e1, e, e3}, {e1, 62,62, ¢3,¢3}, and {e1, e, e3,d} are MSO sets re-
spectively. Hence, if any one of these representations is used, an MSO set
will identify the relevant set of equations corresponding to the consistency
relation (8.41).

In the next chapter, we will develop methods for computing MSO sets.
Since concept of MSO sets can be used in any of the structural representations
presented in Section 8.5, these methods can be applied to any of these structural
representations.

8.6.3 Relations to Other Structural Characterizations

In the literature, different structural approaches for finding rejectable models
have been proposed. The different approaches use both different structural rep-
resentations and also different structural characterizations of rejectable models.
Since MSO sets can be used in any of the these three structural representa-
tions, comparisons to other structural characterizations of rejectable models
are possible.

In (Frisk et al., 2003) and (Krysander and Nyberg, 2002a), MSS sets w.r.t. the
unknowns are used to find rejectable sub-models. These are defined to be the
minimal sets with more equations than unknowns. Later in Theorem 10.3, it
will be proven that a set is an MSO set if and only if the set is an MSS w.r.t. the
unknowns and contains known variables.

Example 8.13
Consider the MSO set in (8.36). For the set {e1, ey, e3}, there are 3 equations and 2
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unknowns. For any proper subset of {ej, e, e3} there are more or equally many
unknowns compared to the number of equations. Hence the MSO set {1, e5, €3}
is an MSS set.

In (Blanke et al., 2003), (Izadi-Zamanabadi and Blanke, 2002), and (Travé-
Massuyes et al., 2001) redundancy relations are used. Given a maximal matching,
a free equation vertex is a redundant relation. An MSS set is then given by the
equations reached by an alternating path from the redundant equation.

Example 8.14

Consider again the MSO set {e1, €2, €3} in (8.36). A maximal matching is {(e1, x1),
(e2, x2)}. The only free equation is ez and this equation is therefore a redundant
relation. An alternating path is e3, x5, €, x1, and e;. Hence the set of equations
reached by an alternating path is {e;, e, e3}. One interpretation of the matching
is that ¢; will be used to solve for the variable x; and e, solves for x;. Then a
computation order is implicitly defined as follows. To be able to compute the
value of x, from e,, the value of x; must first be computed. Finally, the value of
x is inserted in the redundant equation es.

In (Pulido and Gonzalez, 2004; Pulido and Alonso, 2002) evaluation chains
and minimal evaluation chains are used. These are equivalent to SO sets and
MSO sets respectively.

In conclusion, the names and the definitions of the structural characteriza-