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Abstract

In complex and automated technological processes the effects of a fault can
quickly propagate and lead to degradation of process performance or even
worse to a catastrophic failure. This means that faults have to be found as
quickly as possible and decisions have to be made to stop the propagation of
their effects and to minimize process performance degradation. The behavior
of the process is affected in different ways by different faults and the fault can
be found by ruling out faults for which the expected behavior of the process is
not consistent with the observed behavior. In model-based diagnosis, a model
describes the expected behavior of the process for the different faults.

A device for finding faults is called a diagnosis system. In the diagnosis
systems considered here, a number of tests check the consistency of different
parts of the model, by using observations of the process. To be able to identify
which fault that has occurred, the set of tests that is used must be carefully
selected. Furthermore, to reduce the on-line computational cost of running the
diagnosis system and to minimize the in general difficult and time-consuming
work of tests construction, it is also desirable to use few tests.

A two step design procedure for construction of a diagnosis systems is
proposed and it provides the means for selecting which tests to use implicitly
by selecting which parts of the model that should be tested with each test.
Then, the test design for each part can be done with any existing technique for
model-based diagnosis.

Two different types of design goals concerning the capability of distinguish-
ing faults is proposed. The first goal is to design a sound and complete diagnosis
system, i.e., a diagnosis system with the following property. For any observa-
tion, the diagnosis system computes exactly the faults that together with the
observation are consistent with the model. The second goal is specified by
which faults that should be distinguished from other faults, and this is called
the desired isolability.

Given any of these two design goals, theory and algorithms for selecting a
minimum cardinality set of parts of the model are presented. Only parts with
redundancy can be used for test construction and a key result is that there exists
a sound and complete diagnosis system based on the set of all minimal parts
with redundancy in the model. In differential-algebraic models, it is in general
difficult to analytically identify parts with redundancy, because it corresponds
to variable elimination or projection. It is formally shown that redundant parts
can be found by using a structural approach, i.e., to use only which variables
that are included in each equation. In the structural approach, parts with
more equations than unknowns are identified with efficient graph-theoretical
tools. A key contribution is a new algorithm for finding all minimal parts with
redundancy of the model. The efficiency of the algorithm is demonstrated on a
truck engine model and compared to the computational complexity of previous
algorithms.

In conclusion, tools for test selection have been developed. The selection is
based on intuitive requirements such as soundness or isolability requirements
specified by the diagnosis system designer. This leads to a more straightforward
design of diagnosis systems, valuable engineering time can be saved, and the
resulting diagnosis systems use minimum number of tests, i.e., the on-line
computational complexity of the resulting diagnosis systems become low.
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N

Diagnosis Model Notation

M A diagnosis model.
B The set of all system behavioral modes in a diagnosis model.
C The set of all components in a diagnosis model.
M The set of all equations in a diagnosis model.
X The set of all unknown variables in a diagnosis model.
Z The set of all known variables in a diagnosis model.
X The domain of the unknown variables X.
Z The domain of the known variables Z.
x A vector of the unknown variables in X.
z A vector of the known variables in Z.
f A vector of fault variables.
assump(M) A set of system behavioral modes that infer all equations in a

set M.
D(z) The set of diagnoses when observing z.
Bc The set of component behavioral modes defined for a compo-

nent c.
Mb The behavioral model for a system behavioral mode b.
Mc The model that describes the behavior of a component c.
Mc,b A behavioral model for a component behavioral mode b.
Bc(b) The external behavior for a component behavioral mode b.
sys The system behavioral mode that the process is in.

1



2

Model Notation

Ed A differentiated MSO set.
Xd The unknowns in a differentiated MSO set.
X̄ The set of all time-derivatives of all unknown variables.
e(k) The k:th time-derivative of an equation e.
x(k) The k:th time-derivative of a variable x.
E(k) The set {e(k)|e ∈ E} of equations.
X(k) The set {x(k)|x ∈ X} of equations.
M A family of equation sets.
MMO A family of MO sets.
MMSO A family of MSO sets.
ωm The set of all feasible minimal rejectable models in a diagnosis

model.
ωm(z0) The set of all feasible minimal rejectable models in a diagnosis

model and at z0.
Cb A checking model of a behavioral mode b.
M∗ The proper overdetermined (PO) part of a set M of linear equa-

tions.
G(E,X) The bipartite graph with an equation set E and a variable set X as

node sets representing the structure of E.
varX(E) The variables in X contained in some equation in E.
ν(G) The size of a maximal matching in a bipartite graph G.
M+ The proper structurally overdetermined (PSO) part of a set M of

equations.
ϕ̄s (M) The surplus of a model M.
ϕ (M) The redundancy of a linear model M.
ϕs (M) The structural redundancy of a model M.
O(M) The observation set of a model M.

Linear Space and Matrix Notation

rank (A) The normal-rank of a polynomial matrix A.
s-rank (A) The structural rank of a matrix A.
A[I] The sub-matrix of a matrix A containing the rows I.
A[I, J] The sub-matrix of a matrix A defined the rows I and the columns

J.
A[:, J] The sub-matrix of a matrix A containing the columns J.
NA A matrix such that the rows of NA is an irreducible basis for the

left null-space of a polynomial matrix A.
NA[I] A zero-padded matrix such that NA[I]A = 0.
dim(A) The dimension of a spaceA.
A⊥. The orthogonal complement to a linear spaceA.
sp(A) The row-span of a matrix A.
Im(A) The column-span of a matrix A.



3

Diagnosis System Notation

∆ A diagnosis system represented as a set of tests.
C(z) The set of candidates computed by a diagnosis system with z as input.
δ A diagnosis test.
R A subset of R that defines the rejection region of a diagnosis test.
O(δ) The acceptance set of a test δ.
T(z) A test quantity of a diagnosis test.
Φ A set of system behavioral modes such that sys ∈ Φ is the null hy-

pothesis of a test.

Isolability Relation Notation

Id A desired isolability.
I(∆) The analytical isolability of a diagnosis system ∆.
I(M) The analytical isolability of a diagnosis modelM.
Ip(〈Cbi

〉) An isolability prediction based on a list of checking models Cbi
.

Is(∆) The structural isolability of a diagnosis system ∆.
Is(ω) The structural isolability of a set of models ω.
P(∆) The analytical candidate implication partial order of ∆.
Ps(∆) The structural candidate implication partial order of ∆.

Miscellaneous Notation

P(M) The power set of a set M.
deg(b(p)) The degree of a polynomial b(p).
sgn π The signature of the permutation π.
D′ The set of distributions.
R,C The field of real/complex numbers.
Z The set of integer numbers.
Z+ The set of positive integer numbers.
N The set of natural numbers.
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I

Our modern society depends strongly on reliable complex technological pro-
cesses. Human safety, environmental, and process protection requirements are
some examples of demands that must be fulfilled apart from fulfilling process
performance requirements. To meet all these demands, it is important that all
parts of a process are functioning correctly according to their design purposes.
A fault is something that changes the behavior of some part of the process such
that this part does no longer fulfill its purpose (Blanke et al., 2003). In complex
and automated processes the effects of a fault can quickly propagate and lead
to degradation of process performance or even worse to a catastrophic failure.
Therefore faults have to be found as quickly as possible and decisions have to
be made to avoid process failure by stopping the propagation of their effects
and to minimize process performance degradation. To make correct decisions,
it is not sufficient to know that a fault has occurred, it is also necessary to know
which type of fault that has occurred. To decide whether or not a fault has
occurred is called fault detection and to determine the type and location of the
fault is called fault isolation.

The field of diagnosis includes methods for detecting and isolating faults
and a device for this purpose is called a diagnosis system. A general setup
of a diagnosis application is shown in Figure 1.1 with a diagnosis system
diagnosing a process. The process, i.e., the system to be diagnosed, is assumed
to be working in exactly one of a set of pre-defined modes, here called system
behavioral modes. The set of pre-defined system behavioral modes includes
typically a no-fault mode and some fault modes. The input to the diagnosis
system is all available knowledge about the present behavior of the process
and this is called an observation. An observation consists typically of sensor
measurements and controller outputs. The purpose of a diagnosis system is,
given observations, to detect and isolate faults in the process.

5
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observations

(measurements,
controller outputs,...)

Diagnosis
SystemProcess

Known variables

Possible explanations

Figure 1.1: A general setup of a diagnosis application with a diagnosis system
diagnosing a process.

1.1 Basic Principles of Fault Detection and Isolation

The basic idea of detecting faults is to conclude that an observed behavior is
different from the expected behavior of the process when working in the fault-
free mode. If this can be concluded, it means that a fault must have occurred.
The basic idea of isolating a fault is to conclude that other faults can not pro-
duce the observed behavior. By excluding faults as possible explanations, the
number of possible faults can be reduced and fault isolation is obtained. By
using these principles, the expected behavior of the process when working in
different behavioral modes need to be known in order to achieve fault detection
and isolation.

The expected behavior of the process can be described in many different
ways, but in this thesis we will assume that a mathematical model of the
process is used to describe the expected behavior. This is usually refered to as
model-based diagnosis. We will consider the models to be deterministic in this
thesis and typically differential-algebraic systems. To be able to distinguish
the behaviors of the process when being in different behavioral modes, it is
important to describe both the behavior of fault free operation and how the
different faults influence the behavior. A model used to describe the behavior of
the process when being in a specific behavioral mode will be called a behavioral
model. These models are collected in a model called the diagnosis model that
describes the behaviors of the process for all different behavioral modes.

Since the expected behaviors are described by models, it follows that a fault
is detected if the observed behavior is inconsistent with the behavioral model
describing the fault free behavior. Isolation is obtained by concluding that
that the observed behavior and behavioral models describing different fault
modes are inconsistent. In conclusion, both fault detection and fault isolation
are obtained by testing if different models are consistent with an observation
and this is the principle of consistency-based diagnosis.

1.2 Basic Principles for Consistency Checking

To test if a model and an observation are consistent, is to decide if the model can
be satisfied given the observation. To be more precise, if z0 is the observation,
x is a vector of unknown trajectories, and f (z, x) = 0 is the differential-algebraic
model, a mathematical formulation of this decision problem is to determine if
there exists an x such that

f (z0, x) = 0 (1.1)
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This problem is in general difficult to solve. Furthermore, to detect and isolate
faults as fast as possible, the time elapsed between getting an observation and
determining the consistency of (1.1) must be short. Therefore, it is crucial for
fast detection and isolation that the computational complexity of testing the
consistency of each model is small.

One way to reduce the computational complexity of testing consistency is to
use residual generators together with thresholds (Patton et al., 1989; Gertler, 1998).
More generally and in accordance with statistical hypothesis testing (Casella
and L.Berger, 1990), we use the notion tests. A test contains a test quantity T(z0)
that is an explicit function that maps observations z0 into real numbers and a
rejection region R ⊂ R that is a proper subset of all real numbers (Casella and
L.Berger, 1990). The idea is to select these such that

T(z0(t)) ∈ R (1.2)

implies that (1.1) and z0 are inconsistent. Since the test quantity is an explicit
function, it does not include any unknowns, and it follows that the problem
of determining if (1.1) and z0 is inconsistent is reduced to the procedure of
inserting the observed values in the test quantity, compute the value of the test
quantity, and compare the computed value with the rejection region. A test
makes a binary decision, if the test quantity belongs to the rejection region,
then it is concluded that the tested model is inconsistent with the observation
and otherwise no conclusion is drawn.

1.3 Architecture of a Diagnosis System

By testing different models describing the behavior of different behavioral
modes, fault isolation can be achieved. One naive approach is to use one
pre-compiled test for each behavioral model. The architecture of a diagnosis
system using this approach is shown in Figure 1.2. In this case, each test decides
if the behavioral mode corresponding to the test is a possible explanation or not.
The decision from all tests are inputs to the unit “Fault Isolation” in Figure 1.2
that computes the set of possible explanations, i.e., all behavioral modes that
can explain the test results.

There are two main disadvantages with testing each behavioral model sep-
arately. The first disadvantage is that the number of behavioral modes can be
large, especially when considering multiple faults, and then the number of tests
will be large. The second disadvantage is that each system behavioral mode
specifies the behavior of all parts of the process and this means that each test
has to consider a model of the complete system including all sensor and con-
troller signals. Therefore, it can be expected that the computational complexity
of running these tests are high.

Both these disadvantages can be handled by testing models that are subsets
of equations in behavioral models. In this way, each test uses only the observed
behavior of a part of the process, i.e., only some sensor and controller signals are
needed as inputs to each test. Furthermore by testing a small part of a process,
all system behavioral modes that specify the same expected behavior for this
part is tested using this single test. Hence, both the computational complexity
for each test and the number of test might be reduced by testing small subsets
of equations.
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Observations Possible

Explanations

Diagnosis System

Diagnosis Test 1

Diagnosis Test 2

Diagnosis Test n
FaultIsolation
FaultIsolation
FaultIsolation
FaultIsolation...

Figure 1.2: Architecture of a diagnosis system.

1.3.1 Good Fault Isolation Capability

When designing a diagnosis system, there is a trade-off between low on-line
computational complexity and good fault isolation capability. Here, we will
assume that a diagnosis system designer specifies a fault isolability goal and
given this goal, the on-line computational complexity is then minimized. In
this thesis the designer can express the fault isolation goal by using one of the
following two alternative types of fault isolation goals.

A diagnosis model describes all knowledge about the expected behaviors
of the process and the first goal is to construct a diagnosis system that uses all
this information. By using all knowledge about the expected behaviors of the
process, the best possible diagnosis system is obtained. Such diagnosis system
will be called a sound and complete diagnosis system.

The second goal is to find a diagnosis system with maximum isolability, which
is a diagnosis system that, for some observation, can distinguish one behavioral
mode from another behavioral mode if the diagnosis model supports this.

The first goal is more ambitious than the second goal. For complex systems,
the first goal can be too ambitious and then it is possible to reduce the first goal
such that all knowledge about the expected behaviors are used only for a subset
of behavioral modes. Furthermore, a reduced version of the second goal is to
specify exactly which modes that we wish to distinguish from other modes.

1.4 Diagnosis System Construction

The construction of a diagnosis system with the proposed architecture can be
divided into the following three main steps:

a) Select models to test such that a chosen fault isolation goal might be
fulfilled.

b) Construct a test quantity and a rejection region for each selected model.

c) Design a fault isolation unit.

Step (c) is not the focus of this thesis. For more details about this step see
e.g. (Nyberg, 2006; Cordier et al., 2004). In contrast to many previous works
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within the field on fault diagnosis, the focus of this thesis is on the first of
these three steps (Blanke et al., 2003; Chen and Patton, 1999; Patton et al., 2000;
Korbicz et al., 2004). However, to understand the basic principles of how to
select models in step (a), we first need to go into some details of step (b).

1.4.1 Successful Test Construction

Assume that a model has been selected in step (a) and that a test based on
this model is to be constructed according to step (b). The purpose of the test
is, as said before, to detect inconsistencies between the model and different
observations. This is only possible if redundancy is contained in the model,
i.e., basically that, there exists a test quantity T(z0) and a non-empty rejection
regionR such that (1.2) is false if the model is consistent with the observation z0.
A model with redundancy typically contains more equations than unknowns
such that all unknowns can be eliminated.

It is not sufficient to know the existence of a test quantity for successful com-
pletion of step (b), it must also be possible to derive a test quantity with any
available method, for example by using analytical redundancy relation based
methods (Chow and Willsky, 1984; Frisk and Nyberg, 1999; Staroswiecki and
Comtet-Varga, 2001) or observer based methods (Frank, 1994; Kinneart, 1999;
Yu and Shields, 1997; Nikoukhah, 1998). For non-linear dynamic models, the
construction of a test quantity involves, i) to chose for the considered model
a method that is suitable for test construction, ii) to apply the method and
construct a test quantity, and iii) to validate the test against simulated and mea-
sured signals. These parts often involve both manual work and experiments
using data from the real processes. Thus by selecting few models properly in
step (a), it is not only possible to reduce the on-line computational complexity
of the resulting diagnosis system, it is also possible to save valuable engineering
time focusing only on the needed tests.

1.4.2 Objectives of Model Selection

The selection of models in step (a) will be based on the assumption that the
tests for the selected models can be designed. If this assumption turns out
to be false for some model, the selection step might need to be reconsidered,
i.e., we need to iterate between the two steps (a) and (b). It is important to
reduce the number of iterations between these step, since this corresponds to
time spent on constructing tests that could not be completed. Furthermore, the
models selected in each iteration can be different from the models selected in the
previous iteration and if the objective is to minimize the number of tests, then
it might turn out that tests designed for models selected in previous iterations
are not needed. Thus, it is important to reduce the number iterations.

In conclusion, the models should be selected in step (a) such that the fol-
lowing objectives are met:

I) The selected models should contain redundancy such that tests can be
derived.

II) The models should be selected such that the resulting tests fulfill the
chosen fault isolability goal.
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III) The models should be selected such that the on-line computational com-
plexity of the diagnosis system is minimized.

A heuristic for the third objective is to divide this objective into two parts.
First, the number of selected models should be minimized. Second, the models
should be selected such that each test have low on-line computational com-
plexity. In Section 1.3, it was argued that both the number of tests and the com-
putational complexity for each test might be reduced by testing small models.
This and objective (I) implies that the minimal sets of equations that contain re-
dundancy should be especially attractive to select in order to fulfill (I) and (III).
These models will be called minimal rejectable models.

1.4.3 Finding Model Redundancy Using Structural Methods

When considering nonlinear diagnosis models, it can be a major task to identify
models with redundancy and especially the minimal rejectable models. This
task is closely related to the problem of variable elimination of the unknowns.
For differential-algebraic models, differential gröbner basis (Mansfield, 1991)
and characteristic sets (Ritt, 1950) techniques provide automatic elimination
methods (Wittkopf, 2004; Mishra, 1993). These algorithms will theoretically
terminate with the desired output, but often for individual problems the com-
putations either take an unreasonable time to complete, or require more mem-
ory than is available (Wittkopf and Reid, 2001). Furthermore, not all non-linear
models that we consider in this thesis are differential polynomials, e.g. the
models can also contain for example look-up tables.

To handle non-polynomial differential algebraic models and to cope with the
computational complexity of identifying model redundancy in polynomial dif-
ferential algebraic models, structural analysis will be used to investigate model
redundancy by means efficient graph-based tools.

The structure of a model contains the information about which variables that
are included in each equation, and numerical values and analytical expressions
are ignored. Systematic structural approaches to find models with redundancy
have been suggested in e.g. (Blanke et al., 2003), (Cassar and Staroswiecki,
1997), (Pulido and Alonso, 2002) (Travé-Massuyès et al., 2001), and (Krysander
and Nyberg, 2002a). All these approaches have in common that models with
redundancy are found among the models with more equations than unknowns.
Furthermore, of all these models, it is the minimal ones that have been used to
derive test quantities.

1.5 Main Objective

The main objective of this thesis is to investigate how to systematically and auto-
matically select models that fulfills the three objectives (I)-(III) using structural
methods. By solving this problem, a diagnosis system designer can specify
a fault isolability capability goal and follow the procedure in Section 1.4 to
obtain a diagnosis system with the minimum number of tests needed to fulfill
the goal. By selecting models such that objective (I) is fulfilled, no iterations
between step (a) and step (b) are needed. This saves valuable engineering
time and focuses the test construction work on important parts of the diagnosis
model.
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1.6 Summary and Contribution of the Thesis

This section summarizes the scope and the organization of the thesis. In Chap-
ter 2, a framework for diagnosis is introduced. The Chapter 3 to 9 are devoted
to different aspects of finding models such that a sound and complete diagnosis
system can be constructed based on these models. In Chapter 3 to 5, basic ideas
are described considering linear static models. In Chapter 6, we also consider
linear dynamic systems. The linear investigations are used to establish a formal
link between structural methods and linear methods in Chapter 8 and 9. Chap-
ter 7 and 8 shows that structural methods can be applied also for non-linear
models. Chapter 10 investigates how to prioritize the selection of dynamic
models using structural analysis of dynamic model properties. Finally, the
purpose of Chapter 11-12 is to describe how a diagnosis system with maximum
isolability can be constructed.

Chapter 2: A Framework for Model Based Diagnosis

A novel framework for model-based diagnosis is proposed using ideas from
artificial intelligence (AI) (Hamscher et al., 1992), fault detection and isolation
(FDI) (Patton et al., 1989, 2000; Blanke et al., 2003), and statistical hypothesis
testing (Casella and L.Berger, 1990). A diagnosis model contains all behavioral
models and an equation can be included in several different behavioral models.
To avoid multiple copies of this equation in the diagnosis model, we include
the information of which behavioral models that the equation is included in,
i.e., how the validity of the model equation depends on the behavioral modes.

The tests are, as said before, assumed to be computed off-line as in FDI (Pat-
ton et al., 1989; Gertler, 1998). It is shown how standard FDI methods, such as
residuals based on parity relations (Chow and Willsky, 1984; Frisk and Nyberg,
1999; Staroswiecki and Comtet-Varga, 2001) or observer based approach (Frank,
1994; Kinneart, 1999; Yu and Shields, 1997; Nikoukhah, 1998), can be used within
the framework for test construction. The type of tests that are used are stan-
dard hypothesis tests from statistical hypothesis testing theory and it is possible
to treat noise in a sound way. That is, even in a noisy system, faults can be
correctly isolated.

In Section 1.4, diagnosis system construction using tests based on different
small models was outlined and in Chapter 2 further details are discussed. We
introduce, the two important properties of a diagnosis system related to the
first goal to obtain good fault isolation capability of a diagnosis system, i.e.,
complete and sound. A diagnosis system is complete if all possible explanations
are contained in the output from the diagnosis system. Contrary, the diagnosis
system is sound if only possible explanations are contained in the output.

We present guidelines of how to construct each individual test in a diag-
nosis system such that the resulting diagnosis system becomes complete. A
sound and complete diagnosis system exactly computes the set of all possible
explanations and this implies that any inconsistency in any part of the diagnosis
model must be detected. For such diagnosis system, it is required that there are
tests that check the consistency of every redundant part of the diagnosis model.
A key result is a sufficient and necessary condition for which set of models
that tests can be based on, such that a sound and complete diagnosis system
exists. This condition will later be referred to as the soundness-criteria. This
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soundness-criteria can be used to compute the minimum number of tests in a
sound and complete diagnosis system, and also to find which models to test. It
is shown that the number of tests in general can be decreased by checking the
consistency of small models, and then especially the minimal sets of equations
that contain redundancy. These models will be called minimal rejectable mod-
els. In Chapter 3, 6, and 7 the solutions including minimal rejectable models
to the soundness-condition for linear static, for linear dynamic, and for general
dynamic models are investigated respectively.

Chapter 3: Soundness when Diagnosing Linear Static Systems

This chapter presents a new theory and algorithms for finding the minimum set
of models that is needed to be tested in order to obtain a sound and complete
diagnosis system when considering linear static diagnosis models. This is done
by investigating which sub-models that can be tested to obtain soundness. A
key contribution is that there exists a sound and complete diagnosis system
based on the set of all minimal rejectable models in a diagnosis model. In
general, not all minimal rejectable models need to be tested to obtain soundness,
and an algorithm for finding all minimal sufficient subsets of minimal rejectable
models is proposed.

Chapter 4: An Efficient Algorithm for Finding all MO Sets

This chapter presents an new efficient algorithm for computing all minimal
rejectable models in a linear static or dynamic model. The input to this algo-
rithm is a set of equations that contain redundancy. The algorithm is based
on a top-down approach in the sense that we start with all equations and then
remove equations step by step until a minimal rejectable model is found. The
algorithm is constructed such that the combination of equations that are re-
moved are exactly those combinations that need to be removed to find each
minimal rejectable model once and only once.

Chapter 5: An Algorithm for Finding all Feasible MO Sets

In a general diagnosis model there can be set of equations with inconsistent
validity. For example, some equation is valid only in the no-fault mode and
another only in some fault mode. A model with inconsistent validity, do not
describe the behavior in any behavioral mode and is not useful for diagnosis.
Thus, models with consistent validity will be considered and these models will
here be called feasible models.

The algorithm presented in Chapter 4, does not consider the validity of
equations. This means that if this algorithm is applied to a general diagnosis
model, minimal rejectable models with inconsistent validity are found if such
models exist.

This chapter presents a novel algorithm that handles the validity of the
equations such that only models with consistent validity are found. This is
done by restricting which equations that are allowed to be removed when
applying the algorithm presented in Chapter 4. In this way, the property that
all minimal rejectable models are found once and only once is transfered to the
extended algorithm. The algorithm presented in this chapter is not limited to
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linear models if an algorithm handling also non-linear models is used instead
of the algorithm in Chapter 4.

Chapter 6: Soundness when Diagnosing Linear Dynamic Systems

This chapter presents new theory and algorithms for linear dynamic models
corresponding to the presentation given in Chapter 3 for linear static models.
A key result is that there exists a sound and complete diagnosis system where
the tests are based on the set of all minimal rejectable models with consistent
validity. All these minimal rejectable models can be found by the algorithm
presented in Chapter 5. It will also be shown that it is in general not necessary to
test all minimal rejectable models with consistent validity. Theory for selecting
and an algorithm for finding a smallest subset of minimal rejectable models are
therefore developed.

It is also shown under a mild rank condition on the diagnosis model that
given a minimal rejectable model, the behavioral modes that influence any test
quantity derived from the model are given by the validity of the equations.
Hence no further fault influence analysis of each test quantity is needed.

Chapter 7: Soundness when Diagnosing General Systems

This chapter presents solutions to the soundness-criteria when considering a
diagnosis model with general non-linear equations. Contrary to the linear
chapters, methods for finding rejectable models are not proposed. Here, it
is assumed that it is possible to find all feasible minimal rejectable models
in the non-linear model by using some existing technique. Even though it
might be difficult to compute all minimal rejectable models, we show that there
exists a sound and complete diagnosis system with tests based on the set of
all minimal rejectable models with consistent validity. Furthermore a sufficient
and necessary condition for which set of models that is sufficient to test is
given. An example shows how this result can be used to minimize and select
models such that a sound diagnosis system can be obtained with the minimum
number of tests. Furthermore, an algorithm is proposed that given all minimal
rejectable models finds all minimal solutions to the soundness-criteria.

Chapter 8: Finding Rejectable Models Using Structural Methods

Systematic structural approaches to find models with redundancy have been
suggested in e.g. (Blanke et al., 2003), (Cassar and Staroswiecki, 1997), (Pulido
and Alonso, 2002) (Travé-Massuyès et al., 2001), and (Krysander and Nyberg,
2002a). All these approaches have in common that models with redundancy are
found among the models with more equations than unknowns. Furthermore,
of all these models, it is the minimal ones that have been used to derive test
quantities. Such models that also contains known variables will here be called
minimal structurally overdetermined (MSO) sets of equations.

In this chapter, we will formally show for linear systems that a model is an
MSO sets if and only if the model is a minimal rejectable model in the generic
case. Three different structural representations of dynamic models are recalled
from the literature. It is exemplified that MSO sets correspond to minimal
rejectable models for all three representations. The difference between the
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two main representations is whether different order of derivatives of the same
signal should be considered to be different independent signals or not. The
structural model properties are applicable also to non-linear dynamic models,
and interpreted in a similar way as for linear systems. We give examples where
the MSO sets are the minimal models that analytical redundancy relations can
be derived from by using elimination tools, i.e., the idea of testing MSO sets
can be extended to the non-linear dynamic case.

Chapter 9: An Efficient Algorithm for Finding all MSO Sets

A main contribution in this thesis is a new efficient algorithm for computing
all MSO sets in a model. The proposed algorithm is similar to the algorithm
for finding all minimal rejectable models described in Chapter 4. The only
difference is that rank operations are replaced by corresponding graph theoret-
ical operations. This algorithm can be used in combination with the algorithm
presented in Chapter 5, and then all MSO sets with consistent validity are
found.

The proposed algorithm can use any structural representation of dynamic
systems that are recalled in Chapter 8 for finding models with redundancy.
For complexity comparison, previous algorithms are recalled. Contrary to all
previous algorithms, this algorithm uses a top-down approach and it is shown
that the time complexity under certain conditions is much better for the new
algorithm. This is illustrated using a Scania truck engine model.

Chapter 10: Structural Analysis of MSO Sets of Differential-Algebraic Equa-
tions

When finding MSO sets in differential-algebraic systems the structural rep-
resentations that do not distinguish between different order of derivatives is
the most compact representation. To find all MSO sets in this representation
is therefore computationally less demanding than using the other expanded
structural representation where different order of derivatives are considered
to be separate independent variables. However, the expanded representation
provides more information about the differential algebraic system.

In this chapter, we consider an MSO set in the original representation and
shows how an MSO set in the expanded structural representation can be ob-
tained. The main reason for doing this is that the corresponding differential-
algebraic model is transformed into an algebraic model. Then test quantities
of the differential algebraic model can be obtained also be using static methods
applied to the corresponding algebraic model.

The extended MSO set is obtained by differentiating the equations included
in the original MSO set. It is desirable to differentiate the equations as few times
as possible, to avoid higher derivatives of measured signals and look-up tables.
A key result is that there exists a unique expanded MSO set where all equations
are differentiated less number of times than in any other expanded MSO set.
An algorithm is presented that given an MSO set in the original representation
returns this unique expanded MSO set. This algorithm is purely structural and
is based on the new concept of structural differentiation.
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Chapter 11: Fault Isolability Analysis of Diagnosis Systems

In this and the following chapter the focus will be on the second goal to achieve
good fault isolation capability, i.e., to find a diagnosis system with maximum
isolability. A design procedure for test selection based on isolability properties
is proposed. Two type of isolability goals can be specified. Either the maximum
isolability is the goal or a desired isolability specified by the diagnosis system
designer is the goal. The designer has to provide a set of potential test and
by following the procedure a minimum subset the potential tests is selected
with the desired isolability or the best possible isolability. It is shown that the
test quantities and the rejection regions of the potential tests do not need to be
constructed in order to decide that the tests are not needed. This means that test
quantities and rejection regions have to be derived only for the selected tests.
By computing which faults that influence each selected test, the procedure
determines if the desired or the best possible isolability has been obtained.

Chapter 12: Fault Isolability Prediction of Diagnosis Models and its Appli-
cations

In the development of processes including diagnosis, design decisions are
taken, e.g. sensor configuration selection, which affects the fault isolability
possibilities. In this chapter an algorithm for predicting fault isolability possi-
bilities using a structural model describing the process is proposed. Since only
a structural model is needed as input, the algorithm can easily predict fault
isolability possibilities of different design concepts. In contrast to previous
algorithms using structural models no assumption is imposed on the model.
The algorithm computes faults that cannot be distinguished from other faults,
which can be used to exclude design alternatives with insufficient isolability
possibility.

Furthermore, a design procedure for constructing a diagnosis system with
the maximum possible fault isolation capability is given. This design procedure
is based on isolability predictions in combination with the theory for selecting
tests in Chapter 11. The fault isolability of a diagnosis system with maximum
possible fault isolation capability and the diagnosis model is exactly the same.
Hence the fault isolation possibilities of a diagnosis model can be computed in
this way.

1.7 The Results from a User Perspective

In this section, we will give an overall picture of how the design of diagnosis
systems can be done and also point out where results from this thesis can be
applied. To encourage the use of the results, it is highly desirable to have
software support in the design procedure. The ongoing work for determining
the architecture for such a toolbox is described in (Frisk et al., 2006).

The procedure for designing a diagnosis systems contains several steps.
Important steps are the following:

a) Deriving fault isolability requirements.

b) Constructing a diagnosis model of the process.
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c) Performing detectability and isolability analysis on the diagnosis model.

d) Selecting models for test construction.

– Compute minimal rejectable models.

– Specify if soundness or maximum isolability should be the design
goal.

– Select a minimum cardinality set of models that may fulfill the chosen
goal.

e) Designing tests for each selected model.

– Design a test quantity with an appropriate method.

– Compute a proper rejection region by using simulations and/or mea-
surements.

– Evaluate the fault influence of the test and if needed go back to
step (d).

f) Selecting fault isolation algorithm.

Next the different steps will be described. The focus of this thesis is on
steps (c) and (d) and the descriptions of these steps are therefore more detailed
than the other steps.

1.7.1 Deriving Fault Isolability Requirements

In step (a), different faults of the process are identified. This can be done by
using fault tree analysis that is a systematic way to investigate credible causes
for an undesired event in a process (Stamatelatos and Vesley, 2002; Vesley
et al., 1981) or by using failure mode and effect analysis (Stamatis, 1995). By
evaluating how the different faults effects the process behavior, intolerable
consequences is found and fault isolability requirements can then be specified.
The positive effects of including diagnosis can then be evaluated by an extended
fault tree analysis according to (Åslund et al., 2006).

1.7.2 Constructing a Diagnosis Model of the Process

In step (b) a diagnosis models is constructed according to the modeling frame-
work that is proposed in Chapter 2. The modeling guidelines proposed in
Section 12.5 can also be consider to improve model selection using structural
analysis.

1.7.3 Performing Detectability and Isolability Analysis

The purpose of step (c) is to investigate if there can exist some diagnosis system
with the required fault isolability. This analysis can be done with the methods
proposed in Chapter 12. If the answer is no, additional fault modeling or
additional sensors must be used and this is exemplified in Chapter 12. If the
fault isolability requirements can be met, then diagnosis system construction
can begin.
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1.7.4 Selecting Models for Test Construction

The first part in step (d) is to compute all minimal rejectable models. If the
diagnosis model is linear, then linear methods described in Chapter 3-6 can be
used. If the diagnosis model is non-linear, we need to decide if we want to use
a linearization of the model and apply the linear methods or if we want to use
the structural methods presented in Chapter 8 and 9.

The second part of step (d) is to chose which goals for obtaining good
isolability that we will used, i.e., to aim for completeness and soundness or to
aim for obtaining maximum isolability.

The third part of step (d) is to select a minimum cardinality subset of minimal
rejectable models that may fulfills the chosen goal. If soundness is the goal, then
methods in chapters 3, 6, and 7, can be used for linear static, linear dynamic,
and non-linear models respectively. If maximum isolability is the goal, the
methods in chapters 11, and 12 can be used.

There might exist several possible minimum cardinality sets of minimal
rejectable models and this rises the question which set of models to use. In
Section 1.4.1, we argued that the models should be selected such that a test
can be derived from each model with some existing tool. By using the graph-
theoretical algorithm presented in Chapter 10, it is possible to prioritize between
dynamic models by predicting dynamical properties and this prioritization can
be used for model selection.

1.7.5 Designing Tests for the Selected Models

In step (e), a test quantity and a rejection region are designed for each selected
model. Each model needs to be considered separately to use an appropriate
tool for test construction. For example, if the model is linear, then linear resid-
ual generation can be used to obtain a test quantity (Chow and Willsky, 1984;
Nyberg and Frisk, 2006). If the model is polynomial, gröbner basis elimination
techniques can be used (Frisk, 2001; Staroswiecki and Comtet-Varga, 2001). If
high order of derivatives are included in an analytical redundancy relation,
then an observer based method can be tried (Frank, 1994; Kinneart, 1999; Yu
and Shields, 1997; Nikoukhah, 1998). Test quantities are derived from the deter-
ministic diagnosis model that might contain model uncertainties, for example
that noise has been neglected. Simulations and measurements from a real pro-
cess can be used to verify the test quantity is applicable to real process data and
also be used to select a proper rejection region. When a rejection region has
been determined, the set of faults that influence the test can be investigated by
implementing different faults in models and simulate the test response. This
can also be done by implementing faults on a running process and use the
measurement data in the same way. If the fault influence is different from
the expected fault influence used in step (c) for model selection, it might be
necessary to return to step (c) and make a new selection.

1.7.6 Selecting Fault Isolation Algorithm

Finally, in step (f) a suitable fault isolation algorithm should be selected, i.e., to
design the unit “Fault Isolation” in Figure 1.2. If only single faults or few be-
havioral modes are considered, structured hypothesis tests can be used (Nyberg,
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1999). If multiple faults with only two modes per component are considered,
then the algorithm in (Kleer and Williams, 1987) can be used. If multiple faults
and fault modes are considered the isolation algorithm in (Nyberg, 2006) can
be used.

By combining the designed tests and the selected isolation algorithm as seen
in Figure 1.2, a diagnosis system is obtained.

1.8 Main Contributions

The main contributions are summarized in the following list.

• The framework combining methods from AI and FDI for diagnosis pre-
sented in Chapter 2.

• Theorem 7.3 that gives a necessary and sufficient condition expressed in
terms of minimal rejectable models for which sets of models that a sound
and complete diagnosis system can be based on.

• Corollary 7.1 that states that there exists a sound and complete diagnosis
system based on all feasible minimal rejectable models in a diagnosis
model.

• Algorithm 4 for finding all minimal rejectable models in a linear static or
dynamic diagnosis model.

• Algorithm 7 for finding all feasible minimal rejectable models or all fea-
sible MSO sets.

• Theorem 8.6 that establish a formal link between structural and analytical
methods.

• Algorithm 11 for finding all MSO sets in model.

• Algorithms for finding all minimal set of models the fulfills the soundness-
criteria. For linear static models Algorithm 2 in combination with Al-
gorithm 1 can be used, for linear dynamic models and Algorithm 2 in
combination with Algorithm 8 are applicable, and for general dynamic
models Algorithm 9 should be used.

• Algorithm 12 that transforms an MSO set of differential-algebraic equa-
tions into an MSO set of algebraic equations.

• The isolability analysis of a diagnosis model using the two structural
methods proposed in Section 12.2 and in Section 12.3.

• The procedure in Section 12.7.4 for designing a diagnosis system with
maximum isolability and with the minimum number of tests.
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A F M B
D

Fault diagnosis has in the literature been studied from mainly two different
perspectives. The first is control theory (here denoted FDI), e.g. see (Gertler
and Singer, 1990; Gertler, 1998) and the second is AI, e.g. see (Kleer et al., 1992;
Reiter, 1987; Kleer and Williams, 1987; Hamscher et al., 1992). In the field of
control theory, the literature on fault diagnosis has mostly been focused on the
problem of residual generation. That is, given a model of the system, how to off-
line construct residual signals that are zero in the fault-free case but sensitive
to faults. In the field of AI, the focus has been on fault isolation and how to
on-line compute what is here called residuals. In this chapter we show how
methods from FDI and AI (or more exactly consistency-based diagnosis) can
be combined into a common framework for fault diagnosis that will be used in
this thesis. The framework proposed is also based upon ideas from statistical
hypothesis testing in accordance with the method structured hypothesis tests
from (Nyberg, 2002a, 1999).

The modeling of the system to be diagnosed, and the isolation of faults,
follows mainly ideas from AI (Dressler et al., 1993). The key point here is
to add information in the model of how the validity of each model equation
depends on which faults that are present in different components. Isolation is
then performed by propagating this information through the diagnosis system.
However, one difference is that residuals are assumed to be computed off-line
as in FDI. Therefore the on-line machinery can be made more simple, e.g. there
is no need to use a so called ATMS (Assumption based Truth Maintenance
System) which is common in AI (Kleer and Williams, 1987). All decisions taken
in the diagnosis system are based on the theory of statistical hypothesis testing.
This means for example that noise and uncertainties can be handled in a sound
way.

By combining these ideas from FDI, AI, and hypothesis testing, we will
obtain a framework that is able to efficiently handle: fault models, several
different fault types (e.g. parameter- and additive faults), more than two be-

21



22 Chapter 2. A Framework for Model Based Diagnosis

q1

q2

u

yq

yw

w

P

Q

WT

Figure 2.1: The system to be diagnosed. The location of possible faults are
denoted with a red flash.

havioral modes per component, general differential-algebraic models, noise,
uncertainties, decoupling of disturbances, static and dynamic systems, and
isolation of multiple faults.

The modeling framework and how information about different faults is
incorporated in the model are described in Section 2.1. The design of a diagnosis
system is then presented in Sections 2.2 and 2.3. The connection to FDI methods
are more explicitly elaborated in Section 2.4. Finally, Section 2.5 discusses the
output from the diagnosis system.

2.1 Modeling Framework

This section describes the modeling framework that is later used in the construc-
tion of the diagnosis system. Using this modeling framework, all information
about the faults are included in the model. This fault information is then the
basis for the reasoning about faults.

Throughout the chapter, we will exemplify some concepts and techniques
on the following example.

Example 2.1
The example chosen is shown in Figure 2.1 and represents a water-tank system.
This system has a pump that is pumping water into the top of a tank. The pump
is controlled by a control signal u. The water flows out of the tank through a
pipe connected to the bottom of the tank. The flows into and out of the tank
are denoted qi, and the water-level in the tank is denoted w. The water-level in
the tank and the outflow of the tank are measured by sensors. The water-level
sensor signal is yw, and the outflow sensor signal is yq.

2.1.1 Components

We assume that the system consists of a set C of components. The behavior
of each component, and the relation to its outer world, are described by a
number of relations. A variable in the relations for a component is either an
internal variable or an external variable. External variables are variables that
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Table 2.1: Possible behavioral modes for each component of the water-tank
system.

Component Possible Behavioral Modes
Pipe P ∈ {NF,UF}
Tank T ∈ {NF,C,UF}
Water-level sensor W ∈ {NF,UF}
Flow sensor Q ∈ {NF,B,UF}

are shared with connected adjacent components or can be observed. Internal
variables are only known within the component itself. Another alternative,
not exploited here, is to consider all variables to be internal variables and then
describe interconnections between components explicitly by using equations,
e.g. the object-oriented modeling-language Modelica.

Example 2.2
The water-tank system introduced in Example 2.1 and shown in Figure 2.1
consists of four components, i.e. a pump, a tank, a water-level sensor, and a
flow sensor. These components will be denoted P, T, W, and Q respectively
and are illustrated in Figure 2.1 by the four dashed boxes. This means that the
set C of components is C = {P,T,W,Q} in this case.

2.1.2 Component Behavioral Modes

The behavior of a component can vary depending on which behavioral mode the
component is in. Different type of faults are typically considered to be different
behavioral modes. Examples of behavioral modes for a sensor are no-fault,
short-cut, bias, and unknown fault. Abbreviations like NF for no-fault, C for
clogging, B for bias, and UF for unknown fault will be used. Furthermore, if
for example c is a component then c will also with a little abuse of notation be a
variable describing which behavioral mode the component is in. For example
c = NF will denote that c is in behavioral mode NF. The set of all possible
behavioral modes for component c is denoted by Bc. It is assumed that a
component is in exactly one of its possible behavioral modes, i.e. c ∈ Bc.

Example 2.3
For the water-tank system, the four components are assumed to have the pos-
sible behavioral modes shown in Table 2.1.

2.1.3 Component Behavior

The behavior of each component is as said before described using relations.
That is, for each component c there is a set of relations Mc = {eic , eic+1, eic+2, ...}
describing the behavior of that component. The validity of each relation can
in some cases depend on which behavioral mode the component is in. For
the water-tank example, we can have the case that a relation yq = q2 holds if
component Q is in behavioral mode NF, i.e. Q = NF, but not necessarily if
Q = B. This means that together with each relation eic , there is an assumption
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of the type c = F1 (or a disjunction c = F1 ∨ c = F2 ∨ . . .) that must be fulfilled
before the relation eic can be assumed to hold.

Example 2.4
The assumptions and the relations for all components of the water-tank system
are shown in Table 2.2. The equations describe the pump, the conservation of
volume in the tank, the outflow from the tank caused by the gravity derived
from Bernoulli’s equation, the outflow from the tank caused by the gravity when
a clogging fault is present, a fault model for a constant clogging fault fc, the
water-level measurement, the outflow measurement, the outflow measurement
when the sensor has a bias fault and a fault model for the outflow-measurement
fault fyq. The first equation describing the behavior of the tank has no assump-
tion, i.e. that equation is always true.

Table 2.2: An analytical model for the water-tank system shown in Figure 2.1.

Assumption Equation Expression
Pump

P = NF e1 u = q1
Tank

e2 ẇ = q1 − q2
T = NF e3 w = q2

2
T = C e4 w = (1 − fc)q2

2
T = C e5 ˙fc = 0

Water-level sensor
W = NF e6 yw = w

Flow sensor
Q = NF e7 yq = q2
Q = B e8 yq = q2 + fyq

Q = B e9 ˙fyq = 0

2.1.4 System and System Behavioral Modes

The set of all available equations for the system is supposed to describe all
information about the behavior of the system. The set of all equations is denoted
M and is equal to the union of all equations describing the components, i.e.

M =
⋃

c∈C

Mc

Further on it needs to be defined which variables in M that are possible
to observe, i.e. which variables that are known and which variables that are
unknown. The set of known variables is denoted Z and the set of unknown
variables is denoted X. For the model in Table 2.2, Z = {u, yw, yq} and X =
{q1, q2,w, fc, fyq}.

The models can be static, dynamic time-discrete, or dynamic time-continuous.
For each type of model all variables are assumed to have equal domains. For
the static case, the domain of each variable is assumed to be all real numbersR.
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For the dynamic time-discrete case, the domain of each variable is assumed to
be all time-discrete signals for some finite or infinite time-interval where each
time-sample is in the range ofR. Finally, for the dynamic time-continuous case,
the variables are assumed to be time-continuous signals with range R and for
some finite or infinite time-interval.

For any of the three cases, let x and z be the vectors of the variables in X and
Z respectively. The domains of x and z are then denoted X and Z respectively.
For the model in Table 2.2, x and z are time-continuous signals.

As well as defining behavioral modes for components, it is possible to de-
fine behavioral modes called system behavioral-modes for systems. A system
behavioral-mode completely determines the behavioral mode of all compo-
nents in the system, i.e. ∧c∈C(c = bc) where bc ∈ Bc for each c ∈ C. This is also
called a complete mode assignment (Dressler and Struss, 1994).

An example of a system behavioral-mode for the water-tank system is P =
NF ∧ T = C ∧W = NF ∧ Q = B meaning that P is in behavioral mode NF, T
in C, W in NF, and Q in B. If an ordering of the components is assumed, an
alternative representation is to write a system behavioral-mode using a tuple,
e.g. 〈P,T,W,Q〉 = 〈NF,C,NF,B〉. The notation sys = 〈NF,C,NF,B〉 will be
used to denote that the system is in system behavioral-mode 〈NF,C,NF,B〉.
If there is a components with only one component behavioral mode, then the
behavioral mode that this component is in, can for notational convenience be
omitted in the tuple.

A system behavioral mode is said to be a single fault mode if exactly one
component is in a faulty mode and all other modes are in the no-fault mode. In a
similar way double faults and multiple faults refer to the number of components
that are in a faulty mode. For the example 〈NF,C,NF,NF〉 is a single fault mode
and 〈NF,C,NF,B〉 is a double and a multiple fault mode.

Like component behavioral-modes, we can use abbreviations to denote
system behavioral-modes. This is especially practical when only single-faults
are considered. For example for the water-tank system, the system behavioral
modes 〈P,T,W,Q〉 = 〈NF,NF,NF,NF〉 and 〈P,T,W,Q〉 = 〈UF,NF,NF,NF〉 can
be written NF and UFP.

Another case when it is practical to use abbreviations for system behav-
ioral modes is when each behavioral mode only have one no-fault mode and
one faulty mode and multiple faults are considered. Then the faulty compo-
nents denote the corresponding behavioral mode. For example 〈P,T,W,F〉 =
〈UF,NF,NF,NF〉 and 〈P,T,W,F〉 = 〈UF,UF,NF,NF〉 can be written as P and PT
respectively.

The set of all possible system behavioral modes will be denoted by B. For
the water-tank example, the set of all system behavioral modes B is defined
to be all 22 32 = 36 system behavioral-modes B = {NF,UF} × {NF,C,UF} ×
{NF,UF} × {NF,B,UF}. For the first equation in Table 2.2 the corresponding
assumption is P = NF. This assumption defines a set {NF} × {NF,C,UF} ×
{NF,UF} × {NF,B,UF} ⊂ B which is the set of system behavioral-modes where
P = NF. This set will be denoted φ(P = NF). To each equation e ∈ M there
will be a corresponding set of system behavioral-modes denoted assump(e) for
which equation e can be assumed to be valid, i.e.

assump : M 7→ P(B)

where P denotes the power set. A relation and its corresponding assumption
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can then be written
sys ∈ assump(e)→ e (2.1)

For the first equation e1 in Table 2.2, assump(e1) = φ(P = NF).
Finally, all introduced sets and the mapping assump are collected into a

tuple 〈M,X,X,Z,Z,B, assump〉. This tuple is said to be a diagnosis model and
will be denotedM.

2.1.5 Diagnosis

To be able to diagnose a system, values of the known variables from the system
and a diagnosis model of the system are needed. The known variables are
typically measured sensor signals and actuator signals. The information about
the known signals will in this thesis be of one of the following three different
types:

• a snap-shot

• several sampled values in a time-window

• a continues function in a time-window

All these types will be exploit in later chapters. A snap-shot, some sampled
values, or a continuous functions recorded for the diagnosis task will be called
an observation, i.e. a value z0 of z.

A set M ⊆ M of equations is called a model. A model M ⊆ M is said to be
consistent with an observation z ∈ Z if

∃x ∈ X : ∧e∈Me(x, z) (2.2)

For notational convenience, ∧e∈Me(x, z) will be abbreviated M(x, z). Given an
observation, a model is said to be inconsistent if the observation is not consistent
with the model. The set of consistent observations for a model M is defined as

O(M) = {z ∈ Z|∃x ∈ X : M(x, z)} (2.3)

and is called the observation set of M. To determine if z ∈ O(M) for a given
observation z will be called to check the consistency of a model M.

Example 2.5
If the equations in Table 2.2 are considered and M = {e3, e6, e7}, then z ∈ O(M) if
and only if yw = y2

q , i.e. an equation obtained when eliminating all unknown
variables in M.

It is assumed that the system behaves in accordance with the diagnosis
model. This implies that an especially important type of model is the type that
describes the behavior of the system when it is working in a behavioral mode.
Given a behavioral mode b ∈ B, a model

Mb = {e ∈M|b ∈ assump(e)} (2.4)

is a behavioral model for b.
Example 2.6
For the water-tank example in Table 2.2, the behavioral model for NF is MNF =

{e1, e2, e3, e6, e7} and the behavioral model for UFP is MUFP
= {e2, e3, e6, e7}.
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Behavioral models will next be used to define which behavioral modes that
are consistent with an observation.

Definition 2.1 (Diagnosis). Given an observation z ∈ Z, a behavioral mode b ∈ B is
a diagnosis if its behavioral model Mb is consistent with z.

Note that this definition of diagnosis is equivalent to the one used in con-
sistency based diagnosis (Hamscher et al., 1992). The set of behavioral modes
that are diagnoses given an observation z is denoted

D(z) = {b ∈ B|z ∈ O(Mb)} (2.5)

The set of observations consistent with the diagnosis model, i.e. consistent with
at least one of the behavioral models, can be expressed as

∪b∈BO(Mb)

and is a subset of Z. If it is a proper subset, important behavioral modes can
have been neglected. From now on we will assume that equality holds, i.e.

Z = ∪b∈BO(Mb) (2.6)

This is no restriction since behavioral modes describing unknown faults can be
added to obtain (2.6).

2.2 Diagnosis Tests

A diagnosis system is assumed to consist of a set of diagnosis tests which is a
special case of a general statistical hypothesis test (Casella and L.Berger, 1990)
and a procedure to compute consistent behavioral modes by using the outcome
of the tests. This idea has been described as structured hypothesis tests (Nyberg,
2002a). We will in this section discuss diagnosis tests and later, in Section 2.3,
describe how several diagnosis tests are combined to form a diagnosis system.

To define a diagnosis test we need the notion of a test quantity Ti(z) which is
a function from the observations z to a scalar value. A diagnosis test for a noise
free model can then be defined as follows:

Definition 2.2 (Diagnosis Test, δi). Let Φi ⊆ B and let sys denote the system
behavioral mode that the system to be diagnosed is in. A diagnosis test δi for the null
hypothesis H0

i
: sys ∈ Φi is a hypothesis test consisting of a test quantity Ti : Z 7→ R

and a rejection region Ri ⊂ R such that

sys ∈ Φi → Ti(z) < Ri (2.7)

The complement of the null hypothesis is called the alternative hypothesis
and is denoted by H1

i
: sys < Φi. Definition 2.2 means that if Ti(z) ∈ RC

i
, sys ∈ Φi

can not hold. This is the same thing as saying that the null hypothesis H0
i

is
rejected and the alternative hypothesis H1

i
is accepted. The statement sys ∈ Φi

becomes in this case a so called conflict (Kleer and Williams, 1987), i.e. an
expression in behavioral modes that is in conflict with the observations.

Example 2.7
For the water-tank example, consider a diagnosis test δ1 for the null hypothesis

H0
1 : (T = NF) ∧ (W = NF) ∧ (Q = NF) (2.8)
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i.e. Φ1 = φ(T = NF ∧W = NF ∧ Q = NF). According to the model in Table 2.2
we have that sys ∈ Φ1 implies that the equations in {e2, e3, e6, e7} are true. From
these equations, it is possible to derive that

yw − y2
q = 0 (2.9)

This means that a test quantity can be defined at time t as

T1(t) = yw(t) − yq(t)2 (2.10)

and a rejection region R1 = {x|x < [−0.1 0.1]} implies that

sys ∈ Φ1 → T1(t) = yw(t) − yq(t)2 = 0 < R1 (2.11)

That is, these choices of T1 and R1 fulfill the criterion (2.7) for being a diagnosis
test for the null hypothesis in (2.8). When |T1| > 0.1 we reject the null hypothesis
sys ∈ Φ1 and draw the conclusion sys < Φ1, or as expressed in logic (Nyberg
and Krysander, 2003)

¬(T = NF ∧W = NF ∧Q = NF) ≃ T ∈ {C,UF} ∨W = UF ∨Q ∈ {B,UF} (2.12)

Note that to evaluate ≃, the assumption that each component is in exactly one
of its component behavioral modes, i.e. the assumptions for W, Q, and T shown
in Table 2.1 must be used.

No conclusion is drawn from a test in which the null hypothesis has not
been rejected. That is, to reject null hypotheses is the only way the diagnosis
system can draw conclusions. Note that it is usually not true that sys ∈ Φi holds
when H0

i
: sys ∈ Φi is not rejected. It would sometimes be possible to assume

something else. However, it is in general difficult (or impossible) to construct
Ti(z) and Ri so that such a conclusion can be drawn when the null hypothesis
is not rejected.

Another reason why no conclusion is drawn when the null hypothesis is
not rejected is that it is not needed. If there is a conclusion that really can be
drawn from Ti1 (z) ∈ RC

i1
, it is always possible to add another diagnosis test

δi2 to the diagnosis system such that this conclusion can be drawn anyway.
The suggested framework does not allow us to draw a conclusion when a null
hypothesis is not rejected, but this desired conclusion can be obtained if we
instead add another test δi2 with Φi2 = Φ

C
i1

, Ti2 = Ti1 , and Ri2 = RC
i1

.

2.2.1 Diagnosis Tests and the Model

The idea of model-based diagnosis is to utilize the diagnosis modelM in the
construction of the diagnosis tests. For each diagnosis test δi, not necessarily
all equations in M are utilized as seen in Example 2.7. Instead only a subset
Mi ⊂ M might be considered. This means that, in addition to Φi, Ti(z), and
Ri, also a model Mi is considered when constructing a diagnosis test. Next
we will discussed how Ti(z), Ri, Φi, and Mi can be related to fulfill the basic
requirement (2.7). To do this the operator assump is first generalized.

In Section 2.1.4, the notion assump(e) was used to pick out the system
behavioral modes that implies the relation e. Here we will use assump to pick
out the assumption also for a set of model relations as follows

assump(M) =
⋂

e∈M

assump(e) (2.13)
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With the extended assump operator, we are now able to formulate two
guidelines for ensuring that the requirement (2.7) is fulfilled.

a) The set Mi and the null hypothesis Φi should satisfy

Φi ⊆ assump(Mi) (2.14)

or even better,
Φi = assump(Mi) (2.15)

b) The set Mi, the test quantity Ti(z), and the rejection region Ri should
satisfy

z ∈ O(Mi)→ Ti(z) ∈ RC
i (2.16)

If Mi is the model that corresponds to a diagnosis test δi, then we will motivated
by the guidelines say that the model Mi is tested. Note that by definition of
assump(Mi), it holds that

sys ∈ assump(Mi)→ z ∈ O(Mi) (2.17)

This means that if the guidelines (a) and (b) are followed, then it holds that

Ti(z) ∈ Ri → z < O(Mi)→ sys < assump(Mi)→ sys < Φi (2.18)

That is, when the test quantity is within the rejection region, we can draw the
conclusion that sys ∈ Φi can not hold. This expression is equivalent to the
requirement (2.7) so the design goal has been achieved. Note that if (2.15) holds
instead of only (2.14), a stronger conclusion can in general be drawn in (2.18).
As said above, (2.15) is therefore a better choice than (2.14).

Given a model Mi, there exists many methods to compute a test quantity Ti

and a rejection region Ri that satisfy (2.10). One alternative is to eliminate all
unknown variables in Mi to derive equations containing only known variables.
An equation a(z) = 0 derived from Mi satisfies

z ∈ O(Mi)→ a(z) = 0 (2.19)

and is said to be a consistency relation, also called analytical redundancy relation or
parity relation. The consistency relation a(z) = 0 can then used in the construction
of a test quantity. Some works on the consistency relation based approach
are (Staroswiecki and Comtet-Varga, 2001; Frisk and Åslund, 2005; Yu and
Shields, 1997; Basseville and Nikiforov, 1993). Other alternatives that may
be used are to make an observer based design (Frank, 1994; Kinneart, 1999;
Nikoukhah, 1998; Persis and Isidori, 2001; Massoumnia et al., 1989) or to make
an identification based design (Isermann, 1993). Test quantity construction is
not the subject of this thesis, but some design methods will be exemplified in
examples.

Example 2.8
For the water-tank example consider the diagnosis test δ1 constructed in Ex-
ample 2.7. The test quantity in (2.10) was derived from the equations M1 =

{e2, e3, e6, e7}, i.e. M1, T1, and Φ1 satisfy (2.16), i.e. guideline (b). Furthermore,
it holds that assump(M1) = Φ1, i.e. guideline (a) is also fulfilled. Note that
with the same T1, R1, and Φ1, the model M1 could also have been chosen as
M1 = {e3, e6, e7} to fulfill both guidelines. This is the minimal equation set from
which T1 can be derived. Later in this chapter, minimal sets from which test
quantities can be derived will be of special interest.
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2.3 Diagnosis System

A diagnosis system using the principle of consistency-based diagnosis takes the
observations and tries to conclude which behavioral modes that are consistent
with the observations. The output of the diagnosis system is therefore a set of
system behavioral modes that the diagnosis system claims to be consistent with
the observations. This set will be denoted by C and the behavioral modes in C
are said to be candidates. Formally a diagnosis system based on the principle of
structured hypothesis tests can be defined as follows:

Definition 2.3 (Diagnosis System, ∆). A diagnosis system is a set ∆ of diagnosis
tests, i.e. ∆ = {δ1, δ2, . . .} of diagnosis tests together with the procedure to form the set
of candidates as

C(z) =
⋂

H0
i

rejected

ΦC
i (2.20)

According to the definition, a diagnosis system ∆ defines a function from
the set of all possible observations z to P(B), i.e.

∆ : Z→ P(B)

The candidates are ideally equal to the diagnoses. In practice, it is not efficient to
compute the candidates in accordance with (2.20). An efficient way to compute
the candidates can be found in (Nyberg, 2006).

2.3.1 Strategies for Designing Diagnosis Systems

To design a diagnosis system consists of finding the set of diagnosis tests to
be included, and also for each diagnosis test, a test quantity Ti(z), a rejection
region Ri, and a null hypothesis H0

i
. We will here study two different strategies

for finding these items. The first starts from a given set of null hypotheses H0
i
,

and the second from the diagnosis modelM of the system to be diagnosed.

2.3.2 Starting From Null Hypotheses

One way of starting the design of a diagnosis system is simply to decide which
null hypotheses to test, and then construct a suitable test quantity and rejection
region for each hypothesis test. One straightforward strategy is for example
to have one diagnosis test for each of the system behavioral-modes. This is
especially attractive when only single faults are considered. For example, if the
possible system behavioral-modes are NF, F1, F2, and F3, then the four null
hypotheses become

H0
1 : sys ∈ Φ1 = {NF}

H0
2 : sys ∈ Φ2 = {F1}

H0
3 : sys ∈ Φ3 = {F2}

H0
4 : sys ∈ Φ4 = {F3}

To fulfill (2.7), it is suggested to follow the guidelines (a) and (b) above. The
guidelines will then tell us how to choose Mi, namely any set such that (2.14) is
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fulfilled. The test quantity Ti and the rejection regionRi should then be selected
to fulfill (b).

Example 2.9
Consider again the water-tank example and assume that we want to design a
diagnosis test for the null hypothesis H0

2 : sys = NF. The requirement (2.14)
is fulfilled for M2 = MNF. By eliminating the unknown variables using the
diffalg package in Maple, we obtain

yw − y2
q = 0

2ẏqyq − yq + u = 0

The first consistency relation is the one used in test quantity T1 in Example 2.7
and therefore we will now use the second consistency relation. In the second
consistency relation, there is an differentiated signal ẏq that either can be ap-
proximated or eliminated introducing dynamics (Frisk and Åslund, 2005). If
the latter alternative is chosen a so called residual r can be defined as

ṙ + βr =
d

dt
(y2

q) − yq + u (2.21)

where β > 0 to ensure stability. A residual is a signal should be zero in the
fault-free case. The above expression can then be written in a state-space form

ẋ = −β(x + y2
q) − yq + u

r = x + y2
q

(2.22)

without the derivative ẏq as input. For a time t, a test is defined by selecting
T2(t) = r(t) where r is defined in (2.22) and R2 = {x|x < [−0.1 0.1]}. An unknown
initial value of x in (2.22) leads in general to a non-zero r in the fault free case.
However r converge, by construction, exponentially to zero if sys = NF. Hence,
if the influence on r(t) of an incorrect initial condition is less than 0.1 at time t,
then M2, T2(t), R2 fulfill (2.16).

2.3.3 Starting From the Model

The idea of this strategy is to start out from the model relations and investigate
which relations that can be grouped together to form models possible to test in
diagnosis tests (Blanke et al., 2003), (Cassar and Staroswiecki, 1997), (Pulido and
Alonso, 2002) (Travé-Massuyès et al., 2001). The null hypothesis H0

i
: sys ∈ Φi

will then be chosen as Φi = assump(Mi). In this way the relation (14) will of
course be fulfilled. Then the selection of the test quantity Ti and the rejection
region Ri should follow (b).

One requirement is that assump(Mi) , ∅. If this requirement would not be
fulfilled, it would hold that ΦC

i
= B. This means that the result of rejecting a

null hypothesis would be that we can draw the conclusion sys ∈ B, i.e. the test
can never provide any information.

Definition 2.4 (Feasible). A set M of equations is feasible if assump(M) , ∅.

Another requirement on the subset Mi is that there must be some z such
that the relations Mi cannot all be fulfilled and this motivates the following
definition.
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Table 2.3: Rejectable models contained in (2.4).

i Model Mi Assumption Φi = assump(Mi)
1 {e3, e6, e7} φ(T = NF ∧W = NF ∧Q = NF)
2 {e1, e2, e3, e7} φ(P = NF ∧ T = NF ∧Q = NF)
3 {e1, e2, e6, e7} φ(P = NF ∧W = NF ∧Q = NF)
4 {e1, e2, e3, e6} φ(P = NF ∧ T = NF ∧W = NF)
5 {e4, e5, e6, e7} φ(T = C ∧W = NF ∧Q = NF)
6 {e3, e6, e8, e9} φ(T = NF ∧W = NF ∧Q = B)
7 {e4, e5, e6, e8, e9} φ(T = C ∧W = NF ∧Q = B)
8 {e1, e2, e6, e8, e9} φ(P = NF ∧W = NF ∧Q = B)
9 {e1, e2, e4, e5, e7} φ(P = NF ∧ T = C ∧Q = NF)
10 {e1, e2, e3, e8, e9} φ(P = NF ∧ T = NF ∧Q = B)
11 {e1, e2, e4, e5, e6} φ(P = NF ∧ T = C ∧W = NF)
12 {e1, e2, e4, e5, e8, e9} φ(P = NF ∧ T = C ∧Q = B)

Definition 2.5 (Rejectable). A set M of equations is rejectable if

∃z ∈ Z∀x ∈ X : ¬M(x, z) (2.23)

Note that a feasible model M is rejectable if and only if

(
⋃

b∈B

O(Mb)) \ O(M) , ∅ (2.24)

This means that there are possible observations that makes the model M in-
consistent. If the model Mi is not a rejectable model, the test quantity would
always be zero, or close to zero, and the test would make no sense.

The next definition is related to the notion of a rejectable model.

Definition 2.6 (Analytical Redundancy). There exists analytical redundancy in
a model M if it is rejectable.

This definition is in accordance with the definition of analytical redundancy
in (Isermann and Balle, 1997). The question that remains is how to find subsets
Mi that are feasible and rejectable. Given some natural assumptions about the
model, the problem of finding suitable subsets Mi can often be solved by only
studying the structural properties of the model. This is not the topic of this
chapter but will be discussed later in Chapter 8.

Example 2.10
Now consider the water-tank system and assume that the subsets Mi with their
corresponding assumptions assump(Mi) shown in Table 2.3 have been found to
be rejectable models by studying the structural properties of the model. Exactly
how these sets are computed are described in Example 8.11. As said above, Φi

is then chosen asΦi = assump(Mi). By eliminating unknown variables with for
example the diffalg-package in Maple, one consistency relation can be derived
from each model Mi. These consistency relations are shown in Table 2.4. With
these consistency relations, test quantities Ti(z) and rejection regions Ri can be
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Table 2.4: Consistency relations for the rejectable models in Table 2.3.

Consistency Relation
1 yw = y2

q

2 ẏq = (−yq + u)/(2yq)
3 ẏw = −yq + u
4 ẏ2

w = yw + 2ẏwu − u2

5 ẏw = 2ẏqyw/yq

6 ẏ2
w = 4ẏ2

q yw

7 ÿw = ẏw(ẏw ẏq + 2ÿqyw)/(2ẏqyw)
8 ÿw = −ẏq + u̇
9 ÿq = ẏq(yqu̇ − ẏqu)/(yq(−yq + u))
10 ÿq = (−4ẏ2

q − 4ẏ3
q + 2u̇ẏq − ẏq + u̇)/(2u)

11 ÿw = (ẏ2
w − ẏwu + 2u̇yw)/(2yw)

12
...
y2

q = −(4ẏ2
q ÿ3

q + 3uüÿ3
q + 4ẏ2

qüÿ2
q − 3uÿ4

q − 6u̇ẏq ÿ3
q + ẏ2

qü2 ÿq − 3u̇ẏqüÿ2
q−

2u̇ẏ2
q

...
y q ÿq + 4

...
y quẏq ÿ2

q − uü
...
y q ẏq ÿq − 3u

...
y qu̇ÿ2

q − u̇ẏ2
qü

...
y q+

3u̇2 ẏq

...
y q ÿq)/(ẏqu(−ẏq + u̇))

constructed to fulfill (b). The complexity of the consistency relation derived
from the set M12 indicates that an observer based approach might be a better
alternative for this model.

2.4 Connection to FDI Methods

FDI methods presented in the literature, have focused mostly on residual gen-
eration and how disturbances and faults are to be decoupled. To use residuals
is the most common way to construct test quantities within the field of FDI.
The reason to decouple disturbances is to avoid false alarms, and the reason to
decouple faults is to obtain residuals that are sensitive to different subsets of
faults, so that isolation can be performed. From a residual ri, a test quantity can
for example be formed as Ti = |ri| or

Ti =

t=t0+N∑

t=t0

r2
i (t) (2.25)

Consider a linear system, typically found in FDI literature:

ẋ =

[

1 1
1 0

]

x +

[

0
2

]

ua +

[

1
1

]

d +

[

2
1

]

f1 +

[

1
0

]

f2 (2.26a)

y =





1 0
0 1
1 1




x +





0
0
1




d (2.26b)

where x is the dynamic state, ua the actuator signal, y the sensor signals, and
d an unknown disturbance signal. The signals f1 and f2 are used to model
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two different faults of the system and are non-zero only if the corresponding
fault is present. The system itself is considered to be one component with
three possible behavior modes: NF, F1, and F2. As seen, no actuator or sensor
faults have been considered. A model M for this system, rewritten using the
modeling framework suggested here is shown in Table 2.5.

Table 2.5: The model (2.26) rewritten using the modeling framework suggested
here.

Assumption Equation Expression
e1 ẋ1 = x1 + x2 + d + 2 f1 + f2
e2 ẋ2 = x1 + 2 ua + d + f1
e3 y1 = x1
e4 y2 = x2
e5 y3 = x1 + x2 + d

sys ∈ {NF,F2} e6 f1 = 0
sys ∈ {NF,F1} e7 f2 = 0

The goal now is to find some residual for the system (2.26). In all residuals,
the unknown disturbance d must be decoupled. To facilitate isolation, the goal
is also to decouple different faults in different residuals. By linear-algebra ma-
nipulations of the system (2.26) (e.g. see (Nyberg and Frisk, 2006)), a number of
residual generators can be found (here in the form of so called parity relations),
for example:

r1 = −ẏ1 + y3

r2 = 4ua + ẏ1 − 2y2 − 2ẏ2 + y3

r3 = 2ua − y2 − ẏ2 + y3

By carefully studying the formula of each residual, it can be realized that the
sensitivity to the faults is according to the second column of Table 2.6.

A “0” means that when the behavioral mode of the column is present the
residual of that row will be zero. An “X” means that the residual will be zero
or non-zero. That is, in residual r2, the fault signal f1 has been decoupled, and
in r3, f2 has been decoupled.

To see the relationship with the framework presented here, we have to
investigate exactly which equations that have been used to form each residual.
It turns out that to form residual r1, i.e. to derive the equation −ẏ1 + y3 = 0,
from the equations in the model M, exactly the equations e1, e3, e5, e6, and e7
have to be used. The equations Mi used to derive r1, r2, and r3 can be seen in

Table 2.6: A decision structure.

NF F1 F2 Mi assump(Mi)
r1 0 X X {e1, e3, e5, e6, e7} {NF}
r2 0 0 X {e1, e2, e3, e4, e5, e7} {NF,F1}
r3 0 X 0 {e2, e4, e5, e6} {NF,F2}
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the third column of the table. The assumptions for each equation set Mi, i.e.
assump(Mi), can be seen in the fourth column of the table.

In conclusion, the FDI methods for residual generation, which can be based
on e.g. parity relations or observers, can be utilized in the framework presented
here. By keeping track of exactly which set Mi of equations that are used in
the construction of each residual, the expression assump(Mi) can be obtained.
This is then the only thing that is needed to facilitate fault isolation in the way
proposed in this thesis.

2.5 Completeness and Soundness Properties of Di-

agnosis Systems

Ideally the output of the diagnosis system should specify exactly which the
diagnoses are, i.e. the set of candidates C(z) produced by the diagnosis system
according to (2.20), should be equal to the set of diagnosesD(z) given any obser-
vation z. However depending on how the diagnosis system is constructed, it is
not sure that this exact relationship between the candidates and the diagnoses
holds.

Example 2.11
Consider a diagnosis model M with the system behavioral modes B = {NF,
F1, F2} and with the model equations shown in Table 2.7 where yi and u are
known signals, x is an unknown signal, and fi are unknown fault signals. By
following the decoupling strategy presented in (Gertler, 1991) and (Mattone
and Luca, 2006) in the construction of a diagnosis system,we would do the
following diagonal design:

NF F1 F2 assump(Mi)
T1 0 X 0 {NF,F2}
T2 0 0 X {NF,F1}

If p denotes the differential operator then the corresponding test quantities are

Ti = Gi(p)(pyi − u) = Gi(p)p fi (2.27)

where Gi(p) for i = {1, 2} are some filters chosen such that the transfer functions
from yi and u to Ti for i = {1, 2} are proper and stable. Assume that both the
rejection regions are R1 = R2 = R \ {0}.

Assume that there is a fault F1 with f1 = sin(t) and consider the observation
u ≡ 0, y1 = sin(t), and y2 ≡ 0. By substitution of the observed values for the
known variables in {e1, e2, e3}, we get that f1 = sin(t) and f2 ≡ 0. The equation
e4 cannot be true and this implies that the set of diagnosis is D = {F1}. If
the initial conditions are assumed to be known, the test quantities become
T1(t) = −G1(p) sin(t) ∈ R1 and T2 ≡ 0 < R according to (2.27). The candidate
set is then C = {F1} according to (2.20). Hence for this observation the set of
diagnoses is equal to the set of candidates, i.e.D = C.

Now, assume instead that there is a fault F1 with f1 ≡ 1 and that the
observations are u ≡ 0, y1 ≡ 1, and y2 ≡ 0. The set of diagnosis is again
D = {F1}. However, the set of candidates are not the same. By substitution of
the observed values for the known variables in (2.27), we get that T1 = T2 ≡ 0.
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This implies that the candidates are C = {NF,F1,F2} ⊃ D. Hence for this
observation, the set of diagnoses is a subset of the set of candidates. This means
that the diagnosis system with the two test quantities in (2.27) does not use all
available information in the diagnosis model in Table 2.7.

Table 2.7: The model (2.26) rewritten using the modeling framework suggested
here.

Assumption Equation Expression
e1 ẋ = u
e2 y1 = x + f1
e3 y2 = x + f2

sys ∈ {NF,F2} e4 f1 = 0
sys ∈ {NF,F1} e5 f2 = 0

Next two definition concerning the relation between the diagnosis and the
candidates are presented.

Definition 2.7 (Complete). Given a diagnosis model M, a diagnosis system ∆ is
complete with respect toM if

D(z) ⊆ C(z) (2.28)

for all z ∈ Z.

Definition 2.8 (Sound). Given a diagnosis modelM, a diagnosis system ∆ is sound
with respect toM if

C(z) ⊆ D(z) (2.29)

for all z ∈ Z.

The candidates are the diagnoses if and only if the diagnosis system is
sound and complete according to these definitions. The diagnosis system in
Example 2.11 is not sound, because it was shown that there exists an observation
that leads toD ⊂ C.

2.5.1 Designing a Complete Diagnosis System

By computing the set of candidates as in (2.20) and following the two guidelines
for designing tests, i.e. (2.15) and (2.16), the diagnosis system becomes complete
as the next theorem shows.

Theorem 2.1. Given a diagnosis model M, a diagnosis system ∆ is complete with
respect toM if each test δi ∈ ∆ fulfills (2.15) and (2.16).

Proof. By using (2.5), the equivalent expression

b < C(z)→ z < O(Mb) (2.30)

to (2.28) can be derived. From b < C(z) and (2.20), it follows that there exists an
δi ∈ ∆ such that b ∈ Φi and H0

i
is rejected, i.e. Ti(z) ∈ R. This and (2.16) imply

that
z < O(Mi) (2.31)
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From b ∈ Φi and (2.15), it follows that b ∈ assump(Mi). From b ∈ assump(Mi),
(2.13), and (2.4) it follows that Mi ⊆ Mb. This and (2.31), imply that z < O(Mb)
which according to (2.30) completes the proof. �

This theorem tells that the completeness is easily obtained by following the
two guidelines for designing tests. For Example 2.11 the two tests fulfill (2.15)
and (2.16), i.e. the diagnosis system defined in the example is complete accord-
ing to Theorem 2.1.

2.5.2 Designing a Sound Diagnosis System

A diagnosis system is sound if and only if for each behavioral mode b ∈ B and
for each observation

z ∈ Z \ O(Mb) (2.32)

there exists a test δi such that the following expression holds

(Ti(z) ∈ Ri) ∧ (b ∈ Φi) (2.33)

This can normally not be obtained for noisy systems and a discussion about
this is given in Section 2.7. However to start with, we will assume the ideal
case with no noise. In Section 2.3.1 two strategies to design diagnosis systems
were studied, one when starting from null hypotheses and one starting from
the model. By using the first strategy there is only one possible choice that
generally guarantees that a sound diagnosis system can be constructed and
this choice is to have one test for each behavioral mode. Of course, there can
be other sets of null hypotheses leading to a sound diagnosis system but this
is dependent on the particular diagnosis model that is used. Therefore, we
will study the second strategy, i.e. to start with the model to design a sound
diagnosis system.

By using the strategy presented in Section 2.3.3, i.e. starting from a set
models ω = {M1,M2, . . .}, it is natural to wonder if it is possible to construct
a sound diagnosis system testing the consistency of the models in ω. This is
answered in the next theorem.

Theorem 2.2. LetM be a diagnosis model and ω = {Mi} a set of models. There exist
tests δi testing the modelsω = {Mi} and designed according to the guidelines (a) and (b)
such that ∆ = {δi} is a sound diagnosis system with respect to a diagnosis modelM if
and only if

O(Mb) =
⋂

Mi∈ω:Mi⊆Mb

O(Mi) (2.34)

for all b ∈ B.

Before we prove the theorem, note that a diagnosis system with tests de-
signed according to the guidelines (a) and (b) is also complete according to
Theorem 2.1. Hence a diagnosis system designed according to the require-
ments given in Theorem 2.2 is a sound and complete diagnosis system with
respect toM.

Proof. First, we show existence of a sound diagnosis system under condi-
tion (2.34). Let the tests δi ∈ ∆ be ideal tests in the sense that Ti(z) ∈ RC

i
if
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and only if z ∈ O(Mi), i.e. equivalence holds in (2.16) andΦi is chosen according
to (2.15). These tests clearly fulfill the guidelines (a) and (b). According to
the construction of the tests ∆, the null hypothesis H0

i
for a test δi ∈ ∆ and the

observation sets O(Mi) are related as

H0
i rejected ↔ z < O(Mi) (2.35)

We show (2.29) by proving that for any z ∈ Z and for any b < D(z) it follows
that b < C(z). Let z ∈ Z be an arbitrary observation and let the behavioral mode
b be arbitrarily chosen such that b < D(z). From (2.5) it follows that

z < O(Mb) (2.36)

Then, (2.34) implies that there exists a test δi ∈ ∆ such that

z < O(Mi) (2.37)

and
Mi ⊆Mb (2.38)

The formulas (2.35) and (2.37) imply that H0
i

is rejected. Furthermore, from (2.20)
it follows that

C(z) ⊆ ΦC
i (2.39)

The formulas (2.15) and (2.38) imply that b ∈ Φi, which together with (2.39)
implies that b < C(z), i.e. the diagnosis system is sound.

Now, we prove the opposite direction, i.e. if (2.34) does not hold for all
behavioral modes, then no sound diagnosis system ∆ exists.

Assume that (2.34) is not true for a behavioral mode b ∈ B. The set O(Mb)
cannot be a superset of the set defined in the right hand side of (2.34) and
therefore the assumption implies that

O(Mb) ⊂
⋂

Mi∈ω:Mi⊆Mb

O(Mi) (2.40)

Since (2.34) is not true for b it follows that there exists an observation z such
that

z < O(Mb) (2.41)

and
z ∈ O(Mi) ⊆ Z (2.42)

for all Mi ∈ ω such that Mi ⊆Mb. The subset-relation in (2.42) follows from (2.3).
The behavioral mode b is not a diagnosis according to (2.41), i.e. b < D(z).
However, next we will prove that the behavioral mode b ∈ C(z), which implies
that ∆ is not sound. The behavioral mode b is a candidate if and only if H0

i
is

not rejected for all φ where b ∈ φ according to (2.20). From (2.15), it follows
that b ∈ φ if and only if Mi ⊆ Mb. For any model Mi ∈ ω where Mi ⊆ Mb, (2.42)
is true. This and (2.16) give that

Ti(z) < Ri (2.43)

i.e. H0
i

is not rejected. Since this is true for all tests δi where b ∈ φ it follows
from (2.20) that b ∈ C(z) and the theorem follows. �
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Condition (2.34) means that without making a diagnosis test based on Mb,
tests for the models Mi and with equivalence in (2.16) can always be used
to determine the consistency of Mb. This can also be formulated as that it is
possible to determine the consistency of Mb by checking the consistency of
the models Mi. In general there exist many solutions ω to (2.34), and we are
particularly interested in sets with small cardinality, because the number of
models in ω is equal to the number of tests in the diagnosis system based on
ω. It is desirable to use few tests to reduce the online computational cost of
running the diagnosis system.

Example 2.12
Continuation of Example 2.11. It has been concluded that the diagnosis system
presented in Example 2.11 is not sound. However, if we add a test δ3 such that
M3 = {e2, e3, e4, e5},Φ3 = assump(M3) = {NF}, T3 = y1− y2, andR3 = R\ {0}, then
a sound and complete diagnosis system is obtained. The resulting decision
structure is then:

NF F1 F2 assump(Mi)
T1 0 X 0 {NF,F2}
T2 0 0 X {NF,F1}
T3 0 X X {NF}

By carefully studying the diagnosis model in Table 2.7, it follows from Theo-
rem 2.2 that the minimum number of models that must be tested to obtain a
sound diagnosis system is three. Hence the diagnosis system with T1, T2, and
T3 contains the least number of tests that any sound diagnosis system contains.

An upper bound for the number of models Mi needed to fulfill (2.34)
for all b ∈ B is the number of system behavioral modes which corresponds
to the straightforward solution of (2.34) to test all behavioral models, i.e.
ω = {Mb|b ∈ B}. This corresponds to the strategy presented in Section 2.3.2.
This strategy can handle models with a large number of faults when consid-
ering only single faults. However, when considering also multiple faults the
number of behavioral modes grows exponentially with the number of compo-
nents. Therefore this method runs into complexity problems when considering
systems with a large number of components that can fail.

In the next section, it is shown that the number of tested models Mi need
not be equal to the number of behavioral modes, because each model Mi can
contribute to determining the consistency of a large number of behavioral
models.

2.6 Testing Small Models

In this section an example illustrates how the number of tests can be decreased
by testing models with few equations.

Consider the electrical circuit shown in Figure 2.3 consisting of a battery
B, two resistors R1 and R2, one ideal voltage sensor S1, and two ideal current
sensors S2 and S3. All six component have two behavioral modes, the no-fault
mode NF and the unknown fault mode UF. The set consisting of the no-fault
behavioral mode, all single faults, and all multiple faults is B. The fault-free
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{1, 2, 3, 4, 5, 6, 7}
NF

{1, 2, 3, 4, 5, 6}
S3

{1, 2, 3, 4, 6, 7}
S1

{1, 2, 3, 5, 6, 7}
B

{1, 2, 4, 5, 6, 7}
R2

{3, 4, 5, 7}
R1,S2,R1&S2

{1, 2, 3, 4, 6}
S1&S3

{1, 2, 3, 5, 6}
B&S3

{1, 2, 3, 6, 7}
B&S1

{1, 2, 4, 6, 7}
R2&S1

{1, 2, 5, 6, 7}
R2&B

{3, 4, 7}
R1&S1
S1&S2

R1&S1&S2

{3, 5, 7}
R1&B
B&S2
R1&B&S2

{4, 5}
R1&R2
R1&S3
R2&S2
R2&S3
S2&S3
R1&R2&S2

R1&R2&S3

R1&S2&S3

R2&S2&S3

R1&R2&S2&S3

Figure 2.2: Subsets of (2.44).

behavior of the components are described by the model M:

Assumption Equation Expression
(1) I − I1 − I2 = 0

R1 = NF (2) V − I1 R1 = 0
R2 = NF (3) V − I2 R2 = 0
B = NF (4) V −U = 0
S1 = NF (5) V − yV = 0
S2 = NF (6) I − yI = 0
S3 = NF (7) I2 − yI2 = 0

(2.44)

where I, I1, I2 are currents; V the voltage across the battery; R1 and R2 are
resistances which are assumed to be known constants; U is the expected volt-
age across the battery; and yV, yI, and yI2 are measurements of V, I, and I2
respectively. This means that

X = {I, I1, I2,V}
Z = {U, yV, yI2 }

and the corresponding domains are X = R4 and Z = R3.
A straightforward way to fulfill (2.34) for all b ∈ B is as said before to test

all behavioral models. For the electrical circuit, where all multiple faults are
considered, there are 26 = 64 behavioral modes. Next it will be discussed how
to reduce the number of tests from the number of behavioral modes.

First, there are behavioral models that are not rejectable models. In the
electrical circuit only 29 out of the 64 behavioral models are rejectable models.
The 29 behavioral modes with rejectable behavioral models are those seen in
Figure 2.2. This figure will below be explained more in detail.

There can be several rejectable behavioral models with equal observation
sets, i.e. O(M1) = O(M2) where M1 and M2 are two different behavioral models.
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+
+

−

yI

V U yv

I1 I2

R1 R2

yI2

I

Figure 2.3: An electrical circuit

For the electrical circuit example the behavioral model {1, 4, 5, 6, 7} of R1&R2
and behavioral model {1, 2, 3, 4, 5} of S2&S3 have equal observation sets, i.e.

O({1, 4, 5, 6, 7}) = O({1, 2, 3, 4, 5}) = {[U yV yI yI2 ]|U − yV = 0} (2.45)

A minimal set of equations with the same observation set is {4, 5} which is a
subset of both the two behavioral models. It holds that

O({1, 4, 5, 6, 7}) = O({1, 2, 3, 4, 5}) = O({4, 5})

Since the equation sets {4, 5}, {1, 4, 5, 6, 7}, and {1, 2, 3, 4, 5} have equal obser-
vation sets, it is sufficient to check the consistency of for example only {4, 5}
to determine the consistency of both behavioral models. For each behavioral
model in the example, it can be realized that there exists a unique minimal set
with the same observation set. These equation sets and there corresponding
behavioral modes are shown as a Hasse diagram in Figure 2.2 partial ordered
by the subset relation. Instead of checking the consistency of all 29 rejectable
behavioral models, it is sufficient to check the consistency of all the 14 models
in the figure.

In the linear case it is also possible to determine the consistency of all
models in the figure by checking the consistency of only the sets on the lowest
levels. These 8 sets are the minimal sets that represents rejectable models. The
constraint (2.34) for the behavioral modes on the lowest level imply that it is
necessary to check all sets on the lowest level, except for {3, 4, 7}, {3, 5, 7}, and
{4, 5}which can be replaced by {1, 3, 4, 7}, {1, 3, 5, 7}, and {1, 4, 5} correspondingly.
Hence the minimum number of models that must be checked to obtain a sound
and complete diagnosis system is 8. Hence this example shows that by testing
small models the number of tests can be decreased.

2.7 Systems with Noise

The relation (2.7) can sometimes not hold strictly when the diagnosis test is
used together with a noisy system. If noise is present, (2.7) can then be replaced
by specifying the probability that (2.7) holds. In statistical hypothesis-testing
theory, this requirement is usually written as

P(Ti(z) ∈ Ri|sys ∈ Φi) ≤ α (2.46)
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That is, the probability of rejecting the null hypothesis H0
i

: sys ∈ Φi given that
sys ∈ Φi holds must be less or equal to a significance level α called the false
alarm probability. The idea behind hypothesis testing is to have a false alarm
probability that is very small, in fact so small that it is realistic to assume that
the formula (2.7) holds.

The noise is the reason for why not equivalence is used in (2.7) and it can be
realized as follows. Assume that a test δi fulfills (2.46), i.e. it is realistic to assume
that the formula (2.7) holds. To get equivalence the following implication must
hold

Ti < R → sys ∈ Φi (2.47)

i.e. in a statistical framework that

P(sys ∈ Φi|Ti(z) < Ri) ≈ 1 (2.48)

However this is not likely to hold because R is chosen small to fulfill (2.46) and
the probability in (2.48) increases with increasing R. Hence in general it is only
reasonable to assume that (2.46) can be fulfilled which motivates tests in the
form (2.7).

In noisy (stochastic) systems, the model M is only approximate, or alterna-
tively, is exact but includes stochastic terms. In this thesis only the first view
is studied. A discussion of the second alternative is found in (Nyberg and
Krysander, 2003).

The strategy to design a diagnosis test, that given an α fulfills (2.46), consists
of two steps. The noise is neglected in the first step where a preliminary test
is constructed by following the guidelines (a) and (b). In the second step
the rejection region R′ of the preliminary test is reduced such that (2.46) holds.
Verification of (2.46) can be based on simulations of the test quantity Ti(z) where
the input is either obtained from Monte-Carlo simulations of the diagnosis
model or directly obtained from measured data. The second step is also known
as threshold selection.

Example 2.13
For the diagnosis model in Table 2.7, assume that the equation for sensor y1
contains a noise term n representing white Gaussian distributed noise with zero
mean and standard deviation σ according to

y1 = x + f1 + n (2.49)

By neglecting the noise term, the test quantity T3 = y1 − y2 has been derived in
Example 2.12 from the model M3. The test quantity is according to (2.49) equal
to T3 = n when f1 = f2 = 0. A rejection region R3 = R \ [−J, J] described by a
threshold J can now be selected such that the probabilistic correspondence (2.46)
to (2.7) is fulfilled given a small false alarm probability α, i.e.

P(T3 ∈ Ri|sys ∈ Φ3) = P(|n| > J) ≤ α

The definition of soundness of a diagnosis system is mainly constructed for
noise-free case. However if the noise distributions are bounded the definition
of soundness can be useful also for models containing noise terms.

Example 2.14
Consider a diagnosis model with two behavioral modes NF and UF and a



2.8. Conclusions 43

behavior of NF mode defined by the equation y = n where y is a known
variable and n is noise or uncertainty bounded to the interval n ∈ [−1, 1]. The
diagnosis are

D(y) =





{NF,UF} for y ∈ [−1, 1]
{UF} otherwise

(2.50)

A sound and complete diagnosis system for this model is obviously defined by
∆ = {δ1} where T1 = y, Φ1 = {NF}, and R1 = R \ [−1, 1].

If the support of the density function of the noise distribution is unbounded,
we will take advantage of the two step approach for designing diagnosis sys-
tems. Since the noise is neglected in the first construction step, it is possible
to require that the preliminary diagnosis system consisting of the preliminary
tests should be sound. This requirement is relevant for the resulting diagnosis
system for the noisy system and this can be motivated as follows.

In the limit when the noise level tends to zero, the preliminary rejection
regions need not be reduced and soundness property of the preliminary diag-
nosis system is carried over to the resulting diagnosis system. Moreover, if the
diagnosis system is not even sound in the ideal case, i.e. in the no-noise case,
we can suspect that the diagnosis system in a noisy situation would be even
worse, in the sense of (2.29).

In conclusion, noise is not explicitly included in the framework used here,
nevertheless this section shows that the framework and the results presented
here and in later chapters are also applicable to noisy systems. In particular
completeness for diagnosis system designed for noisy systems can be obtained.
Furthermore in the limit when the noise level tends to zero, soundness can be
achieved and this is an upper bound of the diagnosis performance in terms
of (2.29).

2.8 Conclusions

A new framework for model-based diagnosis has been presented. The isolation
mechanism follows ideas from AI, namely to include in the model, how the
validity of model equations depend on the presence of faults in each compo-
nent. Isolation is then performed by propagating this information through the
diagnosis system.

In contrast to AI, the diagnosis tests are computed off-line as in FDI. It has
been shown in Section 2.4 how standard FDI methods, such as residuals based
on parity relations or observers, can be used within the framework. In that
case, the powerful isolation mechanism can be fully utilized.

Since the diagnosis tests used are really standard hypothesis tests from
statistical hypothesis testing theory, it is possible to treat noise in a sound way.
That is, even in a noisy system, faults can be correctly isolated.

In summary, the framework presented can efficiently handle: fault models,
several different fault types (e.g. parameter- and additive faults), more than
two behavioral modes per component, general differential-algebraic models,
noise, uncertainties, decoupling of disturbances, static and dynamic systems,
and isolation of multiple faults.
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S  D L
S S

Following the strategy described in Section 2.3.3, the construction of a diagnosis
system starts with finding a set ω = {M1, . . . ,Mn} of rejectable models to test. If
the diagnosis system should be sound, these models Mi ∈ ωmust fulfill

O(Mb) =
⋂

Mi⊆Mb

O(Mi) (3.1)

for all b ∈ B according to Theorem 2.2.
In this chapter, the model equations are assumed to be linear static equations.

The theory that will be developed for linear static equations will be reused for
the linear

dynamic case in Chapter 6 and for structural methods handling the non-
linear dynamic case in Chapter 8. In general there exist many solutions ω
to (3.1), and we are particularly interested in rejectable sets with small cardi-
nality according to the discussion in Section 2.6. Rank-conditions to check if a
set ω fulfills (3.1) are developed. By using these conditions it is shown that it is
sufficient to check the consistency of all minimal sets Mi ⊆Mb that are rejectable
models. In the linear case such sets will also be called minimal overdetermined
(MO) set of equations.

It is shown that the number of MO sets is dependent on the degree of redun-
dancy, i.e. the number of linearly independent consistency relations. For a fixed
order of redundancy, the number of MO sets is shown to be at most polynomial
in the number of equations. Furthermore, it is shown that the degree of redun-
dancy is limited by the number of sensors. In many applications, sensors are
expensive and thus the redundancy degree is low even if the models contains
a large number of components.

The main problem to solve in this chapter is how to find a set ω of models
to test such that (3.1) is fulfilled for all behavioral modes b ∈ B. This problem
can be divided into a number of sub-problems, one for each behavioral mode
in B. Sections 3.1-3.7 only consider the sub-problem of finding an ω given a

45
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behavioral model Mb. Having solved these sub-problems, the solutions can be
combined to solve the full problem for all behavioral modes in B and this is
done in Section 3.8 and 3.9.

In Sections 3.1 we will study definitions presented in Chapter 2 such as,
analytical redundancy, observation set, and rejectable models in the linear static
case. The condition (3.1) is then analyzed in Sections 3.2 and 3.3. Section 3.4
states some important results, i.e. two rank conditions that can be used to
determine if a given ω fulfills (3.1), and that it is sufficient to test all minimal
sets of equations that are rejectable models, i.e. all MO sets. It is in general not
necessary to test all MO sets and Section 3.5 gives some results of how to select
a subset of all MO sets that fulfills (3.1). Section 3.6 extends the model-class
considered to general linear static equations. In Section 3.7 the dependencies
between the number of sensors, the redundancy, and the number of MO sets
are studied.

Section 3.8 extends the result that it is sufficient to include all MO sets
in ω to fulfill (3.1) for one behavioral mode to the case when considering all
behavioral modes b ∈ B. As in the case when considering only one behavioral
mode, it is not necessary in general to include all MO sets in ω. In Section 3.9
algorithms are given that finds the minimum cardinality sets of ω containing
MO sets that satisfy (3.1) for all behavioral modes b ∈ B. The size of a minimum
cardinality solution ω is equal to the minimum number of test that must be
used to construct a sound diagnosis system. Several examples illustrate how
a minimal number of MO sets, i.e. a minimal number of tests in the resulting
diagnosis system, is computed. Finally fault sensitivity of residual generators
based on MO models is discussed in Section 3.10 before the conclusions are
drawn.

3.1 Linear Static Models

Consider a linear static model Mb for a specific behavioral mode:

Hbx + Lbz = 0 (3.2)

where Hb and Lb are constant matrices, x is a vector of unknowns and z is a
vector of known variables.
Example 3.1
Throughout this chapter we will use the electrical circuit example presented in
Section 2.6 to illustrate concepts and theoretical results. Two behavioral modes
NF and R1&R2 and there corresponding behavioral models will be studied. By
using the model (2.44), the behavioral model MNF can be written in the matrix
form (3.2) as

H
︷                  ︸︸                  ︷





0 1 −1 −1
1 0 −R1 0
1 0 0 −R2
1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1









V
I
I1
I2





+

L
︷                   ︸︸                   ︷





0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









U
yV

yI

yI2





= 0 (3.3)
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The behavioral model for behavioral mode R1&R2 is equal to the set MR1&R2 =

{1, 4, 5, 6, 7} of equations in (2.44).

To write for example the equations in MR1&R2 in the form (3.2) by using the
matrices H and L in (3.3), some matrix notation is needed. For a matrix A, an
ordered row index set R and an ordered column index set C are defined such that
A = (Ai j|i ∈ R, j ∈ C), where Ai j is the (i, j)-entry of A. For I ⊆ R and J ⊆ C,
A[I, J] = (Ai j|i ∈ I, j ∈ J) denotes the sub-matrix of A with row index set I and
column index set J. Shorthand notations for the matrices A[I,C] and A[R, J]
will be A[I] and A[:, J] respectively. Now, the set MR1&R2 of equations can be
written in the form (3.2) as

H[MR1&R2]x + L[MR1&R2]z = 0 (3.4)

where the matrices H and L are defined in (3.3).
We will find sets ω of models Mi such that (3.1) is fulfilled for a behavioral

mode b. That is the consistency of the models in ω will determine the consis-
tency of the behavioral models Mb. In (3.1) observation sets are used and in
the next section we will discuss consistency and observation sets in the linear
static case.

3.1.1 Observation Sets

For linear static models an observation z is assumed to be a snap-shot of the
vector z, i.e. a value of the vector z = z0 ∈ Rnz where nz is the dimension of z.
Let nx be the dimension of x. A linear model

Hx + Lz = 0 (3.5)

consisting of the equations M is consistent with an observation z = z0, if

∃x ∈ Rnx ; Hx + Lz0 = 0 (3.6)

is true. The observation set O(M) for the equations M is then formally defined as

O(M) = {z ∈ Rnz |∃x ∈ Rnx ; Hx + Lz = 0} (3.7)

The observation set O(M) can in the linear case be expressed without x as
follows. Let NH be any matrix such that the rows of NH is a basis for the left
null-space of the matrix H. This means that NH has the maximum independent
rows which solves

NHH = 0 (3.8)

By multiplying (3.5) from left with NH, we get

NHLz = 0 (3.9)

The expression (3.6) is equivalent to (3.9), i.e.

O(M) = {z ∈ Rnz |NHLz = 0} (3.10)

This result will be shown analogously for linear differential equations in The-
orem 6.2. Each row of NHL defines a consistency relation, i.e. an equation
containing only known variables. We will say that consistency relations are
linearly independent if their corresponding rows in NHL are linearly indepen-
dent.
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3.1.2 Redundancy and Rejectable Models

Existence of redundancy was defined in the previous chapter, and for linear
systems, it is also possible to quantify redundancy as follows.

Definition 3.1 (Redundancy of a Model). Let ϕ : 2M →N be a function, from the
family of subsets M in a set M of linear equations (3.5) to the natural numbers, defined
by

ϕ (M) = rank ([H[M] L[M]]) − rank (H[M]) (3.11)

This number ϕ (M) is the redundancy of M.

Before redundancy is further discussed, a convenient matrix notation will
be defined . Let A be a matrix with a row index set R and let B be a matrix with
a row index set I ⊆ R such that B = A[I]. Assume that the matrix N = NB has
a row index set R′ and column index set I. Then, let NA[I] be a matrix with the
row index set R′ and the column index set R such that the entries are defined
by

(NA[I])i j :=





Ni j if i ∈ R′, j ∈ I

0 otherwise
(3.12)

where Ni j is the (i, j)-entry of N. From the definition NA[I], it follows that
NA[I][:, I] = N, NA[I][:,R \ I] = 0, and

NA[I]A = 0 (3.13)

That is, the matrix NA[I] is a basis for the left null-space of the matrix A[I] and
zero-padded such that multiplication of the matrix A according to (3.13) is well
defined.

Now, we will discuss Definition 3.1. Note that ϕ (M) ≥ 0 for any set M and
ϕ (∅) = 0. The redundancy of a set M is equal to the maximum number of
linearly independent consistency relations that can be derived from M, i.e.

ϕ (M) = rank (NH[M]L) (3.14)

where the number of columns in NH[M], according to the introduced notation,
is equal to the number of rows in L. For a linear static model M, existence of
redundancy according to Definition 2.6 is equivalent to ϕ (M) > 0. A linear
static model M is a rejectable model if and only if M has redundancy, i.e.
ϕ (M) > 0. Linear static models with redundancy are said to be overdetermined
according to the next definition.

Definition 3.2 (Overdetermined Set). A set M of equations (3.5) is an overdeter-
mined set if its redundancy is positive, i.e ϕ (M) > 0.

A linear set of equations is a rejectable model if and only if it is an overde-
termined set. The overdetermined models M ⊆ MNF for the electrical circuit
example are all the supersets to any of the models on the lowest level in Fig-
ure 2.2.

To conclude this section, behavioral modes b ∈ B with not overdetermined
behavioral models fulfill (3.1) trivially. Next we will discuss which subsets ω
of models that fulfill (3.1) for overdetermined behavioral models.
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3.2 A Proper Overdetermined Set is Sufficient for

Soundness

There can be equations in an overdetermined model that does not contribute
to define the observation set of the model as the next example shows.

Example 3.2
Consider for the electrical circuit example the behavioral model {1, 4, 5, 6, 7} of
R1&R2 and its observation set

O({1, 4, 5, 6, 7}) = {[U yV yI yI2 ]|U − yV = 0} (3.15)

defined by the consistency relation U− yV = 0. A minimal set of equations that
can be used to derived this consistency relation is {4, 5}which is a subset of the
behavioral model. It holds that

O({1, 4, 5, 6, 7}) = O({4, 5})

Since the equation sets {4, 5} and {1, 4, 5, 6, 7} have equal observation sets, it is
sufficient to check the consistency of for example only {4, 5} to determine the
consistency of the behavioral model.

A set of equations, like the set {4, 5}, that has an observation set that no
proper subsets have, will be called a proper overdetermined set and is defined by
using the redundancy function as follows.

Definition 3.3 (Proper Overdetermined Set). An overdetermined set M of equa-
tions (3.5) is a proper overdetermined (PO) set if

ϕ (E) < ϕ (M) (3.16)

for all E ⊂M.

Note that a PO set M is a minimal set with redundancy ϕ (M). For the
example, the set {4, 5} is, as said before, a PO set because

ϕ ({4, 5}) = 1 > 0 = ϕ ({4}) = ϕ ({5})

The difference between PO models and all other overdetermined models is that
the removal of any equation in a proper overdetermined model will decrease
the redundancy and therefore increase the dimension of the set of consistent
observations defined by the remaining equations. The next theorem shows the
relation between observation sets and PO sets.

Theorem 3.1. An overdetermined set M of equations (3.5) is a PO set if and only if

O(M) ⊂ O(E) (3.17)

for all E ⊂M.

Proof. Let E′ be any set such that E′ ⊂M. It holds that

O(M) ⊆ O(E′) (3.18)
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Proper inclusion in (3.18) as in (3.17) is obtained if and only if

dimO(M) < dimO(E′) (3.19)

Let the number of known variables in M be denoted n. Then it holds that

dimO(E) + ϕ (E) = n

for any set E ⊆M. This implies that (3.19) holds if and only if

ϕ (M) > ϕ (E′) (3.20)

From the equivalence between proper inclusion in (3.18) and (3.20) and since
E′ ⊂M was arbitrarily chosen the theorem follows. �

For the behavioral model {1, 4, 5, 6, 7} we have shown that there exists a PO
set {4, 5}with exactly the same observation set and the next theorem states that
for any model, and therefore also for any behavioral model, there exists a PO
set with the same observation set.

Theorem 3.2. If M is an overdetermined set of equations (3.5), then there exists at
least one PO set E ⊆M such that

O(E) = O(M) (3.21)

Proof. If M is not minimal withO(M), then there exists at least one subset E that
is minimal and fulfills (3.21). From Theorem 3.1, it then follows that E is a PO
set. �

A consequence of this theorem is that it is sufficient to test PO sets to
determine the consistency of any behavioral model.

Example 3.3
The PO sets in (2.44) are the sets shown in Figure 2.2. Note that R1&R2 is
written below {4, 5} to denote that {4, 5} has the same observation set as the
behavioral model for R1&R2. Considering another behavioral model, i.e. the
no-fault behavioral model, it turns out that this model is a PO set.

3.3 Properties of PO sets

We have shown that there exists a PO set M in any behavioral model Mb with
equal observation set as the behavioral model. In the next section we will
show that it is sufficient to check the consistency of the PO sets Mi ⊆ M with
redundancy one to determine the consistency of the PO set M and therefore also
to determine the consistency of the behavioral model Mb. However to show
this, some preliminary results about PO sets, presented in this section, need to
be developed. This section will be more technical than the other sections in this
chapter. One possible option can be to omit this section for now and read parts
of it when results in this section are referenced in the following sections.

The first two theorems show properties of the redundancy-function.

Theorem 3.3. If M is a set of equations (3.5) and M′ an arbitrary subset M′ ⊆ M,
then it follows that

ϕ (M′) ≤ ϕ (M) (3.22)
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The next lemma will be used to prove this theorem. Let A be a matrix and
let R be the row sets of its rows and C the row sets of its columns. Then the
following functions are defined:

ρ(I) = rank (A[I]) I ⊆ R (3.23)
λ(I, J) = rank (A[I, J]) I ⊆ R, J ⊆ C (3.24)

The next lemma is given and proved in (Murota, 2000).

Lemma 3.1. If A is a matrix and I1, I2 ⊆ R and J1, J2 ⊆ C then

ρ(I1) + ρ(I2) ≥ ρ(I1 ∩ I2) + ρ(I1 ∪ I2) (3.25)
λ(I1, J1) + λ(I2, J2) ≥ λ(I1 ∪ I2, J1 ∩ J2) + λ(I1 ∩ I2, J1 ∪ J2) (3.26)

Inequality (3.25) means that the rank-function is a sub-modular function
(Murota, 2000) on the family of subsets of R. Inequality (3.26) will now be
used to prove Theorem 3.3.

Proof. Let
[

H L
]

be A in Lemma 3.1 and let I1 = M, I2 = M′, J1 be equal to the
column set of [H L], and J2 be equal to the column set of H in (3.26). Then we
obtain

rank (
[

H L
]

) + rank (H[M′]) ≥ rank (H) + rank (
[

H[M′] L[M′]
]

)

By reordering the terms and by using (3.11) the inequality (3.22) follows. �

The next theorem reveals a redundancy pattern for the PO sets in a graph
of the type shown in Figure 2.2 and also particularly identifies those with
redundancy one.

Theorem 3.4. If M is a PO set of equations (3.5) and e ∈M, then

ϕ (M \ {e}) = ϕ (M) − 1 (3.27)

Before we prove the theorem, the result is exemplified. A consequence of
the theorem is that the PO sets can be organized in levels corresponding to their
redundancy.

Example 3.4
In Figure 2.2 the PO sets on the lowest level have redundancy one and PO on
the next level have redundancy two and so on. The no-fault behavioral model
{1, 2, 3, 4, 5, 6, 7} has therefore redundancy three because it is on the third level.

Now, we prove Theorem 3.4.

Proof. From Definition 3.3, it follows that

ϕ (M \ {e}) < ϕ (M)

Hence it remains to prove that

ϕ (M) − 1 ≤ ϕ (M \ {e})

The left-hand side is equal to

ϕ (M) − 1 = rank ([H L]) − rank (H) − 1
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which can be estimated by using that

rank ([H L]) − 1 ≤ rank ([H[M \ {e}] L[M \ {e}]])

and that
−rank (H) ≤ −rank (H[M \ {e}])

as

ϕ (M) − 1 ≤ rank ([H[M \ {e}] L[M \ {e}]]) − rank (H[M \ {e}]) = ϕ (M \ {e})

This completes the proof. �

The following theorem is used to characterize PO sets.

Theorem 3.5. A set M of equations (3.5) is a PO set if and only if the matrix [H L]
has full row-rank and

rank (H[M \ {e}]) = rank (H) (3.28)

for all e ∈M.

Proof. Let M be a PO set and assume that [H L] has not full row-rank. Let
Hi = H[M \ {i}], Li = L[M \ {i}], and Mi =M \ {i} for any i ∈M. Then there exists
an i ∈M such that

rank ([H L]) = rank ([Hi Li])

This and that rank (H) ≥ rank (Hi) imply that

ϕ (Mi) = rank ([Hi Li]) − rank (Hi) ≥ rank ([H L]) − rank (H) = ϕ (M) (3.29)

i.e. M is not a PO set. Hence the matrix [H L] has full row-rank and

rank (H) = rank ([H L]) − ϕ (M) = |M| − ϕ (M) (3.30)

Since M is a PO set, it holds according to Theorem 3.4 that

ϕ (M) − 1 ≥ ϕ (Mi)

This implies that the right-hand side of (3.30) can be limited from above as

(|M| − 1) − (ϕ (M) − 1) ≤ rank ([Hi Li]) − ϕ (Mi) = rank (Hi) (3.31)

and (3.28) follows.
The converse direction is shown by using that [H L] has full row-rank

and (3.28) as

ϕ (Mi) = rank ([Hi Li]) − rank (Hi) < rank ([H L]) − rank (H) = ϕ (M) (3.32)

This and Theorem 3.3 imply that ϕ (E) < ϕ (M) for each E ⊂ M, i.e. M is a PO
set and this completes the proof. �

The condition (3.28) means that any row e ∈ M can be written as a linear
combination of the other rows in H. Let M be a PO set of equations defined by
the matrices H and L. Then [H L] has full row-rank and the redundancy of any
subset M′ ⊆M can therefore be simplified as

ϕ (M′) = rank ([[H[M′] L[M′]]) − rank (H[M′]) = |M′| − rank (H[M′]) (3.33)
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Note that the simplified redundancy expression does not depend on the matrix
L.

An important consequence of this theorem is that if M is a PO set then the
non-zero columns in any basis NH[M] are equal to M, and this will be shown in
the next example and corollary.

Example 3.5
Consider for the electrical circuit example the PO set M1 = {4, 5} and the set
M2 = {1, 4, 5, 6, 7} which is not a PO set. For both these sets a corresponding
basis NH[Mi] is

[

0 0 0 1 −1 0 0
]

(3.34)

The non-zero columns are in this case {4, 5} and this is a subset of both M1 and
M2 and this holds also generally. Note that for the PO set M1, the non-zero
columns are equal to M1 but this is not the case for the set M2.

The next corollary shows that the non-zero columns of any basis for the left
null space of H[M] are exactly the columns M if M is a PO set.

Corollary 3.1. If M is a PO set of equations (3.5) and NH is a basis for the left null
space of H, then it follows that no column in NH is zero.

Proof. From Theorem 3.5, it follows that any row in H can be written as a linear
combination of the other rows, i.e. there exists a row-vector γ such that

γH = 0 (3.35)

and
γ[{i}] = 1 (3.36)

The equation (3.35) implies that γ belongs to the left null space of H, i.e. there
exists a row-vector γ′ such that

γ = γ′NH

This and (3.36) imply that the i:th column of NH cannot be zero. Since i ∈ M
was arbitrarily chosen, the corollary follows. �

To explain a related result of Theorem 3.5 and this corollary, consider a set
of equations (3.5) where [H L] has full row rank and let the non-zero columns
in any basis NH for the left null space of H be denoted by M′. Any row in H[M′]
can be written according to NH as a linear combination of the other rows in
H[M′]. Theorem 3.5 then implies that M′ is a PO set. This result is formally
proved in Theorem 4.2 and will in Chapter 4 be used to compute PO sets.

3.4 Minimal Overdetermined Sets are Sufficient for

Soundness

In Section 3.2, we have shown that there exists a PO set M in Mb with equal
observation set, i.e. it is sufficient to check the consistency of one of these PO
sets in M to determine the consistency of M. In this section a rank conditions
will be developed to test if a given set {Mi|Mi ⊆M} of PO models can be used to
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determine the consistency of M. In particular, it is shown that it is sufficient to
check the consistency of the PO sets Mi ⊆M with redundancy one to determine
the consistency of the PO set M and therefore also to determine the consistency
of the behavioral model Mb.

3.4.1 Defining and characterizing MO sets

The next definition and lemma introduces and characterizes the PO sets with
redundancy one.

Definition 3.4 (Minimal Overdetermined Set). An overdetermined set M of equa-
tions (3.5) is a minimal overdetermined (MO) set if no proper subset is an overde-
termined set.

The next lemma relates MO sets and PO sets.

Lemma 3.2. A set M of equations (3.5) is an MO set if and only if M is a PO set with
ϕ (M) = 1.

Proof. Assume that M is an MO set, i.e. ϕ (M) > 0 and ϕ (E) = 0 for all E ⊂ M.
This implies that M is a minimal set with redundancy ϕ (M), i.e. M is a PO set.
From Theorem 3.4, it follows that ϕ (M) = ϕ (M \ {e}) + 1 = 1 for any e ∈M.

Assume that M is a PO set with ϕ (M) = 1. This means according to
Definition 3.3 that ϕ (E) = 0 for all E ⊂M, i.e. M is an MO set. �

Note also that a set is an MO set if and only if the set is minimal and a PO
set. According to the characterization of MO sets described in Lemma 3.2 it
follows that the PO sets on the lowest level in Figure 2.2 are the MO sets.

3.4.2 Motivating Example for Using MO Sets

Next an example will be used to show that the consistency of PO sets can be
determined by checking the consistency of MO sets.

Example 3.6
Consider the PO set {3, 4, 5, 7} with redundancy 2. The MO sets contained in
{3, 4, 5, 7} are the three subsets {3, 4, 7}, {3, 5, 7}, and {4, 5}. The matrices NH[M]L
corresponding the PO sets are:

PO set M NH[M]L redundancy ϕ (M)

{3, 4, 5, 7}
[

−1 0 0 R2
0 −1 0 R2

]

2

{3, 4, 7}
[

−1 0 0 R2

]

1
{3, 5, 7}

[

0 −1 0 R2

]

1
{4, 5}

[

1 −1 0 0
]

1

(3.37)

First, note that all rows corresponding to the MO sets are pairwise linearly
independent, i.e. pairwise their consistency relations are linearly independent.
Second, all rows corresponding to all MO sets belong to the space spanned
by the rows corresponding to the set {3, 4, 5, 7} with 2 linearly independent
consistency relations. These two facts imply that any two rows corresponding
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to MO sets span both rows corresponding to {3, 4, 5, 7}. Hence by checking
the consistency of any two MO models the consistency of {3, 4, 5, 7} can be
determined.

The concept of linearly independent consistency relations is central in the
discussion here. The redundancy of a set M was in Section 3.1.2 seen to be
equal to the maximum number of linearly independent consistency relations
that can be derived from M. From any pair of MO sets in (3.37), two linearly
independent consistency relations can be obtained. This motivates that the
notion of redundancy and the closely related concept of observation set is
possible to generalize to a family of equation set and this will be done next.

3.4.3 Observation Set for a Family of Equation Sets

By introducing redundancy of family of equation sets, it will be shown later in
Theorem 3.6 that setsω that satisfy (3.1) can be characterized by the generalized
redundancy. This result is approached in this section by analyzing the right-
hand side of (3.1) which defines the observation set for a set of models.

Given a set of linear equations M, consider a family of subsets ω = {M1,
M2, . . . ,Mn}where Mi ⊆M for all Mi ∈ ω. The task of checking the consistency
of the set of models Mi ∈ ω is to evaluate, given an observation z, if

∃xiH[Mi]xi + L[Mi]z = 0 (3.38)

for all Mi ∈ ω. In terms of observation sets this could be expressed as to check
if z belongs to the set

⋂

Mi∈ω
O(Mi) =

⋂

Mi∈ω
{z ∈ Rnz |∃xi ∈ Rnx ; H[Mi]xi + L[Mi]z = 0} (3.39)

Note that checking the consistency of the models in ω is not equivalent with
checking the consistency of ∪Mi∈ωMi. This follows from the fact that the set
O(∪Mi∈ωMi) is equal to the set of z ∈ Rnz consistent with (3.38) when requiring
in addition that xi = x j for all pairs of Mi,M j ∈ ω. In general, it holds that

O(∪Mi∈ωMi) ⊆ ∩Mi∈ωO(Mi) (3.40)

The set of n linear matrix equations in (3.38) can be written in the standard
form (3.5) as

He

︷                                   ︸︸                                   ︷





H[M1] 0 · · · 0
0 H[M2] 0
...

. . .
...

0 0 · · · H[Mn]





xe

︷︸︸︷





x1
x2
...

xn





+

Le

︷   ︸︸   ︷





L[M1]
L[M2]
...

L[Mn]





z = 0 (3.41)

where the notation He, Le, and xe has been introduced. This implies that the
intersection in (3.39) can be expressed as

∩Mi∈ωO(Mi) = {z ∈ Rnz |∃xe ∈ Rnnx ; Hexe + Lez = 0} (3.42)
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which according to (3.10) is equivalent to

∩Mi∈ωO(Mi) = {z ∈ Rnz |NHe
Lez = 0} (3.43)

The matrix expression NHe
Le in (3.43) can be simplified as follows

NHe
Le =





NH[M1] 0 · · · 0
0 NH[M2] 0
...

. . .
...

0 0 · · · NH[Mn]









L
L
...
L





=





NH[M1]
NH[M2]
...

NH[Mn]





L (3.44)

Note that NH[Mi] is zero-padded and therefore multiplied with L instead of
L[Mi]. From (3.43) and (3.44) we obtain an alternative expression

∩Mi∈ωO(Mi) = {z ∈ Rnz |





NH[M1]
NH[M2]
...

NH[Mn]





Lz = 0} (3.45)

for the intersection. Note that this is the representation that is used in the
discussion concerning (3.37). By using the representation (3.45), it will be
natural to extend the redundancy concept to family of equation sets next.

3.4.4 Redundancy of a Family of Equation Sets

As said before, the redundancy of a set M is equal to the maximum number of
linearly independent consistency relations that can be derived from M. For any
family ω of equations sets, it can be seen in (3.45) that a number of consistency
relations can be related to ω. This motivates that the notion of redundancy
can be generalized to a family of equation set and this will be done next. To
make the definition of redundancy of a family ω as similar as possible to the
redundancy definition of a set of equations, the representation (3.41) will be
used in the definition instead of (3.45).

Definition 3.5 (Redundancy of a Family of Models). Given a set M of linear
equations (3.5) and a family of subsets ω = {M1,M2, . . .Mn} where Mi ⊆ M for all
Mi ∈ ω, the redundancy of ω is

ϕ (ω) = rank ([He Le]) − rank (He) (3.46)

where He and Le are defined as in (3.41).

Note thatϕ ({M}) = ϕ (M), i.e. the definition of redundancy of a set of models
is a generalization of redundancy of a model. The redundancy of a family of
sets can be expressed in many different ways. For example, by using (3.14) we
get

ϕ (ω) = rank (NHe
Le) (3.47)

or by using (3.45) a simplified redundancy expression is

ϕ (ω) = rank (





NH[M1]
NH[M2]
...

NH[Mn]





L) (3.48)
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Compare this redundancy expression with the matrices in (3.37). It is then
clear that, e.g. any pair of MO sets in (3.37) has redundancy 2. Furthermore,
the redundancy expressed as in (3.48) shows that the generalized redundancy
can, like the redundancy for models, be interpreted as the maximum number
of linearly independent consistency relations that can be obtained.

3.4.5 Determine Consistency of Models by Testing MO Sub-
sets

The conclusion of the example in (3.37) can in terms of the generalized redun-
dancy be stated as follows. If a family of subsets of M has the same redundancy
as M, then the consistency of M can be determined by checking the consistency
of the subsets.

The next theorem shows that this principle is generally valid.

Theorem 3.6. Given a set M of linear equations (3.5) and a family of subsets ω =
{M1,M2, . . .Mn} where Mi ⊆M for all Mi ∈ ω, it holds that

O(M) = ∩Mi∈ωO(Mi) (3.49)

if and only if

ϕ (ω) = ϕ (M) (3.50)

To prove the theorem we introduce a notation for row-span as follows. If M
is the rows of H then let the row-span of H be denoted by

sp(H) = {
∑

i∈M

γiH[{i}]|γi ∈ R} (3.51)

Proof. Equation (3.49) holds if and only if

sp(





NH[M1]
NH[M2]
...

NH[Mn]





L) = sp(NHL) (3.52)

according to (3.45). By definition of null-space, it follows that sp(NH[Mi]) ⊆
sp(NH) and then also that

sp(





NH[M1]
NH[M2]
...

NH[Mn]





L) ⊆ sp(NHL) (3.53)

This implies that we get equality if and only if (3.50) is true and the theorem
follows. �

The next corollary shows that the L matrix need not be considered when
determining the redundancy of a family of a PO sets.
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Corollary 3.2. Let M be a PO set and let Mi ⊂M be PO sets for all i ∈ I = {1, 2, . . . ,n}.
Let the equations M be expressed by the matrices H and L. Then it holds that

O(M) = ∩i∈IO(Mi) (3.54)

if and only if

rank (





NH[M1]
NH[M2]
...

NH[Mn]





) = rank (NH) (3.55)

Proof. Equality (3.54) holds according to Theorem 3.6 if and only if (3.50) holds.
Since M is a PO set, it follows from Theorem 3.5 that [H L] has full row-rank.
This implies that

rank (





NH[M1]
NH[M2]
...

NH[Mn]





) = rank (





NH[M1]
NH[M2]
...

NH[Mn]





[

H L
]

) = rank (





NH[M1]
NH[M2]
...

NH[Mn]





L) = ϕ (ω) (3.56)

and
rank (NH) = rank (NH[H L]) = rank (NHL) = ϕ (M) (3.57)

If these two rank equalities are used in (3.55), the corollary follows from Theo-
rem 3.6. �

Note that the corollary basically shows that under the assumption that [H L]
has full row rank the redundancies in (3.50) can be simplified to be

ϕ (ω) = rank (





NH[M1]
NH[M2]
...

NH[Mn]





) (3.58)

and
ϕ (M) = rank (NH) (3.59)

Now, an example will illustrate how this theorem and corollary can be used.

Example 3.7
Consider the PO sets in (3.37). We first note that all sets in (3.37) are PO sets
and that the MO sets are subsets of the PO set {3, 4, 5, 7}with redundancy 2. By
combining the rows of two MO sets for example M1 = {3, 5, 7} and M2 = {4, 5}
we get the corresponding matrix

ϕ ({M1,M2}) = rank (
[

NH[M1]
NH[M2]

]

L) = rank (
[

0 −1 0 R2
1 −1 0 0

]

) = 2 = ϕ ({3, 4, 5, 7})
(3.60)

Theorem 3.6 then implies that

O({3, 4, 5, 7}) = O({3, 5, 7}) ∩ O({4, 5}) (3.61)
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Hence the consistency of {3, 4, 5, 7} can be determined by the consistency of MO
sets. Since all these sets are PO sets it is also possible to use Corollary 3.2. The
corresponding rank test becomes

rank (
[

NH[M1]
NH[M2]

]

) = rank (
[

0 0 1 0 −1 0 R2
0 0 0 1 −1 0 0

]

) = 2 = ϕ ({3, 4, 5, 7}) (3.62)

An advantage with this rank condition is that by only using that the sets {3, 5, 7}
and {4, 5} are PO sets, Corollary 3.1 implies that

[

NH[M1]
NH[M2]

]

=

[

0 0 n1 0 n2 0 n3
0 0 0 n4 n5 0 0

]

(3.63)

where all ni , 0. Without using H or L and from (3.63) it then follows that

rank (
[

NH[M1]
NH[M2]

]

) = rank (
[

0 0 n1 0 n2 0 n3
0 0 0 n4 n5 0 0

]

) = 2

This means that without knowing the exact matrices H and L, it is sufficient
to know that the sets {3, 5, 7} and {4, 5} are MO sets and subsets of the PO set
{3, 4, 5, 7} with redundancy 2 to conclude that (3.61) holds.

In the next theorem this result will be shown to hold generally and the idea of
proof is to use Corollary 3.1 in combination with Corollary 3.2 as in the example.
Before we state the theorem we consider another example, investigating if the
consistency of the no-fault model {1, 2, . . . , 7} can be determined by checking
the consistency of MO sets. If this is possible, the number of needed MO sets
must according to Corollary 3.2 be 3, because the redundancy of the no-fault
model is 3. One way to do this is to chose three MO sets and test if (3.55) is true
for these sets. One example is {4, 5}, {1, 2, 3, 4, 6}, and {3, 4, 7}. The next theorem
shows that any PO set can be checked by MO subsets.

Theorem 3.7. If M is a PO set with redundancy ϕ , then it follows that there exists a
number of ϕ MO sets Mi ⊆M such that

O(M) = ∩iO(Mi) (3.64)

The proof is constructive in the sense that it proposes a method to compute
a family of ϕ MO sets that can be used to determine the consistency of the PO
set.

Example 3.8
To give an example of the construction consider the no-fault model of the
electrical circuit. It holds that E = {1, 2, 3, 4} are linearly independent and
rank (H[M′]) = rank (H). The remaining equations are {5, 6, 7}. By adding
one equation to E the redundancy will be one and an MO set must therefore
be included in the obtained set. The MO sets in E ∪ {5}, E ∪ {6}, and E ∪ {7}
are M1 = {4, 5}, M2 = {1, 2, 3, 4, 6}, and M3 = {3, 4, 7} respectively. By using
Corollary 3.1, it follows that





NH[M1]
NH[M2]
NH[M3]




=





0 0 0 n1 n2 0 0
n3 n4 n5 n6 0 n7 0
0 0 n8 n9 0 0 n10




(3.65)



60 Chapter 3. Soundness when Diagnosing Linear Static Systems

where ni , 0. Note that by construction, the last three columns constitute a
diagonal matrix, i.e. the matrix (3.65) has full row-rank. Then Corollary 3.2
implies that these three MO sets can be used to determine the consistency of the
no-fault model. By starting with three other linearly independent rows other
triples of MO sets will be found.

Now, the proof of Theorem 3.7 follows.

Proof. The redundancy for all M′ ⊆M is equal to

ϕ (M′) = |M′| − rank (H[M′]) (3.66)

Let E ⊆ M be rank (H) independent rows of H. No subset of E is a PO set,
because H[E] has full row-rank. If M′ is set to M in (3.66) and it is used that
ϕ (M) = ϕ and rank (H[M]) = |E|, we get

ϕ = |M| − |E|

This implies that the set M\E containsϕ equations and we will show that to each
of these equations an MO set can be constructed. Let ei ∈ M \ E be arbitrarily
chosen. Since H[E] is a row basis of H, it follows that rank (H[E ∪ {ei}]) =
rank (H[E]) and also that ϕ (E∪{ei}) = 1. Then there exists a PO set Mi ⊆ E∪{ei}
according to Theorem 3.2. This PO set has redundancy 1 and is therefore an
MO set according to Lemma 3.2. Since H[E] has full row rank, it follows that
ei ∈Mi. If this and Corollary 3.1 is used for all ei ∈M \ E, then it follows that





NH[M1]
...

NH[Mϕ ]





=
[

A D
]

(3.67)

where A ∈ Rϕ×(|M|−ϕ ) and D is a diagonal matrix of dimension ϕ with non-zero
diagonal elements. This matrix has obviously rank ϕ and the theorem follows
from Corollary 3.2. �

Finally, we show that the consistency of any behavioral model can be deter-
mine by checking the consistency of all MO set.

Corollary 3.3. Given any linear static behavioral model Mb, it follows that

O(Mb) = ∩Mi∈MMO
O(Mi) (3.68)

whereMMO is the family of all MO sets M ⊆Mb.

Proof. According to Theorem 3.2 there exists a PO set E ⊆Mb such that

O(Mb) = O(E)

Theorem 3.7 then implies that

O(Mb) = O(E) = ∩E′∈M′
MO
O(E′)

whereM′
MO

are all MO sets that is a subset of E. HenceM′
MO
⊆ MMO and the

corollary follows. �
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3.5 Selecting MO Sets

In the previous section, it was shown that it is sufficient to check the consistency
of all MO sets in a behavioral model Mb, but according to Theorem 3.6 this is
not necessary. The question is then how to find a family ω of MO sets such
that (3.50) in Theorem 3.6 is fulfilled.

The consistency of a set with redundancy ϕ can always be determined by
checkingϕ number of MO sets according to Theorem 3.7. This is possible if and
only if the family of ϕ MO sets has redundancy ϕ according to Theorem 3.6.
Not all families of ϕ MO subsets of the PO set have redundancy ϕ and this
will be shown by the next example.

Example 3.9
The no-fault model MNF for the electrical circuit example in (2.44) has redun-
dancyϕ (MNF) = 3, but for example the familyω = {{4, 5}, {3, 5, 7}, {3, 4, 7}}of MO
sets has redundancy 2 according to the discussion in Section (3.4.2). This means
according to Theorem 3.6 that ω cannot be used to determine the consistency
of MNF.

One alternative to find a possible triple of MO sets is of course to chose
triplets and test them using (3.55) until one is found that satisfies this condition.
However, the next theorems will provide guidelines to find a family ω of MO
sets with the desired redundancy.

Theorem 3.8. For any set of models ω it holds that

ϕ (ω) ≤ ϕ (∪Mi∈ωMi) (3.69)

Proof. Starting with (3.40) and substitute (3.10) and (3.45), we get

{z ∈ Rnz |NH[∪Mi∈ωMi]Lz = 0} ⊆ {z ∈ Rnz |





NH[M1]
NH[M2]
...

NH[Mn]





Lz = 0}

This means that

rank (





NH[M1]
NH[M2]
...

NH[Mn]





L) ≤ rank (NH[∪Mi∈ωMi]L)

By replacing the rank expressions by redundancy expressions according to (3.14)
and (3.48), the inequality (3.69) is obtained. �

Theorem 3.9. If ω is a set of PO sets and M is a PO set such that

∪Mi∈ωMi ⊂ ∪Mi∈ωMi ∪M (3.70)

then it follows that

ϕ (ω ∪ {M}) ≥ ϕ (ω) + 1 (3.71)
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Proof. Let M′ =M \ ∪Mi∈ωMi. Since M is a PO set it follows that

NH[M][:,M′] , 0 (3.72)

according to Corollary 3.1. Moreover Mi ∩M′ = ∅ and this means that

NH[Mi][:,M
′] = 0 (3.73)

for all Mi ∈ ω. From (3.72) and (3.73), it follows that NH[M] is not a linear
combination of NH[Mi] for all Mi ∈ ω. This and (3.58) imply

ϕ (ω) = rank (





NH[M1]
NH[M2]
...

NH[Mn]





) < rank (





NH[M1]
NH[M2]
...

NH[Mn]
NH[M]





) = ϕ (ω ∪ {M})

which was to be proven. �

Example 3.10
To illustrate result Theorem 3.8 consider the previous example. There we found
that ω = {{4, 5}, {3, 5, 7}, {3, 4, 7}} could not be used to determine the consistency
of MNF. If ω = {{4, 5}, {3, 5, 7}, {3, 4, 7}} in (3.69), we get

ϕ (ω) ≤ ϕ ({3, 4, 5, 7}) = 2 (3.74)

which also confirms that ω cannot be used. From the definition of PO set
and (3.69), it follows that a necessary condition for ϕ (ω) = 3 is that the union
of the sets in ω must contain all equations in MNF. Hence to find three MO
sets with redundancy 3, it is necessary that all equations in MNF are included
in some of these MO sets.

Generally, assume that we want to find a family ω of MO subsets to de-
termine the consistency of the PO set M. A necessary condition of ω is then
according to (3.69) that

∪Mi∈ωMi =M

The result of Theorem 3.9 implies that a sufficient condition for finding a
family ω = {M1,M2, . . . ,Mn} of MO sets with redundancy equal to the cardinal-
ity is that there exists a ordering (a1, . . . , ai, . . . , an) of {1, 2, . . . ,n} such that

∪ j

i=1Mai
⊂ ∪ j+1

i=1 Mai
(3.75)

for all j ∈ {1, 2, . . . ,n − 1}.
Example 3.11
To give an example consider again the no-fault model for the electrical circuit
example with the PO sets given in Figure 2.2. A family with 3 MO sets and
with redundancy 3 is to be found. A sequence of three MO sets can be chosen
as {4, 5}, {3, 5, 7}, and finally {1, 2, 5, 6, 7}. These defines a sequence of strictly
increasing sets, i.e.

{4, 5} ⊂ {4, 5} ∪ {3, 5, 7} ⊂ {4, 5} ∪ {3, 5, 7} ∪ {1, 2, 5, 6, 7} =MNF (3.76)
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and it follows that these three MO sets can be used the determine the consistency
of the no-fault model. This shows how to find which MO sets to include in ω
without using numerical computations once the MO sets are computed. Note
that there are many other possible MO sets that can be used.

Another example is to use ω′ = {{1, 2, 3, 4, 6}, {3, 5, 7}, {4, 5}}. To verify that
ϕ (ω′) = 3, by using Theorem 3.9 an order of the MO sets is needed. The order
they are presented in ω′ can not be used since

{1, 2, 3, 4, 6} ∪ {3, 5, 7} =MNF (3.77)

However if the reversed order is used the condition in Theorem 3.9 is satisfied.

3.6 Linear Models with Constants

In this section, the theory given in this chapter is extended to behavioral models
Mb of the type

Hbx + Lbz + c = 0 (3.78)
where c is a constant vector. This type of models will naturally appear as the
result of linearizations of non-linear models. It is assumed that there exists a
value of x and z that satisfies (3.78), i.e.

rank (
[

Hb Lb c
]

) = rank (
[

Hb Lb

]

) (3.79)

Let [

x
z

]

=

[

x′

z′

]

+ α (3.80)

define a variable translation where α is a constant vector to be determined. If
this translation is applied to (3.78), then we get

[

Hb Lb

]
[

x
z

]

+ c =
[

Hb Lb

]
[

x′

z′

]

+
[

Hb Lb

]

α + c = 0 (3.81)

From (3.79), it follows that there exists an α = α0 such that
[

Hb Lb

]

α0 = −c (3.82)

By using α = α0 in the variable translation the behavioral model in (3.78) is
written

[

Hb Lb

]
[

x′

z′

]

= 0 (3.83)

i.e. in the same form as (3.2). Note that the matrices Hb and Lb are unchanged
by the translation. Hence all theory developed for models of the type (3.2) is
also valid for models of the type (3.78) as long as (3.79) holds true.

3.7 Redundancy and the Number of MO Sets

We have suggested to check the consistency of MO sets and then the number
of MO sets will characterize the number of potential tests. In this section, it
is shown that for a fixed order of redundancy ϕ , the number of MO sets is
polynomial in the number of equations. Furthermore, it is shown that the
redundancy is limited by the number of available sensors, which are often
expensive, and therefore the redundancy is low in many applications.
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3.7.1 Redundancy Dependence of the Number of Sensors

The redundancy depends on the number of available sensors ns as follows.
Let Mb be a set of equations partitioned into sensor equations M1 and other
equations M2. Furthermore, let the vector of known variables be divided into
two parts zT = [yT uT] where y is the measured signals corresponding to the
sensors and u is the control signals. The equations Mb partitioned into M1 and
M2 can then be written as:

H
︷︸︸︷
[

H1
H2

]

x +

L
︷  ︸︸  ︷
[

I 0
0 L2

] [

y
u

]

= 0 (3.84)

Note that the cardinality of M1 is equal to the number of sensors ns. A model
does normally not specify any algebraic dependence between control signals,
i.e. rank (NH2 L2) = 0 or equivalently ϕ (M2) = 0. Using this type of model, the
redundancy is less or equal to the number of sensors, i.e.

ϕ (Mb) ≤ ns (3.85)

and it can be shown as follows. By using that

rank ([H L]) = |M1| + rank ([H[M2] L[M2]])

and
rank (H) ≥ rank (H[M2]) (3.86)

an upper limit of the redundancy can be found as

ϕ (Mb) = rank ([H L]) − rank (H)
≤ |M1| + rank ([H[M2] L[M2]]) − rank (H[M2])
= ns + ϕ (M2) = ns

Furthermore equality in (3.85) holds if and only if equality in (3.86) holds. This
is especially true for example when H[M2] is invertible, i.e. has full column
rank. In summary, the number of sensors limits the redundancy of the model.
To give an example, the electrical circuit has 3 sensors and the no-fault model
has redundancy 3. Next we will study the how the number of MO sets depends
on the redundancy.

3.7.2 The Number of MO Sets

For a fixed order of redundancy ϕ , the number of MO sets in Mb is polynomial
in the number ne of equations. This follows from the fact that in the worst case
every subset of Mb, with one more equation than the number of unknowns is an
MO set. This means that the number of MO sets is less or equal to the number
of ways to choose ne − ϕ + 1 equations from the original ne equations, i.e.

( ne

ne − ϕ + 1

)

=
ne!

(ne − ϕ + 1)!(ϕ − 1)!
∝ ne(ne − 1) · · · (ne −ϕ + 2) ≈ n

ϕ−1
e (3.87)

The number of such sets grows polynomially in the number of equations.
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3.8 Diagnosing all Behavioral Models

So far in this chapter, we have only been concerned to fulfill (2.34) for one single
behavioral mode. In this section, we extend the discussion to the case when all
behavioral modes in B are considered.

3.8.1 Sufficient to Test All MO Sets

In the next theorem it is stated that given a diagnosis model, it is sufficient to
check the consistency of all feasible MO sets to determine the consistency of all
behavioral models.

Theorem 3.10. If M is a diagnosis model with a set M = ∪b∈BMb of linear static
equations such that Mb is on the form (3.78) and satisfies (3.79) for all b ∈ B, then the
set ω of all feasible MO sets in M satisfies (2.34) for all b ∈ B.

Proof. Let b be an arbitrary behavioral mode b ∈ B. First, since Mb fulfills (3.79)
the model can be rewritten as (3.83). Second, any MO sets M ⊆Mb is a feasible
MO set, i.e. M ∈ ω. These two facts imply that (2.34) is satisfied for b according
to Corollary 3.3. Since b was arbitrarily chosen the theorem follows. �

A feasible MO set M normally satisfy assump(M) ⊂ B. However if assump(M)
=B it means that M cannot be inconsistent and need not be included in ω. Let
ω = {Mi|i ∈ I} be the set of all feasible MO sets in a diagnosis model M. For
each feasible MO sets in ω, i.e. for each i ∈ I, a test δi is constructed such that
Φi = assump(Mi), Ti(z) = NH[Mi]Lz, and RC

i
= {0}. Then Theorem 2.1, Theo-

rem 2.2, and Theorem 3.10 imply that the diagnosis system ∆ = {δi|i ∈ I} is
sound and complete with respect to the diagnosis modelM.

Example 3.12
Consider the electrical circuit example and the Hasse diagram in Figure 2.2
showing all PO sets contained in its diagnosis model. All MO sets are in this
example feasible models because M =MNF. A consequence of Theorem 3.10 is
that there exists a sound diagnosis system based on the 8 MO sets. The matrices
NH[Mi] L for all MO sets Mi ∈M are

MO U yV yI yI2

{1, 2, 3, 4, 6} [ −(R1 + R2) 0 R1 R2 0 ]
{1, 2, 3, 5, 6} [ 0 −(R1 + R2) R1 R2 0 ]
{1, 2, 3, 6, 7} [ 0 0 R1 −(R1 + R2) ]
{1, 2, 4, 6, 7} [ −1 0 R1 −R1 ]
{1, 2, 5, 6, 7} [ 0 −1 R1 −R1 ]
{3, 4, 7} [ −1 0 0 R2 ]
{3, 5, 7} [ 0 −1 0 R2 ]
{4, 5} [ 1 −1 0 0 ]

(3.88)

and these are used to form the test quantities Ti(z) = NH[Mi]Lz. At this point,
it might be interesting to reread Section 2.6 in the light of the new theory
developed in this chapter and note especially that by checking the consistency
of the 8 MO sets the consistency of all 26 = 64 behavioral models can be
determined.
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3.9 Minimizing The Number of Tests

In the previous section, it was shown that it is sufficient to check all feasible MO
sets in a diagnosis model. However, it has been shown that it is not necessary
to check all MO sets in general, i.e. some MO sets do not need to be tested.
This raises the question of how to find a smallest family ω of MO sets such
that (2.34) is fulfilled for all b ∈ B. In this section an algorithm for finding not
only one but all minimal solutions ωwill be presented and some examples will
be discussed.

3.9.1 Algorithm

In this section an algorithm, Algorithm 2, will be presented that can be used to
find all minimum cardinality solutionsω to (2.34) given a diagnosis model. The
main purpose of the algorithm is to explain how minimal cardinality solutions
can be computed in a straightforward way. The focus is not to optimize the
computational complexity.

The solutions have the following property that will be used in the algorithm.
If ω satisfies (2.34) for all behavioral modes b ∈ B, then any superset ω̂ ⊃
ω will also satisfy (2.34) for all behavioral modes b ∈ B. This means that
there exist minimal families ω of MO sets that satisfy (2.34). A minimum
cardinality solution ω to (2.34) must therefore be among the minimal families
that solves (2.34).

Instead of using that (2.34) holds for all b ∈ B an equivalent condition
according to Theorem 3.2 is that

O(M′) =
⋂

M∈ω
O(M) (3.89)

for all PO sets M′ such that O(M′) = O(Mb) for some b ∈ B will be used. If B is
the set of all single-fault behavioral modes and the no-fault mode, then the PO
sets M′ in Figure 2.2 are the PO sets with some behavioral mode in B.

The algorithm takes as inputs the setMMO of all MO sets, all PO sets with
a behavioral mode in B, and the model equations M and finds the set Ω of all
minimal solutions ω.

Let P = (P1, . . .Pn) be an ordered set of all PO sets with a behavioral mode
in B. LetΩi be the set of all minimal solutions ω such that (P1, . . .Pi) are tested.
The basic idea is to start with Ω0 = ∅ and then extend the solutions in Ωi−1 to
form the set Ωi until we obtain the set Ωn which is equal to the output set Ω.

The set Ωi is computed using Ωi−1 and the i:th PO set Pi. This computation
consists of two steps. First, the setΩ′

i
of all minimal families of MO sets ω′ that

test Pi is computed in Algorithm 1. Second, Ω′
i

and Ωi−1 are merged to form
the set Ωi. These steps will now be explained.

Given a PO set Pi and a family of subsetsω′ = {M1,M2, . . .Mn}where M j ⊆ Pi

for all M j ∈ ω′, it holds that

O(Pi) =
⋂

M∈ω′
O(M) (3.90)

if and only if
ϕ (ω′) = ϕ (Pi) (3.91)
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according to Theorem 3.6. Hence ω′ ∈ Ω′
i

if and only if ω′ = {M1,M2, . . .Mn} is
a minimal set that satisfies (3.91) and where M j ⊆ Pi for all M j ∈ ω′.

Since redundancy of a set can be expressed as (3.48), i.e. the rank of a matrix
where each row corresponds to an MO set, it follows that any minimal set ω′

that satisfies (3.91) must contain exactly ϕ (Pi) MO sets. This is an important
property that can be used when generating all such sets and the computation
can be done as follows.

Algorithm 1. Ω′
i
= MinimalTestSets(Pi,MMO)

Ω′
i
= ∅;

α := {M ∈ MMO|M ⊆ Pi};
Ω̂ := {ω′ ⊆ α | |ω′| = ϕ (Pi)};
for each ω′ ∈ Ω̂ do

if ϕ (ω′) = ϕ (Pi) do

Insert ω′ in Ω′
i
;

end if

end for
return Ω′

i

Given a PO set Pi and the setMMO of all MO models, the output set Ω′
i

in
Algorithm 1 contains all minimal solutions ω′ ⊆ MMO of (3.90). As said before,
we will consider Pi to be a PO set andMMO to be a set of all MO sets. However,
the algorithm is not restricted to these inputs. In general, Pi can be any set of
linear static equations andMMO can be any set of linear static models.

Example 3.13
To illustrate how MinimalTestSetsworks consider the electrical circuit model
(2.44) with PO sets given in Figure 2.2. Assume that P1 = {1, 2, 3, 4, 5, 6} and that
the MO sets are enumerated from left to right in Figure 2.2 and let the i:th MO
set be denoted by Mi. The set α defined in Algorithm 1 is for this example

α = {M1,M2,M8}

Since ϕ ({1, 2, 3, 4, 5, 6}) = 2 the set Ω̂ is

Ω̂ = {{M1,M2}, {M1,M8}, {M2,M8}}

Each set ω′ ∈ Ω̂ satisfies (3.91) and the output set Ω′
i

is Ω′
i
= Ω̂.

If the set of all minimal solutions Ω′
i

of the i:th PO set in Pi is computed
using Algorithm 1 and if the set of all minimal solutions for all the i− 1 first PO
sets in P isΩi−1, we will next explain how to compute the extended solutionΩi.
This will first be illustrated by continuing Example 3.13.

Example 3.14
Assume that B is the set of all single-faults and the no-fault mode. Assume
that the PO sets corresponding to behavioral modes in B are enumerated from
left to right and then by increasing redundancy. This order defines the list P.
The first PO set P1 in P is P1 = {1, 2, 3, 4, 5, 6} for behavioral mode S3 and the
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set of all minimal families ω of MO sets that satisfy (2.34) for S3 is according to
Example 3.13 equal to

Ω1 = {{M1,M2}, {M1,M8}, {M2,M8}}

The next PO set in P is P2 = {1, 2, 3, 4, 6, 7}, and the set Ω′2 obtained using
Algorithm 1 of all minimal families of MO sets that satisfy (2.34) for S1 is

Ω′2 = {{M1,M2}, {M1,M3}, {M1,M6}, {M2,M3}, {M2,M6}, {M3,M6}}

Next, the solutions in Ω1 and in Ω′2 are combined to form a solution when
considering both PO set P1 and P2. Sinceω ∈ Ω1 is a solution for P1 andω′ ∈ Ω′2
is a solution for P2, it follows that ω ∪ ω′ will be a solution, not necessarily
minimal, to the problem of testing both P1 and P2. By taking the union of all
pairs in the setsΩ1 andΩ2 and then remove non-minimal solutions, we obtain

Ω2 = {{M1,M2,M3}, {M1,M2,M4}, {M1,M2,M6}, {M1,M3,M8}, {M1,M4,M8},
{M1,M6,M8}, {M2,M3,M4,M8}, {M2,M3,M6,M8}, {M2,M4,M6,M8}}

An example of a non-minimal solution that has been removed to obtain this set
is {M1,M2,M3,M6}which is produced by taking the union of {M1,M2} ∈ Ω1 and
{M3,M6} ∈ Ω2. By construction,Ω2 contains all minimal setsω that satisfy (3.49)
for both P1 and P2.

In the example we saw that Ωi can be obtained from Ωi−1 and Ω′
i

by first
computing

Ωi = {ω′ ∪ ω|ω ∈ Ωi−1, ω
′ ∈ Ω′i } (3.92)

and then pruning all non-minimal sets in Ωi. Let these operations be denoted
by Extend such that Ωi can be expressed as

Ωi = Extend(Ωi−1,Ω
′
i ) (3.93)

Remember that P = (P1, . . .Pn) is an ordered set of all PO sets with a be-
havioral mode in B. The output is invariant under permutations, but the
computational complexity is not. The computational complexity is closely re-
lated to the size of Ωi in all steps. A large redundancy of a PO set Pi leads in
general to a large set Ω′

i
. To reduce the size of the initial sets Ωi a heuristic is

then to order the PO sets in increasing redundancy.
Now, the main algorithm can now be summarized as follows.

Algorithm 2. Ω = AllMinimalTestSets(P,MMO)
Ω = ∅;
for i = 1 to n do

Ω′ := MinimalTestSets(Pi,MMO);

Ω := Extend(Ω,Ω′);

end for
return Ω
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Given a list P of PO sets and the setMMO of all MO models, the output set
Ω of Algorithm 2 contains all minimal solutions ω ⊆ MMO of (3.89).

The minimum number of tests can now be obtained by testing the MO sets
in any minimum cardinality set ω ∈ Ω. Sometimes the set Ω is large and
therefore computationally expensive to compute. Since the objective is to com-
pute only one minimum cardinality solution it is not necessary to compute all
minimal solutions. By the following small modification of the above described
algorithm, it is possible to define an algorithm where the output set Ω will be
the set of all minimum cardinality sets ω. If the minimum cardinality sets ω
have cardinality m, then only the minimum cardinality sets ω is obtained in the
output of Algorithm 2 if (3.92) is replaced by

Ωi = {ω′ ∪ ω|ω ∈ Ωi−1, ω
′ ∈ Ω′i , |ω′ ∪ ω| ≤ m} (3.94)

The number m can be found as the minimum number that gives a non-empty
output set Ω of the modified Algorithm 2 and this set is then the desired set.

Since all minimum cardinality sets can be computed additional objectives,
such as computational aspects of the residuals, can be added to chose the best
minimum cardinality set.

3.9.2 Examples

Now, both Theorem 3.10 and Algorithm 2 will be used to obtain MO sets ω for
some variants of the electrical circuit example.

Example 3.15
First, consider again the electrical circuit when the set B contains all multi-
ple fault behavioral modes and the no-fault mode. This means according to
Figure 2.2 that the input list P in Algorithm 2 contains all PO sets andMMO con-
tains all MO sets in Figure 2.2. The output set Ω contains in this case only one
minimal set ω =MMO including all MO sets in Figure 2. ThereforeMMO is the
unique minimum cardinality solution. This means that the minimal number of
tests required to obtain soundness is 8.

To explain the result, take for instance behavioral mode R1&R2 with its
corresponding behavioral model {1, 4, 5, 6, 7}. The MO set {4, 5} is the only PO
set with the same observation set as {1, 4, 5, 6, 7}. Hence to fulfill (2.34) for
behavioral mode R1&R2, the MO set {4, 5} has to be included in ω. This can be
seen in Figure 2.2 where R1&R2 is among the behavioral models listed below
{4, 5}. In the figure, it can be seen that each MO set has an observation set equal
to an observation set to some behavioral model. Therefore, all MO sets must in
this case be included in ω.

Example 3.16
Assume this time that only single faults are to be considered, i.e. B = {NF,
R1, R2, B, S1, S2, S3}. For soundness, it is required that the consistency of all
behavioral models Mb such that b ∈ B can be determined. By looking at the
Hasse diagram in Figure 2.2, it can be seen that this is equivalent to determine
that consistency of all PO sets with redundancy 2 and 3.

Since the model equations are the same as when considering all multiple
faults, Theorem 3.10 again implies that all 8 MO sets are sufficient. Another
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possibility to satisfy (2.34) for all b ∈ B is to include the 5 PO sets with redun-
dancy 2 in ω. However the redundancy is 2 for each PO set and this choice can
therefore be seen as testing the consistency of 5 × 2 = 10 consistency relations
compared to test the 8 MO sets.

Not all MO sets need to be tested in order to fulfill (2.34) for all behavioral
modes in B = {NF, R1, R2, B, S1, S2, S3}. To compute the minimum number
of MO sets needed Algorithm 2 is applied to the inputs P equal to the set of
all PO sets with redundancy 2 and 3 andMMO equal to the set of all MO sets
in Figure 2.2. The output set Ω contains 13 minimal sets of which 12 are of
minimum cardinality 5. One of these minimum cardinality sets is

ω = {{1, 2, 3, 4, 6}, {1, 2, 3, 6, 7}, {1, 2, 5, 6, 7}, {3, 4, 7}, {4, 5}}

Hence the minimum number of tests is 5.

In the following two examples, an extension to the electrical circuit model
is considered.

Example 3.17
Next all multiple faults are again considered. In addition to the model given
in (2.44), the battery is modeled to two behavioral modes B ∈ {NF,F} where F
stands for ”faulty”. A faulty battery is assumed to have no voltage across the
battery, i.e. V = 0 if B = F. The extended model becomes

Assumption Equation Expression
(1) I − I1 − I2 = 0

R1 = NF (2) V − I1 R1 = 0
R2 = NF (3) V − I2 R2 = 0
B = NF (4) V −U = 0
S1 = NF (5) V − yV = 0
S2 = NF (6) I − yI = 0
S3 = NF (7) I2 − yI2 = 0
B = F (8) V = 0

(3.95)

The equations 4 and 8 are mutually exclusive. The set {4, 8} is therefore an
example of an MO set that is not a feasible model. This MO set need not be
considered according to Theorem 3.10. Since a subset of a feasible model is
feasible, the set of all feasible models can be represented as all subsets of the
maximal feasible models. The maximal feasible models in the example are
M\{8} = MNF and M\{4} = MB. The Hasse diagram for (3.95) is shown in
Figure 3.1. This shows the subset relation of all feasible PO sets for the model.
The two maximal feasible models are the ones on redundancy level 3.

The additional feasible MO sets found in the extended model (3.95) are
{1, 2, 3, 6, 8}, {1, 2, 6, 7, 8}, {3, 7, 8}, {5, 8}. If the input list P in Algorithm 2 contains
all PO sets with behavioral modes in Figure 3.1 andMMO contains all MO sets
in Figure 3.1, then the output set Ω consists of one minimal set ω including
the 8 MO sets in Figure 3.1 with behavioral modes. Hence it is necessary
and sufficient to check the consistency of all 8 MO sets which includes either
equation 4 or 8. The matrices NH[Mi] L for the MO sets Mi ∈ M are the ones
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shown in (3.88) and

MO U yV yI yI2

{1, 2, 3, 6, 8} [ 0 0 1 0 ]
{1, 2, 6, 7, 8} [ 0 0 1 −1 ]
{3, 7, 8} [ 0 0 0 1 ]
{5, 8} [ 0 1 0 0 ]

(3.96)

Example 3.18
The last example is to consider the model in (3.95) but now with B = {NF,R1,
R2, B, S1, S2, S3}. Let the input list P in Algorithm 2 contain all PO sets in
Figure 3.1 with behavioral modes in B = {NF,R1, R2, B, S1, S2, S3} and let
MMO contain all MO sets in Figure 3.1. The output set Ω contains 73 minimal
sets of which 63 are of minimum cardinality 6. If the MO sets Mi are enumerated
from left to right in Figure 3.1 one such set is

ω = {M1,M2,M4,M5,M8,M9}

The number of minimal solutions ω is large if P includes few PO sets with
low redundancy, as in the single fault examples, compared to the case when
many MO sets are included in P, as in the multiple fault examples. Since the
computational complexity of finding all minimum cardinality sets ω depends
on the number of solutions ω, the same can be said about the computational
complexity of computing Ω.

3.10 Fault Influence on Residuals

In the diagnosis system design approach used here, i.e. starting from the model
as described in Section 2.3.3, the idea is to construct residuals for MO sets. Any
test quantity based on the MO set M of equations Hx+Lz+ c = 0 can be written
with some basis NH of the left null space of H as

r = NH(Lz + c) (3.97)

A scaling factor is the only design freedom for a residual based on the MO set
M. Since scaling does not affect which faults that the residual r is influenced by,
any residual based on the same MO set will be influenced by the same faults.

Fault influence on residuals is typically analyzed when faults are modeled
with fault variables. In this case a residual r is said to be influenced by a fault
F, if the residual r is sensitive to a change in the corresponding fault variable
f , i.e. if f , 0 implies that r , 0 in the linear case. In the framework used here,
faults need not be explicitly modeled with fault variables and the meaning of
fault influence on a residual can not be defined in this way. A formulation of
fault influence that generalizes to the situation without fault variables is the
following. In the linear case, it is equivalent that a residual r is sensitive to a
fault variable f corresponding to fault F and that r , 0 is consistent with the
assumption that the system to be diagnosed is in fault mode sys = F. To make
the next definition generally valid, we will use behavioral mode instead of fault
mode.
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Definition 3.6 (Influenced by a Behavioral Mode). A residual r is influenced by
a behavioral mode b if

∃z ∈ O(Mb) : r(z) , 0 (3.98)

This means that a residual r is influenced by a fault mode F if r , 0 is
consistent with the behavioral model MF. This formulation of fault influence
does not require that the fault F is explicitly modeled with a fault variable f .
Hence this is what we mean with fault influence on a residual r in the general
case.

In this section the fault influence on a residual r based on an MO set M
is investigated and the main result is, under some general assumptions given
later, that the r is influenced by the faults, or more general the behavioral
modes, b ∈ (assump(M))C. Before a general linear static model is discussed, we
will consider a special case where all faults are explicitly modeled with fault
variables.

3.10.1 Fault Influence in Models with Fault Variables

Assume that the no-fault behavior of a process can be described by the linear
static model

H′ x + L′ z = 0 (3.99)

Furthermore, assume that there are m single faults modeled by a vector f . For
the variable fi it holds that fi = 0 if fault i is not present. The static linear
model (2.26) would then be

H′x + L′z + F′ f = 0 (3.100)

This model can be written in the framework used here as follows. Each fault i
can be related to a component ci which can either be in the no-fault mode NF
or the faulty mode F. The model then becomes

c1 =NF f1 = 0
...

...
cm =NF fm = 0

H′x + L′z + F′ f = 0

(3.101)

The variables in f are considered to be unknown variables. Assume that we pick
out an MO set of equations in (3.101). These equations can, after a renumeration
of the faults, be written as

c1 =NF f1 = 0
...

...
cn =NF fn = 0

Hx + Lz + F f = 0

(3.102)

where n ≤ m. Let the fault vector f be partitioned such that the n first fault
variables f1, . . . , fn form a vector f a and the rest of the faults are included in f b,
i.e.

f =

[

f a

f b

]

(3.103)
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Furthermore, let Fa = F[:, {1, . . . ,n}] and Fb = F[:, {n + 1, . . . ,m}]. The model
equations (3.102) can now be written in the form (3.5) as

H̃
︷         ︸︸         ︷
[

I 0 0
Fa Fb H

]

x̃
︷︸︸︷




f a

f b

x




+

L̃
︷︸︸︷
[

0
L

]

z = 0 (3.104)

Any residual for this MO set can be written as

r = NH̃L̃z (3.105)

where the scaling α in (3.97) can be included in NH̃. To find out the fault
influence on the residual r, we want to express r only in the fault vector f .

To do this, we will first express the residual with the sub-matrices given
in (3.104). Let the row-vector NH̃ be partitioned into [N1 N2]. Since NH̃H̃ = 0
we get that

[

N1 N2

]
[

I 0 0
Fa Fb H

]

=
[

N1 +N2Fa N2Fb N2H
]

= 0 (3.106)

This implies that
N2 = N[Fb H] (3.107)

and then also that
N1 +N[Fb H]Fa = 0 (3.108)

From that NH̃ = [N1 N[Fb H]] and the definition of L̃ in (3.104), it follows that the
residual in (3.105) can be expressed as

r = NH̃L̃z =
[

N1 N[Fb H]

]
[

0
L

]

z = N[Fb H]Lz (3.109)

Now, by multiplying the lower part of (3.104) with N[Fb H], we get

N[Fb H]Fa f a +N[Fb H]Fb f b +N[Fb H]Hx +N[Fb H]Lz = 0 (3.110)

On the left-hand side the second and third term is zero and the last term is
according to (3.109) equal to r. This means that the residual is equal to

r = −N[Fb H]Fa f a (3.111)

Finally, by using (3.108) and that N1 = NH̃[:, {1, . . . ,n}], the fault influence on
the residual r is given by

r = NH̃[:, {1, . . . ,n}] f a (3.112)

The residual is influenced by all faults in f a where the corresponding column
in the row-vector NH̃[:, {1, . . . ,n}] is non-zero. Since (3.102) is an MO set of
equations, it follows from Corollary 3.1 that all columns in NH̃ are non-zero and
a consequence of this is that all columns in NH̃[:, {1, . . . ,n}] are non-zero. Hence
the residual r in (3.105) is influenced by all faults in f a and not influenced by
any faults in f b. An interpretation of (3.107) is that the faults f b are decoupled
and it will be shown that the resulting residual will not be influenced by any
fault in f b. Hence the partition of the faults in (3.103) can be interpreted as not
decoupled faults f a and decoupled faults f b. The result of this discussion is
summarized in the following theorem.
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Theorem 3.11. Given a linear static model where all faults are modeled explicitly as
in (3.101) and an MO subset of equations (3.102), any residual r = NH̃L̃z using the
notation in (3.104) will have the fault influence

r =
[

NH̃[:, {1, . . . ,n}] 0
]
[

f a

f b

]

(3.113)

where NH̃[:, {i}] , 0 for all i ∈ {1, . . . ,n}.

Proof. The theorem follows directly from the formal discussion starting with (3.101)
and ending with Theorem 3.11. �

Usually, we will start with a diagnosis model with the set M of equa-
tions (3.101) and form a residual based on an MO set M ⊆ M. If the set M of
equations (3.101) is written on matrix form with matrices H̃′ and L̃′, then the
result of Theorem 3.11 can then be reformulated in terms of matrices H̃′ and
L̃′ as follows. Given any MO set M ⊆ M, any residual based on M can the be
written

r = NH̃′[M]L̃
′z (3.114)

and its fault influence is given by

r = NH̃′[M][:, {1, . . . ,m}] f (3.115)

according to Theorem 3.11.

Example 3.19
To exemplify the result of Theorem 3.11 consider the model

[

1
1

]

x +

[

1 0
0 1

]

z +

[

1 0 1
0 1 1

]

f = 0 (3.116)

which written in the form (3.101) is

c1 = NF
c2 = NF
c3 = NF





1 0 0 0
0 1 0 0
0 0 1 0
1 0 1 1
0 1 1 1









f1
f2
f3
x





+





0 0
0 0
0 0
1 0
0 1





z = 0 (3.117)

where the matrices are called H̃′ and L̃′ respectively. This model includes one
MO set, i.e. the set {1, 2, 4, 5}. By computing the vector

NH̃[{1,2,4,5}] =
[

−1 1 0 1 −1
]

a residual and its fault influence is then given by

r =
[

1 −1
]

z =
[

−1 1 0
]

f (3.118)

according to (3.114) and (3.115) respectively.
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3.10.2 Fault Influence in General Linear Static Models

In the previous discussion all faults were explicitly included in the model as
fault variables and then it was possible to quantify the influence of a fault on
a residual. The next theorem generalizes the result in Theorem 3.11 to general
linear static models described in Section 3.6.

Theorem 3.12. Let M be an MO set of linear equations

H x + L z + c = 0 (3.119)

where rank ([H L c]) = rank ([H L]) and let model deviation be described by a vector ǫ
such that

H x + L z + c = ǫ (3.120)

Any residual derived from M can be written

r = NH(Lz + c) (3.121)

and the residual response of the model deviation is given by

r = NHǫ (3.122)

where NH[:, {i}] , 0 for all i ∈M.

Proof. Since (3.119) is an MO sets, it has redundancy one. This means that NH is
a vector determined up to a non-zero constant. By multiplying (3.120) with NH

from the left, we get both the residual computational form (3.121) and the fault
response (3.122). Since M is an MO set Corollary 3.1 states that all columns in
NH are non-zero, i.e. NH[:, {i}] , 0 for all i ∈M. �

According to (3.122) almost any model deviation ǫ , 0, i.e. for all ǫ ∈ R|M|
except for a line, will be detected with the residual r. To see how Theorem 3.12
is a generalization of Theorem 3.11 apply the result of Theorem 3.12 to the
model (3.102) which expressed on matrix form is given in (3.104). By adding
the model deviation ǫ, we get

H̃x̃ + L̃z = ǫ (3.123)

From the n first equations, it follows that fi = ǫi for 1 ≤ i ≤ n. The remaining
equations are true in any behavioral mode, i.e. ǫi = 0 for all i ≥ n + 1. By
elimination of ǫ in (3.122) we get an expression equivalent to (3.113).

Example 3.20
To give an example of the result of Theorem 3.12 consider the electrical circuit
model in (3.3). The faults in this model are not described with fault variables
f and it is therefore not possible to use Theorem 3.11. As suggested in The-
orem 3.12 a model deviation vector ǫ is added to the model. Since the first
equation in (2.44) is true for all behavioral modes, it follows that ǫ1 = 0. With
the matrices H and L defined as in (3.3) the fault influence for the MO sets Mi

in (3.88) are given by
ri = NH[Mi]Lz = NH[Mi]ǫ (3.124)
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The fault sensitivity is directly given by the coefficients in the matrix NH[Mi]. To
give an example assume that the resistor 1 is broken and the fault appears such
that V1 − I1R1 = ǫ2 where ǫ2 , 0. Then the residuals ri will be equal to

ri = NH[Mi][:, {2}]ǫ2 (3.125)

according to (3.124). This means that the residuals that are based on an MO
sets that include equation 2 are the residuals that will be non-zero.

3.10.3 Fault Influence and Null Hypothesis

In the framework used in this thesis, conclusions are drawn only when r ∈ R
according to (2.7), i.e. if r ∈ R then the null hypothesis sys ∈ Φ of the test is
rejected. To draw the strongest conclusion when r ∈ R, the set ΦC should be
chosen to be exactly the set of behavioral modes that influence the residual r.

By using the fault influence given in Theorem 3.12 the next theorem shows
that the fault influence is given by the model assumptions, i.e. the fault influence
is assump(M)C. In the theorem, we will denote the column-span of a matrix A
by Im(A).

Theorem 3.13. LetM be a diagnosis model with the set M of equations

Hx + Lz + c = 0 (3.126)

where

rank ([H[M̂] L[M̂] c[M̂]]) = rank ([H[M̂] L[M̂]) (3.127)

for all maximal feasible models M̂ ⊆M. Let the model deviation be modeled as

Hx + Lz + c = Fǫ (3.128)

where F is a |M| × |M| matrix defined by

Fi j =





1 if i = j and assump(ei) , B

0 otherwise
(3.129)

If

Im(F) ⊆ Im([H L]) (3.130)

then for any MO set M ⊆M of equations and for any residual

r = NH[M]Lz (3.131)

not identically zero and based on M, r is influenced by all behavioral modes in
(assump(M))C and no others.

From Theorem 3.12 we do know that a residual r based an MO set M will
be sensitive to all model deviation variables ǫi included in the equations M.
Condition (3.130) guarantees that there exists a non-zero ǫ such that r , 0, i.e.
the model deviation variables ǫi can be seen as independent input signals.
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Proof. An MO set M and a residual r are given. We start to prove that r is not
influenced by any behavioral mode b ∈ assump(M). By the definition of the
operator assump, it follows that

sys ∈ assump(M)→ z ∈ O(M) (3.132)

The observation set O(M) can according to (3.10) and (3.131) be expressed as

O(M) = {z|NH[M]Lz = 0} = {z|r(z) = 0} (3.133)

The formulas (3.132) and (3.133) imply that

sys ∈ assump(M)→ r = 0 (3.134)

i.e. r is not influenced by any behavioral mode b ∈ assump(M).
Now, we continue to prove that r is influenced by all behavioral modes b <

assump(M). The idea is to take an arbitrary behavioral mode b ∈ (assump(M))C

and show that the equations Mb and r , 0 are consistent. From the definition
of the operator assump, it follows for any set M̄ that

M̄ ⊆Mb → b ∈ assump(M̄)

Then, since b < assump(M), it follows that M *Mb or equivalently that M\Mb ,

∅. Let M \ Mb be denoted by M′. By construction of M′, it follows that
b < assump(e) for any e ∈ M′. This implies that assump(e) , B for all e ∈ M′,
i.e., F[M′,M′] is the identity matrix. From (3.128), (3.131), and (3.122), we get
the fault influence

r = NH[M]Fǫ (3.135)

The only equations e ∈ M that might be inconsistent, i.e. ǫ[{e}] , 0, are the
equations e ∈M′. Hence (3.135) can be rewritten as

r = NH[M][:,M′]F[M′,M′]ǫ[M′] = NH[M][:,M′]ǫ[M′] (3.136)

From (3.130) it follows that

Im(F[M ∪Mb]) ⊆ Im([H[M ∪Mb] L[M ∪Mb]]) (3.137)

i.e. for any ǫ[M ∪Mb] there exist some x and z such that the subset M ∪Mb of
the equations in (3.128) is satisfied. Since M′ ∩Mb = ∅, we can choose ǫ[M′]
such that r , 0 in (3.136) and ǫ[Mb] = 0. This implies that we have found an ǫ
such that Mb is consistent in (3.128) according to (3.126), and r , 0. Since b was
an arbitrarily chosen behavioral modes such that b < assump(M), it follows
that r is influenced by all behavioral modes in (assump(M))C and the theorem
follows. �

Next two remarks of this theorem will be discussed. First, note that a
sufficient condition for (3.130) is that [H L] has full row-rank. This means that
Theorem 3.13 is not restrictive for diagnosis models where all equations are
valid in the no-fault mode. However Theorem 3.13 becomes restrictive in the
case with several maximal feasible models.

Second, the fault influence on a residual derived from an MO set M is
(assump(M))C for the class of models consider in Theorem 3.13. This means
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that the set Φ in (2.7) should according to the fault influence be chosen as
Φ = assump(M). This is in agreement with the guideline (2.15) presented in
Section 2.2.1.

The next corollary restates Theorem 3.13 for an important special case of the
class of models handled in Theorem 3.13, i.e. the type (3.101).

Corollary 3.4. LetM be a diagnosis model with the set M of equations

c1 =NF f1 = 0
...

...
cn =NF fn = 0

Hx + Lz + F f = 0

(3.138)

If
F ⊆ Im([H L]) (3.139)

then for any MO set M ⊆ M of equations and for any residual r not identically zero
and based on M, r is influenced by all faults in (assump(M))C and no others.

Proof. The proof is immediate from Theorem 3.13. �

Now, we will illustrate the result of Theorem 3.13 by three examples. The
first and second example show when the condition (3.130) is met and the conclu-
sion of theorem follows. The third example illustrates the case when (3.130) is
not fulfilled and it shows why the fault influence (assump(M))C is not obtained
in this case.

Example 3.21
The continuation of Example 3.19. It can be verified that (3.130) is true either
by using the matrices H̄′ and L̄′ in (3.117) and

F̄′ =

[

I3×3 03×2
02×3 02×2

]

or with the matrices H, L, and F in (3.116), i.e.

F =

[

1 0 1
0 1 1

]

H =

[

1
1

]

L =

[

1 0
0 1

]

The assumption of the MO set {1, 2, 4, 5} is assump({1, 2, 4, 5}) = φ(c1 = NF∧c2 =

NF), i.e. the residual (3.118) is according to Theorem 3.13 or Corollary 3.4
influenced by all faults in

(assump({1, 2, 4, 5}))C = (φ(c1 = NF ∧ c2 = NF))C = φ(c1 = F ∨ c2 = F)

This can also be directly seen in (3.118) and it means that it is possible to detect
all faults modes in the complement set of assump({1, 2, 4, 5}).

Example 3.22
For the electrical circuit example with the model (3.95) it holds that [H L] has
full row rank. This is a sufficient condition for (3.130) and it follows that for
any residual r based on an MO set M, (assump(M))C are the behavioral modes
that r is influenced by.
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Next an example shows what can happen when (3.139) is not fulfilled.

Example 3.23
Consider the model

c1 =NF f1 = 0
c2 =NF f2 = 0

H
︷︸︸︷




1
1
1




x +

L
︷     ︸︸     ︷




−1 0
−1 0
0 −1




z +

F
︷ ︸︸ ︷




1 0
1 1
0 1




f = 0

(3.140)

The set {1, 2, 3, 5} is an MO set and a residual is

r = y1 − y2 = f1 − f2 (3.141)

From this expression we would expect that r is influenced by c1 = NF ∧ c2 =

F which is contained in (assump(M))C. We will show that this is not true
and (3.139) is not fulfilled for this example.

It can be verified that F * Im([H L]). It is the column corresponding to f2
that does not satisfy (3.139) and f2 cannot be chosen arbitrarily. In fact, the
last three equations in (3.140) implies that f2 = 0 in any behavioral mode. By
substitution of f2 in (3.141) the fault influence is given by

r = y1 − y2 = f1

Hence behavioral modes that influences r are φ(c1 = F) ⊂ (assump(M))C.

Note that even if the fault influence on a residual based on M is equal to
B ⊂ (assump(M))C, it is possible to use Φ = assump(M) as null hypotheses.
The effect is that when the r , 0 then it is concluded that sys ∈ (assump(M))C

but according to the model r , 0 means that sys ∈ B. However if there is one
residual ri for each model Mi in a setω that satisfies (2.34) then exactly the same
candidates will be obtained if Φi = assump(Mi) or if Φi is equal to the true fault
influence of ri. Hence when designing a sound diagnosis system the exact fault
influences on each residual ri is not important.

3.11 Conclusions

In Chapter 2 we showed that one strategy to construct a diagnosis system was to
start with a diagnosis modelM and choose a set ω = {M1, . . . ,Mn} of rejectable
models to test. There, it was also shown that a diagnosis system based on ω
can be sound and complete if and only if the setω fulfills (3.1) for all behavioral
modes b ∈ B.

This chapter has presented theory and algorithms for finding a minimum
cardinality solution ω of (3.1) given a diagnosis model M with linear static
equations. A key result is that if ω is chosen to be the set of all feasible MO
sets in the diagnosis model M, then ω fulfills (3.1) for all behavioral modes
b ∈ B according to Theorem 3.10. It has also been shown that it is not in
general necessary to include all MO sets in ω to satisfy (3.1) for all behavioral
modes b ∈ B. Theory for selecting MO sets has been developed and a key
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result for this is the rank condition given in Theorem 3.6. The rank condition
is then used in Algorithm 2 for selecting MO sets. The output of the algorithm
contains all minimal subsets ω that fulfill (3.1) for all behavioral modes b ∈ B.
A minimal cardinality set of MO sets is then picked out from the set of all
minimal sets. Note that this is important because, a minimum cardinality set ω
that satisfies (3.1) for all behavioral modes b ∈ B, corresponds to a sound and
complete diagnosis system with the minimum number tests. Several examples
of the minimization of the number of tests in the design of a sound and complete
diagnosis systems have been given in Section 3.9.

Finally, Theorem 3.13 showed that under a mild rank condition on the
diagnosis model and given an MO set M, the behavioral modes that influence
any residual derived from M are given by the equation assumptions according
to (assump(M))C. Hence if the rank condition of the model can be verified, then
any further fault influence analysis of each residual is not needed.
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4

A E A  F
MO S

In the previous chapter we have shown in Theorem 3.10 that a sound diagnosis
system can be based on all feasible MO sets in a diagnosis model M, i.e., all
MO sets M in M such that assump(M) , ∅. In this chapter an algorithm
for computing all MO sets in a linear static or dynamic model is proposed.
How to apply the algorithm to dynamic models will be discussed later in
Chapter 6. The algorithm developed here will also be the basis for constructing
a structural algorithm that can be applied to models containing non-linear
differential equations in Chapter 9.

All MO sets in a diagnosis model are in general not feasible MO sets. The
algorithm presented in this chapter finds all MO sets in a model, both feasible
and non-feasible ones. It is not computationally efficient to find all MO sets
and then remove the non-feasible ones to get only the feasible MO sets. In
Chapter 5 an algorithm is constructed for finding only feasible MO sets. The
algorithm presented here will be the key component in the construction of the
algorithm for finding only feasible MO sets.

Section 4.1 and 4.2 introduce key concepts that will be used in the construc-
tion of the algorithm. In Section 4.3 a basic algorithm for finding all MO sets
will be presented. This algorithm illustrates the basic ideas and then in Sec-
tion 4.4 further improvements are described. The computational complexity of
the algorithm is discussed in Section 4.5. Section 4.6 describes step by step the
progress of the algorithm when applied to an illustrative example. Finally the
conclusions are drawn in Section 4.7.

4.1 Introduction

We will, as said before, present an algorithm for computing all MO sets in a
linear model

Hx + Lz = 0 (4.1)

83
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The matrices H and L are scalar matrices in the static case and polynomial
matrices in the dynamic case. In the continuation of this chapter the examples
will be static. Dynamic examples will later be presented in Chapter 6.

The main idea of the algorithm can be explained by looking at the Hasse
diagram in Figure 2.2. The algorithm is based on a top-down approach in
the sense that we start with the entire model and then reduces the size and
the redundancy of the model step by step until an MO set remains. For the
Hasse diagram in Figure 2.2 we start with {1, 2, 3, 4, 5, 6, 7} and, by for example
following the rightmost branch in the graph, {3, 4, 5, 7} and then the MO set {4, 5}
is obtained. How to obtain PO sets with decreasing redundancy is described
in the next section.

4.2 The Proper Overdetermined Part

As said in the introduction, the idea is to find MO sets in a PO set by computing
a sequence of PO subsets with decreasing redundancy until an MO set is found.

Example 4.1
For the electrical circuit example with PO sets shown in Figure 2.2, the MO
set {4, 5} can be obtained by starting with the PO set {1, 2, 3, 4, 5, 6, 7} with re-
dundancy 3 and then compute the PO subset {3, 4, 5, 7}with redundancy 2 and
finally compute the MO set {4, 5}.

This motivates studying how to compute a PO sets E ⊂M′ with redundancy
ϕ − 1, given a PO set M′ with redundancy ϕ ≥ 2. Such computation can be
divided into the following two steps:

a) Remove an arbitrary equation e ∈M′ from M′ and let M =M′ \ {e}.

b) Find a PO set E ⊆M ⊂M′ with redundancy ϕ − 1.

The rest of this section is organized as follows. First, the existence and unique-
ness of the PO set E, specified in step (b), are shown. Then, a method to compute
the PO set E given a model M is proposed.

4.2.1 Existence and Uniqueness

The existence and uniqueness of the PO set E, specified in step (b), are shown
in the following theorem.

Theorem 4.1. Given a PO set M′ with redundancy ϕ (M′) ≥ 2 and an arbitrary
equation e ∈M′, there exists a unique PO set E ⊆M′\{e} such thatϕ (E) = ϕ (M′)−1.

The uniqueness part of the proof of this theorem will be based on the two
following lemmas. In these lemmas we will use the notation of supermodu-
larity, i.e., the redundancy function ϕ is a super-modular function on P(M)
if

ϕ (M1 ∪M2) + ϕ (M1 ∩M2) ≥ ϕ (M1) + ϕ (M2) (4.2)

for any sets M1 ⊆M and M2 ⊆M.

Lemma 4.1. If M is a set of equations defined by (3.5) where [H L] has full row-rank,
then the redundancy function ϕ is a super-modular function on P(M).
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Proof. A function is super-modular if (4.2) holds for all subsets M1 ⊆ M and
M2 ⊆M. Since [H L] has full row-rank, it follows that

ϕ (M′) = |M′| − rank (H[M′]) (4.3)

for all M′ ⊆M. By using this, (4.2) is true if

|M1 ∪M2| − rank (H[M1 ∪M2]) + |M1 ∩M2| − rank (H[M1 ∩M2])
≥ |M1| − rank (H[M1]) + |M2| − rank (H[M2])

is true. Simplification of this inequality by using that

|M1 ∪M2| + |M1 ∩M2| = |M1| + |M2|

gives

rank (H[M1 ∪M2]) + rank (H[M1 ∩M2]) ≤ rank (H[M1]) + rank (H[M2])

which is the definition of the rank-function being sub-modular. The sub-
modularity of the rank-function follows from Lemma 3.1 and this completes
the proof. �

Lemma 4.2. Let M be a set of equation such that ϕ (M) ≥ 1 and such that the
redundancy function ϕ is a supermodular function on P(M). Then there exists
a unique PO set E ⊆ M with maximal redundancy among all subsets of M, i.e.,
ϕ (E) = ϕ (M).

A more general formulation of this lemma is stated and proved in (Ore,
1956).

Proof. Theorem 3.3 states that ϕ (E) ≤ ϕ (M) for all subsets E ⊆ M. From this
and that M1 ∪M2 ⊆M and M1 ∩M2 ⊆M, it follows that

ϕ (M1 ∪M2) + ϕ (M1 ∩M2) ≤ 2ϕ (M) (4.4)

Assume that M1 and M2 are two PO sets with redundancy ϕ (M) ≥ 1. Since
ϕ is a supermodular function on P(M), it follows that (4.2) holds for any sets
M1 ⊆ M and M2 ⊆ M. This, (4.2), and (4.4) imply equality in (4.2). From this
and the fact that M1 and M2 have maximal redundancy among the subsets of
M, it follows that

ϕ (M1 ∩M2) = ϕ (M1) = ϕ (M2)

From this, M1 ∩M2 ⊆M1, M1 ∩M2 ⊆M2, and M1 and M2 are PO sets, i.e.,

ϕ (E) < ϕ (Mi) (4.5)

for all proper subsets E ⊂Mi, we get

M1 =M1 ∩M2 =M2

i.e., M1 = M2. Since M1 and M2 was chosen to be two arbitrary PO sets in M
with maximal redundancy, it follows that there exists a unique PO set in M with
maximal redundancy. �

Now, we are ready to prove Theorem 4.1.
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Proof. We start to prove the existence of a PO set E ⊆M′ \ {e}with redundancy
ϕ (M′) − 1. Since M′ is a PO set with ϕ (M′) ≥ 2, it follows that the resulting set
M =M′ \ {e} has redundancy ϕ (M) = ϕ (M′) − 1 ≥ 1 according to Theorem 3.4.
The existence of a minimal set E ⊆ M with redundancy ϕ (M) is trivial. Then
since E is a minimal set with redundancy ϕ (M) ≥ 1, Theorem 3.3 implies that
E is a PO set.

Next the uniqueness is shown. Since M′ is a PO set, it follows that the
corresponding matrix [H L] has full row-rank according to Theorem 3.5. This
implies that the matrix [H[M] L[M]] corresponding to the set M also has full
row rank, i.e., M fulfills the rank condition in Lemma 4.1. This means that the
redundancy function ϕ is a supermodular function on P(M). From Lemma 4.2
we then get that there exists a unique PO set E ⊆ M with redundancy ϕ (E) =
ϕ (M). �

The PO set E specified in step (b), is according to Theorem 4.1 the unique
PO set E ⊆ M with maximal redundancy. If we relax the requirement on M
such that M is any set of equations such that [H L] has full row rank, the super-
modularity implies that among the subsets E ⊆ M there exists a unique PO set
with maximal redundancy ϕ (M). This PO set will be denoted by M∗ and will
be called the proper overdetermined (PO) part of M. The set M is in (Ore, 1956)
suggested to be partitioned into M∗ ∪ (M \M∗) such that

ϕ (M) = ϕ (M∗) (4.6)

and
ϕ (M \M∗) = 0 (4.7)

This equations follows from (4.2) when M1 = M \M∗ and M2 = M∗ and the
equation (4.6). This means that M∗ contains all redundancy of M and O(M∗) =
O(M) according to Theorem 3.6.

Looking back on the two computation steps formulated in the beginning of
this section, step (b) can be reformulated using the PO part as follows:

b) Find the PO part M∗ of M.

Next a method to compute the PO part M∗ of M will be developed.

4.2.2 Computing the PO Part

The PO part M∗ of M can for example be computed as the set of non-zero
columns in an arbitrary basis for the left null-space of H as the next theorem
shows.

Theorem 4.2. If M is a set of equations in the form (3.5) where [H L] has full row-rank,
then

M∗ = {e ∈M|NH[:, {e}] , 0} (4.8)

Before we prove the theorem, let us again consider Example 4.1.

Example 4.2
The PO set {3, 4, 5, 7} can be computed from {1, 2, 3, 4, 5, 6, 7} as follows. Since
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{1, 2, 3, 4, 5, 6, 7} is a PO set, it follows from Theorem 3.5 that the correspond-
ing matrix [H L] has full row-rank. Hence the redundancy function is super-
modular on the family of subsets of {1, 2, 3, 4, 5, 6, 7}. By removing an equation,
lets say the first one, we obtain

ϕ ({2, 3, 4, 5, 6, 7}) = 2 (4.9)

From the uniqueness of a PO set with redundancy 2 and that ϕ ({3, 4, 5, 7}) = 2,
it follows that

{2, 3, 4, 5, 6, 7}∗ = {3, 4, 5, 7} (4.10)

From Theorem 4.2 the computation of {2, 3, 4, 5, 6, 7}∗ can be done by finding the
non-zero columns of

NH[{2,3,4,5,6,7}] =

[

0 0 1 0 −1 0 R2
0 0 0 1 −1 0 0

]

(4.11)

Note that the matrix is zero-padded in accordance with the notation NH[{2,3,4,5,6,7}].
In this way, it is possible to compute PO sets with decreasing redundancy.

Next, we prove Theorem 4.2.

Proof. Let M′ be the set defined by the right-hand side of (4.8). First, we show
that ϕ (M′) = ϕ (M). From the definition of null-space, it follows that the rows
M\M′ in H corresponding to zero columns in NH are linearly independent, i.e.,

rank (H) = rank (H[M′]) + |M \M′| (4.12)

This and that [H L] has full row-rank give

ϕ (M′) = (rank ([H[M′] L[M′]]) + |M \M′|)
−(rank (H[M′]) + |M \M′|)

= rank ([H L]) − rank (H) = ϕ (M)

Next, we prove that ϕ (E) < ϕ (M′) for all E ⊂ M′. Since all columns in NH

corresponding to rows in M′ are non-zero, it means that any row in H[M′] is
linearly dependent with the other rows, i.e.,

rank (H[M′]) < rank (H[E]) + |M′ \ E| (4.13)

From this and the fact that [H L] has full row-rank, it follows that

ϕ (E) = (rank ([H[E] L[E]]) + |M′ \ E|)
−(rank (H[E]) + |M′ \ E|)

< rank ([H[M′] L[M′]]) − rank (H[M′]) = ϕ (M′)

This implies that M′ is a PO set and since ϕ (M′) = ϕ (M) it also follows that M′

has maximum redundancy. Since [H L] has full row-rank, there exist a unique
PO set with maximum redundancy and this is defined to be the PO part M∗ of
M. Hence, it follows that M′ =M∗, i.e., (4.8) is true. �
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4.3 Algorithm

In this section we will present an algorithm for finding all MO sets. To illus-
trate the ideas, a basic version is presented here and then in the next section,
improvements are discussed.

4.3.1 Input to the Algorithm

In the algorithm that will be presented next, we start with a set M that will
be assume to be a PO set. A typical input is a behavioral model Mb and an
example of a behavioral model that is a PO set is the no-fault behavioral model
in (3.3) for electrical circuit.

Next we discuss how to obtain a legal input, that is a PO set M, if Mb is not
a PO set. If Mb is not a PO set but the corresponding matrix [Hb Lb] has full
row-rank, then it is easy to obtain M∗

b
and use this as input.

In the case when [Hb Lb] has not full row-rank, the situation gets more
complicated. First, check that the rank deficiency is not caused by a modeling
error. If not, there exist two options.

The first option is to compute one PO set M′ ⊂ Mb as follows. A set of
linearly independent rows M ⊂ Mb in [Hb Lb] are identified and then the PO
part is computed as M′ = M∗. This set contains all redundancy of Mb and can
therefore be used to check the consistency of Mb.

The second option is to compute all PO sets M ⊆ Mb with maximal redun-
dancy and then apply the following algorithm to each of these PO sets. A
disadvantage with this is that the number of MO sets will be greater compared
to the number of MO sets obtained in the first way.

4.3.2 Basic Algorithm

The algorithm will be based on Lemma 3.2, Theorem 3.4, and the following
lemma.

Lemma 4.3. If M is a set of equations in the form (3.5) where [H L] has full row-rank,
E ⊆M is a PO set, and e ∈M \ E, then

E ⊆ (M \ {e})∗ (4.14)

Proof. The left null space of E is according to E ⊆ M \ {e} a subspace of the left
null space of M \ {e}. From the subspace relation, it follows that

NH[E] = γNH[M\{e}] (4.15)

where γ is a full row-rank matrix. Since [H L] has full row-rank, it follows from
Theorem 4.2 that (M \ {e})∗ are the non-zero columns in an arbitrary basis for
the left null-space of H[M \ {e}]. This implies that

NH[E][:,M \ (M \ {e})∗] = γNH[M\{e}][:,M \ (M \ {e})∗] = 0 (4.16)

Since E is a PO set, Corollary 3.1 implies that NH[E][:, {e}] , 0 for all e ∈ E. This
and (4.16), imply that E ∩ (M \ (M \ {e})∗) = ∅which is equivalent to (4.14). �
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Theorem 3.4 reveals how the redundancy decreases when one equation is
removed. It follows from this lemma that if we start with any PO set of equations
we can alternately remove equations and computing the overdetermined part
until the redundancy becomes one. We have then found a MO set, according to
Lemma 3.2. Finally, Lemma 4.3 implies that an arbitrary PO set, and therefore
also any MO set, can be obtained recursively this way. By using this principle
in combination with a complete search the algorithm becomes as follows. The
input set M is assumed to be a PO set.

Algorithm 3. FindMO(M)
if ϕ (M) = 1 then

MMO := {M};

else

MMO := ∅;

for each equation e in M do

M′ := (M \ {e})∗;
MMO :=MMO ∪ FindMO(M′);

end for

end if
returnMMO

From the discussion above, it follows that the sets found inMMO are MO
sets and that all MO sets are found.

Example 4.3
To illustrate the steps in the algorithm, consider a PO set M = {e1, e2, e3, e4}with
the following H-matrix:

H =





1 0
1 1
0 1
0 2





(4.17)

Remember that the L-matrix is irrelevant when computing the redundancy of
PO sets, because the matrix [H L] has full row-rank. The redundancy of the
set M in (4.17) is 2. When entering the algorithm, e1 is removed and the set
M′ becomes (M\{e1})∗ = {e3, e4}. In this case ϕ (M′) = 1 and the equation set is
saved as an MO set in MMO. Then e2 is removed and M′ = (M\{2})∗ = {3, 4}.
This means that the same MO set is found once again. Next e3 is removed and
the MO set {e1, e2, e4} is found. Finally e4 is removed and the MO set {e1, e2, e3} is
found.

Since the same MO set {e3, e4} is found twice in the example, we can suspect
that the algorithm is not optimal in terms of efficiency. The next section will
therefore present improvements in order to increase the efficiency.
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Figure 4.1: A decomposition of the H-matrix of a PO set.

4.4 Improvements

A straightforward improvement is of course to prohibit that any of the MO sets
are found more than once. Another and more sophisticated improvement is
that sets of equations can be lumped together in order to reduce the size and
the complexity of the H-matrix. This reduction preserves redundancy and it is
therefore possible to use the reduced matrix to find all MO sets in the original
matrix. However, the reduction can also introduce numerical problems and it
will therefore be considered as optional.

4.4.1 A Canonical Partition of PO Sets

The reduction is based on a unique partition of a PO set. The partition is based
on the matrix H corresponding to a set of equations M and an illustration of the
partition is shown in Figure 4.1. The partition can be defined as follows. Let R
be a relation on the set M of equations defined by (e, e′) ∈ R if

e < (M \ {e′})∗ (4.18)

Lemma 4.4. The relation R is an equivalence relation on a PO set M.

Proof. Now we show that R is an equivalence relation on M, i.e., that R is
reflexive, symmetric, and transitive. It follows directly from the definition that
R is reflexive. If (e, e′) ∈ R, then it follows from (4.18) that (M \ {e′})∗ ⊆ M \ {e}.
Lemma 4.3, with E replaced by (M \ {e′})∗, implies that

(M \ {e′})∗ ⊆ (M \ {e})∗ (4.19)

Since M is a PO set, Theorem 3.4 implies that ϕ (M \ {e′}) = ϕ (M \ {e}). From
this and (4.6), we get that

ϕ ((M \ {e′})∗) = ϕ ((M \ {e})∗) (4.20)

Assume that we have inequality in (4.19). Then, let ê ∈ (M\{e})∗ \ (M\{e′})∗. The
set ((M \ {e})∗ \ {ê})∗ is according to Lemma 4.3 a superset to (M \ {e′})∗, but have
lower redundancy than (M\ {e′})∗ according to (4.20) and Theorem 3.4. This is a
contradiction according to Theorem 3.3 and it follows that (M\{e′})∗ = (M\{e})∗.
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Hence (e, e′) ∈ R and R is therefore symmetric. Furthermore if (e1, e2) ∈ R and
(e2, e3) ∈ R, then it holds that (M \ {e1})∗ = (M \ {e2})∗ = (M \ {e3})∗, which implies
that R is transitive. The relation R is therefore an equivalence relation on M. �

For a linear space A, the orthogonal complement will be denoted by A⊥.
The set M can then be partitioned into disjoint equivalence classes Mi where
i ∈ {1, 2, . . . ,m}. For each equation set Mi, a matrix Xi is defined as a row-basis
for the space

sp(H) ∩ (sp(H[M \Mi]))⊥ (4.21)

and X0 is a row-basis for

sp(H) ∩ (sp(





X1
X2
...

Xm





))⊥

By this construction, any row in Xi, where i , 0, is linearly independent with
the rows M \ Mi in H. No filling in the intersection between Mi and X j for
i , j , 0 is used to indicate this in the figure. Furthermore Mi and Xi is related
as follows.

Corollary 4.1. If M is a PO set, then for all its equivalence classes Mi defined by (4.18),
it holds that

|Mi| = rank (Xi) + 1 (4.22)

for all 1 ≤ i ≤ m.

Corollary 4.1 states that there is one more equation in Mi than the dimension
of the space defined by Xi in each block. Furthermore for n + 1 ≤ i ≤ m in the
figure, Mi has cardinality 1 and Xi is the zero-space, i.e., Xi = {0}.

Proof. Let Mi be an arbitrary equivalence class which according to the decom-
position implies that for any e ∈ Mi, (M \ {e})∗ = M \Mi. Since M is a PO set,
[H L] has full row-rank and we get that

ϕ (M) − ϕ ((M \ {e})∗) = (|M| − rank (H)) − (|M \Mi| − rank (H[M \Mi]))

This can be written as

ϕ (M) − ϕ ((M \ {e})∗) = |Mi| − (dim(sp(H)) − dim(sp(H[M \Mi])))

The last terms can be written

dim(sp(H)) − dim(sp(H[M \Mi])) = dim(sp(H) ∩ (sp(H[M \Mi]))⊥) (4.23)

and then we obtain

ϕ (M) − ϕ ((M \ {e})∗) = |Mi| − (dim(sp(H) ∩ (sp(H[M \Mi]))⊥)

This and (4.21) imply that

ϕ (M) − ϕ ((M \ {e})∗) = |Mi| − dim(sp(Xi)) = |Mi| − rank (Xi)

Then Theorem 3.4 and (4.6) imply (4.22) and this proves the corollary. �
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By using this partition into equivalence classes Mi, all PO sets can be repre-
sented as follows.

Theorem 4.3. If E ⊆ M is a PO set, then E is a union of equivalence classes defined
by (4.18), i.e.,

E =
⋃

i∈I

Mi

where I ⊆ {1, 2, . . . ,m}.

Proof. The theorem holds if and only if E ⊆ M and E ∩Mi , ∅ implies that
Mi ⊆ E. Assume that E ⊆ M, E ∩Mi , ∅, and that there exists an e ∈ Mi \ E ⊆
M \ E. From Lemma 4.3, it follows that E ⊆ (M \ {e})∗. This and the definition
of Mi imply that E ⊆M \Mi, which contradicts the assumption and the lemma
follows. �

4.4.2 Analytical Reduction

A new linear static system can be formed with each equivalence class Mi of M
corresponding to a new equation. The equation corresponding to equivalence
class Mi is

Ni (H[Mi]x + L[Mi]z) = 0 (4.24)

where Ni is a row vector that fulfill

Ni H[Mi] XT
i = 0 (4.25)

and
Ni . 0 (4.26)

If (4.25) is used to compute Ni, then Xi must be known. However, it is not
necessary to compute Xi to compute Ni. The following lemma describes a better
way to compute Ni directly from the matrix H, i.e., without first computing the
matrix Xi.

Lemma 4.5. If j is any row such that NH[ j,Mi] . 0, then Ni = NH[ j,Mi] fulfills (4.25)
and (4.26).

Proof. From
NHH = 0 (4.27)

it follows that
NHH XT

i = 0 (4.28)

This can be expanded to

NH[:,M \Mi] H[M \Mi] XT
i +NH[:,Mi] H[Mi] XT

i = 0 (4.29)

From (4.21), it follows that H[M \Mi] XT
i
= 0, i.e., the first term in (4.29) is zero.

Hence the second term in (4.29) must also be zero, i.e.,

NH[:,Mi] H[Mi] XT
i = 0 (4.30)

Since j is an arbitrary row in NH[:,Mi] such that NH[ j,Mi] . 0, then Ni =

NH[ j,Mi] fulfills both (4.25) and (4.26). �
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An equation of the type (4.24) will be called a lumped equation. The set of
all lumped equations becomes

N
︷                   ︸︸                   ︷





N1 0 · · · 0
0 N2 0
...

. . .
...

0 0 · · · Nm





(Hx + Lz) = 0 (4.31)

and is called the lumped system. The rows in the lumped system will simply
be denoted by {Mi|i ∈ {1, 2, . . . ,n}}. The matrix N has full row-rank. Since M
is assumed to be a PO set, [H L] has full row rank and this implies that for the
lumped system, the matrix

[

N H N L
]

has full row-rank. The redundancy is
therefore only dependent of NH.

Example 4.4
For example, the lumping of (4.17) is

equivalence class unknown
Mi x2

{e1, e2}
{e3}
{e4}





0 1
0 1
0 2





and X0 = [0 1], X1 = [1 0], and X2 = X3 = []. The first row in the lumped matrix
NH is obtained by multiplying H[{e1, e2}] from the left with N1 = [−1 1]. Note
that it is only equivalence classes of cardinality greater than one that give a
reduction. An interpretation of this reduction is that the two first equations are
used to eliminate the space spanned by X1, in this case the unknown x1.

In the lumped matrix NH, each equivalence class of M corresponds to
one row, and the definitions of PO set, MO set, and redundancy are thereby
extended to lumped matrices. In the example above we have ϕ ({{e1, e2}, {e3},
{e4}}) = 2. The redundancy for the lumped and the original system are always
the same.

The reduction is justified by the following theorem, which shows that there
is a one-to-one correspondence between the PO sets in the original and in the
lumped system and that the reduced matrix NH can be used to find all PO sets
in the original matrix H.

Theorem 4.4. The set {Mi}i∈I is a PO set in the lumped system if and only if ∪i∈IMi

is a PO set in the original equation system. Further, it holds that

O({Mi}i∈I) = O(∪i∈IMi) (4.32)

To prove this theorem the following lemma will be used.

Lemma 4.6. If M is a PO set and {Mi}i∈I its equivalence classes, then

ϕ (∪i∈I′Mi) = ϕ ({Mi}i∈I′ ) (4.33)

for all I′ ⊆ I.
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Proof. The redundancy of ∪i∈I′Mi is

ϕ (∪i∈I′Mi) = | ∪i∈I′ Mi| − rank (H[∪i∈I′Mi])
= | ∪i∈I′ Mi| − dim(sp(H[∪i∈I′Mi]))

By using the notation of the decomposition described in Section 4.4.1 we know
that the rows in Xi for i = 0, 1, . . . ,m forms a row basis for H and we get that

ϕ (∪i∈I′Mi) = | ∪i∈I′ Mi| −
∑

i∈I′

dim(sp(Xi)) − dim(sp(X0) ∩ sp(H[∪i∈I′Mi])) (4.34)

which can be rewritten as

ϕ (∪i∈I′Mi) =
∑

i∈I′

(|Mi| − rank (Xi)) − dim(sp(X0) ∩ sp(H[∪i∈I′Mi])) (4.35)

Corollary 4.1 states that |Mi| = rank (Xi) + 1 for all i ∈ I, and consequently that

ϕ (∪i∈I′Mi) = |I′| − dim(sp(X0) ∩ sp(H[∪i∈I′Mi])) (4.36)

which is equal to ϕ ({Mi}i∈I′ ). �

For a model M′ where [H′ L′] has full row-rank we will later also use the
following alternative characterization of PO sets, based on the definition of PO
part. We know that if M∗ , ∅ then M∗ is a PO set and contrary, for a PO set M
it follows that

M =M∗ (4.37)

according to (4.8) and Corollary 3.1. Hence M , ∅ is a PO set if and only if (4.37)
holds.

Next, the proof of Theorem 4.4 follows.

Proof. We start to prove that {Mi}i∈I is a PO set if and only if ∪i∈IMi is a PO set.
Assume that ∪i∈JMi is a PO set. Then it follows from Definition 3.3 that

ϕ (∪i∈J′Mi) < ϕ (∪i∈JMi) (4.38)

for all J′ ⊂ J. From Lemma 4.6, it then follows that

ϕ ({Mi}i∈J′ ) < ϕ ({Mi}i∈J) (4.39)

for all J′ ⊂ J. Hence {Mi}i∈J is a minimal set with redundancy ϕ ({Mi}i∈J), i.e.,
{Mi}i∈J is a PO set according to Definition 3.3.

Now, we will show the reverse implication. Assume that {Mi}i∈J is a PO set.
If M′ ⊂ ∪i∈JMi, then

M′ ⊇ (M′)∗ = ∪i∈J′Mi (4.40)

for some J′ ⊂ J according to Theorem 4.3. Since {Mi}i∈J is a PO set, it follows
from Lemma 4.6 that

ϕ (∪i∈JMi) = ϕ ({Mi}i∈J) > ϕ ({Mi}i∈J′ ) = ϕ (∪i∈J′Mi) (4.41)

From (4.37) and (4.40), it follows that

ϕ (∪i∈J′Mi) = ϕ ((M′)∗) = ϕ (M′) (4.42)
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The inequality (4.41) and the equality (4.42) imply that ∪i∈JMi is a minimal set
with redundancy ϕ (∪i∈JMi), i.e., ∪i∈JMi is a PO set according to Definition 3.3.

Now, we prove (4.32). Let H and L be the matrices corresponding to the
equation set ∪i∈IMi and let

N(Hx + Lz) = 0

be the lumped equations {Mi}i∈I. The equality (4.32) holds if and only if

sp(NHL) = sp(NHl
NL) (4.43)

where Hl = N H. Since
NHl

NH = 0 (4.44)

it follows that
sp(NHL) ⊇ sp(NHl

NL) (4.45)

From Lemma 4.6, we get that

dim(sp(NHL)) = ϕ (∪i∈IMi) = ϕ ({Mi}i∈I) = dim(sp(NHl
NL)) (4.46)

which together with (4.45) imply (4.43) which in turn implies (4.32). �

4.4.3 Improved Algorithm

A drawback with Algorithm 3, presented in Section 4.3, is that some of the MO
sets are found more than once. There are two reasons why this happens and
these can be illustrated using the following example.

Example 4.5
Consider

H =





1 0
1 1
0 1
0 1
0 2





(4.47)

where the rows correspond to the equations {e1, . . . , e5}. First, the same PO set
{e3, e4, e5} is obtained if e1 is removed. Second, the same MO set is obtained if
the order of equation removal is permuted. For example, the MO set {e4, e5} is
obtained if first e1 or e2 and then e3 is removed but also if the order of removal
is reversed.

To illustrate how these two problems are handled in an improved algorithm
to be presented later, we use Example 4.5.

To avoid the first problem, the lumping described in previous section is
used. Initially we start with the set M = {e1, e2, e3, e4, e5} and e1 and e2 are
lumped together and the resulting set is S′ = {{e1, e2}, {e3}, {e4}, {e5}}. Similar to
the basic algorithm we remove one equivalence class at a time from S′ and
make a recursive call which returns all MO sets in the input set.

To avoid the problem with permuted removal order an additional input
set E′ is used which contains the equivalence classes that are allowed to be
removed in the recursive calls.

Example 4.6
In Example 4.5, we start initially with the set E′ = S′, meaning that all equiva-
lence classes are allowed to be removed. In the first step the equivalence class
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{e1, e2} is removed and a recursive call is made with the input sets

S′ \ {{e1, e2}} and {{e3}, {e4}, {e5}}
To prevent that the order of removal is permuted we remove the equivalence
class {e1, e2} permanently from E′. In the following step the equivalence class
{e3} is removed and the inputs are

S′ \ {{e3}} and {{e4}, {e5}}
Following the same principles, the final calls are made with the input sets

S′ \ {{e4}} and {{e5}},
S′ \ {{e5}} and ∅

To apply these ideas in all steps in the recursive algorithm, the lumping
strategy has to be extended to subsets of previously lumped systems. Equiv-
alence classes are then lumped together into new sets of equations by taking
the union of the sets in the equivalence class. We illustrate this with a new
example.

Example 4.7
Assume that we start with six equations and that e2 and e3 are lumped together
and the following H-matrix has been obtained:

equivalence classes H-matrix
{e1}
{e2, e3}
{e4}
{e5}
{e6}





1 0
1 0
1 1
0 1
0 2





(4.48)

In the first recursive call, {e1} is removed and the matrix corresponding to the
remaining part has the same matrix as in (4.17). Now, it holds that

[{e2, e3}] = [{e4}] = {{e2, e3}, {e4}}
where [E] denotes the equivalence class containing E. The sets {e2, e3} and {e4}
are therefore lumped together into the set {e2, e3, e4}.

Given a model S and corresponding set E, the lumped system S′ is con-
structed as described above, and a problem is then how to form the new set
E′ of equivalence classes that are allowed to be removed in the new system S′.
The following principle will be used. An equivalence class in S′ is allowed to
be removed, i.e., the equivalence class belongs to E′, if and only if it is a union
of classes that are all allowed to be removed in S, i.e., it belongs to E. It will be
shown that, in this way, all MO sets are found once and only once.

It is sufficient to only lump equivalence classes with an non-empty inter-
section with E and this is used in the algorithm. To do this partial lumping we
will use the notation

S′ = Lump(E,S)

in the algorithm to denote that only the equivalence classes [E] in the input S
are lumped forming a new set of equivalence classes S′ and the corresponding
lumped system. The improved algorithm take S := {{e}|e ∈ M} where M is PO
set and E = S as input sets, and can formally be written as follows.
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Algorithm 4. FindMO(S,E)
if ϕ (S) = 1 then

MMO := {∪E∈SE};

else

E′ := ∅;S′ := S;

% Lump the system S′ and create E′

while E , ∅ do

Select an E ∈ E;

S′ := Lump(E,S′);
if [E] ⊆ E then

E′ := E′ ∪ {∪E′∈[E]E
′};

end if

E := E \ [E];

end while

MMO := ∅;

% Make the recursive calls

while E′ , ∅ do

Select an E ∈ E′

E′ := E′ \ {E};
MMO :=MMO ∪ FindMO(S′ \ {E},E′);

end while

end if
returnMMO

The algorithm is justified by the following result.

Theorem 4.5. If Algorithm 4 is applied to a PO set M of equations, then each MO set
contained in M is found once and only once.

Proof. First, it is shown that each MO set is found at least once. Let E ⊆ M be
an arbitrary MO set. A branch, of the recursive tree, that results in this MO
set can be obtained in the following way: In each recursive step, chose the first
branch where an equivalence class not included in E is removed. It follows
from Lemma 4.3 and Theorem 4.4 that by following this branch, a sequence of
decreasing PO sets all containing E is obtained. Hence the MO set E is found
this way.

Finally, it is shown that the same MO set E can not be found if we deviate
from the branch described above, i.e., that the MO set E is found only once. In
each recursive step, in all branches that precede this branch, only equivalence
classes contained in E have been removed. Therefore, these branches do not



98 Chapter 4. An Efficient Algorithm for Finding all MO Sets

result in the set E. On the other hand all succeeding branches contain the first
equivalence class Ê not contained in E, i.e., the class removed in the branch
that gives the set E. This follows from the fact that Ê has been removed from E
and is not allowed to be removed. Furthermore in all lumped systems in these
branches, E′ is constructed such that Ê is an equivalence class not contained in
E′. Hence, the branch described above is the only branch that results in the MO
set E. This completes the proof. �

4.4.4 Algorithm without Lumping

As mentioned in the beginning of this section the lumping can introduce nu-
merical problems. To avoid these, it is possible to omit the lumping of H but
still use the idea of equivalence classes. In Algorithm 4, the only two algebraic
computations are the initial PO set computation and the lumping. Of these two
computations, it is only the lumping that uses previously lumped equations.
Therefore the modification corresponds to replace Lump(E,S′) with a function

S′ = EquivalenceClasses(E,S) (4.49)

that computes the equivalence classes but does not lump equations. The output
S′ is computed as follows. First

Ml = (∪E′∈SE′) \ (∪E′∈S\EE′)∗ (4.50)

is computed. Then the equivalence classes E′ ∈ S where E′ ⊆ Ml are replaced
with the single set Ml. The resulting S is equal to the output S′. Note that the
PO part computation in (4.50) is applied to a subset of the original equations M,
i.e., a subset of rows of the original matrix H. Hence all algebraic computations
are done using the matrix H.

Example 4.8
As an example consider

H =





1 0 0 0
1 0 1 0
0 1 1 0
0 1 0 1
0 0 0 1
0 0 0 1





where the rows correspond to the equations M = {e1, . . . , e6}. Let S′ = {{e1, e2},
{e3, e4}, {e5}, {e6}} and E = {e1, e2} be the input sets to EquivalenceClasses. The
computation (4.50) is for this example

Ml =M \ {e3, e4, e5, e6}∗ =M \ {e5, e6} = {e1, e2, e3, e4}

Note that the PO set in the example was computed by using the matrix
H[{e3, e4, e5, e6}] which is a subset of rows in H. By omitting the lumping, null
space computations of matrices obtained by previous null-space computations
are avoided and this avoids potential numerical problems.
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4.5 Computational Complexity

For a fixed order of redundancy, the computational complexity is polynomial
in the number of equations. This follows from the fact that, in the algorithm,
the number of recursive calls is equal to the number of PO sets. The worst case
is when no equations are lumped. In this case the PO sets are all subsets with
cardinality strictly greater than the number of unknowns in the original model.
By similar computations as done in Section 3.7, it follows that the number of
such sets grows polynomially in the number of equations. Furthermore the
computational complexity to obtain the set M∗, has the same computational
complexity as making a QR-factorization of the matrix H. The QR-factorization
is polynomial in the number of equations. For a fixed number of unknowns,
the complexity of the improved algorithms are exponential in the number of
equations. However, this situation is, as mention in Section 3.7, not common
in application areas such as the automotive industry.

4.6 Example: The Electrical Circuit

In this section we briefly describe some of the steps when Algorithm 4 is applied
to the electrical circuit presented in Chapter 3.

Consider the Hasse diagram in Figure 2.2 and let the nodes be enumerated
from left to right and then from the top to the bottom. In the first subroutine
call we have the inputs:

S = E = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}

i.e., we enter node 1. Then the lumping of E results in

S′ = E′ = {{1, 2, 6}, {3}, {4}, {5}, {7}}

Assume then that E = {1, 2, 6} ∈ E′ is selected. This means that

E′ = {{3}, {4}, {5}, {7}}

and the inputs to the next subroutine call become

S = E = {{3}, {4}, {5}, {7}}

i.e., we enter node 6. Reduction of this is

S′ = E′ = {{3, 7}, {4}, {5}}

Assume next that E = {3, 7} ∈ E′ is selected, This implies

E′ = {{4}, {5}}

and the inputs to the recursive call become

S = E = {{4}, {5}}

i.e., node 14 is entered. The model S is identified to be a MO sets. Hence

MMO := {∪E∈SE} = {4, 5}
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Now, backtracking to node 6 and the situation is

S′ = {{3, 7}, {4}, {5}}
E′ = {{4}, {5}}

Then we select a new equivalence class say {4} ∈ E′ and get

S′ = {{3, 7}, {4}, {5}}
E′ = {{5}}

The input arguments to the recursive call are

S = {{3, 7}, {5}}
E = {{5}}

This is identified as an MO set, i.e., {3, 5, 7} is found. Returning to node 6 we
have that

S′ = {{3, 7}, {4}, {5}}
E′ = {{5}}

and
MMO := {{4, 5}} ∪ {{3, 5, 7}}

In the final recursive call we select {5} ∈ E′ and

S = {{3, 7}, {4}}
E = ∅

{3, 4, 7} is identified to be an MO set. Returning to node 6, we get

MMO := {{4, 5}, {3, 5, 7}} ∪ {{3, 4, 7}}

Since

S′ = {{3, 7}, {4}, {5}}
E′ = ∅

i.e., E is empty, we backtrack to the node 1 and we have

S′ = {{1, 2, 6}, {3}, {4}, {5}, {7}}
E′ = {{3}, {4}, {5}, {7}}

Continuing in the same way, we select {3} ∈ E′ and enter node 5 with

S = {{1, 2, 6}, {4}, {5}, {7}}
E = {{4}, {5}, {7}}

When the lumping is performed, it turns out that

[{7}] = {{1, 2, 6}, {7}}
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i.e.,

S′ = {{1, 2, 6, 7}, {4}, {5}}

It follows that [{7}] * E′ and this implies that

E′ = {{4}, {5}}

In this way the set {1, 2, 6, 7} is not removed. If this equivalence class would be
removed the resulting set would be {{4}, {5}}, i.e., we would enter node 14 again.
By selecting the equivalence class including the lowest equation first, the nodes
will be traversed in the following order: 1, 6, 14, 13, 12, 5 as we already have
explained and then 11, 10, 4, 9, 8, 3, 7, and finally 2.

4.7 Conclusions

An algorithm for computing all MO sets of equations has been developed.
There are three main ideas that are used in the algorithm. First, it is based
on a top-down approach as described in Section 4.3. Second, an analytical
reduction is used where subsets of equations can be lumped together in order
to reduce the size of the model. Third and last, it is prohibited that any MO set
is found more than once. For a fixed order of redundancy, the computational
complexity, of the algorithm, is polynomial in the number of equations.



102 Chapter 4. An Efficient Algorithm for Finding all MO Sets



5

A A  F 
FMO S

If a sound diagnosis system for a diagnosis modelM is to be designed based on
a set ω = {M1, . . . ,Mn} of models, it has been shown in Chapter 2 that ω must
fulfill (2.34) for all behavioral modes in b ∈ B. To fulfill this and to minimize
the cardinality of ω, it was shown for linear static models in Chapter 3 that ω
should be a subset of all feasible MO sets in the diagnosis modelM.

In a general diagnosis model not all MO subsets M of M are feasible models.
For example in the model (3.95), the equation assumptions of 4 and 8 are
mutually exclusive, i.e.,

assump(4) ∩ assump(8) , ∅

Hence any subset that include both 4 and 8 will not be a feasible set, for example
the MO set {4, 8}.

If we want to find all feasible MO sets in the set M of equations (3.95),
one straightforward approach is to use {{e}|e ∈ M} as inputs to Algorithm 4.
Since the algorithm does not consider the equation assumptions, non feasible
MO sets will also be included in the output. All non feasible MO sets must
therefore be removed from the output set. As said in Section 4.5, Algorithm 4 is
efficient when the redundancy is low. To find all feasible MO sets in this way is
inefficient because the redundancy of M can be much greater than the maximum
redundancy of the maximal feasible models in M. For the model (3.95), the
redundancy of both maximal feasible models is 3 and the redundancy of M is
4. The redundancy difference will be greater for diagnosis models including
more fault models.

To keep the redundancy of the models processed by Algorithm 4 low, an-
other approach, that will be described here, is to call Algorithm 4 several times
with different parts of the model as inputs. This approach is implemented in,
Algorithm 7, for finding all feasible MO sets in a diagnosis model. Algorithm 7
computes MO sets by calling Algorithm 4 several times with different inputs.
The set of all MO sets found by Algorithm 7 is the union of all output sets
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obtained for the different calls of Algorithm 4. Algorithm 7 uses the equation
assumptions to compute inputs sets to Algorithm 4 such that only feasible MO
sets are contained in the outputs of Algorithm 4. The algorithm presented
here is not limited to linear models if Algorithm 4 is replaced by an algorithm
handling also non-linear models. This will later be done in Chapter 9.

In Section 5.1 the relation between the inputs and the output of Algorithm 4
is investigated. This is then used in Section 5.2 to derive requirements on the
inputs such that each feasible MO sets are found in exactly one of the calls of
Algorithm 4. Many sets of inputs fulfill these requirements, but we are also
interested to minimize the number of calls to Algorithm 4, and this is done
in Section 5.3. The final algorithm is presented in Section 5.4 and Section 5.5.
Finally the computational complexity of the algorithm is discussed in Section 5.6
before the conclusions are drawn in Section 5.7.

5.1 Relation between Inputs and Outputs of Algo-

rithm 4

To keep the redundancy of the models processed by Algorithm 4 low, one
approach is to call Algorithm 4 with all maximal feasible sets and then take
the union of the output sets. All MO sets found using this approach will be
feasible sets, but the drawback is that a node in the search tree corresponding
to PO set M and its subtree will be traversed in each call to Algorithm 4 with
a maximal feasible set M′ if M ⊆ M′. For (3.95) this would mean that nodes in
the subtree defined by {1, 2, 3, 5, 6, 7}, i.e., the intersection of the two maximal
feasible models, would be searched twice.

One way to prohibit this is to check if a node has been visited before entering
it. This can be done by checking if the computed PO set is among the previously
considered PO sets. Since the redundancy is known only PO sets with the same
redundancy must be compared. Although comparisons to only PO sets of the
same redundancy is sufficient, the number of comparisons will be large.

Another way to prohibit that nodes are visited twice or more without ex-
plicitly checking if they have been visited before is to make a clever choice of
the input sets to Algorithm 4 such that different sets of nodes are visited in each
call. In particular, disjoint families of MO sets will be found in each call.

The disjoint families of MO sets can be specified by changing the inputs to
Algorithm 4. In general, it is possible to specify the k:th inputs of Algorithm 4
according to a partition

M =Mk
n ∪Mk

r ∪Mk
a (5.1)

such that the output set MMO only contains all MO sets M ⊆ M with the
following properties:

a) no equations in Mk
n ⊆M are included in M,

b) all equations in Mk
r ⊆M are included in M, and

c) it is ambiguous if the equations in Mk
a ⊆M are included in M or not.

Given such partition, the corresponding MO sets are obtained in the output set
of Algorithm 4 by choosing the input sets according to the next theorem.
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Theorem 5.1. Let M be a set of equations partitioned as

M =Mk
n ∪Mk

r ∪Mk
a (5.2)

If

Mk
r ⊆ (Mk

r ∪Mk
a)∗ (5.3)

then by choosing the input sets to Algorithm 4 as

S = {{e}|e ∈ (Mk
r ∪Mk

a)∗} (5.4)

and

E = {{e}|e ∈ (Mk
r ∪Mk

a)∗ ∩Mk
a} (5.5)

the output set MMO will include exactly those MO sets in M that fulfill all the
properties (a)-(c). Otherwise, i.e., if (5.3) is not true, no MO sets in M fulfill all the
properties (a)-(c).

Proof. First we start to prove that if (5.3) is not true, then no MO sets in M
fulfill all the properties (a)-(c). For an MO set M satisfying property (a), it holds
that M ⊆Mk

r ∪Mk
a. Since all MO sets are contained in the overdetermined part

according to Lemma 4.3, it follows that

M ⊆ (Mk
r ∪Mk

a)∗ (5.6)

Now the MO set M satisfies (b), if and only if all equations in Mk
r are included in

the overdetermined part (Mk
r ∪Mk

a)∗, i.e., if and only if (5.3) is satisfied. Hence
if (5.3) is not true, then no MO sets in M fulfill all properties (a)-(c).

From now on it is assumed that (5.3) is fulfilled. We start to describe the
output set MMO of Algorithm 4 formally. According to the description of
Algorithm 4, the input set S contains the equations considered and E contains
the equations that are allowed to be removed . Then from (5.4), (5.5), and
Theorem 4.5, the setMMO is the set of all MO sets that are subsets of (Mk

a ∪Mk
r)∗

and can be obtained by only removing equations in Mk
a. This means that the set

MMO contains all MO sets M such that

M ⊆ (Mk
a ∪Mk

r)∗ (5.7)

and by also using (5.3) it follows that

Mk
r ⊆M (5.8)

Next, we show that an arbitrary MO set M ∈ MMO fulfills (a)-(c). Property (a)
is implied by (5.7) and (b) is implied by (5.8). Property (c) is always fulfilled.
Hence any MO set M ∈ MMO fulfills (a)-(c).

Finally, we show that any MO set with properties (a)-(c) will be included in
MMO. Let M be an arbitrary MO set with properties (a)-(c). From property (b),
condition (5.8) follows. Property (a) implies that M ⊆ (Mk

a ∪Mk
r) and by using

Lemma 4.3 that M ⊆ (Mk
a ∪ Mk

r)∗. Hence also the first condition (5.7) of the
characterization is fulfilled. In conclusion any MO set that fulfills (a)-(c) belongs
toMMO. �
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5.2 Constructing Partitions by Using the Model

The MO sets specified by a partition (5.2) and the conditions (a)-(c) can be found
by applying Algorithm 4 to the input sets described in Theorem 5.1. Now, a
natural question is how to define the partitions Mk

r ∪Mk
a ∪Mk

n such that the
following two requirements are met:

I) For each partition only feasible MO sets should satisfy the conditions (a)-
(c), i.e., only feasible MO sets shall be found by Algorithm 4.

II) All feasible MO sets in M should satisfy the conditions (a)-(c) for exactly
one of the chosen partitions, i.e., all feasible MO sets will be found and
all feasible MO sets are found only once.

The assumption of the equations determine if a set is feasible or not. Therefore,
the set of partitions will be computed by using the equation assumptions.

There are many sets of partitions that satisfy these two requirements. For
example, these two requirements are satisfied by the set of all partitions M =

Mk
n ∪Mk

r where Mk
r ⊆ M is a feasible set. However, this is a computationally

inefficient choice, because each feasible set will then be separately checked if
it is an MO set. For an efficient use of Algorithm 4, the sets Mk

a in the chosen
partitions should, in contrast to the example where all Mk

a were empty, be
chosen large. In this way the number of partitions needed to specify all feasible
MO sets becomes smaller.

To do this, the partitions are constructed as follows. Let the equations M be
divided into two sets M = Mne ∪Me such that it is sufficient to consider only
the equations in Me to determine if any set is a feasible model or not. The set
Me is chosen as a minimal set such that any set M ⊆ M is a feasible set if and
only if the part in Me is a feasible set, i.e., Me is a minimal set such that

∀M ⊆M : (M feasible ⇔M ∩Me feasible) (5.9)

The set Mne is obviously the complement set of Me in M. Then it is possible
to chose the sets Mk

r equal to all feasible subsets of Me and Mk
a equal to the set

Mne in all partitions to guarantee that all MO sets specified by (a)-(c) for each
partition k are feasible MO sets. As said before, Mk

a = Mne should be large, i.e.,
Me should be small. That is the reason for defining Me to be a minimal set that
satisfies (5.9). In fact there exists a unique minimal set Me that satisfies (5.9)
according to the next lemma.

Lemma 5.1. There exists a unique minimal set Me that satisfies (5.9).

Proof. Assume that Me1 and Me2 are two minimal sets that fulfill (5.9). We
will show that Me = Me1 ∩Me2 also fulfills (5.9) and then it follows from the
minimality of Me1 and Me2 that M =Me1 =Me2.

To show that Me = Me1 ∩Me2 fulfills (5.9), let M ⊆ M be an arbitrary set
and consider the set M ∩ (Me1 ∩Me2). Since Me2 fulfills (5.9), it follows that
(M∩Me1)∩Me2 is feasible if and only if M∩Me1 is a feasible set. From the fact
that Me1 fulfills (5.9), we get that M ∩Me1 is a feasible set if and only if M is a
feasible set. Hence we have proven that Me =Me1 ∩Me2 fulfills (5.9). From the
minimality of Me1 and Me2 it follows that M = Me1 = Me2 which completes the
proof. �
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Next an example of the partition M =Me ∪Mne is shown.

Example 5.1
Consider the electrical circuit in Example 3.17 with the set M of equations
in (3.95) . A set in (3.95) is not a feasible model if and only if the set contains
both equation 4 and 8. Hence the minimal set that satisfies (5.9) is

Me = {4, 8} (5.10)

The complement set of Me in M = {1, . . . , 8} is

Mne = {1, 2, 3, 5, 6, 7} (5.11)

In the example, Me is the minimal set of equations with conflicting assump-
tions. In general Me is the union of all minimal sets of equations with conflicting
assumptions. Section 5.3 describes how Me and Mne can be computed. In the
continuation here, we will assume that Me and Mne are known sets.

Given the sets Me and Mne the idea is to apply Algorithm 4 one time for each
feasible set M ⊂Me. How to generate all feasible subsets M of Me is discussed in
Section 5.4. Given a feasible set M, we conclude that by choosing Mk

n =Me \M,
Mk

r =M, and Mk
a =Mne in Theorem 5.1 we get the desired MO sets. In the next

theorem we show that these partitions fulfill both requirement (I) and (II).

Theorem 5.2. LetM be a diagnosis model with a set M of equations divided into the
sets Me and Mne where Me is defined as the minimal set that satisfies (5.9). Given all
partitions M =Mk

r ∪Mk
n ∪Mk

a for k = 1, . . . such that

Mk
r ⊂Me (5.12)

is a feasible set,

Mk
n =Me \Mk

r (5.13)

and
Mk

a =Mne (5.14)

the requirements (I) and (II) are fulfilled.

Proof. We start to show that requirement (I) is fulfilled. Assume that M is an
MO set, not necessarily a feasible set, that satisfies (a)-(c) for some partition k
of the type (5.2). Since M satisfies (a)-(c) it follows that

Mk
r ⊆M ⊆Mk

r ∪Mk
a (5.15)

By substitution of Mne in Mne∩Me = ∅ for Mk
a using (5.14) we get that Mk

a∩Me =

∅. This implies that
(Mk

r ∪Mk
a) ∩Me =Mk

r ∩Me (5.16)

By taking the intersecting each of the three sets in (5.15) with Me and by us-
ing (5.16), it follows that

M ∩Me =Mk
r ∩Me

This and (5.12) imply
M ∩Me =Mk

r
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Since Mk
r = M ∩Me is a feasible set, (5.9) implies that M is a feasible set. Since

M was an arbitrarily chosen MO set, it follows that only feasible MO sets
satisfy (a)-(c) for some partition k.

Now, we show that requirement (II) is satisfied. Let M ⊆ M be an arbitrary
feasible MO set. This implies according to (5.9) that the subset M ∩ Me is
a feasible set. For each partition k, the sets Mk

r and Mk
n divide the set Me

according to (5.12) and (5.13). From this, (a), and (b), it follows that any MO
set that fulfills (a)-(c) for partition k contains exactly the equations Mk

r among
the equations in Me. This implies that M satisfies (a)-(c) only if Mk

n = Me \M,
Mk

r = M ∩Me, and Mk
a = Mne. Since Mk

r = M ∩Me is a feasible subset of Me it
follows that Mk

n = Me \M, Mk
r = M ∩Me, and Mk

a = Mne is one of the partitions
defined in (5.12)-(5.14). Hence all feasible MO sets satisfy (a)-(c) for exactly one
partition. �

We conclude this section with an example that shows the partitions obtained
given the sets Me and Mne. Furthermore the example shows how these partitions
are used to define inputs to Algorithm 4 such that all feasible MO sets are found.

Example 5.2
Continuation of Example 5.1. The set Me and Mne were given in (5.10) and (5.11)
respectively. The feasible subsets of Me are

M f eas = {∅, {4}, {8}}

The three corresponding partitions M =Mk
r ∪Mk

n ∪Mk
a for k ∈ {1, 2, 3} are

M1
r = ∅ M1

n = {4, 8} M1
a =Mne

M2
r = {4} M2

n = {8} M2
a =Mne

M3
r = {8} M3

n = {4} M3
a =Mne

These three partitions satisfy requirement (I) and (II) according to Theorem 5.2.
From Theorem 5.1 we get that the first partition corresponds to the inputs

S1 = {{1}, {2}, {3}, {5}, {6}, {7}}
E1 = {{1}, {2}, {3}, {5}, {6}, {7}}

to Algorithm 4, the second to

S2 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}
E2 = {{1}, {2}, {3}, {5}, {6}, {7}}

and the third to

S3 = {{1}, {2}, {3}, {5}, {6}, {7}, {8}}
E3 = {{1}, {2}, {3}, {5}, {6}, {7}}

If Algorithm 4 is applied to these inputs, all feasible MO sets can be computed
as

MMO =
⋃

k∈{1,2,3}
FindMO(Sk,Ek) (5.17)
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according to Theorem 5.1. In Figure 3.1 these three calls find the four MO
sets in the middle, the four leftmost MO sets, and the four rightmost MO sets,
respectively.

This example illustrates that all MO sets are found and each MO set is found
only ones if the input sets Sk and Ek of the different calls of Algorithm 4 are
chosen in accordance with the result of Theorem 5.1.

5.3 Computing the set Mne

In this section we show how to compute the sets Me and Mne given a diagnosis
model M. The next lemma characterize the set Mne given the set Mmax of all
maximal feasible subsets in M and the characterization will then be used to
compute the set Mne.

Lemma 5.2. It holds that
Mne = ∩M̂∈Mmax

M̂ (5.18)

Proof. Let the set defined on the right hand side of (5.18) be denoted M̄. Instead
of proving that M̄ =Mne we will prove the equivalent statement that

(M \ M̄) =Me (5.19)

We start to show that
(M \ M̄) ⊇Me (5.20)

Since Me is defined to be the minimal set that satisfies (5.9), it follows that (5.20)
is equivalent with (5.9) where Me is substituted by M \ M̄. Take an arbitrary
M ⊆ M. The right implication of (5.9) is trivially true. To prove the left
implication of (5.9), assume that M∩ (M \ M̄) is a feasible set. Since M∩ (M \ M̄)
is feasible there exist a M̂ ∈ Mmax such that

M ∩ (M \ M̄) ⊆ M̂ (5.21)

From the construction of M̄, it follows that

M̄ ⊆ M̂

and therefore also that
M ∩ M̄ ⊆ M̂ (5.22)

Since M can be written as

M = (M ∩ M̄) ∪ (M ∩ (M \ M̄)) (5.23)

(5.21) and (5.22) imply that
M ⊆ M̂ (5.24)

By using this and that M̂ is a feasible set, it follows that M is a feasible set.
Hence (5.20) is proved.

Next, we show that
(M \ M̄) ⊆Me (5.25)

i.e., Me = (M \ M̄) is the minimal set that satisfies (5.9). Let e ∈ M be an
arbitrary equation such that e < M̄. To show that (M \ M̄) is a minimal set
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that satisfies (5.9), it is sufficient to show that (5.9) with Me substituted for
M \ (M̄ ∪ {e}) does not satisfy (5.9). Since e < M̄, it follows that there exists an
M̂ ∈ Mmax such that

e < M̂ (5.26)

By choosing M = M̂ ∪ {e} in (5.9), we get that

(M̂ ∪ {e}) feasible ⇔ (M̂ ∪ {e}) ∩ (M \ (M̄ ∪ {e})) feasible

On the left hand side we have M̂ ∪ {e} which is a not feasible set according to
the fact that M̂ is a maximal feasible set. On the right hand side, we have the
set

(M̂ ∪ {e}) ∩ (M \ (M̄ ∪ {e})) (5.27)

Since e < (M \ (M̄ ∪ {e})) it follows that (5.27) is a subset of the feasible set M̂.
Hence the set in (5.27) is feasible. This concludes that (5.9) is not satisfied when
Me is substituted for M \ (M̄∪ {e}). Since e ∈M was arbitrarily chosen such that
e < M̄, (5.25) follows. Finally, (5.20) and (5.25) imply (5.18) which concludes the
proof. �

The component based modeling described in Section 2.1 will be used in
the computation of Mne. Let c ∈ C be all components described in a diagnosis
modelM. Let Mc ⊆ M be the equations describing the behavior of component
c, e.g. MB = {4, 8} in Example 3.17. Furthermore let M0 = M \ (∪c∈CMc) be all
other equations. Note that the equations in M0 can without loss of generality
be assumed to be always true. Furthermore assume that Mmax,c is the set
containing all maximal feasible subsets of Mc. Any maximal feasible set M̂ in
Mmax can then be written as

M̂ = ∪c∈CM̂c ∪M0 (5.28)

where M̂c ∈ Mmax,c. Since Mc are disjoint sets, the intersection in (5.18) of all
maximal feasible sets of the type (5.28) can be expressed as

Mne = ∪c∈C(∩M̂∈Mmax,c
M̂) ∪M0 (5.29)

Hence the set of all maximal feasible setsMmax,c for each model Mc describing
component c must be determined to compute the set Mne when using (5.29).
Since the number of component behavioral modes in general is small, compu-
tation of all maximal feasible models can easily be done as follows.

Remember that Bc denotes that set of all component behavioral modes for
component c. Given a component c ∈ C and a component behavioral mode
b ∈ Bc, let Mc,b be a component behavioral model defined by

Mc,b = {e ∈Mc|φ(c = b) ⊆ assump(e)} (5.30)

Then the setMmax,c of all maximal feasible models in Mc can be computed as
the maximal sets among

{Mc,b|b ∈Mc} (5.31)

Next an example shows the computation of the setMmax,c of maximal feasible
sets of a component c.

Example 5.3
Consider for example a sensor component c with the possible behavioral modes:
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no-fault NF, constant bias fault B, and unknown fault UF. If the measurement
is denoted by y, the measured signal is denoted by x, and the sensor fault is
modeled by a fault signal f , then a model for the sensor is

y = x + f
c = NF f = 0
c ∈ {NF,B} ˙f = 0

(5.32)

The sets of valid equations for each component behavioral mode, i.e., the sets
in (5.31), are {1, 2, 3} for NF, {1, 3} for B, and {1} for UF. The only maximal sets
for this component is therefore {1, 2, 3}, i.e.,Mmax,c = {{1, 2, 3}}.

The computations of the partition M = Mne ∪Me is summarized in the fol-
lowing algorithm. The intersection in (5.29) for component c is in the algorithm
denoted by M̄c.

Algorithm 5. GetPartition(M)
% Computes the partition M =Mne ∪Me.
for each component c do

Mmax,c := ∅;

for each component behavioral mode b ∈ Bc do

if Mc,b not subset of any M ∈ Mmax,c then

Remove all subsets M of Mc,b inMmax,c;

Mmax,c :=Mmax,c ∪ {Mc,b};
end if

end for

M̄c := ∩M∈Mmax,c
M; % See (5.29)

end for
M0 :=M \ (∪c∈CMc);
Mne := (∪c∈CM̄c) ∪M0;
Me :=M \Mne;
return Mne and Me;

Note that the sets Mmax,c for c ∈ C could all be replaced by a single set
reducing the memory usage.

Example 5.4
Consider the electrical circuit in Example 3.17. Assume that the components are
enumerated in the order R1, R2, B, S1, S2, and S3. Considering the model (3.95),
the sets Mci

are

Mci
=





{i + 1} for all i ∈ {0, 1, 2, 4, 5, 6}
{4, 8} for i = 3

All components except for the battery have the possible component behavioral
modes NF and UF. These component models have one maximal feasible model
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and this is the no-fault model, i.e., Mmax,ci
= {Mci

} for all i ∈ {1, 2, 4, 5, 6}. This
implies that M̄ci

=Mci
for all i ∈ {1, 2, 4, 5, 6} according to the algorithm.

The battery model MB =Mc3 consists of the equations 4 and 8 in (3.95). The
battery has two possible component behavioral modes: NF with model {4}, and
F with model {8}. Therefore, the maximal feasible models for component B is
Mmax,c3 = {{4}, {8}} and M̄c3 = ∅.

By substitution of the sets M̄ci
and M0 in the assignment of the set Mne in

Algorithm 5, the result becomes

Mne = {1, 2, 3, 5, 6, 7} (5.33)

The set Me becomes
Me = {4, 8}

which also is in agreement with the computations in Example 5.2.

5.4 Generating Feasible Subsets

In this section we present an algorithm that finds all feasible models M ⊆ Me.
A property that will be used to find these is that if a model is not feasible
then no supersets will be a feasible model. Here the feasible models will be
generated by starting with the empty set and then generate supersets following
a depth first traversal. If a set turns out to be a non-feasible model then the
corresponding branch is cut off.

Another feature that will be used is the component based modeling ap-
proach. Remember that Mc denotes the set of equations describing the behavior
of component c. All feasible subsets of Mc ∩Me are first computed for each
component c ∈ C. Assume that the set of all feasible subsets of Mc ∩ Me is
denotedM f eas,c. Then it follows that any feasible subsets of Me can be written
as

∪c∈CM̃c (5.34)

for some M̃c ∈ M f eas,c.
The algorithm is a recursive algorithm for generating all feasible models

contained in a general set U of equations. Later in the algorithm for finding
all feasible MO sets U will be the sets Mc ∩Me where c ∈ C. In each recursive
call the algorithm returns given two input sets M ⊆ U and E ⊆ U, the setM f eas

containing all feasible sets that can be written as M ∪ E′ where E′ ⊆ E. This
means especially that if M = ∅ and E = U, then the algorithm will return the
setM f eas containing all feasible models in U.

Algorithm 6. GetAllFeasibleSubsets(M,E)
if M not feasible then

M f eas := ∅;

else

M f eas := {M}; Mold :=M;

while E , ∅ do
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Select an e ∈ E;

E := E \ {e};
M :=Mold ∪ {e};
M f eas :=M f eas ∪ GetAllFeasibleSubsets(M,E);

end while

end if
returnM f eas;

Example 5.5
Continuing Example 5.4. From (5.33) we get that the complement set of M is
Me = {4, 8}. If Algorithm 6 is applied to the input Me ∩MB = Me ∩Mc3 = {4, 8},
the output set becomes

M f eas = {∅, {4}, {8}}

5.5 Algorithm for Finding All Feasible MO Sets

Now, we are ready to include all parts in a final algorithm for finding all feasible
MO sets in a diagnosis modelMwith an equation set M.

The main steps in the algorithm is as follows. First the set M is divided
into the sets M =Mne ∪Me with Algorithm 5 presented in Section 5.3. Then all
feasible subsetsM f eas,c of each component model Mc ∩Me are computed using
Algorithm 6 described in Section 5.4. Given all feasible subsets M f eas,c of all
components c ∈ C, all feasible subsets Mk

r of Me can be generated as

Mk
r = ∪c∈CM̄c (5.35)

for all combinations of M̄c ∈ M f eas,c for all c ∈ C. Then for each feasible
set Mk

r , all MO sets specified by (a)-(c) for the partition Mk
r , Mk

a = Mne, and
Mk

n =M \ (Mk
r ∪Mk

a) are found by Algorithm 4.
The number of partitions Mk

r , Mk
a, Mk

n can be large. To avoid storing all
partitions Mk

r , Mk
a, Mk

n, the algorithm recursively construct each partition Mk
r ,

Mk
a, Mk

n, apply Algorithm 4 to the constructed partition, and store the found
MO sets before computing the next partition. The recursions are performed
using a subroutine called FindFeasibleMOSets.

In the FindFeasibleMOSets the sets Mk
r is obtained as follows. Starting with

Mr = ∅ the subroutine chose one feasible set of a component not previously
considered in each call. In each call the union of the chosen feasible sets are
stored as the set Mr. The final set Mr, which corresponds to one Mk

r , is obtained
with |C| recursive calls. Then all feasible MO sets containing Mr and contained
in Mr ∪Mne are found by using Algorithm 4.

Assume that a model M̄c ∈ M f eas,c for all components in C \ C′ is selected
and that

Mr = ∪c∈C\C′M̄c (5.36)

The inputs to the subroutine are the union Mr of previously selected feasible
sets for components C\C′, a setM f eas = {M f eas,c|c ∈ C′ ⊆ C} of selection choices
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of the remaining components C′, and the set Mne. The output is the set of all
MO sets that can be written as

Mr ∪ (∪c∈C′Ec) ∪ E

where Ec ∈ M f eas,c and E ⊆Mne. All feasible MO sets in M is therefore obtained
in the output set for the input sets M = ∅,M f eas = {M f eas,c|c ∈ C}, and Mne. The
algorithm is summarized next.

Algorithm 7. FindAllFeasibleMOSets(M)
% Computes the partition M =Mne ∪Me.
[Mne,Me] := GetPartition(M);

% Computes the feasible sets for each component.

for each component c ∈ C do

M f eas,c := GetAllFeasibleSubset(∅,Mc ∩Me);

end for

% Computes all feasible MO sets.

M f eas := {M f eas,c|c ∈ C};
MMO := FindFeasibleMOSets(∅,M f eas,Mne);
returnMMO

FindFeasibleMOSets(M,M f eas,Mne)
ifM f eas = ∅ then
% A feasible setM ⊂Me has been found.

% Check the partition ofM defined by M.

if M ⊆ (M ∪Mne)∗ then % See (5.3)

S = {{e}|e ∈ (M ∪Mne)∗};
E = {{e}|e ∈ (M ∪MneM)∗ ∩Mne};
MMO := FindMO(S,E);

else

MMO := ∅;

end if

else
% ExtendM with feasible sets inM f eas.

MMO := ∅;

Mold :=M;

Select anMselect ∈M f eas;
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M f eas :=M f eas \ {Mselect};

whileMselect , ∅ do

Select an E ∈ Mselect;

Mselect :=Mselect \ {E};
M :=Mold ∪ {E};
MMO :=MMO ∪ FindFeasibleMOSets(M,M f eas,Mne);

end while

end if
returnMMO;

The algorithm is justified by the following result.

Theorem 5.3. If Algorithm 7 is applied to a diagnosis model M with equations M,
then only feasible MO sets are found and any feasible MO set contained in M is found
once and only once.

Proof. Algorithm 5 computes a partition M =Me∪Mne where Me is the minimal
set that satisfies (5.9) according to Lemma 5.2. Given Me and Mne, Algorithm 7
computes all feasible sets M ⊆ Me defining the partitions M = Mk

r ∪Mk
n ∪Mk

a

where Mk
r = M, Mk

n = Me \M, and Mk
a = Mne. According to Theorem 5.2 these

partitions specify only feasible MO sets and each feasible MO sets is specified
only for one partition. For each such partition, exactly the specified MO sets
are then found by Algorithm 4 according to Theorem 5.1 and this concludes the
proof. �

5.6 Computational Complexity

Besides the computational complexity of Algorithm 4, the number of feasible
subsets M ⊆ Me in the for-loop in Algorithm 7 is important for the compu-
tational complexity of Algorithm 7. Consider an example model M with n
components, i.e., |C| = n. Assume that each component c ∈ C is specified by
two equations Mc = {ec1 , ec2 } with conflicting assumptions. The minimal con-
flicting set is {ec1 , ec2 } and this set is equal to Me ∩Mc. This implies that there
are 3 feasible subsets of Me ∩Mc, i.e., |M f eas,c| = 3. This means that there are 3n

feasible subsets M ⊂Me. Even if each of these 3n search problems are small only
enumerating all cases will be time-consuming for large numbers n. However
the next example shows that given a component c the number feasible subsets
of Me∩Mc might not increase with the number of component behavioral modes
of c.

Example 5.6
In Example 5.3 there were 3 component behavioral modes. The set of all
equation assumptions are consistent, i.e., Me∩Mc = ∅. The only feasible subset
of Me ∩Mc is ∅, i.e.,M f eas,c = {∅}. Hence, this component will not increase the
number of cases in the while-loop in Algorithm 7.
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5.7 Conclusions

An algorithm for computing all feasible MO sets of equations has been devel-
oped. There are three main ideas that are used in the algorithm. First, the
algorithm uses Algorithm 4 several times and collects all MO sets found. Sec-
ond, the inputs to Algorithm 4 are computed such that only feasible MO sets are
contained in the outputs of Algorithm 4. Third and last, it is prohibited that any
feasible MO set is found in more than one call of Algorithm 4. The algorithm
presented here is not limited to linear models if Algorithm 4 is replaced by an
algorithm handling also non-linear models.
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S  D L
D S

Following the strategy described in Section 2.3.3, the construction of a diagnosis
system starts with finding a set ω = {M1, . . . ,Mn} of rejectable models to test. If
the diagnosis system should be sound, these models Mi ∈ ωmust fulfill

O(Mb) =
⋂

Mi⊆Mb

O(Mi) (6.1)

for all b ∈ B according to Theorem 2.2. In Chapter 3, we studied linear static
models and showed that the set ω of all feasible MO sets is a solution to (6.1)
for all behavioral modes b ∈ B. An algorithm for finding all feasible MO sets
was then developed in Chapter 4 and Chapter 5. In this chapter, we will extend
results presented in Chapter 3 to systems of linear differential equations. This is
done by representing linear differential equations using polynomial matrices.

Basic properties of polynomial matrices are, for the sake of convenience,
collected in Appendix 6.A. In Section 6.1 the type of differential equation con-
sidered in this chapter is specified along with some basic notions. Furthermore,
the so called behavior of differential equations is defined and a polynomial
matrix characterization of equivalent differential equations is described. By us-
ing the polynomial matrix characterization, observation set, redundancy, and
overdetermined sets are extended to the dynamic case. Section 6.2 and Sec-
tion 6.3 investigate solutions to (6.1) for one behavioral mode b ∈ B. Section 6.2
extends the definition of PO set to the dynamic case and it is shown that all PO
sets are sufficient for soundness. Section 6.3 introduces MO sets for dynamic
models and shows that all MO sets are sufficient for soundness. In Section 6.4,
it is shown that the set of all feasible MO sets satisfies (6.1) for all behavioral
mode b ∈ B. In Section 6.5, it is shown that Algorithm 7, presented in Chapter 5,
can be used to find all feasible MO sets in a linear dynamic diagnosis model.
Section 6.6 discusses how to find a minimum cardinality solution ω of MO sets.
Finally, the fault influences on residual generators based on an MO sets are
discussed in 6.7 before the conclusions are drawn in Section 6.8.
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6.1 Linear Differential Equations

Let the set of all distributions be denoted byD′. The type of model considered
in this chapter is then a linear dynamic model for a specific behavioral mode

H(p)x + L(p)z = 0 (6.2)

where x ∈ D′ is an unknown distribution, z ∈ D′ is a known distribution, H(p) ∈
Rr×nx [p] and L(p) ∈ Rr×nz [p] are known matrices with polynomial entries of the
differential operator p. In this chapter x and z are assumed to be distributions,
but all results hold also analogously if x and z instead are infinitely differentiable
functions.

Throughout this chapter we will use the following example to illustrate
concepts and theoretical results. Consider the linear dynamic model Mb:

H(p)
︷ ︸︸ ︷





p − 1
1
p




x +

L(p)
︷      ︸︸      ︷





1 0 0
0 1 0
0 0 1




z = 0 (6.3)

describing a fault free behavior.

6.1.1 Behavior

A key property that will be used for analyzing the solutions of linear differential
equations is how the polynomial matrices are related for equivalent differential
equations. This relationship is given in (Polderman and Willems, 1998) and
here a part of this work is briefly recapitulated and exemplified.

The behavior of a linear differential equation R(p)w = 0 is defined as the set
of all distributions w ∈ D′ that are a solution to R(p)w = 0, i.e.,

{w ∈ D′|R(p)w = 0} (6.4)

The linear differential equations

R1(p)w = 0 R2(p)w = 0 (6.5)

are said to be equivalent if they define the same behavior. The next theorem
characterize how the polynomial matrices R1(s) and R2(s) must be related to
represent equivalent differential equations. The following theorem is given and
proved in (Polderman and Willems, 1998).

Theorem 6.1 ((Polderman and Willems, 1998)). Two polynomial matrices R1(s) ∈
Rp1×q[s] and R2(s) ∈ Rp2×q[s] where p1 ≥ p2 define equivalent differential equations if
and only if there exists a unimodular matrix U(s) such that

R1(s) = U(s)
[

R2(s)
0

]

(6.6)

Note that (6.6) is equivalent to that there exists a unimodular matrix W(s)
such that

W(s)R1(s) =
[

R2(s)
0

]

(6.7)
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Multiplying the matrices of a differential equation from the left by any unimod-
ular matrix will produce a differential equation equivalent to the original one
according to Theorem 6.1. Unimodular matrices can be obtained by elementary
row operations (see Appendix 6.A).

Example 6.1
To exemplify Theorem 6.1 and how elementary row operations can be used to
obtain unimodular matrices consider the model (6.3). The rank of H(s) is one
and it is possible by elementary row operations to obtain only one non-zero
row as





s − 1
1
s




∼





1
s − 1

s




∼





1
0
s




∼





1
0
0




(6.8)

by first interchange row 1 and 2, then multiply row 1 with −(s− 1) and add it to
row 2, and finally multiply row 1 with −s and add it to row 3. The elementary
matrices corresponding to the elementary operations in (6.8) and the resulting
unimodular matrix are





1 0 0
−s 1 0
0 0 1









1 0 0
−(s − 1) 1 0

0 0 1









0 1 0
1 0 0
0 0 1




=





0 1 0
1 −(s − 1) 0
0 −s 1




= U(s) (6.9)

Since the elementary matrices are unimodular and the product of unimodular
matrices is unimodular, it follows that U(s) is a unimodular matrix. From the
fact that U(s) is unimodular, we get that

U(p)(H(p)x + L(p)z) =





1
0
0




x +





0 1 0
1 −(p − 1) 0
0 −p 1




z = 0 (6.10)

and (6.3) are equivalent differential equations according to Theorem 6.1.

6.1.2 Observation Sets

A dynamic model of the type (6.2) is said to be consistent with an observation,
i.e., a distribution z = z0 ∈ D′ on any open time-interval I ⊂ R, if

∃x ∈ D′; H(p)x + L(p)z0 = 0 (6.11)

For the model (6.11), the observation [z1(t), z2(t), z3(t)] = [δ(t)− h(t), h(t), δ(t)]
where δ(t) is Dirac’s delta function and h(t) is Heaviside’s step function is
consistent with (6.2) because x = h(t) ∈ D′ is then a solution to (6.3).

Let the equations in (6.2) be indexed by the set M. The set of all observations
that can be observed when (6.11) holds is called the observation set of M and can
formally be defined as

O(M) = {z ∈ D′|∃x ∈ D′; H(p)x + L(p)z = 0} (6.12)

This means that a differential equation (6.2) is consistent with an observation,
i.e, a distribution z, if the observation z belongs to the observation set O(M),
i.e., if

z ∈ O(M) (6.13)
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6.1.3 Kernel Representation

The observation setO(M) can compactly be expressed as the solution to a linear
differential equation in z only, and this type of representation is called kernel
representation (Polderman and Willems, 1998). In this section, it is shown that
for any model there exists a kernel representation of the consistent observa-
tions. Furthermore a method to compute kernel representations is given. The
existence of a kernel representation is first motivated by an example and then
a general theorem is given.

Example 6.2
The last two equations in (6.10) is a kernel representation of the observation set
of (6.3) and this can be understood as follows. Note that the two last equations,
are equations only in the variable z. Furthermore the non-zero rows in U(s)H(s)
has full row rank and therefore will not impose any additional constraints of
the solutions z. The set of consistent observations is therefore equal to the
solutions of the two last equations only, i.e., to

[

1 −(p − 1) 0
0 −p 1

]

z = 0 (6.14)

This is therefore a kernel representation of the observation set of (6.10) and
therefore also of the equivalent differential equation (6.3).

This example showed how a kernel representation could be constructed.
In the next theorem, the existence of a kernel representation for any model is
shown by using the same construction as in the example. This theorem is given
in (Polderman and Willems, 1998), but there for sufficiently smooth functions.

Theorem 6.2. The observation set (6.12) can be expressed as the solution to a differ-
ential equation in only the variables z in the following way:

O(M) = {z ∈ D′|NH(p)L(p)z = 0} (6.15)

where NH is any irreducible basis for the left null space of H(s).

Proof. Let z0 ∈ O(M), i.e., there exists an x0 ∈ D′ such that

H(p)x0 + L(p)z0 = 0 (6.16)

There exists a unimodular matrix U(s) such that

U(s)H(s) =
[

U1(s)
NH(s)

]

H(s) =
[

H1(s)
0

]

(6.17)

where NH(s) can be any irreducible basis for the left null space of H(s) and H1(s)
has full row rank. From Theorem 6.1 it follows that

U(p)(H(p)x0 + L(p)z0) =
[

H1(p)
0

]

x0 +

[

U1(p)L(p)
NH(p)L(p)

]

z0 = 0 (6.18)

and (6.16) are equivalent differential equations, i.e., the observation sets are
equal. This implies that

NH(p)L(p)z0 = 0 (6.19)
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i.e.,
z0 ∈ {z ∈ D′|NH(p)L(p)z = 0} (6.20)

Since z0 was arbitrarily chosen, it follows that

O(M) ⊆ {z ∈ D′|NH(p)L(p)z = 0} (6.21)

Now, let NH(s) be any irreducible basis of the left null space of H(s) and take
any solution z0 ∈ {z ∈ D′|NH(p)L(p)z = 0}, i.e.,

NH(p)L(p)z0 = 0 (6.22)

For any irreducible basis NH(s) of the left null space of H(s), we can extend the
matrix to a unimodular matrix U(s) that satisfies (6.17). Then z0 belongs to the
set O(M) in (6.12) if and only if

∃x ∈ D′;
[

H1(p)
0

]

x +

[

U1(p)L(p)
NH(p)L(p)

]

z0 = 0

according to Theorem 6.1. Since (6.22) holds this is equivalent to that there
exists an x ∈ D′ such that

H1(p)x +U1(p)L(p)z0 = 0 (6.23)

From the fact that H1(p) has full row rank, it follows that for any distribution
U1(p)L(p)z0 that there exists a distribution x0 ∈ D′ that satisfies (6.23). Hence
z0 ∈ O(M). Since z0 was arbitrarily chosen, it follows that

O(M) ⊇ {z ∈ D′|NH(p)L(p)z = 0} (6.24)

The theorem follows by combining the subset relations in (6.21) and (6.24). �

The kernel representation (6.14) of the observation set of (6.3) was obtained
by computing a unimodular matrix. However it is not necessary to compute a
unimodular matrix to obtain an irreducible basis for the left null space of H(s).
A left minimal basis in echelon form can be directly be computed in an efficient and
numerically stable way and there is an implementation in Matlab polynomial
toolbox.
Example 6.3
The kernel representation of H in (6.3) can be computed as follows:

>> H=[s-1;1;s]

H =

-1 + s

1

s

>> Nh = null(H’)’

Nh =

0.58 0.58 - 0.58s 0

-0.58 -0.58 0.58
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The matrix in (6.14) is one example of an irreducible basis for the left null space
of H(s) and the matrix Nh is another such example.

6.1.4 Redundancy and Overdetermined Sets

To generalize redundancy defined for static systems to dynamic systems, we
consider polynomial matrices instead of real matrices. By using the normal
rank (see Appendix 6.A) for polynomial matrices the redundancy concept is
generalized to a set of linear differential equations as follows. The notation
H[M] will be extended to polynomial matrices and the dependence on s will
for notational convenience only be explicit when needed.

Definition 6.1 (Redundancy of a Model). Let ϕ : 2M → Z be a function from the
family of subsets M in a set M of linear differential equations (6.2) defined by

ϕ (M) = rank ([H[M] L[M]]) − rank (H[M]) (6.25)

This number ϕ (M) will be called the redundancy of M.

If the notation of the zero-padded matrix NH[M] given in Section 3.1.2 is
extended to polynomial matrices, then the redundancy can also be written as

ϕ (M) = rank (NH[M]L) (6.26)

which can be interpreted as the maximum number of linearly independent
consistency relations that can be derived from the set M of differential equations.
For a linear dynamic model M, existence of analytical redundancy according
to Definition 2.6 is equivalent to that ϕ (M) > 0. As for linear static models,
dynamic linear models with redundancy is said to be overdetermined according
to the next definition.

Definition 6.2 (Overdetermined Set). A set M of linear differential equations (6.2)
is an overdetermined set if its redundancy is positive, i.e., ϕ (M) > 0.

Equation (6.26) and Theorem 6.2 imply that a linear dynamic model is an
overdetermined set if and only if it is a rejectable model. Therefore, only
overdetermined models need to be consider when choosing models ω in (6.1).

6.2 PO Sets are Sufficient for Soundness

In Section 3.2, it was shown for a linear static model Mb that it was sufficient
to include any PO set M ⊆ Mb with maximal redundancy in ω to fulfill (6.1).
Surprisingly this is not true in general for the dynamic case. Here, we point out
the differences and also show that if [H(p) L(p)] has full row-rank then results
analogous to the static case follow.

First we extend the definition of PO sets from linear static equations to linear
differential equations.

Definition 6.3 (Proper Overdetermined Set). An overdetermined set M of linear
differential equations (6.2) is a proper overdetermined (PO) set if

ϕ (E) < ϕ (M) (6.27)

for all E ⊂M.
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The proper overdetermined sets in (6.3) are all subsets with two or three
equations. If M is a proper overdetermined model, it follows that O(M) ⊂ O(E)
for all E ⊂M. For the static case the converse implication is also true and shown
in Theorem 3.1, but in the dynamic case it is not true as the next example shows.

Example 6.4
Let L be

L =





s + 2 s + 1 0
s + 3 0 s + 1

0 s + 3 −(s + 2)




(6.28)

and let H be the empty matrix. We will now show that {1, 2, 3} is not a PO set
even if O({1, 2, 3}) ⊂ O(E) for any E ⊂ {1, 2, 3}. The redundancy for (6.28), when
H ∈ R3×0, is

ϕ (M) = rank (L[M]) (6.29)

The rank of L is 2 and the rank of two arbitrary rows L[E] in L is also 2. Hence,
{1, 2, 3} is according to Definition 6.3 not a proper overdetermined set. However,
all proper subsets E of {1, 2, 3} fulfills

O({1, 2, 3}) ⊂ O(E) (6.30)

and it can be explained as follows. Sets with cardinality 1 has redundancy 1
and can obviously not have the same observation set as {1, 2, 3}. Therefore it is
sufficient to study sets with cardinality 2, for example E = {1, 2}. The matrix
L[E] spans the same rational space as L, but L has no roots and L[E] has a root.
This implies that there exists no unimodular matrix U that satisfies

L = U

[

L[E]
0

]

(6.31)

Then Theorem (6.6) implies that the observation sets for E and {1, 2, 3} are
different. The difference between the observation sets can be written as follows.
An arbitrary trajectory of O({1, 2}) can be written as

z + α[0 1 0]Te−t

where z is a trajectory in O({1, 2, 3}) and α is a real constant. For any pair of
rows in L, a similar argumentation holds.

In this example [H(s) L(s)] had not full row-rank. Next it is shown that
if [H(s) L(s)] has full row-rank, then results analogous to results presented in
Section 3.3 for the static case follow.

Theorem 6.3. An overdetermined set M of linear differential equations in the form (6.2)
where [H L] has full row rank has a unique subset M∗ that is a proper overdetermined
set and fulfills

O(M) = O(M∗) (6.32)

Proof. The non-zero columns in NH is uniquely determined and Theorem 4.2
states that these columns correspond to the equations in the set M∗. This means
that NHLz is a kernel representation of both O(M) and O(M∗), which directly
implies (6.32). �
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This result implies that M is a proper overdetermined set if O(M) ⊂ O(E)
for all E ⊂ M and it can be realized as follows. Assume that O(M) ⊂ O(E) for
all E ⊂ M. From this and that there exists a unique proper overdetermined set
M∗ ⊆ M such that O(M∗) = O(M), it follows that M∗ = M, i.e., M is a proper
overdetermined set. In the continuation we will always assume that [H L] has
full row-rank. It is always possible to find an equivalent differential equation
described by [H′ L′] such that [H′ L′] has full row rank (Polderman and Willems,
1998). Therefore, we can without loss of generality assume that [H L] has full
row rank.

6.3 MO Sets are Sufficient for Soundness

A rank-condition given in Corollary 3.2 could be used to determine if a set of
PO setsω satisfies (6.1) for a linear static model. In this section a corresponding
condition for linear dynamic models is developed. As in the static case, see
Corollary 3.3, it is also shown that it is sufficient to include all MO sets in ω to
satisfy (6.1).

6.3.1 Defining and Characterizing MO sets

The definition of MO sets for differential equations is analogous to the definition
for static equations.

Definition 6.4 (Minimal Overdetermined Set). An overdetermined set M of differ-
ential equations (6.2) is a minimal overdetermined (MO) set if no proper subset is
an overdetermined set.

The relation between MO sets and PO sets given in Lemma 3.2 for static
equations holds also for the dynamic case.

Lemma 6.1. A set M of equations (6.2) is an MO set if and only if M is a PO set with
ϕ (M) = 1.

Proof. The proof is analogous to the proof of Lemma 3.2. �

6.3.2 Rank Condition

In the linear static case we have given in Theorem 3.6 and Corollary 3.2 condi-
tions for a set ω of models to fulfill (6.1). These conditions are not sufficient in
the dynamic case and the complication is the irreducibility as the next example
will show.

Example 6.5
The matrix NHL for the four PO sets in (6.3) are

PO set NHL redundancy

{1, 2, 3}
[

1 1 −1
0 s −1

]

ϕ = 2

{1, 2}
[

1 −(s − 1) 0
]

ϕ = 1
{1, 3}

[

s 0 −(s − 1)
]

ϕ = 1
{2, 3}

[

0 s −1
]

ϕ = 1

(6.33)
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The three last PO sets are MO sets, since their redundancies are one. Assume
that we want to investigate if it is sufficient to check the consistency of {1, 2, 3}
by checking the consistency of any pair of MO sets. For a set of linear static
equations with redundancy 2, two MO sets should be enough, according to
Theorem 3.6. The rank-condition (3.50) is satisfied for all pairs of MO sets and
therefore one would perhaps expect that any pair of MO sets can be used to
check the consistency of {1, 2, 3}.

Assume that we want to investigate if the MO sets {1, 2} and {1, 3} can be
used to check the consistency of {1, 2, 3}, i.e., if

O({1, 2, 3}) = O({1, 2}) ∩ O({1, 3}) (6.34)

Let P be

P =

[

1 −(s − 1) 0
s 0 −(s − 1)

]

(6.35)

where the first row in P corresponds to the MO set {1, 2} and the second row in
P to {1, 3}. Theorem 6.1 implies that an equivalent matrix formulation of (6.34)
is that there exists a unimodular matrix U such that

[

1 1 −1
0 s −1

]

= U

[

1 −(s − 1) 0
s 0 −(s − 1)

]

(6.36)

Analogously to the static case it follows that matrix P corresponding to the two
MO sets has rank 2 and spans the same the space as the matrix NHL correspond-
ing to the PO set {1, 2, 3}. Matrices spanning the same space describe equivalent
systems in the static case but in the dynamic case equivalent differential equa-
tions are characterized by the stronger condition given in Theorem 6.1. The
equations (6.36) is false, because NHL is irreducible but P has a root for s = 1.
Hence it follows that

O({1, 2, 3}) ⊂ O({1, 2}) ∩ O({1, 3}) (6.37)

which means that it is not sufficient to check the consistency of {1, 2} and {1, 3}
to determine if {1, 2, 3} is consistent.

The same type of analysis reveals that the only pair of minimal overdeter-
mined models that can be used to check the consistency of {1, 2, 3} is {1, 3} and
{2, 3}. The equation corresponding to (6.36) is then

[

1 1 −1
0 s −1

]

= U

[

1 −(s − 1) 0
0 s −1

]

(6.38)

where U is

U =

[

1 1
0 1

]

(6.39)

In the example, the matrix defined by the MO sets {1, 3} and {2, 3} has no
roots, in contrast to the pair of MO sets studied first. In the next theorem it is
shown that the dynamic result corresponding to Corollary 3.2 is obtained by
the additional requirement that the matrix [NT

H[M1] . . . NT
H[Mn]] has no roots.
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Theorem 6.4. Let M be a PO set of linear differential equations (6.2) and let Mi ⊂M
be PO sets for all i ∈ I = {1, 2, . . . ,n} .Then it holds that

O(M) = ∩i∈IO(Mi) (6.40)

if and only if

rank (
[

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]T
) = rank (NH) (6.41)

and [

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]

(6.42)

has no roots.

The result is discussed, before the proof is presented. The conditions (6.41)
and (6.42) can be used to find out if it is possible to check the consistency of
the models Mi to determine the consistency of M. Note that (6.41) is the same
condition as (3.55) derived in the static case. Hence the only difference from the
static case is to verify (6.42). This can be done efficiently by the function roots
in matlab polynomial toolbox.

Example 6.6
Consider Example 6.5. Let P be the matrix obtained by the three rows NHL
in (6.33) for each MO set. In this example, NHL = NH because L = I. By the
following commands in matlab, it is possible to find out that the first and second
MO set do not correspond to an irreducible matrix but the first and third MO
set do that.

>> P = [1 -(s-1) 0;s 0 -(s-1);0 s -1];

>> root = roots(P([1 2],:))

root =

1.0000

>> root = roots(P([1 3],:))

root =

[]

To prove Theorem 6.4, two lemmas are introduced. In the formulation of
Theorem 6.4, NH is analyzed instead of the kernel representation in the form
NHL. In the next lemma we show that if [H L] has full row rank then it is
equivalent to study NH and NHL, i.e., L can be dropped in the dynamic case as
well.

Lemma 6.2. Let U, H, and L be polynomial matrices such that [H L] has full row
rank. Furthermore, if M is row-set of H and M1, . . . ,Mn are arbitrary subsets of M,
then it follows that

U
[

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]T
=

[

NH

0

]

(6.43)
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if and only if

U
[

(NH[M1]L)T (NH[M2]L)T · · · (NH[Mn]L)T
]T
=

[

NHL
0

]

(6.44)

Proof. By multiplying L from the right in (6.43), we get (6.44).
To prove the if-part, assume that (6.44) is true. The matrices NH and NH[Mi]

belong to the left null space of H for any i and (6.44) can therefore be written as

U
[

(NH[M1][H L])T (NH[M2][H L])T · · · (NH[Mn][H L])T
]T
=

[

NH[H L]
0

]

or equivalently,

(U
[

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]T
−
[

NH

0

]

)
[

H L
]

= 0 (6.45)

Since [H L] has full rank, i.e., the rows are linearly independent, it follows
from (6.45) that (6.43) holds. �

To investigate if MO sets can be used to check the consistency of PO sets, we
have seen that it corresponds to check if there exist a unimodular matrix that
satisfies an equation of the type (6.36). Looking at Theorem 6.4 this condition
is split into one rank condition (6.41) and one root condition (6.42). The next
lemma states the equivalence between the existence of a unimodular matrix
in (6.36) and the rank condition together with the root condition, which both
easily can be checked.

Lemma 6.3. Let A(s) be an irreducible polynomial matrix with full row rank. A
polynomial matrix B(s) fulfills

rank (
[

A(s)
B(s)

]

) = rank (A(s)) (6.46)

and
rank (A(s)) = rank (B(s0)) (6.47)

for all s0 ∈ C if and only if there exists a unimodular matrix U(s) such that

U(s)B(s) =
[

A(s)
0

]

(6.48)

Proof. Since B(s) has no roots, it is possible to find a unimodular matrix U′(s)
such that

U′(s)B(s) =
[

B′(s)
0

]

where B′(s) is irreducible. From (6.46) and (6.47), it follows that A(s) and B′(s)
span the same space. Since both A(s) and B′(s) are irreducible, it follows from
Theorem 6.A.3 that B′(s) =W(s)A(s) and A(s) =W′(s)B(s) where W(s) and W′(s)
are square non-singular matrices. Combining these two expressions, we get

A(s) =W′(s)B(s) =W′(s)W(s)A(s)
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Since A(s) has full row rank, it follows that W′(s)W(s) = I, i.e., W′(s) = W−1(s)
and both W(s) and W′(s) are unimodular matrices. Hence the matrix

U(s) =
[

W′(s) 0
0 I

]

U′(s)

is a unimodular matrix that satisfies (6.48). Contrary if there exist a unimodular
matrix U(s) that satisfies (6.48), then (6.46) and (6.47) follow directly. �

Now, we are ready to prove Theorem 6.4.

Proof. The observation sets in (6.40) can according to Theorem 6.2 be written

O(M) = {z|NHLz = 0} (6.49)

and
∩i∈IO(Mi) = {z|∀i ∈ I; NH[Mi]Lz = 0} (6.50)

These sets are equal if and only if there exists a unimodular matrix U such that

U
[

(NH[M1]L)T (NH[M2]L)T · · · (NH[Mn]L)T
]T
=

[

NHL
0

]

(6.51)

according to Theorem 6.1. The matrix [H L] has full row rank, because M is a
PO set. This implies according to Lemma 6.2 that (6.51) is equivalent to

U
[

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]T
=

[

NH

0

]

(6.52)

Since NH is an irreducible basis, it fulfills the condition on A(s) in Lemma 6.3
and this means that there exist a unimodular matrix U such that (6.52) holds if
and only if

rank (
[

NT
H[M1](s0) NT

H[M2](s0) · · · NT
H[Mn](s0)

]

) = rank (NH(s)) (6.53)

for all s0 ∈ C and

rank (
[

NT
H

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]

) = rank (NH) (6.54)

Since Mi ⊂ M, (6.54) is trivially true. Furthermore (6.53) is equivalent to that
both (6.41) and (6.42) are fulfilled. �

6.3.3 All MO Sets are Sufficient for Soundness

In (6.33) we saw that there existed only one pair of MO sets that could be used
to check the consistency of {1, 2, 3}. In the next example will show that there
are cases where all MO subsets of a PO set has to be checked to determine if
the PO set is consistent. After that, we will prove that it is sufficient to check
all MO sets if [H L] has full row rank.

Example 6.7
Consider a model defined by

H =





−(s + 1)
s + 2
s + 3




(6.55)
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and L = I. The redundancy for this model is 2 and a basis for the null-spaces of
the three MO sets are

P =





NH[{1,2}]
NH[{1,3}]
NH[{2,3}]




=





s + 2 s + 1 0
s + 3 0 s + 1

0 s + 3 −(s + 2)




(6.56)

We see that P[{1, 2}] has a root s = −1, P[{1, 3}] has a root s = −2, and P[{2, 3}] has
a root s = −3. Hence there exists no pair of MO sets that can be used to check
the consistency of the PO set according to Theorem 6.4. However the matrix
P has no roots which implies that the consistency of {1, 2, 3} can be determined
by checking the consistency of all MO sets.

Next, we will state and prove that the consistency of any PO set M can be
determined by checking the consistency of all MO subsets. This result is the
dynamical correspondence to the result in Theorem 3.7 given for static models.

Theorem 6.5. If M is a PO set of linear differential equations, and Ei are all MO sets
such that Ei ⊆M, then it follows that

O(M) = ∩iO(Ei) (6.57)

The proof is postponed to the end of this section. Combining the results
from Theorem 6.3 and Theorem 6.5 we get the dynamic correspondence to
Corollary 3.3.

Corollary 6.1. Given a linear dynamic behavioral model Mb of the type (6.2) where
[H L] has full row-rank, it follows that

O(Mb) = ∩Mi∈MMO
O(Mi) (6.58)

whereMMO are the family of all MO sets M ⊆Mb.

Proof. Since [H L] has full row-rank, it follows that there exists a PO set M∗ ⊆Mb

such that
O(Mb) = O(M∗)

according to Theorem 6.3. Theorem 6.5 then implies that

O(Mb) = O(M∗) = ∩E′∈M′
MO
O(E′)

whereM′
MO

are all MO sets that is a subset of M∗. HenceM′
MO
⊆ MMO and the

corollary follows. �

If [H L] has full row rank andω is the set of all MO sets in a static or dynamic
behavioral model Mb, then the set ω satisfies (6.1).

Example 6.8
To give an example, consider the model in (6.3). The matrix [H L] has full
row-rank and there are three MO sets, {1, 2}, {1, 3}, and {2, 3}. By checking the
consistency of these three sets the consistency of {1, 2, 3} can be determined
according to Theorem 6.5.

Finally, Theorem 6.5 is proved. The proof of this theorem uses the following
lemma.
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Lemma 6.4. If M is a PO set with redundancy ϕ > 1 and Ei ⊂ M where i ∈
{1, 2, . . . ,n} = I are all PO sets with redundancy ϕ − 1, then it holds that

O(M) = ∩i∈IO(Ei) (6.59)

Proof. Let Ni denote an irreducible basis for the left null space of Hi and let N
denote an irreducible basis for the left null space of H. The equality (6.59) holds
if and only if

rank (
[

NT
1 (s) NT

2 (s) · · · NT
n (s)
]

) = rank (N) (6.60)

for all s ∈ C according to Theorem 6.4. All matrices Ni(s) have normal rankϕ −1
and are irreducible, i.e., have full rank for all s ∈ C. If Mi are the equivalence
classes of M defined in Section 4.4.1, then





N1(s)
N2(s)
...

Nn(s)





=





0 N1[:,M2] · · · N1[:,Mn]
N2[:,M1] 0 · · · N2[:,Mn]
...

. . .
...

Nn[:,M1] Nn[:,M2] · · · 0





(6.61)

where no column in Ni[:,M j] is zero for all i , j. Let the matrix in (6.61) be
denoted by Ne. The rank of Ne is limited by

ϕ − 1 = rank (Ni) ≤ rank (Ne) ≤ rank (N) = ϕ

Furthermore, the matrix Ne has not rankϕ −1, because for example not all rows
in N2 are linearly dependent of N1. This follows from the fact that N2[:,M1] , 0
and N1[:,M1] = 0. This implies that rank (Ne) = ϕ .

Now, it remains to prove that Ne(s) has rank ϕ for all s ∈ C. Assume that
there exists an s0 such that rank (Ne(s0)) < ϕ . Since Ni(s) are irreducible matrices
with rank (Ni(s)) = ϕ −1 for all s ∈ C, it follows that rank (Ne(s0)) = ϕ −1. Then
for an arbitrary i ∈ I, Ni(s0) is a basis for the space spanned by Ne(s0). Hence
any row in Ne(s0) can be written as a linear combination of the rows in Ni(s0)
for any i ∈ I. Let m be an arbitrary row of Ne(s0). Then

m = γiNi(s0) (6.62)

where γi is a row vector with scalar coefficients. From (6.61) it follows that m
satisfies

m[M j] = γ jN j[:,M j] = 0 (6.63)

for all j ∈ I. This implies that Ne(s0) = 0, but this contradicts the assumption that
Ni(s) was irreducible. Hence (6.60) must be true and the theorem follows. �

The proof of Theorem 6.5.

Proof. The theorem follows by recursive use of Lemma 6.4 and that all MO set
in M are found by computing all PO sets of decreasing redundancy until the
redundancy is one. �
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6.4 Diagnosing all Behavioral Models

So far in this chapter, we have only been concerned to fulfill (6.1) for one single
behavioral mode. In the next sections, we extend the discussion to the case
when all behavioral modes in B are considered.

6.4.1 Sufficient to Test All MO Sets

In the next theorem it is stated that given a diagnosis model, it is sufficient to
check the consistency of all feasible MO sets to determine the consistency of all
behavioral models.

Theorem 6.6. IfM is a diagnosis model with a set M = ∪b∈BMb of linear dynamic
equations such that Mb is in the form (6.2) and [H L] has full row rank for all b ∈ B,
then the set ω of all feasible MO sets satisfies (6.1) for all b ∈ B.

Proof. Let b be an arbitrary behavioral mode b ∈ B. Any MO sets M ⊆ Mb

is a feasible MO set, i.e., M ∈ ω. Therefore, Corollary 6.1 implies that (6.1) is
satisfied for b. Since b was arbitrarily chosen the theorem follows. �

Before we give an example of a diagnosis model and all its MO sets we will
first describe how all MO sets can be found in the next section.

6.5 Algorithm for Finding All MO Sets in a Linear

Dynamic Model

An algorithm, i.e., Algorithm 7, for finding all feasible MO sets is a diagnosis
model with linear static equations was given in Chapter 4. This algorithm
consists of two main parts. One part, Algorithm 4, finds all MO sets in a linear
static models (4.1) and the other part described in Chapter 5 handles equation
assumptions such that only feasible MO sets are found. The part described in
Chapter 5 is not dependent on the type of equations that the diagnosis model
contains and can therefore be applied to any type of equations, also to linear
differential equations.

Algorithm 4 for finding all MO sets of equations is a linear static mod-
els (4.1) can with small modifications also handle linear dynamic models of the
form (6.2). The only difference is to interpret the matrices H and L as polyno-
mial matrices. Next an example illustrates both how Algorithm 7 is applied to
a dynamic linear model and how the output can be interpreted by considering
the result of Theorem 6.6.

Example 6.9
Consider the electrical circuit in Example 3.17. Assume that resistor R2 is
replaced with an inductor L2 with inductance L2 and that the battery B is
replaced with a power supply P that in the no fault mode generates a known
time-varying voltage V(t). Furthermore, assume that a faulty power supply
implies that V(t) = 0, that is, similar to battery fault in Example 3.17. The
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model equations becomes

I − I1 − I2 = 0 (1)
R1 = NF V − I1 R1 = 0 (2)
L2 = NF V − L2 İ2 = 0 (3)
P = NF V −U = 0 (4)
S1 = NF V − yV = 0 (5)
S2 = NF I − yI = 0 (6)
S3 = NF I2 − yI2 = 0 (7)
P = F V = 0 (8)

(6.64)

Note that the only difference between (3.95) and (6.64) is equation 3. The
model (6.64) can be written using polynomial matrices as

H(p)
︷                    ︸︸                    ︷





0 1 −1 −1
1 0 −R1 0
1 0 0 −p L2
1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0









V
I
I1
I2





+

L
︷                   ︸︸                   ︷





0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
−1 0 0 0









U
yV

yI

yI2





= 0 (6.65)

If Algorithm 7 is applied to this model, the following MO sets and their corre-
sponding matrices NH[M]L are found to be:

MO U yV yI yI2

{1, 2, 3, 4, 6} [ −(R1 + p L2) 0 p R1 L2 0 ]
{1, 2, 3, 5, 6} [ 0 −(R1 + p L2) p R1 L2 0 ]
{1, 2, 3, 6, 7} [ 0 0 R1 −(R1 + p L2) ]
{1, 2, 4, 6, 7} [ −1 0 R1 −R1 ]
{1, 2, 5, 6, 7} [ 0 −1 R1 −R1 ]
{3, 4, 7} [ −1 0 0 p L2 ]
{3, 5, 7} [ 0 −1 0 p L2 ]
{4, 5} [ 1 −1 0 0 ]
{1, 2, 3, 6, 8} [ 0 0 p 0 ]
{1, 2, 6, 7, 8} [ 0 0 1 −1 ]
{3, 7, 8} [ 0 0 0 p ]
{5, 8} [ 0 1 0 0 ]

(6.66)

These are the same MO sets as obtained in Example 3.17. From Theorem 6.6, it
follows these MO sets can be used to construct a sound and complete diagnosis
system.

6.6 Minimizing The Number of Tests

In the linear static case, we have shown that it is not in general necessary to
include all feasible MO sets in ω to satisfy (6.1) for all b ∈ B. This holds true
also for the linear dynamic case. For the static case, Algorithm 2 computes all
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minimal sets ω that solves (3.89). In this section we will modify this algorithm
such that it can be applied to linear dynamic models.

The only part in Algorithm 2 that does not work also in the linear dynamic
case is where Algorithm 1 is used. The objective of this algorithm is given a
PO set Bi and the setMMO of all MO models, compute the setΩ′

i
of all minimal

solutions ω′ ⊆ MMO of (3.90).
These computations are based on the result given in Theorem 3.6, i.e., given

a PO set Bi and a family of subsets ω′ = {M1,M2, . . .Mn} where M j ⊆ Bi for all
M j ∈ ω′, it holds that

O(Bi) =
⋂

M∈ω′
O(M) (6.67)

if and only if
ϕ (ω′) = ϕ (Bi) (6.68)

Let Definition 3.5 of ϕ (ω′) be extended to polynomial matrices. For the
dynamic case, it then holds that (6.67) implies (6.68) but the converse implication
is not true according to Theorem 6.4. To get equivalence with (6.67), the root
criteria (6.42) must in addition to (6.68) be satisfied, i.e., that the matrix

[

NT
H[M1] NT

H[M2] · · · NT
H[Mn]

]

has no roots.
A consequence of this is that it is not sure that a minimal solution of (3.90)

contains exactly ϕ (Bi) MO sets. In the next algorithm also larger sets may be
consider if the minimal sets are not found among those with sizeϕ (Bi). The next
algorithm is used in the dynamic case instead of Algorithm 1 in Algorithm 2 to
obtain all minimal solutions ω′ ⊆ MMO of (3.90).

Algorithm 8. Ω′
i
= MinimalTestSets(Bi,MMO)

Ω′
i
= ∅;

α := {M ∈ MMO|M ⊆ Bi};
size := ϕ (Bi); Ω̂ := {ω′ ⊆ α | |ω′| = size};
while Ω̂ , ∅ do

for each ω′ ∈ Ω̂ do

if ϕ (ω′) = ϕ (Bi) and (6.42) is true do

Insert ω′ in Ω′
i
;

end if

end for

size := size + 1;

Ω̂ := {ω′ ⊆ α | |ω′| = size, ω′ is no superset of any set in Ω′
i
};

end while
return Ω′

i

Given a PO set Bi and the setMMO of all MO models, the output set Ω′
i

in
Algorithm 8 contains all minimal solutions ω′ ⊆ MMO of (3.90).
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Next, we will discuss the result of some examples.

Example 6.10
Continuation of Example 6.9. If all multiple fault modes are considered, there
is only one minimal solution and this solution is equal to the MO sets obtained
in Example 3.17.

6.7 Fault Influence on Residuals

In this section we extend the main results concerning fault influence on residuals
given in Section 3.10 to the linear dynamic case.

Theorem 6.7. Let M be an MO set of linear differential equations

H(p) x + L(p) z = 0 (6.69)

and let model deviation be described by a vector ǫ such that

H(p) x + L(p) z = ǫ (6.70)

For a residual
r = NH(p)L(p)z (6.71)

the residual response of the model deviation is given by

r = NH(p)ǫ (6.72)

where NH[:, {i}] , 0 for all i ∈M.

Proof. Since (6.69) is an MO sets, it has redundancy one. This means that NH(p)
is a vector determined up to a non-zero constant. By multiplying (6.70) with
NH(p) from the left, we get both the residual computational form (6.71) and the
fault response (6.72). The results of Corollary 3.1 can be proven analogously for
the dynamic case with polynomial matrices. Since M is an MO set Corollary 3.1
states that all columns in NH(p) are non-zero, i.e., NH[:, {i}] , 0 for all i ∈M. �

6.7.1 Fault Influence and Null Hypothesis

In the static case, a residual r derived from M is said to be influenced by a
behavior mode b if r , 0 is consistent with the behavioral model Mb. This
definition is applicable also to the dynamic case.

The next theorem gives a sufficient condition on the diagnosis model M
such that the fault influence of any residual based on an MO set M is given by
the equation assumptions, i.e., the fault influence is (assump(M))C.

Theorem 6.8. LetM be a diagnosis model with a set M of equations

H(p)x + L(p)z = 0 (6.73)

Let the model deviation be modeled as

H(p)x + L(p)z = Fǫ (6.74)
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where F is a |M| × |M| matrix defined by

Fi j =





1 if i = j and assump(ei) , B
0 otherwise

(6.75)

If
Im(F) ⊆ Im([H L]) (6.76)

then for any MO set M ⊆M of equations and for any residual

r = NH[M]L(p)z (6.77)

not identically zero, r is influenced by all behavioral modes in (assump(M))C and no
others.

Proof. An MO set M and a residual r are given. We start to prove that r is not
influenced by any behavioral mode b ∈ assump(M). By the definition of the
operator assump, it follows that

sys ∈ assump(M)→ z ∈ O(M) (6.78)

The observation set O(M) can according to (6.15) and (6.77) be expressed as

O(M) = {z|NH[M]L(p)z = 0} = {z|r(z) = 0} (6.79)

The formulas (6.78) and (6.79) imply that

sys ∈ assump(M)→ r = 0 (6.80)

i.e., r is not influenced by any behavioral mode b ∈ assump(M).
Now, we continue to prove that r is influenced by all behavioral modes b <

assump(M). The idea is to take an arbitrary behavioral mode b ∈ (assump(M))C

and show that the equations Mb and r , 0 are consistent. From the definition
of the operator assump, it follows for any set M̄ that

M̄ ⊆Mb → b ∈ assump(M̄)

Then, since b < assump(M), it follows that M *Mb or equivalently that M\Mb ,

∅. Let M \ Mb be denoted by M′. By construction of M′, it follows that
b < assump(e) for any e ∈ M′. This implies that assump(e) , B for all e ∈ M′,
i.e., F[M′,M′] is the identity matrix.

From (6.74), (6.77), and Theorem 6.7, we get the fault influence

r = NH[M]Fǫ (6.81)

The only equations e ∈ M that might be inconsistent in b, i.e., F[{e}]ǫ , 0,
are the equations e ∈ M′. By the construction of F in (6.75) and the fact that
assump(e) , B, it follow that

F[{e}]ǫ = ǫ[{e}] (6.82)

for all e ∈M′. Hence, (6.81) can be rewritten as

r = NH[M]Fǫ = NH[M][:,M′]F[M′,M′]ǫ[M′] = NH[M][:,M′]ǫ[M′] (6.83)
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From (6.76), it follows that

Im(F[M ∪Mb]) ⊆ Im([H[M ∪Mb] L[M ∪Mb]]) (6.84)

i.e., for any ǫ[M ∪Mb] there exist some x and z such that the subset M ∪Mb of
the equations in (6.74) is satisfied. Since M′∩Mb = ∅, we can choose ǫ[Mb] = 0,
i.e.,

NH[Mb]Lz = 0 (6.85)

and ǫ[M′] such that
r = NH[M]Lz , 0 (6.86)

in (6.83). The expressions (6.86) and (6.85), imply that the equations Mb and
r , 0 are consistent, i.e., r is influenced by b. Since b was an arbitrarily chosen
behavioral modes such that b < assump(M), it follows that r is influenced by all
behavioral modes in (assump(M))C and the theorem follows. �

Note that a sufficient condition for (6.76) is that [H L] has full row-rank. This
is often true for models with one maximal feasible model and then Theorem 6.8
is applicable.

Example 6.11
Consider the electrical circuit in Example 6.9. For the model (6.65), it holds that
[H L] has full row rank. This is a sufficient condition for (6.76) and it follows
that for any residual r based on an MO set M, (assump(M))C are the behavioral
modes that r is influenced by.

6.8 Conclusions

In Chapter 2 we showed that one strategy to construct a diagnosis system was to
start with a diagnosis modelM and choose a set ω = {M1, . . . ,Mn} of rejectable
models to test. There, it was also shown that a diagnosis system based on ω
can be sound if and only if the set ω fulfills (6.1) for all behavioral modes b ∈ B.

This chapter has presented theory and algorithms for linear dynamic models
corresponding to the presentation in Chapter 3 for linear static models. A key
result is that if ω is chosen to be the set of all feasible MO sets in the diagnosis
model M, then ω fulfills (6.1) for all behavioral modes b ∈ B according to
Theorem 6.6. All these MO sets can be found by using Algorithm 7. It has
also been shown that it is not in general necessary to include all MO sets in
ω to satisfy (6.1) for all behavioral modes b ∈ B. Theory for selecting MO
sets has been developed and a key result for this is the conditions given in
Theorem 6.4. In addition to the rank-condition valid for the static case, the root
condition (6.42) must also be added. The root condition is then used to modify
Algorithm 2 such that it is applicable also to dynamic models. The output of
the modified algorithm contains all minimal subsets ω that fulfill (6.1) for all
behavioral modes b ∈ B. A minimal cardinality set of MO sets can then be
picked out from the set of all minimal sets and this set corresponds to a sound
and complete diagnosis system with the minimum number tests.

Finally, Theorem 6.8 showed that under a mild rank condition on the diag-
nosis model and given an MO set M, the behavioral modes that influence any
residual derived from M are given by the equation assumptions according to
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(assump(M))C. Hence if the rank condition of the model can be verified, then
any further fault influence analysis of each residual is not needed.



138 Chapter 6. Soundness when Diagnosing Linear Dynamic Systems

Appendix

Polynomial matrices have been shown to be a useful representation of lin-
ear differential equations. In this way the constant matrices representing static
models can be extended to polynomial matrices for differential equations. Prop-
erties of polynomial matrices representing dynamic systems have been exten-
sively studied, e.g. in (Kailath, 1980; Polderman and Willems, 1998). This
Appendix recalls some basic definitions and properties concerning polynomial
matrices. All these can be found in the references mentioned above.

6.A Some Properties of Polynomial Matrices

A polynomial matrix is a matrix where each individual element is a scalar poly-
nomial in s with coefficients in any field, but in this thesis we will always have
real coefficients. An example of a polynomial matrix is

M(s) =





1 −(s − 1) 0
s 0 −(s − 1)
0 s −1




(6.87)

Definition 6.A.5 (Normal Rank). The normal rank of a polynomial matrix P(s) is
the maximal rank that P(s) has for any s ∈ C.

The matrix M[{1, 2}] in (6.87) has normal rank two, i.e., it has full row rank
in the normal rank sense. When there is no risk for confusion we will drop the
word normal in front of rank and use only rank. The matrix M(s) has rank two
and the rows are linearly dependent, because there exists a linear combination
with polynomial coefficients that sums up to zero, i.e.,

[

s −1 s − 1
]

M(s) = 0 (6.88)

We say that the rows of M(s) are linearly dependent.

Definition 6.A.6 (Roots). The roots of a polynomial matrix M(s) ∈ Rm×n[s] are
those points in the complex plane s ∈ C where M(s) loses rank.

If M(s) is square then its roots are the roots of its determinant det M(s),
including multiplicity.

Definition 6.A.7 (Irreducible Polynomial Matrix). A polynomial matrix M(s) ∈
Rm×n[s] is an irreducible polynomial matrix if it has full rank, i.e., max(m,n), for
all (finite) values of s ∈ C.

From Definition 6.A.6 and Definition 6.A.7, it follows that a matrix is irre-
ducible if and only if it has full normal rank and no roots. The matrix

U(s) =





0 1 0
1 −(s − 1) 0
0 −s 1




(6.89)

is irreducible, because it has full row rank for all finite values of s.
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Definition 6.A.8 (Unimodular Polynomial Matrix). A square irreducible polyno-
mial matrix is a unimodular polynomial matrix.

The matrix U(s) in (6.89) is unimodular, because it is square and irreducible.
A matrix is unimodular if and only if its determinant is independent of s. For
example, the determinant of U(s) in (6.89) is det U(s) ≡ −1.

Theorem 6.A.1. The inverse of a polynomial matrix is unimodular if and only if its
inverse is also polynomial.

The inverse of a unimodular matrix is also unimodular. There are three
elementary row operations for polynomial matrices and they are:

1. Interchange two rows.

2. Add to a row, a polynomial multiple of any other row.

3. Scale a row by a non-zero number in the coefficient field.

Each elementary row operation can be written as a left multiplication of a ma-
trix. Three examples of matrices corresponding to each type of the elementary
row operations are





0 1 0
1 0 0
0 0 1









1 0 0
−(s − 1) 1 0

0 0 1









1 0 0
0 3 0
0 0 1




(6.90)

Such matrices are called elementary matrices and these are unimodular matrices.
It holds that a matrix is unimodular if and only if it is a product of elementary
matrices.

6.A.1 Polynomial Basis

Definition 6.A.9 (Polynomial Basis). A polynomial basis for a rational vector
space N is a set of linearly independent vectors in N such that these vectors span the
spaceN .

A polynomial basis can be represented by a matrix M(s) where each row
corresponds to a vector in the basis. The highest degree of all polynomials in
a vector is called the degree of the vector and row degree if the vector is a row in
a polynomial matrix. The degrees of the polynomials in the first row of M(s)
in (6.87) are zero, one, and −∞. This implies that the row degree is one. In fact,
all row degrees of M(s) are one. The order of a matrix is defined as the sum of
the row-degrees of all its rows.

Definition 6.A.10 (Minimal Polynomial Basis). A minimal polynomial basis
forN is a polynomial basis forN with minimum order.

Theorem 6.A.2. A minimal polynomial basis is an irreducible basis.

Theorem 6.A.3. If the rows of N(s) form an irreducible polynomial basis for a vector
space N , then any polynomial row vector n(s) ∈ N can be written n(s) = φ(s)N(s)
where φ(s) is a polynomial row vector.
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7

S  D
G S

Following the strategy described in Section 2.3.3, the construction of a diagnosis
system starts with finding a set ω = {M1, . . . ,Mn} of rejectable models to test. If
the diagnosis system should be sound, the set ωmust fulfill

O(Mb) =
⋂

Mi∈ω:Mi⊆Mb

O(Mi) (7.1)

for all b ∈ B according to Theorem 2.2. In Chapter 6 it was shown in Theorem 6.6
that it is sufficient to include all MO sets in ω to fulfill (7.1) for all b ∈ B.

In this chapter, the model equations are assumed to be non-linear static
or dynamic equations. A result similar to the result in Theorem 6.6 given for
linear models will here be developed for non-linear models. This is a signif-
icantly more difficult problem and it will be assumed that rejectable models
corresponding to MO sets can be computed. Given these models, a key result
is a necessary and sufficient condition for which sets ω of models that must be
used to design a sound and complete diagnosis system. Using this result, it is
possible to calculate a set of minimum number of models that corresponds to a
sound and complete diagnosis system.

First, model definitions are presented in Section 7.1 before two different
solutions to (7.1) are given in Section 7.2 and Section 7.3 respectively. Then, a
necessary and sufficient condition for a setω to fulfill (7.1) is given in Section 7.4.
Finally the conclusions are drawn.

7.1 Model Definitions

Two model properties applicable to non-linear models have been defined earlier
in this thesis, that is feasible model defined in Definition 2.4 and rejectable model
defined in Definition 2.5. To state a result corresponding to Theorem 6.6 for
non-linear models, a non-linear version of the model property MO set needs

141
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to be defined. The last of the following three model definitions will be the
non-linear correspondence to MO set.

Definition 7.1 (Rejectable Model at z0). A set M of equations is a rejectable model
at z0 if

z0 < O(M) (7.2)

Definition 7.2 (Minimal Rejectable Model at z0). A set M of equations is a minimal
rejectable model at z0 if no proper subset of M is a rejectable model at z0.

Definition 7.3 (Minimal Rejectable Model). A set M of equations is a minimal
rejectable model if there exists a z such that M is a minimal rejectable model at z.

The set of all feasible minimal rejectable models inM at z0 is denotedωm(z0)
and the set of all feasible minimal rejectable models inM is denoted ωm.

For linear models, a model is an MO set if and only if it is a minimal rejectable
model. Furthermore, a linear model is a minimal rejectable model if and only
if the model is a minimal rejectable model at some z. However, the latter is not
true for a general non-linear model and this will be shown by the next example.

Example 7.1
Consider the following diagnosis model:

Assumption Equation Expression
Sensor 1

s1 = NF e1 z1 = x1
Comp

e2 x1 = x2
2

Sensor 2
s2 = NF e3 z2 = x2

Sensor 3
s3 = NF e4 z3 = x2
s3 = SG e5 z3 = 0

(7.3)

with the possible component behavioral modes defined by:

Component Possible behavioral modes
Sensor 1 s1 ∈ {NF,UF}
Sensor 2 s2 ∈ {NF,UF}
Sensor 3 s3 ∈ {NF, SG}

(7.4)

Let z0 = (z1, z2, z3) be such that z1 < 0 and z2 = z3 , 0. The (feasible) rejectable
models at z0 are

{e5}, {e1, e2}, {e1, e5}, {e2, e5}, {e3, e5},
{e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}, {e1, e3, e5},
{e2, e3, e5}, {e1, e2, e3, e4}, {e1, e2, e3, e5}

(7.5)

An example of a model that is not a rejectable model at z0 is {e3, e4}. The minimal
rejectable models at z0 are

ωm(z0) = {{e1, e2}, {e5}} (7.6)
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An example of a rejectable model at z0 that is not a minimal rejectable model at
z0 is {e1, e5} because the proper subset {e5} is a rejectable model at z0.

The minimal rejectable models are

ωm = {{e5}, {e3, e4}, {e1, e2}, {e1, e2, e3}, {e1, e2, e4}} (7.7)

Note that both {e1, e2} and {e1, e2, e3} are minimal rejectable models even though
{e1, e2} ⊂ {e1, e2, e3}. To explain this, let z1 = (z1, z2, z3) be such that z1 ≥ 0, z1 , z2

2,
and z2 = z3 , 0. The minimal rejectable models at z1 are

ωm(z1) = {{e1, e2, e3}, {e1, e2, e4}, {e5}} (7.8)

The model {e1, e2, e3} is a minimal rejectable model at z1 and one of its subset
{e1, e2} is a minimal rejectable model at z0. According to Definition 7.3 it holds
that both {e1, e2} and {e1, e2, e3} are minimal rejectable models. Later, we will
show that all minimal rejectable models of are needed to obtain soundness. An
example of a model that is not a minimal rejectable model is {e1, e2, e3, e4}. This
model is for example rejectable at z0 as seen in (7.5) but if it is rejectable at an
arbitrary z, then there is always a proper subset that is rejectable at z too.

In the following sections we will describe different sets ω that satisfies (7.1).

7.2 All Behavioral Models Sufficient for Soundness

In this section, we show the elementary result that a sound diagnosis system
can be based on the set of all behavioral models in a diagnosis model.

Theorem 7.1. If M is a diagnosis model with a set M = ∪b∈BMb of non-linear
equations, then the setω of all system behavioral models Mb satisfies (7.1) for all b ∈ B.

Proof. Follows trivially from Theorem 2.2. �

Next an example shows how the design of a sound and complete diagnosis
system, based on the result in Theorem 7.1, can be done.

Example 7.2
The behavioral models in (7.3) are

b Mb

〈NF,NF,NF〉 {e1, e2, e3, e4}
〈UF,NF,NF〉 {e2, e3, e4}
〈NF,UF,NF〉 {e1, e2, e4}
〈NF,NF,SC〉 {e1, e2, e3, e5}
〈UF,UF,NF〉 {e2, e4}
〈UF,NF,SC〉 {e2, e3, e5}
〈NF,UF,SC〉 {e1, e2, e5}
〈UF,UF,SC〉 {e2, e5}

(7.9)

According to Theorem 7.1, a complete and sound diagnosis system for (7.3)
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can be derived and an example is

∆ Mi H0
i

: sys ∈ Φi = assump(Mi) {z|Ti(z) < Ri} = O(Mi)
δ1 {e1, e2, e3, e4} φ(s1 = NF ∧ s2 = NF ∧ s3 = NF) {z|z1 = z2

2, z2 = z3}
δ2 {e2, e3, e4} φ(s2 = NF ∧ s3 = NF) {z|z2 = z3}
δ3 {e1, e2, e4} φ(s1 = NF ∧ s3 = NF) {z|z1 = z2

3}
δ4 {e1, e2, e3, e5} φ(s1 = NF ∧ s2 = NF ∧ s3 = SC) {z|z1 = z2

2, z3 = 0}
δ5 {e2, e4} φ(s2 = NF) R3

δ6 {e2, e3, e5} φ(s2 = NF ∧ s3 = SC) {z|z3 = 0}
δ7 {e1, e2, e5} φ(s1 = NF ∧ s3 = SC) {z|z1 ≥ 0, z3 = 0}
δ8 {e2, e5} φ(s3 = SG) {z|z3 = 0}

(7.10)

Note that the null hypothesis of test δ5 is not rejectable since O(M5) = R3.
Therefore it is possible to omit δ5. If exactly the diagnosis system (7.10) was
implemented we would for example check if z3 = 0 in 4 out of the 8 tests. This
is computationally not an efficient way to diagnose the system and we will see
in the next section that a better alternative is to use minimal rejectable models.

7.3 All Minimal Rejectable Models are Sufficient for

Soundness

In this section, we show that a sound diagnosis system can be based on the set
of all minimal rejectable models in a diagnosis model. As the name indicates
they are the smallest models that can be used to obtain soundness and testing
small models have advantages according to the discussion in Section 2.6.

Theorem 7.2. Given a model M, let ω be the set of all minimal rejectable models in
M. Then it follows that

O(M) =
⋂

E∈ω
O(E) (7.11)

Proof. The equality (7.11) holds, if both

O(M) ⊆
⋂

E∈ω
O(E) (7.12)

and
⋂

E∈ω
O(E) ⊆ O(M) (7.13)

hold. Inclusion (7.12) is always true because for any set E ∈ ω, E ⊆ M implies
that O(M) ⊆ O(E). Hence it remains to prove that (7.13) holds.

We will prove (7.13) by showing the equivalent statement that for all z such
that

z < O(M) (7.14)

it follows that
z <
⋂

E∈ω
O(E) (7.15)
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Let z0 be an arbitrary z that fulfills (7.14). From the definition of minimal
rejectable model at z0, there exists a minimal rejectable model M1 at z0 such
that

M1 ⊆M (7.16)

and
z0 < O(M1) (7.17)

Note that the existence follows from the fact that if no proper subset to M has
property (7.17), then M is a minimal rejectable model at z0. Since all minimal
rejectable models at z0 are minimal rejectable models, it follows that M1 ∈ ω.
This implies that

⋂

E∈ω
O(E) ⊆ O(M1) (7.18)

From (7.17) and (7.18), we get (7.15) with z = z0. Since z0 was arbitrarily
chosen, it follows that (7.14) implies (7.15) and equivalently that (7.13) holds.
This completes the proof. �

Corollary 7.1. IfM is a diagnosis model with a set M = ∪b∈BMb of equations, then
the setω = ωm of all feasible minimal rejectable models in M satisfies (7.1) for all b ∈ B.

Proof. Let b0 be an arbitrary behavioral mode in B. For this behavioral mode,
the condition (7.1) becomes

O(Mb0 ) =
⋂

Mi∈ω:Mi⊆Mb0

O(Mi) (7.19)

The sets Mi ∈ ω such that Mi ⊆Mb0 specified by this intersection are the minimal
rejectable models included in Mb0 . Then it follows that (7.19) is true according
to Theorem 7.2. Since b0 ∈ B was arbitrarily chosen, the result follows. �

Example 7.3
The minimal rejectable models in (7.3) are

ωm = {{e1, e2}, {e1, e2, e3}, {e1, e2, e4}, {e3, e4}, {e5}} (7.20)

A complete and sound diagnosis system for (7.3) is

∆ H0
i

: Φi = assump(Mi) Mi {z|Ti(z) < Ri} = O(Mi)
δ1 φ(s1 = NF) {e1, e2} {z|z1 ≥ 0}
δ2 φ(s1 = NF ∧ s2 = NF) {e1, e2, e3} {z|z1 = z2

2}
δ3 φ(s1 = NF ∧ s3 = NF) {e1, e2, e4} {z|z1 = z2

3}
δ4 φ(s2 = NF ∧ s3 = NF) {e3, e4} {z|z2 = z3}
δ5 φ(s3 = SG) {e5} {z|z3 = 0}

(7.21)

A comparison between (7.10) and (7.21) reveals that the number of tests
in (7.21) is smaller, the tests in (7.21) contains less number of equations, and the
sets O(Mi) in (7.21) are described with simpler expressions.
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Table 7.1: All minimal setsσb for each system behavioral mode b in the diagnosis
model defined in (7.3).

b Mb Σb

b1 {e1, e2, e3, e4} {{{e1, e2, e3}, {e3, e4}}, {{e1, e2, e4}, {e3, e4}}}
b2 {e2, e3, e4} {{{e3, e4}}}
b3 {e1, e2, e4} {{{e1, e2, e4}}}
b4 {e1, e2, e3, e5} {{{e1, e2, e3}, {e5}}}
b5 {e2, e4} {∅}
b6 {e2, e3, e5} {{{e5}}}
b7 {e1, e2, e5} {{{e1, e2}, {e5}}}
b8 {e2, e5} {{{e5}}}

(7.23)

7.4 A Sufficient and Necessary Condition for Sound-

ness

Finally, a sufficient and necessary condition of the set of models that can be
used to derive a sound diagnosis system is given.

Let the set of all minimal rejectable models in a behavioral model Mb be
denoted by ωb. In general, not all minimal rejectable models in the set Mb is
needed to satisfy (7.1). Therefore, let σb ⊆ ωb be a minimal set such that

O(Mb) =
⋂

M∈σb

O(M) (7.22)

Let the sets of all such sets be denoted by Σb. The sets σb and Σb are exemplified
next.
Example 7.4
Consider the diagnosis model in (7.3). The minimal rejectable models in this
model are given in (7.7). The minimal rejectable models in each system be-
havioral mode are given by ωb = {M ∈ ωm|M ⊆ Mb}. The different sets Σb are
shown in Table 7.1. In this example σb = ωb for all behavioral modes except for
b1, b3, and b4.

Now, we are ready to give a characterization of sets ω that fulfills (7.1) for
all b ∈ B.

Theorem 7.3 (Sound Diagnosis System). Let M be a diagnosis model with a set
M = ∪b∈BMb of equations, and let Σb be defined as above. Then a set ω fulfills (7.1)
for all b ∈ B if and only if ω fulfills

∃σb ∈ Σb∀M′ ∈ σb∃M ∈ ω : M′ ⊆M ⊆Mb (7.24)

for all b ∈ B.

Next Theorem 7.3 is proved and then two examples follow.

Proof. We start to show the if-direction, that is, ifω fulfills (7.24) for a behavioral
mode b0 ∈ B, then ω fulfills also (7.1) for b0. The equality (7.1) holds, if both

O(Mb0 ) ⊆
⋂

Mi∈ω:Mi⊆Mb0

O(Mi) (7.25)
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and ⋂

Mi∈ω:Mi⊆Mb0

O(Mi) ⊆ O(Mb0 ) (7.26)

hold. Inclusion (7.25) is always true because for all Mi ∈ ω such that Mi ⊆ Mb0

it holds that O(Mb0 ) ⊆ O(Mi). Hence it remains to prove that (7.26) holds for b0
if (7.24) is satisfied for b0.

Let z0 be an arbitrary z such that

z0 ∈
⋂

Mi∈ω:Mi⊆Mb0

O(Mi) (7.27)

From this we get that for all Mi ∈ ω such that Mi ⊆Mb0 , it holds that

z0 ∈ O(Mi) (7.28)

From (7.24) it follows that there is a σ̂b0 ∈ Σb0 such that

∀M′ ∈ σ̂b0∃M ∈ ω : M′ ⊆M ⊆Mb0 (7.29)

holds. Expression (7.28), and (7.29) imply that

z0 ∈ O(M′) (7.30)

for all M′ ∈ σ̂b0 or equivalently that

z0 ∈
⋂

M′∈σ̂b0

O(M′) (7.31)

This and (7.22) imply that
z0 ∈ O(Mb0 ) (7.32)

Hence, (7.26) is proved. Since z0 and b0 were arbitrarily chosen the if-direction
follows.

Now, the only-if direction remains to be proven. Assume that (7.1) holds
and let b0 be an arbitrary behavioral mode in B. Let γb0 = {M ∈ ω|M ⊆Mb0} and
enumerate the sets such that γb0 = {M1,M2, . . . ,Mi, . . . ,Mn}. Then it follows
from (7.1) that

O(Mb0 ) =
n⋂

i=1

O(Mi) (7.33)

If γi is the set of all minimal rejectable models in Mi, then Theorem 7.2 implies
that

O(Mi) =
⋂

M′∈γi

O(M′) (7.34)

If (7.33) and (7.34) are combined, we get

O(Mb0 ) =
⋂

M′∈∪n
i=1γi

O(M′) (7.35)

Now, the set σ̂b0 will be chosen as an arbitrary minimal subset of ∪n
i=1γi such

that
O(Mb0 ) =

⋂

M′∈σ̂b0

O(M′) (7.36)
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Since each γi contains only minimal rejectable subsets of Mb0 , it follows that
∪n

i=1γi ⊆ ωb0 . A minimal set that satisfies (7.36) and is a subset of ∪n
i=1γi is

therefore also a minimal set that satisfies (7.36) and is a subset of ωb0 . This
and that σ̂b0 ⊆ ∪n

i=1γi is a minimal set that satisfies (7.36) imply that σ̂b0 ∈ Σb0 .
Furthermore, by construction of σ̂b0 , it follows that for each M′ ∈ σ̂b0 there exists
a set M ∈ ω such that M′ ⊆M. Hence (7.24) holds for b0. Since b0 was arbitrary
chosen, the theorem follows. �

Example 7.5
Continuation of Example 7.4. According to Theorem 7.3 a sound diagnosis
system can be obtained if and only if (7.24) holds for all b ∈ B. Two particular
setsω that we studied earlier wereωB = {Mb|b ∈ B} and ωm. Both these two sets
satisfy (7.24) for all b ∈ B trivially.

Theorem 7.3 can be used to find the minimal number of tests that have to be
used to design a sound and complete diagnosis system. The minimal number
of tests for the diagnosis model described in (7.3) is 5. This can be realized
from the following discussion. Row b3 in Table 7.1 and condition (7.24) imply
that there must be a set M ∈ ω such that {e1, e2, e4} ⊆ M ⊆ {e1, e2, e4}. Row b8
implies that either {e5} or {e2, e5} must be included in ω. Since {e2, e5} < σb for
any b ∈ B, {b5} can be chosen. With ω = {{e5}, {e1, e2, e4}} condition (7.24) of b3,
b5, b6, and b8 are fulfilled. Continuing in this way the minimum number of
5 models must be included in ω to fulfill all conditions on ω. The diagnosis
system using all minimal rejectable model shown in (7.21) is an example of a
sound and complete diagnosis system with only 5 tests.

Note also that Theorem 7.3 can be used to find a minimum number of models
such that there exists a sound diagnosis system for a subset of system behavioral
modes. Exchange B in (7.24) with a set B ⊆ B. If the modified condition (7.24)
is fulfilled then the diagnosis system will be sound and complete with respect
to the behavioral modes in B but only complete with respect of the behavioral
modes not included in B. This can be expressed as

∀z : B ∩ C(z) = B ∩D(z) (7.37)

and
∀z : (B\B) ∩D(z) ⊆ (B\B) ∩ C(z) (7.38)

Next an example will show the special case when B is the set of all single faults
and no-fault. In this example, it is also shown that not only minimal rejectable
models can be used to obtain a minimum number of models sufficient for
soundness, also larger rejectable models must be used.

Example 7.6
Assume that B = {b1, b2, b3, b4}. The minimal number of tests that has to be used
is 3. One example is ω = {{e3, e4}, {e1, e2, e4}, {e1, e2, e3, e5}}. Note that {e1, e2, e3, e5}
is not a minimal rejectable model. If only minimal rejectable models are used, 4
tests are needed. If behavioral models are used, 4 tests are also needed. Assume
that sys = b2, that is the first sensor is broken. It has been observed that z1 < 0.
The only minimal rejectable model for this z is assumed to be {e1, e2}. This
implies that

D(z) = {b2, b5, b6, b8} (7.39)
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and
C(z) = {b2, b5, b6, b7, b8} (7.40)

Expression (7.37) is clearly fulfilled in this example since

B ∩ C(z) = {b2} = B ∩D(z) (7.41)

Furthermore
(B\B) ∩D(z) = {b5, b6, b8} (7.42)

and
(B\B) ∩ C(z) = {b5, b6, b7, b8} (7.43)

imply that (7.38) is fulfilled. Note that b7 is a candidate in (7.43) but not a
diagnosis in (7.42). Hence this diagnosis system is not sound with respect to
all behavioral modes.

If the sets to design test for is restricted to the minimal rejectable models
then an algorithm similar to Algorithm 2 can be defined by using the function
Extend defined in (3.93). Let Σ be an ordered set enumerating all behavioral
modes in B, i.e., Σ = {Σb1 , . . . ,Σbn

}. Then the algorithm can be stated as follows.

Algorithm 9. Ω = AllMinimalTestSets(Σ)
Ω = ∅;
for i = 1 to n do

Ω := Extend(Ω,Σbi
);

end for
return Ω

This algorithm finds all minimal subsets of ωm that are solutions to (7.1) for
all b ∈ B. The output of Algorithm 9 when applied to the model in Example 7.5
is Ω = {ωm}, that is all 5 minimal rejectable models are in this case needed. If
Σ = {Σb|b ∈ B} where B is defined as in Example 7.6, then the output set Ω =
{{{e1, e2, e3}, {e1, e2, e4}, {e3, e4}, {e5}}}. For further discussions about the algorithm
see Section 3.9.1.

7.5 Conclusions

In Chapter 2 we showed that one strategy to construct a diagnosis system was to
start with a diagnosis modelM and choose a set ω = {M1, . . . ,Mn} of rejectable
models to test. There, it was also shown that a diagnosis system based on ω
can be sound and complete if and only if the setω fulfills (7.1) for all behavioral
modes b ∈ B.

This chapter has presented solutions ω of (7.1) given a diagnosis modelM
with general non-linear equations. It is assumed that it is possible to compute
all feasible minimal rejectable models in the non-linear model. A key result
is that if ω is chosen to be the set of all feasible minimal rejectable models in
the diagnosis model M, then ω fulfills (7.1) for all behavioral modes b ∈ B
according to Corollary 7.1. Furthermore a sufficient and necessary condition
on ω to fulfill (7.1) has been given in Theorem 7.3. It has been shown how this
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result can be used to minimize and select models such that a sound diagnosis
system can be obtained. Furthermore, if the solutions toω in (7.1) are restricted
to include only minimal rejectable models, i.e., ifω ⊆ ωm, then all such minimal
solution sets are obtained by Algorithm 9.



8

F RM U
SM

In model based diagnosis, mathematical models are taken as the basis for
diagnosis system construction as described in Chapter 2. If the construction of
the diagnosis system follows the strategy “starting from the model” described
in Section 2.3.3, a major task is to identify rejectable sub-models. In this chapter
we attack the problem of identifying such sub-models in general non-linear
dynamic models.

The problem of identifying rejectable models, i.e., models with analytical
redundancy is closely related to the problem of variable elimination of the un-
knowns. For static polynomial models, variable elimination can be done by us-
ing gröbner basis techniques (Buchberger, 1965; Cox et al., 1997). For differential
algebraic models, differential gröbner basis (Mansfield, 1991) and characteristic
sets (Ritt, 1950) techniques provide automatic elimination methods (Wittkopf,
2004; Mishra, 1993). These algorithms will theoretically terminate with the de-
sired output, but often for individual problems the computations either take an
unreasonable time to complete, or require more memory than is available (Wit-
tkopf and Reid, 2001). Furthermore, not all non-linear models that we consider
here are differential polynomials, e.g. the models can also contain look-up ta-
bles.

To handle non-polynomial differential algebraic models and to cope with the
computational complexity of identifying model redundancy in polynomial dif-
ferential algebraic models, structural analysis will be used to investigate model
redundancy by means efficient graph-based tools (Cassar and Staroswiecki,
1997; Blanke et al., 2003).

The structure of matrices and models are conveniently represented as graphs.
Here a bipartite graph will be used to represent the information about which
variables that are included in each equation and numerical values and analyti-
cal expressions are thereby ignored. The task of finding redundancy in a model
can be reformulated as a graph-theoretical problem that can be solved with
efficient methods developed for bipartite graphs. These methods are free from
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numerical problems and have in general lower computational complexity than
algebraic elimination methods. On the other hand, the structural approach
has its limitations. Ignoring analytical expressions and numerical values, the
structural approach gives answers in the generic case. However, for a partic-
ular model, it is not sure that the structural approach can identify exactly all
rejectable models, if numerical cancellation occurs.

Systematic structural approaches to find rejectable sub-models have been
suggested in e.g. (Blanke et al., 2003), (Cassar and Staroswiecki, 1997), (Pulido
and Alonso, 2002) (Travé-Massuyès et al., 2001), and (Krysander and Nyberg,
2002a). All these approaches have in common that rejectable models are found
among the sub-models with more equations than unknowns. Furthermore, of
all these models, it is the minimal ones that have been used to derive analytical
redundancy relations. In this chapter, we will formally derive these structural
model properties corresponding analytical model properties defined for linear
dynamic models.

We start to recapitulate basic graph-theoretical concepts in Section 8.1.
Graph-theoretical properties are then associated with matrices of linear dy-
namic models in Section 8.2 by following the presentation given by (Murota,
2000). A key property used for defining redundancy in linear models is the rank
of matrices, and a structural property corresponding to the rank of matrices is
also introduced. Based on this structural variant of rank, structural properties
corresponding to redundancy, overdetermined set, PO set, and MO set are then
derived in Section 8.3. In Section 8.4, the structural characterization of MO sets,
i.e., minimal structurally overdetermined (MSO) sets is used to derive the struc-
tural correspondence to Corollary 6.1. That is, in the generic case soundness
can be obtained if all MSO sets are tested.

Then, the structural approach is extended to non-linear dynamic models.
For dynamic models, there are different types of bipartite graph representations
and these are presented and discussed in Section 8.5. Section 8.6 presents some
non-linear dynamic examples which show that models with redundancy can
be identified with the proposed graph theoretical methods. Especially, the
strategy of testing the MSO sets is extended to non-linear dynamic models.
Finally, the conclusions are drawn in Section 8.7.

8.1 Some Basic Graph Theoretical Concepts

Graphs will later be shown to be suitable representations of the structure of
matrices and models. Graph-theoretical results lead to efficient algorithms for
finding rejectable models. In this section some basic graph theoretical concepts,
that can be found in e.g. (Gross and Yellen, 2003; Asratian et al., 1998; Harary,
1969), are recapitulated. Readers familiar with basic graph theory might omit
this section.

A graph G = (V, Ā) consists of two sets. The elements of V are vertices and the
elements of Ā are edges. Vertices are also called nodes and edges are sometimes
called arcs. Each edge has a set of one or two vertices associated to it, which
are called endpoints. An edge is said to join its endpoints. A vertex v is adjacent
to a vertex u if they are joined by an edge. An edge a is adjacent to an edge
b if they have a common endpoint. A graph is bipartite, if its vertices can be
partitioned into two sets in such way, that no edge joins two vertices from the
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same set. A bipartite graph with vertices partitioned into the sets U and V and
edges Ā is written G = (U ∪V, Ā). Let the two vertex sets be explicitly ordered,
lets say U = {u1,u2, . . . ,um} and V = {v1, v2, . . . , vn}. Then a biadjacency matrix
for a bipartite graph G is the m × n matrix A defined by

Ai j =





1 if ui and v j are adjacent
0 otherwise

(8.1)

8.1.1 Matchings

A matching of G = (V, Ā) is a set Γ ⊆ Ā of pairwise non-adjacent edges. The
size (or cardinality) of a matching Γ is the number of edges in Γ, written |Γ|.
A maximum size matching of G is a matching Γ of G having the largest size |Γ|
of any matching of G. Such matching is also called a maximum matching of G
or a maximal matching of G. Given a bipartite graph G = (U ∪ V, Ā), a complete
matching Γ of V into U is a matching such that all vertices in V is an endpoint
of an edge in Γ. A matching of G can equally well be a complete matching of
U into V. A matching of G that is both a complete matching of U into V and
a complete matching of V into U is a perfect matching of G. A path on a graph
G = (V, Ā) is a sequence of vertices v1, v2, . . . , vn such that (vi, vi+1) ∈ Ā for all
i ∈ {1, . . . n − 1}, vi ∈ V for all i ∈ {1, . . . ,n}, and vi , v j if i , j. An alternating
path is a path in which the edges belong alternately to a matching an not to the
matching. A vertex is free, if it is not an endpoint of an edge in a matching.

8.2 Structured Matrices

In this section, we will follow the approach presented in (Murota, 2000) and
show that the rank of matrices can, in the generic case, be formulated as a
maximal matching problem in a bipartite graph. Such matching can be com-
puted efficiently in polynomial time (Asratian et al., 1998; Alt et al., 1991). In
the graph theoretical structural approach to find rejectable models in a linear
dynamic model we extract the information about which matrix entries that are
non-zero, ignoring the numerical values of the entries. Let the degree of a
polynomial b(p) be denoted by deg(b(p)).

Definition 8.1 (Structured Matrix). Given a polynomial matrix A(p) = [Ai j], the
matrix defined by

(Astr)i j =





ai jp
deg(Ai j) if Ai j , 0

0 if Ai j = 0
(8.2)

where ai j are assumed to be algebraically independent parameters (Murota, 2000)
is a structured matrix associated with A(p).1

Note that two different matrices A(p) and A′(p) can be associated with the
same structured matrix Astr(p). This means that a structured matrix is associated

1For our purpose we will not use the degree of the entries, but for consistency with (Murota,
2000) they will be included.
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1 2 3 4 5 6 7 8

V I I1 I2

Figure 8.1: The bipartite graph associated with H(p) in (6.65).

with a family of matrices that have a common structure with respect to the non-
zero entries and the degrees of the entries.

Example 8.1
Associated with for example the matrix H(p) in (6.65), we consider

Hstr(p) =





0 h1 h2 h3
h4 0 h5 0
h6 0 0 p h7
h8 0 0 0
h9 0 0 0
0 h10 0 0
0 0 0 h11
0 0 0 0





(8.3)

where h1, . . . , h11 are considered to be algebraically independent parameters.

8.2.1 Structured Matrix Representations

For a matrix A(p) with a row index set R and column index set C, consider the
bipartite graph G = (R ∪ C, Ā) where the edge set Ā of A(p) is defined by

Ā = {(i, j)|i ∈ R, j ∈ C,Ai j , 0} (8.4)

That is, an edge represents a non-zero entry of A(p). To present the structure
of the matrix A(p) the corresponding bipartite graph can be used, either as the
graph itself or represented with its biadjacency matrix. For easier comprehen-
sion of the biadjacency matrix, the zeros will be left out and the ones are marked
with an X.

Example 8.2
As an example, consider the matrix H(p) in (6.65). The bipartite graph associated
with H(p) is shown in Figure 8.1. The equations are shown as bars and variables
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as circles. The biadjacency matrix of this bipartite graph is

V I I1 I2

1
2
3
4
5
6
7
8





X X X
X X
X X
X
X

X
X





(8.5)

Note that the structured matrix Hstr(p) in (8.3) is associated with the same
bipartite graph as H(p).

8.2.2 Rank of Structured Matrices

We refer to the rank of Astr(p) as the structural rank2 of A(p) and denote it by
s-rank (A(p)), that means

s-rank (A(p)) = rank (Astr(p)) (8.6)

There is no guarantee that the structural rank coincides with the true rank for
a particular and numerically specified matrix A(p). However it is true that
rank (A′(p)) = s-rank (A′(p)) for almost all A′(p) with the same structure, in the
sense that A′str(p) = Astr(p).

The structural rank has the advantage that it can be computed in an effi-
cient combinatorial way, free from numerical difficulties. This is based on the
close relationship, that will be explained next, between sub-determinants of a
structured matrix and matchings in the corresponding bipartite graph.

8.2.3 Graph-theoretical Characterization of Structural Rank

The structural rank can as said before be formulated as a graph theoretical
property. Next we show that the structural rank of a matrix A(p) is equal to the
maximum size of a matching in its associated bipartite graph. To do this let the
size of a maximum matching in a graph G be denoted by ν(G).

Theorem 8.1 ((Murota, 2000)). The structural rank of a polynomial matrix A(p) is
equal to the cardinality of a maximum matching of the associated bipartite graph G,
i.e.,

s-rank (A(p)) = ν(G) (8.7)

Proof. For a square n × n polynomial matrix A(p), its determinant, denoted by
det A(p), is defined by

det A(p) =
∑

π∈Sn

sgn π ·
n∏

i=1

Aiπ(i) (8.8)

2The notions of term rank and generic rank in (Murota, 2000) are both equivalent to structural
rank for the models considered in this thesis.
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where Sn denotes the set of all permutations of order n, and sgn π = ±1 is the
signature of the permutation π. A matrix is nonsingular if it is square and its
determinant is non-zero.

The rank of a matrix is equal to the maximum size of a nonsingular sub-
matrix, i.e.,

rank (A(p)) = max
{

|I|
∣
∣
∣A[I, J] is nonsingular, I ⊆ R, J ⊆ C

}

(8.9)

To determine the structural rank of A(p), (8.6) and (8.9) are combined and
we get

s-rank (A(p)) = rank (Astr(p)) =

max
{

|I|
∣
∣
∣Astr[I, J] is nonsingular, I ⊆ R, J ⊆ C

}

(8.10)

The matrix Astr[I, J] in (8.10) is nonsingular, by definition, if det Astr[I, J] , 0. The
determinant is only defined for matrices where |I| = |J|. Consider an arbitrary
I ⊆ R and J ⊆ C such that |I| = |J| = k. Then the determinant expansion becomes

det Astr[I, J] =
∑

π∈Sk

sgn π ·
k∏

i=1

(Astr)I(i)J(π(i)) =

∑

π∈Sk

sgn π ·
k∏

i=1

aI(i)J(π(i)) p
∑k

i=1 deg(AI(i)J(π(i))) (8.11)

Note that a nonzero term in the expansion corresponds to matchings of size
k. Furthermore, there is no cancellation of among different nonzero terms in
this expansion due to the independence of the nonzero parameters in Astr(p).
These two facts imply that the structured matrix Astr[I, J] is nonsingular, i.e.,
det Astr[I, J] , 0, if and only if there exists a π ∈ Sk such that

k∏

i=1

AI(i)J(π(i)) , 0 (8.12)

That is, there exists a perfect matching of the bipartite graph associated with the
matrix A[I, J] with size k. By applying this arguments to all sub-determinants,
it follows that the structural rank of A(p) equals the maximum number k such
that Ai1 j1 , 0, Ai2 j2 , 0, . . ., Aik jk , 0, where i1, i2, . . ., ik are distinct rows and j1,
j2, . . ., jk are distinct columns. The set of pairs (i1, j1), (i2, j2), . . ., (ik, jk) defines
a maximum size matching of the bipartite graph associated with A(p). This
completes the proof. �

Example 8.3
To give an example of how this theorem can be used to compute the structural
rank, consider the graph in Figure 8.1 and the structured matrix (8.3) associated
with the matrix H(p) given in (6.65). An example of a maximum size matching
Γ in the associated bipartite graph consists of the 4 edges (1, I), (2, I1), (3, I2),
and (4,V). The cardinality of the matching is 4 and the structural redundancy
is then also 4 according to Theorem 8.1. Note that the structural rank is, in this
case, equal to the rank of the H(p).
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The structural rank was equal to the rank in the example. In general, the
following is true. Non-singularity for a matrix A(p) implies non-singularity for
the matrix Astr(p). This fact, (8.9), and (8.10) imply the following theorem.

Theorem 8.2 ((Murota, 2000)). For any matrix A(p) it holds that

rank (A(p)) ≤ s-rank (A(p)) (8.13)

Example 8.4
To give an example of a matrix where equality in (8.13) does not hold, consider

H =





1 1 0
1 1 1
0 0 1
0 0 2





(8.14)

This matrix has structural rank 3, but rank 2. This follows from the fact that
H[{1, 2}, {1, 2}] is rank deficient.

8.2.4 General Matrix Rank Assumption

We are often interested in the case when the structural rank and the rank
coincide and therefore we will sometimes refer to the following assumption.

Assumption 8.1. Given a polynomial matrix A(p) with row set R and column set C,
it is assumed that

s-rank (A[I, J]) = rank (A[I, J])

for all I ⊆ R and for all J ⊆ C.

Under this assumption the matrix A(p) can itself be considered to be a
structured matrix, i.e., A(p) enjoys all properties structured matrices have. An
example of a model that fulfills the assumption is the H(p) matrix in (6.65) of
the electrical circuit. Note that Assumption 8.1 is an assumption of a model of
the system not an assumption on the system itself. For the system in question
there can be many different equivalent models, some of them may satisfy the
assumption and others may not. This is discussed (Murota, 2000) and here it
will be illustrated by the following example.

Example 8.5
Consider the a linear static model where H is the matrix defined in (8.14) and L
is

L =





1 0 0
0 0 0
0 1 0
0 0 1





(8.15)

From Example 8.4, it follows that H does not fulfill Assumption 8.1. By mul-
tiplying row one with -1 and add the result to the second row the equivalent
model





1 1 0
0 0 1
0 0 1
0 0 2





x +





1 0 0
−1 0 0
0 1 0
0 0 1





z = 0 (8.16)
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is obtained. Both these matrices fulfill Assumption 8.1. Hence, for this example
there exist both models that satisfy Assumption 8.1 and others that do not.

8.3 Structural Model Properties

Structural analysis will, as said in the introduction, be used to identify rejectable
models, or for linear models overdetermined sets, for test construction. In
Chapter 6, redundancy, overdetermined set, PO set, and MO set were defined
for linear dynamic models in the form

H(p) x + L(p) z = 0 (8.17)

A key property used for defining redundancy in linear models was the rank
of matrices, and in the previous section structural rank was introduced as
the structural correspondence to the rank of matrices. Based on structural
rank, structural model properties will be defined such that they correspond to
the analytical model properties in the sense that the structural and analytical
notions are equivalent for models with structured matrices. Here we refer
to models with structured matrices, but it is also possible to refer to models
where the matrix [H(p) L(p)] fulfill Assumption 8.1 instead. The definitions
will be formulated in general graph theoretical terms to be applicable also for
non-linear models later in Sections 8.5-8.6.

All model properties defined in Chapter 6 are based on redundancy. There-
fore, we start to define structural redundancy. To get the definition of structural
redundancy applicable to any model with its structure given by a bipartite
graph, some notation is needed.

For a model M with variables X ∪ Z, consider the bipartite graph G(M,X ∪
Z) = (X ∪ Z, Ā), where the edge set Ā is defined by

Ā = {(v, e)|v ∈ X ∪ Z, e ∈M, v contained in e} (8.18)

That is, an edge represents that a variable is included in an equation. Further-
more, given a set M ⊆ M and a variable set V ⊆ X ∪ Z, let G(M,V) denote the
bipartite subgraph of G(M,X ∪ Z) induced by the vertex set M ∪ V.

Now, we are ready to define structural redundancy.

Definition 8.2 (Structural Redundancy). Given a model M, let ϕs : 2M → Z be a
function from the family of subsets M in the set M defined by

ϕs (M) = ν(G(M,X ∪ Z)) − ν(G(M,X)) (8.19)

This number ϕs (M) is the structural redundancy of M.

According to the definition, it is clear that ϕs (M) ≥ 0 for any model M and
that ϕs (∅) = 0. The next theorem motivates the definition.

Theorem 8.3. Given a linear model M with matrices H(p) and L(p), the structural
redundancy is equal to

ϕs (M) = s-rank ([H(p) L(p)]) − s-rank (H(p)) (8.20)
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Proof. The bipartite graph associated with the matrix [H(p) L(p)] is equal to
G(M,X ∪ Z) and the graph associated with H(p) is equal to G(M,X). Then
Theorem 8.1 implies that

s-rank ([H(p) L(p)]) = ν(G(M,X ∪ Z))

and
s-rank (H(p)) = ν(G(M,X))

By substitution of the structural ranks on the right hand side of (8.20), we get
the right hand side of (8.19) which completes the proof. �

Let M be a set of equations with matrices H(p) and L(p). Let [Hstr(p) Lstr(p)]
be a structured matrix associated with [H(p) L(p)]. Then, the model Mstr defined
by the matrices Hstr(p) and Lstr(p) is a structured model associated with M.

Theorem 8.4. If M is a set of equations defined by the matrices H(p) and L(p), then it
follows that

ϕs (M) = ϕ (Mstr) (8.21)

Proof. The theorem follows from Definition 6.1, Definition 8.2, and (8.6). �

Example 8.6
To give an example of structural redundancy, consider the no-fault model
MNF = {1, . . . , 7} of (6.65). The structural redundancy is, according to Theo-
rem 8.3, equal to

ϕs (MNF) = s-rank ([H[MNF] L[MNF]) − s-rank (H[MNF]) = 7 − 4 = 3 (8.22)

For this example, the analytical redundancy is equal to the structural redun-
dancy.

In general, the following inequality between structural and analytical re-
dundancy holds.

Theorem 8.5. If M is a set of equations defined by the matrices H(p) and L(p) where
[H(p) L(p)] has full row-rank, then it follows that

ϕs (M) ≤ ϕ (M) (8.23)

Proof. The structural redundancy ϕs (M) is given by (8.20) and the analytical
redundancy is defined in Definition 6.1. Since [H(p) L(p)] has full row-rank,
Theorem 8.2 implies that

s-rank ([H(p) L(p)]) = rank ([H(p) L(p)]) (8.24)

and
s-rank (H(p)) ≥ rank (H(p)) (8.25)

From (8.24) and (8.25), we get that

ϕs (M) = s-rank ([H(p) L(p)]) − s-rank (H(p)) ≤
rank ([H(p) L(p)]) − rank (H(p)) = ϕ (M)

which completes the proof. �
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This theorem states that under the condition that [H(p) L(p)] has full row-
rank, it follows that if structural redundancy exists then analytical redundancy
exists. Generically, the structural and analytical redundancy are equal, but
inequality in (8.23) can be obtained as the next example will show.

Example 8.7
Consider the matrix H given in (8.14) and a matrix

L =





1 0
0 0
0 0
0 1





(8.26)

For these matrices, it holds that [H L] has full-row rank. The structural rank is

ϕs = s-rank ([H L]) − s-rank (H) = 4 − 3 = 1 (8.27)

and the analytical redundancy is

ϕ = rank ([H L]) − rank (H) = 4 − 2 = 2 (8.28)

i.e., ϕ > ϕs . The reason for the inequality is again that H[{1, 2}, {1, 2}] is rank
deficient.

For real systems, it may happen that some sub-matrix of H(p) is rank de-
ficient. In (Murota, 2000) an electrical circuit is considered and it is shown
that a natural model for this system includes rank deficiencies. Moreover, a
method to rewrite the model into an equivalent model without including rank
deficiencies is described.

Next, we will exemplify that (8.23) can be false if [H(p) L(p)] has not full
row-rank. Note that this situation should be considered as an exception, since
it is possible to find an equivalent model with full row-rank.

Example 8.8
Consider the matrices

H =





1 1
1 1
1 0




L =





1
1
0




(8.29)

In this case s-rank (H) = rank (H) = 2 and

rank ([H L]) = 2 < 3 = s-rank ([H L]) (8.30)

This implies that ϕ = 0 ≤ 1 = ϕs , i.e., (8.23) is not true. The difference
in structural and analytical redundancy is caused by the rank deficiency in
[H[{1, 2}, {2}] L[{1, 2}].

A linear dynamic model M was defined to be overdetermined if and only
if M has redundancy, i.e., ϕ (M) > 0. This is for a structured linear dynamic
model Mstr equivalent to ϕs (Mstr) > 0 according to (8.21). By using structural
redundancy the corresponding structural property can be defined.

Definition 8.3 (Structurally Overdetermined Set). A set M of equations is a
structurally overdetermined (SO) set if its structural redundancy is positive, i.e
ϕs (M) > 0.
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In the same way, structural properties corresponding to PO set and MO set
are defined.

Definition 8.4 (Proper Structurally Overdetermined Set). A structurally overde-
termined set M of equations is a proper structurally overdetermined (PSO) set
if

ϕs (E) < ϕs (M) (8.31)

for all E ⊂M.

Definition 8.5 (Minimal Structurally Overdetermined Set). An SO set of equa-
tions is a minimal structurally overdetermined (MSO) set if no proper subset is
an SO set.

Note that an MSO set is also a PSO set. All analytical model properties are
transfered to structural properties according to the following theorem.

Theorem 8.6. A structured model Mstr is

a) an overdetermined set if and only if Mstr is an SO set.

b) a PO set if and only if Mstr is a PSO set.

c) an MO set if and only if Mstr is an MSO set.

Proof. We will only show (a) and the other two statements can be proved anal-
ogously. The model Mstr is overdetermined if and only if ϕ (Mstr) > 0 according
to Definition 6.2. Since Mstr is a structured matrix, it follows from Theorem 8.4
that ϕs (Mstr) = ϕ (Mstr). This implies that a model Mstr is overdetermined, i.e.,
ϕ (Mstr) > 0, if and only if ϕs (Mstr) > 0. The latter is according to Definition 8.3
equivalent to that Mstr is an SO set. Hence, Mstr is an overdetermined set if and
only if Mstr is a SO set and this completes the proof of (a). �

For a model where the corresponding matrix [H(p) L(p)] fulfills Assump-
tion 8.1, it follows from this theorem that a sub-model is an MO set if and only
if the sub-model is an MSO set. This means that all MO sets can be found by
finding all MSO sets. Even if this exact relationship does not hold in general,
this relationship is a key property that later will be used for finding rejectable
models in non-linear models by using a structural method. Before, we consider
the non-linear case, we show that a sound diagnosis system can be based on
the MSO sets under Assumption 8.1.

8.4 Structural Conditions for Soundness

In Chapter 6, it was concluded that MO sets were suitable to test to obtain
soundness. In this section, we formulate the corresponding structural result.

First of all, it was shown in Corollary 3.3 that it is sufficient to check the
consistency of all MO sets in a model Mb. Given a structured behavioral model
Mb, it follows that the MO sets E ⊆ Mb are the MSO sets E ⊆ Mb. Hence the
following result is immediate.

Theorem 8.7. Given a structured linear dynamic behavioral model Mb, it follows that

O(Mb) = ∩Mi∈MMSO
O(Mi) (8.32)

whereMMSO is the family of all MSO sets M ⊆Mb.
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Proof. This theorem follows directly from Theorem 8.6 (c) and Theorem 6.5. �

To give an example, the no-fault model in (6.65) fulfills Assumption 8.1,
i.e., the model can be considered to be a structured model. The result given
in Theorem 8.7 is therefore applicable. It holds that MMSO = MMO for this
example. Hence, a structural method to compute all MSO sets can be used as
an alternative to use one of the algorithms presented in Chapter 4 for finding
all MO sets.

Next, we will extend the structural approach of identifying models with
redundancy to the non-linear case. Different structural representations of non-
linear dynamic models are presented in the next section. These representations
are then used in Section 8.6 where examples motivate test construction based
on MSO sets also in the non-linear dynamic case.

8.5 Structural Representations of Non-linear Mod-

els

In this and the following sections, the idea of identifying models with redun-
dancy by using structural methods will be extended to the non-linear dynamic
case. In this section, we discuss different structural representations for non-
linear models. Then Section 8.6 shows that concepts and theory will be appli-
cable to any of these representations.

As for the linear case the structure of a non-linear model M is represented
by a bipartite graph G(M,X ∪Z) with variables X ∪Z and equations M as node
sets. Analogously to the linear case, there is an edge connecting an equation
e ∈M and a variable x ∈ X ∪ Z if x is included in e.

Example 8.9
Consider for example the algebraic system

Equation Expression
e1 ex1 = a u
e2 x2

1 = b x2
e3 y = x2

(8.33)

where u and y are known variables, x1 and x2 are unknown variables, and a and
b are known constants. The structure of the model represented as a bipartite
graph is shown in Figure 8.2. Note that the structure of the model does not
contain the known parameters. The structure of the model represented as a
biadjacency matrix is

Equation Unknown Known
x1 x2 u y

e1 X X
e2 X X
e3 X X

(8.34)
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e1 e2 e3

x1 x2 u y

Figure 8.2: Bipartite graph for the model shown in (8.33).

8.5.1 The Structure of Dynamic Models

When considering differential algebraic systems, different alternatives for han-
dling derivatives exist. In this section, three different structural representations
of a differential algebraic system are recalled from previous works. These three
variants will be exemplified by the following differential algebraic system

Equation Expression
e1 ẋ1 = −x2

1 + u
e2 x2 = x2

1
e3 y = x2

(8.35)

where u and y are known, and x1 and x2 are unknown signals.
The first structural representation of (8.35) is the following biadjacency

matrix of the bipartite graph:

Equation Unknown Known
x1 x2 u y

e1 X X
e2 X X
e3 X X

(8.36)

In this representation all unknowns, i.e., x1 and x2, are considered to be signals.
There is an “X” in position (i, j) in the biadjacency matrix if x j or any of its
time-derivatives appear in equation ei. For a linear model with matrices H(p)
and L(p), this representation is equal to the bipartite graph associated with
the matrix [H(p) L(p)]. For a general dynamic model with non-zero structural
redundancy, differential algebraic elimination methods are needed to eliminate
the unknowns. This approach has been used in for example (Frisk, 2001)
and (Frisk et al., 2003).

A second structural representation of (8.35) is

Equation Unknown Known
x1 ẋ1 x2 u y

e1 X X X
e2 X X
e3 X X

(8.37)
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Unknowns and their time-derivatives are, in contrast to previous represen-
tation, considered to be separate independent algebraic variables. Then the
equations will no longer represent the same behavior, because there is no guar-
antee that a signal ẋ is the time derivative of x. However, new equations can be
obtained by differentiation, so called prolongation (Mansfield, 1991), such that
the correct relation between variables and their derivatives are implied with
these extra equations. For system (8.35), new equations obtained by differenti-
ation are for example

ė2 : ẋ2 = 2 x1 ẋ1

ė3 : ẏ = ẋ2

Now, with these extra equations the structural representation can be extended

Equation Unknown Known
x1 ẋ1 x2 ẋ2 u y ẏ

e1 X X X
e2 X X
ė2 X X X
e3 X X
ė3 X X

(8.38)

The prolongated structure is used in (Krysander and Nyberg, 2002a) and
(Krysander and Åslund, 2005). Elimination of the unknowns in models with
non-zero structural redundancy in the prolongated structure can, in contrast to
the first representation, be done with algebraic methods.

In the third and final structural representation, unknowns and their time-
derivatives are, as in the second representation, considered to be separate in-
dependent algebraic variables. Thus the equations are purely algebraic and
differential equations in the form

ẋi =
d

dt
xi

are added to relate the variables to its derivatives. The structural representation
of (8.35) is

Equation Unknown Known
x1 ẋ1 x2

e1 X X
e2 X X
e3 X
d X X

(8.39)

where d is the added differential equation. This representation is used for
diagnosis in (Blanke et al., 2003).

Now, three different structural representations have been recalled and in
Section 8.6 it will be shown that models with redundancy can be found among
the SO sets independent of structural representation.
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8.6 Finding Rejectable Models by Using Structural

Methods

In this section we will exemplify that for any of the structural representation
presented in Section 8.5, the structural model properties defined in Section 8.3
are relevant also for finding redundancy in non-linear dynamic models. The
idea of testing MSO sets can therefore be extended to the non-linear case.

8.6.1 Structural vs Analytical Redundancy

Structural redundancy and analytical redundancy in a non-linear model is
compared in the next example. The structural redundancy is used to define
the notions SO set, PSO set, and MSO set and these notions are therefore also
compared to analytical redundancy.

Example 8.10
Consider the system of equations (8.35) with the structural representation
in (8.36). From Definition 8.2 of structural redundancy, we get

ϕs ({e1, e2, e3}) = 3 − 2 = 1 (8.40)

Since ϕs ({e1, e2, e3}) > 0, it follows that {e1, e2, e3} is an SO set according to
Definition 8.3. In the representation (8.36), different order of derivatives are not
distinguished. Since the structural redundancy is non-zero we could expect
that {e1, e2, e3} contains analytical redundancy. By using a differential algebraic
elimination method, the consistency relation

ẏ2 − 4y(u − y)2 = 0 (8.41)

can be derived. This means that (8.35) contains redundancy as indicated by its
structure.

Now, consider an arbitrary proper subset of {e1, e2, e3}. The structural re-
dundancy is zero and as indicated by the structural redundancy no consistency
relation can be derived from E by differential algebraic elimination tools. How-
ever, from the set {e2, e3} of equations, it is possible to derive that y ≥ 0. This
relation can only be derived with algorithms that handle quantifier elimina-
tion (Jirstrand, 1998, 1997) and real algebra, e.g. the function Reduce in Mathe-
matica.

To exemplify a PSO set, consider the equations in (8.35) and add a forth
equation according to

Equation Expression
e1 ẋ1 = −x2

1 + u
e2 x2 = x2

1
e3 y = x2
e4 z = x2 + x3

3

(8.42)

where z is known variable. If the structural representation of the type (8.36) is
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used, we get
Equation Unknown Known

x1 x2 x3 u y z
e1 X X
e2 X X
e3 X X
e4 X X X

(8.43)

The structural redundancy of {e1, e2, e3} and {e1, e2, e3, e4} is one and for all other
subsets E of {e1, e2, e3, e4} the structural redundancy is ϕs (E) = 0. This means
that {e1, e2, e3} and {e1, e2, e3, e4} are the only SO sets in this model. It is only from
these sets the consistency relation (8.41) can be derived. Definition 8.4 implies
that the only PSO subset in {e1, e2, e3, e4} is the set {e1, e2, e3} and exactly these
equations are needed to derive the consistency relation (8.41).

The set {e1, e2, e3} is the only MSO set according to Definition 8.6. Previously
in Theorem 8.7, we have shown that it is sufficient under some independent as-
sumption to test the consistency of all MSO sets to determine the consistency of
all models. Following the same strategy in the non-linear case this corresponds
to check the consistency of {e1, e2, e3}, that is to check the consistency of (8.41).
From previous discussion, it follows that this is sufficient for determining the
consistency of (8.42).

8.6.2 Test based on MSO Sets

The next example is the water-tank example introduced in Chapter 2 and shows
that the tests can be based on MSO sets also in the non-linear dynamic case to
obtain a good diagnosis system.

Table 8.1: The structure of the equations of the model in Table 2.2.

Equation Unknown Known
q1 w ẇ q2 fc ˙fc fy f

˙fy f u yw y f

e1 X X
e2 X X X
e3 X X
e4 X X X
e5 X
e6 X X
e7 X X
e8 X X X
e9 X

Example 8.11
Consider the water-tank example with the model shown in Table 2.2. Assume
that we want to use differential algebraic elimination to construct consistency
relations for the MSO sets. Then we will use the structural representation of the
type (8.36) shown in Table 8.2. The structure in Table 8.2 contains 12 feasible
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MSO sets and these are shown in Table 2.3. These sets are the minimal feasi-
ble sets from which consistency relations can be derived by using differential
algebraic elimination tools.

Table 8.2: The structure of the equations of the model in Table 2.2.

Equation Unknown Known
q1 w q2 fc fy f u yw y f

e1 X X
e2 X X X
e3 X X
e4 X X X
e5 X
e6 X X
e7 X X
e8 X X X
e9 X

Finally, we will show that the MSO property can be used to identify minimal
rejectable models, independent of structural representation.

Example 8.12
The model (8.35) contains redundancy, because the consistency relation (8.41)
can be derived. Three different structural representations for this model have
been given in (8.36), (8.38), and (8.39). For each of these three structural rep-
resentation the sets {e1, e2, e3}, {e1, e2, ė2, e3, ė3}, and {e1, e2, e3, d} are MSO sets re-
spectively. Hence, if any one of these representations is used, an MSO set
will identify the relevant set of equations corresponding to the consistency
relation (8.41).

In the next chapter, we will develop methods for computing MSO sets.
Since concept of MSO sets can be used in any of the structural representations
presented in Section 8.5, these methods can be applied to any of these structural
representations.

8.6.3 Relations to Other Structural Characterizations

In the literature, different structural approaches for finding rejectable models
have been proposed. The different approaches use both different structural rep-
resentations and also different structural characterizations of rejectable models.
Since MSO sets can be used in any of the these three structural representa-
tions, comparisons to other structural characterizations of rejectable models
are possible.

In (Frisk et al., 2003) and (Krysander and Nyberg, 2002a), MSS sets w.r.t. the
unknowns are used to find rejectable sub-models. These are defined to be the
minimal sets with more equations than unknowns. Later in Theorem 10.3, it
will be proven that a set is an MSO set if and only if the set is an MSS w.r.t. the
unknowns and contains known variables.
Example 8.13
Consider the MSO set in (8.36). For the set {e1, e2, e3}, there are 3 equations and 2
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unknowns. For any proper subset of {e1, e2, e3} there are more or equally many
unknowns compared to the number of equations. Hence the MSO set {e1, e2, e3}
is an MSS set.

In (Blanke et al., 2003), (Izadi-Zamanabadi and Blanke, 2002), and (Travé-
Massuyès et al., 2001) redundancy relations are used. Given a maximal matching,
a free equation vertex is a redundant relation. An MSS set is then given by the
equations reached by an alternating path from the redundant equation.

Example 8.14
Consider again the MSO set {e1, e2, e3} in (8.36). A maximal matching is {(e1, x1),
(e2, x2)}. The only free equation is e3 and this equation is therefore a redundant
relation. An alternating path is e3, x2, e2, x1, and e1. Hence the set of equations
reached by an alternating path is {e1, e2, e3}. One interpretation of the matching
is that e1 will be used to solve for the variable x1 and e2 solves for x2. Then a
computation order is implicitly defined as follows. To be able to compute the
value of x2 from e2, the value of x1 must first be computed. Finally, the value of
x2 is inserted in the redundant equation e3.

In (Pulido and Gonzalez, 2004; Pulido and Alonso, 2002) evaluation chains
and minimal evaluation chains are used. These are equivalent to SO sets and
MSO sets respectively.

In conclusion, the names and the definitions of the structural characteriza-
tions defer but with minor differences all concepts are equivalent.

8.7 Conclusions

Structural analysis enables one to investigate model redundancy by means
efficient graph-based tools. This is useful for identifying models to test. In
Theorem 8.4, it is shown that redundancy of a linear model is equal to the
structural redundancy in the generic case. Structural redundancy is a graph
theoretical property that can be evaluated with efficient methods developed
for bipartite graphs. From the definition of structural redundancy, SO, PSO,
MSO sets are straightforwardly defined as the structural correspondence to
the analytical models properties overdetermined, PO, and MO set respectively.
For non-linear models, there is no easy generalization of these analytical model
properties. However, the structural model properties can be applied also to
non-linear dynamic models, and interpreted in a similar way as for linear
systems. We have given examples where the MSO sets are the minimal models
that consistency relations can be derived from by elimination tools, i.e., the idea
of testing MSO sets can be extended to the non-linear dynamic case.
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A E A  F
MSO 

In the previous chapter it was shown that a structural approach can be used to
identify rejectable sub-models in a large differential-algebraic model, by identi-
fying MSO sets in a structural representation of the model. Several algorithms
for computing all MSO sets have been proposed in (Pulido and Gonzalez, 2004;
Pulido and Alonso, 2002), (Krysander and Nyberg, 2002a), and (Dustegör et al.,
2006; Blanke et al., 2003). However we will show that all these algorithms run
into complexity problems when considering large examples.

In this chapter we present a new algorithm, for computing all MSO sets
in a structural model. The new algorithm is a structural correspondence of
Algorithm 4 for finding all MO sets. This means that if all feasible MSO sets in
a diagnosis model is to be computed, then Algorithm 7 can be used but instead
of calling Algorithm 4, the new structural algorithm is called.

In all three structural representations of differential-algebraic systems de-
scribed in Section 8.5, it has been shown in Section 8.6 that MSO sets should
be found. The new algorithm will therefore be applicable to all three structural
representations.

An introduction to the new algorithm is given in Section 9.1. The intro-
duction includes a brief description of the main idea of the algorithm and
a presentation of some existing graph theoretical tools needed for the con-
struction of the algorithm. Section 9.2 gives a theoretical foundation for the
algorithm. In Section 9.3 a basic algorithm for finding all MSO sets will be
presented and then in Section 9.4 further improvements are described. Then
the computational complexity of the proposed algorithm is discussed in Sec-
tion 9.5. Different algorithms for finding all MSO sets have been presented in
previous literature. These are recalled and the complexity of the previous al-
gorithms will be analyzed in Section 9.6. Finally, in Section 9.7, it is shown that
the computation time for finding all MSO sets in a Scania truck engine model
is significantly decreased by using the new algorithm compared to a previous
algorithm.

169
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9.1 Introduction to the New Algorithm

Similar to the analytical algorithm presented in Chapter 4, the basic idea is
to find MSO sets in a PSO set by computing a sequence of PSO subsets with
decreasing structural redundancy until an MSO set is found.

Example 9.1
For the electrical circuit example presented in Section 2.6, the PO sets shown
in Figure 2.2 are equal to the PSO sets. The MSO set {4, 5} can be obtained
by starting with the PSO set {1, 2, 3, 4, 5, 6, 7} with structural redundancy 3 and
then compute the PSO subset {3, 4, 5, 7}with structural redundancy 2 and finally
compute the MSO set {4, 5}.

This motivates to study the following problem. Given a PSO set M′ how
should we compute a PSO sets E ⊂ M′ with redundancy ϕs (M′) − 1. Such a
computation can be divided into the following two steps:

a) Remove an arbitrary equation e ∈M′ from M′ and let M =M′ \ {e}.

b) Find a PSO set E ⊆ M with maximal structural redundancy among the
subsets E′ ⊆M.

It will be shown in Theorem 9.4 that, given a natural structural assumption
that will be presented in Section 9.1.1, the set M defined in (a) has structural
redundancy

ϕs (M) = ϕs (M′) − 1 (9.1)

Furthermore, it will be shown in Theorem 9.3 that there exists a unique PSO set
E in M with maximum structural redundancy

ϕs (E) = ϕs (M) = ϕs (M′) − 1 (9.2)

Hence, given a PSO set M′ and an equation e ∈ M′, there will be a unique PSO
set E ⊆M′ \ {e}with structural redundancy ϕs (E) = ϕs (M′) − 1.

9.1.1 Structural Assumption

In this section a structural assumption is given that implies uniqueness of a
PSO set with maximum structural redundancy among all subsets of a model
M. In the analytical case, it was necessary to assume that [H L] has full row rank
to prove the uniqueness. In the structural case, a corresponding assumption
is needed, i.e., [H L] has full structural rank. From Theorem 8.1 we get the
corresponding bipartite graph formulation:

Assumption 9.1. Given a set M, the graph G(M,X∪Z) contains a complete matching
of M into X ∪ Z.

In the remaining part of this chapter, we will, if not otherwise mentioned,
always assume that Assumption 9.1 holds. The assumption is easily verified
by computing a maximal matching of G(M,X ∪ Z) and check if

ν(G(M,X ∪ Z)) = |M| (9.3)

holds true.
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A consequence of Assumption 9.1 is that for any set M′ ⊆ M with bipartite
graph G(M′,X ∪ Z), there exists a complete matching of M′ into X ∪ Z, i.e.,

ν(G(M′,X ∪ Z)) = |M′| (9.4)

The structural redundancy is then given by the following theorem.

Theorem 9.1. Given a set Mb that satisfy Assumption 9.1, the structural redundancy
is

ϕs (M) = |M| − ν(G(M,X)) (9.5)

for any M ⊆Mb.

Proof. The structural redundancy of M is defined by (8.19). Assumption 9.1
implies (9.4) and by substitution of ν(G(M,X ∪ Z)) for |M|, we get (9.5). �

Since we in the continuation always assume that Assumption 9.1 holds,
it follows that the structural redundancy is given by (9.5). The structural
redundancy is then only dependent on the graph G(M,X) and this will be used
in the algorithm.

9.1.2 Computing the PSO Set with Maximum Redundancy

Efficient methods for computing the unique PSO sets with maximum structural
redundancy in G(M,X) will be based on the Dulmage-Mendelsohn canonical de-
composition (Murota, 2000; Dulmage and Mendelsohn, 1958). The biadjacency
matrix in Figure 9.1 shows a Dulmage-Mendelsohn canonical decomposition
of a bipartite graph G(M,X). The grey-shaded areas contain ones and zeros,
while the white areas only contain zeros. The thick line represents a maximal
matching in the graph G(M,X) where the rows and columns are rearranged.
The model M is partitioned three parts, M−, M0, and M+ and the unknowns are
partitioned correspondingly. The set M+ is exactly the set of equation vertices
e ∈ M such that for any maximum size matching there exists an alternating
path between at least one free equation vertex and e. The set X+ is the set of
vertices adjacent to at least one vertex in M+. The set X− is exactly the set of
variable vertices x ∈ X such that for any maximum size matching there exists
an alternating path between at least one free variable vertex and x. The set M−

is the set of vertices adjacent to at least one vertex in X−. The remaining sets of
vertices in M and X are M0 and X0 respectively.

For the three blocks in the decomposition, it holds that |M+| > |X+| if M+ , ∅,
|M0| = |X0|, and |M−| < |X−| if M− , ∅. Therefore, these parts are sometimes
called the over-constrained part, the just-constrained part, and the under-constrained
part respectively (Blanke et al., 2003). The part denoted M+ will here be called
the proper structurally overdetermined (PSO) part of M. We will later show that the
PSO part M+ of M is equal to the PSO subset of M with maximum structural re-
dundancy. Then the step (b) in the beginning of Section 9.1 can be reformulated
as

b) Compute the PSO part M+.

The PSO part M+ of M can effectively be computed by directly using the defi-
nition of M+.
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M−

M0

M+

X− X0 X+

Figure 9.1: The Dulmage-Mendelsohn decomposition of a model M.

In the following example, we illustrate a Dulmage-Mendelsohn canonical
decomposition of a bipartite graph and also give some intuition for the different
parts in the decomposition when the graph represents the structure of a model.

Example 9.2
Consider the equations in (8.33) and add a forth and a fifth equation according
to

Equation Expression
e1 ex1 = a u
e2 x2

1 = b x2
e3 y = x2
e4 z = x2 + x2

3
e5 x3 = x4 + x5

(9.6)

where z is known variable. A structural representation of (9.6) is

Equation Unknown Known
x1 x2 x3 x4 x5 u y z

e1 X X
e2 X X
e3 X X
e4 X X X
e5 X X X

(9.7)

By rearranging the rows and columns, a structure corresponding to Figure 9.1
is

Equation Unknown Known
x4 x5 x3 x1 x2 u y z

e5 X X X
e4 X X X
e1 X X
e2 X X
e3 X X

(9.8)

The bold X:s denote a maximum matching in G(M,X). The sets in Figure 9.1 are
for this example M− = {e5}, M0 = {e4}, M+ = {e1, e2, e3}, X− = {x4, x5}, X0 = {x3},
and X+ = {x1, x2}. The only consistency relation that can be derived from (9.6)
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by algebraic elimination and is

(e
√

by − au)(e−
√

by − au) = 0

This consistency relation can be obtained by eliminating the variables X+ =
{x1, x2} in the PSO part M+ = {e1, e2, e3}. The value of variable in X0 can for a
given observation be determined by using the equations M+ ∪M0. Finally, the
variables in X− cannot be uniquely determined for any observation.

In the next section, it will be proven that there exists a unique PSO set with
maximal structural redundancy in a model M with ϕs (M) > 0 and that this
PSO set is equal to the PSO part M+. Furthermore, the theoretical foundation of
this chapter is given. For readers who do not intend to go through all technical
details, the next section can be omitted.

9.2 Theoretical Foundation

Some basic structural properties will be defined in this section and some basic
results that will be used later are given. The following concepts and their
theoretical foundation are given in (Ore, 1956). Remember that ϕs (M) in the
continuation should be interpreted as (9.5), i.e., Assumption 9.1 is assumed to
hold.

9.2.1 Surplus of Equations

Let M be a set of equations, V a set of variables, and G(M,V) a bipartite graph.
If E ⊆ M is a set of equations, and X ⊆ V is a set of variables, then let the
variables X included in some equation in E be denoted by

varX(E) := {x ∈ X|x is adjacent to some e ∈ E} (9.9)

The number of equations more than unknowns in a set M will be called the
surplus of M according to the next definition.

Definition 9.1 (Surplus of a Model). Let ϕ̄s : 2M → Z be a function, from the
family of subsets M in M to the integer numbers, defined by

ϕ̄s (M) = |M| − |varX(M)| (9.10)

This number ϕ̄s (M) will be called the surplus of M.

Note that ϕ̄s (∅) = 0. The surplus function ϕ̄s is a super-modular function
on the family of equation subsets in M since

ϕ̄s (M1 ∪M2) + ϕ̄s (M1 ∩M2) ≥ ϕ̄s (M1) + ϕ̄s (M2) (9.11)

for all M1 ⊆M and M2 ⊆M. A set M is said to be a minimal set of surplus ϕ̄s (M)
if

ϕ̄s (E) < ϕ̄s (M) (9.12)

for all E ⊂M.
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9.2.2 Characterizing Structural Redundancy

Let M be an arbitrary subset of M. Each subset E of M defines a surplus ϕ̄s (E)
and the structural redundancy ϕs (M) of M given by (9.5) is equal to

ϕs (M) = max
E⊆M
ϕ̄s (E) (9.13)

It holds thatϕs (M) ≥ 0. The surplus of M is clearly less or equal to the structural
redundancy of M, i.e.,

ϕs (M) ≥ ϕ̄s (M) (9.14)

and the structural redundancy ϕs is a super-modular function (Ore, 1956), i.e.,
ϕs satisfies an inequality of the type (9.11). A set M is said to be a minimal set of
structural redundancy ϕs (M) if

ϕs (E) < ϕs (M) (9.15)

for all E ⊂ M. For example, an SO set M is defined to be a PSO set if M is a
minimal set of structural redundancy ϕs (M).

9.2.3 Characterizing the PSO Part M+

The PSO part can be characterized according to the following results given
in (Ore, 1956).

Theorem 9.2. Let M be a set of equations. Among all subsets E of M with maximum
surplus, i.e.,

ϕ̄s (E) = ϕs (M) (9.16)

there exists a unique minimal subset. This set is equal to the PSO part M+ of M.

Corollary 9.1. The PSO part M+ of a set M of equations is equal to the minimal set
E ⊆M such that

ϕs (E) = ϕs (M) (9.17)

This means that the PSO part of a set M of equations is equal to the mini-
mal subset of M with maximum structural redundancy. This implies that M+

contains all structural redundancy of M, i.e.,

ϕs (M) = ϕs (M+) (9.18)

9.2.4 Characterizing PSO Sets

The following lemma gives different characterizations of a PSO set.

Lemma 9.1. The following three statements about a set M are equivalent:

(i) The set M is a PSO set.

(ii) The set M =M+ and M , ∅.

(iii) The set M is a minimal set of surplus ϕ̄s (M) > 0.
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Proof. (i)⇒ (ii). Since M is a minimal set of structural redundancy ϕs (M) > 0,
it follows from Corollary 9.1 that M =M+ and M , ∅.

(ii)⇒ (iii). Since M =M+ and M , ∅, it follows from Theorem 9.2 that M is
a minimal set of surplus ϕ̄s (M) > 0.

(iii)⇒ (i). The set M is a minimal set of surplus ϕ̄s (M) > 0, i.e., satisfies (9.12)
for all E ⊂M. Let M1 be an arbitrary proper subset of M. It follows that

ϕs (M1) = max
E⊆M1

ϕ̄s (E) < max
Ē⊆M
ϕ̄s (Ē) = ϕs (M)

according to (9.12). Since M1 is an arbitrary proper subset of M, it follows that
M is a minimal set of structural redundancy ϕs (M) = ϕ̄s (M) > 0, i.e., M is a
PSO set. �

Note that given any set M of equations such that

M+
, ∅ (9.19)

it follows from Lemma 9.1 that M+ is a PSO set.
The next lemma shows that the union of PSO sets is a PSO set.

Lemma 9.2. Given two PSO sets M1 and M2, it follows that M1 ∪M2 is a PSO set
and that

ϕs (M1 ∪M2) ≥ max(ϕs (M1), ϕs (M2)) (9.20)

Equality is obtained if and only if ϕs (M1) ≤ ϕs (M2) and M1 ⊆ M2 or ϕs (M2) ≤
ϕs (M1) and M2 ⊆M1.

Proof. See Theorem 1.2.1 in (Ore, 1956). �

9.2.5 PSO Part and PSO Set

The next theorem gives the needed correspondence between the PSO part of a
model M and the PSO subset of M with maximum structural redundancy.

Theorem 9.3. The maximum structural redundancy among all subsets of a set M is
ϕs (M). If ϕs (M) > 0, then there exists a unique PSO set with structural redundancy
ϕs (M) and this set is equal to M+.

Proof. The structural redundancy can be expressed as (9.13). This shows that
ϕs (M) is the maximum structural redundancy among all subsets of M.

The set M+ satisfies (9.18) and if ϕs (M) > 0, then M+ , ∅. From Lemma 9.1
it follows that M+ is a PSO set. Hence M+ is a PSO set with maximum structural
redundancy.

To prove the uniqueness, consider an arbitrary PSO set M0 with structural
redundancy ϕs (M0) = ϕs (M). This set is according to (9.13), a minimal set of
surplus ϕ̄s (M0) = ϕs (M). From Theorem 9.2, we then get that M0 =M+. Hence
the uniqueness of the PSO set is proved and the theorem follows. �
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9.3 New Algorithm

In this section we will present details of the algorithm introduced in Section 9.1.
This algorithm is based on a top-down approach in the sense that we start
with the entire model an then reduce the size and the structural redundancy
of the model step by step until an MSO model remains. The algorithm is
based on Algorithm 4 for finding all MO sets but instead of using analytical
computations, corresponding structural methods are applied.

The only analytical computation in Algorithm 4 is the computation of the PO
part M∗ of M in the lumping. To obtain a structural algorithm the computation
of the PO part M∗ of M will be replaced by the structural correspondence, i.e.,
to compute the PSO part M+ of M instead. However, to make this chapter
self-contained, the presentation will here be purely structural and similarities
with analytical results are commented on.

The algorithm will be based on the following three theorems.

Theorem 9.4. If M is a PSO set of equations and e ∈M, then

ϕs (M \ {e}) = ϕs (M) − 1 (9.21)

Proof. From the definition of the surplus function ϕ̄s in (9.10), it follows that

ϕ̄s (M \ {e}) ≥ ϕ̄s (M) − 1 (9.22)

From (9.14), we get that

ϕs (M \ {e}) ≥ ϕ̄s (M \ {e}) (9.23)

Since M is a PSO set, it follows according Lemma 9.1 that ϕ̄s (M) = ϕs (M). By
using this and (9.23) in (9.22), it follows that

ϕs (M \ {e}) ≥ ϕs (M) − 1 (9.24)

Since M is a PSO set and therefore also a PSO part according to Lemma 9.1,
Corollary 9.1 states that M is a minimal set of structural redundancy ϕs (M), i.e.,

ϕs (M) > ϕs (M \ {e}) ≥ ϕs (M) − 1 (9.25)

This implies (9.21) which completes the proof. �

This theorem, Corollary 9.1, and (9.19), imply that for any PSO set M′ with
structural redundancy ϕs (M′) > 1 there exists a proper subset E , ∅ which is
a PSO set with structural redundancy ϕs (E) = ϕs (M′) − 1.

Theorem 9.5. The set of equations M is an MSO set if and only if M is a PSO set and
ϕs (M) = 1.

Proof. Assume that M is an MSO set. The set M is therefore an SO set and it
follows that ϕs (M) > 0. The fact that M is an MSO set implies that no proper
subset E of M is an SO set, i.e., ϕs (E) = 0 for any E ⊂M. This means that M is a
minimal set of structural redundancy ϕs (M), i.e., M is a PSO set. Assume that
M has structural redundancy ϕs (M) > 1. Then, it follows from Theorem 9.4
that

ϕs (M \ {e}) = ϕs (M) − 1 ≥ 1 (9.26)
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This implies that M \ {e} is an SO set which contradicts that M is an MSO set.
Hence ϕs (M) = 1. Assume that M is a PSO set and that ϕs (M) = 1. From the
definition of PSO set, it follows that all proper subsets E ⊂ M have ϕs (E) = 0,
i.e., E is not an SO set. Hence M is an MSO set. �

Theorem 9.6. If M is a set of equations, E ⊆M is a PSO set, and e ∈M \ E, then

E ⊆ (M \ {e})+ (9.27)

Proof. Let M\{e} be denoted by M̂. The fact that E ⊆ M̂ implies that E+∪M̂+ ⊆ M̂
and from (9.18) also that

ϕs (M̂+ ∪ E+) ≤ ϕs (M̂) = ϕs (M̂+) (9.28)

Lemma 9.2 implies that

ϕs (M̂+) ≤ max(ϕs (M̂+), ϕs (E+)) ≤ ϕs (M̂+ ∪ E+) (9.29)

The inequalities (9.28) and (9.29) give that

ϕs (M̂+ ∪ E+) = ϕs (M̂+) (9.30)

and ϕs (E+) ≤ ϕs (M̂+). This, and the equality in (9.30) imply that

E+ ⊆ M̂+ (9.31)

according to Lemma 9.2. Since E is a PSO set, it follows from Lemma 9.1 that
E+ = E. This, (9.31), and that M̂ = M \ {e} imply (9.27) and this completes the
proof. �

Theorem 9.4 reveals how the structural redundancy decreases when one
equation is removed. It follows from this theorem that if we start with any PSO
set of equations we can alternately remove equations and computing the PSO
part until the structural redundancy becomes 1. We have then found an MSO-
set, according to Theorem 9.5. Finally, Theorem 9.6 implies that an arbitrary
MSO set can be obtained recursively this way. By using this principle, the
algorithm becomes as follows. The input set M can without loss of generality
be assumed to be a PSO set.

Algorithm 10. FindMSO(M)
if ϕs (M) = 1 then

MMSO := {M};

else

MMSO := ∅;

for each equation e in M do

M′ := (M \ {e})+;

MMSO :=MMSO ∪ FindMSO(M′);

end for

end if
returnMMSO
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From the discussion above, it follows that the sets found inMMSO are MSO
sets and that all MSO sets are found.

Example 9.3
To illustrate the steps in the algorithm, consider the following PSO set consisting
of four equations and two unknown variables:

Equation Unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X

(9.32)

The structural redundancy of this set of equations is 2. When entering the
algorithm, e1 is removed and the set M′ becomes (M\{e1})+ = {e3, e4}. In this
case ϕs (M′) = 1 and the equation set is saved as an MSO inMMSO. Then e2 is
removed and M′ = (M\{e2})+ = {e3, e4}. This means that the same MSO set is
found once again. Next e3 is removed and the MSO set {e1, e2, e4} is found. Fi-
nally e4 is removed and the MSO set {e1, e2, e3} is found. Thus, three MSO sets are
found and the output of Algorithm 10 isMMSO = {{e3, e4}, {e1, e2, e4}, {e1, e2, e3}}.

Since the same MSO set {e3, e4} is found twice, we can suspect that the
algorithm is not optimal in terms of efficiency. The next section will therefore
present improvements in order to increase the efficiency.

9.4 Improvements

A straightforward improvement is of course to prohibit that any of the MSO
sets are found more than once. Another and more sophisticated improvement
is that sets of equations can be lumped together in order to reduce the size and
the complexity of the structure. The proposed reduction preserves structural
redundancy and it is therefore possible to use the reduced structure to find all
MSO sets in the original structure.

9.4.1 Structural Reduction

The reduction is based on a new unique decomposition of the PSO part of a
bipartite graph. An illustration of the decomposition is shown in Figure 9.2 as
a biadjacency matrix. The decomposition can be defined as follows. Let Rs be
a relation on the set M of equations defined by (e′, e) ∈ Rs if

e′ < (M \ {e})+ (9.33)

Note the similarity to (4.18) in the analytical case. Now we show that Rs is an
equivalence relation.

Lemma 9.3. The relation Rs is an equivalence relation on a PSO set M.

Proof. It follows directly from the definition that Rs is reflexive. If (e′, e) ∈ Rs,
then it follows from (9.33) and Theorem 9.6, with E replaced by (M \ {e})+, that
(M \ {e})+ ⊆ (M \ {e′})+. Theorem 9.4 and Theorem 9.6 imply that both sets have
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the same structural redundancy and that (M\{e})+ = (M\{e′})+. Hence (e, e′) ∈ Rs

and Rs is therefore symmetric. Furthermore if (e1, e2) ∈ Rs and (e2, e3) ∈ Rs, then
it holds that (M \ {e1})+ = (M \ {e2})+ = (M \ {e3})+, which implies that Rs is
transitive. The relation Rs is therefore an equivalence relation which completes
the proof. �

The set M can then be partitioned into m disjoint equivalence classes Mi.
For each equation set Mi, the set Xi is defined as the unknowns only included
in Mi and

X0 = X \ (
⋃

i,0

Xi)

The first n equivalence classes in the Figure 9.2 are assumed to be the equiv-
alence classes with cardinality strictly greater than one. The partition has the
following property.

Lemma 9.4. If M is a PSO set, then for all its equivalence classes Mi defined by (9.33),
it holds that

|Mi| = |Xi| + 1 (9.34)

Proof. Let Mi be an arbitrary equivalence class which according to the decom-
position implies that for any e ∈Mi, (M \ {e})+ =M \Mi. Then we form

ϕ̄s (M) − ϕ̄s (M \ {e})+ = (|M| − |X|) − (|M \Mi| − |X \ Xi|)

which can be simplified to

ϕ̄s (M) − ϕ̄s (M \ {e})+ = |Mi| − |Xi|

Since M and (M \ {e})+ are PSO sets, it follows according to Theorem 9.2 that

ϕs (M) − ϕs (M \ {e})+ = |Mi| − |Xi|

Then Theorem 9.4 and (9.18) imply (9.34). �

It follows from Lemma 9.4, that there is one more equation than unknowns,
X0 excluded, in each block 1 ≤ i ≤ m in Figure 9.2. Furthermore for n+1 ≤ i ≤ m
in the figure, Mi has cardinality 1 and Xi = ∅.
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Figure 9.2: A structural decomposition of a PSO set.

By using this partition, all PSO sets can be represented as follows.
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Theorem 9.7. If M and E ⊆ M are two PSO set, then E is a union of equivalence
classes defined by (9.33), i.e.,

E =
⋃

i∈I

Mi

where I ⊆ {1, 2, . . .m}.

Proof. To prove Theorem 9.7, we will use the following equivalent formulation.
For any equivalence class Mi defined by (9.33) such that E ∩Mi , ∅ it follows
that Mi ⊆ E. Assume that this is false, i.e., there exists an equivalence class Mi

such that E∩Mi , ∅ and Mi * E. Then there exists an e ∈Mi \E ⊆M \E. From
Theorem 9.6, it follows that E ⊆ (M \ {e})+. This and the definition of Mi imply
that E ⊆M\Mi, which contradicts the assumption and the theorem follows. �

A new bipartite graph is formed with equivalence classes {Mi} and the
unknowns X0 as node sets. The unknowns connected to Mi are varX0 (Mi).

Example 9.4
The reduction of (9.32) is

equivalence class unknown
Mi x2

{e1, e2} X
{e3} X
{e4} X

and the decomposition is given by M1 = {e1, e2}, M2 = {e3}, M3 = {e4}, X0 = {x2},
X1 = {x1}, and X2 = X3 = ∅.

Note that it is only equivalence classes of cardinality greater than one that
give a reduction. An interpretation of this reduction is that the two first equa-
tions are used to eliminate the unknown variable x1. In the lumped structure,
each equivalence class is considered as one equation and the definitions of PSO
set, MSO set, and structural redundancy are thereby extended to lumped struc-
tures. In the example above we have ϕs ({{e1, e2}, {e3}, {e4}}) = 2. The structural
redundancy for the lumped and the original structure are always the same.

The reduction is justified by the following theorem, which shows that there
is a one-to-one correspondence between the PSO sets in the original and in the
lumped structure. The reduced structure can therefore be used to find all PSO
sets in the original structure.

Theorem 9.8. The set {Mi}i∈I is a PSO set in the lumped structure if and only if∪i∈IMi

is a PSO set in the original structure.

To prove Theorem 9.8, the following lemma will be used.

Lemma 9.5. If M is a PSO set and {Mi}i∈I are the equivalence classes induced by Rs,
then

ϕ̄s (∪i∈I′Mi) = ϕ̄s ({Mi}i∈I′ ) (9.35)

for all I′ ⊆ I.

Proof. By using the notation of the structural decomposition described in Sec-
tion 9.4.1 the surplus of ∪i∈I′Mi can be expressed as

ϕ̄s (∪i∈I′Mi) = | ∪i∈I′ Mi| − | ∪i∈I′ Xi| − |varX0 (∪i∈I′Mi)| (9.36)
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which can be rewritten as

ϕ̄s (∪i∈I′Mi) =
∑

i∈I′

(|Mi| − |Xi|) − |varX0 (∪i∈I′Mi)| (9.37)

Lemma 9.4 states that |Mi| = |Xi| + 1 for all i ∈ I, and consequently that

ϕ̄s (∪i∈I′Mi) = |I′| − |varX0 (∪i∈I′Mi)| (9.38)

which is equal to ϕ̄s ({Mi}i∈I′ ). �

Now, the proof of Theorem 9.8 follows.

Proof. Assume that ∪i∈JMi is a PSO set. From Lemma 9.1, it follows that

ϕ̄s (∪i∈J′Mi) < ϕ̄s (∪i∈JMi) (9.39)

for all J′ ⊂ J. From Lemma 9.5, it then follows that

ϕ̄s ({Mi}i∈J′ ) < ϕ̄s ({Mi}i∈J) (9.40)

for all J′ ⊂ J. Hence {Mi}i∈J is a minimal set of surplus ϕ̄s ({Mi}i∈J), i.e., {Mi}i∈J is
a PSO set according to Lemma 9.1.

Now, we will show the reverse implication. Assume that {Mi}i∈J is a PSO
set. If M′ ⊂ ∪i∈JMi, then

M′ ⊇ (M′)+ = ∪i∈J′Mi (9.41)

for some J′ ⊂ J according to Theorem 9.7. Since {Mi}i∈J is a PSO set, it follows
from Lemma 9.1 and Lemma 9.5 that

ϕ̄s (∪i∈JMi) = ϕ̄s ({Mi}i∈J) > ϕ̄s ({Mi}i∈J′ ) = ϕ̄s (∪i∈J′Mi) (9.42)

From Theorem 9.2 and (9.41), it follows that

ϕ̄s (∪i∈J′Mi) = ϕ̄s (M′)+ ≥ ϕ̄s (M′) (9.43)

The inequalities (9.42) and (9.43) imply that ∪i∈JMi is a minimal set of surplus
ϕ̄s (∪i∈JMi), i.e., ∪i∈JMi is a PSO set according to Lemma 9.1. �

9.4.2 Improved Algorithm

A drawback with Algorithm 10, presented in Section 9.3, is that some of the
MSO sets are found more than once. There are two reasons why this happens
and these can be illustrated using the following example:

Equation Unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X
e5 X

(9.44)

First, the same PSO set {e3, e4, e5} is obtained if either e1 or e2 is removed. Second,
the same MSO set is obtained if the order of equation removal is permuted. For



182 Chapter 9. An Efficient Algorithm for Finding all MSO sets

example, the MSO set {e4, e5} is obtained if first e1 or e2 and then e3 is removed
but also if the order of removal is reversed.

To illustrate how these two problems are handled in the next improved
algorithm, i.e., Algorithm 11, we use the example (9.44).

To avoid the first problem the lumping described in previous section is
used. Initially we start with the set M = {e1, e2, e3, e4, e5} and e1 and e2 are
lumped together and the resulting set is S′ = {{e1, e2}, {e3}, {e4}, {e5}}. Similar to
the basic algorithm we remove one equivalence class at a time from S′ and
make a subroutine call which returns all MSO sets in the input set.

To avoid the problem with permuted removal order an additional input
set E′ is used which contains the equivalence classes that are allowed to be
removed in the recursive calls.

In the example, we start initially with the set E′ = S′, meaning that all
equivalence classes are allowed to be removed. In the first step the equivalence
class {e1, e2} is removed and the subroutine is called with the input sets

S′ \ {{e1, e2}} and E′ = {{e3}, {e4}, {e5}}

To prevent that the order of removal is permuted we remove the equivalence
class {e1, e2} permanently from E′. In the following step the equivalence class
{e3} is removed and the inputs are

S′ \ {{e3}} and E′ = {{e4}, {e5}}

Following the same principles, the final calls are made with the input sets

S′ \ {{e4}} and E′ = {{e5}},
S′ \ {{e5}} and E′ = ∅

To apply these ideas in all steps in the recursive algorithm, the lumping
strategy has to be extended to subsets of previously lumped structures. Equiv-
alence classes are then lumped together into new sets of equations by taking the
union of the sets in the equivalence class. We illustrate this with a new example.
Assume that we start with six equations and that e2 and e3 are lumped together
and the following structure is obtained:

Equation Unknown
x1 x2

{e1} X
{e2, e3} X
{e4} X X
{e5} X
{e6} X

(9.45)

In the first recursive call {e1} is removed and the graph corresponding to the
remaining part has the same structure as in (9.32). Now,

[{e2, e3}]s = [{e4}]s = {{e2, e3}, {e4}}

where [E]s denotes the equivalence class containing E. The sets {e2, e3} and {e4}
are therefore lumped together into the set {e2, e3, e4}.
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Given a model S and corresponding set E, the lumped structure S′ is con-
structed as described above and a problem is then how to form the new set E′
of equivalence classes that are allowed to be removed in the new structure S′.
The following principle will be used. An equivalence class in S′ is allowed to
be removed, i.e., belongs to E′, if and only if it is a union of classes that are all
allowed to be removed in S, i.e., belongs to E. It will be shown that, in this
way, all MSO sets are found once and only once.

It is sufficient to only lump equivalence classes with an non-empty inter-
section with E and this is used in the algorithm. To do this partial lumping
we will use the notation S′ = Lump(E,S) in the algorithm to denote that only
the equivalence class [E]s in S is lumped and that the other equations remain
unchanged. The improved algorithm can now formally be written as follows.

Algorithm 11. MSO(M)
S := {{e}|e ∈M+};
MMSO := FindMSO(S,S);
returnMMSO;

Subroutine: FindMSO(S,E)
if ϕs (S) = 1 then

MMSO := {∪E∈SE};

else

E′ := ∅;S′ := S;

% Lump the structure S′ and create E′

while E , ∅ do

Select an E ∈ E;

S′ := Lump([E]s,S′);
if [E]s ⊆ E then

E′ := E′ ∪ {∪E′∈[E]s
E′};

end if

E := E \ [E]s;

end while

MMSO := ∅;

% Make the recursive calls

while E′ , ∅ do

Select an E ∈ E′;
E′ := E′ \ {E};
MMSO :=MMSO ∪ FindMSO(S′ \ {E},E′);

end while

end if
returnMMSO



184 Chapter 9. An Efficient Algorithm for Finding all MSO sets

The algorithm is justified by the following result.

Theorem 9.9. If Algorithm 11 is applied to a set M, then each MSO set contained in
M is found once and only once.

Proof. First it is shown that each MSO set is found at least once. Let E ⊆ M be
an arbitrary MSO set. A branch, of the recursive tree, that results in this MSO
set can be obtained in the following way: In each recursive step, chose the first
branch where an equivalence class not included in E is removed. It follows
from Theorem 9.6 and Theorem 9.8 that by following this branch, a sequence of
decreasing PSO sets all containing E is obtained. Hence the MSO set E is found
this way.

Finally, it is shown that the same MSO set E can not be found if we deviate
from the branch described above, i.e., that the MSO set E is found only once. In
each recursive step, in all branches that precede this branch, only equivalence
classes contained in E have been removed. Therefore, these branches do not
result in the set E. On the other hand all succeeding branches contain the first
equivalence class Ê not contained in E, i.e., the class removed in the branch that
gives the set E. This follows from the fact that Ê has been removed from E and
is not allowed to be removed. Furthermore in all lumped structures in these
branches, E′ is constructed such that Ê is an equivalence class not contained
in E′. Hence, the branch described above is the only branch that results in the
MSO set E. This completes the proof. �

Note that FindMSO corresponds to FindMO in Algorithm 4. The difference
is that we use the structurally defined equivalence relation Rs instead of the
analytical equivalence relation R used in Algorithm 4. To exemplify the steps
of Algorithm 11, the example in Section 4.6 can be reused. It turns out that
Algorithm 4 and Algorithm 11 will traverse exactly the same sets.

9.5 Computational Complexity

The objective of this section is to investigate the computational complexity of
Algorithm 11. In general the number of MSO sets may grow exponentially
in the number of equations. This gives a lower bound for the computational
complexity in the general case. However, in many applications the order of
structural redundancy is low and it will be shown that in this case better
computational complexity can be achieved. The redundancy is often low due
to the fact that the structural redundancy depends on the number of available
sensors, which are often expensive. One example of this is given in Section 9.7.
In this section the computational complexity of the algorithm will be analyzed
in the case where the structural redundancy is low.

The worst case is when all unknown variables are included in each equation.
Algorithm 11 traverses the PSO sets exactly once in the subset lattice. The
following lemma gives an upper bound for the number of PSO sets.

Lemma 9.6. Given a model with n equations and with structural redundancyϕ , there
are at most

n∑

k=n−ϕ+1

( n
k

)

(9.46)
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PSO subsets.

Proof. In the worst case the PSO sets are all subsets of equations with cardinality
strictly greater than the number of unknowns in the original model, i.e., greater
than n − ϕ . The number of subsets with k equations is in this case

( n
k

)

which gives the result in the lemma. �

The next theorem gives the computational complexity in the case of low
structural redundancy.

Theorem 9.10. For a fixed order of structural redundancy ϕ , Algorithm 11 has order
of nϕ+1.5 time complexity, where n is the number of equations.

Proof. An upper bound for the number of PSO sets is given by Lemma 9.6. For
k ≥ n − ϕ + 1 the terms in (9.46) can be estimated from above as

( n
k

)

=
n!

k!(n − k)!
≤ n!

k!
≤ nϕ−1 (9.47)

and the number of terms is fixed. Hence the sum is less than ϕ nϕ−1. In the
worst case, the number of times the PSO part has to be calculated is given by the
sum (9.46). To compute the PSO part has order of n2.5 time complexity (Murota,
2000). Hence, Algorithm 11 has order of nϕ+1.5 time complexity. �

9.6 Comparison with Previous Algorithms

Different algorithms for finding MSO sets have been presented in previous
literature (Pulido and Gonzalez, 2004; Krysander and Nyberg, 2002a; Blanke
et al., 2003; Ploix et al., 2005; Lorentzen et al., 2003). In these works, there are
basically three different algorithms for finding all MSO sets. These will now be
recalled and the complexity of the previous algorithms will then be analyzed.

9.6.1 Previous Algorithms

The first algorithm for finding all MSO sets was presented in (Pulido and
Alonso, 2002) and further developed in (Pulido and Gonzalez, 2004). Indepen-
dently the same algorithm was presented in (Krysander and Nyberg, 2002a).
The basic principle is to choose one equation as the redundant equation and
then find all possible ways to compute structurally all unknowns in the redun-
dant equations. The redundant equation is first chosen to be the first equation
and then the second and so on until the last equation is the redundant equa-
tion. When all possible ways to compute all unknowns in the first equation
are found, all MSO sets including the first equation have been found. This
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means that the first equation will not be used further in the search for more
MSO models.

Example 9.5
Consider a PSO set of equations with a structure

Equation Unknown
x1 x2 x3

e1 X
e2 X X
e3 X X
e4 X X
e5 X

(9.48)

The redundant equations (RE) and matchings computed by the first algo-
rithm is shown in Table 9.1. First, e1 is chosen to be the redundant equation.
Equation e1 includes the unknown variable x2. The unknown variable x2 can
be eliminated structurally with e2 and this is indicated as the matching (x2, e2)
in the first row (a) of Table 9.1. The only free unknown variable vertex in
G({e1, e2},X) is x1 and this variable can be eliminated structurally by using
equation e4. Therefore, the next assignment is (x1, e4) in row (a). The only free
unknown variable vertex in G({e1, e2, e4},X) is the variable x3 and this variable
can be eliminated structurally by using equation e3 and the assignment (x3, e3)
is made. Now, all unknowns in G({e1, e2, e3, e4},X) are matched and {e1, e2, e3, e4}
is an MSO set. Backtracking is then used and the unknown variable x3 can
also be eliminated structurally with e5 instead of using e3. This is indicated in
the row (b) with (x3, e5). All unknowns are matched in G({e1, e2, e4, e5},X) and
{e1, e2, e4, e5} is an MSO set. Continuing in this way Table 9.1 is obtained. By
construction, this table corresponds to a depth first search tree where each row
in the table corresponds to a leaf node in the search tree.

In the first row, it is seen that the redundant equation e1 and a matching
(x2, e2), (x1, e4), (x3, e3) defines the MSO set {e1, e2, e3, e4}. On row (d), we have
that the redundant equation e1 and the matching (x2, e3), (x3, e5) defines the
MSO set {e1, e3, e5}. Note that this matching is not a complete matching w.r.t.
all unknowns, it is only a complete matching of the unknowns included in
G({e1, e3, e5},X). The same MSO set can be found several times as seen by
comparing row (a) and (c).

The second algorithm for finding all MSO sets was presented in (Blanke
et al., 2003). All maximal matchings are first enumerated. Then for each
maximal matching and for each free equation for this matching, an MSO set is
given by the equations reached by an alternating path from the free equation.
For further details see (Dustegör et al., 2006).

Example 9.6
The matchings and the redundant equations computed by the second algorithm
when applied to (9.48) is shown in Table 9.2. In the second algorithm, a maximal
matching is found before a redundant equation is chosen. Therefore, the order
of the columns Matching and RE in Table 9.2 are reversed. The maximal
matchings are obtained by first assigning the variables nodes x1 then x2 and
finally x3. In Table 9.2, it can be seen that there are 10 different maximal
matchings that are complete matchings of the unknowns into the equations.
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Table 9.1: Matchings, redundant equations, and MSO sets computed by the
first algorithm.

RE Matching MSO Set
a e1 (x2, e2) (x1, e4) (x3, e3) {e1, e2, e3, e4}
b (x3, e5) {e1, e2, e4, e5}
c (x2, e3) (x3, e4) (x1, e2) {e1, e2, e3, e4}
d (x3, e5) {e1, e3, e5}
e e2 (x1, e4) (x2, e3) (x3, e5) {e2, e3, e4, e5}
f e3
g e4
h e5

Furthermore, for each complete matching there are two possible redundant
equations. This means that we find MSO sets 20 times, to find the 4 MSO sets.

The third algorithm for finding all MSO sets is presented in (Ploix et al.,
2005). This method is based on elimination rules. The unknowns are eliminated
in a specified order. Each unknown is eliminated in all possible ways. For each
way, the equations used form an MSO set.

Example 9.7
Consider the structure in (9.48). Assume that the unknowns are eliminated in
accordance to their enumeration. The first variable x1 can only be structurally
eliminated by using e2 and e4. The variables that are included in the resulting
equation, let say e6, is assumed to be all variables included in e2 and e4 except
for the eliminated variable x1. The equations e2 and e4 has been used and are
therefore removed. The resulting structure can then be represented as

Equations Original Equations Unknown
x1 x2 x3

e1 {e1} X
e3 {e3} X X
e5 {e5} X
e6 {e2, e4} X X

(9.49)

Next, the variable x2 is structurally eliminated in all possible ways in (9.49).
The variable x2 is included in three equations, i.e., e1, e3, and e6. The variable x2
can be structurally eliminated by using any of the pairs of these three equation,
i.e., {e1, e3}, {e1, e6}, and {e3, e6}. Then we get

Equations Original Equations Unknown
x1 x2 x3

e5 {e5} X
e7 {e1, e3} X
e8 {e1, e2, e4} X
e9 {e2, e3, e4} X

(9.50)

The variable x1 can be structurally eliminated by using any of the 6 pairs of
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Table 9.2: Matchings, redundant equations, and MSO sets computed by the
second algorithm.

Matching RE MSO Set
1 (x1, e2) (x2, e1) (x3, e3) e4 {e1, e2, e3, e4}
2 e5 {e1, e3, e5}
3 (x3, e4) e3 {e1, e2, e3, e4}
4 e5 {e1, e2, e4, e5}
5 (x3, e5) e3 {e1, e2, e3, e5}
6 e4 {e1, e2, e4, e5}
7 (x2, e3) (x3, e4) e1 {e1, e2, e3, e4}
8 e5 {e2, e3, e4, e5}
9 (x3, e5) e1 {e1, e3, e5}
10 e4 {e2, e3, e4, e5}
11 (x1, e4) (x2, e1) (x3, e3) e2 {e1, e2, e3, e4}
12 e5 {e1, e2, e4, e5}
13 (x3, e5) e2 {e1, e2, e4, e5}
14 e3 {e1, e3, e5}
15 (x2, e2) (x3, e3) e1 {e1, e2, e3, e4}
16 e5 {e2, e3, e4, e5}
17 (x3, e5) e1 {e1, e2, e4, e5}
18 e3 {e2, e3, e4, e5}
19 (x2, e3) (x3, e5) e1 {e1, e3, e5}
20 e2 {e2, e3, e4, e5}

equations and we obtain:

Equations Original Equations Unknown
x1 x2 x3

e10 {e1, e3, e5}
e11 {e1, e2, e4, e5}
e12 {e2, e3, e4, e5}
e13 {e1, e2, e3, e4}
e14 {e1, e2, e3, e4}
e15 {e1, e2, e3, e4}

(9.51)

The two last equations are not stored, since their original equations sets are
equal to the original equation set of e13. Since no unknowns are included in the
equations in (9.51) it follows that the corresponding sets of original equations
are the MSO sets. It can be seen in (9.51) that this algorithm can find the same
MSO set more than once.

Contrary to the new algorithm that uses a top-down approach, all these
three algorithms use a bottom-up approach to find MSO sets. That is, the MSO
sets are found by starting with a set containing one equation and then extend
this set until an MSO set is found.
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9.6.2 Computational Complexity Comparison

The first two algorithms are most similar and these two will next be compared.
An example will illustrate a general way to determine that the computational
complexity of the second algorithm is not better than for the first one. For
further comparisons see (Rattfält, 2004). Therefore, the first algorithm can be
considered when comparing the computational complexity of both the first and
the second algorithm with the new algorithm developed in this thesis.

Example 9.8
As said before, all MSO sets are found with both these algorithms. However
the first algorithm is computationally more efficient and this can be understood
as follows. Consider row (a) in Table 9.1. This MSO set is constructed by the
redundant equation e1 and the matching shown there. The MSO set of row 15
in Table 9.2 is found by the same redundant equation and the same matching.
For any row in Table 9.1, there exist at least one corresponding row in Table 9.2.
All correspondences are:

• (a) to 15;

• (b) to 17;

• (c) to 7;

• (d) to 9 and 19;

• (e) to 20;

• (f) to 3, 5, 14, and 18;

• (g) to 1, 6, and 10; and

• (h) to 2, 4, 8, 12, and 16.

This is an example, but the method can be used for any example. Since each
row in Table 9.1 corresponds to at least one row in Table 9.2 and are obtained
by equivalent operations, it follows that the computational complexity of the
second algorithm cannot be better than the computational complexity of the
first algorithm.

9.6.3 Worst Case Analysis

In this section, the complexity of all the previous algorithms will be analyzed
under the same condition as in the Theorem 9.10, i.e., for a fixed order of struc-
tural redundancy. The worst case, for all algorithms discussed in Section 9.6.1,
is when all unknown variables are included in each equation.

In all the algorithms discussed in Section 9.6.1, a bottom-up approach is
used and all subsets of MSO sets are traversed at least once in the worst case.
For this case, the proper subsets of MSO sets are exactly those sets that are not
PSO sets. The number of PSO sets grows polynomially in the number n of
equations according to Lemma 9.6 and the estimate (9.47). Furthermore, the
number of all subsets is 2n. Hence for a fixed order of structural redundancy,
the number of subsets of MSO sets grows exponentially and the computational
complexity of these algorithms is exponential.
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Figure 9.3: Example of a Scania truck engine.

For the algorithm presented in (Dustegör et al., 2006), it follows from the
discussion in Section 9.6.1 that all maximal matchings have to be found. In the
worst case, the number of maximal matchings is equal to the number of ordered
subsets of equations with size n − ϕ , i.e., there are n!/ϕ ! number of maximal
matchings. Hence, for a fixed order of structural redundancy, the computational
complexity of this algorithm is factorial in the number of equations.

In conclusion, in the case of low structural redundancy, Algorithm 11 has
better computational complexity than the others. However, it should be pointed
out that, in the case of few unknowns, the roles are reversed. For a fixed
number of unknowns, the new algorithm has exponential time complexity
and all previous algorithms has polynomial time complexity. However, this
situation is, as pointed out before, not common in industrial applications.

9.7 Application to a Large Industrial Example

To demonstrate the efficiency of the algorithm, described in the previous sec-
tion, we will here apply it to an detail model of an industrial process. The
process is a Scania truck diesel-engine and a sketch is shown in Figure 9.3. This
engine has two actuators, namely the fuel injection δ and the EGR-valve. It
has eight sensors, namely ambient pressure pamb, ambient temperature Tamb,
air flow Wcmp, inlet pressure pim, inlet temperature Tim, exhaust pressure pem,
engine speed neng, and turbine speed ntrb. Further details of the application is
presented in (Eriksson, 2004).

A simulation model of the engine was provided in Simulink. The model has
4 states and 4 outputs. These 4 outputs are Wcmp, pim, pem, and ntrb. The other
4 sensors are in the Simulink model implemented as inputs. To analyze the
model, it was transferred to a flat list of equations. The number of equations is
126 and the structural redundancy is 4. The fact that the structural redundancy



9.8. Conclusions 191

Table 9.3: A comparison of three MSO algorithms.
Algorithm Execution time
The old MSO algorithm 5900 s
The new basic algorithm 18 s
The new improved algorithm 0.42 s

is 4 is a consequence of that the number of outputs is 4.
For comparison, three algorithms were tested on the set of 126 equations.

The first is the old MSO algorithm presented in (Krysander and Nyberg, 2002a),
where an alternative partial reduction is used. Without any reduction, the old
MSO algorithm is practically intractable for this example. The second is the
new basic algorithm presented in Section 9.3 with the structural reduction in
Section 9.4.1 applied initially, reducing the number of equations to 28. The third
is the new improved algorithm presented in Section 9.4.

All algorithms were implemented in Matlab and executed on a PC with
a 1 GHz processor. The execution times were measured in seconds and are
presented in Table 9.3. There were 1419 MSO sets and in the table we can
see that the new MSO algorithm is more than 14000 times faster than the old
algorithm.

9.8 Conclusions

A new algorithm for finding all MSO sets of equations is developed. The pro-
posed algorithm can use any structural representation presented in Section 8.5
for finding models with redundancy. There are three main ideas that are used
in the new algorithm. First, it is based on a top-down approach as described in
Section 9.3. Second, a structural reduction is used where subsets of equations
are lumped together in order to reduce the size of the structural model. Third
and last, it is prohibited that any MSO set is found more than once. For a
fixed order of structural redundancy, the computational complexity of the new
algorithm is polynomial in the number of equations, in contrast to previous
algorithms where the complexity is at least exponential. The efficiency of the
algorithm was demonstrated by applying the new and a previous algorithm to
a model of a Scania truck engine.
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S A MSO S 
D A E

One approach to design diagnosis systems is to use tests based on minimal
rejectable models according to Chapter 2. When considering general non-
linear dynamic models, it has been shown that structural methods can be
used to identify MSO models with analytical redundancy. The most compact
structural representation of dynamic models presented in Section 8.5 is not to
distinguish different order of time-derivatives of the same variable as in (8.36).
In this chapter we consider, given this type of structural representation, an
MSO set of differential-algebraic equations. By differentiating equations, a
new set of equations can be formed, such that the new set is an MSO set of
algebraic equations with a structure where different order of derivatives are
considered to be separate independent variables. This type of structure is
a richer structure than the original structure and provides more information
about dynamic models. An MSO set obtained in this way by differentiation
of equations in an MSO set in the original representation will be called an
differentiated MSO set.

There are two main reasons for computing differentiated MSO sets. First, a
differential-algebraic model can be reduced to an algebraic model, and then also
algebraic tools for test construction can be used. Second, high order derivatives
of noisy signals are difficult to estimate accurately and look-up tables might
be difficult to differentiate and these facts might imply that the consistency
relation cannot be used in practice. Deriving consistency relations can be time-
consuming or sometimes even not possible. Differentiated MSO sets can be
used for predicting the highest order of derivatives in a consistency relation
derived from the original MSO set. These prediction can then be used to select
which MSO sets to derive consistency relations and test quantities from.

In this chapter, the existence of a differentiated MSO set is shown. It is
desirable to differentiate each equation as few times as possible. We show that
there exists a unique differentiated MSO set with the minimum highest order of
derivatives for all equations. Since all highest order of derivatives of equations
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are minimized at the same time, we will call this set the differentiated MSO set of
minimum order.

The outline of this chapter is as follows. First, Section 10.1 exemplifies
a differentiated MSO set of minimum order. In Section 10.2, the reasons for
computing differentiated MSO sets of minimum orders are further motivated.
The structure of a differentiated MSO set of minimum order can be computed by
utilizing only graph theoretical methods. A key concept in the graph theoretical
approach is structural differentiation which is introduced in Section 10.3. This is
then used to define an algorithm for computing the differentiated MSO set of
minimum order in Section 10.4. Theory is then given in the remaining part of the
chapter. Section 10.5 introduces basic definitions and notation. In Section 10.6,
the existence of a differentiated MSO set is shown. In Section 10.7, the existence
and the uniqueness of the differentiated MSO set of minimum order is proven.
Finally, the conclusions are drawn in Section 10.8.

10.1 Differentiated MSO Set

First, we recall the two structural representations (8.36) and (8.38) and show an
example of a differentiated MSO set. The following example will later also be
used to define notation that will be needed.
Example 10.1
The differential-algebraic system

Equation Expression
e1 λ x + L m x(2) = 0
e2 λ y + L m y(2) + L m g = 0
e3 x2 + y2 − L2 = 0
e4 x y(1) − y x(1) − L2 z = 0

(10.1)

models the motion of a pendulum and an angular velocity measurement z.
Here x, y, and λ are the unknown variables, L is the length, m is the mass, and g
is the gravitational constant. The set of equations {e1, e2, e3, e4}will be denoted E
and the set of unknowns {x, y, λ} by X. The graph G(E,X), for the system (10.1),
represented as a biadjacency matrix is

Equation Unknown X Known
E x y λ z
e1 X X
e2 X X
e3 X X
e4 X X X

(10.2)

By considering variables and their derivatives as separate independent vari-
ables, the biadjacency matrix of the bipartite graph for system (10.1) is

Equation Unknown Known
x x(1) x(2) y y(1) y(2) λ z

e1 X X X
e2 X X X
e3 X X
e4 X X X X X

(10.3)
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Table 10.1: The differentiated MSO set of minimum order for the MSO set (10.1).

Equation Unknown Xd Known
Xl

d
Xm

d
Ed x x(1) x(2) y y(1) y(2) λ x(3) y(3) λ(1) z z(1) z(2)

El
d

e1 X X X
e2 X X X
e3 X X

e(1)
3 X X X X

e(2)
3 X X X X X X
e4 X X X X X

e(1)
4 X X X X X X X

Em
d

e(1)
1 X X X X X

e(1)
2 X X X X X

e(3)
3 X X X X X X X X

e(2)
4 X X X X X X X X X

This algebraic system is not SO, but by differentiating equations with respect
to t, new equations are obtained, for example

e(1)
3 : 2xx(1) + 2yy(1) = 0

The structure of the differentiated MSO set of minimum order is shown in
Table 10.1. The three equation sets and the three variable sets in this table is not
important now but will be explained later in Section 10.5.

In this particular case, the equations in the differentiated MSO set are all
polynomials in the unknowns and the unknowns can therefore be eliminated
using for example Gröbner basis (Cox et al., 1997). A consistency relation
derived in this way is

m z2(g2 − L2 (z(1))2) − L2 m (z(2))2 = 0

It should be pointed out that the structural analysis outlined above is not
restricted to polynomials and can be applied to general non-linear problems.

This example illustrates that by differentiating equations in an MSO set of
differential-algebraic equation, a differentiated MSO set containing only alge-
braic equations can be obtained.

10.2 Use of Differentiated MSO Sets

There are several reasons for computing a differentiated MSO set and these
reasons are discussed next.

10.2.1 Differentiated MSO Set for Test Construction

If a dynamic model contains non-polynomial differential-equations, polyno-
mial differential-algebraic elimination methods cannot be used to obtain a con-
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sistency relation. However, by computing a differentiated MSO set, the task
to derive a consistency relation is thereby reduced to an algebraic problem as
seen in Example 10.1. Both Mathematica and Maple provide implementations
for algebraic elimination handling also some non-polynomial equations.

Example 10.2
Consider the following MSO set of equations

Equation Expression
e1 ẋ1 = x2

2 + u
e2 x2 = ex1

e3 y = x1

(10.4)

where u and y are known, and x1 and x2 are unknown variables. Note that
this model is non-polynomial since the second equations includes an exponen-
tial term. Neither of the two differential-algebraic implementations in Maple,
i.e., rifsimp in the package DEtools and Rosenfeld_Groebner in the package
diffalg, is able to eliminate x1 and x2 in this example.

The differentiated MSO set of minimum order is

Equation Expression
e1 ẋ1 = x2

2 + u
e2 x2 = ex1

e3 y = x1
ė3 ẏ = ẋ1

(10.5)

The unknowns x1, ẋ1, and x2 can be eliminated algebraically in the equation
system (10.5) by using for example the command eliminate in Maple. The
consistency relation

ẏ − e2 y − u = 0 (10.6)

is obtained. Hence by computing the differentiated MSO set of minimum
order the elimination problem is reduced to an algebraic problem and algebraic
elimination algorithms can also be used to obtain a consistency relation.

If elimination is undesirable or impossible, optimization methods can be
used to check the consistency of the algebraic model based on the differentiated
MSO set as the next example shows.

Example 10.3
Consider again the MSO set of equations (10.4) with the differentiated MSO
set of minimum order (10.5). Let the four equations be described by gi = 0 for
i ∈ {1, 2, 3, 4}. Then a test quantity can be based on a least square estimate

T = min
[x1,ẋ1,x2]∈R3

4∑

i=1

g2
i (10.7)

Numerical methods can be used for the minimization and there is no need to
eliminate the unknowns. Note that it is a big advantage for the minimization
that the relation between x1 and ẋ1 is algebraically described in the objective
function.
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10.2.2 Differentiated MSO Sets for Prediction

If the differential-algebraic equations are polynomials, then differential-algebraic
elimination tools can be applied to the original MSO set to obtain a consis-
tency relation. Even if it is theoretically possible to automatically compute a
consistency relation, the following two problems can be encountered. First,
differential-algebraic elimination algorithms require sometimes an unreason-
able time to complete, or require more memory than is available (Wittkopf
and Reid, 2001). Second, if a consistency relation has been derived, the con-
sistency relation can include high order derivatives. High order derivatives of
noisy signals are difficult to estimate accurately and this might imply that the
consistency relation cannot be used in practice.

We have previously seen that the number of MSO sets can be large and that
not all MSO sets need to be tested. Since, in general, not all MSO sets need to be
tested and the elimination problem for the most complicated MSO sets might
take an unreasonable long time to complete or result in a consistency relation
with high order of derivatives, there is a need for a computational efficient
method for predicting properties of the resulting consistency relation, without
explicitly determining the consistency relation.

The structure of the original MSO set cannot be used to predict the order of
derivatives of the known variables contained in a consistency relation derived
from the MSO set. However the order of derivatives contained in the differen-
tiated MSO set of minimum order is in the generic case equal to the order of
derivatives contained in a consistency relation derived from the original MSO
set. This will be illustrated in the next example.

Example 10.4
Consider the water-tank example with the model in Table 2.2. The structure
is given in Table 8.2 and contains the feasible MSO sets given in Table 2.3.
The differentiated MSO sets of minimum orders, obtained from the MSO set in
the original structure, are shown in Table 10.2. The known variables included
in each differentiated MSO set are shown in Table 10.3. By comparing the
consistency relations in Table 2.4 with their corresponding differentiated MSO
sets in Table 10.3, it can be concluded that the derivatives of the known variables
included in the consistency relations are equal to the derivatives of the known
variables contained in the differentiated MSO sets. Assume that second order
derivatives can be estimated in the consistency relations, but not higher order
derivatives. Table 10.3 then suggest that consistency relation based approach
for test construction is not suitable for the 12:th MSO set.

Another property that can be investigated by the differentiated MSO set of
minimum order is the fault influence of a test quantity based on the MSO set.

Example 10.5
Consider the third MSO set in Table 10.2. In the differentiated MSO set, the
differentiated equation e(1)

6 is included but not the original equation e6. Assume
that the water-level sensor has a constant bias fault. The influence of the fault
can be expressed with a fault signal f , 0 such that

yw = w + f (10.8)

and ˙f = 0. From (10.8) and ˙f = 0, we get that e(1)
6 is ẏw = ẇ. From this

expression, it can be seen that the fault f will not influence the consistency of
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Table 10.2: The MSO sets contained in (2.4) and their corresponding differenti-
ated MSO sets of minimum orders.

i MSO set Differentiated MSO set of minimum order
1 {e3, e6, e7} {e3, e6, e7}
2 {e1, e2, e3, e7} {e1, e2, e

(1)
3 , e7, e

(1)
7 }

3 {e1, e2, e6, e7} {e1, e2, e
(1)
6 , e7}

4 {e1, e2, e3, e6} {e1, e2, e3, e6, e
(1)
6 }

5 {e4, e5, e6, e7} {e4, e
(1)
4 , e5, e6, e

(1)
6 , e7, e

(1)
7 }

6 {e3, e6, e8, e9} {e3, e
(1)
3 , e6, e

(1)
6 , e

(1)
8 , e9}

7 {e4, e5, e6, e8, e9} {e4, e
(1)
4 , e

(2)
4 , e5, e

(1)
5 , e6, e

(1)
6 , e

(2)
6 , e

(1)
8 , e

(2)
8 , e9, e

(1)
9 }

8 {e1, e2, e6, e8, e9} {e(1)
1 , e

(1)
2 , e

(2)
6 , e

(1)
8 , e9}

9 {e1, e2, e4, e5, e7} {e1, e
(1)
1 , e2, e

(1)
2 , e

(1)
4 , e

(2)
4 , e5, e

(1)
5 , e7, e

(1)
7 , e

(2)
7 }

10 {e1, e2, e3, e8, e9} {e1, e
(1)
1 , e2, e

(1)
2 , e

(1)
3 , e

(2)
3 , e

(1)
8 , e

(2)
8 , e9, e

(1)
9 }

11 {e1, e2, e4, e5, e6} {e1, e
(1)
1 , e2, e

(1)
2 , e4, e

(1)
4 , e5, e6, e

(1)
6 , e

(2)
6 }

12 {e1, e2, e4, e5, e8, e9} {e1, e
(1)
1 , e

(2)
1 , e2, e

(1)
2 , e

(2)
2 , e

(1)
4 , e

(2)
4 , e

(3)
4 , e5, e

(1)
5 , e

(2)
5 ,

e(1)
8 , e

(2)
8 , e

(3)
8 , e9, e

(1)
9 , e

(2)
9 }

e(1)
6 . This implies that the consistency of the differentiated MSO set 3 is not

influenced by the fault either. Hence, no test based on this differentiated MSO
set can detect a constant bias fault in e6.

In general, if only differentiated versions of an original equation are included
in the differentiated MSO of minimum order, then constant faults affecting the
consistency of the equation will not be possible to detect.

10.3 Structural Differentiation

The structure in Table 10.1 represents a differentiated MSO set derived from
the MSO set of equations (10.1). In Example 10.1 we showed that the structure
in Table 10.1 could be obtained by differentiating equations. In this section, we
show that the structure of a differentiated MSO set can be obtained without
differentiating equations analytically, instead only structural operations will be
used. The basic idea is to define a structural operation that, given the structure
of an equation, is able to compute a correct structural representation of the
differentiated equations. First, we compare the structural representations of an
equation and its differentiated version in an example.

Example 10.6

Consider for example equation e1 shown in (10.1) and equation e(1)
1 with the

analytical expression

L−1(λ(1)x + λx(1)) +mx(3) = 0 (10.9)

The variable x(2) is linearly contained in e1 and x(3) is therefore linearly contained
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Table 10.3: The MSO sets contained in (2.4) and known variables contained in
their corresponding differentiated MSO sets of minimum orders.

i MSO set Known variables in the differentiated MSO
1 {e3, e6, e7} {yw, yq}
2 {e1, e2, e3, e7} {u, yq, y

(1)
q }

3 {e1, e2, e6, e7} {u, yq, y
(1)
w }

4 {e1, e2, e3, e6} {u, yw, y
(1)
w }

5 {e4, e5, e6, e7} {yw, y
(1)
w , yq, y

(1)
q }

6 {e3, e6, e8, e9} {yw, y
(1)
w , y

(1)
q }

7 {e4, e5, e6, e8, e9} {yw, y
(1)
w , y

(2)
w , y

(1)
q , y

(2)
q }

8 {e1, e2, e6, e8, e9} {u(1), y(2)
w , y

(1)
q }

9 {e1, e2, e4, e5, e7} {u,u(1), yq, y
(1)
q , y

(2)
q }

10 {e1, e2, e3, e8, e9} {u,u(1), y(1)
q , y

(2)
q }

11 {e1, e2, e4, e5, e6} {u,u(1), yw, y
(1)
w , y

(2)
w }

12 {e1, e2, e4, e5, e8, e9} {u,u(1),u(2), y(1)
q , y

(2)
q , y

(3)
q }

in equation e(1)
1 . Furthermore, both x and x(1) are nonlinearly contained in e(1)

1
as a consequence of the fact that x is nonlinearly contained in e1.

This example shows that variables are handled in different ways depending
on if they are linearly or nonlinearly contained. To be able to take this differ-
ent treatment into account, information about which variables that are linearly
contained is added to the structural model. With this additional knowledge a
structural differentiation can be defined that produce a correct structural repre-
sentation of differentiated equations. Structural differentiation for an arbitrary
variable x and an arbitrary equation e is defined in the following way:

a) If x is linearly contained in e then x(1) is linearly contained in e(1).

b) If x is nonlinearly contained in e then both x and x(1) are nonlinearly
contained in e(1).

If x is linearly contained in e and x(1) is non-linearly contained in e, then x(1)

is nonlinearly contained in x(1), i.e., rule (b) is dominant.

Example 10.7
Consider the pendulum in Example 10.1. The structural model (10.3) where
information about which variables that are linearly contained is

Equation Unknown Known
x x(1) x(2) y y(1) y(2) λ z

e1 n l n
e2 n l n
e3 n n
e4 n n n n l

(10.10)
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Table 10.4: The structure of the equations of the model in Table 2.2. Linearly
included variables are denoted with l and non-linearly included variables with
n.

Equation Unknown Known
q1 w ẇ q2 fc ˙fc fy f

˙fy f u yw yq

e1 l l
e2 l l l
e3 l n
e4 l n n
e5 l
e6 l l
e7 l l
e8 l l l
e9 l

Linearly included variables are denoted with l and non-linearly included vari-
ables with n. Structural differentiation of the first equation produces the struc-
ture

Equation Unknown
x x(1) x(2) x(3) λ λ(1)

e1 n l n

e(1)
1 n n l n n

By comparing the structure of e(1)
1 and the variables included in equation (10.9),

we see that the structure is correct. By using structural differentiation multiple
times, the structure in Table 10.1 is obtained.

The last example, in this section, considers the water-tank model.

Example 10.8
The structure shown in Table 10.4 has been used together with structural dif-
ferentiation to compute the differentiated MSO sets of minimum order shown
in Table 10.2.

10.4 Algorithm for Computing a Differentiated MSO

Set

By starting with an MSO set E of equations and differentiating all equations
with respect to t multiple times, we will later show that the set of differentiated
equations will eventually grow faster than the set of differentiated variables.
Therefore, it is always possible to obtain an SO set where different order of
derivatives are distinguished and this set contains by definition an MSO subset.

An elementary algorithm to find an MSO set is to structurally differentiate all
equations until there exists a subset that is an SO set. The Dulmage-Mendelsohn
decomposition can be used to determine if there exists an SO subset. It follows
from the results presented later in this chapter that this SO set is also an MSO
set and that it is of minimum order.



10.5. Basic Definitions and Notation 201

In the algorithm we will use the notation

E(k) = {e(k)|e ∈ E} (10.11)

The algorithm can then be summarized as follows.

Algorithm 12. GetDifferentiatedMSO(E)
M := E;
while M+ = ∅ do

E := E(1);

M :=M ∪ E;

end while
return M+

In the assignment E := E(1), it is implicitly assumed that the structure of
the equations in E(1) are computed by using structural differentiation. The
algorithm is motivated by the following theorem.

Theorem 10.1. Algorithm 12 returns the differentiated MSO set of minimum order
given an MSO set E of equations.

The proof of this theorem is given in the end of Section 10.7. The compu-
tational complexity of computing a differentiated MSO is polynomial in the
number of equations. All differentiated MSO sets of minimum orders have
been computed by Algorithm 12 in this thesis.

10.5 Basic Definitions and Notation

Now, the theoretical part of this chapter starts. First some important structural
properties will be defined.

Definition 10.1 (Structurally Singular Set). A finite set of equations E is struc-
turally singular (SS) set with respect to the set of variables X if |E| > |varX(E)|.

Definition 10.2 (Minimal Structurally Singular Set). A set of equations E is a
minimal structurally singular (MSS) set with respect to X if E is structurally
singular with respect to X and no proper subset of E is structurally singular with
respect to X.

Example 10.9
Equation system (10.1), with the structure (10.2), is an example of an MSS set
with respect to X = {x, y, λ}. This follows from the fact that {e1, e2, e3, e4} is SS
with respect to X, but no proper subset is SS with respect to X.

Before we present a characterization of MSS sets, a classical graph theoretical
result is presented. The following theorem is often referred to as Hall’s theorem
(Harary, 1969).

Theorem 10.2 (System of Distinct Representatives). Let V = {V1,V2, · · · ,Vm} be
a set of objects and S = {S1,S2, · · · ,Sn} a set of subsets of V. Then a complete matching
of S into V exists if and only if ∀S′ ⊆ S : |S′| ≤ |⋃Si∈S′ Si|.
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We will use Theorem 10.2 in the following way.

Corollary 10.1. There is a complete matching of E into X if and only if |E′| ≤ |varX(E′)|
for all E′ ⊆ E.

Proof. The corollary follows immediately from Theorem 10.2. �

The next theorem shows the relation between MSS sets and MSO sets.

Theorem 10.3. A set M is an MSO set if and only if M is MSS with respect to X and
varZ(M) , ∅.

Proof. Let M be an MSO set. First we will show that G(M,X∪Z) has a complete
matching of M into X∪Z. Assume that G(M,X∪Z) has not a complete matching
of M into X ∪ Z. Then there exists an e ∈M such that

ν(G(M,X ∪ Z)) = ν(G(M \ {e},X ∪ Z))

This and that ν(G(M,X)) ≥ ν(G(M \ {e},X)) imply

ϕs (M \ {e}) = ν(G(M \ {e},X ∪ Z)) − ν(G(M \ {e},X)) ≥
ν(G(M,X ∪ Z)) − ν(G(M,X)) = ϕs (M)

i.e., M is not a PSO set and therefore also not an MSO set. This is a contradiction
and it follows that the graph G(M,X ∪ Z) has a complete matching of M into
X ∪ Z.

This means that the structural redundancy of any subset E of M can be
expressed as

ϕs (E) = |E| − ν(G(E,X)) (10.12)

i.e., equal to the expression in (9.5). Since the structural redundancy is expressed
by (9.5) for any subset E ⊂M, it follows from (9.14) that

ϕ̄s (E) ≤ ϕs (E) (10.13)

Since M is an MSO set, we get by definition that ϕs (E) = 0. This and (10.13)
imply that ϕ̄s (E) ≤ 0, i.e., E is not SS with respect to X according to Defini-
tion 10.1. Since ϕ̄s (E) ≤ 0 for all E ⊂ M and ϕs (M) > 0, it follows from (9.13)
that ϕ̄s (M) = ϕs (M) > 0. This means according to Definition 10.1 that M is SS
with respect to X. From this and that each subset of M is not SS w.r.t. X, we get
from Definition 10.2 that M is MSS w.r.t. X.

Since M is an MSO set, it follows that

ϕs (M) = ν(G(M,X ∪ Z)) − ν(G(M,X)) > 0 (10.14)

This implies that varZ(M) , ∅.
Now, we prove the opposite direction. Assume that M is MSS w.r.t. X

and varZ(M) , ∅. First we show that this implies that there exists a complete
matching of M into X ∪ Z in G(M,X ∪ Z). Let E be any proper subset of M.
Any subset E′ ⊆ E ⊂ M is not SS w.r.t. X, i.e., |E′| ≤ |varX(E′)|. Since this is true
for all subsets E′ ⊆ E, it follows from Theorem 10.1 that there exists a complete
matching of E into varX(E) in G(E,X). Since E was an arbitrary proper subset
of M, it follows that

ν(G(E,X)) = |E| (10.15)
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for all E ⊂ M. Since varZ(M) , ∅, there exists an equation e ∈ M such that
varZ({e}) , ∅. From (10.15) where E is substituted for M \ {e}, we get that

ν(G(M \ {e},X)) = |M − 1|

which together with varZ({e}) , ∅ imply

ν(G(M,X ∪ Z)) = |M| (10.16)

This means that Assumption 9.1 holds for the set M and this implies that (9.13)
is true for M and all its subsets.

Since M is MSS w.r.t. X, it follows that

ϕ̄s (M) > 0 (10.17)

and
ϕ̄s (E) ≤ 0 (10.18)

for all E ⊂ M. From (9.13) and (10.18), we get that ϕs (E) = 0 for all E ⊂
M. Furthermore, (9.13), (10.16), and (10.18) imply that ϕs (M) = ϕ̄s (M) > 0.
Hence since ϕs (E) = 0 for all E ⊂ M and ϕs (M) = ϕ̄s (M) > 0, it follows from
Definition 8.5 that M is an MSO set. �

The definition of MSO sets is technically more involved than the definition
of MSS sets. From now on, we will therefore use the notion of MSS set instead of
the notion MSO set for simplifying the theoretical presentation. Concepts like,
e.g., differentiated MSO set, will have a direct correspondence to differentiated
MSS set and so on. The original set E of equations is always assumed to be an
MSS set with respect to X, as the one shown in (10.2).

To prove the existence of a differentiated MSS set the following notation is
needed. Let X(k) be the set of k:th order derivatives of the variables in X, i.e.,

X(k) = {x(k)|x ∈ X} (10.19)

Furthermore, let the set of all unknowns X̄, where different order of derivatives
are distinguished, be defined as

X̄ = ∪∞i=0X(i) (10.20)

Finally, given a set E of equations let a number ξ be defined by

ξ =
∑

x∈X

(1 + max
x(α)∈varX̄ (E)

α) (10.21)

This number is an upper limit of the number of variables in X̄ included in E.
For the example (10.3), we get ξ = 3 + 3 + 1 = 7 which, in this case, is equal to
the number of unknowns.

10.6 Existence of a Differentiated MSS Set

In this section we will show the existence of a differentiated MSS set. The
intuition is as said before that by starting with an MSS set E w.r.t. X and differ-
entiating all equations with respect to t multiple times, the set of differentiated
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equations will eventually grow faster than the set of differentiated variables.
Therefore, it is always possible to obtain an SS set in this way and this set
contains by definition an MSS subset.

An upper limit for the number of differentiations that are needed to obtain
an MSS set is given in the next theorem.

Theorem 10.4. Given an MSS set E with respect to X, an upper limit for the number
of differentiations that are needed to obtain an MSS set w.r.t. X̄ is given by

m = 1 + ξ − |E| (10.22)

Proof. First, we proof that m in (10.22) is an upper limit of the number of
differentiations that are needed to obtain an SS set w.r.t. X̄.

If all equations are differentiated m times, the number of equations is

| ∪m
i=0 E(i)| = (m + 1)|E| (10.23)

An upper limit for the number of unknowns X̄ in E is given by ξ, i.e.,

|varX̄(E)| ≤ ξ (10.24)

By differentiating all equations one time, we get a new derivative of highest
order for each variable in X. This and (10.24) imply that

|varX̄(∪m
i=0E(i))| ≤ ξ +m|X| (10.25)

By combining (10.23) and (10.25), we get that

| ∪m
i=0 E(i)| − |varX̄(∪m

i=0E(i))| ≥ (m+1)|E| −ξ−m|X| = (|E| −ξ)+m(|E| − |X|) (10.26)

Since E is MSS w.r.t. X, we have that |E| = |X|+1. This, (10.26), and Definition 10.1
imply that ∪m

i=0E(i) is an SS set if

|E| − ξ +m > 0 (10.27)

The minimum integer m that fulfills (10.27) is given by (10.22). Hence, m
in (10.22) is an upper limit of the number of differentiations that are needed to
obtain an SS set w.r.t. X̄ = ∪∞

i=0X(i). By Definition 10.2, it then follows that there
exists an MSS subset of ∪m

i=0E(i) w.r.t. X̄ and this completes the proof. �

In the case of an MSS set of static equations, we have that ξ = |X| and
|E| = |X| + 1. Then we get m = 1 + ξ − |E| = 0 as expected.

The existence of an upper limit of the number of differentiations that are
needed to obtain a differentiated MSS set is sufficient for the existence of a
differentiated MSS set as the next corollary shows.

Corollary 10.2. Given an MSS set E w.r.t. X, there exists an MSS set Ed ⊆ ∪m
i=0E(i)

with respect to Xd = varX̄(Ed) where m is given by (10.22).

Proof. The corollary follows directly from Theorem 10.4. �
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(a)(b)

(c)

Xd

Xm
d

Xl
d

Ed

Em
d

El
d

Figure 10.1: Partition of the graph.

Corollary 10.2 implies that Algorithm 12 will terminate in at most m itera-
tions.

Example 10.10
For the example (10.3), |E| = 4, |X| = 3, and ξ = 7. The upper limit m in (10.22)
is m = 4. After differentiating all four equations four times, 20 equations are
obtained with 19 unknowns. Hence, this set contains an MSS set. However, all
these 20 equations are not needed to find a differentiated MSS set. Table 10.1
shows an MSS set with only 11 equations and 10 unknowns where the order of
all the derivatives are at most three.

This example shows that there might exist differentiated MSS sets where
the orders of all the derivatives are strictly less than the upper limit given in
Theorem 10.4. A natural question is then: Does there exist a differentiated
MSS set where the highest order of derivatives of all equations are minimized,
or given a differentiated MSS set is it possible to decrease the highest order
of derivative of one equation by increasing the highest order of derivative of
another equation to obtain another differentiated MSS set? These questions
will be answered in the following section.

10.7 Uniqueness of Differentiated MSS Sets

In the previous section, the existence of a differentiated MSS set Ed w.r.t Xd was
shown. In the following section some aspects of uniqueness are investigated.

From now on, we assume that the equations E have been differentiated and
an MSS set Ed with respect to Xd has been found as in Table 10.1. The set Ed is
partitioned into two sets El

d
and Em

d
, where Em

d
contains the highest derivative

of each equation in E. The set Xd is partitioned into Xl
d

and Xm
d

in a similar way.
In general, the bipartite graph can be partitioned as in Figure 10.1, using

the introduced notation. The structure of the sub-graphs (a), (b), and (c) are
revealed in a sequence of lemmas, which leads to the main result formulated
in Theorem 10.5. There, it is shown that there exists a unique differentiated
MSS set of minimum order. The set is of minimum order in the following
sense. For any other differentiated MSS set, derived from the same original
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set of equations, the order of the highest derivative of each equation is strictly
greater than the order of the derivatives of the same equation in the MSS set of
minimum order.

Now, the sequence of lemmas, mentioned above, will be presented. The
first result is that there is only one redundant equation in an MSS set.

Lemma 10.1. If E is an MSS set w.r.t. X, then |E| = |varX(E)| + 1.

Proof. Since E is SS w.r.t. X, it follows that

|E| ≥ |varX(E)| + 1

If equality holds, then there is nothing to prove. Assume that E is MSS w.r.t. X
and that

|E| > |varX(E)| + 1

Take any E′ ⊂ E such that
|E′| = |varX(E)| + 1

Since E′ ⊂ E, it follows that |varX(E′)| ≤ |varX(E)|which implies that

|E′| = |varX(E)| + 1 ≥ |varX(E′)| + 1

This means that E′ is SS which contradicts the assumption and the lemma
follows. �

The next Lemma shows that the sub-graph (a) in Figure 10.1 has no edges.

Lemma 10.2. varXm
d
(El

d
) = ∅

Proof. Assume that
x(l)

i
∈ varXm

d
(El

d) ⊂ Xm
d

Then x(l)
i
∈ varXm

d
(e(k)

j
) for some e(k)

j
∈ El

d
. Since e(k)

j
∈ El

d
, it follows that e

(k+p)
j
∈ Em

d

for some p ∈ Z+. This implies that x
(l+p)
i
∈ varXd

(Ed). But this contradicts the
assumption that x(l)

i
∈ Xm

d
, which completes the proof. �

Now we show that there is one more equation than unknowns in Xm
d

in the
sub-graph (c). It is also shown that the degree of the variable nodes in (c) are
nonzero.

Lemma 10.3. |Em
d
| = |varXm

d
(Em

d
)| + 1 and varXm

d
(Em

d
) = Xm

d
.

Proof. From the definition of Xm
d

it follows that

|X| = |Xm
d | (10.28)

and Xm
d
= varXm

d
(Ed). This,

varXm
d
(Ed) = varXm

d
(El

d) ∪ varXm
d
(Em

d )

and Lemma 10.2 imply
Xm

d = varXm
d
(Em

d ) (10.29)

which is the second conclusion of this lemma.
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From the definition of Em
d

, it follows that

|Em
d | = |E| (10.30)

The definition of X, (10.28), and (10.29) imply

|varX(E)| = |varXm
d
(Em

d )| (10.31)

Since E is MSS w.r.t. X, Lemma 10.1 implies

|E| = |varX(E)| + 1 (10.32)

Now, eliminating |E| and |varX(E)| by using (10.30) and (10.31),

|Em
d | = |varXm

d
(Em

d )| + 1

is obtained and the Lemma follows. �

The next lemma states that the cardinality of the two node sets in the sub-
graph (b) are the same and that the degree of the variable nodes in (b) are
nonzero. That the degrees of the equation nodes are nonzero follows trivially
from Lemma 10.2 and the fact that each equation has to contain at least one
unknown. Otherwise the equation itself would be an MSS sets w.r.t. Xd.

Lemma 10.4. |El
d
| = |varXd

(El
d
)| and varXd

(El
d
) = Xl

d
.

Proof. Lemma 10.1 applied to the MSS set Ed implies that

|Em
d | + |E

l
d| = |X

m
d | + |X

l
d| + 1

and Lemma 10.3 implies that

|Em
d | = |X

m
d | + 1

From these two equalities, it follows that

|El
d| = |X

l
d| (10.33)

Since Ed is an MSS set with respect to Xd, it follows that El
d
( Ed is not SS with

respect to Xd, i.e.,

|El
d| ≤ |varXd

(El
d)| (10.34)

Lemma 10.2 implies that

varXd
(El

d) = varXl
d
(El

d) ⊂ Xl
d

By using this in (10.34), it follows that

|El
d| ≤ |varXd

(El
d)| ≤ |Xl

d| (10.35)

This and (10.33) imply that

|El
d| = |varXd

(El
d)| = |Xl

d|

Finally, since varXd
(El

d
) ⊂ Xl

d
and |varXd

(El
d
)| = |Xl

d
| the lemma follows. �
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In the example in Table 10.1, the sub-graph (c) is isomorphic to the original
graph in (10.2). In general, the edges of (c) is a subset of the set of edges
corresponding to the original graph. However, the following result shows
that (c) still represents an MSS set.

Lemma 10.5. The set Em
d

is an MSS set w.r.t. Xm
d

.

Proof. Assume that Em
d1 is SS w.r.t. Xm

d
and Em

d1 ( Em
d

. The idea is to show that
these assumptions imply that Em

d1 ∪ El
d

is SS w.r.t. Xd which contradicts that Ed

is MSS w.r.t. Xd. The assumption that Em
d1 is SS w.r.t. Xm

d
and Lemma 10.4 imply

that

|Em
d1 ∪ El

d| < |varXm
d
(Em

d1)| + |varXl
d
(El

d)|
= |varXm

d
(Em

d1) ∪ varXl
d
(El

d)| (10.36)

From Lemma 10.4, it follows that

varXl
d
(Em

d1) ⊂ varXl
d
(El

d) = Xl
d

From this, Lemma 10.2, and that

varXl
d
(Edi) ∪ varXm

d
(Edi) = varXd

(Edi)

for any Edi, it follows that

varXm
d
(Em

d1) ∪ varXl
d
(El

d) = varXd
(Em

d1 ∪ El
d)

If the left-hand side of this expression is substituted into (10.36), then it follows
that Em

d1 ∪ El
d

is SS w.r.t. Xd which contradicts that Ed is an MSS set w.r.t. Xd.
Hence the lemma follows. �

Consider two different MSS sets derived from the same equations. It follows
from the next result that the two sub-graphs (c) in Figure 10.1 corresponding to
the two MSS sets are isomorphic.

Lemma 10.6. There exist integers α1, . . . , αn such that for any MSS set Ed w.r.t. X̄
derived from E = {e1, . . . , en}, the set Em

d
is

Em
d = {e

(α1+k)
1 , . . . , e(αn+k)

n }

for some integer k.

Proof. Let Ed1 and Ed2 be two arbitrary MSS sets w.r.t. X̄ with the corresponding
subsets

Em
d1 = {e

(α1)
1 , . . . , e

(αn)
n }

and
Em

d2 = {e
(β1)
1 , . . . , e

(βn)
n }

To prove the lemma, it is sufficient to show that βi − αi = k for some k. Let
k = maxi(βi − αi). Either αi = βi for all i and there is nothing to prove, or the
MSS sets can be enumerated so that k > 0. We can therefore assume that k > 0.
Let

E0 = {e(αi)
i

: βi − αi = k}
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and
X0 = varXm

d1
(E0)

It holds that
E(k)

0 := {e(αi+k)
i

: βi − αi = k} = {e(βi)
i

: βi − αi = k}
and consequently it follows that

E(k)
0 ⊂ Em

d2 (10.37)

Recall that βi = αi + k for e(βi) ∈ E(k)
0 and that

βi < αi + k for e(βi) ∈ Em
d2\E

(k)
0 . Assume that

x
(γ)
i
∈ X0 = varXm

d1
(E0)

It follows that x
(γ+k)
i
∈ Xm

d2 and hence

X(k)
0 ⊂ Xm

d2 (10.38)

It follows also that x
(γ+k)
i
< varXm

d2
(Em

d2\E
(k)
0 ) and consequently it holds that

var
X

(k)
0

(Em
d2 \ E(k)

0 ) = ∅ (10.39)

Assume now that αi − βi = k does not hold for all i or equivalently

E0 , Em
d1 (10.40)

We will show that this contradicts (10.39). The set Em
d1 is an MSS set w.r.t. Xm

d1
according to Lemma 10.5. Together with assumption (10.40) this implies that
|E0| ≤ |X0| and

|E(k)
0 | ≤ |X

(k)
0 |

Moreover Em
d2 is an MSS set w.r.t. Xm

d2 according to Lemma 10.5 and hence

|Em
d2| > |X

m
d2|

It follows from the two inequalities above and the set relations (10.37) and
(10.38) that

|Em
d2 \ E(k)

0 | = |E
m
d2| − |E

(k)
0 | > |X

m
d2| − |X

(k)
0 | = |X

m
d2 \ X(k)

0 |

This implies that
|Em

d2 \ E(k)
0 | > |var

Xm
d2\X

(k)
0

(Em
d2 \ E(k)

0 )|

and since Em
d2 \ E(k)

0 is not SS we have

|Em
d2 \ E(k)

0 | ≤ |varXm
d2

(Em
d2 \ E(k)

0 )|

It follows from these two inequalities that

|var
X

(k)
0

(Em
d2 \ E(k)

0 )| =|varXm
d2

(Em
d2 \ E(k)

0 )|

− |var
Xm

d2\X
(k)
0

(Em
d2 \ E(k)

0 )|

>|Em
d2 \ E(k)

0 | − |E
m
d2 \ E(k)

0 | = 0

This contradicts (10.39) and the proof is complete. �
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Table 10.5: All differentiated MSS sets up to order two of the MSS set {e3, e6, e8, e9}
in (2.4).

MSO set
{e3, e

(1)
3 , e6, e

(1)
6 , e

(1)
8 , e9}

{e(1)
3 , e

(2)
3 , e

(1)
6 , e

(2)
6 , e

(1)
8 , e

(2)
8 , e9, e

(1)
9 }

{e3, e
(2)
3 , e6, e

(2)
6 , e

(1)
8 , e

(2)
8 , e9, e

(1)
9 }

{e3, e
(1)
3 , e

(2)
3 , e6, e

(1)
6 , e

(2)
6 , e

(2)
8 , e

(1)
9 }

Next an example will be used to illustrate the consequence of Lemma 10.6.

Example 10.11
Consider the MSS set {e3, e6, e8, e9} in (2.4). Table 10.5 shows all differentiated
MSS sets included in the system obtained when differentiating all equations
two times. The first differentiated MSS set is the differentiated MSS set of
minimum order. In this set, the set of highest order of derivatives is

{e(1)
3 , e

(1)
6 , e

(1)
8 , e9} (10.41)

The other MSS sets have the same set

{e(2)
3 , e

(2)
6 , e

(2)
8 , e

(1)
9 } (10.42)

of highest order of derivatives. The set (10.42) can be obtained by differenti-
ating all equations in (10.41) exactly one time. Lemma 10.6 states that for any
differentiated MSS set the maximum order of derivatives are given by

{e(1+k)
3 , e(1+k)

6 , e(1+k)
8 , e(k)

9 } (10.43)

for some integer k.

This example shows that given a differentiated MSO set, it is not possible
to decrease the highest order of derivative of one equation by increasing the
highest order of derivative of another equation to obtain another differentiated
MSO set. Note also that, there exists only one MSS sets where the maximum or-
der of derivatives can be expressed with the minimum number k = 0 in (10.43).
This is generally true according to the next theorem.

Theorem 10.5. Given an MSS set E w.r.t. X, there exists a unique differentiated MSS
set Ed w.r.t. X̄ of minimum order.

Proof. Assume that Ed1 and Ed2 are two differentiated MSS sets of minimum
order. According to Lemma 10.6 the corresponding sets Em

d1 and Em
d2 coincide

and the notation Em
d

is used for both. Let X′
d

be defined as Xd1 ∪ Xd2. The set
El

d1 ∪ El
d2 is not SS, since this would imply that there exists a subset of El

d1 ∪ El
d2

that is an MSS set, which contradicts that Ed1 and Ed2 are both of minimum
order. Hence

|El
d1 ∪ El

d2| ≤ |varX′
d
(El

d1 ∪ El
d2)|



10.7. Uniqueness of Differentiated MSS Sets 211

Using this inequality, Lemma 10.4, and that

varX′
d
(El

d1 ∪ El
d2) = varX′

d
(El

d1) ∪ varX′
d
(El

d2)

we get

|El
d1 ∩ El

d2| = |El
d1| + |E

l
d2| − |E

l
d1 ∪ El

d2|
≥ |varX′

d
(El

d1)| + |varX′
d
(El

d2)|
−|varX′

d
(El

d1) ∪ varX′
d
(El

d2)|
= |varX′

d
(El

d1) ∩ varX′
d
(El

d2)| (10.44)

The set relation

varX′
d
(Ed1 ∩ Ed2) ⊂ varX′

d
(Ed1) ∩ varX′

d
(Ed2)

holds and it follows from Lemma 10.4 that

varX′
d
(Ed1) ∩ varX′

d
(Ed2) = (varX′

d
(El

d1) ∩ varX′
d
(El

d2)) ∪ varXm
d
(Em

d )

where varX′
d
(El

d1)∩varX′
d
(El

d2) and varXm
d
(Em

d
) are disjoint according to Lemma 10.2.

This gives that

|varX′
d
(Ed1∩Ed2)| ≤ |varX′

d
(Ed1)∩varX′

d
(Ed2)| = |varX′

d
(El

d1)∩varX′
d
(El

d2)|+|varXm
d
(Em

d )|

where
|varX′

d
(El

d1) ∩ varX′
d
(El

d2)| ≤ |El
d1 ∩ El

d2|
according to (10.44) and

|varXm
d
(Em

d )| < |Em
d |

according to Lemma 10.3. It follows that

|varX′
d
(Ed1 ∩ Ed2)| < |El

d1 ∩ El
d2| + |E

m
d |

= |(El
d1 ∩ El

d2) ∪ Em
d |

= |Ed1 ∩ Ed2|

Hence, Ed1 ∩ Ed2 is an SS set and can not be a proper subset of the MSS sets Ed1
and Ed2. It follows that

Ed1 = Ed2 = Ed1 ∩ Ed2

and the proof is complete. �

Algorithm 12 differentiates all equations until there exists a subset that is an
SO set. Theorem 10.5 implies that this SO sets is the differentiated MSO set of
minimum order.

Now, we are ready to prove Theorem 10.1 which states that the output set
M+ of Algorithm 12 is the differentiated MSO set of minimum order.

Proof. Given an MSO set E, it follows that E is MSS with respect to X and that
varZ(E) , ∅ according to Theorem 10.3. From Theorem 10.5, it follows that there
exists a unique differentiated MSS sets Ed with respect to X̄ of minimum order.
Lemma 10.3 implies that some derivative of each equation in E is contained in
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Ed. From this and the fact that varZ(E) , ∅, it follows that varZ(Ed) , ∅. Hence
Ed is the unique differentiated MSO set of minimum order. From Theorem 9.6,
it follows that Ed ⊆ M+ if Ed ⊆ M. Since there exists a unique differentiated
MSS set w.r.t. X̄ of minimum order according to Theorem 10.5, Ed is the only
MSO set contained in M+. The set M+ is a PSO set according to Lemma 9.1.
The structural redundancy ϕs (M+) is one because otherwise, there would be
more than one MO subsets of M+ contradicting the uniqueness of Ed. Hence, it
follows that M+ = Ed. �

10.8 Conclusions

One approach for design of diagnosis systems is to use tests based on mini-
mal rejectable models. When considering general non-linear dynamic models,
structural methods can be used to identify MSO models with analytical redun-
dancy.

A method has been presented that transforms an MSO set of differential-
algebraic equations into an MSO set of equations where all the unknowns are
algebraic. This is done by considering the unknowns and their derivatives as
separate independent variables and then differentiating equations to obtain a
differentiated MSO set.

To present the structure of the algebraic system, a bipartite graph is used and
properties of the graph have been investigated in a sequence of lemmas. It is
desirable to differentiate the equations as few times as possible, to avoid higher
derivatives of measured signals. The main result is stated in Theorem 10.5,
where it is shown that there exists a unique differentiated MSO set of minimum
order. Given an MSO set, Algorithm 12 returns the unique differentiated MSO
set of minimum order. This algorithm is purely structural and is based on the
introduced concept of structural differentiation.

It has been illustrated that differentiated MSO sets of minimum order can be
used for two main reasons. Deriving test quantities can be time-consuming and
difficult. Differentiated MSO sets of minimum order is easily computed and
can be used to suggest which MSO sets to derive consistency relations from.
Furthermore, the differentiated MSO sets can be used to derive consistency
relations, by using algebraic elimination methods or by using optimization
methods.
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T S B  I
A  D S

Fault isolability analysis refers to the question of which faults that can be
distinguished from other faults. This information is important because if the
correct fault can be identified then correct accommodation or repair actions can
be taken for that fault. Thereby, for example the impact of severe faults might
be reduced or repair-time can be decreased.

When designing diagnosis systems by starting from the model as described
in Section 2.3.3, a set of rejectable models is found. In previous chapters, we
have seen that the number of rejectable models can be large and that it is
sufficient to test a subset of those to obtain soundness. Soundness has been
the criteria for selecting models to test and this is a strong requirement that for
some applications might be unrealistic to obtain. In this chapter, we consider a
set of potential tests, for example one for each rejectable model, and one goal is
to select a subset of those potential tests with maximum fault isolability. This
is, as we will see later, a weaker requirement than to obtain soundness.

The maximum fault isolability is equal to the isolability obtained by using
all potential tests. This isolability can be computed by using test quantities,
rejection regions, and test assumptions for all potential tests. However, typi-
cally a potential test corresponds to a rejectable model Mi, for which the test
assumption Φi = assump(Mi) is easily computed, but a test quantity Ti and
a rejection region Ri might be difficult to derive. In this chapter, a method
for computing a prediction of the isolation capability of a diagnosis system is
proposed. This prediction is only based on the test assumptionΦi which means
that the test quantity and the rejection region are not needed in the prediction.
Therefore, this approximation can serve as guidance for selecting tests such
that good fault isolation of the resulting diagnosis system is obtained. Further-
more, this chapter includes a method to compute the exact fault isolability for a
diagnosis system given its fault influence of each test in the diagnosis system.
If for example some selected tests have been derived, this method can be used
to compute the actual fault isolability obtained.

213
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The outline of this chapter is as follows. In Section 11.1, we formally define
the analytical isolability of a diagnosis system. Section 11.2 introduces desired
isolability that is a useful and intuitive way to express design specifications of a
diagnosis system. Then, by using the desired isolability, problems to be solved
in this chapter are posed, for example how to select tests such that the desired
isolability can be obtained. In Section 11.3 an isolability prediction called struc-
tural isolability is introduced. It is proved that the structural isolability is a
necessary condition for analytical isolability. Thereby it is possible to compute
the structural isolability to get an upper bound for the analytical isolability.
In Section 11.4, the structural isolability is written on a form suitable for com-
putation and Section 11.5 describes different properties and representations of
isolability. Section 11.6 reveals basic properties about the analytical isolability
before the analytical and the structural isolability are compared in Section 11.7.
There, it is shown that the structural and analytical can be different and in Sec-
tion 11.8, a sufficient condition for equality is given. In Section 11.9, we answer
the questions posed in Section 11.2 and finally the conclusions are drawn.

11.1 Analytical Isolation Capability

In this section, we will formally define and illustrate definitions concerning the
fault isolation capability of a diagnosis system. We start to define two such
properties of a diagnosis systems.

Definition 11.1 (Isolable with a Diagnosis System). A system behavioral-mode bi

is isolable from another system behavioral-mode b j with a diagnosis system, if there
exists some observation z ∈ Z such that bi is a candidate but b j is not.

Definition 11.2 (Detectable with a Diagnosis System). A fault mode bi is de-
tectable with a diagnosis system if bi is isolable from the no-fault system behavioral
mode with the diagnosis system.

When there is no risk of confusion, we say for example that a fault is
detectable without explicitly pointing out which diagnosis system that is used.
To summarize which behavioral modes that are isolable from others and which
faults that are detectable with a diagnosis system, the following binary relation
will be used.

Definition 11.3 (Analytical Isolability of a Diagnosis System). Let∆ be a diagnosis
system. A binary relation I(∆) on B×B is the analytical isolability of the diagnosis
system ∆ if

I(∆) = {(b1, b2)|∃z ∈ Z :
(

b1 ∈ C(z) ∧ b2 < C(z)
)

} (11.1)

The interpretation of (b1, b2) ∈ I(∆) is that b1 is isolable from b2 with the
diagnosis system ∆. If (b,NF) ∈ I(∆) for a fault mode b, then it means that
b is detectable with the diagnosis system ∆. Next an example illustrates the
definition of analytical isolability.
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Example 11.1
Consider the following diagnosis model:

Assumption Equation Expression
Sensor 1

S1 = NF e1 z1 = x1
Component

e2 x1 = x2
2

Sensor 2
S2 = NF e3 z2 = x2

(11.2)

with the possible component behavioral modes defined by:

Component Possible behavioral modes
Sensor 1 S1 ∈ {NF,UF}
Sensor 2 S2 ∈ {NF,UF}

(11.3)

The system behavioral modes for the four combinations of component behav-
ioral modes are

B = {NF,S1,S2,S1&S2} (11.4)

Let a diagnosis system ∆ for this model is defined by

∆ H0
i

: Φi Mi Ti Ri

δ1 {NF} {e1, e2, e3} z1 − z2
2 R\{0}

δ2 {S2} {e1, e2} z1 R−

(11.5)

We will show that S1&S2 is detectable with ∆, i.e.,

(S1&S2,NF) ∈ I(∆) (11.6)

Let z0 = (z1, z2) = (5, 0) then

T1(z0) = 5 ∈ R1 = R\{0} (11.7)

and

T2(z0) = 5 < R2 = R− (11.8)

The candidate set is then

C(z0) =
⋂

H0
i

rejected

ΦC
i = Φ

C
1 = {S1,S2,S1&S2} (11.9)

The fault mode S1&S2 is a candidate because S1&S2 ∈ C(z0) and NF is not a
candidate because NF < C(z0). Thus, according to Definition 11.3, the double
fault S1&S2 is detectable with ∆.
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11.2 Problem Formulation

From the discussion in the introduction of this chapter, we know that it can be
especially important to isolate some specific faults from some other faults. This
knowledge can be described with a binary relation Id defined on B × B, where

(b1, b2) ∈ Id (11.10)

if and only if it is desired that b1 is isolable from b2. The relation Id will be called
the desired isolability.

Assume that there is a set ∆a of all possible tests, one for each rejectable
model, that has been found. The test assumptions for these tests are given by
Φi = assump(Mi). Given a desired isolability, the isolability analysis that will
be presented in this chapter can be used to answer the following questions:

• Is it possible to obtain the desired isolability using all possible tests in ∆a?

• If so, how is a subset of tests ∆ ⊆ ∆a selected such that the desired
isolability is obtained?

• If the desired isolability cannot be obtained with ∆a, which isolability
properties are missing?

• How can a small subset ∆ ⊆ ∆a of tests be selected with the maximum
isolability?

Computing all potential tests in ∆a can be difficult or even impossible and
also unnecessary as we will see later. Here we propose a method that only
uses the test assumptions Φi to select tests. Then only for the selected tests the
analytical properties, i.e., the test quantities and the rejection regions have to
be derived.

11.3 Predicting the Isolability

The selection of tests is based on an isolability prediction. The isolability
prediction uses, as said above, only the test assumptions, and is defined as
follows.

Definition 11.4 (Structural Isolability of a Diagnosis System). Let∆ be a diagnosis
system. A binary relation Is(∆) on B×B is the structural isolability of a diagnosis
system ∆ if

Is(∆) = {(b1, b2)|∃δi ∈ ∆ :
(

b1 < Φi ∧ b2 ∈ Φi

)

} (11.11)

If (b1, b2) ∈ Is(∆) we say that b1 is structurally isolable from b2 with ∆. The
idea of Definition (11.11) is that if a fault b1 is isolable from another fault b2 with
a test, then b1 must be structurally isolable from b2 with the test. An example
will show how the definition is applied to a diagnosis system.

Example 11.2
Consider the diagnosis model (11.2) and the diagnosis system (11.5). It was
shown in Example 11.1 that

(S1&S2,NF) ∈ I(∆)
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Now, we will determine if

(S1&S2,NF) ∈ Is(∆) (11.12)

by using expression (11.11). Since

S1&S2 < Φ1 (11.13)

and
NF ∈ Φ1 (11.14)

it follows that δ1 together with (11.11) imply (11.12). Hence (11.12) is true, i.e.,
S1&S2 is structurally isolable from NF with ∆.

In Example 11.1 and in the previous example, it turned out that the behav-
ioral mode S1&S2 is both analytically and structurally isolable from NF with the
diagnosis system in (11.5). Even if (S1&S2,NF) was contained in both isolability
relations, equality between structural and analytical isolability is in general not
true and this will be exemplified later. However, the following theorem shows
that the structural isolability is an upper bound for the analytical isolability.

Theorem 11.1. Given a diagnosis system ∆, it holds that

I(∆) ⊆ Is(∆) (11.15)

Proof. Take an arbitrary (b1, b2) ∈ I(∆). From Definition 11.3, it follows that
there exists a z = z0 such that b1 is a candidate and b2 is not a candidate, i.e.,

b1 ∈ C(z0) (11.16)

and
b2 < C(z0) (11.17)

From (2.20) and (11.17), it follows that

b2 <

⋂

H0
i

rejected

ΦC
i (11.18)

This means that there is a test δ1 such that H0
1 is rejected and

b2 < Φ
C
1 (11.19)

or equivalently
b2 ∈ Φ1 (11.20)

From (2.20) and (11.16), it follows that

b1 ∈
⋂

H0
i

rejected

ΦC
i (11.21)

and it means that
b1 ∈ ΦC

i (11.22)

or equivalently
b1 < Φi (11.23)

for all δi such that H0
i

is rejected. Hence it holds also for δ1. From (11.20), (11.23)
where i is substituted for 1, and (11.11), it follows that (b1, b2) ∈ Is(∆). Since
(b1, b2) was an arbitrarily chosen in I(∆), the theorem follows. �
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This theorem states that the structural isolability is necessary condition for
the analytical isolability. We can also say that the structural isolability is an
upper bound for the analytical isolability. Thus if a behavioral mode b1 is
not structurally isolable from another behavioral mode b2, then b1 is also not
analytically isolable from b2. Hence by computing the structural isolability, it
is possible to conclude that behavioral modes are not analytical isolable from
other behavioral modes.

11.4 Computing Structural Isolability

We have seen that information about the analytical isolability can be obtained
from the structural isolability. In this section, the structural isolability is rewrit-
ten on a form suitable for computation. The structural isolability on this form
is obtained by computing the structural isolability of each test in a diagnosis
system ∆. The structural isolability of a single test δi is defined as

Is({δi}) = {(b1, b2)|b1 < Φi ∧ b2 ∈ Φi} (11.24)

according to (11.11). The next theorem shows how the structural isolability of
a diagnosis system can then be expressed by using the structural isolabilities of
its tests.

Theorem 11.2. Given a diagnosis system ∆, it holds that

Is(∆) =
⋃

δi∈∆
Is({δi}) (11.25)

Proof. The theorem is proved by observing that

Is(∆) = {(b1, b2)|∃δi ∈ ∆ :
(

b1 < Φi ∧ b2 ∈ Φi

)

} =
= {(b1, b2)|∨δi∈∆

(

b1 < Φi ∧ b2 ∈ Φi

)

} =
=
⋃

δi∈∆{(b1, b2)|b1 < Φi ∧ b2 ∈ Φi} =
=
⋃

δi∈∆ Is({δi})

�

This expression of structural isolability clearly shows how each test con-
tributes to the structural isolability. The structural isolability Is(∆) of a diagno-
sis system ∆ can be computed by using (11.24) for each test δi ∈ ∆ and (11.25).
These computations are exemplified next.

Example 11.3
Consider the diagnosis system (11.5). For this diagnosis system, it holds that
Φ1 = {NF} and Φ2 = {S2}. The structural isolability of the first test is

Is({δ1}) = {(b1, b2)|b1 ∈ B\{NF} ∧ b2 = NF} =
= {(S1,NF), (S2,NF), (S1&S2,NF)} (11.26)

The structural isolability of the test δ2 is

Is({δ2}) = {(b1, b2)|b1 ∈ B\{S2} ∧ b2 = S2} =
= {(NF,S2), (S1,S2), (S1&S2,S2)} (11.27)
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Now, the structural isolability of the diagnosis system ∆ = {δ1, δ2} is

Is(∆) = Is({δ1}) ∪ Is({δ2}) =
= {(S1,NF), (S2,NF), (S1&S2,NF),

(NF,S2), (S1,S2), (S1&S2,S2)}
(11.28)

according to (11.25).

11.5 Isolability Properties and Representations

As seen in the previous example, the set representation of Is(∆) is difficult
to interpret even for small size systems like (11.5). In this section, we will
investigate different representations of the two isolability relations. We will do
this by studying Is(∆) and the representations for the analytical correspondence
I(∆) follow analogously.

To obtain a compact representation, we will consider the relation defined as
the complement set to Is(∆) on B × B. This relation will be called the structural
candidate implication relation and will be denoted by Is(∆). If for example
(b1, b2) ∈ Is(∆), it will be show that b1 is not isolable from b2 with ∆. This means
that b2 is a candidate if b1 is a candidate and this motivates the name of Is(∆).

A common representation of a relation R is to use a relation matrix Rm = (ri j).
If R is a relation on a finite set B × B, then

ri j =

{

1 if (bi, b j) ∈ R
0 if (bi, b j) < R

(11.29)

The candidate implication relations can then be represented with the their
relation matrix respectively. To make the candidate implication matrix even
easier to interpret, the ones are replaced with “X” and the zeros are left out.
The interpretation of an “X” in position (i, j) is that for all different z, b j is a
candidate if bi is a candidate. Hence bi is not analytically isolable from b j with
∆. The structural candidate implication matrix of Is(∆) in (11.28) is

present necessary interpreted mode
mode NF S2 S1 S1&S2

NF X X X
S2 X X X
S1 X X
S1&S2 X X

(11.30)

Note that the candidate implication matrix shows the complement set of the
isolability relation. The isolability relation for (11.30) is the set corresponding
to the blank entries in the isolability matrix.

A more compact representation of the candidate implication relation can be
obtained by forming a partial order. A relation is partial order if it is reflexive,
transitive, and antisymmetric. To define a partial order relation, note first that
Is(∆) is both reflexive and transitive. By modifying this relation according to the
following definition, it is possible to obtain a relation that is also antisymmetric,
i.e., a relation that is a partial order.
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{NF} {S2}

{S1,S1&S2}

Figure 11.1: The Hasse diagram of Ps(∆) of (11.30).

Definition 11.5 (Candidate Implication Partial Order). For a binary relation Is(∆)
on B×B, let B′ be a partition of B defined as the set of the equivalence classes of Is(∆))
on B. Further, let the equivalence class that contains b be denoted by [b]. Then the
structural candidate implication partial order Ps(∆) on B′ × B′ is defined as

([b1], [b2]) ∈ Ps(∆)↔ (b1, b2) ∈ Is(∆) (11.31)

The analytical candidate implication partial order P(∆) on B′ × B′ can be
defined analogously. The relation matrix of Ps(∆) defined by (11.30) is

present necessary interpreted modes
modes {NF} {S2} {S1,S1&S2}
{NF} X X
{S2} X X
{S1,S1&S2} X

(11.32)

and it can be seen that this representation is more compact compared to the one
in (11.30).

A partial order P on a set B × B can be represented by a Hasse diagram,
see (Skiena, 1990; Råde and Westergren, 1992). The Hasse diagram for Ps(∆)
in (11.32) is shown in Figure 11.1. In such a diagram each equivalence class
is represented with a node. If ([b1], [b2]) ∈ P where b1, b2 ∈ B and [b1] , [b2],
then b1 is at a lower level then b2, and there exists a path from b1 up-wards
to b2. Next, we will describe the interpretations of the candidate implication
partial orders and then also discuss the interpretation of the Hasse diagram in
Figure 11.1.

The analytical implication partial order P(∆) has a nice interpretation that
follows from Definition 11.3 and Definition 11.5, i.e., if b1 is a candidate then all
b2 that fulfill

([b1], [b2]) ∈ Ps(∆) (11.33)

are candidates.
The next corollary of Theorem 11.1 shows that the structural implication

partial order can be interpreted in the same way. In the corollary we need to
explicitly state that a relation R is used to obtain the equivalence class [b] and
then the notation [b]R will be used.
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Corollary 11.1. Given a diagnosis system ∆, it holds that

([b1]
Is(∆), [b2]

Is(∆)) ∈ Ps(∆) (11.34)

implies
([b1]

I(∆), [b2]
I(∆)) ∈ P(∆) (11.35)

Proof. Take an arbitrary

([b1]
Is(∆), [b2]

Is(∆)) ∈ Ps(∆) (11.36)

From (11.31) and (11.36), it follows that

(b1, b2) ∈ Is(∆) (11.37)

By using Theorem 11.1 and (11.37), we get that

(b1, b2) ∈ I(∆) (11.38)

Finally (11.38) and (11.31) imply (11.35). �

Corollary 11.1 implies that if b1 is a candidate then all b2 that fulfill

([b1], [b2]) ∈ Ps(∆) (11.39)

are candidates. In (11.33) we used the analytical properties of ∆ to draw con-
clusions about the isolation capability but in (11.39) only the test assumptions
Φi are used. In Figure 11.1 it can be seen for example that, if S2 is a candidate,
then S1 and S1&S2 are candidates too according to Corollary 11.1.

11.6 Analytical Isolability Properties

In Section 11.4 we showed that the structural isolability of a diagnosis system
is equal to the union of structural isolability of each test. In this section we
investigate the relationship between the analytical isolability of a diagnosis
system I(∆) and the union of the analytical isolability of each test in ∆. The
analytical isolability of a test δi is

I({δi}) = {(b1, b2)|(∃z ∈ Z : H0
i rejected) ∧ b1 < Φi ∧ b2 ∈ Φi} (11.40)

according to Definition 11.3. By comparing this expression with (11.24), it
follows that if there is a z such that H0

i
is rejected, then

I({δi}) = Is({δi}) (11.41)

Later we will show that the analytical isolability can, contrary to the structural
isolability, in general not be computed as the union of the isolability properties
obtained from each test. However the next theorem shows that the union of
isolability properties obtained from each test is a superset to the analytical
isolability. Note that we do not need to assume that (11.41) holds, to obtain the
following result.
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Lemma 11.1. Given a diagnosis system ∆, it holds that

I(∆) ⊆
⋃

δi∈∆
I({δi}) (11.42)

Proof. Let ∆ = ∆r ∪ ∆n be a partition. A test δi ∈ ∆ is contained in ∆r if and
only if there exists an observation such that its null hypothesis can be rejected.
This means that the null hypothesis for the tests in ∆n cannot be rejected for
any observation and therefore does not influence the candidate set. From this
and (11.1), it follows that

I(∆) = I(∆r ∪ ∆n) = I(∆r) (11.43)

From Theorem 11.1, we get that

I(∆r) ⊆ Is(∆r) (11.44)

The structural isolability can be expressed as

Is(∆r) = ∪δi∈∆r
Is({δi}) (11.45)

according to (11.25). The structural and the analytical isolabilities are equal for
all tests in ∆r according to (11.41). The right-hand side of (11.45) can then be
written as

∪δi∈∆r
Is({δi}) = ∪δi∈∆r

I({δi}) (11.46)

Finally we have that
∪δi∈∆r

I({δi}) ⊆ ∪δi∈∆I({δi}) (11.47)

and the theorem follows from (11.43)-(11.47). �

The right-hand side of (11.42) is in the normal case equal to the structural
isolability Is(∆) and this can be realized as follows. As argued Section 2.3.3,
almost always there exists an observation z0 such that Ti(z0) ∈ Ri, i.e., (11.41)
is satisfied. If all tests in a diagnosis system has this property, then it follows
directly from (11.25) and (11.41) that the structural isolability of the diagnosis
system is equal to the union of the analytical isolability of each test, i.e.,

Is(∆) =
⋃

δi∈∆
Is({δi}) =

⋃

δi∈∆
I({δi}) (11.48)

Hence in this case, it follows that I(∆) ,
⋃

δi∈∆ I({δi}) if and only if I(∆) , Is(∆)
and inequality in the latter expression will be investigated in the next section.

11.7 Comparison between Structural and Analytical

Isolability

From Theorem 11.1, we know that structural isolability is a necessary condition
for analytical isolability. In this section we use Example 11.3 to show that
inequality between the structural isolability and the analytical isolability can
hold. For the diagnosis system in Example 11.3, it is possible to calculate I(∆).
Before the calculations are carried out, a useful definition is presented.
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Definition 11.6 (Acceptance Set). Given a diagnosis test δ, the acceptance set for
δ is

O(δ) := {z ∈ Z|T(z) ∈ RC} (11.49)

Theoretically, O(δ) contains equivalent information as T and R. However
in practice, T and R also express an efficient way to evaluate δ. In the next
example I(∆) is computed for (11.5) and compared with Is(∆) which has already
been computed in Example 11.3.
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Figure 11.2: The parabola O(δ1) and the closed right half plane O(δ2) shown in
the z-plane.

Example 11.4
Consider again the model introduced in Example 11.1. One way to illustrate a
static diagnosis system with two known variables is to plot the acceptance set
of each test. For the diagnosis system (11.5) this plot is shown in Figure 11.2.
The set O(δ1) is the parabola and O(δ2) is right half-plane. The set O(δ1) and
O(δ2) defines a partition of the space of observations into 3 parts, i.e.,

O(δ1) ∩ O(δ2) (11.50)

and
O(δ2) \ O(δ1) (11.51)

and
O(δ1)C ∩ O(δ2)C (11.52)

Observations in each of these three sets imply a different set of candidates.
From the definition of structural isolability, it follows that for a given z, we
have that

{(b1, b2)|b1 ∈ C(z) ∧ b2 < C(z)} ⊆ I(∆) (11.53)

If an observation belongs to the set (11.50) then no null hypothesis is rejected
and hence all behavioral modes are candidates. Since all behavioral modes are
candidates, no isolability property in I(∆) is implied. If an observation belongs
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{NF}

{S2}

{S1,S1&S2}

Figure 11.3: Hasse diagram of (11.57).

to the set (11.51) then H0
1 is rejected and the result is that all behavioral modes

except for NF are candidates. According to the definition of I(∆), it follows that

{(b1, b2)|b1 ∈ C(z) ∧ b2 < C(z)} =
{(b1, b2)|b1 ∈ B\{NF} ∧ b2 = NF} =
{(S1,NF), (S2,NF), (S1&S2,NF)} ⊆ I(∆)

(11.54)

Finally if an observation belongs to the set (11.52) holds then both null
hypothesis are rejected and the candidates are S1 and S1&S2. This case implies
that

{(b1, b2)|b1 ∈ {S1,S1&S2} ∧ b2 ∈ {NF,S2}} =
{(S1,NF), (S1&S2,NF), (S1,S2), (S1&S2,S2)} ⊆ I(∆) (11.55)

Since only the three discussed candidates can be obtained for any observation,
it follows that I(∆) is the union of the set in (11.54) and set in (11.55), i.e.,

I(∆) = {(S1,NF), (S2,NF), (S1&S2,NF), (S1,S2), (S1&S2,S2)} (11.56)

The analytical candidate implication matrix of I(∆) is

present necessary interpreted mode
mode NF S2 S1 S1&S2

NF X X X X
S2 X X X
S1 X X
S1&S2 X X

(11.57)

and the corresponding Hasse diagram is shown in Figure 11.3. A comparison
of Is(∆) and I(∆) reveals that

Is(∆) = I(∆) ∪ {(NF,S2)} (11.58)

This difference is marked with a bold “X” in (11.57).
Note that in the previous example the analytical isolability is a proper subset

of the structural isolability, i.e., I(∆) ⊂ Is(∆). From (11.26) and (11.27) we see
that if there is an observation such that only the null hypothesis of δ2 is rejected,
then (NF,S2) would be included in I(∆). However,

O(δ1) ⊂ O(δ2) (11.59)

implies that the null hypotheses of test δ1 is rejected when the null hypothesis
of test δ2 is rejected. Hence the tests have analytical constraints of which sets
of tests that can be invalidated. In the structural isolability these constraints
are not considered and this implies that the structural isolability can be more
optimistic than the analytical isolability.
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11.8 Sufficient Condition for Equality

In the previous example, it was shown that there exist a diagnosis systems
∆ such that Is(∆) , I(∆). In this section we present a sufficient condition for
equality between the structural and the analytical isolability. This condition is
based on the influence of faults. A behavioral mode influence a test δi if there
exists an observation z ∈ O(Mb) such that

Ti(z) ∈ Ri (11.60)

It has been shown in Section 2.2.1 that it is desirable to choseΦC
i

equal to the
fault influence of the test to obtain the strongest conclusions when H0

i
is rejected.

Therefore it is reasonable to compute exactly which faults that influence each
test. This can be done for example by analytical computations, by Monte Carlo-
simulations, or by measurement data from a faulty process. However, this will
not be the topic here. If ΦC

i
is equal to the fault influence then it will be shown

that it is straightforward to compute the analytical isolability of the diagnosis
system. First, we show that the analytical isolability is equal to the union of the
analytical isolabilities of each test under this condition.

Lemma 11.2. Given a diagnosis system ∆ where for each δi ∈ ∆, the set ΦC
i

is equal
to the set of behavioral modes that influences δi, it holds that

I(∆) =
⋃

δi∈∆
I({δi}) (11.61)

Proof. Lemma 11.1 implies that it remains to prove that
⋃

δi∈∆
I({δi}) ⊆ I(∆) (11.62)

This is shown by proving that for an arbitrary test δi ∈ ∆, it follows that

I({δi}) ⊆ I(∆) (11.63)

Let δ0 ∈ ∆ be an arbitrarily chosen test. If I({δ0}) = ∅, then (11.63) follows
trivially. If I({δ0}) , ∅, then let (b1, b2) be an arbitrary element in I({δ0}).

Since (b1, b2) ∈ I({δ0}), it follows from (11.40) that b1 ∈ ΦC
0 . From the definition

of fault influence and the fact that b1 ∈ ΦC
0 it follows that there exists a z = z0 ∈

O(Mb1 ) such that
z0 < O(δ0) (11.64)

From z0 ∈ O(Mb1 ) and the definition of diagnosis, it follows that b1 ∈ D(z0).
Only tests influenced by b1 can be rejected at z0, and for all such tests δi it holds
that b1 ∈ ΦC

i
. This and (2.20) imply that

b1 ∈ C(z0) (11.65)

Since (b1, b2) ∈ I({δ0}), it follows from (11.40) that b2 ∈ Φ0. For z0, it follows that
ΦC

0 ⊇ C(z0) according to (2.20). This and the fact that b2 ∈ Φ0 imply that

b2 < C(z0) (11.66)

Now, by combining (11.65) and (11.66), we get that (b1, b2) ∈ I({∆}). Since (b1, b2)
was arbitrarily chosen in I({δ0}), it follows that (11.63) holds. Since δ0 ∈ ∆ was
arbitrarily chosen, (11.62) follows and then also the theorem. �
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Next, we show that the structural and analytical isolability is equal under
this condition. Note that we do not need to assume that (11.48) holds, to obtain
the following result.

Theorem 11.3. Given a diagnosis system ∆ where for each δi ∈ ∆ the set ΦC
i

is equal
to the set of behavioral modes that influences δi, it follows that

I(∆) = Is(∆) (11.67)

Proof. Let δi be an arbitrarily chosen test in ∆. If there exist no observation such
that H0

i
is rejected, it follows that δi is influenced by no behavioral mode, i.e.,

ΦC
i
= ∅ and Φi = B. This gives according to (11.40) and (11.24) that

I({δi}) = Is({δi}) = ∅ (11.68)

If there exists an observation such that H0
i

is rejected, then (11.41) holds.
Hence, it follows from (11.68) and (11.41) that

I({δi}) = Is({δi}) (11.69)

for all δi ∈ ∆.
Now, Theorem 11.2 gives that

Is(∆) =
⋃

δi∈∆
Is({δi}) (11.70)

Since (11.69) holds for all δi ∈ ∆, it follows that
⋃

δi∈∆
Is({δi}) =

⋃

δi∈∆
I({δi}) (11.71)

The condition in Lemma 11.2 is fulfilled and it follows that
⋃

δi∈∆
I({δi}) = I(∆) (11.72)

The equalities (11.70)-(11.72) imply (11.67) and this completes the proof. �

Next this theorem will be illustrated.

Example 11.5
Consider Example 11.4. In (11.59), it was concluded that

O(MNF) ⊂ O(δ2) (11.73)

This means that δ2 is not influenced by NF and it should therefore be included
in Φ2, i.e.,

Φ2 = {NF,S2} (11.74)

to fulfill the condition in Theorem 11.3. To distinguish the modified test and the
resulting diagnosis system from the original test δ2 and the original diagnosis
system ∆, let the new test be denoted by δ′2 and let the new diagnosis system
be denoted by ∆′ = {δ1, δ

′
2}. Next the structural isolability of the new diagnosis



11.9. Test Selection Based on Isolability Analysis 227

system ∆′ will be computed by using (11.25). The structural isolability Is(δ1)
is (11.26). The structural isolability of Is(δ′2) is

Is(δ′2) = {(b1, b2)|b1 ∈ {S1,S1&S2} ∧ b2 ∈ {NF,S2}} =
= {(S1,NF), (S1&S2,NF), (S1,S2), (S1&S2,S2)} (11.75)

The corresponding expression to (11.28) is

Is(∆′) = Is(δ1) ∪ Is(δ′2) =
= {(S1,NF), (S2,NF), (S1&S2,NF), (S1,S2), (S1&S2,S2)} (11.76)

According to Theorem 11.3 we get that I(∆′) = Is(∆′). A comparison between
the two different structural isolability relations gives that

I(∆′) = Is(∆′) ⊂ Is(∆) (11.77)

In conclusion, the structural isolability is an upper bound for analytical
isolability. Equality is obtained when Φi is chosen as the largest possible set,
i.e., when all faults in ΦC

i
influence the corresponding test. If the exact set

of behavioral modes that influence each test is unknown then the following
principle can be used to get the best prediction of the analytical isolability. For
best prediction, the sets Φi should be chosen as the largest set of behavioral
modes that do not influence the corresponding tests.

11.9 Test Selection Based on Isolability Analysis

In this section, we will answer the four questions posed in Section 11.2 by using
the theoretical tools developed in this chapter. All these questions concern the
set of potential tests ∆a and this set can be obtained as follows.

Rejectable models can be found using structural analysis and tests can be
based on rejectable models. Given a rejectable model Mi, the test assumption
Φi = assump(Mi) is easily computed, but a test quantity Ti and a rejection region
Ri might be difficult and time-consuming to derive. Therefore we will only use
the test assumptions for selecting some of the potential tests. In this way, we
only need to derive test quantities and rejection regions for the selected tests.
The set of all possible tests δi is ∆a. Note once again that only the sets Φi are
explicitly given for each possible test in ∆a.

11.9.1 Necessary Condition for Desired Isolability

The first of the four questions is if it possible to obtain the desired isolability
Id using all possible tests in ∆a? By using only the sets Φi of the tests in ∆a,
the structural isolability Is(∆a) can be computed by using (11.25). It holds that
I(∆a) ⊆ Is(∆a), according to Theorem 11.1. If it holds that

Id ⊆ Is(∆a) (11.78)

then it is possible, but not sure, that the desired isolability can be obtained, i.e.,

Id ⊆ I(∆a) (11.79)
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11.9.2 Test Selection

The second question is if (11.78) is true, how is a minimum cardinality subset of
tests ∆ ⊆ ∆a selected such that the desired isolability is obtained? In this case, a
minimum cardinality subset ∆ of the potential tests in ∆a can be selected such
that

Id ⊆ Is(∆) (11.80)

This problem is the classical set covering optimization problem that is shown
to be NP-hard (Karp, 1972). Test quantities and rejection regions are derived
only for the selected tests in ∆. The set of faults that influence each test in ∆ is
evaluated. If the set of faults that influence the tests are ΦC

i
, then it follows that

Id ⊆ Is(∆) = I(∆) (11.81)

according to Theorem 11.3. This means that a diagnosis system ∆ with the
desired isolability has been derived.

If there exist some tests where the set of faults that influence the tests are
a proper subset of ΦC

i
respectively, then the sets ΦC

i
can be changed to the set

of faults that influence the corresponding test. This will be discussed more in
Section 12.5. Theorem 11.3 can then be used to compute I(∆) by using the new
sets Φi. If it turns out that

Id * I(∆) (11.82)

then the new setsΦi can be used for the tests in ∆ ⊆ ∆a and the selection of tests
in ∆a can be reconsidered. This can be summarized in the following design
procedure:

1. Select a minimum cardinality set ∆ ⊆ ∆a such that Id ⊆ Is(∆).

2. Compute test quantities and rejection region for the tests in ∆.

3. Evaluate the set of faults that influence each test in ∆.

4. If the fault influence is not equal to Φi for some test in ∆, then modify the
sets Φi for the tests in ∆a. If Id * Is(∆a), then the desired isolability cannot
be obtained. Else go back to 1.

5. If the fault influence is equal to Φi for all test in ∆, then ∆ is a diagnosis
system with the desired isolability.

The steps that might be difficult to perform is the second and third step.
However, by minimizing the number of selected tests, we also minimize the
test construction and evaluation work in these steps. By following the design
procedure, a diagnosis system with the desired isolability is obtained if and
only if it is possible to obtain the desired isolability with all potential tests in
∆a.

11.9.3 Computing Missing Isolability Properties

The third question is if the desired isolability cannot be obtained with∆a, which
isolability properties are missing? If (11.78) does not hold, i.e.,

Id * Is(∆a) (11.83)
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then the possible tests ∆a have not the desired isolability. Missing isolability
properties are given by

Id\I(∆a) (11.84)

Since it holds that
Id\Is(∆a) ⊆ Id\I(∆a) (11.85)

the set Id\Is(∆) gives some of the missing isolability properties.

11.9.4 Obtaining Maximum Isolability

The fourth and final question was how a small subset ∆ ⊆ ∆a of tests can be
selected with the maximum isolability? One solution to this problem is the
trivial solution ∆ = ∆a. There might exist solutions with less number of tests
and a design procedure to find one such solution is proposed next.

The design procedure will be based on the procedure presented in Sec-
tion 11.9.2. By using that procedure, a diagnosis system with the maximum
isolability is obtained if the following modifications are done. The desired
isolability is chosen as the structural isolability of ∆a. Furthermore, if the fault
influence of some test is modified in step (4) such that the structural isolability
Is(∆a) is changed, than instead of terminating we go back to step (1) and change
the desired isolability to the new structural isolability. These modifications
leads to the following procedure.

In the first step, the set ∆ is selected such that the maximum structural
isolability is obtained, i.e.,

Is(∆) = Is(∆a) (11.86)

The second and third steps are done as before. The fourth step is reformulated
as follows. IfΦi is not equal to the fault influence for some test in∆, then modify
Φi in accordance with the computed fault influence and go back to step 1. The
result of the fifth step is in this case a diagnosis system with the maximum
isolability and this can be realized as described next. Since the set of faults that
influence each test is equal to ΦC

i
it follows that

I(∆) = Is(∆) (11.87)

This, Theorem 11.1 and (11.86) imply

I(∆a) ⊆ Is(∆a) = Is(∆) = I(∆) (11.88)

i.e., no additional test in ∆a can improve the isolability of ∆.
A difference between the procedure in Section 11.9.2 and this procedure is

Step 4, where the condition Id * Is(∆a) has no correspondence when computing
a diagnosis system with maximum isolability. This means that if all steps can
be performed, the proposed design procedure will always produce a diagnosis
system with the maximum isolability.

The design procedure presented here can also be used if all of the desired
isolability properties can not be obtained. Then it is reasonable to find a set
∆ ⊆ ∆a that maximizes the set Id ∩ I(∆). Such diagnosis system is obtained if
Id ∩ Is(∆) is used instead of Is(∆).
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11.9.5 Example

Finally an example will show how desired isolability is defined and how con-
clusions are drawn using structural analysis applied to a diagnosis system.

Example 11.6
Consider the electrical circuit in Example 6.9. There are 12 MSO sets in this
model and these are equal to the 12 MO sets given in (6.66). Assume that we
consider one possible test for each MSO set. From Theorem 6.8 we get that
the fault influence of each test is Φi = assump(Mi). This and Theorem 11.3
implies that the analytical isolability is equal to the structural isolability. The
assumptions for the MSO sets Mi are

i Mi Φi = assump(Mi)
1 {1, 2, 3, 4, 6} φ(R1 = NF ∧ L2 = NF ∧ P = NF ∧ S2 = NF)
2 {1, 2, 3, 5, 6} φ(R1 = NF ∧ L2 = NF ∧ S1 = NF ∧ S2 = NF)
3 {1, 2, 3, 6, 7} φ(R1 = NF ∧ L2 = NF ∧ S2 = NF ∧ S3 = NF)
4 {1, 2, 4, 6, 7} φ(R1 = NF ∧ P = NF ∧ S2 = NF ∧ S3 = NF)
5 {1, 2, 5, 6, 7} φ(R1 = NF ∧ S1 = NF ∧ S2 = NF ∧ S3 = NF)
6 {3, 4, 7} φ(L2 = NF ∧ P = NF ∧ S3 = NF)
7 {3, 5, 7} φ(L2 = NF ∧ S1 = NF ∧ S3 = NF)
8 {4, 5} φ(P = NF ∧ S1 = NF)
9 {1, 2, 3, 6, 8} φ(R1 = NF ∧ L2 = NF ∧ S2 = NF ∧ P = F)
10 {1, 2, 6, 7, 8} φ(R1 = NF ∧ S2 = NF ∧ S3 = NF ∧ P = F)
11 {3, 7, 8} φ(L2 = NF ∧ S3 = NF ∧ P = F)
12 {5, 8} φ(S1 = NF ∧ P = F)

(11.89)

Let the desired isolability Id be that each single fault should be detectable
and isolable from any other single fault. If the set of single faults is denoted by
Bs = {R1,L2,P,S1,S2,S3}, then the desired isolability can be written as

Id = {(b,NF)|b ∈ Bs} ∪ {(b1, b2) ∈ Bs × Bs|b1 , b2} (11.90)

Since (11.67) in Theorem 11.3 holds, the analytical isolability can be com-
puted by using (11.25). The result of these computations is showed in Fig-
ure 11.4 as the part of P(∆a) restricted to single faults and the no fault mode.
Note that there is no edge between {P} and NF, i.e., NF is isolable from P. In the
figure, it can be seen that the tests ∆a have not the capability of distinguishing
the faults R1 and S2 or more formally that

Id \ I(∆a) = {(R1,S2), (S2,R1)} (11.91)

Since the desired isolability cannot be obtained, we will find a diagnosis system
with as many desired isolability properties as possible, i.e., a ∆ ⊆ ∆a such that

Id ∩ I(∆) = Id ∩ I(∆a) (11.92)

One example of a minimum cardinality set of tests with this property is ∆ =
{δ1, δ5, δ6, δ7, δ8}. Note that this diagnosis system is not sound with respect to
the behavioral mode P. This can be seen for example by noting that no test in
∆ uses the fault model in equation 8. Hence there are observations such that P
is a candidate but not a diagnosis.
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{P}

{NF}

{R1,S2} {L2} {S1} {S3}

Figure 11.4: Hasse diagram of part of P(∆a).

11.10 Conclusions

A design procedure for test selection based on isolability properties has been
proposed. Given a large set of potential tests, a small set of tests is selected with
a desired isolability or the best possible isolability. Only for the selected tests,
test quantities and rejection regions have to be derived. This is a big advantage
since the number of potential tests can be large and to derive a test quantities for
each test might be difficult. Since the test quantities of the tests are not known,
the selection has been based on the structural isolability. It has been shown
in Theorem 11.1 that the structural isolability is a necessary condition for the
analytical isolability. This means that analytical isolability of the selected tests
might be worse than predicted with the structural isolability. It has been shown
in Theorem 11.3 that equality between structural and analytical isolability holds
if for each selected test the set ΦC

i
is equal to the set of faults that influence the

test. Hence by computing which faults that influence each selected test, it can
be determined if the desired or the best possible isolability has been obtained.
Finally, a design procedure that uses these ideas to find a test selection with for
example the desired isolability has been given in Section 11.9.
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M   A

In the previous chapter we analyzed the fault isolability of a set of tests and a
procedure for test selection was described. In this chapter, the fault isolability
of a diagnosis model is investigated. Isolability analysis of diagnosis models
can be used for test selection and also for other purposes. In the development
of processes, different design decisions are taken, e.g. how different parts
are connected, which actuators to use, and which sensors to use. All these
design decisions may influence the isolability possibilities. In addition, when
designing the diagnosis system, there is a choice of different fault modeling
strategies and which diagnosis tests to include. As a guidance when taking
these design decisions, it is desirable to know how different design choices
affect the isolability possibilities and this can be evaluated by studying the
isolability of diagnosis models.

To find the isolability of a given model of a process is a difficult problem
in general since it is related to the problem of solving large systems of non-
linear differential equations. Here we will present two approaches to attack
the problem. Both approaches use a structural model of a process as input and
compute an isolability prediction.

In the first approach the prediction of the isolability is exact under some
conditions but in general only an approximation. In the second approach we
compute faults that are not isolable from other faults, i.e., an upper bound of the
isolability. Since only a structural model is used, no precise analytical equations
are needed. This implies that the algorithms can be used early in the design
phase and thus serve as a guidance when taking different design decisions.
Hence by using efficient graph theoretical methods it is possible to exclude
design alternatives with insufficient isolability. However, if we need to know
exactly which faults that are isolable from others, the isolability prediction also
helps braking down the large problem into smaller and easier problems to
analyze. We will also show that the isolability prediction in combination with
the theory for test selection presented in the previous chapter can be used in

233
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the construction of a diagnosis system with the best possible isolability.
Isolability analysis has previously been studied in (Dressler and Struss,

2003), but only for qualitative models. Furthermore, a structural method
for computing the isolability of different sensor configurations was presented
in (Travé-Massuyès et al., 2003). This and other earlier works using structural
models for diagnosis, e.g. (Pulido and Alonso, 2002), (Dustegör et al., 2006;
Frisk et al., 2003), (Cassar and Staroswiecki, 1997), and (Blanke et al., 2003),
have imposed analytical assumptions on the systems, e.g. that only subsystem
with more equations than unknowns, i.e., only over-constrained subsystems,
can be invalidated and therefore contribute to detection and isolation. This
assumption is also made in the first approach that will be presented here.
However these assumptions are difficult to verify in most larger models. If
these assumptions are not satisfied, faults that are predicted to be isolable from
other faults may be not isolable and faults that are predicted not to be isolable
from other faults might be isolable. In contrast, the second approach that will
be presented in this chapter does not require any analytical assumptions.

In Section 12.1 the central concepts detectability and isolability are recalled.
Then we relate these concepts to structural properties of the model through
the new concept of checking model. In the sections 12.2 and 12.3, we describe
two algorithms to compute checking models by using a structural model. By
combining the algorithms for finding checking models with the results relating
checking models and isolability, algorithms for isolability prediction are devel-
oped in Section 12.4. An example shows how the obtained isolability prediction
can be interpreted. It will be shown that for different equivalent diagnosis mod-
els, different isolability predictions can be obtained with the methods proposed
here. To put the diagnosis model on a form suitable for these isolability pre-
dictions, modeling guidelines are presented in Section 12.5. Furthermore, in
Section 12.6 illustrative examples show how isolability prediction can be used
to identify additional fault modeling, support sensor selection to meet given
isolability requirements. In Section 12.7 a design procedure for constructing a
diagnosis system with the maximum possible isolability is proposed. Finally,
the conclusions are drawn in Section 12.8.

12.1 Isolability of a Diagnosis Model

In this section, we will formally define and illustrate definitions concerning
the fault isolation capability of a diagnosis model. We start to define two such
properties of a diagnosis model.

Definition 12.1 ( Isolable in a Diagnosis Model). A system behavioral-mode bi is
isolable from another system behavioral-mode b j in a diagnosis model, if there exists
some observation z ∈ Z such that bi is a diagnosis but b j is not.

Definition 12.2 ( Detectable in a Diagnosis Model). A fault mode bi is detectable
in a diagnosis model if bi is isolable from the no-fault system behavioral mode in the
diagnosis model.

It could be argued that the proposed definitions are relatively weak in the
following sense. For example a fault mode is detectable if there exists only one
single observation that distinguish the fault from the no-fault mode. However,
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by using this relatively weak definition, a non-detectable fault would also be
non-detectable with any stronger definition. Furthermore, for linear systems
the detectability definitions in (Nyberg, 2002b) and (Nyberg and Frisk, 2006)
are equivalent to the detectability definition proposed here.

To summarize which behavioral modes that are isolable from others and
which faults that are detectable in a diagnosis model, the following binary
relation will be used.

Definition 12.3 (Analytical Isolability of a Diagnosis Model). Given a diagnosis
model M, a binary relation I(M) on B × B is the analytical isolability of the
diagnosis modelM if

I(M) = {(b1, b2)|∃z ∈ Z :
(

b1 ∈ D(z) ∧ b2 < D(z)
)

} (12.1)

The interpretation of (b1, b2) ∈ I(M) is that b1 is isolable from b2 with the
diagnosis modelM. If (b,NF) ∈ I(∆) for a fault mode b, then it means that b is
detectable with the diagnosis modelM. For pedagogical reasons, we will first
investigate how detectability can be predicted, and then generalize the results
to the more general problem of how to do isolability predictions.

12.1.1 Predicting Detectability

In this section we will describe how detectability information can be derived
without knowing the exact analytical equations of a model like the one in
Table 12.2. It can be realized that b is not detectable if MNF ⊆ Mb. However
detectability analysis by this naive idea is not particularly powerful. Here a
refinement of this idea will be presented.

Consider first the no-fault system behavioral-model. As in (Blanke et al.,
2003), we say that a fault can violate some equations in the no-fault system-
behavioral model if some equations in no-fault system-behavioral model can
be false for variable values consistent with the behavioral model of the fault.
This will be generalized to models containing fault models and for generality we
will talk about system behavioral modes instead of faults in the next definition.

Definition 12.4 (Violate). A system behavioral mode b can violate equation e if

∃(x, z) ∈ X ×Z : (Mb(x, z) ∧ ¬e(x, z)) (12.2)

Note that no equation in Mb can be violated by b.

Example 12.1
Throughout the chapter, we will exemplify concepts and techniques on the
water-tank system presented in Example 2.1 and depicted in Figure 2.1. A
model of the process in shown in Table 2.2. This model is rewritten, according
some modeling guidelines presented in Section 12.5, to a form that is suitable
for the isolability analysis that will be presented. The resulting model is shown
in Table 12.1. For this example, we choose to consider derivatives as sepa-
rate independent variables to illustrate this structural representation. When
doing this, differentiation of model equations can be needed according to the
discussion in Section 8.5. We will use a differentiated version of the model in
Table 12.1 that is shown in Table 12.2. The order of differentiations of each
equation is determined by an algorithm described in (Krysander and Nyberg,
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Table 12.1: A reformulation of the model in Table 2.2

Assumption Equation Expression
Pump

P = NF e1 u = q1
Tank

e2 ẇ = q1 − q2
e3 w = (1 − fc)q2

2
T = NF e4 fc = 0

ė4 ˙fc = 0
Water-level sensor

W = NF e5 yw = w
Flow sensor

e6 yq = q2 + fyq

Q = NF e7 fyq = 0
ė7 ˙fyq = 0

2002a) and (Krysander, 2003) such that all consistency relations including u,
yw, ẏw, yq, and ẏq can be derived from the differentiated model. The order of
derivatives to include are inputs to the algorithm.

For the model in Table 12.2, the bias fault mode B of the outflow sensor Q can
violate e7 in the no-fault system behavioral-model MNF, because for example
the constant signal fyq ≡ 1 is consistent with the behavioral model MQ but not
with e7. This means that the fault mode Q might be detectable.

Even if a fault can violate an equation in a model, it is not sure that the fault
is detectable as the next small illustrative example shows.

Example 12.2
Consider a no-fault behavioral model MNF defined as

Equation Expression
e1 u = x1
e2 y = x1
e3 0 = x1 + x2

(12.3)

where u and y are known variables and x1 and x2 are unknowns. The observa-
tion set of MNF is

O(MNF) = {(u, y) ∈ R2|u = y} (12.4)

A fault violating either e1 or e2 is detectable, because u , y if either e1 or e2 is
violated, i.e., (u, y) does not belong to the observation set (12.4). A fault which
only violates e3 cannot be detected because a violation of e3 leads to different
values of x2 but u = y still holds. A difference between the first two equations
where a fault can be detected and e3 where a fault can not be detected is that
the first two equations define the observation set (12.4) and e3 is not needed to
define (12.4). This is in the linear case equal to that M∗

NF
= {e1, e2} is the PO part

of MNF = {e1, e2, e3}.
As in (Blanke et al., 2003) we say that e3 is non-monitorable. The concept of

monitorable will be generalized from the definition in (Blanke et al., 2003) to
models containing fault models as follows:
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Table 12.2: A differentiated version of the model in Table 12.1.

Assumption Equation Expression
Pump

P = NF e1 u = q1
Tank

e2 ẇ = q1 − q2
e3 w = (1 − fc)q2

2
ė3 ẇ = 2 (1 − fc) q2q̇2 − ˙fc q2

2
T = NF e4 fc = 0

ė4 ˙fc = 0
Water-level sensor

W = NF e5 yw = w
W = NF ė5 ẏw = ẇ

Flow sensor
e6 yq = q2 + fyq

ė6 ẏq = q̇2 + ˙fyq

Q = NF e7 fyq = 0
ė7 ˙fyq = 0

Definition 12.5 (Monitorable). Given a set of equations M, an equation e ∈ M is
monitorable in M if there exists a model M′ ⊆M such that

O(M′) ⊂ O(M′ \ {e}) (12.5)

An equation e ∈M that is not monitorable in M is said to be non-monitorable
in M and fulfills

O(M′) = O(M′ \ {e}) (12.6)

for all M′ ⊆ M. For the model (12.3), equation e1 and e2 are monitorable
equations and e3 is non-monitorable. For a linear model M expressed as H(p)x+
L(p)z = 0 where [H L] has full row-rank an equation e ∈ M is monitorable if
and only if e belongs to the PO part. The following definition will be used to
formalize in which equations violations can be detected.

Definition 12.6 (Checking Model of a Behavioral Mode). A model Cb is a check-
ing model of b if Cb is a subset of the behavioral model Mb and

O(Cb) = O(Mb) (12.7)

Note that behavioral models trivially are checking models. As examples of
checking models, the two checking models of NF in (12.3) are the sets {e1, e2} and
{e1, e2, e3}. Note also that checking models do not need to have more equations
than unknowns. For example consider the behavioral model {y = x2} where y
is assumed to be known and x is assumed to be unknown. This model is an
example of such checking model.

A detectable fault violates at least one equation in every checking model
CNF for the no-fault behavioral mode. This means for the model in (12.3) that a
detectable fault must violate e1 or e2, because {e1, e2} is a checking model of NF.
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MNF

CNFMb

Figure 12.1: Venn-diagram representation of equation sets.

An example of the equation sets MNF, CNF, and Mb involved in the discussion
about detectability of b is shown in Figure 12.1 as a Venn diagram. The rectangle
represents the set of all equations in the no-fault behavioral model MNF, i.e.,
{e1, e2, e3} in the small example. The right circle contains a checking model
CNF of the no-fault behavioral mode, e.g., {e1, e2} in the example. The left circle
contains the behavioral model Mb for some behavioral mode b. The equations in
MNF \Mb are the equations that might be violated by b. However, among these
equations, it is only the equations in the grey-shaded area that render detection
of behavioral mode b possible. Hence if the grey-shaded area is empty, then b
is not detectable.

Example 12.3
Consider the model MNF = {e1, e2, e3} in (12.3). If Mb = {e1, e2}, then b is not
detectable, because both e1 and e2 hold in b.

The next theorem formalizes the result of the discussion, i.e., how checking
models will be used for detectability analysis.

Theorem 12.1. Given a diagnosis model M, a system behavioral-mode b is not de-
tectable in M, i.e., (b,NF) < I(M), if there exists a checking model CNF of NF such
that CNF ⊆Mb.

To prove this theorem, the following lemma will be used.

Lemma 12.1. Given a diagnosis modelM, a system behavioral-mode bi is not isolable
from a system behavioral mode b j inM, i.e., (bi, b j) < I(M), if and only if

O(Mbi
) ⊆ O(Mb j

) (12.8)

Proof. The mode bi is not isolable from b j if and only if whenever bi is a diagnosis
b j is a diagnosis too. This can according to the definition of diagnosis be written
as z ∈ O(Mbi

) implies that z ∈ O(Mb j
). This implication is equivalent to (12.8)

which completes the proof. �

Now, we are ready to prove Theorem 12.1.

Proof. From CNF ⊆Mb it follows that

O(Mb) ⊆ O(CNF)

This and Definition 12.6 imply that

O(Mb) ⊆ O(MNF) (12.9)
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since CNF is a checking model of NF. Equation (12.9) and Lemma 12.1 imply
that b is not isolable from NF which means that b is not detectable. �

By finding a checking model of behavioral mode NF such that CNF ⊆ Mb,
it follows from Theorem 12.1 that b is not detectable. How to find checking
models will be described in Section 12.2 and Section 12.3.

Example 12.4
For the water-tank process with the model in Table 2.2, all equations in the no-
fault behavioral model are needed to define the observation set for the no-fault
behavioral-model. This is not trivial to determine but true, i.e., the checking
model for no-fault is equal to the no-fault behavioral model. It holds that

CNF *Mb (12.10)

for any single fault behavioral mode b and this implies according to Theo-
rem 12.1 that no single fault can be said to be non-detectable, i.e., all single
faults might be detectable.

12.1.2 Predicting Isolability

Since detectability is a special case of isolability, the results of Theorem 12.1 con-
cerning detectability can be generalized to isolability as follows. A behavioral
mode bi, that is isolable from a behavioral mode b j, violates some equations in a
checking model Cb j

of the behavioral mode b j. Figure 12.1 could represent this
situation as well if NF is changed to b j and b to bi. Then it can be seen that if all
equations in a checking model Cb j

hold in behavioral mode bi then it follows
that bi is not isolable from b j. Hence by computing a checking model of Cb j

, it
can be concluded which behavioral modes that are not isolable from b j.

Theorem 12.2. Given a diagnosis modelM, a system behavioral-mode bi is not isolable
from a system behavioral mode b j inM, i.e., (bi, b j) < I(M), if there exists a checking
model Cb j

of b j such that
Cb j
⊆Mbi

(12.11)

Proof. Inclusion (12.11) implies that

O(Mbi
) ⊆ O(Cb j

)

which according to Definition 12.6 implies that

O(Mbi
) ⊆ O(Mb j

)

Hence bi is not isolable from b j according to Lemma 12.1. �

In conclusion, by computing a checking model for each system behavioral-
mode, Theorem 12.1 and Theorem 12.2 give an explicit method to compute if a
faulty behavioral mode is not detectable and if a behavioral mode is not isolable
from another behavioral mode. To summarize the isolability prediction, i.e.,
which behavioral modes that might be isolable from others and which faults
that might be detectable in a diagnosis model according to the set of checking
models, the following notation will be used. Given a diagnosis modelM, and
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a checking model Cbi
⊆ Mbi

for each behavioral mode bi ∈ B, a binary relation
Ip(〈Cb1 , . . . ,Cbn

〉) on B × B is an isolability prediction of I(M) if

Ip(〈Cb1 , . . . ,Cbn
〉) = {(bi, b j) ∈ B × B|Cb j

*Mbi
} (12.12)

This expression can be used for computing the isolability prediction given
checking models for all behavioral modes. From Theorem 12.2, the following
result about the relation between an isolability prediction of I(M) and the
isolability of a diagnosis model I(M) is immediate.

Corollary 12.1. IfM is a diagnosis model and Cbi
⊆ Mbi

is checking model for each
behavioral mode bi ∈ B, then

I(M) ⊆ Ip(〈Cb1 , . . . ,Cbn
〉) (12.13)

Proof. An equivalent formulation of (12.13) is

Ip(〈Cb1 , . . . ,Cbn
〉)C ⊆ I(M)C (12.14)

For an arbitrary pair (bi, b j) ∈ Ip(〈Cb1 , . . . ,Cbn
〉)C, it holds according to (12.12) that

Cb j
⊆Mbi

. This and Theorem 12.2 implies that (bi, b j) ∈ I(M)C, which completes
the proof. �

This corollary states that the isolability prediction is an upper bound for the
isolability of the diagnosis model.

12.1.3 Isolability and Checking Models

There might exist several checking models of a system behavioral-mode b j

as seen previously, and depending on which checking models that are used
different isolability predictions Ip(〈Cb1 , . . . ,Cbn

〉) may be obtained. In this sec-
tion, we investigate which checking models that gives a least upper bound
Ip(〈Cb1 , . . . ,Cbn

〉) of I(M). Assume that one checking model C1
b j

is a proper

subset of another checking model C2
b j

, i.e.,

C1
b j
⊂ C2

b j

If it holds that
C2

b j
⊆Mbi

then
C1

b j
⊆Mbi

but the opposite does not hold. This and Theorem 12.2 imply that if checking
model C2

b j
implies that bi is not isolable from b j then C1

b j
does that too. Now

assume that
C1

b j
⊂Mbi

⊂ C2
b j

By using C1
b j

as checking model for b j, it is concluded from Theorem 12.2 that

bi is not isolable from b j. However if C2
b j

is used as checking model then no
conclusion can be drawn. Hence the strongest conclusion is given by the mini-
mal checking models. There might exist several minimal checking models of a
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behavioral mode in the general case. For example a linear model with linearly
dependent equations may have several minimal checking models. However,
the methods, that we later propose, for computing checking models will output
a single checking model of each behavioral mode. Therefore, we will for conve-
nience only discuss the case when using one checking model of each behavioral
mode. The extension to use several minimal checking models of a behavioral
mode can be done as follows. If C1

b1
and C2

b1
are two checking models of b1, then

an isolability prediction based on both these models is

Ip(〈C1
b1
,Cb2 , . . . ,Cbn

〉) ∩ Ip(〈C2
b1
,Cb2 , . . . ,Cbn

〉) (12.15)

In conclusion, by finding smaller checking models than Mb more faults
can be concluded not to be isolable from others, i.e., the isolability prediction
becomes better. In general, for two different choices of checking models

〈C1
b1
, . . . ,C1

bn
〉 (12.16)

and
〈C2

b1
, . . . ,C2

bn
〉 (12.17)

where
C1

bi
⊆ C2

bi
(12.18)

for all behavioral modes bi ∈ B, it follows that

I(M) ⊆ Ip(〈C1
b1
, . . . ,C1

bn
〉) ⊆ Ip(〈C2

b1
, . . . ,C2

bn
〉) (12.19)

The minimal checking models of a system behavioral-mode are unknown
and depends on the analytical expressions of the equations in the model. A
brute-force approach to compute the minimal checking models would be to
compute observation sets for subsets of equations and compare it to the obser-
vation set of the behavioral model. Even for models of the size and complexity
like the water-tank example, automatic computation of observation sets by
using computer algebra, like for example Mathematica or Maple, is computa-
tionally demanding. For a large industrial example this approach would be
computationally intractable. In the next two sections, two different structural
methods will be presented to compute the smallest checking model of b.

12.2 Finding Checking Models by Using PSO Parts

The first method will be to use the PSO part of Mb as checking model of b. To
motivate this approach, a linear model is first considered.

Theorem 12.3. Given a structured linear behavioral model Mb, it follows that M+
b

is
the only minimal checking model of b.

Proof. Let the set Mb of equations be written as
[

H11(p) H12(p)
0 H22(p)

] [

x1
x2

]

+

[

L1(p)
L2(p)

]

z = 0 (12.20)

where the first row corresponds to (Mb \M+
b

) and the second row to the equa-
tions M+

b
. From the definition of Dulmage-Mendelsohns decomposition in Sec-

tion 9.1.2, it follows that H11(p) has full structural row rank. Since the model is
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structured, the matrix H11(p) is a structured matrix. This implies that H11(p) has
full row-rank. Since H11(p) has full row rank, it follows that NH[:,Mb \M+

b
] = 0.

Then we get that

O(M+
b ) = {z ∈ Z|NH22 (p)L2(p)z = 0} = {z ∈ Z|NH(p)L(p)z = 0} = O(Mb) (12.21)

Hence M+
b

is a checking model of b.
Now, we will prove that M+

b
is a minimal checking model. Since M+

b
is a

PSO set and these equations are structured, it follows from Theorem 8.6 that
M+

b
is a PO set. By definition, this implies that ϕ (E) < ϕ (M+

b
) for any proper

subset E ⊂ M+
b

. This means that O(M+
b

) ⊂ O(E) and by using also that (12.21) it
follows that E is not a checking model of b. Hence M+

b
is a minimal checking

model.
Finally, we address the uniqueness. Let M be an arbitrary minimal checking

model of b. Since H11 has full row-rank, it follows that M ∩ (Mb \M+
b

) = ∅ or
equivalently that M ⊆M+

b
. From the minimality of M+

b
, it follows that M =M+

b
.

Since M was an arbitrary minimal checking model, it follows that M+
b

is the
only minimal checking model of b and this completes the proof. �

As a consequence of Theorem 12.3, we can predict isolability according to
the following corollary.

Corollary 12.2. Given a diagnosis modelM where the model equations M are struc-
tured and linear, it follows that bi is not isolable from b j inM if

M+
b j
⊆Mbi

(12.22)

Proof. This corollary follows directly from Theorem 12.2 and Theorem 12.3 �

Theorem 12.3 states that the minimal checking model of a behavioral mode
b is for a generic linear model Mb equal to the PSO part of Mb. Therefore it is
reasonable to use the PSO part of the behavioral model as the checking model,
i.e., Cb = M+

b
. Next, we will show for linear structured systems under just

slightly stronger conditions than in Theorem 12.3 that the isolability prediction
is exactly equal to the true isolability. Since it is not possible to derive that
a behavioral mode is isolable from another behavioral mode by using Theo-
rem 12.2, we will show this by using other methods in the next lemma and
theorem.

Lemma 12.2. Let M be a set of linear dynamic equations

H(p)x + L(p)z = 0 (12.23)

such that [H L] has full row-rank. If M1 ⊆M is a PO set and M2 ⊆M is an arbitrary
set, it follows that

M1 ⊆M2 (12.24)

if and only if
O(M2) ⊆ O(M1) (12.25)

Proof. The only if-direction is trivially true. Hence it remains to prove the
if-direction. Assume that (12.25) is true. This is according to Theorem 6.2
equivalent to that

N2Lz = 0 (12.26)
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implies
N1Lz = 0 (12.27)

where Ni = NH[Mi]. This is true if and only if there exists a matrix U of suitable
dimension such that

UN2L = N1L (12.28)

Since N1 and N2 belong to the left null space of H, it follows that (12.28) is
equivalent to

(UN2 −N1)[H L] = 0 (12.29)

Since [H L] has full row-rank, we get equivalence between (12.29) and

UN2 = N1 (12.30)

From the definition of N2, it follows that N2[:,M \M2] = 0. This and (12.30)
imply that

N1[:,M \M2] = UN2[:,M \M2] = 0 (12.31)

Since M1 is a PO set, it follows from Corollary 3.1, which is true also for the
dynamic case, that M1 is the set non-zero columns in N1. This and N1[:,M\M2] =
0, imply that M1 ∩ (M \M2) = ∅, or equivalently that (12.24) holds. �

In the following theorem, we will used the notation introduced in Section 8.3
of a bipartite graph G(M,X ∪Z) with equations M and variables X ∪Z as node
sets.

Theorem 12.4. LetM be a diagnosis model where the model equations M on the form

H(p)x + L(p)z = 0 (12.32)

are structured and G(M,X ∪ Z) has a complete matching of M into X ∪ Z. Then it
holds that bi is isolable from b j inM if and only if

M+
b j
*Mbi

(12.33)

Proof. Since M is a structured model, it follows from Theorem 12.3 that M+
b j

is a
PO set and a minimal checking model of b j, i.e., O(M+

bi
) = O(Mbi

). Furthermore,
since G(M,X ∪ Z) has a complete matching of M into X ∪ Z and M is struc-
tured, it follows that [H L] has full row rank. This means that the condition in
Lemma 12.2 is fulfilled. From Lemma 12.2 and the fact that M+

b j
is a PO set, it

follows that (12.33) is equivalent to

O(Mbi
) * O(M+

b j
) = O(Mb j

) (12.34)

This is by definition equivalent to that bi is isolable from b j and the theorem
follows. �

Note that Mbi
in (12.33) can be replaced by M+

bi
. This theorem will next

be illustrated by an example. Before we exemplify this, note that a diagnosis
implication partial order P(M) can be defined based on I(M) in a similar way to
the partial orders defined in Definition 11.5.

Example 12.5
Consider the electrical circuit in Example 3.17. In Figure 3.1, all PO subsets
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of the model (3.95) are shown. The PSO sets are exactly equal to the PO sets
in this example. For each behavioral mode b, the behavioral mode is written
directly below its checking model defined as Cb = M+

b
in Figure 3.1. If this

Hasse-diagram is flipped horizontally, the obtained Hasse-diagram shows the
diagnosis implication partial order that corresponds to the isolability of the
diagnosis model. The equivalence classes are the sets of behavioral modes
that correspond to each PSO set. One example of an equivalence class is
{R1,S2,R1&S2} and these behavioral modes are not isolable from each other.
Another interpretation of the partial order is that NF is isolable from exactly all
behavioral modes where the battery is faulty.

Hence, this example shows that the isolability of the diagnosis model can
exactly be computed by using only structural methods.

The method to use the PSO part of a behavioral model as the checking
model can be applied also for non-linear models. The PSO part M+

b
is easily

computed for any model Mb. However, a disadvantage by using the PSO part
as the checking model is that there exist behavioral models Mb j

where M+
b j

is
not a checking model of b j. If this is the case and M+

b j
⊆ Mbi

, then bi might
be isolable from b j because the condition of Theorem 12.2 is not fulfilled. A
non-linear example of this will be given later in Example 12.12. In (Blanke et al.,
2003; Frisk et al., 2003; Pulido and Alonso, 2002) analytical assumptions imply
that M+

b
is a checking model of b, but the assumptions may be difficult to verify.

12.3 Finding Checking Models by Removing Equa-

tions

A problem with the first approach for computing checking models is that it can
be difficult to verify that M+

b
is a checking model of b. In this section a second

approach for finding checking models will be presented. An advantage with
this approach is that no difficult analytical assumptions need to be fulfilled to
find checking models. To do this, we propose to compute the smallest checking
model of b, that can be obtained with an alternative structural method to be
presented in Section 12.3.3 and not requiring an exact determination of all
minimal checking models of b. The checking model of b obtained with the
structural method to be presented in Section 12.3.3 will in the continuation
be called the smallest checking model for b. The strategy to find the smallest
checking model of b will be to start with the corresponding behavioral model
and remove equations which are not needed to define the observation set for
the behavioral model, i.e., to remove non-monitorable equations.

12.3.1 Excluding Non-monitorable Equations

Remember that if X is any set of variables, then x will denote the vector of the
variables in X. Consider a set of equations M with unknown variables X and
known variables Z. Let X be partitioned into X1 and X2 and let the domain of
xi be denoted by Xi. If the set M fulfills

∀z ∈ Z∀x2 ∈ X2∃x1 ∈ X1 : M(x1, x2, z) (12.35)
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then the set M of equations is said to be X1-satisfiable. Next an example of this
notation is given.

Example 12.6
Consider the model in Table 12.2. For example, let M = {e3} and X1 = {w}. For
arbitrary values of fc and q2 there exists a value w = (1 − fc)q2

2 such that e3 is
true, i.e., {e3} is {w}-satisfiable.

The following theorem describes how the satisfiable notion can be used to
exclude non-monitorable equations from checking models.

Theorem 12.5. If a model M ⊆Mb is X1-satisfiable and no variable in X1 is contained
in Mb\M, then Mb\M is a checking model of b.

Proof. Let Mb be a behavioral model with Z as the set of its known variables
and with X1 ∪ X2 as a partition of the set of its unknowns. Let M̄ = Mb\M.
Since the variables in X1 are not included in M̄ the observation set O(Mb) is

O(Mb) = {z ∈ Z|∃x1 ∈ X1, x2 ∈ X2 : (M̄(x1, z) ∧M(x1, x2, z))} (12.36)

The set in (12.36) can be expressed as

{z ∈ Z|∃x2 ∈ X2 : (M̄(x2, z) ∧ ∃x1 ∈ X1 : M(x1, x2, z))} =
{z ∈ Z|∃x2 ∈ X2 : M̄(x2, z)} (12.37)

where the equality holds since M is X1-satisfiable. The last set is equal to O(M̄)
which implies that

O(Mb) = O(M̄) (12.38)

This and Definition 12.6 implies that M̄ = Mb \M is a checking model for b
which was to be proved. �

An alternative formulation of Theorem 12.5 is that if M is X1-satisfiable and
no variable in X1 is contained in Mb\M, then M is non-monitorable. This means
that a checking model smaller than the behavioral model can be computed by
removing equation set M from the behavioral model Mb.

Example 12.7
To give an example of how this is done, consider the behavioral mode W for
the water-tank example. Since {e3} is {w}-satisfiable and e3 is the only equation
in MW where w is included, MW\{e3} is a checking model of W according to
Theorem 12.5. Hence, a smaller checking model than MW has been identified.

This example shows that structural information together with satisfiability
information is sufficient for identifying non-monitorable equations, and then a
smaller checking model can be identified.

12.3.2 Structural Method

A structural method will be used for determining satisfiability. In fact, non-
monitorable equation sets in a behavioral model can be identified by using
only structural information. The structure that will be used as input to the
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method includes additional information compared to the structural represen-
tations described in Section 8.5, and this will be explained by an example. The
structure of the behavioral mode MPW in the water-tank model in Table 12.2 is
represented as a biadjacency matrix in Table 12.3. An “X” or an “O” in row e
and column x means, as before, that x is included in e. An entry corresponding
to equation e and variable x is marked “X” if {e} is {x}-satisfiable and otherwise
“O”. Insights of the physics can be used to specify where to put “X”:s.

By using this additional information in the structure, it is possible to find
non-monitorable equation sets with cardinality one as follows. If e is the only
equation in Mb that contains a variable x and this variable is marked with an “X”
in the biadjacency matrix, then {e} satisfies the conditions in Theorem 12.5, i.e.,
{e} is non-monitorable. The next theorem will give theoretical results needed
for computing non-monitorable equation sets with cardinality greater than 1.

Theorem 12.6. Let M1 and M2 be disjoint sets of equations. If M1 is X1-satisfiable, M2
is X2-satisfiable and does not contain any variable in X1, then it follows that M1 ∪M2
is (X1 ∪ X2)-satisfiable.

Proof. Let the set of variables in M1 ∪M2 not included in either X1 or X2 be
denoted X3. From the conditions on M1 and M2, it follows that

∀x3 ∈ X3∀x2 ∈ X2∃x1 ∈ X1 : M1(x1, x2, x3) ∧ ∀x3 ∈ X3∃x2 ∈ X2 : M2(x2, x3)

which implies that

∀x3 ∈ X3∃(x1, x2) ∈ X1 ×X2 : (M1(x1, x2, x3) ∧M2(x2, x3))

since for any x3 there exists an x2 consistent with M2 and for any x2 there exists
an x1 consistent with M1 and therefore also M1 and M2. This and the definition
of X-satisfiable models imply that M1 ∪M2 is X1 ∪ X2-satisfiable. �

Example 12.8
To exemplify how the result of Theorem 12.6 can be used, consider the behav-
ioral model Mb = MPW in the water-tank example. The structure of the model
MPW is shown in Table 12.3. The model M1 = {e2} is {q1}-satisfiable and M2 = {ė3}
is {ẇ}-satisfiable. Now, since {ė3} and {e2} are disjoint and q1 is not included in
ė3, Theorem 12.6 implies that {e2, ė3} is {q1, ẇ}-satisfiable. Furthermore, the vari-
ables in {q1, ẇ} are not included in MPW\{e2, ė3} which means that MPW\{e2, ė3}
is a checking model of PW, according to Theorem 12.5.

In this way, it is possible to find the smallest checking model by finding a
non-monitorable equation and remove them from the model.

12.3.3 Algorithm

In this section we will present a recursive algorithm for computing the smallest
possible checking model of a behavioral mode b given a structural model of the
type shown in Table 12.3. The input to the algorithm is a structure with “O”:s
and “X”:s of a behavioral model Mb =: Cb .
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Table 12.3: The structure of the behavioral model MPW included in the diagnosis
model shown in Table 12.2.

Equation Unknowns Knowns
q1wẇq2q̇2 fc ˙fc fq ˙fq uyw ẏwyq ẏq

e2 X XX
e3 X O O
ė3 XOOOO
e4 X
ė4 X
e6 X X X
ė6 X X X
e7 X
ė7 X

Algorithm 13. FindCheckingModel(Cb)
if Cb contains no known variable then

Cb := ∅

else if there exists an e ∈ Cb with an unknown x only in e and the entry (e, x) is marked
“X” then

Cb := FindCheckingModel(Cb\{e});

end if
return The checking model Cb.

The correctness of the algorithm is implied by Theorem 12.5 and Theo-
rem 12.6. For a checking model Cb obtained by Algorithm 13, it holds that
M+

b
⊆ Cb ⊆ Mb. Note that the checking model computed by Algorithm 13 con-

tains all algebraic loops contained in the behavioral model Mb. No algebraic
loop can be removed by using only the information available in the input to
Algorithm 13 and this will be illustrated next by an example.

Example 12.9
Consider a behavioral model

Equation Expression
e1 y1 = x1 + x2
e2 y2 = x1 + x2

(12.39)

and another behavioral model

Equation Expression
e1 y1 = x1 + x2
e2 y2 = x1 + 2x2

(12.40)

For the model in (12.39), the minimal checking model is {e1, e2} and for the
model in (12.40) the empty set is the minimal checking model. Both these two
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behavioral models have the same structure:

Equation Unknowns Knowns
x1 x2 y1 y2

e1 X X X
e2 X X X

(12.41)

From this structure, it is not possible to conclude which equations that are
monitorable, because we have seen examples of behavioral models with exactly
this structure, where all and none of the equations are monitorable. Hence, the
only subset of {e1, e2} that can be determined to be a checking model by only
using the structural model (12.41) is {e1, e2}.

This was a linear example, but the same arguments hold also for non-linear
models. If we in the example know that {e1, e2} is {x1, x2}-satisfiable, then the
empty checking model can be computed by using Theorem 12.5 and Theo-
rem 12.6 directly. In this case, the algebraic loop would be excluded from the
checking model. However, it is in general a difficult task to provide satisfia-
bility information for different equation sets and variables sets of cardinalities
greater than one. Therefore, it is reasonable to assume that only a structure of
the type in Table 12.3 is provided.

The following example illustrates how Algorithm 13 is applied to a model.

Example 12.10
Consider for the water-tank example, the behavioral model MPW =M\{e1, e5, ė5}
in the diagnosis model shown in Table 12.2. The structure of this model is
seen in Table 12.3. FindCheckingModel is first called with input Mb = MPW.
The variable q1 is, among the equations in MPW, only included in e2 and
the corresponding entry is marked “X”, i.e., the if-condition is satisfied and
FindCheckingModel is called with input MPW\{e2}. Now the if-condition is also
satisfied, because w is only included in e3 and (e3,w) is marked “X”. By con-
tinuing the recursion in this way, FindCheckingModel(MPW) returns the empty
set ∅ which is the checking model of PW to be used in the isolability compu-
tation later. This means according to Theorem 12.2, that no behavioral mode is
isolable from that PW. In other words, PW is always a diagnosis.

12.4 Computation of Isolability Prediction

In the previous section, two different ways of computing checking models
have been presented. Given checking models for all behavioral modes, it is
straightforward to compute an isolability prediction using (12.12). However,
this might be computationally inefficient, because the number n of behavioral
modes can be large and (12.12) requires the determination of n2 subset-relations.

In this section, we will propose more efficient methods to compute the
isolability prediction Ip(〈Cb1 , . . . ,Cbn

〉). These methods will be based on the
structural isolability defined in Definition 11.4. Next, we extend this definition
to be applicable also to sets of models by using that Φi = assump(Mi).

Definition 12.7 (Structural Isolability of a Set of Models). LetM be a diagnosis
model and let ω be a set of models contained inM. A binary relation Is(ω) on B×B is



12.4. Computation of Isolability Prediction 249

the structural isolability of a set of models ω if

Is(ω) = {(b1, b2)|∃Mi ∈ ω :
(

b1 < assump(Mi) ∧ b2 ∈ assump(Mi)
)

} (12.42)

From the correspondence between the structural isolability of a diagnosis
system and the structural isolability of a set of models, it follows from Theo-
rem 11.2 that

Is(ω) =
⋃

Mi∈ω
Is({Mi}) (12.43)

This form is suitable for computing the structural isolability Is(ω) and next
we will show that the structural isolability of a set of models can be used to
compute the proposed isolability predictions.

Consider the isolability prediction obtained by using the checking models
suggested in Section 12.2, i.e., to use M+

b
as checking models. Then the isolability

prediction can be computed by using the following result.

Theorem 12.7. LetM be a diagnosis model and letωMSO be the set of all feasible MSO
sets contained inM. Then, it follows that

Ip(〈M+
b1
, . . . ,M+

bn
〉) = Is(ωMSO) (12.44)

Before we prove Theorem 12.7, a similar result for the approach presented
in Section 12.3 is first stated. In Ip(〈Cb1 , . . . ,Cbn

〉) the checking models of all
behavioral modes must be considered even if some or many of the checking
models are equal to other checking models. The next theorem shows that
identical checking models need not be considered separately.

Theorem 12.8. Let M be a diagnosis model and let the checking models found by
Algorithm 13 be 〈Cb1 , . . . ,Cbn

〉. If ωc = {Cbi
|bi ∈ B}, then it follows that

Ip(〈Cb1 , . . . ,Cbn
〉) = Is(ωc) (12.45)

Before we prove the theorems, the advantage of using the structural isola-
bility to compute the isolability prediction is illustrated.

Example 12.11
Consider the electrical circuit example, it can be seen in Figure 2.3 that there
are 25 = 32 behavioral modes. If the isolability prediction is computed by
using (12.12), then there are 322 = 1024 set comparisons needs to be done. If
the (12.43) is used, then the isolability prediction is computed directly from the
isolability of the 8 MSO sets.

To prove the two theorems, the next lemma will be used. In the lemma we
need to relate the set ω in the expression for structural isolability to the tuple
of checking models 〈Cb1 , . . . ,Cbn

〉 in the isolability prediction. For that purpose
the following notion will be used. Let Eb(ω) be the model Eb ⊆Mb such that

Eb(ω) =
⋃

M ∈ ω
M ⊆Mb

M (12.46)

Then different sets ω implies different tuples 〈Eb1 (ω), . . . ,Ebn
(ω)〉.
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We will later show that if ω = ωMSO in (12.46), then

Eb(ωMSO) =M+
b (12.47)

for all b ∈ B. Furthermore, we will also show that, if ω = ωc in (12.46), then

Eb(ωc) = Cb (12.48)

for all b ∈ B. Then both two theorems follow directly from the next lemma.

Lemma 12.3. IfM is a diagnosis model, ω is an arbitrary set of models, and Eb(ω) is
defined as in (12.46), then

Is(ω) = Ip(〈Eb1 (ω), . . . ,Ebn
(ω)〉) (12.49)

Proof. First, note that (12.42) is equivalent to

Is(ω) = {(b1, b2)|∃Mi ∈ ω :
(

Mi *Mb1 ∧Mi ⊆Mb2

)

} (12.50)

We start to show that

Is(ω) ⊆ Ip(〈Eb1 (ω), . . . ,Ebn
(ω)〉) (12.51)

Let (b1, b2) be arbitrarily chosen such that

(b1, b2) ∈ Is(ω) (12.52)

holds. This is according to (12.50) equivalent to that there is a model M ∈ ω
that fulfills

M *Mb1 (12.53)

and
M ⊆Mb2 (12.54)

From (12.54), (12.46), and the fact that M ∈ ω, we get that

M ⊆ Eb2 (ω) (12.55)

The expressions (12.53) and (12.55) imply

Eb2 (ω) *Mb1 (12.56)

This is according to (12.12) equivalent to

(b1, b2) ∈ Ip(〈Eb1 (ω), . . . ,Ebn
(ω)〉) (12.57)

Hence since (b1, b2) ∈ Is(ω) was arbitrarily chosen, it follows that (12.51) is true.
Now, it remains to prove that

Is(ω) ⊇ Ip(〈Eb1 (ω), . . . ,Ebn
(ω)〉) (12.58)

Let (b1, b2) be arbitrarily chosen such that

(b1, b2) ∈ Ip(〈Eb1 (ω), . . . ,Ebn
(ω)〉) (12.59)

This is according to (12.12) equivalent to (12.56). This means according to (12.46)
that there is a model M ∈ ω that fulfills (12.53) and (12.54). This is equiv-
alent to (12.52) and since (b1, b2) is arbitrarily chosen such that (12.59) is ful-
filled, (12.58) follows. The theorem follows from (12.51) and (12.58). �
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Now the proof of Theorem 12.7 follows.

Proof. First, we show that (12.47) holds. Let E be an arbitrary MSO set such that
E ⊆ Mb. By substituting M \ {e} for Mb in Theorem 9.6, it follows that E ⊆ M+

b
.

Since E was an arbitrarily chosen MSO set such that E ⊆ Mb, (12.46) implies
that

Eb(ωMSO) ⊆M+
b (12.60)

Now, the opposite inclusion will be proved. If M+
b
= ∅, then this inclusion

is trivially true. Hence assume that M+
b
, ∅. Let e′ be an arbitrary equation

in M+
b

. An MSO set containing e′ can then be constructed, by applying the
subroutine in Algorithm 11 to S = {{e}|e ∈M+

b
} and E = S \ {{e′}}. The output of

the algorithm contains at least on MSO sets M ∈ ωMSO such that M ⊆M+
b
⊆Mb

and e′ ∈ M. This and (12.46) imply that e′ ∈ M ⊆ Eb(ωMSO). Since e′ was an
arbitrarily chosen equation in M+

b
, it follows that

Eb(ωMSO) ⊇M+
b (12.61)

From (12.60) and (12.61), we get that (12.47) is true. This and Lemma 12.3
imply (12.44) and this completes the proof. �

Now, the proof of Theorem 12.8 follows.

Proof. First, we show that (12.48) holds. Since Cb ∈ ωc and Cb ⊆ Mb, it follows
that

Eb(ωc) ⊇ Cb (12.62)

Hence, it remains to prove the opposite inclusion. Let M1 and M2 be two
models such that M1 ⊆ M2 and let e ∈ M1 ⊆ M2. Assume that Algorithm 13
is applied to M2 and that e can be removed from M2 in a recursive call of
FindCheckingModel. This implies that if Algorithm 13 is applied to M1, then e
can be removed from M1 in a recursive call of FindCheckingModel. This will
be the basic property of the algorithm that will be used to prove this theorem.

Let Cb be the checking model of b obtained by Algorithm 13. Let

Mb =M1 ⊃M2 ⊃ · · · ⊃Mn−1 ⊃Mn = Cb (12.63)

be the sequence of sets that is called in the recursive calls. Assume that

Eb(ωc) ⊆ Cb (12.64)

is not true. Then there exists an output Cbi
of Algorithm 13 such that Cbi

\Cb , ∅

and Cbi
⊆ Mb. This implies that there must be a set Mi in (12.63) such that

Cbi
⊆Mi and Cbi

*Mi+1. This means that there is an equation e ∈ Cbi
⊆Mi, that

can be removed from Mi in a recursive call. Since Cbi
⊆ Mi, it follows from the

basic property of the algorithm, proved above, that e can be removed from Cbi
in

a recursive call. This implies that Cbi
is not an output of Algorithm 13 and this

is a contradiction. Hence, (12.64) follows. The inclusions (12.62) and (12.64),
imply (12.48). This and Lemma 12.3 imply (12.45) and this completes the
proof. �

In conclusion, the isolability predictions proposed in Section 12.2 and Sec-
tion 12.3 can be computed as Is(ωMSO) and Is(ωc) respectively.
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12.4.1 Isolability Prediction Interpretation

In this section we will exemplify the isolability prediction when using the
checking models suggested in both Section 12.2 and in Section 12.3.

Example 12.12
Consider the water-tank example. The analytical isolability of the diagnosis
model in Table 12.2 is shown as a diagnosis implication partial order in Fig-
ure 12.2. In Section 12.7, we will discuss how the analytical isolability of a
diagnosis model can be computed. In Figure 12.2 it can also be seen that no
fault is isolable from faults with a superset of faulty components. This is not
surprising since no equation in the model holds only in a faulty behavioral
mode. Furthermore, since the top element is an upper bound for all behavioral
modes, it means that these faults will always be diagnoses, in fact they all have
the empty set as their checking models.

The isolability prediction obtained when using Cb = M+
b

as suggested in
Section 12.2 is shown as a diagnosis implication partial order in Figure 12.3.
As said in Section 12.2, this isolability prediction should be considered as an
approximation of the true isolability. For example, PW is isolable from PTQ
according to Figure 12.2, but in the isolability prediction shown in Figure 12.3
PW is predicted not to be isolable from PTQ. Hence this prediction is not an
upper bound for the isolability. However for this example, this prediction is a
underestimation of the analytical isolability.

Figure 12.4 shows the diagnosis implication partial order computed by
Algorithm 13 in combination with (12.12). This isolability prediction is an
upper bound of the isolability. For example the four behavioral modes in the
top are an equivalence class and are therefore not isolable from each other. This
can be verified in Figure 12.2.

In conclusion, the isolability prediction in Figure 12.4 is more optimistic
than the isolability prediction in Figure 12.3.

In the example, we noted that the isolability predictions can be different.
The isolability prediction suggested by using PSO sets is the isolability that
would be obtained for a linear model in the generic case. The isolability prop-
erties contained only in the second isolability prediction are typically isolability
properties obtained from non-linearities not contained in the PSO parts of the
behavioral models.

12.5 Modeling Guidelines for Good Isolability Pre-

dictions

The proposed isolability prediction in Section 12.2 and 12.3 might be different
for different diagnosis models describing exactly the same behavior. In this
section, two modeling guidelines for obtaining better isolability predictions,
will be proposed. To define the first guideline, the following notation will be
need.

Recall from Section 2.1 and Section 5.3 that the set of components is denoted
by C, the set of component behavioral modes for a component c ∈ C is denoted
by Bc, and the behavioral model for component behavioral mode b ∈ Bc is
denoted by Mc,b. As said in Section 2.1.1, a variable in the relations for a
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NF

P T Q W

PT PQ TQ TW WQ

PTQ

PW,PTW,PWQ,TWQ,PTWQ

Figure 12.2: The analytical isolability of the diagnosis model in Table 12.2
describing the behavior of the water-tank process.

NF

P T Q

W

PT PQ TQ

PW,TW,WQ,PTQ,PTW,PWQ,TWQ,PTWQ

Figure 12.3: An isolability prediction of the water-tank process when PSO sets
have been used.

NF

P T Q W

PT PQ TQ TW WQ

PTQ TWQ

PW,PTW,PWQ,PTWQ

Figure 12.4: An isolability prediction of the water-tank process when Algo-
rithm 13 has been used.
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component c ∈ C is either an external variable or an internal variable. Let the
set of internal variables and the set of external variables be denoted by Xext and
Xint respectively. The corresponding vectors are denoted by xext and xint and
their corresponding domains by Xext and Xint. Given a component c ∈ C, let
the external behavior for a component behavioral mode b ∈ Bc be defined as

Bc(b) = {xext ∈ Xext|∃xint ∈ Xint : Mc,b(xext, xint)} (12.65)

To define the second guideline the following notation is needed. Consider a
model M with the set X of unknown variables and the set Z of known variables.
Let E ⊆ M and X ⊆ X ∪ Z be arbitrarily chosen such that there exists a perfect
matching in the subgraph G(E,X), i.e., ν(G(E,X)) = |E| = |X|. If the model M
is a structured linear model, then the matrix corresponding to the equations in
E and the variables in X is invertible. In the static case, this means that given
values of the variables in (X ∪ Z) \ X, it is possible to compute unique values
of the variables in X by using the equations in E. Next we will generalize the
notion of structured model to the non-linear static case. A non-linear static
model M is said to be structured if, for all E ⊆ M and for all X ⊆ X ∪ Z such
that ν(G(E,X)) = |E| = |X|, there exists for almost all values of the variables in
(X ∪ Z) \ X a unique solution of each variables in X at least locally.

Now, we are ready to state the modeling guidelines:

a) Each component c ∈ C and each pair of component behavioral modes
(bi, b j) ∈ Bc × Bc should satisfy

Mc,b j
⊆Mc,bi

↔ Bc(bi) ⊆ Bc(b j) (12.66)

b) For each behavioral mode b ∈ B, the behavioral model Mb should be
structured.

A guideline similar to (b) has been discussed in (Blanke et al., 2003). If it is
difficult to make the behavioral models structured, then a less ambitious task is
to make the behavioral models for each component behavioral mode structured.
The two guidelines (a) and (b) are motivated, discussed, and exemplified next.

12.5.1 Motivation of the Guidelines

Guideline (a) addresses how to select model assumptions, while guideline (b)
suggests how to write the model equations on a form suitable for the isolability
analysis proposed here.

We start to discuss the motivation of guideline (a). Note that the right
implication in (12.66) is trivially true. The important part is therefore to strive
for formulating the diagnosis model such that the left implication is fulfilled. In
Section 12.1.3 we argued that the checking models should be as small as possible
to get the best isolability prediction according to Theorem 12.2. By similar
arguments, it follows from (12.11) that the behavioral models Mbi

should be as
large as possible. By following modeling guideline (a), we can obtain larger
behavioral models and this will be illustrated in the next example.

Example 12.13
Consider the model in Table 2.2. This model does not fulfill guideline (a).
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Consider for example, the model of the flow sensor component Q:

Assumption Equation Expression
Q = NF e7 yq = q2
Q = B e8 yq = q2 + fyq

Q = B e9 ˙fyq = 0

For this component, it holds that

BQ(NF) ⊆ BQ(B) (12.67)

but
MQ,B = {e8, e9} * {e7} =MQ,NF (12.68)

However without changing the external behavior of component behavioral
mode NF, it is possible to extend the component behavioral model of NF such
that

MQ,NF ∪MQ,B = {e7, e8, e9} (12.69)

becomes the new component behavioral model MQ,NF. Then, guideline (a) is ful-
filled for component Q. This modification is obtained by putting assump(e8) =
assump(e9) = B. The no-fault behavioral model MNF is, by this modification,
extended with the equations e8 and e9. Hence by following guideline (a), be-
havioral models are extended.

A discussion about how to evaluate subset relations like (12.67) will be
postponed to the next section.

Now, we will discuss the purpose of guideline (b). To do this we will con-
sider two cases when guideline (b) is not fulfilled. These two cases correspond
to Example 8.7 and Example 8.8 presented in Section 8.3. In Example 8.7, we
illustrated for a linear model

Hx + Lz = 0 (12.70)

that the analytical redundancy can be strictly greater than the structural redun-
dancy if some sub-matrix of H is rank deficient. Furthermore, in Example 8.8,
we showed that the analytical redundancy can be strictly less than the struc-
tural redundancy, if some sub-matrix of [H L] not only contained in H is rank
deficient.

We start to exemplify the isolability prediction consequence of the first type
of rank deficiency.

Example 12.14
Consider a behavioral model Mb defined as

Equation Expression
e1 y1 = x1 + x2
e2 y2 = x1 + x2

(12.71)

This model is not structured, since the matrix corresponding to both equations
and both unknowns is rank deficient. An example of a non-structured non-
linear model Mb is

Equation Expression
e1 y1 = f (x1, x2)
e2 y2 = f (x1, x2)

(12.72)
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where f is an arbitrary non-linear function. If x1 is eliminated in (12.71) and
in (12.72), then we get that y1 − y2 = 0 in both cases. This means that {e1, e2}
are the minimal checking models for both these behavioral models. For the
two behavioral modes (12.71) and (12.72), the PSO parts are the empty set.
Hence, the PSO parts are in this case not checking models and the method in
Section 12.2 for finding checking models cannot be used.

The next example will illustrate the second type of rank deficiency and its
implications on isolability prediction.

Example 12.15
Consider a behavioral model Mb defined as

Equation Expression
e1 y = x
e2 y = x + f
e3 ˙f = 0

(12.73)

This behavioral model does not fulfill modeling guideline (b) and it can be
understood as follows. The matrix corresponding to the linear equations {e1, e2}
and the variables {y, x} is rank deficient, i.e., this behavioral model is not struc-
tured. The set {e1, e2, e3} is a PSO set if f and ˙f are not distinguished and the
minimal checking model for this set is the empty set. For any of the two meth-
ods proposed for finding checking models, any PSO set will be contained in the
computed checking model. For the example, we see that the checking model
for any of the methods will be {e1, e2, e3}, even if the minimal checking model is
the empty set. The computed checking models should be as small as possible
according to Section 12.1.3 and for the example, the computed checking models
are larger than the minimal checking model. Later we will see that by following
guideline (b) smaller checking models can be obtained.

Before the question of how to fulfill the guidelines is addressed, one more
example of a behavioral model that do not fulfill guideline (b) is given.

Example 12.16
This example is a continuation of Example 12.13 where equation e8 and e9
have been included in the no-fault behavioral model in Table 2.2. The no-
fault behavioral model does not fulfill modeling guideline (b) and this can be
understood as follows. The polynomial matrix corresponding to the linear
equations {e7, e8} and the variables {yq, q2} is rank deficient. Hence, the no-fault
behavioral mode is not structured.

12.5.2 Fulfilling Guideline (a)

Next we will exemplify how modeling guideline (a) can be fulfilled. Each com-
ponent c ∈ C can be analyzed separately to verify that modeling guideline (a)
is fulfilled. To ensure that guideline (a) is fulfilled, relations between the ex-
ternal behavior of different component behavioral modes, of the type shown
in (12.67), must be investigated. In Example 12.13 the component models are
small, and the relationships between the external behaviors of the component
behavioral modes can easily be determined. Often, component behavioral
models are small and straightforward computations as described in the ex-
ample is in these cases manageable. Furthermore, it is common that several
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components of the same type is used, and then one analysis for one of these
components is sufficient.

Assume that we have concluded for a component c and two component
behavioral modes b1 and b2 that

Bc(b1) ⊆ Bc(b2) (12.74)

and
Mc,b2 *Mc,b1 (12.75)

Normally, we can fix this by extending Mc,b1 with the equations in Mc,b2 as in
Example 12.13. This is done by modifying assump(e) for some of the equations
e ∈M.

12.5.3 Fulfilling Guideline (b)

Now, we will exemplify how modeling guideline (b) can be fulfilled. We show
how this can be done for the water-tank process.

Example 12.17
This is a continuation of Example 12.16. In that example we concluded that
the no-fault model in Table 2.2 where e8 and e9 have been included does not
fulfill modeling guideline (b). The problem was identified to be that the matrix
corresponding to the equations in {e7, e8} and the variables in {yq, q2} is rank
deficient. By introducing a new variable g = yq − q2 and substitute yq − q2 for g
in e7 and e8, we get

Assumption Equation Expression
Flow sensor

Q = NF e7 g = 0
e8 g = fyq

e9 ˙fyq = 0
e10 g = yq − q2

Since, g = fyq the new variable g can be eliminated and if the equations are
reordered and enumerated according to the new order, we obtain

Assumption Equation Expression
Flow sensor

e7 yq = q2 + fyq

Q = NF e8 fyq = 0
e9 ˙fyq = 0

Now, this part of the no-fault model fulfills modeling guideline (b). Note
that this is how a constant bias fault would be modeled by following the
FDI-approach described in Section 2.4. If the same ideas are applied to the
tank component, the model in Table 12.1 is obtained. By differentiating this
model and distinguishing different derivatives, the static model in Table 12.2 is
obtained. This model fulfills both guideline (a) and (b).

To conclude this discussion, two modeling guidelines have been proposed
and ideas of how to reformulate models to fulfill the guidelines have been
presented.
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12.6 Applications of Isolability Prediction

Previous sections have described how to compute isolability predictions. Here,
we will discuss how isolability predictions can be used for fault modeling
specification and for supporting sensor selection to meet given isolability re-
quirements.

12.6.1 Fault Modeling Specification

Assume that safety, maintenance, or legislative requirements state demands on
the fault isolability. Given a diagnosis model including fault models, it can be
determined by an isolability prediction of the diagnosis model if the proposed
fault modeling is insufficient for the fault isolability demands.

Example 12.18
Assume that all double faults must be isolable from each other in the water-tank
process. The result shown in Figure 12.4 implies that the isolability demands
cannot be fulfilled with the proposed model in Table 12.2. For example no
double fault is isolable from PW. To make any behavioral mode isolable from
PW, the behavioral model MPW must be improved for example by additional
fault modeling. The faulty components in PW are the pump P and the water-
level sensor W and none of these components have fault models.

Assume that it is reasonable to use a constant bias fault model for the water-
level sensor. Let fyw be the size of the bias fault. Equation e5 can now be
replaced by yw = w+ fyw and ė5 by ẏw = ẇ+ ˙fyw which both hold in any system
behavioral-mode. Furthermore, the new equations e8 : fyw = 0 which holds
when W = NF, and ė8 : ˙fyw = 0 which always is true, are added to the model
in Table 12.2. By applying Algorithm 13 to the model including the new fault
model, a smaller set Ip(〈Cb1 , . . . ,Cbn

〉) is obtained. This means that some faults
that were not isolable from some other faults without the fault model, now
might become isolable. The result with the additional fault model is that it
might become possible to isolate all double faults from all other double faults.

For this example, it is also possible to analyze the true isolability by using
the analytical expressions. For example, consider the behavioral modes PW
and PT. Without the additional fault model, PT was not isolable from PW.
When including the fault model, the observation set O(MPW) for PW is defined
by

ẏw − 2 yq ẏq = 0 (12.76)

and O(MPT) is defined by

ẏw yq − 2 yw ẏq = 0
yq = 0→ yw = ẏw = 0

Both these expressions can be computed by elimination of all unknowns in their
corresponding checking models respectively. The mode PT is isolable from PW
if O(MPT) \ O(MPW) , ∅. An example of observations in O(MPT) \ O(MPW) is
yq , 0, ẏq , 0, yw , y2

q , and ẏw = 2yw ẏq/yq. HenceO(MPT)\O(MPW) , ∅, i.e., PT
is isolable from PW. According to the result of Algorithm 13 and the isolability
prediction Ip(〈Cb1 , . . . ,Cbn

〉), it is possible that all double faults are isolable from
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all other double faults and by pairwise comparisons of observation sets as in
the discussion above, it can be shown to be so.

12.6.2 Design Alternative Evaluation

Suppose there are different design alternatives, e.g. different possible sensor
configurations. Since only a structural model is needed as input to predict
the isolability using any of the two methods presented Section 12.2 and in
Section 12.3, the isolability aspects of different design alternatives can easily be
evaluated.

Example 12.19
Consider again the water-tank process. Let the isolability demands be the same
as in the previous section and assume that there are two design alternatives
for the water-tank process, one as previously described in Section 12.5 and
one with an additional flow sensor Qextra measuring q1. We know from the
previous discussion that it is not possible to isolate all double faults from each
other by using the model in Table 12.2. The result of applying Algorithm 13
to an extended model including the additional sensor Qextra and computing an
isolability prediction, addresses the question if the model with the additional
sensor can be sufficient to meet the isolability demands.

The extended model is obtained by adding the equation e8 : y = q1 with the
assumption Qextra = NF. Note that an extra sensor will change the set of all
system behavioral modes. In this example, the number of components is 5 and
the original model has only 4 components. By including the additional sensor,
all double faults, including the new once introduced by Qextra, might be isolable
from any other double fault according to the isolability prediction. Analytical
analysis can be done as in Section 12.6.1 to conclude that all double faults are
isolable from all other double faults.

To summarize the results of Example 12.18 and 12.19, without any fault
model or any additional sensor, this analysis shows that there are double faults
which are not isolable from other double faults. However, by adding the
proposed fault model or the water-level sensor it can be shown that all double
faults are isolable from all other double faults.

12.7 Designing a Diagnosis System with Maximum

Isolability

In this section, we will combine isolability predictions with the test selection
method presented in Section 11.9 to develop a design procedure for deriving
a diagnosis system with the maximum possible isolability given a diagnosis
model. The basic idea is to consider a large set of potential test corresponding
to different sub-models, primarily MSO sets, of the diagnosis model. The set
of models will be selected such that if tests are constructed for all sets, the
resulting diagnosis system has maximum isolability. To ensure this, we will in
addition to the MSO sets include checking models for all behavioral modes in
the considered set of models. To reduce test construction time, that often in-
volves manual work, and the on-line computational burden using the diagnosis
system, the number of tests will be minimized. This will be done by selecting
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a minimum cardinality subset of the potential test with the maximum possible
isolability. Then only the selected tests are constructed. Before describing the
design procedure, we will first specify what we mean by maximum possible
isolability given a diagnosis model.

12.7.1 Characterizing Maximum Isolability

One might think that for any complete diagnosis system∆ based on a diagnosis
modelM, it holds that the isolability of the diagnosis model is an upper bound
for the isolability of the diagnosis system, i.e., I(∆) ⊆ I(M). However, the
following example shows that this is not true in general.

Example 12.20
Consider a diagnosis modelM specified by the following observation sets:

O(Mb1 ) = {0}
O(Mb2 ) = {0, 1}
O(Mb3 ) = {0, 1, 2}

(12.77)

It is clear that the analytical isolability of this modelM is

I(M) = {(b3, b2), (b3, b1), (b2, b1)} (12.78)

Consider a complete diagnosis system ∆ = {δ}, where δ is defined by the
acceptance set O(δ) = {0, 1} and Φ = {b2}. Note that ΦC = {b1, b3} is, in this
case, not equal to the set {b3} of faults that influence the test. If z = 2, then
the null hypothesis of the test is rejected and the conclusion drawn is that
sys ∈ ΦC = {b1, b3} and not in b2. This means that the analytical isolability of the
diagnosis system is

I(∆) = {(b3, b2), (b1, b2)} (12.79)

By comparing (12.78) with (12.79), it can be seen that (b1, b2) ∈ I(∆) and (b1, b2) <
I(M). Hence by analyzing the candidates computed by the diagnosis system
we falsely believe that b1 is isolable from b2.

In the example we saw that I(∆) ⊆ I(M) is not true for a complete diagnosis
system∆ in general. This was due to the fact that the candidates generated false
isolability properties. When maximizing the analytical isolability of a diagnosis
system based on a modelM, we do not want to maximize the number of false
isolability properties. In the design procedure, that will be describe later in
Section 12.7.4, we will consider diagnosis tests where the set ΦC

i
is equal to the

set of behavioral modes that influences the tests. In this way, we will according
to the next theorem avoid the problem with false isolability.

Theorem 12.9. Given a diagnosis system ∆, where for each δi ∈ ∆ the set ΦC
i

is equal
to the set of behavioral modes that influences δi, it holds that

I(∆) ⊆ I(M) (12.80)

Proof. Take an arbitrary (b1, b2) ∈ I(∆). Theorem 11.1 implies that (b1, b2) ∈ Is(∆).
This means according to (11.11) that there exists a test δi ∈ ∆ such that

b1 < Φi (12.81)
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and
b2 ∈ Φi (12.82)

Since the set ΦC
i

is equal to the set of behavioral modes that influences δi, it
follows from (12.81), that

O(Mb1 ) * O(δi) (12.83)

and from (12.82), that
O(Mb2 ) ⊆ O(δi) (12.84)

From (12.83) and (12.84), we get that

O(Mb1 ) \ O(Mb2 ) , ∅ (12.85)

This means that there exists an observation z0 ∈ Z such that

z0 ∈ O(Mb1 ) ∧ z0 < O(Mb2 ) (12.86)

This is according to (2.5) equivalent to

b1 ∈ D(z0) ∧ b2 < D(z0) (12.87)

This and the definition of analytical isolability of a diagnosis model in (12.1)
imply that (b1, b2) ∈ I(M). Since (b1, b2) was arbitrarily chosen in I(∆), the
theorem follows. �

12.7.2 Lower and Upper Bounds for the Maximum Isolability

By assuming that the set ΦC
i

is equal to the set of behavioral modes that in-
fluences test δi, the maximum isolability of any diagnosis system based on a
diagnosis model M is according to Theorem 12.9 equal to I(M). The task of
deriving a diagnosis system with maximum isolability can therefore be formu-
lated as the intuitive task to find a diagnosis system with isolability equal to
I(M). As said before, I(M) is in general unknown and analytically difficult to
derive.

However, it is possible to compute a lower and an upper bound of I(M). An
upper bound will be obtained by using a set of potential tests ∆a such that

I(M) ⊆ Is(∆a) (12.88)

How to select ∆a such that (12.88) holds is discussed later in Section 12.7.3. A
set ∆ ⊆ ∆a is selected such that

Is(∆a) = Is(∆) (12.89)

If the fault influence for each δi ∈ ∆ is equal to the set ΦC
i

, it follows according
to Theorem 11.3 that

Is(∆) = I(∆) (12.90)

and according to Theorem 12.9 that

I(∆) ⊆ I(M) (12.91)

The expressions (12.88)-(12.90) imply that

I(M) = Is(∆a) = Is(∆) = I(∆) (12.92)

that is, ∆ is a diagnosis system with the maximum isolability I(M).



262 Chapter 12. Isolability Prediction of Diagnosis Models . . .

12.7.3 Selecting the Set of Potential Tests ∆a

The set ∆a of potential tests must be selected carefully to fulfill (12.88) and
how to do this will be described in this section. Let ωc = {Cb1 , . . . ,Cbn

} be
the set of one checking models for each behavioral mode bi ∈ B. This set
can be computed by using Algorithm 13. Let ∆c = {δ1, . . . , δn} be a diagnosis
system such that O(δi) = O(Cbi

) = O(Mbi
) and let Φi be any sets such that ∆c is

complete. Then ∆c is also sound according to Theorem 2.2. Since ∆c is a sound
and complete diagnosis system the following theorem implies that ∆c has the
maximum possible isolability.

Theorem 12.10. If ∆ is a sound and complete diagnosis system with respect to a
diagnosis modelM, it follows that

I(M) = I(∆) (12.93)

Proof. Since ∆ is a sound and complete diagnosis system with respect to a
diagnosis modelM, it means that

∀z ∈ Z : (D(z) = C(z)) (12.94)

Definition 12.3 implies that

I(M) = {(b1, b2)|∃z ∈ Z :
(

b1 ∈ D(z) ∧ b2 < D(z)
)

} (12.95)

From (12.94) and (12.95), it follows that

I(M) = {(b1, b2)|∃z :
(

b1 ∈ C(z) ∧ b2 < C(z)
)

} (12.96)

Expression (11.1) in Definition 11.3 and (12.96) imply (12.93). �

Since ∆c is a sound and complete diagnosis system, Theorem 12.10 implies
that

I(M) = I(∆c) (12.97)

From this and Theorem 11.1, we get that

I(M) ⊆ Is(∆c) (12.98)

If the set ∆a in (12.88) is chosen as ∆c ⊆ ∆a, then (12.88) is implied by (12.98).
The reason for not choosing ∆c = ∆a is that our primarily choice will be to
construct tests based on MSO sets. The checking models are only included
in ∆a to ensure that if all tests in ∆a are constructed a diagnosis system with
maximum isolability is obtained. Note that, even if observation sets O(Cbi

)
are mentioned in the derivation of (12.88), we do not need to compute any
observation set explicitly to know that (12.88) is true. In fact, it is sufficient to
know that ωc contains a checking model for each behavioral mode.

Now, we have described how to choose the set of potential tests ∆a. Next,
we will describe how to select a minimum cardinality set of tests ∆ ⊆ ∆a with
the maximum possible isolability.
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12.7.4 Design Procedure

The test selection will be done by the following design procedure for construct-
ing a diagnosis system with the maximum isolability given a diagnosis model
M.

1. Find all feasible MSO setsωMSO by using Algorithm 7 and compute check-
ing models ωc by using for example Algorithm 13. Let ωa = ωMSO ∪ ωc.

2. Let ∆a denote a set of potential tests, one for each model in ωa. Let the
test assumption of δi ∈ ∆a be given by Φi = assump(Mi), where Mi is the
corresponding model in ωa.

3. Find a diagnosis system based on a minimal set ∆ ⊆ ∆a such that Is(∆) =
Is(∆a). This step has been described in Section 11.9.4.

4. Construct the ideal tests δi ∈ ∆ such that O(δi) = O(Mi).

5. Evaluate the set of faults that influence each test in ∆.

6. If the fault influence is not equal toΦC
i

for some test in ∆, then modify the
sets Φi for the tests in ∆a and goto step (3).

7. If the fault influence is equal to ΦC
i

for all test in ∆, then ∆ is a diagnosis
system with the maximum possible isolability, i.e., I(∆) = I(M).

Note that the steps (3)-(7) corresponds to the design procedure presented
in Section 11.9.4 for finding a diagnosis system with the maximum isolability
given a set of potential tests. To ensure that the obtained diagnosis system has
maximum possible isolability, I(∆) = I(M), we include ωc ⊆ ωa in step (1) and
the acceptance set is related to the diagnosis model by O(δi) = O(Mi) according
to step (4). Computing observations sets is a difficult problem. However the
requirement thatO(δi) = O(Mi) in step (4) can be omitted for all models Mi < ωc,
because ideal tests only for all checking models have the maximum possible
isolability. Since the difficult requirement can be omitted in step (4) if the select
tests are not based on checking models, we will prefer to select tests based on
other models. Note also that ωa can be selected as any superset of ωc.

We will illustrate the design procedure on the water-tank example.

Example 12.21
Consider the diagnosis model in Table 12.2 and assume that we want to derive
a diagnosis system with the maximum possible isolability by following the
design procedure. In step (1), all 11 feasible MSO sets ωMSO contained in this
model are found by using Algorithm 11. Furthermore, the set of all checking
models ωc are computed by using Algorithm 13. In this case, there are 12
different non-empty checking models of all 16 behavioral modes.

In step (2), a set of potential test ∆a is defined, one for each model in
ωMSO ∪ ωc.

In step (3), the structural isolability Is(∆a) = Ip(〈Cb1 , . . . ,Cbn
〉) is computed.

This structural isolability is equal to the one shown in Figure 12.4. There are
4 test sets ∆ ⊆ ∆a such that Is(∆) = Is(∆a) and with the minimum cardinality
6. We choose to maximize the number of tests based on MSO sets and of the
four minimum cardinality test sets there is only one which includes 2 MSO
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Table 12.4: Tests based on MSO set in the model shown in Table 12.2.

b Set Test Assumption
1 {e3, ė3, ė4, e5, ė5, e6, ė6, e7, ė7} W = NF ∧Q = NF
2 {e3, ė3, e4, ė4, e5, ė5, ė6, ė7} T = NF ∧W = NF
3 TW {e1, e2, ė3, ė4, e6, ė6, e7, ė7} P = NF ∧Q = NF
4 WQ {e1, e2, ė3, e4, ė4, ė6, ė7} P = NF ∧ T = NF
5 PTQ {e3, ė3, ė4, e5, ė5, ė6, ė7} W = NF
6 TWQ {e1, e2, ė3, ė4, ė6, ė7} P = NF
7 {e1, e2, e3, ė3, ė4, e5, ė5, ė6, ė7} P = NF ∧W = NF

sets. The six chosen tests correspondence to the six first rows in Table 12.4.
The first two correspond to the MSO sets while the next four rows correspond
to the checking models. The acceptance sets for the checking models can be
computed by using quantifier elimination tools in Mathematica.

In step (4), the acceptance set is computed for the selected tests in ∆. These
are shown in Table 12.5. Note, that the acceptance set for the checking model
of TWQ is equal to Z. This means that the null hypothesis cannot be rejected
and that the empty set of behavioral modes influence this test.

In step (5), the fault influence is investigated. The set of fault that influence
each test is equal to ΦC

i
for all test in ∆, except for test δ6 based on the checking

model of TWQ.
In step (6), the test assumption Φ6 for test δ6 is modified and set to Φ6 = B.

Then, we go back to step (3) in the design procedure.
By using the modified test assumption, the structural isolability Is(∆a) is

shown in Figure 12.2. There are 6 minimum cardinality test sets with the
maximum structural isolability. Of these test sets, there is only one set that
contains 3 tests based on MSO sets. The other 5 test sets contains fewer test
based on MSO sets. Let the set with maximum number of tests based on MSO
sets be the set of selected tests ∆. This set corresponds to the rows 1, 2, 3, 4,
5, and 7 in Table 12.4 and in Table 12.5. Note that compared to the previously
selected tests only one additional test δ7 is selected, i.e., the test that corresponds
to row 7.

The acceptance set and the set of faults that influence test δ7 is computed
in step (4) and step (5) respectively. The set of faults that influence each test
is equal to ΦC

i
and this means according to step (7) that a diagnosis system

with the maximum possible isolability I(∆) = I(M) has be found. Note that, in
addition to finding a diagnosis system with the maximum possible isolability,
we have also computed the isolability in the diagnosis modelM, which until
now has been unknown.

12.8 Conclusions

In the development of processes including diagnosis, design decisions are
taken, e.g. sensor configuration selection, which affects the fault isolability
possibilities. This chapter has presented a method to compute isolability pre-
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Table 12.5: Tests based on MSO set in the model shown in Table 12.2.

z ∈ O(δ)
1 ẏw = 2ẏqyw/yq

2 ẏ2
w = 4ẏ2

q yw

3 (ẏq = 0 ∧ u = yq) ∨ (ẏq , 0 ∧ (u = 0 ∨ yq , 0))
4 ẏq = −1/2→ u = 0
5 ẏw = 0↔ (yq = 0 ∨ yw = 0)
6 z ∈ Z
7 ẏ2

w = uẏw − 2yw ẏq

dictions that easily can computed for different design alternatives and evaluate
their isolability limitations. It has also been shown how the proposed isolabil-
ity predictions can be used when designing a diagnosis system with maximum
possible isolability.

Here two different isolability predictions have been proposed. The predic-
tion obtained by following the description in Section 12.2, that is to use PSO
parts as checking models, gives the same result as in (Travé-Massuyès et al.,
2003; Frisk et al., 2003), and (Blanke et al., 2003). Under the assumption that
all monitorable equations are contained in the PSO part, this prediction is an
upper bound for the true isolability.

The second type of isolability prediction presented in Section 12.3 is more
conservative. The advantage of being conservative is that the second isolability
prediction is always an upper bound for the true isolability in contrast to
the results in (Travé-Massuyès et al., 2003), (Frisk et al., 2003), and (Blanke
et al., 2003) where analytical assumptions need to be satisfied. This prediction
was done by combining Algorithm 13, which computes the smallest checking
models that can be computed by using structural models as the one in Table 12.3,
and the link between checking models and isolability stated in Theorem 12.2.

Different applications for isolability predictions have been give in Sec-
tion 12.6 and in Section 12.7. In Section 12.6.1, it was shown how a fault
prediction could detect insufficient fault modeling. The analysis revealed faults
not isolable from other faults, and by the example a methodology was proposed
to locate required additional fault modeling. Section 12.6.2 showed how a fault
prediction could be used to find the isolability limitations of different design al-
ternative for a process to be diagnosed. Finally, Section 12.7 presented a design
procedure for finding a diagnosis system with the maximum possible isolabil-
ity. This design procedure was based on isolability predictions in combination
with the theory for selecting tests presented in Chapter 11. In conclusion, it is
believed that structural methods for isolability analysis have an advantage of
analytical methods to support decisions early in the design process and also for
test selection during diagnosis system construction.
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